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Laser scan micrographs of spleen (upper left) and lymph node (lower right) tissue containing 

fluorescently labelled lymphocytes. Recipient mice were intravenously transferred with 

green-labelled control splenocytes and with purple-labelled splenocytes that had been treated 
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secondary lymphoid organs is dependent on G-protein-coupled receptors, the data confirm the 
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1 Introduction 
 

1.1 Immune system 

During evolution, the immune system developed in order to defend complex organisms against 

invading pathogens. Recognition of the foreign, distinction from self and perception of danger 

are common features shared even by plants and animals. Generic receptors for pathogen-

associated molecular patterns (PAMPs) and unspecific defence mechanisms comprise the so-

called innate immune system, which protects the organism throughout life. However, innate 

immunity cannot distinguish between species of microorganisms and therefore does not have the 

potential to optimise the antigen-specific defence or to mount memory responses. For this, 

vertebrates developed a specific immune system capable of recognising even subtle differences 

between pathogens and adapting its defence in a flexible way to individual challenges. 

Consequently, the specific or “adaptive” immunity continuously evolves along with pathogen 

contacts throughout life, reflecting the personal infection history.  

 

1.1.1 Innate and adaptive immunity 

The innate immune system deploys pattern recognition receptors (PRRs)1 such as Toll-like 

receptors (TLRs) to identify PAMPs including microbial nucleic acids such as single-stranded 

(ss) and double-stranded (ds) RNA and DNA as well as hypomethylated CpG motifs of bacterial 

DNA.2;3 Furthermore, various TLRs recognise components of bacterial cell walls, such as 

lipopolysaccharide (LPS), peptidoglycan, lipoteichoic acid and flagellin (Fig. 1-1). A variety of 

serum proteins and their respective cleavage products, which constitute the so-called 

complement system, provide an effective innate tool to osmotically lyse intruders and infected 

cells. The complement system furthermore opsonises to-be-phagocytosed particles, i.e. marks 

deteriorated cells for degradation by phagocytes. Among leucocytes, the cells of the immune 

system, natural killer (NK) cells are specialised for the destruction of virally infected or 

neoplastic cells, whereas macrophages and different types of granulocytes clean up infectious 

detritus and microbes by ingestion.  
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diacyl  triacyl  dsRNA LPS flagellin ssRNA,  CpG DNA 
lipopeptide lipopeptide imidazoquinoline

NH2
N
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Fig. 1-1: Toll-like receptors and their ligands 

Adapted from: Takeda K, Akira S. Toll receptors and pathogen resistance. Cell. Microbiol. 

2003;5:143-153. 

 

The adaptive immunity, however, is carried out by lymphocytes, which all differ from each other 

with respect to their individual lymphocyte receptors. B lymphocytes, also called B cells, can 

differentiate upon activation into plasma cells that are able to shed their specific B cell receptor 

(BCR) as antibody against invading pathogens. Among B cells, common B-2 cells undergo 

complex maturation steps upon specific antigen encounter to generate highly affine antibodies to 

virtually all foreign proteins, whereas CD5+ B-1 cells show a restricted BCR repertoire focused 

on carbohydrate antigens. Specific antibodies, often referred to as immunoglobulins (Ig), can 

neutralise microorganisms or toxins to prevent infection or harmful effects on cells. Similar to 

complement components, antibodies can opsonise pathogens or infected cells to increment 

elimination by Ig receptor-carrying phagocytes or to enable antibody-dependent cellular 

cytotoxicity of NK cells. Antibodies consist of two heavy and two light chains that show variable 

and constant regions. According to their constant regions, they are classified in isotypes (classes 

IgM, IgD, IgG, IgA, IgE [and IgY in birds and reptiles]) and several IgG subtypes.  

With the help of their individual T cell receptor (TCR), T cells react specifically to a fitting 

antigen presented on self molecules, so-called major histocompatibility complex (MHC) 

molecules. T cells divide into two major groups, the CD4+ T helper (Th) cells and the CD8+ 

cytotoxic T lymphocytes (CTL). Th cells coordinate immune responses by skewing them either 

CD14
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towards type 1, a cellular defence carried out by CTLs, or to type 2, a humoral response in form 

of specific antibodies. According to the former or the latter type of immunity induced, Th cells 

subdivide into Th1 and Th2 cells. Besides immune-stimulatory capacity, some CD4+ T cells 

adopt regulatory functions to mediate tolerance, or suppressive activities to specifically inhibit 

immunity. CD8+ T cells are responsible for the antigen-specific destruction of infected cells.  

The presentation of foreign and degenerated self-derived materials is accomplished by antigen-

presenting cells (APCs), amongst which dendritic cells (DCs) are the most efficient presenters 

while macrophages and especially B cells play minor roles only under certain circumstances. 

Depending on the target cell, subtype and the maturation state, DCs can induce tolerance or 

immunity and thus account for a critical control point in keeping the balance between host 

defence and autoaggression.4;5 DCs digest foreign endocytosed antigens to present oligopeptides 

by MHC molecules of class II. In mice, constitutive expression of MHC class II is restricted to 

APCs, whereas several domestic animals also show spontaneous expression on T cells or various 

endothelia.6 In contrast, virtually all nucleated cells are positive for MHC class I to present 

endogenously degraded cellular peptides. Thus, the peptide spectrum displayed by MHC class I 

molecules continuously mirrors the cellular metabolism and enables the detection of any 

abnormalities due to microbial infection or neoplastic transformation. According to their crucial 

role in foreign and cellular antigen presentation, MHC molecules control elimination of 

degenerated cells and rejection of transplanted tissues, which led to their given name. 

Importantly, adaptive immune responses induce abundant proliferation of antigen-specific 

lymphocytes to generate high amounts of short-lived effector cells, but simultaneously reserve a 

small fraction of differentiating B and T cells to become potentially long-lived memory cells. 

Thus, the adaptive immunity prepares for specific and fast defence upon re-encounter of 

pathogen.  

 

1.1.2 Immune cells communicate in a language of cytokines 

The communication between cells is achieved by secretion of cytokines, small soluble mediators 

that act in paracrine or sometimes autocrine fashion on their target cells. Cytokines are classified 

into major groups according to their cells of origin, targets and effects. Typically, the cytokine 

groups of interferons (IFNs), haematopoetins (including many interleukins (ILs)), the tumor 

necrosis factor family and chemokines are distinguished.7 Production and release of cytokines as 

well as expression of their corresponding receptors are tightly regulated and characterise 

individual stages of development or activation. Many cytokine receptors share subunits, which 

can signal diverging functions according to their combination.8 Both cytokines and their 
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receptors show pleitropism, i.e. exert different effects (on distinct cell types), and redundancy, 

i.e. their functions can overlap. Whereas most cytokines carry out functions on a rather limited 

target cell spectrum, the antiviral interferons can be sensed by virtually all non-immune tissues, 

too.  

Cytokines can mediate stimulation of lymphocytes. To guarantee the very close contact of about 

15 nm required for specific stimulation of target cells during immune responses, the reacting 

cells stick together tightly with the help of adhesion molecules such as lymphocyte function-

associated antigen (LFA) and so-called costimulatory molecules and form a communicating 

interface, the immunological synapse.9 Communicating cells then recruit cytokine receptors to 

the immunological synapse at the leading edge of the cell to efficiently take up secreted factors.  

 

1.1.3 Links between the innate and adaptive immune system 

Traditionally, innate and adaptive immune systems were considered independent branches of 

host immunity. This view has to be revised considering growing evidence that shows multiple 

links between innate and adaptive immunity.10 Macrophages, for example, play an important role 

in the unspecific elimination of degraded cells and can also present foreign antigens to 

lymphocytes in order to elicit specific immunity. DCs are professional APCs that recognise 

PAMPs and induce the vast majority of adaptive immune responses, and at the same time secrete 

a panel of cytokines and chemokines, which stimulate B and T cells as well as NK cells and 

neutrophils. Due to generic induction upon virus infection, upregulation of MHC class I 

expression on all cells and stimulation of NK cell activity, type I IFN was regarded part of the 

innate immune system.11 However, type I IFN is nowadays considered a crucial link to adaptive 

immunity10 since it also regulates multiple functions of lymphocytes, as will be discussed in this 

work.  

Taken together, the general and specific defence cooperate tightly during immune responses, 

with an emphasis on innate resistance during the first days before adaptive mechanisms set on. 

Upon recall infections, the kinetics are accelerated and specific memory takes over the main 

responsibilities already after few days.  

 

1.1.4 Chemokines and chemoattractants guide cell movements  

In contrast to conventional cytokines, chemokines determine cellular migration and localisation. 

Chemokines usually act in gradients set up by secreting cells to control physiological processes 

or inflammation.  
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Therefore, homeostatic and inflammatory chemokines can be distinguished,12 albeit their 

functions do partially overlap. Chemokines can be produced constitutively in lymphoid organs 

and specialised high endothelial venules (HEV) to provide a selective milieu, which initiates the 

formation and controls the organisation of lymphoid tissues by attracting naïve circulating 

lymphocytes.13 Following infection, it is the expression of inflammatory chemokines by 

endothelia and by migrating immune cells that actually recruits activated lymphocytes and other 

immune cells to infiltrate infected tissues and to cause inflammation.12  

Chemokines (chemokine receptor ligands) comprise a growing family of more than 50 small 

proteins, classified into four subfamilies according to the position and distance (X) of the first 

two cysteine (C) residues (XCL, CCL, CXCL or CX3CL). At least 17 chemokine receptors have 

been identified that are characterised by seven transmembrane domains and intracellular 

signalling coupled to G proteins. Most receptors bind to more than one ligand and some 

chemokine ligands show receptor redundancy. Several chemokines are important for guiding 

mature lymphocytes: CXCL12 binds to CXCR4 and plays essential homeostatic and 

inflammatory roles in B cell development,14;15 generation of secondary lymphoid organs 

(SLOs)13;16 and plasma cell localisation.13;17;18 CXCL13, also called B zone chemokine due to its 

expression in B cell zones of SLOs, binds to CXCR5 to organise SLOs and control encounter of 

antigen-specific B cells with attracted T cells.16;19;20 Finally, CCL19 and CCL21, which are also 

termed T zone chemokines, bind to CCR7. They are constitutively expressed in T cell zones and 

HEV to allow for immigration of DCs and lymphocytes into their corresponding sites within 

SLOs.13;16;19-22   

Apart from classical chemokines, in the last years small phospholipids were recognised to 

participate in cell guidance. An emerging role concerning lymphocytes was identified for 

sphingosine-1 phosphate (S1P) that is produced during physiological cell metabolism and acts as 

an intracellular messenger.23 Apparently, in mammals, some cells secrete large amounts of S1P 

so that a steep concentration gradient from micromolar levels in blood to nanomolar levels in 

lymphatic organs and lymph is established.21;24;25 This abrupt S1P gradient controls T cell egress 

from thymus and lymph nodes (LN) and also licences circulation of B cells.26-29 S1P binds to 

five receptors (S1P1 to S1P5) that were originally discovered for their roles in endothelial 

differentiation.27 Indeed, S1P3 has been identified to regulate cardiovascular development and 

chronotropic functions.30 S1P1 is expressed on lymphocytes and crucially controls B and T cell 

circulation.27-29 In contrast, S1P4, which was also found to be expressed on leucocytes, regulates 

T cell proliferation and cytokine secretion, but has not been implicated in mediating cell 

movements, so far.31 Of note, S1P1 is rapidly downregulated in presence of high ligand 

concentrations, suggesting that S1P does not act via progressive diffusion gradients such as 
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conventional chemokines.32 In line with this, upon in vitro studies, S1P was hardly found to 

induce any B lymphocyte migration, which possibly reflects complete desensitisation of S1P-

exposed cells. Instead, S1P-induced signalling might rather enable further steps including 

diapedesis through vessels and thus might licence egress from lymphoid organs.  

Another lipid metabolite with a potential role in lymphocyte migration is lysophosphatidyl 

choline (LPC). Some reports demonstrated that LPC can induce in vitro-chemotaxis of activated 

T cells,33 suggesting to contribute to T cell motility during immune responses. LPC binds to its 

specific receptor G2A expressed on activated T cells and macrophages.  

Furthermore, lymphocytes were found to carry LPA2, one of three receptors for lysophosphatidic 

acid (LPA).34 However, it remains to be determined whether LPA can exert effects on 

lymphocyte migration.  

 

1.1.5 CD molecules and immune nomenclature 

Surface proteins of leucocytes determine the cellular reactivity. Various different receptors are 

used as so-called cluster differentiation (CD) molecules for cell and subtype classification. Due 

to historic reasons of identification, most CD molecules have several alternate denominations 

according to their functions. Generic CD molecules used for classification show identical or 

similar distribution among mammal species, whereas the expression of activation markers can 

differ to large extents between mice and humans.  

Frequently, there are several alleles for one protein gene. The encoded allotypic proteins 

(allotypes) can be distinguished by the use of allotype-specific antibodies. According to current 

nomenclature in murine immunology, the allotype 2 is expressed by normal immunocompetent 

C57/BL6 (BL/6 or wild-type) mice. Several mouse lines are available, which carry allotype 1 

either on BL/6 or on other backgrounds. Similar to genetically identical “syngeneic” animals, 

those mouse lines, which differ in only one allotype marker, do not reject transplanted grafts of 

the other allotype. They are therefore called “congenic” mice. For BM reconstitution of BL/6 

mice, the pan-leucocyte marker CD45.2 can be deployed to distinguish recipient-derived white 

blood cells from CD45.1+ donor leucocytes.  

CD45R, usually called B220, is only expressed by murine B cells and is therefore used as a B 

cell-specific marker in mice. In contrast, in the human system, it does not exhibit B lineage 

specificity. In the last years, however, a novel population of plasmacytoid DCs (pDCs) was 

discovered in murine blood and lymphoid tissues that also expresses B220.35-39 Due to the 

extremely rare frequency of these pDCs in blood (less than 0.5% in BL/6 mice)39 and the very 
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high B220 expression on murine B cells, B220 is still widely used for the detection of murine B 

cells. Alternatively, CD19 is a specific marker for B cells that is expressed since very early 

developmental stages. However, CD19 shows slightly reduced expression as compared to B220. 

Both proteins are possibly involved in B cell receptor (BCR)-signalling.  

A common marker for T cells is CD3, a hetero-tetrameric adaptor protein composed of single γ 

and δ chains and two ε subunits that participate in T cell receptor (TCR)-signalling.  

In contrast to CD3, the T lymphocyte subset markers CD4 and CD8 show high expression on the 

respective cells. CD4 essentially stabilises the engagement of peptide-bearing MHC class II 

molecules with a suitable TCR and therefore restricts T helper cells to recognise MHC class II-

presented antigens. Similarly, CD8 allows the firm engagement of the corresponding TCR with 

antigen-presenting MHC molecules of class I.40 Since MHC class I show broad expression 

throughout the organism, cytotoxic T cells can be generated to specifically eliminate nearly all 

kinds of cells, whereas T helper cells can communicate only with a limited repertoire of immune 

cells.  

 

1.1.6 Development of lymphocytes 

The majority of leucocytes develop in fetal liver and in bone marrow (BM) of platitudinous 

bones, although maturation steps can follow in the peripheral tissues of their final destination. 

For example, circulating monocytes differentiate into tissue macrophages once having left the 

bloodstream. Lymphocytes, however, show developmental specialties and species differences. 

The origin of B cells was first discovered in birds in the unique avian organ bursa Fabricii, for 

which they were denominated “B” cells. In mammals, however, B cells develop entirely in BM. 

On the contrary, T cells spend only very early stages in BM to continue their subsequent 

maturation in thymus. Notwithstanding, in ruminants, some Peyer´s patches were also shown to 

host developing lymphocytes.6 All sites, where lymphocytes develop, are termed primary 

lymphoid organs.  

In BM, leucocytes as well as erythrocytes originate from CD34+ haematopoietic stem cells, 

which give rise to common lymphoid and myeloid precursor cells (CLP and CMP). They localise 

within specialised niches of the spongiosa meshwork, lined by stromal cells to nourish and 

control developing cells. Stroma-derived flt3 ligand and IL-7 induce c-kit+ CLPs to proliferate 

and develop into B cells. Intermediate B cell developmental stages are classified by expression 

of surface proteins and lineage markers such as CD19 and surface IgM (sIgM) 41 into pre-

progenitor (pre- pro-) B cells, pro-B cells, pre- B cells, immature and mature sIgM+ B cells.  



1 Introduction 21 

CXCL12, which was formerly termed stroma-derived factor-1 (SDF-1), retains developing B 

lymphocytes (and granulocytes) first at the endosteum and later in sinusoids along stromal 

processes of BM.42 To finally get access to circulation,43 mature B cells partially downmodulate 

CXCR4, the receptor for CXCL12. Besides, they upregulate CCR7 and regain the transiently lost 

expression of CXCR514 to prepare for subsequent circulation. Homeostatic expression of type I 

interferons in BM regulates B cell development,44;45 possibly via controlling the expression of 

CXCL12.46  

According to the crucial role of CXCL12 for BM retention, the development of CLPs into T cells 

is determined by lack of CXCR4 expression on a part of CLPs.47 Ectopic expression of CXCR4 

even abolishes normal T cell development and leads to hypoproliferative T cell lymphopenia.48 T 

cell precursors are released into blood to continue maturation in thymus. Once having reached 

tymic cortex, CD4- CD8- double-negative T cells transiently express CXCR447;49 and 

differentiate into CD4+ CD8+ double-positive thymocytes. Hereby, they undergo a stringent 

positive selection process to guarantee self-tolerance of the arising TCR repertoire. After having 

developed into CD4+ or CD8+ single positive T cells in thymic cortex,50;51 T cells pass a negative 

selection programme and downregulate CXCR4.47 Guided by other chemokine receptors such as 

CCR4,52 surviving, i.e. non-autoaggressive T cells cross the cortico-medullary junction53;54 to 

complete maturation for about two weeks in thymic medulla. Therein, CD4+ and CD8+ T cells 

begin to acquire high levels of L-selectin (CD62L) and increase massively the expression CD69, 

which probably mediates T cell retention in thymus.55 Consequently, to allow for release into 

blood, fully matured thymocytes downregulate CD6929;55 and finally pass the medullary 

endothelium via CCR756 and S1P1.28;29 

 

1.2 Lymphocyte circulation 

Lymphocytes dispose of numerous receptors, whose expression is well-controlled and strongly 

correlated to their maturation and activation stage.14;17;18;28;47;57;58 Mature lymphocytes enter 

bloodstream and start their life-long recirculation through vessels and lymphoid tissues. B-1 cells 

home directly to pleural and peritoneal cavities, where they set up a first-line defence against 

invading pathogens.  

To enable the encounter of the immunologically naïve B and T cells with their individually 

fitting antigen, lymphocytes have to routinely screen those sites, where antigens are presented. 

Only in secondary lymphoid organs (SLOs), i.e. spleen, lymph nodes (LNs) and various mucosa-

associated lymphoid tissues (MALT) such as Peyer´s patches (PPs), a sufficiently high 

throughput of B and T cells is organised. This facilitates the rare encounter of the less than a 
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dozen antigen-specific lymphocytes with their antigen. Furthermore, SLOs provide a 

sophisticated unique compartmentalisation, which guarantees coordinated B and T cell 

responses.8  

 

1.2.1 Structural differences between lymph nodes and spleen 

Lymph collected from tributary tissues in several afferent lymphatic vessels flows into the LN 

via the subcapsular sinus and diffuses into the LN cortex (Fig. 1-2). Therein, B cell zones (BZ) 

and T cell zones (TZ, also called paracortex) can be distinguished. The BZ is represented by 

primary follicles, where naïve B cells pass through to screen for antigen, and by secondary 

follicles with an ongoing B cell response in so-called germinal centres (GCs). Follicles 

furthermore contain follicular DCs (FDCs), tingible-body macrophages and very few CD4+ Th 

cells (see also Fig. 1-5). Follicles are surrounded by the paracortical TZ, in which many CD4+ Th 

cells, some less CD8+ Tc cells and interdigitating DCs are present. Circulating lymphocytes enter 

via specialised high endothelial venules (HEV) present in the paracortical region.  

LN medulla is composed of medullary cords, which can host plasma cells, and medullary sinuses 

that coalesce to form the efferent lymphatic vessel, through which activated T lymphocytes and 

plasma cells finally return to circulation via the ductus thoracicus.8 Porcine LNs, however show 

an inverse organisation, in which cortical and paracortical regions concentrate around afferent 

vessels, surrounded by the medulla areas.6 The organisation of MALT resembles LNs and shows 

only slight variations according to the hosting organ.8  

 

Fig. 1-2: Organisation and function of peripheral lymph nodes 

Source: Goldsby RA, Kindt TJ, Osborne BA, Kuby J. Immunology. Fifth Edition. New York: 

W.H. Freeman and Company; 2003. 
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The spleen shows an independent and complex organisation that varies to some extent between 

species.59 Splenic red pulp represents a unique compartment of partially open blood circulation 

through blind ending sinusoids. It belongs to the vascular system, albeit it regularly hosts some 

plasma cells.60  

Splenic white pulp is organised along arteriolae centrales (AC) surrounded by periarterial 

lymphatic sheaths (PALS) that constitute the splenic TZ (Fig. 1-3). Usually associated with 

ramifications of arterioles, the splenic BZ appears as follicles with germinal centres (GC) within 

or growing out of the TZ. A so-called marginal zone (MZ) surrounds the BZ and the PALS and 

marks the border to the red pulp. Additionally, so-called marginal sinuses (MS) can be 

interspersed between MZ and BZ or TZ. In splenic sections, murine white pulp appears as round 

or longitudinal elements that can be distinguished macroscopically by its pale colour and 

microscopically by absence of erythrocytes and high cellular density.8  

 

 

Fig. 1-3: Structural organisation of the spleen 

Source: Paul, W.E. Fundamental Immunology. Fourth Edition. Philadelphia: Lipincott-Raven; 

1999. 

Red pulp MZ MZ: Marginal zone 
MS: Marginal sinus 
 BZ 

GC  
White pulp: 
 AC BZ: B cell zone 
GC: Germinal centre TZ 

MS TZ: T cell zone 
AC: Arteriola centralis 
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1.2.2 Entry into SLOs follows the multi-step model of leucodiapedesis 

Except for red pulp, the vascular component of spleen, SLOs tightly regulate their access to 

white blood cell areas. Due to the anatomical differences of spleen, which lacks HEV, we will 

introduce an immigration concept focussing on mechanisms deployed by LNs and PPs. 

Lymphocyte entry into SLOs is termed “homing” and represents a multistep process of 

extravasation, so-called leucodiapedesis, which involves molecules on lymphocytes as well as on 

HEV (Fig. 1-4).61-63  

L-selectin mediates the first loose contact of lymphocytes with endothelium in form of cellular 

protrusions, so-called tethers. Tethering and rolling on HEV gradually slow down lymphocytes 

against strong shear forces in blood.64;65 L-selectin is recognised by a heterogeneous set of 

proteoglycans termed “peripheral node addressin” (PNAd)66 in LNs or binds to MAdCAM-1 in 

PPs.67 Secondly, the lymphocyte integrins αLβ2 (LFA-1 or CD11a/CD18), α4β1 (VLA-4 or 

CD49d/CD29) or α4β7 (in PPs) start binding to vascular adhesion molecules, including ICAM-1, 

ICAM-2 and ICAM-3, VCAM-1, MAdCAM-1 and fibronectin,68 and initiate adhesion to 

endothelia. However, integrins of naïve lymphocytes show only low affinity and require 

triggering of G protein-coupled receptors (GPCRs)63;69 to change into the activated high-affinity 

conformation. Hence, in a next step, cell-membrane linked chemokines CCL19, CCL21, 

CXCL12 and CXCL13 (in PPs), which are either directly produced in HEV70-72 or transcytosed 

from nearby stroma,73;74 bind to their corresponding receptors CCR7, CXCR4 and CXCR5 on 

naïve lymphocytes.14;16 Chemokine receptor signalling then induces integrin-mediated firm arrest 

between lymphocytes and HEV.75-77 S1P1 might further contribute to amplify integrin 

activation.26 Finally, lymphocytes cross HEV and start migrating along chemokine gradients 

within SLOs stroma.  

 

Fig. 1-4: The multi-step model of leucodiapedesis 

Adapted from: Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-

specific lymphocyte homing. Curr Opin Immunol. 2000;12:336-341. 
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In spleen, additional migration and adhesion features exist according to the complex structure 

and abundant species differences. Some anatomically-focussed studies have even hypothesised 

the existence of open access without sinus- or MZ-endothelium.78 Importantly, however, homing 

into splenic white pulp can be inhibited by treatment with pertussis toxin (PTX) that abolishes 

GPCR-signalling, and therefore follows the general multi-step model of leucodiapedesis.79  

In certain cell subsets and under inflammatory conditions, several other molecules can mediate 

adhesion, such as the heterogeneous group of L-selectin ligands,80;81 CD44,82 CD4383 and 

vascular adhesion protein-1.84 Furthermore, receptor-ligand combinations can be 

interchangeable, so that contributions vary with the cell subset, activation stage and target 

organ.85  

 

1.2.3 Microhoming within SLOs generates specialised compartments to mount 

immune responses  

Despite structural differences, all SLOs are composed of B cell follicles and T cell zones. These 

highly-organised compartments are generated and maintained by local expression and balanced 

responsiveness to chemokines CXCL13, CCL19 and CCL2113;20;21;86 and cytokines TNF-α and 

LT-α1β2
87;88 that either nourish FDCs or attract the different immune cells. Thus, the coordinated 

contact between APCs and lymphocytes, which is required to initiate adaptive immune 

responses, is achieved. Once being primed efficiently within SLOs, activated B and T cells 

change their receptor equipment.17;57 This enables them to immigrate into non-lymphoid organs 

or home to poorly-organised tertiary lymphoid tissues to carry out effector functions. In contrast 

to memory cells, which reside in splenic red pulp and LN medullary cords, the majority of 

plasma cells localises in BM and at mucosal surfaces.17;60 Naïve lymphocytes, which have not 

encountered their specific antigen, recirculate and home to the next LN.  

