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Preface

In 1961 the authors Paul Erdős, Richard Rado and Chao Ko published a paper [14]
titled “Intersection theorems for systems of finite sets”, which initiated years of math-
ematical research in the field of combinatorics, including this thesis. In said paper the
authors considered a collection C of mutually intersecting k-subsets of a given n-set and
determined, how large C can be, as well as the structure of C in the extremal case.

The examples of maximal size have a fairly simple structure: for n < 2k the problem
is trivial, in the special case 2k = n every k-subset of the n-set has a complementary
k-set and one has to choose one k-set of each complementary pair, and for 2k < n one
has |C| ≤

(n−1
k−1
)
where equality holds if and only if C is the collection of all k-subsets

containing one fixed element of the n-set.
In honour of their initial research, a collection of mutually intersecting k-subsets of

a given n-set is called an Erdős-Ko-Rado set and their initial problem as well as gener-
alizations of it are often referred to as Erdős-Ko-Rado problems. An important (first)
addition to their result was given in 1967 in [18] by Hilton and Milner, where an up-
per bound on examples of second largest cardinality was determined and - in honour of
their research - results on the size of second largest examples are often referred to as
Hilton-Milner theorems.
Now, another way to view this problem is, to view it in the graph K(n, k) whose

vertices are all k-subsets of a fixed n-set and in which two vertices are adjacent if and
only if they are disjoint. This graph is called the Kneser graph K(n, k) and any Erdős-
Ko-Rado set occurs as an independent set of this graph, that is, a set of pairwise non-
adjacent vertices. Thus, in the language of graph theory, Erdős, Ko and Rado originally
determined the independence number of the Kneser graph K(n, k).

In view of the contents of this Thesis an important generalization is the Erdős-Ko-
Rado Theorem for vector spaces given in [15] by Frankl and Wilson and published in
1986. There, translated to the language of graph theory, the authors determined the
independence number of the q-Kneser graph, that is, the graph whose vertices are all
k-dimensional subspaces of a given n-dimensional vector space of the finite field GF(q),
in which two vertices are adjacent if and only if the intersection of the corresponding
subspaces is trivial. Note that in [7] published by Blokhuis, Brouwer, Chowdhury, Frankl,
Mussche, Patkós and Szönyi in 2010, the authors determined a Hilton-Milner Theorem
for the Erdős-Ko-Rado Problem in vector spaces.
In this thesis the main focus is on the study of Erdős-Ko-Rado sets in generalized

q-Kneser graphs, where the vertices are flags of subspaces of a given vector space and
two vertices are adjacent if and only if they are far apart. Here, far apart for two flags
means, that the intersection of any choice of two subspaces - one from each of the two
flags - has minimal dimension. In order to gain a better geometrical point of view, we
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study these structures in the projective space associated with the given vector space and
the main results are:

• Theorem 2.2.16, where the independence number of the Kneser graph on plane
solid flags in PG(6, q) is determined. Furthermore, in Corollary 2.2.15 an upper
bound u is provided such that every independent set of this graph of size larger
than u is a subset of a maximal independent set given by Examples 2.1.15 and
2.1.17.

• Theorem 2.3.20, where knowledge of the independence number of the Kneser graph
on plane solid flags in PG(6, q) is used to derive its chromatic number. There, we
also provide structural information on any colouring of minimal size.

• Theorem 2.4.51, where the independence number of the Kneser graph on line solid
flags in PG(5, q) is determined. Furthermore, in Corollary 2.4.50 an upper bound
u is provided such that every independent set of this graph of size larger than u is
a subset of a maximal independent set given by Example 2.4.1.

Finally, the last chapter is on the subject of small tight sets in the hermitian polar
space H(2d, q2) of even dimension. In Theorem 3.2.10 tight sets of said polar space with
parameter x ≤ q are studied and determined to be the disjoint union of a set of y ≤ x
disjoint generators together with an (x − y)-tight set which does not contain a line of
H(2d, q2). In fact, if x − y ≤ q+1

2 , then x − y = 0, that is, tight sets with parameter
x ≤ q+1

2 are the disjoint union of x generators.
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Publications and Joint Work

The content of this dissertation is in large parts based on publications of the author
during his time at the mathematical institute of the Justus-Liebig-University in Gießen.
The content of Chapter 2 is split into four sections. Of these, the second section on

the independence number of the Kneser graph of plane solid flags in PG(6, q) is based
on [25] by Metsch and Werner and the third section on the chromatic number of said
graph is based on a generalization by D’haeseleer, Metsch and Werner of their earlier
work [12]. Note that the contents of [12] by D’haeseleer, Metsch and Werner on the
chromatic number of some Kneser graphs, including the Kneser graph on line-plane
flags of PG(4, q), are not included here and instead will be included in the thesis of
Jozefien D’haeseleer.

Finally, the content of Chapter 3 on small tight sets the polar space H(2d, q2) is based
on the generalization [26] by Metsch and Werner of the publication [1] by De Beule and
Metsch.
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1 Introduction

In this chapter we introduce all the necessary definitions, notations and basic results
that are used in this thesis. We do not provide a completely self contained description of
everything that is used, but give a decent overview. Some of the basic results, especially
if the method of proof is very similar to the rest of this work, are included with proof.
For the remaining required notions, which we do not prove, we refer the reader to the
cited literature for more information.

Definition 1.0.1 (Sets). We shall denote by N = {1, 2, . . . } the set of all natural
numbers and we set N0 := N ∪ {0}. Furthermore, for any set S we let 2S denote the set
of all subsets of S.

Definition 1.0.2 (Kronecker-Delta). For two arbitrary objects x and y we define the
Kronecker-Delta δx,y to be 1 if x = y and 0 otherwise.

1.1 Basic Algebraic Objects
In this section we introduce basic algebraic objects that we use, such as groups, division
rings, fields, vector spaces etc. Furthermore, we collect some classic results, such as
Wedderburn’s Little Theorem, which are applied in one way or another in this work.

Definition 1.1.1 (Group). A group (G, ◦) is a set G with a binary operation ◦ : G×G→
G which satisfies the following axioms:

(G1) For all g1, g2, g3 ∈ G we have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

(G2) There is an identity element e ∈ G such that for all g ∈ G we have e◦g = g = g ◦e.

(G3) For all g ∈ G there is an inverse element g′ ∈ G with g ◦ g′ = e = g′ ◦ g.

A group (G, ◦) is called abelian (or commutative) if for all g, g′ ∈ G we have g◦g′ = g′◦g.
Furthermore, for any group (G, ◦) the cardinality of G is called the order of (G, ◦) and
if said order is finite, then we call (G, ◦) finite.
If the operation is written multiplicatively, then the inverse element of g ∈ G is denoted

by g−1 and if the operation is written additively, then it is denoted by −g. Furthermore,
if the operation is written multiplicatively, then we omit the operator ·, as is usual.

Definition 1.1.2 (Division Ring). A division ring (F,+, ·) is a set F with two binary
operations + : F × F → F and · : F × F → F such that:

(F1) (F,+) is an abelian group with identity element 0F .
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1 Introduction

(F2) (F \ {0F }, ·) is a group with identity element 1F .

(F3) For all g1, g2, g3 ∈ F we have g1 · (g2 + g3) = g1 · g2 + g1 · g3.

(F4) For all g1, g2, g3 ∈ F we have (g1 + g2) · g3 = g1 · g3 + g2 · g3.

A division ring (F,+, ·) is called field, if the group (F \{0F }, ·) is abelian and it is called
skewfield, if the group (F \ {0V }, ·) is not abelian. Furthermore, for any division ring
(F,+, ·) the cardinality of the set F is called the order of (F,+, ·) and if said order is
finite, then we call (F,+, ·) finite.

The following two theorems classify finite division rings and can, for example, be found
in [22].

Theorem 1.1.3 (Wedderburn’s Little Theorem). Every finite division ring is a field.

Theorem 1.1.4 (Finite Fields). The order of every finite field is a prime power q, that
is, there is a prime p and an integer n ∈ N such that q = pn. Furthermore, for every
prime power q all fields of order q are pairwise isomorphic.

Therefore, for every prime power q, up to isomorphism, there is a unique finite field
of order q and we denote that field by Fq.
We conclude this section with the definition of a vector space over a division ring,

which is done the very same way as the usual definition over a field.

Definition 1.1.5 ((Left) Vector Space). A vector space (V,+, ·) over a division ring F
is a set V with two binary operations + : V × V → V and · : F × V → V such that:

(V1) (V,+) is an abelian group with identity element 0V .

(V2) The multiplication · is called scalar multiplication and for all λ1, λ2 ∈ F and
v1, v2 ∈ V it satisfies:

• λ1(λ2v1) = (λ1λ2)v1.
• 1F v1 = v1.
• λ1(v1 + v2) = λ1v1 + λ2v2.
• (λ1 + λ2)v1 = λ1v1 + λ2v2.

A vector space is called finite if the set V is finite.

Remark 1.1.6. Basic results on vector spaces over fields can be proven such that they
also hold for vector spaces over division rings. We do not include notions on vector
spaces here. Instead we refer the reader to [22] for further information and assume
that basic notions, such as for example basis and dimension, and basic results, like the
dimension-formula for vector spaces, are known.
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1.2 Projective Spaces

1.2 Projective Spaces
In this thesis we work with finite projective spaces and those of interest to us stem from
vector spaces over finite fields. However, we still introduce an axiomatic definition of
a general projective space as point-line incidence structure first. For a more thorough
introduction to projective spaces we refer the reader to [2], [11] and [9]. All omitted
proofs of introductory theorems stated in this section can be found in either one of
these.

1.2.1 Axiomatic Definition
Definition 1.2.1 (Point-Line Incidence Structure). A point-line incidence structure is
a triple S = (P,L, ∗) such that P and L are two sets and ∗ ⊆ (P × L) ∪ (L × P) is a
symmetric relation between these two sets.
The relation ∗ is called incidence relation and for all P ∈ P and all l ∈ L with (P, l) ∈ ∗

we also write P ∗ l and say that P and l incident. The set P is called the point-set and
its elements are called points, the set L is called the line-set and its elements are called
lines.

Given (P, l) ∈ ∗ we use common geometric terminology such as: If P ∗ l, then we call
P a point of l, l a line through P and say that l contains P . Furthermore, any point
which lies on two distinct lines is also called the intersection of these two lines and if Q
is a set of points, then the points in Q are called collinear, if there is a line l such that
Q ∗ l for all Q ∈ Q.

Finally, the incidence structure S is called finite, if P and L are finite sets.

Given the general concept of a point-line incidence structure we now add further
axioms to describe a projective space.

Definition 1.2.2 (Projective Space). A projective space P is a point-line incidence struc-
ture (P,L, ∗) such that

(P1) For any two distinct points P and Q there is a unique line l with P ∗ l and Q ∗ l.
In this situation we denote l by PQ.

(P2) If g1 and g2 are two distinct lines with a common point P , then for any two lines
h1 and h2 which have common points with g1 and g2 but do not contain P there
is a point Q ∈ P with Q ∈ h1, h2.

(P3) Every line contains at least three points.

A projective space P is called non-degenerate if it also satisfies

(P4) There are three points such that no line is incident with all three.

A projective space which does not satisfy (P4) is called degenerate and if a degenerate
projective space P has more than one point, then it is called a projective line. We remark
that axiom (P2) is also called Veblen-Young axiom.
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1 Introduction

Definition 1.2.3 (Projective Plane). A projective plane P is a non-degenerate projective
space that also satisfies the following axiom:

(P2’) Any two lines of P have a point in common.

Note that (P2’) implies (P2).

Since every line of a projective space P′ = (P,L, ∗) is determined by any two distinct
points of said line, we may identify every line l ∈ L with the set of its points, that is,
l = {P ∈ P : P ∗ l}. This also explains why from now on for all points P ∈ P and all
lines l ∈ L with P ∗ l we may also write P ∈ l.

Definition 1.2.4 (Subspace). A set P ′ ⊆ P of points of a projective space P = (P,L, ∗)
such that P,Q ∈ P ′ and R ∈ PQ implies R ∈ P ′ is called a linear subset of P and, given
a linear subset P ′ of P, we call P′ := (P ′,L′, ∗′) with L′ = {PQ : P,Q ∈ P ′ ∧ P 6= Q}
and ∗′ := ∗ ∩ (P ′ × L′ ∪ L′ × P ′) a subspace of P and write P′ ≤ P.

Furthermore, if P1 and P2 are two subspaces of a projective space P such that there
is no point P which lies in both P1 and P2, then we call P1 and P2 skew.

It is fairly simple to see that, if P is a projective space and P′ is a subspace of P, then
P′ is a projective space, too, and thus we omit a formal proof thereof.

To simplify notation later on and in view of the concept of a Buekenhout Geometry
(see Remark 1.2.12) we introduce the following.

Notation 1.2.5. For any two projective spaces P1 and P2 such that one is a subspace
of the other we write both P1 ∗ P2 as well as P2 ∗ P1.

Like we did for lines, we may identify every subspace P′ = (P ′,L′, ∗′) of a given
projective space P by the set of its points, that is, P′ = P ′. Note that if P = (P,L, ∗) is a
projective space then P itself is a subspace of P, too, and, since we identify subspaces by
their point sets, we may now naturally write P ∈ P instead of P ∈ P as well as B ⊆ P
instead of B ⊆ P.
Every subset of a projective space is contained in at least one subspace and thus one

can define the span as is usual.

Definition 1.2.6 (Span). Let B be a subset of a projective space P and let S be the
set of all subspaces S of P with B ⊆ S. Then

〈B〉 :=
⋂
S∈S

S

is called the span of B. Once again we use common language such as saying that B
spans 〈B〉 and calling 〈B〉 the subspace spanned by B.

Again it is fairly simple to see that the span of a subset B of a projective space P is
a subspace of P, too, and thus we also omit the proof thereof.

Notation 1.2.7. For s, t ∈ N0, points P1, . . . , Pt and subsets B1, . . . , Bs of a projective
space P we also write 〈P1, . . . , Pt, B1, . . . , Bs〉 instead of 〈{P1}∪· · ·∪{Pt}∪B1∪· · ·∪Bs〉.
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1.2 Projective Spaces

Definition 1.2.8 (Linearly Independent and Basis). Let P be a projective space. A
subset B of P is called linearly independent, if and only if for any subset B′ ⊂ B and
every point P ∈ B \ B′ we have P /∈ 〈B′〉. Furthermore, a linearly independent subset
B of P which spans P is called a basis of P.
A basis B of P is called finite if |B| <∞ and P is called finitely spanned if there is a

finite basis B of P.

Convention 1.2.9. From now on we only consider projective spaces which are finitely
spanned.

As is expected from a basis, one can show that every basis of a projective space has
the same cardinality.

Definition 1.2.10 (Rank and (Projective) Dimension). Let P be a projective space.
We call that number of elements in a basis B of P the rank of P, denote it by rk(P) and
call dim(P) := rk(P)− 1 the (projective) dimension of P.

Note that we now have two different concepts of dimension, one in vector spaces and
one in projective spaces. If it is clear from context which concept we use, then we simply
write dimension (or dim) and if it is not then we specify by writing vectorial or projective
dimension.

Remark 1.2.11. Let P be a projective space. If S is a subspace of a projective space P,
then we have seen that S is a projective space, too. Hence, rk(S) and dim(S) is defined
for every subspace S of P. Note that this also includes the cases in which the projective
space P is degenerate.
In fact, a projective line has rank 2 and dimension 1, a projective space with exactly

one point has rank 1 and dimension 0 and, finally, a projective space with no point, has
rank 0 and dimension −1.

Remark 1.2.12 (Buekenhout Geometry). Let P be a projective space of dimension
2 ≤ n ∈ N and let X be the set of all proper subspaces of P without the empty set.
Using Notation 1.2.5 ∗ is a symmetric and reflexive relation on X and (X, ∗, rk) is a
Buekenhout geometry over the set {1, . . . , n}.

Definition 1.2.13 (Hyperplane). In a projective space P of dimension n we call any
subspace H ≤ P with dim(H) = n− 1 a hyperplane of P.

A very important tool when working with subspaces is the dimension-formula, that
we use without proof.

Theorem 1.2.14 (Dimension Formula). For subspaces U and W of a projective space
P we have

dim(U) + dim(W ) = dim(〈U,W 〉) + dim(U ∩W ).

Another concept that plays a crucial role throughout this work is the dual space.
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1 Introduction

Definition 1.2.15 (Dual Space). Let P be a non-degenerate projective space, let n be
its dimension, let H be the set of all hyperplanes of P and let U be the set of all subspaces
U ≤ P with dim(U) = n − 2. Then the point-line incidence structure P∨ := (H,U , ∗∨),
where H ∈ H and U ∈ U are adjacent if and only if U ≤ H in P, is called the dual space
of P.

Remark 1.2.16. Let everything be as in this definition of a dual space. One can show
that, if U is a subspace of P and dU is its dimension, then the set {H ∈ H : U ∗ H}
is a subspace of P∨ and in P∨ it has dimension dim(P) − dU − 1. We identify U ≤ P
and the subspace {H ∈ H : U ∗ H} of P∨ such that each subspace U ≤ P is also a
subspace of P∨. Now, if U1 and U2 are subspaces of P with U1 ≤ U2, then in P∨ we
have U2 ≤ U1. Hence, if we use the point of view of the incidence relation ∗ that we
introduced in Notation 1.2.5, then we have ∗ = ∗∨.
Moreover, if we consider an n-dimensional projective space P as a Buekenhout Ge-

ometry (X, ∗, dim) over a type-set {0, 1 . . . , n}, then the dual space has the same set X,
the same incidence relation ∗ and the same type-set I and only the type-map differs: the
map dim∨ of the dual space satisfies dim∨(x) = n− dim(x)− 1 for all x ∈ X.

Based on the concept of a dual space one also encounters the principle of duality for
projective spaces, which is used frequently in this work.

Remark 1.2.17 (Principle of Duality). The principle of duality states that, if a certain
statement holds for all projective spaces, then the dual of said statement also holds for
all projective spaces. Note that the dual of a given statement in a projective space P
is the statement interpreted in the dual space P∨. Furthermore, a statement is called
self-dual, if its dual statement is the same. An example of a self-dual statement is the
Configuration of Desargues 1.2.19 that we encounter below in the projective plane.

Before we proceed to introduce projective spaces over division rings next, we con-
clude this axiomatic introduction of projective spaces with two important configurations,
namely those of Desargues and Pappus, and two important theorems concerning these.

Definition 1.2.18 (Theorem/Configuration of Desargues). Let P be a non-degenerate
projective space. We say that the Theorem of Desargues holds in P, if for all points P1,
P2, P3, Q1, Q2 and Q3 of P such that

• there is a point S with S ∈ PiQi for all i ∈ {1, 2, 3} and

• every subset B of three points of either {S, P1, P2, P3} or {S,Q1, Q2, Q3} is linearly
independent,

the points Ri := PjPk ∩QjQk for all {i, j, k} = {1, 2, 3} lie on a common line.

Theorem 1.2.19 (Theorem of Desargues for Projective Spaces, see [2, Theorem 2.7.1]).
The Theorem of Desargues holds in every projective space P with dim(P) > 2.

6



1.2 Projective Spaces

S

Q1

Q2
Q3

P1

P2

P3

R1 R2R3

Figure 1.1: Configuration of Desargues

Definition 1.2.20 (Theorem/Configuration of Pappus). Let P be a non-degenerate pro-
jective space. We say that the Theorem of Pappus holds in P, if for any two intersection
lines h and g, all distinct points P1, P2, P3 ∈ h\g and all distinct points Q1, Q2, Q3 ∈ g\h
the points Ri := PjPk ∩QjQk for all {i, j, k} = {1, 2, 3} lie on a common line.

Theorem 1.2.21 (Hessenberg’s Theorem, see [17]). If the Theorem of Pappus holds in
a projective space P, then the Theorem of Desargues holds in P, too.

1.2.2 Projective Spaces over Vector Spaces
Definition 1.2.22. For any vector space V over a division ring F we define the point-line
geometry P(V ) := (P,L, ∗) as follows:

• P := {U ≤ V : U has vectorial dimension 1}.

• L := {U ≤ V : U has vectorial dimension 2}.

• ∗ := {(U,W ) ∈ (P × L ∪ L × P) : U ≤W or W ≤ U}.

Theorem 1.2.23 (Projective Spaces over Vector Spaces, see [2, Theorem 2.1.1]). For
any vector space V over some division ring F the point-line geometry P(V ) is a projective
space.

Remark 1.2.24. Note that in [2] this is only shown for vector spaces of vectorial dimen-
sion at least 3. However, the remark after the proof of [2, Theorem 2.1.1] addresses this
and explains, that the condition on the vectorial dimension of the vector space is only
used to show that the projective space is non-degenerate. Indeed, for vector spaces V of
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P1

P2

P3

Q1 Q2

Q3

R1
R2

R3

Figure 1.2: Configuration of Pappus

vectorial dimension 2 the point-line geometry P(V ) is a projective line, for vector spaces
V of vectorial dimension 1 the point-line geometry P(V ) has only one point and even
if V has vectorial dimension 0 the point-line geometry P(V ) is defined. In particular,
in all three cases the respective point-line geometry satisfies the axioms of a projective
space.
Furthermore, the set of subspaces of a vector space V is in bijective correspondence

with the set of subspaces of P(V ). In fact, for every subspace U of a vector space V
with vectorial dimension dU we know that P(U) is a subspace of P(V ) with projective
dimension dU − 1 and rank dU .

Notation 1.2.25. In order to avoid the ambiguity between the two concepts of dimen-
sion (that is, vectorial- and projective dimension), from now on we use rank as well as
rk when referring to vectorial dimension and dimension as well as dim when referring to
projective dimension.

In view of 1.2.19 the following explains why projective spaces over vector spaces are
of particular importance. Together with Wedderburn’s Little Theorem this also explain
why we only consider projective spaces which are constructed using vector spaces over
fields.

Theorem 1.2.26 (Theorem of Desargues for Projective Spaces over Vector Spaces,
see [2, Theorem 3.4.2]). A non-degenerate projective space P satisfies the Theorem of
Desargues, if and only if there is a vector space V of rank at least 3 over a skew field F
with P = P(V ).

Together, Theorem 1.2.19, Theorem 1.2.26 and Wedderburn’s Little Theorem 1.1.3
prove the following theorem.

Theorem 1.2.27. If P is a finite projective space of dimension at least 3, then P is
isomorphic to P(Fdim(P)+1

q ).

In view of that theorem the following definition is imperative.
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Definition 1.2.28. For all n ∈ N and every prime power q set PG(n, q) := P(Fn+1
q ) for

some prime power q.

We conclude this subsection with the following result regarding the Theorem of Pap-
pus, which helps to further classify projective spaces which are not finite, and a remark.

Theorem 1.2.29 (Theorem of Pappus for Projective Spaces over Vector Spaces, [2,
Theorem 2.2.2]). For any vector space V over a division ring F the Theorem of Pappus
holds in the projective space P(V ) if and only if F is a field.

Remark 1.2.30. There exist several different projective planes which are not isomorphic
to P(V ) for all vector spaces V , for example Moulton planes. For a short overview of
such planes we refer the reader to [11, Section 2.1].

We have now introduced our understanding of a projective space and mentioned the
important general notions for this work. From now on we only consider finite projective
spaces PG(n, q) for some n ∈ N and some prime power q.
Furthermore, in the following we try to provide proofs to most claims, as they seem

to fit thematically into this work. Only in very few instances we refer the reader to the
literature.

1.2.3 Counts in Projective Spaces

Here we prepare some tools that we use to count objects in projective spaces and through-
out this part we let q be a prime power. We begin with some very simple and well known
facts.

Lemma 1.2.31. For all n ∈ N0 ∪ {−1} we have |PG(n, q)| = sq[n] := qn+1−1
q−1 .

Proof. PG(n, q) is the projective space constructed using a vector space of rank n + 1
over the finite field Fq with q elements and as such every point of PG(n, q) is a rank 1
subspace of this vector space. Therefore, we only need to determine the number of rank
1 subspaces of a given rank n + 1 vector space V over Fq. Any v ∈ V \ {0V } spans a
rank 1 subspace of V and, given a rank 1 subspace U of V , we know that |U | = q and
every vector 0V 6= v ∈ U spans U . Therefore, there are |V |−1

q−1 = qn+1−1
q−1 such subspaces

U of V .

Now, using that number, we introduce a notation that is very handy and plays a
crucial role in this work.

Lemma 1.2.32. Let P := PG(n, q) be the projective space of dimension n ∈ N0 ∪{−1},
let U and V be skew subspaces of P and set k := dim (U) as well as l := dim (V ). Then,
for all d ∈ N0 the cardinality of

S[V,U, d,P] := {W ≤ P : dim(W ) = d, U ≤W,W ∩ V = ∅}

9
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is independent of the particular choice of U and V and thus we may denote it by
sq[l, k, d, n]. For k > d it is 0 and for k ≤ d it is given by

sq[l, k, d, n] =
d−k∏
i=1

qn+1 − qk+l+i+1

qd+1 − qk+i . (1.1)

Proof. First note that for d ≥ n − l for dimensional reasons there is no d-dimensional
subspace U ≤ W ≤ P which does not intersect V and the numerator given on the right
hand side of Equation (1.1) contains the factor

(
qn+1 − qn+1) and thus is 0. Therefore,

we may assume that d < n − l holds. Furthermore, if k > d, then there is no such
subspace W and, if d = k, then there is only one such subspace, namely U itself, and
the product given in Equation (1.1) is the empty product and as such equals 1. Thus,
we may also assume that k < d holds.
Now, given the subspace U and k + 1 points P1, . . . , Pk+1 ∈ U which span U we can

span any d-dimensional subspace U ≤ W ≤ P using additional points Pk+2, . . . , Pd+1 ∈
P. Let m denote the number of tuples (Pk+2, . . . , Pd+1) which spans a subspace of
dimension d together with U . The ith entry of such a tuple must be a point of
P \ 〈P1, . . . , Pi−1, V 〉, for if it was an element of 〈P1, . . . , Pi−1〉, then 〈P1, . . . , Pd+1〉 =
〈P1, . . . , Pi−1, Pi+1, . . . , Pd+1〉 would have dimension at most d−1 and if it was an element
of 〈P1, . . . , Pi−1, V 〉 \ 〈P1, . . . , Pi−1〉, then 〈P1, . . . , Pi〉 would intersect V non-trivially.
Therefore, there are

d+1∏
i=k+2

(sq[n]− sq[i+ l − 1]) =
d−k∏
i=1

(sq[n]− sq[i+ k + l])

=
d−k∏
i=1

qn+1 − qi+k+l+1

q − 1

choices for these tuples. However, for a given d-dimensional subspaceW ≤ P, any choice
of such points in W spans W and thus there are

d+1∏
i=k+2

((sq[d]− sq[i− 2]) =
d−k∏
i=1

((sq[d]− sq[k + i− 1]) =
d−k∏
i=1

qd+1 − qk+i

q − 1

choices of tuples which span the same subspace. Consequently, there are exactly∏d−k
i=1

qn+1−qi+k+l+1

q−1∏d−k
i=1

qd+1−qk+i

q−1
=
d−k∏
i=1

qn+1 − qi+k+l+1

qd+1 − qk+i

such subspaces W and this number is independent of the specific choice of U and V .

Notation 1.2.33. For all k, d, n ∈ N0 ∪ {−1} we set

sq[k, d, n] := sq[−1, k, d, n] as well as sq[d, n] := sq[−1, d, n]

and we note that we have sq[n] = sq[0, n].
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Remark 1.2.34. Note that for all d, n ∈ N0∪{−1} the number sq[d, n] of d-dimensional
subspaces of an n-dimensional projective space coincides with the Gaussian coefficient[

n+ 1
d+ 1

]
q

=
d∏
i=0

qn−i+1 − 1
qi+1 − 1 = sq[d, n],

which is commonly used in the literature. Furthermore, for n ∈ N0 ∪ {−1} the number
sq[n] of points in an n-dimensional subspace is often denoted by θn in the literature.
Note that we use the notation θn in Section 2.3 and Chapter 3, too.

Lemma 1.2.35. Let k, d, n ∈ N0∪{−1} be such that −1 ≤ k < d < n, then the following
equations hold:

i) For n ≥ 2 we have sq[n− 1, 2n− 2] = sq[0, n− 1, 2n− 1].

ii) For j ∈ Z with k + j ≥ −1 we have sq[k, d, n] = sq[k + j, d+ j, n+ j].

Proof. Using the value provided by Lemma 1.2.32 we see

sq[n− 1, 2n− 2] =
n∏
i=1

q2n−1 − qi−1

qn − qi−1 =
n−1∏
i=1

q2n−1 − qi−1

qn − qi
· q

2n−1 − qn−1

qn − q0

=
n−1∏
i=1

q2n−1 − qi−1

qn − qi
· qn−1 =

n−1∏
i=1

q2n − qi

qn − qi
= sq[0, n− 1, 2n− 1],

as well as

sq[k, d, n] =
d−k∏
i=1

qn+1 − qk+i

qd+1 − qk+i =
d−k∏
i=1

qn+j+1 − qk+j+i

qd+j+1 − qk+j+i = sq[k + j, d+ j, n+ j].

Lemma 1.2.36. (a) For n > k > 0 and q ≥ 4 we have

sq[1] · qk(n−k)−1 ≤ sq[k − 1, n− 1] ≤ (sq[1] + 1)qk(n−k)−1.

(b) For positive integers q and c with q > c2 + c we have

(q2 + q + 2)c ≤ (q + c+ 1)q2c−1.

(c) For positive integers q and c with q > c2 + c we have sq[c]c ≤ (q + c+ 1)qc2−1.

Proof. (a) The lower bound follows from 0 < k < n and for the upper bound we refer
to [21, Lemma 34].
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(b) This can be checked by hand for c = 1 and c = 2, so we assume that c ≥ 3. By
expansion we see that (q2 + q + 2)c =

∑2c
i=0 aiq

i where

a2c−i =
bi/2c∑
j=0

(
c

j

)(
c− j
i− 2j

)
2j ,

since a term q2c−i occurs in the expansion, if for some j with 2j ≤ i we first choose
the number 2 from j terms q2 +q+2, secondly we choose the number q from i−2j
of the remaining c− j terms q2 + q + 2, and finally we choose the number q2 from
the remaining terms q2 + q + 2.
Now, we claim a2c−i ≤ ci for all i. Using c ≥ 3, this can be verified for i ≤ 5 by
straight forward calculation. Thus, suppose that i ≥ 6. Then

a2c−i =
bi/2c∑
j=0

c! · 2j

(c+ j − i)!(i− 2j)!j! ≤ c
i
bi/2c∑
j=0

2j

cj(i− 2j)!j!︸ ︷︷ ︸
=:bij

. (1.2)

We next show bij ≤ 2
i+2 for admissible i, j, that is, for i, j with 2j ≤ i ≤ 2c and

i ≥ 6. Using i ≥ 6, this follows from direct calculation if j ≤ 3. Otherwise j ≥ 4
and i ≥ 8, so j! ≥ 2j and hence bij ≤ c−j ≤ 2

i+2 , since i ≤ 2c. Thus we have
established the bound for bij and using it in (1.2) we find a2c−i ≤ ci for i ≥ 6.
Hence a2c−i ≤ ci for all i ∈ {0, . . . , 2c}.
It follows that

2c−2∑
i=0

aiq
i ≤

2c∑
i=2

ciq2c−i = q2c−2c2
2c−2∑
i=0

ci

qi
≤ q2c−2c2

1− c/q < q2c−1

where we have used q > c2 + c in the last step. Since a2c = 1 and a2c−1 = c, this
proves the claim in (b).

(c) Since sq[c] ≤ (q2 + q + 2)qc−2 this is a corollary to the previous claim.

1.2.4 Some specific Preparations
We conclude this introduction of projective spaces with some very specific results that
we require later on but which fit better in this introduction. We let q be a prime power,
we let n be a positive integer and we set P := PG(n, q).

First, we have some results on subspaces that will be used in different settings later
on. We provide this general proof here, instead of proving several lemmata in specific
situations later.

Lemma 1.2.37. Let d ∈ N and U,U1, U2 ≤ P be such that d ≤ min(dim(Ui)− dim(U ∩
Ui) : i ∈ {1, 2}).
Every (dim(U) + d)-dimensional subspace Û ≤ P with dim(Û ∩Ui) = dim(U ∩Ui) + d

for all i ∈ {1, 2} and U ≤ Û is the span of U and a (d − 1)-dimensional subspace
W ≤ 〈U,U1〉 ∩ U2.
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1.2 Projective Spaces

Proof. Assume that there is such a (dim(U) + d)-dimensional subspace Û . Due to
dim(Û ∩ Ui) = dim(U ∩ Ui) + d there is a (d− 1)-dimensional complement U ′i of U ∩ Ui
in Û ∩ Ui for all i ∈ {1, 2}. Since dim(Û) = dim(U) + d the subspace U ′i is also a
complement of U in Û , that is, Û = 〈U,U ′i〉 ≤ 〈U,Ui〉 for all i ∈ {1, 2}. Therefore we
have U ′2 ≤ Û ≤ 〈U,U1〉, proving the claim.

Lemma 1.2.38. Let U be a subspace of P, set dU := dim(U) and let Ξ be a non-empty
set of (dU + 1)-dimensional subspaces of P such that for all ξ ∈ Ξ we have U ≤ ξ.
There is a subset Ξ′ ⊆ Ξ of d := dim(〈Ξ〉) − dU pairwise distinct subspaces such that

dim(〈Ξ′〉) = dU + |Ξ′| = dim(〈Ξ〉).

Proof. Let Ξ′ be a maximal subset of Ξ such that dim (〈Ξ′〉) = dU + |Ξ′|. Note that such
a set exists, because Ξ 6= ∅ and every subspace ξ ∈ Ξ satisfies dim (ξ) = dU + 1. Now,
if 〈Ξ〉 6= 〈Ξ′〉, then there is a subspace ξ ∈ Ξ such that ξ 6≤ 〈Ξ′〉. But U ≤ ξ ∩ 〈Ξ′〉 and
therefore U = ξ ∩ 〈Ξ′〉 and

dim
(〈
ξ,Ξ′

〉)
= 1 + dim

(〈
Ξ′
〉)

= 1 + dU +
∣∣Ξ′∣∣ = dU + |{ξ} ∪ Ξ′|,

a contradiction to the maximal choice of Ξ′.

Lemma 1.2.39. Let d be an integer, let U and V be skew subspaces of P, let dU and
dV be their respective dimension and let W be a set of (dU + d)-dimensional subspaces
of P such that for all W ∈ W we have U ≤W and such that dim(〈W〉) = dU + |W|d.
Then dim(〈W ′〉) = dU + |W ′|d for all ∅ 6=W ′ ⊆ W and, if V ∩W 6= ∅ for all W ∈ W,

then |W| − 1 ≤ dV and

V ≤ 〈W〉 ⇐⇒ dV = |W| − 1 +
∑
W∈W

dim(V ∩W ).

Proof. For the first claim note that U ≤ W for all W ∈ W implies U ≤ 〈W ′〉 for all
∅ 6=W ′ ⊆ W. Furthermore, for any subset W ′ of W and any subspace W ∈ W \W ′ we
have

dim(〈W ′,W 〉) = dim(〈W ′〉) + dim(W )− dim(W ∩ 〈W ′〉)
≤ dim(〈W ′〉) + dU + d− dU = dim(〈W ′〉) + d.

Using this in the induction step of an induction on r := |W ′| shows dim(〈W ′〉) ≤
|W ′|d+ dU for all W ′ ⊆ W.
Now, set s := |W| and let W = {W1, . . . ,Ws} and assume that there is a subset W ′

of W such that dim(〈W ′〉) < |W ′|d + dU . This implies W ′ 6= W and we let W ′ be the
set W \W ′. Then, using dim(〈W ′〉) ≤ |W ′|d+ dU , we have

dim(〈W〉) = dim(〈W ′〉) + dim(〈W ′〉)− dim(〈W ′〉 ∩ 〈W ′〉)
≤ dim(〈W ′〉) + dim(〈W ′〉)− dU < |W ′|d+ dU + |W ′|d+ dU − dU
= |W|d+ dU ,

a contradiction, which concludes the proof of the first claim.
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Now, let V be such that Pi := V ∩Wi 6= ∅ for all i ∈ {1, . . . , s}. Then, obviously,
〈P1, . . . , Ps〉 ≤ V . We want to determine the dimension of 〈P1, . . . , Ps〉 and, in view of
that, for all i ∈ {1, . . . , s}, let di be the dimension of the subspace Pi. If there exists
an index j ∈ {1, . . . , s} and a subset J ⊆ {1, . . . , s} with j ∈ J but J 6= {j}, such that
R := Pj ∩ 〈Pi : i ∈ J, i 6= j〉 6= ∅, then W ′ := {Wi : i ∈ J} ⊆ W satisfies

|W ′|d+ dU = dim(〈W ′〉) ≤ dim(Wj) + dim(〈W ′ \ {Wj}〉)− dim(〈U,R〉)
= dU + d+ dU + (|W ′| − 1)d− dim(〈U,R〉)
= 2dU + |W ′|d− dim(〈U,R〉︸ ︷︷ ︸

6=U

) < |W ′|d+ dU ,

a contradiction. Therefore we have

s− 1 ≤ dim(P1) +
s∑
i=2

(1 + dim(Pi)) = dim(〈Pi : 1 ≤ i ≤ s〉) ≤ dim(V )

as well as

V ≤ 〈W〉 ⇐⇒ dim(V ) = dim(〈P1, . . . , Ps〉)

⇐⇒ dV = s− 1 +
s∑
i=1

dim(V ∩Wi).

Finally, we have a technical result on point-sets, stated in Theorem 1.2.41 and prepared
in the next lemma. This result will be used in Section 2.3 on the chromatic number. It
is a joint work of D’haeseleer, Metsch and Werner and a generalization of a result given
by the same authors in [12, Lemma 4.1].

Lemma 1.2.40. Consider a set M of points of P and points P1, . . . , Ps+1 ∈ P, s ≥ 0,
such that 〈P1, . . . , Ps+1〉 is a subspace of dimension s with no point in M . Let µ be an
upper bound on the number of lines on Ps+1 that meet M . Let c ∈ R be positive and let
V be a set of s-dimensional subspaces such that for all V ∈ V we have P1, . . . , Ps ∈ V as
well as |V ∩M | ≥ cqs.
Then, for every γ ∈ R with 0 < γ < 1, there exist at least 1−γ

q |V| subspaces W of
dimension s+ 1 satisfying P1, . . . , Ps+1 ∈W and |W ∩M | ≥ γ

µc
2q2s|V|.

Proof. For V ∈ V we have V ∩M 6= ∅ and hence Ps+1 /∈ V . Set x := γ |V|cq
s

µ ,

W := {〈V, Ps+1〉 : V ∈ V},
W := {W ∈W : |{V ∈ V : V ≤W}| > x} ,

andW := W\W. The elements of W are subspaces of dimension s+ 1. If W ∈W, then
there exists V ∈ V with V ⊆W and hence Ps+1 lies on |V ∩M | ≥ cqs lines of W which
meetM . IfW andW ′ are distinct elements ofW and l is a line on Ps+1 with l ⊆W,W ′,
then l ⊆ W ∩W ′ = 〈P1, . . . , Ps+1〉 and thus l ∩M = ∅. Since µ is an upper bound on
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the number of lines on Ps+1 which meet M , this proves that |W| ≤ µ
c q
−s. Since W ⊆W

it follows that

|{V ∈ V : ∃W ∈ W with V ≤W}| ≤ µ

c
q−s · x = γ|V|

and hence 〈V, Ps+1〉 ∈ W for least (1−γ)|V| elements of V. Since every subspaceW ∈ W
contains at most q subspaces V ∈ V, we find |W| ≥ (1−γ)|V|/q. Since distinct elements
V and V ′ of V satisfy (V ∩ V ′) ∩M = 〈P1, . . . , Ps〉 ∩M = ∅, we see that every W ∈ W
satisfies

|W ∩M | ≥ x · cqs = γ

µ
c2q2s|V|.

Theorem 1.2.41. Suppose that M is a set of points in PG(2d, q) and there are d + 1
points P1, P2, . . . Pd+1 that span a d-dimensional subspace τ with τ∩M = ∅. Furthermore,
let m, n0 and d0 be positive real numbers such that the following hold:

(I) Each of the points P1, P2, . . . Pd+1 lies on at most n0q
d lines that meet M .

(II) |M | ≥ d0q
d+1.

Then there exists a (d+ 1)-dimensional subspace U on τ with

|U ∩M | > (2q)d+1
(
d0

4n0

)2d+1−1
. (1.3)

Proof. We prove the following more general result. For each s ∈ {0, . . . , d + 1}, there
exists a set Vs of s-dimensional subspaces satisfying |Vs| ≥ (1

2)sd0q
d+1−s such that each

V ∈ Vs satisfies

{Pi | 1 ≤ i ≤ s} ⊆ V and |V ∩M | ≥ (2q)s
(
d0

4n0

)2s−1
. (1.4)

We use induction on s. For s = 0 we take V0 = M . For the induction step s → s + 1,
we assume the existence of Vs with the desired properties. For V ∈ Vs we know from
the induction hypothesis that Equation (1.4) holds and, since τ ∩M = ∅ by hypothesis
of this lemma, this also implies V 6≤ τ , that is, Ps+1 /∈ V . Now the previous lemma,
applied with c = 2s

(
d0

4n0

)2s−1
, V = Vs and µ = n0q

d and γ = 1
2 , proves the existence of

a set Vs+1 =W with the desired properties.
For s = d+ 1 we find |Vd+1| > 0, so each element U of Vd+1 satisfies the claim of this

lemma, concluding the proof.

1.3 Reguli
In preparation of Section 2.4 we define a regulus and prove some simple facts about reguli
in general, all of which takes place in the projective space P := PG(n, q) of dimension
n ≥ 3 for some prime power q. Most of these facts can be found in the literature that was
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already mentioned, that is, for example in [2, Section 2.4] on the hyperbolic quadric of
PG(3, q) by Beuelspacher and Rosenbaum. However, since all but the proof of Theorem
1.3.4 (for which coordinates are used) are fairly short and seem to fit into this work, we
include them here.

Definition 1.3.1 (Regulus). Let h1, h2 and h3 be three skew lines in a solid S ≤ P.
The set R of all lines l ≤ P that have non-empty intersection with the three lines h1, h2
and h3 is called a regulus of P. If P is a point of one of the lines of R, then we also say
that P is a point of R.

Lemma 1.3.2. Let h1 and h2 be two skew lines. For every point P ∈ 〈h1, h2〉 with
P /∈ h1 and P /∈ h2 there is a unique line g through P that has non-empty intersection
with h1 and h2.

Proof. Let P be such a point. Any line g with g ∩ h1 6= ∅ 6= g ∩ h2 and P ∈ g satisfies
g ≤ 〈P, h1〉 and thus meets h2 in a point of Q := 〈P, h1〉 ∩ h2. Since h1 and h2 are
skew lines in a common solid 〈h1, h2〉 we know that Q is a point and thus g is the line
〈P,Q〉.

Corollary 1.3.3. Every regulus R has cardinality sq[1] = q + 1.

Theorem 1.3.4. Let R be a regulus of P. Every line g of P that has non-empty inter-
section with three lines of R has non-empty intersection with all lines of R.

Proof. As mentioned early, this proof requires the use of coordinates and can, for exam-
ple, be found in [2, Section 2.4].

Definition 1.3.5 (Opposite Regulus). Let R be a regulus. From Corollary 1.3.3 we
have |R| ≥ 3 and from Theorem 1.3.4 we know that any line g that has non-empty
intersection with three lines of R has non-empty intersection with all lines of R. Hence,
the set R of all lines which have non-empty intersection with all lines of R is a regulus,
too. We say that the two reguli are opposite and call R the opposite Regulus of R.

Lemma 1.3.6. Let g1, g2 and g3 be three skew lines in a solid S ≤ P. Then there is a
unique regulus R in P with g1, g2, g3 ∈ R.

Proof. Let R = {h1, . . . , hq+1} be the unique regulus of lines of P that have non-empty
intersection with all lines g1, g2 and g3, let R be the opposite regulus of R and let R′
be an arbitrary regulus with g1, g2, g3 ∈ R′. Any line h ∈ R has non-empty intersection
the three lines g1, g2, g3 ∈ R′ and therefore, according to Theorem 1.3.4, with all lines
of R′. Thus, any line g ∈ R′, has non-empty intersection with all lines h ∈ R, proving
g ∈ R and thus R′ ⊆ R, that is, R′ = R.

Obviously, this also implies that if g1 and g2 are skew lines of P then there is more
than one regulus R in P with g1, g2 ∈ R.

Definition 1.3.7 (Tangent Plane). Given two opposite reguli R and R, using Lemma
1.3.2 to every point P of R there are unique lines g ∈ R and l ∈ R with P ∈ g, l and we
call the plane 〈g, l〉 the tangent plane of R in P .
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Lemma 1.3.8. Let R and R be opposite reguli in a solid S ≤ P and let g ∈ R be an
arbitrary line. Then S[g, 2, S] = {〈g, h〉 : h ∈ R}.

Proof. Trivially the right hand side is a subset of the left hand side of this equation.
Furthermore, since any two distinct lines h, h′ ∈ R are skew the corresponding planes
〈g, h〉 and 〈g, h′〉 are distinct and thus both sides of the equation have the same cardinality
|R| = sq[1] = sq[1, 2, 3], proving the claim.

Corollary 1.3.9. If R and R are opposite reguli in a solid S ≤ P and E ≤ S is a plane
then E contains a line of R if and only if E contains a line of R and thus if and only
if E is a tangent plane of R.

Lemma 1.3.10. If R and R are opposite reguli, P and Q points of R and EP and EQ
are tangent planes of R in P and Q, respectively, then we have EP = EQ if and only if
P = Q.

Proof. Obviously, for P = Q we have EP = EQ. Let P 6= Q and let gP , gQ ∈ R
and hP , hQ ∈ R be such that EP = 〈gP , hP 〉 and EQ = 〈gQ, hQ〉. Since P 6= Q we have
gP 6= gQ or hP 6= hQ and we may assume that gP 6= gQ. Then gQ 6≤ EP since gQ∩gP = ∅
and thus EP 6= EQ.

We have now introduced the required basics on reguli. Additionally to that, in Section
2.4 we also need some quite specific details on distinct reguli R1 and R2 which have two
lines in common. We establish these in the remainder of this section.

Lemma 1.3.11. Let n ≥ 4, let V be a subspace of P of dimension n − 4, let S be a
complement of V and let U be a subset of S[V, n− 2,P] such that R := {U ∩S : U ∈ U}
is a regulus in S and let R be its opposite.
If S′ is a complement of V in P, then {U ∩ S′ : U ∈ U} is a regulus in S′ and
{〈V, r〉 ∩ S′ : r ∈ R} is its opposite.

