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1. Introduction 
 

Finding conclusive solutions for problems in population genetics involves very time-

consuming and tedious procedures and furthermore, many times the available analytical 

solutions are impractical or there is no well-defined analytical solution available at all. To 

overcome such complex problems, computer simulation has come to the aid as a very 

powerful and useful tool. By using computer simulations, one can solve highly complicated 

problems, which are non-practical or are too time-intensive to be solved analytically. Though 

the computer simulations make it possible to solve these problems, they have some inherent 

problems of their own. One potential problem is that computer simulations are very heavy 

on system resources. The computer simulation programs that are available today were 

designed for computers containing a single processor. However, during the past few years, 

computers with multiple processors and/or computers using processors containing multiple 

cores have become the norm. In order to fully utilize the processing power of these new 

computers, it is required and is essential that the simulation software should be parallelized. 

 

Population Genetics is the science of investigating how the genetic constitution of a 

given population changes with time under the influence of natural selection, genetic drift, 

mutations, and gene flow. It provides the theoretical framework necessary for studying the 

effects of crossing different genetic strains over a given time period. A tractable 

mathematical model where options for selection, finite population size, and planned mating 

is not possible with analytical solutions. 

 

Simulation software is a class of computer programs that are used to observe the 

effect of a process, operation or experiment using a set of mathematical formulas without 

actually performing the process or operation physically. The benefit of using the simulation 

software are immense, both in saving time and costs. “The Population Genetics Simulation 

Software” simulates the effect of random or planned crossing between different sets of 

parents on the genetic variation in the population. Achieving some conclusive results on a 

simple population study involving a group of individuals, that in reality would take years to 

finish, can be obtained within minutes if not seconds using simulation software. 
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The downside of having a computer with multiple cores is that older programs 

designed for sequential execution on a single core are not able to utilize the gain in 

performance provided by the multiple cores. For a program to be actually able to utilize the 

benefit of the multiple cores, it should be designed in such a way that it could run multiple 

instances of itself or its sub-parts at the same time. The software has to be designed in such 

a way that it breaks the problem into discrete parts, which can then be executed 

concurrently by different cores of a computer system. Software designed to work in this 

manner is known as “parallelized software”. 

 

Whenever any software is designed to solve a problem by utilizing the multiple cores 

of the system and running parts of the routines simultaneously, a completely new set of 

obstacles like; race conditions, mutual exclusion, synchronization and parallel slowdown 

have to be tackled. To deal with these impediments in the case of population genetics 

simulations requires finding and creating new scientific concepts on data structure and 

algorithms. 

 

By parallelizing the “Simulation Software for Population Genetics”, we can enhance 

the speed of execution of the program greatly, depending on the system configuration, thus 

reducing the time a researcher needs to wait for the simulation to finish processing. 

However, to do this the new software has to surmount various hindrances posed by the 

concurrent execution of the various parts of the simulation. Since there is no currently 

available population genetics simulation software or model that is able to run the various 

parts of the simulation in parallel, new concepts for the simultaneous operation of various 

parts of the simulation need to be devised. Furthermore, newer algorithms designed 

specifically to handle population genetics problems need to be created. 

 

1.1 Existing Software 

There are a number of software programs available for performing simulations on 

population genetics, but most of these are designed to perform only a specific task and do 

not provide the functionality required for many other types of studies. Moreover, these are 

not designed to utilize the multi-core architecture of modern computers. The most 

important ones are: 
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GENEPOP (Version 1.2) is a population genetics software package for exact tests and 

ecumenicism for haploid or diploid data (Raymond and Rousset 1995). It mainly performs 

two tasks: (i) It computes exact tests or their unbiased estimation for Hardy-Weinberg 

equilibrium, population differentiation, and two-locus genotypic disequilibrium. (ii) It 

converts the input GENEPOP file to formats used by other popular programs, like BIOSYS 

(Swofford and Selander 1981), LINKDOS (Garnier-Gere and Dillmann 1992), and Slatkin's 

(1993) isolation-by-distance program, thereby allowing communication between them. 

 

QU-GENE is a flexible and powerful platform for investigation of the characteristics of 

genetic systems undergoing repeated cycles of selection and mating. The core of the system 

is the E (N:K) genetic model, where E is the number of types of environment, N is the 

number of genes, K indicates the level of epistasis and the parentheses indicate that 

different N:K genetic models can be nested within types of environments. It uses a two-stage 

architecture that separates the definition of the genetic model and genotype-environment 

system from the detail of the individual simulation experiments. There are typically three 

steps involved in running a QU-GENE simulation – (i) specification of the genetic-

environment system, (ii) specification of a mating and selection scheme and (III) running the 

simulation (Podlich and Cooper 1998). 

 

 Easypop (Version 1.7) is a computer program for population genetic simulations that 

simulates both haploid and diploid organisms (Balloux 2001). It allows the proportion of 

cloned and sexual reproduction to be selected in case of haploid organisms. In case of 

diploid organisms with one sex, it allows the proportion of selfing to be selected and in case 

of bisexual diploid organisms, it gives the choice between hermaphrodites and sexual 

organisms. It has been implemented in various models for migrations such as two-

dimensional stepping-stone and hierarchical island model. Easypop V1.7 can handle a 

maximum population size of 10,000 individuals with a maximum of 999 allelic states. 

 

SelSim is a program to simulate population genetic data with natural selection and 

recombination written in C++ for Monte Carlo simulation of DNA polymorphism data, for a 

recombining region within which a single bi-allelic site has experienced natural selection. It 
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provides a number of different mutation models for simulating surrounding neutral 

variation. Within a coalescent framework, SelSim allows the simulation from either a fully 

stochastic model or deterministic approximations to natural selection (Spencer and Coop 

2004). 

 

SIMCOAL 2.0 is a program to simulate genomic diversity over large recombining 

regions in a subdivided population with a complex history, performs simulation of the 

genomic diversity, of samples drawn from a set of populations with arbitrary patterns of 

migrations and complex demographic histories, including bottlenecks and various modes of 

demographic expansion (Laval and Excoffier 2004).  

 

Arlequin V3 is an integrated software package for population genetics data analysis 

and is a Windows only software package written in C++, integrating several basic and 

advanced methods for population genetics data analysis (Excoffier, Laval and Schneider 

2005). Some of the functionalities offered by Arlequin V3 are; computation of standard 

genetic diversity indices, estimation of allele and haplotype frequencies, departure from 

linkage equilibrium tests, departure from selective neutrality and demographic equilibrium 

tests, etc. 

 

simuPOP is a forward-time population genetics simulation environment that can 

simulate large and complex evolutionary processes (Peng and Kimmel 2005). It is based on a 

scripting language (Python) that provides a large number of objects and functions to 

manipulate populations and a mechanism to evolve populations forward in time. It allows 

users to create, manipulate and evolve populations interactively and in batch mode by using 

a script provided by the user. A number of built-in scripts are provided in simuPOP, which 

can perform simulations ranging from implementation of basic population genetics models 

to generating datasets under complex evolutionary scenarios. 

 

TreesimJ is a flexible, forward time population genetic simulator that can perform 

simulations on sampling of genealogies, genetic data and many population parameters from 

populations evolving under complex evolutionary scenarios (O'Fallon 2010). Many fitness 

and demographic models are provided in the application along with the option to create 



Page | 5  
 

custom models. It assumes that each individual has exactly one parent, thus diploidy, 

recombination and sexual selection are not considered and treated. 

 

1.2 Base Work 

Simulation software Plabsim (Frisch et al. 2000) and Plabsoft (Maurer et al. 2008) 

were developed in our working group and these programs have been used in more than 50 

refereed publications. The comparison of simulated and experimental datasets showed a 

very good fit of the simulation models used in these programs (Prigge et al. 2008). 

 

Plabsim is a computer program for simulating marker-assisted selection in arbitrarily 

designed backcross programs. Plabsim can evaluate the simulated data for gene frequency, 

genotype frequency, frequency of homozygous loci, length of chromosome segments 

originating from one ancestor and the number of marker data points required for a breeding 

program. In addition to data analysis, Plabsim can also export the simulated data for analysis 

with statistical software. 

 

Plabsoft is powerful and flexible simulation software capable of performing 

population genetics simulations and data analysis. It can simulate various mating systems 

comprising planned crosses, random mating, selfing, partial selfing, single-seed descent, 

double haploids, top-crosses and factorials. It provides data analysis routines for analyzing 

simulated and experimental datasets for allele and genotype frequencies, genotypic and 

phenotypic values and variances, molecular genetic diversity, linkage disequilibrium and 

parameters to optimize marker-assisted backcrossing programs. 

 

1.3 Objectives 

The objectives of the present project were to study various approaches for 

parallelization, find the most suitable approach for implementation and also to explore and 

study the working of already existing simulation software Plabsoft and Plabsim; and finally to 

design new parallelized simulation software PopSim based on Plabsoft. 

 

The main goals for the new simulation software were that the new program should 

be able to utilize the advantage provided by the multiple core architecture of modern 
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computers, which until now no other software in this category is utilizing. In addition, it 

should be completely backwards compatible with Plabsoft commands i.e. scripts written for 

Plabsoft should be able to run on PopSim without the need to make any changes in the script 

apart from the name of the library to load. An additional prerequisite was that unlike the 

older programs the new program should not be dependent on any third party libraries like 

GSL, GMP, etc. Further it was also necessary that the new program should be able to compile 

both on Linux and Windows based machines with no or minimal differences between the 

code for the two operating systems. Any weaknesses that are found in Plabsoft should also 

be removed and the algorithms suitable for parallelization should be detected. The new 

software was required to compile cleanly without giving any errors or warnings on both the 

Linux and Windows System and it should also be able to compile on a compiler not 

supporting parallelization. Lastly, the new software was expected to be able to run faster 

than Plabsoft at least for the parallelized part, while keeping the results similar and 

comparable to the Plabsoft results. 

 

The PopSim software that has to be developed would be an add-on package for the 

“R Statistical Software” (Ihaka and Gentleman 1996). It would be a flexible and powerful 

parallelized simulation software for population genetics and data analysis capable of fully 

utilizing the multi-core architecture of today’s computers. It would be able to handle a broad 

range of problems concerning plant breeding and genetics. PopSim would be able to 

simulate the various mating scenarios like random mating, selfing, partial selfing, planned 

crosses, double haploids, top-crosses, single-seed descent and factorials. It would provide 

means to simulate selections according to selection indices based on molecular marker 

scores and/or phenotypic values. A range of data analysis routines would be provided in 

PopSim to analyze simulated and experimental datasets for allele and genotype frequencies, 

genotypic and phenotypic values and variances, molecular genetic diversity, linkage 

disequilibrium and parameters to optimize marker-assisted backcrossing programs using 

simulated and experimental datasets. 
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2. Methods 
 

A new Population Genetics Simulation software based on Plabsoft was to be designed 

to handle various problems of Population Genetics, It was required that it should provide 

different types of validated and performance optimized functions. These functions could also 

be used by the user to create new high-level user-defined functions in combination with the 

data analysis routines provided by R and other add-on packages of the R system called in 

arbitrary order. The entire list of the functions provided in the new Population Genetics 

Simulation software known as PopSim along with their intended purpose or functionality has 

been provided in Appendix I. 

 

Earlier Karlin and Liberman (1978) had simulated meiosis by the Count-Location 

Process, this is the very same process used by PopSim for the simulation of meiosis. This 

Count-Location Process is a two-step process whereby realization of Poisson-distributed 

random variable ‘M’ is determined by using parameter ‘λ’ in the first step (count). The 

second step determined the locations of ‘k’ crossovers with realizations of a uniformly 

distributed random variable. This algorithm makes two assumptions. First it assumes that 

the average number of crossovers formed on a given chromosome are equal to the length of 

the chromosome in Morgan units. Second, it assumes that all the locations of the crossovers 

are uniformly distributed on the chromosome. These assumptions imply the absence of 

interference (Stam 1979) and are mathematically equivalent to those underlying mapping 

function of Haldane (1919). 

 

The  equation was employed to model the genotypic value ‘G’ of an 

individual for a certain trait. In this case ‘N’ was the set of all loci on both homologous 

chromosomes and ‘XS’ was an effect assigned to a given combination of alleles at a subset of 

loci S (Bulmer 1985). This model permitted a flexible definition of genetic effects, including 

additive, dominance, and epistatic effects of any order. Moreover, an arbitrary number of 

traits could be simulated in this model, each with its own genetic architecture. Phenotypic 

values were simulated by adding non-genetic effects to the genotypic values according to 

arbitrary field designs or error structures. 
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In addition, PopSim like Plabsoft does not distinguish between experimental and 

simulated data sets. In PopSim linkage map, marker and trait data from experimental studies 

can be easily imported from text files, and the base populations for simulations could be 

described by specifying relevant population genetic parameters. Once the dataset has been 

transferred to PopSim by one of the above-mentioned methods, the provided dataset could 

be directly analyzed by using data analysis routines, or the dataset could be used to conduct 

simulations, which could be subsequently followed by data analysis. 

 

In the present case, PopSim has been designed to be an add-on package for the ‘R 

statistical software’. The algorithms that were computationally demanding and the data 

management routines were coded in the ‘C programming language’ (Kernighan and Ritchie 

1988) while R was used for the coding of less demanding routines/functions. ‘OpenMP’ 

(Architecture Review Board 1997) application-programming interface (API) was used to 

parallelize the C language part of the code and it was compiled with ‘GCC’ (Stallman and 

Tower 1987). PopSim has been designed to be able to run under both Microsoft Windows 

and the Linux operating systems. The Linux platform does not require any add-ons to be 

installed while the Windows’ implementation has the additional requirement of Pthreads-

w32 (Elliston and Johnson 1998), which adds the support for POSIX Threads (IEEE Std 

1003.1c-1995) that are natively supported by Linux. All these methods, which have been 

used in the creation of PopSim, are described in detail below: 

 

R is a statistical computing and graphics language and environment containing software 

facilities for data manipulation, calculation and graphical display. It consists of an effective 

data handling and storage facility and provides a suite of operators that can be used to 

perform array calculations, especially for matrices. For data analysis, it provides a large 

coherent and integrated collection of intermediately tools. The graphical facilities available 

for data analysis give the option either of displaying the results on on-screen or on a 

hardcopy. Along with all these features R is a well developed, simple and effective 

programming language that includes input and output facilities along with conditional 

operators, loops, user-defined recursive functions, and everything else that a programming 

language of the ALGOL-type provides. 

 



Page | 9  
 

Over time, R has become one of the most used statistical languages and most 

statisticians consider it to be the de facto standard for developing statistical software. R can 

be regarded as an open source implementation of the language ‘S’ (Becker and Chambers 

1981) and even though differences exist between the two, code written for S can normally 

be run under R with little alteration. 

 

Similar to S, R is also designed around a true computer language and it permits users to 

add additional functionalities by defining new functions. To expand the capabilities of R, it 

allows the users to link C, C++ and FORTRAN code for computationally intensive tasks, which 

are then called at runtime. It even gives the advance users the option to manipulate the R 

objects directly from the C code. Compared to other statistical languages R has much 

stronger object-oriented programming facilities. Furthermore, due to R’s permissive lexical 

scoping rules it is easy to extend R, therefore users can employ packages made by other 

users for specific functions or areas of study. Because of its ability to use static graphics, R 

can show very high quality graphs as well as mathematical symbols. Further capabilities to 

handle dynamic and interactive graphs can be also added to R by installing extra packages. 

 

Matrices are inherently implemented in R and thus it is possible to do matrices 

calculations like addition, inversion, etc. without using any loops. Other data structures 

included in R are scalars, vectors, matrices, data frames and lists. 

 

There are two types of functions in R: functions and generic functions. The generic 

functions behave according to the type of argument that is passed to them, i.e. they 

recognize the type of object and select the method accordingly, and are object oriented 

whereas the normal functions only support procedural programming. 

 

R was originally created at the University of Auckland, New Zealand by Ross Ihaka and 

Robert Gentleman. The name R was conceptualized partly after the first letter of the first 

names of the two authors programming and partly because the letter ‘R’ comes just before 

the letter ‘S’ (denoting the S language from which R is inspired). 
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Since R is part of the GNU project, its source code is freely available under the GNU 

General Public License along with pre-compiled binary for various operating systems. The 

default interface of R is a command line interface but there are several third party graphical 

user interfaces available for R. 

 

C, an imperative language, is one of the most popular programming languages of all 

time and its compilers are available for almost all of the different types of computer 

architectures, from embedded-microcontrollers to supercomputers. It was originally 

designed by Dennis Ritchie at Bell Telephone Laboratories for implementing system software 

in the UNIX (Thompson, Ritchie, Kernighan, McIlroy and Ossanna 1969) operating system. 