In spleen, a unique subset of CD21highCD23low B cells (MZB) localises in MZ and does not 

participate frequently in recirculation. Long-term retention of these MZB cells is mediated by 

integrins αLβ2 (LFA-1 or CD11a/CD18) and α4β1 (VLA-4 or CD49d/CD29),89 which bind to 

stromally expressed ICAM-1 and VCAM-1. Due to the efficient perfusion of spleen and the 

immediate contact between MZ and red pulp, MZB cells and the also resident metallophilic 

macrophages easily scavenge circulating antigens and hence constitute an important first-line 

defence to viraemic and bacteriaemic infections.90 IgM+ B memory cells91 and bacterial or 

autoantigen-specific B cells furthermore preferentially localise in the MZ.  
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1.2.4 Induction of humoral immunity 

Pathogens encountered in the periphery are taken up by DCs and brought to LNs or MALT. 

During their migration, DCs undergo a maturation characterised by upregulation of MHC class II 

and costimulatory molecules CD80 and CD86 to efficiently process and present antigen. 

Expression of CCR7 directs DCs to TZs where they screen for T cells and provide a supportive 

cytokine milieu. Antigen-specific CD4+ T cells form an immunological synapse9 with APCs via 

LFA-1–ICAM-1, CD2–CD58 or DCSIGN–ICAM-3 and are then activated by the concomitant 

engagement of the TCR to antigen-presenting MHC class II molecules and by binding of CD80 

and CD86 to CD28 on T cells. Directed by the cytokine pattern secreted by APCs, activated T 

cells differentiate into Th cells, which in turn start to screen for antigen-specific B cells.  

Three signals, namely i) cytokine stimulation, ii) BCR engagement with APCs within the 

immunological synapse9 and iii) costimulation via CD40 and B7-H2 on B cells with CD40 

ligand (CD40L) and ICOS (inducible costimulator protein), respectively on T cells, activate B 

cells to form proliferating foci of plasmablasts at the TZ-BZ boundary. These blasts either 

differentiate into short-lived plasma cells or enter follicles via CXCR5 to initiate the germinal 

centre (GC) reaction. Being still in extrafollicular locations or already within the GC, IgM+ B 

cells switch their isotype to IgG, IgA or IgE.92 This switch continues for weeks p.i. and is 

controlled by Th cells or T cell-independently by the DC-derived cytokines “B lymphocyte 

stimulator protein” (BlyS, also called BAFF) and APRIL,93 “a proliferation-inducing ligand”.94  

 

Fig. 1-5: Cells and compartments forming the germinal centre 

Source: Wolniak KL, Shinall SM, Waldschmidt TJ. The germinal center response. Crit Rev 

Immunol. 2004;24:39-65.  



1 Introduction 27 

The few GC founder B cells start multiplying massively and displace resident follicular B (FOB) 

cells so that a “mantle” is formed (Fig. 1-5). Follicular Th cells drive B cell proliferation to 

achieve B cell doubling times of 6-10 h. FDCs continuously present antigen to allow for Ig 

affinity maturation by a process called “somatic hypermutation”, which is largely restricted to 

the unique environment of the GC. Random point mutations are introduced into the variable 

parts and especially into the complementarity-determining regions (CDR) of the bcr genes. 

Subsequent RNA-editing can further contribute to somatic hypermutation.95 Thus, the antigen-

binding pockets of the antibody are progressively optimised. Those B cells, whose BCR looses 

affinity during somatic hypermutation or evolves autoaggressive, cease proliferation and undergo 

apoptosis. Therefore, the murine GC exhibits a dark zone of cycling centroblasts and a light zone 

of arrested and dying centrocytes, which are eliminated by so-called “tingible body 

macrophages”. Possibly controlled by OX40-OX40 ligand, highly affine B cells differentiate into 

long-lived plasma cells, which localise in BM, or into memory B cells that remain in SLOs. 

There, they await for repeated antigen encounter and to launch recall responses in the GC. In 

conclusion, the GC fashions the B cell repertoire.92  

Those microbes, which have gained access to circulation, are filtered in splenic MZ and are 

subsequently presented to MZB cells by resident DCs and macrophages. MZB cells are 

specialised to quickly carry out T cell-independent IgM and IgG responses96;97 and to initiate the 

early plasmablast wave during the first three days.90 Due to their limited size, viruses can even 

reach the follicles and trigger FOB cells.97 In general, GCs can be founded by both FOB and 

MZB blasts; however, the majority of MZB blasts remains in the MZ as plasma cells to facilitate 

IgM and IgG-mediated opsonisation of circulating pathogen.97  

 

1.3 Peripheral blood lymphocyte numbers and lymphopenia 

 

1.3.1 Clinical aspects affecting physiological lymphocyte numbers  

The vast majority of peripheral blood lymphocytes are naïve B and T cells, whereas activated 

effector cells and immature lymphocytes account for only very minor percentages. In clinical 

laboratory diagnostics, lymphocytes are indicated in the differential blood count in percentage of 

total leucocytes. Physiological blood leucocytes levels vary among most domestic animal species 

between 6 to 12 x 106 cells/ml (Tab.1-1). Usually, cattle have a lower, small carnivores an 

intermediate blood count and pigs can show up to 20 x 106 leucocytes/ml. With respect to the 

percentage of lymphocytes of all peripheral blood leucocytes, domestic animals are classified in 
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two groups of an either lymphocyte or neutrophil–dominated differential blood count. In mice, 

we find absolute leucocyte numbers of 4-10 x 106 leucocytes/ml of which 60-85% account for 

lymphocytes, depending on the strain.98 Absolute numbers of 6-8 weeks old BL/6 mice in this 

study ranged between 1600-4000 B cells and 400-1200 T cells per µl (personal observations).  

 

Tab. 1-1: Leucocytes and lymphocytes in the differential blood count of domestic animals 

Species98 Dog Cat Horse Cattle Swine Mouse Human 

(adult)99 

Leucocytes [106/ml] 6-12 6-11 6-10 4-10 10-20 4-10 4-9 

Lymphocytes [%] 13-30 15-

30 

13-30 45-60 50-85 approx. 

60-85 

25-40 

 

Variations of blood lymphocyte counts within one species can be due to physiologic and 

pathologic conditions. Physiologic factors comprise age, gender, breed, excitement or stress and 

the endogenous cortisol levels, whose secretion underlies the circadian biorhythm set up by the 

hypothalamic-pituitary-adrenal axis.100 Due to circadian secretion of cortisol, the levels of 

circulating lymphocytes peak at day and reach a minimum in the night. The stress-related 

endogenous messengers epinephrine and cortisol exert short and long-term effects on leucocyte 

numbers. Stress immediately increases numbers of lymphocytes and neutrophils, but causes 

lymphopenia one hour later or upon prolonged exposure.100-103 In experimental immunology, BM 

reconstitution following lethal irradiation leads to anaemia-induced proliferation of both red and 

white blood cells, yielding more than five times higher B and T cell counts (personal 

observations). 

Variations in lymphocyte numbers of up to factor 2 lie within the physiologic range and can 

occur easily between outbred individuals, i.e. the majority of domestic animals. However, 

alterations of about factor 10 indicate severe pathological conditions. An abnormal increase of 

lymphocyte numbers is called lymphocytosis that can occur upon chronic infections or in 

leukaemic leucosis, among many others. Massive reduction of blood lymphocyte numbers, 

termed lymphopenia, often goes along with further symptoms of disease and can be the 

consequence of hypoproliferation, for example following toxic or neoplastic suppression of BM, 

or of increased cell degradation due to lymphocyte infections, such as theileriasis. In absence of 

specific symptoms, however, lymphopenia is classically considered in Laboratory Medicine as 

an early marker for recent viral infection and serves to rule out differential diagnoses.98  
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1.3.2 Lymphopenia during early viral infection  

Early viral infection of animals and humans is often associated with a profound redistribution of 

lymphocytes within the organism long before onset of clinical symptoms.98;104A well-known 

feature of the incubation time is a prominent, but transient lymphopenia in blood. Besides blood, 

the decrease in number of lymphocytes also affects lymph and cerebrospinal fluid 105;106, and was 

suspected to be consequence of lymph node “shut down” of efferent lymph. In some cases, “BM 

depression” of lympho- and myelopoiesis is observed as early inflammatory reaction of the 

haematopoetic system107 and can go along with enhanced output of immature lymphocyte 

precursors, leading to a left shift of the lymphocyte lineage in blood.46  

Previous experimental studies in mice infected with virus or treated with pathogen-mimicking 

TLR ligands attributed lymphopenia in blood and lymph to effects of cytokines, especially type I 

IFN,105;108 rather than the administered agents themselves.108 In line with this, lymphopenia is 

reported as a common side effect of human IFN-α/β therapy of multiple sclerosis, chronic 

hepatitis B and C and various neoplasias including hairy cell leukaemia, multiple myeloma and 

malign melanoma.109-111 Furthermore, lymphopenia is also observed in the rather novel IFN-ω 

treatment of FIV and/or FeLV infection and of canine parvovirosis (Virbagen IFN-ω package 

insert).112 Similarly, treatment with IFN-α, IL-2, TNF-α109 IL-12113 and various chemical 

compounds, including the clinically used immunosuppressant FTY720,27 were also reported to 

cause a reduction of lymphocytes and other leucocyte subsets in patients´ blood.  

In face of the largely unknown lymphocyte homing during lymphopenia,114 several reports found 

a redistribution of leucocytes within SLOs following viral infection or challenge with the TLR 

ligand poly(I:C).108;115 In essence, however, the mechanism of lymphopenia, lymphopenic 

homing and the cellular targets of cytokines and other factors remain elusive. 

 

1.4 Interferons  

 

1.4.1 Classification of interferons  

Interferons (IFNs) were discovered on the basis of their antiviral activity116 and are classified in 

two distinct families, IFN-α/β (or type I IFN) and IFN-γ (or type II IFN) by primary sequence 

homology, use of distinct cell surface receptors and direct induction upon virus infection or 

during immune responses. 117;118  
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Type I IFN includes small peptides derived from up to 13 genes for IFN-α and one for IFN-β, 

depending on the species. Type I IFN further comprises IFN-δ in swine, IFN-κ, IFN-τ, IFN-ω 

and a factor known as limitin or IFN-ζ,45 which are induced locally and play specialised roles 

such as IFN-κ in keratinocytes119 and the trophoblast-derived IFN-τ and IFN-ω6 that exert anti-

luteolytic activity.45;120 For therapeutic applications, natural interferons were modified 

chemically to prevent the quick renal excretion of small peptides. This led to the generation of 

so-called pegylated type I IFN that shows long-lasting effects in clinical use. 

Type I IFN binds to the heterodimeric IFNAR composed of an α-chain, which is essential for 

signalling, and a β-chain. Expression of IFNAR was described to be moderately subjected to 

circadian biorhythm.121  

 

1.4.2 Induction of IFNs  

Microbial infections are sensed in form of “danger signals” of viral and bacterial PAMPs, which 

are expressed or even released by invading pathogens. Typical viral PAMPs are single-stranded 

and double-stranded RNA or DNA, which are massively produced upon viral replication and 

induce a set of cytokines in order to defend the host.122 Whereas virtually all tissues respond to 

type I IFN with the expression of a wide array of IFN-inducible genes,123 only few cells are 

specialised to produce large amounts of type I IFN in vivo.36 

 Upon infection with vesicular stomatitis virus, a specialised type of DCs of plasma cell-like 

phenotype, so-called plasmacytoid DCs (pDCs), represents the major source of type I IFN.36 

pDCs36;38;39;124  reside in splenic MZ, where they can sense viral PAMPs by several pathways125 

including TLR7 and cytoplasmic protein kinases like PKR, RIG-I126;127 and mda5.128 Apart from 

pDCs, myeloid DCs (mDCs) can also produce type I IFN, probably deploying other pathways.129 

Apparently, the viral species determines the cell type to launch massive cytokine responses.130  

Recognition of viral infection leads to phosphorylation of IFN regulatory factor-3 (IRF-3), which 

translocates into the nucleus to initiate transcription of IFN-β and IFN-α4 (Fig. 1-6). In a next 

step, these so-called early IFNs are secreted and bind to the IFNAR in an autocrine fashion. 

IFNAR-signalling via the Jak/STAT-pathway activates Janus kinases (Jak) and phosphorylates 

the adapter proteins “signal transducer and activator of transcription” (STAT) that join IRF-7 to 

start massive transcription of all other members of type I IFN. In vivo, pDCs can also induce 

high amounts of type I IFN in absence of IFNAR feedback-signalling.36 
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Fig. 1-6: Induction of type I IFN and IFNAR feedback-signalling 

 

1.4.3 Control and inhibition of type I IFN induction  

Potent induction of type I IFN is critical for resistance to viral infection; however, a prolonged 

stimulation with the pleitropic type I IFN can also result detrimental to the host. Therefore, a 

number of cellular inhibitory mechanisms control the extent and duration of type I IFN 

production in pDCs and mDCs.131;132 On the other hand, viruses try to evade antiviral cytokines 

responses and have developed various strategies to interfere with the induction of type I IFN.133 

Numerous different type I IFN antagonists have been described134-137 that either shut down or 

limit type I IFN responses. For example, influenza virus largely downregulates cytokine 

induction and even achieved to abuse the remnant NFkB activation for its own propagation.138 

  

1.4.4 Effects of type I IFN on lymphocytes 

In addition to anti-viral activity,123;139 type I IFN exhibits pleiotropic effects that can have an 

impact on proliferation,140 apoptosis141 and expression of cytokines and cytokine receptors,142-145 

which link innate and adaptive immunity and can cause immune activation or modulation in 

vivo.11;146;147  

Type I IFN exerts direct and indirect effects on lymphocytes. Many indirect effects of type I IFN 

are presumably mediated by the activation of APCs,148-151 which in turn secrete various 

cytokines, such as IL-15 that can act on lymphocytes145 and enhance upregulation of CD69 on T 

cells.152  

IFN-β and IFN-α4

IRF3 

virus 

JAK/STAT

IRF7 IFN-α

IFNAR
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In vivo, a critical role of type I IFN in CD8+ T cell cross-priming was shown153 which could 

recently be identified as a direct effect of type I IFN on CD8+ T cells to promote clonal 

expansion and formation of memory T cells by enhancing cell survival.154 Certainly, type I IFN 

does directly stimulate naïve T cells in vitro and may influence T cell development. Upon type I 

IFN administration, immune responses may be skewed towards the Th1 phenotype.155;156  

On B cells, type I IFN seems to exert many direct effects. During B cell development, type I IFN 

inhibits IL-7-induced growth and survival of early B-lineage cells44 and appears to set the 

stringency of B cell-repertoire selection.157 Type I IFN-stimulated peripheral B cells upregulate 

CD69,152 show an increased sensitivity to IgM receptor ligation158;159 and are protected from 

apoptosis in vitro.160 Furthermore, type I IFN acts on plasmablasts and thus promotes final 

plasma cell differentiation.161 B cell responses in vitro may be both enhanced or inhibited,158;161-

164 whereas immunoglobulin production and isotype switch in vivo may be critically affected by 

type I IFN.149;156;165 However, in vivo, the significance of direct type I IFN stimulation of B cells 

remains unclear. 

Apart from activating B and T cells, type I IFN can influence lymphocyte homeostasis by 

suppressing haematopoiesis107 or by enhancing output of lymphocyte precursors.46 Moreover, it 

is conceivable that type I IFN affects circulation and homing of lymphocytes because it can 

induce chemokines and modulate adhesion molecules in human T cell lines166 and endothelial 

cells.167  

 

1.5 Vesicular stomatitis virus (VSV) 

 

Vesicular stomatitis virus is a member of the genus Vesiculovirus and belongs to the family 

Rhabdoviridae. Several serotypes of VSV exists, including the experimentally used Indiana 

(VSV-IND) that shows a very broad host spectrum ranging from mammals and birds to insects. 

In horses, cattle and swine, VSV causes a disease characterised by vesicular lesions in the mouth 

that led to the name of “vesicular stomatitis”. Besides, VSV can cause erosions in the interdigital 

fissure of artiodactyls, especially swine, or at the coronary band of horses.168 Since these 

vesicular lesions are indistinguishable from those caused by the highly contagious foot-and-

mouth-disease virus, vesicular stomatitis is a notifiable disease listed in group A of infectious 

epizootics.  
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In humans, accidental inoculation of VSV can cause an influenza-like disease. In mice, 

intravenous (i.v.) infection is well-tolerated up to very high doses of 108 plaque-forming units 

(PFU). Due to the conserved neurotropism of the Rhabdoviridae, an intranasal (i.n.) challenge 

with more than 104 PFU VSV frequently results in lethal encephalitis.  

VSV shows bullet-shaped morphology, contains negative ssRNA and measures about 170 nm in 

length and 70 nm in width (Fig. 1-7).6 

 

 

Fig. 1-7: Electron micrograph of vesicular stomatitis virus 

Micrograph from Frederick A. Murphy, School of Veterinary Medicine, University of California 

Davis, USA 

 

The envelope of VSV is based on the matrix (M) protein inserted in a host cell-derived lipid bi-

layer. Therein inserts the externally oriented glycoprotein (VSV-G). It forms the paracrystalline 

virion surface that is characterised by the tips of VSV-G which are arranged at a distance of 5-10 

nm each.169 This highly-repetitive pattern is able to cross-link IgM and thus provides a strong 

signal to induce the early IgM response without further need of T cell help.169 The surface 

protein on VSV virions is therefore classified as a T cell-independent (TI) antigen. Since only 

the very tips of VSV-G are accessible by antibodies, the anti-VSV humoral response is directed 

nearly exclusively to one immuno-determinant on VSV-G.170;171  

Besides potent humoral immunity with long-lasting IgG titres, VSV induces an effective CTL 

response. However, VSV infection is controlled by the concerted action of type I IFN and 

neutralising antibodies as indicated by the strongly increased susceptibility to lethal VSV 

infection of type I IFN receptor-deficient (IFNAR-/-) mice139 or B cell-deficient mice.172 Passive 

immunisation alone suffices to protect IFNAR-/- mice against lethal VSV infection. However, 

metaphylactic transfer of neutralising antibodies is only effective if applied within 3 h following 

viral challenge. Adoptive transfer of VSV-G-specific memory B and T cells does not generate 

neutralising antibodies quickly enough to mediate protection in IFNAR-/- mice.173 
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1.6 Aim of the thesis  

Lymphocytes are key players in the adaptive immunity to viral infections for generating 

antibodies and eliminating infected cells. Production of antiviral interferons (type I IFN) is a 

generic feature of viral infections, and there are multiple hints that type I IFN influences the 

adaptive immune system. For more than 100 years, Veterinary Sciences and Medicine reported 

massive lymphopenia during the incubation period of viral infections. Previous experimental 

studies in mice related this dramatic lymphopenia to type I IFN activity.  

We hypothesised that type I IFN exerted direct effects on lymphocytes in vivo. The first part of 

the study focussed on the phenomenon of lymphopenia. The aim of the thesis was to identify the 

direct type I IFN stimulation of lymphocytes during lymphopenia; firstly by deploying a model 

of adoptive transfer of fluorescently labelled cells and secondly, with the use of novel 

conditionally-targeted mice with a B or T cell-specific deletion of the type I IFN receptor 

(IFNAR). For this, the IFNAR deletion of the conditionally-targeted mice was to be assessed on 

genetic and functional level. To count absolute numbers of lymphocytes in murine blood, a 

FACS-based technique was developed. Type I IFN production was either elicited by infection 

with vesicular stomatitis virus (VSV) or by treatment with the pathogen-related compounds 

poly(I:C) and R-848. Studies were designed to analyse whether lymphopenia was reversible or 

involved apoptosis and neo-formation of lymphocytes.  

An important objective was to elucidate a possible role of type I IFN stimulation of lymphoid 

tissue stroma and endothelia, for which bone marrow-chimeric mice were generated. FACS 

analyses and confocal microscopy were pursued to study the lymphocyte homing targets during 

lymphopenia. Furthermore, the dissertation aimed at investigating the molecular mechanism of 

lymphopenia by using chemotaxis assays and FACS analyses to study receptors and ligands that 

control leucodiapedesis.  

The second part of the work concentrated on how type I IFN modulates the humoral immunity. 

For this, we evaluated IgM and IgG responses towards the glycoprotein of VSV (VSV-G) in two 

antigen models of different immunogenicity. Firstly, systemic or peripheral infection with the 

highly immunogenic live VSV was studied. Secondly, recombinant virus-like particles (VLPs) 

displaying VSV-G were produced and characterised by electron microscopy. These non-

replicative VLPs were then used for immunisation in presence or absence of IFN-α as an 

adjuvant. Antibody titres were analysed by enzyme-linked immunosorbent assays (ELISAs) and 

serum neutralisation tests (SNTs).  
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2.1 Mice 

C57BL/6 and C57BL/6 CD45.1 mice were purchased from Charles River. IFNARflox/flox (see 

“Results”), IFNAR∆ex10/∆ex10 mice (see “Results”), CD19-Cre,174 CD4-Cre mice,175 CD19Cre+/- 

IFNARflox/flox and CD4Cre+/- IFNARflox/flox (see “Results”) were bred under specific pathogen-

free (SPF)-conditions in individually ventilated cages (IVCs) at the mouse facility of the Paul-

Ehrlich-Institut. All genetically modified mice used were 10-fold backcrossed to the C57BL/6 

background (Tab.2-1). Experimental mouse work was performed under SPF conditions and mice 

were kept in IVCs or filter-isolated cages. Experimental animal work was conducted in 

compliance with the German federal and state legislation on animal experiments. 

 

Tab. 2.1: Mouse strains used in this study 

Mouse strain Provider Strategy of genetic 

modification 

Recombination of 

desired construct in 

genome 

C57BL/6 Charles River, PEI - 

C57BL/6 CD45.1 Charles River - 

IFNAR-/- PEI Knock out  

via gene-targeting 

Homologous 

CD19Cre+/- PEI Knock in  

via gene-targeting 

Homologous 

CD4Cre+/- PEI Knock in  

of a transgene 

Random 

IFNARflox/flox PEI Conditional gene-

targeting 

Homologous 

CD19Cre+/- IFNARflox/flox PEI Conditional IFNAR deletion in B cells 

CD4Cre+/- IFNARflox/flox PEI Conditional IFNAR deletion in T cells 
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2.1.1 Mouse anaesthesia  

Additional materials Source 

Isofluran Curamed 

Glass with a top Schott 

 

The glass was prepared with paper and 1 ml isofluran was added. The glass was covered and 

after 1 min, isofluran was evaporated. A mouse was set into the glass and observed for 

progressive stages of induction of anaesthesia. The mice first started to scratch their eyes and 

then lost conscience and fell to the side. After a few rapid breathings, the animals lost tension of 

the tail and did not react with defence movements when moving the glass. The operation stage of 

anaesthesia was achieved after usually 10 sec, when the mice started to breath profoundly and 

slowlier. The mice were then immediately taken out and manipulations could be performed for 

approximately 20 – 30 sec.  

 

2.1.2 Mouse infections and injection procedures  

Additional materials Source 

Omnican F 1 ml/0,01 ml 

(High precision dosing syringe, 0.3 mm diameter 

canula integrated into syringe)  

Braun, “Ref: 09 16 15 03, PZN: 31 15 46 

5”  

 

Mouse restrainer (3 cm tube diameter) PEI workshop 

Pipette 10 µl Eppendorf 

Pipette tips (crystal) Eppendorf 

 

Mice were warmed up in their cages for 10 min by an infra-red lamp, which was set in 20 – 30 

cm distance to the cage. Then, the mice were introduced into restrainers and injected with 2 x 106 

or 2 x 107 PFU VSV into the lateral tail vein (i.v.) using a 0.3 mm syringe.  

For i.n. infections, mice were anaesthesised, turned on the back and injected during inspiration 

with 5 µl of 104 PFU virus-containing PBS. After breathing few times, the mice were turned to 

the side and started to wake up.  
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2.1.3 Mouse treatments to induce lymphopenia 

Additional materials Source 

Poly(I:C) Sigma, # P 0913 

R-848  3M, kindly provided by Heinfried Radeke, Uni Frankfurt 

IFN-α  Kindly provided by D. Tough, Edward Jenner Institute, 

Compton, UK 

IFN-ß R&D, # 12 400-1  

 

Mice were anaesthesised, turned on the back and injected i.p. with 200 µg poly(I:C) or 25 µg R-

848 in 200 µl PBS. Alternatively, mice were treated s.c. in the right flank with 2 x 105 IU IFN-α 

or IFN-ß. Blood lymphocyte counts were assessed 16 to 20 h later. 

