
RESEARCH ARTICLE

ASA3P: An automatic and scalable pipeline for

the assembly, annotation and higher-level

analysis of closely related bacterial isolates

Oliver SchwengersID
1,2,3*, Andreas Hoek1, Moritz Fritzenwanker2,3,

Linda FalgenhauerID
2,3, Torsten Hain2,3, Trinad Chakraborty2,3☯, Alexander Goesmann1,3☯

1 Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany, 2 Institute of

Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany, 3 German Center for Infection

Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany

☯ These authors contributed equally to this work.

* oliver.schwengers@computational.bio.uni-giessen.de

Abstract

Whole genome sequencing of bacteria has become daily routine in many fields. Advances

in DNA sequencing technologies and continuously dropping costs have resulted in a tre-

mendous increase in the amounts of available sequence data. However, comprehensive in-

depth analysis of the resulting data remains an arduous and time-consuming task. In order

to keep pace with these promising but challenging developments and to transform raw data

into valuable information, standardized analyses and scalable software tools are needed.

Here, we introduce ASA3P, a fully automatic, locally executable and scalable assembly,

annotation and analysis pipeline for bacterial genomes. The pipeline automatically executes

necessary data processing steps, i.e. quality clipping and assembly of raw sequencing

reads, scaffolding of contigs and annotation of the resulting genome sequences. Further-

more, ASA3P conducts comprehensive genome characterizations and analyses, e.g. taxo-

nomic classification, detection of antibiotic resistance genes and identification of virulence

factors. All results are presented via an HTML5 user interface providing aggregated informa-

tion, interactive visualizations and access to intermediate results in standard bioinformatics

file formats. We distribute ASA3P in two versions: a locally executable Docker container for

small-to-medium-scale projects and an OpenStack based cloud computing version able to

automatically create and manage self-scaling compute clusters. Thus, automatic and stan-

dardized analysis of hundreds of bacterial genomes becomes feasible within hours. The

software and further information is available at: asap.computational.bio.

This is a PLOS Computational Biology Software paper.

Introduction

In 1977 DNA sequencing was introduced to the scientific community by Frederick Sanger [1].

Since then, DNA sequencing has come a long way from dideoxy chain termination over high
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throughput sequencing of millions of short DNA fragments and finally to real-time sequencing

of single DNA molecules [2,3]. Latter technologies of so-called next generation sequencing

(NGS) and third generation sequencing have caused a massive reduction of time and costs,

and thus, led to an explosion of publicly available genomes. In 1995, the first bacterial genomes

of M. genitalium and H. influenzae were published [4,5]. Today, the NCBI RefSeq database

release 93 alone contains 54,854 genomes of distinct bacterial organisms [6]. Due to the matu-

ration of NGS technologies, the laborious task of bacterial whole genome sequencing (WGS)

has transformed into plain routine [7] and nowadays, has become feasible within hours [8].

As the sequencing process is not a limiting factor anymore, focus has shifted towards deeper

analyses of single genomes and also large cohorts of e.g. clinical isolates in a comparative way

to unravel the plethora of genetic mechanisms driving diversity and genetic landscape of bacte-

rial populations [9]. Comprehensively characterizing bacterial organisms has become a desir-

able and necessary task in many fields of application including environmental- and medical

microbiology [10]. The recent worldwide surge of multi-resistant microorganisms has led to

the realization, that without the implementation of adequate measures in 2050 up to 10 million

people could die each year due to infections with antimicrobial resistant bacteria alone [11].

Thus, sequencing and timely characterization of large numbers of bacterial genomes is a key

element for successful outbreak detection, proper surveillance of emerging pathogens and

monitoring the spread of antibiotic resistance genes [12]. Comparative analysis could lead to

the identification of novel therapeutic drug targets to prevent the spread of pathogenic and

antibiotic-resistant bacteria [13–16].

Another very promising and important field of application for microbial genome sequenc-

ing is modern biotechnology. Due to deeper knowledge of the underlying genomic mecha-

nisms, genetic engineering of genes and entire bacterial genomes has become an indispensable

tool to transform them into living chemical factories with vast applications, as for instance,

production of complex chemicals [17], synthesis of valuable drugs [18–20] and biofuels [21],

decontamination and degradation of toxins and wastes [22,23] as well as corrosion protection

[24].

