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Introduction

In parameterized functional differential equations
x(=af(x(t—1), a>0, (o)

with a continuous function f: R—IR satisfying f(0)=0 and f'(0)=—1, the
trivial solution £—0 becomes unstable at o=7/2, and a continuum of periodic
solutions bifurcates. This was shown by Nussbaum [20] for nonlinearities f,
bounded from below or from above, for which the negative feedback condition

xf(x)<0 (NF)
holds true for all x+0.

Here we shall study nonlinearities which satisfy (NF) only locally, and
which have a humped graph. Nonlinearities of this type occur in models for
physiological control processes, see Mackey and Glass [6, 17], Lasota and
Wazewska [16, 15]. Equation («) itself with f(x)=46-—sin(x+¢&), 6=0=¢ al-
lowed, stands for a prototype of a phaselocked loop as they are used in
communication systems. For a study of this case, see Furumochi [5].

Numerical results by Hadeler [8] and by Jiirgens, Peitgen and Saupe [12]
substantiated the conjecture that for humped nonlinearities periodic solutions
undergo a series of bifurcations as « increases. The first proven theorem in this
direction was Nussbaum’s nonuniqueness result. He obtained two disjoint
continua over an unbounded interval [21]. - For nonlinearities which are step
functions or close to step functions bifurcation from periodic solutions, and
also existence of chaotic motion, can be shown essentially by explicit com-
putation of certain solutions and by introducing coordinates on a finite-
dimensional locally invariant subset in state space, compare [1, 22, 25].

In the present paper we prove that bifurcation from a curve of periodic
solutions does exist for a class of nonlinearities which includes, for example,
the odd continuation of 0 <x— —x(1 —x) and f= —sin mentioned before. The
precise result is stated in Theorem 6.2 in the final section.



Let us briefly describe the organization of the paper, and give some com-
ments. Section 1 deals with “slowly oscillating” periodic solutions. For any
solution x of this type we define a map P by translation along trajectories with
P(n)=n for the initial value # of x. Domain and range of P belong to a fixed
hyperplane C* in state space which does not depend on «f'=g, x. This is done
as indicated by Hadeler [8]. It is shown that P is equal to a Poincaré map
constructed by means of the implicit function theorem so that the index of the
fixed point # can be computed from the spectrum of the period map U
associated with the linear variational equation along x (Theorem 1.1).

In Sect.2 we modify results of Kaplan and Yorke [13] about slowly
oscillating periodic solutions with the symmetry

x(t)=—x(t—-2) forall telR (S)

for nonlinearities with zeros X >0, as in the examples above. Obviously, these
“symmetric” periodic solutions have period 4. From Sect. 2 on the nonlinearity
is required to be an odd function. The symmetry (S) then allows to write the
time-4-map U as the iterate of the time-2-map W. This will make arguments in
Sects. 3, 5 and 6 considerably easier.

After these preliminaries the proof of bifurcation begins with the basic
Lemma 3.1. It tells how to compute spectrum and resolvent of W if a sym-
metric periodic solution is given. Let us point out that similar results hold in
more general situations, too. f need not be odd, the period may be any integer
p>1. This should become clear from the easy proof of Lemma 3.1.

F'rom Sect. 4 on we consider continua of symmetric periodic solutions. The
investigation is restricted to nonlinearities which guarantee uniqueness of the
corresponding orbits so that we obtain a curve of initial values x%e C*, a>n/2.
Sufficient conditions for uniqueness were given by Nussbaum [21]. Studying
this particular situation means that we avoid bifurcation within the symmetric
periodic solutions. The latter problem is easier and may be investigated using
ideas from [13, 21]. By restricting the class of nonlinearities further we derive
all the a priori information about the solutions x* which is necessary to show
that A= —1 is always a simple eigenvalue of W, (Sect.5), and that an odd
number of eigenvalues crosses at A=1 if o increases beyond a critical value.
Here, the idea how to prove the comparison result Lemma 6.1 is due to my
colleague H. Steinlein. - Section 6 shows in particular that the symmetric
periodic solutions x* become unstable. Attractivity of x* for «>=n/2 not too
large follows from a result of Kaplan and Yorke [14] and from Nussbaum’s
uniqueness result Theorem 2.2 [21].

In Theorem 6.1 we obtain a jump of the fixed point index along the curve
x5, a>mn/2, and bifurcation follows.

The nonlinearities f in Theorems 6.1 and 6.2 are certainly not the only ones
for which symmetry-breaking bifurcation from periodic solutions occurs, com-
pare the numerical results [8, 12]. But they seem to constitute a class for
which proofs are not too involved. We hope that Sects. 3-6 will convince the
reader that our approach might also be used for other nonlinearities.

Another objective of further study should be to obtain Hopf bifurcation for
the Poincaré maps P(q, *).



1. Poincaré Maps for Slowly Oscillating Periodic Solutions

Let a C'-function g: R —»R be given with xg(x)<O0 for all x=0 in an open
neighborhood N of 0eR. Consider equation

X(f)=g(x(t—1)) @

Every initial value ¢ in the Banach space C of continuous real functions on
[0, 17, |¢|=sup|@(t)|, defines a unique continuous solution x?: [0, w0) »IR sat-
isfying Eq. (g) for t>1 and x?|[0,1]=¢. This is proved by means of the

formulas
n—1+a

x(n+a)=xm+ | gx(s)ds for ae[0,1], neN. (1)

n—

They also imply that on compact intervals solutions depend continuously on
initial data with respect to supremum-norms.

Let x:IRR—N denote a periodic solution with minimal period p>0 and
with x(0)=0, 0<x in [0, 1), X<0 in (1,z+1) for some zero z>1 of x, 0<x in
(z+1, p). Theorems on existence of such “slowly oscillating” periodic solutions
may be found in e.g. [11, 7, 19, 20, 13, 14, 24]. We associate a map P with x.
Set C*:={¢peC|¢$(0)=0}. Continuous dependence in our initial value problem
and x(R)c N imply that there is an open neighborhood Q of #:=x|([0, 1] in
C* such that every x?, ¢, has the following properties: There exist zeros
z%e(1,p—1) and zle(p—1, p+1) with z8>z%+1, 0<x? in [1,z,), x*<0 in
[z%,2241), 0<x?in (z¢+1, 22+ 1), x*([0, 25+ 1])=N.

For ¢eQ, set Pd(a):=x%(z8+a), ac[0, 1]. P maps Q into C*, and P(y)=n.
- P is continuous and compact (bounded sets become precompact): Con-
tinyous dependence of solutions on initial data gives continuity of the maps
¢ —z? (i=1,2), and continuity of P follows easily. - The maps z, send bounded
sets into bounded sets. This may be used together with Ascoli’s theorem and
formula (1) in order to derive compactness. For details, see e.g. [19]. - Let
U: C¢— Cg denote the time-p-map for the linear variational equation along x,

u(t)=g'(x(t=1) u(t—1); (x)

Uy(a)=u’(p+a) for aef0,1], with the continuous solution u¥:[0, ) Cg
satisfying Eq. (x) for t>1 and u¥|[0, 1]=4 in the space Cg of complex-valued
continuous functions on the unit interval. U is linear, continuous and compact.
Let M(1), 0+ 1eC, denote the algebraic multiplicity if 4 is an eigenvalue of U,
and set M(1):=0 if not. Recall Us =4 from Egs. (g) and (x) so that M(1)=1.

