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This Club of Vertuoso’s, upon a full Night, when some eminent
Maggot-monger, for the Satisfaction of the Society, had appointed to
demonstrate the Force of Air, by some hermetical Pot gun, to shew the
Di�erence of the Gravity between the Smoak of Tobacco and that of
Colts-foot and Bittany, or to try some other such like Experiment,
were always compos’d of such an odd Mixture of Mankind, that, like a
Society of Ringers at a quarterly Feast, here sat a fat purblind
Philosopher next to a talkative Spectacle-maker; yonder a half-witted
Whim of Quality, next to a ragged Mathematician; on the other Side a
consumptive Astronomer next to a water-gruel Physician; above them,
a Transmutator of Metals, next to a Philosopher-Stone-Hunter; at the
lower End, a prating Engineer, next to a clumsy-fisted Mason; at the
upper End of all, perhaps, an Atheistical Chymist, next to a
whimsy-headed Lecturer; and these the learned of the Wise-akers
wedg’d here and there with quaint Artificers, and noisy Operators, in
all Faculties; some bending beneath the Load of Years and
indefatigable Labour, some as thin-jaw’d and heavy-ey’d, with
abstemious Living and nocturnal Study as if, like Pharaoh’s Lean Kine,
they were designed by Heaven to warn the World of a Famine; others
looking as wild, and disporting themselves as frenzically, as if the
Disappointment of their Projects hadmade them subject to a Lunacy.
When they were thus met, happy was the Man that could find out a
new Star in the Firmament; discover a wry Step in the Sun’s Progress;
assign new Reasons for the Spots of the Moon, or add one Stick to the
Bundle of Faggots which have been so long burthensome to the back
of her old Companion; or, indeed, impart any crooked Secret to the
learned Society, that might puzzle their Brains, and disturb their Rest
for a Month a�erwards, in consulting upon their Pillows how to
straiten the Project, that it might appear upright to the Eye of Reason,
and the knotty Di�iculty to be rectify’d, as to bring Honour to
themselves, and Advantage to the Public.

—NEDWARD, The Vertuoso’s Club



Abstract

We have great understanding of objects and materials we encounter in everyday life.
This helps us to quickly identify what is predator and what is prey, what is eatable and
poisonous. Despite large image di�erences our visual system is able to extract material
properties very consistently. Liquids are a category of materials that appear to be partic-
ularly challenging, due to their volatile nature. We are able to estimate complex liquid
properties such as runniness or sliminess. How are we able to do this? How is it possible
that we can perceive that honey is thicker thanmilk. Or that water in a glass is the same
material as water spraying in a fountain. Four studies were conducted to achieve a better
understanding of the image information we use to estimate liquid properties.

In study � we specifically look at the contributions of optical cues while estimating
a range of liquid properties. Using the same liquid shapes, but with di�erent optical
appearances, we studied which perceived properties (e.g., runniness) are influenced by
optical or mechanical cues.

We can encounter liquids in many di�erent states and contexts. In study �we specifi-
cally look at the constancy of viscosity perception despite radical changes in shape. How
consistently do we actually perceive liquids? We simulated a range of di�erent scenes to
learn how sensitive observers are to shape changes when estimating viscosity.

In study � we look into specific shape features underlying visual inferences about
liquids. By comparing observers’ viscosity ratings with perceived shape features, we show
how the brain exploits �D shape andmotion cues to infer viscosity across contexts despite
dramatic image changes.

In study �we estimate the perceived viscosity of an image with neural networks. Ma-
chine learning is a powerful tool and facilitates major breakthroughs with di�icult visual
tasks. Here we trained a neural network specifically designed to mimic human perfor-
mance while estimating viscosity.

Our results show that the perception of liquids is mainly driven by optical, shape and
motion cues. We show great perceptual constancy in rating viscosity across a wide range
of scenes. Mid-level features (e.g., spread, pulsing) are an important and reliable source to
estimate viscosity consistently across contexts.
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Chapter �

Introduction

A digital version of this dissertation is availible for download:
http://www.janjaap.info/dissertation/dissertation.pdf

Humans di�erentiate themselves from other animal species in various ways. One
very important di�erence is how we interact with our environment. We have great under-
standing of objects and materials we encounter in everyday tasks. This understanding
contributes to our survival, wemust knowwhat is predator or prey, when something is
eatable or poisonous, when an object glows and is hot to the touch, when a surface is
smooth and slippery. Mostly through vision we achieve these property driven a�ordances
prior to any interactions with the actual object. These concepts of intrinsic properties
seem to come quite naturally to us but use highly sophisticated and e�icient paradigms.
This is becoming evidently more clear in this last decade where wemore intensively try to
reproduce these qualities in machinery.

Di�erent types of information need to be extracted from the retinal image to be able to
makematerial property estimations. Optical cues provide information about the surface
properties of objects, or in the case of transparent and translucent materials they provide
information about the object’s content aswell. Howwe interpret optical surface properties
is influenced by shape and illumination conditions. The shape itself can be informative
about the causal meaning of the object (e.g., a crushed can or bitten apple, Spröte et al.
����). There is temporal information, how objects move, change in shape or interact with
other objects (Paulun et al., ����; Schmidt et al., ����). The environment around an object
also provides context and a�ordances (Oliva and Torralba, ����). Overall there are many
sources of information in an image that allow us to makematerial property estimations.
The hard part is that all these di�erent sources of visual information are not mutually
exclusive, making it extra di�icult to single out specific processes that could explain how

http://www.janjaap.info/dissertation/dissertation.pdf


� Introduction

we actually perceive properties such as roughness, sliminess, so�ness, runniness, and
shininess.

Another impressive feature of our visual system is that we are able to estimatematerial
properties consistently across an immense space of possible depictions. The consistency
at which we perceivematerial properties shows the true power of our visual systemwhere
we can identify objects andmaterials despite radical changes in the retinal image (e.g.,
spaghetti submerged in a dark, green lit, underwater cave still looks like so�, breakable,
flexible, plausibly delicious, spaghetti). The computations involved to achieve perceptual
constancy must represent properties with concepts that are invariant across contexts.

To achieve a better understanding on howwe use these di�erent types of visual infor-
mation we need to use controlled environments in which we can parse individual cues,
isolate them, and limit contamination of other types of information. By now advances
in computer graphics enable us to build these controlled environments with a level of
photorealism that is di�icult to discern from real images. The problem is that we combine
cues using ’weak fusion’ processes to come to our final estimation of a material property
(Landy et al., ����; Ernst and Bültho�, ����). Individual cues contain errors and more
accurate estimates can be acquired by combining the separate cues. The problem is how
you assign the contribution of individual cues to di�erences in estimation performance
in an experimental setup. The precision with which we can study di�erent types of vi-
sual information increases as technology advances. But being able to reproduce specific
cues in controlled environments doesn’t automatically mean you will be able to explain
material estimates. We need to apply new techniques to be able to derive individual cue
contributions and in which proportions they contribute to the final material estimate.
This is becoming evenmore important now that research is moving from relatively low
dimensional problems (e.g., color, gloss perception) towards higher dimensional problems
such as the perception of nonrigid, breaking materials (Schmid and Doerschner, ����) or
predicting shape transformation processes (Schmidt and Fleming, ����).

�.� Classification of materials

Classification ofmaterials is very important because it allows us to assign prior knowledge
to that specific material you recognize. This creates expectations that help to interact
with the materials and perform planned actions successfully. By identifying material
classes such as stone, fabric, metals, liquids we are able to quickly adjust our expectations
and therefore improving subsequent interactions with the environment. This quality is
essential to eat food, drive a car or successfully fight an armored knight. Classification



�.�Why liquids? �

helps to narrow down possible characteristics of the materials and to narrow down which
cues are most informative to adopt evenmore detailed expectations. It is a hierarchical
framework, where gold is a member of metals but by identifying it as a subclass of metals
the feature space of for example shapes is massively reduced. Gold doesn’t occur as o�en
in bulky quantities as iron.

The large di�erences and similarities within classes make classification very di�icult.
Denim behaves similarly as woven cotton and papyrus, and papyrus and cotton are opti-
cally more similar, but we would assign papyrus to a di�erent material class. Therefore
we need more specific features to tease materials apart. There are many cases where
materials in di�erent categories have common properties. The space to classify materials
is not uniform, some features might be very relevant to identify gels but not for metals,
for example so�ness. Materials can also appear in di�erent states such as glowing hot
metal, wet fabrics, rotting bananas or dried out mud (Zaidi, ����). For classification to be
successful it needs to be able to group very di�erent images together and split similar
images apart.

Despite all these complications in this vast material space we are very able recognizing
and classifying materials, even when only presented for a short moment (Sharan et al.,
����, ����). There must be some lower dimensional construct that enables us to navigate
through this space. Fleming et al. ���� showed that nine subjective ratings, such as
roughness and colorfulness, allowed observers to predict material classes with a ��%
precision. Furthermore, observers assigned similar semantic labels to material categories.
This agreement demonstrates that there are perception driven structures in large feature
spaces that could classify a large proportion of the materials with fewer descriptors.

�.� Why liquids?

Of all material classes liquids like water, yogurt andmolasses are especially interesting
because of their highlymutable shapes. Intrinsic properties (e.g. viscosity, density, surface
tension) and external forces (e.g. object interactions, gravity) cause liquids to adopt
a wide range of di�erent shapes depending on the context. Despite this we are very
well able to intuitively estimate properties of the liquids displayed in Figure �.�. The
physics behind liquids are extremely complex and it is safe to assume that we are not
estimating liquid properties, such as viscosity, by computing Navier-Stokes equations or
simulating molecular interactions (Bridson, ����). This large spectrum of possible liquid
appearances and the complexity of underlying physics poses a similar problem as with
material categorization. Next to large space of possible shapes there is a mixture of other
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informative cues that influence liquid estimates. Optical material properties, motion, and
interactions with the environment provide di�erent degrees of information. Therefore
liquids are interesting to study since wemust use some essential visual information that
allows us to navigate through this dense liquid space. The space to describe all possible
liquids has countless dimensions and some very e�icient reduction of information must
take place to be able to estimate properties accurately, and accurate we are (Kawabe
et al., ����; Paulun et al., ����; Van Assen and Fleming, ����; Van Assen et al., ����). It is a
di�erent yet complex feature space that can provide an alternative perspective on similar
problems that arrise with material categorization.

Figure �.�: Liquids simulated with di�erent viscosities and optical materials

�.�.� Optical cues

Optical cues provide information about the optical material appearance. The visual ap-
pearance of a surface depends on three factors, (�) surface reflectance properties, (�)
object geometry, (�) illumination conditions. These factors are o�en specified using the
bidirectional reflectance distribution function (BRDF, Nicodemus ����). Light can also
be transferred through the object medium in two di�erent ways, transparent materials
transport light without being scattered (e.g., water, gases, high grade glass) and with
translucent materials light scatters which results in faster absorption. Figure �.� shows the
schematic representation of these concepts. These type of materials require di�erent de-
scriptive functions such as BTDF (Bidirectional transmittance distribution function, Bartell
et al. ����) or BSSRDF (Bidirectional scattering-surface reflectance distribution function,
Jensen et al. ����).
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Opaque Transparent Translucent

Specular

Diffuse

Refraction
Scatter

Figure �.�: Di�erences between opaque, transparent and translucent materials

There is a large body of optical cue driven research. How we perceive andmisperceive
light (Koenderink et al., ����; Ostrovsky et al., ����; Pont and Koenderink, ����), shape
and surface textures (Landy and Graham, ����; Dong and Chantler, ����; Ho et al., ����;
Emrith et al., ����; Liu et al., ����), surface reflectance (Vangorp et al., ����; Wijntjes and
Pont, ����; Marlow et al., ����), more specifically gloss (Beck and Prazdny, ����; Nishida
and Shinya, ����; Fleming et al., ����; Motoyoshi et al., ����; Kim et al., ����; Van Assen
et al., ����, see Chadwick and Kentridge, ���� for a recent review), and colour (see Foster,
����, for a review). Most of this research is fixated on opaquematerials while transparent
(Fleminget al.,����; Faul andEkroll,����; Schlüter andFaul,����) and translucent (Fleming
et al., ����; Fleming and Bültho�, ����; Xiao et al., ����) liquid appearances are not
uncommon either. Above mentioned research has shown that despite making some
mistakes in general we are very good at estimating optical material properties. Especially
liquidswe encounter in awide range of optical appearanceswhere opaque (paint,mercury,
chocolate), transparent (water, high grade glass), and translucent materials (milk, honey,
gels) are not uncommon. This large range of optical cues could provide critical information
in properly estimating liquid properties.

�.�.� Mechanical cues

Another group of cues are especially informative about the mechanics of liquids. Both
shape andmotion provide information that can be descriptive of the complicated under-
lying physics.
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Shape cues

Shape can be very informative about the causal origins of an object which tells us more
about possible material properties (Biederman and Gerhardstein, ����; Gilchrist et al.,
����; Riesenhuber and Poggio, ����). Causal origins are constant across contexts, they
always manifest with similar characteristics, indepenent of scene. Shape perception
researchmainly concentrates on geometrical computations (e.g., curvatures, orientations,
symmetries). However identifying types of deformation in liquid shapes will tell more
about the behavior and characteristics of the liquid. It is unlikely that spraying droplets
occur with very viscous liquids or that runny liquids will heap up in a spiraling manner. We
caneasily identify these features such as spatter and spiraling and this provides restrictions
we use to navigate the perceptual space of liquids. To do so we need to have clear shape
representations, but to compute shape from images remains a challenging task (Binford,
����; Pentland, ����; Biederman, ����; Feldman et al., ����).

Perceiving curvature and geometries of a surface is the first step, but to be able to
estimate features as spiraling or elongation, local parts of that surface need to be grouped
or to be organized together. Perceptual organization (Palmer, ����; Wagemans et al., ����)
allows us to link di�erent locations on an object to form higher conceptual features (e.g.,
blobby, sharp, twisted). Multiple concepts can be assigned to di�erent parts of the object
on di�erent scales. The leg of a table can be twisted while the entire frame is very angular.

As mentioned before the perception of shape relies on the optical conditions such as
illumination and surface reflectance, but shape itself provides muchmore information
about the mechanics; how this shape came to be or likely will be (Nusseck et al., ����;
Battaglia et al., ����; Bates et al., ����). For us, to be able to identify local structures as
blobby or irregular, we gain much more detailed information about the objects’ origin.
Blobby shapes look blobby frommany di�erent angles and lighting conditions allowing
shape features to be amuchmore reliable source of information across changing contexts.
It even helps us to disentangle external forces such as gravity or gusts of wind. This is a very
powerful quality and enables us to generalize. Only a select few have experienced zero
gravity environments, yet we can still imagine how a spiraling liquid would look di�erently
in comparison with a more familiar scene in your kitchen.

Motion cues

Interesting is the contribution of motion cues because we are very well able to estimate
liquid properties with static stimuli (Van Assen and Fleming, ����). However, as with
other material categories di�erent types of cues contribute to achieve a more precise
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percept. We don’t needmotion to make estimates of viscosity, but it will add precision. In
some scenes motion alone is already very predictive of perceived viscosity (Kawabe et al.,
����), but there are contexts in which motion contributes less. Motion adds another rich
dimension to liquids that is especially descriptive of both intrinsic and extrinsic forces that
work on the liquid, e.g. viscous liquids move slowly. These forces manifest themselves as
shape changes over time.

Motion improves the accuracy of shape perception (Norman and Todd, ����; Caudek
and Domini, ����; Jain and Zaidi, ����). Doerschner et al. ����a showed that motion pat-
terns that are produced by specular reflections, such as highlights, are highly depended
on surface curvature. The specular reflections move quickly across areas with low curva-
ture and stick in areas with high curvature. Measuring the optic flow (measurement of
motion energy in sequential frames) demonstrates that shiny surfaces locally tend to have
motion going inmultiple directions at di�erent velocities. In contrast, matte surfaces show
muchmore homogeneous directions and velocities. This means that matte surfaces could
convey less visual motion than specular images when illumination and shape are constant
(Doerschner et al., ����b). Most liquids have highly specular surfaces but translucent
materials tend to obscure specular reflections because of the high amounts of scattering
that takes place (e.g., the di�erence between perceived glossiness of water andmilk). It
might be that in certain cases the optical material properties might actually influence the
magnitude with which motion is perceived.

�.� Theoretical frameworks

�.�.� Inverse optics

Inmaterial perception there aremultiple theoretical approaches that provide a framework
on howwe extract information from images and assing meaning, how we perceive. One of
these frameworks is an inverse optics approach (BarrowandTenenbaum, ����; Pizlo, ����).
Inverse optics suggests that our visual systemmodels the physics of our environment. It
simulates where the light source is and how light rays reflect of geometries. This would
suggest that everything we perceive is measurable in the real world and that the brain
should be able to invert physical process to achieve a successfulmodel of our environment.
A framework like this would explain our capabilities in perceiving gloss or color. The
problemwith this theory is that the visual information provided to our brain is insu�icient;
it is not able toprovideadequate informationofour surroundings. ChadwickandKentridge
����discusses this inmoredetail in the context of gloss perception. Inverse optics provides
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an in theory working framework, but it is unknown how the actual computations that
process the retinal image would look like.

Another question is how far we should take the theory of inverse optics. In the context
of liquids it is safe to assume that the complex physics is not reverse engineered by our
visual system to extract properties such as viscosity. Does this theory only concern the
physics of optics? What kind of systems are in play to estimate properties of deformable
materials? This raises another question: do we represent a property as viscosity as an
exact measure or is it a more associative concept, e.g. that liquid is as runny as water (with
which I have much experience).

�.�.� Natural statistics

Natural statistics provide a di�erent perspective on howwe perceive materials. It utilizes
statistical regularities, heuristics, of natural environments (e.g., light is coming from above,
vegetation grows towards light). These statistical regularities are all around us and this
reflects nicely in real-world illumination (Dror et al., ����). Fleming et al. ���� showed
that observers are better in estimating reflectance properties under natural illumination
than with artificial illumination. When a specific image property occurs regularly with
glossy surfaces and these regularities tend to appear across contexts as well, it becomes
diagnostic of glossy surfaces. One of these regularities is that images with positively
skewed luminance histograms are looking glossier (Motoyoshi et al., ����). This tends
to happen because of highlights which are o�en associated with glossy surfaces and
produce skewed luminance histograms. However, it is possible to create similar skewed
histograms by combinations of di�erent shapes, illumination and surface reflectance
properties. Therefore the image space in which we successfully can apply statistical
regularities becomesmore restricted (Anderson and Kim, ����; Olkkonen and Brainard,
����).

There are many regularities in the natural world we could utilize. The problemwith
natural statistics is that inmost cases it is not descriptive enough and toomany exceptions
or false positives occur.

�.�.� Naïve/intuitive physics

The physics behind liquids are complicated and therefore it is unlikely we use full physical
representations of liquids. However, this doesn’t mean that there are no physical com-
putations used at all. One approach is that we use simplified physics models; so called
naïve or intuitive physics models. These models have a trade-o� between accuracy and
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simplification of physical laws. Using simplified physics engines would enable us to use
mentalmodels that are able to simulatemechanical scenarios. Suchmentalmodelswould
explain our abilities in physical andmechanical reasoning (Hegarty, ����; Gentner and
Stevens, ����). For example a scene where a wooden block is balancing on the edge of
a table, wemight mentally assign mass, a centre of mass, include e�ects of gravity and
friction to predict if it will fall or not. Mental simulations like these would certainly explain
our unnatural Jenga and dodgeball dodging skills. There is a growing body of research that
plays with the idea of simplified intuitive physicsmodels wherewe are able to perform fast
mental simulations and make judgements based on probabilistic outcomes (Spelke, ����;
Nusseck et al., ����; Hespos et al., ����; Hespos and van Marle, ����; Battaglia et al., ����;
Bates et al., ����; Rips and Hespos, ����; Hamrick et al., ����). The comparison of running
���� fast but more inaccurate simulations and make decisions based on probabilities
or run one very accurate but computationally intensive simulation. Again the trade-o�
between accuracy and computational cost.