Proof. Let S′ be a complement of V in P and set R′ := {U ∩ S′ : U ∈ U} as well
as R′ := {〈V, r〉 ∩ S′ : r ∈ R}. Note that for all U ∈ U we have U ∩ S ∈ R with
U = 〈V,U ∩ S〉 (since S is a complement of V ) and thus R′ = {〈V, r〉 ∩ S′ : r ∈ R}.
First, consider two arbitrary lines g and h of S with g ∩ h = ∅. Since both S and S′

are complements of V in P we know that both g′ := 〈V, g〉 ∩ S′ and h′ := 〈V, h〉 ∩ S′ are
lines, too. Obviously we have g′ ∩ V = ∅ = h′ ∩ V and thus 〈V, g〉 = 〈V, g′〉 as well as
〈V, h〉 = 〈V, h′〉. This proves

〈V, S′〉 = P = 〈V, S〉 = 〈V, 〈g, h〉〉 = 〈〈V, g〉, 〈V, h〉〉 = 〈〈V, g′〉, 〈V, h′〉〉 = 〈V, 〈g′, h′〉〉

and together with g′, h′ ≤ S′, using the fact that S′ is a complement of V in P, this
implies 〈g′, h′〉 = S′ and thus g′ ∩ h′ = ∅. Hence, both R′ and R′ are sets of q + 1
pairwise skew lines.
Now, let r′ ∈ R′ and r′ ∈ R′ be lines and let r ∈ R and r ∈ R be such that

r′ = 〈V, r〉 ∩ S′ and r′ = 〈V, r〉 ∩ S′. Then P := r ∩ r is a point of both 〈V, r〉 and 〈V, r〉.
Furthermore, since S′ is a complement of V 63 P , we know that P ′ := 〈V, P 〉 ∩ S′ is
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point, too, and P ′ is obviously an element of both 〈V, r〉 and 〈V, r〉. Hence, the two lines
r′ = 〈V, r〉 ∩ S′ and r′ = 〈V, r〉 ∩ S′ contain P ′ and thus have non-empty intersection.
Therefore, all lines of R′ and all lines of R′ have pairwise non-empty intersection and,

since both R′ and R′ have cardinality q+ 1 ≥ 3, this proves that R′ and R′ are opposite
reguli in S′.

Lemma 1.3.12. Let R1 and R2 be distinct reguli of P with |R1 ∩ R2| ≥ 2, let R1 and
R2 be their respective opposite reguli and set R := R1 ∩R2.
Then there is a solid S such that both R1 and R2 are reguli in S, we have |R1∩R2| = 2,

ξ := |R1 ∩R2| ≤ 2 and for all g ∈ R1 \ R we know that

i) g has non-empty intersection with a line l ∈ R2 if and only if l ∈ R1, and

ii) g has non-empty intersection with exactly ξ lines of R2, namely those which contain
one of the ξ points of {g ∩ l : l ∈ R2}.

Furthermore, if g ∈ R1 \ R and h ∈ R2 are such that g ∩ h 6= ∅ and if l ∈ R1 ∩ R2 is
the line with g ∩ h ∈ l and l′ is the line with R1 ∩ R2 = {l, l′}, then we have l′ ≤ 〈g, h〉
and ξ = 1 occurs if and only if h ≤ 〈g, l〉.

Proof. Since |R| ≥ 2 we know that S := 〈R〉 satisfies dim(S) ≥ 3 and, since for all
i ∈ {1, 2} the set Ri is a regulus, we have dim(〈Ri〉) ≤ 3. This proves dim(S) = 3 and
R1 and R2 are reguli in S. Since R1 and R2 are distinct, R1 and R2 are distinct, too.
Hence, we know from Lemma 1.3.6 that both R1 and R2, as well as their opposites, do
not have more than two lines in common, that is, |R| = 2 and ξ ≤ 2.
From now on let g be an arbitrary but fixed line of R1 \ R. Since R 6= ∅ and since

any line g′ ∈ R satisfies g′ ∈ R2 as well as g ∩ g′ = ∅ we have g /∈ R2.
Now, for any line l ∈ R2 that has non-empty intersection with g there is a line in R2

through l∩g, that is, a line inR2 which has non-empty intersection with g. Furthermore,
any line l ∈ R2 has non-empty intersection with the two lines in R. Therefore, any line
l ∈ R2 that has non-empty intersection with g in fact has non-empty intersection with
at least three and thus, according to Theorem 1.3.4, with all lines of R1, proving that it
is an element of R1 and i).
In fact, if ξ = 0, then this proves that g has empty intersection with all lines of R2,

concluding the proof of all claims given for ξ = 0.
Hence, from now on assume ξ > 0. Then there is a line l ∈ R1 ∩ R2 and this line

has non-empty intersection with g, which implies that there is a line h ∈ R2 containing
g ∩ l and hence h satisfies h ∩ g 6= ∅. Now, if there is a line h′ ∈ R2 distinct from
h with g ∩ h′ 6= ∅, then the line l′ ∈ R1 ∩ R2 with g ∩ h′ ∈ l′ is distinct from l
(otherwise h∩ h′ = ∅ implies g = 〈g ∩ h, g ∩ h′〉 = l ∈ R2, a contradiction), which proves
|{h ∈ R2 : g ∩ h 6= ∅}| ≤ |R1 ∩ R2| = ξ. Furthermore, for {P1, Pξ} = {g ∩ l : l ∈ R2}
and i ∈ {1, ξ} there obviously is a line li ∈ R2 through Pi and, if ξ > 1, then P1 6= Pξ
and 〈P1, Pξ〉 = g /∈ R2 proves l1 6= lξ. Together this proves ii).
Now, let l′ be the line with R1 ∩ R2 = {l, l′}. Since g is a line of R1 and since

E := 〈g, h〉 is a plane we know from Corollary 1.3.9 that E is a tangent plane of R1.
Thus, there is a line e ∈ R1 with E = 〈g, e〉 and, since h ≤ E, we have h ∩ e 6= ∅ and
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thus e ∈ R2. Furthermore, for any line e′ ∈ R1 \ {e} we have e′ ∩ E = e′ ∩ g and thus
e′ ∩ h 6= ∅ if and only if e′ = l. Hence, l′ = e ≤ E = 〈g, h〉, that is, R1 ∩R2 = {l, e}, and
ξ = 1 occurs if and only if l = e, that is, if and only if h ≤ E = 〈g, l〉, concluding the
proof.

Lemma 1.3.13. For two lines g and h and all points P,Q ∈ P \ 〈g, h〉 we have

dim(〈P, g〉 ∩ 〈Q, h〉) = dim(g ∩ h) +
{

0 for Q /∈ 〈P, g, h〉,
1 for Q ∈ 〈P, g, h〉.

Proof. Set d := dim(〈P, g〉 ∩ 〈Q, h〉). Since P,Q /∈ 〈g, h〉 the subspaces 〈P, g〉 and 〈Q, h〉
are planes which have g ∩ h in common. Therefore, we have d ≥ dim(g ∩ h) and
d ≤ 2. Furthermore, since P /∈ 〈g, h〉 we have 〈P, g〉 ∩ h = g ∩ h. Therefore, we have
〈P, g〉 ∩ 〈Q, h〉 = 〈P, g〉 ∩ h = g ∩ h and thus d = dim(g ∩ h) for Q /∈ 〈P, g, h〉, as well as
dim(〈P, g〉 ∩ 〈Q, h〉) = dim(〈P, g〉 ∩ h) + 1 otherwise.

Lemma 1.3.14. Let R1 and R2 be distinct reguli such that R := R1∩R2 has cardinality
two, let S be the solid containing both R1 and R2, let P be a point of P \ S and set
U := 〈P, S〉. Furthermore, for any point Q ∈ U \ S set

ΛQ := {(g, h) ∈ R1 ×R2 : dim(〈P, g〉 ∩ 〈Q, h〉) ≥ 1}

and for all i ∈ Ω := {|ΛQ| : Q ∈ U \ S} set Ωi := {Q ∈ U \ S : |ΛQ| = i}.
Then we have Ω ⊆ {2, 3, 4, q + 1, q + 2, 2q}, Ω2q ⊆ {P} and for all (g, h) ∈ R1 ×R2

and Q ∈ U \S we have dim(〈P, g〉∩ 〈Q, h〉) = 2 if and only if g = h ∈ R and Q ∈ 〈P, g〉.

Proof. Note that for lines g ∈ R1 and h ∈ R2 with g ∩ h = ∅ we have 〈g, h〉 = S and
thus U = 〈P, g, h〉, that is, Lemma 1.3.13 proves that 〈P, g〉 ∩ 〈Q, h〉 is a point for all
Q ∈ U \ S. In view of Lemma 1.3.13 this implies that:

i) We have to determine M := {(g, h) ∈ R1 ×R2 : g ∩ h 6= ∅}.

ii) Given lines g, g′ ∈ R1 and h, h′ ∈ R2 with

g ∩ h 6= ∅, g′ ∩ h′ 6= ∅ and |{g, g′, h, h′}| ≥ 3, (1.5)

we have to determine 〈P, g, h〉 ∩ 〈P, g′, h,′ 〉.

Lemma 1.3.12 provides all that is needed to do that and we set R := R1 ∩R2 and recall
that Lemma 1.3.12 states ξ := |R| ≤ 2.

i) Let g1 and g2 be the two lines in R. Lemma 1.3.12 (part ii)) also shows that for
any line g ∈ R1 \ R there are ξ lines h ∈ R2 with g ∩ h 6= ∅ (all of which satisfy
h /∈ R) and that g ∩ h is one of the ξ(q + 1) points in Q := {Q ∈ l : l ∈ R}.
Therefore, for any line g ∈ R1 \ R there are ξ lines h ∈ R2 with g ∩ h 6= ∅ (all of
which satisfy h /∈ R). Furthermore, for all g ∈ R and h ∈ R2 we obviously have
g ∩ h 6= ∅ if and only if g = h and thus for any line g ∈ R there is a unique line
h ∈ R2 with g ∩ h 6= ∅ and this line satisfies h = g ∈ R.
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ii) Assume that ξ > 0. Let g, g′ ∈ R1 and h, h′ ∈ R2 be lines which satisfy Equation
(1.5) and note that, since P /∈ S ≥ 〈g, h〉, 〈g′, h′〉 it suffices to study 〈g, h〉∩ 〈g′, h′〉.
From |{g, g′, h, h′}| ≥ 3 we have g ∩ g′ = ∅ or h ∩ h′ = ∅ and thus T := g ∩ h 6=
g′ ∩ h′ =: T ′ as well as g′ 6≤ 〈g, h〉 or h′ 6≤ 〈g, h〉, that is, 〈g, h〉 6= 〈g′, h′〉.
Therefore, if 〈T, T ′〉 ∈ R and l′ is such that {〈T, T ′〉, l′} = R, then Lemma 1.3.12
shows l′ ≤ 〈g, h〉, 〈g′, h′〉 and 〈g ∩ h〉 6= 〈g′, h′〉 proves 〈g, h〉 ∩ 〈g′, h′〉 = l′. Fur-
thermore, if 〈T, T ′〉 /∈ R, then the lines l, l′ ∈ R with T ∈ l and T ′ ∈ l′ provided
by Lemma 1.3.12 are distinct, satisfy l ≤ 〈g′, h′〉 as well as l′ ≤ 〈g, h〉 and we
have 〈g, h〉 ∩ 〈g′, h′〉 = 〈T, T ′〉 from T ∈ l ≤ 〈g′, h′〉 3 T ′ ∈ l′ ≤ 〈g, h〉 3 T and
〈g, h〉 6= 〈g′, h′〉.

Now, let Q ∈ U \ S. In the very beginning of this prove we have shown that 〈P, g〉 ∩
〈Q, h〉 is a point for all (g, h) ∈ R1 ×R2 \M and for all i ∈ {1, 2} we have dim(〈P, gi〉 ∩
〈Q, gi〉) ≥ 1. In the following we study the remaining pairs in M , that is, those in
M ′ := M \ {(g1, g1), (g2, g2)}. We consider the three cases that may occur for ξ and for
ξ > 0 we let l, l′ be such that R = {l, l′}.

• First, let ξ = 0, that is, R = ∅. In this case we have M = {(gi, gi) : i ∈ {1, 2}}
from i) and thus Ω = {2} with Ω2 = U \ S.

• Secondly, let ξ = 1, that is, l = l′. For distinct elements (h1, h2) and (h′1, h′2) of
M \ {(g1, g1), (g2, g2)} we have

〈P, h1, h2〉 ∩ 〈P, h′1, h′2〉 = 〈P, 〈h1, h2〉 ∩ 〈h′1, h′2〉〉 = 〈P, l〉

from ii) and thus Ω = {2, 3, q+1} with Ωq+1 = 〈P, l〉\S, Ω3 =
⋃

(g,h)∈M ′
〈P, g, h〉\(S∪〈P, l〉)

and Ω2 = U \ (S ∪ Ωq+1 ∪ Ω3).

• Finally, let ξ = 2, that is, l 6= l′. We set P1 := l∩g1, P2 := l∩g2, P ′1 := l′∩g1, P ′2 :=
l′ ∩ g2 and we let P3, . . . , Pq+1 and P ′3, . . . , P ′q+1 be the remaining points of l and
l′, respectively. For distinct elements (h1, h2) and (h′1, h′2) of M \{(g1, g1), (g2, g2)}
we have

〈P, h1, h2〉 ∩ 〈P, h′1, h′2〉 = 〈P, 〈h1, h2〉 ∩ 〈h′1, h′2〉〉

=


〈P, 〈h1 ∩ h2, h

′
1 ∩ h′2〉〉 if 〈h1 ∩ h2, h

′
1 ∩ h′2〉 /∈ R,

〈P, l〉 if 〈h1 ∩ h2, h
′
1 ∩ h′2〉 = l′,

〈P, l′〉 if 〈h1 ∩ h2, h
′
1 ∩ h′2〉 = l

from ii) and thus Ω = {2, 3, 4, q + 1, q + 2, 2q} with Ω2q = {P} and

Ωq+2 =
q+1⋃
i=3

(〈P, Pi〉 ∪ 〈P, P ′i 〉) \ (S ∪ {P})

Ωq+1 =
2⋃
i=1

(〈P, Pi〉 ∪ 〈P, P ′i 〉) \ (S ∪ {P})
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Ω4 =
q+1⋃
i=3

q+1⋃
j=3
〈P, Pi, P ′j〉 \ (S ∪ 〈P, Pi〉 ∪ 〈P, P ′j〉)

Ω3 =
q+1⋃
i=3

2⋃
j=1

(〈P, Pi, P ′j〉 ∪ 〈P, Pj , P ′i 〉) \
(
S ∪

2⋃
i=1
〈P, Pi〉 ∪ 〈P, P ′i 〉

)
,

Ω2 =
2⋃
i=1

2⋃
j=1
〈P, Pi, P ′j〉 \

(
S ∪

2⋃
i=1
〈P, Pi〉 ∪ 〈P, P ′i 〉

)
.

Corollary 1.3.15. Let P have dimension 4, let R be a regulus in a solid S ≤ P and let
P /∈ S be a point of P. For every point Q ∈ P \S with Q /∈

⋃
g∈R〈P, g〉 and every regulus

R′ with |R′ ∩R| = 2 we have

|{(g, h) ∈ R×R′ : dim(〈P, g〉 ∩ 〈Q, h〉) ≥ 1}| ≤ 4.

A regulus is an example of a more general concept of a geometry, a polar space, which
we introduce next. This is in preparation of the last chapter of this thesis, which takes
place in a Hermitian polar space.

1.4 Polar Spaces

For a detailed introduction to polar spaces we refer the reader to [11] by Cameron or,
for a more comprehensive work, also to [9] by Buekenhout and Cohen. For us only
one special kind of polar space is of importance — namely one of the Hermitian polar
spaces — and thus we keep the general introduction short. Still, we include the abstract
definition of a polar space as it was suggested in [10] by Buekenhout and Shult.

Definition 1.4.1 (Polar Space). A point line incidence structure (P,L, ∗) with L ⊆ 2P
and P ∗ l as well as l ∗ P if and only if P ∈ l is called polar space if it satisfies the
one-or-all axiom:

For all P ∈ P and all l ∈ L with P /∈ l either one or all points of l are
collinear to P .

Polar spaces were first studied by Veldkamp in [29] and his results were simplified and
completed by Tits in [28]. In fact, due to their work the (thick) polar spaces of rank
n ≥ 4 are known to be classical polar spaces, one of which is the Hermitian polar space
we are interested in. The complete proof of that classification is also given in [9] by
Buekenhout and Cohen.

As mentioned earlier, we forgo any further abstract introduction and instead focus on
the cases that are of interest here. In particular, we give a short list of the finite classical
polar spaces of rank d over a finite field of order q as well as the quadratic, bilinear or
sesquilinear form (up to transformation of coordinates) which defines it and then focus
only on the Hermitian polar spaces. The finite classical polar spaces are:
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• The Hyperbolic Quadric Q+(2d− 1, q) in PG(2d− 1, q), which is defined using the
non-degenerate quadratic form x1x2 + · · ·+ x2d−1x2d.

• The Parabolic Quadric Q(2d, q) in PG(2d, q), which is defined using the non-
degenerate quadric form x2

1 + x2x3 + · · ·+ x2dx2d+1.

• The Elliptic Quadric Q−(2d + 1, q) in PG(2d + 1, q), which is defined using the
non-degenerate quadratic form f(x1, x2)+x3x4 + · · ·+x2d+1x2d+2, where f(x1, x2)
is an irreducible homogenous quadratic polynomial of Fq.

• The Hermitian Polar Space H(n, q) for n ∈ {2d− 1, 2d} in PG(n, q) (with q = p2

for some prime power p) which is defined using the non-degenerate sesquilinear
form xp1y1 + · · ·+ xpn+1yn+1.

• The Simplectic Polar Space W (2d− 1, q) in PG(2d− 1, q), which is defined using
the non-degenerate bilinear form x1y2 − x2y1 + · · ·+ x2d−1y2d − x2dy2d−1.

Note that each of these forms induces a polarity π on the projective space. The
subspaces of the polar space given by a polarity π is the set of all subspaces U of the
projective space (also referred to as the ambient (projective) space) with U ⊆ π(U)
and these are called totally isotropic. The set of these subspaces together with induced
incidence from the ambient projective space compose the polar space defined by the
form.
However, in view of the formal definition of a polar space that we provided above, the

respective polar space is given only by the point-line incidence structure induced by the
incidence relation of the ambient projective space on the set of totally isotropic points
and totally isotropic lines of the projective space.
The maximal totally isotropic subspaces U are called the generators of the polar space.

It is known that all generators of a given polar space have the same rank and said rank
is the same as the rank of the polar space itself.
Finally, we note that we use the notation U⊥ to denote π(U) whenever π is known

from context, for every subspace U ≤ P the subspace U ∩ U⊥ is called the radical of
both U and the intersection of U with the polar space in question and, with regard to
the Hermitian polar spaces, we also remark the following:

Remark 1.4.2. Let q be a prime power and n ∈ N. Throughout this work we always
consider the Hermitian polar spaces in relation to the given ambient projective space. As
such we may use the notions on projective spaces that we introduced earlier, such as the
relation ∗ or the dimension-formula.
Furthermore, a subspace U of PG(n, q2) is totally isotropic (with regard to H(n, q2))

if and only if all of its points are totally isotropic (with regard to H(n, q2)). Thus, we
may understand H(n, q2) as a set of points in PG(n, q2) and, given the form f as above,
a point

∑n
i=0 λivi belongs to H(n, q2) if and only if

∑n
i=0 λ

q+1
i = 0.

Finally, note that the Hermitian polar spaces H(2d−1, q2) and H(2d, q2) of rank d are
inherently distinct and here we only study Hermitian polar spaces in projective spaces of
even dimension 2d and in particular their tight sets (see Definition 3.0.1).
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1.5 Graphs

Since the main focus of this work is the analysis of a certain type of graph, namely a
Kneser graph, we must provide some basic notions on graphs. For a more thorough
introduction to graph theory we refer the reader to [30] by West. Note that here, too, q
is a prime power and n is a positive integer.

Definition 1.5.1 (Graph). A graph Γ = (V,E) is a tuple consisting of a vertex-set V
and an edge-set E ⊆ {W ⊆ V : |W | = 2}. In such a graph the elements of V are called
vertices and the elements of E are called edges. Note that two vertices v, w ∈ V are said
to be adjacent or neighbours if and only if {v, w} is an element of E. For every vertex
v ∈ V we let NΓ(v) := {w ∈ V : {v, w} ∈ E} denote the set of all neighbours of v in Γ.
Furthermore, if a graph Γ is given in an abstract manner, then we still want to be

able to refer to its vertex- and edge-set and thus we let V(Γ) and E(Γ) denote these sets,
respectively.

Remark 1.5.2. It is also possible to define a graph on a set of vertices V using an
abstract set for the edge-set E and introducing a relation I ⊆ V ×E with the property that
every edge is in relation with two (not necessarily distinct) vertices of V . One advantage
of that alternative definition is that an edge naturally has a direction. However, in this
particular work the definition given above is sufficient and also more convenient to work
with.

Now that we have a settled on a definition for a graph, we introduce the notion of a
co-clique of a graph. For sake of completeness we also include the definition of a clique.

Definition 1.5.3 (Clique and Co-Clique). In a graph Γ = (V,E) a subset C ⊆ V is
called a clique (respectively co-clique) if we have {v, w} ∈ E (respectively {v, w} 6∈ E)
for all vertices v, w ∈ C. Note that a co-clique is also called an independent set and the
number

α (Γ) := max {|W | : W is a co-clique of Γ}

is called the independence number of the graph Γ. Furthermore, the number

ω (Γ) := max {|W | : W is a clique of Γ}

is called the clique number of the graph Γ.

Note that cliques and the clique number do not play a role in this work. Another
property of a graph that is sometimes of interest and closely related to co-cliques is the
chromatic number, which we introduce next.

Definition 1.5.4 (Colourings and the Chromatic Number). Let Γ be a graph. A colour-
ing of Γ is a map g from V(Γ) to a set such that for all c ∈ C the set g−1(c) is a co-clique of
Γ. If g : V(Γ)→ C is a colouring, then the elements of C are called colours. Furthermore,
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if C is a set with minimal cardinality such that there exists a colouring g : V(Γ) → C,
then χ(Γ) := |C| is called the chromatic number of Γ. χ(Γ) obviously satisfies

χ(Γ) = min
{
|C| : C is a set of co-cliques with

⋃
C∈C

C = V(Γ)
}
.

Indeed, knowledge of the independence number and the structure of the largest and
second largest examples of independent sets is sometimes sufficient to determine the
chromatic number of a graph. The main reason for that is that for every graph Γ one
has the obvious relation χ(Γ) ≤ |V(Γ)|

α(Γ) . In particular, in [12] by D’haeseleer, Metsch and
Werner the authors have been successful in determining the chromatic number using this
type of approach in a graph that is very similar to the one that we study in this work.
A generalization of that work by the same authors is the content of Section 2.3 on the
chromatic number of Kneser graphs of type (n − 1, n) in PG(2n, q) later on, where the
chromatic number is determined for n = 3 as well as for all n ≥ 4 for which Conjecture
2.1.19 holds.

1.5.1 The Kneser Graph on Flags of a Projective Space
We now proceed to introduce the Kneser graph, the object that we study in the main
part of this work.

Definition 1.5.5 (Flag). Let s be some integer and let a = (a1, . . . , as) be some tuple.
We set Ω(a) := {a1, . . . , as} and let len(a) := s denote its length. If a tuple a has length
1, then we identify it by its only entry a1, that is, (a1) = a1.
Let U1, . . . , Us be subspaces of a given projective space P such that U1 < U2 < · · · < Us.

Then the tuple f = (U1, U2, . . . , Us) is called a flag of type

type (f) := (dim (U1) ,dim (U2) , . . . ,dim (Us)) .

For every type d we call a type d′ a sub-type (of d), if Ω(d′) ⊆ Ω(d).
Now, let U be a subspace of P and let f = (U1, . . . , Us) be a flag. We define U ∩ f to

be the unique flag f ′ with Ω(f ′) = {U ∩ Ui : i ∈ {1, . . . , s}}. Furthermore, if Us ≤ U ,
then we say that f is contained in U and write f ≤ U and if U ≤ U1, then we say that
f is a flag through / containing U and write U ≤ f .

Definition 1.5.6 (Kneser graph). Let P be the projective space PG(n, q), let s ≥ 1 as
well as −1 < d1 < d2 < · · · < ds < n be integers and let V be the set of all flags in P
of type (d1, d2, . . . , ds). Let E ⊆ {W ⊆ V : |W | = 2} be defined as follows: For any two
flags f = (U1, . . . , Us) and g = (W1, . . . ,Ws) ∈ V we have {f, g} ∈ E if and only if for
all i, j ∈ {1, . . . , s} we have

Ui ∩Wj = ∅ ∨ 〈Ui,Wj〉 = P.. (1.6)

The graph Γ with vertex-set V and edge-set E is called the Kneser graph of type
(d1, . . . , ds) in P.
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1.5 Graphs

Finally, let C be a vertex-set of Γ, let d′ be a sub-type of d and let f ′ be an arbitrary
flag of type d′ in P. Then f ′ is called saturated (with regard to / in C) if for all f ∈ V(Γ)
we have πd′(f) = f ′ =⇒ f ∈ C.

Remark 1.5.7. The condition given in Equation (1.6) is equivalent to each of the fol-
lowing

dim (Ui ∩Wj) ≤ max{−1, di + dj − n}, (1.7)
dim (〈Ui,Wj〉) ≥ min {di + dj + 1, n} .

note that in both of those equations a strict inequality may not occur and any flag f =
(U1, . . . , Us) may not be adjacent to itself.

Remark 1.5.8. This generalization of Kneser graphs as well as a generalization to
Buildings and flags of sets is, for example, given in the thesis [16] by Güven. That
work also provides some results on co-cliques of Kneser graphs, including the result on
point-hyperplane flags, which is also given in [4] by Blokhuis, Brouwer and Güven. For
other results on co-cliques and the chromatic number of these kind of Kneser graphs also
consider [3] on the size of co-cliques in the Kneser graph of line-plane flags in PG(4, q)
by Blokhuis and Brouwer as well as [12] by D’haeseleer, Metsch and Werner on the
chromatic number therein; [5] on the chromatic number of q-Kneser graphs as well as
[6] on the size of co-cliques in the Kneser graph of point-plane flags in PG(4, q), both by
Blokhuis, Brouwer and Szönyi; as well as the thesis [27] by Mussche.
Furthermore, note that the Erdős-Ko-Rado Theorem for vector spaces, given by Frankl

and Wilson in [15], and the Hilton-Milner Theorem given by Blokhuis, Brouwer, Chowd-
hury, Frankl, Mussche, Patkós and Szönyi in [7] can also be interpreted as results on
Kneser graphs on flags of length 1.

We conclude the introduction with a definition of some specific maps in Kneser graphs,
that we use quite frequently later on.

Definition 1.5.9. Let C be a subset of the vertex-set of the Kneser graph Γ of type
d := (d1, . . . , ds) in P := PG(n, q) and let d′ := (di1 , . . . , dir) be a sub-type of (d1, . . . , ds).
For every flag f = (U1, . . . , Us) ∈ C let the projection of f to d′ be the flag

πd′(f) := (Ui1 , . . . , Uis)

and let the projection of C to d′ be the set

Πd′(C) := {πd′(g) : g ∈ C}.

Furthermore, for every flag f ′ ≤ P let the restriction of C to f ′ be the set

∆f ′(C) := {g ∈ C : U ∗ U ′,∀U ∈ Ω(g), U ′ ∈ Ω(f ′)}

and set ∆f ′(C) := C \∆f ′(C). Since we identify tuples of length 1 by their only entry,
in the cases of len(d′) = 1 or f ′ = (W ) for some subspace W ≤ P, we may also write
πdi1 (f), Πdi1

(C), ∆W (C) and ∆W (C) for π(di1 )(f), Π(di1 )(C), ∆(W )(C) and ∆(W )(C),
respectively.
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2 Erdős-Ko-Rado Sets in Kneser Graphs

2.1 Preparation in a more general Setting

Here we collect some lemmata in preparation for Sections 2.2 and 2.4 on plane-solid flags
in PG(6, q) and line-solid flags in PG(5, q). They provide some linear structure in the
graph, that is needed later on.

2.1.1 Kneser Graphs of Type (d1, . . . , ds) in PG(n, q)

For this first part let P be the projective space PG(n, q) for some prime power q and some
dimension 2 ≤ n ∈ N. Furthermore, let s ∈ N be at least 2, let −1 < d1 < · · · < ds < n
be integers and let Γ be the Kneser graph of type d := (d1, . . . , ds) in P.

Lemma 2.1.1. Let f ′ be a flag of some sub-type d′ of d and let g be an arbitrary flag
of P such that πt′(f ′) ∩ πt(g) = ∅ or 〈πt′(f ′), πt(g)〉 = P for all t′ ∈ Ω(d′) and t ∈ Ω(e)
with e := type(g).
Then there is a flag f of type d with πd′(f) = f ′ such that πt′(f) ∩ πt(g) = ∅ or
〈πt′(f), πt(g)〉 = P for all t′ ∈ Ω(d) and t ∈ Ω(e).

Proof. Let f ′′ with πd′(f ′′) = f ′ be a flag of maximal length such that its type d′′ satisfies
Ω(d′′) ⊆ Ω(d) and such that πt′(f ′′) ∩ πt(g) = ∅ or 〈πt′(f ′′), πt(g)〉 = P for all t′ ∈ Ω(d′′)
and t ∈ Ω(e).
If d′′ = d then there remains nothing to prove and thus we assume that Ω(d)\Ω(d′′) 6= ∅

and we let r′ be an integer of this set. We now augment the flag f ′′ to a flag f ′′′ of type
d′′′ := d′′ ∪ {r′} such that πt′(f ′′′) ∩ πt(g) = ∅ or 〈πt′(f ′′′), πt(g)〉 = P for all t′ ∈ Ω(d′′′)
and t ∈ Ω(d), in contradiction to the maximal choice of f ′′.

Let r be the largest integer in Ω(e) ∪ {−1} such that r + r′ ≤ n− 1 and let r be the
smallest integer in Ω(e) ∪ {n} such that r < r. For r 6= −1 let W be a complement of
πr(g) in P and for r = −1 set W := P. Furthermore, for r 6= n let W be a complement
of πr(g) ∩W in W and for r = n let W be the empty subspace of P. Then we have
dim(W ) ≥ r′ and dim(W ) ≤ r′ and there is an r′-dimensional subspace U of W with
W ≤ U .
Now, for all t ∈ Ω(e) with t ≤ r we have U ∩πt(g) ≤W ∩πr(g) = ∅ and for all t ∈ Ω(e)

with t > r we even have t ≥ r and thus 〈U, πt(g)〉 ≥ 〈W,πr(g)〉 = P. Hence the unique
flag f ′′′ with Ω(f ′′′) = Ω(f ′′) ∪ {U} satisfies πt′(f ′′′) ∩ πt(g) = ∅ or 〈πt′(f ′′′), πt(g)〉 = P
for all t′ ∈ Ω(d′′′) and t ∈ Ω(d), in contradiction to the maximal choice of f ′′ and hence
concluding the proof.
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Lemma 2.1.2. Let C be a co-clique in Γ, let d′ be a sub-type of d with d′ 6= d and let
f ′ be a saturated flag of type d′.
Then for all g ∈ C there exist t′ ∈ Ω(d′) and t ∈ Ω(d) such that πt′(f ′) ∩ πt(g) 6= ∅

and 〈πt′(f ′), πt(g)〉 6= P.

Proof. Assume that there is g ∈ C such that for all t′ ∈ Ω(d′) and t ∈ Ω(d) we have
πt′(f ′) ∩ πt(g) = ∅ or 〈πt′(f ′), πt(g)〉 = P. Then, according to Lemma 2.1.1, there is a
flag f ∈ V(Γ) with πd′(f) = f ′ such that πt′(f) ∩ πt(g) = ∅ or 〈πt′(f), πt(g)〉 = P for all
t, t′ ∈ Ω(d), that is, a flag f which is adjacent to g. Now, since f ′ is saturated we have
f ∈ C, in contradiction to g ∈ C.

Lemma 2.1.3. Let C be a maximal co-clique in Γ, let d′ be a sub-type of d with d′ 6= d
and let f ′ be a flag of type d′.
Then f ′ is saturated in C if and only if for all g ∈ C there exist t′ ∈ Ω(d′) and t ∈ Ω(d)

such that πt′(f ′) ∩ πt(g) 6= ∅ and 〈πt′(f ′), πt(g)〉 6= P.

Proof. If f ′ is saturated then Lemma 2.1.2 proves the claim and if for all g ∈ C there
exist t′ ∈ Ω(d′) and t ∈ Ω(d) such that πt′(f ′) ∩ πt(g) 6= ∅ and 〈πt′(f ′), πt(g)〉 6= P, then
for all f ∈ V(Γ) with πd′(f) = f ′ we know that f and g are not adjacent in Γ and thus,
because C is maximal, f ∈ C.

Lemma 2.1.4. Let C be a co-clique in Γ, let d′ be a sub-type of d and let f ′ and g′ be
two vertices of the Kneser graph Γ′ of type d′ in P.
If f ′ and g′ are saturated in C, then f ′ and g′ are not adjacent in Γ′.

Proof. Let f ′ and g′ be saturated in C and assume that f ′ and g′ are adjacent in Γ.
Then for all t, t′ ∈ Ω(d′) we have πt(f ′) ∩ πt′(g′) = ∅ or 〈πt(f ′), πt′(g′)〉 = P. According
to Lemma 2.1.1 there is a flag f of type d with πd′(f) = f ′ such that πt(f) ∩ πt′(g′) = ∅
or 〈πt(f), πt′(g′)〉 = P for all t ∈ Ω(d) and t′ ∈ Ω(d′). Furthermore, again according to
Lemma 2.1.1 there is a flag g of type d with πd′(g) = g′ such that πt(f) ∩ πt′(g) = ∅
or 〈πt(f), πt′(g)〉 = P for all t, t′ ∈ Ω(d). Therefore, f and g are adjacent in Γ, in
contradiction to f ′ and g′ being saturated in C.

Lemma 2.1.5. For 2 ≤ m ∈ N let f1, . . . , fm be distinct flags of a maximal co-clique C
in Γ, let t be an element of Ω(d) and let d′ be a sub-type of d such that Ω(d′) = Ω(d)\{t}.
Furthermore, let h be a flag of type d′ and let W ≤ P be a (t− 1)-dimensional subspace
with πd′(fk) = h and W ≤ πt(fk) for all k ∈ {1, . . . ,m}.
Then we have f ∈ C for all f ∈ V(Γ) with πd′(f) = h and W ≤ πt(f) ≤ 〈πt(fk) : k ∈
{1, . . . ,m}〉.

Proof. Set Ŵ := 〈πt(fi) : i ∈ {1, . . . ,m}〉 and t̂ := dim(Ŵ ). According to Lemma 1.2.38
there exists Ξ ⊆ {πt(fi) : i ∈ {1, . . . ,m}} such that Ŵ = 〈Ξ〉 and |Ξ| = t̂ − t + 1 and
without loss of generality we may assume that Ξ = {πt(fi) : i ∈ {1, . . . ,m}} and thus
|Ξ| = m hold.
Now, in contrary to the claim, assume that there is a flag f ∈ V(Γ) with f /∈ C,

πd′(f) = h and W ≤ πt(f) ≤ Ŵ . Since C is maximal this implies that there must be a
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flag g ∈ C which is adjacent to f . For the remainder of this passage let i ∈ {1, . . . ,m}
be arbitrary but fixed. We know from fi ∈ C that there must be ki, ri ∈ Ω(d) such that
πki(fi)∩πri(g) does not satisfy the condition given in Equation (1.7). Since f and g are
non-adjacent and since πd′(f) = h = πd′(fi) we know that ki /∈ Ω(d′) and thus ki = t.
Furthermore, if πt(fi) ∩ πri(g) ≤ W ≤ πt(f), then πt(f) ∩ πri(g) would not satisfy the
condition given in Equation (1.7) either, in contradiction to f and g being adjacent. In
conclusion, from the arbitrary choice of i ∈ {1, . . . ,m} we have

∀i ∈ {1, . . . ,m} : πt(fi) ∩ πri(g) 6≤W. (2.1)

Now, set r := max{r1, . . . , rm}, let ι ∈ {1, . . . ,m} be such that r = rι and note that
this implies πri(g) ≤ πr(g) for all i ∈ {1, . . . ,m}. Furthermore, for all i ∈ {1, . . . ,m}
set ξi := πt(fi) ∩ πr(g) and let W be a complement of ξι ∩W in W . Again, for the
remainder of this passage let i ∈ {1, . . . ,m} be arbitrary but fixed. Using Equation (2.1)
and πt(fi) ∩ πri(g) ≤ ξi we have ξi 6≤ W . Since W is a hyperplane of πt(fi) and since
ξi ≤ πt(fi) we may conclude that ξi ∩W is a hyperplane of ξi. Hence,

ξi ∩W = (πt(fi) ∩ πr(g)) ∩W = (πt(fi) ∩W ) ∩ πr(g) = W ∩ πr(g)

and thus ξi ∩W = ξι ∩W . Since W is a hyperplane of πt(fi) Equation (2.1) implies

πt(fi) = 〈πt(fi) ∩ πri(g),W 〉 = 〈ξi,W 〉 = 〈ξi,W 〉

and from the arbitrary choice of i ∈ {1, . . . ,m} we now have

∀∅ 6= I ⊆ {1, . . . ,m} : 〈πt(fi) : i ∈ I〉 = 〈W, ξi : i ∈ I〉 = 〈W, 〈ξi : i ∈ I〉〉. (2.2)

Thus, if there was a non-empty subset I ⊆ {1, . . . ,m} such that dim(〈ξi : i ∈ I〉) <
dim(ξι ∩W ) + |I|, then, using Equation (2.2), it follows that

dim(〈πt(fi) : i ∈ I〉) ≤ dim(W ) + dim(〈ξi : i ∈ I〉) + 1
< dim(W ) + dim(ξι ∩W ) + |I|+ 1 = dim(W ) + |I|,

in contradiction to Lemma 1.2.39. Consequently 〈ξi : i ∈ {1, . . . ,m}〉 ≤ πr(g) ∩ Ŵ has
dimension dim(ξι ∩W ) + m = dim(ξι) − 1 + m, Ŵ has dimension t̂ = t − 1 + m and
πt(f) ≤ Ŵ has dimension t. Therefore,

dim(πt(f) ∩ (πr(g) ∩ Ŵ )) = dim(πt(f)) + dim(πr(g) ∩ Ŵ )− dim(〈πt(f), πr(g) ∩ Ŵ 〉)
(∗)
≥ t+ dim(ξι)− 1 +m− (t− 1 +m) = dim(ξι),

where the step marked with (∗) uses 〈πt(f), πr(g) ∩ Ŵ 〉 ≤ Ŵ . Now, since πt(fι) ∩ πr(g)
does not satisfy the condition given in Equation (1.7), neither does πt(f) ∩ πr(g). This
is in contradiction to the choice of g as a neighbour of f , concluding the proof.
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Corollary 2.1.6. Let C be a maximal co-clique in Γ, let i ∈ {1, . . . , s} be a fixed index,
let W be a subspace of dimension di − 1 and let g be an arbitrary flag of the type d′
defined by Ω(d′) = Ω(d) \ {di}. Then

|{f ∈ ∆W (C) : πd′(f) = g}| ∈ {sq[j] : j ∈ {−1, . . . , n− di}} .

Proof. Set C ′ := {f ∈ ∆W (C) : πd′(f) = g}. For |C ′| ∈ {0, 1} = {sq[−1], sq[0]} there
is nothing to prove. Thus, let C ′ contain at least two distinct flags and let t be the
dimension of the subspace Ŵ := 〈Πdi(C ′)〉. According to Lemma 2.1.5 every subspace
U ≤ Ŵ with W ≤ U satisfies (U1, . . . , Ui−1, U, Ui+1, . . . , Us) ∈ C ′ and the number of
such subspaces U is given by

sq[di − 1, di, t]
1.2.35 ii)= sq[0, t− di] = sq[t− di].

Therefore, we have |C ′| = sq[t− di] with t ∈ {di, . . . , n}, which implies the claim.

Lemma 2.1.7. Let H be a subspace of P and set dH := dim(H) as well as dH := n−dH .
Furthermore, set d0 := −1, let r be the largest integer in {0, . . . , s} with 2dr + 1 ≤ dH
and let dH ≤ 2dj + 1− n hold for all j ∈ {r + 1, . . . , s}. Finally, let C be a non-empty
independent set of Γ such that C ′ := {H ∩ f : f ∈ C} is a set of flags of type

d′ :=
{

(d1, . . . , dr, dr+1 − dH , . . . , ds − dH) for dr+1 − dH > dr,
(d1, . . . , dr, dr+2 − dH , . . . , ds − dH) otherwise.

Then C ′ is an independent set of the Kneser graph Γ′ of type d′ in H.
Proof. First we note that for r = s the claim is trivial and thus we may assume that r < s.
We prove the claim via contradiction and thus assume that C ′ is not an independent
set of Γ′. Then there are two adjacent flags f ′1 6= f ′2 ∈ C ′ of Γ′ and two non-adjacent
flags f1 6= f2 ∈ C of Γ with H ∩ f1 = f ′1 and H ∩ f2 = f ′2. Since f1 and f2 are non-
adjacent flags of Γ, there exist m1,m2 ∈ {1, . . . , s} with πdm1

(f1) ∩ πdm2
(f2) 6= ∅ and

〈πdm1
(f1), πdm2

(f2)〉 6= P. Since f ′1 and f ′2 are adjacent and since dH ≥ 2di + 1 for all
i ∈ {1, . . . , r} we know that m1 > r or m2 > r and without loss of generality we may
assume that m1 > r. We set d′m1 := dim(πdm1

(f1) ∩H) and d′m2 := dim(πdm2
(f2) ∩H).

Since m1 > r we know that πdm1
(f1) and H span P and from 〈πdm1

(f1), πdm2
(f2)〉 6= P

we have

H 6= 〈πdm1
(f1) ∩H,πdm2

(f2) ∩H〉 = 〈πd′m1
(f ′1), πd′m2

(f ′2)〉.

Now, if m2 ≤ r then πdm2
(f2) ≤ H and

∅ 6= πdm1
(f1) ∩ πdm2

(f2) = πd′m1
(f ′1) ∩ πd′m2

(f ′2) = ∅,

a contradiction. Hence, we have m2 > r, too. However, πd′m1
(f ′1) and πd′m2

(f ′2) are skew
and thus we have dim(πdm1

(f1) ∩ πdm2
(f2)) ≤ dH − 1 ≤ 2dr+1 − n, which implies

dim(〈πdm1
(f1), πdm2

(f2)〉) ≥ dm1 + dm2 − 2dr+1︸ ︷︷ ︸
≥0, since m1,m2≥r+1

+n ≥ n,

a contradiction to 〈πdm1
(f1), πdm2

(f2)〉 6= P.
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Lemma 2.1.8. If for all i ∈ {1, . . . , s} we have di + ds−i+1 = n − 1, then for all
f, g ∈ V(Γ) we have

{f, g} ∈ E(Γ)⇐⇒ ∀j ∈ {1, . . . , s} : πdi(f) ∩ πds−i+1(g) = ∅.

Proof. Let di + ds−i+1 = n− 1 for all i ∈ {1, . . . , s}. Note that for dimensional reasons
this implies that πdi(f) and πdj (g) span P if and only if their intersection is empty.

First, if f and g are adjacent vertices of Γ, then we have πdi(f) ∩ πdj (g) = ∅ or
〈πdi(f), πdj (g)〉 = P for all i, j ∈ {1, . . . , s}. Hence, for all i ∈ {1, . . . , s} we have
πdi(f) ∩ πds−i+1(g) = ∅, as claimed.

Now, let f and g be non-adjacent vertices. Then there exist i, j ∈ {1, . . . , s} such that
πdi(f)∩πdj (g) 6= ∅ and 〈πdi(f), πdj (g)〉 6= P. If j ≤ s−i+1, then from πdj (g) ≤ πds−i+1(g)
we have

∅ 6= πdi(f) ∩ πdj (g) ≤ πdi(f) ∩ πds−i+1(g)

and for dimensional reasons this also implies P 6= 〈πdi(f), πds−i+1(g). On the other hand,
if j > s− i+ 1, then from πds−i+1(g) ≤ πdj (g) we have

P 6= 〈πdi(f), πdj (g)〉 ≥ 〈πdi(f), πds−i+1(g)〉

and again this also implies ∅ 6= πdi(f) ∩ πds−i+1(g), concluding the proof.

2.1.2 Kneser Graphs of Type (n − 1, n) in PG(2n, q)

For this section let P be the projective space PG(2n, q) for some prime power q and some
positive integer n and let Γ be the Kneser graph of type (n− 1, n) in P.

Corollary 2.1.9. Let V be a saturated subspace of P of dimension n in a given co-clique
C of Γ. Then for any flag (U ′, V ′) ∈ C we have U ′ ∩ V 6= ∅.

Proof. Lemma 2.1.2 shows that for any flag (U ′, V ′) ∈ C we have U ′∩V 6= ∅ or dim(V ′∩
V ) ≥ 1. However, since U ′ is a hyperplane of V ′ we know that the latter also implies
U ′ ∩ V ′ 6= ∅, as claimed.

Corollary 2.1.10. Let U be a saturated subspace of P of dimension n − 1 in a given
co-clique C. Then for any flag (U ′, V ′) ∈ C we have V ′ ∩ U 6= ∅.

Proof. On the one hand this, too, is implied by Lemma 2.1.2 and on the other hand
it is also the dual statement of Corollary 2.1.9 and the type under consideration is
self-dual.

Corollary 2.1.11. If V and V ′ are two saturated n-dimensional subspaces in a given
co-clique C, then there is a line l in the intersection of V and V ′.
Furthermore, if U and U ′ are two saturated (n− 1)-dimensional subspaces in a given

co-clique C, then they are contained in a common subspace of co-dimension 2, that is,
they share a point.
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Proof. In Lemma 2.1.4 we have seen, that if V and V ′ are saturated, then V and V ′ must
be non-adjacent in the Kneser graph Γ′ of type n in P. Two n-dimensional subspaces of
Γ′ are adjacent if and only if they span the entire space P. In this case this is equivalent
to dim (V ∩ V ′) = 0 and thus there must be a line l ≤ V ∩ V ′.

The second claim is the dual statement of the first claim and it follows analogously or
from the fact that the type under consideration is self-dual.

Corollary 2.1.12. Let V be a subspace of P of dimension n in a given maximal co-clique
C. If we have V ∩ U ′ 6= ∅ for all U ′ ∈ Πn−1 (C), then V is saturated.

Proof. This is implied by Lemma 2.1.3.