Theorem 1.1. Suppose M(1)=1. Then y is an isolated fixed point of P with index
given by
(— 1)Ea> 1M2)

Proof. For Poincaré maps associated with O.D.E’s [9], or more generally with
flows of Cl-mappings in Banach spaces [18], the index formula is certainly
well known. We prefer to give the proof, however, since in case of F.D.E’s one
only has semiflows, with less smoothness, so that one has to be a little careful.



- Also, we must show that the a priori given map P is a Poincaré map in the
usual sense, differentiable and defined on a domain transversal to the flow.

i) Consider the continuous semiflow 7:[0, 0)x C—C of Eq. (g); T,¢
=T(, ¢)=x¢ with x?(a)=x?(t+a) for ae[0,1]. For every compact interval I
=(1, o0) and for every bounded set B=C, ¢l T(I x B) is compact. It follows
from Theorem 4.1, p.46 in [9] that T is C! on (1, o) x C, with partial
derivatives given by D, T(t, ¢)s=sx¢ and D, T(t, ¢) ¥ =w,. Here wy=y and
w(s)=g' (x?(s—1)w(s—1) for s>1. As p>1, D, T(p,n) is defined and equals
multiplication by 4, and D, T(p, ) ¥ = U for all yeC.

i) We have C=R#5@® C* since C* has codimension | and #(0)>0. The
corresponding projections are p,: ¢ —(¢(0)/(0))4 and p*=id —p,.

P is differentiable on a closed ball B<Q with neintB, and DP(y)
=p*oUo(C*¥*<= C)=:U*. Proof: Note z}=p and O:pn(T(z"’, @) for all ¢
By p>1 the semiflow 7 is C! in a neighborhood of (p,#), and
D (p,° T)(p, n): Ras—sieR4j is an isomorphism. By continuity of ¢ —z9%, the
implicit function theorem [3, p. 265] guarantees that ¢ —z% is C* on an open
ball B'<Q around #. It follows that P: ¢ — T(z%, #)=p*o T(z%, $) is C' on B’
(provided B’ is chosen small enough), and DP(n)=p*-(D, T(p, )o Dz,(n)
+D, T(p, n)o (C* = C))=0+ U™

For eigenvalues 1eC~ {0} of the complexification Ug of U* let M*(4)
denote the algebraic multiplicity. Set M*(4):=0 for /%0 not in the spectrum
of Ug.

=1 is not an eigenvalue of Ug. Proof: y=Ugy implies ¢=U*¢ for
pe{Rey, Imy}. As peC*, p*dp=U*p=p*U¢ and p*(U —id)¢=0. Hence (U
—id) ¢ =51 with some scIR. Assume ¢ +0. Since ¢eC*, ¢ and # are linearly
independent, and (U —id)? ¢ =0. This contradicts M(1)=1.

Since P is compact we may apply e.g. Satz 1, p. 91 from [2]. It follows that
# is an isolated fixed point with index defined and given by the degree

deg(yls ld"PlQ} 0):(___1)):,1> L M*(R)

for a sufficiently small neighborhood @ of #.

iii) Proof of M*(A)=M(4) for A+1. M(1)=1 and Ur=s imply a spectral
decomposition Ce=Cr@E into U-invariant closed subspaces. Let Pr,, Prp
denote the spectral projections onto €, E respectively. For details, consult
{4]. - Since U is a real operator (UC < C) the projections are real operators,
too, and we obtain C=RA{@®F for F:={Rey |yeE}. pr,, pry: Ca3¢~Re Pr, ¢,
Re Pry¢ are projections onto Ry and F respectively with pr, +pry=id. We
have E=F+iF and UFcF. Ug Eay—~UyecE is the complexification of
Up: Fa¢p—UdgeF. The spectrum of Uy is o(U)~ {1}. For eigenvalues 4, 01
#+1, M(2) coincides with the algebraic multiplicity M (%) of 1 as an eigenvalye
of Ug. Set Mz(4):=0 if 1+0 is not an eigenvalue of Uj.

In order to derive M*(1)=M (1) one may now use the complexification of

the diagram
Ccx U, Cx

prel C*=:p} J [piﬂp*lF



Proof of commutativity: pjoUgpopf(d)=p*(U(prs(¢)=p*U(prs(¢)—¢)
+U(¢)=0+U*¢ since prp¢p—¢peRs. pf and pi are inverse to each other:
¢eF implies ¢=pryd=prp(p* ¢ +(¢ —p* ) =prpy(p* $)+0. Also, ¢ =p*(pr;¢)
for peC*.

2. Symmetric Periodic Solutions for Odd Nonlinearities

In this section g is a continuous real function which is odd: g(x)= —g(—x) for

all xelR. Furthermore we assume that g is differentiable at x=0 with g'(0) <0,

and that for some X >0, g(X)=0 and g<0 in (0, X). Kaplan and Yorke [13]

showed how to obtain slowly oscillating periodic solutions with symmetry (S)

to Eq. (g) under slightly different assumptions on g, including xg(x)<0 for all

x =+ 0. The following is a version of their approach fitted to our situation.
Consider the Hamiltonian system

x=g(y), y=-—-gx (2)
x y
with first integral G: (x, y)—> [ g+ [ g.
o] 0

Proposition 2.1. There is a solution (x,y): R—>R* xR~ with x>0, y>0 and
(X, y)(t)__)(oy —X) ast— — oo, (x9 y)(t)_)(Xa O) as t— -+ 0.

Proof. Choose x,€(0, X) with G(x,, —x,)=G(X, 0) and consider the maximal
solution (x, y): I -R? with value (x,, —x,) at t=0. On ([x,, X]x[—x,, 0])
~{(X, 0)}, both components of the vectorfield are positive while (X,0) is a
stationary point. It follows that (x, y) either crosses the part A:=(x,, X)
x {0} U{X} x(—x,,0) of the boundary of [x,, X]x[—x,,0] at a first finite
time s>0, or supI=+o0 and (x, y)(1)—>{(X,0) as t— +o0. By G(x,, —x,)
=G(X,0¢G(4), An(x,y))=g. Hence (x,»)({)—(X,0) as (—+c0.
lim (x, y)(t)=(0, — X) follows from (x, y}(t)=(—y, —x)(—1) for all t>0.
— —

Connecting solutions between the stationary points (X, 0) and (0, X), (0, X)
and (—X,0), (—X,0) and (0, —X) in the other quadrants are most easily
obtained by considering the solutions (—y, x), (—x, — ), (¥, —X).

Corollary 2.1. For every ne(—X,0) there is a first t="T(n)>0 such that the
solution (x, y) of Eq. ((g)) with value (0,%) for t=0 intersects with (0, X) > {0}.
The map n— T(y) is continuous.