It is interesting to find out howmuch we actually rely on physics to be able to interact
with liquids in everyday tasks. We are able to visualize future states of liquids, how a
glass with water pours over, how a clump of honey will slowly ooze into a puddle; these
examples already speak to our imagination. To be able to visualize this strongly suggests
we are able to mentally simulate these scenarios. It is another source of information next
to optical andmechanical cues thatwe can utilize but it seems that predicting future states
is a less common higher-level process than estimating viscosity or sliminess.

�.�.� Visual processing hierarchy

The literature o�en refers to terms as low-, mid-, and high-level vision. Di�erent levels
suggest a hierarchy where in this case each level represents di�erent types of information
and processes. Low-level features are computed early in the visual processing hierarchy
and apply local computations such as spatial filtering and normalization. These filters rep-
resent image structures such as luminance edges and colour gradients and are descriptive
of the image. For example a filter being activated by edges under an angle of ��� degrees.

Mid-level features concentrate on pooling and grouping —perceptual organization—
it zooms out making concepts more complex addressing non-local regions. Mid-level
features are placed between image and object representations, representing concepts as
elongated and blobby or opacity and reflectance. These representations are build upon
local low-level activations which are grouped together in a systematic way. Mid-level
features are important for the representation of surfaces andmaterials (Adelson, ����;
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Anderson, ����; Marlow et al., ����; Paulun et al., ����; Fleming, ����). In the case of liquids
the mid-level feature space is descriptive of both optical andmechanical cues. This space
needs to be navigated to come to accurate materials estimates. Liquids as water or fruit
juice won’t clump together like maple syrup; by perceiving clumping we can discard a
large portion of possible material estimates. By a process of elimination the feature space
is reduced until an accurate estimation can bemade.

High-level features are in the last stages of visual processing. Here we move from
non-local regions to scene content. These concepts feature constancy across size, lighting,
viewpoint, and occlusions. This layer provides an interface between cognitive process,
language andmemory. These interactions are important for material categorization and
object recognition. Other examples are intuitive physics simulations which concern scene
interactions and are therefore most likely driven by high-level features.

A hierarchical system that starts with low-level filters insinuates information being
processed in a bottom-upmanner. Information flowing from low-level filters to high-level
scene descriptors. However, material estimations are driven by associations and priors
as well, which would require top-down input. These top-down feeds could help to steer
more e�iciently through feature spaces based on prior knowledge and associations. Of
this recurrence that propagates through this visual hierarchy little is understood. As the
domains in which we studymaterial perception become increasingly more complex we
will have to take both bottom-up and top-down information into account. With bottom-up
feeds we would need to separate e�ects of individual cues and top-down feeds would
require to limit the influence of prior knowledge. This is practically impossible with human
observers. For that reason neural networks have become very popular in vision research
since these networks represent very similar hierarchical stuctures. Then we have control
over the prior knowledge, the data it is trained on. This provides new insights on how
these processes are interacting and contributing to specific percepts.

�.� Overview

With this background it should have become clear what we stand to gain by studying the
perception of liquids. Liquids provide, because of their physical complexity, a challenging
case where we must navigate through a large high dimensional perceptual space. We
are able to do this and the following chapters will demonstrate to certain extend how.
Chapter � is specifically looking at the balance between optical andmechanical cues used
toperceive liquidproperties suchas sliminess and runniness. Chapter� is a shorter chapter
where we try to get a better sense how well and constant we actually are in estimating
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viscosity across contexts. Chapter � is the largest study where we deterimine if a reduced
feature space can explain viscosity constancy across contexts. Chapter � presents results
of an on ongoing study where a neural network is trained to perceive viscosity. Finally
chapter �will present the conclusions.

Study �: Influence of optical material appearance

In this study we specifically look at the contributions of optical cues while estimating a
range of liquid properties. Using the same liquid shapes but with di�erent optical ap-
pearances we studied which properties (e.g., sliminess, runniness) are to what extend
influenced by optical or mechanical cues. The semantic labels we assign to liquids are
studied as well to see howwe identify and name liquids.

Highlights:

• We are very good at perceiving viscosity

• Optical properties have very limited influence on shape- andmotion-based viscosity
judgements

• Both optical and mechanical cues separately influence the perception of liquid
properties

• Wemostly use optical cues to name and identify liquids

Study �: Viscosity constancy across contexts

Wecan encounter liquids inmany di�erent states and contexts. Herewe specifically look at
the constancy of viscosity perception despite radical changes in shape. How consistently
do we actually perceive shape?

Highlights:

• We are very good at matching viscosity

• Within scene viscosity constancy across noise pertubations is ��%

• Viscosity constancy across scene variations is ��%

• Global shape andmotion changes can’t explain viscosity constancy
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Study �: Visual features of liquids

We used the visual perception of flowing liquids to uncover the computations underlying
visual inferences about materials. By comparing observers’ viscosity ratings with per-
ceived shape features, we show how the brain exploits �D shape andmotion cues to infer
viscosity across contexts despite dramatic image changes.

Highlights:

• Observers are remarkably good at visually inferring the viscosity of flowing fluids

• They use multiple midlevel shape andmotion features to do so

• Four factors predict perceived viscosity constancy surprisingly well

• The features take wildly divergent stimuli and organize them by viscosity

Study �: Estimating viscosity with neural networks

Machine learning is an interesting field of research that hadmajor breakthroughs in recent
years because of convolutional neural networks. Here we trained a neural network to
perceive viscosity. The network is designed to mimic human performance while using
phyical viscosity labels for training. Performance is very good and we demonstrate that
this network exploits similar cues as the human observers.

Highlights:

• With this dataset particular observers find it hard to rate viscosity accurately

• In both static andmoving stimuli conditions the DNN explains human performance
very well

• The DNNsmake smaller error estimations to the humanmean than individual ob-
severs

• Optical flow can explain the increase in performance for the moving stimuli
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Influence of optical material properties

A similar version of this chapter has been published as:

van Assen, J. J. R., & Fleming, R. W. (����). Influence of optical material properties on the
perception of liquids. Journal of vision, ��(��), ��-��.

In everyday life we encounter a wide range of liquids (e.g., water, custard, tooth-
paste) with distinctive optical appearances and viscosities. Optical properties (e.g., colour,
translucency) are physically independent of viscosity, but, based on experience with real
liquids, wemay associate specific appearances (e.g. water, caramel) with certain viscosi-
ties. Conversely, the visual systemmay discount optical properties, enabling ‘viscosity
constancy’ based primarily on the liquid’s shape andmotion. We investigated whether
optical characteristics a�ect the perception of viscosity and other properties of liquids.
We simulated pouring liquids with viscosities ranging from water to molten glass and
rendered themwith nine di�erent optical characteristics. In Experiment �, observers (�)
adjusted a match stimulus until it had the same perceived viscosity as a test stimulus
with di�erent optical properties, and (�) rated six physical properties of the test stimuli
(runniness, shininess, sliminess, stickiness, warmth and wetness). We tested both moving
and static stimuli. In Experiment �, observers had to associate names with every liquid
in the stimulus set. We find that observers’ viscosity matches correlated strongly with
the true viscosities and that optical properties had almost no e�ect. However, some
ratings of liquid properties did show substantial interactions between viscosity and opti-
cal properties. Observers associate liquid names primarily with optical cues, although
somematerials are associated with a specific viscosity or combination of viscosity and
optics. These results suggest viscosity is inferred primarily from shape andmotion cues
but that optical characteristics influence recognition of specific liquids and inference of
other physical properties.



�� Influence of optical material properties

�.� Introduction

In everyday life we continuously interact with our environment and the objects and mate-
rials it contains. To be able to do this e�ectively we need to be able to recognize familiar
objects andmaterials, and infer their physical properties by sight. This is essential to our
survival: it allows us to avoid eating rotting food; breaking our ankle on a slippery curb; or
burning our hand on a hot pan. One highly challenging class of materials are liquids and
gels. It is quite impressive that under typical conditionswe can visually infer the properties
of liquids and interact with them e�ectively, despite their erratic nature and the large
influence that external forces hold over their shape and flow. We are very well able to
distinguish between water, toothpaste, caramel, shampoo, mercury, and numerous other
liquids, and can even infer properties such as runniness, sliminess and stickiness without
physically touching them. This is important as it allows us to determine their a�ordances
(i.e., whether it can be used for drinking, cleaning, gluing, etc.) and predict their likely
behaviour before interacting with them.

Here, we sought to investigate the role of specific visual cues in the perception of
liquids and their properties. In principle, there are several distinct sources of information
that observers could draw on to recognize liquids and infer their physical characteristics
by sight. Broadly, we can divide these into two classes: optical and mechanical. The
main purpose of this study was to determine the relative contributions—and interactions
between—these two broad classes of information. Some studies approachmaterial per-
ception by asking how the visual system estimates a single physical property of materials
(e.g., glossiness, elasticity), and seeking specific visual cues to that property. In this study,
by contrast, we look at a wide range of liquid properties to identify whether there are any
stimulus or task conditions in which optical and mechanical cues interact to a�ect the
perception of liquids.

A liquid’s optical material appearance can tells us many things about the liquid. For
example, water is colourless and transparent, while milk is translucent; caramel and
chocolate-sauce have distinctive colours, whereas molten solder is lustrous. Because
specific optical characteristics are associated with particular liquids, we could use the
optical appearance—or low-level image correlates—to narrow down the range of expected
behaviors of the liquid. In addition to the large literature on the perception of surface
colour (see Foster, ����, for a review), a growing body of research has investigated the
estimation of optical properties such as gloss (Beck and Prazdny, ����; Nishida and Shinya,
����; Fleming et al., ����; Motoyoshi et al., ����; Ho et al., ����; Kim et al., ����, see
Chadwick and Kentridge, ���� for a recent review), translucency (Fleming et al., ����;
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Fleming and Bültho�, ����; Xiao et al., ����), transparency (Fleming et al., ����; Faul and
Ekroll, ����; Schlüter and Faul, ����) and surface texture (Landy and Graham, ����; Dong
and Chantler, ����; Emrith et al., ����; Liu et al., ����). These findings suggest that human
observers are generally very good at inferring optical material properties under a wide
range of conditions, and thus it is plausible that observers could base judgments about
liquids on such cues.

In contrast, it is themechanical properties of liquids that determine theway theymove
and adopt particular shapes in response to external forces. Probably the most important
mechanical parameter distinguishing di�erent liquids and gels is viscosity. For example,
water is very runny and therefore prone to splash and spread out in puddles, whereas,
toothpaste is thick and therefore tends to pile up into clumps when poured. Thus, the
visual system could use the distinctive shape andmotion caused by di�erent viscosities
to recognize liquids and predict their behaviours. Previous research has shown that we
can infer viscosity both from shape (Paulun et al., ����) andmotion cues (Kawabe et al.,
����). Thus, again, it is plausible that human judgments about liquids could rely on their
mechanical properties.

In this study we sought to determine the relative contributions of optical andmechani-
cal cues to the perception of liquids and their properties. We ask the following questions:
Do observers recognize specific liquids based primarily on optical properties—like colour,
gloss or translucency—or is viscosity also important for determining a liquid’s identity?
Are judgments of viscosity biased by a liquid’s optical properties? What about the per-
ception of other properties—like temperature, or stickiness—which cannot be so easily
inferred from the motion or shape of the liquid? Such properties are potentially extremely
important for determining the a�ordances of materials, but little is known about whether
participants can infer them through visual information.

A given material can change both its optical and mechanical properties depending on
the prevailing conditions: for example the sugar concentration or temperature of syrup
a�ects its viscosity, while small concentrations of dirt can make water cloudy without
a�ecting the way it flows or splashes. Thus, both sources of information are imperfect
cues to material identity. While it is commonly argued that shape dominates other cues
in object recognition (Biederman, ����; Landau et al., ����), liquids are highly mutable,
so it is plausible that colour and other optical characteristics might bemore diagnostic
than shape. At the same time, if shape andmotion can be computed accurately across
a wide range of di�erent optical conditions (Todd et al., ����; Todd, ����; Nefs et al.,
����; Khang et al., ����; Vangorp et al., ����; Doerschner et al., ����; Dövencioğlu et al.,
����), then viscosity could be estimated in a way that is una�ected by the surface material
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appearance, enabling ‘viscosity constancy’. Thus, there are grounds for believing that
optical andmechanical properties may contribute to di�erent extents depending on the
specific judgments that observers are asked tomake: whether it is estimating viscosity;
rating other properties of liquids; or identifying (e.g., naming) specific materials, like paint,
toothpaste or molasses. To test the contributions of optical andmechanical properties
in the perception of liquids and their properties, we therefore asked participants to per-
form three tasks: (�) viscosity matching; (�) subjective rating of liquid properties and (�)
identifying which liquids correspond to verbal labels.

For these experiments we used physically-based computer simulations of a wide
range of liquids. The viscosities ranged fromwater to molten glass in six approximately
perceptually uniform steps (established in an unpublished pilot experiment with the same
stimuli using maximum likelihood di�erence scaling). Each liquid was rendered with nine
di�erent optical characteristics. Although the computer simulations are not absolutely
perfect (careful observation reveals a few visible artifacts) they are accurate enough to
elicit vivid and compelling impressions of distinct liquids, and were computed at higher
resolutions than used in previous studies on the perception of liquids (Paulun et al., ����;
Kawabe et al., ����). Moreover, only by using computer simulations is it possible to vary
mechanical and optical properties independently in a parametric and perfectly controlled
way. Only computer graphics allows us to render identical �D shapes with di�erent optical
properties, enabling us to perfectly isolate the relative contributions of the two classes of
cue.

In the experiments observers were asked to adjust the viscosity of a match stimulus
along a high-resolution viscosity scale (�� steps) until it appeared to have the same physi-
cal properties as a test stimulus that had di�erent optical properties, in an asymmetric
matching task. Observers also rated six di�erent properties of the test stimuli, (runniness,
shininess, sliminess, stickiness, warmth and wetness). These two tasks were performed
with both static and animated stimuli. Finally observers participated in a liquid naming
experiment to see how optical or mechanical properties interact to determine the identity
of familiar liquids such as chocolate sauce, mouthwash or milk.

�.� Methods

In the first experiment observers were asked to perform two tasks on each trial: an asym-
metric viscosity-matching task, followed by a liquid property-rating task. Thematching
task showed a test stimuluswith a specific viscosity and optical appearance, and observers
could scroll through a standard set of liquids with fixed optical appearance, but finely vary-
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ing viscosities, to select another stimulus that had the same apparent viscosity as the test.
The test andmatch stimuli were sampled from di�erent points in time in the animation
sequence to encourage observers to base their responses on an internal representation of
the physical properties of the liquid, rather than simply by identifying the stimulus with
identical shape. Following the matching task, participants were asked to perform a series
of ratings in which the same test stimulus was presented together with rating sliders for
six di�erent liquid properties: runniness, shininess, sliminess, stickiness, warmth and
wetness.

Across participants, we varied (�) whether the stimuli were single static frames or �-sec
animation sequences and (�) whether the test ormatch stimuli were taken from the earlier
time point.

In a second set of experiments wemeasured how participants assigned names to the
stimuli based on their mechanical and optical properties. First, one group of observers
were presented with all �� stimuli (� viscosities⇥ � optical appearances) and were asked
to provide names for each material. Then, a second group of subjects filtered the word list
to select the most descriptive and plausible liquid names corresponding to the stimuli.
Finally, a third group of participants were provided with each name in the list and were
asked to identify all of the stimuli from the �⇥ � array that fitted the description. The
observers were allowed to select multiple liquids, allowing us to measure the extent to
which each verbal term designated amechanical or optical appearance (or both).

�.�.� Stimuli

All stimuli used in this study can be downloaded here:
http://doi.org/��.����/zenodo.������

Simulation

The stimuli were generated using RealFlow ���� (V. �.�.�.����; NextLimit Technologies,
Madrid, Spain). This so�ware enabled us to simulate and render liquids up to the stan-
dards used by the visual FX industry. We used the “Hybrido” particle solver, which makes
it possible to specify the dynamic viscosity of the liquids in real physical units (Pa·s). Hy-
brido is a FLIP (Fluid-Implicit Particle) solver using a hybrid grid and particle technique to
compute a numerical solution to the Navier-Stokes equations describing viscous fluid flow.
All information for the fluid simulation is carried by discrete particles, but the solution to
the equations is carried out on a grid. Once the grid solve is complete, the particles gather
the information required from the grid tomove forward in time to the next frame. The fluid

http://doi.org/10.5281/zenodo.154570
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boundary is then derived from the position of the particles by a meshing algorithm (when
visible artifacts occur, it is primarily due this step of the algorithm, not the underlying
physics solver). For the match stimuli, a set of �� di�erent viscosities was simulated with
logarithmically evenly placed steps from �.��� Pa·s to ��� Pa·s (roughly corresponding
to a range fromwater to molten glass in approximately perceptually uniform steps). The
following equation can calculate the step number back to viscosity:

µ = b · (10
d

s�1 )n�1 (�.�)

Where µ is the viscosity in Pa·s, b the starting value of the scale, in our case �.���, d the
range of the scale in decades, in our case � (��-� to ���), s the amount of steps of the scale
(��), and n the step number of which we want to calculate the viscosity. Liquid density
was held constant at one kilogram per liter. The number of particles used varied between
� and �.�million particles depending on the viscosity, the only changing parameter in the
simulation.

The simulated scene (see Figure �.�) consisted of am� planewith a shallowwall around
its perimeter and an irregularly shaped solid object (height = ��.� cm, diameter = �� cm)
that was rigidly attached to the centre of the plane. The liquid emerged from an ‘emitter’,
located approximately �� cm above the object (outside the frame of view). Gravity was the
only external force acting on the liquid, which had no initial velocity on emerging from the
emitter. The orifice of the emitter had a rounded cross shape, yielding distinctive ridges in
the shape of the liquid, whose durability and distinctness varied with viscosity.

The simulated animations had a total duration of ten seconds (��� frames at ��fps).
For the experiments using static stimuli, the test andmatch images consisted of frames
�� and ��� from the animation (i.e. a �-second time di�erence) in the first condition, and

Figure �.�: The dimensions of the simulated scene.
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��� and �� in the second condition. The duration of the moving stimuli was one second:
frames ��-��� or frames ���-���.

For the target stimuli, six di�erent viscosities were selected which were evenly spaced
on the existing ��-step scale. In this case steps ��, ��, ��, ��, ��, �� corresponding to
dynamic viscosity values of �.���, �.���, �.���, �.��, �.��, ��.� Pa·s. Figure �.� shows an
overview of the static test stimuli. Video A.� shows the full ten second animations of the
six di�erent viscosities with the same optical material.

Rendering

The renderengineused togenerate the final image frameswasMaxwell (V.�.�.�.�; NextLimit
Technologies, Madrid, Spain). Nine di�erent optical materials were developed with di-
verse appearances, varying in their opaque, transparent and translucent properties. The
match stimulus set (consisting of �� viscosities) was rendered with a translucent ‘green
goo’ appearance. The test stimuli consisted of approximations of the following materials:
caramel, metallic car paint, chocolate, copper, amatte bluematerial, milk, water andwine.
These materials were selected to represent a wide range of di�erent appearances that
we could encounter in liquid form, including both common (e.g. colourless transparent)
and unusual (e.g. matte blue) appearances. Video A.� shows a loop of the one-second
animations used during the experiment. It shows the nine di�erent optical materials with
the same viscosity.

The images were rendered at an ���⇥ ��� resolution and the scene was lighted using
an HDR light probe depicting a beach scene (from the Maxwell Resource Library by Dosch
Design).

�.�.� Observers

Matching and rating tasks

�� observers took part in the first experiment with static and animated stimuli and the
two temporal orderings of test and match (i.e., four groups, with twelve observers per
condition). The average observer age was ��.� (SD = �.��). �� observers were female and
��male.