Lemma 2.1.13. If C is a maximal co-clique of Γ and H is a hyperplane of P such that
U ∈ Πn−1 (C) implies U ≤ H, then every n-dimensional subspace of H is saturated in
C.

Proof. LetH be a hyperplane of P such that U ≤ H for all subspaces U ∈ Πn−1 (C). If V
is an n-dimensional subspace of H, then, for dimensional reasons, we have V ∩U 6= ∅ for
all (n− 1)-dimensional subspaces U of H. Thus we have U ∩V 6= ∅ for all U ∈ Πn−1(C)
and know from Lemma 2.1.12 that V is saturated.

Lemma 2.1.14. For any co-clique C and any hyperplane H ≤ P there are at most

sq[n− 1, 2n− 2] · qn

flags (Un−1, Un) ∈ C with Un−1 ≤ H and Un 6≤ H.

Proof. According to Lemma 2.1.7 the set U of (n− 1)-dimensional subspaces Un−1 ≤ H
which occur in a flag (Un−1, Un) ∈ C with Un 6≤ H forms an independent set in the
Kneser graph of type dn−1 in H. According to [15] by Frankl and Wilson we have
|U| ≤ sq[n− 1, 2n− 2] and through any one of those (n− 1)-dimensional subspaces there
are

sq[n− 1, n, 2n]− sq[n− 1, n, 2n− 1] = qn

n-dimensional subspaces which are not a subspace of H, as claimed.

Example 2.1.15. Let H be a hyperplane of P and let U be a set of (n− 1)-dimensional
subspaces U ≤ H such that U is a maximal independent set of the Kneser graph Γ′ of
type n − 1 in H. Furthermore, let C be the set of all flags (U, V ) ∈ V(Γ) such that
V ≤ H or U ∈ U . Then C is a maximal independent set of Γ of size

sq[n, 2n− 1] · sq[n− 1, n] + |U| · qn.

Proof. Let f1 = (U1, V1) and f2 = (U2, V2) be two arbitrary flags of C. If Vi ≤ H
for some i ∈ {1, 2}, then, for dimensional reasons, we have Vi ∩ U3−i 6= ∅ as well as
〈Vi, U3−i〉 = H 6= P and the flags are non-adjacent. If V1, V2 6≤ H, then U1, U2 ∈ U are
non-adjacent flags of Γ′ and as such U1 ∩U2 6= ∅ with 〈U1, U2〉 ≤ H 6= P and the flags f1
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and f2 are non-adjacent as well. Consequently C is an independent set of Γ. It remains
to show that C is maximal and to determine its cardinality.
For the maximality of C let C ′ be an independent set of Γ with C ⊆ C ′. According

to Lemma 2.1.7 the set

U ′ := {U ∈ Πn−1(C ′) : U ≤ H,∃V ≤ P with V 6≤ H ∧ (U, V ) ∈ C}

is an independent set of the Kneser graph of type n − 1 in H. Since U is maximal
and obviously a subset of U ′ we have U ′ = U . Now, for every (n − 1)-dimensional
subspace U ≤ P with U 6≤ H we have dim(U ∩H) = n−2 and there is an n-dimensional
complement V ′ of U ∩H in H, which by construction of C is saturated in both C and
C ′. According to Corollary 2.1.9 we then have U 6∈ Πn−1(C ′), which implies C ′ ⊆ C and
thus C is maximal.
Now, for the size of C note that we have sq[n, 2n − 1] choices for an n-dimensional

subspace V ≤ H and subsequently sq[n−1, n] choices for an (n−1)-dimensional subspace
U ≤ V , providing sq[n, 2n−1] ·sq[n−1, n] flags (U, V ) ≤ H. Finally, there are |U| choices
for an (n− 1)-dimensional subspace in U and for each of those there are sq[n− 1, n, 2n]
choices for an n-dimensional subspace U ≤ V , but sq[n − 1, n, 2n − 1] of those are
contained in H and have been counted already.

Remark 2.1.16. The independent set C given in Example 2.1.15 has cardinality

|C| ≤ sq[n, 2n− 1] · sq[n− 1, n] + sq[n− 1, 2n− 2] · qn

with equality if and only if U is not only a maximal independent set of Γ′ but also an
independent set of Γ′ of maximal size. According to [15] by Frankl and Wilson those are
the sets of all (n−1)-dimensional subspaces of H which contain a common point P of H
and the sets of all (n−1)-dimensional subspaces which are all contained in a hyperplane
H ′ of H.
Note that any set C that we construct using such an independent set of Γ′ of maximal

size was already provided in [3, Section 5.1] by Blokhuis and Brouwer. Also note that,
regardless of the choice of U , the set C has size

|C| > sq[n, 2n− 1] · sq[n− 1, n].

Example 2.1.17. The examples given in 2.1.15 yield a second set of examples using the
dual construction of the one given there. In particular, the dual C∗ of each independent
set C that we have described there is also a maximal independent set of the Kneser
graph of type (n − 1, n) in P and the independent sets of maximal size were already
given in [3] by Blokhuis and Brouwer, too.

Remark 2.1.18. Any maximal independent set of Γ which either contains all flags in
a given hyperplane or all flags through a given point is given by one of those two sets of
examples.

Conjecture 2.1.19. For every integer n ≥ 2 there are integers αn and qn such that
every maximal co-clique of the Kneser graph of Type (n− 1, n) in PG(2n, q) with q > qn
is given by Examples 2.1.15 and 2.1.17, or has at most αnqn

2+n−2 elements.
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Remark 2.1.20. This Conjecture is proven for n = 2 by Blokhuis and Brouwer in [3]
(also consider the Appendix of [12] by D’haeseleer, Metsch and Werner) and n = 3 in
Section 2.2.

2.1.3 Kneser Graphs on Flags of Length 1
Here we collect some results on Kneser graphs that have been proven already and will
be used in this work.
We start by considering sets of planes with pairwise 1-dimensional intersection. Note

that the result given in Lemma 2.1.21 and Corollary 2.1.22 thereafter were proven (more
generally) in [15] by Frankl and Wilson. However, in this special case the proof is easy
and we provide it below.

Lemma 2.1.21. Let n be an integer, let q be a prime power and let E be a set of planes
of P := PG(n, q) such that any two planes in E share a line. Then either there is a line
l ≤ P with l ≤ E for all E ∈ E or |E| ≤ sq[2, 3].

Proof. Let there be no line l ≤ P such that l ≤ E for all E ∈ E and let E1 and E2 be in E .
Set l := E1∩E2 and let E3 be such that l 6≤ E3. Then E3∩E1 6= E3∩E2 and thus E3 =
〈E3∩E1, E3∩E2〉 ≤ 〈E1, E2〉. Now, for all E ∈ E the set LE := {E∩E1, E∩E2, E∩E3}
satisfies |LE | ≥ 2 and therefore we have E = 〈LE〉 ≤ 〈E1, E2, E3〉 = 〈E1, E2〉. Since
〈E1, E2〉 is a solid this implies |E| ≤ sq[2, 3], as claimed.

Corollary 2.1.22. Let n ≥ 5 be an integer, let q be a prime power and let E be a set of
planes of P := PG(n, q) such that any two planes in E share a line. Then |E| ≤ sq[n−2].

Proof. Either there is a line l with l ∈ E for all E ∈ E , which implies |E| ≤ sq[1, 2, n] =
sq[n− 2], or Lemma 2.1.21 implies |E| ≤ sq[2, 3] = sq[3] ≤ sq[n− 2].

The following two results are given in [5, Theorem 3.1 & Theorem 6.1] by Blokhuis,
Brouwer and Szönyi. Theorem 2.1.26 thereafter is implied by the dual statement of [7,
Theorem 1.4] by Blokhuis et al.
Note that the independence number given in these theorems was already determined

by Frankl and Wilson in [15] without a bound on second largest examples.

Theorem 2.1.23 ([5, Theorem 3.1]). Let C be a co-clique of the Kneser graph of type
n ∈ N in PG(2n+ 1, q). If

|C| >
(

1 + 1
q

)
· sq[n− 1] · sq[n]n,

then there either is a point P with P ∈ f for all f ∈ C, or a hyperplane H with f ≤ H
for all f ∈ C.

Theorem 2.1.24 ([5, Theorem 6.1]). The independence number α(Γ) of the Kneser
graph Γ of type 2 in PG(5, q) is given by

α(Γ) = sq[2, 4] = q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1.
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The independent sets of maximal size are the sets S[P, 2,PG(5, q)] and S[2, H] for points
P and hyperplanes H of PG(5, q). Every other maximal independent set has cardinality
at most q5 + 2q4 + 3q3 + 2q2 + q + 1.

Corollary 2.1.25. Let Γ be the Kneser graph of type 2 in P := PG(5, q) with q ≥ 3 and
let v ∈ V(Γ) be an arbitrary vertex. Furthermore, let Γ′ be the graph induced by Γ on
the set NΓ(v) of neighbours of v and let E be an independent set of Γ′.
Then we have |E| ≤ max(q6, ξ) with ξ := q5 + 2q4 + 3q3 + 2q2 + q + 1 and |E| > ξ

occurs if and only if E is either a set of planes of V(Γ′) through a given point P ∈ P \ v
or a set of planes of V(Γ′) in a given hyperplane H ≤ P with v 6≤ H.

Proof. The set E is an independent set of Γ, too, and, according to Theorem 2.1.24,
there is a point P ∈ P with P ∈ E for all E ∈ E or a hyperplane H ≤ P with E ≤ H for
all E ∈ E , or |E| ≤ ξ.
Now, if E is a set of planes of V(Γ′) through a given point P ∈ P, then either P /∈ v

and there are at most sq[2, 0, 2, 5] = q6 planes through P which are adjacent to v (that
is, they do not meet the plane v), or P ∈ v and E = ∅. Furthermore, if E is a set of
planes of V(Γ′) in a given hyperplane H ≤ P, then either v 6≤ H and there are at most
sq[1,−1, 2, 4] = q6 planes in H which are adjacent to v (that is, they do not meet the
line v ∩H), or v ≤ H and E = ∅.

Theorem 2.1.26 ([7, Theorem 1.4]). For q ≥ 3 the independence number α(Γ) of the
Kneser graph Γ of type 3 in PG(6, q) is given by

α(Γ) = sq[3, 5] = q8 + q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1.

The independent sets of maximal size are the sets S[3, H] for hyperplanes H of PG(6, q).
Every other maximal independent set has cardinality at most q6 +2q5 +3q4 +3q3 +2q2 +
q + 1.

Remark 2.1.27. Note that the theorem given in [7] by Blokhuis et al yields a Hilton-
Milner type result for arbitrary dimension under given circumstances and not only for
the case that is stated in Theorem 2.1.26.
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2.2 The Independence Number of Kneser Graphs of Type
(2, 3) in PG(6, q)

For this section let P be the projective space PG(6, q) for some prime power q and let Γ
be the Kneser graph of type (2, 3) in P. Recall that Lemma 2.1.8 proves that two flags
(E,S) and (E′, S′) of Γ are adjacent if and only if E ∩ S′ = ∅ = E′ ∩ S.
We show that any maximal independent set of Γ of size larger than roughly 27q10 (a

more precise formulation can be found in Theorem 2.2.14) is given by Example 2.1.15
or Example 2.1.17 above and thus, for q ≥ 27, we determine the independence number
of Γ.
First, we have some general notions and then the remainder of the proof is split into

three parts, where we first consider two special cases that may occur.

Remark 2.2.1. Examples 2.1.15 and 2.1.17 provide independent sets of Γ of size at
least

q11 + 2q10 + 4q9 + 6q8 + 8q7 + 9q6 + 9q5 + 8q4 + 7q3 + 4q2 + 2q + 1.

Lemma 2.2.2. Let C be an independent set of Γ. For all P ∈ P the set

SP := {π3(f) : f ∈ C with P ∈ π3(f) \ π2(f)}

is an independent set of the Kneser graph of type 3 on P and we have |SP | ≤ sq[2, 4].

Proof. Let P ∈ P be a point and let f = (E,S) and f ′ = (E′, S′) be two flags such that
P /∈ E,E′ and P ∈ S, S′. If P = S ∩ S′, then S ∩ E′ = ∅ = E ∩ S′ and f and f ′ are
adjacent flags of Γ. Therefore, any two solids S, S′ ∈ SP satisfy dim(S∩S′) ≥ 1, proving
that SP is an independent set of the Kneser graph of type 3 on P.
Now, in the dual space P∨ the set SP is an independent set of the Kneser graph of

type 2 on P∨. Furthermore, from P ∈ S for all S ∈ SP we even know that in the dual
space P∨ every plane E ∈ SP is a subspace of the hyperplane P of P∨, that is, SP is an
independent set of the Kneser graph of type 2 in the hyperplane P of P∨. Finally, we
may apply Theorem 2.1.24 and have |SP | ≤ sq[2, 4], as claimed.

Lemma 2.2.3. Let C be an independent set of Γ, let ξ ∈ N be such that |∆U (C)| ≤ ξ for
all U ∈ Π3(C) and let (E,S) be a flag of C.
Then there are at most sq[2]·sq[2, 4]·ξ flags (E′, S′) ∈ C with E′∩E = ∅ and S′∩E 6= ∅.

Proof. If there is a flag (E′, S′) ∈ C with E′ ∩ E = ∅ and S′ ∩ E 6= ∅, then S′ ∩ E must
be a point P /∈ E′. According to Lemma 2.2.2 for every point P ∈ E the set

SP := {S ∈ Π3(∆P (C)) | ∃E ∈ Π2(C) : (E,S) ∈ C ∧ P /∈ E}

has cardinality |SP | ≤ sq[2, 4]. Furthermore, for every point P ∈ E every solid S ∈ SP
occurs in at most ξ flags of C. Since there are sq[2] choices for a point P ∈ E, this yields
an upper bound of sq[2] · sq[2, 4] · ξ, as claimed.
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As mentioned earlier, the proof of the claim is now split into three parts. These parts
are such that in the ith part we only consider independent sets with the property that
every plane and every solid occurs in at most sq[i] flags. Thus, the third part is in fact
the general case.

2.2.1 Planes and Solids occur in at most sq[1] Flags

Throughout this part we assume that C is an independent set of Γ such that for every
subspace U ≤ P with dim(U) ∈ {2, 3} we have |∆U (C)| ≤ sq[1].

Lemma 2.2.4. Let P1, P2 and P3 be non-collinear points of P.

i) If

|∆P1(C)| ≥ 6q7 + 14q6 + 16q5 + 11q4 + q3 − 5q2 − q + 3, (2.3)

then there are flags fi = (Ei, Si) ∈ C for i ∈ {1, 2, 3} with dim(〈E1, E2, E3〉) ≥ 5,
P2, P3 /∈ S1, S2, S3 as well as Ei ∩ Ej = P1 and P2, P3 /∈ 〈Ei, Ej〉 for all distinct
i, j ∈ {1, 2, 3}.

ii) If there are flags f1, f2 and f3 with the properties stated in i) and if

|∆P2(C)| ≥ 6q7 + 14q6 + 16q5 + 14q4 + 4q3 − 5q2 − q + 3,

then there are flags f ′i = (E′i, S′i) ∈ C for i ∈ {1, 2, 3} with dim(〈E′1, E′2, E′3〉) ≥ 5,
P1, P3 /∈ S′1, S′2, S′3, dim(Si ∩ S′j) ≤ 1 for all i, j ∈ {1, 2, 3} as well as E′i ∩E′j = P2
and P1, P3 /∈ 〈E′i, E′j〉 for all distinct i, j ∈ {1, 2, 3}.

Proof. i) There are exactly sq[2, 3, 6] + 2 · sq[0, 1, 3, 6] solids S ≤ P with P1 ∈ S and
Pi ∈ S for some i ∈ {2, 3}. According to the assumption of this part each of those
solids occurs in at most sq[1] flags of C yielding an upper bound of at most

(sq[2, 3, 6] + 2 · sq[0, 1, 3, 6]) · sq[1]
= 2q7 + 4q6 + 6q5 + 7q4 + 6q3 + 4q2 + 2q + 1

(2.4)

flags of C. Note that this number accounts for all flags of C through P1 whose
plane contains P2 or P3. Comparing this with the bound given in Equation (2.3)
yields a flag f1 = (E1, S1) ∈ C with P1 ∈ E1 and P2, P3 /∈ S1.
However, there are only (sq[0, 1, 2]− 2) · sq[0, 1, 2, 6] planes through P1 in P which
meet 〈P1, P2, P3〉 in a line but do not contain P2 nor P3, providing at most

(sq[0, 1, 2]− 2) · sq[0, 1, 2, 6] · sq[1] = q6 + q5 − q2 − q (2.5)

flags f = (E,S) ∈ C such that P1 ∈ E, dim(E ∩ 〈P1, P2, P3〉) ≥ 1 and P2, P3 /∈ S.
The sum of this and the number given in Equation (2.4) is still smaller than the
bound given in Equation (2.3) and thus we may even chose f1 such that E1 ∩
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〈P1, P2, P3〉 = P1. Note that this implies dim(〈E1, P2, P3〉) = 4 and thus P2 /∈
〈E1, P3〉 as well as P3 /∈ 〈E1, P2〉.
Now, an upper bound on the number of flags (E,S) ∈ ∆P1(C) with P2 ∈ S or
P3 ∈ S is already given in Equation (2.4). Furthermore, for all i ∈ {2, 3} and every
flag (E,S) ∈ ∆P1(C) with Pi /∈ E we have Pi ∈ 〈E1, E〉 ⇐⇒ dim(〈E1, Pi〉∩E) ≥ 1.
There are

sq[0, 1, 2] · (sq[1, 2, 6]− 3) + 1 = q5 + 2q4 + 2q3 + 2q2 − q − 1 (2.6)

planes E through P1 which meet E1 in at least a line and thus satisfy dim(〈E1, Pi〉∩
E) ≥ 1, but do not contain P2 nor P3. This number also includes all planes
E ≤ 〈E1, Pi〉 for some i ∈ {2, 3}, since all those planes meet E1 in a line for
dimensional reasons. Additionally, for all i ∈ {2, 3} there are

(sq[0, 1, 3]− sq[0, 1, 2]− 1) · (sq[1, 2, 6]− sq[1, 2, 3]− 1)
= q6 + q5 − q3 − 2q2 + 1

(2.7)

planes E which meet 〈E1, Pi〉 in exactly a line which does not lie in E1 and satisfy
P2, P3 /∈ E. Thus, considering the fact that there are

(sq[0, 1, 3]− sq[0, 1, 2]− 1)2 = q4 − 2q2 + 1

planes E which satisfy P2, P3 /∈ E and meet both 〈E1, P2〉 and 〈E1, P3〉 in lines
which are not contained in E1, this provides

q5 + 2q4 + 2q3 + 2q2 − q − 1 + 2(q6 + q5 − q3 − 2q2 + 1)− (q4 − 2q2 + 1)
= 2q6 + 3q5 + q4 − q (2.8)

planes E with P1 = E1 ∩ E which meet at least one of the spaces 〈E1, P2〉 or
〈E1, P3〉 in a line and do not contain P2 nor P3. According to the assumption of
this part each of the planes counted in Equation (2.8) occurs in at most sq[1] flags
and we also need to consider the flags counted in Equation (2.4), providing a total
of at most

4q7 + 9q6 + 10q5 + 8q4 + 6q3 + 3q2 + q + 1 (2.9)

flags. Comparing this to the bound given in Equation (2.3) yields a further flag
f2 = (E2, S2) ∈ C and this flag satisfies P2, P3 /∈ 〈E1, E2〉, E1 ∩ E2 = P1 and
P2, P3 /∈ S2.
Again, we note that even the sum of the number in Equation (2.9) and the num-
ber of flags given in Equation (2.5) is smaller than the bound given in Equation
(2.3) and thus we may assume that E2 ∩ 〈P1, P2, P3〉 = P1 holds. Note that this
implies dim(〈E2, P2, P3〉) = 4 and thus P2 /∈ 〈E2, P3〉 as well as P3 /∈ 〈E2, P2〉.
Furthermore, we remark that

d := dim(〈E1, Pj〉 ∩ 〈E2, P5−j〉) =
{

0 if 〈E1, E2, P2, P3〉 = P,
1 otherwise,

38



2.2 The Independence Number of Kneser Graphs of Type (2, 3) in PG(6, q)

is independent of the choice of j ∈ {2, 3}.
It remains to prove the existence of the flag f3. We reuse the upper bound given
in Equation (2.4). Furthermore, for all i ∈ {1, 2} the number of planes E through
P1 which meet Ei in at least a line and thus satisfy dim(〈Ei, Pj〉 ∩E) ≥ 1 for both
j ∈ {2, 3}, but do not contain P2 nor P3 is given in Equation (2.6). Subtracting
the sq[0, 1, 2]2 planes which are being counted twice yields

2q5 + 4q4 + 4q3 + 3q2 − 4q − 3 (2.10)

planes through P1 which meet E1 or E2 in at least a line but do not contain P2
nor P3. Finally, 4 times the number given in Equation (2.7), that is

4q6 + 4q5 − 4q3 − 8q2 + 4,

serves as upper bound for the number of still uncounted planes E with P1 ∈ E
which meet at least one of the spaces 〈Ei, Pj〉 for some i ∈ {1, 2} and j ∈ {2, 3} in
exactly line, do not contain P2 nor P3 and do not contain a line of E1 nor of E2.
Together with the number given in Equation (2.10) this yields

4q6 + 6q5 + 4q4 − 5q2 − 4q + 1

planes E with P1 ∈ E which meet at least one of the spaces 〈Ei, Pj〉 for some
i ∈ {1, 2} and j ∈ {2, 3} in exactly a line and does not contain P2 nor P3. According
to the assumption of this part every plane occurs in at most sq[1] flags of C and
thus together with the number given in Equation (2.4) this yields a total of at
most

6q7 + 14q6 + 16q5 + 11q4 + q3 − 5q2 − q + 2 (2.11)

flags through P1 in C. Since this is smaller than the bound given in Equation (2.3)
in the claim, we know that there must be a further flag f3, concluding the proof
of i).

ii) For all i ∈ {1, 2, 3} there are exactly sq[0,−1, 2, 3] = q3 planes E in Si not con-
taining P1, each of which provides a unique solid 〈P2, E〉 through P2. According
to the assumption of this part each of those solids occurs in at most sq[1] flags of
C providing at most

3 · sq[1] · sq[0,−1, 2, 3] = 3q4 + 3q3 (2.12)

flags of C. Other than that we reuse the counts given in the proof of part i). For
the existence of the first flag f ′1 consider the sum

2q7 + 5q6 + 7q5 + 10q4 + 9q3 + 3q2 + q + 1

of Equations (2.4), (2.5) and (2.12), for the existence of the second flag f ′2 consider
the sum

4q7 + 10q6 + 11q5 + 11q4 + 9q3 + 2q2 + 1
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of Equations (2.9), (2.5) and (2.12) and for the existence of the third flag f ′3 consider
the sum

6q7 + 14q6 + 16q5 + 14q4 + 4q3 − 5q2 − q + 2

of Equations (2.11) and (2.12). All of those are smaller than the bound given in
the claim and thus each of them proves proves the existence of the respective flag
f ′i , concluding the proof of part ii).

Lemma 2.2.5. Let P1 and P2 be two distinct points of P and let E1, E2 and E3 be
planes such that Ei ∩ Ej = P1 as well as P2 /∈ 〈Ei, Ej〉 =: Uk for all {i, j, k} = {1, 2, 3}.
Set H := 〈E1, E2, E3〉, d := dim(〈H,P2〉) and let S be the set of all solids of P with
P2 ∈ S and S ∩ Ei 6= ∅ for all i ∈ {1, 2, 3}. Then we have

|S| = (d− 4)q11−d + 2q6 + 3q5 + 3q4 + 3q3 + 2q2 + q + 1 with d ∈ {5, 6}.

Proof. For all i ∈ {1, 2, 3} let Si ⊆ S be such that for all S ∈ Si there is an i-dimensional
subspace U with P2 ∈ U ≤ S which has non-empty intersection with all planes E1, E2
and E3 and such that there is no such subspace of dimension smaller than i. Then S is
the disjoint union of S1, S2 and S3 and we determine the cardinalities of these subsets.

S1: Every solid S ∈ S1 contains a line l through P2 which meets all three planes E1,
E2 and E3. From P2 /∈ 〈E1, E2〉 we know that any line through P2 meets 〈E1, E2〉
in at most a point. Therefore any line through P2 which meets both E1 and E2
in a point is the span of P2 and an element of E1 ∩ E2 = P1, that is, it is the line
〈P1, P2〉. However, this line already meets all three planes and thus is the only line
with that property. Therefore, every solid S ∈ S1 must have 〈P1, P2〉 as subspace
and every solid through this line is a solid of S1, yielding

|S1| = sq[1, 3, 6]. (2.13)

S2: Every solid S ∈ S2 is such that S contains a plane through P2 which meets all
three planes E1, E2 and E3, but S contains no line with that property. Note that
from the last case we already know that the only line through P2 which meets all
three planes is the line 〈P1, P2〉. Thus, solids S ∈ S2 do not contain 〈P1, P2〉, which
is equivalent to P1 /∈ S.
Note that for all S ∈ S2 there is at most one index i ∈ {1, 2, 3} such that dim(S ∩
Ei) = 1, for if there were two distinct indices i, j ∈ {1, 2, 3} such that dim(S∩Ei) =
1 = dim(S∩Ej), then from Ei∩Ej = P1 /∈ S we would have (S∩Ei)∩(S∩Ej) = ∅,
which would imply

P2 ∈ S = 〈S ∩ Ei, S ∩ Ej〉 ≤ 〈Ei, Ej〉 63 P2,

a contradiction. Therefore, for all S ∈ S2 there are distinct i, j ∈ {1, 2, 3} with
dim(S ∩Ei) = 0 = dim(S ∩Ej) and the only plane E ≤ S with P2 ∈ E that meets
both Ei and Ej is the plane 〈P2, Ei ∩ S,Ej ∩ S〉.
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Furthermore, if E is a plane in a solid S ∈ S2 with P2 ∈ E and E ∩ Ei 6= ∅ for
all i ∈ {1, 2, 3}, then there may not be a line l ≤ E with l ∩ 〈Ei, Ej〉 = ∅ for some
distinct i, j ∈ {1, 2, 3}, because otherwise E ∩ 〈Ei, Ej〉 would be a point, only,
and due to E ∩ Ei 6= ∅ 6= E ∩ Ej it would have to be the point P1 = Ei ∩ Ej , a
contradiction.

Consequently, any plane E in a solid S ∈ S2 with P2 ∈ E and E ∩ Ei 6= ∅ for all
i ∈ {1, 2, 3} is the span of a line l through P2 which meets both E1 and 〈E2, E3〉
together with a point of E2. Moreover, if E is such a plane, then for all i ∈ {1, 2, 3}
we have dim(E ∩ Ei) = 0 and thus in E there is a unique line l with P2 ∈ l and
l ∩ E1 6= ∅.

We now determine the number of such planes E. According to Lemma 1.2.37
every line l through P2 which meets E1 and 〈E2, E3〉 is the span of P2 and a point
P ∈ 〈E1, P2〉∩〈E2, E3〉. We have dim(〈E1, P2〉∩〈E2, E3〉) = 7−d and from P2 /∈ U1
we have d ∈ {5, 6}, that is, 7− d ∈ {1, 2}. Therefore, there are δ5,d · q2 + q lines l
through P2 which meet both E1 and 〈E2, E3〉 but do not contain P1.

Furthermore, for all i ∈ {1, 2} we have P2 /∈ 〈E1, Ei〉 and thus 〈E1, P2〉 ∩ Ei = P1.
Therefore, for any line l through P2 which meets E1 as well as 〈E2, E3〉 we know
that l ∩ U1 is a point which does not lie in E2 ∪ E3. Now, if l is such a line, then
Lemma 1.2.37 shows that every plane E with P1 /∈ E, l ≤ E and E ∩ Ei 6= ∅ for
all i ∈ {1, 2, 3} is the span of l and one of the q points of

(〈E2, l〉 ∩ E3) \ {P1} = (〈l ∩ U1, E2〉 ∩ E3) \ {P1},

which provides a total of δd,5 · q3 + q2 such planes.

Each of those planes occurs in sq[0, 2, 3, 6] = q3 +q2 +q solids which do not contain
P1 and thus we have

|S2| =
{
q6 + 2q5 + 2q4 + q3 for d = 5,
q5 + q4 + q3 for d = 6.

(2.14)

Note that equality follows from the fact that every solid S ∈ S2 contains only one
plane E through P2 which meets all three planes E1, E2 and E3, as well as from
the fact that this plane E contains only one line l through P2 which meets E1, as
we have seen above.

S3: For S ∈ S3 we have dim(S ∩ Ei) = 0 for all i ∈ {1, 2, 3}, because otherwise,
if dim(S ∩ Ei) ≥ 1 for some i ∈ {1, 2, 3}, then every plane in S meets Ei and
thus there is a plane through P2 in S which meets all planes E1, E2 and E3.
Furthermore, also because every solid in S2 contains no plane through P2 which
meets all planes E1, E2 and E3, we know that every solid in S3 is the span of P2
and three points Q1 ∈ E1, Q2 ∈ E2 and Q3 ∈ E3. Using this we determine |S2| as
follows.
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There are q2 + q choices for a point Q1 ∈ E1 \ {P1} and, given the point Q1, we
set R1 := 〈P2, Q1〉 ∩ U1. Due to P2 /∈ U2, U3 we have R1 ∩ E3, R1 ∩ E2 = ∅ and,
using Lemma 1.2.37, we have

dim(R1) =
{

0 for Q1 ∈ 〈U1, P2〉,
−1 for Q1 /∈ 〈U1, P2〉,

with dim(〈U1, P2〉 ∩ E1) =
{

2 for d = 5,
1 for d = 6.

Now, P2 /∈ U3 ≥ E1, E2 andQ1 ∈ E1 implies 〈E1, 〈P2, Q1〉〉∩E2 = E1∩E2 = P1 and
thus Lemma 1.2.37 implies 〈P2, Q1, Q2〉∩E1 = Q1 for all Q2 ∈ E2\{P1}. However,
note that Lemma 1.2.37 also implies that for all points Q2 ∈ 〈R1, E3〉∩E2 the plane
〈P2, Q1, Q2〉 has non-empty intersection with all planes E1, E2 and E3 and as such
these planes do not yield solids of S3. Consequently, we must only consider the
choices for Q2 among E2 \〈R1, E3〉 and we have dim(〈R1, E3〉∩E2) = dim(R1)+1.
We let Q2 be such a point and set R2 := 〈P2, Q2〉∩U2. Note that, similar to above,
P2 /∈ U1, U3 implies R2 ∩ E3, R2 ∩ E1 = ∅ and we have

dim(R2) =
{

0 for Q2 ∈ 〈U2, P2〉,
−1 for Q2 /∈ 〈U2, P2〉,

with dim(〈U2, P2〉 ∩ E2) =
{

2 for d = 5,
1 for d = 6.

However, for d = 6 and dim(R1) = 0 the lines 〈U2, P2〉 ∩ E2 = 〈U2, R1〉 ∩ E2 and
〈E3, R1〉 ∩ E2 coincide and as such in this case, due to Q2 ∈ E2 \ 〈E3, R1〉, the
situation dim(R2) = 0 may not occur.
It remains to determine the number of choices for Q3 ∈ E3 in the respective cases
provided by the possible choices for Q1 and Q2. For all points Q3 ∈ 〈R1, E2〉 ∩E3
(respectively Q3 ∈ 〈R2, E1〉 ∩ E3) the solid 〈P2, Q1, Q2, Q3〉 contains the plane
〈P2, Q1, Q3〉 (respectively 〈P2, Q2, Q3〉) which has non-empty intersection with all
three planes E1, E2 and E3 and thus the solid is not an element of S3. Hence, we
must only consider the choices for Q3 among the points of E3\(〈R1, E2〉∪〈R2, E1〉).
Now, for all i ∈ {1, 2} the subspace li := 〈Ri, E3−i〉∩E3 is either P1 or a line through
P1. Furthermore, if both l1 and l2 are lines, then we have l1 6= l2, since otherwise,
for X ∈ l1 \ {P1} both g1 := E1 ∩ 〈Q1, R2, X〉 and g2 := E2 ∩ 〈Q2, R1, X〉 are lines,
too, and then 〈R1, Q1, Q2, X〉∩E3 = X 6= P1 implies P1 /∈ g1∩ g2 ≤ E1∩E2 = P1,
that is, g1 ∩ g2 = ∅ and thus

〈P2, Q1, Q2, X〉 = 〈〈R1, Q2, X〉 ∩ E2, 〈R2, Q1, X〉 ∩ E1〉 ≤ U3 63 P2,

a contradiction.
Altogether this proves

|S3| =
{

(q2 + q) · q2 · (q2 − q) for d = 5,
q · q2 · q2 + q2 · q · q2 + q2 · q2 · (q2 + q) for d = 6,

=
{
q6 − q4 for d = 5,
q6 + 3q5 for d = 6.

(2.15)
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Finally, the sum of the three numbers given in Equations (2.13), (2.14) and (2.15) is the
cardinality given for S in the claim.

Lemma 2.2.6. Let P1 and P2 be two distinct points of P and for all k ∈ {1, 2, 3} let
there be a flag fk = (Ek, Sk) ∈ ∆P1(C) such that for all distinct i, j ∈ {1, 2, 3} we have
Ei ∩ Ej = P1 and P2 /∈ 〈Ei, Ej〉 as well as P2 /∈ Si. Then

|∆P2(C)| ≤ 3q8 + 9q7 + 9q6 + 9q5 + 11q4 + 9q3 + 6q2 + 4q + 2
+ (d− 4)(q12−d + q11−d),

with d := dim(〈E1, E2, E3, P2〉) ∈ {5, 6}.

Proof. Every flag in ∆P2(C) must be non-adjacent to the three flags f1, f2 and f3.
Therefore, for all f = (E,S) ∈ ∆P2(C) we have E ∩ Si 6= ∅ for some i ∈ {1, 2, 3} or
S ∩ Ei 6= ∅ for all i ∈ {1, 2, 3}.

In view of that, for all i ∈ {1, 2, 3} let Ei be the set of all planes through P2 which
have non-empty intersection with Si, set E := E1 ∪ E2 ∪ E3 and let S be the set of all
solids through P2 which have non-empty intersection with all planes E1, E2 and E3.

For all i ∈ {1, 2, 3} we have

|Ei| ≤ sq[0, 2, 6]− sq[3, 0, 2, 6] = q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1. (2.16)

and for all distinct i, j ∈ {1, 2, 3} we have dim(〈Si, Sj , P2〉) ≥ 5 as well as

d{i,j} := dim(〈Si, P2〉 ∩ 〈Sj , P2〉) =
{

2 for dim(〈Si, Sj , P2〉) = 6,
3 for dim(〈Si, Sj , P2〉) = 5.

Hence, the number of planes through P2 which meet both Si and Sj for given i, j ∈
{1, 2, 3} with i 6= j is exactly

sq[0, 2, d{i,j}] + sq[0, 1, d{i,j}] · sq[d{i,j} − 2, 1, 2, 6] + (sq[3]− sq[d{i,j} − 1])2

= qd{i,j}+3 + q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1

and, using |E| ≤ |E1| + |E2| + |E3| − |E1 ∩ E2| − |E1 ∩ E3| as well as the number given in
Equation (2.16), this implies

|E| ≤ 3q7 + 4q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1−
(
qd{1,2}+3 + qd{1,3}+3

)
.

Thus, according to the assumption of this part, there are at most

3q8 + 7q7 + 6q6 + 5q5 + 5q4 + 4q3 + 3q2 + 2q + 1− sq[1]
(
qd{1,2}+3 + qd{1,3}+3

)
(2.17)

flags f ∈ ∆P2(C) such that π2(f) has non-empty intersection with at least one of the
solids S1, S2 or S3.

Every other flag f = (E,S) ∈ ∆P2(C) must satisfy S ∩Ei 6= ∅ for all i ∈ {1, 2, 3} and
thus S ∈ S. Using the value given in Lemma 2.2.5 for |S| and the fact that, according
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to the assumption of this part, every such solid occurs in at most sq[1] flags of C, yields
at most

(d− 4)(q12−d + q11−d) + 2q7 + 5q6 + 6q5 + 6q4 + 5q3 + 3q2 + 2q + 1 (2.18)

further flags.
Finally, summing up the weaker bound given by Equation (2.17) for d{1,2} = 2 = d{1,3}

and Equation (2.18) yields the claim.

Lemma 2.2.7. Let P1, P2 and P3 be non-collinear points of P and for all i ∈ {1, 2} and
all r ∈ {1, 2, 3} let there be a flag fi,r = (Ei,r, Si,r) ∈ ∆Pi(C) such that

• ∀r, s ∈ {1, 2, 3} : dim(S1,r ∩ S2,s) ≤ 1 and

• ∀i ∈ {1, 2},∀{r, s, t} = {1, 2, 3} : Ei,r ∩ Ei,s = Pi and P3−i, P3 /∈ 〈Ei,r, Ei,s〉 ∪ Si,r.

Then |∆P3(C)| ≤ 24q7 + 48q6 + 57q5 + 57q4 + 46q3 + 33q2 + 22q + 11.

Proof. Any flag f = (E,S) ∈ ∆P3(C) must be non-adjacent to the six flags fi,r with
i ∈ {1, 2} and r ∈ {1, 2, 3}. Therefore, for all i ∈ {1, 2} and all (E,S) ∈ C we have
S ∩Ei,r 6= ∅ for all r ∈ {1, 2, 3} or E ∩Si,r 6= ∅ for at least one r ∈ {1, 2, 3} and we begin
by counting flags which satisfy the latter condition.
First, we let r, s ∈ {1, 2, 3} be arbitrary but fixed and count the number of planes E

through P3 which meet both S1,r and S2,s. Any such plane E either contains a line l
through P3 which already meets both S1,r and S2,s, or does not, and a line l through P3
meets both S1,r and S2,s if and only if it is a subspace of U{r,s} := 〈P3, S1,r〉 ∩ 〈P3, S2,s〉.
Hence, a plane E contains a line l through P3 which meets both S1,r and S2,s if and only
if E contains a line of U{r,s} and U{r,s} has dimension

d{r,s} =
{

2 for dim(〈P3, S1,r, S2,s〉) = 6,
3 for dim(〈P3, S1,r, S2,s〉) = 5.

This implies that there are exactly

sq[0, 2, d{r,s}] + sq[0, 1, d{r,s}] · sq[d{r,s} − 2, 1, 2, 6] + (sq[3]− sq[d{r,s} − 1])2

= qd{r,s}+3 + q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1 (2.19)

planes through P3 which meet both S1,r and S2,s.
Now, there there are 9 choices for r, s ∈ {1, 2, 3} and we may use the larger number

given in Equation (2.19) for d{r,s} = 3 to receive an upper bound of at most

18q6 + 18q5 + 27q4 + 18q3 + 18q2 + 9q + 9 (2.20)

planes through P3 which meet S1,r and S2,s for some r, s ∈ {1, 2, 3}.
Furthermore, for all i ∈ {1, 2} we may use the larger number given in Lemma 2.2.5

for d = 5 as bound for the number of solids through P3 which meet all three planes Ei,1,
Ei,2 and Ei,3. This shows that there is a total of at most

6q6 + 6q5 + 6q4 + 6q3 + 4q2 + 2q + 2 (2.21)
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solids through P3 which meet all planes Ei,1, Ei,2 and Ei,3 for some i ∈ {1, 2}.
Finally, according to the assumption of this part, every plane counted in Equation

(2.20) and every solid counted in Equation (2.21) occurs in at most sq[1] flags of C each,
which yields the claimed bound.

Lemma 2.2.8. The cardinality of C is at most

24q10 + 73q9 + 135q8 + 178q7 + 179q6 + 156q5 + 123q4 + 84q3 + 45q2 + 18q + 3.

Proof. Let P1, P2 ∈ P be distinct such that |∆P1(C)|, |∆P2(C)| ≥ |∆P (C)| for all P ∈
P \ {P1}.
If there is no flag f = (E,S) ∈ C with 〈P1, P2〉 ∩ E = ∅, then, using the assumption

of this part, we have |C| ≤ (sq[2, 6]− sq[1,−1, 2, 6]) · sq[1] and, since this is better than
the claim, there remains nothing to prove.
Therefore, assume that there is a flag f = (E,S) ∈ C with 〈P1, P2〉 ∩E = ∅ and thus

dim(S ∩ 〈P1, P2〉) ≤ 0. Note that this implies that every flag f ′ = (E′, S′) ∈ C satisfies
either E′ ∩ S 6= ∅ or S′ ∩ E 6= ∅ = E′ ∩ S and, according to the assumption of this part
and Lemma 2.2.3, there are at most

sq[2] · sq[2, 4] · sq[1] (2.22)

flags f ′ = (E′, S′) ∈ C with S′ ∩ E 6= ∅ = E′ ∩ S.
Now, it only remains to determine the number of flags f ′ = (E′, S′) with E′ ∩ S 6= ∅

and, in view of Lemma 2.2.4, we note that we either have

|∆P (C)| ≤ |∆P2(C)| < 6q7 + 14q6 + 16q5 + 14q4 + 4q3 − 5q2 − q + 3 (2.23)

for all P ∈ P \ 〈P1, P2〉, or

|∆P1(C)| ≥ |∆P2(C)| ≥ 6q7 + 14q6 + 16q5 + 14q4 + 4q3 − 5q2 − q + 3.

In fact, if we study the second situation more closely, then we see that in that case
Lemma 2.2.4 provides the flags fi,j ∈ C for all i ∈ {1, 2} and all j ∈ {1, 2, 3} required to
apply Lemma 2.2.7, which proves

|∆P (C)| ≤ 24q7 + 48q6 + 57q5 + 57q4 + 46q3 + 33q2 + 22q + 11 (2.24)

for all P ∈ P \ 〈P1, P2〉. Since this bound is weaker than the bound given in Equation
(2.23) it holds in either situation.

In particular, Equation (2.24) holds for all P ∈ S \ (S ∩ 〈P1, P2〉) and it only remains
to consider points in S ∩ 〈P1, P2〉. Recall that we chose f such that this intersection is
at most a point P̂ . Now, since P1 and P2 are distinct there is an index i ∈ {1, 2} such
that P̂ 6= Pi and, using the flags fi,1, fi,2 and fi,3, we may apply Lemma 2.2.6 (using
the larger value given there for d = 5) and have

|∆
P̂

(C)| ≤ 3q8 + 10q7 + 10q6 + 9q5 + 11q4 + 9q3 + 6q2 + 4q + 2.
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Therefore, the total number of all flags f ′ = (E′, S′) with E′ ∩ S 6= ∅ is at most

(sq[3]− 1) · (24q7 + 48q6 + 57q5 + 57q4 + 46q3 + 33q2 + 22q + 11)
+ 3q8 + 10q7 + 10q6 + 9q5 + 11q4 + 9q3 + 6q2 + 4q + 2

= 24q10 + 72q9 + 132q8 + 172q7 + 170q6 + 145q5 + 112q4 + 75q3 + 39q2 + 15q + 2

and together with the number given in Equation (2.22) this proves the claim.

2.2.2 Planes and Solids occur in at most sq[2] Flags

Throughout this part we assume that C is an independent set of Γ such that for every
subspace U ≤ P with dim(U) ∈ {2, 3} we have |∆U (C)| ≤ sq[2].

Lemma 2.2.9. If E ∈ Π2(C) is a plane which occurs in more than sq[1] flags of C, then
there are at most sq[2](q6 + 3q3 + 2q2 + q + 1) flags (E′, S′) ∈ C with E ∩ S′ = ∅.

Proof. Let E be such a plane. There are at most q+ 1 solids through a given plane in a
4-dimensional subspace of P and thus there are solids S1, S2, S3 ∈ Π3(∆E(C)) such that
H := 〈S1, S2, S3〉 has dimension 5.
Any flag (E′, S′) ∈ C with E ∩ S′ = ∅ satisfies E′ ∩ Sj 6= ∅ for all j ∈ {1, 2, 3}

and together with E′ ∩ E ⊆ S′ ∩ E = ∅ this implies Sj = 〈E,Sj ∩ E′〉. This shows
H = 〈S1, S2, S3〉 ≤ 〈E,E′〉 and for dimensional reasons E′ must be a complement of E
in H. Furthermore, from E ∩ S′ = ∅ we know that, for dimensional reasons, S′ may not
be contained in H.
Now, let E be the set of all planes which occur in such a flag and apply Lemma 2.1.7

to see that the planes in E form an independent set in the Kneser graph Γ′ of type 2 in
H. From E′ ∩ E = ∅ for all E′ ∈ E we even know that E is an independent set of the
graph induced by Γ′ on the set NΓ′(E) and we may apply Corollary 2.1.25 to see that
|E| ≤ max(q6, q5 + 2q4 + 3q3 + 2q2 + q + 1) ≤ q6 + 3q3 + 2q2 + q + 1 holds.

Finally, the assumption of this part shows |∆E(C)| ≤ sq[2], which concludes the
proof.

Lemma 2.2.10. For all E ∈ Π2(C) there are at most sq[2]2 · sq[2, 4] flags (E′, S′) ∈ C
with E′ ∩ E = ∅ and S′ ∩ E 6= ∅.

Proof. Let E ∈ Π2(C) and let C ′ be the set of flags to be counted. The assumption of
this part shows |∆S(C ′)| ≤ |∆S(C)| ≤ sq[2] for all S ∈ Π3(C) and thus with ξ := sq[2]
Lemma 2.2.3 proves the claim.

Lemma 2.2.11. The cardinality of C is at most

24q10 + 73q9 + 135q8 + 178q7 + 181q6 + 158q5 + 125q4 + 86q3 + 47q2 + 18q + 3.

Proof. Let E be the set of all planes E with |∆E(C)| > sq[1] and let S be the set of all
solids S with |∆S(C)| > sq[1].
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First note that if both E and S have size at most sq[4], then there is a subset C ′ of
C such that every plane and every solid lies in at most sq[1] flags of C ′ and such that
|C ′| ≥ |C| − 2sq[4]q2. Thus, in this case we have |C| ≤ |C ′| + 2sq[4]q2 and may apply
Lemma 2.2.8 to C ′ to find the claimed bound for |C|.

Hence, from now on we may assume that E or S has size greater than sq[4] and, since
either one of these situations is dual to the other, we may assume that it is the set E ,
that is, we may assume that |E| > sq[4].

Now, according to Corollary 2.1.22, |E| > sq[4] implies that there are two planes
E1, E2 ∈ E with dim(E1 ∩E2) ≤ 0. For all i ∈ {1, 2} every flag (E,S) of C satisfies one
of the following cases

• E ∩ Ei = ∅ and S ∩ Ei 6= ∅,

• S ∩ Ei = ∅ and thus E ∩ Si 6= ∅ for all solids Si with (Ei, Si) ∈ C,

• E ∩ Ei 6= ∅.