Proposition 2.2. The solution (x,y) of Eq. ((g) with x(0)=0, y(0)=ne(—X, 0)
satisfies x=—y(T(H)— ), y=—x(T(y)—*) on [0, T(n)). In particular, x(T(n))=
—n.

Proof. The map [0, T(n)]zt—>(—y(T(n)—1), —x(T(y)—1)) is a solution with
values (0, —x(T(n)) at t=0, (—n, 0) at t=T(y4). Hence G0, —x(T(n))=
G(—#,00=G(0,%). G(0,-) is strictly monotone on (—X,0). Therefore 5=
—x(T'(n)), and the solution above coincides with (x, y).

Corollary 2.2. The solution (x,y) of Eq. ((g)) with x(0)=0, y(0)=ne(—X,0) is
periodic with minimal period 4T(y). On (0, T(n)), x>0, y>0, and x=y(- + T(y))



=—x(+2T)=—y( +3T(), y=—x(+TH)=—y(+2Tm)=x(+3T(n).
AISO, (X, J’)(]R)C [175 —71]2
Proof. x(T(n))= —n implies that the formulas in Corollary 2.2 define a solution
on [0,4T(n)].
Proposition 2.3. lim T'(#)= + oo, lim T(5)= —=/2g'(0).

n——X 7n—0
Proof. The first assertion is clear from (0, — X) being a stationary point. To
obtain the second one use the argument in the proof of Theorem 1.1 [13].
Note that for, say, —X/2<#<0 all periodic orbits lie in [—X/2, X/2]% and
that xg(x)<0 for —X/2Zx=X/2, x+0, which means that the assumptions of
[13] hold true.

Corollary 2.3. For g'(0)< —n/2 there exists ne(— X, 0) with T(n)=1, and there is
a slowly oscillating periodic solution to Eq. (g) with x(R)c(—X, X) and with
symmetry (S).

Proof. The first component of the solution of ((g)) with period 4T(y)=4
satisfies (g) since y=x(- —1).

3. Spectra of Symmetric Periodic Solutions

We assume that the nonlinearity g satisfies the hypotheses of Sects. 1 and 2,
and we consider a periodic solution x to Eq. (g) as given by Corollary 2.3. It
follows that the map t — (x(z), y(r)) with y(¢):=x(t—1) is a solution to Eq. ((g)).

The coefficient t—g'(x(t—1)) in the linear variational equation (x) has
period 2 since g’ is an even function and x(f)= —x(t—2) for all . Therefore U
= We W with the linear compact continuous operator W: Cg— Cg, Wi (a):=
w¥(2+a) for ae[0, 1], w¥ the solution to equation

w() =g (x(t=1) w(t—1) (x)

with wy=w|[0, 1]=y. The spectral mapping theorem, or more easily the
decomposition U — A% id=(W—1id)o (W+ 1id), implies ¢(U)={A?eC|lea{W)}
for the spectra of U, W. Define m{2) to be the algebraic multiplicity if A0 is
an eigenvalue of W, and set m(X):=0 if not. We may reduce the investigation of
multiplicities with respect to U to a study of the operator W:

Proposition 3.1. M(1%)=m(l)+m(— 1) for 0% 1eC.
Proof. See e.g. Chaps. VIL3, VIIL4 in [4].
Proposition 3.2. X, is an eigenvector of the eigenvalue A= —1 of W.
Proof. Differentiate Eq. (g) and observe (S).
In order to compute spectrum and resolvent of W we need the fundamental
matrix solution
A up b
5= 3 )

4



of equation
i=(g'oy)z, Z=A"'(gex)u; A0 *)

with S*(1) the -unit matrix. We set

222 (0)—1  1z3(0) -
Q(i)=%( i (0) u';(O)—l) and g(4):=det Q(A).

The Wronskian det $* is constant (=det S*(0)=1). Therefore g(1)=1—21—u}(0)
—22%(0) for 0% A€C. g is analytic in €~ {0}, compare e.g. Chap. X.7, p. 295 in
[31.

Lemma 3.1. Let AeC~{0}. There exists a surjective linear operator
L(A): Co— €2 such that (W—Aid) y=y implies

(vax J=srersi o (o e vis) & M

with ceC? and

Q) c=L(A) Y. )

Proof. Set w:=wZ for the solution of Eq. (x) with initial value y. On the
interval [0,1], w,=Wy and w, satisfy w,=w(2+)=g'(x2+ —1)w(l+-)=
gl=—x(—=1)w,=g'(x(—1)w,=(g'oy)w; and w;=w(l+)=g(x(1+-—1)
wo=(g' ox) .~ Y w,—y) with y=(W-1id)y=w,—Aw,. By the variation-of-
constants formula we obtain Eq. (1) with some ceC?. Define L(4) ¥ by

—lﬂ(l)——{second compoent of S’l(O)(jl)(S’l(s))‘1 (—g’(x(os)) x//(s)) ds}

{ﬁrst component of S’l(O)(j:(S’l(s))‘1 (_ o g’?x ) v (S)) ds}

The first component of Eq. (2) follows from Wy(1)=y(1)+Ax(1) =¥ (1) +Aw,(0)
and from Eq. (1) with t=1, t=0. To derive the second component of Eq. (2)
note ¢,=w, (1) (see Eq. (1) with t=1) and w,(1)=w(2)=Wy(0), and substitute
the right hand side of Eq. (1) with t=0 for Wy(0).

It is easy to see that L(1) C contains a basis of C.

Remark. Lemma 3.1 may be generalized. For example, if x is any periodic
solution of Eq. (g), g: R—»R C*, with integer period p>1 one would compute
the solution y to (U,~Aid)x=¥, U, the time-p-map of (x), by means of a
fundamental matrix for a system of p linear nonautonomous O.D.E’s.

Corollary 3.1. For 0 eC, q(1)=0 is equivalent to Jea(W).

Proof. (W—2id)y=0 and yx+0, 1=0 yield Wy=0. By the preceding lemma,
there exists ¢+0 with Q(4) c=0. Hence ¢(1)=0. - If A+0 and Aéo(W¥) then for
every ye Cg there exists ceC? such that Q(4) c=L(A) . Since L(4) is surjectice
the rank of Q(2) must be 2, and ¢g(1)+0.



We have seen that Q(4) is invertible if 0+ A¢ o (W). This means that we can
compute the resolvent (W—2id)~': y=(W—1id)~ ' ¢ implies (W—Lid) y=4, or
=4~ (Wy—1) with Wy given by (1), (2).

Let L(Cg) denote the space of bounded linear operators from Cg to Cg.
Corollary 3.2. The analytic mapping C~(c(W)u{0})sl—-q(H)y(W—ALid)~?
eL(Cq) admits a continuous extension H to €~ {0}.

Proof. For YeCq and 240, A¢a(W), we have q(AY(W—Aid)~ 1y =q(A) A~ (Wy
—1) with Wy given by (1) and (2). It follows that g(1) Wy is the first com-
ponent of

14 /1_' Afany—1 0
a) (a0 OU L +S' O SO (s 0] )
with
~ (u;(O)—l ~225(0)

0=t imro—1) =1

Now the assertion is easily derived from continuity of the maps
0+A—-ul|[0,1]eCq, O0%Ai—2z}|[0,1]eCe,  ie{l,2}.
Proposition 3.3. 0= Aeg(W) and Q(A)%0 imply H(1)=*0.