Even though the C language was designed to implement system software, it has been widely 

used for developing application software. 

 

The C language was designed to provide low-level access to computer memory with 

its constructs mapping efficiently to machine language and in the process requiring minimal 

run-time support. Another design feature of C was that it compiled using a relatively 

straightforward compiler thus adding the possibility to code applications, which were 

previously coded in assembly language. 

 

One of the main design strengths of the C language is that it was designed with cross-

platform programming in mind. Due to this, a program which is compliant to C standards and 

written portably is able to compile on a very wide variety of computer architectures and 

operating systems with just a few changes in the source code. 

 

Due to C’s low runtime demand on system resources, ability to access specific 

hardware addresses and match externally imposed data access requirements, it is often used 

to implement operating systems and embedded system applications. Using CGI as a 

"gateway" between the browser, server and the web application, C can be used for website 

programming as well. 

 

Many compilers, libraries and interpreters of other programming languages are often 

implemented in C. In addition, programs that perform a lot of computations are coded in C 
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because it allows efficient implementations of algorithms and data structures due to its thin 

layer of abstraction and low overhead. 

 

Some implementations of other languages use C as an intermediate language, which 

gives the other languages the convenience of code portability as it is no longer dependent of 

the machine-specific code generators. C is not ideal for use as an intermediate language as it 

was originally designed as a programming language, not as a compiler target language. 

 

The main characteristics exhibited by C language are; the entire executable code in C is 

contained within functions and the parameters of various functions are always passed by 

value. The pass-by-reference of function is simulated in C by explicitly passing pointers 

(address of the memory location). C gives the option to combine and manipulate related 

data elements as a unit by using struct. The concept of recursion is fully supported in the C 

language. Being a free-format language C uses the semicolon as a statement terminator. In 

C, functions and data fully support run-time polymorphism. Low-level access to computer 

memory is provided by converting machine addresses to typed pointers. Complex 

functionality such as mathematical functions, input/output and string manipulation are 

provided by library routines. The C language provides a large number of compound 

operators like +=, -=, *=, ++, etc. while only a small set of keywords are reserved. It allows 

the programmer to hide the variables in nested blocks. In C, characters can be used as 

integers because it uses partially weak typing. It provides a preprocessor for macro 

definition, inclusion of source code from header files and conditional compilation. The array 

indexing is defined in terms of pointer arithmetic. It uses logical "and" "or" operators which 

are represented by && and ||, respectively. The right operand is not evaluated if the result 

can be determined from the left alone. These logical operators are semantically distinct from 

the bit-wise operators & and |. Also the ‘=’ is used for assignment while ‘==’ is used to test 

for equality. The C language delimits the compound statement blocks by {…}, which are also 

used to define blocks for nesting. 

 

Although C has a formal grammar specified by the C standard, the source code is free-

form, which allows arbitrary use of whitespace to format the code, rather than column-

based or text-line-based restrictions. 
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A very important aspect of a programming language is its facilities of memory 

management and management of objects stored in memory. There are three different types 

of memory management routines provided by C: Automatic - objects are stored in a stack, 

and this space is freed automatically after the block, which contains the object, is exited. 

Static - space for the object is provided in the binary at compile-time and the memory space 

is reserved for the entire time the binary (which contains the object) is in memory. Dynamic - 

blocks of arbitrary size are requested at run-time using library functions like malloc, the 

memory is reserved until it is freed by the user by calling the appropriate function. 

 

Libraries are used in C language as a primary method of extension. A library consists of 

an archive file containing all the functions, as well as a header file containing the prototypes 

of the various program-accessible functions and declarations of special data types and macro 

symbols used with these functions. Numerous libraries are available for C, which add various 

functionalities to the C language. These libraries are often written in C because the C 

compilers generate efficient object code. Programmers have even created interfaces to 

these libraries so that higher-level languages can use the routines in the libraries. 

 

C was widely used to implement end-user applications, but due to the advent of newer 

and easier to learn languages, much of that development has now shifted to the newer 

languages. 

 

OpenMP (Open Multi-Processing) is an application-programming interface for C, C++ and 

FORTAN, which supports multi-platform shared memory multiprocessing on Linux, UNIX, 

Microsoft Windows and other platforms. It is a scalable and portable model for 

programmers, consisting of a set of compiler directives, library routines and environment 

variables that influence run-time behavior and provides very simple and flexible interface for 

developing parallelized applications for different types of platforms ranging from the 

desktop computer to the supercomputers. 

 

OpenMP implements parallelization by using multithreading, where a task is divided into 

a master thread which forks into a specified number of slave threads at places where 
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parallelization is possible. The runtime environment allocates these slave threads to 

different processors thus running them concurrently. After the execution of the parallelized 

code, all the threads join back into the master thread which then continues. If any thread is 

executed before the others it can be made to wait for the rest of the slave threads to 

complete before the code is executed further or the code can be moved further while some 

of the threads are still executing depending upon the algorithm and the requirements of the 

program. 

 

A preprocessor directive (#pragma omp parallel) is used to mark the section of the code 

that is to be parallelized. This directive will inform the compiler, which causes the threads to 

be formed before the execution of this section. All of the created treads are assigned a 

unique id which can be obtained by calling the function omp_get_thread_num( ). The thread 

id of the master tread is integer value ‘0’ and the ids of the remaining threads have different 

integer values. 

 

In C/C++, OpenMP uses #pragmas to tell the compiler where the OpenMP commands are 

coded in the source code. OpenMP uses the omp parallel command to fork out the code 

enclosed by the construct into a separate thread, which will be run parallel to the main 

program thread. The original process will be denoted as master thread with thread id 0. 

 

Although the different threads execute the parallelized part of the code independent of 

each other by default, it is possible to divide a task among the threads using "work-sharing 

constructs" so that each thread executes the section of the code allocated to it. This way it is 

possible to achieve both task parallelism and data parallelism in OpenMP. 

 

The various work-sharing constructs used to specify how to assign independent work to 

one or all of the threads are: (i) omp for or omp do, also known as loop constructs, these 

constructs are used to split the loop iterations into different threads. (ii) sections, these are 

used to assigning consecutive but independent code blocks to different threads. (iii) single, 

this construct specifying a block of code which is to be executed by only one thread, a barrier 

is implied in the end. (iv) master, this construct is very similar to single, but the code block 

will be executed by the master thread only and no barrier implied in the end. 



Page | 14  
 

 

The number of threads can be assigned by the runtime environment based on 

environment variables or it can be coded in the source code using functions. 

 

With OpenMP, it is theoretically possible to get a speedup factor of N while running a 

parallelized program on a system with N processors compared to a system with only one 

processor, but this is not the case normally because some part of the program may not be 

parallelized, as some algorithms require sequential execution. In addition, the N processors 

may have the N times computational power but the memory bandwidth is not of the scale of 

N and normally the memory path is shared by the different processors. Along with these the 

common problems affecting other parallelization methods like load balancing and 

synchronization overhead are applicable on OpenMP. 

 

These days OpenMP is implemented by most of the major commercial and non-

commercial compilers. 

 

GCC (GNU Compiler Collection) produced by the GNU Project www.gnu.org is a collection 

of compilers for different programming languages. The GCC is widely deployed as a compiler 

tool in closed source, proprietary and commercial software development environments, thus 

it has been ported to a wide variety of processor architectures ranging from supercomputers 

to desktop computers to embedded systems and even the modern day videogame consoles. 

 

The external interface of the GCC is standard like any other UNIX compiler. A driver 

program named gcc is invoked by the user and arguments are passed to this program. These 

arguments are interpreted by the gcc and a decision is made on which compiler to use for 

the input file. The gcc program then runs the assembler and the linker, if required, to 

produce a complete executable binary. 

 

There is a separate compiler program for each supported language, whose input is the 

source code of that particular language and it outputs the assembly code. All these different 

compilers have a common internal structure. A per-language front end parses the source 

code in that language and produces an abstract syntax tree. If needed these are then 
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converted to the middle-end's input representation, called GENERIC form. The middle-end 

now gradually transforms the code towards its final form, by performing compiler 

optimizations and static code analysis techniques to the code. Finally, assembly language is 

produced using architecture-specific pattern matching. 

 

The GCC is normally the compiler of choice for software developers to develop software 

which is meant to be capable of executing on a wide variety of hardware systems or 

operating systems. Unlike the system-specific compilers provided by hardware and operating 

system vendors, the code written for the GCC compiler is almost the same on every platform 

and only requires the platform-specific part of the code to be rewritten for each system. 

 

GNU Compiler Collection has played an important role in the growth of free software 

both as a tool and as an example. These days for a processor architecture to become 

successful, the chip manufacturers consider it essential to have a port of GCC available for 

the architecture. 

 

Microsoft Windows is a series of graphical user interface based software operating 

system developed by Microsoft. It is the most widely recognized operating system in the 

world and currently holds the majority share in the personal computer market. Currently 

Microsoft is making the Windows operating systems for mainly three platforms: the server 

(Windows Server 2008), the personal computer (Windows 7) and for the mobile phone 

platform (Windows Phone 7). 

 

Microsoft originally started porting the Windows Operating System to 64-bit for the 

Intel’s Itanium processor architecture and released IA64 versions of Windows 2000 Advance 

Server, Windows XP and Windows Server 2003. Later Microsoft shifted the 64-bit versions of 

its operating systems to x64 because the x64 architecture was backwards compatible with 

the x86 architecture and because the Itanium hardware was not easily available for 

development at that time. So far, Microsoft has released seventeen editions of its Windows 

Operating System for the x64 processor architecture. 
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Until the release of Windows XP in 2001 Microsoft used mainly two types of kernels, one 

for the windows 3.x and 9x family and the other for the Windows NT family, where the 

windows 3.x and 9.x were meant for the general user and the Windows NT was meant for 

the power users and for server use. Since the launch of Windows XP Microsoft has 

completely shifted all of its operating systems to the NT kernel. 

 

Linux is a family of UNIX-like operating systems which use the Linux kernel. The name 

"Linux" comes from the Linux kernel, originally written in 1991 by Linus Torvalds. The Linux 

operating systems can be installed on a wide variety of hardware platforms ranging from 

supercomputers and mainframes to personal computers to videogame consoles to tablet 

computers and mobile phones. 

 

The development of Linux is one of the most prominent examples of free and open 

source software collaboration. Generally, the entire source code can be redistributed both 

commercially and non-commercially by anyone under licenses such as the GNU General 

Public License after freely modifying it. A complete package of the Linux Operating system is 

known as a Linux distribution. The Linux distribution comprises the underlying Linux kernel 

with libraries and supporting utilities to fulfill the distribution's intended use. 

 

The Linux system is a Unix-like modular operating system and derives its main design 

principles from the design principles established by the UNIX operating system. It uses a 

monolithic kernel called the Linux-kernel, which handles networking, control of processor 

and peripheral devices and file system access. The device drivers either are integrated 

directly into the kernel or are loaded as modules while the system is running. 

 

There are multiple ways a user can operate a Linux-based system. Depending on the type 

of installation and the system it is installed on, the user can operate via a command line 

interface (CLI), a graphical user interface (GUI) or via the controllers attached to the 

hardware of the embedded system. For most desktop systems, the graphical user interface is 

the default mode even though the majority of low-level Linux components use the CLI 

exclusively. In the GUI based system, the CLI is provided through a terminal emulator 

window or by a separate virtual console. The CLI is typically implemented by a shell, which is 
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also the traditional way of interacting with a UNIX system. For tasks requiring automated 

repetitive or delayed work, CLI is better suited as it provides a simple inter-process 

communication. Sometimes the Linux distribution intended for server use only has the 

command line interface as its default. 

 

The major difference between Linux and most of the other popular operating systems is 

that the Linux kernel and its components are free. Linux is not the only operating system 

whose kernel and components are free but it is the most widely used one. Many of these 

free and open source software licenses are based on the principle of copy-left which means 

any work derived from such a software must also be copy-left itself. 

 

The Linux distributions are generally designed for use on desktop and server systems but 

they can be specialized for different purposes like computer architecture support, embedded 

systems, stability, security, localization to a specific region or language, targeting of specific 

user groups, support for real-time applications or commitment to a given desktop 

environment. 

 

Linux is a widely ported operating system kernel. The Linux kernel runs on a highly 

diverse range of computer architectures, even on architectures that were only ever intended 

to use a manufacturer-created operating system. 

 

Pthreads-w32 is a package, which on top of the existing Windows API provides a 

portable and open-source implementation of pthreads. The Win32 pthreads is normally 

implemented as a dynamic link library (DLL). Although this has some notable advantages 

from the Win32 point of view, it also closely models existing pthread libraries on UNIX, which 

are usually shared objects. It is also possible to build the library for static linking if necessary. 

 

POSIX Threads commonly known as pthreads is a standard for threads which defines an 

application-programming interface (API) for creating and manipulating multithreaded 

applications. A number of modern day operating systems include support for this threading 

library. 
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This API defines a set of types, functions and constants that are implemented with the 

pthread.h header file and a thread library in the C programming language. 

 

The Pthreads provides around 100 procedures all of which are prefixed with "pthread_". 

These different procedures can be categorized into the four groups: (i) Thread Management 

– The major concerns of this group of procedures are with the thread creation, joining, etc. 

(ii) Mutexes (iii) Condition variables (iv) Synchronization - This group of procedures are 

concerned with the synchronization between threads using read/write locks and barriers. 

 

Testing Routine 

The accuracy and reliability of the results of simulations performed by the newly created 

PopSim program and the speed of execution of the simulations were tested using one 

artificial example simulation and eight marker-assisted backcrossing examples which were 

originally used in creation of Table 3 of ‘Selection strategies for marker-assisted backcrossing 

with high-throughput marker system’ (Herzog and Frisch 2011). Two QTL mapping examples, 

which were used in Figure 2 of ‘A comparison of tests for QTL mapping with introgression 

libraries containing overlapping and non-overlapping donor segments.’ (Mahone et al. 2012) 

were also used for testing of the software. The artificial example simulated the offspring in 

Mendel's experiment where several differentiating characters are associated by taking three 

characters i.e. form of seed, color of albumen and color of seed coat. The code of this script 

can be found in Appendix II. The marker-assisted backcrossing examples used for testing 

have been given below. 

1. 2cM Equally: It was used in Table 3 of ‘Selection strategies for marker-assisted 

backcrossing with high-throughput marker system’ (Herzog and Frisch 2011). This 

simulation gave Q10 (10% quantile) values recovered in the 3rd generation of back 

crossing (BC3) for constant population sizes in 1st generation backcrossing (BC1), 2nd 

generations backcrossing (BC2) and BC3 for equally spaced marker 2cM by applying 

two-stage selection with High-throughput (HT) assays. The code of this script has 

been provided in Appendix III. 

2. 2cM Randomly: It was used by Herzog and Frisch (2011) in Table 3 of ‘Selection 

strategies for marker-assisted backcrossing with high-throughput marker system’. 

This simulation gave the Q10 values recovered in BC3 for constant population sizes, 
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from BC1 to BC3 for randomly distributed marker 2cM by applying two-stage 

selection with HT assays. 

3. 5cM Equally: It was used by Herzog and Frisch (2011) in Table 3 of ‘Selection 

strategies for marker-assisted backcrossing with high-throughput marker system’.  

This simulation gave the Q10 values recovered in BC3 for constant population sizes, 

from BC1 to BC3 for equally spaced marker 5cM by applying two-stage selection with 

HT assays. 

4. 5cM Randomly: It was used in Table 3 of ‘Selection strategies for marker-assisted 

backcrossing with high-throughput marker system’ (Herzog and Frisch 2011). This 

simulation gave the Q10 values recovered in BC3 for constant population sizes, from 

BC1 to BC3 for randomly distributed marker 5cM by applying two-stage selection 

with HT assays. 

5. 10cM Equally: It was used in Table 3 of ‘Selection strategies for marker-assisted 

backcrossing with high-throughput marker system’ (Herzog and Frisch 2011). This 

simulation gave the Q10 values recovered in BC3 for constant population sizes, from 

BC1 to BC3 for equally spaced marker 10cM by applying two-stage selection with HT 

assays. 

6. 10cM Randomly: It was used by Herzog and Frisch (2011) in Table 3 of ‘Selection 

strategies for marker-assisted backcrossing with high-throughput marker system’. 

This simulation gave the Q10 values recovered in BC3 for constant population sizes, 

from BC1 to BC3 for randomly distributed marker 10cM by applying two-stage 

selection with HT assays. 