Consider i ∈ {1, 2} and the cases above: According to Lemma 2.2.10 there are at most
sq[2]2 · sq[2, 4] flags of the first type and, using q ≥ 3, according to Lemma 2.2.9 there
are at most sq[2](q6 + 3q3 + 2q2 + q+ 1) flags of the second type. Hence, this provides a
total of at most

2 · sq[2](sq[2] · sq[2, 4] + q6 + 3q3 + 2q2 + q + 1) (2.25)

flags in C which satisfy one of the first two conditions for some i ∈ {1, 2}. Every other
flag (E,S) ∈ C satisfies E ∩ Ei 6= ∅ for both i ∈ {1, 2}. We count these flags in the
following and set d := dim(E1 ∩ E2) ∈ {−1, 0}.

There are sq[d,−1, 0, 2]2 lines l which meet both E1 and E2 and satisfy l∩E1∩E2 = ∅
and through each such line l there are sq[d, 1, 2, 6] planes E with E ∩ E1 ∩ E2 = ∅.
However, some of those planes, namely 2 · sq[d, 0, 1, 2] planes through each line l, meet
one of the planes E1 or E2 in a line. Thus, there is a total of

sq[d,−1, 0, 2]2 · (sq[d, 1, 2, 6]− 2 · sq[d, 0, 1, 2])

planes E which meet E1 and E2 in a point each and satisfy E ∩ E1 ∩ E2 = ∅.
Furthermore, every plane E with E ∩ E1 ∩ E2 = ∅ which meets one of those planes

in a line l and the other plane in a point Q is the span of the line l and the point Q.
Now, there are 2 · sq[d,−1, 1, 2] lines l contained in one of the planes E1 or E2 with
E1 ∩ E2 ∩ l = ∅ and this provides a total of

2 · sq[d,−1, 1, 2] · sq[d,−1, 0, 2]

planes E with E ∩E1 ∩E2 = ∅ which meet E1 or E2 in a line and meet the other plane
in a point.
Finally for d = 0, there are sq[0, 2, 6] planes E with E ∩ E1 ∩ E2 6= ∅, yielding a total

of
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q8 + 3q7 + 6q6 + 6q5 + 5q4 + 2q3 + 2q2 + q + 1 + δ0,d(q8 + q7 − 2q5 − q4 + q3)
≤ 2q8 + 4q7 + 6q6 + 4q5 + 4q4 + 3q3 + 2q2 + q + 1

planes which have non-empty intersection with E1 and E2. Therefore, using the assump-
tion of this part, there are at most

sq[2](2q8 + 4q7 + 6q6 + 4q5 + 4q4 + 3q3 + 2q2 + q + 1)
= 2q10 + 6q9 + 12q8 + 14q7 + 14q6 + 11q5 + 9q4 + 6q3 + 4q2 + 2q + 1

flags of the last type. Together with the number given in Equation (2.25) this yields

4q10 + 12q9 + 28q8 + 38q7 + 46q6 + 49q5 + 49q4 + 40q3 + 26q2 + 12q + 5

as upper bound on |C|, concluding the proof.

2.2.3 The General Case

Throughout this final part we assume that C is an arbitrary maximal independent set
of Γ. Note that we trivially have |∆U (C)| ≤ sq[3] for every subspace U ≤ P with
dim(U) ∈ {2, 3}.

Lemma 2.2.12. If there are more than ξ := q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1
saturated solids in Π3(C), then there is a hyperplane H of P such that every solid S ≤ H
is saturated.
Dually, if there are more than ξ saturated planes in Π2(C), then there is a point P ∈ P

such that every plane through P is saturated.

Proof. Let S be the set of saturated solids in Π3 (C) and let |S| > ξ. Then, according to
Corollary 2.1.11, we have dim (S1 ∩ S2) ≥ 1 for all S1, S2 ∈ S and, according to Theorem
2.1.26 and since ξ > q6 + 2q5 + 3q4 + 3q3 + 2q2 + q + 1, we know that all solids of S are
contained in a hyperplane H.

Now, if there would be a flag (E,S) ∈ C such that E 6≤ H, then according to Corollary
2.1.9 all solids of S would have non-empty intersection with the line E∩H and thus there
would only be sq[3, 5]− sq[1,−1, 3, 5] = ξ solids in S, a contradiction. Consequently, we
have E ≤ H for all E ∈ Π2(C) and according to Lemma 2.1.13 all solids S ≤ H are
saturated.

Corollary 2.2.13. If C contains more than q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1
saturated solids (saturated planes), then C is given by Example 2.1.15 (Example 2.1.17).

Theorem 2.2.14. Every maximal independent set of Γ of size larger than

26q10 + 77q9 + 139q8 + 184q7 + 185q6 + 162q5 + 127q4 + 88q3 + 47q2 + 18q + 3

is given by Examples 2.1.15 and 2.1.17.
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Proof. Note that according to Lemma 2.1.5 the set of flags of C through a given plane
E is the set of all flags through E in a given subspace of P and the set of flags of C in a
given solid S is the set of all flags in S through a given subspace of P. Let E be the set
of all saturated planes of C and let S be the set of all saturated solids, that is,

E = {E ∈ Π2(C) : |∆E(C| > sq[2]} and S = {S ∈ Π3(C) : |∆S(C| > sq[2]}.

For every plane E ∈ E let HE ≥ E be an arbitrarily chosen but fixed hyperplane of P
and for every solid S ∈ S let PS ∈ S be an arbitrarily chosen but fixed point. For every
plane E ∈ Π2(C) \ E we have 〈Π3(∆E(C))〉 6= P and let HE be an arbitrarily chosen
but fixed hyperplane containing this subspace, for every solid S ∈ Π3(C) \ S we have⋂
E∈Π2(∆S(C))E 6= ∅ and let PS be an arbitrarily chosen but fixed point therein and set

C ′ := {(E,S) ∈ C : (E ∈ E ⇒ S ≤ HE) ∧ (S ∈ S ⇒ PS ∈ E)}.

According to Lemma 2.2.12 we know that either C is given by one of the two examples
and there remains nothing to prove, or we have

|E|, |S| ≤ ξ := q7 + 2q6 + 2q5 + 3q4 + 2q3 + 2q2 + q + 1.

Hence, we may assume the latter, which implies |C| ≤ |C ′|+ 2ξq3. Now, the construc-
tion of C ′ is such that for every plane E ∈ Π2(C ′) all solids S with (E,S) ∈ C ′ satisfy
S ≤ HE and for every solid S ∈ Π3(C ′) all planes E with (E,S) ∈ C ′ satisfy PS ∈ E.
Therefore, every plane and every solid occurs in at most sq[2] flags of C ′. Finally, we
may apply Lemma 2.2.11 to receive an upper bound on |C ′| and, using |C| ≤ |C ′|+2ξq3,
we know that the cardinality of C is at most

26q10 + 77q9 + 139q8 + 184q7 + 185q6 + 162q5 + 127q4 + 88q3 + 47q2 + 18q + 3,

as claimed.

Corollary 2.2.15. Every independent set of Γ of size larger than

26q10 + 77q9 + 139q8 + 184q7 + 185q6 + 162q5 + 127q4 + 88q3 + 47q2 + 18q + 3

is contained in a maximal independent set given by Examples 2.1.15 and 2.1.17.

Theorem 2.2.16. For q ≥ 27 the independence number of the Kneser graph of flags of
type (2, 3) in PG(6, q) is sq[3, 5] · sq[2, 3] + sq[2, 4]q3 and the independent sets attaining
this bound are precisely the four examples given in Examples 2.1.15 and 2.1.17 using
independent sets U of maximal size.

Proof. On the one hand, the referenced Examples provide independent sets of the given
size and thus the independence number of Γ is at least as large as given in this claim.

On the other hand, for q ≥ 27 the size given here is larger than the bound given in
Theorem 2.2.14 and thus said theorem shows that any independent set of size sq[3, 5] ·
sq[2, 3]+sq[2, 4]q3 is given by one of the Examples. Considering Remark 2.1.16 concludes
the proof.
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2.3 The Chromatic Number of Kneser Graphs of Type
(n − 1, n) in PG(2n, q)

In this section we determine the chromatic number of Kneser graphs Γ of type (n−1, n)
in P := PG(2n, q) with n ≥ 3 and q very large (see Equation (2.26) below) which satisfy
Conjecture 2.1.19. In fact, we even show that for every colouring g : V(Γ) → C and
every colour c ∈ C the set g−1(c) is a subset of a co-clique defined in Examples 2.1.15
and 2.1.17.
Throughout this section we assume that n is such that Conjecture 2.1.19 holds and let

αn and qn denote the values given there. Without loss of generality may assume αn ≥ 5.
Furthermore, we assume that the prime power q satisfies

q ≥ qn, q >
3 · 1122d+1−1

2d+1 and q ≥ 3
2α

2 + 21
2 α+ 17. (2.26)

Note that there are in fact integers n ≥ 3 which satisfy said conjecture: In Theorem
2.2.14 of the previous section we have shown that for n = 3 the Kneser graph Γ of type
(n− 1, n) = (2, 3) in PG(6, q) satisfies the conjecture with αn = 27 and qn = 78.
We also remark that Conjecture 2.1.19 holds for n = 2, too, as is shown in [3] by

Blokhuis and Brouwer (also consider the Appendix of [12] by D’haeseleer, Metsch and
Werner). In fact, in [12] by D’haeseleer, Metsch and Werner the chromatic number was
determined for n = 2 and many of the techniques used here for n ≥ 3 are a generalization
of the techniques used there. The generalization given here is also the result of a joint
work of these three authors. Note that the contents of [12] are part of the Ph.D. thesis
of D’haeseleer.
We begin with a section on examples and notation. Thereafter, we determine the

chromatic number of the graph Γ in two steps. In the first step we do not consider a
colouring of Γ, but instead a covering of V(Γ) by sq[n+ 1]− q special co-cliques. In the
second step we then use the results of the first step to derive the chromatic number of
Γ in Theorem 2.3.20.
Note that in this section we use θx to denote sq[x] for all x ∈ {−1} ∪ N0.

2.3.1 Examples of Co-Cliques and Colourings

We recall the co-cliques of Γ defined in Examples 2.1.15 and 2.1.17 and introduce some
new notation for these.

Notation 2.3.1 (Co-Cliques of Γ). i) For a hyperplane H and a maximal co-clique
E of the Kneser graph Γ′ of type n− 1 in H we let

C(H, E) := {(π, τ) ∈ V(Γ) : τ ≤ H ∨ π ∈ E}

denote the corresponding maximal co-clique of Γ and say that it is based on the
hyperplane H. We call {(π, τ) ∈ C(H, E) : τ ≤ H} the generic part and {(π, τ) ∈
C(H, E) : τ 6≤ H} the special part of C(H, E).
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ii) Dually, for any point P and a maximal set U of n-dimensional subspaces through
P , such that dim(τ ∩ τ ′) ≥ 1 for all τ, τ ′ ∈ U , we let

C(P,U) := {(π, τ) ∈ V(Γ) : P ∈ π ∨ τ ∈ U}

denote the corresponding maximal co-clique of Γ. We say that C(P,U) is based on
the point P and call P the base point of C(P,U). Again, we call {(π, τ) ∈ C(P, E) :
P ∈ π} the generic part and {(π, τ) ∈ C(P, E) : P /∈ π} the special part of C(P,U).
Furthermore, if there exists a line l on P such that U consists of all d-dimensional
subspaces τ with l ≤ τ , then we also denote C(P,U) by C(P, l) and say that the
special part of this set is based on the line l.
Similarly, if there exists a hyperplane H on P such that U consists of all d-
dimensional subspaces τ with P ∈ τ ≤ H, then we also denote C(P,U) by C(P,H)
and say that the special part of this set is based on the hyperplane H.

Recall that the co-cliques defined in i) and ii) are dual with one another. Here we work
more frequently with the co-cliques introduced in ii), which explains why we introduced
more elaborate notation for these and also explains why this is the point of view in the
following Lemma.

Lemma 2.3.2. Let P be a point of P and let U be a maximal set of n-dimensional
subspaces through P such that dim(τ ∩ τ ′) ≥ 1 for all τ, τ ′ ∈ U .

(a) The generic part of C(P,U) has cardinality sq[n, 2n− 1] · θn and the special part of
C(P,U) has cardinality |U| · qn.

(b) If the special part of C(P,U) is based on a line or hyperplane, then |U| = sq[1, n, 2n].
Otherwise we have

|U| <
(

1 + 1
q

)
· θn−2 · θn−1

n−1. (2.27)

The dual statements to these claims hold as well.

Proof. This is mostly a corollary to Example 2.1.15 and Remark 2.1.16 thereafter. We
point out that, since we are in fact the situation of Example 2.1.17, that is, the dual
of Example 2.1.15, we have to consider the dual situation when reading Remark 2.1.16.
Therefore, for the proof of (b), we have to consider U as a maximal co-clique of the
Kneser graph of type n− 1 in the quotient space P/P . For the bound given in Equation
(2.27) we then apply Theorem 2.1.23 by Blokhuis, Brouwer and Szönyi to that co-clique.
Finally, the dual statements of the claims hold, since the situation under consideration

is self-dual.

Notation 2.3.3. In view of the previous lemma and in view of Conjecture 2.1.19 we set

g0 := sq[n, 2n− 1] · θn,
e0 := sq[n, 2n− 1] · θn + sq[1, n, 2n] · qn and

e1 := αnq
n2+n−2.
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Remark 2.3.4. Note that the lower bound for q that we assumed in Equation (2.26)
implies g0 > e1. Furthermore, note that Conjecture 2.1.19 implies that every co-clique C
of Γ with |C| > e1 is a subset of a co-clique given in Examples 2.1.15 and 2.1.17 which
is covered by Notation 2.3.1.

Example 2.3.5 (Coverings of V(Γ) by co-cliques). Let U ≤ P be a subspace of dimension
n + 1. Now, consider a set W ⊆ U , let L be the set of lines of U that meet W and
suppose that there exists an injective map ν : L→ U \W such that ν(l) ∈ l for all l ∈ L.
Then

{C(ν(l), l) | l ∈ L} ∪ {C(P, ∅) | P ∈ U \ (ν(L) ∪W )}

is a set of co-cliques of Γ whose union contains all vertices of Γ.
Finally, we provide an example of a set W with q points and a map ν satisfying these

conditions. Let l := {P0, . . . , Pq} ≤ U be a line and set W := {P1, . . . , Pq}. For all
planes π ∈ S[l, 2, U ] and all P ∈ W let lP (π) ∈ S[P0, 1, π] be such that {lP (π) : P ∈
W} = S[P0, 1, π] \ {l}. Then we may define ν by ν(l) = P0 and ν(g) := g ∩ ll∩g(〈l, g〉)
for all g ∈ L \ {l}.

Remark 2.3.6. i) We note that one can also find coverings of V(Γ) by replacing all
co-cliques of coverings described in this example by their dual structure.

ii) Since there are θn+1 − q co-cliques in a covering given in this example we find
χ(Γ) ≤ θn+1 − q.

2.3.2 Coverings by a Set of Special Co-Cliques
In this section we consider coverings of V(Γ) by a set C of co-cliques that satisfies con-
ditions (I), (II), (III) and (IV) given below and, in fact, prove the following theorem.

Theorem 2.3.7. Let C be a set of θn+1−q co-cliques of Γ whose union covers all vertices
of Γ such that conditions (I), (II), (III) and (IV) given below hold. Then there is an
(n+ 1)-dimensional subspace U of P such that every co-clique C ∈ C is point based on a
point P ∈ U and the base points all of co-cliques in C are pairwise distinct.

The proof of this theorem is split into two steps. In the first step we construct an
(n+ 1)-dimensional subspace U as a candidate for the subspace U given in the theorem
and in the second step we conclude the proof.
Therefore, throughout this section we let C = {C1, . . . , Cθn+1−q} be a set of θn+1 − q

co-cliques of Γ whose union covers all vertices of Γ such that

(I) all co-cliques in C are distinct and non-empty,

(II) every co-clique C ∈ C with |C| > e1 is maximal and thus given by Examples 2.1.15
and 2.1.17 and covered by Notation 2.3.1,

(III) the generic parts of any two distinct co-cliques with C,C ′ ∈ C of size larger than
e1 are distinct and
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(IV) at least half of the co-cliques of C of size larger than e1 is based on points.

We let I denote all i ∈ {1, . . . , θn+1 − q} such that Ci is based on a point Pi.

Construction of the Subspace U

In this section we construct a subspace U of dimension n + 1 that contains the points
Pi for many elements i ∈ I.

Lemma 2.3.8. For every subset G of C we have∣∣∣∣∣∣
⋃
C∈G

C

∣∣∣∣∣∣ ≥ |G|e0 −
(
q2 + 9

2q + 10
)
qn

2+2n−3.

Proof. Since |C| ≤ e0 for every C ∈ C, it is sufficient to prove the statement in the case
when G = C. Then |G| = θn+1 − q and |

⋃
C∈G C| is equal to sq[n, 2n] · θn, the number

of all vertices of Γ. Using this, a direct calculation proves the statement for n ∈ {3, 4}.
For n ≥ 5 we use |G| ≤ qθn and find

|G|e0 −

∣∣∣∣∣∣
⋃
C∈G

C

∣∣∣∣∣∣ ≤ θn(sq[n, 2n− 1] · θn · q + sq[1, n, 2n] · qn+1 − sq[n, 2n])

= θnsq[1, n, 2n] ·
(
q2n − 1
qn+1 − 1θnq + qn+1 − (q2n+1 − 1)(qn + 1)

qn+1 − 1

)
≤ θn · sq[1, n, 2n] · q2n−3(q2 + q + 2)

≤ θn(q + 2)(q2 + q + 2)qn2+n−4,

where the second last step uses n ≥ 5 and the last step uses Lemma 1.2.36. From the
assumed lower bounds in Equation (2.26) we deduce θn ≤

(
q + 3

2

)
qn−1. Using Equation

(2.26) again as well as n ≥ 5 we see that

≤
(
q + 3

2

)
(q + 2)(q2 + q + 2) ≤ q2

(
q2 + 9

2q + 10
)
,

concluding this proof.

Lemma 2.3.9. Let U be an (n+ 1)-dimensional subspace. Denote by c1 the number of
indices i ∈ I with Pi /∈ U and by c3 the number of co-cliques C ∈ C with |C| ≤ e1. Then
there is x ∈ {c1, |I| − c1} with x+ 2c3 ≤ 2(q + 4 + αn)qn−1.

Proof. From (IV) we have |I| ≥ 1
2(|C| − c3) and we know that for all i ∈ I the set Ci is

based on a point Pi. We define J := {i ∈ I : Pi /∈ U}. Then, for all j ∈ J and all i ∈ I \J
the generic parts of the sets Ci and Cj share the sq[n, 1, n− 1, 2n] · θn = qn

2−n−2θn flags
(π, τ) ∈ V(Γ) with Pi = π ∩ U and Pj ∈ π. For given j ∈ J it is obvious that distinct i
in I \ J yield distinct qn2−n−2θn such flags. Hence, we know that for all j ∈ J the set
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Cj contains at least |I \ J | · qn
2−n−2θn flags that are contained in Ci for some i ∈ I \ J .

Therefore, ∣∣∣∣∣⋃
i∈I

Ci

∣∣∣∣∣ ≤ |I|e0 − |J ||I \ J |︸ ︷︷ ︸
=c1(|I|−c1)

θn · qn
2−n−2

and Lemma 2.3.8 applied to the set G := {Ci | i ∈ I} ∪ {C ∈ C : |C| ≤ e1} shows

c3(e0 − e1) + c1(|I| − c1)θn · qn
2−n−2 ≤ A :=

(
q2 + 9

2q + 10
)
qn

2+2n−3.

In particular, we already have c3(e0 − e1) ≤ A and we set B := (q+ 4 + αn)qn−1. Using
the lower bounds for q assumed in Equation (2.26) we find B(e0 − e1) > A and hence
we have c3 < B. It remains to show that one of the numbers in {c1, |I| − c1} is at most
2(B − c3). Suppose that this is wrong, that is, we have

c1(|I| − c1) ≥ 2(B − c3)(|I| − 2B + 2c3).

Since |I| ≥ 1
2(|C|− c3), it follows that f(c3) ≤ A where f is the polynomial in x given by

f := x(e0 − e1) + 2(B − x)
(1

2(|C| − x)− 2B + 2x
)
θn · qn

2−n−2.

Since f has degree two with negative leading coefficient and since 0 ≤ c3 < B, we have
min{f(0), f(B)} ≤ f(c3), that is, f(0) ≤ A or f(B) ≤ A. But f(B) = B(e0 − e1) and
we have already seen that this is larger than A, that is, we have

2B
(1

2 |C| − 2B
)
θnq

n2−n−2 = f(0) ≤ A.

Using |C| = θn+1 − q ≥ (q + 1)qn and θn ≥ (q + 1)qn−1, it follows that

(q + 1)B((q + 1)qn − 4B) ≤
(
q2 + 9

2q + 10
)
q2n.

and using the definition of B this shows

(q + 1)(q + 4 + αn)(q2 − 3q − 16− 4αn) ≤
(
q2 + 9

2q + 10
)
q2.

Since 5 ≤ αn ≤ q (via our assumptions), this inequality must also be satisfied when αn
is replaced by 5 or by q, but this contradicts the lower bounds for q that we assumed in
Equation (2.26).

Lemma 2.3.10. There exists an (n+ 1)-dimensional subspace U such that

|{i ∈ I | Pi /∈ U}|+ 2 · |{C ∈ C : |C| ≤ e1}| ≤ 2(q + 4 + αn)qn−1.
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Proof. Let c3 be the number of C ∈ C with |C| ≤ g0 and thus |C| ≤ e1. Then C contains
β ≥ 1

2(θn+1−q−c3) maximal co-cliques that are based on a point. Let G1, . . . , Gβ denote
these co-cliques, let R1, . . . , Rβ be their respective base points and for all i ∈ {1, . . . , β}
set

gi :=

∣∣∣∣∣∣Gi ∩
i−1⋃
j=1

Gj

∣∣∣∣∣∣
Then |∪ij=1Gj | ≤ ie0−

∑i
j=1 gi for all i ≤ β. We may assume that the sequence g1, . . . , gβ

is monotone increasing.
We first show that j := d1

4q
n+1e+ θn+1 + θn−1 − n satisfies gj < 5qn2−2θn+1. Indeed,

otherwise we would have
∑β
i=j gi ≥ (β − j + 1)5qn2−2θn+1 and Lemma 2.3.8 implies

(β − j + 1)5qn2−2θn+1 + c3(e0 − e1) ≤
(
q2 + 9

2q + 10
)
qn

2+2n−3.

If we substitute the lower bound for β given above we see that the coefficient of c3 therein
is e0 − e1 − 5

2q
n2−2θn+1 and in view of Equation (2.26) this is positive. Hence, we may

assume c3 = 0 and find

5qn2−2θn+1 ·
(1

4q
n+1 − 1

2(θn+1 + q)− θn−1 + n− 1
)
≤
(
q2 + 9

2q + 10
)
qn

2+2n−3

but this contradicts the assumption in Equation (2.26). Therefore, gj < 5qn2−2θn+1.
Now, let Q1, . . . , Qn+1 ∈ {Rj−θn−1 , . . . , Rj} be such that τ := 〈Q1, . . . , Qn+1〉 is an

n-dimensional subspace and set

R := {Ri : i ∈ {1, . . . , j − θn−1 − 1} ∧Ri /∈ τ}.

Then |R| ≥ j − θn−1 − 1− (|τ | − n− 1) = d1
4q
n+1e.

In the next step we show that for all i ∈ {1, . . . , n + 1} the point Qi lies on fewer
than 7qn lines that meet R. Assume that this is false and let i ∈ {1, . . . , n+ 1} be such
that Qi lies on at least 7qn lines that meet R. Each of these lines lies in sq[1, n− 1, 2n]
subspaces of dimension n−1 and two of these lines occur together in sq[2, n−1, 2n] such
subspaces. Hence there exist at least

7qn(sq[1, n− 1, 2n]− 7qnsq[2, n− 1, 2n]) = 7qn
(
q2n−1 − 1
qn−2 − 1 − 7qn

)
sq[2, n− 1, 2n]

≥ 7qn2−3(q − 7) =: z

(n− 1)-dimensional subspaces that contain one of the 7qn lines. This shows that there
exist zθn+1 flags (E,S) with Qi ∈ E and such that E contains a point of R. Since
Qi = Rk for some k ≤ j, this implies that zθn+1 ≤ gk ≤ gj < 5qn2−2θn+1, which is a
contradiction.
Finally, we apply Proposition 1.2.41 with d0 = |R|/qn+1 ≥ 1

4 , n0 = 7 and M := R to
find an (n + 1)-dimensional subspace U satisfying Equation (1.3). Using the assumed
lower bounds for q assumed in Equation (2.26) we conclude that |U ∩ R| ≥ 3qn >
2qn + 2(4 + αn)qn−1. The statement of the lemma follows now from Lemma 2.3.9.
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Proof of Theorem 2.3.7

From now on we let U be the (n + 1)-dimensional subspace provided by Lemma 2.3.10
and use the following notation.

• C0 := {Ci ∈ C | i ∈ I, Pi ∈ U}, c0 := |C0|.

• C1 := {Ci ∈ C | i ∈ I, Pi /∈ U}, c1 := |C1|.

• C2 := {Ci ∈ C | i /∈ I, |Ci| > g0}, c2 := |C2|.

• C3 := {Ci ∈ C | i /∈ I, |Ci| ≤ g0}, c3 := |C3|.

• W := {P ∈ U | P 6= Pi∀i ∈ I}.

• M := {(π, τ) ∈
⋃
C∈C C | π ∩ U is a point and π ∩ U ∈W}.

Remark 2.3.11. Using Remark 2.3.4 we know that, due to (II), all co-cliques C ∈ C3
satisfy |C| ≤ e1.

Lemma 2.3.12. (a) C0 ∪ C1 ∪ C2 ∪ C3 is a partition of C.

(b) c1 + 2c3 ≤ 2(q + 4 + αn)qn−1.

(c) |W | = θn+1 − c0.

(d) For all P ∈W there are exactly qn2−1θn flags (π, τ) with π ∩ U = P .

(e) |M | = |W |qn2−1θn.

(f) |I| = c0 + c1 ≥ 1
2(θn+1 − q − c3).

Proof. Claim (a) is obvious from the choice of C0, C1, C2 and C3 and the choice of U
implies (b). From (III) we know that the base points Pi of the sets Ci, i ∈ I, are pairwise
distinct, which proves |W | = |U | − |C0| = θn+1 − c0 and thus (c). We know that each
point P ∈ W lies on sq[n, 0, n − 1, 2n] = qn

2−1 subspaces of dimension n − 1 that meet
U only in P and each such subspace lies in sq[n− 1, n, 2n] = θn subspaces of dimension
n. Hence, for every point P in W exactly qn2−1θn flags (π, τ) of M satisfy π ∩ U = P ,
which proves (d) and (e). To see (f) we first note that our definitions imply |I| = c0 + c1
and that exactly |C| − c3 = θn+1 − q − c3 elements of C have more than g0 elements.
Finally, we recall that (II) implies that every element of C with more than g0 elements
is based on a point or a hyperplane and that (IV) implies that at least half of these are
based on a point.

Notation 2.3.13. Recall from Lemma 2.3.2 that the special parts of all co-cliques
covered by Notation 2.3.1 — in particular of all co-cliques C ∈ C with |C| > g0 — have
cardinality at most ∆, where

∆ := sq[1, n, 2n] · qn 1.2.35 ii)= sq[n− 2, 2n− 2] · qn
1.2.36
≤ (q + 2)qn2−1. (2.28)
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Lemma 2.3.14. (a) For C ∈ C0 the generic part of C does not contain a flag of M .

(b) For C ∈ C1 we have |C ∩M | ≤ |W |qn2−n−2θn + ∆.

(c) Any co-clique C ∈ C2 is based on a hyperplane H and we have

|C ∩M | ≤
{

∆ if U ≤ H,
∆ + |H ∩W |qn2−nθn−1 otherwise.

Proof. (a) Consider some C ∈ C0. For all flags (π, τ) of the generic part of C we have
dim(π ∩U) ≥ 1 or π ∩U is the base point of C. Since M only contains flags (π, τ)
such that π meets U in a point that is not a base point of the generic part of some
C ∈ C, this implies that these flags do not belong to M .

(b) Consider some C ∈ C1. Then C is based on a point P with P /∈ U . If Y ∈W , then
the point P lies on exactly sq[n, 1, n − 1, 2n] = qn

2−n−2 subspaces π of dimension
n − 1 satisfying π ∩ U = Y . Each of these lies in sq[n − 1, n, 2n] = θn subspaces
of dimension n. Hence, the generic part of C contains exactly |W |qn2−n−2θn flags
of M . The special part of C contains at most ∆ flags and thus at most this many
flags of M .

(c) Consider some C ∈ C2. Since C is not based on a point and has cardinality greater
than g0 (II) shows that C is based on a hyperplane H. The generic part of C
consists of all flags (π, τ) ∈ V(Γ) with τ ≤ H and thus also π ≤ H. If Y ∈ H ∩W ,
then the number of (n − 1)-dimensional subspaces π of H with π ∩ U = Y is
sq[n, 0, n − 1, 2n − 1] = 0 for U ≤ H and it is sq[n − 1, 0, n − 1, 2n − 1] = qn

2−n

for U 6≤ H (because then a complement of Y in U ∩ H has dimension n − 1).
Since for every (n − 1)-dimensional subspace of H the number of n-dimensional
subspaces of H containing it is sq[n− 1, n, 2n− 1] = θn−1 (see Lemma 1.2.35 ii)),
it follows that the generic part of C contains no flag of C for U ≤ H and exactly
|H ∩ W |qn2−nθn−1 flags of M for U 6≤ H. Finally, since the special part of C
contains at most ∆ flags, this implies the claim.

Lemma 2.3.15. If z is an integer such that there is at most one hyperplane of U which
contains more than z points of W , then

|M | ≤ (c0 + c1 + c2)∆ + c1|W |qn
2−n−2θn + c2zq

n2−nθn−1 + c3e1 + qn
2−1θn−1θn.

Proof. Let z be as in the claim. Lemma 2.3.12 (e) shows |M | = |W |qn2−1θn and, since
every flag of M is covered by some C ∈ C, we may apply Lemma 2.3.12 (a) to see

|M | = |W |qn2−1θn ≤
3∑
i=0

∑
C∈Ci
|C ∩M |.

Now, if there exists a hyperplane of U with more than z points in W , then let z′ denote
the number of its points inW and otherwise set z′ := z. Since every hyperplane of U lies
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in sq[0, n, 2n−1, 2n] = qn−1 hyperplanes of P which do not contain U , Lemma 2.3.14 (c)
shows ∣∣∣∣∣∣

⋃
C∈C2

C ∩M

∣∣∣∣∣∣ ≤
(
c2 − qn−1

)
(∆ + zqn

2−nθn−1) + qn−1(∆ + z′qn
2−nθn−1)

= c2(∆ + zqn
2−nθn−1) + (z′ − z)︸ ︷︷ ︸

≤θn

qn
2−1θn−1.

Finally, since |C| ≤ e1 for C ∈ C3, the assertion follows from parts (a) and (b) of Lemma
2.3.14.

Lemma 2.3.16. Let τ1 and τ2 be distinct hyperplanes of U and set W ′ := (τ1∪ τ2)∩W .
Then

|W ′|θn−1 ≤ (c1 + c2)qn−3(2q + 7) + q2n−3((αn + 3)q + α2
n + 4αn).

Proof. We set M ′ := {(π, τ) ∈ M : π ∩ U ∈ W ′}. Lemma 2.3.12 (d) shows |M ′| =
|W ′|qn2−1θn and according to Lemma 2.3.12 (a) each flag of M ′ lies in at least one of
the co-cliques of C = C0 ∪ C1 ∪ C2 ∪ C3. Hence, we have

|W ′|qn2
θn−1 ≤ |W ′|qn

2−1θn = |M ′| ≤ d0 + d1 + d2 + d3, (2.29)

where for all i ∈ {1, . . . , 4} we let di denote the number of elements of M ′ that lie in
some member of Ci. We remark that we have |W ′| ≤ |(τ1 ∪ τ2) ∩ U | = qn + θn and
determine upper bounds on the numbers d0, . . . , d3 in 4 steps.
First, we consider a co-clique C ∈ C0. Then |C| ≥ g0 and C is based on a point P ∈ U .

We know from Lemma 2.3.14 (a) that only the special part T of C may contribute to
M ′ and thus we study T and the three possible structures that T may have.

• First, assume that there is a line l with P ∈ l such that T consists of all flags
(π, τ) ∈ V(Γ) with l ≤ τ and P /∈ π. Then we have

|T ∩M ′| =
{
|l ∩W ′| · sq[n, 0, n− 1, 2n] for l ≤ U,
|W ′| · (|l| − 1) · sq[n, 1, n− 1, 2n] for l ∩ U = P

=
{
|l ∩W ′|qn2−1 for l ≤ U,
|W ′|qn2−n−1 for l ∩ U = P

and, using |W ′| ≤ qn+θn as well as the fact that |l∩W ′| is at most q for P ∈ τ1∪τ2
and at most 2 otherwise, we have

|T ∩M ′| ≤
{
qn

2 for P ∈ τ1 ∪ τ2,

(qn + θn)qn2−n−1 otherwise.
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• Secondly, assume that there is a hyperplane H with P ∈ H such that T consists
of all flags (π, τ) ∈ V(Γ) with P ∈ τ ≤ H and P /∈ π. If U ≤ H, then for each
(π, τ) ∈ T we have dim(π ∩ U) ≥ 1 and thus (π, τ) /∈ M ′. Therefore, if U ≤ H,
then T ∩M ′ = ∅. Now suppose that U 6≤ H. Then we have

|T ∩M ′| = |H ∩W ′| · sq[n− 1, 0, n− 1, 2n− 1] = |H ∩W ′|qn2−n

≤
{
|W ′ ∩ τi|qn

2−n if H ∩ U = τi for some i ∈ {1, 2},
(qn−1 + θn−1)qn2−n otherwise.

Notice that H ∩ U = τi for some i ∈ {1, 2} implies P ∈ τi and thus |W ′ ∩ τi| ≤
θn − 1 = qθn−1. Therefore, we have

|T ∩M ′| ≤
{
θn−1q

n2−n+1 for P ∈ τ1 ∪ τ2,

(qn−1 + θn−1)qn2−n otherwise.

• Finally, if the special part T is not based on a line or a hyperplane, then Lemma
2.3.2 shows

|T ∩M ′| ≤ |T | ≤ qn
(

1 + 1
q

)
θn−2θ

n−1
n−1

1.2.36 (c)
≤ θ1(q + n)θn−2q

n2−n−1.

Using the lower bounds for q provided by our assumption in Equation (2.26) we may
summarize these three upper bounds into

|T ∩M ′| ≤
{
θn−1q

n2−n+1 for P ∈ τ1 ∪ τ2,

(qn + θn)qn2−n−1 otherwise.

Note that the bound given for P ∈ τ1 ∪ τ2 is a weaker bound than the bound for
P /∈ τ1 ∪ τ2. Now, since distinct sets C ∈ C0 are based on distinct points P (see (III))
and since τ1 ∪ τ2 contains qn + θn points, we find

d0 ≤ c0(qn + θn)qn2−n−1 + (qn + θn)θn−1q
n2−n+1 ≤ 12qn2+n,

where the last step uses the trivial bounds c0 ≤ θn+1 ≤ 2qn+1, θn ≤ 2qn and θn−1 ≤
2qn−1.

Secondly, for C ∈ C1 we see that C contains at most |W ′|qn2−n−2θn + ∆ flags of M ′
analogously to the proof of 2.3.14 (b), which proves d1 ≤ c1(|W ′|qn2−n−2θn + ∆). Now
we use ∆ ≤ (q + 2)qn2−1 given in Equation (2.28) as well as |W ′| ≤ qn + θn and have

d1 ≤ c1q
n2−n−2((qn + θn)θn + qn+2 + 2qn+1)

1.2.36 (a)
≤ c1q

n2−1(2qn−1 + 6qn−2 + 4qn−3 + q + 2)
(2.26)
≤ c1q

n2+n−3(2q + 7).

Thirdly, we consider C ∈ C2. Then |C| ≥ g0 and C is based on a hyperplane H. If
U ⊆ H and (π, τ) is a flag of C, then dim(π∩U) ≥ 1 and thus C∩M ′ = ∅. Therefore, we
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only need to study the case U 6≤ H, which implies dim(U ∩H) = n. Then, analogously
to the proof of 2.3.14 (c), we see that the number of flags of M ′ in the generic part of C
is |H ∩W ′|qn2−nθn−1 and we have

|H ∩W ′|qn2−nθn−1 ≤
{
|W ′ ∩ τi|qn

2−nθn−1 if H ∩ U = τi for some i ∈ {1, 2},
(qn−1 + θn−1)qn2−nθn−1 otherwise.

Since there are exactly qn−1 hyperplanes that meet U in τ1 and as many that meet U in
τ2, it follows that the number of flags of M ′ that lie in the generic part of at least one
co-clique of C2 is at most

c2(qn−1 + θn−1)qn2−nθn−1 + qn
2−1 (|W ′ ∩ τ1|+ |W ′ ∩ τ2|

)
θn−1.

The special part of each co-clique of C2 has ∆ flags and thus at most this many flags of
M ′. Using

|W ′ ∩ τ1|+ |W ′ ∩ τ2| ≤ |W ′|+ θn−1 ≤ qn + θn + θn−1 = 2θn
1.2.36 (a)
≤ 2(θ1 + 1)qn−1

it follows that

d2 ≤ c2∆ + c2(qn−1 + θn−1)qn2−nθn−1 + 2qn2+n−2(θ1 + 1)θn−1.

We now show that this bound implies

d2 ≤ c2q
n2+n−3(2q + 7) + 2qn2+2n−4(q2 + 4q + 4). (2.30)

For n = 3, this can be easily verified for all q > 2 and thus for all values of q that are
of interest here. For n ≥ 4, we use ∆ ≤ (q + 2)qn2−1 given in Equation (2.28) as well as
the upper bound given in Lemma 1.2.36 (a) to find

d2 ≤ c2q
n2−1(2qn−1 + 6qn−2 + 4qn−3 + q + 2) + 2qn2+2n−4(θ1 + 1)2

and the lower bounds for q assumed in Equation (2.26) imply Equation (2.30).
Finally, we note that for C ∈ C3 we trivially have |C ∩M ′| ≤ |C| ≤ e1 and, using

c3 ≤ (q + 4 + αn)qn−1 from Lemma 2.3.12 (b) as well as e1 = αnq
n2+n−2, this shows

d3 ≤ c3e1 ≤ (αnq + α2
n + 4αn)qn2+2n−3.

Now, substituting these upper bounds for d0, . . . , d3 in Equation (2.29) and dividing
by qn2 yields

|W ′|θn−1 ≤ (c1 + c2)qn−3(2q + 7) + (αnq + α2
n + 4αn)q2n−3

+ qn−1(2qn−1 + 8qn−2 + 8qn−3 + 12q)

and, using the lower bounds for q assumed in (2.26), this implies the claim.
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Lemma 2.3.17. We have |W | ≤ (αn + 3)qn−1.

Proof. Let π1 and π2 be hyperplanes of U such that |π1 ∩W | ≥ |π2 ∩W | ≥ |π ∩W |
for every hyperplane π of U other than π1 and set z := |π2 ∩W |. Furthermore, we set
δ := c1+c2+c3 and use c0+c1+c2+c3 = |C| = θn+1−q as well as |W | = θn+1−c0 = δ+q
from Lemma 2.3.12 (c) and |M | = |W |qn2−1θn from Lemma 2.3.12 (e) to see that the
inequality given by Lemma 2.3.15 is equivalent to

0 ≤ (θn+1 − q)∆ + qn
2−1θn−1θn + c3(e1 −∆)

+ c2q
n2−nzθn−1 + (δ + q)(c1 − qn+1)qn2−n−2θn.

We simplify this inequality in several steps. First, we consider the following four trivial
simplifications:

• in the first term, since ∆ is positive, we may replace (θn+1− q) by its upper bound
(q + 2)qn given in Lemma 1.2.36 (a);
• in the second term we use qn2−1θn−1θn ≤ (q + 5)qn2+2n−3, which follows from
Lemma 1.2.36 (a) and the lower bounds for q that we assumed in Equation (2.26);
• in the third term, since the coefficient e1−∆ of c3 is positive (recall the definition

of e1 as well as Inequality (2.28) and use αn ≥ 5), we may replace c3 by its upper
bound (q + 4 + αn)qn−1 given in Lemma 2.3.12 (b);
• and last but not least, in the final term, since c1 − qn+1 is negative (consider the
upper bound c1 ≤ 2(q + 4 + αn)qn−1 given in Lemma 2.3.12 (b)), we may replace
(δ + q)qn2−n−2θn by its lower bound δ(q + 1)qn2−3 implied by Lemma 1.2.36 (a).

This yields

0 ≤ (q + 2)qn∆ + (q + 5)qn2+2n−3 + (q + 4 + αn)qn−1(e1 −∆)

+ c2q
n2−nzθn−1 + δ(q + 1)qn2−3(c1 − qn+1). (2.31)

Next we want to take care of the variable z in the fourth term on the right hand side of
this inequality. For that purpose we note that the preceding lemma is applicable to the
set W ′ := (π1 ∪ π2) ∩W and that W ′ satisfies

|W ′| ≥ |π1 ∩W |+ |π2 ∩W | − θn−1 ≥ 2z − θn−1,

that is,

2zθn−1 ≤ |W ′|θn−1 + θ2
n−1

1.2.36 (a)
≤ |W ′|θn−1 + (q + 2)2q2n−4

(2.26)
≤ |W ′|θn−1 + 2q2n−2.

We use the bound given in the previous lemma (where, for convenience, we replace the
7 by an 8) as well as c1 + c2 ≤ δ to replace the first term on the right hand side.
Subsequently we divide by 2 and simplify, which yields

zθn−1 ≤ δqn−3(q + 4) + q2n−3

2 ((αn + 5)q + α2
n + 4αn). (2.32)

Now, we reconsider Inequality (2.31):
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• using the lower bounds for q that we assumed in Equation (2.26) we see that the
coefficient (q2 + q − 4− αn)qn−1 of ∆ therein is positive and thus we may replace
∆ by its upper bound (q + 2)qn2−1 given in Inequality (2.28);
• the coefficients of c1 and c2 therein are non-negative and so we may substitute c1

and c2 by their respective upper bounds 2(q+4+αn)qn−1 and δ, the first of which
is given in Lemma 2.3.12 (b) and the second is trivial;
• we use the upper bound found in Inequality (2.32);
• we substitute e1 = αnq

n2+n−2 and, finally, we divide by qn2−3.

This yields

0 ≤ δ2(q + 4) + δqn−1
(
−q3 + αn + 7

2 q2 +
(
α2
n

2 + 4αn + 10
)
q + (2αn + 8)

)
+ q2n

(
(αn + 1)q + α2

n + 4αn + 5
)

+ qn+1
(
q3 + 3q2 − (αn + 2)q − (2αn + 8)

)
.

Using the lower bounds for q that we assumed in Equation (2.26) as well as αn ≥ 5 this
inequality implies

0 ≤ δ2(q + 4) + δqn+1
(
αn
2 + 4− q

)
+ q2n

(
(αn + 1)q + α2

n + 5αn
)

+ qn+3(q + 3).

Let f denote the right hand side of this Inequality and set δ1 := (αn + 3)qn−1 − q as
well as δ2 := qn+1 −

(αn
2 + 8

)
qn. We want to show that δ does not lie in the interval

[δ1, δ2]. To see this it suffices to show that f(δ1) < 0 and f(δ2) < 0 hold; the reason is
that f is a quadratic polynomial in δ with positive leading coefficient. Straight forward
calculations show

f(δ1) = −2q2n+1 +
(3

2α
2
n + 21

2 αn + 12
)
q2n + (α2

n + 6αn + 9)q2n−1

+ (4α2
n + 24αn + 36)q2n−2 + qn+4 + 4qn+3 −

(
αn
2 + 4

)
qn+2

− (2αn + 6)qn+1 − (8αn + 24)qn + q3 + 4q2 as well as
f(δ2) = −(αn + 31)q2n+1 + (2α2

n + 37αn + 256)q2n + qn+4 + 3qn+3,

and in view of the lower bounds for q that we assumed in Equation (2.26) both of these
are negative. Hence, δ /∈ [δ1, δ2]. Finally, we have

δ = θn+1 − q − c0
2.3.12 (f)
≤ 1

2(θn+1 − q) + c1 + 1
2c3

1.2.36 (a)
≤ 1

2(qn+1 + (q + 2)qn−1 − q) + c1 + 1
2c3

2.3.12 (b)
≤ 1

2(qn+1 + (q + 2)qn−1 − q) + 2(q + 4 + αn)qn−1

(2.26)
< qn+1 −

(
αn
2 + 8

)
qn = δ2

and, since δ /∈ [δ1, δ2], we find δ < δ1, as claimed.
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Lemma 2.3.18. We have C = C0, that is, Theorem 2.3.7 holds.

Proof. Obviously, if C = C0, then our choice of notation in this section implies that
Theorem 2.3.7 holds. Therefore, we prove C = C0. To do so we determine the contri-
bution of co-cliques C ∈ C to the flags in M . We set δ := c1 + c2 + c3 and note that
c0 + c1 + c2 + c3 = θn+1− q implies δ = θn+1− q− c0. Recall that from Lemma 2.3.12 (c)
we have |W | = q + δ and from Lemma 2.3.17 we have |W | ≤ (αn + 3)qn−1.
For all C ∈ C1 ∪ C2 (using the trivial bound θn ≤ q2θn−1 for C ∈ C1) we have

|C ∩M |
2.3.14
≤ (αn + 3)qn2−1θn−1 + ∆

1.2.36 (a)
≤ (αn + 3)(q + 2)qn2+n−3 + ∆

(2.28)
≤ (αn + 3)(q + 2)qn2+n−3 + (q + 2)qn2−1

(2.26)
≤ (αn + 4)qn2+n−2.

Now, since we have |C| ≤ e1 = αnq
n2+n−2 for all C ∈ C3 (see Remark 2.3.11), we know

that |C ∩M | ≤ (αn + 4)qn2+n−2 holds for all C ∈ C1 ∪ C2 ∪ C3. Therefore, the total
contribution of all co-cliques in C1 ∪ C2 ∪ C3 to M is at most δ(αn + 4)qn2+n−2.
Furthermore, the generic parts of all co-cliques in C0 are disjoint from M . Thus, it

only remains to consider the special parts T of co-cliques C ∈ C0 and we denote by

• ω1 the number of those with T based on a line that is contained in U ;

• ω2 the number of those with T based on a line that is not contained in U ;

• ω3 the number of those with T based on a hyperplane of P; and

• ω4 the number of the remaining ones, which, according to Lemma 2.3.2, are those
with cardinality at most qn−1θ1θn−2θ

n−1
n−1.