Now, that the technological barriers of WGS have fallen, genomics finally transformed into

Big Data science [25] inducing new issues and challenges [26]. To keep pace with these devel-

opments, we believe that continued efforts are required in terms of the following issues:

a) Automation: Repeated manual analyses are time consuming and error prone. Following

the well-known “don’t repeat yourself” mantra and the pareto principle, scientists should be

able to concentrate on interesting and promising aspects of data analysis instead of ever repeat-

ing data processing tasks.

b) Standard operating procedures (SOPs): In a world of high-throughput data creation and

complex combinations of bioinformatic tools SOPs are indispensable to increase and maintain

both reproducibility and comparability [27].

c) Scalability: To keep pace with the available data, bioinformatics software needs to take

advantage of modern computing technologies, e.g. multi-threading and cloud computing.

Addressing these issues, several major platforms for the automatic annotation and analysis

of prokaryotic genomes have evolved in recent years as for example the NCBI Prokaryotic

Genome Annotation Pipeline [6], RAST [28] and PATRIC [29]. All three provide sophisti-

cated genome analysis and annotation pipelines and pose a de-facto community standard in

terms of annotation quality. In addition, several offline tools, e.g. Prokka [30], have been pub-

lished in order to address major drawbacks of the aforementioned online tools, i.e. they are

not executable on local computers or in on-premises cloud computing environments. How-

ever, comprehensive analysis of bacterial WGS data is not limited to the process of annotation

alone but also requires sequencing technology-dependent pre-processing of raw data as well as

PLOS COMPUTATIONAL BIOLOGY ASA3P: An automatic and scalable analysis pipeline for bacteria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007134 March 5, 2020 2 / 15

accession IDs are provided in the supporting

information.

Funding: This work was supported by the German

Center of Infection Research (DZIF) (DZIF grant

8000 701–3 [HZI], TI06.001, 8032808811, and

8032808820 to TC); the German Network for

Bioinformatics Infrastructure (de.NBI) (BMBF grant

FKZ 031A533B to AG); and the German Research

Foundation (DFG) (SFB-TR84 project A04 [TRR84/

3 2018] to TC, KFO309 Z1 [GO 2037/5-1] to AG,

SFB-TR84 project B08 [TRR84/3 2018] to TH,

SFB1021 Z02 [SFB 1021/2 2017] to TH, KFO309

Z1 [HA 5225/1-1] to TH). The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007134


subsequent characterization steps. As analysis of bacterial isolates and cohorts will be a stan-

dard method in many fields of application in the near future, demand for sophisticated local

assembly, annotation and higher-level analysis pipelines will rise constantly. Furthermore, we

believe that the utilization of portable devices for DNA sequencing will shift analysis from cen-

tral software installations to either decentral offline tools or scalable cloud solutions. To the

authors’ best knowledge, there is currently no published bioinformatics software tool success-

fully addressing all aforementioned issues. In order to overcome this bottleneck, we introduce

ASA3P, an automatic and scalable software pipeline for the assembly, annotation and higher-

level analysis of closely related bacterial isolates.

Design and implementation

ASA3P is implemented as a modular command line tool in Groovy (http://groovy-lang.org),

a dynamic scripting language for the Java virtual machine. In order to achieve acceptable to

best possible results over a broad range of bacterial genera, sequencing technologies and

sequencing depths, ASA3P incorporates and takes advantage of published and well performing

bioinformatics tools wherever available and applicable in terms of lean and scalable implemen-

tation. As the pipeline is also intended to be used as a preprocessing tool for more specialized

analyses, it provides no user-adjustable parameters by design and thus facilitates the imple-

mentation of robust SOPs. Hence, each utilized tool is parameterized according to community

best practices and knowledge (S1 Table).

