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Preface

In 1961 the authors Paul Erdés, Richard Rado and Chao Ko published a paper [14]
titled “Intersection theorems for systems of finite sets”, which initiated years of math-
ematical research in the field of combinatorics, including this thesis. In said paper the
authors considered a collection C' of mutually intersecting k-subsets of a given n-set and
determined, how large C' can be, as well as the structure of C' in the extremal case.

The examples of maximal size have a fairly simple structure: for n < 2k the problem
is trivial, in the special case 2k = n every k-subset of the n-set has a complementary
k-set and one has to choose one k-set of each complementary pair, and for 2k < n one
has |C| < (Zj) where equality holds if and only if C' is the collection of all k-subsets
containing one fixed element of the n-set.

In honour of their initial research, a collection of mutually intersecting k-subsets of
a given n-set is called an Erdds-Ko-Rado set and their initial problem as well as gener-
alizations of it are often referred to as Erdds-Ko-Rado problems. An important (first)
addition to their result was given in 1967 in [18] by Hilton and Milner, where an up-
per bound on examples of second largest cardinality was determined and - in honour of
their research - results on the size of second largest examples are often referred to as
Hilton-Milner theorems.

Now, another way to view this problem is, to view it in the graph K(n, k) whose
vertices are all k-subsets of a fixed n-set and in which two vertices are adjacent if and
only if they are disjoint. This graph is called the Kneser graph K(n,k) and any Erdé&s-
Ko-Rado set occurs as an independent set of this graph, that is, a set of pairwise non-
adjacent vertices. Thus, in the language of graph theory, Erdés, Ko and Rado originally
determined the independence number of the Kneser graph K (n, k).

In view of the contents of this Thesis an important generalization is the Erdds-Ko-
Rado Theorem for vector spaces given in [15] by Frankl and Wilson and published in
1986. There, translated to the language of graph theory, the authors determined the
independence number of the ¢g-Kneser graph, that is, the graph whose vertices are all
k-dimensional subspaces of a given n-dimensional vector space of the finite field GF(q),
in which two vertices are adjacent if and only if the intersection of the corresponding
subspaces is trivial. Note that in [7] published by Blokhuis, Brouwer, Chowdhury, Frankl,
Mussche, Patkos and Szonyi in 2010, the authors determined a Hilton-Milner Theorem
for the Erdos-Ko-Rado Problem in vector spaces.

In this thesis the main focus is on the study of Erdos-Ko-Rado sets in generalized
g-Kneser graphs, where the vertices are flags of subspaces of a given vector space and
two vertices are adjacent if and only if they are far apart. Here, far apart for two flags
means, that the intersection of any choice of two subspaces - one from each of the two
flags - has minimal dimension. In order to gain a better geometrical point of view, we
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study these structures in the projective space associated with the given vector space and
the main results are:

e Theorem 2.2.16, where the independence number of the Kneser graph on plane

solid flags in PG(6, q) is determined. Furthermore, in Corollary 2.2.15 an upper
bound w is provided such that every independent set of this graph of size larger
than u is a subset of a maximal independent set given by Examples 2.1.15 and
2.1.17.

Theorem 2.3.20, where knowledge of the independence number of the Kneser graph
on plane solid flags in PG(6, ¢) is used to derive its chromatic number. There, we
also provide structural information on any colouring of minimal size.

Theorem 2.4.51, where the independence number of the Kneser graph on line solid
flags in PG(5, ¢) is determined. Furthermore, in Corollary 2.4.50 an upper bound
u is provided such that every independent set of this graph of size larger than u is
a subset of a maximal independent set given by Example 2.4.1.

Finally, the last chapter is on the subject of small tight sets in the hermitian polar

space H(2d, ¢?) of even dimension. In Theorem 3.2.10 tight sets of said polar space with
parameter x < ¢ are studied and determined to be the disjoint union of a set of y < x
disjoint generators together with an (z — y)-tight set which does not contain a line of
H(2d,q?). In fact, if z —y < q;r—l, then x — y = 0, that is, tight sets with parameter
z < %1 are the disjoint union of x generators.
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Publications and Joint Work

The content of this dissertation is in large parts based on publications of the author
during his time at the mathematical institute of the Justus-Liebig-University in Gieflen.

The content of Chapter 2 is split into four sections. Of these, the second section on
the independence number of the Kneser graph of plane solid flags in PG(6, ¢) is based
on [25] by Metsch and Werner and the third section on the chromatic number of said
graph is based on a generalization by D’haeseleer, Metsch and Werner of their earlier
work [12]. Note that the contents of [12] by D’haeseleer, Metsch and Werner on the
chromatic number of some Kneser graphs, including the Kneser graph on line-plane
flags of PG(4,¢q), are not included here and instead will be included in the thesis of
Jozefien D’haeseleer.

Finally, the content of Chapter 3 on small tight sets the polar space H (2d, ¢°) is based
on the generalization [26] by Metsch and Werner of the publication [1] by De Beule and
Metsch.
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1 Introduction

In this chapter we introduce all the necessary definitions, notations and basic results
that are used in this thesis. We do not provide a completely self contained description of
everything that is used, but give a decent overview. Some of the basic results, especially
if the method of proof is very similar to the rest of this work, are included with proof.
For the remaining required notions, which we do not prove, we refer the reader to the
cited literature for more information.

Definition 1.0.1 (Sets). We shall denote by N = {1,2,...} the set of all natural
numbers and we set Ng := N U {0}. Furthermore, for any set S we let 2° denote the set
of all subsets of S.

Definition 1.0.2 (Kronecker-Delta). For two arbitrary objects x and y we define the
Kronecker-Delta ¢, to be 1 if = y and 0 otherwise.

1.1 Basic Algebraic Objects

In this section we introduce basic algebraic objects that we use, such as groups, division
rings, fields, vector spaces etc. Furthermore, we collect some classic results, such as
Wedderburn’s Little Theorem, which are applied in one way or another in this work.

Definition 1.1.1 (Group). A group (G, o) is a set G with a binary operation o : GXG —
G which satisfies the following axioms:

(G1) For all g1, 92,93 € G we have (g1 0 g2) 0 g3 = g1 0 (g2 © g3)-
(G2) There is an identity element e € G such that for all g € G we have eog = g = goe.
(G3) For all g € G there is an inverse element ¢ € G with gog' =e=g¢'o0g.

A group (G, o) is called abelian (or commutative) if for all g, ¢ € G we have gog’ = ¢'og.
Furthermore, for any group (G, o) the cardinality of G is called the order of (G, o) and
if said order is finite, then we call (G, o) finite.

If the operation is written multiplicatively, then the inverse element of g € G is denoted
by ¢! and if the operation is written additively, then it is denoted by —g. Furthermore,
if the operation is written multiplicatively, then we omit the operator -, as is usual.

Definition 1.1.2 (Division Ring). A division ring (F,+,-) is a set F with two binary
operations +: F' x ' — F and - : F' x F — F such that:

(F1) (F,+) is an abelian group with identity element Op.
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(F2) (F\ {0F},-) is a group with identity element 1.
(F3) For all g1, 92,93 € I we have g1 - (92 + g3) = g1 - 92 + g1 - g3

(F4) For all g1, 92,93 € F we have (g1 +92) - 93 =91 93+ g2 - 3.

A division ring (F,+, -) is called field, if the group (F'\ {Of}, ) is abelian and it is called
skewfield, if the group (F'\ {Ov},-) is not abelian. Furthermore, for any division ring
(F,+,-) the cardinality of the set F' is called the order of (F,+,-) and if said order is
finite, then we call (F,+,-) finite.

The following two theorems classify finite division rings and can, for example, be found
in [22].

Theorem 1.1.3 (Wedderburn’s Little Theorem). FEvery finite division ring is a field.

Theorem 1.1.4 (Finite Fields). The order of every finite field is a prime power g, that
is, there is a prime p and an integer n € N such that ¢ = p™. Furthermore, for every
prime power q all fields of order q are pairwise isomorphic.

Therefore, for every prime power ¢, up to isomorphism, there is a unique finite field
of order ¢ and we denote that field by [F,.

We conclude this section with the definition of a vector space over a division ring,
which is done the very same way as the usual definition over a field.

Definition 1.1.5 ((Left) Vector Space). A wvector space (V,+,-) over a division ring F'
is a set V with two binary operations +: V xV — V and - : F x V — V such that:

(V1) (V,+) is an abelian group with identity element Oy .

(V2) The multiplication - is called scalar multiplication and for all A;,\s € F and
v1, V2 € V it satisfies:

)\1()\2’01) = ()\1)\2)1}1.

lpvy = v1.

)\1(111 + Uz) = A1 + Aovs.
()\1 + /\2)1)1 = A1 + Agva.

A vector space is called finite if the set V' is finite.

Remark 1.1.6. Basic results on vector spaces over fields can be proven such that they
also hold for wvector spaces over division rings. We do not include notions on wvector
spaces here. Instead we refer the reader to [22] for further information and assume
that basic notions, such as for example basis and dimension, and basic results, like the
dimension-formula for vector spaces, are known.



1.2 Projective Spaces

1.2 Projective Spaces

In this thesis we work with finite projective spaces and those of interest to us stem from
vector spaces over finite fields. However, we still introduce an axiomatic definition of
a general projective space as point-line incidence structure first. For a more thorough
introduction to projective spaces we refer the reader to [2], [11] and [9]. All omitted
proofs of introductory theorems stated in this section can be found in either one of
these.

1.2.1 Axiomatic Definition

Definition 1.2.1 (Point-Line Incidence Structure). A point-line incidence structure is
a triple S = (P, L, *) such that P and L are two sets and * C (P x L) U (L x P) is a
symmetric relation between these two sets.

The relation * is called incidence relation and for all P € P and all | € £ with (P,[) € *
we also write P x [ and say that P and [ incident. The set P is called the point-set and
its elements are called points, the set L is called the line-set and its elements are called
lines.

Given (P,l) € * we use common geometric terminology such as: If P x [, then we call
P a point of I, | a line through P and say that [ contains P. Furthermore, any point
which lies on two distinct lines is also called the intersection of these two lines and if Q
is a set of points, then the points in Q are called collinear, if there is a line [ such that
Q«1 for all Q € Q.

Finally, the incidence structure S is called finite, if P and L are finite sets.

Given the general concept of a point-line incidence structure we now add further
axioms to describe a projective space.

Definition 1.2.2 (Projective Space). A projective space P is a point-line incidence struc-
ture (P, L, x) such that

(P1) For any two distinct points P and @ there is a unique line [ with P [ and @ * .
In this situation we denote [ by PQ.

(P2) If g1 and go are two distinct lines with a common point P, then for any two lines
h1 and ho which have common points with g; and go but do not contain P there
is a point Q € P with Q € hq, ha.

(P3) Every line contains at least three points.
A projective space P is called non-degenerate if it also satisfies
(P4) There are three points such that no line is incident with all three.

A projective space which does not satisfy (P4) is called degenerate and if a degenerate
projective space P has more than one point, then it is called a projective line. We remark
that axiom (P2) is also called Veblen-Young axiom.
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Definition 1.2.3 (Projective Plane). A projective plane P is a non-degenerate projective
space that also satisfies the following axiom:

(P2’) Any two lines of P have a point in common.
Note that (P2’) implies (P2).

Since every line of a projective space P’ = (P, L, %) is determined by any two distinct
points of said line, we may identify every line [ € £ with the set of its points, that is,

= {P € P : P «l}. This also explains why from now on for all points P € P and all
lines | € £ with P %[ we may also write P € [.

Definition 1.2.4 (Subspace). A set P’ C P of points of a projective space P = (P, L, )
such that P,@Q € P’ and R € PQ implies R € P’ is called a linear subset of P and, given
a linear subset P’ of P, we call P’ := (P, L/, ') with L' = {PQ : P,Q € P’ NP # Q}
and " :=x N (P x L'UL" x P’) a subspace of P and write P’ <P.

Furthermore, if P; and Py are two subspaces of a projective space P such that there
is no point P which lies in both P; and Py, then we call P; and Py skew.

It is fairly simple to see that, if P is a projective space and P’ is a subspace of P, then
P’ is a projective space, too, and thus we omit a formal proof thereof.

To simplify notation later on and in view of the concept of a Buekenhout Geometry
(see Remark 1.2.12) we introduce the following.

Notation 1.2.5. For any two projective spaces P; and P, such that one is a subspace
of the other we write both P; x Py as well as Py * Py.

Like we did for lines, we may identify every subspace P’ = (P', L', +’) of a given
projective space P by the set of its points, that is, P’ = P’. Note that if P = (P, L, *) is a
projective space then P itself is a subspace of P, too, and, since we identify subspaces by
their point sets, we may now naturally write P € P instead of P € P as well as B C P
instead of B C P.

Every subset of a projective space is contained in at least one subspace and thus one
can define the span as is usual.

Definition 1.2.6 (Span). Let B be a subset of a projective space P and let S be the
set of all subspaces S of P with B C S. Then

(B) = m S

Ses

is called the span of B. Once again we use common language such as saying that B
spans (B) and calling (B) the subspace spanned by B.

Again it is fairly simple to see that the span of a subset B of a projective space P is
a subspace of P, too, and thus we also omit the proof thereof.

Notation 1.2.7. For s,t € Ny, points Py, ..., P, and subsets Bj, ..., Bs of a projective
space P we also write (Py, ..., P, By,..., Bs) instead of ({ P }U---U{P,}UBjU---UBg).



1.2 Projective Spaces

Definition 1.2.8 (Linearly Independent and Basis). Let P be a projective space. A
subset B of P is called linearly independent, if and only if for any subset B’ C B and
every point P € B\ B’ we have P ¢ (B’). Furthermore, a linearly independent subset
B of P which spans P is called a basis of P.

A basis B of P is called finite if |B| < oo and P is called finitely spanned if there is a
finite basis B of P.

Convention 1.2.9. From now on we only consider projective spaces which are finitely
spanned.

As is expected from a basis, one can show that every basis of a projective space has
the same cardinality.

Definition 1.2.10 (Rank and (Projective) Dimension). Let P be a projective space.
We call that number of elements in a basis B of P the rank of P, denote it by rk(P) and
call dim(PP) := rk(P) — 1 the (projective) dimension of P.

Note that we now have two different concepts of dimension, one in vector spaces and
one in projective spaces. If it is clear from context which concept we use, then we simply
write dimension (or dim) and if it is not then we specify by writing vectorial or projective
dimension.

Remark 1.2.11. Let P be a projective space. If S is a subspace of a projective space P,
then we have seen that S is a projective space, too. Hence, tk(S) and dim(S) is defined
for every subspace S of P. Note that this also includes the cases in which the projective
space P is degenerate.

In fact, a projective line has rank 2 and dimension 1, a projective space with exactly
one point has rank 1 and dimension 0 and, finally, a projective space with no point, has
rank 0 and dimension —1.

Remark 1.2.12 (Buekenhout Geometry). Let P be a projective space of dimension
2 < n € N and let X be the set of all proper subspaces of P without the empty set.
Using Notation 1.2.5 % is a symmetric and reflexive relation on X and (X, *,1k) is a
Buekenhout geometry over the set {1,...,n}.

Definition 1.2.13 (Hyperplane). In a projective space P of dimension n we call any
subspace H < P with dim(H) = n — 1 a hyperplane of P.

A very important tool when working with subspaces is the dimension-formula, that
we use without proof.

Theorem 1.2.14 (Dimension Formula). For subspaces U and W of a projective space
P we have

dim(U) 4+ dim(W) = dim((U, W)) + dim(U N W).

Another concept that plays a crucial role throughout this work is the dual space.
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Definition 1.2.15 (Dual Space). Let P be a non-degenerate projective space, let n be
its dimension, let H be the set of all hyperplanes of P and let U/ be the set of all subspaces
U < P with dim(U) = n — 2. Then the point-line incidence structure PV := (H,U, "),
where H € H and U € U are adjacent if and only if U < H in P, is called the dual space
of IP.

Remark 1.2.16. Let everything be as in this definition of a dual space. One can show
that, if U is a subspace of P and dy is its dimension, then the set {H € H : U x H}
is a subspace of PV and in PV it has dimension dim(P) — dy — 1. We identify U < P
and the subspace {H € H : U x H} of PV such that each subspace U < P is also a
subspace of PV. Now, if Uy and Us are subspaces of P with Uy < Us, then in PV we
have Uy < Uy. Hence, if we use the point of view of the incidence relation x that we
introduced in Notation 1.2.5, then we have * = %" .

Moreover, if we consider an n-dimensional projective space P as a Buekenhout Ge-
ometry (X, *,dim) over a type-set {0,1...,n}, then the dual space has the same set X,
the same incidence relation x and the same type-set I and only the type-map differs: the

map dim" of the dual space satisfies dim" (x) = n — dim(x) — 1 for all z € X.

Based on the concept of a dual space one also encounters the principle of duality for
projective spaces, which is used frequently in this work.

Remark 1.2.17 (Principle of Duality). The principle of duality states that, if a certain
statement holds for all projective spaces, then the dual of said statement also holds for
all projective spaces. Note that the dual of a given statement in a projective space P
is the statement interpreted in the dual space PV. Furthermore, a statement is called
self-dual, if its dual statement is the same. An example of a self-dual statement is the
Configuration of Desargques 1.2.19 that we encounter below in the projective plane.

Before we proceed to introduce projective spaces over division rings next, we con-
clude this axiomatic introduction of projective spaces with two important configurations,
namely those of Desargues and Pappus, and two important theorems concerning these.

Definition 1.2.18 (Theorem/Configuration of Desargues). Let P be a non-degenerate
projective space. We say that the Theorem of Desargues holds in P, if for all points P;,
Py, Ps, 1, Q2 and Q3 of P such that

e there is a point S with S € P;Q; for all ¢ € {1,2,3} and

e cvery subset B of three points of either {S, P;, Py, P3} or {S, Q1,Q2, @3} is linearly
independent,

the points R; := P; P, N Q;Qy, for all {7, j, k} = {1,2,3} lie on a common line.

Theorem 1.2.19 (Theorem of Desargues for Projective Spaces, see [2, Theorem 2.7.1]).
The Theorem of Desarques holds in every projective space P with dim(P) > 2.
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Figure 1.1: Configuration of Desargues

Definition 1.2.20 (Theorem/Configuration of Pappus). Let P be a non-degenerate pro-
jective space. We say that the Theorem of Pappus holds in P, if for any two intersection
lines h and g, all distinct points P;, P», P3 € h\ g and all distinct points Q1, Q2, Q3 € g\h
the points R; := PjP, N Q;Qy for all {i,j,k} = {1,2,3} lie on a common line.

Theorem 1.2.21 (Hessenberg’s Theorem, see [17]). If the Theorem of Pappus holds in
a projective space P, then the Theorem of Desargues holds in P, too.
1.2.2 Projective Spaces over Vector Spaces

Definition 1.2.22. For any vector space V over a division ring F' we define the point-line
geometry P(V) := (P, L, *) as follows:

e P:={U <V :U has vectorial dimension 1}.
o L£:={U <V :U has vectorial dimension 2}.
o x:={(UW)e(PxLULXP):U<WorW<U}.

Theorem 1.2.23 (Projective Spaces over Vector Spaces, see [2, Theorem 2.1.1]). For
any vector space V' over some division ring F' the point-line geometry P(V') is a projective
space.

Remark 1.2.24. Note that in [2] this is only shown for vector spaces of vectorial dimen-
sion at least 3. However, the remark after the proof of [2, Theorem 2.1.1] addresses this
and explains, that the condition on the vectorial dimension of the vector space is only
used to show that the projective space is non-degenerate. Indeed, for vector spaces V' of



1 Introduction

Figure 1.2: Configuration of Pappus

vectorial dimension 2 the point-line geometry P(V') is a projective line, for vector spaces
V' of vectorial dimension 1 the point-line geometry P(V') has only one point and even
if V' has vectorial dimension 0 the point-line geometry P(V') is defined. In particular,
in all three cases the respective point-line geometry satisfies the axioms of a projective
space.

Furthermore, the set of subspaces of a vector space V is in bijective correspondence
with the set of subspaces of P(V'). In fact, for every subspace U of a vector space V
with vectorial dimension dy we know that P(U) is a subspace of P(V') with projective
dimension dyy — 1 and rank d.

Notation 1.2.25. In order to avoid the ambiguity between the two concepts of dimen-
sion (that is, vectorial- and projective dimension), from now on we use rank as well as
rk when referring to vectorial dimension and dimension as well as dim when referring to
projective dimension.

In view of 1.2.19 the following explains why projective spaces over vector spaces are
of particular importance. Together with Wedderburn’s Little Theorem this also explain
why we only consider projective spaces which are constructed using vector spaces over
fields.

Theorem 1.2.26 (Theorem of Desargues for Projective Spaces over Vector Spaces,
see [2, Theorem 3.4.2]). A non-degenerate projective space P satisfies the Theorem of
Desargues, if and only if there is a vector space V' of rank at least 3 over a skew field F

with P =P(V).

Together, Theorem 1.2.19, Theorem 1.2.26 and Wedderburn’s Little Theorem 1.1.3
prove the following theorem.

Theorem 1.2.27. If P is a finite projective space of dimension at least 3, then P is

isomorphic to P(ngm(P)H) .

In view of that theorem the following definition is imperative.
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Definition 1.2.28. For all n € N and every prime power ¢ set PG(n, q) := ]P’(IF‘ZH) for
some prime power g.

We conclude this subsection with the following result regarding the Theorem of Pap-
pus, which helps to further classify projective spaces which are not finite, and a remark.

Theorem 1.2.29 (Theorem of Pappus for Projective Spaces over Vector Spaces, [2,
Theorem 2.2.2]). For any vector space V' over a division ring F' the Theorem of Pappus
holds in the projective space P(V') if and only if F is a field.

Remark 1.2.30. There exist several different projective planes which are not isomorphic
to P(V') for all vector spaces V', for example Moulton planes. For a short overview of
such planes we refer the reader to [11, Section 2.1].

We have now introduced our understanding of a projective space and mentioned the
important general notions for this work. From now on we only consider finite projective
spaces PG(n, q) for some n € N and some prime power g.

Furthermore, in the following we try to provide proofs to most claims, as they seem
to fit thematically into this work. Only in very few instances we refer the reader to the
literature.

1.2.3 Counts in Projective Spaces

Here we prepare some tools that we use to count objects in projective spaces and through-
out this part we let ¢ be a prime power. We begin with some very simple and well known
facts.

n+1_1
q—1

Lemma 1.2.31. For alln € NoU {—1} we have | PG(n, q)| = s4[n] := 4

Proof. PG(n,q) is the projective space constructed using a vector space of rank n + 1
over the finite field F, with ¢ elements and as such every point of PG(n, q) is a rank 1
subspace of this vector space. Therefore, we only need to determine the number of rank
1 subspaces of a given rank n + 1 vector space V over F,. Any v € V' \ {Oy} spans a
rank 1 subspace of V' and, given a rank 1 subspace U of V', we know that |U| = ¢ and
every vector Oy # v € U spans U. Therefore, there are % = qn;_ll_ L such subspaces
U of V. O

Now, using that number, we introduce a notation that is very handy and plays a
crucial role in this work.

Lemma 1.2.32. Let P := PG(n,q) be the projective space of dimension n € NgU {—1},
let U and V be skew subspaces of P and set k := dim (U) as well as | := dim (V). Then,
for all d € Ny the cardinality of

S[V,U,d,P| := {W <P:dim(W)=d,U<W,WNV =0}
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is independent of the particular choice of U and V and thus we may denote it by
sq(l,k,d,n]. For k> d itis 0 and for k < d it is given by

d— kqn+1 qk+l+z+1
ol k,d,n] = H e (1.1)

Proof. First note that for d > n — [ for dimensional reasons there is no d-dimensional
subspace U < W < P which does not intersect V' and the numerator given on the right
hand side of Equation (1.1) contains the factor (¢"*1 — ¢"*1) and thus is 0. Therefore,
we may assume that d < n — [ holds. Furthermore, if & > d, then there is no such
subspace W and, if d = k, then there is only one such subspace, namely U itself, and
the product given in Equation (1.1) is the empty product and as such equals 1. Thus,
we may also assume that k < d holds.

Now, given the subspace U and k + 1 points Pi,..., Pyy1 € U which span U we can
span any d-dimensional subspace U < W < P using additional points Pyya,..., Piy1 €
P. Let m denote the number of tuples (Pyio,...,P;+1) which spans a subspace of
dimension d together with U. The ith entry of such a tuple must be a point of
P\ (P1,...,P_1,V), for if it was an element of (Py,...,P,_1), then (Pi,..., Pyy1) =
(Pr,...,P,_1,Pit1,...,Pi1) would have dimension at most d—1 and if it was an element
of (P1,...,Pi_1,V)\ (P1,...,P_1), then (Py,...,P;) would intersect V' non-trivially.
Therefore, there are

d+1 -
[1(sqln] — sqli +1—1)) H n] —sqli + k +1])
i=k+2 i=1
d—k n+1 o qi+k+l+1
— 1;[ P

choices for these tuples. However, for a given d-dimensional subspace W < P, any choice
of such points in W spans W and thus there are

d+1 d—k d=k (1 _ b
11 ((sqld] = sqfi = 20) =[] ((sqld] = sglk +i = 1)) = [T ————
i=k+2 i=1 i=1 1

choices of tuples which span the same subspace. Consequently, there are exactly

1 i+k+1+1
| G A e 1 ikl
=1 q—1

=11 * it
d— k qd'*‘lqu'“ o qdtl —
IT;= i=1

qk-i-z
such subspaces W and this number is independent of the specific choice of U and V. [
Notation 1.2.33. For all k,d,n € NoU {—1} we set

sqlk,d,n] == s4[—1,k,d,n] as well as sqld,n] :=s4[—1,d,n]

and we note that we have s,[n| = §,4[0, n].

10



1.2 Projective Spaces

Remark 1.2.34. Note that for all d,n € NgU{—1} the number s4[d,n| of d-dimensional
subspaces of an n-dimensional projective space coincides with the Gaussian coefficient

d n—it+l
q -1
= ' qi+1_1 :ﬁq[d,n],

n+1
d+1
q

which is commonly used in the literature. Furthermore, for n € No U {—1} the number
sq[n] of points in an n-dimensional subspace is often denoted by 0, in the literature.
Note that we use the notation 6, in Section 2.3 and Chapter 3, too.

Lemma 1.2.35. Let k,d,n € NgU{—1} be such that —1 < k < d < n, then the following
equations hold:

i) Forn > 2 we have sgln —1,2n — 2] = 54[0,n — 1,2n — 1].
it) For j € Z with k+ j > —1 we have sq4[k,d,n] = sq[k + j,d+ j,n + j].

Proof. Using the value provided by Lemma 1.2.32 we see

n o 2n—1 i—1 n—1 9on—1 i—1 2n—1 n—1
q —q q —q q —q
sq[n—1,2n—2]znﬁ: — —
-1 4 —4 -1 44 " —q
n—1l 2n—1 __ i-1 n—1 on i
M5 =l L= =son—1,2n - 1],
=1 q q i=1 q q
as well as
d—k ni41 d—k ntj+1 _  k+j+i
q q q q . . .
glkyd,n] = H A+l _ k+i H drj+l _ ktjti = sq[k + j,d + j,n + jl.
=1 4 q =1 4 q

Lemma 1.2.36. (a) Forn >k >0 and q > 4 we have

ﬁq[l] . qk(n—k)—l < Eq[k —1,n-1]< (sq[l] + l)qk(n_k)_l.

or positive integers q and ¢ with g > ¢“ 4 ¢ we have
(b) F tive int d ¢ with 2 h

(¢ +q+2)° < (qg+c+1)g .

(¢c) For positive integers q and c with ¢ > ¢ + ¢ we have 5,[c]° < (¢ + ¢+ 1)q02*1.

Proof. (a) The lower bound follows from 0 < k < n and for the upper bound we refer
o [21, Lemma 34].

11
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(b) This can be checked by hand for ¢ = 1 and ¢ = 2, so we assume that ¢ > 3. By
expansion we see that (¢2 + g + 2)¢ = 3.2, a;q* where

li/2] .
c c—J .
c—1 — E . . . 2j7
" =0 <]> (Z o 23)

since a term ¢ occurs in the expansion, if for some j with 25 < ¢ we first choose
the number 2 from j terms ¢ + ¢+ 2, secondly we choose the number ¢ from i — 2j
of the remaining ¢ — j terms ¢ + ¢ + 2, and finally we choose the number ¢? from
the remaining terms ¢ + ¢ + 2.

2c—1

Now, we claim ag.—; < ¢ for all 4. Using ¢ > 3, this can be verified for i < 5 by
straight forward calculation. Thus, suppose that ¢ > 6. Then

li/2] 1. o) li/2] ‘

cl-27 ; 27
A2c—i = 1 —— <c TR YT 1.2
jzo (c+j—i)l(i —25)ly! jzo (i — 25)!5! (1.2)

=:b;;

We next show b;; < z—%? for admissible 4, j, that is, for ¢, with 25 < i < 2¢ and
i > 6. Using ¢ > 6, this follows from direct calculation if j < 3. Otherwise j > 4
and ¢ > 8, so j! > 27 and hence bij < I < H%, since 7 < 2¢. Thus we have
established the bound for b;; and using it in (1.2) we find ag.—; < ¢ for i > 6.
Hence ag.; < ¢ for all i € {0,...,2c}.

It follows that

2¢c—2 2c 2¢c—2 o q207262

i i 2c—1 2c—2 2 2c—1
2 aid <D AT =G Y <<
i=0 i=2 1=0 q q

where we have used ¢ > ¢® + ¢ in the last step. Since as. = 1 and as.—1 = ¢, this
proves the claim in (b).

(c) Since s4]c] < (¢* 4+ ¢+ 2)¢° 2 this is a corollary to the previous claim. O

1.2.4 Some specific Preparations

We conclude this introduction of projective spaces with some very specific results that
we require later on but which fit better in this introduction. We let ¢ be a prime power,
we let n be a positive integer and we set P := PG(n, q).

First, we have some results on subspaces that will be used in different settings later
on. We provide this general proof here, instead of proving several lemmata in specific
situations later.

Lemma 1.2.37. Let d € N and U,Uy,Us < P be such that d < min(dim(U;) — dim(U N
U) i e€{1,2}).

Every (dim(U) + d)-dimensional subspace U < P with dim(U NU;) = dim(U NU;) + d
for all i € {1,2} and U < U is the span of U and a (d — 1)-dimensional subspace
W < <U, U1> NUs.

12



1.2 Projective Spaces

Proof. Assume that there is such a (dim(U) + d)-dimensional subspace U. Due to
dim(U N U;) = dim(U N U;) + d there is a (d — 1)-dimensional complement U of U N U;
in UNU; for all i € {1,2}. Since dim(U) = dim(U) + d the subspace U/ is also a
complement of U in U, that is, U = (U,U}) < (U,U;) for all i € {1,2}. Therefore we

have U} < U < (U, Ui), proving the claim. O]

Lemma 1.2.38. Let U be a subspace of P, set dyy := dim(U) and let Z be a non-empty
set of (dy + 1)-dimensional subspaces of P such that for all £ € E we have U < €.

There is a subset Z' C = of d := dim((Z)) — dy pairwise distinct subspaces such that
dim((Z')) = dy + |Z/| = dim((Z)).

Proof. Let =/ be a maximal subset of = such that dim ((Z')) = dy + |Z/|. Note that such
a set exists, because Z # () and every subspace £ € Z satisfies dim (§) = dy + 1. Now,
if (Z) # (Z'), then there is a subspace ¢ € Z such that £ £ (£'). But U < N (Z') and
therefore U = £ N (Z') and

dim ((¢,2)) =14+ dim ((Z')) =1+ dy + |Z| =dv + {{} UE,
a contradiction to the maximal choice of ='. O

Lemma 1.2.39. Let d be an integer, let U and V be skew subspaces of P, let dy and
dy be their respective dimension and let W be a set of (dy + d)-dimensional subspaces
of P such that for all W € W we have U < W and such that dim((WV)) = dy + |W|d.
Then dim((W')) = dy + |[W'|d for all O W' CW and, if VAW #£ 0 for all W € W,
then [W| —1 <dy and
V< (W) — dy = W[ —1+> dim(V nW).
wew

Proof. For the first claim note that U < W for all W € W implies U < (W') for all
0 # W' CW. Furthermore, for any subset W of W and any subspace W € W\ W' we

have
dim((W', W)) = dim((W')) + dim(W) — dim(W n (W'))
< dim((W')) +dy + d — dy = dim((W')) + d.
Using this in the induction step of an induction on r := |W’'| shows dim((W')) <
IW'|d + dy for all W CW.

Now, set s := |[W| and let W = {Wi,..., W} and assume that there is a subset W'
of W such that dim((W')) < [W'|d + dy. This implies W’ # W and we let W be the
set W\ W'. Then, using dim((W')) < |W'|d + dy, we have

dim((W)) = dim((W')) + dim((WV')) — dim((W') N (W'))
< dim((W')) + dim(W")) — dy < [W'|d + dy + |W'|d + dy — dy
= W|d + dy,

a contradiction, which concludes the proof of the first claim.

13
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Now, let V' be such that P, := VN W; # 0 for all : € {1,...,s}. Then, obviously,
(P1,...,Ps) <V. We want to determine the dimension of (P, ..., Ps) and, in view of
that, for all ¢ € {1,...,s}, let d; be the dimension of the subspace P;. If there exists
an index j € {1,...,s} and a subset J C {1,...,s} with j € J but J # {j}, such that
R:=PiN(P:ieJi#j)#0, then W :={W;:ie J} CW satisfies

W |d + dy = dim((W')) < dim(W;) + dim((W' \ {W,})) — dim((U, R))
=dy +d+dy + (W' —1)d — dim((U, R))
= 2dy + [W'|d — dim((U, R)) < [W'|d + dy,
£U

a contradiction. Therefore we have

s—1<dim(P;) + i(l +dim(F;)) = dim((P; : 1 <i < s)) < dim(V)

i=2
as well as
V< W) — dim(V) = dim({(P, ..., Ps))
— dv:3_1+idim(VﬂW1)- -
i=1

Finally, we have a technical result on point-sets, stated in Theorem 1.2.41 and prepared
in the next lemma. This result will be used in Section 2.3 on the chromatic number. It
is a joint work of D’haeseleer, Metsch and Werner and a generalization of a result given
by the same authors in [12, Lemma 4.1].

Lemma 1.2.40. Consider a set M of points of P and points Py,...,Psy1 € P, s > 0,
such that (Py, ..., Pst1) is a subspace of dimension s with no point in M. Let u be an
upper bound on the number of lines on Psy1 that meet M. Let ¢ € R be positive and let
V be a set of s-dimensional subspaces such that for allV €V we have Py,...,Ps €V as
well as [V N M| > cq®.

Then, for every v € R with 0 < v < 1, there exist at least %\W subspaces W of
dimension s + 1 satisfying Pi,...,Pst1 € W and |W N M| > %CQqQSWL

Proof. For V €V we have V. N M # () and hence Ps;1 ¢ V. Set x := ’YL‘:qsa

0 := {(V, Psy1) : V €V},
Wi={WeW:{VeV:VIW}>uz},

and W := 20\ W. The elements of 20J are subspaces of dimension s+ 1. If W € 20, then
there exists V € V with V. C W and hence P, lies on |V N M| > ¢¢® lines of W which
meet M. If W and W’ are distinct elements of W and [ is a line on Py with [ C W, W,
then | CW NW’' = (Py,...,Ps41) and thus [N M = (). Since p is an upper bound on

14
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the number of lines on Psy1 which meet M, this proves that |20 < £¢7*. Since W CW
it follows that

|{V€V:3W€WwithV§W}|g%q—s-x:rﬂw

and hence (V, Ps41) € W for least (1—7)|V| elements of V. Since every subspace W € W
contains at most ¢ subspaces V € V, we find |W| > (1 —~)|V|/q. Since distinct elements
V and V' of V satisfy (VN V)N M = (Py,...,Ps) N M = (), we see that every W € W
satisfies

|WﬂM|2x-cqszlc2q28|V|. O
i

Theorem 1.2.41. Suppose that M is a set of points in PG(2d,q) and there are d + 1
points Py, Py, ... Py 1 that span a d-dimensional subspace T with TNM = (). Furthermore,
let m, ng and dy be positive real numbers such that the following hold:

(I) Each of the points P1, P, ... Py, lies on at most nog? lines that meet M.
(1I) |M| > dog?*.
Then there exists a (d + 1)-dimensional subspace U on T with

do \ 211
U A M| > (2g)% (°> . (1.3)
4n0
Proof. We prove the following more general result. For each s € {0,...,d + 1}, there
exists a set Vs of s-dimensional subspaces satisfying [Vs| > (%)Sdquﬂ_s such that each
V €V, satisfies

d 25—-1
(Plizisshcvad VaMzeo(52) . )
no
We use induction on s. For s = 0 we take Vy = M. For the induction step s — s + 1,
we assume the existence of V,; with the desired properties. For V € Vs we know from
the induction hypothesis that Equation (1.4) holds and, since 7 N M = () by hypothesis
of this lemma, this also implies V' £ 7, that is, Ps11 ¢ V. Now the previous lemma,

-1
applied with ¢ = 2° (4‘1700) , V=V, and p =noq® and v = %7 proves the existence of
a set Vg1 = W with the desired properties.

For s = d+ 1 we find |V441| > 0, so each element U of Vy 1 satisfies the claim of this
lemma, concluding the proof. O

1.3 Reguli

In preparation of Section 2.4 we define a regulus and prove some simple facts about reguli
in general, all of which takes place in the projective space P := PG(n,q) of dimension
n > 3 for some prime power q. Most of these facts can be found in the literature that was
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already mentioned, that is, for example in [2, Section 2.4] on the hyperbolic quadric of
PG(3, q) by Beuelspacher and Rosenbaum. However, since all but the proof of Theorem
1.3.4 (for which coordinates are used) are fairly short and seem to fit into this work, we
include them here.

Definition 1.3.1 (Regulus). Let hi, ha and hs be three skew lines in a solid S < P.
The set R of all lines | < P that have non-empty intersection with the three lines hy, ho
and hg is called a regulus of P. If P is a point of one of the lines of R, then we also say
that P is a point of R.

Lemma 1.3.2. Let hy and hy be two skew lines. For every point P € (hy,ha) with
P ¢ hy and P ¢ hy there is a unique line g through P that has non-empty intersection
with h1 and hs.

Proof. Let P be such a point. Any line g with g hy # 0 # g N hy and P € g satisfies
g < (P,h1) and thus meets ho in a point of @ := (P, h1) N hy. Since h; and hg are
skew lines in a common solid (hj, he) we know that @ is a point and thus g is the line

(P,Q). O
Corollary 1.3.3. Every requlus R has cardinality sq[1] = q + 1.

Theorem 1.3.4. Let R be a requlus of P. Every line g of P that has non-empty inter-
section with three lines of R has non-empty intersection with all lines of R.

Proof. As mentioned early, this proof requires the use of coordinates and can, for exam-
ple, be found in [2, Section 2.4]. O

Definition 1.3.5 (Opposite Regulus). Let R be a regulus. From Corollary 1.3.3 we
have |R| > 3 and from Theorem 1.3.4 we know that any line g that has non-empty
intersection with three lines of R has non-empty intersection with all lines of R. Hence,
the set R of all lines which have non-empty intersection with all lines of R is a regulus,
too. We say that the two reguli are opposite and call R the opposite Regulus of R.

Lemma 1.3.6. Let g1, g2 and g3 be three skew lines in a solid S < P. Then there is a
unique requlus R in P with g1, 92,93 € R.

Proof. Let R = {hu,...,hgt1} be the unique regulus of lines of P that have non-empty
intersection with all lines g1, g2 and g3, let R be the opposite regulus of R and let R’
be an arbitrary regulus with g1, g2, 93 € R'. Any line h € R has non-empty intersection
the three lines g1, g2, 93 € R’ and therefore, according to Theorem 1.3.4, with all lines
of R/. Thus, any line g € R/, has non-empty intersection with all lines h € R, proving
g € R and thus R’ C R, that is, R = R. O]

Obviously, this also implies that if g and go are skew lines of PP then there is more
than one regulus R in P with g1,92 € R.

Definition 1.3.7 (Tangent Plane). Given two opposite reguli R and R, using Lemma
1.3.2 to every point P of R there are unique lines g € R and | € R with P € g,[ and we
call the plane (g,l) the tangent plane of R in P.
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Lemma 1.3.8. Let R and R be opposite requli in a solid S < P and let g € R be an
arbitrary line. Then &[g,2,S5) = {{g,h) : h € R}.

Proof. Trivially the right hand side is a subset of the left hand side of this equation.
Furthermore, since any two distinct lines h, h’ € R are skew the corresponding planes
(g, h) and (g, h') are distinct and thus both sides of the equation have the same cardinality
IR| = s4[1] = 84[1,2, 3], proving the claim. O

Corollary 1.3.9. If R and R are opposite requli in a solid S <P and E < S is a plane
then E contains a line of R if and only if E contains a line of R and thus if and only
if B/ is a tangent plane of R.

Lemma 1.3.10. If R and R are opposite requli, P and Q points of R and Ep and Eg
are tangent planes of R in P and @Q, respectively, then we have Ep = Eg if and only if

P=0Q.