Furthermore, we let

• Ω1 be the set of lines l of U such that C(P, l) ∈ C0 for some point P of l;

• Ω3 be the set of all point-hyperplane pairs (P,H) with C(P,H) ∈ C0 such that U
is not contained in H;

• Ω4 be the set of indices i ∈ I such that Ci is an element of C0 and its special part
T has cardinality at most qn−1θ1θn−2θ

n−1
n−1; and

• Ω̂4 be the set of all flags f ∈ M such that f is an element of the special part of
some co-clique Cx with x ∈ Ω4.

Then we have ω1 + ω2 + ω3 + ω4 = c0, |Ω1| ≤ ω1, |Ω3| ≤ ω3 and |Ω4| = ω4. In view of
the definition of Ω3 we remark that hyperplane based special parts T only contribute to
M when the underlying hyperplane of P does not contain U . Using Lemma 2.3.12 (e) it
follows that

|W |qn2−1θn = |M | ≤ δ(αn + 4)qn2+n−2 +
∑
l∈Ω1

|l ∩W | · sq[n, 0, n− 1, 2n]
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+ ω2|W |q · sq[n, 1, n− 1, 2n] +
∑

(P,H)∈Ω3

|W | · sq[n− 1, 0, n− 1, 2n− 1] + |Ω̂4|

= qn
2−n

δ(αn + 4)q2n−2 +
∑
l∈Ω1

|l ∩W |qn−1 + ω2
|W |
q

+
∑

(P,H)∈Ω3

|W |+ |Ω̂4|
qn2−n

 .
We simplify this inequality and begin by replacing the first sum by an upper bound.

Since the product of two consecutive integers is always non-negative we have

0 ≤
∑
l∈Ω1

(|l ∩W | − 1)(|l ∩W | − 2)

=
∑
l∈Ω1

(|l ∩W | − 1)|l ∩W | − 2
∑
l∈Ω1

|l ∩W |+ 2|Ω1|

≤ |W |(|W | − 1)− 2
∑
l∈Ω1

|l ∩W |+ 2|Ω1|,

where the last step holds, since any pair of distinct points of W is contained in at most
one line of Ω1. Since |Ω1| ≤ ω1 and ω1 +ω2 +ω3 +ω4 = c0 = θn+1− |W |, it follows that∑

l∈Ω1

|l ∩W | ≤ 1
2 |W |(|W | − 3) + θn+1 − ω2 − ω3 − ω4.

Using this as well as |Ω3| = ω3 in our inequality above and dividing by qn2−n we find

|W |qn−1
(
θn −

|W | − 3
2

)
≤ δ(αn + 4)q2n−2 + θn+1q

n−1 + ω2
|W | − qn

q

+
∑

(P,H)∈Ω3

(|W | − qn−1) + |Ω̂4| − ω4q
n2−1

qn2−n .

Now, since |W | ≤ (αn + 3)qn−1 (by Lemma 2.3.17) and in view of the lower bounds for
q that we assumed in Equation (2.26), the coefficient of ω2 in the inequality above is
not positive and therefore the term with ω2 can be omitted. Doing so and substituting
|W | = δ + q we find

(δ + q)qn−1
(
θn −

δ + q − 3
2

)
︸ ︷︷ ︸

≥θ1qn−1−δ

≤ δ(αn + 4)q2n−2 + θn+1q
n−1

+
∑

(P,H)∈Ω3

(|W | − qn−1) + |Ω̂4| − ω4q
n2−1

qn2−n . (2.33)

If |W | ≥ qn−1 then, since |Ω3| ≤ |C0| = θn+1 − |W |, we have∑
(P,H)∈Ω3

(|W | − qn−1) ≤ (θn+1 − |W |)(|W | − qn−1).
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Therefore, if |W | ≥ qn−1, then due to the fact that the polynomial f(x) = (θn+1−x)(x−
qn−1)− (x− q + 1)qn+1 obtains its maximum for xmax := 1

2(θn + qn−1) and since

4(q − 1)2 · f(xmax) = −q2n−2(3q4 − 6q3 + q2 + 2q − 1)
+ qn−1(4q5 − 12q4 + 12q3 − 6q2 + 2q − 2) + 1

is negative (using (2.26)), it follows that∑
(P,H)∈Ω3

(|W | − qn−1) ≤ (|W | − q + 1)qn+1 = (δ + 1)qn+1.

Clearly, if we do not have |W | ≥ qn−1, then this equation holds trivially. Using this and
θn+1 ≤ (q2 + q + 2)qn−1 (see Lemma 1.2.36 (a)) in Inequality (2.33) we find

(δ + q)qn−1(θ1q
n−1 − δ) ≤ δ(αn + 4)q2n−2 + (q2 + q + 2)q2n−2

+ qn+1(δ + 1) + |Ω̂4| − ω4q
n2−1

qn2−n ,

which is equivalent to

0 ≤ δ2qn−1 − δqn(qn−1 − (αn + 3)qn−2 − q − 1)

+ 2q2n−2 + qn+1 + |Ω̂4| − ω4q
n2−1

qn2−n , (2.34)

Finally, we study the cardinality of Ω̂4. For all x ∈ Ω4 we know from Lemma 2.3.2 that
Cx = C(Px,Ux) for a set Ux of n-dimensional subspaces with |Ux| ≤ (1 + q−1)θn−2θ

n−1
n−1.

Furthermore, for all x ∈ Ω4 every flag (π, τ) of the special part of Cx that lies in Ω̂4
satisfies dim(τ ∩ U) = 1 and π ∩ U is a point of τ ∩W . Motivated by that, we define

∀x ∈ Ω4 : ζx := max{|τ ∩W | : τ ∈ Ux, dim(τ ∩ U) = 1}

and set ζ := max{ζx : x ∈ Ω4}. There are two remarks to be made:

• For all x ∈ Ω4 and all τ ∈ Ux with dim(τ ∩U) = 1 we have W 63 Px ∈ τ ∩U , which
implies ζx ≤ q. Thus we also have ζ ≤ q.

• The definition of ζ implies that there is a line l ≤ U with |l ∩W | = ζ. Note that
there are at most q elements x ∈ Ω4 such that Px is an element of l. For all x ∈ Ω4
with Px /∈ l and all τ ∈ Ux with dim(τ ∩ U) = 1 we clearly have |τ ∩ l| ≤ 1, which
implies |τ ∩W | ≤ min{ζ, |W |+ 1− ζ}.

This implies

|Ω̂4| ≤ (qζ + max{0, ω4 − q} ·min{ζ, |W |+ 1− ζ})qn−1
(
1 + q−1

)
θn−2θ

n−1
n−1

≤ (q2 + ω4 ·min{ζ, |W |+ 1− ζ})(q3 + (n+ 3)q2 + (3n+ 2)q + 2n)qn2−5,
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where the second step uses ζ ≤ q, max{0, ω4 − q} ≤ ω4 and parts (a) and (c) of Lemma
1.2.36. Substituting this in Inequality (2.34) and dividing by qn−5 yields

0 ≤ δ2q4 − δq5(qn−1 − (αn + 3)qn−2 − q − 1) + 2qn+3 + q6

+ (q2 + ω4 ·min{ζ, |W |+ 1− ζ})(q3 + (n+ 3)q2 + (3n+ 2)q + 2n)− ω4q
4

and we let f = fζ,ω4(δ) denote the right hand side of this inequality. Note that f
is quadratic in δ and the leading coefficient is q4 and as such positive. Thus, if the
inequality is not satisfied for two values δ1 and δ2, then it is not satisfied for any value
in the interval [δ1, δ2]. We set δ1 := n + 4 as well as δ2 := (αn + 3)qn−1 and recall that
Lemma 2.3.17 shows δ = |W | − q < δ2.
Now, if the coefficient

η = −q4 + min{ζ, |W |+ 1− ζ}(q3 + (n+ 3)q2 + (3n+ 2)q + 2n)

of ω4 in that equation is not positive, then we may substitute ω4 = 0 to see that, in
view of the lower bounds for q that we assumed in Equation (2.26), this bound is not
satisfied by δ ∈ {1, δ2} (both of the following equations are smaller than 0):

fζ,0(1) = −qn+3(q − αn − 5) + q2(2q4 + 2q3 + (n+ 4)q2 + (3n+ 2)q + 2n),
fζ,0(δ2) = −q2n+2((αn + 3)q − 2α2

n − 12αn − 18)
+ qn+3((αn + 3)q2 + (αn + 3)q + 2)
+ q2(q4 + q3 + (n+ 3)q2 + (3n+ 2)q + 2n).

Thus, for η ≤ 0 we have δ = 0, that is, |C0| = θn+1 − q − δ = θn+1 − q = |C| and thus
C = C0, as desired.
From now on we may assume η > 0 and derive a contradiction. Since the lower bounds

for q that we assumed in Equation (2.26) implies q ≥ n2 + 2n+ 7, the inequality η > 0
is equivalent to min{ζ, |W | + 1 − ζ} ≥ q − n − 2. Furthermore, we already remarked
above that ζ is at most q and thus min{ζ, |W |+ 1− ζ} is at most q, too. However, if we
substitute q as upper bound for ζ and consequently use min{ζ, |W | + 1 − ζ} ≤ q, then
we have η > 0 and may also substitute qn+1 + 2qn as upper bound on ω4 to see that,
in view of the lower bounds for q that we assumed in Equation (2.26), the bound is not
satisfied for δ ∈ {δ1, δ2} (both of the following equations are smaller than 0):

fq,qn+1+2qn(δ1) ≤ −qn+1(q3 − (αnn+ 8n+ 4αn + 22)q2 − (8n+ 4)q − 4n)
+ q2((n+ 5)q4 + (n+ 5)q3 + (n2 + 9n+ 19)q2 + (3n+ 2)q + 2n),

fq,qn+1+2qn(δ2) ≤ −q2n+2((αn + 3)q − 2α2
n − 12αn − 18)

+ qn+1((αn + 3)q4 + (n+ αn + 6)q3 + (5n+ 10)q2 + (8n+ 4)q + 4n)
+ q2(q4 + q3 + (n+ 3)q2 + (3n+ 2)q + 2n).

Hence, from now on we may assume δ < δ1, that is, δ ≤ n+ 3. Finally, we note that
we then have min{ζ, |W | + 1 − ζ} ≥ q − n − 2, which implies |W | + 1 ≥ 2(q − n − 2).
However, we have |W | = q+ δ ≤ q+ n+ 3, so we find q ≤ 3n+ 8, a contradiction to the
lower bounds for q that we assumed in Equation (2.26).
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2.3.3 Determination of the Chromatic Number

Lemma 2.3.19. We let g : V(Γ) → F be a colouring of Γ with |F | = χ(Γ) and we
set C := {g−1(f) : f ∈ F}. Every co-clique C ∈ C contains a flag f such that for all
C ′ ∈ C \ {C} the set C ′ ∪ {f} is not a co-clique.

Proof. In contrary to the claim, suppose that there is a set C ∈ C such that for all
f ∈ C there is a set C ′ ∈ C \ {C} such that C ′ ∪ {f} is a co-clique of Γ. Then there
is a map φ : C → C \ {C} such that for all f ∈ C the set φ(f) ∪ {f} is a co-clique of
Γ. Therefore, for all C ′ ∈ C \ {C} the set C ′ ∪ φ−1(C ′) is a co-clique, too, and we set
C′ := {C ∪φ−1(C ′) : C ′ ∈ C \{C}}. Now, C′ is a partition of V(Γ) into |C|−1 = χ(Γ)−1
classes and defines a colouring of Γ with |C′| < χ(Γ) colours, a contradiction.

Theorem 2.3.20. Let g : V(Γ)→ F be a colouring of Γ with |F | = χ(Γ) and set{
C

(1)
0 , . . . , C

(|C0|)
0

}
:= C0 := {g−1(f) : f ∈ F}.

Then C0 is a set of θn+1 − q co-cliques such that

• every co-clique C ∈ C0 is a subset of a maximal co-clique of Γ that is covered by
Examples 2.1.15 and 2.1.17,

• the corresponding maximal co-cliques are either all point based or all hyperplane
based, and

• the base points (base hyperplanes) are distinct and elements of an (n+1)-dimensional
subspace (contain a common (n− 2)-dimensional subspace).

Proof. We use C0 to define a covering of V(Γ) that satisfies conditions (I), (II), (III) and
(IV) and then apply Theorem 2.3.7 to this covering. Note that C0 already satisfies the
first of these conditions.

For all i ∈ {1, . . . , |C0|} we let fi be the flag provided by Lemma 2.3.19. Now, for all
i ∈ {1, . . . , |C0|} with |C(i)

0 | > e1 we let C(i)
1 be an arbitrary maximal co-clique of Γ with

C
(i)
0 ⊆ C

(i)
1 and for all i ∈ {1, . . . , |C0|} with |C(i)

0 | ≤ e1 we set C(i)
1 := C

(i)
0 . Lemma

2.3.19 implies that the co-cliques C(1)
1 , . . . , C

|C0|
1 are pairwise distinct. Furthermore, we

assumed that Conjecture 2.1.19 holds and thus C1 := {C(i)
1 : i ∈ {1, . . . , |C0|}} is a

covering of V(Γ) by co-cliques of Γ which satisfy conditions (I) and (II).
Now, for all i ∈ {1, . . . , |C0|} with |C(i)

1 | ≤ e1 we set C(i)
2 := C

(i)
1 . Furthermore, for any

subset I = {i1, . . . , i|I|} of {1, . . . , |C0|} such that for all i ∈ I we have |C(i)
1 | > e1 and

such that I is maximal with respect to the property that the co-cliques {C(i)
1 : i ∈ I}

all have the same generic part we set C(i1)
2 := C

(i1)
1 and for all i ∈ I \ {i1} we let C(i)

2
be the special part of C(i)

1 . Then the definition of fi implies that for all i ∈ {1, . . . , |C0|}
we still have fi ∈ C(i)

2 and no other co-clique of C2 := {Cj2 : j ∈ {1, . . . , |C0|}} contains
fi. Thus, C2 still satisfies condition (I). Furthermore, using Equation (2.28) the special
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part T of a co-clique C ∈ C1 clearly satisfies |T | ≤ e1 and thus C2 also satisfies condition
(II). Finally, the definition of C2 implies that this set also satisfies condition (III).
If C2 already satisfies condition (IV), too, then we set C3 := C2 and if C2 does not

satisfy condition (IV), then we let C3 be the dual of C2. Either way, C3 satisfies all
four conditions. Finally, if |C3| = θn+1 − q, then we set C4 := C3 and if otherwise, if
|C3| < θn+1 − q, then let C4 be the union of C3 and a set of θn+1 − q − |C3| arbitrary
co-cliques of size 1 such that C4 still satisfies the four conditions (this is clearly possible).
Finally, we may apply Theorem 2.3.7 to C4 and see that in fact C4 is a set of θn+1 − q

maximal co-cliques, all of which are point based and the θn+1−q base points are pairwise
distinct points of an (n + 1)-dimensional subspace U of P. However, if we reconsider
the construction of C4 from C0, then this implies that C1 already was a set of θn+1 − q
co-cliques that satisfied conditions (I), (II) and (III) and therefore C0 satisfies the claim
of this theorem.
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2.4 The Independence Number of Kneser Graphs of Type
(1, 3) in PG(5, q)

Throughout this section we let P be the projective space PG(5, q) for some prime power
q and we let Γ be the Kneser graph of type (1, 3) in P. We show that any maximal
independent set of Γ of size larger than roughly 377q7 (a more precise formulation can
be found in Theorem 2.4.49) is given by Example 2.4.1 below and thus, for q ≥ 376, we
determine the independence number of Γ.

We first introduce the aforementioned family of examples of independent sets of Γ.
The examples are analogous to Examples 2.1.15 and 2.1.17 given above and thus we
omit the proof here.

Example 2.4.1. i) Let H be a hyperplane of P and let U be a set of flags f ≤ H
of type (1, 2) such that U is a maximal independent set of the Kneser graph Γ′ of
type (1, 2) in H. Furthermore, let C be the set of all flags (l, S) ∈ V(Γ) such that
S ≤ H or (l, S ∩H) ∈ U . Then C is a maximal independent set of Γ of size

sq[3, 4] · sq[1, 3] + |U| · q2.

ii) The structures dual to those given in i).

Remark 2.4.2. The independent sets C given in Example 2.4.1 have cardinality

|C| ≤ sq[3, 4] · sq[1, 3] + sq[2](sq[3] + q2)q2

with equality if and only if U is not only a maximal independent set of Γ′ but also an
independent set of Γ′ of maximal size. According to [3, Proposition 2.1] by Blokhuis and
Brouwer maximal independent sets of the Kneser graph of type (1, 2) in PG(4, q) have
size at most sq[2](sq[3] + q2).
Note that any set C that we construct using such an independent set of Γ′ of maximal

size was already provided in [3, Section 5.1] by Blokhuis and Brouwer. Also note that,
regardless of the choice of U , the set C has size |C| > sq[3, 4] · sq[1, 3].

For the remainder of this section we let C be a maximal co-clique of Γ. We show that,
if C is not given by Example 2.4.1 above, then its size is significantly smaller than the
size of these examples. We give a short outline of the method of proof below:
We begin by first determining some structure on the set of flags through a given line in

the maximal co-clique C. Thereafter, in Section 2.4.2, we proceed to study the structure
that is provided by a set of flags of C through a given point. In Section 2.4.3 we then
provide some first bounds on the number of flags of C in a given hyperplane. Finally,
in Section 2.4.4 we assume that C is not given by Example 2.4.1, then consider a fixed
hyperplane containing a maximal number of flags and, using the maximal choice of said
hyperplane, determine an upper bound on |C|.
Recall that Lemma 2.1.8 proves that two flags (l, S) and (l′, S′) of Γ are adjacent if

and only if l ∩ S′ = ∅ = l′ ∩ S.
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2.4.1 Structure of Flags through a given Line

Throughout this section we let h be an arbitrary but fixed line in P and we set

L := {l ≤ P : ∃S ≤ P with S ∩ h = ∅ and (l, S) ∈ C}.

Lemma 2.4.3. For all solids S ≤ P with h ≤ S we have S ∈ Π3(∆h(C)) if and only if
S ∩ l 6= ∅ for all l ∈ L.

Proof. If L = ∅, then for all f = (l, S) ∈ C we have S ∩ h 6= ∅ and according to
Lemma 2.1.3 this is equivalent to h being saturated in C. Therefore, for L = ∅ we have
S ∈ Π3(∆h(C)) for all solids S ≤ P with h ≤ S and l∩S 6= ∅ for all l ∈ L holds trivially,
proving the claim.
Now, assume that L 6= ∅. For l ∈ L, Ŝ ∈ Π3(∆l(C)) with Ŝ ∩ h = ∅ and S ≤ P with

h ≤ S as well as S ∩ l = ∅ we have (h, S) /∈ C, proving S ∈ Π3(∆h(C)) =⇒ ∀l ∈ L :
S ∩ l 6= ∅. Now, let S ≤ P be a solid with h ≤ S and S ∩ l 6= ∅ for all l ∈ L. Then for
all f ∈ C we either have π1(f) /∈ L, which implies π3(f) ∩ h 6= ∅, or π1(f) ∈ L, which
implies π1(f) ∩ S 6= ∅. Therefore, for all f ∈ C we have {f, (h, S)} /∈ E(Γ). Since C is
maximal this implies (h, S) ∈ C, concluding this proof.

Corollary 2.4.4. The line h is saturated in C if and only if L = ∅.

Lemma 2.4.5. Let there be a subset L ⊆ L such that 〈h, L〉 is a hyperplane of P. Then
there are two lines l1, l2 ∈ L with H = 〈h, l1, l2〉.

Proof. Let l1 ∈ L be arbitrary but fixed. Then l1 ∩ h = ∅, which proves that 〈h, l1〉 is a
solid. From H = 〈h, L〉 we know that there must be a line l2 ∈ L with l2 6≤ 〈h, l1〉 and
thus 〈h, l1, l2〉 = H, as claimed.

Lemma 2.4.6. Let there be two lines l1, l2 ∈ L such that H := 〈h, l1, l2〉 is a hyperplane
of P. Then 〈h, l1〉∩〈h, l2〉 is a plane and for all S ∈ Π3(∆h(C)) we have 〈h, l1〉∩〈h, l2〉 ≤
S or S ≤ H.

Proof. Since 〈h, l1, l2〉 is a hyperplane and Si := 〈h, li〉 is a solid for both i ∈ {1, 2} we
know that S1 6= S2 and, for dimensional reasons, this implies that E := S1 ∩ S2 is a
plane.
Now, let S ∈ Π3(∆h(C)) be such that E 6≤ S. For all i ∈ {1, 2} Lemma 2.4.3

shows S ∩ li 6= ∅ and, since E 6≤ S and h ≤ E,S, we have h = E ∩ S. Note that
this also implies that Pi := li ∩ S /∈ h is a point for both i ∈ {1, 2}. Finally, since
H = 〈h, l1, l2〉 = 〈E,P1, P2〉 is a hyperplane we know that 〈h, P1, P2〉 is a solid with
〈h, P1, P2〉 ≤ S, which proves S = 〈h, P1, P2〉 ≤ H, as claimed.

Lemma 2.4.7. Let there be a subset L ≤ L with 〈h, L〉 = P as well as a plane E with
h ≤ E and l ∩ E 6= ∅ for all l ∈ L. Then we have E ≤ S for all S ∈ Π3(∆h(C)).
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Proof. Set P := l ∩ E for some l ∈ L and note that from l ∩ h = ∅ we have E = 〈h, P 〉.
Furthermore, let S be a subspace of P with h ≤ S and E 6≤ S which meets all lines in
L. Then every line l ∈ L satisfies l = 〈l ∩ E, l ∩ S〉 for all l ∈ L and thus we have

P = 〈h, L〉 = 〈E,L〉 = 〈E,S〉 = 〈P, S〉,

which implies dim(S) ≥ 4. Therefore, there is no solid S with h ≤ S, E 6≤ S and
S ∩ l 6= ∅ for all l ∈ L and now Lemma 2.4.3 proves E ≤ S for all S ∈ Π3(∆h(C)).

Lemma 2.4.8. For all l ∈ L we have

Π3(∆h(C)) ⊆ {S ∈ S[h, 3,P] : dim(S ∩ 〈h, l〉) ≥ 2}

and thus, if L 6= ∅, then |Π3(∆h(C))| ≤ q3 + 2q2 + q + 1. Furthermore, equality holds if
and only if L 6= ∅ and there is a solid Ŝ ≥ h such that l ≤ Ŝ for all l ∈ L.

Proof. If L = ∅ then, according to Corollary 2.4.4, h is saturated and thus equality does
not hold and there remains nothing to prove.
Thus, assume that L 6= ∅. Then, according to Lemma 2.4.3, for all S ∈ S[h, 3,P] we

have S ∈ Π3(∆h(C)) if and only if for all l ∈ L we have S ∩ l 6= ∅, that is, if and only if
for all l ∈ L we have dim(S ∩ 〈h, l〉) ≥ 2. Since L 6= ∅ there is a line l1 ∈ L and we have

|Π3(∆h(C))| ≤ sq[1, 2, 3] · sq[0, 2, 3, 5] + 1 = q3 + 2q2 + q + 1.

Now, if l ≤ Ŝ := 〈h, l1〉 for all l ∈ L and S is a solid through h with dim(S ∩ Ŝ) ≥ 2,
then S meets every line l ≤ Ŝ and thus all lines of L, that is, Lemma 2.4.3 shows
S ∈ Π3(∆h(C)). Hence, in this situation equality does hold.
However, if there is a line l ∈ L with l 6≤ Ŝ, then there is a plane E ≤ Ŝ with E∩ l = ∅

as well as a solid S through E with S ∩ l = ∅, which proves that equality does not hold
and concludes the proof.

Lemma 2.4.9. Let L = L1 ∪ L2 ∪ L3 be such that Ŝ1 := 〈h,L1〉 and Ŝ2 := 〈h,L2〉 are
two solids with h = Ŝ1 ∩ Ŝ2 and such that l 6≤ Ŝ1, Ŝ2 for all l ∈ L3. Furthermore, let
l1 ∈ L1 and l2 ∈ L2 be arbitrary but fixed. Then

Π3(∆h(C)) ⊆ {〈h, P1, P2〉 : P1 ∈ l1, P2 ∈ l2}

as well as |Π3(∆h(C))| ≤ q2 + 2q + 1 and for L3 = ∅ these hold with equality.

Proof. First, let S ∈ Π3(∆h(C)) be arbitrary and fixed. According to Lemma 2.4.8
we have Pi := li ∩ S 6= ∅ for all i ∈ {1, 2}. Furthermore, for all i ∈ {1, 2} we have
Ŝi = 〈h, li〉. Therefore, if Pi = li for some i ∈ {1, 2}, then S = Ŝi and S ∩ Ŝ3−i = h, that
is, S ∩ l3−i = ∅, a contradiction.

Hence, we know that P1 and P2 are points and from P2 /∈ Ŝ1 ≥ 〈h, P1〉 we have
S = 〈h, P1, P2〉, as claimed. Since there are sq[1]2 choices for points P1 ∈ l1 and P2 ∈ l2
and every solid S ∈ Π3(∆h(C)) is uniquely determined by two such points, we have
|Π3(∆h(C))| ≤ sq[1]2 = q2 + 2q + 1
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Now, assume that L3 = ∅, let P1 ∈ l1 and P2 ∈ l2 be arbitrary points and set
S := 〈h, P1, P2〉. Then, for all i ∈ {1, 2} we know that 〈h, Pi〉 is a plane contained in
Ŝi and S. Therefore, S contains a hyperplane of both Ŝ1 and Ŝ2 and since every line
l ∈ L = L1∪L2 is contained in one of these two subspaces, S has non-empty intersection
with all lines l ∈ L. Therefore, according to Lemma 2.4.3, S ∈ Π3(∆h(C)) and thus
equality holds.

Lemma 2.4.10. Let L = L1 ∪ L2 be such that there is a complement U of h in P and
a unique regulus R in U with 〈h, l〉 ∩ U ∈ R for all l ∈ L1. Furthermore, for all l ∈ L2
assume that 〈h, l〉 ∩ U 6∈ R.
Then Π3(∆h(C)) ⊆ {〈h, g〉 : g ∈ R}, where R is the unique opposite regulus of R

in U , we have |Π3(∆h(C))| ≤ q + 1 and in both equations equality holds if and only if
L2 = ∅. Furthermore, if L2 6= ∅ then |Π3(∆h(C))| ∈ {0, 1, 2}.

Proof. Since there is a regulus R in U with 〈h, l〉 ∩ U ∈ R for all l ∈ L1 we know that
S := {〈h, l〉 : l ∈ L1} is a set of solids such that for all distinct S, S′ ∈ S we have
S ∩ S′ = h. Furthermore, since the regulus R in U with 〈h, l〉 ∩ U ∈ R for all l ∈ L1 is
unique, we know that S has size r ≥ 3. We let R be the unique opposite regulus of R
in U .

Then, for all S ∈ Π3(∆h(C)) and all l ∈ L we have S∩l 6= ∅ and thus dim(S∩S) ≥ 2 for
all S ∈ S. Hence, for all S ∈ Π3(∆h(C)) and at least three distinct lines g1, g2, g3 ∈ R we
have S ∩ g1, S ∩ g2, S ∩ g3 6= ∅ and thus S ∩U is a line of U with non-empty intersection
with at least three distinct and thus all lines of R, that is, S ∩ U ∈ R. This proves
Π3(∆h(C)) ⊆ {〈h, g〉 : g ∈ R} as well as |Π3(∆h(C))| ≤ |R| = q + 1.

Now, if L2 = ∅, then for all l ∈ L = L1 we know that 〈h, l〉 ∩ U is an element of R
and for all g ∈ R this proves that g ∩ 〈h, l〉 is a point and 〈h, l〉 ∩ 〈h, g〉 is a plane, that
is, 〈h, g〉 ∩ l 6= ∅. Hence, if L2 = ∅, then Lemma 2.4.3 proves 〈h, g〉 ∈ Π3(∆h(C)) for all
g ∈ R and thus |Π3(∆h(C))| = |R| = q + 1.

Finally, consider the case L2 6= ∅, let l ∈ L2 be an arbitrary but fixed line and set
g := 〈h, l〉 ∩ U . For S ∈ Π3(∆h(C)) we have S ∩ l 6= ∅, which proves dim(S ∩ 〈h, l〉) ≥ 2
and thus also S ∩ g 6= ∅. From l ∈ L2 we have g /∈ R, which shows that g has non-empty
intersection with at most two lines of R. Therefore, {〈h, g〉 : g ∈ R ∧ g ∩ g 6= ∅} has
cardinality at most 2 and is a superset of Π3(∆h(C)), which proves the last claim.

Lemma 2.4.11. Let H := 〈h,L〉 be a hyperplane of P and let there be a plane E with
h ≤ E ≤ H such that l ∩E 6= ∅ for all l ∈ L. Then Π3(∆h(C)) = S[E, 3,P]∪S[h, 3, H]
and |Π3(∆h(C))| = 2q2 + q + 1.

Proof. First, note that every solid S ≤ H is a hyperplane of H and as such has non-
empty intersection with all lines l ∈ L. Furthermore, every solid S with E ≤ S has
non-empty intersection with all lines l ∈ L because E has non empty intersection with
all these lines. Therefore, according to Lemma 2.4.3, all solids S with E ≤ S or S ≤ H
are elements of Π3(∆h(C)).

Now, from Lemma 2.4.5 we know that there are lines l1, l2 ∈ L with 〈h, l1, l2〉 = H and
Lemma 2.4.6 shows 〈h, l1〉 ∩ 〈h, l2〉 ≤ S or S ≤ H for all S ∈ Π3(∆h(C)). Furthermore,
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any plane on h which meets both l1 and l2 is a subspace of the plane 〈h, l1〉 ∩ 〈h, l2〉,
which proves E = 〈h, l1〉 ∩ 〈h, l2〉.
Finally, there are sq[2, 3, 6] solids through E, sq[1, 3, 5] solids in H and sq[2, 3, 5] solids

through E in H, yielding a total of sq[2, 3, 6] + sq[1, 3, 5]− sq[2, 3, 5] = 2q2 + q + 1 solids
in Π3(∆h(C)), concluding the proof.

Lemma 2.4.12. Let L be such that there is a plane E with h ≤ E ≤ P for which
L1 := {l ∈ L : l ∩E 6= ∅} satisfies 〈h,L1〉 = P. Then Π3(∆h(C)) ⊆ S[E, 3,P] as well as
|Π3(∆h(C))| ≤ q2 + q + 1 and equality holds if and only if L = L1.

Proof. Lemma 2.4.7 shows Π3(∆h(C)) ⊆ S[E, 3,P] and thus |Π3(∆h(C))| ≤ sq[2, 3, 5] =
q2+q+1. Furthermore, for every solid S with E ≤ S we have h ≤ S and l∩S ≥ l∩E 6= ∅
for all l ∈ L1, that is, if L\L1 = ∅, then Lemma 2.4.3 shows that equality holds. Finally,
if L 6= L1, then there is a line l ∈ L\L1 and a 3-dimensional complement S of l in P with
E ≤ S, that is S ∈ S[E, 3,P], and due to S ∩ l = ∅ Lemma 2.4.3 shows S /∈ Π3(∆h(C)),
concluding the proof.

Lemma 2.4.13. Let E be a plane and let H be a hyperplane of P with h ≤ E ≤ H. We
set L1 := ∆H(L), L2 := {l ∈ L : l ∩E 6= ∅}, L3 := L \ (L1 ∪L2) and U := 〈h, l ∩H : l ∈
L \ L1〉. Furthermore, assume that one of the following holds

(I) 〈h,L2〉 = P and we have L1 \ L2 6= ∅, or

(II) 〈h,L1〉 = H, there is a plane E′ 6= E with h ≤ E′ ≤ H as well as l ∩ E′ 6= ∅ for
all l ∈ L1 and we have 〈E′,L2 \ L1〉 = P, or

(III) 〈h,L1〉 = H and for every plane E′ with h ≤ E′ ≤ H there is a line l ∈ L1 such
that l ∩ E′ = ∅.

Then Π3(∆h(C)) = S[U, 3, H] and dim(U) < 2 may only occur if (III) holds.

Proof. First, note that from l ≤ H for all l ∈ L1 and l ∩ U 6= ∅ for all l ∈ L \ L1 we
have l ∩ S 6= ∅ for all l ∈ L and all S ∈ S[U, 3, H]. Therefore, Lemma 2.4.3 shows
S[U, 3, H] ⊆ Π3(∆h(C)).
Also note that in the first case 〈h,L2〉 = P 6= H ≥ 〈h,L1〉 implies L2 \ L1 6= ∅ and in

the second case 〈E′,L2 \ L1〉 = P implies the same. However, if L2 \ L1 6= ∅, then there
is a line l ∈ L2 \ L1 with h 63 l ∩H ∈ U , that is, dim(U) ≥ 2. Therefore, dim(U) < 2
may only occur in the third case.
Now, it remains to show Π3(∆h(C)) ⊆ S[U, 3, H], that is, it remains to show that

every solid S ∈ Π3(∆h(C)) satisfies both U ≤ S as well as S ≤ H. In order to prove both
these claims we let S ∈ Π3(∆h(C)) be an arbitrary but fixed solid for the remainder of
this proof.
The first of the two remaining claims, that is U ≤ S, is fairly simple to see: According

to Lemma 2.4.3 we have S ∩ l 6= ∅ for all l ∈ L. For l ∈ L \ L1 we have l 6≤ H and then
S ≤ H implies that the point l ∩H is an element of S. Since h is also a subspace of S
this implies U = 〈h, l ∩H : l ∈ L \ L1〉 ≤ S, as claimed.
For the second claim, that is S ≤ H, we consider the three cases given in the claim

separately:
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(I) In the first case we may apply Lemma 2.4.7, which shows E ≤ S. Since L1\L2 6= ∅
we may let l1 be a line therein, which implies l1 ∩ E = ∅. Then 〈E, l1〉 = H and
according to Lemma 2.4.3 we have S ∩ l1 6= ∅. Together with E ≤ S, E ≤ H and
E ∩ l1 = ∅ this proves S = 〈E,S ∩ l1〉 ≤ H.

(II) In the second case, according to Lemma 2.4.5 there are two lines l1, l′1 ∈ L1 with
〈h, l1, l′1〉 = H and the only plane through h in H which has non-empty intersection
with all lines in L1 is the plane E′ := 〈h, l1〉∩〈h, l′1〉. According to Lemma 2.4.6 we
have E′ ≤ S or S ≤ H. We assume E′ ≤ S and show that S ≤ H holds nonetheless.
Since 〈E′,L2 \L1〉 = P there is a line l2 ∈ L2 \L1 and this line satisfies l2 ∩E 6= ∅.
Since h = E ∩ E′ and l2 ∩ h = ∅ as well as l2 6≤ H and h ≤ E′ ≤ H this implies
l2 ∩ E′ = ∅ and thus 〈E′, l2〉 is a hyperplane of P. However, 〈E′,L2 \ L1〉 = P and
thus there is another line l′2 ∈ L2 \ L1 with l′2 6≤ 〈E′, l2〉 and thus 〈E′, l2, l′2〉 = P.
Since l2 ∩ E 6= ∅ 6= l′2 ∩ E and h ≤ E we know that H ′ := 〈h, l2, l′2〉 = 〈E, l2, l′2〉
is a hyperplane of P. According to Lemma 2.4.6 we thus have E ≤ S or S ≤ H ′.
Now, we have E′ 6≤ H ′ from 〈E′, l1, l2〉 = P 6= H ′ ≥ l1, l2 and we assumed E′ ≤ S,
which proves that S ≤ H ′ does not occur. Therefore, we have E ≤ S and since E
and E′ are distinct planes in H this shows S = 〈E,E′〉 ≤ H.

(III) In the third case, if S 6≤ H then E′ := S ∩ H is a plane and there is a line
l ∈ L1 with l ∩ E′ = ∅ and since l ≤ H this implies l ∩ S = ∅, a contradiction to
S ∈ Π3(∆h(C)) and Lemma 2.4.3.

Lemma 2.4.14. Let L be such that 〈h, l : l ∈ L, l ∩ E 6= ∅〉 6= P for every plane E ≥ h
and such that to every hyperplane H ≥ h of P there is a plane E ≥ h with E ∩ l 6= ∅ for
all l ∈ ∆H(L). Furthermore, let L = L1 ∪ L2 ∪ L3 with L1 ∩ L2 = ∅ be such that all of
the following hold

(I) H1 := 〈h,L1〉 is a hyperplane of P with l 6≤ H1 for all l ∈ L \ L1 and there is a
plane E1 with h ≤ E1 ≤ H1 and l ∩ E1 6= ∅ for all l ∈ L1.

(II) H2 := 〈E1,L2〉 6= H1 is a hyperplane of P and there is a plane E2 6= E1 with
h ≤ E2 ≤ H1 as well as l ∩ E2 6= ∅ for all l ∈ L2.

(III) For all i ∈ {1, 2} all lines l ∈ L3 satisfy l ∩ Ei = ∅ as well as l 6≤ Hi and we set
Ui := 〈Ei, l ∩H3−i : l ∈ L3〉.

Then Π3(∆h(C)) = S[U1, 3, H2]∪S[U2, 3, H1], we have |Π3(∆h(C))| = 2q+ 1 if L3 = ∅
and |Π3(∆h(C))| ∈ {0, 1, 2} otherwise. Furthermore, if |Π3(∆h(C))| = 2, then the two
distinct solids S, S′ ∈ Π3(∆h(C)) satisfy S ∩ S′ = h.

Proof. First, let S ∈ S[Ui, 3, H3−i] be an arbitrary but fixed solid for some arbitrary
but fixed index i ∈ {1, 2}. Then S satisfies h ≤ S, meets every line l ∈ L3 because
l ∩ S ≥ l ∩ Ui 6= ∅, meets every line l ∈ Li because l ∩ S ≥ l ∩ Ei 6= ∅ and meets every
line l ∈ L3−i because S is a hyperplane of H3−i ≥ l. Therefore, S meets all lines l ∈ L
and thus, according to Lemma 2.4.3, is an element of Π3(∆h(C)).
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Now, let S be an arbitrary but fixed solid in Π3(∆h(C)). Since 〈h,L1〉 is a hyperplane
we know from Lemma 2.4.5 that there are lines l1, g1 ∈ L1 with 〈h, l1, g1〉 = H1 and the
only plane through h in H which may have non-empty intersection with all lines in L1
is the plane 〈h, l1〉 ∩ 〈h, g1〉. Thus, E1 = 〈h, l1〉 ∩ 〈h, l2〉 and Lemma 2.4.6 shows E1 ≤ S
or S ≤ H1. Furthermore, since H2 = 〈E1,L2〉 is a hyperplane, we have L2 6= ∅, that is,
there is a line l2 ∈ L2. We have l2 6≤ H1 and, since

〈h, l ∈ L : l ∩ E1 6= ∅〉 6= P = 〈h, l1, g1, l2〉,

we have l2∩E1 = ∅, which proves H2 = 〈E1, l2〉. Since l2∩E2 6= ∅ = l2∩h, h ≤ E2 ≤ H1
and l2 6≤ H1 we have E2 = 〈h, l2 ∩ H1〉 ≤ 〈E1, l2〉 = H2. From Lemma 2.4.3 we know
that S ∩ l2 6= ∅ as well as S ∩ l3 6= ∅ for all l3 ∈ L3. Thus, S either satisfies S ≤ H1
and S ∩ l2 6= ∅ implies E2 = 〈h, l2 ∩ H1〉 ≤ S or S 6≤ H1 and thus E1 ≤ S with
S = 〈E1, S ∩ l2〉 ≤ H2. Hence, there is an index i ∈ {1, 2} with Ei ≤ S ≤ H3−i and,
since the smallest subspace of H3−i through Ei that meets all lines of L3 is the subspace
Ui, we also have Ui ≤ S, concluding the proof of the first claim.

We proceed to determine |Π3(∆h(C))|. First, assume that L3 is the empty set. Then
for all i ∈ {1, 2} we have Ui = Ei and there are sq[2, 3, 4] = q+1 solids through Ei inH3−i.
Since there is one solid, namely the solid 〈E1, E2〉, that is being counted twice, we have
|Π3(∆h(C))| = 2q+1. Hence, from now on we may assume that L3 6= ∅. Now, if there is
a line l3 ∈ L3 with l3∩〈E1, E2〉 6= ∅, then 〈E1, E2〉 ≤ U1, U2 and there is at most one solid
in Π3(∆h(C)), namely the solid 〈E1, E2〉. Therefore, from now on we may also assume
l3 ∩ 〈E1, E2〉 = ∅ for all l3 ∈ L3. Note that this implies l3 ∩ Hi /∈ 〈E1, E2〉 = H1 ∩ H2
and proves l3 ∩Hi /∈ H3−i for all l3 ∈ L3 and all i ∈ {1, 2}. Since Ei ≤ Ui ≤ H3−i for
all i ∈ {1, 2} this implies that U1 and U2 are subspaces of dimension at least 3 which
are distinct from the solid 〈E1, E2〉. Thus, we have Π3(∆h(C)) ⊆ {U1, U2} as well as
|Π3(∆h(C))| ≤ 2.

Finally, consider |Π3(∆h(C))| = 2, that is, Π3(∆h(C)) = {U1, U2} with two solids
U1 6= U2. According to the above the two solids U1 and U2 are then distinct from
〈E1, E2〉 = H1 ∩H2 and we have Ui ∩Hi = Ei for all i ∈ {1, 2}. This implies

U1 ∩ U2 = (U1 ∩H2) ∩ (U2 ∩H1) = (U1 ∩H1) ∩ (U2 ∩H2) = E1 ∩ E2 = h

and concludes the proof.

Theorem 2.4.15. Exactly one of the following cases occurs:

C1 Π3(∆h(C)) is the set of all sq[1, 3, 5] = q4 + q3 + 2q2 + q + 1 solids through h,

C2 (a) there is a solid Ŝ ≥ h such that Π3(∆h(C)) is the set of all q3 + 2q2 + q + 1
solids S through h with dim(S ∩ Ŝ) ≥ 2,

(b) there are two solids Ŝ1, Ŝ2 with h = Ŝ1 ∩ Ŝ2 such that Π3(∆h(C)) is the set of
all q2 + 2q + 1 solids S through h with dim(S ∩ Ŝ1) = 2 = dim(S ∩ Ŝ2),

(c) there is a regulus G in a complement U of h in P such that Π3(∆h(C)) is the
set of all q + 1 solids 〈h, g〉 with g ∈ G,
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(d) there are two solids S1 and S2 with h = S1 ∩ S2 such that Π3(∆h(C)) =
{S1, S2},

C3 (a) there is a plane E ≥ h and a hyperplane H ≥ E such that Π3(∆h(C)) is the
set of all 2q2 + q + 1 solids S with E ≤ S or h ≤ S ≤ H,

(b) there is a plane E ≥ h such that Π3(∆h(C)) is the set of all q2 + q + 1 solids
S through E,

(c) there is a hyperplane H ≥ h such that Π3(∆h(C)) is the set of all q2 + q + 1
solids S through h in H,

(d) there is a plane E ≥ h and a hyperplane H ≥ E such that Π3(∆h(C)) is the
set of all q + 1 solids S with E ≤ S ≤ H,

C4 there are two distinct planes E1, E2 ≥ h and two distinct hyperplanes H1, H2 ≥
〈E1, E2〉 such that Π3(∆h(C)) is the set of all 2q + 1 solids S with E1 ≤ S ≤ H2
or E2 ≤ S ≤ H1,

C5 Π3(∆h(C)) contains exactly one solid,

C6 Π3(∆h(C)) is the empty set.

Proof. If L = ∅ then according to Corollary 2.4.4 we know that C1 occurs, if 〈h,L〉 is a
solid, then according to Lemma 2.4.8 we know that C2 (a) occurs and if L = L1∪L2 such
that 〈h,L1〉 and 〈h,L2〉 are two solids with h = 〈h,L1〉∩〈h,L2〉, then Lemma 2.4.9 shows
that C2 (b) occurs. Thus, assume that there are three solids S1, S2 and S3 with pairwise
intersection h and such that for all i ∈ {1, 2, 3} there is a line l ∈ L with Si = 〈h, l〉.
Let U be a complement of h in P. Then g1 := S1 ∩ U , g2 := S2 ∩ U and g3 := S3 ∩ U
are three skew lines in U and according to Lemma 1.3.6 there is a unique regulus R in
U which contains these three lines. Using L1 = {l ∈ L : ∃g ∈ R with l ≤ 〈h, g〉} and
L2 = L \ L1 Lemma 2.4.10 is applicable, showing that C2 (c) occurs if L2 = ∅ and that
either C2 (d), C5 or C6 occurs if L2 6= ∅. Consequently, from now on we may assume
that

(I) there are no two solids S and S′ with h ≤ S, S′ and l ≤ S or l ≤ S′ for all l ∈ L,
(II) to every choice of h1, h2, h3 ∈ L the solids 〈h, h1〉, 〈h, h2〉 and 〈h, h3〉 do not have

pairwise intersection h.

Now, consider the following two situations: First, let E be a plane with h ≤ E and set
L := {l ∈ L : l ∩ E 6= ∅}. If 〈h, L〉 = P and L = L then Lemma 2.4.12 applies, proving
that C3 (b) occurs; if 〈h, L〉 = P and L 6= L then Lemma 2.4.13 (the first condition is
fulfilled for H = 〈E, l〉 for some l ∈ L\L) applies, proving that C3 (d), C5 or C6 occurs;
and if 〈h, L〉 6= P and L = L, then Lemma 2.4.11 (dim(〈h,L〉) ≥ 4 per (I)) applies
proving that C3 (a) occurs. Secondly, let H be a hyperplane of P with h ≤ H such that
to every plane E′ with h ≤ E′ ≤ H there is a line l ∈ L with l ≤ H and l ∩ E′ = ∅.
Then, there is some line x1 ∈ L with x1 ≤ H, some plane Ex1 ≤ H that is the span
of h and a point of x1 as well as a second line x2 ∈ L with x2 ≤ H and x2 ∩ Ex1 = ∅,
that is, we have H = 〈δH(L)〉. Thus, Lemma 2.4.13 is applicable (the third condition is
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fulfilled), showing that C3 (c), C3 (d), C5 or C6 occurs. Hence, from now on we may
also assume that

(III) to every plane E such that h ≤ E the set L := {l ∈ L : l ∩ E 6= ∅} satisfies
〈h, L〉 6= P as well as L 6= L,

(IV) to every hyperplane H of P with h ≤ H there is a plane E with h ≤ E ≤ H and
l ∩ E 6= ∅ for all l ∈ ∆H(L).