Workflow, tools and databases

Depending on the sequencing technology used to generate the data, ASA3P automatically

chooses appropriate tools and parameters. An explanation on which tool was chosen for each

task is given in S2 Table. Semantically, the pipeline’s workflow is divided into four stages (Fig

1). In the first mandatory stage A (Fig 1A), provided input data are processed, resulting in

annotated genomes. Therefore, raw sequencing reads are quality controlled and clipped via

FastQC (https://github.com/s-andrews/FastQC), FastQ Screen (https://www.bioinformatics.

babraham.ac.uk/projects/fastq_screen), Trimmomatic [31] and Filtlong (https://github.com/

rrwick/Filtlong). Filtered reads are then assembled via SPAdes [32] for Illumina reads, HGAP

4 [33] for Pacific Bioscience (PacBio) reads and Unicycler [34] for Oxford Nanopore Technol-

ogy (ONT) reads, respectively. Hybrid assemblies of Illumina and ONT reads are conducted

via Unicycler, as well. Before annotating assembled genomes with Prokka [30], contigs are

rearranged and ordered via the multi-reference scaffolder MeDuSa [35]. For the annotation of

subsequent pseudogenomes ASA3P uses custom genus-specific databases based on binned

RefSeq genomes [6] as well as specialized protein databases, i.e. CARD [36] and VFDB [37]. In

order to integrate public or externally analyzed genomes, ASA3P is able to incorporate differ-

ent types of pre-processed data, e.g. contigs, scaffolds and annotated genomes.

In an optional second stage B (Fig 1B), all assembled and annotated genomes are exten-

sively characterized. A taxonomic classification is conducted comprising three distinct meth-

ods, i.e. a kmer profile search, a 16S sequence homology search and a computation of an

average nucleotide identity (ANI) [38] against user provided reference genomes. For the kmer

profile search, the software takes advantage of the Kraken package [39] and a custom reference

genome database based on RefSeq [6]. The 16S based classification is implemented using

BLAST+ [40] and the SILVA [41] database. Calculation of ANI values is implemented in

Groovy using nucmer within the MUMmer package [42]. A subspecies level multi locus

sequence typing (MLST) analysis is implemented in Groovy using BLAST+ [40] and the

PubMLST.org [43] database. Detection of antibiotic resistances (ABRs) is conducted via RGI
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and the CARD [36] database. A detection of virulence factors (VFs) is implemented via

BLAST+ [40] and VFDB [37]. Quality clipped reads get mapped onto user provided reference

genomes via Bowtie2 [44] for Illumina, pbalign (https://github.com/PacificBiosciences/

pbalign) for PacBio and Minimap2 [45] for ONT sequence reads, respectively. Based on these

Fig 1. The ASA3P workflow and incorporated third party software tools and databases. The ASA3P workflow is organized in four stages (large

white boxes, A-D) comprising per-isolate processing and characterization, comparative analysis and reporting steps (orange boxes). The processing

stage A is mandatory whereas stage B and C are optional and can be skipped by the user. Each step takes advantage of selected third-party software

tools (blue boxes) and/or databases (green ovals) depending on the type of provided input data at hand.

https://doi.org/10.1371/journal.pcbi.1007134.g001
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read mappings, the pipeline calls, filters and annotates SNPs via SAMtools [46] and SnpEff

[47] and finally computes consensus sequences for each isolate. In order to maximize parallel

execution and thus reducing overall runtime, stage A and B are technically implemented as a

single step.

A third optional comparative stage C (Fig 1C) is triggered as soon as stages A and B are

completed, i.e. all genomes are processed and characterized. Utilizing aforementioned consen-

sus sequences, ASA3P computes a phylogenetic approximately maximum-likelihood tree via

FastTreeMP [48]. This is complemented by the calculation of a core, accessory and pan-

genome as well as the detection of isolate genes conducted via Roary [49].

In a final stage (Fig 1D), the pipeline aggregates analysis results and data files and finally

provides a graphical user interface (GUI), i.e. responsive HTML5 documents comprising

detailed information via interactive widgets and visualizations. Therefore, ASA3P takes advan-

tage of modern web frameworks, e.g. Bootstrap (https://getbootstrap.com) and jQuery

(https://jquery.com) as well as adequate JavaScript visualization libraries, e.g. Google Charts

(https://developers.google.com/chart), D3 (https://d3js.org) and C3 (http://c3js.org).