Proof. Obviously, for P = @ we have Ep = FEg. Let P # @ and let gp,990 € R
and hp, hg € R be such that Ep = (gp, hp) and Eq = (9q,hq). Since P # @ we have
gp # gg or hp # hg and we may assume that gp # gg. Then gg £ Ep since ggNgp =0
and thus Ep # Eq. O

We have now introduced the required basics on reguli. Additionally to that, in Section
2.4 we also need some quite specific details on distinct reguli Ry and Ro which have two
lines in common. We establish these in the remainder of this section.

Lemma 1.3.11. Let n > 4, let V be a subspace of P of dimension n — 4, let S be a
complement of V and let U be a subset of &[V,n —2,P] such that R :={UNS:U €U}
is a requlus in S and let R be its opposite.

If S" is a complement of V in P, then {UNS" : U € U} is a requlus in S' and
{V,ryN S :r € R} is its opposite.

Proof. Let S” be a complement of V in P and set R' := {UN S : U € U} as well
as R == {(V,7) NS : 7 € R}. Note that for all U € U we have U NS € R with
U=(V,UNS) (since S is a complement of V') and thus R' = {(V,r) NS :r € R}.

First, consider two arbitrary lines g and h of S with g N h = ). Since both S and S’
are complements of V' in P we know that both ¢’ := (V,¢g) N S" and b’ := (V,h) N S are
lines, too. Obviously we have ¢’ NV =0 = ' NV and thus (V,g) = (V,¢') as well as
(V,h) = (V,h'). This proves

(V,8) =P =(V,8) = (V. {g,h)) = (V. g), (V. b)) = (V. ¢), (V. I))) = (V. (¢, I))

and together with ¢',h’ < §’) using the fact that S’ is a complement of V in P, this
implies (¢’,h') = S’ and thus ¢’ " A’ = (). Hence, both R’ and R’ are sets of ¢ + 1
pairwise skew lines.

Now, let 7 € R’ and ¥ € R be lines and let r € R and 7 € R be such that
' =(V,rynS" and ¥ = (V,7) NS’. Then P :=r N7 is a point of both (V,r) and (V,T).
Furthermore, since S’ is a complement of V' Z P, we know that P’ := (V,P) N S’ is
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point, too, and P’ is obviously an element of both (V,r) and (V,7). Hence, the two lines
' =(V,rynS" and ¥ = (V,7) N S’ contain P’ and thus have non-empty intersection.
Therefore, all lines of R’ and all lines of R’ have pairwise non-empty intersection and,
since both R’ and R have cardinality ¢+ 1 > 3, this proves that R’ and R’ are opposite
reguli in S’. O

Lemma 1.3.12. Let Ry and Ro be distinct requli of P with |R1 N Ra| > 2, let Ry and
Ra be their respective opposite requli and set R := R1 N Ra.

Then there is a solid S such that both Ry and Ro are requli in S, we have |R1NR2| = 2,
€:=|RiNRa| <2 and for all g € R1 \ R we know that

i) g has non-empty intersection with a line | € Ry if and only if | € Ry, and

i1) g has non-empty intersection with exactly & lines of Ra, namely those which contain
one of the & points of {gN1:1 € Ra}.

Furthermore, if g € R1 \ R and h € Ry are such that gNh # 0 and if | € R1 N Ry is
the line with g h € | and I’ is the line with Ry N Ra = {I,I'}, then we have I’ < (g, h)
and & =1 occurs if and only if h < (g,1).

Proof. Since |R| > 2 we know that S := (R) satisfies dim(S) > 3 and, since for all
i € {1,2} the set R; is a regulus, we have dim((R;)) < 3. This proves dim(S) = 3 and
R1 and Ry are reguli in S. Since Ry and Ry are distinct, R and Rs are distinct, too.
Hence, we know from Lemma 1.3.6 that both R and R, as well as their opposites, do
not have more than two lines in common, that is, |[R| = 2 and £ < 2.

From now on let g be an arbitrary but fixed line of Ry \ R. Since R # ) and since
any line ¢’ € R satisfies ¢’ € Ro as well as g N ¢’ = () we have g ¢ Rs.

Now, for any line I € R5 that has non-empty intersection with g there is a line in R
through INg, that is, a line in R which has non-empty intersection with g. Furthermore,
any line [ € Ry has non-empty intersection with the two lines in R. Therefore, any line
| € Ry that has non-empty intersection with g in fact has non-empty intersection with
at least three and thus, according to Theorem 1.3.4, with all lines of R, proving that it
is an element of Ry and i).

In fact, if £ = 0, then this proves that g has empty intersection with all lines of R,
concluding the proof of all claims given for & = 0.

Hence, from now on assume & > 0. Then there is a line [ € Ry N Ry and this line
has non-empty intersection with g, which implies that there is a line h € R9 containing
g N1 and hence h satisfies h N g # (). Now, if there is a line A’ € Ry distinct from
h with g N k' # (), then the line I’ € Ry N Ry with g N A € I’ is distinct from [
(otherwise hNh' = () implies g = (gNh,gNh') =1 € Ro, a contradiction), which proves
{h € Ra: gNh # 0} <|RiNRy| =& Furthermore, for {P, Pe} = {gNi: 1€ R}
and i € {1,¢} there obviously is a line [; € Ry through P; and, if £ > 1, then P, # P
and (P, Pr) = g & Ra proves Iy # l¢. Together this proves ii).

Now, let I’ be the line with Ry N Ry = {l,I'}. Since g is a line of Ry and since
E := (g,h) is a plane we know from Corollary 1.3.9 that E is a tangent plane of R;.
Thus, there is a line e € Ry with E = (g,¢e) and, since h < E, we have hNe # () and
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1.3 Reguli

thus e € Ro. Furthermore, for any line ¢’ € Ry \ {e} we have ¢/ N E = ¢ N g and thus
¢ Nh # 0 if and only if ¢ = [. Hence, I’ = ¢ < E = (g, h), that is, R1 "Ry = {l,e}, and
¢ = 1 occurs if and only if | = e, that is, if and only if h < E = (g,1), concluding the
proof. O

Lemma 1.3.13. For two lines g and h and all points P,Q € P\ (g, h) we have

0 for Q¢ (P, g, h),
1 for@Qe€ (Pg,h).

Proof. Set d := dim((P, g) N (Q, h)). Since P,Q ¢ (g, h) the subspaces (P, g) and (Q, h)
are planes which have g N h in common. Therefore, we have d > dim(¢g N k) and
d < 2. Furthermore, since P ¢ (g,h) we have (P,g) N h = g N h. Therefore, we have
(P,g) N {(Q,h) = (P,g) Nh=gNhand thus d = dim(g N h) for Q ¢ (P, g, h), as well as
dim((P, g) N (Q, h)) = dim((P, g) N h) + 1 otherwise. O

dim((P, g) N (Q, h)) = dim(g N h) + {

Lemma 1.3.14. Let Ry and Ro be distinct reguli such that R := R1NReo has cardinality
two, let S be the solid containing both R1 and Ra, let P be a point of P\ S and set
U := (P, S). Furthermore, for any point Q € U\ S set

Ag = {(g,h) € R1 x Ry : dim((P, g) N (Q,h)) > 1}

and for alli € Q:={|Ag|: Q € U\ S} set Q;:={Q € U\ S :|Ag| =1i}.
Then we have Q C {2,3,4,q +1,q + 2,2q}, Q2 C {P} and for all (g,h) € R1 X Ra
and Q € U\ S we have dim((P, g) N{(Q,h)) =2 if and only if g=h € R and Q € (P, g).

Proof. Note that for lines g € Ry and h € Re with g N h = ) we have (g,h) = S and
thus U = (P, g, h), that is, Lemma 1.3.13 proves that (P, g) N (Q,h) is a point for all
Q €U\ S. In view of Lemma 1.3.13 this implies that:

i) We have to determine M := {(g,h) € R1 x Ra: gNh # 0}.
ii) Given lines g,¢' € Ry and h,h' € Ry with
gNh#0, ¢ NK #0and |{g,¢',h,h'}| >3, (1.5)
we have to determine (P, g,h) N (P,¢',h,).

Lemma 1.3.12 provides all that is needed to do that and we set R := R NRy and recall
that Lemma 1.3.12 states £ := |R| < 2.

i) Let g1 and g2 be the two lines in R. Lemma 1.3.12 (part ii)) also shows that for
any line g € Ry \ R there are ¢ lines h € Ry with g N h # () (all of which satisfy
h ¢ R) and that g N h is one of the {(¢ + 1) points in Q:={Q €l:1 € R}.

Therefore, for any line g € Ry \ R there are £ lines h € Ry with g N h # 0 (all of
which satisfy A ¢ R). Furthermore, for all g € R and h € R we obviously have
gNh # 0 if and only if g = h and thus for any line g € R there is a unique line
h € Ry with g N h # () and this line satisfies h = g € R.
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ii)

Assume that £ > 0. Let ¢g,¢’ € Ry and h, ' € Rs be lines which satisfy Equation
(1.5) and note that, since P ¢ S > (g, h), (¢', h’) it suffices to study (g, h) N {(¢’, h').
From [{g,¢’,h,h'}| > 3 we have gNg =0 or hNK = and thus T := gNh #
g Nh =T as well as ¢ £ (g,h) or b’ £ (g, h), that is, (g, h) # (¢', h').

Therefore, if (T, T'") € R and I’ is such that {(T,T"),'} = R, then Lemma 1.3.12
shows " < (g,h),(¢’,h') and (g N h) # (¢', ') proves (g,h) N (¢',h'") = I'. Fur-
thermore, if (T,T") ¢ R, then the lines [,I’ € R with T € [ and T’ € I’ provided
by Lemma 1.3.12 are distinct, satisfy | < (¢/,h’) as well as I" < (g,h) and we
have (g,h) N (¢',h) = (T,T") from T € | < (¢,h') 5T € I' < (g,h) > T and

(g,h) # (g', 1').

Now, let Q@ € U \ S. In the very beginning of this prove we have shown that (P, g) N
(Q, h) is a point for all (g,h) € R1 x Ra\ M and for all i € {1,2} we have dim((P, g;) N
(Q,gi)) > 1. In the following we study the remaining pairs in M, that is, those in
M’ = M\ {(91,91), (92,92)}. We consider the three cases that may occur for £ and for
€ >0 we let [,1’ be such that R = {I,1'}.

First, let £ = 0, that is, R = (). In this case we have M = {(g;, ;) : i € {1,2}}
from i) and thus 2 = {2} with Qo =U \ S.

Secondly, let £ = 1, that is, [ = I’. For distinct elements (hi, he) and (R}, hh) of
M \ {(glygl)a (92,92)} we have

(P, b1, ha) V(P hy, hy) = (P, (ha, ha) OV (R, hy)) = (P,1)

from ii) and thus Q = {2, 3, ¢+1} with Q41 = (P,[)\ S, Q3 = U(P,g, R\ (SU(P, 1))
(g,h)eM’
and Qo = U\ (S U Qq+1 U Qg)

Finally, let £ = 2, that is, [ #I'. We set P; :=1Ng1, Py :=1Nga, P :==1'Ng1, Pj :=
I'N g2 and we let Ps,..., Pyy1 and P, ..., P, be the remaining points of [ and
I, respectively. For distinct elements (hy, ho) and (R}, hh) of M\ {(g1,91), (92,92)}
we have

<P7 h17h2> N <P7 h,lah/2> = <P7 <h17h2> N < /17h/2>>

<P, <h1 ﬁhQ,hllﬂh/2>> if <h1 ﬁhQ,hllﬂh/2> §éﬁ,
= <P, l) if (h1 N ha, hll N h/2> =1,
(P1') i (hy oy W ARG = 1

from ii) and thus Q = {2,3,4,¢+1,q + 2,2q} with Qy, = {P} and

g+1
Qg2 = [JUP, P)U(P, P)\ (SU{P})
=3
2
Qg1 = JUP.P)U(P,P)))\ (SU{P})
i=1
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q+1qg+1

=3 j=3

g+l 2 2

= UJ UUp P, P u(P Py, P))\ <5U (P, P) U (P, P{>> ;

=3 j=1 =1
_OO(RB‘,P}H<SUL2J<P,B‘>U<P,R’>>- 0

i=1j5=1 =1

Corollary 1.3.15. Let P have dimension 4, let R be a requlus in a solid S <P and let
P ¢ S be a point of P. For every point Q € P\ S with Q ¢ U,er (P, g) and every regulus
R with [R' " R| = 2 we have

H(g,h) € R x R' : dim({P, g) N (Q, h)) > 1}| < 4.

A regulus is an example of a more general concept of a geometry, a polar space, which
we introduce next. This is in preparation of the last chapter of this thesis, which takes
place in a Hermitian polar space.

1.4 Polar Spaces

For a detailed introduction to polar spaces we refer the reader to [11] by Cameron or,
for a more comprehensive work, also to [9] by Buekenhout and Cohen. For us only
one special kind of polar space is of importance — namely one of the Hermitian polar
spaces — and thus we keep the general introduction short. Still, we include the abstract
definition of a polar space as it was suggested in [10] by Buekenhout and Shult.

Definition 1.4.1 (Polar Space). A point line incidence structure (P, £, ) with L C 27
and P x1[ as well as [ * P if and only if P € [ is called polar space if it satisfies the
one-or-all axiom:

For all P € P and all | € £ with P ¢ [ either one or all points of [ are
collinear to P.

Polar spaces were first studied by Veldkamp in [29] and his results were simplified and
completed by Tits in [28]. In fact, due to their work the (thick) polar spaces of rank
n > 4 are known to be classical polar spaces, one of which is the Hermitian polar space
we are interested in. The complete proof of that classification is also given in [9] by
Buekenhout and Cohen.

As mentioned earlier, we forgo any further abstract introduction and instead focus on
the cases that are of interest here. In particular, we give a short list of the finite classical
polar spaces of rank d over a finite field of order ¢ as well as the quadratic, bilinear or
sesquilinear form (up to transformation of coordinates) which defines it and then focus
only on the Hermitian polar spaces. The finite classical polar spaces are:
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e The Hyperbolic Quadric Q*(2d —1,q) in PG(2d — 1, ¢), which is defined using the
non-degenerate quadratic form z1xo + - -+ + Tog_1T24-

e The Parabolic Quadric Q(2d,q) in PG(2d,q), which is defined using the non-
degenerate quadric form a:% + Tox3 + - - + TogTogt1.

e The Elliptic Quadric Q= (2d + 1,q) in PG(2d + 1, q), which is defined using the
non-degenerate quadratic form f(z1,z2) + 2324+ - -+ Togr1T24+2, where f(x1,x2)
is an irreducible homogenous quadratic polynomial of IF,.

e The Hermitian Polar Space H(n,q) for n € {2d — 1,2d} in PG(n,q) (with ¢ = p?
for some prime power p) which is defined using the non-degenerate sesquilinear
form afy; + -+ 2b 1y

e The Simplectic Polar Space W (2d — 1, q) in PG(2d — 1, q), which is defined using
the non-degenerate bilinear form x1yo — Toy1 + - - - + Tag_1Y2d — T2qY2d—1-

Note that each of these forms induces a polarity ™ on the projective space. The
subspaces of the polar space given by a polarity m is the set of all subspaces U of the
projective space (also referred to as the ambient (projective) space) with U C 7 (U)
and these are called totally isotropic. The set of these subspaces together with induced
incidence from the ambient projective space compose the polar space defined by the
form.

However, in view of the formal definition of a polar space that we provided above, the
respective polar space is given only by the point-line incidence structure induced by the
incidence relation of the ambient projective space on the set of totally isotropic points
and totally isotropic lines of the projective space.

The maximal totally isotropic subspaces U are called the generators of the polar space.
It is known that all generators of a given polar space have the same rank and said rank
is the same as the rank of the polar space itself.

Finally, we note that we use the notation U~ to denote 7(U) whenever 7 is known
from context, for every subspace U < P the subspace U N U™ is called the radical of
both U and the intersection of U with the polar space in question and, with regard to
the Hermitian polar spaces, we also remark the following:

Remark 1.4.2. Let g be a prime power and n € N. Throughout this work we always
consider the Hermitian polar spaces in relation to the given ambient projective space. As
such we may use the notions on projective spaces that we introduced earlier, such as the
relation x or the dimension-formula.

Furthermore, a subspace U of PG(n,q?) is totally isotropic (with regard to H(n,q?))
if and only if all of its points are totally isotropic (with regard to H(n,q?)). Thus, we
may understand H(n, q*) as a set of points in PG(n,q?) and, given the form f as above,
a point 31", \iv; belongs to H(n,q?) if and only if 31" )\;-Hl =0.

Finally, note that the Hermitian polar spaces H(2d—1,q¢?) and H(2d,q?) of rank d are
inherently distinct and here we only study Hermitian polar spaces in projective spaces of
even dimension 2d and in particular their tight sets (see Definition 3.0.1).
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1.5 Graphs

Since the main focus of this work is the analysis of a certain type of graph, namely a
Kneser graph, we must provide some basic notions on graphs. For a more thorough
introduction to graph theory we refer the reader to [30] by West. Note that here, too, g
is a prime power and n is a positive integer.

Definition 1.5.1 (Graph). A graph I' = (V, E) is a tuple consisting of a vertez-set V'
and an edge-set E C {WW C V : |W| = 2}. In such a graph the elements of V" are called
vertices and the elements of F are called edges. Note that two vertices v,w € V are said
to be adjacent or neighbours if and only if {v,w} is an element of E. For every vertex
v eV welet Np(v) :={w €V :{v,w} € E} denote the set of all neighbours of v in T".

Furthermore, if a graph I' is given in an abstract manner, then we still want to be
able to refer to its vertex- and edge-set and thus we let V(I') and £(I") denote these sets,
respectively.

Remark 1.5.2. It is also possible to define a graph on a set of vertices V using an
abstract set for the edge-set E and introducing a relation I C V X E with the property that
every edge is in relation with two (not necessarily distinct) vertices of V.. One advantage
of that alternative definition is that an edge naturally has a direction. However, in this
particular work the definition given above is sufficient and also more convenient to work
with.

Now that we have a settled on a definition for a graph, we introduce the notion of a
co-clique of a graph. For sake of completeness we also include the definition of a clique.

Definition 1.5.3 (Clique and Co-Clique). In a graph I' = (V, E) a subset C C V is
called a clique (respectively co-clique) if we have {v,w} € E (respectively {v,w} ¢ E)
for all vertices v, w € C. Note that a co-clique is also called an independent set and the
number

a (') :== max {|W] : W is a co-clique of I'}
is called the independence number of the graph I'. Furthermore, the number
w (T) := max {|W] : W is a clique of I'}
is called the clique number of the graph T'.

Note that cliques and the clique number do not play a role in this work. Another
property of a graph that is sometimes of interest and closely related to co-cliques is the
chromatic number, which we introduce next.

Definition 1.5.4 (Colourings and the Chromatic Number). Let I" be a graph. A colour-
ing of T is a map g from V(T') to a set such that for all ¢ € C the set g~*(c) is a co-clique of
I. If g : V(I') — C is a colouring, then the elements of C are called colours. Furthermore,
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if C is a set with minimal cardinality such that there exists a colouring ¢ : V(T') — C,
then x(I") :=|C| is called the chromatic number of I'. x(I') obviously satisfies

X(T') = min {\C| : C is a set of co-cliques with UC = V(F)} .
ceC

Indeed, knowledge of the independence number and the structure of the largest and
second largest examples of independent sets is sometimes sufficient to determine the
chromatic number of a graph. The main reason for that is that for every graph I' one
has the obvious relation x(I') < ‘ZER‘ In particular, in [12] by D’haeseleer, Metsch and
Werner the authors have been successful in determining the chromatic number using this
type of approach in a graph that is very similar to the one that we study in this work.
A generalization of that work by the same authors is the content of Section 2.3 on the
chromatic number of Kneser graphs of type (n — 1,n) in PG(2n, q) later on, where the
chromatic number is determined for n = 3 as well as for all n > 4 for which Conjecture

2.1.19 holds.

1.5.1 The Kneser Graph on Flags of a Projective Space

We now proceed to introduce the Kneser graph, the object that we study in the main
part of this work.

Definition 1.5.5 (Flag). Let s be some integer and let a = (aq,...,as) be some tuple.
We set Q(a) :={ai,...,as} and let len(a) := s denote its length. If a tuple a has length
1, then we identify it by its only entry a;, that is, (a1) = a;.

Let Uy, ..., Us be subspaces of a given projective space IP such that Uy < Us < - -+ < Us.
Then the tuple f = (U, Us,...,Us) is called a flag of type

type (f) := (dim (Uy) ,dim (U3) , ..., dim (Uy)) .

For every type d we call a type d’ a sub-type (of d), if Q(d") C Q(d).

Now, let U be a subspace of P and let f = (Uy,...,Us) be a flag. We define U N f to
be the unique flag f’ with Q(f') ={UNU; : i € {1,...,s}}. Furthermore, if Us < U,
then we say that f is contained in U and write f < U and if U < Uy, then we say that
f is a flag through / containing U and write U < f.

Definition 1.5.6 (Kneser graph). Let PP be the projective space PG(n,q), let s > 1 as
well as —1 < dy < do < --- < ds < n be integers and let V' be the set of all flags in P
of type (di,dsa,...,ds). Let E C {W CV :|W| =2} be defined as follows: For any two
flags f = (Uy,...,Us) and g = (Wh,..., W) € V we have {f, g} € E if and only if for
all 4,5 € {1,...,s} we have

UiﬂWj =0V <Ui,Wj> =P.. (1.6)

The graph I' with vertex-set V and edge-set E is called the Kneser graph of type
(dl, ce ,dS) in P.
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Finally, let C be a vertex-set of I, let d’ be a sub-type of d and let f’ be an arbitrary
flag of type d’ in P. Then f’ is called saturated (with regard to / in C) if for all f € V(T)
we have my (f) = f = feC.

Remark 1.5.7. The condition given in Equation (1.6) is equivalent to each of the fol-
lowing

dim (Uz N Wj) < max{—l, di +d; — n}, (1.7)
dim <<U27 Wj>) > min {dz + dj +1, n} .

note that in both of those equations a strict inequality may not occur and any flag f =
(Uy,...,Us) may not be adjacent to itself.

Remark 1.5.8. This generalization of Kneser graphs as well as a generalization to
Buildings and flags of sets is, for example, given in the thesis [16] by Given. That
work also provides some results on co-cliques of Kneser graphs, including the result on
point-hyperplane flags, which is also given in [4] by Blokhuis, Brouwer and Given. For
other results on co-cliques and the chromatic number of these kind of Kneser graphs also
consider [3] on the size of co-cliques in the Kneser graph of line-plane flags in PG(4,q)
by Blokhuis and Brouwer as well as [12] by D’haeseleer, Metsch and Werner on the
chromatic number therein; [5] on the chromatic number of q-Kneser graphs as well as
[6] on the size of co-cliques in the Kneser graph of point-plane flags in PG(4, q), both by
Blokhuis, Brouwer and Szonyi; as well as the thesis [27] by Mussche.

Furthermore, note that the Erdds-Ko-Rado Theorem for vector spaces, given by Frankl
and Wilson in [15], and the Hilton-Milner Theorem given by Blokhuis, Brouwer, Chowd-
hury, Frankl, Mussche, Patkds and Szényi in [7] can also be interpreted as results on
Kneser graphs on flags of length 1.

We conclude the introduction with a definition of some specific maps in Kneser graphs,
that we use quite frequently later on.

Definition 1.5.9. Let C' be a subset of the vertex-set of the Kneser graph I' of type
d:=(dy,...,ds)inP:=PG(n,q) and let d' := (d;,, ..., d;,) be a sub-type of (d1,...,ds).
For every flag f = (Ux,...,Us) € C let the projection of f to d’ be the flag

’ﬂ'd/(f) = (Ui17 ey U’LS)
and let the projection of C' to d’ be the set
g (C) = {ma(g) : g € C}.
Furthermore, for every flag f’ < P let the restriction of C' to f’ be the set
Ap(C):={geC:UxU VU € Qg),U" € Q(f")}

and set Ay (C) := C \ Ap/(C). Since we identify tuples of length 1 by their only entry,
in the cases of len(d’) = 1 or f’ = (W) for some subspace W < P, we may also write
74, (f), Ha,, (C), Aw(C) and Aw (C) for 4, y(f), I, )(C), Amn(C) and Ay (C),
respectively.
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2 Erdos-Ko-Rado Sets in Kneser Graphs

2.1 Preparation in a more general Setting

Here we collect some lemmata in preparation for Sections 2.2 and 2.4 on plane-solid flags
in PG(6,¢) and line-solid flags in PG(5, ¢). They provide some linear structure in the
graph, that is needed later on.

2.1.1 Kneser Graphs of Type (dy,...,ds) in PG(n,q)

For this first part let P be the projective space PG(n, q) for some prime power g and some
dimension 2 < n € N. Furthermore, let s € N be at least 2, let —1 <dy < --- <ds <n
be integers and let I be the Kneser graph of type d := (dy,...,ds) in P.

Lemma 2.1.1. Let f' be a flag of some sub-type d' of d and let g be an arbitrary flag
of P such that wp (f') Nmi(g) = 0 or (mp(f'),me(g9)) =P for all t' € Q(d') and t € Q(e)
with e := type(g).

Then there is a flag f of type d with 7y (f) = f' such that 7y (f) N m(g) = O or
(mp (f), m(g)) =P for allt’ € Q(d) and t € Q(e).

Proof. Let f” with g (f") = f' be a flag of maximal length such that its type d” satisfies
Q(d") € Q(d) and such that mp (") N (g) = 0 or (mp (f"), m(g)) =P for all t' € Q(d")
and t € Q(e).

If " = d then there remains nothing to prove and thus we assume that Q(d)\Q(d") # 0
and we let 7’ be an integer of this set. We now augment the flag f” to a flag "’ of type
d" .= d" U {r'} such that 7y (f") N7m(g) = 0 or (mp ("), m(g)) = P for all ¢’ € Q(d")
and t € Q(d), in contradiction to the maximal choice of f”.

Let 7 be the largest integer in Q(e) U {—1} such that » + 1" <n — 1 and let 7 be the
smallest integer in Q(e) U {n} such that » < 7. For r # —1 let W be a complement of
7r(g) in P and for r = —1 set W := P. Furthermore, for 7 # n let W be a complement
of m#(g) "W in W and for 7 = n let W be the empty subspace of P. Then we have
dim(W) > " and dim(W) < 7/ and there is an 7’-dimensional subspace U of W with
W <U.

Now, for all t € Q(e) with ¢t < r we have UNm(g9) < WN7,(g) = 0 and for all t € Q(e)
with ¢ > r we even have ¢t > 7 and thus (U, m(g)) > (W, nr(g)) = P. Hence the unique
flag f"" with Q(f") = Q(f") U{U} satisfies mp (f"") Nm(g) = 0 or (mp (f"), m(g)) =P
for all ¢/ € Q(d") and t € Q(d), in contradiction to the maximal choice of f” and hence
concluding the proof. O
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Lemma 2.1.2. Let C be a co-clique in T, let d' be a sub-type of d with d' # d and let
f! be a saturated flag of type d'.
Then for all g € C there exist t' € Q(d') and t € Q(d) such that 7y (f") N m(g) # 0

and (my (f'), mi(9)) # P.

Proof. Assume that there is g € C such that for all ' € Q(d') and t € Q(d) we have
mu(f)Nmi(g) = 0 or (mp(f'),m(g)) = P. Then, according to Lemma 2.1.1, there is a
flag f € V(') with mg (f) = f such that my (f) N7 (g) = 0 or (mp(f), m(g)) =P for all
t,t" € Q(d), that is, a flag f which is adjacent to g. Now, since f’ is saturated we have
f € C, in contradiction to g € C. O

Lemma 2.1.3. Let C be a mazimal co-clique in T, let d' be a sub-type of d with d' # d
and let ' be a flag of type d'.

Then " is saturated in C' if and only if for all g € C there exist t' € Q(d') and t € Q(d)
such that my (f') N mi(g) # 0 and (mp (f'), m(g)) # P.

Proof. If f’ is saturated then Lemma 2.1.2 proves the claim and if for all ¢ € C there
exist ' € Q(d') and t € Q(d) such that 7y (f") N (g) # 0 and (my (f'), m(g)) # P, then
for all f € V(T') with mg (f) = f’ we know that f and g are not adjacent in I and thus,
because C is maximal, f € C. O

Lemma 2.1.4. Let C be a co-clique in T, let d' be a sub-type of d and let f' and g’ be
two vertices of the Kneser graph T of type d’ in P.
If ' and ¢’ are saturated in C, then f' and g’ are not adjacent in I".

Proof. Let f" and ¢’ be saturated in C' and assume that f’ and ¢’ are adjacent in T.
Then for all ¢, € Q(d') we have m(f') N7y (g') = 0 or (m(f'), 7 (g")) = P. According
to Lemma 2.1.1 there is a flag f of type d with mg (f) = f’ such that m(f) Nmy(g') =0
or (m(f),my(g")) =P for all t € Q(d) and t' € Q(d’). Furthermore, again according to
Lemma 2.1.1 there is a flag g of type d with 7z (g) = ¢’ such that m(f) N 7w (g) = 0
or (m(f),mv(g)) = P for all t,t’ € Q(d). Therefore, f and g are adjacent in T, in
contradiction to f’ and ¢’ being saturated in C. O

Lemma 2.1.5. For 2 <m € N let fi,..., fm be distinct flags of a mazimal co-clique C
inT, let t be an element of Q(d) and let d’ be a sub-type of d such that Q(d') = Q(d)\{t}.
Furthermore, let h be a flag of type d' and let W <P be a (t — 1)-dimensional subspace
with mg (fr) = h and W < m(fx) for all k € {1,...,m}.

Then we have f € C for all f € V(I') with g (f) =h and W < 7 (f) < (m(fx) : k €
{1,...,m}).

Proof. Set W := (m(f;) i € {1,...,m}) and £ := dim(W). According to Lemma 1.2.38
there exists 2 C {m(fi) : i € {1,...,m}} such that W = () and |Z| = { — ¢ + 1 and
without loss of generality we may assume that = = {m(f;) : ¢ € {1,...,m}} and thus
| = m hold.

Now, in contrary to the claim, assume that there is a flag f € V(I') with f ¢ C,
7a(f) = hand W < m(f) < W. Since C' is maximal this implies that there must be a
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flag g € C which is adjacent to f. For the remainder of this passage let i € {1,...,m}
be arbitrary but fixed. We know from f; € C' that there must be k;, r; € Q(d) such that
7, (fi) N7y, (g) does not satisfy the condition given in Equation (1.7). Since f and g are
non-adjacent and since 7y (f) = h = 7g(f;) we know that k; ¢ Q(d') and thus k; = t.
Furthermore, if m.(f;) N7, (9) < W < m(f), then m(f) N 7y, (g) would not satisfy the
condition given in Equation (1.7) either, in contradiction to f and g being adjacent. In

conclusion, from the arbitrary choice of ¢ € {1,...,m} we have
Vie{l,...,m} :m(fi) N7 (g) £ W. (2.1)
Now, set 7 := max{ry,...,mm}, let ¢« € {1,...,m} be such that » = r, and note that

this implies 7, (g9) < 7m-(g) for all i € {1,...,m}. Furthermore, for all i € {1,...,m}
set & = m(f;) N 7(g) and let W be a complement of £ N W in W. Again, for the
remainder of this passage let ¢ € {1,...,m} be arbitrary but fixed. Using Equation (2.1)
and m¢(f;) N, (9) < & we have & £ W. Since W is a hyperplane of m:(f;) and since
& < m(f;) we may conclude that & NW is a hyperplane of §;. Hence,

GNW = (m(fi) Nme(g)) "W = (me(f:) " W) Ne(g) = W N7 (g)
and thus & N W = & NW. Since W is a hyperplane of m(f;) Equation (2.1) implies
m(fi) = (m(fi) N, (9), W) = (&, W) = (&, W)
and from the arbitrary choice of i € {1,...,m} we now have
VOATC{L,....om}:(m(fi) i€ =(W,&:iel)=(W, (& iel). (22

Thus, if there was a non-empty subset I C {1,...,m} such that dim({§; : i € I)) <
dim (&, N W) + |I], then, using Equation (2.2), it follows that

dim((m(fi) i € I)) < dim(W) +dim((& i€ 1))+ 1
< dim(W) +dim(§, N W) + |I| + 1 = dim(W) + |1],

in contradiction to Lemma 1.2.39. Consequently (& : i € {1,...,m}) < m.(g) N W has

dimension dim(§, " W) +m = dim(§,) — 1+ m, W has dimension ¢ = t — 1 + m and
m¢(f) < W has dimension t. Therefore,

dim(m(£) 1 (m(g) N W)) = dim(mi(f)) + dim(m,(g) O W) = dim((m(f), m(9) 1 W)
(2) t+dim(¢,) —14+m—(t—1+m)=dim(,),
where the step marked with () uses (m(f), 7-(g) N W) < W. Now, since m;(f,) N7 (g)

does not satisfy the condition given in Equation (1.7), neither does m(f) N m,(g). This
is in contradiction to the choice of g as a neighbour of f, concluding the proof. O
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Corollary 2.1.6. Let C' be a mazximal co-clique in T, leti € {1,...,s} be a fized indez,
let W be a subspace of dimension d; — 1 and let g be an arbitrary flag of the type d’
defined by Q(d") = Q(d) \ {d;}. Then

{f € Aw(C) s ma(f) = g}| € {sqlj] : G € {=1,...,n—di}} .

Proof. Set C" := {f € Aw(C) : mg(f) = g}. For |C’| € {0,1} = {s4[—1],54[0]} there
is nothing to prove. Thus, let C’ contain at least two distinct flags and let ¢ be the
dimension of the subspace W := (Il (C")). According to Lemma 2.1.5 every subspace
U < W with W < U satisfies (Uy,...,U;i—1,U,Uj41,...,Us) € C" and the number of
such subspaces U is given by

soldi — 1dit] P E W 5,0, — di] = syt — di].

Therefore, we have |C'| = s4[t — d;] with t € {d;,...,n}, which implies the claim. O

Lemma 2.1.7. Let H be a subspace of P and set dy := dim(H) as well asdpg :=n—dp.
Furthermore, set dy := —1, let r be the largest integer in {0, ..., s} with 2d, + 1 < dy
and let dg < 2d; +1—n hold for all j € {r +1,...,s}. Finally, let C be a non-empty
independent set of T such that C' :=={H N f: f € C} is a set of flags of type

d,': (d17"‘7d7”7d7‘+1_Ea"'uds_ﬂ) fordr+l_ﬂ>dr;
' (dy,...,dp,dpyo —dp,...,ds —dg) otherwise.

Then C" is an independent set of the Kneser graph T of type d’ in H.

Proof. First we note that for r = s the claim is trivial and thus we may assume that r < s.
We prove the claim via contradiction and thus assume that C’ is not an independent
set of IV. Then there are two adjacent flags f] # f5 € C' of IV and two non-adjacent
flags f1 # fo € C of T with HN f; = f{ and H N fo = f}. Since f1 and fy are non-
adjacent flags of I, there exist m1,m2 € {1,...,s} with 7q,, (f1) N 7a,,(f2) # 0 and
(T, (f1); Td,, (f2)) # P. Since fi and f; are adjacent and since dy > 2d; + 1 for all
i € {1,...,7} we know that m; > r or my > r and without loss of generality we may
assume that my > r. We set d,, = dim(7q,, (f1) N H) and dy,,, := dim(74,,, (f2) N H).
Since my > r we know that mq,, (f1) and H span P and from (7q,,, (f1); 7d,., (f2)) # P
we have

H # (n4,, (/1) VH, 74, (f2) N H) = (g, (f1),7a,, (f2))-
Now, if mo <r then mq,,, (f2) < H and
0 # Ta,, (f1) N 74, (f2) = 7a, (f1) OV 7ay, (f2) =0,

a contradiction. Hence, we have mg > r, too. However, mq ) (f1) and mgr , (f%) are skew
and thus we have dim(mgq,, (f1) N 7q,,, (f2)) < dy — 1 < 2d,11 — n, which implies

dim((7q,,, (f1), 7d,,, (f2))) = dmy + dmy — 2drg1 +0 2> 0,

>0, since m1,mo>r+1

a contradiction to (ma,, (f1);7d,,, (f2)) # P. O

30



2.1 Preparation in a more general Setting

Lemma 2.1.8. If for all i € {1,...,s} we have d; + ds—i+1 = n — 1, then for all
fyg € V(') we have

{fag} € E(F) — VJ € {17"'73} : Wdi(f) mﬂ—dsfi+1<g) = @

Proof. Let d; +ds—i11 =n —1for all i € {1,...,s}. Note that for dimensional reasons
this implies that 7y, (f) and 7y, (g) span P if and only if their intersection is empty.

First, if f and g are adjacent vertices of I', then we have 7g4,(f) N 74,(g) = 0 or
(ma;(f),ma;(g)) = P for all i,5 € {1,...,s}. Hence, for all i € {1,...,s} we have
7q,(f) N 7a,_,.. (9) = 0, as claimed.

Now, let f and g be non-adjacent vertices. Then there exist i,j € {1,..., s} such that
74, (f)N7a,(9) # 0 and (mq,(f), 74;(9)) # P. If j < s—i+1, then from 74, (9) < 7a,_,.,(9)
we have

0 # 7"'di(f) N Td; (g) < 7"'di(f) N Td, iy (g)

and for dimensional reasons this also implies P # (mq,(f), 7a,_,,,(g). On the other hand,

if j > s —i+1, then from 74, (g9) < 7q4,(g) we have

P 7& <7Tdi(f)a Td; (g)> > <7Tdi(f)’ 7Td57i+1(g)>

and again this also implies ) # 74, (f) N 7a,_,.,(g), concluding the proof. O

2.1.2 Kneser Graphs of Type (n — 1,n) in PG(2n,q)

For this section let P be the projective space PG(2n, ¢) for some prime power ¢ and some
positive integer n and let T be the Kneser graph of type (n — 1,n) in P.

Corollary 2.1.9. Let V be a saturated subspace of P of dimension n in a given co-clique
C of T'. Then for any flag (U, V') € C we have U' NV # ).

Proof. Lemma 2.1.2 shows that for any flag (U’, V') € C we have U'NV # ) or dim(V'N
V) > 1. However, since U’ is a hyperplane of V’ we know that the latter also implies
U NV'#10, as claimed. O

Corollary 2.1.10. Let U be a saturated subspace of P of dimension n — 1 in a given
co-clique C. Then for any flag (U', V') € C we have V' NU # (.

Proof. On the one hand this, too, is implied by Lemma 2.1.2 and on the other hand
it is also the dual statement of Corollary 2.1.9 and the type under consideration is
self-dual. O

Corollary 2.1.11. If V and V' are two saturated n-dimensional subspaces in a given
co-clique C, then there is a line | in the intersection of V and V'.

Furthermore, if U and U’ are two saturated (n — 1)-dimensional subspaces in a given
co-clique C, then they are contained in a common subspace of co-dimension 2, that is,
they share a point.
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Proof. In Lemma 2.1.4 we have seen, that if V and V' are saturated, then V and V' must
be non-adjacent in the Kneser graph IV of type n in P. Two n-dimensional subspaces of
I are adjacent if and only if they span the entire space P. In this case this is equivalent
to dim (V' N V') = 0 and thus there must be a line I <V NV’

The second claim is the dual statement of the first claim and it follows analogously or
from the fact that the type under consideration is self-dual. O

Corollary 2.1.12. Let V be a subspace of P of dimension n in a given maximal co-clique
C. If we have VNU' # 0 for all U' € 1,,_1 (C), then V is saturated.

Proof. This is implied by Lemma 2.1.3. 0

Lemma 2.1.13. If C is a maximal co-clique of I' and H is a hyperplane of P such that

U e 1Il,—1 (C) implies U < H, then every n-dimensional subspace of H is saturated in
C.

Proof. Let H be a hyperplane of P such that U < H for all subspaces U € II,,_; (C). If V
is an n-dimensional subspace of H, then, for dimensional reasons, we have VNU # () for
all (n — 1)-dimensional subspaces U of H. Thus we have UNV # () for all U € I1,,_1(C)
and know from Lemma 2.1.12 that V is saturated. 0

Lemma 2.1.14. For any co-clique C and any hyperplane H < IP there are at most
s4ln—1,2n—2]-¢"
flags (Up—1,Up,) € C withUp—1 < H and U, £ H.

Proof. According to Lemma 2.1.7 the set U of (n — 1)-dimensional subspaces U,—1 < H
which occur in a flag (U,-1,U,) € C with U, £ H forms an independent set in the
Kneser graph of type d,,—1 in H. According to [15] by Frankl and Wilson we have
|U| < s4[n —1,2n — 2] and through any one of those (n — 1)-dimensional subspaces there
are

sq¢ln —1,n,2n] —s4n—1,n,2n — 1] =¢"
n-dimensional subspaces which are not a subspace of H, as claimed. O

Example 2.1.15. Let H be a hyperplane of P and let U be a set of (n — 1)-dimensional
subspaces U < H such that U/ is a maximal independent set of the Kneser graph I" of
type n — 1 in H. Furthermore, let C' be the set of all flags (U,V) € V(I') such that
V < HorUEe€U. Then C is a maximal independent set of I" of size

sq[n,2n — 1] - s¢[n — 1,n| + U] - ¢".