 

2.1.4 Blood sampling for cell counting or serum analysis  

Additional materials Source 

Glass capillaries VWR, # 612-1701 

Vacutainer-Microtainer, Plasma Li-heparin 

 

BD via Döll Medizintechnik, Hofheim,  

# 36 59 66 

Vacutainer-Microtainer, Serum  BD via Döll Medizintechnik, Hofheim,  

# 36 59 51 

 

Mice were anaesthesised and laid on the left side. By gently grasping the skin of the neck close 

to the head, the blood flow in the jugular veins was blocked while the trachea was not suppressed 

to a major extent. The grasp further pushed forward the eyes, so that the capillary could be 

introduced behind the eye (retrobulbary bleeding). Under gentle turning, the ophthalmic venous 

plexus was opened and blood was collected in the capillary either directly behind the eye bulb or 

externally in from of drops. Few drops were collected for blood cell counting in heparinised 

micotainer tubes and approx. 150 µl were taken for serum sampling in serum vacutainers.  

 

 

 



38 2 Materials and methods 

 

2.1.5 Isolation of splenocytes  

Additional materials Source 

Set of surgical instruments  Hauptner/Herberholz 

70% ethanol PEI 

PBS  PEI, Gibco 

70 µm plastic cell strainer  

 

BD Falcon, # 352350 

2 ml syringe (or Norm-Ject 2 ml) 

 

B. Braun Melsungen AG, # 460 60 27V or 

Henke Sass Wolf 

Pipetboy Pipetboy acu, Integra Bioscience 

One way plastic pipettes  Greiner 

Centrifuge Heraeus Sepatech, Kendro 

 

Mice were anaesthesised and sacrificed by atlanto-occipital dislocation. The bodies were bathed 

in 70% ethanol for disinfection when sterility was required for further procedure. Laying on the 

right side, the skin was cut behind the ribs and pulled away with coarse forceps. The abdominal 

wall was opened with a new pair of scissors and forceps to take out the spleen. The connecting 

ligaments were cut and the organ was put onto a 70 µm cell strainer that had been set onto a 50 

ml Falcon tube. Some millilitres PBS were added and 2 spleens per strainer were squeezed with 

the plunger of a 2 ml syringe to open the splenic capsule. Crops of splenic tissue were flushed 

and carefully squeezed by moving the plunger up and down. Spleens were considered fully 

harvested when no red colour was visible any more. If staining samples containing about 2 x 105 

cells had to be taken, 60 µl of the usually 15 ml splenic suspension were reserved.  

The tubes were left for few minutes to sediment detritus. After decanting the suspensions into 

new 50 ml Falcon tubes, the cells were spun down at 800 rpm for 6 min.  
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2.1.6 Isolation of LN cells 

Additional materials Source 

Block of polystyrene  (Package material) 

Canulas Henke Sass Wolf  

PBS  PEI, Gibco PBS, # 100 10-015    

70 µm plastic cell strainer  BD Falcon, # 352350 

2 ml syringe (or Norm-Ject 2 ml) B. Braun Melsungen AG, # 460 60 27V or  

 

After sacrifice, the mice were turned on the back to extend and fix the limbs with needles on a 

polystyrene block. Skin was opened and pulled back to visualise the limbs. The nodus 

lymphaticus axillaris (laying close to arteria and nervus axillaris), the nodus lymphaticus 

cervicalis superficialis (close to the angulus dorsalis scapulae) and the nodus lymphaticus 

inguinalis superficialis (with a prominent vessel helping the identification) were removed. As for 

spleen, the LNs were squeezed and single cell suspensions prepared in PBS. Due to adherent fat 

tissue, the LN samples were spun down for 5 min at 1200 rpm and the pellets were resuspended 

in 1 ml. 

For homing studies with CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice, spleens 

and two LN from the left side were prepared. In adoptive transfer experiments, at least three LNs 

were isolated from both sides. Single cell suspensions were prepared and stained for B and T 

cells and analysed by FACS.  

 

2.1.7 Isolation of thymic cells 

Mice were sacrificed and fixed after turning on the back. The thymus was visualised after 

opening the neck and thorax. The organ was grasped with forceps without touching neighbouring 

vessels to prevent contamination with blood. The thymi were squeezed on cell strainers to obtain 

single cell suspensions.  
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2.1.8 Isolation of BM cells 

Additional materials Source 

Block of polystyrene  (Package material) 

Canulas 26 G Henke Sass Wolf  

Petri dishes Greiner 

Syringes 10ml Braun 

 

After sacrifice of the mice, the hind limbs were taken off the corpse and femurs were purged 

from adherent muscles. Bones were washed in PBS in several Petri dishes. Caput and condylus 

femoris were clipped off and the BM was flushed out in PBS with a canula. 

 

2.1.9 Generation of bone marrow-chimeric mice 

Additional materials Source 

137Cs-radiation machine  STS Steuerungstechnik und Strahlenschutz GmbH 

Ventilated metal cage  STS Steuerungstechnik und Strahlenschutz GmbH 

 

To study the impact of type I IFN stimulation of endothelium and lymphoid stroma, BM-

chimeric mice with IFNAR-competent or IFNAR-deficient endothelia and immune cells, 

respectively, were generated. For this, lethal irradiation and BM reconstitution were performed.  

Lethal irradiation of mice leads to abundant and irreversible damages in DNA, which especially 

affect proliferating cells such as BM stem cells, gastrointestinal epithelia and germ cells. Thus, a 

complete myelosuppression and severe alterations of inner organs and blood are observed in the 

irradiated organism, which cause a dose-dependent radiation syndrome. Myelosuppression first 

affects erythrocytes since they have the most rapid physiologic turnover among blood cells. 

Thus, the animals develop a severe hypoplastic anaemia from day 4 onwards, to which they 

finally would succumb without any treatment. However, all residing cells like stroma and 

endothelium are largely resistant to radiation. 
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To generate BM chimeras, 8-10 weeks old mice were lethally irradiated for 247 sec with γ-rays 

of a 137Cs radiation source, a dose equivalent to 11 Gy. During irradiation, the mice were kept in 

a ventilated metal cage turning at the lowest frequency (<< 30rpm) within the radiation device. 

The following day, the mice were reconstituted with 5 x 106 BM cells, which were injected i.v. in 

200 µl PBS.  

To distinguish the lymphocytes of donors and recipients, we used congenic mice, which are 

genetically identical except for the leucocyte allotype marker CD45 (Ly5), which exists in two 

isoforms (see also 1.1.5). According to current nomenclature, wild-type BL/6 mice and all strains 

crossed to BL/6 background carry the isoform 2 (allotype CD45.2), whereas congenic BL/6 

Ly5.1 mice express CD45.1. After BM reconstitution, mice were left to recover. After for 

approximately 6 weeks, the reconstitution efficiency was assessed by FACS analysis of CD45.1 

and CD45.2 expression on peripheral blood lymphocytes (see Fig. 3-7A). IFNAR-/->IFNAR-/- 

chimeras could not be analysed since IFNAR-/- Ly5.1 mice were not available. The chimerism 

usually exceeded 95%, whereas typically 5% recipient-derived long-lived T cells were found in 

blood of the reconstituted chimeras.  

 

2.2 Cells 

 

2.2.1 Lysis of red blood cells  

Additional materials Source 

Red blood cell lysing buffer Sigma, # R7757 

Alarm clock  neoLab 2-2002 

 

After centrifuging splenic single cell suspensions, supernatant was taken off and the pellets were 

resuspended in 4 ml Sigma red blood cell lysing buffer. After incubation for 60 – 90 sec, the 

hypotonic solution was diluted with 15 ml PBS. If several mouse strains were used, suspensions 

of identical cell type were pooled and spun down at 1200 rpm for 6 min. Next, the cells were 

resuspended in the appropriate buffer or medium, according to the further procedure. 

 

 

 

 

 



42 2 Materials and methods 

 

2.2.2 Manual counting of cells 

Additional materials Source 

96 well round bottom plate Nunc 

Pipette (10 - 100 µl or 50 – 200 µl)  Eppendorf 

Pipette tips yellow Eppendorf 

Trypan blue (0,4 % Trypan blue in PBS) Sigma 

Neubauer cell counting chamber Labor Optik 

Cover slip Menzel-Gläser 

Manual counter Rettberg Laborgeräte 

Microscope Axiovert25, Axiolab, Zeiss 

 

After shaking the cell suspension, 50 µl were taken and mixed 1:1 in a 96-well microtitre plate 

with trypan blue solution. Dilutions of 1:8 and 1:16 were prepared for analysis in a Neubauer 

counting chamber and covered with a slip. Vital lymphocytes - as characterised by pale grey 

colour - were counted manually per microscope in the four large squares at the corners of the 

chamber grid. Cell numbers were calculated according to the following: 

 

Cells/ml =  n/4 x dilution x 104 x volume [ml] of total suspension   

n = counted cells in four squares 
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2.2.3 Purification of cells by Magnetic adsorption cell sorting (MACS) 

 
2.2.3.1 Isolation of untouched B cells from murine spleens 

 

Additional materials Source 

B cell isolation kit  Miltenyi, # 130-090-862 

MACS separation columns (LS type, Midi)  Miltenyi, # 130- 042- 401 

MACS – Multi Stand Milteny Biotech 

MACS magnet for LS columns Milteny Biotech 

5 ml tube with cap  Greiner 

Steritop filters GP 0,22 µm Fischer Scientific 

Vacuum pump  Vacusafe, IBS Integra Biosciences 

MACS buffer for murine B cell isolation kit PBS 

 0.5% BSA 

 2 mM EDTA 

Balance Satorius LP 820 

Refrigerator Liebherr 

 

Splenic single cell suspensions were counted and aliquotted at 108 per tube. During the MACS 

procedures, the cells were kept on ice, except for the incubation steps.  

The suspensions were spun down for 10 min at 1800 rpm. MACS buffer was prepared and 

sterile-filtered. Supernatant was taken off completely and the cells were resuspended in 40 µl 

MACS buffer/107 cells. 10 µl of Biotin Cell Antibody/107 cells were added, mixed and incubated 

for 10 min in the fridge. Next, 30 µl of buffer/107 cells and 20 µl of Anti-Biotin-MicroBeads/107 

cells were added. After 15 min incubation in the fridge, the cells were washed with 10 x labelling 

volume and spun down for 10 min at 1800 rpm.  

Midi columns were placed into the magnets and a tube for the wash fluid was colocated beneath. 

The columns were prepared with 3 ml MACS buffer. Supernatant of centrifuged cells was taken 

off and the suspensions were resuspended in 0.5 ml MACS buffer. New tubes for the negative 
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fraction to be isolated, i.e. the untouched B cells, were placed and the cell suspension was 

applied onto the column.  

After 3 times washing with 4 ml buffer, the suspension was spun down for 10 min at 1800 rpm. 

Supernatant was discarded, the cells were resuspended in the appropriate buffer for the next 

treatment and a dilution of 1: 16 was counted. 

 

 
2.2.3.2 Positive selection of B cells with CD19 MicroBeads 

 

Additional materials Source 

CD19 MicroBeads  Miltenyi, # 130-052-201 

MACS separation columns (LS type, Midi) 

including plunger 

Miltenyi, # 130- 042- 401 

MACS buffer for CD19 MACS PBS 

 0.5% BSA 

 

108 splenocytes per tube were spun down for 10 min at 1300 rpm. MACS buffer was prepared 

and sterile-filtered. Supernatant was taken off completely and the cells were resuspended in 90 

µl MACS buffer/107 cells. 10 µl CD19 MicroBeads/107 cells were added and mixed thoroughly. 

After 15 min incubation in the fridge, the cells were washed with 10 x labelling volume and spun 

down for 10 min at 1300 rpm. Midi columns were placed and prepared with 3 ml MACS buffer. 

Supernatant of the centrifuged cells was taken off and the suspensions were resuspended in 0.5 

ml MACS buffer for being applied onto the column.  

After 3 times washing with 3 ml buffer, the column was taken off the magnet, placed onto a 15 

ml Falcon tube and rinsed with 3 ml MACS buffer. The suspension containing the positive 

fraction, i.e. the CD19+ B cells, was pressed out with the plunger and spun down for 10 min at 

1300 rpm. Supernatant was discarded and the cells were resuspended in the appropriate buffer 

for the next treatment and a dilution of 1: 16 was counted.  
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2.2.4 Cell culture 

 
2.2.4.1 Culture of primary B cells and in vitro stimulation with IFN-ß 

 

Additional materials Source 

50 ml tissue culture flasks Greiner 

Incubators with supply of CO2 Cytoperm, Heraeus 

Sterile work bench Steril Gard II Advance, The Baker Company 

β-mercapto ethanol Sigma 

RPMI 1640 PEI, Gibco 

Fetal calf serum (FCS) Biochrom KG, Gibco 

Glutamine Gibco-BRL 

ß-mercapto ethanol Sigma, # M 7522 

Murine B cell culture medium RPMI 1640 

 10% FCS 

 1% Glutamine 

 0.015 µM β-mercapto ethanol 

IFN-ß R&D, # 12 400-1  

 

All cell culture work was performed under sterile conditions below laminar flow working 

benches of biosafety level II. The cell culture media for B cells were free of antibiotics. The 

MACS-purified murine B cells were cultured in 50 ml tissue culture flasks in murine B cell 

culture medium at 2 x 106 cells/ml. To stimulate the B cells, 103 IU IFN-ß were added. The cells 

were kept over night in an incubator in vapour-saturated atmosphere at 37°C and 5% CO2.  

Next day (after approx. 16 h), the cells were harvested. Due to strong non-specific adhesion of 

naïve B cells to uncoated plastic (personal and colleagues´ observations), the B cells were 

resuspended thoroughly by pipetting up and down and the cell culture flasks were washed three 

times with cold PBS.  
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2.2.4.2 Short-term culture of splenocytes to inhibit G protein-coupled receptors (GPCRs) with 
pertussis toxin (PTX) 

 

Additional materials Source 

250 ml tissue culture flasks with filter top Greiner 

Pertussis toxin (50 µg in dilution)  Sigma, # P2980 

37°C room PEI 

Shaker Infors AG, Switzerland 

 

Splenocytes were incubated for 3 h in 250 ml tissue culture flasks in murine B cell culture 

medium ± 20 ng/ml PTX at 2 x 106 cells/ml.  

To prevent adhesion, the culture flasks were kept on a shaker at 37°C. After 3 h, the cells were 

harvested by resuspending thoroughly and washing the cell culture flasks with cold PBS.  
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2.3 Viruses 

 

2.3.1 Vesicular stomatitis virus (VSV) 

Additional materials Source 

Ultra low freezer (-80°C) New Brunswick Scientific 

Cryo conservation tubes (1.2 ml, 2.5 ml) Nunc 

VSV-Indiana (Mudd-Summers isolate),  

Wild-type virus 

Originally obtained from D. Kolakofsky, 

University of Geneva, Switzerland 

VSV-M2 (natural variant of HR strain) Kindly provided by J. Bell, Canada 

 

Stocks of VSV-Indiana, containing 1012 or 109 PFU/ml in purified cell culture supernatants, were 

stored at -80° C. 50 µl aliquots were thawn on ice and discarded after usage. VSV-M2 was kept 

in stocks of 109 PFU/ml. 

 

2.3.2 Generation of virus-like particles (VLPs) expressing the VSV-G protein 

Additional materials Source 

Lipofectamine 2000 Invitrogen, # 11 66 8-019 

T175 cell culture flasks Greiner 

293T cells Originally obtained from American Type 

Culture Collection (ACCT)  

Dulbecco´s modified Eagle´s medium 

(DMEM) 

Gibco 

Penicillin/Streptomycin Gibco-BRL 

VSV-G displaying vector Kindly provided by Christian Buchholz, PEI 

Murine leukaemia virus (MLV)-based 

gag/pol expression plasmid pHit60 

Plasmid factory 

0.22 µm sterile filters Qualilab 

Cooling centrifuge Heraeus Sepatech, Kendro 
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3×106 293T cells were seeded in T175 cell culture flasks in DMEM + 10% FCS containing 

antibiotics and glutamine.  

After incubation over night, the cells were transfected with 5 µg of the VSV-G displaying vector 

and with 12.5 µg of the MLV-derived gag/pol expression plasmid pHit60 per cell culture flask. 

For this, the plasmids were mixed with 2 ml DMEM devoid of FCS, antibiotics or glutamine. In 

another reaction tube, 90 µl Lipofectamine 2000 were mixed with 2 ml pure DMEM. After 

incubation for 5 min at room temperature, the two mixtures were pooled and incubated for 20 

min at room temperature. Subsequently, 6 ml DMEM with FCS and glutamine, but without 

antibiotics, were added to 4 ml transfection mix. Finally, the media were removed from the cell 

culture flasks and 10 ml transfection mix/flask were applied onto to the cells without washing. 

After 4 h incubation at 37°C, the medium was replaced with 20 ml DMEM + 10 % FCS 

containing antibiotics and glutamine.  

The VLP-containing cell culture supernatants were harvested twice after 48 h and 72 h 

incubation and filtered through 0.2 µm sterile filters to remove clumps. The filtrate was spun 

down at 3600 rpm over night at 4°C. After discarding supernatants, the tubes were dried by 

standing upside down on absorptive paper for few minutes and subsequent manual removal of 

remnant liquids. By pipetting or gentle vortexing, the pellets were resuspended in 100 µl/flask of 

PBS containing 1% FCS. Finally, the VLPs preparations were shock-frozen at -80°C in 50 µl 

aliquots. 
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2.3.3 Labelling of VLPs for immune electron microscopy (EM) analysis  

Additional materials Source 

Parafilm American National Can 

Carbon-vaporised and flamed 400-mesh 

Cu/Rh grids 

Plano, adapted in PEI microscopy facility  

Filter paper Schleicher & Schuell 

Polyclonal rabbit anti-VSV-G Kindly provided by Bernhard Odermatt, CH 

Goat anti-rabbit IgG labelled with 10 nm gold BioZell 

Uranyl acetate  Merck, prepared in PEI microscopy facility 

Methylamine tungestate (Wolframat) Agar Scientific 

Transmission electron microscope EM 902 Carl Zeiss Jena 

 

Immuno gold-labelling of the virus-like particles was performed with shock-frozen purified 

VLPs. Aliquots were thawn on ice and duplicates of 10 µl droplets of concentrated VLPs were 

set onto parafilm. Carbon-vaporised and flamed 400-mesh Cu/Rh grids were put onto the 

droplets to adsorp the particles. 

All incubation steps were performed under humid chamber conditions by covering the grids with 

large Petri dishes. Following adsorption for 2 min, the grids were washed briefly. For this, a 

droplet of PBS was added and mixed by blowing carefully onto the suspension. Remnant liquids 

were removed by touching the border of the droplets with filter paper until the visible volume 

was just absorbed. The VLPs were stained with 1:1000-diluted polyclonal rabbit anti-VSV-G 

primary antibody and incubated for 15 min. Then, the grids were washed twice and remnant 

liquids were removed. After this, 1:50-diluted polyclonal goat anti-rabbit IgG antibody labelled 

with 10 nm gold particles, was added. Following 15 min incubation, the grids were washed once 

in PBS and once in aq. dest. for 1 min. For negative-contrasting, remnant liquids were removed 

and the grids were contrasted for 10 sec in uranyl acetate and methylamine wolframate.  

The samples were analysed by electron microscope at magnifications of 20000. 
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2.4 Assays and techniques 

 

2.4.1 Fluorescent labelling of cells for adoptive transfer studies 

 
2.4.1.1 Labelling with TAMRA  

 

Additional materials Source 

5-(6-) carboxytetramethyl-rhodamine 

succinimidyl ester, mixed isomers  

 [5(6) TAMRA, SE]   

Molecular Probes, # C 1171  

DMF Sigma 

Freezer Liebherr 

1 M HEPES PEI 

Water bath GFL 

 
References:  
Cytometry. 1997 Feb 1;27(2):145-52175;176 and laboratory of Reinhold Förster, Hannover 

 

A 5 mM stock solution of TAMRA (2,64 mg/ml) was prepared in DMF and stored at -20°C. 

(Later on, 50 mM stocks were used yielding a higher cell recovery.) Single cell suspensions were 

resuspended in a 50 ml Falcon tube at 1 x 107 cells in 5 ml pre-warmed RPMI supplemented 

with 125 µl 1 M Hepes solution (= 25 mM). (HEPES is critical to provide the correct pH for the 

labelling reaction.)  

The cell suspensions and the TAMRA aliquot were warmed for 30 min at 37°C (critical to 

prevent formation of cell/dye flakes that would precipitate nearly all cells.). 10 µl TAMRA stock 

solution were added per 107 cells. The suspensions were incubated in the water bath at 37° for 10 

min. Then, the cells were washed twice with 25 ml warm PBS, spun down at 1300 rpm for 6 min 

and resuspend properly. Finally, the cells were counted or immediately pooled with the CFSE-

labelled fraction. 
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2.4.1.2 Labelling with CFSE  
 

Additional materials Source 

Carboxyfluorescein succinimidyl ester 

(CSFE) 

Molecular Probes, # C-1157 

BSA (biotechn. Grade) Serva, # 47 321 

CFSE labelling buffer  PBS 

0.1% BSA 

DMSO Sigma 

 

References:  

Protocol from Charles Surh for thymocytes and LN cells177;178 

 

A 5 mM stock solution of CFSE (2,78 mg/ml) was prepared in DMSO and stored in 40 µl 

aliquots at -20°C. Single cell suspensions were resuspended at 2x107 cells/ ml pre-warmed CFSE 

labelling buffer.  

Cells were labelled:  

 

- for in vivo long term tracing by FACS analysis by adding 0.5 µl/ml cells 5 mM stock 

solution (for few days tracing even only 0.25 µl/ml). 

- for in vivo tracing with Laser Scan Microscopy by adding 1.2 µl/ml cells 5 mM stock 

solution (Viability of cells decreases due to DMSO, but less dye renders cells 

undetectable by LSM.) 

 

The suspensions were incubated in the water bath at 37° for 10 min. Then, the cells were washed 

twice with plenty of cold labelling buffer and spun down at 1300 rpm for 6 min. Finally, the cells 

were counted or resuspended and immediately pooled with TAMRA-labelled cells in an 

injection volume of 200 µl PBS per recipient mouse. Few µl were sampled to assess the 

proportion of CFSE: TAMRA cells by FACS. 1 - 2 x 107 cells per labelling type were adoptively 

transferred i.v. into each recipient. 
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2.4.2 Cell stainings 

 
2.4.2.1 Immuno-fluorescence staining of splenocytes or lymph node cells 

 

Additional materials Source 

EDTA PEI 

Sodium azide (NaN3) Serva 

FACS buffer (blood buffer), pH 8.0 PBS 

2 % BSA 

0,03 % NaN3

20 mM EDTA 

Paraformaldehyde (PFA)  Fluka  

Cell fixation solution FACS PBS 

 1% PFA 

Vortexer VF2, Janke & Kunkel IKA Labortechnik 

FACS tubes large BD 

7-AAD BD 

Antibodies  

Anti-murine CD3e-FITC Caltag Laboratories, # HM3401-3 

Anti-murine CD18-FITC Caltag Laboratories, # RM4004 

Anti-murine CD69-FITC  BD, # 553236 

Anti-murine Ly6C-FITC  Southern Biotech, # 1760-02 

Anti-murine CD3-PE 

 

BD, # 55 30 63 or 

Caltag Laboratories, # RM 3404-3  

Anti-murine CD11a-PE Caltag Laboratories, # RM3904 

Anti-murine CD44-PE BD, # 553134 

Anti-murine CD49d-PE BD, # 557420 

Anti-murine CD62L-PE Caltag, # RM 4304 
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Anti-murine CXCR4-PE BD, # 551966 

Anti-murine CXCR4-PE BD, # 551966 

Anti-murine CD45R/B220-PE Cy5 BD, # 553091 

Anti-murine IgG1k-FITC  

(isotype of CD69-FITC)   

BD, # 553953 

Anti-murine IgG2a,k-FITC 

(isotype of other FITC-labelled antibodies)  

Biozol, # 0117-02 

Anti-murine IgG2a,k-PE 

(isotype of PE-labelled antibodies) 

Biozol, # 0117-09 

 

Single cell suspensions were prepared and staining samples of 2 x 105 cells were aliquotted in 

large FACS tubes. The cells were kept on ice during the whole staining procedure. To achieve a 

constant staining volume throughout different experiments, the samples were filled up to a total 

volume of 50 – 100 µl with FACS buffer. The cells were stained with the following amounts of 

antibodies:  

 

FITC-labelled antibodies: from BD and Caltag 1 µl/sample  

PE-labelled antibodies: from BD and Caltag 0.5 µl/ sample, exception: CD3 from Caltag is less 

concentrated, thus 1 µl was added. 