Proof. Let 0% lea(W). By g(1)=0 we see that H(A)y is the first component of
2~ 8*(+)Q(}) L(A){, compare the proof of Corollary 3.2. By Q(1)=%0, §(1)=0.
By L(J) Cc=C? there exists yeCg such that c:=(c,, ¢,)"+=0(%) L(2) Y 0. In
case ¢; +£0 we find HA) Yy ()=4i"'c,ut(1)+0=c,/A%0. In case ¢, =0 we find
H()Yy=24""c,ul with ¢,=+0, and d4(1)=g'(y(1)) z4(1)=¢'(0)<0 yields H(A)y
+0.

For a zero 7 of g let j(A) denote the order, and set j(1):=0 if g(4) %0.
Corollary 3.3. For every AeC~ {0} with Q(1)+0, m(1)=j(A).

Proof. Corollary 3.1 gives m(l)=0=j(2) if O+Ai¢g(W). Furthermore, 0
£ ieo(W) and Q(A)#0 imply that Q(4) has rank 1. By Lemma 3.1 the geomet-
ric eigenspace ker (W~ A1id) is contained in the set

{e 110, 1D+, (w3 1[0, 1D Q) ey, )" =0}.

Hence dimker (W—2id)=1. It follows that the algebraic multiplicity m(4)
coincides with the stabilizing exponent

J(A):=min {keN | ker (W—Aidy*=ker (W—Lid)**+1} —
since
m(1)=dim ker (W~ Aid)’®? <Y {® dim ker (W—1id)=J (1)

and k

dim ker (W—7id)<... <dim ker (W— Aid)’@.

On the other hand, J(/) is equal to the order of the pole of the resolvent of
W at z=4. Therefore J(A)=min{keN|p—(u—A)*(W—puid)~' admits a con-



tinuous extension to (C~c(W)uw{i}}=:K(1). By definition of j(1), g=
(- =AY h with h analytic in a neighborhood of z=/1 and h(4)+0. Now use
Corollary 3.2 and Proposition 3.3 to deduce K(4)=j(A).
Proposition 3.4. Q(1)=+0 for every Aea(W)~{0, —1}.
Proof. Q(J)=0 and A=+0 imply u?(0)=0=z4(0), ui(0)=1=4z;(0). By 1
=det §*(0), A= —L.
Corollary 3.4. Suppose q(1)%£0 and m(—1)=1. Then the index of the fixed point
X, of P is given by

(= 12/ (2P,

Proof. Proposition 3.1 and Corollary 3.1 give M(1)=1. Use Proposition 3.1,
Theorem 1.1, Proposition 3.4 and Corollary 3.3.

Proposition 3.5. g(1)/A— —1 as || > + .

Proof. For |A]— +oo0 §* converges to the matrix solution S® of i=(g'0y)z,
=0 with §°(1) the unit matrix. Hence z%(0)—0 and u%(0)— — }g’(y(s)) ds. This
implies q(A)/A=A"1—1—u%(0)/1—z}(0)— — L. ’

4. Continna of Symmetric Periodic Solutions

From now on we consider families of equations

xX()=af(x—1), a>0, (o)
with odd C'-functions f: R - R satisfying

f'0)=—-1, f(X)=0 forsome X>0 and f<0in(0,X), (HI)
f(x)/x <0 strictly increasing on (0, X). (H2)

Let us write {(«)) for the system ((g)) with g=oaf. We use a result of Nussbaum

[21] to obtain uniqueness of symmetric periodic solutions from condition
(H2): ‘

Proposition 4.1. (i) The maps T,: (— X, 0)—>R* defined by Eq. («)) in the sense
of Corollary 2.1 are strictly monotonic decreasing.

(if) T, maps (—X, 0) onto (n/2, o).

(iii) For all «>0 and all ne(—X,0), aT (n)=T,(n).

Proof. (1) Let «a>0, — X <#'<n<0. The orbits of Eq. ((«)) through (0, %), (0, %)
lie in a square [#' —e, —y +&]*c=(— X, X)?, £>0, see Corollary 2.2. Since f<0
on (0, —#' +¢) Nussbaum’s proof of his Theorem 1.3 [21] applies. - Note that
the period map in [21] is defined on the valaes of the Hamiltonian, not on
initial values as 7,. - Proposition 2.3 implies (ii). To prove (iii) observe that
t —(x(xt), y(xt)) is a solution of Eq. (o)) if and only if (x, y) is a solution to Eq.

().



Corollary 4.1. For every o>n/2 there exists a unique periodic solution x*: IR —
(—X, X) of Eq. (») with symmetry (S) and x*(0)=0, x*>0 on [0, 1). (x% y*) with
yi=x%—1) is the unique solution of Eq. ((«)) with the properties x*(0)=0,
~X <y (O)=n<0, T(m=1.

Proof. Corollary 2.3 gives existence. For every periodic solution x: R —-R to
Eq. () with x(R)<=(—X, X), with (S) and x(0)=0, x>0 on [0, 1), x and y:
=x(* —1) solve Eq. ((®)) with x(0)=0, y(0)=n in (—X,0), T,(n)=1.  is unique
by the preceding proposition.

We have to adapt the notation of Sect. 3: Let m,(—1) denote the algebraic
multiplicity of the eigenvalue —1 of the time-2-map W, which belongs to the
linearization (x*} of Eq. (x) along x% j(1)=0 is the order of AeC~ {0} as a
zero of the map

g,: 0 A—1—A—ub*(0)~Az4*(0)=det Q,())
where
ia A
0.0)= </121/l O —1 :1122 0 )
up®©0)  uz*(0)—1

with the solutions (u}%, z}»*), ie{l, 2}, of equation
u=a(f"oyz, =l (fexu (o, &)
with initial conditions wb*(1)=1=z%(1), Z&*(1)=0=ub=*(l).

Proposition 4.2. The map n/2<a—x5eC is continuous. There is an open set
Qo {(a, x3)|a>mr/2} in RT x C* with the following properties.

(i) For every a>mn/2 and all peQ :={peC*|(x, $p)cQ} there exist zeros z,
=z9*>1 and z,=z%5%>z,+1 of the solution x=x%** of Eq. (&), x,=¢, with
O0<x on [1,z)), X<0 on [z,,2,+1) 0<x on (z;+1, z,+1), x([0,z,+1])<
(—X, X).

(i) The map P: Q3(x, ¢)—x**(z%*+)e C* is continuous and compact with
P(o, x3)=x%, for all a>mn/2.

(iii) Suppose m,(—1)=1 and q,(1)+0. Then x% is an isolated fixed point of
P(o, +) with index given by

(12 (2,

Sketch of Proof. The first assertion follows from continuity of the map
n/2<oa—T,"'(1). Existence and properties of Q are derived as in Sect. 1,
essentially by continuity of x** on bounded intervals with respect to (¢, «). (iii)
is a consequence of Corollary 3.4,

Proposition 4.3. (i) (x*, y*)(IR)— (0, 0) as o> 1/2.
(i) y*(0)» — X as a— + 0.