Naming experiments

�� German speakers participated in the three experiments to match names with liquids.
Ten observers took part in the free-naming (‘brainstorming’) session with static stimuli,
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Figure �.�: (A) An example trial with the physically correct match stimulus. (B) Another trial with inverted
time points. (C) An overview of static stimuli with the nine di�erent optical materials in the x-axis and the
six di�erent viscosities on the y-axis. The optical materials are approximations of the followingmaterials:
green goo, caramel, metallic car paint, chocolate, copper, a matte blue material, milk, water, wine.
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and a further ten observers with animated stimuli. Six other observers took part in the
‘filtering’ session to select a sub-set of terms from the brainstorming sessions. Finally,
�� observers participated in the main experiment, in which participants identified which
stimuli corresponded to each verbal item. The average age was ��.� (SD = �.��), ��were
female and ��male.

All observers gave written consent prior to the experiment and were paid for partici-
pating. All observers reported having normal or corrected-to-normal vision.

�.�.� Procedure

Matching and rating tasks

All experiments were performed in accordance with the declaration of Helsinki, and prior
approval was obtained from the local ethics committee of the University of Giessen. The
experiments were performed on an Apple Mac Mini with a Dell U����M ��-inchmonitor
using factory default settings, gamma of �.� and a resolution of ���� x ���� pixels. Matlab
����a (v. �.�.�.������) and the Psychtoolbox library (v. �.�.��; Brainard, ����; Pelli, ����)
were used to run the experiment, although Psychtoolbox was upgraded to (v. �.�.��) over
the period when di�erent observers participated.

Observers completed a short training session before starting the experiment. This
consisted of a single trial to familiarize the participant with the interface for the matching
and rating tasks and to ensure that the concepts on the six rating scales (liquidness,
shininess, sliminess, stickiness, temperature and wetness) were clearly understood. Each
trial consisted of the matching task followed by all six ratings for a given test stimulus. For
the viscosity-matching task, the test stimulus was presented on the le� hand side of the
screen, and thematch stimulus was presented simultaneously on the right hand side of
the screen. Observers had to scroll through the viscosities of the match stimulus, with the
le� and right arrow key on the keyboard. A ‘page turning’ animation occurred with every
button press, revealing the newmatch stimulus, to avoid apparent motion between the
di�erent stimuli. Once thematch stimulus on the right appeared to have the samephysical
properties as the target stimulus on the le�, the observer could confirm by pressing the
‘space’ bar to proceed to the rating task for the same target stimulus. Here, the observer
had to indicate their subjective rating for each of the six properties by using the mouse to
move the randomly placed dots along the continuous rating bars (with seven tick marks).
When the observer interacted with the dot on the rating bar, the dot would turn green.
When all six dots were green the observer could continue with the next trial by pressing
‘space’. The observer had to complete a total of ��� trials (� blocks, each consisting of �
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materials⇥ � viscosities in random order). There were no time limits, and the experiment
took observers �� to ��minutes to finish.

Naming experiments

For the naming experiments the same Apple MacMini was usedwith the sameDell U����M
monitor as in the other experiments. The ‘brainstorming’ experiment also used Matlab
and the Psychtoolbox library. On each trial, one of the �� test stimuli (� optical materials
⇥ � viscosities) was presented and observers were instructed to “name the liquid you see
in the image”. There were four empty lines where observers could enter names for the
liquids. Only one response per stimulus was required, although subjects were encouraged
to provide multiple verbal terms if they applied. The brainstorming session resulted in
a combined word list of ���� entries, ���� for the static stimuli and ��� for the moving
stimuli. Fromthis list, tennames for each stimuluswere selected, removingmanyduplicate
and less descriptive entries. The resulting list of ��� words was used for the ‘filtering’
experiment.

Di�erent so�ware was used for the ‘filtering’ and ‘namematching’ experiments be-
cause of better interfacing possibilities. In this case a Flask (v �.��.�) based framework
was used compiled with Python �.�.�. The front end was written using HTML� technology
displayed in Safari (v. �.�.�). These browser-based experiments were displayed in ‘presen-
tation mode’ and therefore showed no interface of the browser itself. On each trial in the
filtering experiment, an animated liquid stimulus was presented along with a randomized
list of ten names generated for that stimulus in the previous brainstorming session, �� lists
in total. Observers were asked to order the three most appropriate and descriptive names
to the top of the list. This top three was weighted accordingly (� points �st choice, � points
�nd choice and � point �rd choice) during the selection process. All scores above ��%of
the highest score were selected from the list. This means that if there was a close second
both words were selected, which happened eleven out of �� times. Duplicate answers
were filtered out, resulting in ��words for the main namematching experiment.

The namematching experiment used the same Flask and browser based presentation
system as the filtering experiment. A new set of observers performed the task. On each
trial, they were presented with a liquid name and a �⇥ � grid containing static thumbnails
of all stimuli. The viscosities were ordered vertically and the optical materials horizontally.
When the observer dragged the mouse over a stimulus in the stimuli grid, a full-size
animation for the corresponding stimulus would appear. If the observer thought that a
given stimulus corresponded to the verbal item for the current trial, they could select it
with a simple checkbox (subsequent unchecking was also possible but was rarely used in
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practice). Multiple stimuli could be selected for each name (i.e., each trial) but only one
answer was required. Finally the observers were asked to give a confidence rating for their
response before continuing to the next trial. This experiment had �� trials in which the
names from the list were linked to the �� di�erent stimuli. There was no requirement for
all of the stimuli to receive a name.

All experiments were performed in German and have been translated to English for
presentation here.

�.� Results

Raw data from all experiments can be downloaded here:
http://doi.org/��.����/zenodo.������
For each of the matching and rating tasks, we tested four di�erent versions: the static and
animated stimuli with the test stimulus from an earlier or later time point in the animation
sequence than the match. (see Methods for details.)

�.�.� Viscosity-matching task

Figure �.� shows the results from the viscosity-matching task for the four di�erent condi-
tions. The first notable observation is that observers are generally very good at matching
viscosity: for all opticalmaterials, thematching function is approximately linear with slope
close to one. A linear regression can explain the data extremely well with a slope close to
one for static stimuli: with the match from later than the test � = �.��, R� = �.��, p < �.���
and for the reversed time points � = �.��, R� = �.��, p < �.���. Especially for the moving
stimuli, observers matched the liquids close to perfectly for the entire tested viscosity
range � = �.���, R� = �.��, p < �.��� and for the reversed time points � = �.��, R� = �.��, p <
�.���.

There is however, a systematic additive bias in the responses, which is most pro-
nounced for the static stimuli. For the non-reversed condition (i.e. match stimulus from a
later time point in the animation than the test stimulus) stimuli there is a slight overestima-
tion of viscosity. In other words, the liquids were perceived as having the same viscosity
when the match stimulus was thicker than the test stimulus. This presumably reflects
an imperfect compensation for the time o�set between test and match, rather than a
systematic overestimation of viscosity. This interpretation is supported by the observation
that when the time points for test andmatch are swapped (i.e., test stimulus from a later
time point than the match stimulus) the bias inverts. Evidently, in the absence of strong

http://doi.org/10.5281/zenodo.154570
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visual cues to indicate the precise point in time, it is di�icult for observers to compensate
for the di�erence in time point between test andmatch. Put di�erently, when asked to
match viscosity in this task, there is a bias towards selecting similar shapes. This tends to
lead to errors because the shape of runnier liquids evolves more rapidly than for thicker
liquids. Thus, the shape adopted by a given material at a particular point in time is o�en
somewhat better approximated by a runnier fluid at an earlier point in time or a thicker
fluid at a later point in time.

To test more rigorously the hypothesis that participants simply selected the most
similar shape, we (i) ran a control experiment and (ii) developed a simple image similarity
metric based on the Euclidean distance. The control experiment was exactly the same as
the asymmetric matching task in the main experiment, except that instead of matching
viscosity twelve new observers were instructed to match shape. The match was only
performedwith static stimuli and all stimuli were of the green goomaterial. The Euclidean
similarity matric used grayscale versions of the match and test stimuli with the same
optical material, which were subtracted from each other. The mean pixel value of the
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resulting image is compared with other match/test stimuli combinations where the lowest
mean value is the best Euclidean match. This allows us to derive a predicted match for
each test stimulus, by identifying which of all thematch images has the smallest Euclidean
error (di�erence) to each test image. Figure �.� plots these predictions in comparison
with observers’ data for the static stimuli. Both results further support the interpretation
that the additive bias is due to observers tending to match shape, while only partially
compensating for di�erences in time point. The Euclidean predictions for runny liquids
diverge more because of faster evolving shapes resulting in bigger di�erences between
the two time points. Observers seem to partially compensate for this by not picking the
most similar shape (in Euclidean terms). The hypothesis is further supported by the shape
matches made in the control experiment. Performance was practically identical when
observers were asked to match based on shape rather than viscosity, suggesting that
viscosity judgements are very similar to shape similarity judgements. Our interpretation
of this finding is that it is not very helpful to think of ‘viscosity perception’ as a fixed
process of creating a single, unified internal estimate of the physical parameter of the
liquid, which can then be accessed psychophysically. Instead, depending on the specific
task (e.g. matching viscosity, rating runniness) and stimulus context (i.e. other stimuli
in the experiment), participants latch onto di�erent cues in a highly flexible way (here
focussing mainly on shape similarity between test andmatch stimuli).
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Returning to the results of the main experiment, another notable aspect is the neg-
ligible di�erences between the nine optical materials, especially for the moving stimuli.
This is confirmed by the linear regression analysis performed earlier where linear models
based on viscosity explain ��-��% of the variance for the static stimuli. This means that at
most �-�%of the variance can be accounted for by the optical material di�erences and
noise. With moving stimuli this is even down to �%. Thus, optical material appearance
barely influences viscosity judgments, i.e., observers have very good viscosity invariance
across changes in optical appearance, at least when reliable motion and/or shape cues
are present.

�.�.� Rating liquid properties

Observers were asked to rate runniness, shininess, sliminess, stickiness, wetness and
warmth. Figure �.� shows the scores observers gave for each material at the six di�erent
test viscosities. To save space only graphs from themoving stimuli variation are shown.
The graphs for the other variations, which are broadly similar, can be found in the appendix.

There is a clear di�erence between properties that are drivenmainly by mechanical
cues (i.e., cues based on shape andmotion), and optical cues, based on optical material
appearance. As expected, runniness is clearly scored primarily on the viscosity of the
stimulus and optical material appearance has almost no e�ect. A linear model based on
the viscosity explains ��%of the variance leaving �%unexplained by the optical material
appearance and noise.

Conversely, shininess is driven primarily by optical cues. As expected, the matte blue
material is seen as the least shiny, and the lustrous copper-metal as the most shiny. There
is almost no e�ect of viscosity on perceived shininess: most materials have a certain
shininess independent of their viscosity, as indicated by the flat curves. The only exception
seems to be the milk-like material. We believe this e�ect is caused by the high degree of
subsurface scattering for this material. When the material’s shape is thin, there is little
scattering, so the body colour appears darker, and the specular reflections have higher
contrast. By contrast, when the material has more volume, scattering makes the body
colour whiter, reducing the contrast of highlights (Pellacini et al., ����). From the third
viscosity step on we see a notable decline in perceived shininess, shown at point ‘A’ of
Figure �.�. From this viscosity on, the material gathers into thicker, more voluminous
clumps, creating a more di�use, matte appearance. Thus the interaction is probably not
due to the perceived viscosity per se, but rather simply due to the shape.
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Sliminess is a property that depends on both mechanical and optical cues. There
are certain optical materials like green goo that appear slimier than others. At the same
time, there is also a certain (intermediate) viscosity range that observers associate with
sliminess. It is interesting to see that there appears to be little interaction between optical
andmechanical cues. The di�erent materials are shi�ed from each other vertically, but
follow roughly the same curve.

Stickiness is mainly driven by optical cues. For example the matte blue material does
not look sticky at all while a wine-like materials appears to be stickiest.

Wetness decreases with increasing viscosity. The matte blue material appears sub-
stantially less wet than all other materials. This is consistent with previous findings that
specularity is associated with wetness (Sawayama and Nishida, ����).

Somewhat surprisingly, thewarmth ratings donot showa substantial e�ect of viscosity.
Onemight expect a runnymetal or chocolate colouredmaterial to appear warmer than
amore viscous variant. The instructions clearly stated that participants should rate the
expected temperature, as it would feel were the participant to put their finger in the
liquid. However, participants did not seem to consider runniness as a cue to increasing
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temperature. It is possible that a forced choice paradigm might reveal a tendency to
associate runnier liquids with higher temperatures, but if present, the association is not
strong enough to show up in this experiment. Another notable result is that there is a clear
bimodal distribution of warm and cold materials. This appears to be influenced by the
‘warmth’ of the colour of the liquid, where red, brown and orange materials are warm and
green, blue and transparentmaterials are cold. It is unclear whether this was simply a tacit
association, or whether participants deliberately chose to base their warmth judgments
on colour, despite the explicit instructions to attend to the expected temperature.

�.�.� Model

As noted, most di�erences amongst the nine optical materials appear to be shi�s in scores
on the y-axis. This suggests that although both optical andmechanical cues contribute to
theperceivedproperties of liquids, the interactionsbetween the twoclasses of information
are generally relatively weak. We quantified this observation by fitting models to each of
the nine materials for the six liquid properties shown in Figure �.�. For each of the rated
properties, we took the mean of all optical materials and fitted a linear and quadratic
model to this. The best AIC score of the mean-based model defines the type of model
for the individual materials. AIC or Akaike information criterion is a statistical model fit
measure based on the likelihood function and number of predictors. To test the hypothesis
that most of the data can be explained by only shi�ing a fitted model on the y-axis, we
took the slope of the mean-basedmodel and fit only the intercept (‘Fixed slopemodel’).
This we compared with a fit where each material had an independently fitted slope (‘Free
slope model’). The results of the average AIC values from the nine di�erent materials
are shown in Figure �.�. A lower value means a better fit of the model to the original
data. Since AIC weighs in the complexity of the model and our fixed slope models are
less complex we can see if a decrease in complexity compensates for the decrease in
goodness of fit. In the cases where the orange bar is shorter in Figure �.� our fixed slope
model outperformed the free slope model. This means that in these cases, the model
without interaction betweenoptical andmechanical cues explains the data better. Another
measure, AICc, or the second-order corrected Aikaike information criterion assigns greater
penalty for extra model parameters and is mostly applied in cases when the sample size
(n) is small compared to the number of parameters (k) where n/k < �� (Burnham, ����),
which holds in this case. In all six cases AICc prefers our fixed slope model. Overall, based
on these results, it is safe to say that interactions between optical andmechanical cues
are relatively limited. Shininess, with the outlier at point A of Figure �.� seems to be the
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reason why our fixed slopemodel doesn’t performwell where in the other negative two
cases the di�erences between the twomodels are much smaller.

�.�.� PCA analysis

Another way of representing the rating data, to gain insights into the relative contributions
of mechanical and optical cues, is using a principal component analysis. Each stimulus
can be represented as a point in a �D feature space, where each feature represents one of
the six subjective rating scales. PCA allows us to summarize the relationships between
the di�erent stimuli as well as the relationships between the di�erent liquid properties.
Figure �.� plots the data from the experiment with moving stimuli with standard time
ordering, in the space spanned by the first two principle components.

Caution is required in interpreting theseplots as thedi�erent ratings arenot necessarily
measured on a consistent scale. Although participantswere asked to rate each property on
a �–�� range, they may have used very di�erent internal scales for mapping the perceived
di�erences between di�erent liquids onto each scale. Thus, for example, a step of �.�
on the Runniness scale is not commensurable with a step of �.� on the Warmth scale.
This means that we cannot draw strong conclusions about the metric distances between
di�erent samples in the PCA space. Nevertheless, it is interesting to observe the orderly
arrangement of the samples in the feature-space, which are systematically organized by
both optical andmechanical properties.

The di�erent dimensions plotted in Figure �.�A reveal that runniness and shininess are
approximately perpendicular to each other. As noted above, runniness is mainly driven by
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mechanical cues (viscosity), and shininess mainly by optical cues (material appearance).
That runniness and shininess are perpendicular to one another in the PCA space, confirms
that we tend to separate optical andmechanical cues when judging liquid properties. In
Figure �.�A, the di�erent opticalmaterials are systematically organized along the shininess
axis where Figure �.�B shows that the di�erent viscosities clearly follow the runniness axis.
It is also notable that for the range of viscosities and optical appearances we used here,
and for the particular set of liquid properties we asked participants to rate, optical and
mechanical cues play approximately equal roles. The spread of samples in terms of their
optical properties is roughly the same as the spread in terms of the viscosities (although
we cannot directly compare magnitudes across features, it is nevertheless interesting that
across all features there is a roughly even spread of influence of optical andmechanical
properties).

�.�.� Naming experiment

Figure �.� shows the results of the name-matching task in which observers were asked to
select one or more stimuli for each of the �� di�erent liquid names that were generated in
the ‘brainstorming’ and ‘filtering’ experiments.

For every participant and for each verbal item, we have a complete �⇥ � binary array
indicating whether the corresponding image was deemed to match the verbal item, along
with a scalar confidence rating. Pooling across subjects gives us an integer array per
verbal item, containing the number of votes each stimulus received across observers
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(Figure �.�B). For display purposes, we can reorder the array into a ��-vector for each
verbal item. Example response vectors for a several liquid names are shown in Figure �.�A
(a complete list is presented in the appendix).

For most stimuli, the participants’ responses were sparse: in other words, each name
corresponded to only a small subset of the �� candidate images (mean = �.� items, SD
= �.�). Moreover, there was a high degree of consistency between participants in the set
of stimuli that were selected for each name. This can bemeasured by the kurtosis of the
distribution of responses over all possible words and stimuli, where sixteen votes is the
maximum score (i.e. one vote per participant). The kurtosis is ��.��making the distribution
highly leptokurtic meaning that in many cases multiple participants matched a stimulus
with a word or none did (Figure �.�C). If it is sixteen it means that for one word all sixteen
observers chose a specific stimulus, which happened two times. Participants were very
confident matching stimuli to words with an average confidence interval of �.� on a �-��
scale. Together these findings suggest that observers associate liquid names with specific
appearances, and thus that visual appearance is quite diagnostic of liquid identity for a
wide range of common liquids.

To gain amore thorough insight into the extent towhich liquid identities are associated
with specific ranges of optical andmechanical properties, we computed two indices to
measure how selective participantswere in terms of the optical andmechanical properties
of the stimuli they chose. We define the ‘optical focus’ of the responses as the extent to
which the responses to a given verbal item were restricted to a particular optical material,
specifically, the kurtosis of the sum votes for each optical material. Analogously, we define
the ‘mechanical focus’ as the extent to which the responses to a given itemwere restricted
to a particular range of viscosity values, specifically the kurtosis of the sum votes for each
viscosity (Figure �.�B). Note that these two quantities are independent and not mutually
exclusive, so that an item could have a low degree of focus for both properties (indicating
that the verbal term is not very specific, e.g. ‘liquified dough’); a high focus for oneproperty
but not the other (indicating that it specifies a particular optical appearance, but not a
specific viscosity, or vice versa, e.g. ‘chocolate pudding’ or ‘gum’); or a high focus for
both properties (indicating that the name specifies a particular combination of optical
appearance and viscosity, e.g., ‘grape juice’). In Figure �.�A, example items with low focus
are coloured grey, items with high optical focus only are indicated in blue, items with high
mechanical focus only are indicated in red, and items with high focus for both optical and
mechanical properties are indicated in green. Note, that due to the reordering of the array
into a vector, periodic responses every nine steps indicate that observers selected based
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on the optical material (i.e., high optical focus), and an adjacent sequence of nine high
values indicates that observers selected based on viscosity (i.e., high mechanical focus).
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more noisy names. (B) Raw data of the ‘Molten gold’ word. Six rows for six viscosities and nine columns for
nine materials. The kurtosis of the sum of each row and column is used to calculate the optical focus (blue)
andmechanical focus (red). (C) The distribution of votes per stimulus per trial with a maximum of sixteen
votes for the sixteen participants. (D) The optical andmechanical focus for each word plotted in a single �D
space. The red area has high mechanical focus, the green area both high mechanical and optical focus, the
blue area high optical focus. The intensity of the dots represents the confidence interval given by observers.