Proof. Let fi = (U, V1) and fo = (Ua, Va) be two arbitrary flags of C. If V; < H
for some i € {1,2}, then, for dimensional reasons, we have V; N Us_; # 0 as well as
(Vi,Us_;) = H # P and the flags are non-adjacent. If V1,Vo £ H, then Uy,Us € U are
non-adjacent flags of I and as such U; NUy # () with (U1, Us) < H # P and the flags f;
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and f5 are non-adjacent as well. Consequently C' is an independent set of I'. It remains
to show that C' is maximal and to determine its cardinality.

For the maximality of C let C’ be an independent set of I" with C' C C’. According
to Lemma 2.1.7 the set

U ={Uell, 1(C"):U<H,IV<PwithVLHA(UV)eC}

is an independent set of the Kneser graph of type n — 1 in H. Since U is maximal
and obviously a subset of U’ we have U’ = U. Now, for every (n — 1)-dimensional
subspace U < P with U £ H we have dim(U N H) = n—2 and there is an n-dimensional
complement V/ of U N H in H, which by construction of C is saturated in both C' and
C’. According to Corollary 2.1.9 we then have U ¢ I1,,_1(C"), which implies C’ C C and
thus C' is maximal.

Now, for the size of C' note that we have s4[n,2n — 1] choices for an n-dimensional
subspace V' < H and subsequently s,[n—1,n| choices for an (n—1)-dimensional subspace
U <V, providing s4[n, 2n—1]-s4[n—1,n] flags (U, V) < H. Finally, there are || choices
for an (n — 1)-dimensional subspace in U and for each of those there are s,[n — 1, n, 2n]
choices for an n-dimensional subspace U < V, but s,[n — 1,n,2n — 1] of those are
contained in H and have been counted already. O

Remark 2.1.16. The independent set C given in Fxample 2.1.15 has cardinality
|C| < s¢[n,2n —1]-s4n — 1,n] +s54[n—1,2n —2]-¢"

with equality if and only if U is not only a mazximal independent set of TV but also an
independent set of T of mazimal size. According to [15] by Frankl and Wilson those are
the sets of all (n—1)-dimensional subspaces of H which contain a common point P of H
and the sets of all (n —1)-dimensional subspaces which are all contained in a hyperplane
H' of H.

Note that any set C' that we construct using such an independent set of I of mazimal
size was already provided in [3, Section 5.1] by Blokhuis and Brouwer. Also note that,
regardless of the choice of U, the set C has size

|C| > s4[n,2n — 1] - 54[n — 1,n].

Example 2.1.17. The examples given in 2.1.15 yield a second set of examples using the
dual construction of the one given there. In particular, the dual C* of each independent
set C' that we have described there is also a maximal independent set of the Kneser
graph of type (n — 1,n) in P and the independent sets of maximal size were already
given in [3] by Blokhuis and Brouwer, too.

Remark 2.1.18. Any maximal independent set of I' which either contains all flags in
a given hyperplane or all flags through a given point is given by one of those two sets of
examples.

Conjecture 2.1.19. For every integer n > 2 there are integers «y, and g, such that
every maximal co-clique of the Kneser graph of Type (n—1,n) in PG(2n, q) with ¢ > ¢,
1s given by Examples 2.1.15 and 2.1.17, or has at most anq"2+"_2 elements.
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Remark 2.1.20. This Conjecture is proven for n = 2 by Blokhuis and Brouwer in [3]
(also consider the Appendiz of [12] by D’haeseleer, Metsch and Werner) and n = 3 in
Section 2.2.

2.1.3 Kneser Graphs on Flags of Length 1

Here we collect some results on Kneser graphs that have been proven already and will
be used in this work.

We start by considering sets of planes with pairwise 1-dimensional intersection. Note
that the result given in Lemma 2.1.21 and Corollary 2.1.22 thereafter were proven (more
generally) in [15] by Frankl and Wilson. However, in this special case the proof is easy
and we provide it below.

Lemma 2.1.21. Let n be an integer, let q be a prime power and let £ be a set of planes
of P:=PG(n,q) such that any two planes in € share a line. Then either there is a line
I <P withl <E forall E €& or|E] <54[2,3].

Proof. Let there be no line [ < P such that [ < E for all E € £ and let Fy and E, bein £.
Set [ := F1N Ey and let F3 be such that [ £ E3. Then EsNFE; # E3N Ey and thus B3 =
<E3ﬂE1,E3ﬂE2> < <E1,E2>. Now, for all ¥ € £ theset Lg := {EﬂEl,EﬂEQ, EﬂEg}
satisfies |Lg| > 2 and therefore we have E = (Lg) < (E1, Fs, E3) = (E1, E»). Since
(E1, Eo) is a solid this implies |€| < s4(2, 3], as claimed. O

Corollary 2.1.22. Let n > 5 be an integer, let q be a prime power and let £ be a set of
planes of P := PG(n, q) such that any two planes in € share a line. Then |E| < s4[n—2].

Proof. Either there is a line [ with [ € E for all E € £, which implies |€| < §4[1,2,n] =
sq[n — 2], or Lemma 2.1.21 implies |€| < §,4[2, 3] = 54[3] < s54[n — 2]. O

The following two results are given in [5, Theorem 3.1 & Theorem 6.1] by Blokhuis,
Brouwer and Szonyi. Theorem 2.1.26 thereafter is implied by the dual statement of [7,
Theorem 1.4] by Blokhuis et al.

Note that the independence number given in these theorems was already determined
by Frankl and Wilson in [15] without a bound on second largest examples.

Theorem 2.1.23 ([5, Theorem 3.1]). Let C be a co-clique of the Kneser graph of type
n e Nin PG2n+1,q). If

] > (1 + (11) sgfn— 1] - syl

then there either is a point P with P € f for all f € C, or a hyperplane H with f < H
forall f € C.

Theorem 2.1.24 ([5, Theorem 6.1]). The independence number o(I") of the Kneser
graph T of type 2 in PG(5,q) is given by

al) =5402,4 = ¢° + ¢" +2¢* +2¢° + 2¢° + ¢ + 1.
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The independent sets of maximal size are the sets S[P,2,PG(5,q)] and &[2, H| for points
P and hyperplanes H of PG(5,q). Every other maximal independent set has cardinality
at most ¢° +2¢* +3¢% +2¢°> + ¢ + 1.

Corollary 2.1.25. Let I" be the Kneser graph of type 2 in P := PG(5, q) with ¢ > 3 and
let v € V(T') be an arbitrary vertex. Furthermore, let I be the graph induced by T' on
the set Np(v) of neighbours of v and let € be an independent set of T".

Then we have |E] < max(q5,&) with &€ = ¢® +2¢* +3¢> +2¢> + ¢+ 1 and |E] > ¢
occurs if and only if € is either a set of planes of V(I'') through a given point P € P\ v
or a set of planes of V(I') in a given hyperplane H <P with v £ H.

Proof. The set £ is an independent set of I'; too, and, according to Theorem 2.1.24,
there is a point P € P with P € F for all ¥ € € or a hyperplane H < P with £ < H for
all Ee &, or €] <&

Now, if £ is a set of planes of V(I") through a given point P € P, then either P ¢ v
and there are at most 54[2,0,2,5] = ¢% planes through P which are adjacent to v (that
is, they do not meet the plane v), or P € v and £ = (). Furthermore, if £ is a set of
planes of V(I') in a given hyperplane H < P, then either v £ H and there are at most
sq[1,-1,2,4] = ¢°® planes in H which are adjacent to v (that is, they do not meet the
line vN H), or v < H and € = 0. O

Theorem 2.1.26 (|7, Theorem 1.4]). For q > 3 the independence number a(I') of the
Kneser graph T' of type 3 in PG(6, q) is given by

aT) =53,5] = ¢® + ¢" +2¢° +2¢° + 3¢* +2¢° + 2¢* + ¢ + 1.

The independent sets of mazimal size are the sets S[3, H] for hyperplanes H of PG(6,q).
Every other mazximal independent set has cardinality at most ¢% +2¢° +3¢* +3¢> +2¢> +
qg—+1.

Remark 2.1.27. Note that the theorem given in [7] by Blokhuis et al yields a Hilton-
Milner type result for arbitrary dimension under given circumstances and not only for
the case that is stated in Theorem 2.1.26.
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2.2 The Independence Number of Kneser Graphs of Type
(2,3) in PG(6, q)

For this section let P be the projective space PG(6, ¢) for some prime power ¢ and let I'
be the Kneser graph of type (2,3) in P. Recall that Lemma 2.1.8 proves that two flags
(E,S) and (E',S’) of T are adjacent if and only if ENS"' =0 =E'NS.

We show that any maximal independent set of ' of size larger than roughly 27¢'° (a
more precise formulation can be found in Theorem 2.2.14) is given by Example 2.1.15
or Example 2.1.17 above and thus, for ¢ > 27, we determine the independence number
of I.

First, we have some general notions and then the remainder of the proof is split into
three parts, where we first consider two special cases that may occur.

Remark 2.2.1. Ezamples 2.1.15 and 2.1.17 provide independent sets of I' of size at
least

0+ 24 + 4¢° + 665 + 8¢7 + 9¢° + 9¢° + 8¢* + T¢® + 4¢% + 2¢ + 1.
Lemma 2.2.2. Let C be an independent set of I'. For all P € P the set

Sp:={ms(f): f € C with P € m3(f) \ m2(f)}
is an independent set of the Kneser graph of type 3 on P and we have |Sp| < §,4[2,4].

Proof. Let P € P be a point and let f = (E,S) and f' = (E’, S") be two flags such that
P¢ EFE and Pe S,8. f P=SNS then SNE =0 =FENS and f and f are
adjacent flags of I'. Therefore, any two solids S, S € Sp satisfy dim(SNS’) > 1, proving
that Sp is an independent set of the Kneser graph of type 3 on P.

Now, in the dual space PV the set Sp is an independent set of the Kneser graph of
type 2 on PV. Furthermore, from P € S for all S € Sp we even know that in the dual
space PV every plane E € Sp is a subspace of the hyperplane P of PV, that is, Sp is an
independent set of the Kneser graph of type 2 in the hyperplane P of PV. Finally, we
may apply Theorem 2.1.24 and have |Sp| < 54(2,4], as claimed. O

Lemma 2.2.3. Let C be an independent set of T', let £ € N be such that |Ay(C)| < & for
allU € II3(C) and let (E,S) be a flag of C.
Then there are at most $4[2]-54[2,4]-¢ flags (E',S") € C with E'NE = 0 and S'NE # 0.

Proof. 1f there is a flag (E’,S’) € C with E'NE =0 and S’ N E # ), then S’ N F must
be a point P ¢ E’. According to Lemma 2.2.2 for every point P € E the set

Sp = {S € 3(Ap(C)) | 3E € I1(C) : (E,S) € C AP ¢ E}

has cardinality |Sp| < 54[2,4]. Furthermore, for every point P € E every solid S € Sp
occurs in at most & flags of C. Since there are s4[2] choices for a point P € E, this yields
an upper bound of §,4[2] - §,[2,4] - £, as claimed. O
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As mentioned earlier, the proof of the claim is now split into three parts. These parts
are such that in the ith part we only consider independent sets with the property that
every plane and every solid occurs in at most s,4[i] flags. Thus, the third part is in fact
the general case.

2.2.1 Planes and Solids occur in at most s,[1] Flags

Throughout this part we assume that C is an independent set of I' such that for every
subspace U < P with dim(U) € {2,3} we have |Ay(C)| < s4[1].

Lemma 2.2.4. Let P, P> and Ps be non-collinear points of P.
i) If
|Ap, (C)] > 6q" +14¢° + 16¢° + 11¢* + ¢* — 5¢° — ¢ + 3, (2.3)
then there are flags f; = (F;, S;) € C for i € {1,2,3} with dim((E1, E2, E3)) > 5,

Py, Py ¢ S1,52,53 as well as E; N E; = Py and Py, Py ¢ (E;, Ej) for all distinct
i,j€{1,2,3}.

it) If there are flags f1, fo and fs with the properties stated in i) and if
IAp,(C)| > 6¢" +14¢° +16¢° + 14¢* + 4¢° — 5¢°> — ¢ + 3,

then there are flags f! = (E.,S) € C fori € {1,2,3} with dim({(E{, ES, E%)) > 5,
Py, Py ¢ 51,55, 83, dim(S; N S}) <1 for alli,j € {1,2,3} as well as B[N E} = Py
and Py, Py ¢ (Ej, E%) for all distinct i,j € {1,2,3}.

Proof. i) There are exactly §4(2,3,6] + 2 -54[0, 1,3, 6] solids S < P with P, € S and
P; € S for some i € {2,3}. According to the assumption of this part each of those
solids occurs in at most s,[1] flags of C' yielding an upper bound of at most

(54[2,3,6] +2-54[0,1,3,6]) - 54[1]

2.4
=2¢" +4¢° +6¢° + T¢* +6¢° + 44> + 2¢ + 1 (2:4)

flags of C'. Note that this number accounts for all flags of C' through P; whose
plane contains P, or P3. Comparing this with the bound given in Equation (2.3)
yields a flag f1 = (E1,S1) € C with Py € Ey and P, P3 ¢ 5.

However, there are only (s4[0,1,2] —2) - 54[0,1, 2, 6] planes through P; in P which
meet (Pj, Py, P3) in a line but do not contain P, nor P3, providing at most

(5q[07 ]-7 2} - 2) ! 5q[07 ]-7 27 6] : 51][1] = q6 + q5 - q2 —q (25)
flags f = (E,S) € C such that P, € E, dim(E N (P, P, P3)) > 1 and P», P3 ¢ S.

The sum of this and the number given in Equation (2.4) is still smaller than the
bound given in Equation (2.3) and thus we may even chose f; such that Ej N

37



2 Erdés-Ko-Rado Sets in Kneser Graphs

38

(P1, Py, P5) = P;. Note that this implies dim((E1, P2, P3)) = 4 and thus Py ¢
<E1, P3> as well as P3 ¢ <E1, P2>

Now, an upper bound on the number of flags (E,S) € Ap (C) with P» € S or
P; € S is already given in Equation (2.4). Furthermore, for all i € {2,3} and every
flag (£, S) € Ap, (C) with P; ¢ E we have P; € (Ey, E) <= dim((Ey, P;)NE) > 1.
There are

5400,1,2] - (54[1,2,6] =3) +1=¢" +2¢" +2¢° +2¢* —q¢— 1 (2.6)

planes F through P; which meet F; in at least a line and thus satisfy dim((E1, P;)N
E) > 1, but do not contain P, nor P3. This number also includes all planes
E < (E1, P;) for some i € {2,3}, since all those planes meet E; in a line for
dimensional reasons. Additionally, for all ¢ € {2,3} there are

(5400,1,3] — 54[0,1,2] — 1) - (541, 2, 6] — 5,[1,2,3] — 1) 2
S+ — P -2 41 :

planes F which meet (F4, P;) in exactly a line which does not lie in E; and satisfy
Py, P3 ¢ E. Thus, considering the fact that there are

(54[0,1,3] — 54[0,1,2] = 1)2 = ¢* — 2¢* + 1

planes E which satisfy P, P3 ¢ E and meet both (Eq, P;) and (Ep, P3) in lines
which are not contained in F1, this provides

P20 23 2P —q-1+2C+ " —F -2 +1) - (¢" =244 +1)
=2¢"+3¢°+¢* —q (2.8)

planes E with P = E; N E which meet at least one of the spaces (Ep, P») or
(E1, P3) in a line and do not contain P» nor P3. According to the assumption of
this part each of the planes counted in Equation (2.8) occurs in at most s,4[1] flags
and we also need to consider the flags counted in Equation (2.4), providing a total
of at most

40" +9¢° +10¢° + 8¢* + 64> + 3¢ + ¢+ 1 (2.9)

flags. Comparing this to the bound given in Equation (2.3) yields a further flag
fo = (E2,S2) € C and this flag satisfies Py, P3 ¢ (Ey, Es), F1 N Ey = P; and
PQ, P3 ¢ Sg.

Again, we note that even the sum of the number in Equation (2.9) and the num-
ber of flags given in Equation (2.5) is smaller than the bound given in Equation
(2.3) and thus we may assume that Eo N (P1, Py, P3) = P; holds. Note that this
implies dim(<E27P2,P3>) = 4 and thus P ¢ <E2,P3> as well as P3 ¢ <E2,P2>.
Furthermore, we remark that

0 if (Ey, Ey, Py, P3) =P,

d := dim((Ey, P;) N (Ea, Ps_j)) = { :
1 otherwise,
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is independent of the choice of j € {2,3}.

It remains to prove the existence of the flag f3. We reuse the upper bound given
in Equation (2.4). Furthermore, for all ¢ € {1,2} the number of planes E through
Py which meet E; in at least a line and thus satisfy dim((E;, P;) N E) > 1 for both
j € {2,3}, but do not contain P» nor Ps is given in Equation (2.6). Subtracting
the §,4[0, 1,2]? planes which are being counted twice yields

2¢° +4¢* +4¢° + 3¢ —4¢ - 3 (2.10)

planes through P; which meet Fq or Es in at least a line but do not contain P»
nor Ps. Finally, 4 times the number given in Equation (2.7), that is

4¢° 4+ 4¢° — 4¢* — 8¢ + 4,

serves as upper bound for the number of still uncounted planes E with P, € E
which meet at least one of the spaces (E;, P;) for some ¢ € {1,2} and j € {2,3} in
exactly line, do not contain P> nor P3 and do not contain a line of E; nor of Es.
Together with the number given in Equation (2.10) this yields

4¢° + 6¢° + 4¢* — 54> — 4q + 1

planes E with P; € E which meet at least one of the spaces (E;, Pj) for some
i€ {1,2} and j € {2,3} in exactly a line and does not contain P nor P3. According
to the assumption of this part every plane occurs in at most s,[1] flags of C' and
thus together with the number given in Equation (2.4) this yields a total of at
most

6¢" + 14¢° + 16¢° + 11¢* + ¢* — 54> — ¢+ 2 (2.11)

flags through P; in C. Since this is smaller than the bound given in Equation (2.3)
in the claim, we know that there must be a further flag f3, concluding the proof
of 1).

For all i € {1,2,3} there are exactly 5,[0,—1,2,3] = ¢* planes E in S; not con-
taining P, each of which provides a unique solid (P», E) through P». According
to the assumption of this part each of those solids occurs in at most s,4[1] flags of
C providing at most

3-54[1] - 5400, —1,2,3] = 3¢* + 3¢ (2.12)

flags of C. Other than that we reuse the counts given in the proof of part i). For
the existence of the first flag f{ consider the sum

2q" +5¢° +7¢° +10¢* + 9¢° + 3¢ + g + 1

of Equations (2.4), (2.5) and (2.12), for the existence of the second flag f5 consider
the sum

4" +10¢% + 11¢° + 11¢* + 9¢3 + 2¢* + 1
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of Equations (2.9), (2.5) and (2.12) and for the existence of the third flag f5 consider
the sum

6¢" + 14¢% + 16¢° + 14¢* + 4¢° — 54> — ¢ + 2

of Equations (2.11) and (2.12). All of those are smaller than the bound given in
the claim and thus each of them proves proves the existence of the respective flag
7, concluding the proof of part ii). O

Lemma 2.2.5. Let P; and P> be two distinct points of P and let E1, Fo and E3 be
planes such that E; N E; = Py as well as Py ¢ (E;, E;) =: Uy, for all {1, j, k} = {1,2,3}.
Set H := (E1, E2, Es3), d := dim((H, P»)) and let S be the set of all solids of P with
Py e S and SNE; #0 for alli € {1,2,3}. Then we have

S| = (d— 4)g" %+ 2¢° + 3¢° + 3¢* + 3¢° + 2¢> + ¢ + 1 with d € {5,6}.

Proof. Foralli € {1,2,3} let §; C S be such that for all S € S; there is an i-dimensional
subspace U with P, € U < S which has non-empty intersection with all planes F;, Fo
and Fs and such that there is no such subspace of dimension smaller than ¢. Then S is
the disjoint union of &1, So and S3 and we determine the cardinalities of these subsets.

81:

Sy:

40

Every solid S € &) contains a line [ through P» which meets all three planes Ej,
E5 and E3. From Py ¢ (E1, Es) we know that any line through P, meets (F1, Eg)
in at most a point. Therefore any line through P» which meets both F; and Es
in a point is the span of P, and an element of E1 N Es = Py, that is, it is the line
(Py, Py). However, this line already meets all three planes and thus is the only line
with that property. Therefore, every solid S € &; must have (P;, P;) as subspace
and every solid through this line is a solid of Sy, yielding

1S1| = 54[1, 3, 6]. (2.13)

Every solid S € &y is such that S contains a plane through P, which meets all
three planes E1, Es and E3, but S contains no line with that property. Note that
from the last case we already know that the only line through P, which meets all
three planes is the line (P;, P»). Thus, solids S € S do not contain (P;, P5), which
is equivalent to Py ¢ S.

Note that for all S € Sy there is at most one index i € {1, 2,3} such that dim(S N
E;) = 1, for if there were two distinct indices ¢, j € {1, 2, 3} such that dim(SNE;) =
1 = dim(SNEj), then from E;NE; = Py ¢ S we would have (SNE;)N(SNE;) = 0,
which would imply

P,€S=(SNE;,SNE;) <(E;,E;) % P,

a contradiction. Therefore, for all S € Sy there are distinct 4,5 € {1,2,3} with
dim(SNE;) =0 = dim(SN E;) and the only plane £ < § with P» € E that meets
both F; and Ej is the plane (P, E; NS, E;NS).
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Furthermore, if E is a plane in a solid S € Sy with P, € F and EN E; # () for
all 7 € {1,2,3}, then there may not be a line [ < E with [ N (E;, E;) = () for some
distinct 4,7 € {1,2,3}, because otherwise E N (E;, E;) would be a point, only,
and due to EN E; # 0 # E N Ej it would have to be the point P, = E; N Ej, a
contradiction.

Consequently, any plane E in a solid S € S with P, € E and E N E; # () for all
i € {1,2,3} is the span of a line [ through P» which meets both E; and (FEs, E3)
together with a point of Es. Moreover, if F is such a plane, then for all i € {1,2,3}
we have dim(E N E;) = 0 and thus in E there is a unique line [ with P, € [ and
INE; #0.

We now determine the number of such planes F. According to Lemma 1.2.37
every line [ through P which meets Ey and (Es, E3) is the span of Py and a point
P € (Eq, Po)N(Esy, E3). We have dim((E1, Po)N(Es, E3)) = 7—d and from P, ¢ U;
we have d € {5,6}, that is, 7 — d € {1,2}. Therefore, there are J5 4 - ¢* + ¢ lines
through P, which meet both Fj and (Es, F3) but do not contain P;.

Furthermore, for all i € {1,2} we have P» ¢ (E1, E;) and thus (E1, P;) N E; = P.
Therefore, for any line [ through P which meets F; as well as (Es, F3) we know
that [ N Uy is a point which does not lie in Fo U F3. Now, if [ is such a line, then
Lemma 1.2.37 shows that every plane F with P, ¢ E, | < F and EN E; # () for
all i € {1,2,3} is the span of [ and one of the ¢ points of

((E2,1) N E3) \ {P1} = ((IN U1, E2) N E3) \ {P1},

which provides a total of d,45 - ¢® + ¢? such planes.

Each of those planes occurs in 540, 2,3, 6] = ¢* + ¢+ ¢ solids which do not contain
P; and thus we have
@ +2¢° +2¢* +¢* for d =5,
[Sal =<7 (2.14)
@ +q +q for d = 6.

Note that equality follows from the fact that every solid S € Sy contains only one
plane E through P, which meets all three planes E7, F2 and Ej3, as well as from
the fact that this plane E contains only one line [ through P» which meets Fy, as
we have seen above.

: For S € 83 we have dim(S N E;) = 0 for all ¢ € {1,2,3}, because otherwise,

if dim(S N E;) > 1 for some i € {1,2,3}, then every plane in S meets E; and
thus there is a plane through P, in S which meets all planes Fy, FEs and FEj3.
Furthermore, also because every solid in Sy contains no plane through P, which
meets all planes Fq, Fo and F3, we know that every solid in S3 is the span of P
and three points Q1 € F1, Q2 € Ey and Q3 € F3. Using this we determine |Sa| as
follows.
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There are ¢ + ¢ choices for a point Q1 € E1 \ {P1} and, given the point Q1, we
set Ry := (P,Q1) NUy. Due to Py ¢ Uy, Us we have Ry N E3, Ry N Ey = () and,
using Lemma 1.2.37, we have

0 for Ql € <U1,P2>,
-1 for Ql §é <U1,P2>,

2 for d =275,

dim(R;) =
im () { 1 ford=6.

with dim((Uy, P) N Ey) = {

Now, P ¢ Us > Fq, Fr and Q1 € E7 implies <E1, (Pg, Q1>>QE2 = FEiNEy = P, and
thus Lemma 1.2.37 implies (P, Q1, Q2) NE; = Q1 for all Q2 € E>\ {P1}. However,
note that Lemma 1.2.37 also implies that for all points Q2 € (R1, E3)NEs the plane
(P, Q1,Q2) has non-empty intersection with all planes F1, F2 and E3 and as such
these planes do not yield solids of &3. Consequently, we must only consider the
choices for Q2 among Fs\ (R1, E3) and we have dim((Ry, E3) N Ey) = dim(Ry)+ 1.

We let Q2 be such a point and set Rg := (P, Q2) NUs. Note that, similar to above,
Py ¢ U1,Us implies Ro N E3, Ro N E = () and we have

0 for Qg c <U2,P2>,
-1 fOI‘ QQ ¢ <U2,P2>,
However, for d = 6 and dim(R;) = 0 the lines (U, P5) N By = (Ua, R1) N Ey and

(E3, R1) N Ey coincide and as such in this case, due to Q2 € Es \ (E3, Ry), the
situation dim(Rg) = 0 may not occur.

2 for d =25,

dim(Ry) = ith dim((Us, P2) N Es) =

It remains to determine the number of choices for (3 € E5 in the respective cases
provided by the possible choices for @1 and Q5. For all points Q3 € (Ry, E2) N E3
(respectively Qs € (Ro, E1) N E3) the solid (P2, Q1,Q2,R3) contains the plane
(P2, Q1,Q3) (respectively (P, Q2,Q3)) which has non-empty intersection with all
three planes E1, Ey and F3 and thus the solid is not an element of S3. Hence, we
must only consider the choices for Q3 among the points of E3\ ((R1, E2) U(R2, E1)).
Now, for all ¢ € {1, 2} the subspace l; := (R;, F5_;)NE3 is either P} or a line through
P;. Furthermore, if both I/; and [y are lines, then we have I # [o, since otherwise,
for X € I3\ {P1} both g1 := E1 N {Q1, R2, X) and g2 := E3N(Q2, Ry, X) are lines,
too, and then <R1,Q1, QQ,X> NE3 = X # P; implies P; ¢ g1Ngas < E1NEs = Py,
that is, g1 N g2 = () and thus

<P27Q17Q27X> = <<R17Q27X> ﬂEQ, <R27Q17X> m-E1> S U3 % P27

a contradiction.

Altogether this proves

(@ +4q)-¢* (¢ —q) for d = 5,
|S3] = 2 2, 2 2, .2 2 /29
¢+ g ¢+q ¢ (¢"+q) ford=6,
_{qﬁ—q4 for d = 5,

2.15
¢®+3¢°> ford=6. ( )
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Finally, the sum of the three numbers given in Equations (2.13), (2.14) and (2.15) is the
cardinality given for § in the claim. O

Lemma 2.2.6. Let Py and P» be two distinct points of P and for all k € {1,2,3} let
there be a flag fr = (Ek, Sk) € Ap, (C) such that for all distinct i,j € {1,2,3} we have
E;NE; =P and Py ¢ (E;, Ej) as well as Py ¢ S;. Then
|Ap,(C)| <3¢% +9¢" +9¢° + 9¢° + 11¢* + 9¢° + 6¢° + 4¢ + 2
+(d—4)(¢" "+ 4",

with d := dim((El,Eg, E3,P2>) S {5, 6}

Proof. Every flag in Ap,(C) must be non-adjacent to the three flags fi, fo and fs.
Therefore, for all f = (E,S) € Ap,(C) we have EN S; # 0 for some i € {1,2,3} or
SNE; #0 for all i € {1,2,3}.

In view of that, for all i € {1,2,3} let & be the set of all planes through P, which
have non-empty intersection with 5;, set £ := & U & U E3 and let S be the set of all
solids through P, which have non-empty intersection with all planes E1, Fs and Ej3.

For all i € {1,2,3} we have

€] < 54[0,2,6] —54[3,0,2,6] = ¢" +2¢° +2¢° + 3¢* +2¢* +2¢° + ¢+ 1.  (2.16)
and for all distinct 4, j € {1,2,3} we have dim((S;, Sj, »)) > 5 as well as

2 for dim((S;, S;, P)) =6,
= 5.

di gy = dim((S;, P2) N (Sj, P2)) =
{i.5} lm(< 2> < J 2>) {3 for dlm(<S’“S]7P2>)

Hence, the number of planes through P which meet both S; and S; for given i,j €
{1,2,3} with ¢ # j is exactly
5q[0, 2, dg jy] + 5[0, 1, dys y] - Sl gy — 2,12, 6] + (5¢[3] — sgldys 5y — 1))
= qU T 1 g8 1265 +3¢" + 23 + 242 + g+ 1

and, using |E] < |&1| 4 |[E2] 4 |E3] — |E1 N E2| — |E1 N &3] as well as the number given in
Equation (2.16), this implies

€1 <3¢" +4¢° +2¢6° +3¢* + 263 + 24 + g+ 1 — (qd{1»2}+3 + qd“’3}+3> .
Thus, according to the assumption of this part, there are at most
3 +7¢"+6¢° +5¢° +5¢* + 4¢3 + 3¢ +2¢+ 1 — sq(1] (qd{1’2}+3 + qd{1’3}+3) (2.17)

flags f € Ap,(C) such that mo(f) has non-empty intersection with at least one of the
solids S, Sy or S3.

Every other flag f = (E,S) € Ap,(C) must satisfy S N E; # 0 for all i € {1,2,3} and
thus S € S. Using the value given in Lemma 2.2.5 for |S| and the fact that, according
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to the assumption of this part, every such solid occurs in at most s4[1] flags of C, yields
at most

(d—4) ("2 + ¢" ) +2¢" + 5¢° + 6¢° + 6¢* + 5¢° +3¢> +2¢ + 1 (2.18)

further flags.
Finally, summing up the weaker bound given by Equation (2.17) for dy; 2y = 2 = dyy 33
and Equation (2.18) yields the claim. O

Lemma 2.2.7. Let Py, P> and P3 be non-collinear points of P and for all i € {1,2} and
all m € {1,2,3} let there be a flag fir = (Eiy, Siy) € Ap,(C) such that

o Vr,s €{1,2,3}: dim(S1,NS2,) <1 and

o Vi € {1, 2},V{7", S,t} = {1, 2, 3} : Ei,,« N Ei,s =P, and Pg_i, P3 ¢ <Ei’7«, Ez',s> @] Si,r-
Then |Ap,(C)| < 24q7 4 484° + 57¢° + 57¢* + 464> + 33¢° + 22¢ + 11.
Proof. Any flag f = (E,S) € Ap,(C) must be non-adjacent to the six flags f;, with
i € {1,2} and r € {1,2,3}. Therefore, for all i« € {1,2} and all (F,S) € C we have
SNE;, #0forallr € {1,2,3} or ENS;, # () for at least one r € {1,2,3} and we begin
by counting flags which satisfy the latter condition.

First, we let ;s € {1,2,3} be arbitrary but fixed and count the number of planes F
through P3 which meet both S;, and Sz . Any such plane E either contains a line [
through P which already meets both 57, and S ,, or does not, and a line [ through P
meets both S1, and Sy s if and only if it is a subspace of Uy, 4 := (P53, S1,)N(Ps,S2,).
Hence, a plane F contains a line [ through P3 which meets both S, and S 5 if and only
if E' contains a line of Uy, ;) and Uy, 51 has dimension

_J2 for dim({Ps,S51,,S52,)) = 6,
73 for dim((Ps, S1,r, S2,5)) = 5.
This implies that there are exactly
5q [07 2, d{r,s}] + 54[07 L, d{r,s}] : 5q{d{7‘,s} -2,1,2, 6] + (561[3] - 5q[d{r,s} - 1])2
=M 1 0 +2¢° + 3¢ +2¢° + 26" + g+ 1 (219)

planes through P3 which meet both S, and So .
Now, there there are 9 choices for r,s € {1,2,3} and we may use the larger number
given in Equation (2.19) for drs) = 3 to receive an upper bound of at most

18¢° + 18¢° 4 27¢* 4+ 18¢% + 184> + 9¢ + 9 (2.20)

planes through P which meet S;, and Sy for some r, s € {1,2,3}.

Furthermore, for all i € {1,2} we may use the larger number given in Lemma 2.2.5
for d = 5 as bound for the number of solids through P; which meet all three planes E; 1,
E; 2 and FEj; 3. This shows that there is a total of at most

6¢° 4+ 6¢° + 6¢* + 6¢° + 4¢* + 2q + 2 (2.21)
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solids through P3 which meet all planes E; 1, E; 2 and E; 3 for some ¢ € {1,2}.

Finally, according to the assumption of this part, every plane counted in Equation
(2.20) and every solid counted in Equation (2.21) occurs in at most s4[1] flags of C each,
which yields the claimed bound. O

Lemma 2.2.8. The cardinality of C is at most
240 4 73¢° + 135¢° + 178¢" + 179¢° + 1564° + 123¢* + 84¢> + 45¢® 4+ 18¢ + 3.

Proof. Let Py, P» € P be distinct such that |Ap (C)|, |Ap,(C)| > |Ap(C)] for all P €
P\ {Pi}.

If there is no flag f = (E,S) € C with (P, P,) N E = (), then, using the assumption
of this part, we have |C| < (s4[2,6] — 54[1,—1,2,6]) - 54[1] and, since this is better than
the claim, there remains nothing to prove.

Therefore, assume that there is a flag f = (F,S) € C with (P, P,) N E = () and thus
dim(S N (P, Py)) < 0. Note that this implies that every flag f' = (E’,S") € C satisfies
either E'NS #Qor S'NE # () =FE NS and, according to the assumption of this part
and Lemma 2.2.3, there are at most

5¢[2] - 54[2,4] - 54[1] (2:22)

flags f'=(E',S") e C with SSNE#0)=E'"NS.
Now, it only remains to determine the number of flags f = (E’,S’) with E' NS # ()
and, in view of Lemma 2.2.4, we note that we either have

|IAp(C)| < |Ap,(C)| < 6¢7 +14¢° +16¢° + 14¢* + 4¢3 — 5¢> — ¢ + 3 (2.23)
for all P € P\ (P, P), or
|AR(O) = |AR(C)] > 6¢" + 14¢° + 16¢° + 14¢" +4¢° — 5¢° — g + 3.

In fact, if we study the second situation more closely, then we see that in that case
Lemma 2.2.4 provides the flags f; ; € C for all i € {1,2} and all j € {1,2, 3} required to
apply Lemma 2.2.7, which proves

|Ap(C)| < 24q7 + 48¢° + 57¢° + 57¢* 4 46¢> + 33¢* + 22¢ + 11 (2.24)

for all P € P\ (P1, P,). Since this bound is weaker than the bound given in Equation
(2.23) it holds in either situation.

In particular, Equation (2.24) holds for all P € S\ (SN (P, P,)) and it only remains
to consider points in S N (P, P»). Recall that we chose f such that this intersection is
at most a point p. Now, since P; and P; are distinct there is an index ¢ € {1,2} such
that P # P; and, using the flags f; 1, fi2 and f;3, we may apply Lemma 2.2.6 (using
the larger value given there for d = 5) and have

|A5(C)] < 3¢° +10¢" 4 10¢° + 9¢° + 11¢* + 9¢° + 6¢° + 4g + 2.
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Therefore, the total number of all flags f' = (F’,S’") with E' NS # () is at most

(54[3] — 1) - (24¢" 4 484¢° + 57¢° + 57¢* + 464> + 33¢* + 22¢ + 11)
+ 3¢% 4+ 10¢" + 10¢° 4+ 9¢° + 11¢* + 9¢° + 6¢* + 4q + 2
= 24¢"0 + 72¢° + 132¢® + 172¢" + 1705 + 145¢° + 112¢* + 75¢° + 394> + 15 + 2

and together with the number given in Equation (2.22) this proves the claim. O

2.2.2 Planes and Solids occur in at most s,[2] Flags

Throughout this part we assume that C' is an independent set of I" such that for every
subspace U < P with dim(U) € {2,3} we have |[Ay(C)| < 54[2].

Lemma 2.2.9. If E € II5(C) is a plane which occurs in more than s4[1] flags of C, then
there are at most $4[2](¢° + 3¢® + 2¢*> + ¢ + 1) flags (E',S') € C with EN S’ = 0.

Proof. Let E be such a plane. There are at most ¢ + 1 solids through a given plane in a
4-dimensional subspace of P and thus there are solids S, S2, 53 € II3(Ag(C)) such that
H := (S, 52, 53) has dimension 5.

Any flag (E',S") € C with ENS" = § satisfies E' N'S; # 0 for all j € {1,2,3}
and together with ' N E C S’ N E = () this implies S; = (E,S; N E’). This shows
H = (51,59,53) < (E,E') and for dimensional reasons E' must be a complement of F
in H. Furthermore, from £ NS’ = () we know that, for dimensional reasons, S’ may not
be contained in H.

Now, let £ be the set of all planes which occur in such a flag and apply Lemma 2.1.7
to see that the planes in £ form an independent set in the Kneser graph IV of type 2 in
H. From E'NE = () for all E' € £ we even know that £ is an independent set of the
graph induced by I” on the set Np/(E) and we may apply Corollary 2.1.25 to see that
|€] < max(q®, ¢® +2¢* +3¢3 +2¢°> + ¢+ 1) < ¢% + 3¢ +2¢®> + ¢ + 1 holds.

Finally, the assumption of this part shows |Ag(C)| < s4[2], which concludes the
proof. O

Lemma 2.2.10. For all E € TI5(C) there are at most §4[2]% - 54[2,4] flags (E',S") € C
with E'NE =0 and S'NE # (.

Proof. Let E € TI5(C) and let C’ be the set of flags to be counted. The assumption of
this part shows |Ag(C’)| < |Ag(C)] < 54[2] for all S € II3(C) and thus with & := §4[2]
Lemma 2.2.3 proves the claim. O

Lemma 2.2.11. The cardinality of C is at most
24¢"° + 73¢° +135¢% + 178¢7 + 181¢5 + 158¢° + 125¢" + 86¢> + 47¢° + 18¢ + 3.

Proof. Let £ be the set of all planes E with |Ag(C)| > s,[1] and let S be the set of all
solids S with |Ag(C)| > s,4[1].
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First note that if both & and S have size at most §,(4], then there is a subset C’ of
C such that every plane and every solid lies in at most s4[1] flags of C" and such that
|C’| > |C| — 2s4[4]¢*. Thus, in this case we have |C| < |C’| + 2s,[4]¢*> and may apply
Lemma 2.2.8 to C’ to find the claimed bound for |C].

Hence, from now on we may assume that £ or S has size greater than s,[4] and, since
either one of these situations is dual to the other, we may assume that it is the set &,
that is, we may assume that |E]| > s,[4].

Now, according to Corollary 2.1.22, |£| > s,[4] implies that there are two planes
Ey, B € £ with dim(E, N Ey) < 0. For all i € {1,2} every flag (E,S) of C satisfies one
of the following cases

e ENE;=0and SNE; # 0,
e SNE; =0 and thus ENS; # 0 for all solids S; with (E;, S;) € C,
° EﬁEZ#(D

Consider ¢ € {1,2} and the cases above: According to Lemma 2.2.10 there are at most
54[2)% - 54]2,4] flags of the first type and, using ¢ > 3, according to Lemma 2.2.9 there
are at most 54[2](q® + 3¢® + 2¢® + ¢ + 1) flags of the second type. Hence, this provides a
total of at most

2 - 54[2](54[2] - 54[2,4] + q6 + 3(]3 + 2(]2 +q+1) (2.25)

flags in C' which satisfy one of the first two conditions for some i € {1,2}. Every other
flag (E,S) € C satisfies EN E; # () for both i € {1,2}. We count these flags in the
following and set d := dim(E; N Ey) € {—1,0}.

There are s4(d, —1,0, 2]2 lines | which meet both E; and Fs and satisfy [N E;NEy = ()
and through each such line [ there are s4[d, 1,2,6] planes E with E N E; N Ey = 0.
However, some of those planes, namely 2 - 54[d, 0, 1, 2] planes through each line [, meet
one of the planes E7 or F» in a line. Thus, there is a total of

sqld, —1,0,2]? - (s4[d, 1,2,6] — 2 - 5,[d,0,1,2])

planes FE which meet E; and E5 in a point each and satisfy E N E; N Ey = (.