Proof. (i) It is enough to show y*(0)—0 since we have continuous dependence
and all periods are equal to 4. Proposition 2.3 gives 1=1lim 7_,(n). By Proposi-
0

tion 4.1 T, is strictly monotonic decreasing. Therefore 1< T, on (— X, 0). Let
ge(— X, 0). Continuity of the map O<a— T, () implies 1<T(g) for « in a
neighborhood N of =/2. It follows that for aeNn(n/2, c0) the unique ne
(—X, 0) with 1 =T,(n) must lie in (¢, 0).



(i) Let —X<—-X+4+e<0. We have O0<Ti(—X+¢)=aT (—X+¢). Hence
there exists a,>mn/2 with T (—X +g)<1 for a>a,. Monotonicity of T, yields
Y(0) =T, '(1)e(~ X, —X +2).

Proposition 4.4. For odd C-functions f: R —R with (H1), (H2) and
fx)=f(X—-x) forall xe(0,X) (H3)

there is a solution to Eq. ((«)) which connects (0, — X) and (X, 0) in the sense of
Proposition 2.1 and satisfies y(t)=x(t)— X for all t.

Proof. The solution x of Xx=uf(x—X), x(0)=X/2, satisfies x(f) >0 as t > — o0,
x(t)—>X as t >+ 0, 0<x<X on R. Together with d(x—X)/dt=xXx=0of(x—X)
=—af(X —x)=—uaf(x) we find that (x, x— X) is a solution to Eq. ((«)).

Corollary 4.2, y*>x*— X in [0, 1] for all «>mn/2.

Proposition 4.5. Let f be given as in Proposition 4.4.
(i) For a>r/2 with —X/2<y*(0) we have —X/2<y" in [0, 1].

(ii) For a>n/2 and y*(0)< —X/2 there exists a unique a,e[0,1/2) with
y(a)=—X/2. We have x*(1—a,)=X/2, and 0<a,_ if y(0)<—X/2.

(iif) lim a,=1/2.

(iv) For a>n/2 with y*(0)< —3X/4 there exists a unique b, in [0, 1/2) with
yi(b,)= —3X/4. We have lim b,=1/2.
Proof. Assertion (i), existence and uniqueness of a,€[0, 1/2) follow from y*>0
in (0,1] and from yp*(1/2)>x*(1/2)—X = —y*(1/2)— X (Proposition 2.2). Also,
x*(1—a)=—y"a,)=X/2. 0<a, for y*(0)< — X /2 is clear.

Proof of (iii). Proposition 4.3(ii) implies that there is o' >=/2 such that for
aza, —X<y*(0)= —3X/4. Orbits of solutions to Eq. (%)) through a given
point do not depend on «. In particular, (x*% y*)([0, 1]), a=«/, is contained in
the region in the fourth quadrant between the line y=x—X and the orbit
through (0, —3X/4). The time which (x% y”), «=«’, spends in the compact set R
bounded by y=—X/2, x=X/2 and by the orbit through (0, —3X/4) is just 1
—2a,. Both components of the vectorfield (x, y) = (af (v), —af(x)) tend to + o0
uniformly on R as a«— + 0. Hence 1—2a,—0 as ¢ — + o0. (iv) is proved in a
similar way.

A A
/ .

-X Fig. 1

The investigation of W, and g, requires information on the right hand side
of Eq. (o, A):



The case
-X/2<y*{0)

f' oy?

\Ga 1/2 1_Ga/

The case
y*(0Q)<-X/2

Fig. 2

Proposition 4.6. Let [:RR >R be an odd C'-function with (H1), (H2), (H3).
Assume in addition that

/<0 on(0,X/2) and fis C? on (0, X/2) with f-f'/f" (H4)

negative and strictly decreasing on (X /2, X).
It follows that for all a>mn/2 with y(0)<—X/2, f'ox* has no zero on
(1—a,, 1], and —f'oy*/f’ox* is strictly decreasing on (1 —a,,1).

Proof. On (1—a,, 1], —X/2<x*<X. Hence 0<f"ox* by (H3), (H4). a,<1/2<1
—a, yields 0< —y*<X/2<x*<X on (1—a,, 1) so that ' <0 in (0, X/2) and the
symmetries of f imply 0<f"ox* foy* and fox", f'oy*<0 on (1—a,, 1). Since
Sf"<0 on (X/2,X), 0<f’ox> on (l—a,l). For l—g,<t<l, X
+y*(H)e(X/2, X). Since X +y*>x* and f-f'/f” is decreasing on (X/2, X) we
obtain (f-f'/f"V (X + v &) <(f-f'/f")(x*(t)) for these t.

Note 0<f* )= —f(—=y" ()= —f(X = (=y" ()= —f (X +*(1),

0>f"(y*(@)= —f" (X +y @), [/ @)=— "X +y*(1). With X +*()e(X/2, X),
this yields 0> —f"(X + y*(t)).



Altogether: f"oy*- fox® - flox®+f"ox* foy* f'oy*<0 in (1 —a,, 1). There-
fore  d(—f"oy*/f ox*)dt=(f"ox*)"H(—f" o y* y*- flox"+f"ox*- X" f'0 y) <0
in (I—a,, 1)

Corollary 4.3. Let o>7/2.

() In case —X/2Zy™(0), f'ex® is strictly increasing in [0, 1] from —1 to
S (e(—1,07, and (f' e x*—f" 0 y")(t) =0 for some te(1/2, 1).

(i) In case y*(0)y< —X/2, f'ox™ is strictly increasing in [0, 1] from —1 to
F(x*(1)e(0, 1), and f'ox*(1—a,)=0. We have —f'ox*—f"0y*=0in [0, a,].

Proof. (i) (H3) and x*(1)=—y*(0), x*>0 in [0, 1), f'<0 in (0, X/2), f-f'/f" <O
in (X/2,X) imply that f'ox* is strictly increasing on [0,1]. Also,
S ) > 1 x*0) =f"(—x*(0) =f"(y*(1))-

(ii) The first assertion follows as in (i). f'(x*(1—a,))=f"(X/2)=0 is obvious
from (H2), (H3). Proposition 2.2 and f” even give (—f o x*—f o y")(t)=(—f"0 y*
—f'ox®)(1—1t) for te[0,1]. t€[0,a,] implies 1—te[l~a,, 1]. —f oy*/f ox*
decreases on (1—a,, 1), and —f oy*(1)/f ox*(1)=1/f"ox*(1)>1. This implies
the last claim.

Examples. f= —sin and the odd continuation of 0<x— —x(l —x) satisfy the
hypotheses (H1)-(H4).