7. 20cM Equally: It was used in Table 3 of ‘Selection strategies for marker-assisted 

backcrossing with high-throughput marker system’ (Herzog and Frisch 2011). This 

simulation gave the Q10 values recovered in BC3 for constant population sizes, from 

BC1 to BC3 for equally spaced marker 20cM by applying two-stage selection with HT 

assays. 

8. 20cM Randomly: It was used by Herzog and Frisch (2011) in Table 3 of ‘Selection 

strategies for marker-assisted backcrossing with high-throughput marker system’. 

This simulation gave the Q10 values recovered in BC3 for constant population sizes, 

from BC1 to BC3 for randomly distributed marker 20cM by applying two-stage 

selection with HT assays. 
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The QTL mapping examples used for testing have been given below. 

1. IL-Tests-p10: It was used in Figure 2 of ‘A comparison of tests for QTL mapping with 

introgression libraries containing overlapping and non-overlapping donor segments.’ 

(Mahone et al. 2012) simulated quantitative trait loci (QTL) in NIL lines 

(Interogression libraries) and attempts to detect them using a linear model. 

2. Overlap-DTrun-MSeg-np: It was used in Figure 2 of ‘A comparison of tests for QTL 

mapping with introgression libraries containing overlapping and non-overlapping 

donor segments.’ (Mahone et al. 2012) simulated QTL in NIL lines along with an 

attempt to detect them  using the “Dunnett test”. 

 

The recording of the time taken by the simulations under both PopSim and Plabsoft a 

small piece of code was added to each script. This code saved the system time in a variable, 

after loading of the respective packages was completed, then after finishing of the 

simulation this code would subtract the system time saved at the beginning of the simulation 

from the current system time. The reason why the timer was started after loading the 

packages was to make sure that the loading time of each package had no effect on the time 

taken by the simulation. 

 

Since the load-time of the packages was not measured during the comparison tests. 

Another set of tests were performed where each package was loaded three times and the 

time taken by the package to load was measured using the same method used to record the 

simulation time. 

 

The time measurements were only carried out on the Linux System. The specifications of 

the Linux System that was used for the development and testing of PopSim were Intel Core 2 

Quad 2.67 GHz Processor with 4 GB of RAM. 
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3. Results 
 

One of the major requirements for PopSim was that its results should be comparable to 

the results of Plabsoft and PopSim should be capable of running scripts written for Plabsoft 

without any changes to the script. Therefore, after the coding of PopSim was completed, it 

was tested against Plabsoft using one artificial example script. The two software programs 

were also compared using eight marker-assisted backcrossing examples and two QTL 

mapping examples. The testing was done primarily to confirm that the results of PopSim 

were on par with the results produced by Plabsoft and to verify that PopSim is truly faster 

than Plabsoft for the scripts that use the multithreaded part of the PopSim. Another reason 

was to confirm that PopSim is not slower than Plabsoft for scripts that do not use the 

multithreaded part of PopSim. 

 

In addition to these tests another set of tests were performed to compare the results of 

PopSim on Windows machine to the results of PopSim on Linux machine to make sure that 

the output of PopSim on both the systems is identical. 

 

The artificial example used for testing simulated the Mendel's experiment for three 

characters. All of the marker-assisted backcrossing and QTL mapping examples were tested 

at the actual repetitions used in the original simulation on both PopSim and Plabsoft on the 

Linux machine. Along with running at the original repetitions, both of the QTL mapping 

examples and two of the marker-assisted backcrossing examples were run at reduced 

repetitions as well. The following marker-assisted backcrossing examples were tested both 

at reduced and at original repetitions used in the original experiment: 

1. 2cM Equally 2. 2cM Randomly 

 

Below are the Marker-assisted backcrossing examples, which were simulated only once, 

on the Linux machine at original repetitions by both PopSim and Plabsoft: 

1. 5cM Equally 2. 5cM Randomly 

3. 10cM Equally 4. 10cM Randomly 

5. 20cM Equally 6. 20cM Randomly 
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3.1 Load Time Comparison of PopSim and Plabsoft 

 

The documenting of the time engaged by Plabsoft and PopSim to load was done by 

storing the system time in a variable just before loading the package. This time stored in 

variable was subtracted from the system time after the loading of the package was 

completed. The difference between the two times was the actual time taken by the package 

to load. This entire process of measuring the loading time was repeated three times for both 

PopSim and Plabsoft. On matching up the time taken by each program it was discovered that 

PopSim was taking only 1/3rd of the time that Plabsoft was taking on average, which means 

that typically PopSim took 0.082289366 seconds less than Plabsoft. The recordings from all 

the three runs performed to measure the load times are illustrated in Table 1. 

 

 

3.2 Comparison of Results from Artificial Example 

 

The artificial example was run under different scenarios (using different combinations 

of population sizes and repetitions) and the results from these simulations from both PopSim 

and Plabsoft are compared. 

 

3.2.1 Artificial Example Scenario 1 

In this scenario, the Artificial Example was run with a Population size of 10 and the 

repetitions were set to 100. The results from both PopSim and Plabsoft are similar in this 

scenario. The detailed comparison can be seen in Table 2. 

 

3.2.2 Artificial Example Scenario 2 

In this case, the Artificial Example was executed with the Population size set to 100 

and the repetitions were set to 100. On comparing the results from both PopSim and 

Plabsoft, it was noted that both software gave similar results. The detailed comparison of 

these results is presented in Table 3. 
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Table 1: Comparison of Plabsoft & PopSim Load Time in Seconds 

Measurement Plabsoft PopSim 

1 0.128587 0.04275703 

2 0.1253252 0.04146004 

3 0.120064 0.04289103 

Average 0.124658733 0.042369367 

 

 

Table 2: Comparison of Results of Artificial Example with 100 Repetitions and Population Size 

of10 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.000 

fo - 2 8.000 

al - 1 8.000 

al - 2 8.000 

sc - 1 8.000 

sc - 2 8.000 

Count 10.00 

Frequency 0.01 
 

 Results 

fo - 1 8.000 

fo - 2 8.000 

al - 1 8.000 

al - 2 8.000 

sc - 1 8.000 

sc - 2 8.000 

Count 10.00 

Frequency 0.01 
 

 Results 

fo - 1 8.000 

fo - 2 8.000 

al - 1 8.000 

al - 2 8.000 

sc - 1 8.000 

sc - 2 8.000 

Count 11.000 

Frequency 0.011 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 

 

 

3.2.3 Artificial Example Scenario 3 

For this scenario, the population size was changed to 1000 and the repetitions to 100, 

while simulating the Artificial Example. The results produced by both the PopSim and 

Plabsoft were comparable. Table 4 shows the detailed matchup of the results of this 

simulation. 
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3.2.4 Artificial Example Scenario 4 

In case of this scenario, the Artificial Example was simulated by both Plabsoft and 

PopSim with the population size of 10000 and 100 repetitions. It was found that both PopSim 

and Plabsoft produced similar results, which can be studied in the Table 5. 

 

3.2.5 Artificial Example Scenario 5 

For the fifth scenario, the Artificial Example was simulated with the Population size 

set to 10 and repetitions set to 1000 on both PopSim and Plabsoft. By comparing, the results 

shown in Table 6 it was noted that both of the software produced similar results. 

 

3.2.6 Artificial Example Scenario 6 

A population size of 100 with 1000 repetitions was used in this scenario for 

simulating the Artificial Example. For this scenario, both the PopSim and Plabsoft produced 

comparable results, which are displayed in detail in the Table 7. 

 

Table 3: Comparison of Results of Artificial Example with 100 Repetitions and Population Size 

of 100 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 175.0000 

Frequency 0.0175 
 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 158.0000 

Frequency 0.0158 
 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 154.0000 

Frequency 0.0154 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 
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Table 4: Comparison of Results of Artificial Example with 100 Repetitions and Population Size 

of 1000 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.579e+03 

Frequency 1.579e-02 
 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.573e+03 

Frequency 1.573e-02 
 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.504e+03 

Frequency 1.504e-02 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 

 

Table 5: Comparison of Results of Artificial Example with 100 Repetitions and Population Size 

of 10000 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.0000e+00 

fo - 2 8.0000e+00 

al - 1 8.0000e+00 

al - 2 8.0000e+00 

sc - 1 8.0000e+00 

sc - 2 8.0000e+00 

Count 1.5614e+04 

Frequency 1.5614e-02 
 

 Results 

fo - 1 8.0000e+00 

fo - 2 8.0000e+00 

al - 1 8.0000e+00 

al - 2 8.0000e+00 

sc - 1 8.0000e+00 

sc - 2 8.0000e+00 

Count 1.5809e+04 

Frequency 1.5809e-02 
 

 Results 

fo – 1 8.0000e+00 

fo – 2 8.0000e+00 

al – 1 8.0000e+00 

al – 2 8.0000e+00 

sc – 1 8.0000e+00 

sc – 2 8.0000e+00 

Count 1.5461e+04 

Frequency 1.5461e-02 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 
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Table 6: Comparison of Results of Artificial Example with 1000 Repetitions and Population 

Size of 10 

Plabsoft PopSim (on Linux) PopSim (on Windows) 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 169.0000 

Frequency 0.0169 
 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 160.0000 

Frequency 0.016 
 

 Results 

fo - 1 8.0000 

fo - 2 8.0000 

al - 1 8.0000 

al - 2 8.0000 

sc - 1 8.0000 

sc - 2 8.0000 

Count 161.0000 

Frequency 0.0161 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 

 

3.2.7 Artificial Example Scenario 7 

The Artificial Example was simulated in this scenario with a population size of 1000 

and 1000 repetitions. After studying the results revealed in Table 8 from both the Plabsoft 

and PopSim, it was found that both of these software produced similar output. 

 

Finally on examining Tables 2-8 it was found that as far as the Artificial Example is 

concerned the output from both the PopSim and Plabsoft was on similar grounds 

irrespective of whether PopSim was run on the Windows or Linux machine. 

 

3.3 Simulation Time Comparison of Artificial Example 

 

To check the speed difference between PopSim and Plabsoft in the execution of the 

Artificial Example, the Artificial Example was simulated three times for each scenario on both 

PopSim and Plabsoft alternately on the Linux Machine. The time taken by both of these 

software to simulate the Artificial Example under different scenarios was compared. 
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3.3.1 Artificial Example Scenario 1 

In this scenario, the Artificial Example was simulated with a Population size of 10 and 

the repetitions were set to 100. It was noted that on average PopSim took 22% less time 

(0.0146977 Seconds) than Plabsoft for this scenario. 

 

The Table 9 shows the detailed comparison of the time taken by PopSim and Plabsoft 

for the three alternative runs of the simulation. 

 

3.3.2 Artificial Example Scenario 2 

In case of this scenario, the Population size was changed to 100 and the repetitions to 

100 while simulating the Artificial Example. After recording the execution times of both 

PopSim and Plabsoft for each of the three runs, it was observed that PopSim only took 

approximately 2/3rd the time of Plabsoft on average or 0.03637303 seconds (33%) less than 

Plabsoft. 

 

The details of time taken by each run of the simulation on both PopSim and Plabsoft 

for this scenario are displayed in the Table 10. 

 

 

Table 7: Comparison of Results of Artificial Example with 1000 Repetitions and Population 

Size of 100 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.525e+03 

Frequency 1.525e-02 
 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.518e+03 

Frequency 1.518e-02 
 

 Results 

fo - 1 8.000e+00 

fo - 2 8.000e+00 

al - 1 8.000e+00 

al - 2 8.000e+00 

sc - 1 8.000e+00 

sc - 2 8.000e+00 

Count 1.508e+03 

Frequency 1.508e-02 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 
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Table 8: Comparison of Results of Artificial Example with 1000 Repetitions and Population 

Size of 1000 

Plabsoft PopSim on Linux PopSim on Windows 

 Results 

fo - 1 8.0000e+00 

fo - 2 8.0000e+00 

al - 1 8.0000e+00 

al - 2 8.0000e+00 

sc - 1 8.0000e+00 

sc - 2 8.0000e+00 

Count 1.5554e+04 

Frequency 1.5554e-02 
 

 Results 

fo - 1 8.0000e+00 

fo - 2 8.0000e+00 

al - 1 8.0000e+00 

al - 2 8.0000e+00 

sc - 1 8.0000e+00 

sc - 2 8.0000e+00 

Count 1.5573e+04 

Frequency 1.5573e-02 
 

 Results 

fo - 1 8.0000e+00 

fo - 2 8.0000e+00 

al - 1 8.0000e+00 

al - 2 8.0000e+00 

sc - 1 8.0000e+00 

sc - 2 8.0000e+00 

Count 1. 5446e+04 

Frequency 1. 5446e-02 
 

(fo = Form of seed, al = Colour of albumen and sc = Colour of seed coats.) 

 

 

Table 9: Comparison of Time of Artificial Example 

with 100 Repetitions and Population Size of 10 in Seconds 

Run Plabsoft PopSim 

1 0.072973 0.050936 

2 0.056967 0.050936 

3 0.066968 0.050943 

Average 0.065636 0.0509383 

 

3.3.3 Artificial Example Scenario 3 

For the third scenario, the Artificial Example was simulated on both the PopSim and 

Plabsoft with a population size of 1000 and repetitions set to 100. On average PopSim took 

0.21578 Seconds (40%) less than Plabsoft for carrying out of this simulation. 

 

The complete comparisons of the time employed by both the PopSim and Plabsoft 

for the three runs of this simulation are presented in the Table 11. 
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Table 10: Comparison of Time of Artificial Example 

with 100 Repetitions and Population Size of 100 in Seconds 

Run Plabsoft PopSim 

1 0.10295 0.073923 

2 0.10397 0.072902 

3 0.12097 0.071946 

Average 0.1092967 0.07292367 

 

Table 11: Comparison of Time of Artificial Example 

with 100 Repetitions and Population Size of 1000 in Seconds 

Run Plabsoft PopSim 

1 0.55295 0.34095 

2 0.54219 0.33495 

3 0.55318 0.32508 

Average 0.54944 0.33366 

 

3.3.4 Artificial Example Scenario 4 

In this case, the Artificial Example was simulated at 100 repetitions with a Population 

size of 10000 on both of the software. In the execution of this scenario, PopSim on average 

used 2.198867 Seconds (42%) less computer time than Plabsoft. 

 

The time engaged by both the PopSim and Plabsoft for the three simulation runs of 

this scenario are exhibited in the Table 12. 

 

3.3.5 Artificial Example Scenario 5 (Repetitions 1000 with Population Size 10) 

The Artificial Example was simulated with a population size of 10 and 1000 

repetitions for this scenario. In case of this scenario the use of PopSim provided time savings 

of 0.0389633 seconds (16%) over the use of Plabsoft. 

 

The Table 13 shows the detailed evaluation of the computer time consumed by each 

of the three execution runs of the simulation on both the PopSim and Plabsoft. 
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Table 12: Comparison of Time of Artificial Example 

with 100 Repetitions and Population Size of 10000 in Seconds 

Run Plabsoft PopSim 

1 5.2224 3.0074 

2 5.2161 3.0363 

3 5.2481 3.0463 

Average 5.228867 3.03 

 

Table 13: Comparison of Time of Artificial Example 

with 1000 Repetitions and Population Size of 10 in Seconds 

Run Plabsoft PopSim 

1 0.26495 0.20299 

2 0.23101 0.20398 

3 0.23035 0.20245 

Average 0.2421033 0.20314 

 

 

3.3.6 Artificial Example Scenario 6 

For the sixth scenario, the Artificial Example was executed at 1000 repetitions with a 

Population size of 100 on both PopSim and Plabsoft. PopSim on average utilized 0.1456733 

Seconds (18%) less time than Plabsoft to finish this simulation. 

 

The complete comparison between the time taken by each of the three runs of the 

simulation on PopSim and Plabsoft is displayed in the Table 14. 

 

3.3.7 Artificial Example Scenario 7 (Repetitions 1000 with Population Size 1000) 

A population size of 1000 was used for simulating of the Artificial Example in scenario 

7 with the repetitions set to 1000. For the execution of this simulation, PopSim required 

2.135233 Seconds (22%) less than Plabsoft in this scenario. 

 

The Table 15 presents the details of the time taken by each of the three simulation 

runs on both PopSim and Plabsoft. 