These ‘focus’ indices allow us to summarize the relative importance of optical and
mechanical properties for all �� liquid names in a single �D space, as shown in Figure �.�D
(a complete overview is presented in the appendix). The x-axis shows optical focus and the
y-axis mechanical focus. The intensity of the name dots represents the mean confidence
ratings observers gave for each item. Note that items with lower focus values also tended
to receive lower confidence ratings. Thus, it could be that items with low focus values
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could simply be liquids for which none of the images corresponded well to the name.
Thus, we should be cautious about concluding that some liquid names do not specify very
precise appearances: it could simply be that the stimulus set did not contain appropriate
images.

Most names are associated primarily with the liquid’s optical appearance, as indicated
by the blue region. Only four of the �� names were associated with one specific viscosity
but no specific optical appearance (red region). There are a few liquid names that specify
a particular combination of optical andmechanical properties e.g. water that needs to
be both runny and transparent. These results suggest that although we are very well
able to perceive di�erent viscosities, optical material appearance seems to be more a
more distinctive feature than viscosity, and is therefore assignedmore linguistic value by
observers. Alternatively, it could be that a given class of liquid is generally prone to vary
more in viscosity than in optical appearance, relative to the range of values that we used
(e.g., “chocolate sauce” comes in lots of di�erent thicknesses, but they are all brown).

�.� Discussion

There are at least two routes by which optical properties could a�ect the perception
of liquids: (�) via learned associations, or (�) by aiding (or hindering) the perception of
shape andmotion cues that are the basis for estimates of liquid properties. The former is
specific to liquid perception, while the latter reflects general processes of mid-level vision.
Our findings suggest that the extent to which observers rely on optical or mechanical
information about liquids and their properties depends on the context and task. When
asked to make visual matches of viscosity, shape andmotion cues dominate, and optical
material appearance barely influences perceived viscosity. This suggests that both learned
associations and e�ects of shading on shape and motion estimates only weakly a�ect
viscosity matches, at least whenmotion and shape cues to viscosity are strong. Although
it is surely possible to find combinations of lighting and reflectance that do adversely
a�ect shape and motion cues to viscosity (as occurred to some extent with the ‘milk’
material in Experiment �), under typical viewing conditions, shape andmotion processing
is robust enough to derive viscosity-diagnostic information from the richly structured
patterns that pouring liquids generate on the retina. In contrast to the viscosity-matching
task, the rating task showed that subjective ratings of di�erent liquid properties are based
on mechanical cues, optical cues or a combination of both, depending on the specific
property. Moreover, the pattern of responses suggests that processing of mechanical and
optical cues is independent because of very limited interactions between the two: most
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rating patterns could be well explained by a simple linear combination of the two kinds of
information. The liquid naming experiment suggests that in most cases, we tend to assign
names to liquids basedmainly on their optical material appearance. This could mean that
the optical material appearance is more diagnostic of the liquid (or more invariant) than
its mechanical properties, at least for the range of appearances that we considered.

The finding that optical properties have only a weak e�ect on viscosity judgments
makes intuitive sense because the physical processes determining viscosity are indepen-
dent of those that a�ect the way the fluid scatters, reflects and absorbs light. In principle,
any given optical appearance could co-occur with any possible viscosity and therefore op-
tical characteristics do not provide a direct visual cue to viscosity. However, we reasoned
that if a specific liquid with familiar viscosity properties is identified (via optical cues),
this could bias or interact with viscosity estimates. Our findings suggest, however, that
if this occurs, it is to a very small extent, at least when strongmotion and/or shape cues
to viscosity are present. Especially with moving stimuli, observers show close to perfect
performance at matching viscosity across variations in optical materials. This suggests
that when observers are judging a mechanical intrinsic property of the liquid like viscosity
they rely primarily on shape and motion cues. As mentioned before with other scenes
wheremechanical cues are less dominant the influence of optical cuesmight increase. We
do think that with our stimuli, designed to study viscosity, mechanical cues will keep their
dominant role and therefore we will continue our studies investigating the perception of
viscosity without taking potential influences of optical characteristics into account.

However, this is not to say that there is no role of optical properties in the perception
of liquids and their properties more generally. In both the ratings and the naming task,
some properties and liquids were associated with specific optical cues. However, our
results provide an initial indication that optical andmechanical cues do not interact much
with each other. This impression is amplified by the results of the second task in which
observers had to rate six liquid properties: runniness, shininess, sliminess, stickiness,
wetness and warmth. In most cases the various properties were determined primarily by
either optical or mechanical cues on their own, e.g. ‘runniness’ decreases with increasing
viscosity, but is una�ectedby theoptical propertiesof the liquids,while ‘shininess’ varies as
a function of the specular reflectance of the material, and is barely influenced by viscosity
(apart form the translucent milk-like material discussed above). There are however, some
properties that are a�ected by both optical andmechanical characteristics. For example,
both mechanical and optical cues play a role in the perception of ‘sliminess:’ green goo
looks significantly slimier than copper-like liquids, even when the shape and motion
are identical, but there is also a certain viscosity range that is considered to be slimiest
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(neither too thick nor too runny—like Goldilocks’ porridge). Nevertheless, even though
both types of cue influence perceived sliminess, the interaction between the two is limited.
All scores followed approximately the same curve, merely shi�ing additively up and down
as a function of the optical characteristics (see Figure �.�). This tends to suggest that
the visual system treats the two kinds of information as distinct cues, which are then
combined according to a simple ‘weak fusion’ process (Landy et al., ����) to arrive at a
subjective rating of ‘sliminess’. Alternatively, it is possible that the influence of the optical
andmechanical cues on the ratings proceeds via top-down associations. Specifically, it
could be that the image cues serve to identify a specific liquid (e.g. green goo), whose
cross-modal properties (e.g. sliminess) are recalled frommemory. It is di�icult to design
experiments that tease apart the relative role of bottom-up and top-down contributions
to ratings of high level properties of materials (Fleming et al., ����).

Some caution is required in generalizing the conclusions of the matching and rating
experiments. Here, we used a somewhat restricted range of stimuli consisting of one
single scene of pouring liquids. It is almost certainly the case that other stimuli—such
as those shown in Figure �.�—can yield more extreme percepts of many of the features
we tested here. For example, none of the stimuli in our experiment appeared as ‘sticky’
as the example shown in Figure �.�A. Additional cues to stickiness presumably include
the distinctive strands that span surfaces that have been stuck together and pulled apart,
or in terms of motion, prolonged adhesion to other surfaces in the scene. Likewise, the
molten metal in Figure �.�B clearly conveys a stronger sense of high temperature than
any of the stimuli in our experiments, presumably due to the visible glow, and other cues
such as smoke or steam. If motion and shape cues to materials are extremely weak (e.g.,
in the limit a stationary liquid in a container), then optical cues will presumably carry a
relatively stronger weight in determining perceived viscosity or other liquid properties.
Nevertheless, we believe that the broader conclusion that di�erent properties of liquids
combine shape, motion and optical cues with di�erent weights will withstand further
scrutiny. This is for the simple reason that, while optical properties are almost always an
ambiguous (i.e. unreliable) predictor of viscosity, shape andmotion cues tend to be highly
diagnostic of viscosity as soon as the liquid flows.

In our study, liquid names are mainly dominated by optical material appearance. The
names considered descriptive of liquids in most cases span a range of possible viscosities.
For example: the name ‘chocolate’ is assigned to all viscosities as long as the optical
material is chocolate. This presumably reflects the fact that di�erent concentrations and
temperatures of chocolate yield a wide range of viscosities, but changes to the surface
colour and optical appearance are less common. However, there are exceptions to the
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Figure �.�: (A) Example of a sticky material. (B) Example of a hot liquid. Images used under CC� Public
Domain license.

dominance of optical qualities. The term ‘water’ specifies both a specific colourless trans-
parent appearance and a specific (runny) viscosity. ‘Plastic’ needs to look viscous but can
have a wide range of di�erent optical materials. Thus, specific recognizable liquids can
be associated with both optical and mechanical properties. It seems that under many
conditions, the optical material appearance (primarily colour, gloss and translucency
parameters) are su�iciently distinct to specify many common liquids. Where the optical
material appearance is not su�iciently specific for communicating a particular physical
state, speakers may use additional terms that are specific to a liquid’s mechanical aspects,
such as sauce, paste, mouse, syrup or cream. Our observers did not report any problem
with using multiple terms to specify appearances—including materials in viscosity states
that they have not personally experienced before. We suggest that this approach to lin-
guistic labelling of fluids—with basic level terms for optical appearance and qualifiers for
viscosity—may reflect how we prioritize the visual cues that are used to identify liquids in
general (i.e., optical appearance may dominate mechanical under many circumstances).



Chapter �

Viscosity constancy across contexts

A similar version of this chapter is being prepared for publication:

van Assen, J. J. R. & Fleming, R. W. (����). Viscosity constancy across contexts.

Despite radical retinal image changes our visual system allows us to perceive physical
properties of materials in a consistant way. Liquids are a particularly interesting class
of materials where intrinsic properties (e.g. viscosity, density) and external forces (e.g.
gravity) enable a wide spectrum of possible shapes. Previous work has shown that despite
the physical complexity of liquidswe are surprisingly good at estimating properties such as
viscosity. Here we investigated how constant we really are in perceiving viscosity. We used
three stimuli sets: (�) A standard match set with �� viscosity steps simulated in one scene.
(�) The same scene simulated with � viscosities and � di�erent noise perturbations. (�) �
di�erent scenes with di�erent interactions (e.g. stirring, rain, and smearing) simulated
with � viscosities. In the first experiment we defined the perceptual responses of the
standardmatch set using maximum likelihood di�erence scaling. In experiment � and �
observers matched viscosity using the standard match set with the noise perturbation
set and scene variation set. We find that our stimuli evoke very constant impressions of
viscosity with an impressive constancy of ��% across scenes. Small but systematic under-
and overestimations are being made for certain scenes revealing the limits of our viscosity
estimation ability. Global shape andmotion information is varying across contexts and
cannot account for the observers’ constancy. This suggests thatmore localized tailor-made
features are exploited to achieve viscosity constancy.
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�.� Introduction

All objects we interact with in everyday tasks have shape and material properties. To
be able to interact successfully with these objects we need to be able to recognize and
estimate properties of materials by sight. The perceived material properties are essential
in inferring object a�ordances. Is something edible or poisonous, is a surface cold or
glowing hot, is an object so� or hard; all basic estimations that are essential to our survival.
Sharan et al. ���� have shown that we are able tomake thesematerial estimations quickly
and accurately. Liquids are especially interesting due to their mutable shapes and erratic
nature. This means that there is an extensive spectrum of possible liquid appearances
influenced by optical appearance, shape and motion. We are able to identify di�erent
liquids (e.g., water, honey, molasses) and estimate their properties such as runniness or
stickiness. Maybe more important, we are able to identify the liquid in a glass of water
to be the same as the water in a river. It is quite a remarkable feature that despite large
image di�erences we are able to identify the materials as being the same, with the same
properties. Here, we sought to investigate this ability further, to quantify how constant we
actually are in perceiving liquids.

Identifying surfaces and objects across large image changes ismost important for inter-
actions with our surroundings. This perceptual constancy is one of the major challenges
of object andmaterial perception (Maloney and Wandell, ����; Bültho� et al., ����; Tarr
et al., ����; Kra� and Brainard, ����; Anderson, ����; Foster, ����; Motoyoshi and Matoba,
����). Liquid perception is a relatively new field of study with specific research looking at
intuitive physics (Bates et al., ����), motion (Kawabe et al., ����), �D features (Paulun et al.,
����) and relative contributions of optical andmechanical cues (Van Assen and Fleming,
����). One thing these studies have in common is that we are good at perceiving liquids
and estimating their properties, such as viscosity. In this study we want to quantify how
constant we are in perceiving viscosity across di�erent contexts.

Studyingconstancy is especially interestingwhen it fails. When thishappens it could tell
usmore about critical visual information that is necessary to remain constant, information
that might be missing in the image. Identifying which type of information is causing a in-
or decrease in constancy will tell us much about the cues we find most informative in an
image.

Optical cues are one source of information we use to perceive liquids. A liquid’s optical
material appearance can tells usmany things about the liquid. Orange juice (without pulp)
basically has the same viscosity as water; what allows us to discern the two is the optical
material appearance. Liquids occur as opaque, transparent, and translucent materials in
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various colours allowing a larger range of optical appearances thanmost other material
categories (e.g., metals, paper, wood). Van Assen and Fleming ���� showed that optical
cues definitely influence certain perceived properties of liquids. For example sliminess
is perceived by a combination of optical andmechanical cues. Slimy objects need to be
within a certain viscosity range to be perceived slimy (mechanical cue) but the optical cues
add to theperceptionof sliminess aswell. If youhave exactly the same liquid shapeand the
optical appearance of copper or green goo then the green goo is perceived as slimier. Much
research has been performed studying di�erent aspects of material appearance such as
colour (see Foster ����, for a review), gloss (see Chadwick and Kentridge ����, for a review),
surface textures (Landy and Graham, ����; Dong and Chantler, ����; Emrith et al., ����;
Liu et al., ����), transparency (Fleming et al., ����; Faul and Ekroll, ����; Schlüter and Faul,
����) and translucency (Fleming et al., ����; Fleming and Bültho�, ����; Xiao et al., ����).
We are very good at perceiving very fine di�erences in optical material appearances and
we do this with great constancy across a large range of illumination and shape conditions.

In this particular study we are interested in viscosity constancy. The physics behind
liquids and its internal properties are very complex. Despite this, we have a good sense
how runny or viscous a liquid is. Van Assen and Fleming ���� demonstrated that viscosity
perception is mostly driven by mechanical cues, not optical cues. Therefore we keep
the optical material appearance constant for all our test stimuli in this study. Glue and
water are both transparent and yet we can see large di�erence in viscosity largely due to
shape andmotion information. Runny liquids tend tomove faster, spread out and take the
shape of its container; viscous liquids tend to pile up, but as time continues it will spread
out into its container shape as well. Static images prove that motion is not required to
perceive viscosity, but it does add additional information we can exploit to improve our
estimations.

In this study we ask the following questions: How constant do observers perceive
viscosity? Is this constancy driven by shape cues? Is this constancy driven by motion
cues? We used physically-based computer simulations to simulate a wide range of scenes.
Seven viscosities are simulated (roughly fromwater to molten glass) and observers had
to match the viscosity with a fine-scaled ��-step standardmatch set. For this match set
we performed amaximum likelihood di�erence scaling (MLDS) experiment (Maloney and
Yang, ����) to see if the perceptual distances within our match set are equal. One test
set depicts pouring liquids, which is simulated eight times with di�erent noise perturba-
tions. The other test set consists of eight completely di�erent scenes with di�erent liquid
interactions (e.g., rain, stirring, water wheel). Observers matched both these test sets
with the standardmatch set selecting the most similar viscosity. Finally we compare the
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constancy results with a �D shape similarity metric and optical flow analysis to see if there
are correspondences between constancy and shape or motion cues.

�.� Methods

Three experiments were performed. Experiment �was amaximum likelihood di�erence
scaling (MLDS) experiment (Maloney and Yang, ����). MLDS provides a robust estimate of
suprathreshold perceptual di�erences. It computes a perceptual scale with perceptual dif-
ferences between stimuli. The MLDS experiment was performed with our ��-step viscosity
match set (see Figure �.�A).

In Experiment �, observers were asked to perform a matching task where they had
to match the viscosity of the test stimulus on the le�with a match stimulus on the right.
Observers could scroll through a standard set of match stimuli with �� very fine viscosity
steps. Both test andmatch stimuli were displaying a similar scene of animated pouring
liquids. The test stimuli had an additional noise force field creating shape perturbations
that are similar to gusts of wind blowing against the liquid (Figure �.�B). Eight di�erent
versions of the noise force field were simulated creating eight variations of pouring liquids
with varying shapes. These noise perturbations were simulated with seven di�erent
viscosities resulting in �� di�erent test stimuli (� viscosities⇥ � noise variations).

Experiment �was a similar matching task where only the test stimuli were di�erent.
Instead of a pouring liquid scene with noise perturbations, eight completely di�erent
scenes were simulated with varying liquid interactions (e.g. stirring, rain, see Figure �.�C).
These eight scenes were simulated with the same seven viscosities as in Experiment �.

�.�.� Stimuli

Simulation

The liquid stimuli were simulated with RealFlow ���� and ���� (V. �.�.�.����/V. �.�.�.����;
NextLimit Technologies, Madrid, Spain). The viscosity of the standard set of match stimuli
was simulated with �� logarithmically spaced steps from �.��� Pa·s to ��� Pa·s (equivalent
fromwater to molten glass). The seven viscosities of the test stimuli (Experiment � and
�) were evenly spaced values of this same ��-step scale (steps �, ��, ��, ��, ��, ��, ��)
ranging from �.��� to �.�� Pa·s. Multiple particle solvers are available in the RealFlow
so�ware, here we used ‘Hybrido’ which allowed us to specify the dynamic viscosity of
the liquids in real physical units, Pascal-second or Pa·s. Hybrido is a FLIP (Fluid-Implicit
Particle) solver using a hybrid grid and particle technique to compute a numerical solution
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64-Step standard match setA
0.001 Pa·s 0.005 Pa·s 0.027 Pa·s 0.139 Pa·s

0.720 Pa·s 3.728 Pa·s 19.31 Pa·s 100.0 Pa·s

Noise variationsB
0.599 Pa·s 0.599 Pa·s 0.599 Pa·s 0.599 Pa·s

0.599 Pa·s 0.599 Pa·s 0.599 Pa·s 0.599 Pa·s

Scene variationsC
0.167 Pa·s 0.167 Pa·s 0.167 Pa·s 0.167 Pa·s

0.167 Pa·s 0.167 Pa·s 0.167 Pa·s 0.167 Pa·s

Push Stairs Smear Wheel

Rain Wall Moving Stirring

0.001 Pa·s 0.005 Pa·s 0.027 Pa·s 0.139 Pa·s

0.720 Pa·s 3.728 Pa·s 19.31 Pa·s 100 Pa·s

Figure �.�: (A) The match set, a pouring liquid scene with �� viscosity steps. Here eight logarithmic equally
spaced viscosity steps are displayed from the runniest �.��� Pa·s to the thickest ��� Pa·s. (B) Test set of the
pouring liquids scene with noise perturbations. Here eight noise variations are shown of the same viscosity.
(C) Test set of eight di�erent scenes, here displayed with a simulated viscosity of �.��� Pa·s. See Video B.� for
the animated stimuli.
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to the Navier-Stokes equations describing viscous fluid flow. The discrete particles carry
all information for the fluid simulation, but the solution to the equations is carried out
on a grid. Once the grid solve is complete, the particles gather the information required
from the grid to move forward in time to the next frame. To give the particles a continuous
shape a meshing algorithm is applied. In our simulations viscosity was the only changing
liquid property, e.g. density was held constant at one kilogram per litre. All scenes were
simulated in a space of roughly one cubicmeter. The amount of particles in the simulations
varief from scene to scene and between viscosities but roughly � to �million particles were
being used. ��� frames were simulated at �� frames/s resulting in ��-second animations.

Rendering

The images were rendered using the Maxwell render engine that is built in Realflow
����/����. The images were rendered at an ���⇥ ��� resolution and we used a HDR light
probe depicting a beach scene (from the Maxwell Resource Library by Dosch Design). The
liquids of both noise and scene variations were rendered with a glossy green opaquema-
terial looking similar to liquid paint. The liquids in the standard match set were rendered
with a green translucent material. The influence of di�erent optical materials on viscosity
judgements is minimal (Van Assen and Fleming, ����).

�.�.� Observers

Sixteen observers participated in the MDLS experiment. Groups of twelve observers par-
ticipated in the two other experiments. The average observer age was ��.� (SD = �.��)
of which �� were female and �� were male. All observers gave written consent prior to
the experiment in accordance with the Declaration of Helsinki and prior approval was
obtained from the local ethics committee of Giessen University. All observers were paid
for participation and reported having normal or corrected-to-normal vision.