Furthermore, every plane E with E N E; N Ey = () which meets one of those planes
in a line [ and the other plane in a point @ is the span of the line [ and the point Q).
Now, there are 2 - s4[d,—1,1,2] lines [ contained in one of the planes E; or Ey with
E1NEyNl =0 and this provides a total of

2. 5,d,—1,1,2] - 5,[d, —1,0,2]

planes E with £ N E; N Ey = () which meet E; or Es in a line and meet the other plane
in a point.

Finally for d = 0, there are 540, 2, 6] planes E with £ N E; N Ey # 0, yielding a total
of
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q8+3q7+6q6+6q5+5q4+2q3+2q2+q+1+6g7d(q8+q7—2q5—q4+q3)
<2¢%+4q" +6¢° + 4¢° + 4¢* + 3¢° + 2¢> + g+ 1

planes which have non-empty intersection with E; and Fy. Therefore, using the assump-
tion of this part, there are at most

54[21(2¢° + 4" +6° +4¢° + 4¢* + 3¢> + 2¢* + ¢ + 1)
=2¢"° 4+ 6¢° + 12¢% + 14¢" 4+ 14¢° + 11¢° + 9¢* + 6¢° + 4¢*> + 2¢ + 1

flags of the last type. Together with the number given in Equation (2.25) this yields
4¢"0 +12¢° + 28¢% + 38¢" + 464° + 49¢° + 49¢* + 40¢> + 26¢° + 12¢ + 5

as upper bound on |C|, concluding the proof. O

2.2.3 The General Case

Throughout this final part we assume that C is an arbitrary maximal independent set
of I'. Note that we trivially have |Ay(C)| < §4[3] for every subspace U < P with
dim(U) € {2,3}.

Lemma 2.2.12. If there are more than & := ¢" + 2¢% +2¢° + 3¢* + 2¢® + 2¢*> + ¢+ 1
saturated solids in I13(C'), then there is a hyperplane H of P such that every solid S < H
s saturated.

Dually, if there are more than & saturated planes in I1a(C), then there is a point P € P
such that every plane through P is saturated.

Proof. Let S be the set of saturated solids in II3 (C') and let |S| > . Then, according to
Corollary 2.1.11, we have dim (S; N S2) > 1 for all Sq, S2 € S and, according to Theorem
2.1.26 and since & > ¢% 4 2¢° 4 3¢* 4+ 3¢® + 2¢® + ¢ + 1, we know that all solids of S are
contained in a hyperplane H.

Now, if there would be a flag (E,S) € C such that E £ H, then according to Corollary
2.1.9 all solids of § would have non-empty intersection with the line ENH and thus there
would only be 54[3, 5] — 8541, —1,3,5] = ¢ solids in S, a contradiction. Consequently, we
have £ < H for all E € II3(C) and according to Lemma 2.1.13 all solids S < H are
saturated. O

Corollary 2.2.13. If C contains more than ¢" + 2¢° + 2¢° + 3¢* + 2¢> + 2¢> + ¢+ 1
saturated solids (saturated planes), then C is given by Example 2.1.15 (Example 2.1.17).

Theorem 2.2.14. Every mazximal independent set of I' of size larger than
2610 4+ 77¢° + 139¢® + 184¢" + 185¢° + 162¢° + 127¢* + 88¢> + 47¢* + 18¢ + 3

1s given by Examples 2.1.15 and 2.1.17.
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Proof. Note that according to Lemma 2.1.5 the set of flags of C' through a given plane
FE is the set of all flags through F in a given subspace of P and the set of flags of C' in a
given solid S is the set of all flags in S through a given subspace of P. Let £ be the set
of all saturated planes of C and let S be the set of all saturated solids, that is,

E={Ee€TL(C): |Ap(C] >5,2]} and S={SeT(C):|As(C] > s,[2]}.

For every plane E € £ let Hg > E be an arbitrarily chosen but fixed hyperplane of P
and for every solid S € § let Pg € S be an arbitrarily chosen but fixed point. For every
plane E € II5(C) \ € we have (II3(Ag(C))) # P and let Hg be an arbitrarily chosen
but fixed hyperplane containing this subspace, for every solid S € II3(C) \ S we have
Neem(agc) £ # () and let Ps be an arbitrarily chosen but fixed point therein and set

C'={(E,S)eC:(EcéE=S<Hp)N(S€eS= PscE)}

According to Lemma 2.2.12 we know that either C' is given by one of the two examples
and there remains nothing to prove, or we have

E],1S] < €:=q" +2¢° +2¢° + 3¢* +2¢> + 2¢° + ¢ + 1.

Hence, we may assume the latter, which implies |C] < |C’| +2¢¢®. Now, the construc-
tion of C’ is such that for every plane E € IIy(C") all solids S with (E,S) € C' satisty
S < Hp and for every solid S € II3(C") all planes E with (E,S) € C’ satisfy Ps € E.
Therefore, every plane and every solid occurs in at most s4[2] flags of C’. Finally, we
may apply Lemma 2.2.11 to receive an upper bound on |C’| and, using |C| < |C’|+2¢43,
we know that the cardinality of C' is at most

2640 4 77¢° + 139¢% + 184¢" + 185¢° + 162¢° + 127¢* + 88¢> + 47¢* 4+ 18¢ + 3,
as claimed. O
Corollary 2.2.15. FEvery independent set of I' of size larger than

2640 4+ 77¢° + 139¢® + 184¢" + 185¢° + 162¢° + 127¢* + 88¢> + 47¢*> + 18¢ + 3
s contained in a mazximal independent set given by Fxamples 2.1.15 and 2.1.17.

Theorem 2.2.16. For q > 27 the independence number of the Kneser graph of flags of
type (2,3) in PG(6,q) is 54[3,5] - 54[2, 3] + 54[2,4]¢> and the independent sets attaining
this bound are precisely the four examples given in Examples 2.1.15 and 2.1.17 using
independent sets U of mazimal size.

Proof. On the one hand, the referenced Examples provide independent sets of the given
size and thus the independence number of I' is at least as large as given in this claim.
On the other hand, for ¢ > 27 the size given here is larger than the bound given in
Theorem 2.2.14 and thus said theorem shows that any independent set of size s4[3, 5] -
54[2, 3] +54[2,4]¢> is given by one of the Examples. Considering Remark 2.1.16 concludes
the proof. O
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2.3 The Chromatic Number of Kneser Graphs of Type
(n —1,n) in PG(2n, q)

In this section we determine the chromatic number of Kneser graphs I' of type (n—1,n)
in P := PG(2n, q) with n > 3 and ¢ very large (see Equation (2.26) below) which satisfy
Conjecture 2.1.19. In fact, we even show that for every colouring g : V(I') — C and
every colour ¢ € C the set g~!(c) is a subset of a co-clique defined in Examples 2.1.15
and 2.1.17.

Throughout this section we assume that n is such that Conjecture 2.1.19 holds and let
oy, and g, denote the values given there. Without loss of generality may assume o, > 5.
Furthermore, we assume that the prime power ¢ satisfies

24+1 1
q > qn, q> % and q> ga2 + %a +17. (2.26)

Note that there are in fact integers n > 3 which satisfy said conjecture: In Theorem
2.2.14 of the previous section we have shown that for n = 3 the Kneser graph I' of type
(n—1,n) = (2,3) in PG(6, q) satisfies the conjecture with a,, = 27 and ¢, = 78.

We also remark that Conjecture 2.1.19 holds for n = 2, too, as is shown in [3] by
Blokhuis and Brouwer (also consider the Appendix of [12] by D’haeseleer, Metsch and
Werner). In fact, in [12] by D’haeseleer, Metsch and Werner the chromatic number was
determined for n = 2 and many of the techniques used here for n > 3 are a generalization
of the techniques used there. The generalization given here is also the result of a joint
work of these three authors. Note that the contents of [12] are part of the Ph.D. thesis
of D’haeseleer.

We begin with a section on examples and notation. Thereafter, we determine the
chromatic number of the graph I' in two steps. In the first step we do not consider a
colouring of I', but instead a covering of V(I') by s4[n + 1] — ¢ special co-cliques. In the
second step we then use the results of the first step to derive the chromatic number of
I' in Theorem 2.3.20.

Note that in this section we use 6, to denote s4[z] for all z € {—1} U Ny.

2.3.1 Examples of Co-Cliques and Colourings

We recall the co-cliques of I' defined in Examples 2.1.15 and 2.1.17 and introduce some
new notation for these.

Notation 2.3.1 (Co-Cliques of I'). i) For a hyperplane H and a maximal co-clique
& of the Kneser graph I of type n — 1 in H we let

CH,E) ={(mT1)eVI):T<HVTE&}
denote the corresponding maximal co-clique of I' and say that it is based on the

hyperplane H. We call {(7,7) € C(H,E) : 7 < H} the generic part and {(7,7) €
C(H,E): 7 £ H} the special part of C(H,E).
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ii) Dually, for any point P and a maximal set U/ of n-dimensional subspaces through
P, such that dim(7 N 7') > 1 for all 7,7" € U, we let

C(P,U) :={(m,7)eVT): PenVTelU}

denote the corresponding maximal co-clique of I'. We say that C'(P,U) is based on
the point P and call P the base point of C(P,U). Again, we call {(7,7) € C(P,€) :
P € 7} the generic part and {(7,7) € C(P,E) : P ¢ 7} the special part of C(P,U).
Furthermore, if there exists a line [ on P such that U consists of all d-dimensional
subspaces 7 with [ < 7, then we also denote C(P,U) by C(P,l) and say that the
special part of this set is based on the line .

Similarly, if there exists a hyperplane H on P such that U consists of all d-
dimensional subspaces 7 with P € 7 < H, then we also denote C(P,U) by C(P, H)
and say that the special part of this set is based on the hyperplane H.

Recall that the co-cliques defined in i) and ii) are dual with one another. Here we work
more frequently with the co-cliques introduced in ii), which explains why we introduced
more elaborate notation for these and also explains why this is the point of view in the
following Lemma.

Lemma 2.3.2. Let P be a point of P and let U be a mazimal set of n-dimensional
subspaces through P such that dim(r N 7') > 1 for all 7,7 € U.

(a) The generic part of C(P,U) has cardinality sq[n,2n — 1] -0,, and the special part of
C(P,U) has cardinality U] - q".

(b) If the special part of C(P,U) is based on a line or hyperplane, then |U| = s4[1, n, 2n].
Otherwise we have

1
Ul < (1 + q) Opo- 01 (2.27)

The dual statements to these claims hold as well.

Proof. This is mostly a corollary to Example 2.1.15 and Remark 2.1.16 thereafter. We
point out that, since we are in fact the situation of Example 2.1.17, that is, the dual
of Example 2.1.15, we have to consider the dual situation when reading Remark 2.1.16.
Therefore, for the proof of (b), we have to consider U as a maximal co-clique of the
Kneser graph of type n — 1 in the quotient space P/ P. For the bound given in Equation
(2.27) we then apply Theorem 2.1.23 by Blokhuis, Brouwer and Szonyi to that co-clique.

Finally, the dual statements of the claims hold, since the situation under consideration
is self-dual. O

Notation 2.3.3. In view of the previous lemma and in view of Conjecture 2.1.19 we set

go = §q¢[n,2n — 1] - 6,
e 1= 5q[n’ om — 1] -0, +5q[1,n72n] -q" and

2
. ne+n—2
el = anq .
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Remark 2.3.4. Note that the lower bound for q that we assumed in Equation (2.26)
implies go > e1. Furthermore, note that Conjecture 2.1.19 implies that every co-clique C
of T with |C| > ey is a subset of a co-clique given in Examples 2.1.15 and 2.1.17 which
is covered by Notation 2.3.1.

Example 2.3.5 (Coverings of V(I") by co-cliques). Let U < P be a subspace of dimension
n + 1. Now, consider a set W C U, let L be the set of lines of U that meet W and
suppose that there exists an injective map v : L — U\ W such that v(l) € [ for all | € L.
Then

{Cw),)|le L} U{C(P,0) | PeU\ (v(L)UW)}

is a set of co-cliques of I' whose union contains all vertices of I'.

Finally, we provide an example of a set W with ¢ points and a map v satisfying these
conditions. Let | := {P,...,P;} < U be a line and set W := {P,...,P;}. For all
planes 7 € S[1,2,U] and all P € W let Ip(w) € S[Py, 1, 7] be such that {lp(7) : P €
W} = 6[Py,1,7] \ {{}. Then we may define v by v(l) = Py and v(g) := g N ling({l,9))
for all g € L\ {l}.

Remark 2.3.6. i) We note that one can also find coverings of V(I') by replacing all
co-cliques of coverings described in this example by their dual structure.

i1) Since there are 0,11 — q co-cliques in a covering given in this example we find
X(T) < Opt1—q.

2.3.2 Coverings by a Set of Special Co-Cliques

In this section we consider coverings of V(I') by a set C of co-cliques that satisfies con-
ditions (I), (IT), (IIT) and (IV) given below and, in fact, prove the following theorem.

Theorem 2.3.7. Let C be a set of 0,11 —q co-cliques of I' whose union covers all vertices
of I such that conditions (1), (II), (III) and (IV) given below hold. Then there is an
(n 4+ 1)-dimensional subspace U of P such that every co-clique C € C is point based on a
point P € U and the base points all of co-cliques in C are pairwise distinct.

The proof of this theorem is split into two steps. In the first step we construct an
(n + 1)-dimensional subspace U as a candidate for the subspace U given in the theorem
and in the second step we conclude the proof.

Therefore, throughout this section we let C = {C1,...,Cy,,,—¢} be a set of 0,11 — ¢
co-cliques of I" whose union covers all vertices of I" such that

(I) all co-cliques in C are distinct and non-empty,

(IT) every co-clique C' € C with |C| > e; is maximal and thus given by Examples 2.1.15
and 2.1.17 and covered by Notation 2.3.1,

(IIT) the generic parts of any two distinct co-cliques with C,C” € C of size larger than
ey are distinct and
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(IV) at least half of the co-cliques of C of size larger than e; is based on points.

We let I denote all i € {1,...,60,41 — q} such that C; is based on a point P;.

Construction of the Subspace U

In this section we construct a subspace U of dimension n + 1 that contains the points
P; for many elements i € 1.

Lemma 2.3.8. For every subset G of C we have

Uc

Cceg 2

9
> ‘g’eo _ <q2 + g+ 10) qn2+2n—3'

Proof. Since |C| < eq for every C € C, it is sufficient to prove the statement in the case
when G = C. Then |G| = 0,41 — q and |Ugeg C| is equal to sq[n, 2n] - 0, the number
of all vertices of I'. Using this, a direct calculation proves the statement for n € {3,4}.
For n > 5 we use |G| < ¢f,, and find

|Gleg — U Ol < On(sg[n,2n — 1] -0, - q + 54[1,m,2n] - ¢" ™1 — 54[n, 2n))
Ceg
2n 2n+1 n
¢ —1 (¢ —D@"+ 1)
= 0p54[1,m,2n] - (q”“ — 19nq+ g"tt - S

<0 s4ll,m,2n) - "3 (* + g +2)
<On(q+2) (¢ +q+2)g" 4,

where the second last step uses n > 5 and the last step uses Lemma 1.2.36. From the
assumed lower bounds in Equation (2.26) we deduce 6,, < (q + %) ¢"~'. Using Equation
(2.26) again as well as n > 5 we see that

3 9
< <q+2) (g+2)(*+q+2)<q* <q2+2q+10),

concluding this proof. O

Lemma 2.3.9. Let U be an (n + 1)-dimensional subspace. Denote by c; the number of
indices i € I with P; ¢ U and by cs the number of co-cliques C € C with |C| < e1. Then
there is x € {c1, |I| — e1} with © + 2c3 < 2(q + 4 + ) g L.

Proof. From (IV) we have |I| > 3(|C| — c3) and we know that for all i € I the set Cj is
based on a point P;. We define J :={i € I : P; ¢ U}. Then, forall j € Jand alli € I\ J
the generic parts of the sets C; and C; share the s4[n,1,n—1,2n] -6, = q”z_"_Qﬂn flags
(m,7) € V(I') with P, = 7 NU and P; € w. For given j € J it is obvious that distinct ¢
in I\ J yield distinct q"Q_”_QGn such flags. Hence, we know that for all j € J the set
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C; contains at least |\ J| - ¢"° "2, flags that are contained in C; for some i € I \ J.
Therefore,

Ue

el

< |Ileog = |J[T\ J| 6y - g™ "2
N—_——

=ci1(|I|—c1)

and Lemma 2.3.8 applied to the set G :={C; |i € [} U{C € C :|C| < e1} shows
9
cs(eg —er) +cr(|I| —c1)bn - ¢TI < A= (q2 +oat 10) g3,

In particular, we already have c3(eg —e1) < A and we set B := (¢ +4 + ay,)q" !, Using
the lower bounds for ¢ assumed in Equation (2.26) we find B(ep — e1) > A and hence
we have c3 < B. It remains to show that one of the numbers in {c1, |I| — ¢1} is at most
2(B — c3). Suppose that this is wrong, that is, we have

Cl(u’ — 01) > 2(B — Cg)(’ﬂ — 2B+ 263).

Since |I| > 5(|C| — ¢3), it follows that f(c3) < A where f is the polynomial in z given by

1

2
1

f=uleo—e1) +2(B - ) <2<C| —x) = 2B+ 2”3) - g™ "

Since f has degree two with negative leading coeflicient and since 0 < c3 < B, we have

min{ f(0), f(B)} < f(e3), that is, f(0) < A or f(B) < A. But f(B) = B(ey — e1) and
we have already seen that this is larger than A, that is, we have

1
2b <2|C| - 23) Ong™ "% = f(0) < A.
Using |C| = 041 — ¢ > (¢ + 1)¢"™ and 0,, > (g + 1)¢" 1, it follows that
9
(¢+1)B((g+1)¢" —4B) < (q2 + 50+ 10) "
and using the definition of B this shows
2 2, 9 2
(0 Dla+ 4+ an)(e® ~ 3¢~ 16— da,) < (¢ + g+ 10) .

Since 5 < ay, < ¢ (via our assumptions), this inequality must also be satisfied when ay,
is replaced by 5 or by ¢, but this contradicts the lower bounds for ¢ that we assumed in
Equation (2.26). O

Lemma 2.3.10. There ezists an (n + 1)-dimensional subspace U such that

HieI|P¢UY+2-{CeC:|C|<er} <2(q+4+ay)qd" .
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Proof. Let c3 be the number of C' € C with |C| < gg and thus |C| < e;. Then C contains
8> %(9n+1 —q—c3) maximal co-cliques that are based on a point. Let G1,. .., G denote
these co-cliques, let Ry, ..., Rg be their respective base points and for all i € {1,..., 3}
set

i—1
G;N U Gj

Jj=1

gi ‘=

Then |U§-:1 Gj| < ieo—2§:1 g; for all i < 3. We may assume that the sequence g1, ..., g
is monotone increasing.
We first show that j := [iq"“} + 0p1 + 0,1 — n satisfies g; < 5q”2_20n+1. Indeed,
otherwise we would have Ziﬁ:j g >(B—-7+ 1)5q”2_20n+1 and Lemma 2.3.8 implies
(5 =3+ 050" 2001+ cale — e1) < (¢ + g+ 10) ™12,

If we substitute the lower bound for 8 given above we see that the coefficient of ¢3 therein
isey—e; — gq”2_29n+1 and in view of Equation (2.26) this is positive. Hence, we may
assume c3 = 0 and find

1 1 9
5q" 2041 - (4(]”“ - 5(9n+1 +q) = Op—1+n— 1) < <q2 +oat 10) g s
but this contradicts the assumption in Equation (2.26). Therefore, g; < 5q"2*29n+1.

Now, let Q1,...,Qn+1 € {Rj—4,_,,---,R;} be such that 7 := (Q1,...,Qn41) is an
n-dimensional subspace and set

RI:{RiZiE{1,...,j*9n,1*1}/\Ri¢T}.

Then [R| > j —0p1 —1— (]| —n—1) = [1¢"™].

In the next step we show that for all i € {1,...,n + 1} the point @Q; lies on fewer
than 7¢™ lines that meet R. Assume that this is false and let i € {1,...,n+ 1} be such
that @; lies on at least 7¢" lines that meet R. Each of these lines lies in s,[1,n — 1, 2n]
subspaces of dimension n— 1 and two of these lines occur together in s,4[2,n — 1, 2n] such
subspaces. Hence there exist at least

2n—1 _ 1
7qn(5Q[17n - 1,2?1] - 7qn5Q[27n - 1,2?1]) = 7qn <(2n—2_1 o 7qn 5‘1[27n - 1,271,]

> 7q”2_3(q - =z

(n — 1)-dimensional subspaces that contain one of the 7¢" lines. This shows that there
exist 20,41 flags (F,S) with @; € E and such that E contains a point of R. Since
Q; = Ry, for some k < j, this implies that 20,41 < gr < g; < 5q”2_29n+1, which is a
contradiction.

Finally, we apply Proposition 1.2.41 with dg = |R|/¢"*! > i, ng="7and M :=TR to
find an (n + 1)-dimensional subspace U satisfying Equation (1.3). Using the assumed
lower bounds for ¢ assumed in Equation (2.26) we conclude that |[U N R| > 3¢" >
2¢" + 2(4 + ay,)g" 1. The statement of the lemma follows now from Lemma 2.3.9. [
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Proof of Theorem 2.3.7

From now on we let U be the (n 4 1)-dimensional subspace provided by Lemma 2.3.10
and use the following notation.

0C0:={C¢EC|Z'€I, PiEU},CQZ:|Col.

C1 ZZ{CiECHGI, Pi¢U}, cl = ‘Cﬂ.

Cy:={Ci €C|i¢1|Ci| > go}, c2:=1Cal.

Cs:={C;eCl|i¢l]|Ci| <go}, c3:=]Cs
e W:={PcU|P#PViel}
o M :={(m,7) € Ugec C | mNU is a point and tNU € W}.

Remark 2.3.11. Using Remark 2.3.4 we know that, due to (II), all co-cliques C € Cs
satisfy |C| < ey.

Lemma 2.3.12. (a) CyUC; UCy UCs is a partition of C.
(b) 1 +2c3 <2(q+ 4+ an)g" .
(c) |W|=6ph+1—co.
(d) For all P € W there are exactly q"2_19n flags (w,7) with mNU = P.
(¢) |M]=[W|g™ 10,
() 1| = co+c12 501 —q—c3).

Proof. Claim (a) is obvious from the choice of Cpy, Ci, C2 and C3 and the choice of U
implies (b). From (III) we know that the base points P; of the sets C;, i € I, are pairwise
distinct, which proves |W| = |U| — |Co| = 0pn+1 — ¢o and thus (¢). We know that each
point P € W lies on s§4[n,0,n —1,2n] = q”2_1 subspaces of dimension n — 1 that meet
U only in P and each such subspace lies in s,[n — 1,1, 2n| = 6,, subspaces of dimension
n. Hence, for every point P in W exactly q”2_19n flags (m,7) of M satisfy mNU = P,
which proves (d) and (e). To see (f) we first note that our definitions imply |I| = co + 1
and that exactly |C| — ¢3 = 0,41 — ¢ — c3 elements of C have more than gy elements.
Finally, we recall that (II) implies that every element of C with more than gy elements
is based on a point or a hyperplane and that (IV) implies that at least half of these are
based on a point. O

Notation 2.3.13. Recall from Lemma 2.3.2 that the special parts of all co-cliques
covered by Notation 2.3.1 — in particular of all co-cliques C' € C with |C| > go — have
cardinality at most A, where

1.2,
A:=541,n,2n]-¢" = "s54n—2,2n—-2]-¢" < (¢+ 2)q"2_1. (2.28)
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Lemma 2.3.14. (a) For C € Cy the generic part of C does not contain a flag of M.

(b) For C € Cy we have |C N M| < |W|q"* =20, + A.

(¢) Any co-clique C' € Cy is based on a hyperplane H and we have

A if U < H,

ICNM| < 5 )
A+ |HNW|¢™ "0,—1 otherwise.

Proof.  (a) Consider some C € Cy. For all flags (m, 7) of the generic part of C' we have

dim(mNU) > 1 or 7NU is the base point of C. Since M only contains flags (7, 7)
such that m meets U in a point that is not a base point of the generic part of some
C € C, this implies that these flags do not belong to M.

Consider some C € C;. Then C is based on a point P with P ¢ U. If Y € W, then
the point P lies on exactly s4(n,1,n —1,2n] = (]”2_”_2 subspaces 7w of dimension
n — 1 satisfying 7 N U =Y. Each of these lies in s4[n — 1,n,2n| = 6, subspaces
of dimension n. Hence, the generic part of C' contains exactly |W|q"2_"_29n flags

of M. The special part of C' contains at most A flags and thus at most this many
flags of M.

Consider some C' € Cy. Since C' is not based on a point and has cardinality greater
than go (II) shows that C' is based on a hyperplane H. The generic part of C
consists of all flags (7, 7) € V(I') with 7 < H and thus alson < H. f Y ¢ HNW,
then the number of (n — 1)-dimensional subspaces m of H with 7 N U =Y is
s4n,0,m —1,2n — 1] =0 for U < H and it is s4[n — 1,0,n — 1,2n — 1] = q”Q_”
for U £ H (because then a complement of Y in U N H has dimension n — 1).
Since for every (n — 1)-dimensional subspace of H the number of n-dimensional
subspaces of H containing it is s4[n — 1,n,2n — 1] = 6, (see Lemma 1.2.35 ii)),
it follows that the generic part of C' contains no flag of C' for U < H and exactly
|H N W\q”Q*”Gn_l flags of M for U £ H. Finally, since the special part of C

contains at most A flags, this implies the claim. O

Lemma 2.3.15. If z is an integer such that there is at most one hyperplane of U which

cont

ains more than z points of W, then

IM| < (co+ 1+ c2)A + 1 [W|g™ 20, + cozq™ ™0n_1 + cse1 + ¢ 0p_16,.

Proof. Let z be as in the claim. Lemma 2.3.12 (e) shows |M| = |[W|q"*~16,, and, since
every flag of M is covered by some C € C, we may apply Lemma 2.3.12 (a) to see

3
M| = W)™, <30 S e M.
=0 CeC;

Now, if there exists a hyperplane of U with more than z points in W, then let 2’ denote
the number of its points in W and otherwise set 2’ := 2. Since every hyperplane of U lies
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in 5,4[0,n,2n —1,2n] = ¢" ! hyperplanes of P which do not contain U, Lemma 2.3.14 (c)
shows

U CNnM|< <02 — q”_l) (A + zq”Q_"On,l) +¢" A+ z/q"Q_"Qn,l)
CeCso
=c(A+ zq"2_"9n_1) + (2 = 2) q"2_19n_1.
<6

Finally, since |C| < e; for C € Cs, the assertion follows from parts (a) and (b) of Lemma
2.3.14. O

Lemma 2.3.16. Let 71 and 2 be distinct hyperplanes of U and set W' := (1 Ur)NW.
Then

W01 < (c1 4+ ¢2)d"2(2¢ +7) + ¢ 3 ((an + 3)q + &2 + 4a,).

Proof. We set M' := {(m,7) € M : 7NU € W'}. Lemma 2.3.12 (d) shows |M'| =
|W’|¢"*~16,, and according to Lemma 2.3.12 (a) each flag of M’ lies in at least one of
the co-cliques of C = Cy UC; UCy UC3. Hence, we have

(W |q" Oy < [W|q"" 10, = |M'| < do + dy + dy + ds, (2.29)

where for all i € {1,...,4} we let d; denote the number of elements of M’ that lie in
some member of C;. We remark that we have |W'| < |(11 Ume) NU| = ¢" + 6, and
determine upper bounds on the numbers dy, ..., ds in 4 steps.

First, we consider a co-clique C' € Cy. Then |C| > go and C'is based on a point P € U.
We know from Lemma 2.3.14 (a) that only the special part T' of C' may contribute to
M’ and thus we study T and the three possible structures that 7' may have.

e First, assume that there is a line [ with P € [ such that T consists of all flags
(m,7) € V(I') with [ <7 and P ¢ 7. Then we have

LNW'| - 84[n,0,n —1,2n] for I < U,

W' - (I| = 1) - 84[n,1,n —1,2n] forINU =P
INW/ g™t for 1 < U,

- {W’|q"2_”_l for InU =P

|TmM’|:{

and, using |W'| < ¢"™+0,, as well as the fact that [[NW’] is at most ¢ for P € 71 U7y
and at most 2 otherwise, we have

2

q" for P € 1y UTo,

oM < L, e
(¢" + 6,)¢" "+ otherwise.
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e Secondly, assume that there is a hyperplane H with P € H such that T consists
of all flags (m,7) € V(I') with P € 7 < H and P ¢ w. If U < H, then for each
(m,7) € T we have dim(r NU) > 1 and thus (w,7) ¢ M’'. Therefore, if U < H,
then TN M’ = (). Now suppose that U £ H. Then we have

T AM| = [HOW'| sgfn—1,0,n—1,2n—1] = [H O W|g" "
W' A7 |g if HNU = 7; for some i € {1,2},
("' + gn_l)q"L” otherwise.

Notice that H N U = 7; for some i € {1,2} implies P € 7; and thus |[W' N 7| <
0, — 1 = g, _1. Therefore, we have

' n?—n+1 for P €7 UT
T < . U,
(" 4 0p—1)g™ " otherwise.

e Finally, if the special part T is not based on a line or a hyperplane, then Lemma
2.3.2 shows

/ n 1 n—1 1.2:36 () n2—n—1
’T NnM ‘ < ’T| <gq (1 + q) Qn_zﬁnfl < 01 (q + n)@n_gq .

Using the lower bounds for ¢ provided by our assumption in Equation (2.26) we may
summarize these three upper bounds into

enflan_n_H for P € 1y Uy,

ITNM|< PR '
(¢" + 0,)q"™ """ otherwise.

Note that the bound given for P € 73 U 7o is a weaker bound than the bound for
P ¢ 7 Uty Now, since distinct sets C' € Cp are based on distinct points P (see (III))
and since 7 U 7o contains ¢" + 6,, points, we find

do < co(q" + 0,)q" " 4 (@ + 0n)0n_1q” T < 12¢77

where the last step uses the trivial bounds ¢y < 0,41 < 2¢" 1t 6, < 2¢" and 6,_; <
2¢" 1.

Secondly, for C' € C; we see that C' contains at most |[W’ |q”2_"_29n + A flags of M’
analogously to the proof of 2.3.14 (b), which proves d; < cl(|VV’]q”27"720n + A). Now
we use A < (g +2)¢" ! given in Equation (2.28) as well as |[W’| < ¢" 4 6,, and have

dl S clan—n—Q((qn + «9n)9n + qn+2 + 2qn+1)
(2.26)

ad” T R 60" A P 4 q+2) < e T (¢ 4 7).

Thirdly, we consider C' € Cy. Then |C| > go and C is based on a hyperplane H. If
U C H and (w, 1) is a flag of C, then dim(7NU) > 1 and thus CNM’ = (). Therefore, we
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only need to study the case U £ H, which implies dim(U N H) = n. Then, analogously
to the proof of 2.3.14 (c), we see that the number of flags of M’ in the generic part of C'
is |[H N W'|¢g""~"0,,_1 and we have

W’ O 7l g™ "0,y if HNU = 7; for some i € {1,2},

H ) W/ n2—n9 <
| lq n—-1> {(qnl +9n71)qn27n0n71 otherwise.

Since there are exactly ¢! hyperplanes that meet U in 7, and as many that meet U in
Ty, it follows that the number of flags of M’ that lie in the generic part of at least one
co-clique of Cy is at most

Cg(qn_l + Qn,l)q"Q_”Qn,l + q"2_1 (|W’ N 7‘1’ + |W/ N 7’2|) 9n71.

The special part of each co-clique of Co has A flags and thus at most this many flags of
M’. Using

1.2.36 (a)
W Aan|+ W Nn| <|W|+0,1<q"+0,+0,_1=20, < 26;+1)g¢""

it follows that
n—1 n?—n n24+n—2
dy < oA+ ca(q +6,-1)q On—1+2q (014 1)0p—1.
We now show that this bound implies
dy < caq™ T2+ 7) + 27 TP + dg + 4). (2.30)

For n = 3, this can be easily verified for all ¢ > 2 and thus for all values of ¢ that are
of interest here. For n > 4, we use A < (¢ + 2)(]”271 given in Equation (2.28) as well as
the upper bound given in Lemma 1.2.36 (a) to find

d2 < ngn2_1(2qn_1 +6qn—2 +4qn—3+q+2) +2qn2+2n—4(91 + 1)2

and the lower bounds for ¢ assumed in Equation (2.26) imply Equation (2.30).
Finally, we note that for C' € C3 we trivially have |C' N M'| < |C] < e; and, using
c3 < (4 4+ a)g" ! from Lemma 2.3.12 (b) as well as e; = ang™ T2, this shows

ds < cze1 < (ang + 02 + day)g" 2073,

Now, substituting these upper bounds for dp,...,ds in Equation (2.29) and dividing
by q”2 yields

(W'0,-1 < (c1 + cz)q”73(2q +7)+ (ang + ai + 4an)q2"73
+ qnfl(zqnfl + 8q’n72 + 8qn73 + 12q)

and, using the lower bounds for ¢ assumed in (2.26), this implies the claim. O
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Lemma 2.3.17. We have [W| < (a, + 3)¢" L.

Proof. Let m; and 72 be hyperplanes of U such that |7 N W| > |[me N W| > |7 N W]
for every hyperplane 7 of U other than 71 and set z := |me N W|. Furthermore, we set
d:=c1+ca+cgand use co+c1+ca+cg = |C| = Opr1—qaswellas [W| = 0,41 —co = d+q
from Lemma 2.3.12 (¢) and |M| = [W|q"" "6, from Lemma 2.3.12 (e) to see that the
inequality given by Lemma 2.3.15 is equivalent to

0< (Ony1 —9)A+ ¢ 10,10, + c3(er — A)
+ czq”2_"20n,1 + (04 q)(c1 — q”+1)q”2_”_20n.

We simplify this inequality in several steps. First, we consider the following four trivial
simplifications:

e in the first term, since A is positive, we may replace (6,11 — ¢q) by its upper bound
(¢ +2)q" given in Lemma 1.2.36 (a);

e in the second term we use q”2*19n_19n < (¢g+ 5)q”2+2"*3, which follows from
Lemma 1.2.36 (a) and the lower bounds for g that we assumed in Equation (2.26);

e in the third term, since the coefficient e; — A of ¢3 is positive (recall the definition
of e; as well as Inequality (2.28) and use a,, > 5), we may replace c3 by its upper
bound (g + 4 + a,,)¢" ! given in Lemma 2.3.12 (b);

e and last but not least, in the final term, since ¢; — ¢"! is negative (consider the
upper bound ¢1 < 2(q + 4 + a,,)¢" ! given in Lemma 2.3.12 (b)), we may replace

(6 + q)¢"* 20, by its lower bound d(¢q 4 1)¢™ 3 implied by Lemma 1.2.36 (a).
This yields
0< (q+2)q"A+ (g +5)g" T3 4 (g + 4+ an)g" Her — A)
+ e2q" " 201+ 3(g+ 1) H(er — "), (2.31)

Next we want to take care of the variable z in the fourth term on the right hand side of
this inequality. For that purpose we note that the preceding lemma is applicable to the
set W' := (m Umg) N W and that W' satisfies

W' > |m W]+ |moNW| =61 > 2z — 0,1,

that is,

/ o 1236() 9 on_q 220 2n—2
2201 < W lpo1 + 62, < [W|bnor + (g +2)%q < W G + 2¢272,

We use the bound given in the previous lemma (where, for convenience, we replace the
7 by an 8) as well as ¢; + co < ¢ to replace the first term on the right hand side.
Subsequently we divide by 2 and simplify, which yields

2n—3

201 < 6" 3(q+4) + ((an +5)q + o2 + 4a). (2.32)

Now, we reconsider Inequality (2.31):
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e using the lower bounds for ¢ that we assumed in Equation (2.26) we see that the
coefficient (¢? + ¢ — 4 — ;)" ! of A therein is positive and thus we may replace
A by its upper bound (g + 2)q"2*1 given in Inequality (2.28);

e the coefficients of ¢; and co therein are non-negative and so we may substitute c;
and ¢ by their respective upper bounds 2(q+ 4+ a,,)¢" ! and 6, the first of which
is given in Lemma 2.3.12 (b) and the second is trivial,

e we use the upper bound found in Inequality (2.32);

e we substitute e; = g™ "2 and, finally, we divide by ¢ 3.
This yields
2 n—1 3, m+7, ag
0 <0%(q+4)+dq ~¢’+ =5+ | 5+ dan +10 | g+ (200 + 8)

+ ¢*" ((an + 1)g+ 04721 + 4oy, + 5) + ¢t (q3 +3¢% — (an +2)q — (2, + 8)) .

Using the lower bounds for ¢ that we assumed in Equation (2.26) as well as «,, > 5 this
inequality implies

e
0<0%(qg+4) +5g"" (2" +4- q) + ¢ ((an +1)g + 0} +5an ) + 0" (g +3).
Let f denote the right hand side of this Inequality and set 81 := (a, + 3)¢" "' — ¢ as
well as d := ¢"*! — (% +8) ¢". We want to show that § does not lie in the interval
[01,62]. To see this it suffices to show that f(d;) < 0 and f(d2) < 0 hold; the reason is
that f is a quadratic polynomial in § with positive leading coefficient. Straight forward

calculations show
3 21
f(o) = —2¢%" ! 4 (2042 + ?an + 12) "+ (ai + 6ay, + 9)(12”_1
+ (402 + 24ay, + 36)¢*" 2 + ¢V 4 4¢3 — (0‘2" + 4) ¢

— (20, + 6)¢" T — (8, + 24)q"™ + ¢* + 4q* as well as
f(82) = —(an + 31)¢* ™ + (22 + 37, + 256)¢°" + ¢4 + 3¢"3,

and in view of the lower bounds for ¢ that we assumed in Equation (2.26) both of these
are negative. Hence, ¢ ¢ [d1,d2]. Finally, we have

2.3.12 (f) 1 1
o = en—i—l —q—Cp < 5(9714—1 - Q) +c1+ 503

1.2.36 (a) ] 1
< §(qn+1 +(q+2)" " =g +a+ 5¢3

23.12(b) 1 n+1 n—1 n—1
< @ (@ +2)d" —a) +2g+ 4+ an)g

(2.26)
< qn+1_<042n+8) qn=52
and, since ¢ ¢ [d1,02], we find ¢ < 01, as claimed. O
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Lemma 2.3.18. We have C = Cy, that is, Theorem 2.3.7 holds.

Proof. Obviously, if C = Cy, then our choice of notation in this section implies that
Theorem 2.3.7 holds. Therefore, we prove C = Cy. To do so we determine the contri-
bution of co-cliques C' € C to the flags in M. We set § := ¢1 + ¢2 + c¢3 and note that
co+c1+ca+c3 =0p41 —qimplies 6 = 6,41 —q— . Recall that from Lemma 2.3.12 (c)
we have |W| = ¢ + J and from Lemma 2.3.17 we have |[W| < (a;, + 3)¢" L.

For all C € C; UCy (using the trivial bound 6,, < ¢26,,_1 for C € C;) we have

2 4 1.2.36 (a) 24, 3
(an +3)g" 01+ A < (an+3)(g+2)¢" TP+ A

n2+n—3 n2—-1 (2.26) n%4+n—2
(an +3)(q+2)q + (g +2)q < (an+4)q :

2.3.14
cnM| <
2
<

(2.28)

Now, since we have |C| < e1 = a, g™ t"2 for all C' € C3 (see Remark 2.3.11), we know
that [C' N M| < (o + 4)g"" ™2 holds for all C' € C; UCy U Cs. Therefore, the total
contribution of all co-cliques in C; UCs UC3 to M is at most 6(ay, + 4)q"2+”*2.
Furthermore, the generic parts of all co-cliques in Cy are disjoint from M. Thus, it
only remains to consider the special parts T of co-cliques C' € Cy and we denote by

e w; the number of those with T" based on a line that is contained in U;
e wy the number of those with T based on a line that is not contained in U;
e w3 the number of those with 7" based on a hyperplane of P; and

e wy the number of the remaining ones, which, according to Lemma 2.3.2, are those
with cardinality at most ¢"~ 616, 267" 1.

Furthermore, we let
e (25 be the set of lines [ of U such that C(P,1) € Cp for some point P of [;

e 3 be the set of all point-hyperplane pairs (P, H) with C(P, H) € Cy such that U
is not contained in H;

e ()4 be the set of indices ¢ € I such that C; is an element of Cy and its special part

T has cardinality at most q"*1«91«9n_292j; and

e Q4 be the set of all flags f € M such that f is an element of the special part of
some co-clique C, with z € Q4.