Page | 31  
 

Table 14: Comparison of Time of Artificial Example 

with 1000 Repetitions and Population Size of 100 in Seconds 

Run Plabsoft PopSim 

1 0.80199 0.66297 

2 0.81789 0.68721 

3 0.80697 0.63965 

Average 0.80895 0.6632767 

 

 

Table 15: Comparison of Time of Artificial Example 

with 1000 Repetitions and Population Size of 1000 in Seconds 

Run Plabsoft PopSim 

1 9.542 7.3651 

2 9.5241 7.3472 

3 9.407 7.3551 

Average 9.491033 7.3558 

 

 

On examining the tables Table 9 to Table 15, it was observed that two patterns were 

emerging. Firstly it was noted that on increasing the size of the population the difference 

between the time taken by PopSim & Plabsoft to perform the simulation amplified, which 

makes sense because as the size of the population increases so does the portion of the 

simulation which can be parallelized. Additionally, the percentage of time wasted on 

creation, switching and controlling the threads decreases as the population grows. The 

second pattern that was observed was that on increasing the number of repetitions the 

difference between the time used by PopSim and Plabsoft to carry out the simulation 

diminished, the reason for this is that the repetition loop was not controlled by the PopSim 

but by the example script. Therefore, even though the code executed by PopSim was 

parallelized, the code of the repetition loop was not parallelized because the repetition loop 

was a sequential code outside of PopSim. 
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3.4 Comparison of Results from Marker-Assisted Backcrossing Examples 

 

3.4.1 Results of 2cM Equally Simulation 

 

3.4.1.1 Repetitions reduced to 100 

The output of PopSim simulations from both the Linux System and the Windows 

System were on the same grounds as that of the Plabsoft for this scenario where the ‘2cM 

equally’ simulation was executed with repetitions reduced to 100 instead of the original 

10000.  

 

The output from the Plabsoft simulation is shown in the Table 16 while the Table 17 

and Table 18 display the results from the PopSim Simulation on the Linux and Windows 

machine respectively. 

 

Table 16: Results of Plabsoft Simulation of ‘2cM Equally’ with reduced repetitions of 100  

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.7 80.7 82.1 82.3 82.8 83.4 83.3 83.7 83.7 

BC2 92.7 94.1 94.3 95.1 95.3 95.5 95.9 96.1 95.9 

BC3 97.7 98.3 98.5 98.8 98.7 99.0 99.1 99.2 99.1 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 2cM applying two-stage selection with HT assays) 

 

Table 17: Results of ‘2cM Equally’ Simulation by PopSim on Linux with reduced repetitions of 

100 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 80.2 81.6 81.9 82.3 83.2 82.8 83.3 84.2 84.0 

BC2 93.4 94.2 94.5 95.0 95.4 95.7 95.4 96.0 96.0 

BC3 97.8 98.2 98.5 98.6 98.9 99.0 99.0 99.1 99.1 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 2cM applying two-stage selection with HT assays) 
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Table 18: Results of ‘2cM Equally’ Simulation by PopSim on Windows with reduced 

repetitions of 100 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.8 80.8 82.1 82.2 83.2 83.3 83.3 83.8 84.2 

BC2 93.1 93.9 94.6 95.0 95.5 95.5 95.7 96.1 95.9 

BC3 97.8 98.0 98.5 98.6 98.8 98.8 98.9 99.1 99.0 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 2cM applying two-stage selection with HT assays) 

 

 

3.4.1.2 Repetitions set to original 10000: 

The repetitions of the ‘2cM Equally’ simulation were set to the original repetitions of 

10000 which were used in the original experiment and the simulation was run on both the 

software. After examining the results of the simulation run by the two software it was 

observed that the outputs of the both the PopSim and Plabsoft were identical. 

 

The Table 19 displays the output of the ‘2cM Equally’ simulation. 

 

On examining the tables ‘Table 16’ to ‘Table 19’ it was observed that both the PopSim 

and Plabsoft present similar outcome for the ‘2cM Equally’ simulation irrespective of 

whether the simulation was run at the original repetitions or at reduced repetitions. 

 

Table 19: Results of ‘2cM Equally’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 80.0 81.1 81.8 82.3 82.8 83.1 83.4 83.6 83.8 

BC2 93.2 94.0 94.6 95.0 95.3 95.5 95.7 95.8 96.0 

BC3 97.8 98.2 98.5 98.7 98.8 98.9 99.0 99.0 99.1 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 2cM applying two-stage selection with HT assays) 
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3.4.2 Results of 2cM Randomly Simulation 

 

3.4.2.1 Repetitions reduced to 100: 

The ‘2cM Randomly’ simulation was executed alternatively on both the PopSim and 

Plabsoft with repetitions reduced to 100 instead of the original 10000. It was observed on 

investigating the results from the simulations that both the software produced similar 

outcome irrespective of whether the PopSim was run on the Linux or the Windows Machine. 

 

The results of the Plabsoft simulation are shown in the Table 20 and that of the 

PopSim simulations are shown in Table 21 for the Linux System and in the Table 22 for the 

Windows System. 

 

Table 20: Results of Plabsoft Simulation of ‘2cM Randomly’ with reduced repetitions of 100 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.8 80.9 82.2 82.1 82.9 82.6 83.0 83.5 83.9 

BC2 93.2 93.8 94.7 95.2 95.4 95.3 95.3 95.8 95.7 

BC3 97.5 98.2 98.5 98.8 98.9 98.7 98.9 99.0 99.0 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 2cM applying two-stage selection with HT assays) 

 

Table 21: Results of Simulation of ‘2cM Randomly’ with PopSim on Linux using reduced 

repetitions of 100 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 80.9 80.8 81.4 82.4 83.0 83.0 83.2 83.5 83.8 

BC2 92.8 93.6 94.8 95.0 95.1 95.2 95.8 95.7 95.8 

BC3 97.9 98.1 98.4 98.6 98.8 99.1 99.1 99.1 99.2 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 2cM applying two-stage selection with HT assays) 
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Table 22: Results of Simulation of ‘2cM Randomly’ with PopSim on Windows using reduced 

repetitions of 100 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.9 81.1 81.3 82.4 82.6 82.9 83.1 83.2 83.0 

BC2 92.7 93.9 94.3 94.7 95.0 95.3 95.5 95.7 95.5 

BC3 97.7 98.2 98.4 98.7 98.7 98.8 98.9 99.0 99.0 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 2cM applying two-stage selection with HT assays) 

 

3.4.2.2 Repetitions set to original 10000: 

For this scenario, the repetitions for the ‘2cM Randomly’ simulation were set to the 

original repetitions of 10000 which were used in the original experiment and the script was 

run on both the Plabsoft and PopSim alternatively. For this setting both the PopSim and 

Plabsoft gave matching results. 

 

The outcome of the simulation is revealed in the Table 23. 

 

By studying the tables Table 20 to Table 23 it was noticed that both the PopSim and 

Plabsoft were producing similar output for the ‘2cM Randomly’ simulation, irrespective of 

whether the simulation was executed at its original repetitions or at reduced repetitions. 

 

 

Table 23: Results of ‘2cM Randomly’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.8 80.9 81.5 82.1 82.5 82.8 83.1 83.4 83.7 

BC2 93.0 93.9 94.4 94.8 95.1 95.3 95.5 95.7 95.9 

BC3 97.7 98.2 98.5 98.6 98.7 98.9 98.9 99.0 99.1 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 2cM applying two-stage selection with HT assays) 
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3.4.3 Results of 5cM Equally Simulation 

 

After executing the ‘5cM Equally’ simulation on both the PopSim and Plabsoft at 

10000 repetitions, the same number of repetitions used in the original experiment. It was 

found out that the outcome of the ´simulation performed by PopSim was exactly the same as 

the output of the Plabsoft simulation. 

 

The Table 24 illustrates the results of the ‘5cM Equally’ simulation carried out on 

both the Plabsoft and PopSim. 

 

 

3.4.5 Results of 5cM Randomly Simulation 

 

In this case, the ‘5cM Randomly’ simulation was performed by both PopSim and 

Plabsoft at the original repetitions of 10000 employed by the original experiment. Here the 

output of the simulation executed by PopSim was identical to the results of the simulation 

run on the Plabsoft. 

 

The output of the ‘5cM Randomly’ simulation done by both the Plabsoft and PopSim 

is shown in the Table 25. 

 

 

Table 24: Results of ‘5cM Equally’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 80.0 81.1 81.7 82.3 82.7 83.0 83.4 83.6 83.9 

BC2 93.1 94.0 94.5 94.9 95.3 95.4 95.7 95.8 96.0 

BC3 97.8 98.2 98.5 98.6 98.8 98.9 99.0 99.0 99.1 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 5cM applying two-stage selection with HT assays)  
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Table 25: Results of ‘5cM Randomly’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.3 80.4 81.0 81.5 81.9 82.3 82.5 82.8 83.0 

BC2 92.4 93.3 93.8 94.2 94.4 94.6 94.8 95.0 95.1 

BC3 97.1 97.6 97.9 98.1 98.3 98.4 98.4 98.5 98.6 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 5cM applying two-stage selection with HT assays) 

 

3.4.6 Results of 10cM Equally Simulation 

The simulation ‘10cM Equally’ was carried out on both PopSim and Plabsoft at 10000 

repetitions the same number of repetitions that were used in the original experiment. On 

comparing the outputs of the two software, it was noted that the outcomes of the 

simulation run from both the PopSim and Plabsoft were on par with each other. 

 

The Table 26 displays the end result of the ‘10cM Equally’ simulation run on Plabsoft 

as well as the PopSim. 

 

3.4.7 Results of 10cM Randomly Simulation: 

The number repetitions was set 10000 the same number employed by the original 

experiment for the ‘10cM Randomly’ simulation. This simulation was performed on both 

Plabsoft and PopSim alternatively. On execution of the simulation, it was found out that the 

results of both the PopSim and Plabsoft were identical to one another. 

 

The results from the simulation of ‘10cM Randomly’ are illustrated in the Table 27. 

 

3.4.8 Results of 20cM Equally Simulation 

The ‘20cM Equally’ simulation was executed alternatively on both the Plabsoft and 

PopSim with the repetitions set to 10000 (The number of repetitions used in the original 

simulation). On comparing the output from both of the simulation runs, it was observed that 

both PopSim and Plabsoft were producing results identical to each other. 
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The outcome of the ‘20cM Equally’ simulation done by both the Plabsoft and PopSim 

is shown in the Table 28. 

 

Table 26: Results of ‘10cM Equally’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.9 81.0 81.7 82.3 82.7 83.0 83.3 83.5 83.8 

BC2 93.0 93.9 94.5 94.9 95.2 95.4 95.6 95.7 95.9 

BC3 97.6 98.1 98.4 98.6 98.7 98.8 98.9 98.9 99.0 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 10cM applying two-stage selection with HT assays) 

 

 

Table 27: Results of ‘10cM Randomly’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 78.8 79.8 80.5 80.9 81.3 81.7 81.9 82.1 82.3 

BC2 91.9 92.8 93.4 93.8 94.1 94.3 94.4 94.7 94.8 

BC3 97.0 97.5 97.8 98.0 98.1 98.2 98.3 98.3 98.4 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 10cM applying two-stage selection with HT assays)  

 

 

Table 28: Results of ‘20cM Equally’ Simulation with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 79.7 80.8 81.4 82.0 82.4 82.7 83.0 83.2 83.4 

BC2 92.8 93.7 94.2 94.6 94.9 95.1 95.3 95.4 95.6 

BC3 97.4 97.9 98.1 98.3 98.4 98.5 98.6 98.6 98.7 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and equally 

spaced marker 20cM applying two-stage selection with HT assays) 
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Table 29: Results of Plabsoft Simulation of ‘20cM Randomly’ with 10000 Repetitions 

Generation Equally spaced markers, nt 

 40 60 80 100 120 140 160 180 200 

BC1 78.0 78.9 79.6 80.0 80.5 80.7 80.9 81.2 81.4 

BC2 91.3 92.1 92.6 92.9 93.2 93.5 93.6 93.8 94.0 

BC3 96.4 96.9 97.0 97.2 97.3 97.4 97.4 97.5 97.5 

(Q10 values recovered in generation BC3 for Constant population size nt in generations BC1 to BC3 and 

randomly distributed marker 20cM applying two-stage selection with HT assays) 

 

3.4.9 Results of 20cM Randomly Simulation 

 

The simulation of the ‘20cM Randomly’ was carried out with repetitions set to 10000 

(The number of repetitions employed in the original experiment) on both the Plabsoft and 

PopSim alternatively. It was noticed on evaluating the outcomes from the two software that 

both the PopSim and Plabsoft were producing indistinguishable results. 

 

The Table 29 is showing the results given by both the Plabsoft and PopSim after 

executing the ‘20cM Randomly’. 

 

3.5 Comparison of Results from QTL Mapping Examples 

 

3.5.1 Results of IL-Tests-p10 Simulation 

 

3.5.1.1 Repetitions reduced to 50 

For this situation, the ‘IL-Tests-p10’ simulation was performed alternatively on both 

PopSim and Plabsoft with the repetitions reduced to 50 from the original 5000. The PopSim 

simulations were done on both the Linux and the Windows machines. On completion of the 

simulations, the outputs from both the Plabsoft and the two PopSim runs were compared. It 

was observed that the results of all three simulations were alike. 
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The output of the ‘IL-Tests-p10’ simulation done on Plabsoft is shown in the Table 30 

while the Table 31 and Table 32 displays the results of the two simulations performed by the 

PopSim on Linux and Windows system respectively. 

 

3.5.1.2 Repetitions set to original 5000 

In case of this set-up, the repetitions of the ‘IL-Tests-p10’ simulation were set to their 

original value of 5000. This simulation was executed on both the PopSim and Plabsoft 

alternatively and the outputs from both the simulations were compared. It was observed 

that both of the softwares were producing analogous results. 

 

The Table 33 shows the Plabsoft’s outcome of the ‘IL-Tests-p10’ simulation while on 

the other hand Table 34 displays the PopSim results of the same simulation. 

 

3.5.2 Results of Overlap-DTrun-MSeg-np Simulation 

 

3.5.2.1 Repetitions reduced to 50: 

The repetitions for the ‘Overlap-DTrun-MSeg-np’ simulation were reduced to 50 from 

the original 5000 for this setting. The simulation was the performed by both Plabsoft and 

PopSim on the Linux machine while it was only simulated by PopSim on the Windows 

machine. After the completion of all the three runs of the simulation, it was observed that 

the results produced by all the three executions of the simulations were similar to each 

other. 

 

The outcome of the ‘Overlap-DTrun-MSeg-np’ simulation performed by the Plabsoft 

is displayed in the Table 35 and that of the PopSim are shown in the Table 36 and Table 37 

for Linux and Windows runs respectively. 