5. The Eigenvalue A= —1 of W, is Simple

Proposition 5.1. We have zy»*(0)=—1, u;“*(0)=1, z;*0)=0 for every
a>n/2, and X% is a multiple of uz

Proof. By Proposition 3.2 and Lemma 3.1, Xx§=c,u;""+c,u;>* with
0,(—1)(cy, c)*=0. %5(1)=x*(1)=0, u; *(1)=0 and u7"*(1)=1 imply ¢, =0,
¢,40 and 0,(—1)(0, 1)*=0. This yields z;!*(0)=0, u;"*(0)=1. Finally,
z71%(0)=—1 follows since the Wronskian of the solutions (u; % z; %),
ie{l, 2}, has constant value 1.

It follows that Q,(—1)=#0 is equivalent to uy*(0)=+0. By Lemma 3.1 we
obtain

Corollary 5.1. dim ker (W, +id) =1 is equivalent to uy**(0)=0.

For real A#%0 we introduce polar coordinates and find (> z}>%=rp"
(cos 072, sin 0+%) for the solutions r=r}? §=0* of the equations

F=off oy*+ A7 f o x*)rcos0sind (r)

=0~ 1f ox* cos? 0 —af’ oy*sin? 0 (©)
with r*(1)=1 for ie{l, 2}, 87*(1)=0, 6%%(1)=x/2. Clearly r»*>0 on R, and
dim ker (W, +id)=1 provided that 67" *(0)¢n/2+ Zm.

Proposition 5.2. For all «>n/2 we have
(i) 03 *(0)=0
(ii) 07 "*=n/2—05(1—")
(iii) 85 -*(1/2)=n/4



(iv) 05 1%((0,1/2)=(0,m/4)
(v) In case X/2<x*(1), 0<6;"*on [1/2,1—a,) and

0<h; (1 —a)<n/2.

Proof. (i) z3"*0)=0 yields 6;%%0)eZr. Continuity of the map
n/2<o— 05 »*(0) implies that 85 '*(0) is constant. For a>n/2 close to 7/2,
x*(1)<X/2. By Corollary 4.3(1), 0<60;%* in [0,1]. Also, |f|<1 so that
165 > <. Since 05 1*(1)=7/2 we find 0=03 1*(0) for « close to m/2.

(1) Assertion (i) and f'ox*(1—)=f"0y% f'oy*(1— *)=f'ox* show that the
function on the right hand side satisfies both Eq. (8) on [0, 1] and the same
initial condition as 05 :* at t=1.

(iii) Follows from (i) and (ii).

(iv) Is an easy consequence of (i), (iii), Eq. (0) and the assertions of Corol-
lary 43 on f'ox% f'oy". The vectorfield (¢, 0)—(1, —of ox*(t) cos* 6
—oaf’oy*(t) sin? f) has positive components for 0<t<1/2, §=0, and nonne-
gative components for 05t<1/2, §=n/4, and a positive second component at
(1/2, n/4).

(v) Observe 0< —f"ox* —f'oy* in [1/2,1—a) from Corollary 4.3 and
note that the vectorfield above has a positive second component for §==/2, 1
—a,st=1

Corollary 5.2. dim ker (W, +i1d)=1 for every a>mn/2.

Proof. We have to show 67" *(0)¢n/2+Zn. Equation (8) has period n with
respect to the variable 6 so that 6)*—n is another solution and ;¢
—n<f07*<8; - By Proposition 5.2(i) it remains to exclude 67 *(0)= — /2.
Assume this equation holds true. As above we infer that 874 %= —07%*(1—")
—mn/2. Hence 07 1*(1/2)= —n/4.

(i) The case x*(1)<X/2. Corollary 4.3(i) implies that 65 '* increases from
n/4 to n/2 on [1/2,1], and 67"* from —mn/4 to 0. On the other hand,
sinv<sin?w for —n/d<v<0, n/d<w<mn/2. Rewrite Eq. (0) as = —af ox*
+sin? 0 [of’ox*—af o y*]. The last factor is strictly positive on (1/2,1). It
follows that 67 %*<65 % on [1/2,1], and m/d=05>*(1)— 05 **(1/2)> 07 (1)
— 67 **(1/2)=r/4, contradiction.

(i) The case X/2 <x*(1). The second component of the vectorfield above is
negative for 1—a,<t<1, §=0. Hence 0<8;>“(1—a,), by 67 "*(1)=0. With
Proposition 5.2(v), 0<87 %1 —a)<6; (1 ~a,)<n/2. Corollary 4.3(i)) and
froy*(l—)=f"ox* fox*(1—+)=f"oy* imply that both §;"*:* are increasing on
[1/2,1—a,]. For some t*&(1/2,1—a), O0;7"*(t*)=0 and 07 >*([1/2, *]) <
[—=r/4,0], 05 *(t*)<x/2 and 65 > *([1/2, t*]) = [=/4, n/2]. Now we can proceed
as in case (i): 65 > increases faster than 07 % in [1/2, t*7], and we arrive at a
contradiction to 97 »*(t¥*)— 07 - *(1/2)=nr/4> 05 1 *(t*)— 07 1 *(1/2).

Corollary 5.3. For every o>n/2, m (—1)=1.
Proof. Tt is enough to show ker(W,+id)=ker(W,+id)?. By the preceding

corollary this holds true provided there is no yeCy with W, x4+ y=x%. Assume
the contrary. Let S, denote the matrix with columns (u; ?% z7 %", ie{l,2}.

i H



Proposition 5.1, *(1)=0 and Eq. (2) in Lemma 3.1 yield

0=second component of S (O)j(S (s)~! (—af’(x“(s)())c u—l'“(s)) ds

=—wAfu@m%1%» ()
with ¢, +0.

We have r; '*=r;%(1—): Both functions have the value 1 at t=0, see
Proposition 5.1 and Proposition 5.2(i), and they satisfy Eq. (r) since

d(ry "*(1—)/de=—r37 b1 —-)
=—a(f o) (1~ )=f ox*(1=)r; “*(1—")cosf; “*(1—*)sinf; “*(1—")
=a(f oy —f ox)r; " *(1—"+) cos(n/2— 05 % sin(n/2— 05 %)
=a(f oy*—f ox%r;*(1—-)sinf; > cos 07 =

We conclude
I S )5 1 *(s)* (cos 05 1 *(s))* ds

=— j F* (1 —=8)(r7 (1 —s))*(cos 05 »*(1 —5))* ds

1/2

= [ SO0 6 eos (w205 () s 0

(i) In case x*(1)=<X/2 Proposition 5.2(iv) and f'ex*<f'oy* on [0,1/2)
imply that the last integrand is negative on (0, 1/2) and strictly greater
than f'ox*(r; " *?(cos 0;*%2. Therefore the absolute value of the first
1ntegra1 in (f) is strictly smaller than the absolute value of

f S1(x*())(rz 2 *(s))*(cos 05 *(s))* ds, contradiction to ().
(11) The case X/2<x*(1). Proposition 5.2(iv) and f'ox*<0 in [0, 1/2] imply
the estimate

1/2

= gf’(X“(S ry 1 *(s))*(cos 0 +*(s)* ds

1/2 1/2

== f > f S ey () (cos (m/2— 05 1+ *(s))? ds.