User input and output

Each set of bacterial isolates to be analyzed within a single execution is considered as a self-con-

tained analysis of bacterial cohorts and is subsequently referred to as an ASA3P project. As

ASA3P was developed in order to analyze cohorts of closely related isolates, e.g. a clonal out-

break, the pipeline expects all genomes within a project to belong to at least the same genus,

although a common species is most favourable. For each project, the pipeline expects a distinct

directory comprising a configuration spreadsheet containing necessary project information and

a subdirectory containing all input data files. Such a directory is subsequently referred to as

project directory. In order to ease provisioning of necessary information, we provide a configu-

ration spreadsheet template comprising two sheets (S1 and S2 Figs). The first sheet contains

project meta information such as project names and descriptions as well as contact information

on project maintainers and provided reference genomes. The second sheet stores information

on each isolate comprising a unique identifier as well as data input type and related files. ASA3P

is currently able to process input data in the following standard file formats: Illumina paired-

end and single-end reads as compressed FastQ files, PacBio RSII and Sequel reads provided

either as single unmapped bam files or via triples of bax.h5 files, demultiplexed ONT reads as

compressed FastQ files, pre-assembled contigs or pseudogenomes as Fasta files and pre-anno-

tated genomes as Genbank, EMBL or GFF files. In the latter case, corresponding genome

sequences can either be included in the GFF file or provided via separate Fasta files.

As ASA3P is also intended to be used as an automatic preprocessing tool providing as much

reliable information as possible, the results are stored in a standardized manner within project

directories comprising quality clipped reads, assemblies, ordered and scaffolded contigs, anno-

tated genomes, mapped reads, detected SNPs as well as ABRs and VFs. In detail, all result files

are stored in distinct subdirectories for each analysis by the pipeline and for certain analyses

further subdirectories are created therein for each genome (S3 Fig). Aggregated information is

stored in a standardized but flexible document structure as JSON files. Text and binary result

files are stored in standard bioinformatics file formats, i.e. FastQ, Fasta, BAM, VCF and New-

ick. Providing results in such a machine-readable manner, ASA3P outputs can be further

exploited by manual or automatic downstream analyses since customized scripts with a more

targeted focus can easily access necessary data. In addition, ASA3P creates user-friendly

HTML5 reports providing both prepared summaries as well as detailed information via

sophisticated interactive visualizations.
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Implementation and software distributions

ASA3P is designed as a modular and expandable application with high scalability in mind. It

consists of three distinct tiers, i.e. a command line interface, an application programming

interface (API) and analysis specific cluster distributable worker scripts. A common software-

wide API is implemented in Java, whereas the core application and worker scripts are imple-

mented in Groovy. In order to overcome common error scenarios on distributed high-perfor-

mance computing (HPC) clusters and cloud infrastructures and thereby delivering robust

runtime behavior, the pipeline takes advantage of a well-designed shared file system-oriented

data organization, following a convention over configuration approach. Thus, loosely coupled

software parts run both concurrently and independently without interfering with each other.

In addition, future enhancements and externally customized scripts reliably find intermediate

files at reproducible locations within the file system.

As ASA3P requires many third-party dependencies such as software libraries, bioinformat-

ics tools and databases, both distribution and installation is a non-trivial task. In order to

reduce the technical complexity as much as possible and to overcome this bottleneck for non-

computer-experts, we provide two distinct distributions addressing different use cases and

project sizes, i.e. a locally executable containerized version based on Docker (DV) (https://

www.docker.com) as well as an OpenStack (OS) (https://www.openstack.org) based cloud

computing version (OSCV). Details and appropriate use cases of both are described in the fol-

lowing sections.

Docker

For small to medium projects and utmost simplicity we provide a Docker container image

encapsulating all technical dependencies such as software libraries and system-wide executa-

bles. As the DV offers only vertical scalability, it addresses small projects of less than ca. 200

genomes. The necessary container image is publicly available from our Docker repository

(https://hub.docker.com/r/oschwengers/asap) and can be started without any prior installa-

tion, except of the Docker software itself. For the sake of lightweight container images and to

comply with Docker best practices, all required bioinformatics tools and databases are pro-

vided via an additional tarball, subsequently referred to as ASA3P volume which users merely

need to download and extract, once. For non-Docker savvy users, a shell script hiding all

Docker related aspects is also provided. By this, executing the entire pipeline comes down to a

single command:

<asap_dir>/asap-docker.sh -p <project_path>.