 

3.5.2.2 Repetitions set to original 5000 

The ‘Overlap-DTrun-MSeg-np’ simulation was run at its original repetitions of 5000 

on both the software on the Linux System. After studying the results of the simulation run on 

Plabsoft and PopSim, it was noted that the output given by PopSim was on par to that of 

Plabsoft. 
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Table 30: Results of Plabsoft Simulation of ‘IL-Tests-p10’ with Repetitions Reduced to 50 

S003-007 MA 3 MI 0 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 47.1 46.8 0 0.28 46.5 

0.6 0.6 79.2 78.6 0 0.64 64.5 

0.7 0.7 84.7 84.0 0 0.66 75.6 

0.8 0.8 88.3 87.6 0 0.74 77.9 

0.9 0.9 88.3 87.6 0 0.68 80.0 

0.9999 1.0 99.3 89.4 0 9.86 86.5 

S003-007 MA 2 MI 3 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 44.1 40.8 02.8 0.50 52.1 

0.6 0.6 60.7 57.0 03.0 0.70 54.1 

0.7 0.7 63.1 57.0 04.4 0.74 60.8 

0.8 0.8 68.5 58.2 09.4 0.88 66.6 

0.9 0.9 80.9 58.2 21.6 1.10 79.5 

0.9999 1.0 97.2 58.2 29.2 9.78 94.1 

S003-007 MA 1 MI 6 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 31.7 27.0 04.4 0.26 26.2 

0.6 0.6 40.7 29.4 10.8 0.46 34.5 

0.7 0.7 46.7 29.4 16.8 0.48 43.4 

0.8 0.8 55.2 29.4 25.0 0.78 57.2 

0.9 0.9 86.5 30.0 55.4 1.14 69.8 

0.9999 1.0 99.2 30.0 59.4 9.78 83.3 

S003-007 MA 0 MI 9 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 18.4 0 18.0 0.44 20.6 

0.6 0.6 33.6 0 32.8 0.84 33.5 

0.7 0.7 46.6 0 45.4 1.18 47.5 

0.8 0.8 73.5 0 71.6 1.90 66.7 

0.9 0.9 88.1 0 85.8 2.32 73.3 

0.9999 1.0 97.3 0 87.6 9.74 84.6 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD BH = bonferroni-holm adjustment, RP 10 

= Ten Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 31: Results of PopSim (Linux) Simulation of ‘IL-Tests-p10’ with Repetitions Reduced to 

50 

S003-007 MA 3 MI 0 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 56.1 55.8 0 0.34 47.3 

0.6 0.6 78.0 77.4 0 0.56 59.4 

0.7 0.7 86.3 85.8 0 0.54 71.2 

0.8 0.8 88.8 88.2 0 0.56 73.1 

0.9 0.9 88.8 88.2 0 0.58 72.7 

0.9999 1.0 98.1 88.2 0 9.86 81.1 

S003-007 MA 2 MI 3 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 49.3 46.2 02.8 0.32 35.8 

0.6 0.6 61.4 55.2 05.6 0.58 42.5 

0.7 0.7 65.8 57.6 07.6 0.64 54.1 

0.8 0.8 71.0 58.8 11.4 0.80 62.1 

0.9 0.9 83.8 58.8 23.6 1.40 70.3 

0.9999 1.0 98.0 58.8 29.4 9.80 83.1 

S003-007 MA 1 MI 6 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 35.0 27.0 07.6 0.36 27.6 

0.6 0.6 42.7 29.4 12.8 0.54 31.1 

0.7 0.7 51.2 28.8 21.6 0.80 34.7 

0.8 0.8 64.9 29.4 34.4 1.14 51.9 

0.9 0.9 84.7 29.4 53.6 1.68 66.4 

0.9999 1.0 98.4 30.0 58.6 9.84 78.2 

S003-007 MA 0 MI 9 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 24.1 0 23.8 0.28 15.8 

0.6 0.6 34.3 0 33.6 0.68 19.9 

0.7 0.7 52.1 0 51.0 1.12 35.9 

0.8 0.8 76.7 0 75.0 1.74 53.4 

0.9 0.9 89.3 0 87.4 1.90 65.7 

0.9999 1.0 98.1 0 88.4 9.74 74.8 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD BH = bonferroni-holm adjustment, RP 10 

= Ten Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 32: Results of PopSim (Windows) Simulation of ‘IL-Tests-p10’ with Repetitions Reduced 

to 50 

S003-007 MA 3 MI 0 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 57.4 57.0 0 0.38 38.6 

0.6 0.6 75.5 75.0 0 0.52 64.0 

0.7 0.7 86.3 85.8 0 0.52 70.2 

0.8 0.8 88.7 88.2 0 0.54 70.7 

0.9 0.9 88.8 88.2 0 0.56 73.2 

0.9999 1.0 98.1 88.2 0 9.86 81.2 

S003-007 MA 2 MI 3 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 50.1 46.8 03.0 0.30 41.8 

0.6 0.6 60.6 54.6 05.4 0.56 49.8 

0.7 0.7 66.5 58.8 07.0 0.68 54.5 

0.8 0.8 71.0 58.8 11.2 1.00 61.4 

0.9 0.9 86.0 58.8 25.8 1.44 70.2 

0.9999 1.0 98.0 58.8 29.4 9.80 83.3 

S003-007 MA 1 MI 6 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 36.3 28.8 07.2 0.30 27.0 

0.6 0.6 42.1 28.2 13.4 0.46 32.5 

0.7 0.7 51.6 29.4 21.4 0.84 37.8 

0.8 0.8 64.0 29.4 33.6 1.02 50.1 

0.9 0.9 85.4 29.4 54.4 1.60 67.0 

0.9999 1.0 98.4 30.0 58.6 9.84 78.1 

S003-007 MA 0 MI 9 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 23.6 0 23.2 0.38 16.2 

0.6 0.6 38.3 0 37.6 0.72 25.6 

0.7 0.7 52.4 0 51.2 1.16 40.9 

0.8 0.8 76.6 0 75.0 1.64 53.7 

0.9 0.9 90.1 0 88.0 2.12 66.0 

0.9999 1.0 98.1 0 88.4 9.74 74.9 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD BH = bonferroni-holm adjustment, RP 10 

= Ten Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 33: Results of Plabsoft Simulation of ‘IL-Tests-p10’ at Original Repetitions of 5000 

S003-007 MA 3 MI 0 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 55.5 55.0 0 0.448 48.4 

0.6 0.6 74.8 74.2 0 0.608 62.4 

0.7 0.7 86.0 85.3 0 0.715 71.7 

0.8 0.8 88.4 87.6 0 0.753 75.2 

0.9 0.9 88.6 87.8 0 0.775 77.1 

0.9999 1.0 98.0 88.2 0 9.820 84.7 

S003-007 MA 2 MI 3 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 48.0 45.4 02.25 0.402 39.0 

0.6 0.6 58.7 54.8 03.35 0.514 47.3 

0.7 0.7 64.4 58.2 05.55 0.616 52.8 

0.8 0.8 70.3 58.7 10.88 0.782 59.0 

0.9 0.9 83.2 58.8 23.28 1.112 69.3 

0.9999 1.0 98.3 59.0 29.50 9.826 81.7 

S003-007 MA 1 MI 6 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 33.7 26.9 06.52 0.336 28.0 

0.6 0.6 40.1 28.9 10.78 0.455 33.8 

0.7 0.7 48.2 29.3 18.28 0.667 40.7 

0.8 0.8 63.1 29.3 32.70 1.059 53.2 

0.9 0.9 85.2 29.4 54.30 1.543 68.8 

0.9999 1.0 98.3 29.5 58.97 9.836 81.0 

S003-007 MA 0 MI 9 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 19.7 0 19.2 0.410 16.9 

0.6 0.6 31.7 0 31.0 0.705 27.0 

0.7 0.7 49.7 0 48.5 1.161 40.4 

0.8 0.8 75.1 0 73.3 1.748 58.4 

0.9 0.9 89.6 0 87.6 2.058 69.0 

0.9999 1.0 98.3 0 88.5 9.835 78.1 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD BH = bonferroni-holm adjustment, h.sq 

= Heritability, RP 10 = Ten Recurrent Parents per Replication, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 34: Results of PopSim Simulation of ‘IL-Tests-p10’ at Original Repetitions of 5000 

S003-007 MA 3 MI 0 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 54.7 54.3 0 0.439 47.8 

0.6 0.6 75.0 74.4 0 0.591 62.2 

0.7 0.7 86.1 85.4 0 0.697 71.0 

0.8 0.8 88.5 87.8 0 0.735 74.8 

0.9 0.9 88.8 88.0 0 0.757 76.9 

0.9999 1.0 98.3 88.5 0 9.827 84.6 

S003-007 MA 2 MI 3 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 48.4 45.7 02.27 0.391 40.0 

0.6 0.6 58.5 54.7 03.32 0.501 48.1 

0.7 0.7 64.1 58.1 05.45 0.603 53.3 

0.8 0.8 70.1 58.5 10.76 0.779 59.1 

0.9 0.9 83.3 58.6 23.58 1.100 69.2 

0.9999 1.0 98.1 58.8 29.48 9.823 81.7 

S003-007 MA 1 MI 6 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 33.8 26.8 06.62 0.349 27.9 

0.6 0.6 40.5 28.8 11.25 0.481 33.7 

0.7 0.7 48.3 29.2 18.38 0.685 40.5 

0.8 0.8 63.0 29.2 32.65 1.075 52.5 

0.9 0.9 84.9 29.3 54.09 1.567 68.2 

0.9999 1.0 98.2 29.5 58.89 9.832 80.2 

S003-007 MA 0 MI 9 SM 10 AL 0.05 AD BH RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 19.5 0 19.1 0.401 17.3 

0.6 0.6 32.1 0 31.4 0.716 26.8 

0.7 0.7 50.8 0 49.6 1.189 40.5 

0.8 0.8 75.2 0 73.5 1.748 58.4 

0.9 0.9 89.6 0 87.5 2.078 69.4 

0.9999 1.0 98.4 0 88.6 9.840 78.5 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD BH = bonferroni-holm adjustment, h.sq 

= Heritability, RP 10 = Ten Recurrent Parents per Replication, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 35: Results of Plabsoft Simulation of ‘Overlap-DTrun-MSeg-np’ with Repetitions 

Reduced to 50 

S003-009 MA 3 MI 0 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 30.1 30.0 0 0.14 46.1 

0.6 0.6 56.7 56.4 0 0.34 41.0 

0.7 0.7 81.9 81.6 0 0.34 28.5 

0.8 0.8 89.8 89.4 0 0.38 26.8 

0.9 0.9 90.4 90.0 0 0.42 24.7 

0.9999 1.0 95.6 90.0 0 5.56 18.7 

S003-009 MA 2 MI 3 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 31.8 30.0 01.6 0.20 14.8 

0.6 0.6 48.5 45.6 02.6 0.28 33.7 

0.7 0.7 60.3 56.4 03.4 0.54 32.3 

0.8 0.8 66.1 60.0 05.6 0.50 25.1 

0.9 0.9 78.6 60.0 17.8 0.82 27.0 

0.9999 1.0 96.2 60.0 30.0 6.24 18.1 

S003-009 MA 1 MI 6 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 28.8 24.6 04.0 0.22 20.9 

0.6 0.6 38.1 29.4 08.4 0.32 35.2 

0.7 0.7 39.2 29.4 09.4 0.38 13.2 

0.8 0.8 52.4 30.0 21.8 0.64 19.5 

0.9 0.9 72.3 30.0 41.4 0.94 22.6 

0.9999 1.0 98.2 30.0 60.0 8.22 15.4 

S003-009 MA 0 MI 9 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 12.9 0 12.6 0.26 16.12 

0.6 0.6 13.3 0 13.0 0.26 09.41 

0.7 0.7 31.3 0 30.6 0.68 15.88 

0.8 0.8 57.2 0 56.2 0.98 13.66 

0.9 0.9 87.3 0 85.8 1.52 13.22 

0.9999 1.0 99.8 0 89.8 9.96 13.58 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD Dunnett = Dunnett test, RP 10 = Ten 

Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 36: Results of PopSim (Linux) Simulation of ‘Overlap-DTrun-MSeg-np’ with Repetitions 

Reduced to 50 

S003-009 MA 3 MI 0 SM 10 AL 0.05 Ad Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 41.7 41.4 0 0.32 63.0 

0.6 0.6 58.5 58.2 0 0.26 55.3 

0.7 0.7 71.7 71.4 0 0.30 47.3 

0.8 0.8 88.7 88.2 0 0.46 39.1 

0.9 0.9 90.4 90.0 0 0.42 31.1 

0.9999 1.0 94.9 90.0 0 4.86 22.0 

S003-009 MA 2 MI 3 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 33.2 30.6 02.4 0.20 22.2 

0.6 0.6 51.2 46.8 04.0 0.44 61.1 

0.7 0.7 60.9 57.0 03.6 0.32 38.4 

0.8 0.8 67.5 60.0 07.0 0.50 24.3 

0.9 0.9 77.8 60.0 17.0 0.78 21.5 

0.9999 1.0 97.0 60.0 30.0 6.96 16.5 

S003-009 MA 1 MI 6 SM 10 AL 0.05 Ad Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 28.1 24.0 04.0 0.10 23.7 

0.6 0.6 35.9 28.2 07.4 0.26 17.0 

0.7 0.7 43.6 30.0 13.2 0.38 14.7 

0.8 0.8 50.8 30.0 20.2 0.58 21.0 

0.9 0.9 73.0 30.0 42.2 0.80 21.2 

0.9999 1.0 98.6 30.0 60.0 8.64 17.4 

S003-009 MA 0 MI 9 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 09.54 0 09.4 0.14 19.3 

0.6 0.6 20.44 0 20.2 0.24 15.0 

0.7 0.7 27.08 0 26.8 0.28 12.6 

0.8 0.8 55.16 0 54.4 0.76 17.1 

0.9 0.9 83.78 0 82.6 1.18 22.8 

0.9999 1.0 99.48 0 89.6 9.88 15.0 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD Dunnett = Dunnett test, RP 10 = Ten 

Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 37: Results of PopSim (Windows) Simulation of ‘Overlap-DTrun-MSeg-np’ with 

Reduced Repetitions 

S003-009 MA 3 MI 0 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 32.0 31.8 0 0.16 30.6 

0.6 0.6 53.7 53.4 0 0.26 45.6 

0.7 0.7 84.4 84.0 0 0.36 34.0 

0.8 0.8 90.4 90.0 0 0.40 25.7 

0.9 0.9 90.5 90.0 0 0.52 29.8 

0.9999 1.0 95.0 90.0 0 5.00 22.1 

S003-009 MA 2 MI 3 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 33.9 31.8 02.0 0.10 51.9 

0.6 0.6 43.0 40.2 02.6 0.24 32.1 

0.7 0.7 62.0 57.0 04.6 0.38 32.8 

0.8 0.8 69.8 60.0 09.2 0.56 28.0 

0.9 0.9 77.0 60.0 16.2 0.80 26.9 

0.9999 1.0 96.9 60.0 30.0 6.94 16.5 

S003-009 MA 1 MI 6 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 27.5 23.4 04.0 0.14 23.5 

0.6 0.6 35.5 28.2 07.0 0.30 32.9 

0.7 0.7 43.6 29.4 13.8 0.44 25.5 

0.8 0.8 50.3 30.0 19.8 0.50 20.5 

0.9 0.9 73.0 30.0 42.2 0.80 19.3 

0.9999 1.0 98.4 30.0 60.0 8.38 17.4 

S003-009 MA 0 MI 9 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 11.3 0 11.2 0.12 20.9 

0.6 0.6 22.8 0 22.6 0.24 16.0 

0.7 0.7 38.9 0 38.4 0.52 16.3 

0.8 0.8 60.2 0 59.4 0.84 14.8 

0.9 0.9 86.0 0 84.8 1.22 23.7 

0.9999 1.0 99.5 0 89.6 9.92 15.0 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD Dunnett = Dunnett test, RP 10 = Ten 

Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 38: Results of Plabsoft Simulation of ‘Overlap-DTrun-MSeg-np’ at Original Repetitions 

of 5000 

S003-009 MA 3 MI 0 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 36.5 36.3 0 0.209 41.8 

0.6 0.6 57.6 57.3 0 0.328 36.6 

0.7 0.7 78.9 78.4 0 0.430 34.6 

0.8 0.8 88.9 88.4 0 0.492 32.4 

0.9 0.9 90.2 89.7 0 0.510 27.9 

0.9999 1.0 95.5 89.8 0 5.734 18.4 

S003-009 MA 2 MI 3 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 34.7 32.9 01.56 0.202 34.7 

0.6 0.6 49.4 46.8 02.25 0.291 33.1 

0.7 0.7 60.7 56.6 03.75 0.371 30.7 

0.8 0.8 66.8 59.7 06.64 0.445 25.4 

0.9 0.9 77.7 59.9 17.22 0.644 24.2 

0.9999 1.0 96.7 59.9 29.94 6.834 18.1 

S003-009 MA 1 MI 6 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 26.9 22.7 04.04 0.188 26.3 

0.6 0.6 34.9 27.8 06.83 0.271 24.3 

0.7 0.7 41.8 29.7 11.75 0.366 22.7 

0.8 0.8 52.4 29.9 21.91 0.580 22.2 

0.9 0.9 77.3 29.9 46.42 0.983 21.1 

0.9999 1.0 98.1 29.9 59.87 8.270 17.0 

S003-009 MA 0 MI 9 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 12.0 0 11.8 0.196 19.7 

0.6 0.6 20.2 0 19.9 0.332 18.7 

0.7 0.7 34.4 0 33.8 0.588 18.8 

0.8 0.8 57.4 0 56.4 0.969 19.2 

0.9 0.9 86.9 0 85.6 1.395 19.7 

0.9999 1.0 99.7 0 89.9 9.813 16.5 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD Dunnett = Dunnett test, RP 10 = Ten 

Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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Table 39: Results of PopSim Simulation of ‘Overlap-DTrun-MSeg-np’ at Original Repetitions of 

5000 

S003-009 MA 3 MI 0 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 36.5 36.3 0 0.198 41.3 

0.6 0.6 57.9 57.6 0 0.314 38.0 

0.7 0.7 78.5 78.1 0 0.415 35.0 

0.8 0.8 88.9 88.4 0 0.472 32.4 

0.9 0.9 90.2 89.8 0 0.482 26.6 

0.9999 1.0 95.6 89.8 0 5.886 17.7 

S003-009 MA 2 MI 3 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 34.2 32.5 01.52 0.202 34.0 

0.6 0.6 49.8 47.2 02.26 0.289 33.2 

0.7 0.7 60.4 56.6 03.35 0.365 29.5 

0.8 0.8 66.9 49.8 06.69 0.450 26.3 

0.9 0.9 77.9 59.9 17.32 0.666 23.2 

0.9999 1.0 96.7 59.9 29.93 6.924 17.8 

S003-009 MA 1 MI 6 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 27.1 22.9 03.95 0.201 26.6 

0.6 0.6 34.8 27.9 06.68 0.271 25.1 

0.7 0.7 42.0 29.8 11.81 0.390 23.0 

0.8 0.8 52.3 30.0 21.76 0.584 22.0 

0.9 0.9 77.0 30.0 46.01 0.993 21.9 

0.9999 1.0 98.1 30.0 59.87 8.286 17.1 

S003-009 MA 0 MI 9 SM 10 AL 0.05 AD Dunnett RP 10 

 h.sq c.to c.ma c.mi c.sm f.po 

0.5 0.5 12.3 0 12.1 0.210 20.4 

0.6 0.6 20.7 0 20.4 0.350 19.5 

0.7 0.7 34.1 0 33.5 0.583 18.0 

0.8 0.8 57.7 0 56.7 1.011 19.1 

0.9 0.9 87.1 0 85.7 1.432 19.4 

0.9999 1.0 99.6 0 89.8 9.818 16.5 

(MA = Major Gene, MI = Minor Gene, SM = Small Gene, AL = alpha, AD Dunnett = Dunnett test, RP 10 = Ten 

Recurrent Parents per Replication, h.sq = Heritability, c.to = Correct Detection in Total, c.ma = Correct 

Detection of Major Genes, c.mi = Correct Detection of Minor Genes, c.sm = Correct Detection of Small Genes, 

f.po = False Positive). The number next to MA, MI, SM indicates the number of QTL simulated, for example MA3 

MI0 10SM means 3 Major Genes of Size 30 each, 0 minor genes of size 10, and 10 small genes of size 1 each. 
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The Table 38 presents the outcome of the ‘Overlap-DTrun-MSeg-np’ simulation 

performed by the Plabsoft where as the Table 39 shows the output of PopSim for the same 

simulation. 