PE Cy5-labelled anti-murine CD45R/B220: A premix of 300 µl FACS buffer with 1.5 µl Ab was 

prepared. 10 µl of the mix were used for staining. 

 

To stain for receptors involved in leucodiapedesis, α-CD3 and α-B220 were added to distinguish 

B and T cells, and a third antibody with yet a different dye was used for the detection of the 

receptor. To discriminate unspecific staining of antibodies, additional samples were stained with 

equal amounts of isotypes. (Since B or T lineage-specific markers were not expressed on other 

cells and did not underlie regulation, no isotypes were used for α-CD3 and α-B220.) The 

samples were vortexed and incubated for 20 min in the fridge. After washing with 1 ml FACS 

buffer, centrifugation at 1300 rpm for 6 min and discarding supernatant, the cells were 

resuspended in the last drops.  
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If  the cells were measured within the following hour, the samples remained in the fridge without 

further treatment. To exclude dead cells (routinely when cultured B cells were analysed, 

optatively for fresh cells), those samples that had not been stained with anti-CD45R/B220-PE 

Cy5, were incubated for 10 min in the fridge with 1 µl 7-AAD and were then immediately 

submitted to FACS analysis.  

If the cells were measured later, they were fixed by adding 100 µl PBS 2% PFA and the samples 

were kept in the fridge over night. Next day, they were washed with 1 ml FACS buffer.  

 

 
2.4.2.2 Immuno-fluorescence staining of CCR7 

 

Additional materials Source 

CCL19-Fc fusion protein Kindly provided by Sanjiv Luther, Epalinges, 

Switzerland, formerly Cyster laboratory, UCSF, 

California 

Anti-murine CD16/CD32 purified Caltag Laboratories, # MM7400 

Goat anti-human Fc F(ab)2 – PE Jackson Immunoresearch, # 109-116-098 

Normal mouse serum Sigma Aldrich, # S 3509 

Normal rat serum Sigma Aldrich, # S 7648 

Anti-murine CD45R/B220-PE Cy5 BD, # 553091 

 

Single cell suspensions were prepared on ice and staining samples of 4 x 105 cells were 

aliquotted in large FACS tubes. 25 µl of 1:100-diluted anti-CD16/CD32 Fc-blocking antibody 

were added. After incubation for 15 min on ice, the cells were washed twice for 6 min at 1400 

rpm. 25 µl of 1:3-diluted CCL19-Fc was added and samples incubated for 30 min on ice or 20 

min in the fridge. 
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In the meanwhile, the second antibody was pre-adsorbed with:  

 

 1 µl Fc F(ab)2 – PE  

1 µl mouse serum 

   1 µl rat serum 

   47 µl FACS buffer 

 

and incubated 30 min on ice or in the fridge. The cell samples were washed and after discarding 

supernatant, 50 µl preadsorbed dilution of the secondary antibody (goat anti-human Fc F(ab)2 – 

PE) was added together with 20 µl diluted α-B220-PE Cy5 (see above) and 2 µl α-CD69-FITC. 

The samples incubated for 30 min on ice or 20 min in the fridge. After two washing steps, the 

cells were measured directly with or without 7-AAD. 

 

 
2.4.2.3 Immuno-fluorescence staining of CD69 on peripheral blood B and T cells 

 

Additional materials Source 

Anti-murine CD3-PE 

 

BD, # 55 30 63 or 

Caltag Laboratories, # RM 3404-3  

Anti-murine CD45R/B220-PE Cy5 BD, # 553091 

Anti-murine CD69-FITC  BD, # 553236 

BD FACS Lysing solution BD, # 34 92 02 

Aqua destillata (aq.dest.) PEI 

 

15 µl heparinised blood were pipetted into large FACS tubes. The samples were stained with 1 

µl α-CD3-PE for T cells and with 10 µl of α-B220-PECy5 dilution (see 2.4.2.1) for B cells. To 

assess the stimulation state of lymphocytes, 3 µl of 1:10-diluted α-CD69-FITC were used. The 

samples were vortexed gently and incubated for 15 min in the fridge (the time is very critical 

since CD69 stains unspecifically if incubated longer). To lyse erythrocytes, 1 ml of 1:10 aq. 

dest.-diluted BD FACS Lysing solution was added and samples were incubated for few minutes 

at room temperature. Consequently, the samples were washed with 3 ml FACS buffer and spun 

down gently at 600 rpm for 5 min. Supernatants were discarded and the samples were 

resuspended in the last droplet and measured by FACS.  
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2.4.3 FACS-based analysis of cells 

 
2.4.3.1 Flow cytometric analysis (FACS) 

 

Additional materials Source 

FACScan BD 

FACS Clean, Rinse, Flow BD 

CellQuestPro software BD 

WinList 5.0 software Verity  

 

The FACS machine was adapted by warming up the laser for 15 min while rinsing FACS flow. 

Samples were acquired when the machine display showed passing events in the detection 

chamber. The next sample was not put until a droplet of FACS flow had flushed the needle. 

Detritus and dead cells were excluded by setting a FSC threshold according to morphology or  

7-AAD+ events. The obtained data were analysed with CellQuestPro and WinList 5.0 software. 

 

 
2.4.3.2 Counting absolute numbers of peripheral blood lymphocytes by FACS 

 

Additional materials Source 

Anti-murine CD3-PE 

 

BD, # 55 30 63 or 

Caltag Laboratories, # RM 3404-3  

Anti-murine CD4-PE BD, # 55 36 52 

Anti-murine CD8-FITC Biozol, # 1550-02 S  

Anti-murine CD45.2-FITC BD, # 553772 

Anti-murine CD45.1-PE BD, # 553776 

Anti-murine CD45R/B220-PE Cy5 BD, # 553091 

Caltag counting beads Caltag, # PCB-100 

 

In Veterinary Medicine, differential blood counts are usually performed on a Coulter Counter 

and measured in samples of at least 200 µl blood. In mice, however, the blood volume is too 
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small for reiterated sampling of such quantities. Furthermore, the Coulter Counter determines 

numbers of lymphocytes indirectly by calculating the percentage of lymphocytes based on the 

total blood cell count. For very small numbers of cells - as is the case in adoptive transfer and 

induction of lymphopenia - indirect calculations can inherit an error. Thus, to directly count 

absolute numbers of lymphocytes, a quantitative method on the base of reference counting beads 

was established.  

15 µl of counting beads, which contained about 1000 beads/µl, were pipetted into large FACS 

tubes, and 15 µl of heparinised blood was added. The samples were stained with 1 µl α-CD3-PE 

for T cells and with 10 µl α-B220-PECy5 dilution (see 2.4.2.1) for B cells. To determine the 

reconstitution efficiency of BM-chimeric mice, 1 µl of each α-CD45.2-FITC and α-CD45.1-PE 

was added and the cells were further stained for B and T cells. All samples were vortexed gently 

and incubated for 20 min in the fridge. Erythrocytes were lysed in 1 ml 1:10 aq. dest.-diluted BD 

FACS Lysing solution and the samples were incubated for few min at room temperature. After 

washing with 3 ml FACS buffer, the samples were spun down gently at 600 rpm for 5 min. 

Supernatants were discarded and the samples were resuspended in the last droplet and measured 

by FACS.  

To count absolute numbers of peripheral blood lymphocytes by FACS, the counting beads 

(consisting of two populations) were gated simultaneously in the forward scatter (FCS)/side 

scatter (SCC) (upper gate in the first plot, Fig. 2-1) as well as in the fluorescence 2/SSC (gate in 

the second plot), i.e. a linked gate with “and” function was created. Since erythrocyte detritus 

shows similar FSC/SSC properties as counting beads, a threshold was set in a density plot 

(vertical bar in the third plot, also applied in the first plot). The density plot further served to set 

a gate on the lymphocyte population (lower gate in the third plot, also applied in the first plot) 

and to adjust the beads gate. Depending on the intensity of lymphopenia in every sample, either 

dot or density plots were more appropriate to monitor data acquisition. The samples were 

measured for 5000 beads. Thus, all data files are equivalent to approximately 5 µl blood. The 

absolute numbers of B and T cells were derived from plots gated on lymphocytes (fourth plot). 

 

 
 

Fig. 2-1: Blood lymphocyte count by FACS (for description see page 58) 
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Fig. 2-1: Blood lymphocyte count by FACS (displayed on page 57) 

Typical measurement: first plot: FSC/SSC dot plot with lymphocyte gate (lower gate) and 

FSC/SSC/fluorescence 2-linked beads gate for counting of pure beads (upper gate), second 

plot: fluorescence 2/SSC dot plot with FSC/SSC/fluorescence 2-linked beads gate; third 

plot: FSC/SSC density plot for adjustment of gates and threshold; fourth plot: fluorescence 

2/ fluorescence 3 plot showing counted cells out of the lymphocyte gate 

 

 

2.4.4 Confocal microscopy (Laser Scan Microscopy) 

Additional materials Source 

Scalpel Amefa 

Laser Scan Microscope (LSM 510 Meta) Zeiss 

Axiovert 200 M connected to LSM Zeiss 

LSM 5 image browser software  Zeiss  

Moviol Calbiochem, Fluka 

 

Preparation of Moviol:  

20 g Moviol 4.88 was stirred in 80 ml PBS over night. Then, 40 ml glycerine were added and 

mixed. After centrifugation, the supernatant was aliquotted and stored at -20°C. 

After adoptive transfer of CFSE and TAMRA-labelled splenocytes, mice were sacrificed for 

microscopic analysis and to confirm effective GPCR blockade. Lymphoid organs were isolated 

and cut manually with a scalpel blade. The sections were set onto microscope slides, embedded 

in droplets of moviol and covered for the analysis.  

After adapting the Laser Scan Microscope for 15 min to warm up the lasers, the instrument was 

set up. Due to the excitation maxima of CFSE and TAMRA at 496 and 540-555 nm, 

respectively, the argon laser wavelength 488 nm and the He/Ne laser with 543 nm wavelength at 

3% and 90% laser power, respectively, were chosen for excitation. A first beam splitter of 

488/543 nm and a second splitter of 545 nm were selected. To detect the emitted light, a band 

pass filter of 505-530 nm in channel 2 and a long pass filter of 560 nm in channel 3 were used. 

The samples were screened thoroughly and micrographs were taken from representative areas 

and processed with LSM 510 image browser software. 
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2.4.5 Molecular biology techniques 

 
2.4.5.1 Polymerase chain reaction (PCR) to detect ifnar1 exon 10 deletion 

 

Additional materials Source 

DNeasy Tissue Kit Qiagen 

Table centrifuge Zentrifuge 5415C, Eppendorf 

Cooling block Eppendorf 

Qiagen Taq PCR core kit (250 units) Qiagen 

10 mM deoxynucleotides (dNTP: dATP, 

dCTP, dGTP, dTTP) 

New England Biolabs 

Thermo-Tubes 0.2 ml ABgene 

PCR Cycler Peltier Thermal Cycler 200, MJ Research 

10 x TBE PEI 

10 x TBE 890 mM Tris Base 

 890 mM Boric acid 

 25 mM EDTA, pH 8,0 

Microwave Privileg 9025E 

6 x DNA sampling buffer 0,25% bromphenol blue 

 30% glycerine 

 Aq. dest. 

Ethidiumbromid (1% Aqua dest.) Merck 

DNA marker Gibco, Invitrogen 

Voltmeter Power Pac 300, Bio-Rad 

 

All materials for DNA techniques as well as the primers were kept on -20°C and were thawn and 

pipetted on a cooling block. 

DNA was prepared from tail, spleen, thymus and MACS-purified splenic B cells of 

IFNARflox/flox, IFNAR∆ex10/∆ex10 and CD19Cre+/- IFNARflox/flox mice by Qiagen DNeasy Tissue Kit 
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according to the manufacturer´s instructions. The organs were incubated in lysing buffer 

supplemented with proteinase K. The cells and tissues were digested over night at 55°C. Ethanol 

was added, the samples were vortexed and passed over DNeasy Mini spin columns placed in a 

collection tube. After centrifugation for 1 min at 10000 rpm, the column was placed into a new 

collection tube and spun down again. Then, the column was placed onto an Eppendorf cup and 

eluted twice by centrifugation with the provided buffer.  

 

The DNA samples were air-dried and dissolved in Qiagen Taq PCR core kit buffer. A master 

mix of the PCR reagents was pipetted under a sterile work bench:  

 

 

Component Volume [µl]  

  

10 x buffer 5 

Sense primer 5 

Antisense primer 5 

dNTPs (10 mM) 2 

Q-solution 13 

MgCl2 (25 mM) 3 

Aqua dest 11.8 

Taq-polymerase (5 U/µl) 0.2 

 

 

Primers were selected that bind outside the floxed region to distinguish the floxed and the 

exon10-deleted alleles.  

Sense primer : GGT TAA GCT CCT TGC TGC TAT CTG G  

Antisense primer : TTG GAG ATG CAA TCT GCT ACT CAG C 

 

45 µl master mix were pipetted in Thermo-Tubes and 5 µl DNA per sample were added. One 

sample was prepared with a Taq-polymerase-free master mix. To run the PCR in a Peltier 

Thermal cycler, the tubes were adapted at 94°C for 4 min and then incubated for 35 cycles (at 

94°C for 30 sec denaturation; at 58°C for 30 sec annealing; at 72°C for 120 sec elongation). 

After 35 cycles, the tubes were kept at 72°C for 10 min and were finally cooled down to 4 °C.  
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To analyse the amplification products, a 1% agarose gel was prepared by heating agarose in 70 

ml 1 x TBE buffer supplemented with 2.22 µl ethidium bromide. After having cooled, the gel 

was kept in 1 x TBE buffer. 2 µl loading buffer were mixed with 10 µl PCR product solution to 

load the lanes of the gel. 10 µl DNA marker were added in an extra lane. The PCR products were 

separated for approximately 1 h at 110 V. Analysis was performed at UV light (245 nm) and gel 

photos were taken. 

 

 
2.4.5.2 PCR-screening of CD19-Cre+/- IFNARflox/flox and CD4-Cre+/- IFNARflox/flox mice  

 

CD19-Cre+/-IFNARflox/flox mice were bred among each other, giving rise to 25% CD19-Cre+/+ 

mice (that could not be used for experiments due to a functional defect in B cells) and to  25% 

CD19-Cre-/- (wild-type) mice (that did not show IFNAR recombination). Therefore, CD19-Cre+/-

IFNARflox/flox mice were screened for the 50% heterozygous CD19-Cre+/- offspring with the 

primers:  

 

#42 (5’-CCCAGAAATGCCAGATTACG-3’),  

#46 (5’-AACCAGTCAACACCCTTCC-3’) and  

#47 (5’-CCAGACTAGATACAGACCAG-3’),  

 

giving rise to a 452 base pair (bp) PCR product in the presence of a CD19 wt allele and a 525 bp 

PCR product for a CD19-Cre allele. Alternatively, the few CD19-Cre+/+ IFNARflox/flox mice 

available (due to reduced viability) were bred with IFNARflox/flox mice to avoid screening, since 

all their progeny was CD19-Cre+/-IFNARflox/flox. 

 

CD4-Cre+/-IFNARflox/flox mice were bred to IFNARflox/flox mice, giving rise to 50% CD4-Cre+/- 

IFNARflox/flox mice and to 50% CD4-Cre-/- IFNARflox/flox mice. The CD4-Cre transgene was 

screened for with a Cre-specific PCR using the primers  

 

#70 (5' GCCTGCATTACCGGTCGATGCAACGA 3') and  

#71 (5' GTGGCAGATGGCGCGGCAACACCATT 3'). 
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2.4.6 B cell chemotaxis assay 

Additional materials Source 

Transwell plates [polycarbonate membranes] Corning Costar, # 3421  

BSA [low endotoxin, IgG free] Sigma, # A-2058 

Migration Medium RPMI 1640 

 0,5 % BSA 

 10 mM HEPES 

CCL19 R&D, # 440-M3-025 

CCL21 R&D, # 457-6C-025 

CXCL12 R&D, # 460-SD-050 

CXCL13 R&D, # 470-BC-025 

 

The chemotaxis assay is based on a diffusion gradient formed between the upper and the lower 

chamber of every single well.  

Migrated cells are counted by FACS by an indirect method: The numbers of migrated cells that 

are measured from chemotaxis samples, are calculated by the rule of the three with those 

numbers measured from additional reference counting samples that contain known cell numbers. 

Thus, the total number of migrated cells and the percentage of chemotaxis are obtained.  

Usefully, the reference counting wells are set up with a number corresponding to the estimated 

amount of migrating cells. In case of naïve lymphocytes, a mean of 20% migration of the control 

population can be expected. Hence, the chemotaxis wells are set up with a total of 106 cells, and 

the reference counting wells are filled directly with 2 x 105 cells. To assess the spontaneous 

migration, negative control wells are set up without adding any chemokines. 

Purified B cell suspensions were prepared in B cell culture medium and counted. During the 

preparation of the migration plate, the B cell suspensions were kept in the incubator. The lower 

chambers of the reference count wells were filled with 500 µl pre-warmed B cell migration 

medium and the negative control wells with 600 µl. All chemotaxis dilution wells were filled 

with 600 µl pure migration medium and then the chemotaxis wells of the highest concentration 

were filled with 900 µl of the undiluted chemokine solution (see table 2.2). Serial 1:3 chemokine 

dilutions were prepared in triplicates or single wells according to the number of cells available.  
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Next, the B cell suspensions were spun down at 1200 rpm for 10 min, supernatants were taken 

off entirely and the cells were resuspended in migration medium at 107 cells/ml. 120 µl were 

taken out as reference count cells to be diluted with 480 µl migration medium. Of this, 100 µl 

containing 2 x 105 cells were added to the lower chamber of the reference count wells. Then, the 

transwell inserts were placed onto the chemotaxis and negative control wells. Finally, 100 µl of 

the concentrated cell suspension containing 106 B cells were carefully added into the upper 

chamber formed by the transwell inlay. The covered plates were kept in the incubator to let the 

cells migrate for 3 h.  

Then, the transwell inlays were removed and the lower chambers were resuspended thoroughly. 

Samples of 550 µl were transferred into large FACS tubes and counted by FACS. For this, the 

FACS machine was prepared by rinsing with FACS clean and with aq. dest. for 5 min each. The 

samples were acquired for 60 sec without gating cells, but using a FCS/SCC detection threshold 

to exclude detritus. Between individual samples, the needle was rinsed with FACS flow.  

 

Table 2.2: Chemokine concentrations for the preparation of chemotaxis assay plates 

  For single wells  For triplicates 

Chemokine Conc. [µg/ml] CXCL stock [µl] Medium  CXCL stock [µl] Medium 

CXCL12 0.3 2.7 897.3 8.1 2691.9 

CXCL13 2.3 21 879 63 2637 

CCL19 0.6 5.4 894.6 16.2 2683.8 

CCL21 0.3 3 897 9 2673 
      

   Single wells  Triplicates 

Reference count wells 500 (Individually prepared) 

Negative control wells 600  1800 

Remnant dilution wells 600  1800 

 

 

 

 

 

 

 



64 2 Materials and methods 

 

2.4.7 VSV Serum Neutralisation Assay  

Additional materials Source 

Vero cells Originally obtained from ACCT 

96-well flat bottom cell culture plates Nunc 

96-well flat bottom plates Greiner 

10 x MEM  Gibco, #21435 

280 mM ß-mercapto-ethanol 

 

100 µl 14 M ß-mercapto-ethanol 

 (concentrated)  

5 ml 0.9% Na Cl 

Multichannel pipettes Socorex 

Magnetic stirrer Combimag Ret, Janke& Kunkel 

Methocel MC  Fluka #64620 

Double-distilled H2O PEI 

7.5% sodium bicarbonate  Gibco, # 25080-060 

1% methylcellulose in 1 x MEM (Preparation see below) 

Crystal violet 0.5% Crystal violet   

 5% formaldehyde  

0.8% NaCl 

 Aq. dest. 

 

Preparation of 1% methylcellulose in 1 x MEM:  

15 g methocel were dissolved in 750 ml double-distilled H2O (2%) over night under stirring in 

the cold room. After autoclavation, a methylcellulose block formed that dissolved at room 

temperature within 24 h. 250 ml of 2% methocel were mixed with 50 ml 10 x MEM. 30 ml 7.5% 

sodium bicarbonate was added. A final 1 x concentration of 0.44% was reached by a filling up to 

500 ml with 170 ml double-distilled H2O. 
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Sera of VSV-infected mice were analysed for their VSV-neutralisation capacity. For this, Vero 

cells were seeded at a density of 2 x 105 cells/ml in 100 µl/well MEM 5% FCS, using 96-well 

flat bottom cell culture plates. The plates were kept in the incubator to grow to confluency.  

On day 2, sera were reduced for the determination of IgG by adding 10 µl 280 mM ß-mercapto-

ethanol to 10 µl of the serum samples. The reduced sera were incubated for 1 h at room 

temperature. Untreated sera were used for determination of total Ig. Next, the sera were 

prediluted 1:40 by adding 380 µl MEM 5% FCS to the reduced sera and 390 µl MEM 5% FCS to 

the untreated sera. In order to destroy the complement system, the prediluted sera were heat-

inactivated for 30 min at 56 ˚C.  

For serial dilutions of the sera, lines 2 – 12 of new 96-well plates were filled with 100 µl MEM 

5% FCS. Subsequently, 200 µl heat-inactivated serum dilutions were added to the first line of the 

wells and 1:2 titration steps were made. Next, 100 µl VSV were added at a concentration of 103 

PFU/ml to all wells already containing 100 µl antibody dilution. These plates were left to 

incubate for 90 min at 37 ˚C without stapling.  

Then, the medium of the confluently grown Vero cell culture plates was flicked off and 80 µl of 

the serum-VSV mixture was transferred onto the Vero cell layers by pipetting from front to back. 

The plates were incubated for 1 h at 37 ˚C and methylcellulose 1 x MEM was adapted to 37°C. 

For the next pipetting step, the tips were cut few millimetres. The plates were overlayed with 100 

µl 1% methylcellulose 1x MEM and incubated over night at 37 ˚C.  

On day 3, the medium was flicked off and the cultures were overlayed with crystal violet and 

incubated for 1 h at room temperature. Finally, the dye was carefully removed and the plates 

were washed extensively. The plates were air dried and the plaques were counted. 
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2.4.8 Enzyme-Linked Immuno-Sorbent Assay (ELISA) to detect VSV-specific 

serum antibodies 

Additional materials Source 

Nunc Maxisorb plates Nunc 

Tween 20 

 

Fluka 

ELISA coating buffer 3.18 g/l Na2CO3   

 5.88 g/l NaHCO3    

 Aqua dest. 

 Adjust to pH 9.6 with 0.1 M 

NaHCO3  

ELISA blocking buffer  

(Prepare immediately before use!) 

5% BSA  

0.1 % Tween 20 

 PBS 

ELISA washing buffer 0.1 % Tween 20 

 PBS 

ELISA serum and antibody dilution buffer  1 % BSA 

 0.1 % Tween 20 

 PBS 

Goat anti-mouse IgG1–horse radish peroxidase (HRP)  Southern Biotech, # 1070-05 

Rabbit anti-mouse IgG2a–HRP 

 

Zymed, # 61-0220 

Rabbit anti-mouse IgG2b–HRP Zymed, # 61-0320 

Rat anti-mouse IgG3 –HRP Southern Biotech, # 1190-05 

Rabbit anti-mouse IgM–HRP Zymed, # 61-6820 

Rabbit anti-mouse IgM,A,G–HRP Zymed, # 61-6420 

VI24 Prepared by U. Kalinke 
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ABTS (2, 2´-azino-bis-(3-ethylbenziazoline-6-sulfonic acid)) Roche 

H2O2 Merck 

ELISA reader Tecan, Sunrise 

 

Positive control for IgG2a:  

VI24 (mAb to VSV-G protein from Ulrich Kalinke, IgG2a, 1 mg/ml in stocks; 1:2000 as initial 

dilution; the signal disappears at 1:30000) 

 

Purified VSV was diluted 1:10000 in coating buffer (0.1 M NaHCO3, pH 9.6) and 96-well Nunc 

Maxisorb plates were coated with 100 µl/well. The plates were incubated over night at 4˚C. The 

virus dilution was carefully flicked off and the plates were washed 2 x with 150 µl/well of PBS, 

0.1 % Tween 20. To saturate unspecific protein binding, 100 µl/well blocking buffer were added. 

Then, the plates were incubated for 2 h at room temperature or alternatively over night at 4˚C. 

Subsequently, the VSV-coated plates were washed 2 x with 150 µl/well of washing buffer. Next, 

150 µl of the usually 1:40-diluted serum samples were added to the first rows and 8 serial 

dilutions steps in 1:3 titration were performed in dilution buffer in the VSV-coated plates. After 

2 h incubation at room temperature, the VSV coated plates were washed 3 x with 150 µl/well of 

washing buffer. To detect VSV-specific antibodies, 80 µl/well HRP-coupled detection antibodies 

(anti-IgG2a and anti-IgG2b 1:1000, anti-IgG1 and anti-IgG3 1:500-diluted in 1% BSA, PBS, 0.1 % 

Tween 20) were added and the plates were incubated for 1 h at room temperature.  