Cloud computing

For medium to very large projects, we provide an OS based version in order to utilize horizon-

tal scaling capabilities of modern cloud computing infrastructures. Since creation and configu-

ration of such complex setups require advanced technical knowledge, we provide a shell script

taking care of all cloud specific aspects and to orchestrate and execute the underlying workflow

logic. Necessary cloud specific properties such as available hardware quotas, virtual machine

(VM) flavours and OS identifiers are specified and stored in a custom property file, once. In

order to address contemporary demands for high scalability, the OSCV is able to horizontally

scale out and distribute workloads on an internally managed Sun Grid Engine (SGE) based

compute cluster. A therefore indispensable shared file system is provided by an internal net-

work file system (NFS) server sharing distinct storage volumes for both project data and a nec-

essary ASA3P volume. In order to create and orchestrate both software and hardware

infrastructures in a fully automatic manner, the pipeline takes advantage of the BiBiGrid
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(https://github.com/BiBiServ/bibigrid/) framework. Hereby, ASA3P is able to adjust the com-

pute cluster size fitting the number of isolates within a project as well as available hardware

quotas. Except of an initial VM acting as a gateway into an OS cloud project, the entire com-

pute cluster infrastructure is automatically created, setup, managed and finally shut down by

the software. Thus, ASA3P can exploit vast hardware capacities and is portable to any OS com-

patible cloud. For further guidance, all prerequisite installation steps are covered in a detailed

user manual.

Results

Analysis features

ASA3P conducts a comprehensive set of pre-processing tasks and genome analyses. In order to

delineate currently implemented analysis features, we created and analyzed a benchmark data

set comprising 32 Illumina sequenced Listeria monocytogenes isolates randomly selected from

SRA as well as four Listeria monocytogenes reference genomes from Genbank (S3 Table). All

isolates were successfully assembled, annotated, deeply characterized and finally included in

comparative analyses. Table 1 provides genome wise minimum and maximum values for key

metrics covering results from workflow stages A and B. After conducting a quality control and

adapter removal for all raw sequencing reads, a minimum of 393,300 and a maximum of

6,315,924 reads remained, respectively. Genome wise minimum and maximum mean phred

scores were 34.7 and 37.2. Assembled genome sizes ranged between 2,818 kbp and 3,201 kbp

with a minimum of 12 and a maximum of 108 contigs. Hereby, a maximum N50 of 1,568 kbp

was achieved. After rearranging and ordering contigs to aforementioned reference genomes,

assemblies were reduced to 2 to 10 scaffolds and 0 to 42 contigs per genome, thus increasing

the minimum and maximum N50 to 658 kbp and 3,034 kbp, respectively. Pseudolinked

genomes were subsequently annotated resulting in between 2,735 and 3,200 coding genes and

between 95 and 144 non-coding genes.

After pre-processing, assembling and annotating all isolates, ASA3P successfully conducted

deep characterizations of all isolates, which were consistently classified to the species level via

Table 1. Common genome analysis key metrics for processing and characterization steps analyzing a benchmark dataset comprising 32 Listeria monocytogenes iso-

lates. Minimum and maximum values for selected common genome analysis key metrics resulting from an automatic analysis conducted with ASA3P of an exemplary

benchmark dataset comprising 32 Listeria monocytogenes isolates. Metrics are given for quality control (QC), assembly, scaffolding and annotation processing steps as well

as detection of antibiotic resistances and virulence factors characterization steps on a per-isolate level.

Analysis Metric Minimum Maximum

QC reads 393,300 6,315,924

QC Mean read length 125.7 nt 228.5 nt

QC mean Phred score 34.7 37.2

assembly Genome size 2,817,892 bp 3,201,054 bp

assembly contigs 12 108

assembly N50 56,125 bp 1,568,056 bp

assembly GC content 37% 38%

scaffolding scaffolds 1 10

scaffolding contigs 0 42

scaffolding N50 657,549 bp 3,034,489 bp

annotation coding genes 2,735 3,200

annotation non-coding genes 95 144

antibiotic resistance ABR genes 0 2

virulence factors VF genes 16 35

https://doi.org/10.1371/journal.pcbi.1007134.t001
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kmer-lookups as well as 16S ribosomal RNA database searches as Listeria monocytogenes,
except of a single isolate classified as Listeria innocua. In line with these results all isolates

shared an ANI value above 95% and a conserved DNA of at least 80% with at least one of the

reference genomes, except for the L. innocua isolate which shared a maximum ANI of 90.7%

and a conserved DNA of only 37.3%. Furthermore, the pipeline successfully subtyped all but

one of the isolates via MLST, by automatically detecting and applying the “lmonocytogenes”

schema. Noteworthy, the L. innocua isolate constitutes a distinct MLST lineage, i.e. L. innocua.