 

3.6 Simulation Time Comparison of Marker-Assisted Backcrossing Example 

 

The Marker-Assisted Backcrossing examples utilized the parallelized part of PopSim 

thus a substantial improvement in speed was expected in case of these simulations 

 

The examples 2cM Equally and 2cM Randomly were simulated thrice at reduced 

repetitions of 100 instead of the original 10000. Along with these simulations, the timing of 

all the simulations was documented for both Plabsoft and PopSim by running them at the 

original 10000 repetitions. 

 

3.6.1 2cM Equally with Repetitions reduced to 100 

Reduced repetitions of 100 in lieu of the original 10000 were used for the 2cM 

Equally simulation. The time required for the execution of this simulation was noted for both 

PopSim and Plabsoft. After comparing the timing of the three runs, it was noted that on 

average PopSim was taking only 40% of the time that Plabsoft was using to execute this 

simulation, which means that PopSim was providing a time savings of 29.09694 Seconds 

(60%). 

 

The time recordings from all of the three runs of 2cM Equally simulation on both 

PopSim and Plabsoft are displayed in the Table 40. 

 

3.6.2 2cM Equally at Original Repetitions 

The time required by PopSim and Plabsoft to execute the 2cM Equally simulation at 

its original repetitions of 10000 was also recorded once. For this scenario, PopSim required 

only 32.4568 Min (0.5409467 Hours) to complete the simulation compared to the 1.35314 

Hours taken by Plabsoft. That is a time savings of 48.7316 minutes (60%). 
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Table 40: Comparison of Time of 2cM Equally 

at reduced Repetitions in seconds 

Run Plabsoft PopSim 

1 49.45191 20.35669 

2 48.70195 19.82495 

3 48.854 19.53539 

Average 49.00262 19.90568 

 

3.6.3 2cM Randomly with Repetitions reduced to 100 

For this case, the 2cM Randomly simulation was performed alternatively for three 

times by both PopSim and Plabsoft at a reduced repetitions of 100 in place of the original 

10000. On examining the timings, it was observed that on average PopSim was taking 

29.1209966 Seconds (60%) less time to finish the simulation than Plabsoft. 

 

 The Table 41 illustrates the time comparison of each run of the simulation done on 

both the software. 

 

3.6.4 2cM Randomly at Original Repetitions 

 The 2cM Randomly simulation was also performed at the original repetitions of 

10000 by both software where PopSim only need 32.1738 minutes (0.53623 Hours) to 

complete the simulation instead of the 1.353707 Hours taken by Plabsoft. To simplify the 

results, PopSim required 49.04862 minutes (60%) less than Plabsoft to finish this simulation. 

 

Table 41: Comparison of Time of 2cM Randomly 

at reduced Repetitions in seconds 

Run Plabsoft PopSim 

1 48.98091 19.58294 

2 48.60107 19.56737 

3 48.5717 19.64038 

Average 48.7178933 19.5968967 
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3.6.5 5cM Equally at Original Repetitions 

PopSim was able to finish the 5cM Equally simulation running it at its original 10000 

repetitions in only 21.15053 minutes where as Plabsoft required 46.06902 minutes to 

accomplish the same. Practically meaning that by using PopSim 24.91849 Minutes (54%) of 

the system time was saved over Plabsoft. 

 
3.6.6 5cM Randomly at Original Repetitions 

The use of PopSim saved 25.00118 minutes (54%) of user time by completing the 

5cM Randomly simulation set at its original repetitions of 10000 in only 21.09401 minutes in 

lieu of the 46.09519 minutes taken by Plabsoft to finish the same simulation. 

 

3.6.7 10cM Equally at Original Repetitions 

The repetitions of the 10cM Equally simulation were set to the original 10000 for 

testing it on both the Plabsoft and PopSim. To complete this simulation Plabsoft required 

34.47579 minutes of the system time whereas the PopSim was finished with the same 

simulation in only 17.18703 minutes. Thus, the use of PopSim gave a time savings of 

17.28876 minutes (approx 50%) over Plabsoft. 

 
3.6.8 10cM Randomly at Original Repetitions 

A time savings of 17.10219 minutes (approx. 50%) was experienced by PopSim over 

Plabsoft for the 10cM Randomly simulation executed at its original repetitions of 10000. This 

simulation finished in 34.38053 minutes by Plabsoft while PopSim was able to achieve the 

same in only 17.10219 minutes. 

 
3.6.9 20cM Equally at Original Repetitions 

On simulating the 20cM Equally simulation with repetitions set to original 10000 it 

was observed that PopSim was able to finish it in only 15.28368 Min while Plabsoft required 

an extra 13.22299 minutes to complete the simulation in 28.50667 minutes. Therefore, to 

simplify the findings it can be seen that PopSim needed approximately 46% less time than 

Plabsoft to execute the 20cM Equally simulation. 
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3.6.10 20cM Randomly at Original Repetitions 

Both PopSim and Plabsoft executed the 20cM Randomly simulation while the 

repetitions were kept unchanged at its original 10000. Plabsoft was able to complete this 

simulation in 28.55255 minutes while PopSim was done with it in mere 15.22368 minutes, 

thus saving 13.32887 minutes (47%) of user time. 

 

Finally, it can be concluded that as far as the simulations that exploit the parallelized 

part of PopSim are concerned a substantial improvement in speed is gained over Plabsoft by 

performing the simulation in PopSim. 

 

3.7 Simulation Time Comparison of QTL Mapping Example 

 

The QTL Mapping examples did not utilize the parallelized part of PopSim. The IL-Tests-

p10 and Overlap-DTrun-MSeg-np were timed in both Plabsoft and PopSim. Since these 

examples did not use the parallelized part of PopSim or use the paralleled part of PopSim in 

negligible part of the simulation no time improvement was expected for these simulations. 

 

The examples were executed thrice at reduced repetitions of 50 instead of the 

original 5000 and once at 5000 repetitions on both Plabsoft and PopSim on the Linux System. 

 

3.7.1 IL-Tests-p10 with Repetitions reduced to 50 

For this setting, the IL-Tests-p10 simulation was executed with its repetitions reduced 

to 50 from 5000. This simulation was performed three times by both PopSim and Plabsoft. It 

was observed that PopSim was not significantly faster than Plabsoft taking 1.4 seconds 

(1.5%) less. 

 

The measurements from the three runs of the simulation on both the Plabsoft and 

PopSim are exhibited in the Table 42. 

 

3.7.2 IL-Tests-p10 at Original Repetitions 

The second measurements made on the IL-Tests-p10 simulation were prepared at the 

original repetitions of 5000 once on both Plabsoft and PopSim. To execute this simulation 
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PopSim required 8.933733 Hours in lieu of the 9.093236 Hours used by Plabsoft that is a 

negligible time saving of 9.57 minutes (1.75%). 

 

 

3.7.3 Overlap-DTrun-MSeg-np with Repetitions reduced to 50 

The repetitions of the Overlap-DTrun-MSeg-np simulation were reduced to 50 from 

5000 for this measurement and it was simulated on both software three times. On 

examining the timings it was noted that on average PopSim was taking 1.299 Seconds (2%) 

less than Plabsoft. 

 

The Table 43 shows the recorded time in minutes from the three runs of the 

simulation on both the PopSim and Plabsoft. 

 

 

3.7.4 Overlap-DTrun-MSeg-np at Original Repetitions 

The time taken by the Overlap-DTrun-MSeg-np simulation was measured once again 

on both PopSim and Plabsoft but this time at its original 5000 repetitions. It was discovered 

that PopSim was taking a meager 4.25% less time (21.23 minutes) by completing the 

simulation in 7.980589 Hours in comparison to the 8.334438 Hours used by Plabsoft. 

 

 

Table 42: Comparison of Time of IL-Tests-p10 

at reduced Repetitions in minutes 

Run Plabsoft PopSim 

1 1.485742 1.50183 

2 1.514941 1.477496 

3 1.518744 1.473896 

Average 1.507743 1.4844073 
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Table 43: Comparison of Time of Overlap-DTrun-MSeg-np 

at reduced Repetitions in minutes 

Run Plabsoft PopSim 

1 1.061712 1.030557 

2 1.056964 1.044703 

3 1.063997 1.042463 

Average 1.060891 1.039241 

 

In the end, it can be concluded that as far as those simulations are concerned that do 

not utilize the parallelized part of PopSim, the improvement in speed acquired by using 

PopSim over Plabsoft is insignificant. 

 

3.8 Compilation of PopSim 

 

Another requirement of the project was that PopSim should compile cleanly under 

both Windows and Linux operating systems. All of the warning and error messages were 

solved before the actual testing of the software was started. The current version of PopSim 

compiles cleanly regardless of which of the two operating systems it is compiled on. 

 

 

3.8.1 Compilation of the C code 

 

It was mandatory that the C code of PopSim should compile cleanly without 

producing any errors or warnings. The compilation of the C code of PopSim was also done 

separately to check if it was giving any errors or warnings. 

 

The output given out by GCC on compiling the ‘c’ file of PopSim on the Linux System 

is shown in Figure 1 while the compiling outcome of the ‘c’ file on the Windows System is 

displayed in Figure 2. 
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Figure 1: Compilation results of C code under Linux 

 

 

Figure 2: Compilation results of C code under Windows 

 

 

It might be noted that some warnings can be seen in the compiler output from the 

Windows system but these warnings are not caused by PopSim. These warnings are actually 

caused by the compiler itself and have nothing to do with the PopSim code, which can be 

verified by actually reading the warning message in the Figure 2. 
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3.8.2 Creation of the PopSim R-Package: 

 

Cleanly compiling the C code of PopSim would be useless if PopSim did not compiled 

cleanly while its package was created using the ‘R CMD build’ command. Not only does the 

‘c’ file of the current version of PopSim compiles cleanly but it also compiles cleanly without 

throwing any warnings or errors. 

 

The results of the creation of the PopSim package by executing the ‘R CMD build’ 

command on the Windows system are exhibited in the Figure 3. 

 

Here again, it could be observed that some warnings are showing up in the output 

from the Windows system. The generation of these warning messages are not caused by 

errors in the PopSim code, but are caused by the compiler itself because of the format of 

system path. This can be verified by looking at the warning message in the Figure 3. 

 

Figure 3: Package creation under Windows 
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Figure 4: Package creation under Linux 

 

The Figure 4 displays the outcome of creating the PopSim package on the Linux 

system using the ‘R CMD build’ command. 

 

3.9 Summary of Results: 

To summarize, it was observed that PopSim produced results, which were comparable to 

the results produced by Plabsoft for the artificial example and for both the marker-assisted 

backcrossing and QTL mapping examples as well. In the artificial example, it was noted that 

on increasing the size of the population the time difference between the execution of the 

simulation by PopSim and Plabsoft also increased for the reason that by increasing the 

population, the percent of the code which can be parallelized increases. On the other hand 

an increase in the number of repetitions in the artificial example displayed a time difference 

decrease because PopSim can only parallelize one repetition at a time, as the loop running 

the repetitions is a sequential piece of code run by the parent script. The improvement in 

time provided by PopSim was insignificant over Plabsoft in the case of the QTL mapping 

examples since these did not employ the parallelized part of PopSim. Significant 

improvement of speed was observed for the marker-assisted backcrossing examples as these 

engaged the parallelized components of PopSim. Here PopSim was able to give an average 

savings of 53% with highest time savings of 60% and the lowest time savings of 46% over 

Plabsoft. In addition, it was also confirmed that PopSim compiles cleanly under both Linux 

and Windows without giving any errors or warnings. 
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4. Discussion 

 

The main objective of the project was to create a multi-threaded program based on 

Plabsoft which can maximize the utilization of the processing power provided by the modern 

day computers incorporating multi-core CPUs. The second objective was that the new 

software should not be dependent on third party libraries. It was also essential for the new 

program to have the capability to be compiled and executed on both the Linux and Windows 

operating systems. Additionally it was expected that the new program should be able to 

compile cleanly on both Linux and Windows systems without displaying any errors or 

warning messages at compile time. 

 

In the beginning, the entire codebase of Plabsoft was studied to understand the internal 

working of the program. The third party libraries on which Plabsoft was dependent were 

identified while examining the internal working of Plabsoft. Along with these libraries, the 

components of Plabsoft that were dependent on these libraries were also identified. 

 

It was discovered that Plabsoft was chiefly reliant on three external libraries i.e. GSL, GSL-

CBLAS & GMP. These libraries were used by Plabsoft for the generation of high quality 

random numbers and Poisson distributions. For the new software to be independent of 

these libraries, alternative approaches that did not use these libraries for the generation of 

high precision random number and Poisson distributions were needed. 

 

Two different approaches for the generation of high precision random number and 

Poisson distributions were considered. The first approach involved the designing of a new 

algorithm from scratch and then implementing it in the new software. The other option was 

to explore the already existing algorithms and investigate their feasibility for implementation 

in the new software. 

 

On judging the available options, it was evident that designing a completely new 

algorithm to generate superior quality random numbers and Poisson distributions will 

require a lot of time. Furthermore, the new algorithm will necessitate an extra set of tests to 
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analyze the proper working of the algorithm. Therefore, it was decided it would be better to 

first try to seek out already existing algorithms and test their feasibility for the new software 

and if no feasible solution is found only then to proceed with the designing of the new 

algorithm. Some suitable algorithms were found in Numerical Recipes (Press, Teukolsky, 

Vetterling and Flannery 2007). 

 

It was essential for the new software to employ the original algorithms used in Plabsoft 

whenever possible with minimal changes to them. New algorithms were designed using the 

algorithms from the Numerical Recipes as reference such that externally they mimicked the 

functioning of the random numbers and Poisson distribution generator in the GSL library. 

The source code of the GSL library was thoroughly studied to understand the required 

framework to create the new algorithms. The new portion of code designed to perform the 

random number generations and production of Poisson distributions was implemented in 

Plabsoft after making the necessary changes to the source code of Plabsoft. 

 

This new version of Plabsoft that was using the custom random number and Poisson 

distribution generator was tested against the original version of Plabsoft, which used the 

previous external libraries for the production of Poisson distributions and random numbers. 

The testing was carried out using an artificial example simulation. The artificial example was 

run on both software using different sizes of populations and repetitions. It was observed 

that the simulation results obtained from both the software were identical irrespective of 

the population size or the number of repetitions used denoting that the new random 

number and Poisson distribution algorithm was operating suitably. 