In the meantime, aliquots of ABTS, the substrate of HRP, were thawn and activated by 

supplementing 20 µl 30 % H2O2 to 11 ml ABTS aliquots. Then, the incubated plates were 

washed 3 x, and 100 µl/ well of the activated substrate were added. After 1h of incubation at 

room temperature, the plates were read at 405 nm by an ELISA reader. 

 

Serum IFN-α was detected by an IFN-α ELISA from R&D according to the manufacturer´s 

instructions (performed by Zoe Waibler, PEI).  

 

2.4.9 Statistical analyses 

Unless otherwise indicated, data are depicted as the mean ± SD. B: T cell ratios in SLOs were 

analysed with a Wilcoxon rank-sum test and differences were considered statistically significant 

when P values were less than 0.05.  
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3.1 Virus-induced type I IFN alters lymphocyte recirculation 

 

3.1.1 Following VSV infection, B and T cell counts are massively decreased in 

peripheral blood  

 

In order to study viral infection-related lymphopenia, we injected C57BL/6 (BL/6) mice i.v. with 

2 x 106 PFU VSV. Blood samples were collected at the indicated time points, and absolute 

numbers of peripheral blood lymphocytes were determined by a newly developed FACS method 

(Fig. 3-1, upper row). For this, 15 µl heparinised blood were mixed with the same volume of a 

counting beads suspension containing a defined number of spherical fluorescent beads 

(approximately 1000/µl). Following a standard staining procedure, FACS data equivalent to 

5000 reference counting beads were acquired. Thus, all FACS plots shown in this study are 

representative for a defined volume of blood, i.e. approximately 5 µl (for further details see 

2.4.3.2).  

Already 18 h after VSV injection, blood cell numbers were massively decreased and reached 

minimum values around 36 h post infection (p.i.). At later time points, the cell counts returned to 

pre-infection levels. During lymphopenia, the few lymphocytes still found in blood showed an 

stimulated phenotype as characterised by high expression of CD69 (Fig. 3-1, lower left). 

Analysis of sera (in collaboration with Zoe Waibler, PEI) revealed an early and significant IFN-α 

production between 12 and 18 h post infection, whereas at later time points IFN-α levels 

declined and returned to background values within 3 days (Fig. 3-1, lower right). Thus, during 

systemic infection, a strong IFN-α response and concomitant upregulation of CD69 was 

observed prior to the appearance of lymphopenia, suggesting a connexion between the host 

cytokine response and the onset of lymphopenia. 
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3.1.2 The infectious dose, administration route and the amount of induced host 

cytokines influence the onset of virus-induced lymphopenia  

 
Since many natural infections are initiated locally, we next investigated the kinetics of 

lymphopenia in a model of intranasal (i.n.) inoculation. When BL/6 mice were infected i.n. with 

a sublethal dose of 104 PFU VSV, we observed pronounced lymphopenia only on day 2 (Fig. 3-

2). Thus, the kinetics of lymphopenia were influenced by the infectious dose and the application 

route. To investigate whether the late onset of lymphopenia correlated with a delayed systemic 

cytokine production, we inoculated mice i.n. with 104 PFU VSV-M2 (also called VSV-

AV1).179;180 This virus variant expresses a mutant M protein with an M51R (methionine 51 to 

arginine 51) exchange that results in a less pronounced inhibition of cellular protein expression 

as compared to wild-type VSV because of a reduced sequestration of mRNA export. 181;182  
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In vivo, VSV-M2 was shown to induce approximately 10-fold higher type I IFN responses than 

the wild-type virus (Zoe Waibler, data not shown180). In VSV-M2-treated mice, we found 

massive lymphopenia already on day 1 post infection (Fig. 3-2), and lymphocyte counts started 

to recover already by day 2 post infection (p.i.). Thus, VSV-M2 triggered the induction of 

lymphopenia earlier than VSV, suggesting that the onset of lymphopenia is determined by the 

viral capacity to trigger the host cytokine responses.  

 

 

3.1.3 Similar to VSV infection, treatment with TLR3 or TLR7 agonists induces 

lymphopenia  

 

To address whether IFN-α responses had an impact on lymphopenia, IFNAR-deficient mice 

(IFNAR-/-),139 which had been 10-fold backcrossed to the BL/6 background, and BL/6 controls 

were treated i.p. with the TLR3 ligand synthetic dsRNA (poly(I:C)), which is a strong type I IFN 

inducer. Reminiscent of VSV-infected mice, 20 h following poly(I:C) treatment, BL/6 mice 

showed massively reduced peripheral blood lymphocyte counts, whereas IFNAR-/- mice did not 

(Fig. 3-3). Since TLR7 might be involved in VSV-mediated type I IFN induction,125 mice were 

also treated with the synthetic TLR-7 agonist R-848 which induced an IFNAR-dependent 

lymphopenia, too (Fig. 3-3).  
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Lymphocytes of poly(I:C) (Fig. 3-4) or R-848-treated (data not shown) BL/6 mice showed CD69 

upregulation, which was absent in IFNAR-/- mice. In conclusion, IFNAR-signalling plays a 

critical role in the induction of lymphopenia and the upregulation of CD69 on lymphocytes. 
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3.1.4 Injection of type I IFN induces lymphopenia and stimulates lymphocytes 

 

As poly(I:C) and R-848 induce many cytokines in addition to type I IFN, we checked whether 

injection of type I IFN alone was able to elicit lymphopenia. To this end, 2 x 105 IU IFN-α were 

administered subcutaneously (s.c.) to BL/6 mice (Fig. 3-5A). Unlike PBS-treated controls, one 

day after injection with IFN-α, the mice showed significantly reduced B and T cell numbers. 

Similar results were obtained upon injection of IFN-β and both CD4+ and CD8+ T cells 

underwent massive lymphopenia with similar efficiency (Fig. 3-5B). Thus, type I IFN 

stimulation is sufficient to induce lymphopenia. 
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3.1.5 Type I IFN-induced lymphopenia is fully reversible 

 

To analyse whether the reappearance of B and T cells in blood was related to redistribution of 

existing lymphocytes, to augmented BM output46 or to increased de novo formation of 

lymphocytes, we adoptively transferred CFSE-labelled gender-matched splenocytes in BL/6 

recipients and monitored the absolute numbers of labelled cells after treatment with poly(I:C) 

(Fig. 3-6). Throughout the experiment, the percentages of the adoptively transferred lymphocytes 

remained constant, demonstrating that CFSE-labelled cells were not rejected.  

One day after the induction of lymphopenia, transferred and endogenous cells reappeared in 

blood and eventually reached similar numbers as in PBS-treated controls. Thus, lymphocytes 

were sequestered from blood and at later time points reappeared again, demonstrating that 

poly(I:C)-induced lymphopenia is completely reversible. As CFSE fluorescence intensity of 

labelled lymphocytes was not reduced after poly(I:C) treatment, cell division does not play a role 

in the reappearance of lymphocytes (data not shown).  
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3.2 Cellular targets for type I IFN 

 

3.2.1 Type I IFN induces lymphopenia via stimulation of immune cells, but not 

through effects on endothelium or stroma  

 

Lymphocytes circulate within the organism and transmigrate through vessels and within 

secondary lymphoid organs (SLOs). Since the endothelium was recently suggested to play a role 

in lymphopenia,183 we examined whether type I IFN induces lymphopenia by acting on 

endothelium and stroma or on immune cells. 
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For this, we lethally irradiated CD45.2+IFNAR-/- mice and reconstituted them one day later with 

congenic CD45.1+BL/6 wild-type (WT) bone marrow (BM) to obtain WT>IFNAR-/- BM 

chimeric mice. Similarly, CD45.1+ congenic WT mice were reconstituted with CD45.2+IFNAR-/- 

BM (IFNAR-/->WT). Staining for the allotype markers CD45.1 and CD45.2 as well as for B and 

T cells revealed a reconstitution efficiency of about 95% and demonstrated that T cells 

accounted for more than 90% of these remnant recipient-derived lymphocytes (Fig. 3-7A).  

Upon poly(I:C) treatment, only WT>WT positive controls and WT>IFNAR-/- mice showed 

lymphopenia, whereas IFNAR-/->WT mice and IFNAR-/->IFNAR-/- negative controls did not 

(Fig. 3-7B). These data demonstrate that type I IFN stimulation of BM-derived immune cells, but 

not of radio-resistant cells, including endothelium and stroma, is required for the induction of 

lymphopenia. 
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We next studied the cellular targets for the lymphopenia induced by the TLR7 ligand R-848. For 

this, we used mixed BM chimeras, which were obtained by simultaneous reconstitution of 

recipient mice with WT and IFNAR-/- BM ([WT and IFNAR-/->WT] as well as [WT and 

IFNAR.-/->IFNAR-/-] mice) (Fig. 3-7C). Reminiscent of the results in poly(I:C)-treated mice, R-

848 was able to induce massive B cell lymphopenia of WT immune cells in both WT and 

IFNAR-/- recipients. IFNAR-/- B cells, however, showed significantly impaired lymphopenia, 

irrespective of whether the recipients were IFNAR-competent or deficient. In conclusion, R-848 

induces B cell lymphopenia by a mechanism dependent on type I IFN stimulation of BM-derived 

immune cells, but not of endothelia or stroma.  

 

 

3.2.2 Type I IFN directly stimulates B cells and induces lymphopenia 

 

To address whether type I IFN induces lymphopenia via direct stimulation of lymphocytes or 

indirectly by activating some immune cell type to secrete relevant factors, we adoptively 

transferred WT and IFNAR-/- B cells, which had been differentially labelled by TAMRA or 

CFSE, into WT recipient mice. Under these experimental conditions, all cells except for the 

adoptively transferred IFNAR-/- B cells (Fig. 3-8, left panel) were sensitive to type I IFN 

stimulation. After injection with poly(I:C), the endogenous B cells were massively reduced in 

blood. Similarly, the TAMRA-labelled WT B cells were reduced in absolute numbers. Their 

frequency, however, remained similar, demonstrating that TAMRA-labelled WT as well as 

endogenous B cells disappeared efficiently from blood. In contrast, the CSFE-labelled IFNAR-/- 

B cells were increased in percentages, but remained stable with respect to absolute numbers. 

Hence, direct type I IFN stimulation is necessary to induce B cell lymphopenia. Reciprocal 

labelling of the cells (i.e. WT B cells by CFSE and IFNAR-/- by TAMRA) revealed similar 

results, indicating that the different dyes did not affect the homing properties of transferred B 

cells.  

In IFNAR-/- recipients (Fig. 3-8, right panel), the adoptively transferred WT B lymphocytes were 

the only cells able to sense type I IFN. Upon poly(I:C) challenge, the IFNAR-/- control cells and 

the endogenous B cells remained at similar numbers, whereas the WT B cells were reduced with 

regard to percentages and absolute numbers. Again, lymphopenia showed a pronounced IFNAR 

dependence in B cells irrespective of the dye that IFNAR-competent or deficient B cells were 

labelled with. Taken together, these data indicate that direct type I IFN stimulation of B cells is 

largely sufficient for the induction of B cell lymphopenia.  



3 Results 77 

 

  
B cells from WT and IFNAR  mice were labelled with TAMRA or CFSE (left 
panels), or vice versa (right panels) and re-injected into WT or IFNAR  
recipients. Labelled cells were counted in blood before and after treatment 
with poly(I:C) and are depicted as percent of total B cells and as absolute 
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Fig. 3-8: Type I IFN stimulation has a direct effect on B cells. 
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3.3 Novel genetic mouse models to study the role of direct type I IFN 

stimulation of lymphocytes 

 

3.3.1 Generation of conditionally gene-targeted mice with a B cell or T cell-specific 

deletion of the IFNAR  

 

In adoptive transfer experiments, the numbers of injected B cells are always limited when 

compared to the endogenous B cell pool. Thus, to further study the direct effect of type I IFN 

stimulation of lymphocytes, Ulrich Kalinke generated mice with a B cell or a T cell-specific 

IFNAR deletion using a gene-targeting approach with the Cre-loxP strategy184 (Kalinke et al., 

manuscript in preparation). To this end, a targeting vector was generated. Besides the exons 7 to 

10 of the IFNAR α-chain gene (ifnar1), the targeting vector carried a neomycin resistance (neo) 

cassette and was flanked at its 5’ end by a thymidine kinase (TK) cassette. 
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Fig. 3-9: Generation of mice with a B cell-specific IFNAR deletion. 
(A) In a targeting vector, exon 10 of was flanked by loxP sites. After gene-
targeting of ES cells, the loxP-flanked neo cassette was removed by transient Cre 
expression. Upon blastocyst injection, chimeric IFNAR mice were obtained. 
Homozygous IFNAR  mice were crossed to deleter mice, which express Cre in 
all tissues, giving rise to mice with an ubiquitous deletion of exon 10 
(IFNAR ), and to CD19-Cre  mice to delete IFNAR specifically in B cells. 
Semi arrows indicate localisation of primers outside the floxed region.  
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Of note, the exon 10 of ifnar1 and the neo cassette were flanked by so-called loxP sites, which 

are bacteriophage-derived 34 bp long asymmetric DNA sequences (Fig. 3-9).  

In a next step, IB10 embryonic stem (ES) cells isolated from SV129 mice were electroporated 

with the targeting vector. By homologous recombination, the mutated sequence integrated into 

the murine ifnar1 while the TK cassette was deleted. To select for stably transfected clones, the 

ES cells were first incubated for one day with gancyclovir, which is metabolised into a toxic 

product in the presence of TK. Thus, any possible TK-carrying clones with a random integration 

of the transgene were counter-selected for. Then, the transfected ES cells were also selected in 

the presence of neomycin. Neomycin-resistant clones were screened by a PCR method for 

homologous recombination. After Southern blot verification of the homologous gene targeting, 

the loxP-flanked neo cassette had to be removed since aberrant phenotypes had been observed in 

mice carrying neo. For this purpose, the gene-targeted ES cell clones were transiently transfected 

with a vector expressing the enzyme Cre-recombinase (“creates recombination”, Cre). Cre 

specifically recognises loxP sites and can recombine DNA fragments located in between of two 

loxP sites. Depending on the identical or opposite orientation of the asymmetric loxP sites, the 

recombination leads either to deletion or inversion of the respective sequences.  
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Fig. 3-9 (continued): 

Sp: spleen, B: B cells, Thy: thymus. 
by PCR to detect recombination of exon 10.

 

 

In the present mouse model, all three loxP sites flanking the neo cassette and exon 10 were 

oriented in the same direction to allow for removal. Those ES cell clones that had deleted the neo 

cassette, but still carried the floxed exon 10, were identified by PCR and verified by Southern 

blot analysis and subsequently microinjected into blastocysts.  

Microinjected blastocysts were then transferred into pseudopregnant foster mothers. Chimeric 

mice were born, which carried IFNARflox and IFNARwt alleles and transmitted the IFNARflox 

allele to their offspring, giving rise to heterozygous IFNARflox/wt mice. Next, the IFNARflox/wt 

mice, which were on SV129 background, were backcrossed 10-fold to C57BL/6 mice. Finally, 

the C57BL/6 congenic IFNARflox/wt mice were intercrossed to obtain homozygous mice with a 

conditional IFNAR (IFNARflox/flox).  

The compatibility of a conditional ifnar1 allele with a fully functional type I IFN system was 

confirmed by i.v. infection with VSV, in which IFNARflox/flox mice turned out to be as resistant as 

WT controls (Kalinke et al., manuscript in preparation). In a next step, the IFNARflox/flox mice 

were crossed to Cre deleter mice,185 which express Cre in all tissues, to get mice with an 

ubiquitous deletion of exon 10 (IFNAR∆ex10/∆ex10). The deletion of exon 10, encoding the 

transmembrane region of IFNAR, induced a frame shift that resulted in a truncated IFNAR α-

chain devoid of the transmembrane region and the signalling domain. Thus, the IFNAR was 

rendered non-functional. Indeed, the IFNAR∆ex10/∆ex10 mice proved to be as sensitive to lethal 

VSV infection as conventional IFNAR-/- mice (Kalinke et al., manuscript in preparation).  
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Instead of a ubiquitous deletion, the expression of Cre can also be controlled by a tissue-specific 

promoter to direct the IFNAR deletion selectively to lymphocyte subsets or other cell types.  

To achieve B and T cell-specific IFNAR deletion, after 10-fold backcrossing to the C57BL/6 

background, we bred IFNARflox/flox mice to CD19-Cre+/-174 or CD4-Cre+/-175 transgenic mice to 

obtain CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice. These mice show a B cell or 

a T cell-specific IFNAR deletion, respectively, since CD19 is a lineage-specific marker for B 

cells and CD4 is transiently expressed on all thymocytes during the CD4+CD8+ double positive 

stage and thus directs Cre-mediated IFNAR deletion to T cells, including CD4+ T helper cells 

and CD8+ cytotoxic T cells.  

 

3.3.2 Analysis of the IFNAR recombination efficiency in CD19-Cre+/-IFNARflox/flox 

and CD4-Cre+/-IFNARflox/flox mice  

 

3.3.2.1 Genetic approach: PCR analysis indicates the quantitative and selective deletion of 

IFNAR in CD19-Cre+/-IFNARflox/flox mice 

 

We analysed the Cre-mediated recombination efficiency of the conditional IFNAR by molecular 

biology methods and tested for the selective loss of function. Firstly, a competitive PCR was 

performed to detect exon 10 of the IFNAR-α chain gene. Primers were chosen which bind 

outside the flanked region (Fig. 3-9A), so that both the floxed exon 10 and the recombined locus 

could be recognised, giving rise to a 1160 bp or a 339 bp PCR product, respectively (Fig. 3-9B, 

preliminary results). Tail DNA from IFNARflox/flox mice served as negative control and tail DNA 

from IFNAR∆ex10/∆ex10 mice as positive control for recombination. In spleen of CD19-Cre+/-

IFNARflox/flox mice, partial exon 10 deletion was detectable, whereas MACS-purified splenic B 

cells showed complete recombination. In thymus, only a very minor signal of exon 10 deletion 

was found. These results indicate the quantitative, i.e. apparently complete, IFNAR deletion in B 

cells of CD19-Cre+/-IFNARflox/flox mice.  

However, a competitive PCR approach to generate two products of different lengths is generally 

biased towards the shorter product. Thus, quantitative IFNAR deletion cannot be analysed in 

detail by competitive PCR. Hence, we further monitored the exon 10 recombination by Southern 

blot analysis performed in cooperation with Claudia Detje (PEI, in: Prinz et al., manuscript 

submitted). To screen for any possible IFNAR recombination in non-immune tissues, all organs 

(excluding spleen, LNs, thymus and BM) were isolated from CD19-Cre+/-IFNARflox/flox and 
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CD4-Cre+/-IFNARflox/flox mice. Since blood-derived B and T cells could give false positive 

results, these mice were analysed after perfusion with PBS.  

DNA was prepared from exsanguinous peripheral organs and MACS-purified splenic B and T 

cells. This DNA was digested with EcoRI and HindIII and incubated with a radioactively 

labelled probe complementary to exon 11 of the IFNAR-α chain gene (data not shown). The 

Southern blot analysis further demonstrated the selective and quantitative IFNAR deletion in B 

and T cells of CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice, respectively. 

 

3.3.2.2 Functional analysis of the B or T cell-specific IFNAR deletion 

 

To verify the inactivation of IFNAR on a functional level, we analysed the expression of the 

surface markers CD69 and Ly6C, which are upregulated on B and T cells in type I IFN-

dependent fashion152;186;187 (Fig. 3-10A).  

As expected, splenic lymphocytes of poly(I:C)-treated BL/6 mice showed a prominent 

upregulation of CD69, whereas Ly6C was massively induced on T cells. In contrast, B cells 

showed only a very minor upregulation of Ly6C. In IFNAR-/- mice, however, no upregulation 

was observed at all. Since poly(I:C) induces many cytokines in addition to type I IFN, these 

results clearly show that CD69 and Ly6C are induced on lymphocytes by type I IFN, but not by 

other cytokines. 

In poly(I:C)-treated IFNARflox/flox mice, CD69 and Ly6C expression was increased to a similar 

extent as in WT mice, thus confirming by a second approach that the mutated ifnar1 allele did 

not affect IFNAR functionality. In CD19-Cre+/- mice, where one CD19 allele was replaced by 

Cre, the pronounced upregulation of CD69 indicated that B cell function was not impaired. 

Similarly, the strong induction of both markers in poly(I:C)-treated CD4-Cre+/- mice argued that 

the CD4 transgene, which is randomly integrated in the genome of these mice, did not confer 

detrimental effects on immune functions regarding the stimulatory capacity of lymphocytes.  

Similar to positive controls, T cells of CD19-Cre+/-IFNARflox/flox showed upregulation of Ly6C 

and B cells of CD4-Cre+/-IFNARflox/flox mice exhibited an increased expression of CD69. 

However, similar to lymphocytes of IFNAR-/- mice, B cells of CD19-Cre+/-IFNARflox/flox mice 

did not show any induction of CD69 and Ly6C, and T cells of CD4-Cre+/-IFNARflox/flox mice 

were not able to upregulate Ly6C. These observations reveal that in CD19-Cre+/-IFNARflox/flox 

and CD4-Cre+/-IFNARflox/flox mice, B and T cells, respectively, are unresponsive to type I IFN, 

confirming the selective and quantitative deletion of the IFNAR.  
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CD4-Cre  IFNAR  mice, respectively.
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(B) Histogramms are scaled to identical maxima. Representative data out of two experiments 
are shown. 

cyte subsets. 

 

 

In blood, similar results were obtained with the few remaining IFNAR-competent lymphocytes 

(Fig. 3-10B). In contrast, the IFNAR-deficient B and T cells were found at high frequencies in 

blood of CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice and did not exhibit any 

induction of CD69 and Ly6C, thus further endorsing the complete IFNAR inactivation.  

Strikingly, the expression of CD69 was partially increased in splenic T cells of CD4-Cre+/-

IFNARflox/flox mice (Fig. 3-10A), demonstrating that CD69 induction on T cells in vivo is direct 

and indirect: CD69 is partially triggered by some type I IFN effects on other cells, but is further 

mediated via direct type I IFN stimulation of T cells.  

In contrast to the T cells isolated from spleen of CD4-Cre+/-IFNARflox/flox mice, the blood-derived 

T cells (Fig. 3-10B) did not exhibit any upregulation of CD69. Since direct effects of type I IFN 

cannot be exerted on T cells in these mice, this suggests that the indirect effects of type I IFN, 

which were observed in spleen, do not act on blood T cells.  
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3.3.3 Mice with a B or a T cell-specific IFNAR deletion show significantly reduced 

lymphopenia of B and T cells, respectively  

 

The results of CD69 and Ly6C-staining in blood for the analysis of the IFNAR recombination 

efficiency (Fig. 3-10B) already revealed normal blood B and T cell counts in poly(I:C)-treated 

CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice. Moreover, adoptive transfer studies 

suggested that type I IFN-unresponsive B cells were largely impaired to undergo lymphopenia.  

Indeed, upon poly(I:C) treatment (Fig. 3-11A) and virus infection (data not shown) of CD19-

Cre+/-IFNARflox/flox mice, B cells remained in blood, whereas T cells and other IFNAR-

competent immune cells disappeared. In CD4-Cre+/-IFNARflox/flox mice, B cells underwent 

massive lymphopenia, whereas T cell numbers remained overall stable (Fig. 3-11B). In 

summary, these data confirm that direct type I IFN stimulation of B and T cells is largely 

sufficient for the induction of lymphopenia.  
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Fig. 3-11: Selective lymphopenia in mice with a B or a T cell-specific IFNAR deletion. 

 
 

 

The IFNAR dependence of lymphopenia following R-848 treatment of IFNAR-/- mice (Fig. 3-3) 

and BM chimeras (Fig. 3-7C) pointed towards a major role of direct type I IFN stimulation of B 

and T cells also in this setting.  

Upon injection with R-848 (Fig. 3-12), IFNAR-competent B cells in BL/6 and in CD4-Cre+/-

IFNARflox/flox mice disappeared from peripheral blood, whereas the numbers of IFNAR-deficient 

T cells in CD4-Cre+/-IFNARflox/flox mice were decreased by approximately 50%. In contrast, the 

numbers of IFNAR-deficient B cells in CD19-Cre+/-IFNARflox/flox mice were only slightly 

reduced (data not shown). Thus, upon treatment with R-848, B cell lymphopenia is primarily 

mediated via direct type I IFN stimulation, whereas T cell lymphopenia is only partially 

dependent of type I IFN and is probably also triggered by some other cytokine(s) or indirect 

effects of type I IFN. 
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3.4 Homing of lymphopenic B and T cells 

 

3.4.1 Analysis of conditionally targeted mice shows that lymphopenic B cells 

moderately accumulate in spleen, whereas T cells do not  

 

We considered it likely that virus infection recruited lymphocytes into secondary lymphoid 

organs (SLOs). In line with this, lymph node (LN) logjam, i.e. blockade of LN output, had 

already been proposed as the causative mechanism of drastic lymphopenia observed in clinical 

treatments with the immunosuppressant FTY720 (see also 1.3.2).27-29  

To investigate the lymphopenic homing induced by type I IFN, we utilised two approaches: on 

the one hand, the analysis of mice with a B or a T cell-specific IFNAR deletion and on the other, 

the investigation of adoptively transferred animals. The concept was to study changes in the ratio 

of lymphopenic to non-lymphopenic cells. 