�.�.� Procedure

The MLDS experiment was performed on a Dell T����workstation with Matlab ����a (v.
�.�.�.������) and the Psychtoolbox library (v. �.�.��) (Brainard, ����; Pelli, ����). The
monitor used was a Dell U����M ��-inch, using factory default settings, a gamma of �.�
and a resolution of ����⇥ ����pixels. No trainingwas performedbecause the instructions
were very simple. A triads setup was used where the top stimulus was the test stimulus
and the observer had to pick one of the two bottommatch stimuli that di�ered most from
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the test stimulus. This could simply be indicated by pressing the le� or right arrow key on
the keyboard, choosing the le� or right stimulus. In total there were ��� trials. There was
no time limit during the trials.

Both matching experiments were performed on the same system, a Dell T����with
Matlab ����a (v. �.�.�.������) and the Psychtoolbox library (v. �.�.��). The display received
an update between experiment two and three. Where the scene variations experiment
was performed on a Dell U����M ��-inch monitor using factory default settings, a gamma
of �.� and a resolution of ����⇥ ���� pixels. For the noise variations experiment we used
an Eizo ColorEdge CG��� ��-inch monitor with a resolution of ����⇥ ���� and a gamma
of �.�. A training session took place before the main experiment, where observers could
get acquainted with the interface and task. During this training session all the viscosities
and scenes/noise variations passed by once in the form of eight normal trials. During each
trial the test stimulus was shown on the right and the match stimulus on the le�. The
full animation of ten seconds was shown which looped throughout the trial. By using the
le� and right arrow key on the keyboard, observers could scroll through the �� di�erent
stimuli of the standard match set. By pressing space the active answer was confirmed and
a�er which the next trial was loaded. There was no time limit during the trials. Each trail
was repeated three times in random order. Each experiment resulted in a total of ��� trials
(� viscosities⇥ � noise/scene variations⇥ � repetitions).

�.�.� Shape similarity

To provide context on how similar the liquid shapes of our stimuli are, we developed
a shape similarity metric. This metric uses the �D liquid shape information based on
the meshes from the liquid simulations and is represented in a voxel space. Voxels are
practically �D pixels, cubes. First the coordinate system of themesh is aligned with the
centre of mass. This means that coordinate (�,�,�) is on the centre of mass. The mesh
is then transformed into a voxel representation. From this the AND and the OR products
are calculated for every stimulus of the test set to every stimulus of the match set. The
time frames were kept the same. The AND results store the pixels that overlap for both
liquids. The OR results store the pixels where at least one liquid is positive. These pixels
are counted and then the AND result is divided by the OR result which provide a ratio of
overlapping liquids in total liquid space. Howmuch the two liquid shapes have in common.
Finally the liquid combination with highest common liquid ratio is selected as the correct
match answer.
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Figure �.�: The perceptual scale of the match stimuli set. The x-axis shows the steps of our ��-step scale.
The y-axis shows the perceptual scale. The R� value shows the results of a linear fit between the physical
and perceptual viscosity scale

�.�.� Optical flow

Motion is another rich source of information that next to shape is informative about the
mechanical properties of liquids. Kawabe et al. ���� showed that the mean speed of
optical flow is highly predictive of perceived viscosity. To evaluate whether motion can
predict viscosity matches with our stimuli, we used the same iterated pyramidal Lucas-
Kanademethod (Bouguet, ����) to calculate optical flow. The match was selected based
on the most similar flow vector.

�.� Results

�.�.� MLDS results

Figure �.� shows the results of the MLDS experiment. There are two noticeable results.
(�) The perceptual scale is practically linear and correlates very highly with the physical
viscosities (R� = �.��, F(�,�) = ���.�, p < �.���). This means that physical viscosities with
logarithmic step sizes have the same perceptual distances. Viscosity step � has in both
physical and perceptual space the same distance to step ��. (�) There seems to be a
slight o�set. This means that perceptual viscosity is slightly underestimating the physical
viscosity.

Here themost important conclusion is that our ��-step standardmatch set will be able
to provide a consistent matching standard without any peculiar anomalies.
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�.�.� Noise variations

Figure �.� shows the results of Experiment � where di�erent noise perturbations were
matched with the standard set. The first thing to notice is how good the observers are in
matching viscosity (R� = �.��, F(�,��) = ����, p < �.���). We consistently get very linear
results for every noise variation. There is a systematic underestimation of runny liquids,
they are perceived as more viscous, and the same happens for the thick liquids, which
are perceived runnier. When we look at our shape similarity metric we see that it is a very
good predictor (R� = �.��, F(�,��) = ����, p < �.���). Interestingly the shape similaritymodel
seems tomake the same under and overestimation errors. This is further supported by
the fact that the model seems to explain why the perceived viscosities (RMSE = �.��) are
slightly better than the physical viscosities (RMSE = �.��), although the di�erences are
small.

The constancy across variations is striking. Figure �.�A shows adi�erent representation
of the consistency. It shows the RMSE of each variation in relation to the mean across
variations. Taking the mean of these error distances is a representation of constancy,
which in this case is RMSE = �.��. In other words there is �% error between variations or
��% variation constancy.

This is further supported by a low error across observers, Figure �.�C. The y-axis shows
the RMSE in relation to the physical truth and the x-axis how precise each observer is
within their own repetitions. Overall we can say that observers are extremely consistent in
matching viscosities across noise perturbations.

�.�.� Scene variations

Figure�.� shows the resultsof Experiment�, wheredi�erent scenevariationswerematched
with the standard match set. Compared to the noise variations there is more variation
across scenes, but we are still very good in matching scenes by their viscosity (R� = �.��,
F(�,��) = ���.�, p < �.���). We still get very linear results although the relation with the
physical viscosity varies more. The stairs scene (Figure �.�C,Video B.�) shows practically
perfect matches without any over- or underestimation. When we look at our shape simi-
larity metric we seemuchmore variation and some very bad predictions (R� = �.��, F(�,��)
= �.���, p = �.��). This is not completely unexpected, the liquid shapes vary muchmore.

The constancy across scenes has decreased. Figure �.�B shows larger errors, the mean
error across scenes is RMSE = �.��. This translates back to �%error or a scene constancy of
��%. A very impressive result for muchmore radical shape changes in di�erent contexts.
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In linewith the findingswe find lesser agreement across observers aswell (Figure �.�D).
There seems to be one observer who is very inconsistent within repetitions and there is an
overall increase of ��% in individual errors.

�.�.� Shape similarity

One hypothesis is that the variation across scenes depends on the shape variation across
viscosities for the same scene. If a runny liquid looks very di�erent from a thick liquid
in the same scene there is much shape variance within the scene. If there is little shape
di�erence across all viscosities in the scene it is plausible that it is harder to estimate
viscosity di�erences. Especially if this is tested with a matching task where the match
set does show large shape di�erences across viscosities. One example could be the Push
scene (Figure �.�C,Video B.�). The liquid shape across viscosities does not vary as much as
with other scenes and therefore might be less descriptive for viscosity judgements. This is
supported by the more horizontal slope in Figure �.�.



�.� Results ��

Push Stairs Smear Wheel

Rain Wall Moving Stir

Match performance scene variations

R2=.00

R2=.06

R2=.22 R2=.79 R2=.20

R2=.89 R2=.73
R2=.01

Runny Thick
Runny

Thick

Viscosity

M
at

ch

Human Shape similarity

Figure �.�: Thematching performance of the scene variations. The x-axis shows the viscosity of the test
stimulus and the y-axis shows the viscosity of the matched stimulus. The blue line shows the perceived
viscosity with error ribbons that show the standard error of the mean (SEM). The red line is the predicted
match of our shape similarity metric. The R� value shows the results of a linear fit between the perceived
and predicted matches.

To test this hypothesis we ran the same AND/OR voxel operations but instead of using
the match set it was performed with the other six viscosities of that scene. This provides a
measurement of howmuch the ratio between shape overlap and the sum of the shapes,
changes across viscosities. We find that there is no significant correlation. This means
that variance in global shape di�erences do not explain di�erences in perceived viscosity.
It could be that more local shape information causes these di�erences. A set of distinct
features that vary less or more within a scene.

�.�.� Motion information

One other possibility is that we make matches based on similar motion flow between the
test andmatch stimulus. This is predicted by thematch stimulus that is most similar to the
test stimulus in terms of optical flow. Across scenes the optical flowmatches are not very
predictive of the perceived viscosity (R� = �.��, F(�,��) = �.���, p < �.��). We find that the
optical flowmatches are only significantly predictive for the stairs scene (R� = �.��, F(�,�) =
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��.��, p < �.��). This might explain why the observers perform so well in this scene (R� =
�.��, F(�,�) = ���.� p < �.���). Clearly this is a scene wheremotion patterns betweenmatch
and test stimulus in- or decrease with similar magnitudes across viscosities. However, as
other scenes don’t have this commonality with the match set, observers need to rely on
additional, maybe less informative, cues.

�.� Discussion

Howwe achieve perceptual constancy is an important challenge in material perception.
How is it possible that despite radical image changes we are able to perceive materials
consistently? Here our purpose was to quantify how constant we are in perceiving vis-
cosity of liquids. We did this by using matching experiments where we have one scene
simulated with �� fine viscosity steps (Match set). We had two di�erent test sets, one
depicting pouring liquids with eight di�erent noise perturbations and eight completely
di�erent scenes with various liquid interactions (e.g., smear, push, stir). Using a matching
task instead of ratings enables us to keep the influence of individual mental scales to
a minimum, context is provided. Instead of thinking how viscous this particular liquid
is in some internal viscosity reference space, we asked the observers to match this to a
predefined and perceptually quantified reference space. Because of this we can make
clear comparisons between contexts as they are all matched with the same reference set.

We see that observers are very good at matching viscosity (R� = �.�� for the noise
variations and R� = �.�� for the scene variations). It is quite incredible that we canmatch
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two very di�erent liquid shapes with this precision. Our viscosity constancy is very high
(��% for the noise variations and ��% for the scene variations). This demonstrates that we
are very well able to generalize estimations of material properties across various contexts.
This will set the benchmark for future models designed to estimate viscosity.

It is important to ask what scene invariant information we use to make these constant
estimations. This question concerning perceptual constancy translates to many di�erent
fields. Using our shape similarity metric we demonstrated that shape similarity of the
whole liquid shape is not the very predictive. Across scenes these shapes are very di�erent.
Even by aligning them and choosing themost similar shapematch it is very hard to predict
matches across scenes (R� =�.��). The entire liquid shape varies verymuchacross contexts
and other information is required that stays invariant across scenes.

These experiments were performed with animated videos and providing very rich
motion information. Previously it has been shown that motion can be very predictive
of viscosity estimates (Kawabe et al., ����). We applied a similar analysis on the scene
variations stimuli set. In many cases the mean optical flow for each stimulus was not
very predictive of viscosity (R� = �.��). There was one exception, the Stairs scene (Fig-
ure �.�C,Video B.�) showed a significant e�ect (R� = �.��). Thismeans that for each viscosity
of the Stairs scene there was an equivalent match set stimulus with similar optical flow.
Observer matched in this particular scene the actual viscosity very accurately as well (R� =
�.��) suggesting the motion contributed positively to other available cues. This supports
the idea that we combine cues using ’weak fusion’ processes (Landy et al., ����; Ernst
and Bültho�, ����). In this particular case one scene shares similar motion cues with
the match set and therefore observers are more accurately matching viscosity. When the
domain of motion contains informative cues it will contribute to accuracy.

There remain two open questions. (�) If global shape andmotion features can’t explain
viscosity constancy across scenes what can? (�) How does our visual system knows which
cues are informative for that particular context? To answer the first question, we think
that mid-level shape andmotion features provide rich cues of more localized groupings of
informationon theobject. Moreo�enmid-level featureshavebeensuggested todeliver key
contributions in material perception (Adelson, ����; Anderson, ����; Marlow et al., ����;
Paulunet al.,����). Withmid-level shapeandmotion featureswe thinkofmore local details
such as blobbiness, pulsing and spread. The shapes of the liquids in di�erent contexts
(Figure �.�,Video B.�) have very distinct features and they are not mutually exclusive, a
liquid can be blobby, pulse and spread out at the same time. Each liquid shape can
therefore be represented in mid-level feature space, which is used to estimate viscosity. It
is important to emphasize the di�erence between our binary shape-to-shape similarity
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measurement andmid-level shape features. A mid-level shape feature is a higher-level
concept than a binary shape comparison. A spherical blob on the le� side of a liquid shape
can be a very distinct feature, but this blob can occur as easlily on the right side of the
shape as well providing the same information. In this case our shape similarity metric
would say the shapes di�er, while in mid-level feature space the information stays the
same, invariant across shapes.

To answer the second question is maybe even harder. How do we knowwhich visual
cues aremost informative in any particular context? Whatmakes a feature distinguishable?
Wedemonstrated that a larger shape variancewithin a scene is not explaining performance
di�erences across scenes. One could argue that, similar to theprevious argument, variance
inmid-level shape features is key. If a scene contains only variance in blobbines and spread
across viscosities it might be harder to detect viscosity changes compared to scenes that
vary across ten shape features. The missing puzzle piece is how to recognize distinct
features as informative in the first place. What makes spiralling recognizable as spiralling?
There must be some heuristics, rules, descriptors of the features that allow us to identify
them as such. To find these rules would require a similar approach as suggested by Paulun
et al. ����, only performed in the �D domain, which is a di�icult problem to solve. How do
you specify rules that measure spiralling in �D and are insensitive to scale, orientation or
other factors? There is one certainty; our visual system is able to exploit a rich, dynamic set
of cues that stay invariant across contexts, enabling great constancy in viscosity perception.
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Visual features of liquids

A similar version of this chapter has been published as:

van Assen, J. J. R., Barla, P. & Fleming, R. W. (����). Visual Features in the Perception of
Liquids, Current Biology (����), https://doi.org/��.����/j.cub.����.��.���

Perceptual constancy —identifying surfaces and objects across large image changes—
remains an important challenge for visual neuroscience (Maloney and Wandell, ����;
Bültho� et al., ����; Tarr et al., ����; Kra� and Brainard, ����; Anderson, ����; Foster,
����; Motoyoshi and Matoba, ����). Liquids are particularly challenging because they
respond to external forces in complex, highly variable ways, presenting an enormous
range of images to the visual system. To achieve constancy, the brain must perform a
causal inference (BiedermanandGerhardstein, ����; Gilchrist et al., ����; Riesenhuber and
Poggio, ����) that disentangles the liquid’s viscosity from external factors—like gravity
and object interactions—that also a�ect the liquid’s behaviour. Here, we tested whether
the visual system estimates viscosity using ‘mid-level’ features (Adelson, ����; Anderson,
����; Marlow et al., ����; Paulun et al., ����) that respond more to viscosity than other
factors. Observers reported the perceived viscosity of simulated liquids ranging fromwater
to molten glass exhibiting diverse behaviours (e.g. pouring, stirring). A separate group
of observers rated the same animations for ��mid-level �D shape andmotion features.
Applying factor analysis to the feature ratings reveals that a weighted combination of
four underlying factors (Distribution, Irregularity, Rectilinearity and Dynamics) predicted
perceived viscosity very well across this wide range of contexts (R� = �.��). Interestingly,
observers unknowingly ordered their mid-level judgments according to the one common
factor across contexts: variation in viscosity. Principal Component Analysis reveals that
across the features, the first component lines up almost perfectly with the viscosity (R� =
�.��). Our findings demonstrate that the visual systemachieves constancy by representing

https://doi.org/10.1016/j.cub.2017.12.037
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stimuli in a multidimensional feature space—based on complementary, mid-level fea-
tures—which successfully cluster very di�erent stimuli together and tease similar stimuli
apart, so that viscosity can be read out easily.

�.� Results and discussion

If the estimation of viscosity proceeds hierarchically—through a weighted combination
of mid-level features describing dynamic �D shape properties—it should be possible to
identify such features and use them to predict perceived viscosity across variations in
other scene variables. To test this hypothesis, we simulated liquids with a wide range
of viscosities interacting with a variety of di�erent scenes (see Video C.� and C.�). In
Experiment �wemade detailed measurements of viscosity perception in a simple scene
in which each liquid poured vertically onto an object on a plane (Figure �.�A). The ��
sec animations, depicting liquids with �� di�erent viscosities, were divided into six (�,��
sec) time periods. On each trial, observers viewed eight videos of liquids with di�erent
viscosities from the same timeperiod, and rated theperceived viscosity by adjusting sliders
for each video. Results are shown in Figure �.�B. Consistent with previous work (Paulun
et al., ����; Kawabe et al., ����; Van Assen and Fleming, ����), we find that observers
are excellent at judging viscosity: the regression between their ratings and physical truth
was R� = �.��, F(�,���) = ����, p < �.���. There was also a mild tendency to see later time
periods as runnier. The range of responses across observers is shown in Figure �.�E.

Comparing viscosities across liquids is relatively straightforward if all other scene fac-
tors are held constant. The deeper challenge is to achieve constancy—i.e., generalization
across contexts. To investigate constancy, in Experiment �we created a series of scenes
in which liquids underwent qualitatively di�erent behaviours, such as oozing through
holes, being stirred in a container, or interacting with a waterwheel (Figure �.�A, Video
C.�). Seven viscosities were simulated, and observers again rated viscosity, this time for
the entire ten seconds of each animation (see Supplementary Information for details).
We found a significant decline in viscosity constancy across scenes, as indicated by the
di�erent rates at which the columns in Figure �.�B change from light to dark. Nevertheless
observerswere still verywell able to di�erentiate and order the seven simulated viscosities
across qualitatively di�erent behaviours, yielding a regression between the ratings and
physical truth of R� = �.��, F(�,��) = ���.�, p < .���. The range of responses across di�erent
individuals is shown in Figure �.�E.

Next, we sought to identify a set of mid-level shape and motion cues that predict
viscosity perception. Rather than identifying potential cues through physical analysis, we
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Figure �.�: (A) Eight equally spaced viscosity stimuli spanning the full range of viscosities (frame �� of ���).
(B) Mean viscosity ratings for all videos in Experiment �. (C) Predicted viscosity for same stimuli, based on
the four-factor model. (D) Scatterplot comparing model predictions to mean responses across observers
and repetitions. Darker greens indicate later time periods. (E) Root mean square errors relative to ground
truth viscosities, and standard deviation of responses across repetitions for each observer (dots); red dot
indicates bootstrapped estimate of random performance based on ���� random draws.See also Figure C.�,
Video C.�, Video C.� and Table C.�.

took a data-driven approach, in which we selected a broad set of hypotheses through phe-
nomenology, which could then be tested, rejected and refined through experimentation.
To do this, we viewed the ‘pouring liquids’ stimulus set and brainstormed features that (�)
described aspects of the stimuli’s �D shape andmotion; (�) varied across stimuli and (�)
could be described to participants verbally. We also asked four naïve observers to brain-
storm a list of features describing the liquids. Although the terms they identified were not
identical to ours, they were judged by another group of observers to overlap substantially
with our list, suggesting we had identified a reasonable set of features to test. Importantly,
we view the initial feature list as a superset of potential cues—i.e., hypotheses—which we
sought to cull through subsequent analyses.

To do this, in Experiment � and �, two new groups of observers viewed the same videos
as in Experiments � and �, but instead of rating viscosity, they rated the twenty features
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Figure �.�: (A) Eight di�erent scenes simulated with the same viscosity of �.��� Pa·s. (B) Mean viscosity
ratings for all scenes in Experiment �. (C) Predicted viscosity for same stimuli, based on the four-feature
model. (D) Scatterplot comparing model predictions to mean responses across participants and repetitions
(from B and C). (E) Root mean square errors relative to ground truth viscosities, and standard deviation of
responses across repetitions for each observer (dots); red dot indicates bootstrapped estimate of random
performance based on ���� random draws. See also Figure C.�, Video C.�, Video C.� and Table C.�.

(e.g. ‘compactness’, ‘elongation’, ‘pulsing’, ‘clumping’; see Table C.� for a complete list
with specific instructions). None of the features referred to the liquids’ material proper-
ties. Instead they targeted the stimulus’s �D shape andmotion characteristics to test the
hypothesis that viscosity is inferred from specific weighted combinations of such cues.