ASA3P detected between 0 and 2 antibiotic resistance genes and between 16 and 35 virulence

factor genes. A comprehensive list of all key metrics for each genome is provided in a separate

spreadsheet (S1 File).

Finally, core and pan-genomes were computed resulting in 1,485 core genes and a pan-

genome comprising 7,242 genes. Excluding the L. innocua strain and re-analyzing the dataset

reduced the pan-genome to 6,197 genes and increased the amount of core genes to 2,004 addi-

tionally endorsing its taxonomic difference.

Data visualization

Analysis results as well as aggregated information get collected, transformed and finally pre-

sented by the pipeline via user friendly and detailed reports. These comprise local and respon-

sive HTML5 documents containing interactive JavaScript visualizations facilitating the easy

comprehension of the results. Fig 2 shows an exemplary collection of embedded data visualiza-

tions. Where appropriate, specialized widgets were implemented, as for instance circular

genome annotation plots presenting genome features, GC content and GC skew on separate

tracks (Fig 2A). These plots can be zoomed, panned and downloaded in SVG format for subse-

quent re-utilization. Another example is the interactive and dynamic visualization of SNP

based phylogenetic trees (Fig 2E) via the Phylocanvas library (http://phylocanvas.org) enabling

customizations by the user, as for instance changing tree types as well as collapsing and rotat-

ing subtrees. In order to provide users with an expeditious but conclusive overview on bacte-

rial cohorts, key genome characteristics are visualized via an interactive parallel coordinates

plot (Fig 2F) allowing for the combined selection of value ranges in different dimensions.

Thus, clusters of isolates sharing high-level genome characteristics can be explored and identi-

fied straightforward. In order to rapidly compare different ABR capabilities of individual iso-

lates, a specialized widget was designed and implemented (Fig 2D). For each isolate an ABR

profile based on detected ABR genes grouped to 34 distinct target drug classes is computed,

visualized and stacked for the easy perception of dissimilarities between genomes. Throughout

the reports wherever appropriate, numeric results are interactively visualized as, for instance,

the distribution of detected MLST sequence types (Fig 2B) and per-isolate analysis results

summarized via key metrics presented within sortable and filterable data tables (Fig 2C).

Scalability and hardware requirements

When analyzing projects with growing numbers of isolates, local execution can quickly

become infeasible. In order to address varying amounts of data, we provide two distinct

ASA3P distributions based on Docker and cloud computing environments. Each features indi-

vidual scalability properties and implies different levels of technical complexity in terms of dis-

tribution and installation requirements. In order to benchmark the pipeline’s scalability, we

measured wall clock runtimes analyzing two projects comprising 32 and 1,024 L. monocyto-
genes isolates, respectively (S3 Table). Accession numbers for the large data set will be pro-

vided upon request. In addition to both public distributions, we also tested a custom

installation on an inhouse SGE-based HPC cluster. The DV was executed on a VM providing
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32 vCPUs and 64 GB memory. The quotas of the OS cloud project allowed for a total amount

of 560 vCPUs and 1,280 GB memory. The HPC cluster comprised 20 machines with 40 cores

and 256 GB memory, each. All machines hosted an Ubuntu 16.04 operating system. Table 2

shows the best-of-three runtimes for each version and benchmark data set combination. The

pipeline successfully finished all benchmark analyses, except of the 1,024 dataset analyzed by

the DV, due to lacking memory capacities required for the calculation of a phylogenetic tree

comprising this large amount of genomes. Analyzing the 32 L. monocytogenes data set on

larger compute infrastructures, i.e. the OS cloud (5:02:24 h) and HPC cluster (4:49:24 h),

shows significantly reduced runtimes by approximately 50%, compared to the Docker-based

executions (10:59:34 h). Not surprisingly, runtimes of the OSCV are slightly longer than HPC

runtimes, due to the inherent overhead of automatic infrastructure setup and management

procedures. Excluding these overheads reduces runtimes by approximately half an hour, lead-

ing to slightly shorter periods compared to the HPC version. We attribute this to a saturated

workload distribution combined with faster CPUs in the cloud as stated in S4 Table. Compar-

ing measured runtimes for both data sets exhibit a ~5.8- and ~6.9-fold increase for the HPC

cluster (27:56:37 h) and OSCV (34:47:45 h) version, respectively, although the amount of iso-

lates was increased 32-fold.