 

After removal of dependencies on external third party libraries, the various strategies 

supported by GCC for the implementation of multithreading were investigated. Since the 

new program was going to be an R package consisting of both an R and a C component, it 

was initially considered to parallelize both the R and C parts. After further exploration, the 

parallelization of the R part of the program was dropped because the parallelization support 

in R was still in experimental stages at that time. Therefore, the different models of 

parallelization available for the C language were considered. 
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Initially two Parallel Programming models provided by the C language were considered, 

namely: 

1. Directives-based parallel programming: This approach uses directives to tell the 

processor how to distribute data and work across the different processors or cores. 

This model of parallel programming also provides the facility of compiling the code 

on a compiler that does not support multithreading in which case the directives 

appear as comments to the compiler. This method is mainly implemented on shared 

memory architectures, i.e. multiple processors or multiple cores on a single processor 

sharing the same memory. 

2. Message-passing parallel programming: The processors communicate and transfer 

data by sending and receiving messages in case of this approach.  Each processor or 

core has its own independent local variable that is not accessible to other processors 

or cores directly. The advantage of this model is that it can be used on both shared 

memory architectures and distributed memory architectures. On the other hand, the 

downside of using this method is that it is not possible to compile this code on a 

compiler which does not support multithreading. 

 

Finally, it was decided to proceed with the directives-based parallel programming model 

for the new software because of the fact that directives-based parallel programming was 

more appropriate model for cases using shared memory architecture and the new program 

was going to be designed for running on machines using multi-core processor sharing the 

same memory. Moreover, the requirement of the project that the new software should still 

be capable of compiling on older compilers that did not support multithreading was better 

handled by the directives-based parallel programming approach. 

 

For the implementation of multithreading in the new program the main methods that 

were taken into account were OpenMP, MPI (Gropp, Lusk and Skjellum 1994) and TBB 

(Reinders 2007). In the end, it was decided to proceed with OpenMP for the implementation 

of multithreading capabilities in the new software. The reason for choosing OpenMP over 

MPI and TBB was that this approach was better suited to the project. The advantages of 

using OpenMP over the other two approaches in case of the current project are discussed 

below: 
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Advantages of OpenMP over MPI (Message Passing Interface): 

1. OpenMP supports gradual parallelization, i.e. directives can be added incrementally 

to the code. This gives the option of adding parallelism to the program in smaller 

parts. 

2. The program designed using OpenMP can executed on systems not supporting 

parallelism without requiring any changes to the code. 

3. OpenMP is easier to program than MPI. 

4. Debugging of programs implementing parallelism with OpenMP is easier compared to 

a program utilizing MPI. 

5. For a person who was not part of the original coding team, the OpenMP code is 

generally easier to understand than MPI. 

6. The maintenance of software designed by incorporating OpenMP code is easier than 

the equivalent MPI version. 

7. The OpenMP code can be compiled into a serial code by a compiler not supporting 

OpenMP whereas the MPI code cannot be compiled by a compiler not supporting 

MPI. 

8. The OpenMP approach requires less programming changes in the serial code to make 

the parallel version of the code. 

 

Advantages of OpenMP over TBB (Intel® Threading Building Blocks): 

1. OpenMP has less overhead in loops than TBB. 

2. OpenMP is an open standard where as TBB is not. 

3. With OpenMP parallelism can be obtained incrementally. 

4. OpenMP is simpler. 

5. OpenMP fits better into the structured coding style of C language than TBB, which is 

designed for highly object-oriented code. 

6. OpenMP is better suited for large and predictable data parallel problems. 

 

Once it was decided to use OpenMP for the implementation of parallelization in the new 

program, the parts of the program where multiple threading was possible were noted, e.g. 

crossing, population evaluation and genotype population. Appendix IV displays a flowchart 
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for the crossing algorithm, and a flowchart of the population evaluation algorithm is shown 

in Appendix V. The flow chart of the genotype population algorithm is present in the 

Appendix VI. After this, new algorithms supporting multithreading were designed to replace 

these parts and coding of the new software PopSim was started. 

 

On completion of the coding phase, all of the errors and warnings displayed by PopSim 

were dealt with. This cleanly compiling copy of PopSim was tested using the artificial 

example simulation to remove any runtime problems. 

 

The PopSim code was then ported to the Windows version and sections of the code that 

required any change were marked. Necessary changes were made to these parts of the code 

so that PopSim could be compiled on both the Linux and Windows machines without the 

need to make any changes to the code. 

 

The final version of PopSim is capable of compiling and executing on both the Linux and 

Windows systems with the requirement of only a slight change in the Makevars file between 

the two versions. Additionally, the Windows version also required the installation of 

Pthreads-w32 to add the support for multithreading. 

 

After the coding phase of PopSim was completed, the testing phase of the project was 

started where number example simulations were simulated under different scenarios on 

PopSim. These examples were also simulated on Plabsoft so that a comparison between the 

output and speed of execution between the two could be made. It was observed that as far 

as the results of the simulations were concerned PopSim was producing results on par with 

those of Plabsoft irrespective of which simulation was compared. Though the major part of 

testing was performed on the Linux machine, some of these examples were also simulated 

on the Windows system to check whether the outcome of PopSim running on the Windows 

machine is similar to or different than PopSim running on Linux machine. It was observed 

that the output of PopSim on both of the systems was similar. 

 

In the speed comparisons of performing the artificial example it was observed that 

PopSim was faster than Plabsoft, and the difference in execution time between the two 
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amplified on increasing the size of the population but diminished on increasing the number 

of repetitions. The reason for this variation was that on increasing the size of the population, 

a higher percentage of the simulation could be parallelized whereas on the other hand since 

the repetition loop was being controlled by the example script outside of PopSim, the 

percentage of the simulation that could be parallelized was smaller. 

 

In case of the marker-assisted backcrossing examples, which considerably incorporated 

the parallelized part of PopSim, an average speed improvement of 53% over Plabsoft was 

observed with a maximum time saving of 60% and minimum time saving of 46%. 

 

While in the case of the two QTL mapping examples the time advantage was negligible 

since these examples did not utilize the parallelized part of PopSim. 

 

It was noted that while using PopSim an improvement of 75% (100 - 100/number of 

cores) could not achieved over Plabsoft on a four-core machine. The reasons for this were 

that these scripts also used some of the non-parallelized part of PopSim and the code of the 

script, which was outside of PopSim, is not multithreaded. Moreover, there was a little 

overhead caused by creating and managing treads. Apart from these reasons the 

interference of other processes running on the machine also affects the performance. For 

example, on a lightly loaded quad core machine if there was a very processor-heavy single 

threaded process the machine would give one core entirely to that process and would move 

all of the other processes to the remaining lightly-used three cores of the processor. On the 

other hand, the multithreaded process attempts to use all cores of the processor. Here the 

operating system does not have any vacant cores left to run its own processes and to which 

it can move the other processes. Therefore, in this case the operating system would 

schedule the threads so that the other processes of the system including the processes of 

the operating system itself get some of the processor time. 

 

One can clearly infer from the present discussion that by using the new created software 

(PopSim) instead of Plabsoft, a considerable improvement in performance is achievable and 

PopSim compiles cleanly on both the Windows and the Linux systems. In addition, all of the 

requirements of the project were achieved. 
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5. Summary 
 

All computer manufacturers have started implementing multiple cores in their 

computer systems to increase performance without increasing the cost exponentially. The 

main hindrance in the way of fully utilizing the gain in performance achieved by using these 

multi-core computers is that the programs, which were originally designed for sequential 

execution on a single core machine, are therefore only capable of using just one of the 

available cores of the processor at a time. This nullifies the benefits provided by system 

employing multiple cores. The newer software has to be designed in such a way that they 

break the problem into discrete parts that can then be performed concurrently on multi-core 

systems.  

 

In designing a software for multiple core architecture where various parts of the 

problem are handled in tandem, a completely new set of obstacles have to be surmounted, 

such as race conditions, mutual exclusion, synchronization and parallel slowdown. Since 

there are no currently existing algorithms which can handle these barriers in case of 

population genetics simulations, it was essential to specifically design and implement new 

algorithms to handle population genetics problems on multi-core computers. 

 

The objective of this project was to study various approaches of parallelization and to 

find the most suitable approach for implementation of parallelism. It involved analyzing the 

working of already existing simulation software Plabsoft and Plabsim in the beginning and 

then designing the new parallelized simulation software based on Plabsoft. 

 

The first step after studying the workings of the existing software involved developing 

and testing an intermediate version of Plabsoft. This intermediate version was not 

dependent upon those three external libraries that the original Plabsoft was dependent on. 

New algorithms were designed for this, using the algorithms from the Numerical Recipes 

(Press, Teukolsky, Vetterling and Flannery 2007) as reference so that externally they 

mimicked the functioning of the random numbers and Poisson distribution generator found 

in the GSL library. 
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The directives-based parallel programming model was utilized for design and 

implementation of the new software during the second step. OpenMP was selected for the 

implementation of the directives-based parallel programming model. The parts of the 

program where multithreading was possible were noted, e.g. crossing, genotype population 

and population evaluation. After this, new algorithms supporting multithreading were 

designed to replace the old ones and coding of the new software PopSim was initiated. 

  

After completion of the development phase of the project, the accuracy and 

reliability of the results of simulations performed by the newly created software PopSim 

along with the speed of execution of the simulations were tested on a four-core system. The 

testing was done using one artificial example simulation, eight marker-assisted backcrossing 

examples originally used in ‘Selection strategies for marker-assisted backcrossing with high-

throughput marker system (Herzog and Frisch 2011)’ and two QTL mapping examples 

originally used in ‘A comparison of tests for QTL mapping with introgression libraries 

containing overlapping and non-overlapping donor segments (Mahone et al. 2012)’. The 

artificial example simulated the offspring in Mendel's experiment where several 

differentiating characters were associated by simultaneously taking three characters i.e. 

form of seed, color of albumen and color of seed coat. 

 

The example simulations were performed on both PopSim and Plabsoft under 

different settings on the Linux system. Moreover, some of the examples were additionally 

run by PopSim on the Windows system to confirm that the results from Windows and Linux 

system are equivalent. 

 

After running the new software PopSim through these tests, it was observed that 

PopSim produced results, which were identical to the results produced by Plabsoft for all the 

examples. In case of the artificial example, it was noted that on increasing the size of the 

population the time difference between the execution of the simulation by PopSim and 

Plabsoft also increased. This was due to the fact that by increasing the population size, the 

percentage of the simulation which can be parallelized also increased. Conversely, with an 

increase in the number of repetitions in Artificial Example, the time difference decreased 
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because in this case PopSim could only parallelize one repetition at a time, as the loop 

running the repetitions was a sequential piece of code run by the parent script outside of 

PopSim. Significant improvement of speed was observed for the eight marker-assisted 

backcrossing examples as these examples engaged the parallelized components of PopSim. 

In case of the marker-assisted backcrossing examples, PopSim was able to give an average 

time savings of 53% with highest time savings of 60% and the lowest time savings of 46% 

over Plabsoft. However, the improvement in time was insignificant in case of the QTL 

mapping examples, as these examples did not utilize the parallelized part of PopSim. 

Moreover, the load time of PopSim was only 1/3 of the Plabsoft’s load time. In addition, it 

was also established that PopSim compiles cleanly under both Linux and Windows operating 

systems without giving any errors or warnings. 

 

The new software PopSim is capable of utilizing the advantage provided by the 

multiple core architecture of modern computers while being completely backwards 

compatible with Plabsoft commands. Therefore, all scripts originally written for Plabsoft can 

be executed on PopSim without any modification. PopSim is designed to compile and run on 

both Linux and Windows operating systems and unlike Plabsoft it is not dependent on third 

party external libraries like GSL, GMP and others. Furthermore, the new software is also 

capable of being compiled on older compilers that do not support parallelism. 

 

It could be concluded after extensive testing and comparing that by utilizing the 

multi-core architecture of newer computers, PopSim demonstrates a considerable and 

significant improvement in performance over Plabsoft. 
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7.1 Appendix - I - List of PopSim Commands 

Command Description 

be.quiet The function be.quiet() filters the program messages, only warnings and errors 

are printed on the screen. 

 

Usage: 

be.quiet() 

 

cross Crosses between randomly or determinately chosen individuals of one or two 

parent populations are made. If self and mode is not declared then no selfing and 

self-compatibility is assumed. If NoPg is not declared then an already existing 

population, NamePg is refilled with new generated individuals.  

 

Usage: 

cross(NamePg, NameP1, NameP2, NoPg=-1, self=0, mode=1, crossing.scheme=0) 

Arguments: 
NamePg  Name of the progeny. 
NameP1  Name of the 1st parent population (Population A) 
NameP2  Name of the 2nd parent population (Population B) 
NoPg  Number of Individuals to be generated 
self  Selfing rate [0-1]; self = 0.5 partial selfing; self = 0: no selfing 

(default); self =1: complete selfing 
mode  Self-incompatibility [true mode=0| false mode=1] 
crossing.scheme  crossing scheme (0-3) 

 

define.effects This function assigns effects to alleles at loci and to combinations of an arbitrary 

number of alleles, which may be located at different loci. The specifications are 

stored in text files. These can be generated either with an editor or with R 

functions. Here the effect file is automatically generated, loaded and the text file, 

containing the specification, is removed.  

 

Usage: 

define.effects(effectfile,description) 

Arguments: 
effectfile  A string containing the name of the effect file and the name of 

the effect itself 
description  A string containing a description of the effects to be generated 

crossing.scheme crossing scheme (0-3) 
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define.map The function define.map() loads a linkage map into memory Here the linkage map 

file is automatically generated, loaded and the text file, containing the 

specification, is removed.  

 

Usage: 

define.map(description) 

Arguments: 
description  A string containing a description of the linkage map 

 

dh The function dh produces one double haploid progeny of randomly chosen 

individuals of the initial population NameP1. All produced individuals are put 

together in one population NamePg. If NoPg is not declared then an already 

existing population, NamePg is refilled with new generated individuals.  

 

Usage: 

dh(NamePg, NameP1, NoPg) 

Arguments: 
NamePg  Name of the population to be produced 
NameP1  Name of the original population 
NoPg  Number of individuals to be generated 

 

evaluate.allele The function evaluate.allele returns a statistic about the distribution of the alleles 

at specified marker loci. This function counts the occurrence of each allele at the 

specified loci.  

 

Usage: 

evaluate.allele(PopName,eLoci) 

Arguments: 
PopName Name of the population to be evaluated 
eLoci Names of the loci to be evaluated 

 

evaluate.genome The function evaluate.genome() computes the frequency distribution of an allele 

across the whole genome.  

 

Usage: 

evaluate.genome(PopName,all) 

Arguments: 
PopName Name of the population to be evaluated 
all Allele of which the frequency is counted 
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evaluate.genotype The function evaluate.genotype prints a statistic about the distribution of the 

alleles.  

 

Usage: 

evaluate.genotype(PopName, eLoci, alleles=0, mode=2) 

Arguments: 
PopName Name of the population to be evaluated 
eLoci A List of Loci 
alleles A list of different Alleles 
mode  

 

evaluate.mdp The function evaluate.mdp calculates the number of marker data points required 

in a marker assisted selection program for a specified cross. This function 

considers only the marker listed in the effectfile.  

 

Usage: 

evaluate.mdp(NamePg, NameP1, NameP2, effectfile) 

Arguments: 
NamePg Name of population from which is selected 
NameP1 Name of the first parent population 
NameP2 Name of the second parent population 
effectfile Name of the effect to evaluate mdp 

 

evaluate.population The function evaluate.population() computes for every individual of the 

populations listed in the string PopNames its selection index.  

 

Usage: 

evaluate.population(PopNames,effName=NULL) 

Arguments: 
PopNames Name of the populations to be evaluated 
effName Name of the effect file 

 

generate.effect.file The function generate.effect.file() generates simple effect files automatically, as 

an alternative to specify an effect file by writing it down with an editor. Only 

additive and dominance effects can be generated automatically.  

 

Usage: 

generate.effect.file(fName,description) 

Arguments: 
fName A string containing the name of the effect file 
description A string containing a description of the effects to be generated 
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generate.map.file The function generate.map.file generates a map file automatically - instead of 

specifying a linkage map by writing it down with an editor.  

 

Usage: 

generate.map.file(fName,description) 

Arguments: 
fName A string containing the name of the map file 
description A string containing a description of the linkage map 

 

generate.population The function generate.population() creates new populations from a matrix.  

 

Usage: 

generate.population(dta) 

Arguments: 
dta Data frame with a population description 

 

genome.contribution 

 

The function genome.contribution() makes statistics for the distribution of an 

allele within a list of populations.  