Results for three of these features with pouring liquids (Experiment �) are shown
in Figure �.�A (see Figure C.� for all �� features). Unlike viscosity ratings, the feature
judgmentso�envaried in complex, non-monotonicways as a functionof viscosity and time
period. This means the di�erent features provide potentially complementary cues about
the liquid. Although some individual features predict viscosity perception in some scenes,
few features predict all the data well on their own. Instead, the brain likely combines
multiple cues to achievemore robust estimates of viscosity. Therewere strong correlations
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between features (Figure C.�A), suggesting a smaller number of true underlying factors
describing the liquids’ shape andmotion.

To test this, we performed a factor analysis (Figure �.�). A Horn test (Horn, ����) re-
vealed fourbasic factors (eachaweightedcombinationof the feature ratings; FigureC.�): (�)
‘Distribution’—describing the extent the liquid clumped together vs. spread out; (�) ‘Irregu-
larity’—describing how complex and detailed its shape was; (�) ‘Rectilinearity’—capturing
how straight and angular the liquid appeared; and (�) ‘Dynamics’ describing its motion
properties. When a new group of nine observers were asked to judge these factors di-
rectly, the responses correlated significantly (mean R� = �.��) with the factors derived from
the feature ratings on the same stimuli. The process of applying factor analysis allowed
us to narrow down the broader list of twenty features to four more refined and specific
hypotheses.

To test whether these factors could predict viscosity perception, we performed amulti-
ple linear regression, using the factors derived from Experiment � to predict the viscosity
ratings data from Experiment �. The model predicts the viscosity data extremely well, R� =
�.��, F(�,���) = ����, p < .���, far better than random predictors (a bootstrapping analysis
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with ���� repetitions revealed ��� predictors would be required to achieve equivalent
non-significant performance). This indicates that a simple weighted linear combination of
dynamic �D shape features is su�icient to explain perceived viscosity. Note, again, that the
combination of factor analysis and regression allows us to reduce our initial hypotheses,
and to quantify the relative roles of individual cues. Of course, on its own, our finding
does not strictly imply that the estimation of mid-level features is prior to the inference of
viscosity. It is logically possible that observers derived their feature judgments from the
perceived viscosity. However, we suggest that thedetailed—o�ennon-monotonic—feature
ratings makes this unlikely. On grounds of parsimony, it seemsmore likely that viscosity is
inferred from themid-level features than vice versa.

The key challenge of viscosity perception is to achieve constancy across dramatic
changes in the liquid’s behaviour. To test how well the model predicts viscosity constancy,
we applied the factor loadings and regression weights derived solely from the ‘pouring’
scene (Experiments � and �) to the feature ratings from Experiment �, to measure how
well the model predicted viscosity perception in the other eight scenes (Experiment �).
Results are shown in Figure �.�D. Despite having no new training data or additional free
parameters, the model generalizes to the eight new scenes remarkably well, (R� = �.��,
F(�,��) = ���.�, p < .���). These results confirm that a relatively small number of mid-level
stimulus characteristics—related to how fast they move, howmuch they spread out or
clump together, how irregular they are and how rectilinear—determine the perception of
viscosity across a very wide range of contexts.

To test the robustness of these conclusions, we also ran the factor analysis and re-
gression ‘in reverse’, using the data from the � scenes (Experiments � and �) to build a
model for predicting perceived viscosity. As before, this model predicts its training data
very well (R� = �.��, F(�,��) = ���, p < .���). When used to predict the viscosity ratings from
the pouring scene (Experiment �), this model also generalizes well (R� = �.��, F(�,���) =
���, p < .���; again with no free parameters), although not as well as the original model,
which is unsurprising given that only about a third asmuch training data was available (��,
rather than ��� data points). To quantify the similarities between the twomodels, we com-
puted representational dissimilarity matrices (RDM, Kriegeskorte et al., ����) describing
the di�erences between stimuli in their respective factor spaces (Figure C.�C). The RDMs
correlated highly for both Experiment � (pouring scenes: R� = �.��, F(�,�����) = �����, p <
.���) and Experiment � (� scenes: R� = �.��, F(�,����) = ����, p < .���), suggesting that the
models learned similar representations of the stimuli from the feature ratings. Together
these findings further suggest that representing stimuli using multiple complementary
factors enables viscosity constancy.
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Of course, some caution is required in interpreting these results. Although the range
of liquid behaviour we tested was broad, there may be some conditions where other,
untested, features could predict viscosity perception even better. Indeed, while these
factors account for viscosity perception once a given stimulus is identified as a liquid, it is
highly unlikely that they are su�icient to determine whether a given stimulus is a liquid in
the first place. Many non-liquid forms could appear as ‘distributed’, ‘irregular’, ‘rectilinear’
and ‘dynamic’ as one of our stimuli, without appearing to be a liquid of a specific viscosity.
Thus, although these factors are important for viscosity estimation, they do not explain
all aspects of liquid perception across all possible conditions. Nevertheless, the broader
conclusion is that the visual systemcan achieve a high degree of constancy by representing
liquids in a feature space incorporatingmultiple, complementarymeasurements. A similar
approach has been proposed to account for errors of gloss perception (Kim et al., ����;
Fleming, ����); our results suggest that such an approach predicts both successes and
failures of constancy in material perception more generally.

Why do these features work? The key challenge of constancy is that movies of the
same liquid in di�erent scenes are very di�erent from one another in the image domain,
while movies of di�erent liquids in the same scene are muchmore similar (Figure �.�A).
Somehow the visual systemmust remap the representational space to organize the stimuli
by their viscosity. We find that this is exactly what the mid-level features achieve. To
investigate this, we performed Principal Component Analysis (PCA) on the data from
the second stimulus set (eight scenes). Figure �.�A depicts each stimulus in the pixel
similarity space by performing PCA on the rescaled grayscale pixel data of the entire
video sequence. This represents the raw input to the visual system. The ellipses show
standard errors around the mean for the seven viscosities. The substantial overlap of
the ellipses indicates that raw retinal image similarities provide a poor basis for viscosity
perception, demonstrating the extent of the challenge confronting the visual system. In
contrast, Figure �.�B shows the PCA space of the features ratings, which reveals a clear and
systematic ordering of the stimuli by viscosity. It is important to emphasize that observers
were simply instructed to rate di�erent shape andmotion features—viscosity was never
mentioned. Despite this, the first principal component of the ratings is highly correlated
with the actual viscosity (R� = �.��, F(�,��) = ����, p < .���). This demonstrates that despite
massive physical variations across scenes, observers unknowingly arranged the stimuli
according to the one common factor across these scenes: the viscosity. This impressive
ability strongly suggests that the visual system achieves constancy by identifying features
that transform the perceptual space to extract invariant material properties and negate
the e�ects of other scene variables.
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input is dominated by extrinsic scene factors rather than viscosity, the perceptual feature space unravels the
common quantity across these scenes: the liquids’ viscosity.

An important current debate in material perception research is the extent to which �D
image quantities are su�icient formaterial judgments (Motoyoshi et al., ����; Sharan et al.,
����), or whether �D surface structure plays a crucial role (Marlow et al., ����; Marlow and
Anderson, ����; Marlow et al., ����). To provide some perspective on this, we developed
a model using four shape metrics computed directly from the liquids’ �D meshes (see
Figure C.� and Supplemental Results), which we compared against two previous models,
based on �D optical flow (Kawabe et al., ����) and �D shape (Paulun et al., ����) (Figure
�.�C). The �Dmodels generalize poorly across our stimuli (Kawabe et al.: R� = �.��; Paulun
et al.: R� = �.��). Only the novel �Dmodel predicts viscosity perception moderately well
with fixed weights across scenes (R� = �.��). Unsurprisingly, when we perform separate
regressions for each scene independently (free weights), all three measurement models
perform somewhat better. However, the results suggest that �D shape does contribute
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to the robustness of viscosity perception beyond simple �D imagemeasurements. How
might �D information be used? Simply representing local �D structure at every surface
point would be insu�icient to infer viscosity. Some degree of perceptual organization is
required to group and summarize raw �D measurements into quantities that relate to
viscosity. We suggest that the mid-level perceptual factors pool and organize local �D
estimates to create robust viscosity cues.

Together, these results indicate that despite the extremely complex physics underlying
fluid flow, we can predict viscosity perception using a small number of quite simple mid-
level cues. A fascinating open question is how the visual system identifies which stimuli
are liquids in the first place, and then extracts information from features that robustly
generalize across an even wider range of contexts than tested here (e.g., when spatial
scale or the liquid’s density also vary). In the long run, models of viscosity perception
should be combined with a ‘front-end’ that allows predicting viscosity perception directly
from image sequences, presumably via �D estimates. Such amodel should also seek to
predict the e�ects of lighting and the liquid’s optical properties on perceived viscosity,
although these e�ects are generally small (Van Assen and Fleming, ����). One approach to
liquid detection and feature selection would be through sophisticated—potentially innate
(Spelke, ����; Hespos et al., ����; Hespos and van Marle, ����; Battaglia et al., ����; Rips
and Hespos, ����)—physics-like internal models that capture the typical behaviour of
fluids. For example, Battaglia and colleagues suggest (Bates et al., ����) that the visual
system predicts liquids’ future states through simulations based on internal models. They
show that humans far outperform simple heuristics at predicting where and how liquids
flow. Such ‘intuitive physics’ approaches could potentially account for the successes of
viscosity constancyweobserve in our experiments: an internalmodel could be fit to liquids
in a wide variety of di�erent poses and contexts. Nevertheless, a challenge for any type
of model is to predict the partial failures of viscosity constancy that we observe (e.g., the
di�erences between the columns in Figure �.�B).

An alternative approach would be to learn features from observation using large quan-
tities of training data (e.g., learning of optimal speed or disparity encoding from natural
scenedata, Burge andGeisler, ����, ����). Given the recent success of convolutional neural
networks (CNNs) in predicting visual object recognition and its neural correlates (Khaligh-
Razavi and Kriegeskorte, ����; Yamins et al., ����; Güçlü and van Gerven, ����; Cichy et al.,
����) the visual system could likely learn to recognize liquids—and features diagnostic
of viscosity—from su�icient training data. An interesting topic for future investigation is
whether similar features emerge for both liquid detection and viscosity estimation. Indeed,
it would be fascinating to test whether CNNs arrive at similar features to the ones we
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identify here. Nevertheless, as such algorithms acquire their features through supervised
training, amajor challenge for their use asmodels of human perception is to explainwhere
the training labels come from during human learning. Wemight associate certain ranges
of viscosity with di�erent liquids but are not explicitly taught a fine viscosity scale that
relates across materials, and yet, as we find here, we eventually become surprisingly good
and precise at identifying them across a wide range of conditions.

�.� Methods

�.�.� Stimuli

Two stimuli sets were used in the four experiments. Set � contains a pouring liquid scene
that was simulated with �� viscosity steps. Each �� sec long animation was divided into
six time periods of �.�� sec each for Experiments � and �. This results in a total of ���
stimuli (�� viscosities⇥ � time periods). Set � consisted of eight di�erent scenes each
simulated with seven viscosity steps. The duration of each stimulus in Set �was the full
�� sec because (�) In Experiment �we found that time had very little e�ect on perceived
viscosity, and (�) due to the very wide range of speeds across scenes, there were long time
periods for some scenes with viscous liquids, where the liquid had not yet entered the
scene, which obviously would have made viscosity estimation impossible. Thus, Set �
contained �� stimuli (� viscosities⇥ � di�erent scenes).

Simulation

Stimuli were generated using RealFlow ����/���� (V. �.�.�.����/V. �.�.�.����; NextLimit
Technologies, Madrid, Spain). The pouring liquid scene (Experiments � and �) consisted of
�� di�erent viscosities ranging from �.��� to ��.�� Pa·s. In Experiments � and �, seven
di�erent viscositieswere tested ranging from�.���Pa·s to�.��Pa·s ineightdi�erent scenes.
Viscosity values were selected from a logarithmically spaced scale of ��-steps between
�.���Pa·s and ���Pa·s (equivalent fromwater tomoltenglass). RealFlowprovidesmultiple
particle solvers; in this case the “Hybrido” particle solver was used, making it possible to
specify the dynamic viscosity of the liquids in real physical units (Pa·s). Hybrido is a FLIP
(Fluid-Implicit Particle) solver using a hybrid grid and particle technique to compute a
numerical solution to the Navier-Stokes equations describing viscous fluid flow (Bridson,
����). Discrete particles carry all information for the fluid simulation, but the solution to
the equations is carried out on a grid. Once the grid solve is complete, the particles gather
the information required from the grid tomove forward in time to the next frame. Finally, a
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meshing algorithmuses the particles to calculate the fluid boundary. When visible artifacts
occur it is mostly due to this stage where the mesh is being calculated, not the underlying
physics solver. The density of the liquids was held constant at one kilogram per litre. The
number of particles varied across scenes, with a maximum of roughly �million particles.
All scenes were simulated in a space of roughly one cubic meter. Gravity was the main
external force acting on the liquid, however in some cases an additional noise force field
was used to achieve better scene-liquid interaction. The simulated animations had a total
duration of ten seconds (��� frames at ��fps).

Rendering

The renderengineused togenerate the final image frameswasMaxwell (V.�.�.�.�; NextLimit
Technologies, Madrid, Spain). The images were rendered at an ���⇥ ��� resolution and
the scene was lighted using an HDR light probe depicting a beach scene (from the Maxwell
Resource Library by Dosch Design). The liquid of the pouring scene (Experiments � and
�) was rendered with a translucent material. The liquid in all other scenes was of a green
opaquematerial. Previous research has shown that optical material appearance of liquids
barely influences viscosity judgements (Van Assen and Fleming, ����).

�.�.� Observers

Groups of twelve observers rated perceived viscosity in the first two experiments. In
Experiments � and �, where shape features were rated, two separate groups were formed.
Each group rated only ten of the twenty shape features. In experiment � twelve observers
participated in each group and in experiment � ten observers participated in each group.
In total, over all four experiments �� observers participated. The average observer age
was ��.� (SD = �.��). �� observers were female and ��male. In the control experiments a
total of �� observers participated (� in the brainstorming experiment, � in the semantic
(word-list) matching experiment, and � in the factor rating experiment). The average age
was ��.� (SD = �.��), �� observers were female and �male. All observers gave written
consent prior to the experiment and were paid for participating. All observers reported
having normal or corrected-to-normal vision. Experiments were conducted in accordance
with the Declaration of Helsinki and prior approval was obtained from the local ethics
committee of Giessen University.
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�.�.� Procedure

Experiment � and �: Rating viscosity

The experiments were performed on a Dell T���� with a Dell U����M ��-inch monitor
using factory default settings, gamma of �.� and a resolution of ����⇥ ���� pixels. Matlab
����a (v. �.�.�.������) and the Psychtoolbox library (v. �.�.��) (Brainard, ����; Pelli, ����)
were used to run the experiments. Observers completed a short training session before
starting the experiment. The training was a single trial where the maxima andminima of
the stimuli were presented and the observer could get acquainted with the interface, in
case of experiment � and � all eight scenes were shown as well. During each trial, eight
stimuli were shown with a rating bar transparently projected over each stimulus (Video
C.�). There was no time limit and once all rating bars were set the observer could continue
to the next trial. Corrections during the trial were possible and the observer was free
to choose in which order the stimuli were rated. Each stimulus was repeated four times
during the experiment but the position and combinations with other stimuli were chosen
randomly for each trial.

Experiment � and �: Rating shape features

The same setup as in Experiment � and �was used in Experiment � and �. Experiment � and
�where split up in two groups of observers, each rating ten of the twenty shape features.
The stimuli were organized by viscosity on the screen. This was done to make it easier to
rate the shape features. In the case of Experiment �, �� stimuli of the same time period
were shown simultaneously, with Experiment �, seven stimuli of one scene were shown.
There were no repetitions in Experiment � and in Experiment � every trial was shown
twice, in random order. Each shape feature was presented in the top le� of the screen and
an additional description of the shape feature was provided for clarity. All experiments
were performed in German and have been translated to English for presentation here, see
Table C.� for a full list of shape features and descriptions.

Control experiment �: Brainstorming newword list

Weasked four observers to brainstorm ’shape features’ while viewing videos of the pouring
liquids (full ��s duration). There was a short training stage in which we explained the
concept of shape featureswith examples using cars andplants. We carefully usedexamples
that would not overlap with features in liquids. Individually, each observer wrote down as
many shape features as possible, a�er which the four observers were instructed to work
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together to pick the most descriptive twenty features. This closely resembles the way we
selected the features ourselves.

Control experiment �: Semantic matching of word lists

In this experiment, eight observers were asked to rate the similarity between our original
word list (A) andnewwords generated in control experiment � (B). The videosof thepouring
liquids were shown to provide some context. For each word in one list, the observer had
to select similar words from the other word list. Observers were not required to choose
similar words if there were none, and amaximum of three similar words for each itemwas
allowed. The similarity of each of the matching words was then rated as ’high similarity’,
’intermediate similarity’, and ’little similarity’. This experiment was performed in both
directions, so wordlist A was matched with wordlist B and vice versa. This enabled us to
judge the similarity between the two word lists.

Control experiment �: Factor ratings

In this control experiment we asked nine observers to rate the four factors (Distribution,
Irregularity, Rectilinearity and Dynamics) directly, instead of the �� features. Apart from
this, the experimental procedure was the identical to the main experiments � and � in
which the �� features were rated.

�.�.� Measurementmodels

�DMotion flowmodel

Kawabe et al. ���� showed that the mean speed of optical flow is highly predictive of
perceived viscosity. To evaluate whether motion cues are able to predict viscosity in our
stimuli, we used the same iterated pyramidal Lucas-Kanademethod (?) to calculate optical
flow. We found that flow speed correlated poorly with perceived viscosity in the pouring
liquids scene (R� = �.��, F(�,���) = �.���, p = �.��). There are at least two possible reasons
for this: first, the liquid was translucent, which could hinder optical flow computations;
second, stimuli of intermediate viscosity tend to fold, which yields strong contours ampli-
fying optical flow in certain ranges of viscosity. Optical flow for the other eight di�erent
scenes and opaque liquids also did not perform very well (R� = �.��, F(�,��) = ��.��, p <.��).
Only when we perform regression analysis for each specific scene do we see that for some
specific scenes optical flow is a good predictor, with an average of R� = �.��, andminima
an maxima between R� = �.�� and R� = �.��. The large variations in performance of the
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motion predictor suggest that the visual system likely uses other cues in addition to speed
to infer viscosity.

�D Image statistics model

Paulun et al. ���� found that twenty simple �D shape statistics derived from the liquids’
silhouette predict perceived viscosity surprisingly well. The statistics include measure-
ments of shape, area, curvature, spatial distribution and perimeter, among others. We
applied the samemeasurements to our stimuli, having excluded frames where there was
not enough liquid (fewer than ��� pixels, i.e, <�.��%of image) and areas with only one-
pixel width (to avoid errors in the contour measurements). Paulun et al. did not apply a
regression but simply took the mean of the normalized measurements. Without fitting
they found themodel predicted perception in their stimuli extremely well (r = .��, p < .���).
We applied the model to the second stimulus set (eight scenes) and found amuch poorer
fit (R� = �.��, F(�,��) = ��.��, p < .���). Like Paulun et al. we used only a single predictor, the
mean of all normalizedmeasurements across our eight scenes. Performing a regression
for each scene independently yield highly variable performance, ranging from R� = �.�� to
R� = �.��. This shows that in some cases simple �D shapemeasurements are su�icient
to predict viscosity very well. However such cues are not flexible or invariant enough to
achieve similar performance across contexts. Generalizing themodel to use all �� features
as separate predictors in a regression (rather than the mean across measurements) yields
R� = �.��, F(��,��) = �.��, p < .���, compared to R� = �.��, F(�,��) = ��.��, p < .��� for our �D
model with only four predictors. The di�erence in performance is likely due to the fact that
the four �Dmeasurements generalize better across scenes and contain less covariance
than the twenty �Dmeasurements.