Note that (I) and (II) imply the existence of l1, l′1 ∈ L such that E1 := 〈h, l1〉 ∩ 〈h, l′1〉
is a plane and thus H1 := 〈h, l1, l′1〉 is a hyperplane of P. Furthermore, note that the
only plane through h that has non-empty intersection with both l1 and l′1 is the plane
E1 and thus (IV) implies l∩E1 6= ∅ for all l ∈ L1 := ∆H1(L) (in the notation of (III) and
(IV) the set L1 was called L). Now, (III) implies that every line l ∈ L with l ∩ E1 6= ∅
satisfies l ≤ H1, that is, ∆H1(L) = L1 = {l ∈ L : l ∩ E1 6= ∅} and (III) also implies that
there is a line l2 ∈ L with l2∩E1 = ∅ and thus H2 := 〈E1, l2〉 is a hyperplane of P. From
L1 = {l ∈ L : l ∩E1 6= ∅} we have l2 /∈ L1, that is, l2 6≤ H1, which implies H2 6= H1. We
also know that l2∩H1 is a point with l2∩H1 /∈ E1 and thus E2 := 〈h, l2∩H1〉 ≤ H1∩H2 is
a plane with E2 6= E1. We set L2 := {l ∈ L\L1 : l∩E2 6= ∅} as well as L3 := L\(L1∪L2).

If 〈E1,L2〉 = P, then Lemma 2.4.13 applies (the second condition is fulfilled for H =
H1, E = E2 and E′ = E1), proving that C3 (d), C5 or C6 occurs. Thus, we may assume
that 〈E1,L2〉 = H2. If l 6≤ H2 for all l ∈ L3, then Lemma 2.4.14 applies, proving that
C4, C2 (d), C5 or C6 occurs. Hence, let there be a line l3 ∈ L3 with l3 ≤ H2 and let E3
be the unique plane provided by (IV) with h ≤ E3 ≤ H2 and l ∩ E3 6= ∅ for all l ∈ L
with l ≤ H2. From l3 /∈ L2 we have l3 ∩ E2 = ∅, proving E2 6= E3 as well as l3 6≤ 〈h, l2〉,
that is, H2 = 〈h, l2, l3〉. From l2 ∩ H1 = l2 ∩ E2 6= l2 ∩ E3 we know that l2 ∩ E3 /∈ H1
and thus E3 6≤ H1. Every line l ∈ L with l ≤ H1 ∩H2 satisfies l ∩ E1 6= ∅ 6= l ∩ E3 and
thus l 6≤ H1, a contradiction, which proves l1, l′1 6≤ H2. Now, Lemma 2.4.13 applies (the
second condition is fulfilled for H = H2, E = E1 and E′ = E3 — note that the roles of
L1 and L2 are swapped) and the subspace U given there satisfies dim(U) ≥ 2, proving
that C3 (d), C5 or C6 occurs.

Remark 2.4.16. From the proof of Theorem 2.4.15 we also gather that C1 only occurs
if Corollary 2.4.4 is applicable, C2 (a) only occurs if Lemma 2.4.8 is applicable with
equality, C2 (b) only occurs if Lemma 2.4.9 is applicable with L3 = ∅, C2 (c) only
occurs if Lemma 2.4.10 is applicable with L2 = ∅, C3 (a) only occurs if Lemma 2.4.11
is applicable, C3 (b) only occurs if Lemma 2.4.12 is applicable with L = L1, C3 (c) only
occurs if Lemma 2.4.13 is applicable with dim(U) = 1, that is, L = L1, C3 (d) only
occurs if Lemma 2.4.13 is applicable with dim(U) = 2 and C4 only occurs if Lemma
2.4.14 is applicable with L3 = ∅.

2.4.2 Structure provided by Flags through a given Point P

Throughout this section we let H be a hyperplane of P and we let P be a point of H.
We always consider a set L of lines on P which all satisfy a given subset of the cases
of Theorem 2.4.15 and determine implications that the flags through lines of that set
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yield for the rest of C. In fact, the flags that correspond to lines in L will never provide
any further information on flags the contain P , but only on flags that do not contain P .
One should keep that in mind when reading this section, as the results here are mostly
trivially true for flags that do contain P .

We begin with a quite obvious result that will be used frequently.

Lemma 2.4.17. If L is a non-empty set of lines through P such that l 6≤ H for all
l ∈ L, then |L| ≤ qdim(〈L〉)−1.

Proof. We let L be as in the claim and set d := dim(〈L〉). Since H is a hyperplane we
know that 〈L〉 ∩H is a hyperplane of 〈L〉 and thus has dimension d− 1. Then the claim
follows from

|L| ≤ |S[P, 1, 〈L〉] \S[P, 1, 〈L〉 ∩H]| = sq[0, 1, d]− sq[0, 1, d− 1] = qd−1.

The following Lemma is in regard to cases C2 (a), C3 (a) and C3 (c) of Theorem
2.4.15 and uses the existence of the solid (in case of C2 (a)) or the hyperplane (in the
other two cases) that is given there. Note that, although in these cases the arguments
are basically the same, the proof is quite technical and it is best to first read it for the
first case and then for the other two cases. In the terminology of the proof these two
situations are distinguished via κ = 3 and κ = 4.

Proposition 2.4.18. Let L be a non-empty set of lines l with P ∈ l 6≤ H such that one
of the following holds:

(I) Every line l ∈ L satisfies C2 (a) of Theorem 2.4.15.

(II) Every line l ∈ L satisfies C3 (a) or C3 (c) of Theorem 2.4.15.

Furthermore, let d ∈ {1, . . . , 4} and, if (I) occurs, then set κ := 3 and otherwise, if (II)
occurs, then set κ := 4.
If for some integer ξ we have |L| > κξ and for every subspace G of dimension d we

have |∆G(L)| ≤ ξ, then there is a subspace U with

dim(U) ≤
{
κ− 1 for d ≥ κ,
κ otherwise

such that for every line l with l 6≤ U there is a subspace Gl 3 P with dim(Gl) ≥ d+ 1 for
which every solid S ∈ Π3(∆l(C)) contains P or a complement of P in Gl. Moreover, in
the above, if there is a subspace V with dim(V ) = d + 1 and g ≤ V for all g ∈ L, then
V = Gl for all lines l with l 6≤ U , and, if dim(U) = κ, then Gl ≤ U for all lines l with
l 6≤ U .

Proof. For every line l ∈ L let Wl be the subspace with π1(f) ≤ Wl or π3(f) ∩ l 6= ∅
for all f ∈ C provided by Theorem 2.4.15 and the respective Lemma that occurs, as is
listed in Remark 2.4.16. Note that this implies π1(f) ≤Wl or π3(f)∩ l 6= ∅ for all l ∈ L
and all f ∈ C. Furthermore, we have dim(Wl) = dim(Wg) for all l, g ∈ L, that is, we
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may set κ(L) := dim(Wl) for some arbitrary l ∈ L and note that we have κ(L) = 3 if
case (I) occurs and κ(L) = 4 if case (II) occurs, that is, we have κ(L) = κ.
The idea is now as follows. Recall, that our aim was to find implications that the

set L gives for the set of flags of C on a line l. If l contains P , then, as we mentioned
earlier, one may not gather any implications for the flags on l from the set L and its
corresponding flags. Thus, we only consider lines l with P /∈ l. Among those lines we
choose the line l for which we may gather the smallest amount of information. This line
is such, that for most lines g ∈ L we have l ≤ Wg and its span with P is a plane that
will be called U2. We note that L yields the same amount of information for any other
line in this plane which does not contain P . Now, if the information that L yields for l
is already sufficient, then it is sufficient for all lines per our choice of the line. However,
if it is not, then we choose another line with that property (which meets U2 in a point)
and the span of that line together with U2 will be called U3. We proceed as such until
we finally find a line that provides enough information. We now provide the formal
definition of these subspaces Ui.

For all U ≤ P with P ∈ U we set LU := {l ∈ L : U ≤Wl} and note that for U, V ≤ P
with P ∈ U, V we obviously have U ≤ V =⇒ LV ⊆ LU . Furthermore, for convenience
we set U1 := P and for all i ∈ {2, . . . , 5} we let Ui ∈ S[Ui−1, i,P] be such that for all
U ∈ S[Ui−1, i,P] we have |LUi−1 \ LUi | ≤ |LUi−1 \ LU |. Note that, although U1 has
dimension 0, the subspaces Ui for i ∈ {2, . . . , 5} have dimension i.
From our definition above we have LU1 = LP = L, we know that dim(Uκ) = κ =

dim(Wl) implies l ≤ Wl = Uκ for all l ∈ LUκ and, in addition to that, for all l ∈ L and
all j ∈ {1, . . . , 5} with j > κ we have dim(Uj) = j > κ = dim(Wl) and thus Uj 6≤ Wl,
that is, LUj = ∅. Moreover, for all i ∈ {2, . . . , 5} and every subspace U with Ui−1 ≤ U
and dim(U) ≥ i we have

|LUi−1 \ LU | ≥ |LUi−1 \ LUdim(U) | ≥ |LUi−1 \ LUi |. (2.35)

Now, let ξ be an integer, let |LU1 | = |L| > κξ and assume that every subspace G of
dimension d satisfies |∆G(L)| ≤ ξ. Since LUκ+1 = ∅ there is ν ∈ {2, . . . , κ+ 1} such that
|LUν−1 \ LUν | > ξ. We choose ν minimal with that property, set U := Uν−1 and note
that we have dim(U) ≤ ν − 1 ≤ κ. Note that the existence of an integer j ≤ κ with
|LUj | ≤ (κ + 1 − j)ξ proves ν ≤ j and, if d ≥ κ, then, since l ≤ Uκ for all l ∈ LUκ , we
have |LUκ | ≤ ξ and thus ν ≤ κ, which implies dim(U) ≤ κ− 1 for d ≥ κ.

Note that for any line l with P ∈ l the claim holds trivially (choosing a fitting subspace
for Gl) and thus we only consider lines l with P /∈ l in the following. For any line l with
P /∈ l 6≤ U we have |LU \ L〈U,l〉| ≥ |LU \ LUν | > ξ (using Equation (2.35)) and any line
g ∈ Ll := LU \ L〈U,l〉 satisfies l 6≤ Wg. Hence, for all f ∈ C we know that π1(f) 6≤ U

implies that π3(f) has non-empty intersection with all lines in Lπ1(f). Let l be an
arbitrary line with P /∈ l 6≤ U . Every solid S ∈ Π3(∆l(C)) contains P or a complement
of P in Gl := 〈Ll〉 3 P . Since any d-dimensional subspace contains at most ξ lines of
L we know that Gl has dimension at least d+ 1. Obviously, if there is a subspace V of
dimension d+ 1 such that g ≤ V for all g ∈ L, then Gl ≤ V and thus Gl = V . Finally,
note that for dim(U) = κ we have g ≤ Uκ = U for all g ∈ LU ⊇ Ll, that is, Gl ≤ U .
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Cases C3 (a) and C3 (b) of Theorem 2.4.15

For this part we let L be a set of lines l with P ∈ l 6≤ H which satisfy case C3 (a) or
C3 (b) of Theorem 2.4.15 (the set L may contain lines of both cases). Furthermore, for
every line l ∈ L we let El ≥ l be the plane with π1(f) ∩ El 6= ∅ or π3(f) ∩ l 6= ∅ for all
f ∈ C provided by Theorem 2.4.15 and the respective Lemma that occurs, as is listed
in Remark 2.4.16. Finally, for all lines h ∈ S[P, 1,P] we set Lh := {l ∈ L : h ≤ El}, for
all lines h ∈ L := S[P, ∅, 1,P] we set Lh :=

⋃
Q∈h L〈Q,P 〉 and for every line h ∈ S[1,P]

we set Lh := L \ Lh.
Lemma 2.4.19. Let ξ ≥ q be an integer and g ∈ S[P, 1,P] be a line with

|Lg| >
{
ξ + q2 for ξ ≥ q2,

3ξ otherwise.

If ξ ≥ q2 then all lines l ∈ S[g, ∅, 1,P] satisfy |Ll| > ξ, and if ξ < q2 then there is a solid
Ŝ ≥ g such that all lines l ∈ S[g, ∅, 1,P] with l 6≤ Ŝ satisfy |Ll| > ξ.
Proof. Let h ∈ S[g, ∅, 1,P] be such that

∀l ∈ S[g, ∅, 1,P] : |Lg ∩ Lh| ≥ |Lg ∩ Ll|.

For any line l ∈ Lg ∩ Lh we have g ≤ El as well as El ∩ h 6= ∅ and, since g ∩ h = ∅ and
El is a plane, this implies El = 〈g,El ∩ h〉 ≤ 〈g, h〉 and may only occur for l ≤ 〈g, h〉.
This proves Lg ∩ Lh ⊆ S[P, 1, 〈h, g〉]. Now, for all l ∈ S[g, ∅, 1,P] we have Lg \ Ll ⊆ Ll
and thus if |Lg ∩ Lh| < |Lg| − ξ, then

|Ll| ≥ |Lg \ Ll| = |Lg| − |Lg ∩ Ll| ≥ |Lg| − |Lg ∩ Lh| > |Lg| − (|Lg| − ξ) = ξ

and there remains nothing to prove. Indeed, if ξ ≥ q2, then we may use Lemma 2.4.17
to see that this situation occurs:

|Lg ∩ Lh|
2.4.17
≤ q2 = (ξ + q2)− ξ < |Lg| − ξ.

Therefore, we may assume q ≤ ξ < q2 with |Lg| > 3ξ as well as |Lg ∩ Lh| > 2ξ. We set
Ŝ := 〈h, g〉 and let l be a line with l 6≤ Ŝ and l∩g = ∅. If l∩ Ŝ = ∅, then the fact that for
all l′ ∈ Lg ∩Lh we have El′ ≤ Ŝ and thus El′ ∩ l ≤ Ŝ∩ l = ∅ implies |Ll| ≥ |Lg ∩Lh| > 2ξ
and there remains nothing to prove. Thus, assume that l ∩ Ŝ is a point. Then there is
only one plane in S[g, 2, Ŝ] which meets l, namely the plane E := 〈g, l ∩ Ŝ〉. Any line
l′ ∈ Lh ∩ Lg with El′ ∩ l 6= ∅ satisfies l′ ≤ El′ = E. Furthermore, in E there are at most
q lines through P which do not lie in H, which proves |Lg ∩ Lh ∩ Ll| ≤ q and thus the
claim is implied by

|Ll| ≥ |(Lg ∩ Lh) \ Ll| = |Lg ∩ Lh| − |Lg ∩ Lh ∩ Ll| > 2ξ − q ≥ ξ.

Lemma 2.4.20. Let ξ ≥ q be an integer and let |L| > 2ξ + αξ + βξ with

αξ :=
{
ξ + q2 for ξ ≥ q2,

3ξ otherwise
and βξ :=

{
q2 for ξ ≥ q2,

αξ + ξ otherwise.

Then one of the following occurs:
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i) There is a line g (and a solid S for ξ < q2) with P ∈ g (and g ≤ S for ξ < q2)
such that for all h ∈ L with h ∩ g = ∅ (and h 6≤ S for ξ < q2) we have |Lh| > ξ.

ii) There is a plane E1 3 P such that for all h ∈ L with h 6≤ E1 we have |Lh| > ξ.

iii) ξ < q3 and there are two planes E1 3 P and E2 3 P such that for all h ∈ L with
h 6≤ E1 and h 6≤ E2 we have |Lh| > ξ.

iv) ξ < q2 and there is a subspace H ′ of dimension at most 4 such that for all h ∈ L
with h 6≤ H ′ we have |Lh| > ξ.

Proof. Let h1 ∈ L be such that |Lh1 | ≥ |Lh| for all h ∈ L and set E1 := 〈P, h1〉. If
|Lh1 | < |L| − ξ, then for all l ∈ L we have

|Ll| = |L| − |Ll| ≥ |L| − |Lh| > |L| − (|L| − ξ) = ξ,

and, choosing arbitrary subspaces in the claims, all of these hold. Furthermore, if there is
a line g ∈ S[P, 1,P] with |Lg| > αξ, then Lemma 2.4.19 proves that i) holds. Therefore,
we assume

|Lh1 | ≥ |L| − ξ > ξ + αξ + βξ (2.36)

as well as

∀g ∈ S[P, 1,P] : |Lg| ≤ αξ (2.37)

and let h2 ∈ {l ∈ L : l 6≤ E1} be such that

∀h ∈ {l ∈ L : l 6≤ E1} : |Lh1 ∩ Lh2 | ≥ |Lh1 ∩ Lh|. (2.38)

Again, if |Lh1 ∩ Lh2 | < |Lh1 | − ξ, then for all l ∈ L with l 6≤ E1 we have

|Ll| ≥ |Lh1 \ Ll| = |Lh1 | − |Lh1 ∩ Ll|
(2.38)
≥ |Lh1 | − |Lh1 ∩ Lh2 |

> |Lh1 | − (|Lh1 | − ξ) = ξ,
(2.39)

and ii) holds.
Now, any line l ∈ Lh1 ∩ Lh2 satisfies El ∩ hi 6= ∅ for all i ∈ {1, 2} and thus either
〈P,El ∩ h1〉 = 〈P,El ∩ h2〉, or

l ≤ El = 〈P,El ∩ h1, El ∩ h2〉 ≤ 〈P, h1, h2〉 =: H ′. (2.40)

Note that 〈P,El ∩ h1〉 = 〈P,El ∩ h2〉 for some l ∈ Lh1 ∩ Lh2 may only occur, if E1 and
E2 := 〈P, h2〉 have a line in common. Therefore, we have

Lh1 ∩ Lh2 ⊆
{
S[P, 1, H ′] for P = E1 ∩ E2,

S[P, 1, H ′] ∪ LE1∩E2 for dim(E1 ∩ E2) = 1
(2.41)
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and, if we apply Lemma 2.4.17 and use Equation (2.37), then we see that

|Lh1 ∩ Lh2 | ≤
{
q3 for P = E1 ∩ E2,

q2 + αξ for dim(E1 ∩ E2) = 1.

Hence, if P = E1 ∩ E2 and ξ ≥ q3 − q2 ≥ q2, then we have αξ = ξ + q2 as well as

|Lh1 ∩ Lh2 | ≤ q3 ≤ ξ + q2 = αξ
(2.36)
< |Lh1 | − ξ,

and if dim(E1 ∩ E2) = 1 and ξ ≥ q2, then we have

|Lh1 ∩ Lh2 | ≤ αξ + q2 = αξ + βξ
(2.36)
< |Lh1 | − ξ

and either way Equation (2.39) proves ii). Since this covers all cases with ξ ≥ q3 this
also implies that for ξ ≥ q3 one of the first two cases occurs, as claimed.
Therefore, from now on we may assume that

|Lh1 ∩ Lh2 | ≥ |Lh1 | − ξ
(2.36)
> αξ + βξ (2.42)

and either E1 ∩ E2 = P with ξ < q3 − q2, or dim(E1 ∩ E2) = 1 with ξ < q2. We study
the two situations ξ ≥ q2 and ξ < q2 separately.

First, assume that ξ ≥ q2 and thus E1 ∩ E2 = P occurs. Then H ′ is a hyperplane of
P, Equation (2.41) shows Lh1 ∩ Lh2 ⊆ S[P, 1, H ′] and we have αξ = q2 + ξ as well as
βξ = q2. Let h ∈ L be an arbitrary but fixed line with h 6≤ E1, E2. We determine the
number of planes through P which meet h1, h2 as well as h and, using that number, we
determine the cardinality of Lh1 ∩ Lh2 ∩ Lh. In view of that we recall that any plane E
which contains P and meets both h1 and h2 is a subspace of H ′, as we have seen earlier
in Equation (2.40). Now, since H ′ is a hyperplane of P we know that Q := h ∩H ′ is a
point or the line h itself, which leaves us with two cases to consider:

• Let Q be a point. Since E1 ∩ E2 = P /∈ h we know that there is some index
i ∈ {1, 2} with Q /∈ Ei. Therefore, any plane E with P,Q ∈ E and E ∩ hi 6= ∅
satisfies E ≤ 〈Ei, Q〉. Now, for all l ∈ Lh1 ∩ Lh2 ∩ Lh this implies l ≤ El ≤ 〈Ei, Q〉
and, using Lemma 2.4.17 and the fact that 〈Ei, Q〉 has dimension 3, this shows

|Lh1 ∩ Lh2 ∩ Lh| ≤ q2. (2.43)

• Let Q = h, that is, h ≤ H ′. Every plane that meets h1 and lies in H ′ lies in
one of the solids of S[E1, 3, H ′]. Since h 6≤ E1, E2, there is at most one solid
S ∈ S[E1, 3, H ′] with h ≤ S. Furthermore, if h ∩ E2 is a point, then, since
E1 ∩E2 = P /∈ h and thus h∩E2 /∈ E1, there is at most one solid S ∈ S[E1, 3, H ′]
with h ∩ E2 ∈ S. Moreover, if h ∩ E2 is a point and there are solids S, S′ ∈
S[E1, 3, H ′] such that h ≤ S and h ∩ E2 ∈ S′, then obviously S = S′. Hence, we
may let {S1, . . . , Sq+1} = S[E1, 3, H ′] be such that Pi := Si ∩ h is a point for all
i ∈ {1, . . . , q + 1} and such that, if h ∩ E2 6= ∅, then h ∩ E2 ∈ S1.
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Now, for all i ∈ {2, . . . , q + 1} we know that Pi is a point which does not lie in
E2 and the only plane in Si through P which meets h1, h2 and h is the plane
Ui := 〈Pi, Si ∩ E2〉. Therefore, if we set U1 := S1, then for all l ∈ Lh1 ∩ Lh2 ∩ Lh
we have l ≤ El ≤ Ui for some i ∈ {1, . . . , q + 1} and this proves

|Lh1 ∩ Lh2 ∩ Lh| ≤
q+1∑
i=1
|S[P, 1, Ui]| − |S[P, 1, Ui ∩H]| = 2q2. (2.44)

Now, using Equations (2.43) and (2.44) in the step marked with (∗), we have

|Lh| ≥ |Lh1 ∩ Lh2 | − |Lh1 ∩ Lh2 ∩ Lh|
(∗)
≥ |Lh1 ∩ Lh2 | − 2q2 (2.42)

> αξ + βξ − 2q2 = ξ

and, due to the arbitrary choice of h ∈ L with h 6≤ E1, E2, this proves iii). Since this
covers all cases with ξ ≥ q2 this also implies that for ξ ≥ q2 one of the first three cases
occurs, as claimed.
Finally, consider ξ < q2, which implies βξ = αξ + ξ, and let h ∈ L be a line with

h 6≤ H ′. Recall that H ′ does not necessarily have to be a hyperplane of P — it has
smaller dimension if and only if dim(E1 ∩ E2) > 0. For any line l ∈ Lh1 ∩ Lh2 we
either have dim(E1 ∩ E2) = 1 and l ∈ LE1∩E2 , or we have l ≤ El ≤ H ′. Note that,
if l ∈ Lh1 ∩ Lh2 satisfies l ≤ El ≤ H ′, then we have l ∈ Lh if and only if h ∩ H ′ 6= ∅
and h ∩ H ′ ∈ El, that is, if and only if h ∩ H ′ 6= ∅ and l ∈ L〈P,h∩H′〉. Now, using
Equation (2.37) we have |L〈P,h∩H′〉| ≤ αξ for h ∩ H ′ 6= ∅ as well as |LE1∩E2 | ≤ αξ for
dim(E1 ∩ E2) = 1. This proves |Lh1 ∩ Lh2 ∩ Lh| ≤ 2αξ and thus we have

|Lh| ≥ |Lh1 ∩ Lh2 | − |Lh1 ∩ Lh2 ∩ Lh| > αξ + βξ − 2αξ
ξ < q2

= ξ,

and, using the arbitrary choice of h, this proves iv) and concludes the proof.

Proposition 2.4.21. i) If |L| > 5q2, then one of the following occurs:
a) There is a line g 3 P and for any line l ∈ L with l∩g = ∅ there is a hyperplane

Hl 3 P such that any solid S ∈ Π3(∆l(C)) contains P or a complement of P
in Hl.

b) There are two planes E1 and E2 through P and for any line l ∈ L with
E1 6≥ l 6≤ E2 there is a hyperplane Hl 3 P such that any solid S ∈ Π3(∆l(C))
contains P or a complement of P in Hl.

ii) If either |L| > 9q and 〈L〉 is a solid, or if |L| > 81q and any subset L′ ⊆ L of more
than 9q lines spans at least a hyperplane, then there is a solid Ŝ′ on P such that
one of the following occurs:
a) There is a line g and a solid Ŝ with P ∈ g ≤ Ŝ and for any line l ∈ L with

l ∩ g = ∅ and l 6≤ Ŝ, Ŝ′ there is a hyperplane Hl 3 P such that any solid
S ∈ Π3(∆l(C)) contains P or a complement of P in Hl.

b) There is a subspace H ′ of dimension at most 4 and for any line l ∈ L with
l 6≤ H ′ and l 6≤ Ŝ′ there is a hyperplane Hl 3 P such that any solid S ∈
Π3(∆l(C)) contains P or a complement of P in Hl.
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Proof. We prove the claims by applying Lemma 2.4.20, we do so simultaneously and
the strategy is as follows: For the proof of i) we apply Lemma 2.4.20 with ξ = q2. For
the proof of ii), if |L| > 9q and 〈L〉 is a solid, then we set Ŝ′ := 〈L〉 and apply Lemma
2.4.20 with ξ = q and if |L| > 81q such that any subset L′ ⊆ L of more than 9q lines
spans at least a hyperplane, then we let Ŝ′ be an arbitrary solid on P and apply Lemma
2.4.20 with ξ = 9q. Furthermore, in the following we use the notation that is provided
by Lemma 2.4.20. Moreover, we remark that for the proof of i), if 2.4.20 ii) occurs, then
in view of 2.4.20 iii) we may let E2 be an arbitrary plane on P and for the proof of ii),
if 2.4.20 ii) or 2.4.20 iii) occurs, then in view of 2.4.20 iv) we may let H ′ be an arbitrary
subspace of dimension at most 4 containing E1 or E1 and E2. Hence, for the proof of
i) we may assume that either 2.4.20 i) or 2.4.20 iii) occurs and for the proof of ii) we
may assume that either 2.4.20 i) or 2.4.20 iv) occurs. Note that, for the proof of ii),
if 2.4.20 i) occurs, then we denote the solid S mentioned there for ξ < q2 by Ŝ in the
equation below. Thus, using Ŝ := Ŝ′ := ∅ for the proof of i), we set

L′ :=


{l ∈ L : l ∩ g = ∅, l 6≤ Ŝ, Ŝ′} if 2.4.20 i) occurs,
{l ∈ L : l 6≤ E1, E2, Ŝ

′} if 2.4.20 iii) occurs,
{l ∈ L : l 6≤ Ŝ′, H ′} if 2.4.20 iv) occurs

Furthermore, we let l be an arbitrary but fixed line of L′ such that, as we explained
above, Lemma 2.4.20 proves |Ll| > ξ, using the respective value of ξ ∈ {q2, 9q, q}.
Now, consider i) and the part of ii) with |L| > 81q such that any subset L′ ⊆ L of more

than 9q lines spans at least a hyperplane of P. Recall that for the former we use ξ = q2

and for the latter we use ξ = 9q. Note that every line l′ ∈ L satisfies P ∈ l′ 6≤ H and thus
Lemma 2.4.17 shows that any solid on P may contain at most q2 lines of Ll ⊆ L. Hence,
in both situations the lines in Ll span a subspace of P of dimension at least 4. Therefore,
we find lines l1, . . . , l4 ∈ Ll which span a hyperplane Hl on P . Any solid S ∈ Π3(∆l(C))
satisfies S ∩ li 6= ∅ for all i ∈ {1, . . . , 4} and we have 〈S ∩ l1, . . . , S ∩ l4〉 ≤ Hl ∩ S. Now,
if P /∈ S, then for all i ∈ {1, . . . , 4} we have li = 〈P, S ∩ li〉 ≤ 〈l1, . . . , l4〉 = Hl, which
implies Hl = 〈P, S ∩Hl〉 and S contains a complement of P in Hl, as claimed
Finally, consider the case |L| > 9q such that Ŝ′ = 〈L〉 is a solid. Recall that in this

situation we set ξ = q. Since every line l′ ∈ L satisfies P ∈ l′ 6≤ H we may apply Lemma
2.4.17 and see that any plane on P may contain at most q lines of Ll ⊆ L. Thus we find
lines l1, l2, l3 ∈ Ll which span a solid on P , that is, they span Ŝ′. We set Hl := 〈l, Ŝ′〉
and assume that there is a solid S ∈ Π3(∆l(C)), for otherwise the claim holds for some
arbitrary hyperplane and there remains nothing to prove. Then S satisfies S ∩ li 6= ∅
for all i ∈ {1, 2, 3} and we have 〈S ∩ l1, S ∩ l2, S ∩ l3〉 ≤ Ŝ′. Now, if P /∈ S, then for all
i ∈ {1, 2, 3} we have li = 〈P, S ∩ li〉 ≤ 〈l1, l2, l3〉 = Ŝ′, which implies Ŝ′ = 〈P, S ∩ Ŝ′〉
and S contains the complement S ∩ Ŝ′ of P in Ŝ′. Therefore, if P /∈ S, then S ∩ Ŝ′ is a
plane and, since S is a solid that also contains l, this proves ∅ 6= l∩ Ŝ′ ∈ S ∩ Ŝ′ and thus
〈l, S ∩ Ŝ′〉 is a complement of P in Hl = 〈l, Ŝ′〉, too, which concludes the proof.
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Case C2 (b) of Theorem 2.4.15

For this part we let L be a set of lines l with P ∈ l 6≤ H which satisfy case C2 (b) of
Theorem 2.4.15. For every line l ∈ L we know from Remark 2.4.16 that Lemma 2.4.9
is applicable with L3 = ∅ and we let S1

l and S−1
l with S1

l ∩ S
−1
l = l be the two solids

provided there, for which we know that for all f ∈ C we have π1(f) ≤ S1
l , π1(f) ≤ S−1

l ,
or π3(f) ∩ l 6= ∅. Furthermore, we set L0 := L, for every subspace U we set

LU := {l ∈ L : U ≤ S1
l ∨ U ≤ S−1

l }

and for all g ∈ S[1,P] we set

Lg := L \ Lg = {l ∈ L : g 6≤ S−1
l ∧ g 6≤ S

1
l }.

Note that to every subspace U and every line l ∈ LU with U 6≤ l = S1
l ∩ S

−1
l (in

particular, for every subspace U with dim(U) ≥ 1 and P /∈ U or dim(U) ≥ 2) there is
a unique index ε ∈ {−1, 1} with U ≤ Sεl and in this case we denote this index by εU (l).
We first construct two planes and a solid in three steps, as follows:

• Let g1 ∈ S[P, ∅, 1,P] be such that

∀g ∈ S[P, ∅, 1,P] : |L \ Lg1 | ≤ |L \ Lg| (2.45)

and set U1 := 〈P, g1〉 as well as L1 := LU1 = Lg1 .

• Let g2 ∈ S[P, ∅, 1,P] with g2 6≤ U1 be such that

∀g ∈ S[P, ∅, 1,P] with g 6≤ U1 : |L1 \ Lg2 | ≤ |L1 \ Lg| (2.46)

and set L2 := L1 ∩ LU2 ⊆ L1 ∩ Lg2 with

U2 :=
{
〈P, g2〉 for g2 ∩ U1 = ∅,
〈U1, g2〉 otherwise.

• Let g3 ∈ S[P, ∅, 1,P] with g3 6≤ U1, U2 be such that

∀g ∈ S[P, ∅, 1,P] with g 6≤ U1, U2 : |L2 \ Lg3 | ≤ |L2 \ Lg| (2.47)

and set L3 := L2 ∩ LU3 ⊆ L3 ∩ Lg3 with

U3 :=


〈P, g3〉 for g2 ∩ U1 6= ∅,
〈U1, g3〉 for g2 ∩ U1 = ∅ ∧ U1 ∩ g3 6= ∅,
〈U2, g3〉 otherwise.

Note that in view of Proposition 2.4.24 below we may assume that we have L0 6= ∅ and
then our choice above implies that the sets L1, L2 and L3 may not be empty sets, either.
Therefore, if U1 and U2 are planes (and thus satisfy U1 ∩ U2 = P ), then g3 satisfies
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g3 ∩ Ui 6= ∅ for some i ∈ {1, 2}, since otherwise L3 would be the empty set. Thus, we
may denote the subspaces U1, U2 and U3 (not necessarily in that order) by E , E ′ and
S with E ′ ≤ S, that is, {E , E ′,S} = {U1, U2, U3}, where E and E ′ are planes and S is
a solid. Furthermore, we let {σ, τ, τ ′} = {1, 2, 3} be such that S = Uσ = 〈Uτ ′ , gσ〉 and
finally, we let g4 ∈ S[P, ∅, 1,P] with g4 6≤ E ,S, that is g4 6≤ U1, U2, U3, be such that

∀g ∈ S[P, ∅, 1,P] with g 6≤ E ,S : |L3 \ Lg4 | ≤ |L3 \ Lg| (2.48)

and set L4 := L3 ∩ Lg4 .

Lemma 2.4.22. For all κ ∈ {1, 2, 3} with Uκ = 〈P, gκ〉 we have Lκ = Lκ−1 ∩ Lgκ and,
if κ > 1, then εgκ(l) = εUκ(l) = −εUκ−1(l) for all l ∈ Lκ.

Proof. Let κ ∈ {1, 2, 3} be such that Uκ = 〈P, gκ〉. For all l ∈ Lgκ we have P ∈ l ≤ S
εgκ (l)
l ,

which proves Uκ ≤ S
εgκ (l)
l and thus Lgκ = LUκ , that is, Lκ = Lκ−1 ∩ Lgκ . Moreover, for

l ∈ Lκ and κ > 1 we have gκ 6≤ S
εUκ−1(l)
l fromgκ ∩ Uκ−1 = ∅ if κ = 2,

S
εUκ−1 (l)
l = Uκ−1 = U2 6≥ g3 = gκ if κ = 3

and that implies

∀l ∈ Lκ : εgκ(l) = εUκ(l) = −εUκ−1(l).

Lemma 2.4.23. We have |Lσ| ≤ q2. Furthermore, if σ = 2, then we have |(L1 ∩ Lg2) \
L2| ≤ 1 and finally, if σ = 3, then we have

|L2 ∩ Lg3 | ≤
{

2 for g3 ∩ U1 6= ∅ 6= g3 ∩ U2,

0 for g3 ∩ U1 = ∅ = g3 ∩ U2
(2.49)

as well as L2 ∩ Lg3 = L3.

Proof. For all l ∈ Lσ we have l ≤ SεUσ (l)
l = Uσ and Lemma 2.4.17 proves |Lσ| ≤ q2. We

also recall that we have S1
l ∩ S

−1
l = l for all l ∈ L.

We consider σ = 2. For all l ∈ L1 ∩ Lg2 with l /∈ L2, that is l /∈ LU2 , we have
g2 ≤ S

εg2 (l)
l 6≥ U2 = 〈U1, g2〉 and thus U1 6≤ S

εg2 (l)
l , that is, εU1(l) 6= εg2(l). Therefore,

for all l ∈ L1 ∩ Lg2 with l /∈ L2 the following equation holds for i = 1 and proves
l = 〈P, g2 ∩ U1〉 and thus the claim:

P 6= gσ ∩ Ui ∈ S
εgσ (l)
l ∩ SεUi (l)l = S1

l ∩ S−1
l = l 3 P. (2.50)

Finally, we assume that σ = 3. Then we know that Lemma 2.4.22 applies with κ = 2
and thus for all l ∈ L2 ∩Lg3 we have εU1(l) 6= εU2(l). Therefore, if g3 ∩U1 6= ∅ 6= g3 ∩U2
and l ∈ L2 ∩ Lg3 , then there is some i ∈ {1, 2} with εUi(l) 6= εg3(l) and Equation (2.50)
holds for this index i and σ = 3, which shows l = 〈P, g3 ∩Ui〉. Since the index i ∈ {1, 2}
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was dependent on the line l this proves that there are at most two such lines, as claimed.
Furthermore, for all l ∈ L2 and all i ∈ {1, 2} we have g3 ∩ Ui = ∅ =⇒ g3 6≤ S

εUi (l)
l .

Hence, if g3 ∩ Ui = ∅ for both i ∈ {1, 2}, then εU1(l) 6= εU2(l) implies l /∈ Lg3 for
all l ∈ L2 and thus L2 ∩ Lg3 = ∅. Finally, if there is a unique index i ∈ {1, 2} with
g3 ∩ Ui 6= ∅ and we have a line l ∈ L2 ∩ Lg3 , then g3 ∩ U3−i = ∅ implies g3 6≤ S

εU3−i (l)
l

and therefore εU1(l) 6= εU2(l) implies g3 ≤ S
εUi (l)
l and thus U3 = 〈g3, Ui〉 ≤ S

εUi (l)
l . This

proves L2 ∩ Lg3 ⊆ L2 ∩ LU3 = L3 and, since we trivially have L3 ⊆ L2 ∩ Lg3 , that
concludes this proof.

Proposition 2.4.24. If for some ξ ∈ N we have |L| > 4ξ + 2, then the two subspaces E
and S with P ∈ E ∩ S, dim(E ∩ S) ≤ 1, dim(E) ≤ 2 and dim(S) ≤ 3 are such, that for
all g ∈ S[P, ∅, 1,P] with g 6≤ E ,S there are more than ξ lines in L that meet every solid
S ∈ Π3(∆g(C)).

Proof. For all (g, S) ∈ C we have S∩l 6= ∅ for all l ∈ Lg from our definition of Lg. Hence,
we shall provide a lower bound on Lg for all lines g in question and, due to Equation
(2.48), we may do so by considering the line g4.

For all l ∈ L4 = L3 ∩ Lg4 we have g4 6≤ S = S
εS(l)
l ≥ E ′ and thus g4 ≤ S

εE(l)
l as well

as SεE(l)
l ≥ E , which proves SεE(l)

l = 〈E , g4〉 and thus l = S ∩ 〈E , g4〉, that is, |L4| ≤ 1.
Hence, if |L0| > 4ξ + 2, then

∃i ∈ {1, . . . , 4} : |Li−1 \ Li| >
{
ξ + 1 for i = σ,

ξ otherwise.
(2.51)

We let ρ be the smallest integer in {1, . . . , 4} for which this equation holds and set
L := Lρ−1 \Lgρ ⊆ Lgρ . Note that our minimal choice of gρ per Equations (2.45), (2.46),
(2.47) or (2.48) now proves |Lg| ≥ |L| for all g ∈ S[P, ∅, 1,P] with g 6≤ Ui for all i < ρ
and therefore, to prove the claim it suffices to show |L| > ξ. Note that the way of proof
also allows to determine upper bounds on ρ and we collect these in a remark after this
proof.
If σ 6= ρ, then Lρ = Lρ−1 ∩Lgρ (this is the definition for ρ = 4 and for ρ ≤ 3 it follows

from Lemma 2.4.22) and thus we have

Lρ−1 \ Lρ = Lρ−1 \ Lgρ (2.52)

and Equation (2.51) implies |L| > ξ. Furthermore, if ρ = σ = 2 then Lemma 2.4.23
applies, that is, we have |(L1 ∩ Lg2) \ L2| ≤ 1 and together with Equation (2.51) this
implies |L| > ξ. Finally, if ρ = σ = 3, then the minimal choice of ρ implies |Lρ−1| =
|L2| ≥ 2ξ+2 and Lemma 2.4.23 applies, that is, either one of the cases given in Equation
(2.49) occurs, which proves |L| > 2ξ, or Lρ = Lρ−1 ∩Lgρ and then, too, Equation (2.52)
holds and again Equation (2.51) implies |L| > ξ.

Remark 2.4.25. Using the same notation as in the proof of Proposition 2.4.24 we also
have the following bounds on ρ:
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i) If dim(E ∩ E ′) = 1, then ρ ≤ 3 and if also ξ ≥ q2, then ρ ≤ 2.

Proof. Let dim(E ∩E ′) = 1 and note that per our construction this may only occur
if σ = 2, in which case U3 is the second plane that we have constructed above.
Any line l ∈ L3 then satisfies

E ∩ E ′ ≤ SεE(l)
l ∩ SεE′ (l)l = S−1

l ∩ S
1
l = l,

that is, l = E ∩ E ′. Hence, we have |L3| ≤ 1, which proves ρ ≤ 3. Furthermore,
we additionally have |L2| ≤ q2 from Lemma 2.4.23 and thus, given ξ ≥ q2, we may
deduce that Equation (2.51) holds for some i ∈ {1, 2}, which proves ρ ≤ 2.

ii) If ξ ≥ q2, then, using Lemma 2.4.23, we have |L3| ≤ |Lσ| ≤ q2, which proves
ρ ≤ 3.

Case C2 (c) of Theorem 2.4.15

For this part we let L be a set of lines l with P ∈ l 6≤ H which satisfy case C2 (c)
of Theorem 2.4.15. Note that for all l ∈ L we have |Π3(∆l(C))| = q + 1 and may let
S1
l , . . . , S

q+1
l be the solids in Π3(∆l(C)). Furthermore, for every subspace U we set

LU := {l ∈ L : ∃i ∈ {1, . . . , q + 1} with U ≤ Sil},

and for all g ∈ S[1,P] we set

Lg := L \ Lg = {l ∈ L : ∀i ∈ {1, . . . , q + 1} we have g 6≤ Sil}.

We recall that the solids of Π3(∆l(C)) have pairwise intersection l and thus to every
subspace U and every line l ∈ LU with U 6≤ l (in particular, for every subspace U with
dim(U) ≥ 1 and P /∈ U or dim(U) ≥ 2) there is a unique index ε ∈ {1, . . . , q + 1}
with U ≤ Sεl and we denote this index by εU (l). Furthermore, we let L0 denote L and
for all i ∈ {1, . . . , 5} we let gi ∈ S[P, ∅, 1,P] be such that, setting Ui := 〈P, gi〉 and
Li := LUi ∩ Li−1, the planes U1, . . . , U5 are pairwise distinct and all

g ∈ Li := {h ∈ S[P, ∅, 1,P] : ∀j ∈ {1, . . . , i− 1} we have h 6≤ Uj} (2.53)

satisfy

|Li−1 \ Lgi | ≤ |Li−1 \ Lg|. (2.54)

Finally, we note that P ∈ l for all l ∈ L implies LUi = Lgi and thus Li = Lgi ∩ Li−1.

Lemma 2.4.26. For every line l ∈ L and every complement S of l in P there are
opposite reguli R and R in S with Π3(∆l(C)) = {〈l, r〉 : r ∈ R} and such that every flag
f ∈ C satisfies π3(f) ∩ l 6= ∅ or π1(f) ≤ 〈l, r〉 for some r ∈ R.
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Proof. Let l be a line of L. According to Remark 2.4.16 case C2 (c) of Theorem 2.4.15
occurs if and only if Lemma 2.4.10 is applicable with L2 = ∅. Therefore, there is a
complement S′ of l in P and there are unique opposite reguli R′ and R′ in S′ such that
Π3(∆l(C)) = {〈l, r′〉 : r′ ∈ R′} and such that every flag f ∈ C satisfies π3(f) ∩ l 6= ∅ or
π1(f) ≤ 〈l, r′〉 for some r′ ∈ R′.

Now, let S be another complement of l in P. According to Lemma 1.3.11 the existence
of the regulus R′ = {U ∩S′ : U ∈ Π3(∆l(C))} in S′ proves that R := {S∩〈l, r〉 : r ∈ R′}
and R = {S ∩ 〈l, r′〉 : r′ ∈ R′} are opposite reguli in S. Furthermore, for every line
r′ ∈ R′ we have

〈l, r′〉 = 〈l, 〈l, r′〉 ∩ S〉 ∈ {〈l, r〉 : r ∈ R},

which proves

Π3(∆l(C)) = {〈l, r′〉 : r′ ∈ R′} ⊆ {〈l, r〉 : r ∈ R} (2.55)

and since both sides of Equation (2.55) have cardinality q + 1 the equation must hold
with equality.
Finally, for all r′ ∈ R′ the line r := S ∩ 〈l, r′〉 ∈ R satisfies 〈l, r′〉 = 〈l, r〉. Therefore,

and since any flag f ∈ C with π3(f)∩ l = ∅ satisfies π1(f) ≤ 〈l, r′〉 for some r′ ∈ R′, any
such flag also satisfies π1(f) ≤ 〈l, r〉 for some r ∈ R.

Lemma 2.4.27. If h1, h2 ∈ S[P, ∅, 1,P] are such that 〈P, h1〉 ∩ h2 is a point, then
|Lh1 ∩ Lh2 | ≤ q2.

Proof. Let Q := 〈P, h1〉∩h2 be a point and note that it may not be the point P and that
thus 〈P, h1, h2〉 is a solid. Assume that there is a line l ∈ Lh1 ∩ Lh2 . On the one hand,
if εh1(l) 6= εh2(l), then 〈P,Q〉 ≤ S

εh1 (l)
l ∩ Sεh2 (l)

l = l and thus l = 〈P,Q〉 ≤ 〈P, h1, h2〉.
On the other hand, if εh1(l) = εh2(l), then l ≤ S

εh1 (l)
l = 〈P, h1, h2〉. Therefore, we have

|Lh1 ∩ Lh2 | ≤ |S[P, 1, 〈P, h1, h2〉]| and Lemma 2.4.17 proves the claim.

Lemma 2.4.28. If h1, h2 ∈ S[P, ∅, 1,P] are such that 〈P, h1〉∩h2 = ∅, then S := 〈h1, h2〉
is a solid with P /∈ S, we have 〈P, h1〉 ∩ 〈P, h2〉 = P and for all l ∈ Lh1 ∩ Lh2 we have
εh1(l) 6= εh2(l).

Proof. We have P /∈ S for otherwise 〈P, h1〉 is a hyperplane of S and as such as has
non-empty intersection with h2, a contradiction. Furthermore, for all l ∈ Lh1 ∩ Lh2 ,
if εh1(l) = εh2(l), then h2 ≤ S

εh2 (l)
l = S

εh1 (l)
l ≥ 〈P, h1〉 and again h2 ∩ 〈P, h1〉 6= ∅, a

contradiction. Finally, from P /∈ S ≥ h1, h2 and since h1 ∩ h2 = ∅ we have S = 〈h1, h2〉
as well as 〈P, h1〉 ∩ 〈P, h2〉 = P .