Then we have wy + wy + w3 + wy = co, || < w1, Q3] < ws and [Qy| = wy. In view of
the definition of €23 we remark that hyperplane based special parts T" only contribute to
M when the underlying hyperplane of P does not contain U. Using Lemma 2.3.12 (e) it
follows that

(W (g™ =10, = |M| < 8(an +4)g" 2+ 3 1N W] - s4n,0,n — 1,2n]
e
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+ wo|Wlg - sgln, 1,n — 1,20] + 3 |[W] - s4[n — 1,0,n — 1,2n — 1] + |Q4]

(P,H)€ENs3
w Q
= q"2_" S +4)g* 2 + Z INW|g" ™ + wgu + Z |W| + ’Tlgi'n )
e (P,H)es

We simplify this inequality and begin by replacing the first sum by an upper bound.
Since the product of two consecutive integers is always non-negative we have

0< Y (InW|=1(InW]|-2)

le
=Y (INW[=DInW[=2Y [INnW]+2|Q]
e e
SWI(IW]=1) =2 Y [INW]+ 2|,

e

where the last step holds, since any pair of distinct points of W is contained in at most
one line of ;. Since || < w; and wy + wa + w3 +wy = ¢y = 41 — |W], it follows that

1
E N < §]W\(|W] —3)+0p11 — w2 — w3 — wy.
le

Using this as well as Q3] = w3 in our inequality above and dividing by q”L” we find

Wi-3

W _ n

Wi (0~ L22) <o+ 02 4 a4 18

Ly Q] - wag™

+> (Wl=¢" )+ = —.
(P,H)ENs q

Now, since |W| < (ay, +3)¢" ! (by Lemma 2.3.17) and in view of the lower bounds for
g that we assumed in Equation (2.26), the coefficient of ws in the inequality above is

not positive and therefore the term with wy can be omitted. Doing so and substituting
|W| =6+ q we find

2

>01q" 16

_ 64+q—3 . .
(6+q)g" ! <9n - q) < Slom + )" 2+ Opp1g"

B Q —w n2—1
+ S (W] —q" 1)+‘4’n2—_43. (2.33)
(P,H)EQs q

If W] > g™ ! then, since |Q3] < |Co| = 0,1 — |[W], we have

YW =q") < (Bogr — [WDH(IW| =" 7).
(P,H)Eﬂg
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Therefore, if [W| > ¢"~!, then due to the fact that the polynomial f(z) = (6,11 —2)(z —
q" ') — (x — ¢ + 1)¢"T! obtains its maximum for Zyax := 3(0, + ¢" ) and since

4(q — 1)2  f(@max) = _q2n_2(3q4 - 6q3 + q2 +2q—1)
+¢" 4 —12¢* +12¢° — 6> +2¢ — 2) + 1

is negative (using (2.26)), it follows that

SUW =g ) < (W] =g+ Dg"™ = (5 +1)¢" .
(P,H)EQ:),

Clearly, if we do not have |IW| > ¢"~!, then this equation holds trivially. Using this and
Oni1 < (¢ +q+2)g" ! (see Lemma 1.2.36 (a)) in Inequality (2.33) we find

0+ q)g" (01q" " = 8) < S(an + D" + (P +q+2)”"
|Q | —w n2—1
n 4 44

n2—n

+ qn+1(5+ 1)

9

which is equivalent to

0<6%" ' —60"(¢" ' —(an+3)¢g" 2 —q—1)
N [

2
n n
q

4222 4 gt ’ (2.34)

Finally, we study the cardinality of Q4. For all z € Q we know from Lemma 2.3.2 that
Cy = C(Py,Uy) for a set U, of n-dimensional subspaces with || < (1 4+ qil)en_gﬁﬁj.
Furthermore, for all x € Q4 every flag (m,7) of the special part of C, that lies in Oy
satisfies dim(7 NU) =1 and 7 N U is a point of 7 N W. Motivated by that, we define

Ve € Qy: (pi=max{|TNW|:7 €Uy, dim(rNU) =1}

and set ¢ := max{(; : ¢ € Q4}. There are two remarks to be made:

e For all x € Q4 and all 7 € U, with dim(7NU) = 1 we have W # P, € TNU, which
implies (, < q. Thus we also have < q.

e The definition of ¢ implies that there is a line [ < U with |l N TW| = (. Note that
there are at most ¢ elements x € 4 such that P, is an element of [. For all x € Q4
with P, ¢ [ and all 7 € U, with dim(7 NU) = 1 we clearly have |T Ni| < 1, which
implies |7 N W| < min{(, |[W|+ 1 — (}.

This implies

] < (g€ + mac{0,4 — g} - min{C, W] +1 = (D" (1471 6,007}
< (g% + wy - min{¢, W]+ 1= )¢ + (n+3)¢> + Bn+ 2)g + 2n)g" 5,
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where the second step uses ¢ < ¢, max{0,ws — ¢} < w4 and parts (a) and (c) of Lemma
1.2.36. Substituting this in Inequality (2.34) and dividing by ¢"~° yields

0< 62q4 _5q5(qn71 _ (an+3)qn72 —q— 1) +2qn+3+q6
+ (¢ + wg - min{¢, W[+ 1= CH(@® + (n+3)a® + (3n + 2)g + 2n) — waq*

and we let f = f¢.,(0) denote the right hand side of this inequality. Note that f
is quadratic in ¢ and the leading coefficient is ¢* and as such positive. Thus, if the
inequality is not satisfied for two values é; and ds, then it is not satisfied for any value
in the interval [07,d2]). We set §; := n + 4 as well as §3 := (o, + 3)¢" ! and recall that
Lemma 2.3.17 shows § = |W| — ¢ < d2.

Now, if the coefficient

n=—¢*+min{¢,|[W|+1 -} + (n+3)¢* + (3n + 2)q + 2n)

of wy in that equation is not positive, then we may substitute wy = 0 to see that, in
view of the lower bounds for ¢ that we assumed in Equation (2.26), this bound is not
satisfied by 0 € {1,d2} (both of the following equations are smaller than 0):

Jeo(1) = =" (g — an = 5) + ¢*(2¢" + 2¢° + (n + 4)¢” + (3n + 2)g + 2n),
feo(82) = =¢*"*((an + 3)q — 20, — 120, — 18)
+¢"((an +3)¢° + (an +3)g + 2)
+¢*(¢" + ¢ + (n +3)¢” + (3n +2)g + 2n).

Thus, for n < 0 we have § = 0, that is, |Co| = 0p+1 — ¢ — 0 = 011 — g = |C| and thus
C = Cp, as desired.

From now on we may assume n > 0 and derive a contradiction. Since the lower bounds
for ¢ that we assumed in Equation (2.26) implies ¢ > n? 4 2n + 7, the inequality n > 0
is equivalent to min{¢,|W|+ 1 —(} > ¢ — n — 2. Furthermore, we already remarked
above that ( is at most ¢ and thus min{(, |[W|+1—(} is at most ¢, too. However, if we
substitute ¢ as upper bound for ¢ and consequently use min{¢, |W|+ 1 — (} < ¢, then
we have 7 > 0 and may also substitute ¢"*' + 2¢" as upper bound on w4 to see that,
in view of the lower bounds for ¢ that we assumed in Equation (2.26), the bound is not
satisfied for 6 € {01, 02} (both of the following equations are smaller than 0):

fa.qntirogn(01) < —q”“(q3 — (apn + 8n + 4oy, + 22)q2 — (8n+4)q —4n)
+ @ ((n+5)g* + (n+5)¢® + (n? + 9n 4+ 19)¢> + (3n + 2)q + 2n),
Foartizog (62) < —¢*""2((an + 3)q — 202 — 120, — 18)
+ ¢ ((an +3)g" + (n+ an +6)¢” + (51 + 10)¢° + (8n + 4)q + 4n)
+¢*(¢" + ¢ + (n +3)¢” + (3n + 2)g + 2n).

Hence, from now on we may assume § < d1, that is, 6 < n + 3. Finally, we note that
we then have min{(, |W|+ 1 — (} > ¢ — n — 2, which implies |W|+ 1 > 2(¢ — n — 2).
However, we have [W| =¢q+d < g+n+ 3, so we find ¢ < 3n+ 8, a contradiction to the
lower bounds for ¢ that we assumed in Equation (2.26). O]
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2.3.3 Determination of the Chromatic Number

Lemma 2.3.19. We let g : V(I') — F be a colouring of I with |F| = x(I') and we
set C .= {g~Y(f) : f € F}. Every co-clique C € C contains a flag f such that for all
C" € C\{C} the set C"U{f} is not a co-clique.

Proof. In contrary to the claim, suppose that there is a set C' € C such that for all
f € C there is a set C' € C\ {C} such that C" U {f} is a co-clique of I'. Then there
is a map ¢ : C — C\ {C} such that for all f € C the set ¢(f) U {f} is a co-clique of
I'. Therefore, for all ¢’ € C\ {C} the set C' U ¢~1(C") is a co-clique, too, and we set
C':={Cug¢ 1(C"): C" € C\{C}}. Now, C is a partition of V(T') into |C| —1 = x(T') — 1
classes and defines a colouring of I with |C’| < x(T') colours, a contradiction. O

Theorem 2.3.20. Let g : V(I') — F be a colouring of T' with |F| = x(T') and set

[C0,.., O =Gy o= (g 1 € B,

Then Cqy is a set of 0,11 — q co-cliques such that

e cvery co-clique C' € Cy is a subset of a mazximal co-clique of I' that is covered by
FEzamples 2.1.15 and 2.1.17,

e the corresponding maximal co-cliques are either all point based or all hyperplane
based, and

e the base points (base hyperplanes) are distinct and elements of an (n+1)-dimensional
subspace (contain a common (n — 2)-dimensional subspace).

Proof. We use Cp to define a covering of V(I') that satisfies conditions (I), (II), (III) and
(IV) and then apply Theorem 2.3.7 to this covering. Note that Cy already satisfies the
first of these conditions.

For all i € {1,...,|Co|} we let f; be the flag provided by Lemma 2.3.19. Now, for all
ie{l,...,|Co|} with \C’éi)\ > e; we let C’{i) be an arbitrary maximal co-clique of I' with
C(()i) - Cfi) and for all i € {1,...,|Co|} with ]C(()i)] < e; we set ng‘) = C’(()i). Lemma
2.3.19 implies that the co-cliques Cf), e C|100| are pairwise distinct. Furthermore, we
assumed that Conjecture 2.1.19 holds and thus C; := {Cfi) i€ {1,...,|Co|}} is a
covering of V(I') by co-cliques of I' which satisfy conditions (I) and (II).

Now, for alli € {1,...,|Co|} with ]C’fi)] < e; we set Céi) = Cy). Furthermore, for any
subset I = {i1,...,47} of {1,...,]Co|} such that for all i € I we have |C’§i)| > e; and
such that I is maximal with respect to the property that the co-cliques {CY) cie I}
all have the same generic part we set C’gl) = Cfil) and for all 4 € T\ {i1} we let C’éi)
be the special part of C’{i). Then the definition of f; implies that for all i € {1,...,|Co|}
we still have f; € Céi) and no other co-clique of Cy := {C} : j € {1,...,|Co|}} contains
fi. Thus, Co still satisfies condition (I). Furthermore, using Equation (2.28) the special
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part T of a co-clique C' € C; clearly satisfies |T'| < e; and thus Cy also satisfies condition
(IT). Finally, the definition of Cy implies that this set also satisfies condition (III).

If Cy already satisfies condition (IV), too, then we set C3 := C2 and if Co does not
satisfy condition (IV), then we let C3 be the dual of Co. Either way, C3 satisfies all
four conditions. Finally, if |Cs| = 0,41 — ¢, then we set C4 := C3 and if otherwise, if
ICs| < 041 — q, then let C4 be the union of C3 and a set of 0,41 — q¢ — |C3| arbitrary
co-cliques of size 1 such that Cy still satisfies the four conditions (this is clearly possible).

Finally, we may apply Theorem 2.3.7 to C4 and see that in fact C4 is a set of 0,41 — ¢
maximal co-cliques, all of which are point based and the 6,11 — ¢ base points are pairwise
distinct points of an (n + 1)-dimensional subspace U of P. However, if we reconsider
the construction of C4 from Cp, then this implies that C; already was a set of 0,11 — ¢
co-cliques that satisfied conditions (I), (IT) and (III) and therefore Cy satisfies the claim
of this theorem. O
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2.4 The Independence Number of Kneser Graphs of Type
(1,3) in PG(5, q)

Throughout this section we let P be the projective space PG(5, ¢) for some prime power
g and we let ' be the Kneser graph of type (1,3) in P. We show that any maximal
independent set of I' of size larger than roughly 377¢” (a more precise formulation can
be found in Theorem 2.4.49) is given by Example 2.4.1 below and thus, for ¢ > 376, we
determine the independence number of T'.

We first introduce the aforementioned family of examples of independent sets of I'.
The examples are analogous to Examples 2.1.15 and 2.1.17 given above and thus we
omit the proof here.

Example 2.4.1. i) Let H be a hyperplane of P and let U be a set of flags f < H
of type (1,2) such that U is a maximal independent set of the Kneser graph I of
type (1,2) in H. Furthermore, let C' be the set of all flags ([,.5) € V(I') such that
S<Hor (I,SNH)€eU. Then C is a maximal independent set of I" of size

5¢[3,4] - 54[1, 3] + U] - ¢°.

ii) The structures dual to those given in i).

Remark 2.4.2. The independent sets C' given in FExample 2.4.1 have cardinality
O] < 5q[3,4] - 54[1, 3] + 54[2)(54[3] + ¢°)¢*

with equality if and only if U is not only a mazimal independent set of T' but also an
independent set of T of mazimal size. According to [3, Proposition 2.1] by Blokhuis and
Brouwer mazimal independent sets of the Kneser graph of type (1,2) in PG(4,q) have
size at most 54[2](54[3] + ¢?).

Note that any set C' that we construct using such an independent set of I of mazimal
size was already provided in [3, Section 5.1] by Blokhuis and Brouwer. Also note that,
regardless of the choice of U, the set C has size |C| > s4(3,4] - 541, 3].

For the remainder of this section we let C' be a maximal co-clique of I'. We show that,
if C' is not given by Example 2.4.1 above, then its size is significantly smaller than the
size of these examples. We give a short outline of the method of proof below:

We begin by first determining some structure on the set of flags through a given line in
the maximal co-clique C. Thereafter, in Section 2.4.2, we proceed to study the structure
that is provided by a set of flags of C' through a given point. In Section 2.4.3 we then
provide some first bounds on the number of flags of C' in a given hyperplane. Finally,
in Section 2.4.4 we assume that C' is not given by Example 2.4.1, then consider a fixed
hyperplane containing a maximal number of flags and, using the maximal choice of said
hyperplane, determine an upper bound on |C].

Recall that Lemma 2.1.8 proves that two flags ([, S) and (I, S’) of " are adjacent if
and only if INS"'=0=10INS.
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2.4.1 Structure of Flags through a given Line

Throughout this section we let h be an arbitrary but fixed line in P and we set
L:={l<P:3S <Pwith SNh=0and (I,5) € C}.

Lemma 2.4.3. For all solids S <P with h < S we have S € II3(AL(C)) if and only if
SNL#D foralll € L.

Proof. If £ = (), then for all f = (I,S) € C we have SN h # () and according to
Lemma 2.1.3 this is equivalent to h being saturated in C. Therefore, for £ = () we have
S € I3(AL(C)) for all solids S <P with h < S and INS # () for all I € £ holds trivially,
proving the claim.

Now, assume that £ # 0. For I € £, S € II3(A(C)) with SNh =0 and S < P with
h < S as well as SNI =0 we have (h,S) ¢ C, proving S € II3(A,(C)) = VI € L :
SNil#0. Now, let S <P be a solid with h < S and SN # 0 for all [ € L. Then for
all f € C we either have 7 (f) ¢ £, which implies 73(f) Nh # 0, or m1(f) € L, which
implies 71 (f) NS # (. Therefore, for all f € C we have {f, (h,S)} ¢ E(T). Since C is
maximal this implies (h,S) € C, concluding this proof. O

Corollary 2.4.4. The line h is saturated in C if and only if L = ().

Lemma 2.4.5. Let there be a subset L C L such that (h, L) is a hyperplane of P. Then
there are two lines ly,ly € L with H = (h,l,13).

Proof. Let Iy € L be arbitrary but fixed. Then I3 N h = (), which proves that (h,l;) is a
solid. From H = (h, L) we know that there must be a line Iy € L with la £ (h,l;) and
thus (h,ly,l2) = H, as claimed. O

Lemma 2.4.6. Let there be two lines l1,lo € L such that H := (h,l1,13) is a hyperplane
of P. Then (h,l1)N(h,l2) is a plane and for all S € II3(Ay(C)) we have (h,l1)N{h,l3) <
S orS<H.

Proof. Since (h,ly,l3) is a hyperplane and S; := (h,l;) is a solid for both i € {1,2} we
know that S; # S9 and, for dimensional reasons, this implies that £ := S; N .S is a
plane.

Now, let S € II3(Ax(C)) be such that E £ S. For all i € {1,2} Lemma 2.4.3
shows SN1l; # () and, since £ £ S and h < E,S, we have h = ENS. Note that
this also implies that P; :== [; NS ¢ h is a point for both ¢ € {1,2}. Finally, since
H = (h,l1,l3) = (FE, P, P,) is a hyperplane we know that (h, P, P») is a solid with
(h, Py, Py) < S, which proves S = (h, P1, P;) < H, as claimed. O

Lemma 2.4.7. Let there be a subset L < L with (h,L) =P as well as a plane E with
h<EandlNE#0 for alll € L. Then we have E < S for all S € TI3(Ap(C)).
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Proof. Set P :=1NE for some [ € L and note that from [ Nh = () we have E = (h, P).
Furthermore, let S be a subspace of P with A < S and E £ S which meets all lines in
L. Then every line [ € L satisfies [ = ({INE,lNS) for all [ € L and thus we have

P=(h,L)=(E,L) = (E,S) = (P,S),

which implies dim(S) > 4. Therefore, there is no solid S with h < S, E £ S and
SNil#( for all ] € L and now Lemma 2.4.3 proves E < S for all S € II3(A,(C)). O

Lemma 2.4.8. For alll € L we have
I3(AL(C)) C {S € &[h,3,P] : dim(S N (h,1)) > 2}

and thus, if L # 0, then [TI3(AL(C))| §Aq3 +2¢* +q+1. Furthermore, equality holds if
and only if L # 0 and there is a solid S > h such that | < S for alll € L.

Proof. If £ = () then, according to Corollary 2.4.4, h is saturated and thus equality does
not hold and there remains nothing to prove.

Thus, assume that £ # (). Then, according to Lemma 2.4.3, for all S € &[h,3,P] we
have S € II3(Ap(C)) if and only if for all [ € £ we have SN # 0, that is, if and only if
for all [ € £ we have dim(S N (h,1)) > 2. Since £ # ) there is a line [; € £ and we have

TI3(AL(C))| < 54[1,2,3] - 54[0,2,3,5] + 1 = ¢* +2¢* + ¢ + 1.

Now, if I < 8 := (h,1;) for all | € £ and S is a solid through k with dim(S N S) > 2,
then S meets every line | < S and thus all lines of L, that is, Lemma 2.4.3 shows
S € TI3(Ax(C)). Hence, in this situation equality does hold.

However, if there is a line [ € £ with [ £ §, then there is a plane ' < S with ENl =0
as well as a solid S through E with SN[ = (), which proves that equality does not hold
and concludes the proof. O

Lemma 2.4.9. Let £ = £, ULy U L3 be such that Sl := (h,L1) and Sy := (h, L3) are
two solids with h = S1 N Se and such that | £ 51,5 for all | € L3. Furthermore, let
l1 € L1 and Iy € Lo be arbitrary but fized. Then

Hg(Ah(C)) - {<h, Pl,P2> Pel, P e ZQ}
as well as |TI3(AR(C))| < ¢ +2q + 1 and for L3 = 0 these hold with equality.

Proof. First, let S € II3(Ap(C)) be arbitrary and fixed. According to Lemma 2.4.8
we have P, := [; NS # () for all i € {1,2}. Furthermore, for all i € {1,2} we have
S; = (h,1;). Therefore, if P; = I; for some i € {1,2}, then S = S; and SN S5_; = h, that
is, SNli3_; = 0, a contradiction.

Hence, we know that P, and P, are points and from Py ¢ S; > (h, P}) we have
S = (h, P1, P»), as claimed. Since there are sq[1]2 choices for points P; € I; and P, € Iy
and every solid S € II3(Ax(C)) is uniquely determined by two such points, we have
T3(AR(C))] < s[1]* = ¢* +2¢ + 1
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Now, assume that £3 = (), let P; € [y and P, € [y be arbitrary points and set
S := (h, Py, P»). Then, for all i € {1,2} we know that (h, P;) is a plane contained in
§i and S. Therefore, S contains a hyperplane of both S, and S, and since every line
l € L= L1UL, is contained in one of these two subspaces, .S has non-empty intersection
with all lines | € £. Therefore, according to Lemma 2.4.3, S € II3(A,(C)) and thus

equality holds. O

Lemma 2.4.10. Let L = L1 U Ly be such that there is a complement U of h in P and
a unique requlus R in U with (h,1) NU € R for all | € L. Furthermore, for all | € Lo
assume that (h,1) U ¢ R.

Then T3(AR(C)) C {(h,g) : g € R}, where R is the unique opposite requlus of R
in U, we have [II3(Ap(C))| < ¢+ 1 and in both equations equality holds if and only if
Lo = 0. Furthermore, if Lo # 0 then |II3(AL(C))] € {0,1,2}.

Proof. Since there is a regulus R in U with (h,]) NU € R for all [ € £1 we know that
S = {(h1) : 1 € L1} is a set of solids such that for all distinct 5,5 € S we have
SN'S" = h. Furthermore, since the regulus R in U with (h,]) NU € R for all | € £; is
unique, we know that S has size r > 3. We let R be the unique opposite regulus of R
in U.

Then, for all S € T3(A,(C)) and alll € £ we have SN # () and thus dim(SNS) > 2 for
all S € S. Hence, for all S € I3(Ap(C)) and at least three distinct lines gy, s, g3 € R we
have SNgy, S NGy, SNGs # ) and thus SNU is a line of U with non-empty intersection
with at least three distinct and thus all lines of R, that is, SNU € R. This proves
II3(AL(C)) C {(h,g) : g € R} as well as |II3(An(C))| < |R| =¢+ 1. B

Now, if L3 = 0, then for all [ € £ = L1 we know that (h,l) N U is an element of R
and for all g € R this proves that g N (h,l) is a point and (h,l) N (h,g) is a plane, that
is, (h,g) N1 # 0. Hence, if L5 = ), then Lemma 2.4.3 proves (h, g) € II3(A,(C)) for all
g € R and thus [TI3(AL(C))| = |R| =q+ 1.

Finally, consider the case Lo # ), let | € L5 be an arbitrary but fixed line and set
g:=(h,1)NU. For S € II3(Ax(C)) we have SN # (), which proves dim(S N (h,1)) > 2
and thus also SNg # (). From [ € Lo we have g ¢ R, which shows that g has non-empty
intersection with at most two lines of R. Therefore, {(h,g) : g € RAGNg # 0} has
cardinality at most 2 and is a superset of II3(A(C)), which proves the last claim. O

Lemma 2.4.11. Let H := (h, L) be a hyperplane of P and let there be a plane E with
h < E < H such that INE # 0 for alll € L. Then II3(AL(C)) = S[E,3,P]U&]h,3, H]
and [H3(AR(C))| = 2¢> + g+ 1.

Proof. First, note that every solid S < H is a hyperplane of H and as such has non-
empty intersection with all lines [ € £. Furthermore, every solid S with £ < S has
non-empty intersection with all lines [ € £ because E has non empty intersection with
all these lines. Therefore, according to Lemma 2.4.3, all solids S with £ < S or S < H
are elements of II3(A(C)).

Now, from Lemma 2.4.5 we know that there are lines l1,ls € £ with (h,l;,ls) = H and
Lemma 2.4.6 shows (h,l1) N (h,l2) < S or S < H for all S € II3(A(C)). Furthermore,
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any plane on h which meets both /; and Iy is a subspace of the plane (h,l1) N (h,l2),
which proves E = (h,l1) N (h,l2).

Finally, there are s4[2, 3, 6] solids through E, s4[1, 3, 5] solids in H and s4[2, 3, 5] solids
through E in H, yielding a total of 5,[2,3, 6] + 54[1, 3, 5] — §4[2,3,5] = 2¢® + ¢ + 1 solids

in II3(Ap(C)), concluding the proof. O
Lemma 2.4.12. Let L be such that there is a plane E with h < E < P for which
Li:={leL:INE #0} satisfies (h,L1) =P. Then II3(A,(C)) C S[E,3,P| as well as

T3 (AL(C))| < ¢® + q+ 1 and equality holds if and only if L = L.

Proof. Lemma 2.4.7 shows II3(Ax(C)) € G[FE, 3,P] and thus [II3(Ax(C))| < 54[2,3,5] =
¢*>+q+1. Furthermore, for every solid S with E < S we have h < S and INS > INE # ()
for all I € £q, that is, if £\ £; = 0, then Lemma 2.4.3 shows that equality holds. Finally,
if £ # L4, then there is a line [ € £\ £; and a 3-dimensional complement S of [ in P with
E < S, that is S € 6[F, 3,P], and due to SN = () Lemma 2.4.3 shows S ¢ II3(A(C)),
concluding the proof. O

Lemma 2.4.13. Let E be a plane and let H be a hyperplane of P with h < E < H. We
set L1:=Ap(L), Lo ={le LINE#0}, L3:=L\(L1UL2) and U := (h,INH:l €
L\ L1). Furthermore, assume that one of the following holds

(I) (h,Ls) =P and we have L1\ Lo # 0, or

(II) {h,L1) = H, there is a plane E' # E with h < E' < H as well as I|NE’" # ) for
alll € Ly and we have (E', L2\ L1) =P, or

(III) {(h,L1) = H and for every plane E' with h < E' < H there is a line l € L1 such
that INE" = 0.

Then II3(AR(C)) = 6[U, 3, H] and dim(U) < 2 may only occur if (1II) holds.

Proof. First, note that from | < H for alll € £y and INU # () for all [ € L\ L1 we
have INS # () for all I € £ and all S € G[U,3, H]. Therefore, Lemma 2.4.3 shows
S[U, 3, H] C II3(AL(C)).

Also note that in the first case (h, Lo) =P # H > (h, L) implies L2\ £1 # () and in
the second case (E’, L2\ £1) = P implies the same. However, if Lo\ £1 # 0, then there
isalinel € Lo\ £y with h Z1N H € U, that is, dim(U) > 2. Therefore, dim(U) < 2
may only occur in the third case.

Now, it remains to show II3(A,(C)) C S[U, 3, H], that is, it remains to show that
every solid S € TI3(A,(C)) satisfies both U < S as well as S < H. In order to prove both
these claims we let S € II3(Ap(C)) be an arbitrary but fixed solid for the remainder of
this proof.

The first of the two remaining claims, that is U < S, is fairly simple to see: According
to Lemma 2.4.3 we have SNl # () foralll € L. For l € L\ L1 we have [ £ H and then
S < H implies that the point [N H is an element of S. Since h is also a subspace of S
this implies U = (h,INH :l € L\ L1) < S, as claimed.

For the second claim, that is S < H, we consider the three cases given in the claim
separately:
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(I) In the first case we may apply Lemma 2.4.7, which shows E < S. Since £1\ L2 # 0
we may let [; be a line therein, which implies [y N E = (). Then (E,l;) = H and
according to Lemma 2.4.3 we have S NIy # (). Together with F < S, F < H and
E Nl =0 this proves S = (E,SN) < H.

(IT) In the second case, according to Lemma 2.4.5 there are two lines Iy, € £ with
(h,11,1}) = H and the only plane through h in H which has non-empty intersection
with all lines in £; is the plane E' := (h,l;) N {h,l}). According to Lemma 2.4.6 we
have E' < Sor S < H. We assume E’ < S and show that S < H holds nonetheless.
Since (E', L2\ £1) = P there is a line ly € L5\ £1 and this line satisfies lo N E # ().
Since h=ENE and l;Nh =0 as well as Iy £ H and h < E' < H this implies
lo N E' = () and thus (E’,l3) is a hyperplane of P. However, (E’, Lo\ £1) = P and
thus there is another line l5 € Lo\ £1 with I5 € (E', 1) and thus (E',ls,15) = P.
Since by, NE # 0 #15,NE and h < E we know that H' := (h,ls,l5) = (E,l2,1})
is a hyperplane of P. According to Lemma 2.4.6 we thus have E < S or S < H'.
Now, we have E' £ H' from (E’ l1,ls) =P # H' > l1,l and we assumed E' < S,
which proves that S < H’ does not occur. Therefore, we have F < S and since F
and E’ are distinct planes in H this shows S = (E, E’) < H.

(IIT) In the third case, if S £ H then E' := S N H is a plane and there is a line
l € L1 with INE" = 0 and since [ < H this implies [ NS = ), a contradiction to
S € II3(Axr(C)) and Lemma 2.4.3. O

Lemma 2.4.14. Let L be such that (h,l:1 € LINE # () #P for every plane E > h
and such that to every hyperplane H > h of P there is a plane E > h with ENI1 # 0 for
alll € Ay (L). Furthermore, let L = L1 U Lo U L3y with £1 N Ly = 0 be such that all of
the following hold

(1) Hy := (h,Ly) is a hyperplane of P with | £ Hy for alll € L\ L1 and there is a
plane By with h < By < Hy and INEy # 0 for alll € L;.

(II) Hy := (Ey,Lo) # Hy is a hyperplane of P and there is a plane Ey # Ei with
h < Ey < Hj as well as N Ey # () for alll € Lo.

(III) For alli € {1,2} all lines | € L3 satisfy N E; = (0 as well as | £ H; and we set
U, := <El,l NHs_;: 1€ £3>

Then Hg(Ah(C)) = 6[U1,3,H2] U 6[U2,37 Hl], we have ‘Hg(Ah(C))’ =29+ 1if L3 = 0
and [II3(AL(C))| € {0,1,2} otherwise. Furthermore, if [II3(Ap(C))| = 2, then the two
distinct solids S, S" € T3(AR(C)) satisfy SN S" = h.

Proof. First, let S € 6[U;, 3, Hz—;] be an arbitrary but fixed solid for some arbitrary
but fixed index ¢ € {1,2}. Then S satisfies h < S, meets every line | € L3 because
INS >1NU; # 0, meets every line | € L; because [NS >IN E; # () and meets every
line [ € L3_; because S is a hyperplane of Hs_; > [. Therefore, S meets all lines [ € L
and thus, according to Lemma 2.4.3, is an element of II3(A(C)).
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Now, let S be an arbitrary but fixed solid in II3(Ax(C')). Since (h, L;) is a hyperplane
we know from Lemma 2.4.5 that there are lines l1, g1 € £1 with (h,l1,91) = H; and the
only plane through h in H which may have non-empty intersection with all lines in £
is the plane (h,l1) N (h,g1). Thus, Ey = (h,l1) N (h,l2) and Lemma 2.4.6 shows E; < S
or S < H;. Furthermore, since Hy = (F1, L3) is a hyperplane, we have Lo # (), that is,
there is a line ls € L9. We have lo £ Hy and, since

(h,le L:INEL #0) #P = (h,l1,91,l2),

we have s N Eq = (), which proves Hy = <E1, l2>. Since lo N Ey # 0 =1laNh, h < Ey < Hp
and ly £ Hy we have Ey = (h,lo N Hy) < (E1,la) = Hy. From Lemma 2.4.3 we know
that S Nly # () as well as SNl # O for all I3 € L3. Thus, S either satisfies S < H;
and S Nly # 0 implies By = (h,lo N Hy) < S or S £ H; and thus F; < S with
S = (E1,SNly) < H,. Hence, there is an index i € {1,2} with E; < S < Hs_; and,
since the smallest subspace of H3_; through FE; that meets all lines of L3 is the subspace
U;, we also have U; < S, concluding the proof of the first claim.

We proceed to determine [II3(Ap(C))|. First, assume that L3 is the empty set. Then
for all i € {1,2} we have U; = E; and there are §4[2, 3,4] = ¢g+1 solids through E; in H3_;.
Since there is one solid, namely the solid (F1, Es), that is being counted twice, we have
[TI3(AL(C))| = 2¢+ 1. Hence, from now on we may assume that L3 # (). Now, if there is
aline I3 € L3 with IsN(FE1, E2) # 0, then (Ey, E2) < Uy, Uy and there is at most one solid
in II3(Ax(C)), namely the solid (E1, E2). Therefore, from now on we may also assume
lsnN <E1,E2> = () for all I3 € L3. Note that this implies I3 N H; ¢ <E1,E2> = Hi N Hy
and proves I3 N H; ¢ Hs_; for all I3 € L3 and all i € {1,2}. Since E; < U; < Hs_; for
all i € {1,2} this implies that U; and Uy are subspaces of dimension at least 3 which
are distinct from the solid (Eq, E2). Thus, we have II3(A(C)) C {Uy,Us} as well as
[Ty (AR(C))] < 2.

Finally, consider |II3(Ax(C))| = 2, that is, II3(Ax(C)) = {U1, Uz} with two solids
Uy # Us. According to the above the two solids U; and Us are then distinct from
(E1, E9) = Hy N Hy and we have U; N H; = E; for all i € {1,2}. This implies

UnNnU; = (UlﬂHQ)ﬁ(UQﬁHl) = (UlﬂHl)ﬂ(UzﬁHz) =FEiNEy=h
and concludes the proof. O
Theorem 2.4.15. Ezactly one of the following cases occurs:
C1 TI3(AR(C)) is the set of all 54[1,3,5] = ¢* + ¢® + 2¢®> + ¢ + 1 solids through h,
C2 (a) there is a solid S > h such that H5(AR(C)) is the set of all G +2¢+q+1
solids S through h with dim(SNS) > 2,
(b) there are two solids Si, Sz with h = S1 NSy such that 3(Ap(C)) is the set of
all ¢*> + 2q + 1 solids S through h with dim(S N S;) = 2 = dim(S N Sa),

(c) there is a requlus G in a complement U of h in P such that II3(Ay(C)) is the
set of all ¢+ 1 solids (h,g) with g € G,
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(d) there are two solids S1 and Sy with h = S1 N Sy such that 3(AR(C)) =
{51, 82},

C3 (a) there is a plane E > h and a hyperplane H > E such that II3(Ap(C)) is the

set of all 2¢> + ¢+ 1 solids S with E < S or h< S < H,

(b) there is a plane E > h such that TI3(Ap(C)) is the set of all ¢*> +q+ 1 solids
S through E,

(c) there is a hyperplane H > h such that II3(Ay(C)) is the set of all ¢*> +q+ 1
solids S through h in H,

(d) there is a plane E > h and a hyperplane H > E such that II3(Ag(C)) is the
set of all ¢ + 1 solids S with E < S < H,

C4 there are two distinct planes Fq, Ey > h and two distinct hyperplanes Hy, Hy >
(E1, Eo) such that TIs(AR(C)) is the set of all 2q¢ + 1 solids S with E; < S < Hy
or By < S < Hjy,

C5 TI3(AR(C)) contains exactly one solid,
C6 TI3(AR(C)) is the empty set.

Proof. 1f £ = () then according to Corollary 2.4.4 we know that C1 occurs, if (h, L) is a
solid, then according to Lemma 2.4.8 we know that C2 (a) occurs and if £ = £; ULy such
that (h, £1) and (h, £2) are two solids with A = (h, £1)N(h, L2), then Lemma 2.4.9 shows
that C2 (b) occurs. Thus, assume that there are three solids Sy, So and S3 with pairwise
intersection h and such that for all i € {1,2,3} there is a line [ € £ with S; = (h,1).
Let U be a complement of h in P. Then ¢, := S1NU, g2 := SoNU and g3 :== S3NU
are three skew lines in U and according to Lemma 1.3.6 there is a unique regulus R in
U which contains these three lines. Using £1 = {l € £ : 3g € R with [ < (h,g)} and
Lo = L\ £1 Lemma 2.4.10 is applicable, showing that C2 (c¢) occurs if £ = () and that
either C2 (d), C5 or C6 occurs if Lo # (). Consequently, from now on we may assume
that

(I) there are no two solids S and S’ with h < 5,5 and I < Sorl < S foralll € L,
(IT) to every choice of hi, ho, hs € L the solids (h, h1), (h, he) and (h, h3) do not have

pairwise intersection h.

Now, consider the following two situations: First, let E be a plane with h < E and set
L:={leL:INE#0}. If (h,L) =P and L = L then Lemma 2.4.12 applies, proving
that C3 (b) occurs; if (h,L) = P and L # £ then Lemma 2.4.13 (the first condition is
fulfilled for H = (E, 1) for some [ € £\ L) applies, proving that C3 (d), C5 or C6 occurs;
and if (h,L) # P and £ = L, then Lemma 2.4.11 (dim((h, L)) > 4 per (I)) applies
proving that C3 (a) occurs. Secondly, let H be a hyperplane of P with h < H such that
to every plane E' with h < E' < H thereis alinel € £ with [l < H and [N E' = (.
Then, there is some line ;1 € £ with z; < H, some plane E,, < H that is the span
of h and a point of x; as well as a second line zo € £ with zo < H and 25N E,, = 0,
that is, we have H = (6 (L)). Thus, Lemma 2.4.13 is applicable (the third condition is
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fulfilled), showing that C3 (c), C3 (d), C5 or C6 occurs. Hence, from now on we may
also assume that

(ITI) to every plane E such that h < E the set L := {l € L : [N E # ()} satisfies
(h,L) # P as well as L # L,

(IV) to every hyperplane H of P with h < H there is a plane E with h < E < H and
INE #( foralll € Ay(L).

Note that (I) and (II) imply the existence of I1,1] € £ such that Ey := (h,l1) N (h,1})
is a plane and thus Hy := (h,l,l}) is a hyperplane of P. Furthermore, note that the
only plane through h that has non-empty intersection with both /1 and I} is the plane
E; and thus (IV) implies INE; # (@ for alll € £ := Ag, (L) (in the notation of (III) and
(IV) the set £ was called L). Now, (III) implies that every line | € £ with [N E; # ()
satisfies | < Hyp, that is, Ay, (L) = L1 ={l € L: 1N E; # 0} and (III) also implies that
there is a line Iy € £ with I[N Ey = () and thus Hs := (E1, o) is a hyperplane of P. From
L1={leL:INEy # 0} we have Iy ¢ L1, that is, ls £ Hy, which implies Ho # Hy. We
also know that loNH is a point with [oNH; ¢ Eq and thus Fy := (h,loNHy) < HiNHj is
a plane with Fy # F1. Weset Lo :={l € L\L1 : INEy # 0} as well as L3 := L\ (L1UL32).

If (E1, L) = P, then Lemma 2.4.13 applies (the second condition is fulfilled for H =
H,, E = Ey and E' = Ey), proving that C3 (d), C5 or C6 occurs. Thus, we may assume
that (E1, Lo) = Hy. If | £ Hy for all | € L3, then Lemma 2.4.14 applies, proving that
C4, C2 (d), C5 or C6 occurs. Hence, let there be a line I3 € L3 with I3 < Hy and let Fs
be the unique plane provided by (IV) with h < E3 < Hy and [N E3 # () for alll € £
with [ < Hy. From I3 ¢ Lo we have l3N Ey = (), proving Ey # E3 as well as I3 £ (h, l2),
that is, Hy = (h,l2,l3). From ly N Hy = la N Ey # ls N E3 we know that lo N E3 ¢ Hy
and thus E3 £ Hy. Every line [ € £ with [ < Hy N Hy satisfies [N Ey # 0 # 1N E3 and
thus [ £ Hy, a contradiction, which proves l1,1] £ Hy. Now, Lemma 2.4.13 applies (the
second condition is fulfilled for H = Hy, E = F; and E’ = E3 — note that the roles of
L1 and L9 are swapped) and the subspace U given there satisfies dim(U) > 2, proving
that C3 (d), C5 or C6 occurs. O

Remark 2.4.16. From the proof of Theorem 2.4.15 we also gather that C1 only occurs
if Corollary 2.4.4 1is applicable, C2 (a) only occurs if Lemma 2.4.8 is applicable with
equality, C2 (b) only occurs if Lemma 2.4.9 is applicable with L3 = 0, C2 (c) only
occurs if Lemma 2.4.10 is applicable with Lo = (), C3 (a) only occurs if Lemma 2.4.11
is applicable, C3 (b) only occurs if Lemma 2.4.12 is applicable with L = L1, C3 (c) only
occurs if Lemma 2.4.13 is applicable with dim(U) = 1, that is, L = L1, C3 (d) only
occurs if Lemma 2.4.18 is applicable with dim(U) = 2 and C4 only occurs if Lemma
2.4.14 is applicable with L3 = ().

2.4.2 Structure provided by Flags through a given Point P

Throughout this section we let H be a hyperplane of P and we let P be a point of H.
We always consider a set £ of lines on P which all satisfy a given subset of the cases
of Theorem 2.4.15 and determine implications that the flags through lines of that set
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yield for the rest of C. In fact, the flags that correspond to lines in £ will never provide
any further information on flags the contain P, but only on flags that do not contain P.
One should keep that in mind when reading this section, as the results here are mostly
trivially true for flags that do contain P.

We begin with a quite obvious result that will be used frequently.