�D Shapemeasurements model

One advantage of computer-simulated liquids is the generation of detailed �Dmeshes of
the liquids. From these, we derived four �Dmeasurements (Figure C.�) that were loosely
inspired by some of the perceptual features in the regression model. Specifically, (�) mean
absolute curvature weighted by the shape index (Koenderink and Van Doorn, ����), which
emphasizes angular features, (�) the sum of absolute vertical normal coordinates, which
captures the tendency of liquids to form horizontal planes as they spread out, (�) the
vertical position of the centre of mass, which tends to be higher when the liquid piles up,
and (�) total absolute curvature of the liquid, which tends to be large when the surface
has many local convolutions. As the pouring liquids sequence is divided into six periods,
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we compensated for large di�erences in mesh size over time by normalizing the median
value of each feature over the di�erent time periods. This was not necessary for the stimuli
used in Experiment � and � where the entire �� second time sequence was shown and
we could simply take the average measurement value over ��� frames. We did apply
normalisation of each measurement across the scenes. To compare performance with
the other models we applied a multiple linear regression on the second stimulus set with
eight scenes. We find the �Dmodel performsmuch better than the other two (R� = �.��,
F(�,��) = ��.��, p < .���). When we apply the regression separately for each scene the
mean is R� = �.�� across scenes. It is important to note however, that this performance is
achieved even though themeshmeasurements do not correlatewith the perceived feature
ratings across contexts (mean R� = �.��). This means that although a linear combination
of the mesh measurements can explain perceived viscosity relatively well, there is no
direct correspondence between these measurements and the features that our observers
judged.

�.�.� Quantification and statiscal analysis

All experiments were performed in Matlab using Psychtoolbox (v. �.�.��) (Brainard, ����;
Pelli, ����). All analyses were performed in R. The code is publicly available and can be
downloaded here: http://doi.org/��.����/zenodo.�������. All dependencies of external
packages used in R are clearly documented in the code. No observers were excluded from
the analysis.

Factor analysis

We performed a maximum likelihood factor analysis using the R ’psych’ package. To
determine howmany factors there are in the dataset, we applied Horn’s parallel analysis
(Horn, ����). We applied theHarmanmethod to calculate the scores, applying the loadings
to the actual data.

Representational Similarity Analysis (RSA/RDMs)

For a comprehensive description of Representational Similarity Analysis, we refer to [��].
The representational dissimilarity matrices (RDMs) in Figure C.�C were calculated using
the Euclidean distances between observations in the �D factor space, with each dimension
representing one of the factors. The linear regression performed to quantify similarity is

http://doi.org/10.5281/zenodo.1136202


�� Visual features of liquids

performed on the lower triangles of the twomatrices (i.e., diagonal and upper triangle
excluded from analysis).

Principal Component Analysis

To perform PCA on the raw image similarity space (Figure �.�A), we halved the images to
��� x ��� pixels, and converted the images to grayscale using the following conversion
values (�.���� * R + �.���� * G + �.���� * B). The resulting dataset contains ��million
dimensions for each of the �� stimuli (i.e., over � billion observations in total). We include
this PCA data as a separate, comma separated file.

�.�.� Data and so�ware availability

All data, analysis code, and stimuli are available on Zenodo at http://doi.org/��.����/
zenodo.�������. Anyquestions shouldbedirected to theLeadContact (mail@janjaap.info).

http://doi.org/10.5281/zenodo.1136202
http://doi.org/10.5281/zenodo.1136202


Chapter �

Estimating viscosity with neural
networks

This chapter is based on findings in an ongoing project.

In computer vision neural networks are being applied on a wide variety of visual tasks.
Most of the work using DNNs (Deep Neural Networks) is concentrating on predicting a
predefined label with most optimal precision. In visual perception more human aspects
are added to the challenge, introducing human error. Labelling large datasets with human
defined labels is in many cases not an option. Here we investigated if relatively simple
architectures canpredict humanerrors in estimating viscosity of liquidswhilebeing trained
on the physical truth. Perceiving intrinsic properties of liquids is a challenging visual
task because of the complex behaviour and mutable nature of liquids. We simulated a
training set of �million images or ���.��� animated sequences depicting in �� di�erent
scenes with �� di�erent viscosities. The di�erent scenes varied in liquid interactions, e.g.
pouring or stirring, making some liquids easier or harder to interpret. We defined two
networks, one for static stimuli and one for animated sequences of �� frames. In the case
of animated stimuli we applied a slow-fusion technique where parallel pathways with
di�erent temporal inputs slowly fuse into one. We asked observers to rate the viscosity for
a subset of the stimuli. We find that across scenes there are big di�erences in observer
performance. Using Bayesian optimization in combination with the viscosity ratings we
specified the hyper parameters for the network, e.g. kernel sizes, learning rates. This
means that the network is trained using physical viscosity labels but the hyper parameters
optimize towards areperceived viscosity predictions. Previousworkhas shown that next to
motion cues, mid-level shape features are very predictive of human viscosity estimations.
Here we find that both network and human observer show a high increase in performance
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when motion cues are available. This demonstrates that both human observers and
network utilize the same cues to make viscosity estimations. The network presented here
is the best image based viscosity predictor we have encountered so far.

�.� Introduction

In previous chapters we established that the perception of liquids is a very challenging and
intriguing problem. Liquids can have many di�erent appearances because of their highly
mutable shapes, which are visually influenced by internal and external forces. For our
perception we use a wide range of cues, which mostly can be categorized as optical cues,
shape cues andmotion cues. Our visual system reweights the influence of each type of
cue based on the available information in the image. If there is no motion information our
judgments tend to use shape cues, if the motion and shape cues are not very pronounced,
wemight assign more meaning to the optical cues. When estimating viscosity, shape and
motion cues tend to be dominant.

Within the cue groups there are specific features that can be informative of liquid
properties. Optical cue driven features (e.g., color, sub surface scattering, glossiness),
shape cue driven features (e.g., angular, spread, spiraling), andmotion cue driven features
(e.g., optical flow, pulsing, localizedmotion di�erences) provide a very large feature space.
In order to navigate this feature space we need to be able to detect the most informative
features in an image. For our visual system this seems a simple task; we can easily rate
how angular or blobby a shape is. More challenging is to implement this quality in a
model . What correspondences in an image should a model utilize to be able to estimate
blobbiness? Blobbiness is a mid-level concept that can occur localized in various scales
and orientations. Previous �D shape metrics have attempted to capture the essence of
certain shape features, but they did not generalize across contexts. Herewe hope to obtain
more insight using an image based neural network model.

The recent success of convolutional neural networks (CNNs) in predicting visual object
recognition and its neural correlates are very impressive (Khaligh-Razavi and Kriegeskorte,
����; Yamins et al., ����; Güçlü and van Gerven, ����; Cichy et al., ����). This has inspired
many scientists to apply these techniques on di�icult visual tasks. The problemwith most
neural networks is to obtain conclusive results onwhat the network is actually doing, what
it has learned to do, and how to represent this in an understandable manner. The results
presented here are part of an ongoing research project. For nowwe only are able to report
the performance of the model and not yet a thorough analysis of the inner workings of
the model.
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The neural networks were trained on a dataset of ���.��� computer-generated liquids.
The training labels corresponded with the di�erent viscosity steps that were simulated.
We developed two networks: one using static images as input and the other an animation
of twenty frames using a slow-fusion technique (Karpathy et al., ����). Human observers
rated a subset of ��� stimuli and assigned themwith perceived viscosity labels. The net-
work, which trains on physical viscosity labels, was optimized using Bayesian optimization.
The Bayesian optimization was specifically used for optimizing the hyper parameters (e.g.,
learning rate, kernel sizes) for the ��� human labels. This means that the network trained
on physical labels but the architecture is optimized for perceived labels. Training was
relatively short with only �� epochs. When training will be extended the networks tends
to converge on the physical labels and away from the human perceived labels. Observers
showed great di�erences in perceived viscosity across scenes. This is mostly due to the
lack of clear shape cues in the small ��⇥ �� pixel images. The task here is to cause the
network to make similar errors in viscosity estimations.

As the project progresses we hope to identify specific combinations of filter patterns
which correlate with human feature concepts we previously have identified as being very
predictive of perceived viscosity (Van Assen et al., ����). The networks trained here were
provided with labels of the physical viscosity (supervised learning). Human observers
have never been taught these physical viscosity labels (unsupervised learning) and despite
this we are surprisingly good at identifying liquids and their properties in a wide range
of contexts. We would like to emphasize that we identify neural networks as a tool to
gain new insights on high dimensional problems. This doesn’t mean that an accurately
performing neural network solves viscosity perception. We want to learn how neural
networks solve this problem to obtain knowledge on possible workings of our visual
system. The visual systemmight still have very di�erent inner workings or representations
of concepts compared to DNNs (Deep Neural Networks). There may not be one, but many
solutions to viscosity perception, of which the human visual system is the most e�icient
one we have encountered so far.

�.� Methods

�.�.� Stimuli

Large amounts of training data are necessary to properly train neural networks. With
more variation in these training sets networks tend to generalize better across newly
introduced liquid scenes. Here we generated a stimulus set of ten di�erent scenes. Each
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Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Scene 6 Scene 7 Scene 8 Scene 9 Scene 10

Figure �.�: Stimuli overview with in this case the ten di�erent scenes simulated at viscosity step � or �.���
Pa·s. Di�erent liquid interactions were simulated, as pouring, rain, stirring and dipping. Optical material
properties and illuminationmapswere randomly assignedwith thewhite plane and square reservoir staying
constant. See Video D.� for the animated version.

scene had it’s own specific liquid interactions (e.g. dipping, rain, stirring, spraying over
various geometries). Each scene was simulated with sixteen di�erent viscosities steps
from �.��� Pa·s to �� Pa·s (roughly similar to a range fromwater to molasses). Each scene
and viscosity were simulated several times to create the large amount of necessary images.
Parameters such as liquid emitter velocity, emitter direction, initial liquid volumes and
scene geometries that interactwith the liquidwere randomized. This processwas repeated
��� times and of these ��� variations five di�erent render variations were made, changing
illumination maps, optical material properties of both liquid and scene geometries, and
camera position. Twenty sequential frames were rendered providingmoving stimuli of
a �.�� second duration (�� frames per second). This resulted in a training set of ��.���
unique simulations and �million images (�� scenes⇥ �� viscosities⇥ ��� scene variations
⇥ � optical variations⇥ �� frames). Figure �.� shows an impression of the di�erent scenes.
A subset of this set was used for experiments with human observers, ��� in total (�� scenes
⇥ �� viscosities⇥ � scene variations).

Simulation

The stimuli were generated using RealFlow ���� (V. �.�.�.����; NextLimit Technologies,
Madrid, Spain). Viscosity values were selected from a logarithmically spaced scale of
��-steps between �.��� Pa·s and �� Pa·s. The "Hybrido" particle solver was used which
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simulates the dynamic viscosity of the liquids in real physical units (Pa·s). Hybrido is a
FLIP (Fluid-Implicit Particle) solver using a hybrid grid and particle technique to compute
a numerical solution to the Navier-Stokes equations describing viscous fluid flow (Bridson,
����). A meshing algorithm uses the particles to calculate the fluid boundary and creates
a mesh. The density of the liquids was held constant at one kilogram per litre and gravity
was the only simulated external force. The simulated animations had a total duration
of four seconds (��� frames at ��fps). Only the last twenty frames were used for the
final stimuli. Each scene had specific parameters that were randomly assigned for each
simulation. The randomvalueswere drawn frompredefined ranges to limit the occurrence
of artefacts. For example, in some scenes the liquid emitter was changing position during
simulation, where the initial position, size, rotation, and trajectory of the emitter were
randomly assigned. The simulation space for each scene was one cubic meter. The white
container in the scenes was placed on the simulation border making this container �m�

large. The height of the container changed depending on the scene.

Rendering

The renderengineused togenerate the final image frameswasMaxwell (V.�.�.�.�; NextLimit
Technologies, Madrid, Spain). This render engine is build into Realflow ����. The images
were rendered at a ���⇥ ��� resolution where the sampling rate was kept lower than
normal to save time generating the �million images. Because of the lower sampling rate
some noise was detectable. The illuminationmaps were randomly assigned from a set
of ��� light probes, which were normalized and white balanced. The illuminationmaps
came from di�erent sources, some from scientific databases (Debevec, ����; Adams et al.,
����). There were two categories of materials, solids (��) and liquids (��), which were
randomly assigned to the di�erent objects in a scene.

�.�.� Observers

Eight observers participated in each of the four experiments. The average observer age
was ��.� (SD = �.��). Twenty observers were female and twelve observers were male.
All observers reported having normal or corrected-to-normal vision. All observers gave
written consent prior to the experiment and were paid for participating. Experiments were
conducted in accordance with the Declaration of Helsinki and prior approval was obtained
from the local ethics committee of Giessen University. With enough time observers could
participate in two experiments, both the static and themoving condition with stimuli of
the same size. In this case the static condition always was performed first since these
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stimuli contained more restricted information about the liquid. For the ��px condition
this happened six times and for the ���px condition five times, resulting in �� unique
observers.

�.�.� Procedure

Four experimentswereperformed, allwith the sameexperimental setup. Only the stimulus
resolution andmoving/static conditions changed: Experiment �, ���⇥ ��� pixels, static
stimuli; Experiment �, ��⇥ ��pixels, static stimuli; Experiment �, ���⇥ ���pixels, moving
stimuli; Experiment �, ��⇥ �� pixels, moving stimuli. The experimental setup was a Dell
T���� systemwith Matlab ����a (v. �.�.�.������) and the Psychtoolbox library (v. �.�.��)
(Brainard, ����; Pelli, ����). The stimuliwere displayedonanEizoColorEdgeCG��� ��-inch
monitor with a resolution of ���� ⇥ ���� and a gamma of �.�. A training session was
performed toget theobservers acquaintedwith the task and interface. The training session
consisted of four trials in which the maximum andminimum viscosity were included. The
taskwas to simply rate the viscosity, whichwas donewith a horizontal rating bar below the
stimulus. The rating bar marker reacted to the x-position of the mouse. Once the marker
on the rating bar was at the desired position, the observer could confirm the answer by
pressing ’space’ on the keyboard a�er which a new trial was loaded. In total ��� trials
were tested, �� scenes⇥ �� viscosities⇥ � variations. There was no time limit for the trials.

�.�.� DNN Architecture

Convolutional Neural Networks (CNNs) are established as a powerful class of models for
visual recognitionproblems. The last fewyearsmanynewtechniqueshavebeendeveloped
enabling researchers to solve a larger range of visual problems with more precision. The
novelty in thenetworkpresentedhere is that it is designed topredict human-like behaviour
while being trained on physical viscosity labels. With human behaviour wemostly refer
to making similar prediction errors. Figure �.� shows the architectures we applied in
this study. The two networks presented here, for static andmoving stimuli, are not very
deep. More advanced, deeper, networks are able to predict the physical labels of viscosity
better, but are not mimicking human estimations and errors at all. The networks here
were trained using the Linux build of Matlab ����b (v. �.�.�.������).
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Static stimuli

The single-frame architecture is relatively simple. A network dealing with the temporal
domain is more challenging. Therefore the most optimal hyper parameters of the multi-
frame network was used as a base for this single-frame architecture. The only di�erence
was that the parallel pathwayswere removed. Using a shorthand notation the architecture
is C (��, �, �)-R -P -C (��, �, �)-N -P -C (���, �, �)-R -P -F (����)-R -D -F (�). C(f, k, s) is a
convolutional layer with f filters of k⇥ k kernel size and s stride. F (n) is a fully connected
layer with n nodes. P are max pooling layers with �⇥ � regions and a stride of �. R are
ReLU layers as described in Nair and Hinton, ����. D is a dropout layer with a dropout
probability of ��%. The final layer is a regression output layer. The learning rate was set
to �.����e�5, momentum to �.�����, and L� regularization to �e�9. These were the most
optimal settings according to the Bayesian optimization.

Moving stimuli

For the moving stimuli we applied a slow fusion model (Karpathy et al., ����). There are
parallel pathways that slowly fused over time providing the higher layers withmore global
information in both spatial and temporal domains. Each pathway had a specific part of the
image sequence as input. Between the pathways there was an overlap of input images; in
this case for the first convolutional layer the temporal extent T = �with stride � and for the
second convolutional layer T = � and stride �. The third convolutional layer had access
to the full input range of �� frames. The network was trained on continuous labels, not
categorical, therefore a regression output layer was used.

The ��� stimuli of the experiments and scene ��were excluded from the training set
and were used for network validation. Bayesian optimization was used to determine the
optimal settings for the hyper parameters; in this case the learning rate, L� regularization,
momentum, kernel sizes and filters for the three convolutional layers and the dropout
probability of the dropout layer. The Bayesian optimization was fitted to the human labels
of the ��� stimuli. This means that the hyper parameters were set to achieve lowest error
predicting human labels, not the physical viscosity labels. Training was still performed
with the physical viscosity labels. The Bayesian optimization ran for �� iterations of ��
epochs a�er which the most optimal parameter settings were provided.
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Image input (64 × 64 × 3)
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Figure �.�: The two network architectures, one for static stimuli and one for moving stimuli. The hyper
parameters were held constant for both static and moving stimuli networks. The only di�erence is that
with moving stimuli there are parallel convolutional layers that slowly fuse over time. The dropout layer
randomly sets input elements to zero with a ��%probability, against over fitting.

�.� Results

�.�.� ��px vs. ���px

Wewill only report the results of the ��px (pixel) conditions because between the ��px and
���px conditions the di�erences are surprisingly small. Figure D.� (static) and Figure D.�
(moving) show the di�erences and errors between the ��px and ���px conditions. The er-
rors between observers are ��% (static) and ��% (moving); larger than the errors between
the ��px and ���px conditions, which means that the di�erences are far below observer
noise. Another reason not to further report on the ���px conditions is that the neural
networks were only trained on ��px images; resulting in positive performance benefits.

�.�.� Static stimuli

Figure �.� shows the results for Experiment �where static stimuli of a ��px size were rated.
The first observation is that observers do not perceive the viscosity very accurately (R� =
�.��, F(�,���) = ��.��), p < .���). This is not in line with previous studies where observers
were able to estimate viscosity very accurately (Paulun et al., ����; Kawabe et al., ����;
Van Assen and Fleming, ����; Van Assen et al., ����). However, the stimuli used here are
visually muchmore restricted, limiting the amount of clear shape cues. In this case the
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Figure �.�: (A) Viscosity ratings for the �� di�erent scenes with static stimuli of a ��px size. The x-axis shows
the tested viscosity steps (�-��). The y-axis shows the perceived/predicted viscosity steps. The error ribbons
show the standard error of the mean (SEM). Blue lines are human viscosity ratings and red lines are DNN
viscosity predictions. The dotted line shows the physical truth. The DNN was not trained on any stimuli
predicted here, where scene �� (red) was completely le� out of the training set and tests generalization to
other scenes. (B) The x-axis shows the Root Mean Square Error for each of the �� scenes on the y-axis. This is
the error between human observations and the DNN predictions. The dotted line shows the mean error
across scenes.

fluctuations between small di�erences in viscosity are very noticeable which partially is
caused by the low agreement between observers. The agreement is an average of �.�
RMSE to the mean observer, errors of ��% of the total viscosity scale. See Figure �.�A
for a clear overview of observer consistency. Only when we average the ratings across all
scenes we see a better linear fit (R� = �.��, F(�,��) = ��.��, p < .���). This means two things:
(�) observers find it hard to estimate viscosity accurately and consistently for individual
stimuli, (�) averaged across scenes we are able to estimate general changes in viscosity.

The DNNmodel performs very well. The mean prediction error is only �.� RMSE or ��%
of the viscosity step scale. An error of this size on a continuous scale is a very good result.
By just looking at the scene plots we see that the DNN and human observers behave very
similarly. The data plotted here is averaged over the five variations. Figure �.�A shows the
errors between observers and the DNN network for all ��� stimuli. The magnitude of the
DNN errors is small compared to individual observers and the DNN and the observers are
making similar errors as well. Averaged across all scenes and variations the DNN explains
the perceived viscosity extremely well (R� = �.��, F(�,��) = ���.�, p < .���). This network is
not onlymaking similar mistakes for individual stimuli but it predicts the overall perceived
viscosity extremely well.
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The generalization in this network is very good. Scene ��, the scene on which the
network was never trained, shows that the DNN is only performing ��%above the mean
error across scenes (Figure �.�B). The network doesn’t seem to be able to predict the
specific fluctuations of the perceived viscosity, but it is not the worst performer.
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Figure �.�: (A) Viscosity ratings for the �� di�erent scenes with moving stimuli of a ��px size. The x-axis
shows the tested viscosity steps (�-��). The y-axis shows the perceived/predicted viscosity steps. The error
ribbons show the standard error of the mean (SEM). Blue lines are human viscosity ratings and red lines are
DNN viscosity predictions. The dotted line shows the physical truth. The DNNwas not trained on any stimuli
predicted here, where scene �� (red) was completely le� out of the training set and tests generalization to
other scenes. (B) The x-axis shows the Root Mean Square Error for each of the �� scenes on the y-axis. This is
the error between human observations and the DNN predictions. The dotted line shows the mean error
across scenes.