As a first approach, we analysed CD19-Cre+/-IFNARflox/flox mice in which B cells remained in 

blood after poly(I:C) treatment, while T cells underwent lymphopenia (Fig. 3-11A). 

Consequently, similar to changes of B:T cell ratios in blood, also in those tissues, where T cells 

preferentially home to, B:T cells ratios were expected to be affected. A comparative FACS 

analysis of the lymphocyte redistribution in LNs and spleen of CD19-Cre+/-IFNARflox/flox mice 

showed that B:T cell ratios remained very similar, indicating that T cells do not preferentially 

home neither to LNs nor to spleen (Fig. 3-13).  
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In CD4-Cre+/-IFNARflox/flox mice, a slight, but statistically significant increase in B:T cell ratios 

was observed in spleen, but not in LNs, suggesting some preferred homing or retention of B cells 

in spleen during lymphopenia.  

 

3.4.2 Homing studies using adoptive transfer  

 

In theory, the detection of shifts in B:T cell ratios could be hampered by too low numbers of 

immigrating lymphocytes as compared to the constitutively abundant B and T cell numbers 

within SLOs. To overcome this limitation and as a second approach, we transfused mice with 

differentially labelled WT and IFNAR-/- B cells and analysed SLOs by FACS for ratios of 

WT:IFNAR-/- cells, the latter serving as a constant reference population (Fig. 3-13B).  
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As compared to pre-treatment levels, the ratios of WT:IFNAR-/- B cells were reduced upon 

poly(I:C) treatment in blood, remained constant in LNs, but were slightly increased in spleen, 

suggesting that WT B cells left the circulation to moderately accumulate in spleen. Similar 

results were obtained by adoptive transfer of WT splenocytes into PBS or poly(I:C)-treated mice 

(data not shown). Additionally, laser scan microscopy of non-lymphoid organs (including lung, 

liver, kidneys, heart, skeletal muscles, ileum, appendix, skin and BM) did not reveal major 

changes in ratios of differentially labelled cells (data not shown). Thus, only the spleen appears 

to be a moderately preferred target for B cell homing, whereas other organs are not particularly 

frequented. 
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3.5 Search for the molecular mechanism of lymphopenia 

 

3.5.1 Lymphopenia is mainly independent of GPCRs and chemokines 

 

Plenty of receptors and adhesion molecules regulate lymphocyte diapedesis. Recent studies have 

shown that treatment with FTY720 leads to lymphopenia via downregulation of sphingosine-1 

receptor 1 (S1P1), a novel phospholipid receptor.27-29;188 Conversely, absence of the lymphoid 

chemokines CCL19 and CCL21189 or their corresponding receptor CCR776 was reported to cause 

increased lymphocyte counts in blood. Of note, all chemokine and S1P receptors signal through 

heterotrimeric G proteins, of which the Gαi subunit can be inhibited by the toxin of Bordetella 

pertussis.22  

Thus, as a first step to find out whether signalling through pertussis toxin (PTX)-sensitive 

receptors was involved in type I IFN-induced lymphopenia, we adoptively transferred 

differentially labelled control cells and PTX-treated splenocytes into recipients. After allowing 

the cells to distribute within the organism for several hours, the mice were injected with PBS or 

poly(I:C).The effective blockade of GPCR-signalling throughout the experiment was confirmed 

by laser scan microscopy, showing that PTX-treated cells had not entered LNs and splenic white 

pulp (Fig. 3-14A), for which chemokine receptor function is essential.  

Surprisingly, upon poly(I:C) challenge, control (Fig. 3-14B, top) and PTX-treated lymphocytes 

(Fig. 3-14B, bottom) were both able to leave peripheral blood, albeit PTX-treated cells 

disappeared with slightly reduced efficiency. In essence, these data reveal that lymphopenia is 

mainly independent of GPCRs.  
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Fig. 3-14: Lymphopenia is mainly 
independent of GPCRs. 

 

 

3.5.2 Chemotaxis is not modulated in lymphopenia  

 

Homing of B and T cells is crucially controlled by the chemokine receptors CCR7,76 CXCR4 

and CXCR5 and its respective ligands CCL19 / CCL21, CXCL12 and CXCL13.13;16;20 Since 

lymphopenia showed a minor dependence on GPCRs, we next studied whether chemotaxis was 

modulated by type I IFN stimulation and thus contributed to lymphopenia.  
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After in vitro IFN-ß culture, B cells showed a reduced chemotaxis towards CXCL12, CCL19 and 

CXCL13 (Fig. 3-15A) in an in vitro chemotaxis assay.  

However, when B cells were purified from PBS and poly(I:C)-injected mice, similar ex vivo-

chemotaxis was found towards CXCL12, CCL19 and CCL21 (Fig. 3-15B). Hence, albeit type I 

IFN stimulation in vitro alters chemotaxis, lymphopenia in vivo does not rely on modulation of 

chemotactic migration.  
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3.5.3 Expression of molecules controlling lymphocyte migration is not regulated 

during lymphopenia  

 

The finding that lymphopenia was independent of modulation of chemotaxis, was further 

supported by lymphocyte surface receptor stainings. These revealed that the expression of the 

chemokine receptors CCR7, CXCR4 and CXCR5, of the integrins CD11a/CD18 and 

CD29/CD49d as well as of the adhesion molecule CD44 was not affected by poly(I:C) treatment; 

only L-selectin showed some minor reproducible upregulation (Fig. 3-16A). Apart from the 

constitutively distinct expression profiles of chemokine receptors, no differences were observed 

when B and T cells were analysed separately (data not shown). Interestingly, the reduced B cell 

chemotaxis observed after IFN-ß culture in vitro correlated with downregulation of CXCR4, 

CXCR5 and CCR7 on B cells (Fig. 3-16B).  
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3.6 Type I IFN stimulation in immune responses 

 

3.6.1 Immunisation with live virus  

 

3.6.1.1 Antibody responses against systemic VSV infection are independent of direct type I IFN 

stimulation of B cells  

 

Our studies demonstrated that type I IFN exhibited a direct effect on lymphocytes in vivo 

(Kamphuis et al. and Le Bon et al.).190-192 Thus, we next investigated type I IFN stimulation in 

the context of immune responses. Besides VSV wild-type virus, we further studied infection with 

the potent type I IFN inducing mutant VSV-M2 for the reason that any partial type I IFN 

dependence would be easier recognised in the presence of very high type I IFN amounts as 

elicited by VSV-M2. 

Upon i.v. challenge, BL/6 and CD19-Cre+/-IFNARflox/flox mice were equally resistant to infection 

with 2 x 107 PFU VSV-M2 or VSV and did not develop symptoms of disease (Fig. 3-17 and data 

not shown).  

VSV neutralisation assays showed that the production of VSV-neutralising IgM and IgG in 

CD19-Cre+/-IFNARflox/flox mice was as highly efficient as in WT controls (Fig. 3-17A). ELISA 

analysis further revealed a similar pattern of IgG subclasses with a pronounced bias towards 

IgG2b for both VSV and VSV-M2 (Fig. 3-17B, C and data not shown). Hence, we conclude that 

type I IFN stimulation of B cells is not critical for B cell responses against systemic VSV 

infection.  
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3.6.1.2 Type I IFN stimulation of B cells is not critical for immunoglobulin production upon 

intranasal VSV-M2 infection 

 

Intravenous administration directly targets antigens to the spleen and thus elicits strong immune 

responses. To study the influence of type I IFN stimulation under conditions of a peripheral 

infection, which directs the antigens primarily to the draining lymph nodes or mucosa-associated 

lymphoid tissue, we inoculated mice intranasally (i.n.). Upon i.n. challenge with 104 PFU VSV-

M2, both CD19-Cre+/-IFNARflox/flox mice and WT controls developed mild symptoms of upper 

respiratory disease (data not shown) and mounted high IgM and total Ig titres against VSV-M2 

on day 5 and day 12, respectively (Fig. 3-18). Thus, humoral responses following i.n. infection 

with VSV-M2 are not impaired in absence of B cell responsiveness to type I IFN.  
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Fig. 3-18: Antibody responses against intransal infection with VSV-M2 are not reduced 
in absence of direct type I IFN stimulation of B cells. 

Results are expressed as mean mean ± SD for five mice per group of one infection experiment.  
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3.6.2 Immunisation with VSV-G-expressing virus-like particles  

 

3.6.2.1 Generation and electron microscopic analysis of virus-like particles expressing VSV-G 

 

Type I IFN stimulation potently enhances humoral immunity towards the soluble protein chicken 

gamma globulin (CGG) via a direct effect on B cells.191 On the contrary, we found that after 

infection with live virus, type I IFN responsiveness of B cells was not critical for the induction of 

virus-specific and virus-neutralising antibody responses.  

To investigate whether i) viral replication, ii) the strong immunogenity of VSV provided by the 

paracrystalline structure of the viral glycoprotein (G), or iii) pathogen associated molecular 

patterns (PAMPs) such as the viral single-stranded RNA genome, accounted for this difference, 

we generated virus-like particles (VLPs) that express the main immunogen VSV-G protein on 

their surface. These VLPs (VSV-G MLV) are built on the gag (group-specific antigen) backbone 

of murine leukaemia virus (MLV). They are non-replicative particles devoid of env (envelope 

proteins) and of any retroviral nucleic acid.193  

The composition and quality of shock-frozen VSV-G MLV preparations was determined by 

immuno gold-labelling and subsequent visualisation by electron microscopy (Fig. 3-19). 

Approximately 30-50% of all particles presented a phenotype of entire virions with an envelope 

and inner structures, which in the following were referred to as VLPs (Fig. 3-19, lower right).  

In contrast, another 30% resembled viral particles, but showed varying structural alterations. 

Nearly all particles showed VSV-G-staining, though the labelling with α-VSV-G was found to 

be rather heterogeneous (Fig. 3-19, upper panel). VLPs showed fine fringes of similar surface 

proteins, as evidenced by methylamine wolframate-contrasting (Fig. 3-19, lower left). Therefore, 

VSV-G was displayed on the surface in highly organised fashion.  

Additionally, the preservation of the immunogen VSV-G epitopes was confirmed by ELISA, 

which further served as an approximated quantification method of individual VLP preparations 

(Patricia Bach,194 data not shown).   
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Fig. 3-19: Expression of the immunogen VSV-G on virus-like particles based on 
 
Vero cells were transfected with vectors expressing VSV-G and the MLV-backbone. Super-
natants were harvested twice in 48 h. After filtration, VLPs were purified by centrifugation. 
Shock-frozen VLPs were stained with gold-labelled VSV-G and contrasted with methyl-
amine wolframate (upper left) and uranyl acetate (upper right) and visualised by electron 

Lower row: Detailed section showing virus-like particles in methylamine wolframate (left) 
and uranyl acetate (right) contrast.

α−

Upper row: Overview of the preparation. 
microscopy. Gold-labelling is depicted as black dots (arrows). 

the murine leukemia virus.
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3.6.2.2 Type I IFN responsiveness is necessary for immunoglobulin isotype switch to non-

replicative retroviral particles 

 
We then immunised groups of BL/6, CD19-Cre+/-IFNARflox/flox and IFNAR-/- mice s.c. with 25 µl 

of the VSV-G MLV preparation. On day 0, day 1 and day 2, the mice either received s.c. 

injections of 2 x 105 IU IFN-α as adjuvant or were left untreated. In BL/6 mice, CD69 expression 

on blood B cells was moderately upregulated upon pure VLP injection, but was strongly induced 

by IFN-α (Fig. 3-20A, preliminary results).  
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Fig. 3-20: Subcutaneous injection with VSV-G-expressing virus-like particles 
induces type I IFN-dependent antiviral immune response. 
Mice were injected s.c. with 25 µl VSV-G MLV preparation and blood as well as serum 
samples were taken at different time points. 
(A) Peripheral blood lymphocyte counts remain overall stable upon challenge with 
VSV-G MLV. Blood samples were stained for B220-PE-Cy5 and CD69-FITC and 
measured by FACS. Since some BL/6 mice from Fig. 3-6 were re-used for the infection, 
the few highly positive events in the FITC channel were due to former CFSE-labelling.
(B) Numbers of blood B and T cells were counted on the indicated time points. 
(C) VSV-G MLV induces immunoglobulin class switch in a type I IFN-dependent way. 
Day 5 and day 12 sera were analysed for IgM and IgG subclasses, respectively, by 

Data are expressed as mean ± SD for three mice per group. Immunisation with 
VSV-G MLV was performed twice. 

VSV-coated ELISA. 

 

 

Blood B cell numbers were slightly reduced on day 1 following administration of VLPs, but 

decreased massively until day 2 in those mice additionally injected with IFN-α (Fig. 3-20A, B, 

preliminary results).  
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B cell counts were moderately reduced in IFN-α-treated IFNAR-/- mice and seemed to decrease 

to some more extent in CD19-Cre+/-IFNARflox/flox mice (Fig. 3-20B). Similarly, a mild to 

moderate lymphopenia of T cells was observed in all groups. Taken together, the data indicate 

that VSV-G MLV induces a mild B and T cell lymphopenia.  



100 3 Results 

Serum analyses revealed similarly low IgM titres on day 5 after immunisation in all groups of 

mice, irrespective of whether IFN-α had been used as an adjuvant or not (Fig. 3-20C, upper 

panel).  

Thus, the exogenous supply with IFN-α did not enhance the IgM production and furthermore, 

type I IFN stimulation was not critical for the early humoral IgM response upon s.c. VLP 

injection.  

We next studied the IgG subclasses on day 12 after VLP immunisation (Fig. 3-20C, lower panel) 

and found moderate levels of IgG1 and IgG2b in BL/6 mice. The antibody titres varied among 

individual mice, but were significantly higher than in IFNAR-/- mice, which did not develop IgG 

responses at all. CD19-Cre+/-IFNARflox/flox mice, however, showed an intermediate IgG1 and 

IgG2b production. Similar results were obtained in mice additionally injected with IFN-α (data 

not shown).  

 

In conclusion, these data show that type I IFN stimulation is necessary to promote isotype 

switching in response to s.c. immunisation with non-replicative VLPs. Moreover, the results 

demonstrate that the direct effect of type I IFN on B cells is necessary for IgG production, 

suggesting additive contributions of type I IFN stimulation of B cells and other cells of the 

immune system. Finally, since the IgG response in mice immunised only with VLPs was 

IFNAR-dependent, VLPs seem to induce a source of endogenous type I IFN production.  

 

 

 
 
 

 

 

 

 

 

 

 

 

 



4 Discussion 

 

Animals and humans respond to viral infections with rapid production of large amounts of type I 

IFN and an early transient lymphopenia in blood. Lymphopenia has long been used in Medicine 

and Veterinary Science for diagnostic purposes without understanding the underlying 

mechanism. In theory, lymphopenia could be related to effects of the virus or to the defence 

measures undertaken by the host. Since early viral infection is characterised by prominent type I 

IFN titres, investigation in the 1980s initiated to analyse the role of type I IFN in the induction of 

lymphopenia. With the then available tools of interferon preparations105 and anti-interferon 

antibodies,108 the studies showed that type I IFN was critically involved in lymphopenia.  

Certainly, a long-known major activity of type I IFN is innate antiviral resistance. Growing 

evidence nowadays further shows that type I IFN also plays important roles in coordinating the 

immune system. NK cells, DCs and macrophages are stimulated by type I IFN to enhance their 

specific immune functions. On lymphocytes, experimental studies had demonstrated various 

effects in vitro; however, the direct impact of type I IFN on B and T cells in vivo remained 

elusive.  

We hypothesised that type I IFN could directly stimulate lymphocytes to undergo lymphopenia 

and to promote B and T cell effector functions at later stages of the immune response. To study 

type I IFN stimulation in vivo, we used several genetically-modified mouse models. 

Conventional IFNAR-/- mice show generic unresponsiveness to type I IFN, whereas the novel 

CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice carry a B or a T cell-specific 

IFNAR deletion. In contrast to previous studies, these mice allowed to specifically detect the 

effects of type I IFN, but not of other cytokines. An integral objective of the work was to 

establish a reliable method to count absolute lymphocyte numbers in limited blood volumes. The 

development of a new FACS-counting technique based on reference counting beads allowed to 

directly count antibody-labelled cells in an identical blood sample volume. Thus, precise B and T 

cell numbers could be determined in a broad range from very low to high numbers and facilitated 

kinetics analysis at multiple time points.  

The first part of the thesis concentrated on the analysis of five major aspects concerning type I 

IFN-mediated lymphopenia. Experiments were performed to elucidate i) the type I IFN-

dependent regulation of blood lymphocyte numbers, ii) the cellular targets of type I IFN, iii) the 

recombination efficiency of the conditionally gene-targeted mice with a B or a T cell-specific 
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IFNAR deletion, iv) the homing during lymphopenia and finally v) the molecular mechanism of 

lymphopenia.  

The second focus of the work aimed at the investigation of type I IFN stimulation during 

immune responses. Three different models of antigens were analysed for the role of type I IFN in 

the generation of antibody titres. At the PEI, the humoral immunity was studied upon systemic 

and peripheral infection with live VSV and following peripheral administration of VSV-G-

expressing non-replicative VLPs, whereas vaccinations with the soluble protein CGG were 

performed in collaboration with Agnes Le Bon and David Tough at the Edward-Jenner-Institute 

in Compton, UK. Furthermore, this collaboration analysed the direct effects of type I IFN on 

CD8+ T cell cross-priming towards the soluble protein OVA.  

 

4.1 How does type I IFN cause massive lymphopenia?  

 
Viral infection-related lymphopenia has been known in clinical practice for decades and was 

shown to be dependent on type I IFN action. Currently, lymphopenia has again come into focus 

since a reduction of blood cell counts has also been observed in treatment with several novel 

immunomodulatory agents, which were designed for topical and systemic use in transplantation, 

cancer treatment and immunotherapy. For example, R-848-induced lymphopenia has recently 

been studied, however, the role of cytokines induced by R-848 and triggering of lymphocytes 

have not extensively been addressed.183 Overall, the respective kinetics, mechanism, 

involvement and distribution of lymphocyte subsets appeared to be rather heterogeneous. 

Lymphopenia seemed to be a stereotypic reactive pattern rather than a specific reaction.  

We studied lymphopenia induced either by infection with VSV or by administration of the TLR 

ligands poly(I:C) or R-848 and found a maximal reduction of lymphocyte numbers 

approximately one day p.i., depending on the dose and infection route. Lymphopenia was a 

reversible phenomenon that did not involve apoptosis since adoptively transferred fluorescently 

labelled cells reappeared in blood after the cessation of lymphopenia (Fig. 3-6). The use of 

IFNAR-/- mice allowed addressing the implication of type I IFN in a model independent of 

previous studies. Upon injection with poly(I:C), lymphocyte numbers remained overall stable, 

confirming the critical requirement of type I IFN for lymphopenia (Fig. 3-3). Interestingly, 

administration of R-848 showed similar results, uncovering that type I IFN-signalling was also 

crucial for mediating lymphopenia to the TLR7 ligand (Fig. 3-3). Treatment with recombinantly 

produced IFN-α and IFN-β further corroborated that type I IFN was sufficient to induce 

lymphopenia. Since type I IFN could stimulate lymphocytes directly or indirectly via cytokines 
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derived from other immune cells, we addressed direct type I IFN stimulation of B cells in 

adoptive transfer models. In absence of type I IFN responsiveness either on B cells or on all non-

B cells (Fig. 3-8), our data showed a direct effect of type I IFN to regulate B cell recirculation. 

The results strongly suggest that direct stimulation played a necessary major role. However, 

numbers of adoptively transferred cells were always limited. To quantify the requirements of 

direct and indirect effects, we studied CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox 

mice, in which all B cells or T cells, respectively, of the animals were IFNAR-deficient.  

Taken together, our results highlight a previously unrecognised role of direct type I IFN 

stimulation of B and T cells as a mechanism to cause lymphopenia. Poly(I:C)-induced 

lymphopenia showed a pronounced IFNAR dependence in B cells since numbers of IFNAR-

deficient B cells remained overall stable after treatment (Fig. 3-8, Fig. 3-11A). IFNAR-deficient 

T cells disappeared from blood to some extent, demonstrating less requirement of type I IFN 

stimulation for T cells (Fig. 3-11B). This tendency was also found after injection with R-848 

where T cells partially underwent lymphopenia. Hence, R-848-induced T cell lymphopenia is 

probably also triggered by some additional factor(s) besides type I IFN (Fig. 3-12). Due to their 

leucopenic potential in clinical trials, TNF-α, IL-12, IL-2 and IFN-γ could contribute to 

lymphopenia.  

Former studies addressed various direct effects of type I IFN on lymphocytes with a focus on B 

and T cell effector functions at later stages of the immune response.149;153;154;191 In contrast, here 

we report an early and systemic direct effect of type I IFN. Lymphopenia follows the kinetics of 

massive type I IFN responses in vivo by several hours and wanes with declining cytokine levels 

(Fig. 3-1).  

Many natural infections, however, take place in the periphery and the initially inoculated 

pathogen load is often relatively low. Interestingly, upon experimental local administration of 

low viral doses, lymphopenia occurs delayed when compared to i.v. infection (Fig. 3-2, upper 

panel). Since the onset of lymphopenia depends on high type I IFN serum titres, the observed 

delay is probably related to the time required for sufficient viral expansion, before the virus can 

induce massive type I IFN titres. Since type I IFN is massively produced by pDCs in spleen in 

response to i.v. VSV infection,36, it remains elusive whether VSV first has to reach spleen or 

whether potent type I IFN production can occur locally at the primary site of peripheral 

infection.  

Furthermore, after infection with some viruses such as vaccinia virus, high type I IFN serum 

titres are not produced, since many pathogens have evolved means to interfere with the 

production of type I IFN.133 Viral proteins that can specifically inhibit the induction of type I IFN 
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represent an emerging field of interest. In vitro analyses have identified numerous type I IFN 

antagonists such as the non-structural protein 1 (NS1) of Influenza B virus and the major 

structural protein pp65 of human cytomegalovirus.134;135 Influenza virus largely downregulates 

the cytokine induction and even hijacks the remnant NFkB activation for its own replication.138 

In contrast, vaccinia virus and hepatitis C virus potently interact with specific steps in the type I 

IFN induction cascade and hence lead to a nearly complete shut down of the antiviral cytokine 

response.136;137 Thus, sufficient type I IFN serum levels to elicit lymphopenia may not be 

induced. Therefore, prominent lymphopenia might not always be observed in virally infected 

patients. 

In contrast to a complete and selective type I IFN shut down, VSV generically reduces the host 

protein expression. The interaction of the viral matrix (M) protein with Rae1 and the nucleoporin 

Nup98 blocks the Rae1/mrnp41 mRNA nuclear export pathway. Thus, VSV diminishes antiviral 

cytokine responses.181;182;195 Interestingly, VSV does induce high type I IFN levels and massive 

lymphopenia (Fig. 3-1, Fig. 3-2 upper panel). However, the virus variant VSV-M2, which lacks 

the inhibitory properties of the M protein, is indeed much more efficient in triggering cytokines 

in vitro180 as well as in vivo (Zoe Waibler, data not shown). Hence, the observed earlier onset of 

lymphopenia in VSV-M2-infected mice (Fig. 3-2, lower panel) is probably caused by a more 

efficient type I IFN production. Critical titres for the induction of lymphopenia were achieved 

faster than by VSV since VSV-M2 elicited type I IFN even before viral expansion.  

 

4.2 What is the role of endothelia and stromal tissues in lymphopenia?  

 
Endothelial barriers and lymphoid stroma are critically involved in lymphocyte homing. Gunzer 

et al.183 previously suggested that R-848 directly stimulated endothelia to acquire a generalised 

“sticky state” characterised by the increased expression of adhesion molecules. Furthermore, 

local inflammation alters the molecular lining of vessels by increasing expression of E-selectin, 

ICAM and VCAM, and type I IFN in particular can induce chemokines and modulate adhesion 

molecules in human T cell lines166 and endothelial cells.167 This led to the hypothesis that 

endothelia and stroma might play a role in the induction of lymphopenia.  

The generation of BM-chimeric mice provided a model to investigate the impact of type I IFN 

stimulation on endothelia and stroma. For this, we first depleted the immune cells of IFNAR-

deficient mice by lethal irradiation. Following reconstitution with IFNAR-competent BM 

(WT>IFNAR-/-), the radiation-resistant cells including endothelia and stroma were unresponsive 

to type I IFN. Radiation-sensitive immune cells were largely ablated (Fig. 3-7A), and only a 
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minor population of approximately 5% T cells was found in blood. According to clinical 

radiotherapy, these T cells are likely to be long-lived memory T cells. The remnant recipient-

derived immune cells would disappear within several months; however, chimeric mice would 

grow too old for use in animal testing.  