Lemma 2.4.17. If £ is a non-empty set of lines through P such that | £ H for all
1€ &, then |g| < gdim(eN-1,

Proof. We let £ be as in the claim and set d := dim(({£)). Since H is a hyperplane we
know that (£) N H is a hyperplane of (£) and thus has dimension d — 1. Then the claim
follows from

L] < |S[P,1, ()] \ 6[P, 1, (L) N H]| = 54[0,1,d] — 54[0,1,d — 1] = ¢%~ 1. O

The following Lemma is in regard to cases C2 (a), C3 (a) and C3 (c) of Theorem
2.4.15 and uses the existence of the solid (in case of C2 (a)) or the hyperplane (in the
other two cases) that is given there. Note that, although in these cases the arguments
are basically the same, the proof is quite technical and it is best to first read it for the
first case and then for the other two cases. In the terminology of the proof these two
situations are distinguished via x = 3 and xk = 4.

Proposition 2.4.18. Let £ be a non-empty set of lines | with P € | £ H such that one
of the following holds:

(1) Every line l € £ satisfies C2 (a) of Theorem 2.4.15.
(II) Every line l € £ satisfies C3 (a) or C3 (c) of Theorem 2.4.15.

Furthermore, let d € {1,...,4} and, if (I) occurs, then set k := 3 and otherwise, if (II)
occurs, then set k := 4.

If for some integer & we have |£] > k& and for every subspace G of dimension d we
have |Aq(£)| < &, then there is a subspace U with

dim(U) < {Ii —1 ford 2.%;,

K otherwise
such that for every line | with | £ U there is a subspace Gy > P with dim(G;) > d+1 for
which every solid S € II3(A;(C)) contains P or a complement of P in Gj. Moreover, in
the above, if there is a subspace V. with dim(V) =d+1 and g <V for all g € £, then
V = Gy for all lines | with | £ U, and, if dim(U) = k, then G; < U for all lines | with
I LU.

Proof. For every line [ € £ let W; be the subspace with m1(f) < W or m3(f) Nl # 0
for all f € C provided by Theorem 2.4.15 and the respective Lemma that occurs, as is
listed in Remark 2.4.16. Note that this implies m1(f) < W or m3(f) Nl # O foralll € £
and all f € C. Furthermore, we have dim(WW;) = dim(Wy) for all [, g € £, that is, we
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may set k(L) := dim(W;) for some arbitrary | € £ and note that we have k(£) = 3 if
case (I) occurs and k(L) = 4 if case (II) occurs, that is, we have k(£) = k.

The idea is now as follows. Recall, that our aim was to find implications that the
set £ gives for the set of flags of C' on a line [. If [ contains P, then, as we mentioned
earlier, one may not gather any implications for the flags on [ from the set £ and its
corresponding flags. Thus, we only consider lines [ with P ¢ [. Among those lines we
choose the line [ for which we may gather the smallest amount of information. This line
is such, that for most lines g € £ we have [ < W, and its span with P is a plane that
will be called Us. We note that £ yields the same amount of information for any other
line in this plane which does not contain P. Now, if the information that £ yields for [
is already sufficient, then it is sufficient for all lines per our choice of the line. However,
if it is not, then we choose another line with that property (which meets Uy in a point)
and the span of that line together with Uy will be called Us. We proceed as such until
we finally find a line that provides enough information. We now provide the formal
definition of these subspaces Us;.

For all U < P with P € U we set £y :={l € £: U < W;} and note that for U,V <P
with P € U,V we obviously have U < V — £y C £y. Furthermore, for convenience
we set Uy := P and for all i € {2,...,5} we let U; € S[U;_1,1,P] be such that for all
U € 8[U;-1,i,P] we have |Ly, , \ £u,| < |Lu,_, \ Lu|. Note that, although U; has
dimension 0, the subspaces U; for ¢ € {2,...,5} have dimension i.

From our definition above we have £y, = £p = £, we know that dim(Uy) = k =
dim(W;) implies | < W; = U,, for all | € £y, and, in addition to that, for all [ € £ and
all j € {1,...,5} with j > xk we have dim(U;) = j > x = dim(W}) and thus U; £ W},
that is, £y, = (). Moreover, for all i € {2,...,5} and every subspace U with U;_1 < U
and dim(U) > ¢ we have

1Luiy \ Lul = v,y \£Udim(U)| > Ly, \ Loyl (2.35)

Now, let £ be an integer, let |£¢,| = |£] > k€ and assume that every subspace G of
dimension d satisfies |[Ag(£)| < €. Since £y, , = 0 there is v € {2,...,k + 1} such that
|0, , \ Lu,| > & We choose v minimal with that property, set U := U,_; and note
that we have dim(U) < v — 1 < k. Note that the existence of an integer j < k with
|€u;| < (k41— j)¢ proves v < j and, if d > &, then, since | < U, for all | € £, we
have | £y, | < € and thus v < &, which implies dim(U) < k — 1 for d > &.

Note that for any line [ with P € [ the claim holds trivially (choosing a fitting subspace
for G;) and thus we only consider lines [ with P ¢ [ in the following. For any line [ with
P ¢ 1 £U we have |Ly \ Lupl = [€0 \ Lo, | > & (using Equation (2.35)) and any line
g € £ = Ly \ Ly satisfies I £ W,. Hence, for all f € C we know that 71(f) £ U
implies that m3(f) has non-empty intersection with all lines in Em(f)‘ Let [ be an
arbitrary line with P ¢ [ £ U. Every solid S € II3(A;(C)) contains P or a complement
of P in G; := (£;) > P. Since any d-dimensional subspace contains at most £ lines of
£ we know that GG; has dimension at least d + 1. Obviously, if there is a subspace V of
dimension d + 1 such that g <V for all g € £, then G; <V and thus G; = V. Finally,
note that for dim(U) = k we have g < U, = U for all g € £y D £, that is, G; < U. [
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Cases C3 (a) and C3 (b) of Theorem 2.4.15

For this part we let £ be a set of lines | with P € | £ H which satisfy case C3 (a) or
C3 (b) of Theorem 2.4.15 (the set £ may contain lines of both cases). Furthermore, for
every line [ € £ we let E; > [ be the plane with m1(f) N E; # 0 or 73(f) N1 # 0 for all
f € C provided by Theorem 2.4.15 and the respective Lemma that occurs, as is listed
in Remark 2.4.16. Finally, for all lines h € S[P,1,P] we set £, :={l € £: h < E;}, for
all lines h € £ := &[P,0,1,P] we set £, := Ugen £(g,py and for every line h € &[1,P]
we set £, 1= £\ £

Lemma 2.4.19. Let & > q be an integer and g € S[P,1,P] be a line with
E+q* for&> g
o]

3¢ otherwise.

If&> q? then all lines | € &g, 0,1,P] satisfy |£] > &, and if § < q? then there is a solid
S > g such that all lines | € Sg,0,1,P] with | £ S satisfy || > €.

Proof. Let h € &[g,0,1,P] be such that
Vi€ &g, 0,1, : |€,1 Sh] > €, N -

For any line [ € £, N £;, we have g < Ej as well as E; N h # 0 and, since g N h = () and
E; is a plane, this implies E; = (g, E; N h) < (g, h) and may only occur for [ < (g, h).
This proves £,N £, C [P, 1, (h, g)]. Now, for all | € S[g,0,1,P] we have £,\ & C &
and thus if |[£, N £4] < [£4] — &, then

|El| = |£g\£l| = |£g| - ‘Sg Ngl= "Sg‘ - ’gg N Lyl > |Sg| - (|£g| —§)=¢

and there remains nothing to prove. Indeed, if £ > ¢2, then we may use Lemma 2.4.17
to see that this situation occurs:

2417 )
1€NLhl < ¢ =(E+q)—§< L] -¢

Therefore, we may assume ¢ < & < ¢% with |£,4] > 3¢ as well as [£, N £5,| > 2. We set
S :=(h,g) and let [ be a line with [ £ S and INg = 0. If INS = @, then the fact that for
all I’ € £,N L, we have Ey < S and thus Ey Nl < SN1 =0 implies |§;| > |4 N L] > 2
and there remains nothing to prove. Thus, assume that [ N Sisa point. Then there is
only one plane in &g, 2, §] which meets [, namely the plane E := (g,{ N §> Any line
' e &, N Ly with Ey N1 # (0 satisfies I’ < Ep = E. Furthermore, in E there are at most
¢ lines through P which do not lie in H, which proves |£, N £, N £;| < ¢ and thus the
claim is implied by

€] > [(Lg N L)\ &l = [€4N Ll = [€4N LN L > 26— g > & O
Lemma 2.4.20. Let £ > q be an integer and let |£] > 2§ + ag + Pe with

{£+q2 for € > ¢2, {q2 for € > ¢2,
Ozg =

and Be 1=
3¢ otherwise ag + & otherwise.

Then one of the following occurs:
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i) There is a line g (and a solid S for & < ¢*) with P € g (and g < S for £ < ¢*)
such that for allh € L with hNg=0 (and h £ S for £ < q*) we have |£5,| > &.
1) There is a plane E1 > P such that for all h € L with h £ E1 we have ]Eh\ > £.

iii) € < ¢ and there are two planes Ey > P and Ey > P such that for all h € L with
h £ Ey and h £ Ey we have |£,| > €.

i) & < ¢ and there is a subspace H' of dimension at most 4 such that for all h € L
with h £ H' we have |£5]| > €.

Proof. Let hy € L be such that £, > || for all b € £ and set Ey := (P, hy). If
|Lh, | < |£] = &, then for all [ € £ we have

(&l = [£] = |&] > |€] = |€n] > |2 = (I1€] - &) =&,

and, choosing arbitrary subspaces in the claims, all of these hold. Furthermore, if there is
a line g € 6[P,1,P] with |£,] > ag, then Lemma 2.4.19 proves that i) holds. Therefore,
we assume

1€hy| > L] = &> €+ ae + B (2.36)
as well as
Vg e G[P,1,P] : |€4] < g (2.37)
and let hg € {l € L:1 £ E1} be such that
Vhe{le L:1L E}:|Lh N ELhy| > 1Lh N LI (2.38)
Again, if |£5, N Lh,| < |Lh,| — &, then for all I € £ with | £ E; we have
_ (2.38)
1Sl 2 1Lm \ &l = L = 1€, N &L = |84, ] = [0y N Lhy | (2.39)
> [ ] = (180 ] =) =&,

and ii) holds.
Now, any line | € £,, N £y, satisfies F; N h; # () for all i € {1,2} and thus either
<P5Elmhl> = <P7Elmh2>7 or

< E; = <P, E;Nhy, BN hg) < <P, hl,h2> = H'. (2.40)

Note that (P, E; N hy) = (P, E; N hg) for some [ € £, N £, may only occur, if £y and
E5 := (P, hy) have a line in common. Therefore, we have

S[P, 1, H'] for P = Fy N Bs,

(2.41)
G[P, 1, Hl] UZLEr,nE, for dim(El N EQ) =1

'Shl ﬂEhQ - {
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and, if we apply Lemma 2.4.17 and use Equation (2.37), then we see that

3
q for P = E1 N Es,
‘£h1 N ’Q‘hz‘ < 2 .
¢ +a¢ for dim(E; N Ey) = 1.
Hence, if P = E1 N Ey and € > ¢® — ¢®> > ¢?, then we have ag =&+ ¢ as well as

(2.36)
1€, NLh | <@ <+ =a < || ¢,

and if dim(E; N Ey) = 1 and ¢ > ¢?, then we have

(2.36)
€0, N Lhyl Sac+ @ =ac+Be < |Ln|—¢

and either way Equation (2.39) proves ii). Since this covers all cases with & > ¢3 this
also implies that for &€ > ¢3 one of the first two cases occurs, as claimed.
Therefore, from now on we may assume that

(2.36)
1€y N Lhy| 2 [€1| =€ > e+ B¢ (2.42)

and either £y N By = P with £ < ¢® — ¢2, or dim(E; N E») = 1 with £ < ¢%. We study
the two situations £ > ¢ and ¢ < ¢? separately.

First, assume that ¢ > ¢% and thus Ey N Ey = P occurs. Then H' is a hyperplane of
P, Equation (2.41) shows £4, N £, C &[P,1, H'] and we have g = ¢*> + £ as well as
Be = ¢®. Let h € £ be an arbitrary but fixed line with h £ E1, E5. We determine the
number of planes through P which meet hy, ho as well as h and, using that number, we
determine the cardinality of £, N £4, N £4. In view of that we recall that any plane E
which contains P and meets both hi and hs is a subspace of H’, as we have seen earlier
in Equation (2.40). Now, since H' is a hyperplane of P we know that Q := hN H' is a
point or the line A itself, which leaves us with two cases to consider:

e Let Q be a point. Since Fy N Ey = P ¢ h we know that there is some index
i € {1,2} with Q ¢ E;. Therefore, any plane E with P,Q € E and ENh; # 0
satisfies E < (E;, Q). Now, for all [ € £5,, N £, N £y, this implies | < E; < (E;, Q)
and, using Lemma 2.4.17 and the fact that (E;, Q) has dimension 3, this shows

|Lh, N Ly N E4| < @2 (2.43)

e Let Q = h, that is, h < H'. Every plane that meets h; and lies in H’ lies in
one of the solids of &[Ey,3,H']. Since h € Ej, E, there is at most one solid
S € G[E1,3,H'] with h < S. Furthermore, if h N Ey is a point, then, since
E1NEy =P ¢ h and thus hN Ey ¢ E, there is at most one solid S € G[E1, 3, H'|
with h N By € S. Moreover, if h N Es is a point and there are solids 5,5’ €
S[E4,3, H'] such that h < S and h N Ey € S’, then obviously S = S’. Hence, we
may let {S1,...,Sq41} = 6[E1, 3, H'] be such that P; := S; N h is a point for all
i€ {l,...,q+ 1} and such that, if hN Ey # (), then h N Ey € Sy.
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Now, for all i € {2,...,¢+ 1} we know that P; is a point which does not lie in
FE5 and the only plane in S; through P which meets hy, ho and h is the plane
Ui := (P;,S; N E3). Therefore, if we set Uy := Sy, then for all [ € £5, N £y, N Ly
we have | < E; < U; for some i € {1,...,q+ 1} and this proves

g+1
€1, O €5y N L] <D ISP, 1L, U)| — |S[P,1,U; N H]| = 2¢°. (2.44)
=1

Now, using Equations (2.43) and (2.44) in the step marked with (x), we have

_ (%) 5 (242) 9
|£h‘ > ’,th ﬂ£h2| - |Sh1 ﬂﬂhz ﬂ£h| > |£h1 ﬂ£h2| —2q9° > Qg +ﬁ§ —2q¢° =&

and, due to the arbitrary choice of h € £ with h £ Ey, FE, this proves iii). Since this
covers all cases with £ > ¢? this also implies that for £ > ¢ one of the first three cases
occurs, as claimed.

Finally, consider £ < ¢2, which implies Be = ag + &, and let h € £ be a line with
h £ H’'. Recall that H does not necessarily have to be a hyperplane of P — it has
smaller dimension if and only if dim(E; N E2) > 0. For any line [ € £,, N £, we
either have dim(Ey N Ey) = 1 and | € £g,np,, or we have | < E; < H'. Note that,
if I € L, N Ly, satisfies | < E; < H', then we have [ € £, if and only if AN H' # ()
and h N H' € Ej, that is, if and only if hN H # § and | € £ppnpry. Now, using
Equation (2.37) we have |£ppnpny| < ag for AN H' # 0 as well as |Lg,np,| < a¢ for
dim(Ey N Ep) = 1. This proves [£, N £y, N £1| < 2a¢ and thus we have

<

|Eh| > |£h1ﬂ£h2|—‘2hlm£h2m£h|>05£+B£_2a§€ £,

and, using the arbitrary choice of h, this proves iv) and concludes the proof. ]

Proposition 2.4.21.  4) If |£] > 5¢%, then one of the following occurs:

a) There is a line g > P and for any line l € L with INg = () there is a hyperplane
H; 5 P such that any solid S € II3(A;(C)) contains P or a complement of P
m Hl-

b) There are two planes Ey and Ey through P and for any line | € L with
Ey # 1 £ Ey there is a hyperplane H; > P such that any solid S € I3(A;(C))
contains P or a complement of P in Hj.

i) If either |£] > 9q and (£) is a solid, or if |£| > 81q and any subset £ C £ of more
than 9q lines spans at least a hyperplane, then there is a solid S’ on P such that
one of the following occurs:

a) There is a line g and a solid S with P € g < S and for any line |l € L with
INg="0andl £ §, S there is a hyperplane H; > P such that any solid
S € II3(A(C)) contains P or a complement of P in H;.

b) There is a subspace H' of dimension at most 4 and for any line | € L with
I £ H andl £ S there is a hyperplane H; > P such that any solid S €
II3(A(C)) contains P or a complement of P in Hj.
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Proof. We prove the claims by applying Lemma 2.4.20, we do so simultaneously and
the strategy is as follows: For the proof of i) we apply Lemma 2.4.20 with ¢ = ¢%. For
the proof of ii), if |£| > 9¢ and (£) is a solid, then we set 5" := (£) and apply Lemma
2.4.20 with £ = ¢ and if |£] > 81¢ such that any subset £ C £ of more than 9¢ lines
spans at least a hyperplane, then we let S’ be an arbitrary solid on P and apply Lemma
2.4.20 with & = 9¢q. Furthermore, in the following we use the notation that is provided
by Lemma 2.4.20. Moreover, we remark that for the proof of i), if 2.4.20 ii) occurs, then
in view of 2.4.20 iii) we may let E9 be an arbitrary plane on P and for the proof of ii),
if 2.4.20 ii) or 2.4.20 iii) occurs, then in view of 2.4.20 iv) we may let H' be an arbitrary
subspace of dimension at most 4 containing Fy or E; and Es. Hence, for the proof of
i) we may assume that either 2.4.20 i) or 2.4.20 iii) occurs and for the proof of ii) we
may assume that either 2.4.20 i) or 2.4.20 iv) occurs. Note that, for the proof of ii),
if 2.4.20 i) occurs, then we denote the solid S mentioned there for & < ¢ by S in the
equation below. Thus, using S := 5’ := ) for the proof of i), we set

{leL:lng=0,1¢5,5} if2.4.201) occurs,
L :={{leLl:l<E, E5} if 2.4.20 iii) occurs,
{lec:1¢ 8 H} if 2.4.20 iv) occurs

Furthermore, we let | be an arbitrary but fixed line of £’ such that, as we explained
above, Lemma 2.4.20 proves |£;| > &, using the respective value of ¢ € {¢?,9¢, ¢}

Now, consider i) and the part of ii) with |£| > 81¢ such that any subset £ C £ of more
than 9¢ lines spans at least a hyperplane of P. Recall that for the former we use & = ¢
and for the latter we use & = 9¢. Note that every line I’ € £ satisfies P € I’ £ H and thus
Lemma 2.4.17 shows that any solid on P may contain at most ¢ lines of £ C £. Hence,
in both situations the lines in £; span a subspace of P of dimension at least 4. Therefore,
we find lines I, ...,l; € £ which span a hyperplane H; on P. Any solid S € II3(A;(C))
satisfies SN1I; # 0 for all ¢ € {1,...,4} and we have (SNly,...,SNly) < H NS. Now,
if P ¢S, then for all ¢ € {1,...,4} we have [; = (P,SN;) < (ly,...,ls) = H;, which
implies H; = (P, SN H;) and S contains a complement of P in Hj, as claimed

Finally, consider the case |£| > 9¢ such that S’ = (£) is a solid. Recall that in this
situation we set £ = ¢. Since every line I’ € £ satisfies P € I’ £ H we may apply Lemma
2.4.17 and see that any plane on P may contain at most ¢ lines of £; C £. Thus we find
lines l1,ls, I3 € € which span a solid on P, that is, they span S’. We set H; := <l,§’>
and assume that there is a solid S € II3(A;(C)), for otherwise the claim holds for some
arbitrary hyperplane and there remains nothing to prove. Then S satisfies S NI; # ()
for all i € {1,2,3} and we have (SNi1, SN2, SNli3) < S’. Now, if P ¢ S, then for all
i€ {1,2,3} we have [; = (P,S N 1) < (Iy,lp,13) = &', which implies 5" = (P,5 N 5"
and S contains the complement S NS’ of P in §'. Therefore, if P ¢ S, then SN 5" is a
plane and, since S is a solid that also contains I, this proves () # I N S’ € §N S and thus
(1, SN S') is a complement of P in H; = (I,5"), too, which concludes the proof. O
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Case C2 (b) of Theorem 2.4.15

For this part we let £ be a set of lines | with P € [ £ H which satisfy case C2 (b) of
Theorem 2.4.15. For every line [ € £ we know from Remark 2.4.16 that Lemma 2.4.9
is applicable with £3 = 0 and we let S} and Sl_1 with S} N Sl_1 = [ be the two solids
provided there, for which we know that for all f € C' we have m(f) < S}, m1(f) < S,
or m3(f) Nl # (. Furthermore, we set £y := £, for every subspace U we set

Cy={leL:U<SVvU<S}
and for all g € &[1,P] we set
Lo=L\Ly={leL:gZS ' ng LS.

Note that to every subspace U and every line [ € £y with U £ [ = Sll N Sl_l (in
particular, for every subspace U with dim(U) > 1 and P ¢ U or dim(U) > 2) there is
a unique index € € {—1,1} with U < Sf and in this case we denote this index by e (1).
We first construct two planes and a solid in three steps, as follows:

e Let g1 € S[P,0,1,P] be such that
Vg e S[P,0,1,P]: |£\ L4, <L\ £yl (2.45)
and set Uy := (P, g1) as well as £ := £y, = £,.
e Let go € S[P,(),1,P] with go £ Uy be such that
Vg € S[P,0,1,P] with g £ Uy : [€1\ £4,] < |€1\ &4 (2.46)

and set £9 := £1 N Ly, C £ N Ly, with

(P,go) for gon Uy =0,
Uy .=
(U1,g2) otherwise.

e Let g3 € S[P,0,1,P] with g3 £ Uy, Us be such that
Vg € G[P,0,1,P] with g £ Up,Us : [€2\ £g5] < L2\ £ (2.47)
and set £3 := L2 N Ly, C L3N 293 with

(P,gs) for goNUy # 0,
U3 = <U1793> forgQDU1:®/\Ulmg37£®a
(Us, g3) otherwise.

Note that in view of Proposition 2.4.24 below we may assume that we have £y # () and
then our choice above implies that the sets £1, £9 and £3 may not be empty sets, either.
Therefore, if Uy and U, are planes (and thus satisfy Uy N Us = P), then g3 satisfies
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g3 NU; # 0 for some i € {1,2}, since otherwise £3 would be the empty set. Thus, we
may denote the subspaces Uy, Uz and Us (not necessarily in that order) by &£, & and
S with & < S, that is, {€,&,8} = {U1,Us,Us}, where £ and &' are planes and S is
a solid. Furthermore, we let {o,7,7'} = {1,2,3} be such that S = U, = (U, g,) and
finally, we let g4 € G[P,0,1,P] with g4 £ £, S, that is g4 € U1, Ua, Us, be such that

Vg € 6[P,0,1,P] with g £ £,S : [€3\ £4,] < L3\ &4 (2.48)
and set £4 := £3N Ly,.

Lemma 2.4.22. For all k € {1,2,3} with Uy, = (P, gx) we have £, = £,_1 N Ly, and,
if k> 1, then €4, (1) = ey, (1) = —epy,_, (1) for alll € £.

Proof. Let r € {1,2,3} be such that U,, = (P, g,,). Foralll € £, wehave P € [ < 5, (l),
which proves U, < Sleg”””(l) and thus £, = £y, , that is, £, = £._1 N £,,. Moreover, for
l € £, and k > 1 we have g, £ S;U"*l(l) from

{gmUH_lz(ﬂ if Kk =2,

€ l
SlU'{il(): ,.@,1:U2,>_‘ggzg,€ if k=3

and that implies
Vie L, e, (l) =€y, (1) =—ey,_, (1) O

Lemma 2.4.23. We have |£,| < ¢*. Furthermore, if o = 2, then we have |(£1 N £,,) \
L9| <1 and finally, if o0 = 3, then we have

2 for gsNUy # 0 # g3 NUs,

(2.49)
0 forgsnNUi=0=g3NUs

|£2ﬂ293’ < {

as well as L2 N Ly, = L3.

Proof. For all | € £, we have [ < S;'° O = U, and Lemma 2.4.17 proves |£,| < ¢?. We
also recall that we have S} N Sl_1 =lforallle L.
We consider ¢ = 2. For all | € £ N £y, with [ ¢ £y, that is [ ¢ £y,, we have

g2 < Sle”(l) ? Uz = (U1, g2) and thus U; £ Sle‘”(l), that is, ey, (1) # €g,(1). Therefore,
for all [ € £ N £y, with | ¢ £o the following equation holds for i« = 1 and proves
I = (P,goNU;) and thus the claim:

)

P#gnUeseVngu —glngt—i5p (2.50)

Finally, we assume that ¢ = 3. Then we know that Lemma 2.4.22 applies with x = 2
and thus for all [ € £ N £,, we have ey, (1) # ey, (1). Therefore, if gsN UL # 0 # gsNUs
and [ € £9 N £g,, then there is some i € {1,2} with e, (l) # €4,(l) and Equation (2.50)
holds for this index ¢ and ¢ = 3, which shows | = (P, g3 N U;). Since the index i € {1, 2}
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was dependent on the line [ this proves that there are at most two such lines, as claimed.
Furthermore, for all [ € £ and all i € {1,2} we have gsNU; = ) = g3 £ S;Ui(l).
Hence, if g3 N U; = 0 for both i € {1,2}, then ey, (I) # ey, (l) implies | ¢ £,4, for

all I € £9 and thus £ N £y, = 0. Finally, if there is a unique index i € {1,2} with
(1
g3 NU; # 0 and we have a line I € £ N £, then g3 N Us_; = () implies g3 £ S;U3_’()

and therefore ey, (1) # €y, (1) implies g3 < S;Ui(l) and thus Us = (g3, U;) < S;Ui(l). This
proves £o N £y, C £o N Ly, = L3 and, since we trivially have £3 C £ N £4;, that
concludes this proof. O

Proposition 2.4.24. If for some £ € N we have |£]| > 4€ + 2, then the two subspaces €
and S with P € £ENS, dim(ENS) <1, dim(E) < 2 and dim(S) < 3 are such, that for
all g € G[P,0,1,P] with g £ E,S there are more than & lines in £ that meet every solid
S e II3(A,(0)).

Proof. For all (g,5) € C we have SNl # 0 for all | € £, from our definition of £,. Hence,
we shall provide a lower bound on fg for all lines ¢ in question and, due to Equation
(2.48), we may do so by considering the line gy4.

Foralll € £4 = £3N Ly, we have g4 £ S = SIES(Z) > &’ and thus g4 < Sleg(l) as well

as SY > £ which proves S = (€, g4) and thus I = SN (£, ga), that is, |€4] < 1.
Hence, if [£o| > 4£ + 2, then

£E+1 fori=o,

2.51
& otherwise. ( )

3i€{1,...,4}:‘£2‘_1\£i’>{

We let p be the smallest integer in {1,...,4} for which this equation holds and set
£:=2£8,1\&y, C &y, Note that our minimal choice of g, per Equations (2.45), (2.46),
(2.47) or (2.48) now proves |£,] > |£| for all g € S[P,0,1,P| with g £ U; for all i < p
and therefore, to prove the claim it suffices to show |£| > . Note that the way of proof
also allows to determine upper bounds on p and we collect these in a remark after this
proof.

If o # p, then £, = £, 1N £y, (this is the definition for p = 4 and for p < 3 it follows
from Lemma 2.4.22) and thus we have

Lo\ L =L\ &y, (2.52)

and Equation (2.51) implies |£| > ¢. Furthermore, if p = 0 = 2 then Lemma 2.4.23
applies, that is, we have |[(£1 N £g,) \ £2| < 1 and together with Equation (2.51) this
implies |£]| > £. Finally, if p = o = 3, then the minimal choice of p implies |£,_1] =
|€2] > 2642 and Lemma 2.4.23 applies, that is, either one of the cases given in Equation
(2.49) occurs, which proves |£] > 2¢, or £, = £,_1 N &y, and then, too, Equation (2.52)
holds and again Equation (2.51) implies |£]| > &. O

Remark 2.4.25. Using the same notation as in the proof of Proposition 2.4.24 we also
have the following bounds on p:
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i) If dim(ENE") =1, then p < 3 and if also &€ > >, then p < 2.

Proof. Let dim(£NE’) = 1 and note that per our construction this may only occur
if 0 = 2, in which case Us is the second plane that we have constructed above.
Any line | € £3 then satisfies

ene <sEWnge® —glngl =1,

that is, [ = £ N E'. Hence, we have |£3| < 1, which proves p < 3. Furthermore,
we additionally have |£5] < ¢? from Lemma 2.4.23 and thus, given ¢ > ¢2, we may
deduce that Equation (2.51) holds for some i € {1,2}, which proves p < 2. O

i) If &€ > ¢%, then, using Lemma 2.4.23, we have |£3| < |£,| < ¢%, which proves
p<3.

Case C2 (c) of Theorem 2.4.15

For this part we let £ be a set of lines [ with P € | £ H which satisfy case C2 (c)
of Theorem 2.4.15. Note that for all [ € £ we have |II3(A;(C))| = ¢ + 1 and may let
Sk ..., Squ be the solids in II3(A;(C)). Furthermore, for every subspace U we set

Ly={leg:Fie{l,. . .  q+1} withU < S},
and for all g € &[1,P] we set
L=\ & ={leL:Vie{l,...,q+1} we have g £ S/ }.
We recall that the solids of II3(A;(C)) have pairwise intersection ! and thus to every
subspace U and every line [ € £y with U £ [ (in particular, for every subspace U with
dim(U) > 1 and P ¢ U or dim(U) > 2) there is a unique index ¢ € {1,...,q + 1}
with U < Sf and we denote this index by e (1). Furthermore, we let £y denote £ and
for all i € {1,...,5} we let g; € &[P,0,1,P] be such that, setting U; := (P, g;) and
£i = Ly, N L;_1, the planes Uy, ..., Us are pairwise distinct and all
ge L :={he&P0,1,P:Vje{l,...,i— 1} we have h £ U;} (2.53)
satisfy
1€i-1\ Lo < [€i1\ Lyl (2.54)
Finally, we note that P € [ for all [ € £ implies £y, = £4, and thus £; = £4, N £;_1.
Lemma 2.4.26. For every line | € £ and every complement S of | in P there are

opposite requli R and R in S with T3(A(C)) = {{l,r) : r € R} and such that every flag
f € C satisfies m3(f) N1 # 0 or mi(f) < {I,7) for someT € R.
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Proof. Let | be a line of £. According to Remark 2.4.16 case C2 (c) of Theorem 2.4.15
occurs if and only if Lemma 2.4.10 is applicable with Lo = (). Therefore, there is a
complement S’ of [ in P and there are unique opposite reguli R’ and R’ in S’ such that
I5(A(C)) = {{l,7") : ¥ € R'} and such that every flag f € C satisfies w3(f) N1 # 0 or
m(f) < (1,7) for some 7 € R

Now, let .S be another complement of [ in P. According to Lemma 1.3.11 the existence
of the regulus R’ = {UNS’ : U € II3(A;(C))} in S’ proves that R := {SN{l,r): r € R’}
and R = {SN{,7) : 7 € ﬁ,} are opposite reguli in S. Furthermore, for every line
r" € R’ we have

L'y =, {,7"yNn S) € {{I,r) : r € R},
which proves
3(A(C)) = {{l,7") : " e R’y C{{l,r) : 7 € R} (2.55)

and since both sides of Equation (2.55) have cardinality ¢ + 1 the equation must hold
with equality.

Finally, for all 7 € R the line 7 := S N (I,7) € R satisfies (I,7) = (I,7). Therefore,
and since any flag f € C with m3(f) N1 = 0 satisfies 71 (f) < (I,7) for some 7 € R, any
such flag also satisfies 1 (f) < (I,7) for some 7 € R. O

Lemma 2.4.27. If hy,hy € S[P,0,1,P] are such that (P,h1) N hg is a point, then
‘£h1 m£h2‘ < q2'

Proof. Let @ := (P, h1)Nhy be a point and note that it may not be the point P and that
thus (P, hi, ha) is a solid. Assume that there is a line [ € £5, N £5,. On the one hand,
if en, (1) # eny (1), then (P,Q) < S 5™ — | and thus | = (P,Q) < (P, hy, ha).

On the other hand, if e, (1) = €p, (1), then [ < Slehl(l) = (P, hy, ha). Therefore, we have
h N LR, | < .1, (P, h1, he)|| and Lemma 2.4.17 proves the claim.
Cp, N Lyl < IS[P,1, (P, hy, h dL 2.4.17 he cl O

Lemma 2.4.28. If hy, he € S[P,(,1,P] are such that (P,h1)Nhy = 0, then S := (hy, ho)
is a solid with P ¢ S, we have (P,h1) N (P, he) = P and for alll € £, N £}, we have

€ny (1) 7 €ny (1)-

Proof. We have P ¢ S for otherwise (P, h;) is a hyperplane of S and as such as has
non-empty intersection with hs, a contradiction. Furthermore, for all [ € £, N £,
if en, (1) = eny (1), then hy < S = ™Y > (P ) and again hy N (P,h1) # 0, a
contradiction. Finally, from P ¢ S > hy, he and since h; N hy = () we have S = (hy, hy)
as well as (P, h1) N (P, ha) = P. O

Lemma 2.4.29. If hy, hy € S[P,0,1,P] are skew lines with P ¢ (hi,h2) and we have
1€ Ly, NLhy, then Q :=1N (h1,ha) # 0 occurs only if Q € hy or Q € ho.
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Proof. Assume that hy and hg are skew lines with P ¢ (hy, he) =: S and assume that
l € Ly, NELp, is aline with @ :=1NS # 0 and Q £ hy, he. Since Il 5 P ¢ S we know that
@ is a point. Thus, for dimensional reasons, (@, h1) N (@, hs) is a line in S and P ¢ S
shows that (P, Q, h1) N (P,Q, ha) is the plane E = (P,(Q, h1) N (Q, h2)). Now, E is a

subspace of Slehl(l) N Slehz ! and this yields a contradiction, since Lemma 2.4.28 shows
en, (1) # eny (1), that is, S;hl(l) N S;hz(l) - -

Lemma 2.4.30. If g; NU; # 0 for some distinct i,j € {1,...,5} or g3 £ (P, 1,92),
then |£5| < 5¢* 4+ 9q + 1.

Proof. If U; N g; # (0 for some distinct 7,5 € {1,...,5}, then Lemma 2.4.27 implies
the claim. Hence, assume that U; N g; = 0 for all distinct 7,5 € {1,...,5}. Note
that Lemma 2.4.28 then shows P ¢ (g;,g;), Ui N U; = P and ¢y, (I) # €, (1) for all
distinct 4,5 € {1,...,5} and all [ € £5. Furthermore, in view of the claim, assume that
93 £ (P, g1, g2) and set S := (g1, g2) as well as

t={leLs:Vie{l,...,5} we have [N g; = 0}.

Note that, using Lemma 2.4.17, we then have |£5] < |£L| 4+ 5¢ and thus it suffices to
prove | L] < 5¢% +4q + 1.

For all [ € £f we have [Ng; = 0 for all i € {1,...,5} and thus Lemma 2.4.29 is
applicable and shows I N (g;, g;) = 0 for all 4,5 € {1,...,5}. In particular, for all [ € £
the solid S is a complement of [ and thus Lemma 2.4.26 yields opposite reguli R; and R;
in S such that II3(A;(C)) = {(l,r) : r € Ry} (which is equivalent to R; = {S; NS :i €
{1,...,¢+ 1}}) and such that every flag f € C satisfies w3(f) N1 # 0 or w1 (f) < (I,T)
for some 7 € R;. Foralli € {1,...,5} and all I € £ we set hl := (I,g;) NS € R; and
note that g1, g2 < S proves g1 = hl1 as well as go = hl2 and motivates h; := g; as well as
hg = g2.

Now, for all I € £ we know that (I, gs) is a solid containing P, hé and g3 and thus
(P, R}, g3) has dimension at most 3. Furthermore, for all | € £ the span (P, h}) is a
plane contained in (P, S) and, since gs does not lie in (P,S), this implies that in fact
(P, h}, g3) has dimension 3, that is, we have

VI e £L: (P, k%, g3) = (I, g3). (2.56)

Furthermore, for all distinct ¢, € {1,...,5} and all [ € £ the fact that we have
€g,(1) # €g;(I) shows that hl and hé- are distinct lines of R;. Moreover, if [ and I’ are
distinet lines in £5 with I’ £ (I, g3), then we have

(2.56) / /
(P,hY,g3) =" (l,g3) # (', g3) > (Pog3) =Us = By £ (I',g3) > (P, h}) >k}

which proves (P, h}) # (P, h}) as well as h # h}. Finally, we obviously have

VI, e gL Vie{l,...,5} :Ui=(P,g) < {,g) N (', g) = (LAY n (', KLY, (2.57)
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Indeed, for all lines 1,1’ € £% for which there is an index i € {3,4,5} with hl # Rl
the intersection of the lines h! and h! still contains the point U; NS and thus the
corresponding reguli R; and Ry are distinct, that is, we have |[R;NRy| = 2 and hé« N hg
is in fact the point P; := U; NS for all j € {3,4,5}.

Now, we consider the quotient space P/P. The above translates into the following:
S := (P,S) is a solid and a complement of any point I € £} in P/P (we have seen
above that in P the solid S and every line [ € £ satisfy I NS = (). Furthermore,
for all | € £L, since Ry is a regulus in P (in particular, in the solid S of P), we know
that R; := {(P,r) : r € R;} is a regulus in the quotient space P/P (in particular, in
the solid S of P/P) and it contains five distinct lines of P/ P, namely Rl := (P, hl) for
ie{l,...,5}. Moreover, for all [,I’ € £4 the reguli R; and Ry have the two lines (P, h;)
and (P, h2> in common and from Equation (2.57) we already know that the set

{(7,7) € Ry x Ry : dimp/p((L,7) N (', 7)) > 1}

contains (hﬁ,hi) for all ¢ € {1,...,5} and thus it has cardinality at least 5. Finally,
for all 1,I' € £, with I’ £ (I,g3) we already have seen (P,h}) # (P, h}) as well as
(P, P3) < (P, hl) N (P, hY), that is, a line of R; and a line of Ry meet in a point, the two
reguli must thus be distinct and we may apply Corollary 1.3.15 to see that in this case

in P/ P the point I’ must be an element of Ureﬁl<l’ ).

Given all that we may prove the claim as follows. If there is a line [ € £ such that
£L C &[P,1,(l, g3)], then Lemma 2.4.17 shows |£f| < ¢* and there remains nothing to
prove. Hence, we may assume that there are two lines [; and Iy in £f with lo £ (I1, g3)
and we have seen that this implies hg # hi. Then, in P/P, any point | € £ with
1 ¢ (l1,93) U (lo, g3) satisfies

le U<l1,’l“1> N U(lQ,T‘2> = U<l1,T1> N <12,’I“2>. (258)

rE€Ry r2€R, ri€Ry
) 67312

Since l; # l2 Lemma 1.3.14 shows (in P/P) that among the intersections in the union
on the right hand side of this equation occur at most ¢ + 2 subspaces of dimension > 1,
at most one of these subspaces has dimension 2 and the remaining intersections have
dimension 0 (all dimensions in P/P). Thus, in P/P the number of points in the union
on the right hand side of Equation (2.58) is at most

IRy, X Riy| 4+ (¢+2) - ¢+ ¢° = 3¢> + 4q + 1.

Furthermore, using Lemma 2.4.17, we know that in P the subspaces (1, g3) and (l2, g3)
contain at most ¢ lines of ££, each, and thus we have the upper bound |£%| < 5¢2+4¢+1,
as required. ]

Lemma 2.4.31. Assume that g1, g2 and g3 are such that g; " U; = 0 for all distinct
i,7 € {1,2,3} and such that g3 < (P, g1, g2).

Then there is a unique regulus R with g1, g2,Us N (g1, 92) € R and for all lines g we
have £3 C £, if there is a line r € R with g < (P,r) and |£5N £,| < ¢* otherwise.
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Proof. Set hy := g1, ha := g2, S := (h1, ha) and hg := U3 N S. Since g1 N Us = ) Lemma
2.4.28 shows P ¢ S. Hence, U3 = (P,g3) = (P,hg) and P € [ for all | € £ proves
L4 = Ly, = Lpy. Indeed, for all distinct 7,5 € {1,2,3} we even have g; NU; = () and
Lemma 2.4.28 shows U; NU; = P, that is, h; N h; = 0 as well as (h;, h;) = S. Therefore,
according to Lemma 1.3.6, there is a unique regulus R in S with hy, ho,hs € R. Let [
be an arbitrary line of £3 = £4, N Ly, N L.

We have Q := 1N S = 0, for otherwise, if @ # (0, then from [ 3 P ¢ S we know that
@ is a point and, since hy, ho and hg skew lines, there are distinct 4,5 € {1,2,3} with
Q ¢ hi, hj and S = (h;, h;) such that Lemma 2.4.29 yields a contradiction. Hence, S is
a complement of [ in P and Lemma 2.4.26 implies that {SN S/ :i € {1,...,q+ 1}}isa
regulus in S and, since it contains the three distinct lines Ay, ho and hs, it is the regulus
R.