From Corollary 4.3(ii), applied to —f..., and from f'ox*<f’ecy*<0 on

0
(a,, 1/2) we infer that the last integral is not smaller than

1/2

TGO ds— ] 10709 ds>

1/2

§ f0s)...ds

0

I F1(4(9)(r7 +%())*(cos 05 - *(s))? ds| =+ J.




Here we have used 0<f’'oy* on (0,a,), f'oy*<0 on (a,,1/2), and (f). The
estimate I >J contradicts (3).

Corollary 5.4. For every a>n/2, (dq,/dA){—1)+0.
Proof. Q,(—1)%0 gives j (~1)=m,(—1), see Corollary 3.3. Apply Corollary
53

6. Bifurcation

Proposition 6.1. lim ¢,(1)<0.

a—;‘n:/2
Proof. For a>>m/2 the coefficients f'oy* and f'ox* in Eq. («, 1) tend to —1
uniformly on [0, 1], see Proposition 4.3. It follows that the matrix with col-
umns (u;**(0), z;**(0)*, ie{1, 2}, tends to

S O )

Hence q,(1)= —u}*(0) — 21 *(0) > — (¢72 —e~"2)

Proposition 6.2. (i) There exists a>mn/2 with 07 %1 —a)= —n/2. (i) We have
4;(1)>0 provided that 05 %(1 —a,)=0.

Proof. (i) By Proposition 4.3 there exists &>7/2 with y*(0)= —X/2 and y*(0)<
—X/2 for a>4, or a;=0 and a,e(0, 1/2) for a>&. Clearly 7*(1—a,)=0}%(1)
=0.

We have 6} *(1—a,)— — o0 as @ — + c0. Proof: By Proposition 4.5(iv) there
exists o¥ >7/2 such that b,>1/4 for a>a*. Hence —X/4<)* and 3X/4<x" on
[3/4,1], f'ox*Zf'3X/4>0 and —foy*=—f(X/4)=f'(3X/4) and @
=a(f ox*cos>O0—f"oy*sin? 0)=of'(3X/4)>0 for O=0-* on [3/4,1], and
01*(3X/4)—~ — o0 as a— + o0, By Proposition 4.5(iii), 1 —a,<3/4 for a>d>a*,
with & sufficiently large. From Eq. (8) with A=1 and from Corollary 4.3(ii)
together with f’ox*=f"0)*(1 —+) we obtain §1'*>0 on [1—a,, 3/4], a>4. It
follows that 0}*(1—a)— —oo for a— +co. Finally, the intermediate value
theorem implies assertion (i).

(i) We  have  g,(1)= —ub-*(0)—z} *(0)= —rL *(0) cos B3 *(0) —rl*(0)
sin 61-%(0). Therefore it is enough to show 6% “(O)e(n/2 n) and
67 *(0)e(—mx, 0) for a=a. Corollary 4.3(ii) says that the right hand side in Eq.
(6) is positive for 1—a;<t=1 and R, hence 065 %1 ~a,)<nm/2. It is also
positive for a;<t<1—a, and fen/2+Zn, and negative for q,<t<1-aq; and
feZzn. With 60}%(1—a)=—n/2, we conclude 0}%a)e(—n, —n/2) and
03 %(a,)e(0, /2). - Note that for a solution 6 to Eq. (0) the functions n/2+j=
+60(1—"), jeZ, are solutions to Eq. (0), too. Therefore 03 %(1—a,)el0, n/2]
implies that the solution with 6(0)==, that is =/2+03%(1—"), satisfies
7/2<0(a)<n, and 6} %(1—a,)= —n/2 implies that the solution with 6(0)=m/2
satisfies 8(ay)=0. It follows from 6 %a,)e(0, n/2) that 83-%(0) is in (n/2, %)
Similarly we find 6} #(0)e(—n/2, 0).
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The proof of the next result uses an idea which T owe to H. Steinlein [23].

Lemma 6.1. Let continuous functions a, b: [¢c, 1]—-IR be given with a>0, a=b,
b(c)=0, b>0 on (c,1], a and b increasing, a/b decreasing on (c,1]. If the
solution 0, of equation

O=asin?0+b cos? 0 (0))

with 0,(1)=0 satisfies 0,(c)= —n/2 then 0,(c)=0 for the solution 8, with 6,(1)
=7/2. :
Proof. (i) We have

6,>0 on (c,1] for ie{1,2} and 6,>0 on [c, 1]. (3)

It follows that there is a unique te(c, 1) with —8,(t)=0,(z) since (6, +9,)(1)
=n/2, (0,+0,)(c)<—n/2+7/2=0. Set A:=a(r), B:=b(1r). Note A=B>0.
There exist T >c¢ and solutions y,, ie{l, 2}, of equation

y=Asin?y+ B cos?y (y)

on [¢, T] with y,(¢c)=—n/2, y,(T)=0, y,(c)=0, y,(T)=n/2. This is easily seen
from symmetries in the equivalent equation y=A+(B— A) cos® y with —A<B
—A<A4, B-A=<0. Both y,; are strictly increasing. 8, and y, map [¢, 1] and
[c, T] respectively one-to-one onto [—n/2,0], and 6,007, y,oy;! are de-
fined. We have

(0,007 1) =0,007"/0; 007"
:(aoﬁl‘l) sin? 0,007 +(bo 07 ) cos? 0,007
(ao 07 ") sin?+(bo 07 1) cos?

on [—=/2,0]. 4)

(ii) We have
Asin? 0,007+ B cos?0,007!

0,007y < -
05007y = A sin? 4+ B cos?

on [—mn/2,0]. Proof: Case I: t<67(s) with se[ —=/2,0]. The definition of
and —0,<0, on (t, 1] give

0 —s=—6,(07 () <0,(67 () <2 (5)



Also, d:=a(;'(s)=za(t)=A4 and b:=b(0;*(s))=b(t)=B. From (5), R
:=sin®s<sin” 8,067 '(s)=:p and g:=cos? 6,08, (s)<cos?s=:S. We have to
show (AR +BS) (Gp+bo)<(Ap+Bo) (GR+bS). The assumption that a/b de-
creases on (c, 1] implies Ba< Ab. With 6 <S, Ab(c—S)<Bi(s—S). Hence Abe
+BSG<AbS+Bod, A(l—-S)bo+BSid(l—06)<A(1—0)bS+Bsid(1—S). Now
use R+S=1, p+o=1

Case II: c<07 (s)St<1. Then 0,(0; *(s) £ —0,(07 1(s)) = —s, as 6, +6,>0
and 6, (1) +0,(r)=0. In case 0<0,(07 (s)) this means

010,67 )= —s. (6)

If 0,(87 7 (s)) <0 then —n/2<5==0,(07*(s))<8,(67 '(s)) <0 as 6,(1)<h,(1), and
we have (6) again. In the present case, d:=a(0;'(s)<a(r)=A4, b:
=b(07*(s)) £b(r)=B. Define R, S, p, and ¢ as in case I. Then R+S=1, p+o
=1, a=b, A=B. (6) yields p<R, S<o. Also, =0 if 87 *(s)=c, and a/b=A4/B
otherwise. Hence Ab<Bd, Ab(c—S)<Bd(o—S). This is equivalent to (dp+bo)
(AR +BS)<(3R+DS) (Ap + Bo), and the assertion follows.