In WT>IFNAR-/-chimeras, B and T cells underwent massive lymphopenia as observed in 

positive controls (Fig. 3-7B). Hence, type I IFN stimulation of endothelia was not necessary, 

whereas effects on immune cells were sufficient for the induction of lymphopenia. In contrast, in 

IFNAR-/->WT chimeras, B and T cells remained overall stable despite type I IFN acted on 

endothelia and stroma. Therefore, our results reveal that R-848-induced lymphopenia critically 

depends on type I IFN stimulation of lymphocytes and is independent of IFN-α/β stimulation of 

endothelium and stroma. The slight decrease in IFNAR-/- T cell counts in poly(I:C)-treated 

IFNAR-/->WT BM chimeras could reflect either i) lymphopenia of the remnant 5% recipient-

derived WT T cells, or ii) a marginal contribution of T cell stimulation by other cytokines 

induced by PAMPs, or iii) a very minor role of endothelial stimulation by PAMPs, type I IFN 

and other cytokines.  

To investigate possible minor effects of PAMPs, we tested whether the TLR7 ligand R-848 

could elicit lymphopenia of IFNAR-/- cells via acting on TLR7-expressing endothelia. Upon R-

848 treatment of IFNAR-/->WT BM chimeras, the numbers of IFNAR-/- B cells did not decrease 

in blood (Fig. 3-7C). Hence, direct stimulation of endothelia by PAMPs is not a limiting step in 

the induction of lymphopenia.  

 

4.3 Which molecular mechanism leads to lymphopenia?  

 

Leucodiapedesis is controlled by the sequential co-operation of selectins, integrins and G 

protein-coupled receptors for different chemoattractants. Consequently, numerous molecules 

might mediate lymphopenia. A crucial approach to investigate the molecular mechanism was to 

subject donor cells to PTX treatment that inhibited all GPCRs including chemokine receptors 

and S1P1. Upon adoptive transfer, the PTX-inhibited adoptively transferred B and T cells were 

unable to enter splenic white pulp and LNs (Fig. 3-14A). Since entry into SLOs depends on 

chemokine receptor-signalling, the effective GPCR blockade was thus confirmed. Considering 

the outstanding relevance of chemokine receptors and S1P1 for lymphocyte homing and 

recirculation, it was striking that the PTX-inhibited adoptively transferred lymphocytes still 

underwent lymphopenia after treatment with poly(I:C) (Fig. 3-14) or R-848 (performed by our 
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co-author Tobias Junt, CBR Institute for Biomedical Research, Boston, USA, in: Kamphuis et 

al.190). The extent of lymphopenia, however, was slightly reduced in PTX-treated cells as 

compared to control lymphocytes. Hence, lymphopenia was mainly independent of GPCRs while 

signalling through chemokine receptors and S1P1 played a minor, if any, role.  

CCR7,76 CXCR4 and CXCR513;16;20 control homeostatic B and T cell homing and are essential 

for the organisation of SLOs. We tested these chemokine receptors with respect to function and 

surface expression. In vivo-stimulated cells were isolated and ex vivo exposed to chemokine 

gradients in a two-chamber migration plate. This chemotaxis assay setting reflects the in vivo 

migratory properties of B cells. As expected from PTX treatment, the ex vivo chemotaxis of B 

cells was not altered by poly(I:C) stimulation, corroborating the conclusion that chemokines did 

not play a major role in lymphopenia (Fig. 3-15B). This notion was further supported by surface 

expression analyses by FACS, which revealed similar chemokine receptor expression on 

lymphocytes of PBS and poly(I:C)-treated mice (Fig. 3-16A). However, upon in vitro 

stimulation, we observed a reduced B cell chemotaxis (Fig. 3-15A). This was due to a 

downregulation of chemokine receptor expression, (Fig. 3-16B) as FACS-stainings uncovered. 

Such contrasting results on type I IFN action are sometimes reported between in vitro and in vivo 

analyses. Effects on T cell apoptosis are one example of contrasting data,141;196;197 to which the 

aforementioned differential modulation of chemotaxis can be added.  

Still, type I IFN-induced modulation of the S1P-S1P1 system could contribute to lymphopenia. 

Whereas PTX treatment excluded S1P1-signalling to a large extent, our results did not discard 

downregulation or absence of S1P1 as a possible mechanism. Since ligand-induced 

internalisation of S1P1
188 or the disruption of S1P gradients by S1P lyase inhibition25 can lead to 

lymphopenia, type I IFN stimulation could target S1P1 or the S1P metabolism, either on the level 

of i) the catabolising enzymes S1P lyase and phosphohydrolases, or ii) the production of S1P by 

sphingosine kinases. So far, some cytokines and growth factors were found to activate 

sphingosine kinases.23 If type I IFN influenced S1P metabolism, the effects would probably be 

cell type-specific, since S1P-metabolising enzymes are rather ubiquitously expressed, but only 

direct type I IFN action on lymphocytes is required to induce lymphopenia. For example, type I 

IFN could trigger B and T cells to produce factors, which in turn act on S1P metabolism, either 

on lymphocytes or on a systemic level. Downregulation of S1P1 and the inability to respond to 

S1P might even be a connecting cue between the various agents observed to cause lymphopenia. 

However, in a microarray analysis carried out in collaboration with Reinhold Förster 

(Medizinische Hochschule Hannover, Germany), we did not observe a direct effect of type I IFN 

stimulation on S1P1 mRNA expression levels of IFN-β-stimulated human B cells (data not 
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shown). Furthermore, S1P1 function could not be addressed since ex vivo-isolated B cells did not 

migrate towards S1P in a chemotaxis assay (data not shown). 

Integrins themselves are not affected by PTX, but their function is sensitive to G protein 

blockade due to a GPCR-mediated change from the constitutively expressed low affinity into the 

biologically active high affinity conformation.63;69 In poly(I:C)-treated mice, we did not observe 

an alteration of lymphocyte integrin expression as compared to control cells (Fig. 3-16A), which 

is in line with observations that integrin function is frequently regulated via affinity modulation 

rather than surface expression.198-201 To address the integrin function experimentally, we 

performed adhesion assays in collaboration with our co-author Tobias Junt. Poly(I:C)-stimulated 

B cells exhibited a moderately increased adhesion to the intercellular adhesion molecule-1 

(ICAM-1), but not to vascular cell adhesion molecule-1 (VCAM-1) (Kamphuis et al190). This 

increased adhesion probably correlated with enhanced affinity of the αLβ2 integrins 

(CD11a/CD18) and might be related to S1P1, which can amplify integrin activation.26 Stronger 

interactions between LFA-1 and ICAM-1 induced by type I IFN could further improve the 

immunological synapse-formation and thus play a role in enhanced priming of B and T cells. 

However, since lymphopenia of PTX-treated lymphocytes was only slightly impaired, increased 

integrin adhesion to endothelially expressed ICAM-1 cannot be the major mechanism of 

lymphopenia.  

Since selectin function is not inhibited by PTX,63 our data strongly suggest increased rolling as a 

major mechanism of lymphopenia, consistent with Gunzer´s et al.183 observations. Enhanced 

rolling could correlate with the observed minor increase of L-selectin (Fig. 3-16A), with higher 

lectin affinity or even with a so far unidentified selectin receptor, as described for a novel 

endothelial L-selectin ligand activity.80  

Strikingly, we found an upregulation of CD69 following type I IFN stimulation of B cells in vivo 

and in vitro. CD69, a member of the C-type lectin-like signalling receptors, is generally known 

as a very early stimulation marker that is only transiently expressed for several hours on 

activated lymphocytes, whereas other stimulation markers like CD25 and costimulatory 

molecules can persist for days or longer. So far, CD69 was identified to play a role in T cell 

development in thymus, where its high expression on immature thymocytes might mediate 

stromal retention.55 On the contrary, thymic egress is dependent on downmodulation of CD6955 

via S1P1-signalling28;29 in mature thymocytes. Recently, overexpression of CD69 was shown to 

reduce the recovery of adoptively transferred thymocytes from blood,55 implicating a so-far 

overlooked role of CD69 in lymphopenia of B and T cells. Indeed, we observed massive 

lymphopenia concomitant to CD69 upregulation on lymphocytes. Thus, it will be interesting to 
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investigate whether CD69 can contribute to tethering and rolling on endothelia or rather mediates 

adhesion and firm arrest. 

 Apart from the induction of CD69, T cells further upregulate Ly6C in response to type I IFN 

stimulation (Fig. 3-10186).Thus, the increased expression of Ly6C could furthermore enhance T 

cell sticking, since Ly6C was suggested to intensify LFA-1-mediated adhesion.202  

Taken together, lymphopenia seems to be accomplished by the concerted action of several 

different molecular mechanisms on B and T cells, which altogether lead to increased rolling and 

adhesion (Fig. 4-1). CD69, Ly6C and selectins most probably contribute to lymphopenia. In 

contrast, signalling via LFA-1 integrins and S1P1 might play only minor roles, whereas 

involvement of chemokine receptors is negligible.  

 

Fig. 4-1: Model of the molecular mechanism of lymphopenia 

 

4.4 How does type I IFN induce CD69 expression in mice with a B or a T cell-

specific IFNAR deletion? 

 

In this study, we introduce CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice, two 

novel conditionally gene-targeted mice, that show a B or a T cell-specific IFNAR deletion. We 

analysed the recombination efficiency, i.e. the quantitative IFNAR deletion in B or T cells, with 

respect to genetics and loss of function. PCR and Southern Blot were used for genetic analysis. 

A competitive PCR approach was chosen that simultaneously detected the presence of the larger 

floxed or the shorter recombinated allel by generating two PCR products of different length. Due 

to an intrinsic bias towards the shorter recombinated product, the PCR signal intensity did not 

correlate with the amount of floxed or recombinated DNA. Therefore, splenocytes of CD19-

Cre+/-IFNARflox/flox mice yielded a much stronger signal for the floxed allel, although splenocyte 
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suspensions contain only 50% B cells. Highly purified B cells gave rise to only the shorter 

product, showing the quantitative IFNAR recombination. However, the competitive PCR did not 

allow the identification of possible remnant B cells carrying the unrecombinated (floxed) 

IFNAR. Thymic DNA preparation exhibited a very minor signal of the recombinated allel. Most 

probably, this represented a natural contamination with very few blood B cells, whose 

recombinated IFNAR yielded a shorter signal that was favoured in the amplification as compared 

to the larger floxed signal of thymocytes. Hence, the PCR results point at the selective and 

quantitative IFNAR recombination in B cells of CD19-Cre+/-IFNARflox/flox mice.  

To confirm these results with an independent method that did not show a bias towards the shorter 

product, we performed a Southern Blot analysis in collaboration with Claudia Detje (data not 

shown, Kalinke et al., manuscript in preparation). The analysis of perfused CD19-Cre+/-

IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice avoided the detection of contaminating blood 

cells. Furthermore, all non-immune organs were screened for a possible IFNAR recombination. 

The Southern blot analysis further demonstrated the selective and quantitative IFNAR deletion in 

B cells of CD19-Cre+/-IFNARflox/flox mice and in T cells of CD4-Cre+/-IFNARflox/flox mice. 

For functional analysis of the IFNAR inactivation, we monitored the expression of type I IFN-

dependent markers on B and T cells. Ly6C is upregulated by type I IFN on T cells186 and 

consequently, we did not observe an induction in poly(I:C)-treated IFNAR-/- mice (Fig. 3-10A). 

On B cells, Ly6C shows only very minor expression that is also dependent on type I IFN (Fig. 3-

10A).187 The analysis of the different gene-targeted mouse lines revealed that B cells of CD19-

Cre+/-IFNARflox/flox mice and T cells of CD4-Cre+/-IFNARflox/flox mice were unable to upregulate 

Ly6C. Notwithstanding, to properly analyse the IFNAR inactivation of B cells, another marker 

was required that would be massively increased upon IFNAR-signalling. Therefore, we studied 

CD69 that is known to be expressed in type I IFN-dependent manner.152 

Since poly(I:C) treatment did not elicit CD69 induction in IFNAR-/- mice, we confirmed that 

CD69 expression on lymphocytes is regulated by type I IFN stimulation (Fig. 3-10A). On B 

cells, where the direct effects of type I IFN stimulation are sufficient to induce CD69 in vivo and 

in vitro (Kamphuis et al.190, Sun et al.152), we observed a broad upregulation under all 

experimental conditions tested. The study of the different mouse lines showed that only the B 

cells of CD19-Cre+/-IFNARflox/flox mice could not upregulate CD69, thus confirming the 

complete B cell-specific IFNAR deletion in these mice. 

On T cells, however, the regulation of CD69 expression seems to be complex. In vitro, CD69 

upregulation is observed upon IFN-β stimulation of total splenocytes, but not of MACS-purified 

T cells (Ulrich Kalinke, data not shown).  
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Therefore, CD69 is induced on T cells exclusively by indirect effects of type I IFN. Splenocytes 

can release several mediators in response to type I IFN stimulation. IL-15 is most likely one key 

player to upregulate CD69.145  

In vivo, we found CD69 induction following viral infection and poly(I:C) challenge. All control 

mouse lines analysed upregulated CD69 massively on splenic T cells. As the results of Ly6C 

expression showed, T cells of CD4-Cre+/-IFNARflox/flox mice were unresponsive to type I IFN.  

Surprisingly, however, splenic T cells of CD4-Cre+/-IFNARflox/flox mice exhibited only a partial 

CD69 upregulation (Fig. 3-10A). We did not expect any reduction of CD69 expression on T cells 

of CD4-Cre+/-IFNARflox/flox mice since in vitro studies demonstrated that indirect effects of type I 

IFN were sufficient for CD69 induction. Thus, apparently, the indirect effects of type I IFN 

regulate CD69 expression, whereas direct stimulation of T cells can further enhance, but not 

induce CD69.  

In contrast, when we analysed T cells derived from blood of the same mice (Fig. 3-10B), we did 

not find any CD69 induction. Hence, indirect type I IFN stimulation does not seem to reach 

blood T cells. This might be due to local release of type I IFN mediators, which exhibit their 

effects only in paracrine fashion within the spleen.  

 

4.5 Where do lymphopenic B and T cells home to?  

 

Treatment with R-848 was recently shown to direct lymphocytes to SLOs, liver and lung,183 

whereas FTY720 is classically known to sequester lymphocytes in LNs, although in this context, 

the role of spleen and homing of B cells seem to vary between studies.27-29 Nevertheless, in 

adoptively transferred or conditionally IFNAR-targeted mice treated with poly(I:C), we found 

some preferred B cell, but not T cell, accumulation in spleen (Fig. 3-13). These findings are 

corroborated by the prominent lymphopenia in absence of GPCR-signalling, indicating that 

lymphoid organs are indeed no essential homing targets during lymphopenia. Similarly, in an 

older study, Gresser et al.105 analysed homing of chromium-labelled lymphocytes upon IFN-

induced lymphopenia, but did not find any increase of radioactivity in SLOs. Since recently 

Sugito et al.203 demonstrated that FTY720 was able to induce lymphopenia in splenectomised 

aly/aly mice, which are devoid of any SLOs, also in case of FTY720 the classical model of LN 

logjam does not suffice to provide an explanation for the experimental observations. Hence, the 

current concept of initial S1P1-mediated lymphocyte sequestration with lymphopenia being 

merely a consequence of inhibited lymphocyte supply to blood, should be revised.  
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Furthermore, considering evidence for enhanced rolling and unaffected ex vivo chemotaxis, 

lymphocytes do probably not migrate into tissues, but remain attached to the endothelium and 

become part of the marginal pool. In conclusion, the vasculature probably represents the main 

homing target during lymphopenia.  

Notwithstanding, previous reports pointed out that the distribution of morphologically identified 

leucocytes within spleen was altered upon poly(I:C) challenge,108;115 without directly addressing 

the lymphocyte subsets involved. In collaboration with Tobias Junt, we could show a massive B 

and T cell depletion from splenic red pulp during poly(I:C)-induced lymphopenia and a 

concomitant purgation of marginal zone B cells (Kamphuis et al.190). During lymphopenia, it is 

probable that recruitment of lymphocytes into B and T cell zones prepares for lymphocyte 

priming. 

 

Note added in proof:  

After the completion of this dissertation, a paper was published by Jason Cyster´s group (Shiow 

et al.) that investigated lymphopenia in blood and lymph by a completely independent 

approach.204 Shiow et al. found that IFN-α/ß largely inhibits lymphocyte egress from LNs via a 

partially lymphocyte-intrinsic effect that downregulates S1P1. They report a reduced ex vivo S1P 

chemotaxis of lymphopenic T cells and also of B cells, but only when isolated and furthermore 

cultured in vitro for several hours. In absence of CD69, lymphopenia was greatly diminished. 

Only partial S1P1 downmodulation occurred on CD69-/- cells as compared to WT cells that 

downregulated S1P1 completely. In several approaches, Shiow et al. finally showed a selective 

protein/protein interaction between CD69 and the S1P receptor S1P1 being responsible for the 

negative regulation of GPCR surface expression. 

These findings are in accordance with the data presented in this dissertation and complement our 

study with respect to the molecular mechanism. Shiow et al. studied a possible role of absence of 

S1P1, whereas our approach with PTX treatment analysed the possible involvement of GPCR-

signalling. However, due to i) lack of reliable S1P1 antibodies, ii) absence of ex vivo B cell 

chemotaxis towards S1P (data not shown) and iii) similar S1P1 mRNA expression levels (data 

not shown), we did not further focus on S1P1 function. Shiow et al. hypothesise that CD69 

protein interactions could represent a novel mechanism of GPCR downregulation. However, 

since they found this interaction to be selective, it does not provide an explanation for our 

reduced chemokine receptor expression after in vitro IFN-ß stimulation. In one experiment they 

show a decreased ex vivo T cell chemotaxis towards CXCL12 (SDF-1), however they did not 

further comment on these data.  
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Interestingly, Shiow et al. report a partial lymphopenia in absence of CD69, however, without 

further addressing possible other mechanisms which might account for residual effects. 

Therefore, in line with our proposed complementary molecular model, the absence of S1P1 is 

one important and necessary, but not fully sufficient mechanism to induce lymphopenia. In this 

regard, Sugito´s observation of FTY720-induced lymphopenia in absence of SLOs further 

corroborates the existence of additional mechanisms, which are not related to S1P1-mediated 

lymphocyte logjam in SLOs.  

Besides, Jason Cyster´s group did neither further quantify the requirements of direct type I IFN 

stimulation of lymphocytes nor analyse the possible involvement of endothelia. Moreover, they 

did not comment on published evidence for enhanced rolling.  

In conclusion, their study provides one novel molecular mechanism of lymphopenia and thus 

further extends our concept of different cellular and molecular contributions that inter-relate the 

various types of lymphopenia.  

 

4.6 What is the role of type I IFN stimulation in immune responses?  

 

Lymphopenia is the consequence of a rather short-term stimulation (for several hours) during 

early immune responses when high type I IFN titres are found in serum. However, once systemic 

levels decrease, local type I IFN production continues to exert effects on lymphocytes, probably 

for days, depending on the type of immune reaction. Interestingly, in absence of detectable type I 

IFN levels in serum, peripheral blood lymphocytes still exhibit type I IFN-stimulated gene 

expression profiles.205;206  

Type I IFN stimulation could shape immune responses via early and/or late effects. To 

discriminate between the influence of early systemic lymphopenia and late peripheral stimulation 

in SLOs, a model would be required that allowed to selectively abrogate type I IFN 

responsiveness at early or later time points. Adoptive transfer of IFNAR-/- cells or analysis of 

CD19-Cre+/-IFNARflox/flox and CD4-Cre+/-IFNARflox/flox mice, however, are not appropriate to 

address this issue experimentally, since in these animals the cell-specific type I IFN 

responsiveness is abolished throughout the time course of an infection.  

In theory, the IFNAR deletion could be induced (or, in a new genetic approach, reconstituted) at 

a desired time point (when lymphopenic cells have returned to recirculate) by breeding 

IFNARflox/flox mice to mice that controlled Cre expression under an inducible tamoxifen-sensitive 
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promoter. Cre recombination and IFNAR deletion could then be induced by feeding the animals 

with tamoxifen.  

However, the complete IFNAR inactivation would not be achieved within few days. Therefore, 

the currently available gene-targeted mouse models do not allow for identifying the relative 

contributions of early lymphopenia and localised type I IFN stimulation of lymphocytes at later 

time points. 

 

Critical roles of type I IFN stimulation in T cell immunity were recently shown in a model of 

cross-priming to ovalbumin (OVA)192 and in infection with lymphocytic choriomeningitis virus 

(LCMV).154 In collaboration with the group of David Tough, we could demonstrate that besides 

the previously observed stimulation of DCs,153 IFN-α directly prolonged the proliferation and 

expansion of antigen-specific CD8+ T cells to allow for cross-priming to OVA.192  

Similarly, Kolumam et al. found that type I IFN stimulation of T cells was critical for the 

generation of cytotoxic T lymphocyte (CTL) responses towards LCMV by promoting the 

survival of the proliferating antigen-specific CD8+ T cells.  

 

4.6.1 Does type I IFN influence B cell responses? 

Several vaccination studies performed by Proietti et al., Le Bon et al. and others already pointed 

towards a role of type I IFN in the induction of antigen-specific humoral immunity. In particular, 

B cell responses towards an influenza subunit vaccine156 and against the soluble protein chicken 

gamma globulin (CGG)149;191 were dependent on type I IFN stimulation. In case of CGG 

immunisation, DCs were first identified as targets for type I IFN. Only recently, in a 

collaborative approach with the group of David Tough, Edward Jenner Institute for Vaccine 

Research, Compton, UK, we found that type I IFN also exerts direct effects on B cells as well as 

on T cells in order to elicit anti-CGG responses.191  

In contrast to the initially mentioned work of Le Bon et al., the group of Rolf Zinkernagel and 

Michel Aguet assessed the role of type I IFN stimulation in humoral immunity against live 

viruses. Their model of LCMV infection normally elicits potent CTL responses one week post 

infection, but rather moderate neutralising antibody titres. When IFNAR-/- mice were challenged 

with 1 - 3 x 102 PFU LCMV, CTL induction was not detectable and virus persisted in several 

organs.139 At the same time, immunoglobulin production remained normal with respect to total 

IgG titres and the subclass spectrum,207 demonstrating that antibody responses towards a 

replicative virus can be induced in absence of type I IFN stimulation.  
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Since survival of VSV-infected mice is conferred by the concerted action of type I IFN in the 

early phase and by neutralising antibodies from day 3 onwards, VSV provides an appropriate 

model to study the impact of type I IFN on B cell responses. In line with the results obtained 

with LCMV, here we show that CD19-Cre+/-IFNARflox/flox mice develop normal Ig responses and 

are fully protected following systemic i.v. or peripheral i.n. infection with VSV, suggesting that 

type I IFN responsiveness of B cells is not critical to combat infections with live viruses (Fig. 3-

17, Fig. 3-18).  

 

The distinct requirements of type I IFN stimulation for vaccination with CGG and infection with 

live viruses are probably related to four major aspects regarding the different immunogenities of 

the respective antigens:  

Firstly, soluble proteins such as CGG do not provide any danger signals and therefore do not 

elicit immune responses themselves. In contrast, VSV contains ssRNA, which is recognised as a 

danger signal by TLR7.208  

Secondly, replication itself can provide stimulatory signals to infected cells. For example, IFN-α 

responses to VSV can only be induced in DCs upon infection with live virus, but not with 

ultraviolet (UV)-inactivated virus.129 Upon VSV replication, dsRNA is generated, which can 

trigger TLR3 and the RNA helicases RIG-I, PKR and mda5.126;127;209 In response to VSV, RIG-I 

and probably also others receptors induce a variety of host cytokines such as type I IFN, TNF-α, 

IL-12, IL-6 and IL-10, depending on the cell type targeted. 

Thirdly, several reports indicated that, depending on the activation state and species,210 B cells 

can express TLR1,211 TLR3,212 TLR4,212;213 TLR5,213 TLR7214 and TLR9,211 and could thus be 

directly stimulated by the respective PAMPs such as diacyl lipopeptides, dsRNA, 

lipopolysaccharide (LPS), flagellin, ssRNA and CpG-containing DNA motifs. Importantly, 

additional direct stimulation by TLRs can be necessary for efficient B cell responses.213 Hence, it 

is conceivable that both the direct B cell activation by viral ssRNA and dsRNA and the indirect 

effects of cytokines induced by PAMPs and viral replication, could compensate for the lack of 

direct type I IFN stimulation of B cells in CD19-Cre+/-IFNARflox/flox mice. Indeed, if we consider 

that many viruses have developed means to interfere with the induction of type I IFN,133-137;180 it 

seems likely that some kind of functional redundancy may have evolved in order to reliably 

achieve the efficient protection against viral infections.  

Fourthly, the highly repetitive organisation of the immunogen VSV-G protein on the surface of 

VSV further accounts for the strong immunogenity of the virus. VSV-G is densely packed at a 
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distance of 5-10 nm with only its tips appearing on the virion´s surface. Thus, VSV leads to B 

cell receptor (BCR) cross-linking169 that provides sufficiently strong activation to induce IgM 

secretion in absence of T cell help. Consequently, VSV constitutes a T cell-independent (TI) 

antigen. IgG responses towards VSV-G, however, require T cell help.169;215  

Since in vitro, type I IFN-stimulated B cells show an increased sensitivity to limited IgM 

receptor ligation,158;159 type I IFN stimulation could lower the threshold for B cell induction 

during immune responses. This might be relevant to the observed strong Ig responses in VSV-

infected CD19-Cre+/-IFNARflox/flox mice since the highly repetitive VSV-G TI antigen already 

provides optimal conditions for BCR cross-linking, in contrast to the T cell-dependent (TD) 

antigen CGG. Thus, detecting possible requirements for type I IFN stimulation of B cells could 

be hampered by using a TI antigen, which overcomes a possible need for type I IFN.  