Now, for all » € R and every line g < (P,r) we have g < S;T(l), that is, [ € £, and
thus, due to the arbitrary choice of I, we have £3 C £,. Furthermore, for any line g with
[ € £, there is a line 7 € R such that we have g < S;T(l) and, for dimensional reasons, g
then meets (P, r) in at least a point. Hence, if g is a line with g £ (P,r) for all r € R,
then either g N (P,r) = () for all r € R and we have £3N L, = 0, or g N (P,r) # 0 for
some r € R and we have £, N £3 C £, N £, and Lemma 2.4.27 shows |£, N £, | < 7,
concluding the proof. O

Proposition 2.4.32. If ¢ € N is such that |£] > 5¢° + 9¢ + 1 + 5¢, then there is a set
E of at most ¢ + 1 planes such that for all g € S[P,0,1,P] with g £ E for all E € £
there is a set £, C £ of more than & lines such that every solid S € 1I3(A,(C)) satisfies
SNIL#0 foralll € £,.

Proof. 1f there is an index ¢ € {1,...,5} with |£;_1 \ £;] > &, then we let ¢ be minimal
in {1,...,5} with this property, set € := {U; : i € {1,...,. — 1}} and, considering the
choice of g, per Equation (2.54), we then have

_ (2.54)
|£g| = |£\£g‘ > "gt—l\'gg‘ > "QL—I\SL’ > ¢
for all lines

el P2 (heSIP0,1,P]: g £ E forall Ec &),

Thus, if there is such an index, then there remains nothing to prove. Furthermore, we
remark that if g; N U; # 0 for some distinct i, j € {1,...,5}, or if g3 £ (P, g1, g2), then
we have |£5] < 5¢% +9¢+ 1 from Lemma 2.4.30 and thus in this case there must be such
an index.

Now, if there is no such index 4, then |£3| > 5¢* +9¢ + 1 + 2¢ and we have g; N U; = ()
for all distinct 4, j € {1,2,3} as well as g3 < (P, g1,¢92). In this case let R be the regulus
in (g1, g2) provided by Lemma 2.4.31, set £ := {(P,r) : r € R} as well as

L:={he&S[P,0,1,P|:h £ Eforall E€&}
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and note that Lemma 2.4.31 proves |£3 N £, < ¢* and thus
gl = 1€\ £4] > |83\ L4 2 [L5] = ¢* 2 5¢* +9g + 1+ 26 —¢* > €

forall g € L.

Finally, regardless of the case that occurred above, according to Lemma 2.4.10 every
flag f € C with mi(f) £ E for all E € & satisfies m3(f) N1 # 0 for all I € £, (p),
concluding the proof. O

2.4.3 A first Approach to Bounds on the Number of Flags in a given
Hyperplane

Lemma 2.4.33. Let H be a hyperplane of P. If there is a line h £ H which occurs in
at least one flag of C, then

IAE(C)] < 2¢" 4+ 4¢° +5¢° +6¢* + 5¢> + 4¢> +2¢ + 1.

Proof. Let h be such a line and let f € C be such that m(f) = h. Then P := m(f)NH is
a point and F := m3(f)NH is a plane. Now, every flag f’ € Ay (C) satisfies m (f)NE # ()
or P € m3(f’) and there are

59[073a4] '5q[1»3] + (561[174] _5(1[27 _1a 134] _5(1[07 174]) '54[0’ 17374}
=2q" +4¢° + 5¢° + 6¢* + 5¢° + 4¢* + 2¢ + 1
such flags. m

Lemma 2.4.34. Let H be a hyperplane of P, let h be a line of P with h £ H and set
C:={feAy(C):hNH ¢ n3(f)}. Depending on which case of Theorem 2.4.15 occurs
for the line h, we have

0 for C1, ¢+ ¢ for C3 (a),
< q' for C2 (a), o ¢®+q°+q*  for C3(b) or (c),
~ | 2¢* for C2 (b), T 2¢° + ¢+t for C3 (d),
@+ gt for C2 (c), 2¢° + ¢* for C4.

Proof. In Remark 2.4.16 we already noted that a given case of Theorem 2.4.15 only
occurs if the respective Lemma is applicable. Hence,

e for C1 the solid of every flag of C has non-empty intersection with A and thus
O =0;

e for C2 (a) there is a solid S; > h £ H such that 71 (f) < S; for all f € C, which
proves

IC| <540, —1,1,2] - 54[0,1,3,4] = ¢*;

there are two solids §1, §2 > h £ H such that for all f € C we have
for some i € {1, 2}, which proves |C| < 2¢*;

o for C2 (

b)
T (f) < S;
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e for C2 (c) there are ¢ + 1 solids with S; > h £ H for all i € {1,...,q+ 1} such
that for all f € C we have m(f) < S; for some i € {1,...,q + 1}, which proves
IOl < (¢ + g%

e for C3 (a) there is a plane E and a hyperplane H' with h < E < H’ such that for
all f € C we have m1(f) < H' and 7 (f) N E # (), which proves

|€‘ < (511[07 -1, 173] 7561[17 -1, 1’3]) '5q[07 17374] = q5 + q4;

e for C3 (b) there is a plane F with h < E such that for all f € C we have
m(f) N E # 0, which proves

‘€| < (sq[O, _17 174] _Sq[la _17 174]) '5q[07 17374] = q6 +q5 +q4;

e for C3 (c) there is a hyperplane H' with h < H' such that for all f € C we have
m1(f) < H', which proves

IC| < 54[0,—1,1,3] - 5,0, 1,3,4] = ¢° + ¢° + ¢*;

e for C3 (d) there is a plane F and a hyperplane H' with h < E' < H' such that for
all f € C we have m1(f) < H' or m1(f) N E # (), which proves

’€| S (5q[0a _17 1a 4] - 511[17 _]-a 17 4] + 54[17 _]-7 1) 3]) : 54[07 17 3a 4] = 2q6 + q5 + q4;

e for C4 there are two distinct planes F; and Es and two distinct hyperplanes H;
and Hy with h < Ey, By < Hy, Hs such that for all f € C there is i € {1,2} with
m(f) N E; # 0 and 1 (f) < H;, which proves

|€| S (2(511[07 _17 1>3] _5(1[17 _17 173]) _EQ[Oa _1707 1]2) '5f1[07 15374] = 2q5 + q4-
]

Lemma 2.4.35. Let P be a point, let H be a hyperplane of P with P ¢ H, set
L1 :={h € &[P,1,P] : the first case Theorem 2.4.15 occurs for h}
and for alli € {2,3} and all j € {a,b,c} set
L) = {h € 6[P,1,P] : case i part (j) of Theorem 2.4.15 occurs for h}.

If dim((£1)) > 3, dim((£q,q))) > 4, dim({£y 3))) = 5 or dim((L3;))) = 5 for some
je{a,b,c}, then |Ap(C)| < 5¢° + 20¢* + 30¢> + 25¢> + 15¢ + 5.

Proof. Let dim((£1)) > 3, dim((£y,(4))) = 4, dim((£2,5))) = 5 or dim((£3(;))) = 5 for
some j € {a,b,c} and let £ be one of the sets for which the respective condition is
fulfilled. Furthermore, if £ = £, then set d := 3, if £ = £, (), then set d := 4 and
otherwise set d := 5.
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Since dim((£)) > d there are lines ly,...,l; € £ with (l1,...,l5) = (£). For all
i€ {l,...,d} we have [; > P ¢ H and thus [; £ H and Q; := [; N H is a point.
Furthermore, we have dim((Q1,...,Qq)) = d — 1 and thus there are at most

CH2¢* +343+32+2¢+1 d=3,
sqld —1,3,4] - 54[1,3] = ¢* + @ +2¢° + ¢ + 1 d =4, (2.59)
0 d=5

flags f € Ag(C) with Q; € m3(f) for all i € {1,...,d}. For all other flags f € Ay (C)
there is an index i € {1,...,d} with Q; ¢ m3(f).

Now, for all i € {1,...,d} Lemma 2.4.34 provides an upper bound on the set of flags
f € A (C) for which the point @; is not an element of 73(f), which proves the claim in
the following cases:

@ +2¢* +3¢% +3¢2+2¢+1 for £= ¢,

AR(C)] < 5¢ + 3 +2¢ +q+1 for £ = £5 (4,
~ ] 10¢* for £= 2, ),
5¢° + 5¢* for £ = £3 (4).

It remains to consider the cases £ = £3 ;) and £ = £3 (). In these cases we let h be
an arbitrary chosen but fixed line in £ and we determine a better bound on the number

of flags f € Ay (C) with hN H ¢ w3(f) as follows:

e For £ = £3 ) according to Remark 2.4.16 Lemma 2.4.12 is applicable to lines of
£ (with £ = L£;), proving that to every line [ € £ there is a plane E; > [ with
m3(f)NL# D or m(f)NE; # 0 for all f € C. Thus, we determine an upper bound
on the number of flags f € Ay (C) with m(f) N Ep # (. Since (£) = P there is
a line hy € £ with hy € Ej, as well as a line hg € £ with ho £ (Ep, h1) and for
all j € {1,2} and every flag f € Ay (C) through a point of Ej, N H either satisfies
i (f) N (En, N H) # 0 or hj N H € m3(f). Welet g, g1 and g2 denote the lines
E,NH, By, N H and Ep, N H, respectively.

Now, on the one hand, if for some j € {1,2} the line g is disjoint from the line g,
then there are at most

9l - (1951 - 54[1, 3,4] + (54[0, 1, 4] — |g;]) - 54[2, 3,4])
=¢" +4¢* + 64> +5¢° + 3¢+ 1 (2.60)
flags in question. On the other hand, if g has a point in common with g; for all
J € {1,2}, then either Ry := gNg; and Ry := g N gy coincide (i.e. R:= Ry = Ry)
and there are at most
(1) (x2)
—
‘SQ[R’ LH” '561[1>3>4] + (|g| - 1) : ((|gl| + ’g2| +5q{0’ 17 2] - 4) '5q{2’374]
+ (54(0,1,4] — (lg1] + |g2| + 54[0, 1, 2] — 3)))

95



2 Erdés-Ko-Rado Sets in Kneser Graphs

=@ +3¢*+7+342 +2¢+1

such flags, where

e the term marked (%) is an upper bound on the number of lines [ through a
point X of g\ {R} that meet g1 or go or lie in the plane (X, hy N H, ho N H),

e the term marked (x2) counts the number of solids in H on the unique plane
E < H through the chosen line [ such that for all j € {1, 2} we have h;NH € E
orlNg; # 0, and
e the second line first counts the number of lines [ through a point X of g that
we have not yet counted, that is, those which do not meet g; nor g, and for
which there is a unique solid S > [ which contains both hy N H and he N H,
namely S = (I,hy N H,ho N H);
or Ry # Ry and similar counting arguments yield ¢* + 9¢> + ¢®> + 3¢ + 1 as upper
bound on the number of flags in question.

e For £ = £3 ), according to Remark 2.4.16, Lemma 2.4.13 is applicable with
dim(U) = 1 and thus £ = £;, which proves that to every line I € £ there is a
hyperplane H; > [ of P with 73(f) Nl # 0 or m1(f) < H; for all f € C. Thus, we
determine an upper bound on the number of flags f € Ay (C) with m1(f) < Hp,.
Since (£) = P there is a line ' € £ with h’ £ Hj and every flag f € Ag(C)
with m1(f) < Hy, either satisfies m(f) < Hp or ¥ N H € w3(f). Note that the
hyperplanes Hj, and Hj meet H in distinct solids. Hence, there are at most

5q[1,2] - 54[1, 3, 4] + (54[1,3] — 54[1,2]) - 54[2,3,4] = ¢° + 3¢* + 4¢> + 4¢* +2¢ + 1
flags in question.

Therefore, for all ¢ € {1,...,5} Equation (2.60) serves as bound on the number of flags
f € Ap(C) with Q; & m3(f) for both £ = £3 4y and £ = £3 (). Together with the count
given in Equation (2.59) this proves

|AL(C)] < 5¢° 4 20¢* + 30¢> + 25¢% + 15¢ + 5,
as claimed. O

Corollary 2.4.36. If there is a hyperplane H of P with |A(C)| > 5¢° + 20¢* + 30¢> +
25¢% + 15q + 5, then for every point P € P\ H we have

|AP(C)| < 9¢° + 10¢* +10¢® + 7¢* — 2¢ + 1.

Proof. Let £ and £; ;) foralli € {2,3} and all j € {a, b, c} be the sets defined in Lemma
2.4.35 and let £ be the set of all lines A through P which are not contained in one of
these sets. Then, according to Lemma 2.4.35, we have dim((£1)) < 2, dim((£y,(q))) < 3,
dim((£2,4))) < 4 and dim((£3(;))) < 4 for all j € {a, b, c}. Furthermore, Theorem 2.4.15
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provides the cardinality of Ay (C') for all lines h in such a set and shows |A,(C)| < 2¢+1
for all lines h € £. Together this shows

[Ap(C)| < 54[0,1,2] - 54[1,3,5] + 54[0,1,3] - (¢* +2¢> + ¢ + 1)
+5000,1,4] - (2" + g+ 1) +2- (P +q+ 1)+ (" +2¢+ 1))
+ (54[0,1,5] — 54[0,1,2] — 54[0,1,3] — 4-5,[0,1,4]) - (2¢ + 1)
=9¢° +10¢* + 10¢> + 7¢®> — 2¢ + 1,

as claimed. ]

2.4.4 Proof of the Theorem

Lemma 2.4.37. Let H be a hyperplane of P, let £ be the set of saturated lines | with
Il £ H and set P:={lNH:lekL}

Then (P) < ws(f) for all f € Ag(C) and furthermore, if |P| > 1, then dim({£)) =
dim({P)) + 1 and, if dim((P)) > 1, then there is a point Q ¢ H with £ = {(P,Q) : P €
P}.

Proof. For £ = () there is nothing to prove and thus assume £ # (). Lemma 2.1.3
shows (P) < m3(f) for all f € Ay (C). Furthermore, according to Lemma 2.1.4, £ is an
independent set of the Kneser graph of type 1 on P and as such (£) has dimension at
most 2 or there is a point @ € (£) with @ € [ for all [ € £. For |P| = 1 there is nothing
more to prove and thus assume that |P| > 1.

If there is a point @ € (£) with @ € [ for alll € £, then both |P| > 1and Q € I £ H for
all I € £ together prove Q ¢ H. Thus, in this case, for all | € £ we have | = (IN H, Q)
and thus (P) is a complement of @ in (£), which proves dim((£)) = dim({P)) + 1.
Furthermore, if there is no such point @, then we have dim((£)) = 2 and, since | £ H
for all [ € £, we have dim((£)) > dim((P)) > 1, which proves the claim in this case and
concludes the proof. O

Notation 2.4.38. From now on assume that C' is not given by Example 2.4.1. Since
the type under consideration is self-dual we may assume that

max{|Ag(C)|: H € 6[4,P]} > max{|Ap(C)|: P € P}

and we let H € &[4, P] be such that |Agy(C)| > |Ag/(C)| for all H' € &[4,P]. Note that
our choice of C' shows that there is a flag f € C with m1(f) £ H and thus, in view of
Lemma 2.4.33, our choice of H shows

VG € G[4,P] : |Aq(O)] < 2¢7 4+ 4¢° 4+ 5¢° + 6¢* + 5¢° + 4¢° + 2¢ + 1. (2.61)
Lemma 2.4.39. The set £ of all saturated lines | with | £ H satisfies |£| < 2¢*(q+1).

Proof. We set P :={INH :1 € £} and, in view of Lemma 2.4.37, we consider two cases.
First, if |P| = 1, then according to the choice of both C' and H the point @ € P satisfies

|AQ(L)] - 54[1,3,5] < |Ag(C)] < 2¢" +4¢° + 5¢° + 6¢* + 5¢° +4¢* +2q + 1
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=2¢*(q+1)-5,1,3,5] — (¢° — ¢* — 2¢* —2¢ — 1) (2.62)

>0 for ¢>2

which proves |£] = |Ag(£)| < 2¢*(q + 1), as claimed. Hence, let |P| > 1 and assume
that |£]| > s4[2]. Then dim((£)) > 2 and Lemma 2.4.37 proves dim((P)) > 1 as well as
the existence of a point @@ ¢ H such that £ = {(P,Q)} : P € P} with P :={INH :
[ € £}. Finally, Equation (2.62) then holds for that point @, too, and we again have
1€] = |Ag(L)] < 2¢%(g + 1), as claimed. O

Lemma 2.4.40. The set £ of all lines | with | £ H which satisfy case C2 (a) of Theorem
2.4.15 has cardinality at most 27 - s4[4].

Proof. We consider Proposition 2.4.18 and its implications for different values of d. Note
that the set £ itself (and thus also any subset of £) obviously satisfies condition (I) of
this proposition. Therefore, we always consider the claims given there for x = 3.

First, assume that there is a point P € H and an integer { with |Ap(£)| > 3¢ such
that every solid S satisfies |Ag(Ap(£))| < & Then we may apply Proposition 2.4.18
with d = 3 to Ap(£), which shows that there is a subspace U with dim(U) < 2 such
that for every line | with [ £ U there is a hyperplane H; 5 P (if the subspace given by
Proposition 2.4.18 is not a hyperplane but the entire space P instead, then we may let
G be an arbitrary hyperplane on P) such that every solid S € II3(A;(C)) contains P or
a complement of P in H;. A complement of P in H; is a solid and thus any line [ with
Il £U and P ¢ [ satisfies

3(A(O)] < [S[(P1), 3, P + |S[P, 1, 3, Hi]|

. (2.63)
:5Q[27375}+5q[0a1a354]<q +q +q7L1

and as such [ ¢ £. Therefore, and since [ £ H for all [ € £ and thus |Ap(L)| < ¢?, in
this situation we have

2] < [Ap(O)| +[6[L U] < ¢" +¢° +q+1. (2.64)

Secondly, assume that there is a point P € H, an integer £ and a subset £ C Ap(£)
with dim((£')) = 3, |£/| > 3¢ and such that any plane E of P satisfies |[Ag(£')| < &.
Then we may apply Proposition 2.4.18 with d = 2 to £', which shows that there is a
subspace U with dim(U) < 3 such that for all flags f € C we have m(f) < U or m3(f)
contains P or a complement of P in the solid (£') and, if dim(U) = 3, then U = (£').
Thus, if | € S[P,0,1,P] is a line with [ £ U and I £ (£'), then every solid S € II3(A;(C))
satisfies P € S or S contains a complement of P in (£), that is, a plane E < (£') and,
since [ £ (£'), this implies that [N (£') is a point as well as S = (I, E) < (I, £). Hence, for
alll € S[P,(,1,P] with I £ U and | £ (£'), using the hyperplane H; := (I, £), Equation
(2.63) holds here, too, and implies [ ¢ £. Therefore, and since again |Ap(£L)| < ¢%, in
this situation we have

€] < [Ap(L)] +6[1,UTUBIL, (£)]]
® W s ) (2.65)
< " +54[1,3] + 5¢4[1,2] = 2¢" + ¢° + 3¢° + 29 + 2,
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where in the step marked with (*) we also use the fact that, if dim(U) = 3, then U = (£').

Before we proceed we remark that, if there is a point P € H such that |[Ap(£)| > 9q,
then one of these two situations occurs, which already proves the claim in this case as
follows:

e cither there is a solid S such that |[Ag(Ap(£))| > 3¢ and we have shown above
that Equation (2.65) holds, or

e every solid S satisfies |[Ag(Ap(£))| < 3¢ and we have shown above that Equation
(2.64) holds.

Similarly, if there is a point P € H such that |[Ap(£)| > 27, then there is a plane E
with |[Ag(Ap(£))| > 3, for otherwise:

e cither there is a solid S such that |[Ag(Ap(£))] > 9 and we have shown above that
Equation (2.65) holds, or

e every solid S satisfies |Ag(Ap(£))| < 9 and we have shown above that Equation
(2.64) holds

and either way this implies the claim.

Hence, from now on we may assume that |Ap(£)| < 9q for all P € H. Furthermore,
we may assume that to every point P € H with |[Ap(£)| > 27 there is a plane E with
|Ag(Ap(L))] > 3 and, since this plane contains lines of £, it satisfies P € E £ H.
Moreover, we may assume that there indeed is a point P € H with |[Ap(£)| > 27, for
otherwise we have |£| < |H|-27 = 27 - 54[4], which is the claim.

Now, let P € H be a point with |[Ap(L)| > 27 and let E be the plane such that
£ = Ap(Ap(£)) satisfies |£/| > 3. Then we may apply Proposition 2.4.18 with d =1
to £, which shows that there is a subspace U with dim(U) < 3 such that for all flags
f € C we have m(f) < U or m3(f) contains P or a complement of P in the plane
(&Y = E. Thus, if [ is a line with [ £ U and I N E = (), then every solid S € II3(A;(C))
contains P or a complement of P in the plane E and, since [ N E = (), the latter proves
S=(,SNE)<{(,2). Hence, for all l € G[P,(,1,P] with l £ U and [N E = (), using
the hyperplane H; := (I, £'), Equation (2.63) holds here, too, and implies [ ¢ £. This
implies

€] < |Ap(S)|+HIS[LU]| +[{le L:INE # 0} |
N—_——
<q'+¢*+2¢* +10g+ 1+ L]

and it remains to determine an upper bound on the size of L. For that purpose, note
that through any line | € L there are ¢® + 2¢%> + ¢ + 1 distinct flags in C and, if [
and !’ are distinct lines of L and f and f’ are flags through [ and I’ respectively, then
f and f’ are obviously distinct, too. Therefore, if for some point @ ¢ H we have
|Ag(L)| > 9¢* — 8q + 17, then we have

|1AQ(O)] > 9¢° + 10¢* + 10¢® + 35¢% + 9g + 17 > 9¢° + 10¢* + 10¢° + 7¢* — 2¢ + 1
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a contradiction to our choice of H and the bound given in Corollary 2.4.36. Hence, we
have |Ag(L)| < 9¢* — 8¢ + 17 and since E £ H this implies

IL| < |ENH| 99+ |E\ H| - (9¢* — 8¢ + 17) = 9¢* — 8¢” + 26¢° + 9q.
Combining this with Equation (2.66) concludes the proof. O

Lemma 2.4.41. The set £ of all lines | with | £ H which satisfy case C2 (b) of Theorem
2.4.15 has cardinality at most (16q + 10) - s4[4].

Proof. We assume £ # (). We begin the proof by considering an arbitrary line h € £
and remarking the following. According to Theorem 2.4.15 there are two solids S; and
Sy such that h = S; NSy and such that II3(AL(C)) is the set of all solids which meet S
and S in a plane each. Now, for all i € {1,2} there exist two distinct planes E; and E
with h < E;, El < §; and the solids S := (E1, Ey) and S := (E}, Eb) satisfy (S,5’) =P
as well as (h,S) € C and (h,S’) € C. This shows that through any line of £ there are
two flags in C' such that the solids of these flags span P.

Now, let P € H be such that [Ap(£)] > |Ag(£)| for all Q@ € H. If |[Ap(£)| <
4(4q + 2) + 2, then from our choice of P we have |Ag(£)| < 16g + 10 for all Q@ € H and
since every line [ € £ has non-empty intersection with H this implies |£| < |H|-(16¢+10),
as claimed. Therefore, we may assume that |[Ap(L)| > 4(4q + 2) + 2 and we consider
two cases.

First, assume that for every solid S on P we have |Az(Ap(L))] < 49 + 2. Then,
let £ and S with dim(€) < 2 and dim(S) < 3 be the subspaces provided by applying
Proposition 2.4.24 with & = 4g + 2 and let ¢ € &[P,0,1,P] be such that g £ &,S.
Proposition 2.4.24 proves that there is a subset £, C Ap(£) of more than £ = 4q + 2
lines such that every solid S € II3(A,(C)) satisfies SN # @ for all | € £;,. The
assumption of this case implies that in Eg there are lines which span a hyperplane H’
of P and any solid S € II3(A4(C)) contains P or a complement of P in H’'. Since any
complement of P in H’ is a solid, this implies that any solid S € II3(A4(C)) satlsﬁes
S < H' or PeS. Now, let S, and S5 be - arbitrary solids through g with <§1, Sy) =
Then there is some index i € {1,2} with S; ¢ H’, that is, in S; there is a plane E on g
with E £ H' as well as P ¢ E and there is a solid S with £ < S that meets S3_; in a
plane This solid S satisfies dim (S N Sl) =2 =dim(SN Sy) but P ¢ S £ H' and thus

S ¢ TI3(A4(C)). The arbitrary choice of Sy and S, through g with (S7,S5) = P and the
remark in the beginning of this proof shows g ¢ £. Hence, using |Ap(£)| < ¢%, in this
case we have

€] < |Ap(L)| +|&[L, €] +|S[L, S]] < ¢* + ¢* +2¢* + 2 + 2.

Secondly, assume that there is a solid S on P with |Az(Ap(L))| > 4q + 2. Let
€ and S with dim(€) < 2 and dim(S) < 3 be the subspaces provided by applying
Proposition 2.4.24 to Az(Ap(£)) with § = ¢ and let g € &[P,0,1,P] be such that
g £ €, S. Proposition 2.4.24 proves that there is a subset £, C A5(Ap(£)) of more than
& = ¢ lines such that every solid S € II3(A,4(C)) satisfies SN # O for all | € £4. Since
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any plane through P contains at most ¢ lines which do not lie in H, we know that in £
there are lines which span the solid S and any solid S € II3(A4(C)) thus contains P or
a complement of P in S. We study the case g £ S more thoroughly.

If we even have gﬂS = (), then there is no solid through g which contains a complement
of P in S, that is, in this situation all solids of II3(A4(C)) share the plane (g, P) and we
have g ¢ £.

Hence, assume that g N Sis a point and let §1 and 52 be two arbitrary solids with
§1 N §2 = g. Then both these solids are distinct from S and at most one of these two
solids meets S in plane, for otherwise (§; NS) N (S3 N S) =: U would have dimension
at least 1 and we would have (U,g) < 5, N Sy with dim((U,g)) > 2, a contradiction.
Without loss of generality we may thus assume dim(§1 N §) < 1, which implies that
there is a plane E; € &g, 2, gl] such that By NS is a point, namely the point gﬁ§ %+ P.
Now, for dimensional reasons no solid through E; may contain a complement of P in
S and there is only one solid through F; which contains P. Therefore, there is a plane
E, € §[g,2 , Sy] such that the solid S := (E1, Ey) does not contain P nor a complement
of P in S and as such is not an element of ITs (Ag4(C)). Again, the arbitrary choice of Sy
and S, through g with (Sl, SQ> P and the remark in the beginning of this proof show

g ¢ £. Thus, again using |Ap(£)| < ¢*, in this case we have

2] < [Ap(L)| + |81, E]| + |81, 8]+ I[1, 5] < ¢* + 24" + 3¢ + 3¢ + 3. O

Lemma 2.4.42. The set £ of all lines | with | £ H which satisfy case C2 (c) of Theorem
2.4.15 has cardinality at most (10> + 9q + 1) - s4[4].

Proof. We let P € H be such that [Ap(£)| > |Ag(£)| for all Q € H and we note that
for every line h € £ and any two distinct solids S, S” € II3(Ax(C)) we have SN S’ = h.

If |[Ap(£)| < 10¢* 4+ 9g+ 1, then from our choice of P we have |[Ag(£)| < 10¢*+9g+1
for all Q € H and since every line [ € £ has non-empty intersection with H this implies
|€| < |H|-(10g>49g+1), as claimed. Therefore, we assume that |Ap(£L)| > 10¢?+9¢+1.

Let & be the set of at most g + 1 planes provided by applying Proposition 2.4.32 with
€ =¢q? and let g € G[P,0,1,P] be such that g £ E for all E € £. Proposition 2.4.32
proves that we have a subset £, C Ap(£) of more than £ = ¢? lines such that every
solid S € II3(A,(C)) satisfies SNI # () for all | € £,. Since any solid through P contains
at most ¢? lines which do not lie in H, we know that in Eg there are lines which span
a hyperplane H’ of P and any solid S € II3(A,4(C)) is either a complement of P in H'
or contains P. Hence, if there are three distinct solids in II3(A4(C')), then two of those
either have the plane (P, g) in common or do not span P. Therefore, g may not satisfy
case C2 (c) of Theorem 2.4.15, that is, any line [ € £ satisfies [ € Ap(£) or [ < E for
some E € £ and, again using |Ap(L)| < ¢*, we have

1] < IAP(L)] + (g +1) - 54[1,2] < ¢" +¢° +2¢° +2q + 1. O
Lemma 2.4.43. Let d € {1,2} and let £ be a set of lines | with |A;(C)| > s4[d].

i) For P ¢ H we have |Ap(£)| < (9¢% + ¢ + 9)¢>~¢
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i1) For every hyperplane H' of P with |A(C)] < sq[d] - € for some £ € N we have
Ag (&) <€+ ¢°+3¢* + 4¢3 + 4> +2¢ + 1

Proof. If | and I are distinct lines of £, then the flags in A;(C) and Ay (C) are distinct,
too. Thus, using the maximal choice of H, the first claim is implied by the bound
|Ap(C)| < 9¢° +10¢* + 10¢> + 7¢? — 2q + 1 given in Corollary 2.4.36.

Now, let H' be a hyperplane of P and let £ € N be such that [Ag/(C)| < s4[d] - €.
We set £ :={l € Ag/(L): fe A(C) = f < H'} and £o:= Ap/(L) \ £1 as well as
Cy:={feC:m(f) €L} and

Co:={feC:m(f)€Loand f £ H'}.

Then obviously |£;| < &. Furthermore, according to Lemma 2.1.7 the set Cy := {fNH’ :
f € C5} is an independent set of the Kneser graph of type (1,2) in H' and, as mentioned
earlier, [3, Proposition 2.1] by Blokhuis and Brouwer provides an upper bound on its
cardinality. Since to every line | € £5 there is a solid S £ H' with (1, S) € C' we have

3]
82| = [T (Ca)| = M (C3)| < [C5] < ¢° +3¢" +4¢° +4¢> +2¢ + 1
and together with |£1] < £ this proves the second claim. O

Lemma 2.4.44. The set £ of all lines | with | £ H which satisfy case C3 (a) or C3 (b)
of Theorem 2.4.15 has cardinality at most 81q* - 54[3] + ¢*.

Proof. First, assume that P is a point of H such that |Ap(£)| > 5¢%. Then, according
to Proposition 2.4.21 i), two situations may occur (with regard to Ap(£) and P):

— If 2.4.21 i) a) occurs we denote the line given there by gp, for any line g €
Slgp,0,1,P] we denote the hyperplane given there by H7 and we set Lp =
&[1,P]\ &lgp,,1,P].

— If 2.4.21 i) b) occurs we denote the planes given there by E}g and EIQ;., for any
line g with g £ Eb, E% we denote the hyperplane given there by H 9, and we set
Lp:=6&[l,EL)US[1, E2].

In the first of these two situations we have |Lp| = s4[1,5] — 54[1,—1,1,5] = ¢° + 2¢* +
2¢® +2¢? 4+ ¢+ 1 and in the second we have |Lp| < 2-5,[2] and thus, either way, we have

1Lpl <¢”+2¢" +2¢° +2¢° + g + 1. (2.67)

Furthermore, we remark that, according to Proposition 2.4.21, for every line g ¢ Lp and
for every solid S € II3(A4(C)) we know that S contains P or a complement of P in H,
regardless of which case occurs above.

Secondly, assume that P is a point of H such that 81¢ < |Ap(£)| < 5¢?. Then, either
there is a subset £ of Ap(£) of 9¢+ 1 lines which lie in a common solid, or any subset
of Ap(£) containing more than 9¢ lines spans at least a hyperplane of P. In the latter
situation set £ := AAp(,Q). Then, either way, we may apply Proposition 2.4.21 ii) to see
that we have a solid Sp on P and two situations may occur (with regard to £} and P):
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— If 2.4.21 ii) a) occurs, then we denote the line given there by gp, we denote the
solid given there by SP, for any line g € &lgp,0,1,P] with g £ Sp, SP we denote
the hyperplane given there by HY, and we set

Lp = (S[]1,P]\ &[gp,0,1,P]) US[1, Sp| US[1, Sk

— If 2.4.21 ii) b) occurs, then we denote the subspace of dimension at most 4 given
there by HY, for any line g with P ¢ g £ Hp and g £ Sp we denote the hyperplane
given there by HY and we set Lp := &[1, Hp] US]1, Sp].

In the first of these two situations we have
Lp| < sq[1,5] =841, —1,1,5] + 2 54[1,3] = ¢° +4¢" +4¢” + 6¢* + 3¢ + 3.

However, in the second situation the trivial bound will not be sufficient and instead, in
that situation, we determine an upper bound on £N£Lp. We consider a hyperplane S of
H, with S% < H and, for reasons that will become more clear later on, when determining
that bound we assume that there is at most one point @ € Sp with |Ag(£)| > 5¢*. Now,
we know that every line I € £NLp meets S in a point and thus, in these circumstances,
we have

LN Lp| < (|Sh] —1)-5¢% + ¢* = 5¢° + 6¢* + 5¢°. (2.68)

Note that this bound is weaker than the one given if the first situation occurs. We
remark again, that, according to Proposition 2.4.21, for every line g ¢ Lp and for every
solid S € II3(A,4(C')) we know that S contains P or a complement of P in H7, regardless
of which situation occurs above.

Now, let P, and P, be distinct points of H such that

VP e H\{P1} : [Ap (L) = [Ap (L) = |Ap(L)].
If |Ap,(£)| < 81¢, then, since every line in £ meets H, we have
L < (|H| = 1) 81g + |Ap (£)] < (s4[4] = 1) - 81q + ¢* = 81¢% - 54[3] + ¢,

as claimed. Thus, we assume that |Ap,(£)| > 81¢, set Ly := &[1,P]\ S[(Py, P2),0,1,P)
and note that through any point of the line (P, P,) there are at most ¢* lines of £, which
proves |[£ N Lo| < s54[1] - ¢* = ¢® + ¢*. Furthermore, using the notation we introduced
above, we set £ := Lo U Lp, U Lp,. Now, for every line g ¢ L, for all i € {1,2} and for
every solid S € II3(A4(C)) we know that S contains P; or a complement of P; in HY,

Moreover, we have £ C L, for otherwise, assume that there is a line g € £ \ E
Then Theorem 2.4.15 shows that there is a plane E > g with S[E, 3,P] C II3(A4(C)).
However, since g N (P, P;) = () we know that there is some ¢ € {1,2} with P, ¢ F
and thus there is a solid S through E with P; ¢ S £ HY, that is, S ¢ II3(A,(C)), a
contradiction. Hence, we have [£] < [N Lo|+ [€NLp |+ |£N Lp,|.
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Therefore, if |Ap,(£)| > 5¢?, then, using the upper bound for |Lp,| and |Lp,| given in
Equation (2.67) as well as |[£N Lo| < ¢° + ¢*, we have

18] <|1eN Lol + SN Lp |+ LN Lp,| < 3¢° + 5¢* +4¢° + 4¢* 4+ 2¢ + 2,

which implies the claim. Furthermore, if 81¢ < |Ap,(C)| < 5¢?, then there is at most one
point Q € Sp, with |[Ag(£)| > 5¢* (namely the point Py) and thus we have [£N Lp,| <
5¢° + 6¢* + 5¢® per Equation (2.68). In fact, since that bound is weaker than the one
given for |Lp,| if |Ap, (£)| > 5¢?, we know that it also holds for |£ N Lp,|, regardless of
whether or not |Ap, (£)| < 5¢2. Together with |Lo| < ¢° + ¢* this shows

L] <|€N Lol + €N Lp | +|ENLp,| <11¢° +13¢* + 1043

and concludes this proof. O

Lemma 2.4.45. The set £ of all lines | with | £ H which satisfy case C3 (a) or C3 (c)
of Theorem 2.4.15 has cardinality at most 64¢° + 80¢* + 164> + 16¢>.

Proof. We first note that for all [ € £ the hyperplane H; provided by Theorem 2.4.15
satisfies &[l, 3, H;] C II3(A;(C)). Therefore, if P is a point and [ a line with P ¢ [ such
that every solid S € II3(A;(C)) satisfies P € S, then to any hyperplane H' > [ there is
a solid S < H' with P ¢ S which proves | ¢ £. Furthermore, we remark that Lemma
2.4.43 ii), the bound given in Equation (2.61) and the fact that

29" +4¢° +5¢° + 6" + 5¢° + 4¢° + 2¢ + 1 < 5[2] - (2¢° + 2¢* + ¢* + 3¢* + ¢+ 1)
together prove
VH' € S[4,P] : |Ap ()| < 3¢° + 5¢* +5¢° + 7¢* + 3¢ + 2. (2.69)

We keep that in mind and now consider Proposition 2.4.18 and its implications for
different values of d. Note that any non-empty subset of £ obviously satisfies condition
(IT) of this Proposition. Therefore, we always consider the claims given there for k = 4.

First, assume that there is a point P € H and an integer £ with [Ap(£)| > 4¢ such
that any hyperplane G of P satisfies |[Ag(Ap(£))| <. Then we may apply Proposition
2.4.18 with d = 4 to Ap(£), which shows that there is a subspace U with dim(U) < 3
such that for all flags f € C we have m1(f) < U or P € 7w3(f) (note that the second
case given in Proposition 2.4.18 may not occur, because, for dimensional reasons, a solid
may not contain a complement of P in the d + 1 = 5 dimensional subspace G; given
there). Hence, if [ € S[P,0,1,P] is a line with | £ U, then any solid S € II3(A;(C))
satisfies P € S and we have already seen that this implies [ ¢ £. Therefore, and since
|Ap(£)| < ¢*, we have

L] < |AP(L)] + |5[1, U] < ¢* +5401,3] =2¢* + ¢* +2¢* + ¢+ 1. (2.70)

Secondly, assume that there is a point P € H, an integer £ and a subset £ C Ap(£)
with dim((£')) = 4, |£| > 4¢ and such that any solid S of P satisfies |[Ag(£')| < &. Then
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we may apply Proposition 2.4.18 with d = 3 to £’, which shows that there is a subspace
U with dim(U) < 4 such that for all flags f € C' we have m1(f) < U, or m3(f) contains
P or a complement of P in the hyperplane (£') and, if dim(U) = 4, then U = (£').
Thus, if | € S[P,(),1,P] is a line with [ £ U and | £ (£'), then any solid S € II3(A;(C))
satisfies P € S and we have already seen that this implies [ ¢ £. Therefore, we have

()
2] < [AP(E)] + [Au (L) U A (£)] < ¢" +5[1.3] + Ay (L))

O 345 + 7¢* + 6% + 94> + g + 3,

(2.71)

where in the step marked with (x) we used the fact that U = (£') if dim(U) = 4 as well
as [Ap(2)| < g

Before we proceed we remark that, if there is a point P € H such that |[Ap(£)| > 1642,
then one of these two situations occurs, which already proves the claim in this case as
follows:

e cither there is a hyperplane H’ of P such that |Ag/(Ap(£))| > 4¢* and we have
shown above that Equation (2.71) holds, or

e every hyperplane H' of P satisfies |Ar/ (Ap(£))| < 4¢% and we have shown above
that Equation (2.70) holds.

Similarly, if there is a point P € H such that |Ap(£)| > 64¢, then we may assume
that there is a solid S with |[Ag(Ap(L))| > 4q, for otherwise:

e cither there is a hyperplane H' of P such that |Ag/(Ap(L))| > 16¢ and we have
shown above that Equation (2.71) holds, or

e every hyperplane H' of P satisfies |[Ap/(Ap(£))| < 16¢ and we have shown above
that Equation (2.70) holds

and either way this implies the claim.

Hence, from now on we may assume that |Ap(£)| < 16¢> for all P € H. Furthermore,
we may assume that to every point P € H with |[Ap(£)| > 64q there is a solid S with
|As(Ap(L))] > 4¢ and, since this solid contains lines of £, it satisfies P € S £ H.
Moreover, we may assume that there indeed is a point P € H with |[Ap(£)| > 64¢, for
otherwise we have |£| < |H| - 64¢g = 64¢ - s4[4], which implies the claim.

Now, let P, € H be a point with |Ap, (£)] > 64¢ and let S; be a solid such that
L1 := Ag,(Ap, (L)) satisfies |£1| > 4¢. Then we may apply Proposition 2.4.18 with
d = 2 to £1, which shows that there is a subspace U; with dim(U;) < 4 such that for all
flags f € C we have 71(f) < U; or m3(f) contains P; or a complement of P; in Sj.

However, if every point P € H \ S; satisfies |Ap(£)| < 64¢, then we have

€] <D IARL)[+ ) |Ap(L)| < |S1NH|-16¢> +|H \ S| - 64¢
PeS,; PeH\S1

= 64¢° + 80¢* + 16¢> + 16¢°,
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as claimed. Therefore, we may also assume that there is a point P, € H \ S; with
|Ap,(£)|] > 64¢ and we let Sy be a solid such that £5 := Ag, (Ap,(£)) satisfies |L2| > 4q.
Again we may apply Proposition 2.4.18 with d = 2, now to £2, which shows that there is
a second subspace Us with dim(Usz) < 4 such that for all flags f € C' we have 1 (f) < Us
or m3(f) contains P» or a complement of P in So.