(iil) y,oy7'=£6,067" in [ —n/2, 0]. Proof: Assume

6,007 (s)<y,oy7(s) for some se(—mn/2,0). (7
Since y,oy7 ' (0)=n/2=8,0 07 *(0) there exists s'>s with
0,007 <yyeyrt in [s,5) (8)
and
0,007 (s)=y,0y7 H(s)>0. ©)
It follows that there exists s”e(s, s') with
0<B,007 <y,oyr*<m/2 in [s",5). (8)
As in the proof of (4) we find

Asin?y,oyrt+Bcosty,oyr!
A sin” + B cos?

a0y Yy = (10)
A=B, cos?=1—sin?, (i) and (8'), and (10) show (8,007 <(y,0y7 ") in [s”, §).
This contradicts (8') and (9).

(iv) From (iii), 8,(c)=0,(07 '(—=7/2))Zy,(v7 (= 7/2) =y, (c)=0.

Theorem 6.1. For every odd Cl-function f:R —>IR with properties (H1)-(H4)
there exists 4>m/2 such that

ind (x%, P(& *), C*) =+ lim ind (x%, P(x, ), C*).
apmn/2
Proof. (i) We have ¢,(1)>0. Proof: By Proposition 4.6 and by Corollary 4.3(ii)
the functions a:= —a&f’'c)* and b:=df ox* on [¢, 1]:=[1—a,, 1] satisfy the
hypotheses of Lemma 6.1. By Proposition 6.2, #1-%(1 —a,)= —n/2. Recall the
initial conditions 8}-%(1)=0, 6i:%(1)=n/2. Lemma 6.1 gives 6} %(1—a;)=0. By
Proposition 6.2(ii), g;(1)>0.



(i) Proposition 3.5 and Corollary 5.4 imply that (— 1)1211.”“) is independent
of a>n/2. Consider (—1)Z"". Proposition 3.5 says that for all a>mn/2,
q,(4) <0 for A sufficiently large (A= 1,). Therefore (i) and Proposition 6.1 yield

(=02 % 1im (-2

az;»n/Z

Since lim ¢,(1)#0%qg,(1) and m (—1)=1 for all a>n/2, we may now use

a2

Proposition 4.2(iii).

In order to produce a change of the index at an isolated parameter value
we need more assumptions on f. A strong one is analyticity:

Theorem 6.2. Let f:IR >R be an analytic odd function which satisfies (H1)
—(H4). Then there exists f>n/2 such that every neighborhood of (B, x8) contains
fixed points (a, p)e(R* x C*)~{(o, x5) |a>7n/2} of P. These fixed points define
periodic solutions of equation

X(O)=aof(x(t—1) (o)

with x(R)=(— X, X), x(0)=0, x>0 on [0,1), x<0 on (1,z+1) for some z>1,
0<x on (z+1, p+1) for the minimal period p. The periodic solutions x** do not
satisfy the symmetry condition

x(ty=—x(t—2) forall teR. (S)

Proof. (i) q;(1)>0 (part (i) of the last proof) and lim ¢,(1)<0 (Proposition 6.1)

aomn/2
imply n/2<inf{a>mn/2]q,(1)>0}=:p. Clearly, c}a /1)§O for n2<a<f and
0<gq, (1) for a sequence a,>> f. We would like to find >0 such that g,(1)<0
on (f—e, p), q,(1)>0 on (B, B+¢). Unfortunately we do not know whether the
map n/2<o—q,(1) is analytic. It is defined by means of the solution # to 1
=T,(n)=T,(n)/x, hence by T, We shall see that T, is analytic but it remains
unclear whether its inverse is analytic, too. A proof would require 7,0
everywhere on (— X, 0). -

We shall employ the composition (—X,0)3n-qy (1) instead of
n/2<o—q,(1). Recall that T, maps its domain continuously and strictly de-
creasing onto {m/2, o).

(i) T, is analytic. Proof: T, is continuous and satisfies 0=y(T,(#), n) for all
ne(—X,0), with the map (¢, 1) —(x(t, n), y(t,n) given by the solutions of the
initial value problems x=f(y), y= —f(x), x(0, 5)=0, y(0, 7)=#. The latter map
is analytic on R x(—X,0), and (0y/0t) (T,(n), n)= —f (x(T,(n),n)) >0 for all ne
{—X, 0). The implicit function theorems of chapter X.2 in [3] now imply the
assertion.

(iii) The map (—X,031-qs (1) is analytic. Proof: The map
(t, n, o) = (x(t,n, o), y(t,n, o)) defined by the solution to Eq. () and x(0, #, «)
=0, y(0,%,0)=n is analytic on R x(—X, 0)x(n/2, c0). Therefore the coef-
ficients of the system u=af'(y(t, 5, ®))z, Z=of"(x(f, 5 o))u are analytic on
R x (=X, 0) x(n/2, «0). By (ii) the coefficients of the system

u=T0) f' &0, TNz, 2=T() S (et n, Ty(m)u ®



are analytic on R x(—X,0). By Proposition 4.1, a=T,(n) implies T (1)=1.
Hence x(-, 7, Ty(m))=x"1® y(-,n, T,(n)=y"*®. It follows that the parame-
terized flow of Eq. (§) is analytic on RxR*x(—X,0), and that the map
(=X, 003~ —uy T10(Q) -z "1™(0) =g, (1) is analytic, too.

(iv) Set ny:=T, *(B). We have qr,,(1)<0 for n,<n<0 and g, ,(1)>0 for
a sequence 1,=Ty *(x,)—>n, since T;”' is continuous. By analyticity there
exists 6>0 such that g, ,(1)<0 in (4, 15+9), Gr, ¢, (1)>0 in (7,—9, ). This
implies ¢,(1)<0 in (B—e, f) and ¢,(1) >0 in (B, B+ &) for some £>0.

(v) As in the proof of Theorem 6.1 we obtain that the index of the fixed
point x§ is, say, (—1)* on (f—e¢, f) and (—1)**! on (B, B+e&) with an integer k.
The homotopy property of the degree implies that every neighborhood of
(B, x&) contains fixed points (o, p)e(R ™ x C*)~ {(a, x%)|o>n/2}. For such a
fixed point, set x:=x%* and z,:=z%% ie{l,2}, in Proposition 4.2. We obtain
x>0 on [z,,z,+1). Hence ¢=5x(z,+)>0 on [0, 1). x maps [0, z,+1] into
(=X, X). Now xf({x)<0 on (0, X) gives Xx<0 on (1,z,4+1), and x has all the
monotonicity properties as claimed, compare Proposition 4.2. x does not
satisfy (S) since this would imply period 4 and x=x% by Corollary 4.1, or ¢
=x%, a contradiction.

Example. Theorem 6.2 applies to f= —sin.

Remark. The assertion of Theorem 6.2 remains true if the analyticity assump-
tion is replaced by the weaker hypothesis that the restriction of f to [0, X)
admits an analytic continuation to some open interval.

Example. The odd continuation of 0=x — —x(1 —x).
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