Lemma 2.4.29. If h1, h2 ∈ S[P, ∅, 1,P] are skew lines with P /∈ 〈h1, h2〉 and we have
l ∈ Lh1 ∩ Lh2, then Q := l ∩ 〈h1, h2〉 6= ∅ occurs only if Q ∈ h1 or Q ∈ h2.
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Proof. Assume that h1 and h2 are skew lines with P /∈ 〈h1, h2〉 =: S and assume that
l ∈ Lh1 ∩Lh2 is a line with Q := l∩S 6= ∅ and Q 6≤ h1, h2. Since l 3 P /∈ S we know that
Q is a point. Thus, for dimensional reasons, 〈Q, h1〉 ∩ 〈Q, h2〉 is a line in S and P /∈ S
shows that 〈P,Q, h1〉 ∩ 〈P,Q, h2〉 is the plane E = 〈P, 〈Q, h1〉 ∩ 〈Q, h2〉〉. Now, E is a
subspace of Sεh1 (l)

l ∩ Sεh2 (l)
l and this yields a contradiction, since Lemma 2.4.28 shows

εh1(l) 6= εh2(l), that is, Sεh1 (l)
l ∩ Sεh2 (l)

l = l.

Lemma 2.4.30. If gi ∩ Uj 6= ∅ for some distinct i, j ∈ {1, . . . , 5} or g3 6≤ 〈P, g1, g2〉,
then |L5| ≤ 5q2 + 9q + 1.

Proof. If Ui ∩ gj 6= ∅ for some distinct i, j ∈ {1, . . . , 5}, then Lemma 2.4.27 implies
the claim. Hence, assume that Ui ∩ gj = ∅ for all distinct i, j ∈ {1, . . . , 5}. Note
that Lemma 2.4.28 then shows P /∈ 〈gi, gj〉, Ui ∩ Uj = P and εgi(l) 6= εgj (l) for all
distinct i, j ∈ {1, . . . , 5} and all l ∈ L5. Furthermore, in view of the claim, assume that
g3 6≤ 〈P, g1, g2〉 and set S := 〈g1, g2〉 as well as

L′5 := {l ∈ L5 : ∀i ∈ {1, . . . , 5} we have l ∩ gi = ∅}.

Note that, using Lemma 2.4.17, we then have |L5| ≤ |L′5| + 5q and thus it suffices to
prove |L′5| ≤ 5q2 + 4q + 1.

For all l ∈ L′5 we have l ∩ gi = ∅ for all i ∈ {1, . . . , 5} and thus Lemma 2.4.29 is
applicable and shows l ∩ 〈gi, gj〉 = ∅ for all i, j ∈ {1, . . . , 5}. In particular, for all l ∈ L′5
the solid S is a complement of l and thus Lemma 2.4.26 yields opposite reguli Rl and Rl
in S such that Π3(∆l(C)) = {〈l, r〉 : r ∈ Rl} (which is equivalent to Rl = {Sil ∩ S : i ∈
{1, . . . , q + 1}}) and such that every flag f ∈ C satisfies π3(f) ∩ l 6= ∅ or π1(f) ≤ 〈l, r〉
for some r ∈ Rl. For all i ∈ {1, . . . , 5} and all l ∈ L′5 we set hli := 〈l, gi〉 ∩ S ∈ Rl and
note that g1, g2 ≤ S proves g1 = hl1 as well as g2 = hl2 and motivates h1 := g1 as well as
h2 := g2.

Now, for all l ∈ L′5 we know that 〈l, g3〉 is a solid containing P , hl3 and g3 and thus
〈P, hl3, g3〉 has dimension at most 3. Furthermore, for all l ∈ L′5 the span 〈P, hl3〉 is a
plane contained in 〈P, S〉 and, since g3 does not lie in 〈P, S〉, this implies that in fact
〈P, hl3, g3〉 has dimension 3, that is, we have

∀l ∈ L′5 : 〈P, hl3, g3〉 = 〈l, g3〉. (2.56)

Furthermore, for all distinct i, j ∈ {1, . . . , 5} and all l ∈ L′5 the fact that we have
εgi(l) 6= εgj (l) shows that hli and hlj are distinct lines of Rl. Moreover, if l and l′ are
distinct lines in L′5 with l′ 6≤ 〈l, g3〉, then we have

〈P, hl3, g3〉
(2.56)= 〈l, g3〉 6= 〈l′, g3〉 ≥ 〈P, g3〉 = U3 =⇒ hl3 6≤ 〈l′, g3〉 ≥ 〈P, hl

′
3 〉 ≥ hl

′
3

which proves 〈P, hl3〉 6= 〈P, hl
′

3 〉 as well as hl3 6= hl
′

3 . Finally, we obviously have

∀l, l′ ∈ L′5, ∀i ∈ {1, . . . , 5} : Ui = 〈P, gi〉 ≤ 〈l, gi〉 ∩ 〈l′, gi〉 = 〈l, hli〉 ∩ 〈l′, hl
′
i 〉. (2.57)
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Indeed, for all lines l, l′ ∈ L′5 for which there is an index i ∈ {3, 4, 5} with hli 6= hl
′
i

the intersection of the lines hli and hl
′
i still contains the point Ui ∩ S and thus the

corresponding reguli Rl and Rl′ are distinct, that is, we have |Rl ∩Rl′ | = 2 and hlj ∩ hl
′
j

is in fact the point Pj := Uj ∩ S for all j ∈ {3, 4, 5}.
Now, we consider the quotient space P/P . The above translates into the following:

Ŝ := 〈P, S〉 is a solid and a complement of any point l ∈ L′5 in P/P (we have seen
above that in P the solid S and every line l ∈ L′5 satisfy l ∩ S = ∅). Furthermore,
for all l ∈ L′5, since Rl is a regulus in P (in particular, in the solid S of P), we know
that R̂l := {〈P, r〉 : r ∈ Rl} is a regulus in the quotient space P/P (in particular, in
the solid Ŝ of P/P ) and it contains five distinct lines of P/P , namely ĥli := 〈P, hli〉 for
i ∈ {1, . . . , 5}. Moreover, for all l, l′ ∈ L′5 the reguli R̂l and R̂l′ have the two lines 〈P, h1〉
and 〈P, h2〉 in common and from Equation (2.57) we already know that the set

{(r̂, r̂′) ∈ R̂l × R̂l′ : dimP/P (〈l, r̂〉 ∩ 〈l′, r̂′〉) ≥ 1}

contains (ĥli, ĥl
′
i ) for all i ∈ {1, . . . , 5} and thus it has cardinality at least 5. Finally,

for all l, l′ ∈ L′5 with l′ 6≤ 〈l, g3〉 we already have seen 〈P, hl3〉 6= 〈P, hl
′

3 〉 as well as
〈P, P3〉 ≤ 〈P, hl3〉 ∩ 〈P, hl

′
3 〉, that is, a line of R̂l and a line of R̂l′ meet in a point, the two

reguli must thus be distinct and we may apply Corollary 1.3.15 to see that in this case
in P/P the point l′ must be an element of

⋃
r∈R̂l
〈l, r〉.

Given all that we may prove the claim as follows. If there is a line l ∈ L′5 such that
L′5 ⊆ S[P, 1, 〈l, g3〉], then Lemma 2.4.17 shows |L′5| ≤ q2 and there remains nothing to
prove. Hence, we may assume that there are two lines l1 and l2 in L′5 with l2 6≤ 〈l1, g3〉
and we have seen that this implies hl′3 6= hl3. Then, in P/P , any point l ∈ L′5 with
l /∈ 〈l1, g3〉 ∪ 〈l2, g3〉 satisfies

l ∈
⋃

r1∈R̂l1

〈l1, r1〉 ∩
⋃

r2∈R̂l2

〈l2, r2〉 =
⋃

r1∈R̂l1
r2∈R̂l2

〈l1, r1〉 ∩ 〈l2, r2〉. (2.58)

Since l1 6= l2 Lemma 1.3.14 shows (in P/P ) that among the intersections in the union
on the right hand side of this equation occur at most q + 2 subspaces of dimension ≥ 1,
at most one of these subspaces has dimension 2 and the remaining intersections have
dimension 0 (all dimensions in P/P ). Thus, in P/P the number of points in the union
on the right hand side of Equation (2.58) is at most

|R̂l1 × R̂l2 |+ (q + 2) · q + q2 = 3q2 + 4q + 1.

Furthermore, using Lemma 2.4.17, we know that in P the subspaces 〈l1, g3〉 and 〈l2, g3〉
contain at most q2 lines of L′5, each, and thus we have the upper bound |L′5| ≤ 5q2+4q+1,
as required.

Lemma 2.4.31. Assume that g1, g2 and g3 are such that gi ∩ Uj = ∅ for all distinct
i, j ∈ {1, 2, 3} and such that g3 ≤ 〈P, g1, g2〉.
Then there is a unique regulus R with g1, g2, U3 ∩ 〈g1, g2〉 ∈ R and for all lines g we

have L3 ⊆ Lg if there is a line r ∈ R with g ≤ 〈P, r〉 and |L3 ∩ Lg| ≤ q2 otherwise.
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Proof. Set h1 := g1, h2 := g2, S := 〈h1, h2〉 and h3 := U3 ∩ S. Since g1 ∩U2 = ∅ Lemma
2.4.28 shows P /∈ S. Hence, U3 = 〈P, g3〉 = 〈P, h3〉 and P ∈ l for all l ∈ L proves
Lg3 = LU3 = Lh3 . Indeed, for all distinct i, j ∈ {1, 2, 3} we even have gi ∩ Uj = ∅ and
Lemma 2.4.28 shows Ui ∩Uj = P , that is, hi ∩ hj = ∅ as well as 〈hi, hj〉 = S. Therefore,
according to Lemma 1.3.6, there is a unique regulus R in S with h1, h2, h3 ∈ R. Let l
be an arbitrary line of L3 = Lh1 ∩ Lh2 ∩ Lh3 .
We have Q := l ∩ S = ∅, for otherwise, if Q 6= ∅, then from l 3 P /∈ S we know that

Q is a point and, since h1, h2 and h3 skew lines, there are distinct i, j ∈ {1, 2, 3} with
Q /∈ hi, hj and S = 〈hi, hj〉 such that Lemma 2.4.29 yields a contradiction. Hence, S is
a complement of l in P and Lemma 2.4.26 implies that {S ∩ Sil : i ∈ {1, . . . , q + 1}} is a
regulus in S and, since it contains the three distinct lines h1, h2 and h3, it is the regulus
R.
Now, for all r ∈ R and every line g ≤ 〈P, r〉 we have g ≤ S

εr(l)
l , that is, l ∈ Lg and

thus, due to the arbitrary choice of l, we have L3 ⊆ Lg. Furthermore, for any line g with
l ∈ Lg there is a line r ∈ R such that we have g ≤ Sεr(l)l and, for dimensional reasons, g
then meets 〈P, r〉 in at least a point. Hence, if g is a line with g 6≤ 〈P, r〉 for all r ∈ R,
then either g ∩ 〈P, r〉 = ∅ for all r ∈ R and we have L3 ∩ Lg = ∅, or g ∩ 〈P, r〉 6= ∅ for
some r ∈ R and we have Lg ∩ L3 ⊆ Lg ∩ Lr and Lemma 2.4.27 shows |Lg ∩ Lr| ≤ q2,
concluding the proof.

Proposition 2.4.32. If ξ ∈ N is such that |L| > 5q2 + 9q + 1 + 5ξ, then there is a set
E of at most q + 1 planes such that for all g ∈ S[P, ∅, 1,P] with g 6≤ E for all E ∈ E
there is a set Lg ⊆ L of more than ξ lines such that every solid S ∈ Π3(∆g(C)) satisfies
S ∩ l 6= ∅ for all l ∈ Lg.

Proof. If there is an index i ∈ {1, . . . , 5} with |Li−1 \ Li| > ξ, then we let ι be minimal
in {1, . . . , 5} with this property, set E := {Ui : i ∈ {1, . . . , ι − 1}} and, considering the
choice of gι per Equation (2.54), we then have

|Lg| = |L \ Lg| ≥ |Lι−1 \ Lg|
(2.54)
≥ |Lι−1 \ Lι| > ξ

for all lines

g ∈ Lι
(2.53)= {h ∈ S[P, ∅, 1,P] : g 6≤ E for all E ∈ E}.

Thus, if there is such an index, then there remains nothing to prove. Furthermore, we
remark that if gi ∩ Uj 6= ∅ for some distinct i, j ∈ {1, . . . , 5}, or if g3 6≤ 〈P, g1, g2〉, then
we have |L5| ≤ 5q2 + 9q+ 1 from Lemma 2.4.30 and thus in this case there must be such
an index.
Now, if there is no such index i, then |L3| > 5q2 + 9q+ 1 + 2ξ and we have gi ∩Uj = ∅

for all distinct i, j ∈ {1, 2, 3} as well as g3 ≤ 〈P, g1, g2〉. In this case let R be the regulus
in 〈g1, g2〉 provided by Lemma 2.4.31, set E := {〈P, r〉 : r ∈ R} as well as

L := {h ∈ S[P, ∅, 1,P] : h 6≤ E for all E ∈ E}
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and note that Lemma 2.4.31 proves |L3 ∩ Lg| ≤ q2 and thus

|Lg| = |L \ Lg| ≥ |L3 \ Lg| ≥ |L3| − q2 ≥ 5q2 + 9q + 1 + 2ξ − q2 > ξ

for all g ∈ L.
Finally, regardless of the case that occurred above, according to Lemma 2.4.10 every

flag f ∈ C with π1(f) 6≤ E for all E ∈ E satisfies π3(f) ∩ l 6= ∅ for all l ∈ Lπ1(f),
concluding the proof.

2.4.3 A first Approach to Bounds on the Number of Flags in a given
Hyperplane

Lemma 2.4.33. Let H be a hyperplane of P. If there is a line h 6≤ H which occurs in
at least one flag of C, then

|∆H(C)| ≤ 2q7 + 4q6 + 5q5 + 6q4 + 5q3 + 4q2 + 2q + 1.

Proof. Let h be such a line and let f ∈ C be such that π1(f) = h. Then P := π1(f)∩H is
a point and E := π3(f)∩H is a plane. Now, every flag f ′ ∈ ∆H(C) satisfies π1(f ′)∩E 6= ∅
or P ∈ π3(f ′) and there are

sq[0, 3, 4] · sq[1, 3] + (sq[1, 4]− sq[2,−1, 1, 4]− sq[0, 1, 4]) · sq[0, 1, 3, 4]
= 2q7 + 4q6 + 5q5 + 6q4 + 5q3 + 4q2 + 2q + 1

such flags.

Lemma 2.4.34. Let H be a hyperplane of P, let h be a line of P with h 6≤ H and set
C := {f ∈ ∆H(C) : h∩H /∈ π3(f)}. Depending on which case of Theorem 2.4.15 occurs
for the line h, we have

|C| ≤


0 for C1,
q4 for C2 (a),
2q4 for C2 (b),
q5 + q4 for C2 (c),

|C| ≤


q5 + q4 for C3 (a),
q6 + q5 + q4 for C3 (b) or (c),
2q6 + q5 + q4 for C3 (d),
2q5 + q4 for C4.

Proof. In Remark 2.4.16 we already noted that a given case of Theorem 2.4.15 only
occurs if the respective Lemma is applicable. Hence,

• for C1 the solid of every flag of C has non-empty intersection with h and thus
|C| = 0;
• for C2 (a) there is a solid Ŝ1 ≥ h 6≤ H such that π1(f) ≤ Ŝ1 for all f ∈ C, which
proves

|C| ≤ sq[0,−1, 1, 2] · sq[0, 1, 3, 4] = q4;

• for C2 (b) there are two solids Ŝ1, Ŝ2 ≥ h 6≤ H such that for all f ∈ C we have
π1(f) ≤ Ŝi for some i ∈ {1, 2}, which proves |C| ≤ 2q4;
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• for C2 (c) there are q + 1 solids with Ŝi ≥ h 6≤ H for all i ∈ {1, . . . , q + 1} such
that for all f ∈ C we have π1(f) ≤ Ŝi for some i ∈ {1, . . . , q + 1}, which proves
|C| ≤ (q + 1)q4;
• for C3 (a) there is a plane E and a hyperplane H ′ with h ≤ E ≤ H ′ such that for

all f ∈ C we have π1(f) ≤ H ′ and π1(f) ∩ E 6= ∅, which proves

|C| ≤ (sq[0,−1, 1, 3]− sq[1,−1, 1, 3]) · sq[0, 1, 3, 4] = q5 + q4;

• for C3 (b) there is a plane E with h ≤ E such that for all f ∈ C we have
π1(f) ∩ E 6= ∅, which proves

|C| ≤ (sq[0,−1, 1, 4]− sq[1,−1, 1, 4]) · sq[0, 1, 3, 4] = q6 + q5 + q4;

• for C3 (c) there is a hyperplane H ′ with h ≤ H ′ such that for all f ∈ C we have
π1(f) ≤ H ′, which proves

|C| ≤ sq[0,−1, 1, 3] · sq[0, 1, 3, 4] = q6 + q5 + q4;

• for C3 (d) there is a plane E and a hyperplane H ′ with h ≤ E ≤ H ′ such that for
all f ∈ C we have π1(f) ≤ H ′ or π1(f) ∩ E 6= ∅, which proves

|C| ≤ (sq[0,−1, 1, 4]− sq[1,−1, 1, 4] + sq[1,−1, 1, 3]) · sq[0, 1, 3, 4] = 2q6 + q5 + q4;

• for C4 there are two distinct planes E1 and E2 and two distinct hyperplanes H1
and H2 with h ≤ E1, E2 ≤ H1, H2 such that for all f ∈ C there is i ∈ {1, 2} with
π1(f) ∩ Ei 6= ∅ and π1(f) ≤ Hi, which proves

|C| ≤ (2(sq[0,−1, 1, 3]− sq[1,−1, 1, 3])− sq[0,−1, 0, 1]2) · sq[0, 1, 3, 4] = 2q5 + q4.

Lemma 2.4.35. Let P be a point, let H be a hyperplane of P with P /∈ H, set

L1 := {h ∈ S[P, 1,P] : the first case Theorem 2.4.15 occurs for h}

and for all i ∈ {2, 3} and all j ∈ {a, b, c} set

Li,(j) := {h ∈ S[P, 1,P] : case i part (j) of Theorem 2.4.15 occurs for h}.

If dim(〈L1〉) ≥ 3, dim(〈L2,(a)〉) ≥ 4, dim(〈L2,(b)〉) = 5 or dim(〈L3,(j)〉) = 5 for some
j ∈ {a, b, c}, then |∆H(C)| ≤ 5q5 + 20q4 + 30q3 + 25q2 + 15q + 5.

Proof. Let dim(〈L1〉) ≥ 3, dim(〈L2,(a)〉) ≥ 4, dim(〈L2,(b)〉) = 5 or dim(〈L3,(j)〉) = 5 for
some j ∈ {a, b, c} and let L be one of the sets for which the respective condition is
fulfilled. Furthermore, if L = L1, then set d := 3, if L = L2,(a), then set d := 4 and
otherwise set d := 5.
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Since dim(〈L〉) ≥ d there are lines l1, . . . , ld ∈ L with 〈l1, . . . , ld〉 = 〈L〉. For all
i ∈ {1, . . . , d} we have li 3 P /∈ H and thus li 6≤ H and Qi := li ∩ H is a point.
Furthermore, we have dim(〈Q1, . . . , Qd〉) = d− 1 and thus there are at most

sq[d− 1, 3, 4] · sq[1, 3] =


q5 + 2q4 + 3q3 + 3q2 + 2q + 1 d = 3,
q4 + q3 + 2q2 + q + 1 d = 4,
0 d = 5

(2.59)

flags f ∈ ∆H(C) with Qi ∈ π3(f) for all i ∈ {1, . . . , d}. For all other flags f ∈ ∆H(C)
there is an index i ∈ {1, . . . , d} with Qi /∈ π3(f).

Now, for all i ∈ {1, . . . , d} Lemma 2.4.34 provides an upper bound on the set of flags
f ∈ ∆H(C) for which the point Qi is not an element of π3(f), which proves the claim in
the following cases:

|∆H(C)| ≤


q5 + 2q4 + 3q3 + 3q2 + 2q + 1 for L = L1,

5q4 + q3 + 2q2 + q + 1 for L = L2,(a),

10q4 for L = L2,(b),

5q5 + 5q4 for L = L3,(a).

It remains to consider the cases L = L3,(b) and L = L3,(c). In these cases we let h be
an arbitrary chosen but fixed line in L and we determine a better bound on the number
of flags f ∈ ∆H(C) with h ∩H /∈ π3(f) as follows:

• For L = L3,(b) according to Remark 2.4.16 Lemma 2.4.12 is applicable to lines of
L (with L = L1), proving that to every line l ∈ L there is a plane El ≥ l with
π3(f)∩ l 6= ∅ or π1(f)∩El 6= ∅ for all f ∈ C. Thus, we determine an upper bound
on the number of flags f ∈ ∆H(C) with π1(f) ∩ Eh 6= ∅. Since 〈L〉 = P there is
a line h1 ∈ L with h1 6≤ Eh as well as a line h2 ∈ L with h2 6≤ 〈Eh, h1〉 and for
all j ∈ {1, 2} and every flag f ∈ ∆H(C) through a point of Eh ∩H either satisfies
π1(f) ∩ (Ehj ∩ H) 6= ∅ or hj ∩ H ∈ π3(f). We let g, g1 and g2 denote the lines
Eh ∩H, Eh1 ∩H and Eh2 ∩H, respectively.
Now, on the one hand, if for some j ∈ {1, 2} the line g is disjoint from the line gj ,
then there are at most

|g| · (|gj | · sq[1, 3, 4] + (sq[0, 1, 4]− |gj |) · sq[2, 3, 4])
= q5 + 4q4 + 6q3 + 5q2 + 3q + 1 (2.60)

flags in question. On the other hand, if g has a point in common with gj for all
j ∈ {1, 2}, then either R1 := g ∩ g1 and R2 := g ∩ g2 coincide (i.e. R := R1 = R2)
and there are at most

|Sq[R, 1, H]| · sq[1, 3, 4] + (|g| − 1) · (
(∗1)︷ ︸︸ ︷

(|g1|+ |g2|+ sq[0, 1, 2]− 4) ·
(∗2)︷ ︸︸ ︷

sq[2, 3, 4]
+ (sq[0, 1, 4]− (|g1|+ |g2|+ sq[0, 1, 2]− 3)))
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= q5 + 3q4 + 7q3 + 3q2 + 2q + 1

such flags, where
• the term marked (∗1) is an upper bound on the number of lines l through a

point X of g \ {R} that meet g1 or g2 or lie in the plane 〈X,h1 ∩H,h2 ∩H〉,
• the term marked (∗2) counts the number of solids in H on the unique plane
E ≤ H through the chosen line l such that for all j ∈ {1, 2} we have hj∩H ∈ E
or l ∩ gj 6= ∅, and
• the second line first counts the number of lines l through a point X of g that
we have not yet counted, that is, those which do not meet g1 nor g2 and for
which there is a unique solid S ≥ l which contains both h1 ∩H and h2 ∩H,
namely S = 〈l, h1 ∩H,h2 ∩H〉;

or R1 6= R2 and similar counting arguments yield q4 + 9q3 + q2 + 3q + 1 as upper
bound on the number of flags in question.

• For L = L3,(c), according to Remark 2.4.16, Lemma 2.4.13 is applicable with
dim(U) = 1 and thus L = L1, which proves that to every line l ∈ L there is a
hyperplane Hl ≥ l of P with π3(f) ∩ l 6= ∅ or π1(f) ≤ Hl for all f ∈ C. Thus, we
determine an upper bound on the number of flags f ∈ ∆H(C) with π1(f) ≤ Hh.
Since 〈L〉 = P there is a line h′ ∈ L with h′ 6≤ Hh and every flag f ∈ ∆H(C)
with π1(f) ≤ Hh either satisfies π1(f) ≤ Hh′ or h′ ∩ H ∈ π3(f). Note that the
hyperplanes Hh and Hh′ meet H in distinct solids. Hence, there are at most

sq[1, 2] · sq[1, 3, 4] + (sq[1, 3]− sq[1, 2]) · sq[2, 3, 4] = q5 + 3q4 + 4q3 + 4q2 + 2q + 1

flags in question.

Therefore, for all i ∈ {1, . . . , 5} Equation (2.60) serves as bound on the number of flags
f ∈ ∆H(C) with Qi /∈ π3(f) for both L = L3,(b) and L = L3,(c). Together with the count
given in Equation (2.59) this proves

|∆H(C)| ≤ 5q5 + 20q4 + 30q3 + 25q2 + 15q + 5,

as claimed.

Corollary 2.4.36. If there is a hyperplane H of P with |∆H(C)| > 5q5 + 20q4 + 30q3 +
25q2 + 15q + 5, then for every point P ∈ P \H we have

|∆P (C)| ≤ 9q5 + 10q4 + 10q3 + 7q2 − 2q + 1.

Proof. Let L1 and Li,(j) for all i ∈ {2, 3} and all j ∈ {a, b, c} be the sets defined in Lemma
2.4.35 and let L be the set of all lines h through P which are not contained in one of
these sets. Then, according to Lemma 2.4.35, we have dim(〈L1〉) ≤ 2, dim(〈L2,(a)〉) ≤ 3,
dim(〈L2,(b)〉) ≤ 4 and dim(〈L3,(j)〉) ≤ 4 for all j ∈ {a, b, c}. Furthermore, Theorem 2.4.15
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provides the cardinality of ∆h(C) for all lines h in such a set and shows |∆h(C)| ≤ 2q+1
for all lines h ∈ L. Together this shows

|∆P (C)| ≤ sq[0, 1, 2] · sq[1, 3, 5] + sq[0, 1, 3] · (q3 + 2q2 + q + 1)
+ sq[0, 1, 4] · ((2q2 + q + 1) + 2 · (q2 + q + 1) + (q2 + 2q + 1))
+ (sq[0, 1, 5]− sq[0, 1, 2]− sq[0, 1, 3]− 4 · sq[0, 1, 4]) · (2q + 1)

= 9q5 + 10q4 + 10q3 + 7q2 − 2q + 1,

as claimed.

2.4.4 Proof of the Theorem
Lemma 2.4.37. Let H be a hyperplane of P, let L be the set of saturated lines l with
l 6≤ H and set P := {l ∩H : l ∈ L}.
Then 〈P〉 ≤ π3(f) for all f ∈ ∆H(C) and furthermore, if |P| > 1, then dim(〈L〉) =

dim(〈P〉) + 1 and, if dim(〈P〉) > 1, then there is a point Q /∈ H with L = {〈P,Q〉 : P ∈
P}.

Proof. For L = ∅ there is nothing to prove and thus assume L 6= ∅. Lemma 2.1.3
shows 〈P〉 ≤ π3(f) for all f ∈ ∆H(C). Furthermore, according to Lemma 2.1.4, L is an
independent set of the Kneser graph of type 1 on P and as such 〈L〉 has dimension at
most 2 or there is a point Q ∈ 〈L〉 with Q ∈ l for all l ∈ L. For |P| = 1 there is nothing
more to prove and thus assume that |P| > 1.
If there is a point Q ∈ 〈L〉 with Q ∈ l for all l ∈ L, then both |P| > 1 and Q ∈ l 6≤ H for

all l ∈ L together prove Q /∈ H. Thus, in this case, for all l ∈ L we have l = 〈l ∩H,Q〉
and thus 〈P〉 is a complement of Q in 〈L〉, which proves dim(〈L〉) = dim(〈P〉) + 1.
Furthermore, if there is no such point Q, then we have dim(〈L〉) = 2 and, since l 6≤ H
for all l ∈ L, we have dim(〈L〉) > dim(〈P〉) ≥ 1, which proves the claim in this case and
concludes the proof.

Notation 2.4.38. From now on assume that C is not given by Example 2.4.1. Since
the type under consideration is self-dual we may assume that

max{|∆H(C)| : H ∈ S[4,P]} ≥ max{|∆P (C)| : P ∈ P}

and we let H ∈ S[4,P] be such that |∆H(C)| ≥ |∆H′(C)| for all H ′ ∈ S[4,P]. Note that
our choice of C shows that there is a flag f ∈ C with π1(f) 6≤ H and thus, in view of
Lemma 2.4.33, our choice of H shows

∀G ∈ S[4,P] : |∆G(C)| ≤ 2q7 + 4q6 + 5q5 + 6q4 + 5q3 + 4q2 + 2q + 1. (2.61)

Lemma 2.4.39. The set L of all saturated lines l with l 6≤ H satisfies |L| < 2q2(q+ 1).

Proof. We set P := {l∩H : l ∈ L} and, in view of Lemma 2.4.37, we consider two cases.
First, if |P| = 1, then according to the choice of both C and H the point Q ∈ P satisfies

|∆Q(L)| · sq[1, 3, 5] ≤ |∆Q(C)| ≤ 2q7 + 4q6 + 5q5 + 6q4 + 5q3 + 4q2 + 2q + 1
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= 2q2(q + 1) · sq[1, 3, 5]− (q5 − q3 − 2q2 − 2q − 1)︸ ︷︷ ︸
>0 for q≥2

(2.62)

which proves |L| = |∆Q(L)| < 2q2(q + 1), as claimed. Hence, let |P | > 1 and assume
that |L| > sq[2]. Then dim(〈L〉) > 2 and Lemma 2.4.37 proves dim(〈P〉) > 1 as well as
the existence of a point Q /∈ H such that L = {〈P,Q〉} : P ∈ P} with P := {l ∩ H :
l ∈ L}. Finally, Equation (2.62) then holds for that point Q, too, and we again have
|L| = |∆Q(L)| < 2q2(q + 1), as claimed.

Lemma 2.4.40. The set L of all lines l with l 6≤ H which satisfy case C2 (a) of Theorem
2.4.15 has cardinality at most 27 · sq[4].

Proof. We consider Proposition 2.4.18 and its implications for different values of d. Note
that the set L itself (and thus also any subset of L) obviously satisfies condition (I) of
this proposition. Therefore, we always consider the claims given there for κ = 3.

First, assume that there is a point P ∈ H and an integer ξ with |∆P (L)| > 3ξ such
that every solid S satisfies |∆S(∆P (L))| ≤ ξ. Then we may apply Proposition 2.4.18
with d = 3 to ∆P (L), which shows that there is a subspace U with dim(U) ≤ 2 such
that for every line l with l 6≤ U there is a hyperplane Hl 3 P (if the subspace given by
Proposition 2.4.18 is not a hyperplane but the entire space P instead, then we may let
Gl be an arbitrary hyperplane on P ) such that every solid S ∈ Π3(∆l(C)) contains P or
a complement of P in Hl. A complement of P in Hl is a solid and thus any line l with
l 6≤ U and P /∈ l satisfies

|Π3(∆l(C))| ≤ |S[〈P, l〉, 3,P]|+ |S[P, l, 3, Hl]|
= sq[2, 3, 5] + sq[0, 1, 3, 4] < q3 + q2 + q + 1

(2.63)

and as such l /∈ L. Therefore, and since l 6≤ H for all l ∈ L and thus |∆P (L)| ≤ q4, in
this situation we have

|L| ≤ |∆P (L)|+ |S[1, U ]| ≤ q4 + q2 + q + 1. (2.64)

Secondly, assume that there is a point P ∈ H, an integer ξ and a subset L′ ⊆ ∆P (L)
with dim(〈L′〉) = 3, |L′| > 3ξ and such that any plane E of P satisfies |∆E(L′)| ≤ ξ.
Then we may apply Proposition 2.4.18 with d = 2 to L′, which shows that there is a
subspace U with dim(U) ≤ 3 such that for all flags f ∈ C we have π1(f) ≤ U or π3(f)
contains P or a complement of P in the solid 〈L′〉 and, if dim(U) = 3, then U = 〈L′〉.
Thus, if l ∈ S[P, ∅, 1,P] is a line with l 6≤ U and l 6≤ 〈L′〉, then every solid S ∈ Π3(∆l(C))
satisfies P ∈ S or S contains a complement of P in 〈L′〉, that is, a plane E ≤ 〈L′〉 and,
since l 6≤ 〈L′〉, this implies that l∩〈L′〉 is a point as well as S = 〈l, E〉 ≤ 〈l,L′〉. Hence, for
all l ∈ S[P, ∅, 1,P] with l 6≤ U and l 6≤ 〈L′〉, using the hyperplane Hl := 〈l,L′〉, Equation
(2.63) holds here, too, and implies l /∈ L. Therefore, and since again |∆P (L)| ≤ q4, in
this situation we have

|L| ≤ |∆P (L)|+ |S[1, U ] ∪S[1, 〈L′〉]|
(∗)
≤ q4 + sq[1, 3] + sq[1, 2] = 2q4 + q3 + 3q2 + 2q + 2,

(2.65)
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where in the step marked with (∗) we also use the fact that, if dim(U) = 3, then U = 〈L′〉.
Before we proceed we remark that, if there is a point P ∈ H such that |∆P (L)| > 9q,

then one of these two situations occurs, which already proves the claim in this case as
follows:

• either there is a solid S such that |∆S(∆P (L))| > 3q and we have shown above
that Equation (2.65) holds, or

• every solid S satisfies |∆S(∆P (L))| ≤ 3q and we have shown above that Equation
(2.64) holds.

Similarly, if there is a point P ∈ H such that |∆P (L)| > 27, then there is a plane E
with |∆E(∆P (L))| > 3, for otherwise:

• either there is a solid S such that |∆S(∆P (L))| > 9 and we have shown above that
Equation (2.65) holds, or

• every solid S satisfies |∆S(∆P (L))| ≤ 9 and we have shown above that Equation
(2.64) holds

and either way this implies the claim.
Hence, from now on we may assume that |∆P (L)| ≤ 9q for all P ∈ H. Furthermore,

we may assume that to every point P ∈ H with |∆P (L)| > 27 there is a plane E with
|∆E(∆P (L))| > 3 and, since this plane contains lines of L, it satisfies P ∈ E 6≤ H.
Moreover, we may assume that there indeed is a point P ∈ H with |∆P (L)| > 27, for
otherwise we have |L| ≤ |H| · 27 = 27 · sq[4], which is the claim.

Now, let P ∈ H be a point with |∆P (L)| > 27 and let E be the plane such that
L′ := ∆E(∆P (L)) satisfies |L′| > 3. Then we may apply Proposition 2.4.18 with d = 1
to L′, which shows that there is a subspace U with dim(U) ≤ 3 such that for all flags
f ∈ C we have π1(f) ≤ U or π3(f) contains P or a complement of P in the plane
〈L′〉 = E. Thus, if l is a line with l 6≤ U and l ∩ E = ∅, then every solid S ∈ Π3(∆l(C))
contains P or a complement of P in the plane E and, since l ∩ E = ∅, the latter proves
S = 〈l, S ∩ E〉 ≤ 〈l,L′〉. Hence, for all l ∈ S[P, ∅, 1,P] with l 6≤ U and l ∩ E = ∅, using
the hyperplane Hl := 〈l,L′〉, Equation (2.63) holds here, too, and implies l /∈ L. This
implies

|L| ≤ |∆P (L)|︸ ︷︷ ︸
≤9q

+|S[1, U ]|+ | {l ∈ L : l ∩ E 6= ∅}︸ ︷︷ ︸
=:L

|

≤ q4 + q3 + 2q2 + 10q + 1 + |L|
(2.66)

and it remains to determine an upper bound on the size of L. For that purpose, note
that through any line l ∈ L there are q3 + 2q2 + q + 1 distinct flags in C and, if l
and l′ are distinct lines of L and f and f ′ are flags through l and l′ respectively, then
f and f ′ are obviously distinct, too. Therefore, if for some point Q /∈ H we have
|∆Q(L)| > 9q2 − 8q + 17, then we have

|∆Q(C)| > 9q5 + 10q4 + 10q3 + 35q2 + 9q + 17 > 9q5 + 10q4 + 10q3 + 7q2 − 2q + 1
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a contradiction to our choice of H and the bound given in Corollary 2.4.36. Hence, we
have |∆Q(L)| ≤ 9q2 − 8q + 17 and since E 6≤ H this implies

|L| ≤ |E ∩H| · 9q + |E \H| · (9q2 − 8q + 17) = 9q4 − 8q3 + 26q2 + 9q.

Combining this with Equation (2.66) concludes the proof.

Lemma 2.4.41. The set L of all lines l with l 6≤ H which satisfy case C2 (b) of Theorem
2.4.15 has cardinality at most (16q + 10) · sq[4].

Proof. We assume L 6= ∅. We begin the proof by considering an arbitrary line h ∈ L
and remarking the following. According to Theorem 2.4.15 there are two solids Ŝ1 and
Ŝ2 such that h = Ŝ1 ∩ Ŝ2 and such that Π3(∆h(C)) is the set of all solids which meet Ŝ1
and Ŝ2 in a plane each. Now, for all i ∈ {1, 2} there exist two distinct planes Ei and E′i
with h ≤ Ei, E′i ≤ Ŝi and the solids S := 〈E1, E2〉 and S′ := 〈E′1, E′2〉 satisfy 〈S, S′〉 = P
as well as (h, S) ∈ C and (h, S′) ∈ C. This shows that through any line of L there are
two flags in C such that the solids of these flags span P.
Now, let P ∈ H be such that |∆P (L)| ≥ |∆Q(L)| for all Q ∈ H. If |∆P (L)| ≤

4(4q + 2) + 2, then from our choice of P we have |∆Q(L)| ≤ 16q + 10 for all Q ∈ H and
since every line l ∈ L has non-empty intersection withH this implies |L| ≤ |H|·(16q+10),
as claimed. Therefore, we may assume that |∆P (L)| > 4(4q + 2) + 2 and we consider
two cases.
First, assume that for every solid Ŝ on P we have |∆

Ŝ
(∆P (L))| ≤ 4q + 2. Then,

let E and S with dim(E) ≤ 2 and dim(S) ≤ 3 be the subspaces provided by applying
Proposition 2.4.24 with ξ = 4q + 2 and let g ∈ S[P, ∅, 1,P] be such that g 6≤ E ,S.
Proposition 2.4.24 proves that there is a subset Lg ⊆ ∆P (L) of more than ξ = 4q + 2
lines such that every solid S ∈ Π3(∆g(C)) satisfies S ∩ l 6= ∅ for all l ∈ Lg. The
assumption of this case implies that in Lg there are lines which span a hyperplane H ′
of P and any solid S ∈ Π3(∆g(C)) contains P or a complement of P in H ′. Since any
complement of P in H ′ is a solid, this implies that any solid S ∈ Π3(∆g(C)) satisfies
S ≤ H ′ or P ∈ S. Now, let Ŝ1 and Ŝ2 be arbitrary solids through g with 〈Ŝ1, Ŝ2〉 = P.
Then there is some index i ∈ {1, 2} with Ŝi 6≤ H ′, that is, in Ŝi there is a plane E on g
with E 6≤ H ′ as well as P /∈ E and there is a solid S with E ≤ S that meets Ŝ3−i in a
plane. This solid S satisfies dim(S ∩ Ŝ1) = 2 = dim(S ∩ Ŝ2) but P /∈ S 6≤ H ′ and thus
S /∈ Π3(∆g(C)). The arbitrary choice of Ŝ1 and Ŝ2 through g with 〈Ŝ1, Ŝ2〉 = P and the
remark in the beginning of this proof shows g /∈ L. Hence, using |∆P (L)| ≤ q4, in this
case we have

|L| ≤ |∆P (L)|+ |S[1, E ]|+ |S[1,S]| ≤ q4 + q3 + 2q2 + 2q + 2.

Secondly, assume that there is a solid Ŝ on P with |∆
Ŝ

(∆P (L))| > 4q + 2. Let
E and S with dim(E) ≤ 2 and dim(S) ≤ 3 be the subspaces provided by applying
Proposition 2.4.24 to ∆

Ŝ
(∆P (L)) with ξ = q and let g ∈ S[P, ∅, 1,P] be such that

g 6≤ E ,S. Proposition 2.4.24 proves that there is a subset Lg ⊆ ∆
Ŝ

(∆P (L)) of more than
ξ = q lines such that every solid S ∈ Π3(∆g(C)) satisfies S ∩ l 6= ∅ for all l ∈ Lg. Since
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any plane through P contains at most q lines which do not lie in H, we know that in Lg
there are lines which span the solid Ŝ and any solid S ∈ Π3(∆g(C)) thus contains P or
a complement of P in Ŝ. We study the case g 6≤ Ŝ more thoroughly.

If we even have g∩Ŝ = ∅, then there is no solid through g which contains a complement
of P in Ŝ, that is, in this situation all solids of Π3(∆g(C)) share the plane 〈g, P 〉 and we
have g /∈ L.
Hence, assume that g ∩ Ŝ is a point and let Ŝ1 and Ŝ2 be two arbitrary solids with

Ŝ1 ∩ Ŝ2 = g. Then both these solids are distinct from Ŝ and at most one of these two
solids meets Ŝ in plane, for otherwise (Ŝ1 ∩ Ŝ) ∩ (Ŝ2 ∩ Ŝ) =: U would have dimension
at least 1 and we would have 〈U, g〉 ≤ Ŝ1 ∩ Ŝ2 with dim(〈U, g〉) ≥ 2, a contradiction.
Without loss of generality we may thus assume dim(Ŝ1 ∩ Ŝ) ≤ 1, which implies that
there is a plane E1 ∈ S[g, 2, Ŝ1] such that E1∩ Ŝ is a point, namely the point g∩ Ŝ 6= P .
Now, for dimensional reasons no solid through E1 may contain a complement of P in
Ŝ and there is only one solid through E1 which contains P . Therefore, there is a plane
E2 ∈ S[g, 2, Ŝ2] such that the solid S := 〈E1, E2〉 does not contain P nor a complement
of P in Ŝ and as such is not an element of Π3(∆g(C)). Again, the arbitrary choice of Ŝ1
and Ŝ2 through g with 〈Ŝ1, Ŝ2〉 = P and the remark in the beginning of this proof show
g /∈ L. Thus, again using |∆P (L)| ≤ q4, in this case we have

|L| ≤ |∆P (L)|+ |S[1, E ]|+ |S[1,S]|+ |S[1, Ŝ]| ≤ q4 + 2q3 + 3q2 + 3q + 3.

Lemma 2.4.42. The set L of all lines l with l 6≤ H which satisfy case C2 (c) of Theorem
2.4.15 has cardinality at most (10q2 + 9q + 1) · sq[4].

Proof. We let P ∈ H be such that |∆P (L)| ≥ |∆Q(L)| for all Q ∈ H and we note that
for every line h ∈ L and any two distinct solids S, S′ ∈ Π3(∆h(C)) we have S ∩ S′ = h.

If |∆P (L)| ≤ 10q2 +9q+1, then from our choice of P we have |∆Q(L)| ≤ 10q2 +9q+1
for all Q ∈ H and since every line l ∈ L has non-empty intersection with H this implies
|L| ≤ |H|·(10q2+9q+1), as claimed. Therefore, we assume that |∆P (L)| > 10q2+9q+1.

Let E be the set of at most q+ 1 planes provided by applying Proposition 2.4.32 with
ξ = q2 and let g ∈ S[P, ∅, 1,P] be such that g 6≤ E for all E ∈ E . Proposition 2.4.32
proves that we have a subset Lg ⊆ ∆P (L) of more than ξ = q2 lines such that every
solid S ∈ Π3(∆g(C)) satisfies S∩ l 6= ∅ for all l ∈ Lg. Since any solid through P contains
at most q2 lines which do not lie in H, we know that in Lg there are lines which span
a hyperplane H ′ of P and any solid S ∈ Π3(∆g(C)) is either a complement of P in H ′
or contains P . Hence, if there are three distinct solids in Π3(∆g(C)), then two of those
either have the plane 〈P, g〉 in common or do not span P. Therefore, g may not satisfy
case C2 (c) of Theorem 2.4.15, that is, any line l ∈ L satisfies l ∈ ∆P (L) or l ≤ E for
some E ∈ E and, again using |∆P (L)| ≤ q4, we have

|L| ≤ |∆P (L)|+ (q + 1) · sq[1, 2] ≤ q4 + q3 + 2q2 + 2q + 1.

Lemma 2.4.43. Let d ∈ {1, 2} and let L be a set of lines l with |∆l(C)| ≥ sq[d].

i) For P /∈ H we have |∆P (L)| ≤ (9q2 + q + 9)q3−d.
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ii) For every hyperplane H ′ of P with |∆H′(C)| ≤ sq[d] · ξ for some ξ ∈ N we have
|∆H′(L)| ≤ ξ + q5 + 3q4 + 4q3 + 4q2 + 2q + 1

Proof. If l and l′ are distinct lines of L, then the flags in ∆l(C) and ∆l′(C) are distinct,
too. Thus, using the maximal choice of H, the first claim is implied by the bound
|∆P (C)| ≤ 9q5 + 10q4 + 10q3 + 7q2 − 2q + 1 given in Corollary 2.4.36.
Now, let H ′ be a hyperplane of P and let ξ ∈ N be such that |∆H′(C)| ≤ sq[d] · ξ.

We set L1 := {l ∈ ∆H′(L) : f ∈ ∆l(C) =⇒ f ≤ H ′} and L2 := ∆H′(L) \ L1 as well as
C1 := {f ∈ C : π1(f) ∈ L1} and

C2 := {f ∈ C : π1(f) ∈ L2 and f 6≤ H ′}.

Then obviously |L1| ≤ ξ. Furthermore, according to Lemma 2.1.7 the set C ′2 := {f ∩H ′ :
f ∈ C2} is an independent set of the Kneser graph of type (1, 2) in H ′ and, as mentioned
earlier, [3, Proposition 2.1] by Blokhuis and Brouwer provides an upper bound on its
cardinality. Since to every line l ∈ L2 there is a solid S 6≤ H ′ with (l, S) ∈ C we have

|L2| = |Π1(C2)| = |Π1(C ′2)| ≤ |C ′2|
[3]
≤ q5 + 3q4 + 4q3 + 4q2 + 2q + 1

and together with |L1| ≤ ξ this proves the second claim.

Lemma 2.4.44. The set L of all lines l with l 6≤ H which satisfy case C3 (a) or C3 (b)
of Theorem 2.4.15 has cardinality at most 81q2 · sq[3] + q4.

Proof. First, assume that P is a point of H such that |∆P (L)| > 5q2. Then, according
to Proposition 2.4.21 i), two situations may occur (with regard to ∆P (L) and P ):

– If 2.4.21 i) a) occurs we denote the line given there by gP , for any line g ∈
S[gP , ∅, 1,P] we denote the hyperplane given there by Hg

P and we set LP :=
S[1,P] \S[gP , ∅, 1,P].

– If 2.4.21 i) b) occurs we denote the planes given there by E1
P and E2

P , for any
line g with g 6≤ E1

P , E
2
P we denote the hyperplane given there by Hg

P and we set
LP := S[1, E1

P ] ∪S[1, E2
P ].