Now, if [ is a line for which there is an index i € {1,2} with [N S; = 0 and | £ U;,
then, for dimensional reasons, there is no solid S > [ which contains a complement of P;
in S;, that is, every solid S € II3(A;(C)) satisfies P; € S and we have already seen that
this implies [ ¢ £.

Furthermore, every line [ € &[S N S2,0,1,P] with I NSy # 0 # 1N Sy satisfies
I =(INSy,INSs) < (S1,52) and, if S > [ is a solid for which F; := SNS; and Ey := SNSy
are planes, then, for dimensional reasons, the planes F; and E5 meet in a line g < 51N.55.
Since for every line [ € §[S1NSs, D, 1,P] with Py # INSy # 0 # INSy # Pyand | £ Uy, Uy
every solid S € II3(A;(C)) with P, Py ¢ S contains a complement of P; in \S; for both
i € {1,2}, this proves that S is the span of [ and a line g < S; N Sy. In particular, if
S1N S is a line, then every line [ € G[S1 NS, 0,1, P] with Py £1NS; A0 #1NSy # P,
and [ £ Uy, Uy is such that every solid S € II3(A;(C)) satisfies P; € S for some ¢ € {1,2},
or S = (1,51 N S2) and, again, this implies [ ¢ £.

Now, for all 7 € {1,2} we set £; := Ap,(£) U Ay, (L) as well as

Lo ::{ZES\(ﬁlUﬁg):lﬂslﬂSQ%Q)} and
B:Z{ZGQ\(EQU[:lUﬁQ)Zlﬁsl#@%lﬂSQ}.

Above we have seen that this implies £ = Lo U Ly U L1 U Ly and, since S; Z P2 € Sz, we
know that S7 N Ss is at most a plane and thus Lemma 2.4.43 i) implies

Lol < sq[1] - 164° +¢* - (9¢° + ¢+ 9)g.
Furthermore, either (S7,S2) is a hyperplane of P, in which case Equation (2.69) shows
L] < 36” +5¢" +5¢° + 7" + 3¢ + 2,

or (S1NS3) =P, in which case S NSy is a line and we have seen above that £{, =
Finally, Equation (2.69) shows

Vie {1,2} - L] <16¢% +3¢° +5¢* +5¢3 + 7> + 3¢ + 2
and altogether this shows
L] < 18¢° 4 16¢* + 40¢® + 69¢* + 9¢ + 6
and concludes the proof. O
Lemma 2.4.46. Let £ be the set of lines | € II1(C) with | £ H. Then

{PeH:Ap(L)>15¢°} < 16 - 5,[2).
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Proof. For every point P € P :={P € H : Ap(£) > 15¢3} every hyperplane H' satisfies

|Am (Ap(L))| < IS[P, 1, H')| < 15¢3, which proves (Ap(£)) = P. Now, if dim((P)) < 1,

then there is nothing to prove and thus we may assume that there are points P, P»

and P; in P which span a plane. For all i € {1,2,3} let I},...,I¢ be lines in Ap,(£)

with (If,...,l5) = P. Furthermore, for all i € {1,2,3} and all j € {1,...,5} let S}
3 5

be an arbitrary solid with (l;,S;) € C and set P’ := U U S; N H, which implies

i=1j=1
|P'| <15 -54[2].

Now, if f € C'isaflagand i € {1,2,3} and j € {1,...,5} are such that Wl(f)ﬁS]i» =0,
then m3(f) N l;- # () and thus, if ¢ € {1,2,3} is such that for all j € {1,...,5} we have
m(f)N S} = (), then m3(f) has non-empty intersection with all five lines l{, ey lg, which
is only possible for P; € m3(f). Hence, if f € C is a flag such that for all i € {1,2, 3}
and all j € {1,...,5} we have w1 (f) N Sji- = (), then F := (Py, P», P3) < 73(f).

Let P € H\ (P’ UE) be an arbitrary point and let [ be an arbitrary line with
P €l £ H and such that for all i € {1,2,3} and all j € {1,...,5} we have lﬂSji» = (.
Since INH = P ¢ E < H we have [N E = () and thus there is no solid through [ that
contains F, which proves Aj(C) = (). Therefore, every line | € Ap(£) satisfies [N S} # 0
for some i € {1,2,3} and some j € {1,...,5}, which proves

3 5
[Ap(&) <D D I8\ H| = 15¢,

i=1j=1

that is, P ¢ P. This proves P C P’ U E and in view of the definition of P’ this implies
|P| < 15-54[2] + |E| = 16 - 54[2], as claimed. O

Corollary 2.4.47. The set £ of all lines | € 111 (C) with | £ H satisfies
12| < 15¢7 + 31¢5 — 209¢° — 209¢* — 2254°.
Proof. Lemma 2.4.46 proves

£ <16-5.[2] - ¢* + (|H| — 16 - 5,[2]) - 15¢° = 15¢" + 31¢5 — 209¢° — 209¢* — 225¢°.
q q
O

Lemma 2.4.48. The set £ of all lines | with | £ H which satisfy case C3 (d) or C4 of
Theorem 2.4.15 has cardinality at most 72¢% + 77¢% + 111¢* + 100¢> + 40¢> + 20q + 10.

Proof. For every line | € £, according to Theorem 2.4.15, Remark 2.4.16 and the respec-
tive applicable Lemma given therein (2.4.13 is applicable with dim(U) = 2 if [ satisfies
case C3 (d) and 2.4.14 is applicable with £3 = ) if [ satisfies case C4), there is a plane
E; and a hyperplane H; of P with | < E; < H; such that any flag f € C satisfies
7T1(f) N El 75 @, 7['1(f) < Hl, or 7r3(f) Nl 75 @

Now, if every point P € H satisfies |[Ap(£)| < ¢2, then |£] < |H| - ¢® = ¢* - 54[4]
and there is nothing to prove. Hence, assume the contrary and let P, € H be such that
|Ap, (£)] > ¢ Sincel £ H for all | € £ any solid S satisfies |Ag(Ap, (£))] < ¢* and thus
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there are lines I1,...,l} € Ap (£) which span a hyperplane Hy # H of P. Furthermore,
if every point P € H \ H satisfies |Ap(£)| < ¢?, then, using Lemma 2.4.46, we have

€] < |H|- >+ |Hi N H|-15¢° + 16 - 5,[2] - ¢* < 32¢° + 32¢° + 32¢" + 16¢° + ¢

and, again, there remains nothing to prove. Hence, again assume the contrary, let
P, € H\ Hy be such that |Ap,(£)| > ¢* and let 13,...,13 € Ap,(£) be lines which span
a hyperplane Ho # H of P.

Then, for all i € {1,2}, using the line I}, Lemma 2.4.34 shows that there are only
2¢5 + ¢° + ¢* flags f € Ay (C) with P; ¢ m3(f), which implies

|AH(C)] < 5g[1,3,4] - 54[1,3] +2(2¢° + ¢° + ¢*)
=5¢% +4¢° +6¢" +4¢> +4¢* + 29+ 1 < 5(¢° + ¢*) - 54[1].

Hence, for all i € {1,2} and j € {1,...,4} we may apply Lemma 2.4.43 with d = 1 to see

that [Am, (&), [Am, (£)] < 6¢°+3¢*+10¢3+4¢>4+2¢+1 as well as |Ap(L)| < (9¢%+q+9)q?

for all P € Eji \ H. This shows that the set L; of all lines [ € £ for which there exists
J

i € {1,2} such that there is a solid S with ([, 5) € C and P; ¢ S satisfies

L] <4(60° + 3¢* +10¢° + 4¢> + 2¢ + 1+ ¢°(9¢* + ¢ + 9)¢* + (¢ + 1)¢*)
+ 6¢° +3¢* +10¢> +4¢° + 2+ 1
= 3645 + 38¢° + 55¢* + 504 + 20¢* 4 10q + 5.

Furthermore, if [ is a line with [ ¢ £; U Ly and [N H ¢ (Py, P2), then every solid
S € II3(A(C)) contains (P;, P») and thus satisfies S = (I, P, P»), which implies | ¢ £
and proves

L] < |Lq| + |La| + [(P1, P2)|q* < 72¢° + 77¢° 4+ 111¢* + 100¢® + 40¢* + 20¢ +10. O
Theorem 2.4.49. The set C' satisfies
|C| < 376¢" + 771¢°% + 537¢° + 540¢* + 212¢° + 409¢> + 153¢ + 49.

Proof. We let £ be the set of all lines [ with [ £ H and note that Theorem 2.4.15 gives
a list of cases which may occur for any line [ € £. We let £1 be the set of all saturated
lines with [ £ H and we let C denote all flags f € C' with 71(f) € £;. Likewise, for
i €{2,3} and j € {a,b,c} we let £; ;) be the set of all lines [ £ H which satisfy case i
part (j) of Theorem 2.4.15 and we let Cj ;) denote all flags f € C with m1(f) € £; ()
as well as for i € {4,5} we let £; be the set of all lines | £ H which satisfy case i of
Theorem 2.4.15 and we let C; denote all flags f € C with 71(f) € £;.

Then, Lemma 2.4.39 shows |£1] < 2¢*(¢+ 1), Lemma 2.4.40 shows |£5 ()| < 27-5,4],
Lemma 2.4.41 shows |£y )| < (16¢ + 10) - 54[4], Lemma 2.4.42 shows [£y ()| < (10¢% +
9g + 1) - 54[4], Lemma 2.4.44 shows 1237(? U L34 < 8lg* - 54[3] + ¢*, Lemma 2.4.45
shows |£3 () U £3,¢)] < 64¢° + 80¢* 4 16¢° + 16¢2, Lemma 2.4.48 shows |€3,a) U £4] <
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7245 4-67¢° +81¢* and Corollary 2.4.47 shows |£| < 15¢7 +31¢5 —209¢° — 209¢* — 225¢3.
This shows

C1] < 2¢" + 4¢° + 6¢° + 64" + 4¢° + 2¢°,
Ca. (0] < 27q" + 81¢° + 108¢° + 135¢* + 135¢” + 108¢” + 54q + 27,
Cy 5| < 16" +58¢° + 94¢° + 104¢* + 104¢* + 88¢> + 46¢ + 10,
Ca,(0)] < 10¢" +29¢° + 39¢° + 40" + 40¢° + 30¢> + 11q + 1,
|Cy,(a) U Cs| < 30" + 62¢° — 418¢° — 418¢" — 4504,
|Cs,(a) U Cs,6) U O3, (o) < 1€3,(a)|(54[2] + ¢%) + (8147 - 54[3] + ¢* — [L3,(a)]) - 54[2]
+ (64¢° + 80¢" + 16¢° + 164* — | L3 (4)]) - 54[2]
= (145¢° + 162¢" + 97¢° + 97¢%) - 54[2] — | €3 (o)|(q + 1)
< 145¢" + 307¢5 + 404¢° + 356¢* + 194> + 9742,
|C3,a) U Ca| < 144q" + 226¢° + 299¢° + 311¢" + 180¢° + 80¢” + 40q + 10

and together with the bound on |Ag(C)| given in Equation (2.61) this proves the claim.

O
Corollary 2.4.50. FEvery independent set of I' of size larger than
376¢" + 771¢° + 537¢° 4+ 540¢* + 212¢® + 409¢® + 153¢ + 49
s contained in a mazximal independent set of I' given by Example 2.4.1.
Proof. In view of Notation 2.4.38, this is a direct corollary to Theorem 2.4.49. O

Theorem 2.4.51. For q > 376 the independence number of the Kneser graph of flags
of type (1,3) in PG(5,q) is 54[3,4] - 54[1, 3] +54[2](54[3] + ¢*)¢* and the independent sets
attaining this bound are those given in FExample 2.4.1 using an independent set U of the
Kneser graph on line plane flags in PG(4,q) of maximal size.

Proof. This is implied by Corollary 2.4.50, since 54[3,4] - 84[1, 3] + 54[2](54[3] + ¢*)¢* is
smaller than the bound given there for ¢ > 376. O
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3 Tight Sets

Throughout this chapter we let d be a positive integer and we let ¢ be a prime power.
Since in this chapter the number of points and hyperplanes of a given projective space
plays a crucial role, we will use the notation 64(q) to denote s,[d]. Furthermore, since
we mainly work over the field with ¢? elements, we abbreviate the notation and simply
write 64 instead of 64(¢?). Finally, we use L to denote the polarity associated with the
given Hermitian polar space, as explained in the introduction.

We first introduce the object that we aim to study in this chapter.

Definition 3.0.1 (Tight Set). A tight set of the Hermitian polar space H(2d,¢?) is a
subset T of its point-set such that there exists an integer z > 0 with the property

04— —1)04_9 for PeT,
P e H2d, ) : [Pt | = | Pt T (@ = Dlamy for

204_9 for P ¢ T.
The integer x is called the parameter of the tight set and a tight set with parameter x
is called an xz-tight set.

An immediate consequence of this definition is the fact that for all z € Ny the union
of z mutually skew generators of H(2d, ¢?) is an z-tight set thereof. In [1] by De Beule
and Metsch it was conjectured that in fact every tight set of H(2d,q?) with parameter
x < g+ 1 is the disjoint union of generators. In this chapter we take one step towards
proving said conjecture.

First, though, we note that the statement given in the conjecture is best possible.
That is because there exist z-tight sets of H(2d, ¢*) with parameter 2 = ¢+ 1 which are
not the union of disjoint generators. Two such examples are

e the embedding of the parabolic polar space Q(2d,q) in H(2d,¢*) and

e the embedding the symplectic polar space W (2d — 1,q) in H(2d — 1, ¢?), which in
turn can be embedded in H(2d, ¢°).

In both of these cases the set of points of the given embedding is a tight set of H(2d, ¢?)
with parameter x = ¢ + 1 and neither of the two contains a generator. Note that for
d =2 and ¢ € {2, 3} further examples were constructed by Cossidente and Pavese in [13,
Remark 4.12].

On the other hand, the conjecture has already been established for d = 2 in [1]. There
it has also been proven under the stronger assumption x < g + 1 — /2¢ for d = 3. For
d > 4, it was shown under a much stronger assumption in [24] by Metsch. The main
result of this chapter is Theorem 3.2.10, which considerably improves the corresponding
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result of [24]. It was first published by the author of this thesis together with Metsch in
[26].

One of the main difficulties in the proof is to show that a non-empty tight set with
sufficiently small parameter x contains a line and we can prove this only for z < %(q+ 1).
Once a line is found the condition z < ¢ is sufficient to find a generator in the tight set.

3.1 Preliminaries

For this section let P := PG(d, ¢?) and let H := H(d,q*) C P be the Hermitian polar
space therein and note that, since L is a polarity, we have dim(U) + dim(U+) = d — 1
for every subspace U of P. A subspace U < P is contained in H if and only if U is totally
isotropic, which is equivalent to U C U'. Totally isotropic subspaces U < P are also
called subspaces of H.

In this section we will collect some well-known facts on Hermitian polar spaces that
we require in the final section of this thesis.

(@’ = (=)™ + (=1
¢ —1 '

Lemma 3.1.1 ([11, Theorem 6.5.2]). |H| =

Corollary 3.1.2. The points of H span P.

Proof. Using the value given in Lemma 3.1.1 we see that there are more points in H
than in a hyperplane of P. O

Lemma 3.1.3. Let U be a subspace of P, set R := U NU"L and let C be a complement
of RinU.

i) If R=U, then U C H.
it) If dim(R) = dim(U) — 1, then R=U NH.
i) If r == dim(R) < dim(U) — 2, then C N'H is a Hermitian polar space H(c,q*) with
c:=dim(U) — 1 —r and U N'H is the union of the subspaces (R, P) of P with
P e CNH. Furthermore, the points of U that lie in H span U as a subspace of P.

Proof. First, note that we have R C U, which implies U+ C Rt and, since R C U+,
this shows R C RT. Therefore, R is totally isotropic and thus contained in H. Note
that this already proves i).

ii) We suppose that dim(R) = dim(U) — 1 and consider a point point P € U \ R.
Then U = (R, P), hence U+ = R+ N P+ and thus

R=UnNU=UNR*nPt=UnP.

Therefore, P ¢ P*, that is, P ¢ H(d,q?), which shows U N H(d,¢*) = R.
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iii) Now, suppose that dim(R) < dim(U) — 2 and let C' be a complement of R in U.
Then dim(C) = dim(U) —1—7 > 1 and from U NU = R as well as U+ = R*tNC*
we have C*+ N C = (). Thus, the restriction of the form defining H to C is non-
degenerate and HNC is a Hermitian polar space H(c,q?). Now, a point P € U\ R
belongs to H if and only if (R, P) is totally isotropic and this is the case if and
only if the point (R, P) N C belongs to H. Finally, Corollary 3.1.2 shows that
H(s —r —1,q?) spans C and hence U NH spans U. O

Definition 3.1.4 (Cone). If U is a subspace of P which satisfies iii) of the previous
lemma and notations are as given there, then U NH is called a cone with vertex R over
a Hermitian polar space H(c, ¢?).

Note that this definition of a cone also includes the situation where the radical of
the cone is empty. In particular, every non-degenerate Hermitian polar space will be
called a cone, too, as a opposed to totally isotropic subspaces, which will not be called
cones. Thus, if U is a subspace of P, then U N H is either a subspace (and thus U or a
hyperplane of U), or a cone.

Corollary 3.1.5. The number of hyperplanes H of P which are not spanned by H N'H
is@>+1ifd=2and 0 if d > 3.

Proof. If d = 2, then H(2,¢?) is a hermitian curve and its ¢> + 1 tangent lines are
the hyperplanes in question. Hence, suppose that d > 3 and let H be a hyperplane
of P. Then dim(H N HY) < 0, since the form defining # is non-degenerate. Since
d—2>0>dim(H N H') we know that part iii) of Lemma 3.1.3 applies to H. Thus,
H NH is a cone and spans H. ]

Lemma 3.1.6. Let U be a subspace of P such that U N'H is a cone, set u := dim(U)
and let v be the dimension of its vertex. Then r < u — 2 and we have:

Z) |UQH’ _ 91" +q2(r+l)‘H(u 11— r QQ)‘ > q2u—1‘

ii) The number of hyperplanes H of U for which H N'H is not a cone is ¢*> + 1 if
r=u—2,¢+1ifr =u—3 and 0 otherwise. In particular, if uw > 2, then at least
0u—1 hyperplanes H of U have the property that H NH is a cone.

Proof. Let R be the vertex of the cone U NH and let C be a complement of R in U. In
Lemma 3.1.3 we have seen that C'NH is a Hermitian polar space H(u — 17 — 1,¢?).

i) From Lemma 3.1.3 we also know that U N is the union of the |H(u — 7 — 1, ¢?)|
subspaces of dimension r + 1 which are spanned by R and a point of C' N H.
Since all these subspaces contain R as well as ¢2"t1) additional points, we find
the cardinality of U NH as stated in the claim. The inequality given in the claim
is implied by the fact that the cardinality of H(u —r — 1,¢?) as stated in Lemma
3.1.1 is obviously greater than ¢?*=2"=3 for v —r — 1 > 1.
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ii) First, consider a hyperplane H of U with R C H. Then each complement of RN H
in H is also a complement of R in U and hence meets H in a Hermitian polar space
H(u—1—1,¢%). Therefore, in this case H NH is not a subspace but a cone.

Now, consider a hyperplane H of U with R C H. Then H is spanned by R and a
hyperplane of C. Since UNH is the union of the spaces (R, P) spanned by R and a
point P € C, we know that H meets H in a subspace of and only if H NC meets H
in a subspace. Corollary 3.1.5 shows that this is never the case for u—r—1 > 3 and
that this happens exactly ¢ + 1 times for u —r — 1 = 2. Finally, foru—r—1=1
we know that H N C' is a point and thus always a subspace, that is, in this case it
occurs for all g2 + 1 hyperplanes of U which contain R.

This proves the first part of the claim in ii). However, the total number of hyper-
planes of U is 6, = ¢** + 0,_1 and for u > 2 this implies the second claim. O

3.2 Small Tight Sets of H(2d, q°)

In this section we work in the projective space P := PG(2d, ¢?), let H := H(2d, ¢*) be
the Hermitian polar space therein and assume that d > 1. Furthermore, we let T be a
tight set of H and we let x be its parameter. In the following lemmata we investigate
properties of T'. We are particularly interested in subspaces U of P with UNH C T.

In the spirit of trying to keep this work as complete as possible we also include the
proofs of some well known facts, such as the following lemma.

Lemma 3.2.1. If T is an x-tight set of H, then |T| = x04_1.

Proof. We count pairs (P, Q) consisting of points P € T and Q € H with P € Q* twice.

On one hand we have |T| choices for the point P and, since P € Q+ <= Q € P~ for
all Q € H, we subsequently have | P+ N | choices for the point Q. Note that for P € T
we have P € H, that is, P N7 is a cone with 0-dimensional vertex P = P N P over a
Hermitian polar space H(2d — 2,¢?) and thus the cardinality of P+ N % is independent

of the particular choice of P € T' and given by (1 + ¢?|H(2d — 2, ¢%)]).
On the other hand we have |H| = % choices for @, all of which are
incident with either x6y_o or ¢¢~ + x6,4_5 points of T, depending on whether or not Q

is an element of T'. This yields

(@ +1)(¢* - 1)
q*>—1

711+ ¢*|H (2d - 2,*)]) = g+ |T|g* "

and simplifications show |T| = z64_1, as claimed. O

The following is also known and given as Lemma 2.1 in [24] by Metsch, but we still
include a proof here.

Lemma 3.2.2. Let U <P be such that U CT. Then

U NT| =041 + (2 — 1) gim(u)—2-
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Proof. The proof is by induction on u := dim(U) and the case u = 0 is trivial by the
definition of a tight set. Thus, let v > 0 and assume that the statement holds for
subspaces of smaller dimension.

There are 6, subspaces Uy,...,Up, of dimension v — 1 contained in U, any two of
which span the whole space U. Furthermore, for any point € T we know that z1 is
a hyperplane of P, which implies that z N U has dimension > u — 1 and thus contains
an u — 1 dimensional subspace U’ of U. Hence, U’ C z and thus z € U'", that is,
T C U?;l U:-. Moreover, for all distinct 7,5 € {1,...,60,} and all P € Ui* N UjL NT we
have U = (U;,U;) C P+ and thus P € UL+ NT. Together this implies

O

U (vt nr)

i=1

:Iftgd_l == |T‘ ==

:’ULHT‘Jri(UfﬁT’—‘ULmTD.
i=1

Using the induction hypothesis, stating |U- N T| = 04_1 + (x — 1)04—(u—1)—2, we have

201 = O (a1 + (@ = Daur) = (0u = D) [UL N T

)

which implies

Og—1+ (£ — 1)03_y—1) — 2041

’ULQT‘:QU( 0, — 1

Now, consider the right hand side in two parts. First we notice

04-1— g1, ¢*V0,_1 2d—u—1) _
9u 9u 1 = Qu q20u_1 - euq - Hd—l 9d—u—2

and then study the rest and see

Oubauy —0a1) _ (PCFY = 1P —1) — (¢ 1) - 1)

O — 1 - (¢* = g*(¢* — 1)
_ xq2(d_1) _ ) p2u g _ xq2(d—u—l) 1 o
(¢ —1)(¢* — 1) ¢ -1 e
Together this proves the claim. O

Note that the case dim(U) = 1 of the following lemma has already been covered in [1,
Lemma 3.1] by De Beule and Metsch.

Lemma 3.2.3. Let U < P be such that U NH is a cone contained in T'. Then
U-NT| > (g+1—2)@ 20000y -1 + 200 dim(uy—1-

Proof. The proof is, again, by induction on u := dim(U) and first we consider the case
u < 1. Since U NH is not a subspace we have u = 1 and U N H consists of ¢ + 1
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3 Tight Sets

points Pi,..., Py4q of the line U. Now, for all distinct 4,5 € {1,...,¢ + 1} we have
BN Pt = Ut and thus

g+1 q+1
Wy =T > | J BT =Y [PEnT| - q|utnT|
=1 i=

= (g + (@ + 2045) — g|UL N T|

1)(¢?9Y) + 20,_9) — 2044

p =(q+1-2)@" 3 + 20,4,

— ‘ULOT‘ > (g+

as claimed.

Now, suppose that u > 2 and that the assertion is true for subspaces of smaller dimen-
sion. Lemma 3.1.6 shows that U has at least 6, distinct hyperplanes Hy,..., Hy, ,
which intersect H in a cone. Since any two distinct hyperplanes of U span U we know
that every point which lies in H;- and H ]L for some distinct 4,5 € {1,...,0,-1}, also lies
in U+ and thus in H;- for all 4 € {1,...,0,_1}. This implies

01

Ul (HnT)

1=

2041 = |T| > :Guzl HEOT]+ (1 =0, ) [t 0T,
=1

1=

Now, we may use the induction hypothesis to see

2041 > Ou_1 ((q +1- x)q2d+1_2u9u72 + ZL'ed—u) + (1 - Hufl) ‘UL nT

9

which implies

. ((g+1 = 2)g2* 120, 5+ 204_,) — 2041
’ ’ - Gu,l —1
_ Ou—1(q+1—z)g? 17249, n $9u—19d7u —0q—1
q20u—2 q20u—2

=0u_1(g+ 1 —2)@P 172 4 ¢,

with & := x%. Finally, we simplify &, which shows the claim

(¢ = D@ —1) — (¢~ 1)(¢> = 1)

(¢ — 1)¢?(¢?=D —1)
P A 2 1 g2du)

(@ — (@D —1) I

Lemma 3.2.4. Let Uy and Uy be subspaces of P with Uy NUs NH # 0 and

=x = x04_y—1. O

UENT|+ U5 07| > a1+ (20 = 1)as. (3.1)

Then (Ul, U2> NHCT.
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3.2 Small Tight Sets of H(2d,q?)

Proof. Set U := (Uy,Us) and let Q be a point of Uy N Uy N'H. Then Ui, Us- € Q@+ and
from Uit N Us" = UL we have

QI NT|>|ULNT|+|U+nT| - |ULNT].

From the definition of a tight set we have |Q+ NT| < 641 + (x — 1)f3_5. Hence, if
Equation (3.1) holds, then |[U+ NT| > x4 o, that is, |[PX NT| > 2045 for all P € U
and the definition of a tight set implies that U N'H C T O

Lemma 3.2.5. Let Uy and Uy be subspaces of P with Uy N Us NH # (). Furthermore,
suppose that U;N'H is contained in T and spans U; fori € {1,2}. Then (U1, Us)NH C T
in each of the following cases.

i) 2x < ¢ +1 and Uy and Uy are contained H.

1) x < q and Uy is contained H.

iit) x < q and Uy N'H contains a line.

) 2z < q+1.

Proof. First, note that by hypothesis Uy NH is non-empty and contained in 7". Therefore,
T # 0 and, since |T'| = x6,_1, this implies = > 0, that is, z > 1. Furthermore, if one of
the subspaces Uy or Us is a point the claim is trivial and thus in the following we may
assume the contrary.

i)

ii)

iii)

Lemma 3.2.2 shows |U+ NT| > 64, for both i € {1,2} and since
041> q*0q—2 > (22 — 1)04_o,
the previous lemma proves the claim.

In view of i) we may assume that Us is not contained in H and set ug := dim(Us).
Since Us is not contained in H and since Us N H spans Us we have us > 1 and
Us; NH is a cone. Now, subsequently using Lemma 3.2.3, the fact that us > 1
implies 0,1 > 2271 a5 well as < ¢ — 1 shows

|U'2L N T‘ > (q +1— 1’)q2d_2u2_10u2—1 > (q +1-— l‘)qu_g > 2q2d—3
>2(q—1)04-2 > 2v04 2 > (22 — 1)04_».

Finally, Lemma 3.2.2 shows |Uj- N T| > 64_1 and the previous lemma proves the
claim.

Let P be a point of Uy NUsNH. Since U; N'H contains a line, it even contains a line
[ with P €[ (if h is a line of U; NH, then either P € h, or P lies on a line [ of H that
meets h and this line is contained in Uy) and ii) implies (U, 1) NH C T. Let U be
a subspace of maximal dimension subject to the properties (Us,l) C U C (Uy, Us)
and U N'H C T. We have to show that U = (Uy, Us) and we assume the contrary.
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3 Tight Sets

Now, U; is not a subset of U and, since U; N H spans Uy, there exists a point @
in U3 N'H that does not lie in U. Then @ ¢ [ and H contains a line h with @ € h
that meets [. Since [l C Uy and Q € U; we have h CU; and thus h CUTNH CT.
However, ii) implies (U, h) N'H C T, a contradiction to the maximality of U.

iv) In view of iii) we may assume that neither U; nor U; contains a line of H and we
remark that this also implies that neither of the two is a subspace of H.

Let ¢ € {1,2} be arbitrarily chosen and fixed. Since U; N'H spans Uj;, this implies
that U; NH is a Hermitian line H(1,¢?) or a Hermitian curve H(2,¢%). If U; N H
is a Hermitian line, then Lemma 3.2.3 shows

U+ NT| > (q+1—2)¢" 7 + 22
and if U; NH is a Hermitian curve, then Lemma 3.2.3 shows
ULENT|> (g +1—2)¢*%0; + 26,4_3.

Since x > 1 the first of these two bounds is stronger than the second one. In view
of the previous lemma the claim thus is implied by

(*) 2x — 1
2(q+1—2)*" %0 + 22043 > <q + q> V7001 + 23043

> 2740, + (2x — D@4 + 22045 = 041 + (22 — 1)04—2,
where the first step marked (%) used the fact that 2z < ¢+ 1 implies

2¢ — 1

2@+1—2)>qg+1>q+ O

Lemma 3.2.6. Suppose that © < q — 1 and that U is a subspace of P with dim(U) >
d—1and UNH C T. Then UNH is a subspace and either dim(U) = d — 1 with
dim(UNH)>d—-2, or dim(U) = d with dim(U NH) =d — 1.

Proof. We set u := dim(U) > d — 1 and first assume that U NH is not a subspace.

From Lemma 3.1.3 we then know that U N H is a cone and Lemma 3.1.6 implies
[UNH| > (¢ —1)0,-1. Since |T| = 2041 and x < g — 1 this shows u < d — 1, that is,
u=d—1and |[UNH|> (¢ —1)04—2.

Now, for all P € U NH we have U C Pt and in view of the definition of a tight
set the fact that [P NT| > |[UNH| > (¢ — 1)0;_o implies P € T, that is, we have
U+ NH C T with dim(U+) = d. Note that, if U+ NH would be a cone, then Lemma
3.1.6 would imply |T| > |U+ NH| > (¢ — 1)8,_1, a contradiction to |T| = x6;_; and
x < q¢—1. Hence, UL N#H is a subspace S. Furthermore, since H does not contain
subspaces of dimension d, Lemma 3.1.3 shows dim(S) =d — 1.

Finally, consider a point @ € U\ S. Then Q € S+, since Ut NH = S, and S C S+,
since S is a subspace of H. Furthermore, from U+ = (S, Q) we have U+ C S+. Hence,
S C U and, since S and U have the same dimension, we even have S = U. However,
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3.2 Small Tight Sets of H(2d,q?)

this is a contradiction to the fact that U NH is a cone and hence we conclude that U NH
must be a subspace V.

Now, Lemma 3.1.3 shows that V is either U or a hyperplane of U and, since every
subspace contained in H has dimension at most d — 1, we have dim(V') < d—1. However,
since u > d — 1, this only leaves two possibilities: Either u = d — 1 and U is a subspace
of H,or u € {d—1,d} and V =U NH is a subspace of dimension u — 1. O

Lemma 3.2.7. Suppose that x < q — 1 and that T contains two subspaces Uy and Us
such that Uy NUz # O and dim((Uy,Us)) > d — 1. Then (U1, Us) has dimension d — 1
and is contained in T .

Proof. We set U := (U, Us) as well as S := U; N Uz and note that Lemma 3.2.5 ii)
already shows U N’H C T. Now, Lemma 3.2.6 shows that U N H is a subspace and,
since U is spanned by U; and Us and since U; CT' C ‘H, we have U C ‘H. However, this
implies dim(U) < d — 1 and thus dim(U) = d — 1, as claimed. O

Lemma 3.2.8. Let U be a subspace of P contained in T, set v := dim(U) and suppose
that one of the following two conditions holds:

1<u<d-2Nx<qg-—1 or u=0A2x<qg-+1.

Then U is contained in at most 04_,,_3 subspaces W of dimension u+1 such that W NH
is a cone contained in T.

Proof. For u = d — 2 we have 6;_,_3 = 6_1 = 0 and the statement is implied by
Lemma 3.2.6. Therefore, we may assume that 0 < v < d — 3 and we let Wy,..., W
be the pairwise distinct subspaces in question, that is, for all ¢ € {1,...,s} we have
dim(W;) =u+ 1, U < W; and W; NH is a cone contained in 7.

We now prove by induction on i € {1,...,s} that W, := (Wy,..., W;) meets H in a
cone contained in 7. For ¢ = 1 this is obviously trivial and thus we may suppose that
the statement holds for some ¢ with 1 < i < s. Now, for u = 0 condition iv) and for
u > 1 condition iii) of Lemma 3.2.5 is satisfied and thus we may apply said Lemma to
the subspaces W; and W, to see that W,,1 NH is contained in T, too. Since Wi NH
is a cone with W7 N'H € W41 N'H we know that W;, 1 NH may not be a subspace, that
is, it is also a cone, as claimed.

Now, we know that W, N H is a cone contained in 7" and thus Lemma 3.2.6 implies
dim(Wy) < d — 2. Therefore, the number of (u + 1)-dimensional subspaces of W which
contain U is at most sp2[u,u + 1,d — 2] = 04,3, that is, we have s < 05,3, as
claimed. O

Lemma 3.2.9. Let U be a subspace that is contained in T' and maximal with respect to
this property, and let u denote its dimension. If 1 < u < d—2, then we have x > q, and
if u =0, then we have 2x > q + 2.

Proof. We remark that the condition 2z < ¢ + 1 for v = 0 will only be used when
we apply Lemma 3.2.8. Furthermore, note that we prove both parts of the claim at
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3 Tight Sets

once and do so in three steps, leading the assumption that the claim does not hold to
a contradiction. Finally, also note that for u < 0 there is nothing to prove, that is, we
may assume u > 0 and then () # U C T implies z > 1.

Now, we assume that either 1 <u<d—-2andz<q¢g—1l,oru=0and 2z <¢qg+1
holds and count pairs (Q, R) € (U NT) x (T\ U*) with Q € R* in two different ways.
In the first step we first choose the point @ of the pair (@, R) and determine a lower
bound on the number m of these pairs. In the second step we first choose the point R of
the pair (@, R) and determine an upper bound on m. In the third step we then compare
these two bounds, yielding a contradiction and concluding the proof.

Thus, we first count pairs by first choosing a point @ of U~ NT. Any such point @Q
occurs in

fo=1Q NT[—|Q NU-NT]
pairs and for Q € U we have UL C @+ and Lemma 3.2.2 shows
Lo =1Q NT|—|UNT| = (z — 1)(04—2 — Og—u_2).

Hence, it remains to study @ ¢ U. In this case (U,Q) is (u + 1)-dimensional and,
since Q € U™, it is totally isotropic. Furthermore, from the maximal choice of U we
know that (U, Q) is not contained in 7', that is, there exists a totally isotropic point
P c(U,Q)\T. Now, Ut NQ* = (U, Q)" is contained in P+ and, since T is a tight set,
we have [U+ N Q+ NT| < |P+NT| < 26, 5. Therefore, in this case we find

€= Q" NT| =y s =gV,
Consequently, the total number m of pairs (@, R) under consideration satisfies
m > |U|(x = 1)(6a—2 — bi—u—2) + (U N T| = |U])g* "V

and, using |U| = 0, as well as [U-NT| =041 + (x — 1)04_,_2 given in Lemma 3.2.2,
we find

m > (x — 1)0u(0a—s — Og—u_s) + (Ba—1 + (x — 1)0g_p_o — 0,)g> V), (3.2)

Secondly, we count pairs (@, R) in question by first choosing R € T\U+. For each such
point R, the subspace W := (U, R) has dimension v+ 1 and the number of pairs in which
R occurs is [WW+NT|. Since R is not contained in U~ the set WNH is not a subspace and
thus it is a cone. Obviously, if this cone is not contained in T, that is if W NH contains
a point P that is not contained in 7', then we have [W+NT| < |P-NT| = x6,_5. But
also if the cone W N H is contained in T" we find a bound, because then we may use
the fact that WL N H is a subset of UL NH which does not contain the ¢** points of
U\ (R NU). Therefore, in this case R occurs in at most |[U+ N T| — ¢?* pairs. Note
that the number of choices for R is |T'| — |U+ NT|. Hence, if v is the number of points
R €T\ U* for which (U, R) meets H in a cone that is contained in T, then we find

m < (|T| = UL NT| = v)zb4_o + v(UL N T| — ¢*). (3.3)
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3.2 Small Tight Sets of H(2d,q?)

Now, Lemma 3.2.2 implies [U+ NT| > 64_1 and, since u < d — 2 and = < ¢ — 1, this
shows that the coefficient of v in Equation (3.3) is non-negative. Therefore, Equation
(3.3) remains true if we replace v by an upper bound for v. Such an upper bound is
provided by Lemma 3.2.8, which shows that at most 6,_,_3 subspaces W of dimension
u~+1 on U meet H in a cone contained in 7. Note that such a cone is a cone with vertex
U N R* of dimension u — 1 over a Hermitian line H (1, ¢?) and thus has 6,1 + (¢ +1)¢**
points in H of which ¢?“*! do not lie in U. Hence, we have v < 04_,_3¢***!, which
implies

m < (|T| - ]UL NT|)xb—2 + (9(1,u,3q2“+1(\UL NT|— ¢* — 204_9)

and, using |T'| = 204_1 as well as (Ut NT| = 03_1 + (z — 1)03_y_» from Lemma 3.2.2,
we find

m < (x —1)(0g—1 — Og—u—2)b3—2
+ g3 (Oao1 + (2 — 1)04—u—2 — ¢** — 204-2). (3.4)

Finally, we compare the lower bound « for m in Equation (3.2) and the upper bound
B for m in Equation (3.4) and find a new bound of the form 0 < f—a = f(x). Since § is
quadratic in « with positive coefficient of 22 and since « is linear in z, the polynomial f
has degree two in x with positive leading coefficient. Since 0 < f(z) and 1 <z < g —1,
it follows that 0 < f(1) or 0 < f(q). We derive the desired contradiction by showing
that this is not true. We have

FQ) = 0a—u—s3a® ™ (04-1 — ¢** — 04—2) — (04—1 — 0u)**™ V)

_ 0d7u73q2u+1(q2(d71) - qQU) . 9d7u72q2(d+u)

2u+1(q2(d71) pe 2(d+utl) o

< 04—u—3q — O04—u—3q

and straightforward calculations show f(q)(¢> — 1) = A+ B + C with

A= —g" 725" = 26" +1) — 7N (¢® = 34> + 3¢ — 1),
B — _q2d+2u73(2q4 _ q3 + q2 _ 1) + q2d72u72(q2 _ 2q + 1) and
C = _q4d—4(q3 _ q2 —q+ 1) + q2d+2u+2 + q4u+1(q2 . 1)

Of these A and B are obviously negative and since u < d — 2 we have C' < 0 except
when v = d — 2 and ¢ = 2. However, ©u = d — 2 may only occur if d > 2 and then we
have B + C' < 0. Hence, we have f(q) < 0 either way, concluding the proof. O

Theorem 3.2.10. For every x-tight set T of H(2d, q*) with x < q there is some y € Ny
with y < x such that T is the disjoint union of y generators and an (v — y)-tight set T’
such that T does not contain a line of H(2d,q?). Furthermore, if v —y < q%l, then
z—y=0.
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3 Tight Sets

Proof. The proof of the claim is by induction on z and the case z = 0 with T' = () is
trivial. For the induction step we assume z > 0 and that x is such that the claim holds
for all tight sets of H with parameter smaller than z. Let T" be an z-tight set of H and
let U be a subspace that is contained in 7" and maximal with respect to that property,
that is, let U be such that any subspace U’ that is contained in T has dimension at most
dim(U). Since z > 0 we know that U is not the empty space.

If U is not a generator, then we know from x < g and Lemma 3.2.9 that U must be a
point and we have x > qJQFQ. Hence, in this case the claim is satisfied for y = 0.

Now, assume that U is a generator. Then it is immediate from the definition of T,
that 7'\ U is a tight set of H and has parameter 2z — 1. From the induction hypothesis
we know that there is some y € Ny with y < x — 1 such that 7'\ U is the disjoint
union of y generators and an (x — 1 — y)-tight set 7" which does not contain a line of
‘H. Furthermore, we also know that, if (x — 1 —y) < %, then x — 1 —y = 0. Hence, T'
is the disjoint union of y 4+ 1 generators and an (z — (y + 1))-tight set 7" that does not
contain a line of # and, if x — (y + 1) < q;r—l, then x — (y + 1) = 0, as claimed. O
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