 

Usage: 

genome.contribution(pops,allele) 

Arguments: 
pops Names of the populations separated by blanks 
allele Allele which is considered 

 

get.genome.par The function get.genome.par() 

 

Usage: 

get.genome.par() 

genome.parameter.set The function genome.parameter.set() 

 

Usage: 

genome.parameter.set(no.chrom,no.hom,chrom.len) 

Arguments: 
no.chrom Number of chromosomes 
no.hom Number of homologues. 
chrom.len A list of the chromosome lengths 

 

genotype.population The function genotype.population() calculates the allelic composition of all loci 

defined in a previous loaded linkage map.  

 

Usage: 

genotype.population(PopNames) 

Arguments: 
PopNames Name of the populations to be genotyped 

 

get.map The function get.map() 
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get.mdp The function get.mdp() returns the number of required marker data points till 

now.  

 

Usage: 

get.mdp() 

get.population.gvalue The function get.population.gvalue() returns a field with the calculated genotypic 

index for every individual of the population pop. If an effect is specified then the 

value of this effect is returned 

 

Usage: 

get.population.gvalue(name,EffName=NULL) 

Arguments: 
name Name of the population 
EffName Name of the effect 

 

get.population The function get.population() returns a population and creates a data frame from 

it.  

 

Usage: 

get.population(PopName) 

Arguments: 
PopName Name of the population 

 

get.score The function get.score() returns a field with the calculated genotypic index for 

every individual of the population pop. If an effect is specified then the value of 

this effect is returned.  

 

Usage: 

get.score(pop,effectfile=NULL) 

Arguments: 
pop Name of the evaluated population. 
effectfile Name of effect, which should be evaluated. 

 

homozygote The function homozygote() produces a data frame of a population with NoInd 

individuals which carry at all loci the same allele (allele). This data frame can be 

used to initialize a population.  

 

Usage: 

homozygote(allele,NoInd=1) 

Arguments: 
allele Allele which is carried at all loci 
NoInd Number of individuals to be generated 
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init.population The function init.population() initializes a population with data in PopSim’s own 

format 

 

Usage: 

init.population(name,data,delete=1) 

Arguments: 
name Name of the population which shall be initialized 
data Data frame with data in a suitable format 
delete Removing already existing population with the name name before 

executing the command init.population() (delete = 1 (default) -> 
existing population will be removed; delete = 0 -> existing population 
will not be removed). 

 

linkage.map.load A linkage map is loaded from a text file. A map file consists of an arbitrary 

number of locus definitions. The locus definitions are ordered according to the 

chromosome number and map position 

 

Each locus is defined as 

Chromosome Position Locusname Classname 

 Chromosome: The number of the chromosome on which the locus is located. 

 Position: The map position of the locus on the chromosome. The distance 

from the telomere measured in Morgan units. 

 Locusname: The name of the locus. 

 Classname: A class of Loci to which the locus belongs. 

 [,. . . ] An arbitrary number of loci can be defined. .  

 

Usage: 

linkage.map.load(fName) 

Arguments: 
fName Name of the input file 

 

linkage.map.remove A linkage map once loaded, can be removed in order to load an alternative map.  

 

Usage: 

linkage.map.remove() 

list.effects The function list.effects() shows all effects already loaded with their weights.  

 

Usage: 

list.effects() 
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load.effmap The function load.effmap() assigns effects to alleles at loci and to combinations of 

an arbitrary number of alleles, which may be located at different loci. The 

specifications are stored in text files. These can either be generated with an 

editor or with R functions (define.effects() generate.effect.file()). 

Structure of an effect file: 

A map file consists of a value, which is assigned to each individual of a population 

(the population mean) and a list of effects which are added to the population 

mean if the certain allelic combinations occur in an individual. The order of the 

effects is arbitrary, but the population mean must occur first in the map file. 

 Mean: The population mean 

 Classname: A class of Loci to which effects are assigned to 

 Allele: The alleles to which the effects are assigned 

 [Allele]: Optional. Is used to define dominance effects or even more complex 

effects. 

 [,. . . ]: An arbitrary number of effects can be defined separated by commas 

 

Usage: 

load.effmap(fname) 

Arguments: 
fName Name of the input file 

 

population.append The population.append() function concatenates a copy of population NameP2 to 

population NameP1. The copy of population NameP2 is inserted into population 

NameP1 at the end. The population NameP2 is untouched by the operation.  

 

Usage: 

population.append(NameP1, NameP2) 

Arguments: 
NameP1 Population which takes up the copied individuals 
NameP2 The population to be appended 

 

population.concat The function population.concat() concatenates two populations. Population 

NameP2 is appended at the end of population NameP1. In the end, population 

NameP2 is removed.  

 

Usage: 

population.concat(NameP1, NameP2) 

Arguments: 
NameP1 Recipient population 
NameP2 Name of the population to be concatenated 
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population.copy The population.copy() function copies a sub-population of population NameP2 

into population NameP1 starting with the individual at position start(The index of 

the first individual of population NameP2 is 1). n is omitted, the sub-population 

will range to the end of population NameP2. If n is too large for the sub-

population to fit in population NameP2, the result will be truncated at the end of 

population NameP2.  

 

Usage: 

population.copy(NameP1, NameP2, start=1, n=-1) 

Arguments: 
NameP1 Name of the population to be created 
NameP2 Name of the original population 
start Index of the first copied individual 
n Number of individuals to be copied 

 

population.divide The population.divide() function divides a population NameP2 into two sections. 

The first NoI individuals are stored in population NameP1. The remainder remains 

in population NameP2.  

 

Usage: 

population.divide(NameP1, NameP2, NoI) 

Arguments: 
NameP1 Name of the population to be created 
NameP2 Name of the population to be divided 
NoI Number of individuals to be separated from population NameP2 

 

population.list The function population.list shows the names of all loaded populations.  

 

Usage: 

population.list() 

swap.population.name The function swap.population.name() swaps the names of two populations.  

 

Usage: 

swap.population.name(NameP1,NameP2) 

Arguments: 
NameP1 Name of the 1st population 
NameP2 Name of the 2nd population 

 

optimize.population The function optimize.population() optimizes the memory structure of population 

PopName by freeing unused memory.  

 

Usage: 

optimize.population(PopNames) 

Arguments: 
PopNames A string containing the names of the populations to be optimized 
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population.remove.all All populations are deleted.  

 

Usage: 

population.remove.all() 

population.remove The population.remove() function erases a set of populations from the list of 

populations specified by PopName and frees the memory. The populations to be 

deleted are listed in a string specified by PopName separated by blanks.  

 

Usage: 

population.remove(PopNames) 

Arguments: 
PopNames Names of the populations to be deleted 

 

rename.population The function rename.population() renames a population.  

 

Usage: 

rename.population(OldName, NewName) 

Arguments: 
OldName Name of the population to be renamed 
NewName New name of the population 

 

population.resize The function population.resize() changes the population size into the new size 

newSize. If the new population size is smaller than the old size then the 

individuals at the end are deleted (If the population is sorted then the individuals 

with the smallest value are deleted). In the opposite case dummy individuals are 

added to the population.  

 

Usage: 

population.resize(PopName, newSize) 

Arguments: 
PopName Name of the population to be resized 
newSize The new population size 

 

population.sample The function population.sample() takes a random sample from population 

NameP2. The sample forms a new population NameP1 

 

Usage: 

population.sample(NameP1, NameP2, size=-1, replace=FALSE) 

Arguments: 
NameP1 Name of the sampled population 
NameP2 Name of the initial population 
size non-negative integer giving the number of individuals to choose. 
replace Should sampling be with replacement? 
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population.size.get The function get.populations.size() returns a data frame with two columns NoInds 

and NoIndsAlloc. 

 NoInds: Number of individuals in the memory 

 NoIndsAlloc: Number of individuals allocated 

 

Usage: 

population.size.get(PopName) 

Arguments: 
PopName Name of the population 

 

population.sort The function population.sort() sorts populations according to the genotypical 

value.  

 

Usage: 

population.sort(PopName, decreasing=TRUE) 

Arguments: 
PopName Name of the populations to be sorted 
decreasing Logical. Should the sort be increasing or decreasing? 

 

remove.effmaps The function remove.effmaps() removes all effects previous loaded.  

 

Usage: 

remove.effmaps() 

remove.evaluate.population The function remove.evaluate.population() frees the memory, allocated by the 

function evaluate.population.  

 

Usage: 

remove.evaluate.population(PopNames) 

Arguments: 
PopNames Name of the population 

 

remove.genotype.population The function remove.genotype.population() frees the memory, allocated by the 

function the genotype.population has allocated.  

 

Usage: 

remove.genotype.population(PopNames) 

Arguments: 
PopNames Names of the populations where the genotypes should be 

removed 
 

reset.all Resets the program into the initial state.  

 

Usage: 

reset.all() 
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reset.mdp The function reset.mdp() resets the number of marker data points, which were 

required during the breeding program. The count of marker data points is a 

global variable.  

 

Usage: 

reset.mdp() 

resources List effect.  

 

Usage: 

resources(expr) 

Arguments: 
expr Name of Population 1 

 

return.population.disk The function return.population.disk() returns a data frame in the NTSYs-format 

containing several populations and their marker data.  

 

Usage: 

return.population.disk(PopNames,file) 

Arguments: 
PopNames A string contaning a list of population names separated by blanks. 
file The name of the file where the data will be saved. 

 

return.population The function return.population() returns a data frame in the NTSYs-format 

containing several populations and their marker data.  

 

Usage: 

return.population(PopNames) 

Arguments: 
PopNames A string contaning a list of population names separated by blanks. 

 

select.all.best.intern List effect 

 

Usage: 

select.all.best.intern(NamePop,n=1) 

Arguments: 
NamePop Name of the population to be selected 
n Number of classes 
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select.all.best The function select.n.best() selects individuals belonging to the ‘x’ superior 

classes of the population oldPop.  

 

Usage: 

select.all.best(newPop,oldPop,effectfile=NULL,x=1) 

Arguments: 
newPop Name of population where the selected fraction should be stored 
oldPop Name of the population for which the selection should be carried 

out 
effectfile Optional \— The selection is carried out only for this effect. 
x Number of superior classes selected. 

 

select.n.best The function select.n.best() selects a fixed number of the superior ‘n’ individuals 

of the population oldPop.  

 

Usage: 

select.n.best(newPop,oldPop,effectfile=NULL,n=1) 

Arguments: 
newPop Name of population where the selected fraction should be stored 
oldPop Name of the population for which the selection should be carried 

out 
effectfile Optional \— the selection is carried out for this effect. 
n Number of individuals selected 

 

set.co.freq The function set.co.freq() changes the expected value for the crossover per 

Morgan.  

 

Usage: 

set.co.freq(cofreq=1) 

Arguments: 
cofreq expected number of crossovers per Morgan 

 

set.eff.weight The function set.eff.weith() sets the weight for a linear index calculated by 

evaluate.population.  

 

Usage: 

set.eff.weight(fname,weight) 

Arguments: 
fname Name of the effect 
weight Weight of the effect 

 

set.info.level The function set.info.level() sets the information level. The smaller the level 

number is the less program information is printed on the screen.  

 

Usage: 

set.info.level(level) 

Arguments: 
level information level 
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set.NoLociInit The function set.NoLociInit() sets the number of alleles that are allocated at once. 

The default value is ten.  

 

Usage: 

set.NoLociInit(NoLociInit) 

Arguments: 
NoLociInit Number of loci allocated 

 

set.popfile.path The function set.popfile.path(). 

 

Usage: 

set.popfile.path(path) 

Arguments: 
path Path 

 

ssd.mating The function ssd.mating() produces from each individual of the initial population 

NoPg salved progeny.  

 

Usage: 

ssd.mating(NamePg,NameP,NoPg=1) 

Arguments: 
NamePg Name of the progeny 
NameP Name of the parent population 
NoPg Number of individuals to be generated 

 

summarize.gvalue The function summarize.gvalue(). 

 

Usage: 

ummarize.gvalue(pops,effectfile=NULL) 

Arguments: 
pops Names separated by blanks of the populations to be summarized.) 
effectfile Name of the effect 

 

talk.to.me The function talk.to.me() causes the program to print all messages on the screen.  

 

Usage: 

talk.to.me() 

write.version The function write.version() displays the revision number and the build date of 

the program library.  

 

Usage: 

write.version() 
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7.2 Appendix - II - Code of Artificial Example 

library("PopSim") 

 

######Start of Timer##### 

timerZ <- Sys.time() 

################### 

 

options(width=120, digits=5) 

 

# ----------------------- 

# Mendel's Experiments 

# ----------------------- 

# --------------------- 

# Three characters 

# --------------------- 

 

reset.all() 

genome.parameter.set( no.chrom=3, no.hom=2, 

chrom.len=c(0.01,0.01,0.01) ) 

define.map("fo trait 1/0, al trait 2/0, sc trait 3/0") 

init.population("P1",homozygote(1))  

init.population("P2",homozygote(8))  

cross("F1","P1","P2",1)  

 

cross("F2","F1","F1",1000)  

 

evaluate.genotype("F2","fo al sc",c(8,8,8,8,8,8)) 

 

for (i in 1:100) 

{ 

  cross("F2","F1","F1",1000)   

  population.concat("Store","F2")  

} 

 

evaluate.genotype("Store","fo al sc",c(8,8,8,8,8,8)) 

 

######End of Timer##### 

print(Sys.time()-timerZ) 

################### 
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7.3 Appendix - III - 2cM Equally Example Script 

 
This script was originally used for the data in the Table 3 of ‘Selection strategies for 

marker-assisted backcrossing with high-throughput marker system’ (Herzog and Frisch 2011). 
 

###############################################################

############ 

# Paper 1: High-Throughput 

 

# Table 3: RPG recovered in BC 1-3 with two-stage selection 

 

# Equally spaced markers 

 

# Kartendichte 2 cM 

 

# repetitions 10000 

###############################################################

############ 

 

# equally spaced markers 

 

library(PopSim) 

 

set.genome.par(no.chrom=10,no.hom=2,chrom.len=rep(1.6,10)) 

 

 

load.linkage.map("zea-02-2.map") 

 

 

define.effects("target", "0, target 1 uniform 1") 

define.effects("markers","0, marker 8 uniform 1") 

 

init.population("P1",homozygote(1)) 

init.population("P2",homozygote(8)) 

 

cross("F1","P1","P2",1) 

 

 

pop <- c("F1","BC1","BC2","BC3") 

 

s1     <- paste(pop,"s1",sep="") 

s2     <- paste(pop,"s2",sep="") 

sel    <- paste(pop,"sel",sep="") 

st     <- paste(pop,"st",sep="") 

sel[1] <- "F1" 

 

 

popsize <- matrix(rep(seq(40, 200, 20), each = 3), ncol=3, 

byrow=T) 
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repetitions <- 10000 

 

generations<-ncol(popsize) 

 

 

Q10<-matrix(nrow=ncol(popsize),ncol=nrow(popsize)) 

 

 

m.d.points <-matrix(nrow=ncol(popsize),ncol=nrow(popsize)) 

 

{ 

for(k in 1:nrow(popsize)){ 

 n<-popsize[k,] 

 mdp<-matrix(nrow=ncol(popsize),ncol=repetitions) 

  for(j in 1:repetitions){ 

  reset.mdp() 

   for(i in 1:generations){ 

   cross(pop[i+1],sel[i],"P2",n[i]) 

   select.all.best(s1[i+1],pop[i+1],"target") 

   select.all.best(s2[i+1],s1[i+1],"markers") 

   sample.population(sel[i+1],s2[i+1],1) 

   append.population(st[i+1],sel[i+1]) 

  }  

 } 

 P2gen<-genome.contribution("BC1st BC2st BC3st",8) 

 Q10[,k]<-P2gen[,5] 

 remove.population(st) 

} 

} 

 

 

RPG.Q10 <- data.frame( "n40"=Q10[,1], "n60"=Q10[,2], 

"n80"=Q10[,3], "n100"=Q10[,4], "n120"=Q10[,5], "n140"=Q10[,6], 

"n160"=Q10[,7], "n180"=Q10[,8], "n200"=Q10[,9]) 

rownames(RPG.Q10) <- c("BC1", "BC2", "BC3") 

RPG.Q10 

 

write.table(RPG.Q10, "P1-Table3-equally-2cM.dta") 
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7.4 Appendix - IV - Flowchart of the Crossing Algorithm 
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7.5 Appendix - V - Flowchart of the Population Evaluation Algorithm 
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7.6 Appendix - VI - Flowchart of the Genotype Population Algorithm 
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