We furthermore investigated internal pipeline scaling properties for combinations of fixed

and varying HPC cluster and project sizes (S4 Fig). In a first setup, growing numbers of L.

monocytogenes isolates were analyzed utilizing a fixed-size HPC cluster of 4 compute nodes

providing 32 vCPUs and 64 GB RAM each. Iteratively doubling the amount of isolates from 32

to 1,024 led to runtimes approximately increasing by a factor of 2, in line with our expecta-

tions. Nevertheless, we observed an overproportional increase in runtime of the internal com-

parative steps within stage C compared to the per-isolate steps of stage A and B. We attribute

Fig 2. Selection of interactive GUI widgets embedded in generated HTML5 reports. (A) Circular genome plot for a Listeria monocytogenes pseudogenome.

The zoomable and scalable SVG based circular genome plot provides comprehensive information on genome features on mouseover events. Reference-guided

rearranged contigs are linked to pseudogenomes for the sake of better readability. From the outermost inward: genes on the forward and reverse strand,

respectively, GC content and GC skew. (B) Donut chart of MLST sequence type (ST) distribution. The MLST ST distribution of all isolates analyzed within a

project is shown by and interactive donut chart. Single STs can be selected or deselected. (C) Visual representation of normalized assembly key statistics. Per-

isolate assembly key statistics are normalized to minimum and maximum values within a project column-wise and visualized within an interactive data table

allowing for column-based sorting and filtering for the rapid comparison of isolates and detection of outliers. (D) Antibiotic resistance profile overview widget.

An antibiotic resistance profile comprising 34 distinct target drug classes is computed based on CARD annotations for each isolate and transformed into an

overview widget allowing a rapid resistome comparison of all analyzed isolates. Black rectangle: a mouseover triggered tooltip describing detected antibiotic

target drug resistance. (E) SNP-based approximately-maximum-likelihood phylogenetic tree. An approximately-maximum-likelihood phylogenetic tree is

computed based on SNPs detected via read-mapping against a reference genome and stored in standard newick file format. The resulting tree is visualized via

the interactive Phylocanvas JavaScript library providing comprehensive user interaction features, e.g. collapsing, expanding and rotating subtrees and tree type

selection. (F) Parallel coordinates plot providing a multi-dimensional cohort overview of per-isolate genome metrics and characteristics. A selection of seven

genome key metrics and characteristics is visualized in a parallel coordinates plot providing a multi-dimensional cohort overview enabling the rapid detection

of clustered isolates and outliers. Vertical bars: key metrics or characteristic as plot dimensions; coloured horizontal lines: isolates and related values providing

table-synchronized highlighting upon mouseovers.

https://doi.org/10.1371/journal.pcbi.1007134.g002

Table 2. Wall clock runtimes for each ASA3P version utilizing different hardware infrastructures and benchmark dataset sizes. Provided are best-of-three wall clock

runtimes for complete ASA3P executions analyzing Listeria monocytogenes benchmark datasets comprising 32 and 1,024 isolates given in hh:mm:ss format. Docker: a sin-

gle virtual machine with 32 vCPUs and 64 GB memory was used. Analysis of the 1,024 isolate dataset was not feasible due to memory limitations; HPC: ASA3P automati-

cally distributed the workload to an SGE-based high-performance computing cluster comprising 20 nodes providing 40 cores and 256 GB memory each; Cloud: ASA3P

was executed in an OpenStack based cloud computing project comprising 560 vCPUs and 1,280 GB memory in total. Runtimes in parenthesis exclude build times for auto-

matic infrastructure setups, i.e. the pure ASA3P wall clock runtimes.

Docker Cloud HPC

32 L. monocytogenes 10:59:34 5:02:24

(4:31:59)

4:49:24

1024 L. monocytogenes - 34:47:45

(33:25:26)

27:56:37

https://doi.org/10.1371/journal.pcbi.1007134.t002
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this to the implementations and inherent algorithms of internally used third party executables.

As this might become a bottleneck for the analysis of even larger projects, this will be subject

to future developments.