�.�.� Moving stimuli

With moving stimuli we find a big increase in perceived viscosity accuracy (R� = �.��,
F(�,���) = ���.�, p < .���). Figure �.� shows more individual characteristics for each scene,
where scene �, � and � seem to be especially di�icult for viscosity estimation, even with
motion cues. This can be demonstrated by the amount the slope of the linear fit should be
adjusted tomatch the physical truth, which in these three cases is ��%more thanwith the
other scenes. Exluding these three scenes from the regression, the performance increases
substantially (R� = �.��, F(�,���) = ���,p < .���). The overall trend of viscosity, averaged
across scenes, shows a very good fit (R� = �.��, F(�,��) = ���.�, p < .���), clearly the addition
of motion helps to perceive viscosity. Especially when the images are only ��⇥ �� pixels
it is hard to perceive reliable liquid shape information. Individual observers confirm the
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increase in performance. Figure �.�B shows that the agreement across observers is higher
and the errors are lower, diverging to an optimum.

TheDNN shows a similar increase in performance. The network architecture here really
seems to latch onto the additional temporal motion information. Themean prediction
error is only �.� RMSE or �% of the viscosity step scale. Since the network mimics the
humanpatterns even better, and the observers becamemore precise, the network became
better in predicting the physical viscosity as well (R� = �.��, F(�,��) = ���.�, p < .���). It even
outperforms the human observers a bit. Figure �.�B shows the errors between observers
and the DNN network for all ��� stimuli. The magnitude of the DNN errors has decreased
evenmore and the correlation, the similarity of the errors is much better; it outperforms
individual observers. Averaged across all scenes and variations the DNN explains the
viscosity extremely well (R� = �.��, F(�,��) = ���, p < .���). It is impressive how good this
network is showing similar behaviour as human observers. This is a network trained in the
physical truth, the dotted line in the plots and yet it converges on patterns much closer to
human performance.

The generalization is a bit poorer for the moving condition where scene �� has ��%
more error than the mean. The prediction seems especially o� for the first data point, the
runniest liquid, for the other datapoints it almost perfectly predicts the non-monotonic
pattern until viscosity eight. The network still performs worse for other scenes suggesting
that the network still generalizes relatively well.
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Figure �.�: (A) Observer and DNN cosistency with static ��px stimuli. With on the x-axis the correlation and
on the y-axis the Root Mean Square Error in relation to the observers’ mean. This plot demonstrates not only
the magnitude of the errors but the similarity of the errors as well. Blue dots are individual observers, red
dots are individually trained DNN networks and the green dot shows a bootstrapped estimate of random
performance based on ���� random draws. (B) Exactly the same plot only with the moving ��px stimuli
condition.
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�.�.� Optical flow

The stimuli are very restricted in how much visual detail they provide about the liquid.
The images are small and are simulated with a relatively low spatial resolution. A large
proportion of liquid details are not available in comparison with stimuli used in previous
studies (Van Assen and Fleming, ����; Van Assen et al., ����). This is probably the reason
we see such an increase in performance between the static andmoving conditions. This
increase is much larger compared to results presented in Van Assen and Fleming, ����
where both static andmoving stimuli were tested as well. We think this is caused by the
restrictions in resolution, making the shape features less reliable and informative. This
would also explain a much better performance for the moving conditions, where viscosity
estimationsmight relymuchmore on cues that relate tomovement. To test thiswe applied
an optical flow analysis similar to Kawabe et al., ���� to measure the liquid movement in
each stimulus. The optical flowmeasurements are a bit less reliable with these stimuli
since there is quite some pixel noise. To correct this a threshold was used to cut o� very
lowmovement created by the noise, however this might also partially exclude slow liquid
movement.

We performed linear regressions for each scene where the optical flow is fitted with
human performance (mean R� = �.��). When we perform a regression of the optical flow
with the DNN predictions we see a similar result (mean R� = �.��). This is understandable
since the DNN and human ratings are very similar. It is more interesting when we calcu-
late the correlation across the R� values for each scene. This tells us when optical flow
explains performance in- and decreases between the perceived and physical viscosity.
This relationship is much better (r(�) = �.��, p < .��). It is practically the same for the DNN
predictions (r(�) = �.��, p < .��). This indicates that optical flow does explain performance
in- and decreases between the perceived and physical viscosity. This is a clear indication
that observers heavily relied on the motion cues in our motion stimuli. As our network
shows very similar patterns we conclude that our model utilizes the samemotion cues.

�.� Discussion

In this study we tried to train a neural network to predict human performancematching
perceived viscosity to an image. The network is trained on physical viscosity labels but
the hyper parameters are fine-tuned to best match ’human’ characteristics. We asked
observers to rate ��� stimuli in four di�erent conditions, ��px static stimuli, ���px static
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stimuli, ��px moving stimuli and ���px moving stimuli. The network was only trained on
the ��px conditions.

We see very small di�erences between the two stimuli sizes. We expected that certain
shape related features would have been more informative with the larger stimuli. The
liquid simulationsandmeshesweregeneratedwitha relatively low resolution. Possible the
used simulation resolution is not allowing clear localized mid-level shape cues. Because
of this small di�erence we trained the networks with ��px images which resulted in a
positively large performance di�erence during training.

The ten di�erent scenes show nice unique characteristics. The contrast between
performance in scene � and � is quite large, demonstrating a large range of scenes in
which we can estimate viscosity well or not at all. This is especially useful as we want our
model to focus on both mistakes and successes of the human observers. The network
is trained for a relatively short period of �� epochs. If we would continue training, the
network would have converged on the physical training labels and moved away from
perceived human labels. The network performs really well; in many cases it predicts
scene specific characteristics. The variance in performance for each specific stimulus is
quite large. Both DNN and human observers are not very constant, especially in the static
stimuli condition. However, in both static andmoving conditions the DNNoutperforms the
average individual observer errors. It is making smaller mistakes to the observer’ mean
than individual observers. This di�ers with the moving stimuli. The DNN is performing
extremely well, making small or mostly similar errors as human observers (Figure �.�B).
With an overall predictive power of R� = �.�� for static stimuli and R� = �.�� for moving
stimuli. We conclude this relatively shallow network clearly captures some of the human
rating behaviour.

We can use a large range of cues to estimate the viscosity of liquids. Van Assen and
Fleming ���� showed that optical material appearance has little influence on viscosity
judgements, which is mostly a mechanical property. Therefore it is to be expected that
viscosity estimates are mainly driven by mechanical cues. Mechanical cues can be divided
in two groups: shape cues andmotion cues. In our stimuli tested here, the liquid shape
information is scarcely available. This mostly is because of image resolution and liquid
simulation resolution. The performance of human observerswith static stimuli is therefore
not very good (R� = �.��), this is averaged across variations and scenes. We noticed a large
increase of performance when observers rated the moving stimuli (R� = �.��). One could
argue that this is mainly due to the addition of motion cues. Wemeasured the optical flow
of the stimuli and conlcude that optical flow doesn’t explain perceived viscosity directly
(mean R� = �.��). However, optical flow does explain performance in- and decreases
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between the perceived and physical viscosity. This is a clear indication that observers
heavily relied on the motion cues in our motion stimuli.

This study is still an on-going project. The neural network is now described as a black
box that magically predicts perceived viscosity. The next step is to study the specific filter
activations and how they change over time. The kernel sizes of the network are relatively
small. The kernels are the patches that scan through the image. For the first layer they are
only �⇥ � pixels. Therefore at first sight it is very hard to interpret the filter activations
and the temporal domain is making it even more complex. Although at this point we can’t
say much about the internal representations of the network, we can confirm that this is
the best image based viscosity estimation model we have encountered so far.
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Conclusions

Materials are all around us. Every interaction with our surroundings is based on our
knowledge ofmaterials. Whetherwe are typing text on a keyboard, opening a coconutwith
a machete or laying down in a hammock, every interaction is based on our perception of
thematerials surrounding us. To be able to do this properly we need to be able to estimate
material properties: is it so� or hard, sharp or blunt, runny or thick; properties that will
influence our actions. Howour visual system interprets these properties is key: it somehow
decodes all this information from retinal images. We use visual information allowing us to
estimate these properties consistently across many contexts. This information, which is
invariant across contexts, is something we try to determine andmeasure in images. Which
cues make us perceptually constant?

�.� Estimating viscosity

In every study presented here we asked observers to rate or match viscosity. Viscosity is
a physical property of liquids that make it look runny or thick. Water or syrup, paint or
tar; all have large contrasts in viscosity. We are very good in estimating viscosity. When
the visual information on the liquids is of high quality we can estimate viscosity with an
accuracy of ��%. That leaves �% of error for that single observer who was not paying
attention for a few trials. When the detail of the liquids ‘image decreases, we become less
accurate, but by actively switching between di�erent sources of image information, we
are still able to get relatively good estimations. This suggests that not a single process, but
multiple, connected processes allow us to estimate properties and recognize materials.
We are able to actively switch between these processes and combine them for greater
accuracy as well.
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�.� Viscosity constancy

We established that we can estimate viscosity very accurately. It is themore impressive we
achieve this very consistently across a wide range of possible liquid appearances. Not only
for liquids, but for many other material classes, or aspects thereof, we exhibit perceptual
constancy (Maloney and Wandell, ����; Bültho� et al., ����; Tarr et al., ����; Kra� and
Brainard, ����; Anderson, ����; Foster, ����; Motoyoshi andMatoba, ����). We can perceive
viscosity being the same for a liquid that is being stirred in a bowl or smeared out over a
plate. We notice when wine and an unnatural matte blue liquid are of the same viscosity.
To be able to do this our brain needs to use causal inference (Biederman and Gerhardstein,
����; Gilchrist et al., ����; Riesenhuber and Poggio, ����) to keep e�ects of gravity or
scene geometries apart. Across a range of eight di�erent scenes we find that observers
have a constancy of ��%. This was measured between error di�erences per scene and
the mean error across scenes. The main question is: what information do we use that
determines this constancy across scenes. Image statistics are not able to achieve this,
motion alone is not able to achieve this, evenmore advanced �D shapemetrics are not
able to achieve this without an absurd amount of statistical reweighing. We seem to use
higher-level features of shape andmotion that stay invariant across scenes.

�.� Mid-level shape andmotion features

The impression that we heavily rely on mid-level features is gaining momentum in the
field of material perception (Adelson, ����; Anderson, ����; Marlow et al., ����; Paulun
et al., ����). Mid-level features are representations of concepts between low and high-level
features. Low-level features are for example edge or contrast detectors; high-level features
represent objects more in the context of a scene such as denim jeans, toothpaste or if it is
windy. Mid-level features bring us from simple edge activations to the classified toothpaste.
Mid-level features are more localized, regional cues (e.g., surface complexity, piling up or
merging). Di�erent regions of an object can have di�erent mid-level features, only adding
more contexts to interpret the object. We find that mid-level features are very predictive
of perceived viscosity. There are many features that can play a role. Some features might
be more descriptive for one particular scene than other scenes.

We found that a single element, comprised groups of features, can be descriptive of
a wider range of feature habits (e.g., gaps, holes, folding, symmetry, texture, describe
irregularity). Four of these mid-level feature groups could explain ��%of the perceived
viscosity variance across eight completely di�erent scenes. However, this was under the
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strongest statistical restrictions; weights of the four feature groups were derived from
a single scene. It is very acceptable that, on a scene-by-scene basis, we slightly adjust
the weight of the most informative features to make a final estimate. If we allow for this
freedom the ��%quickly rises.

�.� The next step

What do we need to properly measure features in an image? The first challenge was to get
better �D shape estimates from �D images (Binford, ����; Pentland, ����; Biederman, ����;
Feldman et al., ����). Once a shape representation was available, a set of rules, heuristics,
had to be defined by which a feature can be identified. For example spread, which was
measured by calculating the proportion of surface that is pointing up or downwards. It
turns out that with observation of a waterfall we still perceive spread, only now on the
vertical plane and our metric would fail. It is important that these shape heuristics are
invariant to scale, orientation, and can deal with segments of an object as well. Thismakes
it much challenging to come with reliable metrics and requires large engineering e�orts.

Neural networks might provide a di�erent informative perspective, where combina-
tions of image filters are specified, getting activated when specific features are dominant.
These combinations or connections would be able to change pathways depending on dif-
ferent levels of activation, making the systemmuchmore dynamic. We demonstrated that
neural networks can be very predictive of perceived viscosity. It is important to replicate
human patterns of error; we were not looking for the model that predicts the label best,
but searched for a model that can explain human failures: observers misinterpreting the
labels. Only then wemight be able to derive similar features from an image.

These are large steps to make. A nice intermediate step might be to use human obser-
vations of features and try to weigh the importance of these features using characteristics
of the image (e.g., in this specific scene irregularity plays an important role because we
canmeasure large contrasts in frequency information). By going through this process, new
approaches for identifying andmeasuring mid-level features might arise.

Once we are able to quantify this type of information from images, it will have large
implications for future research and technical applications. Applications that might influ-
ence society in a revolutionary manner. It will embed the human quality of generalization
and constancy in technology.
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Chapter �

A.� Supplemental videos

Video A.�

The six di�erent viscosities, related to Figure �.�.
http://www.janjaap.info/dissertation/video_a�.mov

Video A.�

The nine di�erent optical materials, related to Figure �.�.
http://www.janjaap.info/dissertation/video_a�.mov

A.� Remaining rating results for all four variations

A.� Full data set of the naming experiment

http://www.janjaap.info/dissertation/video_a1.mov
http://www.janjaap.info/dissertation/video_a2.mov
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Figure A.�: Showing the liquid property rating results with static stimuli. Error envelopes represent standard
error of the mean.
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Figure A.�: Showing the liquid property rating results with static stimuli of the reversed condition. Error
envelopes represent standard error of the mean.
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envelopes represent standard error of the mean.
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B.� Supplemental videos

Video B.�

Showing the di�erent stimuli of the matching experiments, related to Figure �.�.
http://www.janjaap.info/dissertation/video_b�.mov

http://www.janjaap.info/dissertation/video_b1.mov




Appendix C

Chapter �

C.� Supplemental videos

Video C.�

Stimuli overview, related to Figures �.� and �.�.
http://www.janjaap.info/dissertation/video_c�.mov

Video C.�

Trial examples experiments, related to Figures �.� and �.�.
http://www.janjaap.info/dissertation/video_c�.mov

http://www.janjaap.info/dissertation/video_c1.mov
http://www.janjaap.info/dissertation/video_c2.mov
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Figure C.�: Mean shape feature ratings of Experiment � for all twenty shape features, colour coded by the
factors for which they have the largest weights. Y-axis: viscosity (�� viscosities, from runny �.��� Pa·s to thick
��.�� Pa·s); X-axis: time (six time periods of �.�� seconds or �� seconds divided by six). The shape judgments
generally varied in complex (o�en non-monotonic) ways as a function of viscosity and time period.
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Figure C.�: (A) Mean shape feature ratings of Experiment � for all twenty shape features, colour coded by
the factors for which they have the largest weights. Y-axis: viscosity (� viscosities, from runny �.��� Pa·s to
thick �.�� Pa·s); X-axis: eight di�erent scenes. The shape judgements vary considerably on scene-by-scene
basis, indicating that our simulated scenes capture a wide range of di�erent liquid behaviours. (B) The eight
scenes with an intermediate viscosity (�.��� Pa·s).
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Figure C.�: (A) Correlations between perceptual feature ratings from Experiment �; gray shade indicates
absolute magnitude of correlation, stripes indicate negative correlations. Coloured frames indicate the
four factors; r-values indicate mean absolute correlations between features within each factor, the overall
mean absolute correlation is r = �.��. (B) The four factors that result from applying the factor loadings to
the twenty perceptual features. R� values indicate linear regression between each factor on its own and
the viscosity ratings from Experiment �. The complementary nature of the factors means that each on its
own predicts only a small proportion of the variance, but combined in a multiple linear regression, they
explain ��%of the variance in the viscosity ratings. (C) Representational Dissimilarity Matrices (RDMs) for
the two regression models, derived from the Pouring scene (le�) and the � scenes (right). In each case we
apply factors derived from Experiment � and Experiment � and quantify how similar these factor spaces
are. Colours represent the Euclidean distance between the corresponding pair of stimuli in the respective
factor-space representation. The R�-score indicates the explained variance between the lower triangles of
the twomatrices (i.e., diagonal and upper triangle excluded from analysis).
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Figure C.�: (A) Schematics of the four mesh measurements used in the �D stimulus-computable model,
along with values for all stimuli in the pouring scene (Experiments � and �). A regressionmodel using the
weights below eachmeshmeasurement predicts ��%of the variance in viscosity ratings across all scenes.
(B) Human viscosity ratings (blue) andmeshmodel predictions (mauve) for Experiment � (pouring liquids).
R�-score indicates regression for a model fit only to these data. (C) Human viscosity ratings (blue) andmesh
measurements predictions (mauve) for Experiment � (eight scenes). R�-score indicates regression for a
model fit only to these data.
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C.� Supplemental tables

Shape Feature Description

Symmetrical How symmetrical the shape is

Compactness How tightly arranged the shape is

Clumping Howmuch the shape features distinct clumps

Folding Howmuch does the shape fold back on itself

Pulsing Howmuch does shape change in a rhythmical repeating way

Merging How the shape absorbs into itself

Speed How quickly the shape changes or moves

Spiraling Howmuch does the shape change in a spiral movement or form

Elongated Howmuch is the shape stretched out in a single direction

Texture Howmuch does the surface have variations rather than being smooth

Blobbiness How rounded or bulbous is the shape

Piling up How piled up is the shape

Straightness Howmuch does the shape contain straight features

Complexity How complex is the shape i.e. not simple

Spread How spread out is the shape

Ripples Howmuch does the shape feature ripples

Gaps/Holes Howmuch does the shape shows gaps or holes

Parts Howmuch does the shape consist of multiple parts rather than one single part

Angular How sharp or angular are the features of the shape

Volume How voluminous is the shape

Table C.�: First column showing the twenty di�erent shape features used in Experiment � and �. Second
column showing the corresponding description given as additional information to make it easier to rate the
corresponding feature. The separation in the middle of the table shows the two di�erent feature groups,
each observer only rated ten features out one of these two groups.
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D.� Supplemental videos

Video D.�

Stimuli overview, related to Figures �.�.
http://www.janjaap.info/dissertation/video_d�.mov

http://www.janjaap.info/dissertation/video_d1.mov
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D.� Supplemental figures
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Figure D.�: (A) Viscosity ratings for the �� di�erent scenes with static stimuli of a ��px size (red) and ���px
size (blue). The x-axis shows the tested viscosity steps (�-��). The y-axis shows the perceived viscosity. The
error ribbons show the standard error of the mean (SEM). The dotted line shows the physical truth. (B) The
x-axis shows the Root Mean Square Error for each of the �� scenes on the y-axis. This is the error between
the two conditions (��px - ���px). The dotted line shows the mean error across scenes.
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Figure D.�: (A) Viscosity ratings for the �� di�erent scenes withmoving stimuli of a ��px size (red) and ���px
size (blue). The x-axis shows the tested viscosity steps (�-��). The y-axis shows the perceived viscosity. The
error ribbons show the standard error of the mean (SEM). The dotted line shows the physical truth. (B) The
x-axis shows the Root Mean Square Error for each of the �� scenes on the y-axis. This is the error between
the two conditions (��px - ���px). The dotted line shows the mean error across scenes.
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