Generally, TI antigens are classified into two groups by their random or repetitive structure and 

their ability to elicit a polyclonal or a specific B cell proliferation (Tab. 4-1).  

 

Tab. 4-1: Classification of VSV as a T cell-independent antigen 

Antigen TI-1 TI-2  VSV  

Structure Randomly 

organised 

Highly repetitive Highly repetitive VSV-G  

B cell proliferation Polyclonal mitogen Specific Specific 

IgM response in 

nude or CD4+-

depleted wt mice  

Yes Yes Yes 

IgM response in 

CD4+-depleted XID 

mice  

Yes No Yes 

Classical example LPS Polysaccharides, 

flagellin, Ficoll96 

 

Classification    TI-1, subtype:  

specific B cell activators 

(Zinkernagel´s group,169;216  

No specification by Paul´s 

textbook8 

TI-2 in this dissertation 
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The independence of T cell help is experimentally determined in two different mouse lines: in 

CD4+-depleted WT mice or athymic nude mice that have only few mature T cells, and 

furthermore in CD4+-depleted X chromosome-linked immunodeficiency (XID) mice. XID mice 

carry a missense mutation in the gene encoding for the intracellular tyrosine kinase Btk that 

participates in BCR signal transduction. Therefore, XID B cells exhibit an activation defect, 

which facilitates the identification of any residual requirements for T cell help during IgM 

responses. According to the classification used by Zinkernagel´s group, TI-1 antigens are 

completely independent of T cell help and thus can be elicited in XID mice, whereas TI-2 

antigens require residual help from T cells or NK cells.217-219Consequently, Zinkernagel 

classifies VSV as a TI-1 antigen and defines a TI-1 subgroup of specific B cell activators.  

However, Paul remarks8: “It should be noted that there are circumstances in which antibody 

responses can be seen in XID mice to antigens that are by other criteria TI-2 antigens, so at this 

point there is no absolute empirical criterion to separate TI-1 from TI-2 antigens.” Furthermore, 

it can be added that in the last years specific receptors for the classical examples of TI antigens, 

namely TLR4 for LPS and TLR5 for flagellin, have been identified. In face of emerging roles of 

these molecules in innate, but also adaptive immunity,213 TI antigens should be classified into 

TLR-mediated and TLR-independent antigens. In conclusion, due to its characteristics, we refer 

to VSV as a TI-2 antigen.  

 

4.6.2 Can type I IFN promote humoral immune responses to virus-like particles? 

The generation of non-replicative virus-like particles expressing the VSV-G protein enabled us 

to study antibody responses to the immunogen determinant of VSV in absence of PAMPs and 

replication. As EM analysis revealed, the envelope of the VLPs was composed of similar 

structural elements forming a fine fringe. Since the particles were generated in absence of 

retroviral env, only cellular proteins and VSV-G could constitute the surface. According to the 

regular appearance, VSV-G seems to cover the VLPs in a highly organised fashion. Therefore, 

VSV-G MLV does probably also induce BCR cross-linking and thus might constitute a TI 

antigen, similar to inactivated VSV, but in contrast to CGG (Tab. 4-2).  

Without changing the model, VLPs furthermore allowed the analysis of anti-VSV-G responses in 

IFNAR-/- mice. In these mice, antibody responses are impossible to study with live VSV since 

the animals would quickly succumb to infection. The efficient generation of antibody responses 

was reported for i.v. administration of retroviral particles193 and vaccination with icosahedral Qβ 

phage VLPs.97   
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Tab. 4-2: Overview of the antigens used in the vaccination studies discussed in the text 

Agent VSV  VSV-G MLV  CGG  

Structure Highly repetitive VSV-G 

protein in envelope, 

paracrystalline organisation 

Highly organised VSV-G 

protein in envelope 

Soluble 

Immunogenity High (due to PAMPs  

and BCR cross-linking169) 

Intermediate None 

Antigen type TI-2 antigen 

(see table 4.1) 

Not determined,  

most probably TI-2  

TD 

Type I IFN 

stimulation  

Not critical for humoral 

response  

Necessary for Ig switch; 

not critical for IgM 

Critical for 

IgM and 

switch 

 

Following s.c. injection without adjuvants, VSV-G MLV induced considerable antibody titres. 

This further demonstrated the immunostimulatory capacity of VLPs, which might be related to 

the highly organised expression of VSV-G on the surface (Fig. 3-19).  

Using a model for non-productive viral infection, here we report a previously unrecognised role 

of type I IFN responsiveness for isotype switching towards VLPs (Fig. 3-20C, lower panel). 

Unlike for the induction of IgM titres obtained after vaccination with CCG,149;191 type I IFN 

stimulation was not required for the induction of the early IgM response to the retroparticles 

(Fig. 3-20C, upper panel). Hence, for IgM production, the immunogenity of VSV-G MLV was 

functionally redundant with the adjuvant activity of type I IFN (Bach, Kamphuis et al.194). It 

remains elusive whether the VLP immunogenity relates to increased stimulation of APCs or to 

local induction of other cytokines, which might act either directly or indirectly on B cells or 

other immune cells.  

Most conspicuously, however, the IFNAR dependence of the anti-VSV-G MLV antibody 

response clearly indicated an endogenous type I IFN induction. Since VLPs were described to be 

generally devoid of any viral nucleic acid,193 it will be of particular interest to determine whether 

some randomly included cellular mRNAs or other components might trigger host innate 

receptors. The mild lymphopenia and concomitant CD69 upregulation observed in blood of 

VLP-vaccinated animals (Fig. 3-20A,B) suggested the stimulation with locally effective 

quantities of type I IFN.  
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On systemic level, however, type I IFN titres did not reach critical amounts to induce massive 

lymphopenia. Notwithstanding, the mild reduction of IFNAR-/- lymphocyte numbers hints at the 

induction of other cytokines, too.  

It was remarkable that the exogenous administration of IFN-α could not further increase 

antibody levels (Fig. 3-20C, upper panel, preliminary data and data not shown), suggesting that 

locally available quantities were already saturating for the type I IFN-dependent stimulation of 

immune cells. Nevertheless, the anti-VLP antibody response was still relatively low as compared 

to strong anti-viral immunity, which might be attributed to the s.c. application route and the lack 

of further activation by other mechanisms.  

In line with our recent collaborative findings upon vaccination with CGG,191 the direct type I 

IFN stimulation of B cells seemed to be necessary for the IgG switch in response to VSV-G 

MLV (Fig. 3-20C, lower panel). Since Ig titres were reduced in CD19-Cre+/-IFNARflox/flox mice, 

but not completely absent as in IFNAR-/- mice, the data further indicate that type I IFN 

responsiveness was required on other cells than B cells, as well (Bach, Kamphuis et al.194). 

Among these, DCs and T lymphocytes are likely candidates since they are critically involved in 

type I IFN-mediated enhancement of anti-CGG responses.149;191  

 

4.6.3 How could type I IFN induce isotype switching to virus-like particles? 

Isotype switching occurs within the unique microenvironment of germinal centres (GCs) that 

form within follicles of SLOs.92;220 GCs provide networks of follicular dendritic cells (FDCs), 

which enable the T cell-driven B cell differentiation into plasma cells. Undergoing rapid 

expansion, B cells switch their isotype and undergo affinity maturation by somatic 

hypermutation. Throughout the GC reaction, B cells remain in close contact and keep activated 

by antigen-presenting FDCs and T cells via costimulatory molecules and cytokines.  

Possible mechanisms, by which type I IFN induces isotype switching, could affect B cell-

priming and the GC reaction through upregulation of the costimulatory molecules CD40-CD40L, 

OX40-OX40L, CD80 or CD86-CD28 on B and T lymphocytes, respectively.221-223 Alternatively, 

the immunological synapse-formation could further be improved by stronger interactions 

between LFA-1 and ICAM-1 (Kamphuis et al.190). Furthermore, type I IFN stimulation induces 

the recruitment of lymphocytes into B and T cell zones (performed in collaboration with Tobias 

Junt, in: Kamphuis et al.190) and could thus enhance the isotype switching.  



4 Discussion 119 

Interestingly, IgG production to viral glycoproteins was observed in absence of T cell CD40 

ligand (CD40L) stimulation, pointing towards a crucial role of other stimulatory molecules.218;224 

On DCs, it was shown that type I IFN increases the expression of “B lymphocyte stimulator 

protein” (BlyS, also called BAFF) and of APRIL,93 “a proliferation-inducing ligand”, which are 

critical for Ig class switching in absence of CD40L stimulation.94  Possibly, type I IFN could also 

increase the expression of the receptors for BlyS and APRIL on the B cell level.225 Numerous 

studies furthermore demonstrated that type I IFN stimulation promotes DC maturation, as 

characterised by upregulation of costimulatory and adhesion molecules, which allows for potent 

antigen presentation.226-229  

Results stemming from in vitro investigations suggest that type I IFN acts directly on B cells to 

induce the differentiation into plasma blasts, whereas IL-6 is further needed for the development 

of plasma cells.161 On naïve B cells, type I IFN leads to BCR internalisation and enhances 

proliferation as well as Ca2+ influx following limited BCR ligation.158 Finally, type I IFN 

stimulation enhances B cell growth in vitro163 and could hence rescue B cells from apoptosis in 

vivo, an effect which was recently identified on CD8+ T cells as a crucial mechanism to promote 

the generation of cytotoxic T lymphocytes.154  

 

We are currently investigating antibody responses in mice with single or combined tissue-

specific IFNAR deletions in order to elucidate the complementary actions of type I IFN 

stimulation on different immune cell types. Using the more immunogen i.v. administration route, 

anti-VSV-G MLV titres turned out to be consistent within treatment groups and confirm the 

previously observed effects (data not shown, see: Bach, Kamphuis et al.194). Additionally, the 

vaccination with UV-inactivated VSV, live VSV and the VSV variant VSV-M2 will allow 

dissecting the mechanism of antibody production with respect to viral replication and type I IFN 

stimulation under limiting infectious dose conditions.  

In this study, we analysed the effects of type I IFN stimulation of lymphocytes. However, in 

vitro studies suggested that type I IFN responsiveness of other non-immune tissues might be 

critical to survival, as well. Among these, the sites of primary viral replication including 

keratinocytes and gastrointestinal epithelia, or other organs, which usually do not get infected in 

immunocompetent mice, such as the central nervous system (CNS), will be of particular interest 

to study. Hence, breeding IFNARflox/flox mice to mice, which express Cre in non-immune tissues, 

will provide novel tools to investigate the course of viral spreading and the role of type I IFN 

signalling in important target tissues for possible viral replication.  
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4.7 What is the clinical relevance of type I IFN stimulation? 

4.7.1 Which adverse effects can be caused by type I IFN and lymphopenia? 

Type I IFN can exert clinically relevant effects on the organism. These effects can be dissected 

into systemic and localised actions, whose impact depends on the short or long duration of the 

cytokine stimulation. In addition to alterations of the immune system, type I IFN treatment can 

cause metabolic (and even psychical) disturbances that affect the gastrointestinal, nerval, 

cardiovascular, motoric and reproductive system or the skin. Most frequently however, type I 

IFN treatment goes along with an influenza-like complex of symptoms, local reactions at the 

injection site and lymphopenia.230 

As our results show, high systemic type I IFN levels directly stimulate lymphocytes and cause a 

prominent blood lymphopenia. Besides lymphocytes, type I IFN also targets natural killer cells, 

DCs, macrophages and granulocytes, leading to an overall stimulation of the innate and adaptive 

immune system in SLOs. Thus, a long-lasting presence of high systemic type I IFN levels can 

induce over-activation and have detrimental effects on the immune balance. Indeed, a continuous 

type I IFN stimulation has been identified as a crucial pathogenic mechanism to cause 

autoimmune diseases such as lupus erythematosus systemicus.231;232 In line with this, the 

induction of lupus-like diseases represents a serious complication of chronic type I IFN treatment 

in humans. In dogs and cats, however, autoimmune disorders have not been observed so far112 

(Virbagen Omega® package insert), which might be related to the shorter treatment and lifespan 

of the diseased animals or to less clinical experience with feline IFN-ω.  

In order to prevent a harmful over-activation, cellular inhibitory mechanisms set on early during 

viral infections to downregulate the massive type I IFN production. Consequently, blood 

lymphocyte numbers normalise again. Therefore, the naturally occurring lymphopenia is a short-

lasting effect, which itself usually does not compromise immunity. There are only two reports on 

reduced immune reactions: In case of contact hypersensitivity, lymphopenia was shown to 

induce transient immune incompetence;183 since in this model, the immigration of T cells into 

antigen-containing peripheral tissues has to occur within a narrow time window in order to elicit 

the localised ear swelling of infiltrating CD4+ and CD8+ T cells. Secondly, following 

intracerebral inoculation of vaccinia virus, the reiterated administration of poly(I:C) decreased T 

cell involvement in viral meningitis.233  
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However, clinically relevant immune suppression with opportunistic infections may rather be a 

consequence of sustained lymphopenia induced by prolonged exposure to type I IFN, as reported 

in IFN-α/β-treated human patients. Thus, immune-suppressive systemic effects of type I IFN 

may appear in blood together with an autoaggressive over-stimulation of immune cells in 

peripheral organs. However, in viral infections such as equine influenza, the frequently 

diagnosed bacterial super-infections may not primarily be dependent on the immune suppression 

caused by short-lasting lymphopenia, but on viral immune evasion.  

In contrast to the aforementioned examples, immune suppression caused by long-lasting 

lymphopenia can also be a desired effect. Following transplantation, the systemic treatment with 

FTY720 reduces infiltration of lymphocytes into the graft. Thus, FTY720 defers rejection, but in 

contrast to classical immune suppressants, it still allows the generation of immune responses in 

SLOs. 

Local type I IFN stimulation seems to be critical for the immune response to cancer. For years, 

type I IFN has been approved for treatment of several neoplasias without understanding the 

mechanisms involved. In the meanwhile, various experimental mouse models have provided 

growing evidence that local stimulation of both immune and stromal cells can be essential for 

controlling or rejecting established or expanding tumors.234 Among other mechanisms of action, 

type I IFN stimulation can skew the immune response towards a Th1 phenotype235 and control 

tumor-supplying neovascularisation.236 

 

4.7.2 Does type I IFN influence the vaccination efficiency? 

Systemic and peripheral VSV infection experiments showed that type I IFN stimulation of B 

cells is not critically required to induce protective antiviral immunoglobulin responses. In 

peripheral vaccination with non-replicative VLPs, however, the type I IFN stimulation of 

immune cells, including B cells, played an essential role in inducing IgG titres. Finally, 

challenge with mere protein did not elicit any humoral response in absence of type I IFN 

stimulation. Thus, peripheral effects of type I IFN can be relevant to vaccination protocol design. 

For example, the efficacy of attenuated live PPRSV vaccines was tried to augment by induction 

of IFN-α; however, viremia and antibody titres remained unaffected, suggesting that the effects 

of type I IFN were compensated by stimulation through PAMPs or by viral replication.237 On the 

other hand, the endogenously induced type I IFN was shown to be responsible for the activity of 

important adjuvants such as TLR agonists and complete Freund´s adjuvant.146;149  
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Taken together, the efficacy of the generally poor immunogen subunit vaccines, which are 

composed of only few pathogen-derived proteins, may well be enhanced by administrating the 

vaccines together with natural or long-lived pegylated interferons156;238 or by enhancing the 

endogenous type I IFN production. This can be accomplished by adding type I IFN-inducing 

adjuvants to the vaccine.146;149 In veterinary surgery, the concomitant administration of parapox 

ovis virus-based paramunity inducers, i.e. unspecific stimulators of immunity such as 

Baypamun®/Zylexis®, can furthermore elicit type I IFN production. The current approval of 

type I IFN for therapy in animals and humans would hereby facilitate the design and feasibility 

of field studies and large scale clinical trials with different vaccines. However, depending on the 

costs of recombinantly produced type I IFN and the current market value when applied in 

immunotherapy, type I IFN may possibly not have the economic potential for wide-spread use in 

immune prophylaxis.  

Therefore, the generation of virus-like particles, which contain one or several components of the 

current subunit vaccines and which elicit the production of a spectrum of cytokines, could 

provide a promising tool to improve vaccination efficacy. This is of particular interest since in 

the last years a change occurred in political and social opinion on epizootics control measures, 

which revalued and generally favoured the use of vaccines for both prophylaxis and prevention 

of further disease spreading.  

Nevertheless, the growing demand for efficient vaccines is not restricted to the currently 

emerging and recurrent communicable and notifiable diseases such as influenza, classical swine 

fever and foot-and-mouth-disease. It does also apply to viral diseases such as equine herpesvirus 

infections, against which only poor immunity can be induced so far.239 Since a recombinant 

VLP-based vaccine would contain only part of the antigens of a specific pathogen, it could serve 

as a negative marker vaccine, allowing distinguishing vaccinated animals from naturally infected 

counterparts by their induced antibody spectrum. This applicability as a marker vaccine 

represents an important prerequisite for a possible use in epizootics control though it does not 

eliminate the residual risk of viral persistence in the vaccinated animal. Finally, the zoonotic 

potential and the unpredictable evolution of the highly pathogenic avian influenza virus H5N1 is 

only one current example for a possible need of large quantities of vaccines. To satisfy such a 

large scale demand, highly efficient vaccines will be needed which induce reliable immunity 

with relatively little antigen content.  



4 Discussion 123 

Therefore, our data suggest that recombinant virus-like particles expressing influenza antigens 

would be better immunogens than the currently produced subunit vaccines. It will be of 

particular interest to investigate whether the required amount of antigen per dose can be reduced 

and whether such recombinant vaccines can be rendered further efficacious by addition of 

adjuvants.  

Certainly, for a possible use as licenced vaccines, any recombinant influenza antigen-expressing 

VLPs first would have to fulfil the requirements of efficacy and safety. In this regard, since 11 

equine240 and 17 human241 influenza vaccines based on other technologies are already licenced, 

pharmaceutical companies would only launch a new production if the VLP vaccination results 

were outstanding. In a cost-intensive priority trial to compare with existing vaccines, VLPs 

would have to prove protection of all patient age groups and to efficiently reduce viral shedding 

of vaccinated individuals after infection with influenza. With respect to safety, special 

inactivation steps would have to be adopted to exclude any possible contamination with intrinsic 

viruses of the production cell line. Furthermore, the potential oncogenic risk of inserting cell 

line-derived DNA into the patient´s genome would have to be assessed (Michael Pfleiderer, PEI, 

personal communication). Considering the current market situation, VLPs first require further 

research before a possible commercial application could be approached.  

 

In conclusion, our data show that type I IFN causes lymphopenia through direct stimulation of B 

and T cells. We propose a molecular mechanism of lymphopenia that is largely independent of G 

protein-coupled receptors, while adding further hints to a possible adhesive function of CD69 on 

lymphocytes. The data presented here contribute to elucidate the potential use of type I IFN as a 

natural vaccine adjuvant. Our results extend the concept of lymphopenia and provide new 

insights into how type I IFN essentially links the innate and adaptive immune system in naturally 

occurring infections and clinical treatments.  

 
 

 

 

 

 

 

 



5 Abstract 

5.1 Summary 

 

Early viral infection elicits potent type I IFN responses and is often associated with 

lymphopenia, a transient reduction of blood lymphocyte counts, long before the onset of 

humoral and cellular immunity. We have investigated the direct effect of type I IFN 

stimulation of lymphocytes on early lymphopenia and on the generation of antibody responses 

at later stages of infection.  

Lymphopenia induced by infection with vesicular stomatitis virus (VSV) or treatment with 

the Toll-like receptor agonists poly(I:C) and R-848 was critically dependent on type I 

interferon receptor (IFNAR)-signalling. Using bone marrow-chimeric mice, radio-resistant 

cells, such as stroma and endothelium, could be excluded as type I interferon targets for the 

induction of lymphopenia. Instead, adoptive transfer experiments and studies in conditionally 

gene-targeted mice with a B or T cell-specific IFNAR deletion demonstrated that type I IFN 

exerted a direct effect on lymphocytes that was necessary and largely sufficient to induce 

lymphopenia. The investigation of the molecular mechanism revealed that lymphopenia was 

mainly independent of G protein-coupled receptors (GPCRs) and chemokines. Homing 

studies performed by FACS and laser scan microscopy showed that B cells, but not T cells, 

partially accumulated in spleen, but not in other organs. 

Furthermore, we found that neutralising antibody responses following intravenous or 

intranasal infection with live VSV were not affected by type I IFN responsiveness of B cells. 

However, vaccination with recombinant virus-like particles (VLPs) containing the 

glycoprotein of VSV (VSV-G) induced IFNAR-independent IgM responses, whereas the 

immunoglobulin (Ig) switch to IgG was fully dependent on type I IFN responsiveness and 

partially dependent on the IFNAR-signalling in B cells. Thus, live VSV expressing repetitive 

VSV-G determinants in a highly ordered paracrystalline manner did not require type I IFN 

stimulation on B cells to induce neutralising IgM and IgG responses. In contrast, replication-

deficient VLPs displaying VSV-G in a well-organised fashion induced IFNAR-independent 

IgM, whereas the switch to IgG was IFNAR-dependent.  

In conclusion, these observations identify new effects of type I IFN stimulation of 

lymphocytes that profoundly affect lymphocyte redistribution and promote Ig switch towards 

less immunogenic antigens such as VLPs. 
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5.2 Zusammenfassung 

Die Frühphase von Virusinfektionen ist gekennzeichnet durch starke Typ I Interferon (Typ I 

IFN)-Antworten und geht häufig vor Einsetzen der humoralen und zellulären Immunität mit 

einer transienten Verringerung der Lymphozytenzahlen im Blut, einer sogenannten 

Lymphopenie, einher. Gegenstand der vorliegenden Dissertation ist die Untersuchung des 

direkten Effekts, den Typ I IFN-Stimulation von Lymphozyten auf die frühe Lymphopenie 

sowie auf die Entstehung von Antikörperantworten in späteren Infektionsstadien ausübt.  

Nach Infektion mit dem Virus der Stomatitis vesicularis (VSV) oder Behandlung mit 

poly(I:C) und R-848, zwei Agonisten für Toll-ähnliche Rezeptoren, war die Lymphopenie 

von Signalvermittlung durch den Typ I IFN-Rezeptor (IFNAR) abhängig. Mit Hilfe knochen-

marksrekonstituierter Mäuse konnten strahlungsresistente Zellen wie Stroma und Endothel als 

Zielgewebe für Typ I IFN-Stimulation zur Auslösung von Lymphopenie ausgeschlossen wer-

den. Anstelle dessen zeigten Experimente mit adoptivem Transfer sowie die Untersuchung 

gewebespezifisch genveränderter Mäuse mit B- oder T-Zell-spezifischer Ausschaltung des 

IFNAR, dass Typ I IFN einen direkten Effekt auf Lymphozyten ausübt, der zur Induktion von 

Lymphopenie notwendig und auch größtenteils ausreichend war. Die Untersuchung des mole-

kularen Mechanismus ergab, dass Lymphopenie hauptsächlich unbeeinflußt von G-Protein-

gekoppelten Rezeptoren (GPCR) und Chemokinen abläuft. Weiterhin zeigte sich, dass B-

Zellen, nicht aber T-Zellen, partiell in der Milz, nicht aber in anderen Organen akkumulierten. 

Nach intravenöser und intranasaler Infektion mit VSV waren neutralisierende Antikörper-

antworten nicht von Typ I IFN-Stimulation der B-Zellen abhängig. Hingegen induzierte die 

Impfung mit rekombinanten virusähnlichen Partikeln (VLPs), die das VSV-Glykoprotein 

(VSV-G) enthalten, IFNAR-unabhängige IgM-Antworten, wohingegen der Immunglobulin 

(Ig)-Klassenwechsel zu IgG eine vollständige Abhängigkeit von Typ I IFN-Wirkungen zeigte, 

die partiell auf Typ I IFN-Stimulation von B-Zellen beruhten. Insofern benötigte VSV-

Lebendvirus mit repetitiven VSV-G-Determinanten in hochstrukturierter parakristalliner 

Form keine Typ I IFN-Stimulation von B-Zellen zur Induktion neutralisierender IgM- und 

IgG-Antworten. Im Gegensatz dazu riefen replikationsdefiziente VLPs mit regelmäßig 

angeordnetem VSV-G eine IFNAR-unabhängige IgM-Produktion hervor, während der 

Wechsel zu IgG IFNAR-abhängig war. 

Zusammengenommen zeigen die Daten neuartige Wirkungen der Typ I IFN-Stimulation von 

Lymphozyten, welche die Lymphozytenverteilung tiefgreifend beeinflussen und den Ig-

Klassenwechsel gegenüber weniger immunogenen Antigenen wie VLPs ermöglichen. 
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