In addition, we repetitively analyzed a fixed number of 128 L. monocytogenes isolates while

increasing underlying hardware capacities, i.e. available HPC compute nodes. In this second

setup, we could measure significant runtime reductions for up to 8 compute nodes. Further

hardware capacity expansions led to saturated workload distributions and contributed negligi-

ble runtime benefits. To summarize all conducted runtime benchmarks, we conclude that

ASA3P is able to horizontally scale-out to larger infrastructures and thus, conducting expedi-

tious analysis of large projects within favourable periods of time.

To test the reliable distribution and robustness of the pipeline, we executed the DV on an

Apple iMac running MacOS 10.14.2 providing 4 cores and 8 GB of memory. ASA3P success-

fully analyzed a downsampled dataset comprising 4 L. monocytogenes isolates within a mea-

sured wall clock runtime of 8:43:12 hours. In order to assess minimal hardware requirements,

the downsampled data set was analyzed iteratively reducing provided memory capacities of an

OS VM. Hereby, we could determine a minimal memory requirement of 8 GB and thus draw

the conclusion that ASA3P allows the execution of a sophisticated workflow for the analysis of

bacterial WGS data cohorts on ordinary consumer hardware. However, since larger amounts

of isolates, more complex genomes or deeper sequencing coverages might result in higher

hardware requirements, we nevertheless recommend at least 16 GB of memory.

Conclusion

We described ASA3P, a new software tool for the local, automatic and highly scalable analysis

of bacterial WGS data. The pipeline integrates many common analyses in a standardized and

community best practices manner and is available for download either as a local command

line tool encapsulated and distributed via Docker or a self-orchestrating OS cloud version. To

the authors’ best knowledge it is currently the only publicly available tool for the automatic

high-throughput analysis of bacterial cohorts WGS data supporting all major contemporary

sequencing platforms, offering SOPs, robust scalability as well as a user friendly and interactive

graphical user interface whilst still being locally executable and thus offering on-premises anal-

ysis for sensitive or even confidential data. So far, ASA3P has been used to analyze thousands

of bacterial isolates covering a broad range of different taxa.

Availability and future directions

The source code is available on GitHub under GPL3 license at https://github.com/oschwenge

rs/asap. The Docker container image is accessible at Docker Hub: https://hub.docker.com/r/

oschwengers/asap. The ASA3P software volume containing third-party executables and data-

bases, OpenStack cloud scripts, a comprehensive manual and configuration templates are

hosted at Zenodo: http://doi.org/10.5281/zenodo.3606300. Benchmark and exemplary data

projects are hosted sepatately at Zenodo: https://doi.org/10.5281/zenodo.3606761. Questions

and issues can be sent to “asap@computational.bio”, bug reports can be filed as GitHub issues.

Albeit ASA3P itself is published and distributed under a GPL3 license, some of its depen-

dencies bundled within the ASA3P volume are published under different license models, e.g.

CARD and PubMLST. Comprehensive license information on each dependency and database

is provided as a DEPENDENCY_LICENSE file within the ASA3P directory.

Future directions comprise the development and integration of further analyses, e.g. detec-

tion and characterization of plasmids, phages and CRISPR cassettes as well as further enhance-

ments in terms of scalability and usability.
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S4 Table. Host CPU information used for wall clock runtime benchmarks.

(PDF)

S1 Fig. Exemplary screenshot of configuration template sheet 1.
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S2 Fig. Exemplary screenshot of configuration template sheet 2.
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S3 Fig. Exemplary project directory structure. Each project analyzed by ASA3P strictly fol-

lows a conventional directory organization and thus forestalls the burden of unnecessary con-

figurations. Shown is an exemplary project structure representing input and output files and

directories of the Listeria monocytogenes example project. For the sake of readability repeated

blocks are collapsed represented by a triple dot ‘ . . .’

(PDF)

S4 Fig. Wall clock runtimes for varying compute node and isolate numbers. Runtimes

given in hours and separated between comparative and per-isolate internal pipeline stages due

to different scalability metrics. Each compute node provides 32 vCPUs and 64 GB memory. L.

monocytogenes strains were randomly chosen from SRA Bioproject PRJNA215355. (A) Run-

times of a fixed-size compute cluster comprising 4 compute nodes analyzing varying isolate

numbers. (B) Runtimes of compute clusters with varying numbers of compute nodes analyz-

ing a fixed amount of 128 isolates.

(PDF)

S1 File. Comprehensive list of all per-genome key metrics.
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