In the first of these two situations we have |LP | = sq[1, 5] − sq[1,−1, 1, 5] = q5 + 2q4 +
2q3 + 2q2 + q+ 1 and in the second we have |LP | ≤ 2 · sq[2] and thus, either way, we have

|LP | ≤ q5 + 2q4 + 2q3 + 2q2 + q + 1. (2.67)

Furthermore, we remark that, according to Proposition 2.4.21, for every line g /∈ LP and
for every solid S ∈ Π3(∆g(C)) we know that S contains P or a complement of P in Hg

P ,
regardless of which case occurs above.
Secondly, assume that P is a point of H such that 81q < |∆P (L)| ≤ 5q2. Then, either

there is a subset L′P of ∆P (L) of 9q+ 1 lines which lie in a common solid, or any subset
of ∆P (L) containing more than 9q lines spans at least a hyperplane of P. In the latter
situation set L′P := ∆P (L). Then, either way, we may apply Proposition 2.4.21 ii) to see
that we have a solid ŜP on P and two situations may occur (with regard to L′P and P ):
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– If 2.4.21 ii) a) occurs, then we denote the line given there by gP , we denote the
solid given there by Ŝ′P , for any line g ∈ S[gP , ∅, 1,P] with g 6≤ ŜP , Ŝ

′
P we denote

the hyperplane given there by Hg
P and we set

LP := (S[1,P] \S[gP , ∅, 1,P]) ∪S[1, ŜP ] ∪S[1, Ŝ′P ].

– If 2.4.21 ii) b) occurs, then we denote the subspace of dimension at most 4 given
there by H ′P , for any line g with P /∈ g 6≤ H ′P and g 6≤ ŜP we denote the hyperplane
given there by Hg

P and we set LP := S[1, H ′P ] ∪S[1, ŜP ].

In the first of these two situations we have

|LP | ≤ sq[1, 5]− sq[1,−1, 1, 5] + 2 · sq[1, 3] = q5 + 4q4 + 4q3 + 6q2 + 3q + 3.

However, in the second situation the trivial bound will not be sufficient and instead, in
that situation, we determine an upper bound on L∩LP . We consider a hyperplane S′P of
H ′P with S′P ≤ H and, for reasons that will become more clear later on, when determining
that bound we assume that there is at most one point Q ∈ S′P with |∆Q(L)| > 5q2. Now,
we know that every line l ∈ L∩LP meets S′P in a point and thus, in these circumstances,
we have

|L ∩ LP | ≤ (|S′P | − 1) · 5q2 + q4 = 5q5 + 6q4 + 5q3. (2.68)

Note that this bound is weaker than the one given if the first situation occurs. We
remark again, that, according to Proposition 2.4.21, for every line g /∈ LP and for every
solid S ∈ Π3(∆g(C)) we know that S contains P or a complement of P in Hg

P , regardless
of which situation occurs above.
Now, let P1 and P2 be distinct points of H such that

∀P ∈ H \ {P1} : |∆P1(L)| ≥ |∆P2(L)| ≥ |∆P (L)|.

If |∆P2(L)| ≤ 81q, then, since every line in L meets H, we have

|L| ≤ (|H| − 1) · 81q + |∆P1(L)| ≤ (sq[4]− 1) · 81q + q4 = 81q2 · sq[3] + q4,

as claimed. Thus, we assume that |∆P2(L)| > 81q, set L0 := S[1,P] \S[〈P1, P2〉, ∅, 1,P]
and note that through any point of the line 〈P1, P2〉 there are at most q4 lines of L, which
proves |L ∩ L0| ≤ sq[1] · q4 = q5 + q4. Furthermore, using the notation we introduced
above, we set L := L0 ∪ LP1 ∪ LP2 . Now, for every line g /∈ L, for all i ∈ {1, 2} and for
every solid S ∈ Π3(∆g(C)) we know that S contains Pi or a complement of Pi in Hg

Pi
.

Moreover, we have L ⊆ L, for otherwise, assume that there is a line g ∈ L \ L.
Then Theorem 2.4.15 shows that there is a plane E ≥ g with S[E, 3,P] ⊆ Π3(∆g(C)).
However, since g ∩ 〈P1, P2〉 = ∅ we know that there is some i ∈ {1, 2} with Pi /∈ E
and thus there is a solid S through E with Pi /∈ S 6≤ Hg

i , that is, S /∈ Π3(∆g(C)), a
contradiction. Hence, we have |L| ≤ |L ∩ L0|+ |L ∩ LP1 |+ |L ∩ LP2 |.
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Therefore, if |∆P2(L)| > 5q2, then, using the upper bound for |LP1 | and |LP2 | given in
Equation (2.67) as well as |L ∩ L0| ≤ q5 + q4, we have

|L| ≤ |L ∩ L0|+ |L ∩ LP1 |+ |L ∩ LP2 | ≤ 3q5 + 5q4 + 4q3 + 4q2 + 2q + 2,

which implies the claim. Furthermore, if 81q < |∆P2(C)| ≤ 5q2, then there is at most one
point Q ∈ S ′P2

with |∆Q(L)| > 5q2 (namely the point P1) and thus we have |L ∩ LP2 | ≤
5q5 + 6q4 + 5q3 per Equation (2.68). In fact, since that bound is weaker than the one
given for |LP1 | if |∆P1(L)| > 5q2, we know that it also holds for |L ∩ LP1 |, regardless of
whether or not |∆P1(L)| ≤ 5q2. Together with |L0| ≤ q5 + q4 this shows

|L| ≤ |L ∩ L0|+ |L ∩ LP1 |+ |L ∩ LP2 | ≤ 11q5 + 13q4 + 10q3

and concludes this proof.

Lemma 2.4.45. The set L of all lines l with l 6≤ H which satisfy case C3 (a) or C3 (c)
of Theorem 2.4.15 has cardinality at most 64q5 + 80q4 + 16q3 + 16q2.

Proof. We first note that for all l ∈ L the hyperplane Hl provided by Theorem 2.4.15
satisfies S[l, 3, Hl] ⊆ Π3(∆l(C)). Therefore, if P is a point and l a line with P /∈ l such
that every solid S ∈ Π3(∆l(C)) satisfies P ∈ S, then to any hyperplane H ′ ≥ l there is
a solid S ≤ H ′ with P /∈ S which proves l /∈ L. Furthermore, we remark that Lemma
2.4.43 ii), the bound given in Equation (2.61) and the fact that

2q7 + 4q6 + 5q5 + 6q4 + 5q3 + 4q2 + 2q + 1 ≤ sq[2] · (2q5 + 2q4 + q3 + 3q2 + q + 1)

together prove

∀H ′ ∈ S[4,P] : |∆H′(L)| ≤ 3q5 + 5q4 + 5q3 + 7q2 + 3q + 2. (2.69)

We keep that in mind and now consider Proposition 2.4.18 and its implications for
different values of d. Note that any non-empty subset of L obviously satisfies condition
(II) of this Proposition. Therefore, we always consider the claims given there for κ = 4.
First, assume that there is a point P ∈ H and an integer ξ with |∆P (L)| > 4ξ such

that any hyperplane G of P satisfies |∆G(∆P (L))| ≤ ξ. Then we may apply Proposition
2.4.18 with d = 4 to ∆P (L), which shows that there is a subspace U with dim(U) ≤ 3
such that for all flags f ∈ C we have π1(f) ≤ U or P ∈ π3(f) (note that the second
case given in Proposition 2.4.18 may not occur, because, for dimensional reasons, a solid
may not contain a complement of P in the d + 1 = 5 dimensional subspace Gl given
there). Hence, if l ∈ S[P, ∅, 1,P] is a line with l 6≤ U , then any solid S ∈ Π3(∆l(C))
satisfies P ∈ S and we have already seen that this implies l /∈ L. Therefore, and since
|∆P (L)| ≤ q4, we have

|L| ≤ |∆P (L)|+ |sq[1, U ]| ≤ q4 + sq[1, 3] = 2q4 + q3 + 2q2 + q + 1. (2.70)

Secondly, assume that there is a point P ∈ H, an integer ξ and a subset L′ ⊆ ∆P (L)
with dim(〈L′〉) = 4, |L′| > 4ξ and such that any solid S of P satisfies |∆S(L′)| ≤ ξ. Then
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we may apply Proposition 2.4.18 with d = 3 to L′, which shows that there is a subspace
U with dim(U) ≤ 4 such that for all flags f ∈ C we have π1(f) ≤ U , or π3(f) contains
P or a complement of P in the hyperplane 〈L′〉 and, if dim(U) = 4, then U = 〈L′〉.
Thus, if l ∈ S[P, ∅, 1,P] is a line with l 6≤ U and l 6≤ 〈L′〉, then any solid S ∈ Π3(∆l(C))
satisfies P ∈ S and we have already seen that this implies l /∈ L. Therefore, we have

|L| ≤ |∆P (L)|+ |∆U (L) ∪∆〈L′〉(L)|
(∗)
≤ q4 + sq[1, 3] + |∆〈L′〉(L)|

(2.69)= 3q5 + 7q4 + 6q3 + 9q2 + 4q + 3,
(2.71)

where in the step marked with (∗) we used the fact that U = 〈L′〉 if dim(U) = 4 as well
as |∆P (L)| ≤ q4.
Before we proceed we remark that, if there is a point P ∈ H such that |∆P (L)| > 16q2,

then one of these two situations occurs, which already proves the claim in this case as
follows:

• either there is a hyperplane H ′ of P such that |∆H′(∆P (L))| > 4q2 and we have
shown above that Equation (2.71) holds, or

• every hyperplane H ′ of P satisfies |∆H′(∆P (L))| ≤ 4q2 and we have shown above
that Equation (2.70) holds.

Similarly, if there is a point P ∈ H such that |∆P (L)| > 64q, then we may assume
that there is a solid S with |∆S(∆P (L))| > 4q, for otherwise:

• either there is a hyperplane H ′ of P such that |∆H′(∆P (L))| > 16q and we have
shown above that Equation (2.71) holds, or

• every hyperplane H ′ of P satisfies |∆H′(∆P (L))| ≤ 16q and we have shown above
that Equation (2.70) holds

and either way this implies the claim.
Hence, from now on we may assume that |∆P (L)| ≤ 16q2 for all P ∈ H. Furthermore,

we may assume that to every point P ∈ H with |∆P (L)| > 64q there is a solid S with
|∆S(∆P (L))| > 4q and, since this solid contains lines of L, it satisfies P ∈ S 6≤ H.
Moreover, we may assume that there indeed is a point P ∈ H with |∆P (L)| > 64q, for
otherwise we have |L| ≤ |H| · 64q = 64q · sq[4], which implies the claim.

Now, let P1 ∈ H be a point with |∆P1(L)| > 64q and let S1 be a solid such that
L1 := ∆S1(∆P1(L)) satisfies |L1| > 4q. Then we may apply Proposition 2.4.18 with
d = 2 to L1, which shows that there is a subspace U1 with dim(U1) ≤ 4 such that for all
flags f ∈ C we have π1(f) ≤ U1 or π3(f) contains P1 or a complement of P1 in S1.
However, if every point P ∈ H \ S1 satisfies |∆P (L)| ≤ 64q, then we have

|L| ≤
∑
P∈S1

|∆P (L)|+
∑

P∈H\S1

|∆P (L)| ≤ |S1 ∩H| · 16q2 + |H \ S1| · 64q

= 64q5 + 80q4 + 16q3 + 16q2,
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as claimed. Therefore, we may also assume that there is a point P2 ∈ H \ S1 with
|∆P2(L)| > 64q and we let S2 be a solid such that L2 := ∆S2(∆P2(L)) satisfies |L2| > 4q.
Again we may apply Proposition 2.4.18 with d = 2, now to L2, which shows that there is
a second subspace U2 with dim(U2) ≤ 4 such that for all flags f ∈ C we have π1(f) ≤ U2
or π3(f) contains P2 or a complement of P2 in S2.
Now, if l is a line for which there is an index i ∈ {1, 2} with l ∩ Si = ∅ and l 6≤ Ui,

then, for dimensional reasons, there is no solid S ≥ l which contains a complement of Pi
in Si, that is, every solid S ∈ Π3(∆l(C)) satisfies Pi ∈ S and we have already seen that
this implies l /∈ L.
Furthermore, every line l ∈ S[S1 ∩ S2, ∅, 1,P] with l ∩ S1 6= ∅ 6= l ∩ S2 satisfies

l = 〈l∩S1, l∩S2〉 ≤ 〈S1, S2〉 and, if S ≥ l is a solid for which E1 := S∩S1 and E2 := S∩S2
are planes, then, for dimensional reasons, the planes E1 and E2 meet in a line g ≤ S1∩S2.
Since for every line l ∈ S[S1∩S2, ∅, 1,P] with P1 6= l∩S1 6= ∅ 6= l∩S2 6= P2 and l 6≤ U1, U2
every solid S ∈ Π3(∆l(C)) with P1, P2 /∈ S contains a complement of Pi in Si for both
i ∈ {1, 2}, this proves that S is the span of l and a line g ≤ S1 ∩ S2. In particular, if
S1 ∩S2 is a line, then every line l ∈ S[S1 ∩S2, ∅, 1,P] with P1 6= l∩S1 6= ∅ 6= l∩S2 6= P2
and l 6≤ U1, U2 is such that every solid S ∈ Π3(∆l(C)) satisfies Pi ∈ S for some i ∈ {1, 2},
or S = 〈l, S1 ∩ S2〉 and, again, this implies l /∈ L.
Now, for all i ∈ {1, 2} we set Li := ∆Pi(L) ∪∆Ui(L) as well as

L0 := {l ∈ L \ (L1 ∪ L2) : l ∩ S1 ∩ S2 6= ∅} and
L′0 := {l ∈ L \ (L0 ∪ L1 ∪ L2) : l ∩ S1 6= ∅ 6= l ∩ S2}.

Above we have seen that this implies L = L0 ∪L′0 ∪L1 ∪L2 and, since S1 63 P2 ∈ S2, we
know that S1 ∩ S2 is at most a plane and thus Lemma 2.4.43 i) implies

|L0| ≤ sq[1] · 16q2 + q2 · (9q2 + q + 9)q.

Furthermore, either 〈S1, S2〉 is a hyperplane of P, in which case Equation (2.69) shows

|L′0| ≤ 3q5 + 5q4 + 5q3 + 7q2 + 3q + 2,

or 〈S1 ∩ S2〉 = P, in which case S1 ∩ S2 is a line and we have seen above that L′0 = ∅.
Finally, Equation (2.69) shows

∀i ∈ {1, 2} : |Li| ≤ 16q2 + 3q5 + 5q4 + 5q3 + 7q2 + 3q + 2

and altogether this shows

|L| ≤ 18q5 + 16q4 + 40q3 + 69q2 + 9q + 6

and concludes the proof.

Lemma 2.4.46. Let L be the set of lines l ∈ Π1(C) with l 6≤ H. Then

|{P ∈ H : ∆P (L) > 15q3}| ≤ 16 · sq[2].
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Proof. For every point P ∈ P := {P ∈ H : ∆P (L) > 15q3} every hyperplane H ′ satisfies
|∆H′(∆P (L))| ≤ |S[P, 1, H ′]| < 15q3, which proves 〈∆P (L)〉 = P. Now, if dim(〈P〉) ≤ 1,
then there is nothing to prove and thus we may assume that there are points P1, P2
and P3 in P which span a plane. For all i ∈ {1, 2, 3} let li1, . . . , li5 be lines in ∆Pi(L)
with 〈li1, . . . , li5〉 = P. Furthermore, for all i ∈ {1, 2, 3} and all j ∈ {1, . . . , 5} let Sij

be an arbitrary solid with (lij , Sij) ∈ C and set P ′ :=
3⋃
i=1

5⋃
j=1

Sij ∩ H, which implies

|P ′| ≤ 15 · sq[2].
Now, if f ∈ C is a flag and i ∈ {1, 2, 3} and j ∈ {1, . . . , 5} are such that π1(f)∩Sij = ∅,

then π3(f) ∩ lij 6= ∅ and thus, if i ∈ {1, 2, 3} is such that for all j ∈ {1, . . . , 5} we have
π1(f)∩Sij = ∅, then π3(f) has non-empty intersection with all five lines lj1, . . . , l

j
5, which

is only possible for Pi ∈ π3(f). Hence, if f ∈ C is a flag such that for all i ∈ {1, 2, 3}
and all j ∈ {1, . . . , 5} we have π1(f) ∩ Sij = ∅, then E := 〈P1, P2, P3〉 ≤ π3(f).
Let P ∈ H \ (P ′ ∪ E) be an arbitrary point and let l be an arbitrary line with

P ∈ l 6≤ H and such that for all i ∈ {1, 2, 3} and all j ∈ {1, . . . , 5} we have l ∩ Sij = ∅.
Since l ∩H = P /∈ E ≤ H we have l ∩ E = ∅ and thus there is no solid through l that
contains E, which proves ∆l(C) = ∅. Therefore, every line l ∈ ∆P (L) satisfies l∩Sij 6= ∅
for some i ∈ {1, 2, 3} and some j ∈ {1, . . . , 5}, which proves

|∆P (L)| ≤
3∑
i=1

5∑
j=1
|Sij \H| = 15q3,

that is, P /∈ P. This proves P ⊆ P ′ ∪ E and in view of the definition of P ′ this implies
|P| ≤ 15 · sq[2] + |E| = 16 · sq[2], as claimed.

Corollary 2.4.47. The set L of all lines l ∈ Π1(C) with l 6≤ H satisfies

|L| ≤ 15q7 + 31q6 − 209q5 − 209q4 − 225q3.

Proof. Lemma 2.4.46 proves

|L| ≤ 16 · sq[2] · q4 + (|H| − 16 · sq[2]) · 15q3 = 15q7 + 31q6 − 209q5 − 209q4 − 225q3.

Lemma 2.4.48. The set L of all lines l with l 6≤ H which satisfy case C3 (d) or C4 of
Theorem 2.4.15 has cardinality at most 72q6 + 77q5 + 111q4 + 100q3 + 40q2 + 20q + 10.

Proof. For every line l ∈ L, according to Theorem 2.4.15, Remark 2.4.16 and the respec-
tive applicable Lemma given therein (2.4.13 is applicable with dim(U) = 2 if l satisfies
case C3 (d) and 2.4.14 is applicable with L3 = ∅ if l satisfies case C4), there is a plane
El and a hyperplane Hl of P with l ≤ El ≤ Hl such that any flag f ∈ C satisfies
π1(f) ∩ El 6= ∅, π1(f) ≤ Hl, or π3(f) ∩ l 6= ∅.

Now, if every point P ∈ H satisfies |∆P (L)| ≤ q2, then |L| ≤ |H| · q2 = q2 · sq[4]
and there is nothing to prove. Hence, assume the contrary and let P1 ∈ H be such that
|∆P1(L)| > q2. Since l 6≤ H for all l ∈ L any solid S satisfies |∆S(∆P1(L))| ≤ q2 and thus
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there are lines l11, . . . , l14 ∈ ∆P1(L) which span a hyperplane H1 6= H of P. Furthermore,
if every point P ∈ H \H1 satisfies |∆P (L)| ≤ q2, then, using Lemma 2.4.46, we have

|L| ≤ |H| · q2 + |H1 ∩H| · 15q3 + 16 · sq[2] · q4 < 32q6 + 32q5 + 32q4 + 16q3 + q2

and, again, there remains nothing to prove. Hence, again assume the contrary, let
P2 ∈ H \H1 be such that |∆P2(L)| > q2 and let l21, . . . , l24 ∈ ∆P2(L) be lines which span
a hyperplane H2 6= H of P.
Then, for all i ∈ {1, 2}, using the line li1, Lemma 2.4.34 shows that there are only

2q6 + q5 + q4 flags f ∈ ∆H(C) with Pi /∈ π3(f), which implies

|∆H(C)| ≤ sq[1, 3, 4] · sq[1, 3] + 2(2q6 + q5 + q4)
= 5q6 + 4q5 + 6q4 + 4q3 + 4q2 + 2q + 1 ≤ 5(q5 + q3) · sq[1].

Hence, for all i ∈ {1, 2} and j ∈ {1, . . . , 4} we may apply Lemma 2.4.43 with d = 1 to see
that |∆Hi(L)|, |∆H

li
j

(L)| ≤ 6q5+3q4+10q3+4q2+2q+1 as well as |∆P (L)| ≤ (9q2+q+9)q2

for all P ∈ Elij \H. This shows that the set Li of all lines l ∈ L for which there exists
i ∈ {1, 2} such that there is a solid S with (l, S) ∈ C and Pi /∈ S satisfies

|Li| ≤ 4(6q5 + 3q4 + 10q3 + 4q2 + 2q + 1 + q2(9q2 + q + 9)q2 + (q + 1)q4)
+ 6q5 + 3q4 + 10q3 + 4q2 + 2q + 1

= 36q6 + 38q5 + 55q4 + 50q3 + 20q2 + 10q + 5.

Furthermore, if l is a line with l /∈ L1 ∪ L2 and l ∩ H /∈ 〈P1, P2〉, then every solid
S ∈ Π3(∆l(C)) contains 〈P1, P2〉 and thus satisfies S = 〈l, P1, P2〉, which implies l /∈ L
and proves

|L| ≤ |L1|+ |L2|+ |〈P1, P2〉|q4 ≤ 72q6 + 77q5 + 111q4 + 100q3 + 40q2 + 20q + 10.

Theorem 2.4.49. The set C satisfies

|C| < 376q7 + 771q6 + 537q5 + 540q4 + 212q3 + 409q2 + 153q + 49.

Proof. We let L be the set of all lines l with l 6≤ H and note that Theorem 2.4.15 gives
a list of cases which may occur for any line l ∈ L. We let L1 be the set of all saturated
lines with l 6≤ H and we let C1 denote all flags f ∈ C with π1(f) ∈ L1. Likewise, for
i ∈ {2, 3} and j ∈ {a, b, c} we let Li,(j) be the set of all lines l 6≤ H which satisfy case i
part (j) of Theorem 2.4.15 and we let Ci,(j) denote all flags f ∈ C with π1(f) ∈ Li,(j)
as well as for i ∈ {4, 5} we let Li be the set of all lines l 6≤ H which satisfy case i of
Theorem 2.4.15 and we let Ci denote all flags f ∈ C with π1(f) ∈ Li.

Then, Lemma 2.4.39 shows |L1| ≤ 2q2(q+ 1), Lemma 2.4.40 shows |L2,(a)| ≤ 27 · sq[4],
Lemma 2.4.41 shows |L2,(b)| ≤ (16q + 10) · sq[4], Lemma 2.4.42 shows |L2,(c)| ≤ (10q2 +
9q + 1) · sq[4], Lemma 2.4.44 shows |L3,(a) ∪ L3,(b)| ≤ 81q2 · sq[3] + q4, Lemma 2.4.45
shows |L3,(a) ∪ L3,(c)| ≤ 64q5 + 80q4 + 16q3 + 16q2, Lemma 2.4.48 shows |L3,(d) ∪ L4| ≤
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72q6 +67q5 +81q4 and Corollary 2.4.47 shows |L| ≤ 15q7 +31q6−209q5−209q4−225q3.
This shows

|C1| < 2q7 + 4q6 + 6q5 + 6q4 + 4q3 + 2q2,

|C2,(a)| ≤ 27q7 + 81q6 + 108q5 + 135q4 + 135q3 + 108q2 + 54q + 27,
|C2,(b)| ≤ 16q7 + 58q6 + 94q5 + 104q4 + 104q3 + 88q2 + 46q + 10,
|C2,(c)| ≤ 10q7 + 29q6 + 39q5 + 40q4 + 40q3 + 30q2 + 11q + 1,

|C2,(d) ∪ C5| ≤ 30q7 + 62q6 − 418q5 − 418q4 − 450q3,

|C3,(a) ∪ C3,(b) ∪ C3,(c)| ≤ |L3,(a)|(sq[2] + q2) + (81q2 · sq[3] + q4 − |L3,(a)|) · sq[2]
+ (64q5 + 80q4 + 16q3 + 16q2 − |L3,(a)|) · sq[2]

= (145q5 + 162q4 + 97q3 + 97q2) · sq[2]− |L3,(a)|(q + 1)
≤ 145q7 + 307q6 + 404q5 + 356q4 + 194q3 + 97q2,

|C3,(d) ∪ C4| ≤ 144q7 + 226q6 + 299q5 + 311q4 + 180q3 + 80q2 + 40q + 10

and together with the bound on |∆H(C)| given in Equation (2.61) this proves the claim.

Corollary 2.4.50. Every independent set of Γ of size larger than

376q7 + 771q6 + 537q5 + 540q4 + 212q3 + 409q2 + 153q + 49

is contained in a maximal independent set of Γ given by Example 2.4.1.

Proof. In view of Notation 2.4.38, this is a direct corollary to Theorem 2.4.49.

Theorem 2.4.51. For q ≥ 376 the independence number of the Kneser graph of flags
of type (1, 3) in PG(5, q) is sq[3, 4] · sq[1, 3] + sq[2](sq[3] + q2)q2 and the independent sets
attaining this bound are those given in Example 2.4.1 using an independent set U of the
Kneser graph on line plane flags in PG(4, q) of maximal size.

Proof. This is implied by Corollary 2.4.50, since sq[3, 4] · sq[1, 3] + sq[2](sq[3] + q2)q2 is
smaller than the bound given there for q ≥ 376.
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Throughout this chapter we let d be a positive integer and we let q be a prime power.
Since in this chapter the number of points and hyperplanes of a given projective space
plays a crucial role, we will use the notation θd(q) to denote sq[d]. Furthermore, since
we mainly work over the field with q2 elements, we abbreviate the notation and simply
write θd instead of θd(q2). Finally, we use ⊥ to denote the polarity associated with the
given Hermitian polar space, as explained in the introduction.
We first introduce the object that we aim to study in this chapter.

Definition 3.0.1 (Tight Set). A tight set of the Hermitian polar space H(2d, q2) is a
subset T of its point-set such that there exists an integer x ≥ 0 with the property

∀P ∈ H(2d, q2) : |P⊥ ∩ T | =
{
θd−1 + (x− 1)θd−2 for P ∈ T,
xθd−2 for P /∈ T.

The integer x is called the parameter of the tight set and a tight set with parameter x
is called an x-tight set.

An immediate consequence of this definition is the fact that for all x ∈ N0 the union
of x mutually skew generators of H(2d, q2) is an x-tight set thereof. In [1] by De Beule
and Metsch it was conjectured that in fact every tight set of H(2d, q2) with parameter
x < q + 1 is the disjoint union of generators. In this chapter we take one step towards
proving said conjecture.
First, though, we note that the statement given in the conjecture is best possible.

That is because there exist x-tight sets of H(2d, q2) with parameter x = q+ 1 which are
not the union of disjoint generators. Two such examples are

• the embedding of the parabolic polar space Q(2d, q) in H(2d, q2) and

• the embedding the symplectic polar space W (2d− 1, q) in H(2d− 1, q2), which in
turn can be embedded in H(2d, q2).

In both of these cases the set of points of the given embedding is a tight set of H(2d, q2)
with parameter x = q + 1 and neither of the two contains a generator. Note that for
d = 2 and q ∈ {2, 3} further examples were constructed by Cossidente and Pavese in [13,
Remark 4.12].

On the other hand, the conjecture has already been established for d = 2 in [1]. There
it has also been proven under the stronger assumption x < q + 1 −

√
2q for d = 3. For

d ≥ 4, it was shown under a much stronger assumption in [24] by Metsch. The main
result of this chapter is Theorem 3.2.10, which considerably improves the corresponding
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result of [24]. It was first published by the author of this thesis together with Metsch in
[26].

One of the main difficulties in the proof is to show that a non-empty tight set with
sufficiently small parameter x contains a line and we can prove this only for x ≤ 1

2(q+1).
Once a line is found the condition x ≤ q is sufficient to find a generator in the tight set.

3.1 Preliminaries

For this section let P := PG(d, q2) and let H := H(d, q2) ⊆ P be the Hermitian polar
space therein and note that, since ⊥ is a polarity, we have dim(U) + dim(U⊥) = d − 1
for every subspace U of P. A subspace U ≤ P is contained in H if and only if U is totally
isotropic, which is equivalent to U ⊆ U⊥. Totally isotropic subspaces U ≤ P are also
called subspaces of H.
In this section we will collect some well-known facts on Hermitian polar spaces that

we require in the final section of this thesis.

Lemma 3.1.1 ([11, Theorem 6.5.2]). |H| = (qd − (−1)d)(qd+1 + (−1)d)
q2 − 1 .

Corollary 3.1.2. The points of H span P.

Proof. Using the value given in Lemma 3.1.1 we see that there are more points in H
than in a hyperplane of P.

Lemma 3.1.3. Let U be a subspace of P, set R := U ∩ U⊥ and let C be a complement
of R in U .

i) If R = U , then U ⊆ H.

ii) If dim(R) = dim(U)− 1, then R = U ∩H.

iii) If r := dim(R) ≤ dim(U)− 2, then C ∩H is a Hermitian polar space H(c, q2) with
c := dim(U) − 1 − r and U ∩ H is the union of the subspaces 〈R,P 〉 of P with
P ∈ C ∩H. Furthermore, the points of U that lie in H span U as a subspace of P.

Proof. First, note that we have R ⊆ U , which implies U⊥ ⊆ R⊥, and, since R ⊆ U⊥,
this shows R ⊆ R⊥. Therefore, R is totally isotropic and thus contained in H. Note
that this already proves i).

ii) We suppose that dim(R) = dim(U) − 1 and consider a point point P ∈ U \ R.
Then U = 〈R,P 〉, hence U⊥ = R⊥ ∩ P⊥ and thus

R = U ∩ U⊥ = U ∩R⊥ ∩ P⊥ = U ∩ P⊥.

Therefore, P /∈ P⊥, that is, P /∈ H(d, q2), which shows U ∩H(d, q2) = R.
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iii) Now, suppose that dim(R) ≤ dim(U) − 2 and let C be a complement of R in U .
Then dim(C) = dim(U)−1−r ≥ 1 and from U⊥∩U = R as well as U⊥ = R⊥∩C⊥
we have C⊥ ∩ C = ∅. Thus, the restriction of the form defining H to C is non-
degenerate and H∩C is a Hermitian polar space H(c, q2). Now, a point P ∈ U \R
belongs to H if and only if 〈R,P 〉 is totally isotropic and this is the case if and
only if the point 〈R,P 〉 ∩ C belongs to H. Finally, Corollary 3.1.2 shows that
H(s− r − 1, q2) spans C and hence U ∩H spans U .

Definition 3.1.4 (Cone). If U is a subspace of P which satisfies iii) of the previous
lemma and notations are as given there, then U ∩H is called a cone with vertex R over
a Hermitian polar space H(c, q2).

Note that this definition of a cone also includes the situation where the radical of
the cone is empty. In particular, every non-degenerate Hermitian polar space will be
called a cone, too, as a opposed to totally isotropic subspaces, which will not be called
cones. Thus, if U is a subspace of P, then U ∩ H is either a subspace (and thus U or a
hyperplane of U), or a cone.

Corollary 3.1.5. The number of hyperplanes H of P which are not spanned by H ∩ H
is q3 + 1 if d = 2 and 0 if d ≥ 3.

Proof. If d = 2, then H(2, q2) is a hermitian curve and its q3 + 1 tangent lines are
the hyperplanes in question. Hence, suppose that d ≥ 3 and let H be a hyperplane
of P. Then dim(H ∩ H⊥) ≤ 0, since the form defining H is non-degenerate. Since
d − 2 ≥ 0 ≥ dim(H ∩H⊥) we know that part iii) of Lemma 3.1.3 applies to H. Thus,
H ∩H is a cone and spans H.

Lemma 3.1.6. Let U be a subspace of P such that U ∩ H is a cone, set u := dim(U)
and let r be the dimension of its vertex. Then r ≤ u− 2 and we have:

i) |U ∩H| = θr + q2(r+1)|H(u− 1− r, q2)| > q2u−1.

ii) The number of hyperplanes H of U for which H ∩ H is not a cone is q2 + 1 if
r = u− 2, q3 + 1 if r = u− 3 and 0 otherwise. In particular, if u ≥ 2, then at least
θu−1 hyperplanes H of U have the property that H ∩H is a cone.

Proof. Let R be the vertex of the cone U ∩H and let C be a complement of R in U . In
Lemma 3.1.3 we have seen that C ∩H is a Hermitian polar space H(u− r − 1, q2).

i) From Lemma 3.1.3 we also know that U ∩H is the union of the |H(u− r − 1, q2)|
subspaces of dimension r + 1 which are spanned by R and a point of C ∩ H.
Since all these subspaces contain R as well as q2(r+1) additional points, we find
the cardinality of U ∩H as stated in the claim. The inequality given in the claim
is implied by the fact that the cardinality of H(u− r − 1, q2) as stated in Lemma
3.1.1 is obviously greater than q2u−2r−3 for u− r − 1 ≥ 1.
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ii) First, consider a hyperplane H of U with R ⊆ H. Then each complement of R∩H
in H is also a complement of R in U and hence meets H in a Hermitian polar space
H(u− r − 1, q2). Therefore, in this case H ∩H is not a subspace but a cone.
Now, consider a hyperplane H of U with R ⊆ H. Then H is spanned by R and a
hyperplane of C. Since U ∩H is the union of the spaces 〈R,P 〉 spanned by R and a
point P ∈ C, we know that H meets H in a subspace of and only if H ∩C meets H
in a subspace. Corollary 3.1.5 shows that this is never the case for u−r−1 ≥ 3 and
that this happens exactly q3 + 1 times for u− r− 1 = 2. Finally, for u− r− 1 = 1
we know that H ∩C is a point and thus always a subspace, that is, in this case it
occurs for all q2 + 1 hyperplanes of U which contain R.
This proves the first part of the claim in ii). However, the total number of hyper-
planes of U is θu = q2u + θu−1 and for u ≥ 2 this implies the second claim.

3.2 Small Tight Sets of H(2d, q2)

In this section we work in the projective space P := PG(2d, q2), let H := H(2d, q2) be
the Hermitian polar space therein and assume that d > 1. Furthermore, we let T be a
tight set of H and we let x be its parameter. In the following lemmata we investigate
properties of T . We are particularly interested in subspaces U of P with U ∩H ⊆ T .
In the spirit of trying to keep this work as complete as possible we also include the

proofs of some well known facts, such as the following lemma.

Lemma 3.2.1. If T is an x-tight set of H, then |T | = xθd−1.

Proof. We count pairs (P,Q) consisting of points P ∈ T and Q ∈ H with P ∈ Q⊥ twice.
On one hand we have |T | choices for the point P and, since P ∈ Q⊥ ⇐⇒ Q ∈ P⊥ for

all Q ∈ H, we subsequently have |P⊥ ∩H| choices for the point Q. Note that for P ∈ T
we have P ∈ H, that is, P⊥ ∩H is a cone with 0-dimensional vertex P = P ∩P⊥ over a
Hermitian polar space H(2d− 2, q2) and thus the cardinality of P⊥ ∩H is independent
of the particular choice of P ∈ T and given by (1 + q2|H(2d− 2, q2)|).
On the other hand we have |H| = (q2d+1+1)(q2d−1)

q2−1 choices for Q, all of which are
incident with either xθd−2 or qd−1 + xθd−2 points of T , depending on whether or not Q
is an element of T . This yields

|T |(1 + q2|H(2d− 2, q2)|) = (q2d+1 + 1)(q2d − 1)
q2 − 1 xθd−2 + |T |q2(d−1)

and simplifications show |T | = xθd−1, as claimed.

The following is also known and given as Lemma 2.1 in [24] by Metsch, but we still
include a proof here.

Lemma 3.2.2. Let U ≤ P be such that U ⊆ T . Then

|U⊥ ∩ T | = θd−1 + (x− 1)θd−dim(U)−2.
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Proof. The proof is by induction on u := dim(U) and the case u = 0 is trivial by the
definition of a tight set. Thus, let u > 0 and assume that the statement holds for
subspaces of smaller dimension.
There are θu subspaces U1, . . . , Uθu of dimension u − 1 contained in U , any two of

which span the whole space U . Furthermore, for any point x ∈ T we know that x⊥ is
a hyperplane of P, which implies that x⊥ ∩ U has dimension ≥ u− 1 and thus contains
an u − 1 dimensional subspace U ′ of U . Hence, U ′ ⊆ x⊥ and thus x ∈ U ′⊥, that is,
T ⊆

⋃θu
i=1 U

⊥
i . Moreover, for all distinct i, j ∈ {1, . . . , θu} and all P ∈ U⊥i ∩ U⊥j ∩ T we

have U = 〈Ui, Uj〉 ⊆ P⊥ and thus P ∈ U⊥ ∩ T . Together this implies

xθd−1 = |T | =

∣∣∣∣∣∣
θu⋃
i=1

(
U⊥i ∩ T

)∣∣∣∣∣∣ =
∣∣∣U⊥ ∩ T ∣∣∣+ θu∑

i=1

(∣∣∣U⊥i ∩ T ∣∣∣− ∣∣∣U⊥ ∩ T ∣∣∣) .
Using the induction hypothesis, stating |U⊥i ∩ T | = θd−1 + (x− 1)θd−(u−1)−2, we have

xθd−1 = θu (θd−1 + (x− 1)θd−u−1)− (θu − 1)
∣∣∣U⊥ ∩ T ∣∣∣ ,

which implies
∣∣∣U⊥ ∩ T ∣∣∣ = θu (θd−1 + (x− 1)θd−u−1)− xθd−1

θu − 1 .

Now, consider the right hand side in two parts. First we notice

θu
θd−1 − θd−u−1

θu − 1 = θu
q2(d−u)θu−1
q2θu−1

= θuq
2(d−u−1) = θd−1 − θd−u−2

and then study the rest and see

x
(θuθd−u−1 − θd−1)

θu − 1 = x
(q2(u+1) − 1)(q2(d−u) − 1)− (q2 − 1)(q2d − 1)

(q2 − 1)q2(q2u − 1)

= x
q2(d−1) − q2(d−u−1) − q2u + 1

(q2 − 1)(q2u − 1) = x
q2(d−u−1) − 1

q2 − 1 = xθd−u−2.

Together this proves the claim.

Note that the case dim(U) = 1 of the following lemma has already been covered in [1,
Lemma 3.1] by De Beule and Metsch.

Lemma 3.2.3. Let U ≤ P be such that U ∩H is a cone contained in T . Then

|U⊥ ∩ T | ≥ (q + 1− x)q2d−2 dim(U)−1θdim(U)−1 + xθd−dim(U)−1.

Proof. The proof is, again, by induction on u := dim(U) and first we consider the case
u ≤ 1. Since U ∩ H is not a subspace we have u = 1 and U ∩ H consists of q + 1
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points P1, . . . , Pq+1 of the line U . Now, for all distinct i, j ∈ {1, . . . , q + 1} we have
P⊥i ∩ P⊥j = U⊥ and thus

xθd−1 = |T | ≥

∣∣∣∣∣∣
q+1⋃
i=1

(P⊥i ∩ T )

∣∣∣∣∣∣ =
q+1∑
i=1

∣∣∣P⊥i ∩ T ∣∣∣− q ∣∣∣U⊥ ∩ T ∣∣∣
= (q + 1)(q2(d−1) + xθd−2)− q

∣∣∣U⊥ ∩ T ∣∣∣
=⇒

∣∣∣U⊥ ∩ T ∣∣∣ ≥ (q + 1)(q2(d−1) + xθd−2)− xθd−1
q

= (q + 1− x)q2d−3 + xθd−2,

as claimed.
Now, suppose that u ≥ 2 and that the assertion is true for subspaces of smaller dimen-

sion. Lemma 3.1.6 shows that U has at least θu−1 distinct hyperplanes H1, . . . ,Hθu−1

which intersect H in a cone. Since any two distinct hyperplanes of U span U we know
that every point which lies in H⊥i and H⊥j for some distinct i, j ∈ {1, . . . , θu−1}, also lies
in U⊥ and thus in H⊥i for all i ∈ {1, . . . , θu−1}. This implies

xθd−1 = |T | ≥

∣∣∣∣∣∣
θu−1⋃
i=1

(
H⊥i ∩ T

)∣∣∣∣∣∣ =
θu−1∑
i=1

∣∣∣H⊥i ∩ T ∣∣∣+ (1− θu−1)
∣∣∣U⊥ ∩ T ∣∣∣ .

Now, we may use the induction hypothesis to see

xθd−1 ≥ θu−1
(
(q + 1− x)q2d+1−2uθu−2 + xθd−u

)
+ (1− θu−1)

∣∣∣U⊥ ∩ T ∣∣∣ ,
which implies

∣∣∣U⊥ ∩ T ∣∣∣ ≥ θu−1
(
(q + 1− x)q2d+1−2uθu−2 + xθd−u

)
− xθd−1

θu−1 − 1

= θu−1(q + 1− x)q2d+1−2uθu−2
q2θu−2

+ x
θu−1θd−u − θd−1

q2θu−2

= θu−1(q + 1− x)q2d−1−2u + ξ,

with ξ := x
θu−1θd−u−θd−1

q2θu−2
. Finally, we simplify ξ, which shows the claim

ξ = x
(q2u − 1)(q2(d−u+1) − 1)− (q2d − 1)(q2 − 1)

(q2 − 1)q2(q2(u−1) − 1)

= x
q2(d−1) − q2(d−u) − q2(u−1) + 1

(q2 − 1)(q2(u−1) − 1)
= x

q2(d−u) − 1
q2 − 1 = xθd−u−1.

Lemma 3.2.4. Let U1 and U2 be subspaces of P with U1 ∩ U2 ∩H 6= ∅ and∣∣∣U⊥1 ∩ T ∣∣∣+ ∣∣∣U⊥2 ∩ T ∣∣∣ > θd−1 + (2x− 1)θd−2. (3.1)

Then 〈U1, U2〉 ∩ H ⊆ T .
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3.2 Small Tight Sets of H(2d, q2)

Proof. Set U := 〈U1, U2〉 and let Q be a point of U1 ∩ U2 ∩H. Then U⊥1 , U⊥2 ⊆ Q⊥ and
from U⊥1 ∩ U⊥2 = U⊥ we have

|Q⊥ ∩ T | ≥ |U⊥1 ∩ T |+ |U⊥2 ∩ T | − |U⊥ ∩ T |.

From the definition of a tight set we have |Q⊥ ∩ T | ≤ θd−1 + (x − 1)θd−2. Hence, if
Equation (3.1) holds, then |U⊥ ∩ T | > xθd−2, that is, |P⊥ ∩ T | > xθd−2 for all P ∈ U
and the definition of a tight set implies that U ∩H ⊆ T .

Lemma 3.2.5. Let U1 and U2 be subspaces of P with U1 ∩ U2 ∩ H 6= ∅. Furthermore,
suppose that Ui∩H is contained in T and spans Ui for i ∈ {1, 2}. Then 〈U1, U2〉∩H ⊆ T
in each of the following cases.

i) 2x ≤ q2 + 1 and U1 and U2 are contained H.

ii) x < q and U1 is contained H.

iii) x < q and U1 ∩H contains a line.

iv) 2x ≤ q + 1.

Proof. First, note that by hypothesis U1∩H is non-empty and contained in T . Therefore,
T 6= ∅ and, since |T | = xθd−1, this implies x > 0, that is, x ≥ 1. Furthermore, if one of
the subspaces U1 or U2 is a point the claim is trivial and thus in the following we may
assume the contrary.

i) Lemma 3.2.2 shows |U⊥i ∩ T | ≥ θd−1 for both i ∈ {1, 2} and since

θd−1 > q2θd−2 ≥ (2x− 1)θd−2,

the previous lemma proves the claim.

ii) In view of i) we may assume that U2 is not contained in H and set u2 := dim(U2).
Since U2 is not contained in H and since U2 ∩ H spans U2 we have u2 ≥ 1 and
U2 ∩ H is a cone. Now, subsequently using Lemma 3.2.3, the fact that u2 ≥ 1
implies θu2−1 ≥ q2(u2−1) as well as x ≤ q − 1 shows

|U⊥2 ∩ T | ≥ (q + 1− x)q2d−2u2−1θu2−1 ≥ (q + 1− x)q2d−3 ≥ 2q2d−3

≥ 2(q − 1)θd−2 ≥ 2xθd−2 > (2x− 1)θd−2.

Finally, Lemma 3.2.2 shows |U⊥1 ∩ T | ≥ θd−1 and the previous lemma proves the
claim.

iii) Let P be a point of U1∩U2∩H. Since U1∩H contains a line, it even contains a line
l with P ∈ l (if h is a line of U1∩H, then either P ∈ h, or P lies on a line l of H that
meets h and this line is contained in U1) and ii) implies 〈U2, l〉 ∩H ⊆ T . Let U be
a subspace of maximal dimension subject to the properties 〈U2, l〉 ⊆ U ⊆ 〈U1, U2〉
and U ∩H ⊆ T . We have to show that U = 〈U1, U2〉 and we assume the contrary.
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Now, U1 is not a subset of U and, since U1 ∩ H spans U1, there exists a point Q
in U1 ∩H that does not lie in U . Then Q /∈ l and H contains a line h with Q ∈ h
that meets l. Since l ⊆ U1 and Q ∈ U1 we have h ⊆ U1 and thus h ⊆ U1 ∩H ⊆ T .
However, ii) implies 〈U, h〉 ∩ H ⊆ T , a contradiction to the maximality of U .

iv) In view of iii) we may assume that neither U1 nor U2 contains a line of H and we
remark that this also implies that neither of the two is a subspace of H.
Let i ∈ {1, 2} be arbitrarily chosen and fixed. Since Ui ∩ H spans Ui, this implies
that Ui ∩ H is a Hermitian line H(1, q2) or a Hermitian curve H(2, q2). If Ui ∩ H
is a Hermitian line, then Lemma 3.2.3 shows

|U⊥i ∩ T | ≥ (q + 1− x)q2d−3 + xθd−2

and if Ui ∩H is a Hermitian curve, then Lemma 3.2.3 shows

|U⊥i ∩ T | ≥ (q + 1− x)q2d−5θ1 + xθd−3.

Since x ≥ 1 the first of these two bounds is stronger than the second one. In view
of the previous lemma the claim thus is implied by

2(q + 1− x)q2d−5θ1 + 2xθd−3
(∗)
≥
(
q + 2x− 1

q

)
q2d−5θ1 + 2xθd−3

> q2d−4θ1 + (2x− 1)q2d−4 + 2xθd−3 = θd−1 + (2x− 1)θd−2,

where the first step marked (∗) used the fact that 2x ≤ q + 1 implies

2(q + 1− x) ≥ q + 1 ≥ q + 2x− 1
q

.

Lemma 3.2.6. Suppose that x ≤ q − 1 and that U is a subspace of P with dim(U) ≥
d − 1 and U ∩ H ⊆ T . Then U ∩ H is a subspace and either dim(U) = d − 1 with
dim(U ∩H) ≥ d− 2, or dim(U) = d with dim(U ∩H) = d− 1.

Proof. We set u := dim(U) ≥ d− 1 and first assume that U ∩H is not a subspace.
From Lemma 3.1.3 we then know that U ∩ H is a cone and Lemma 3.1.6 implies
|U ∩ H| > (q − 1)θu−1. Since |T | = xθd−1 and x ≤ q − 1 this shows u ≤ d − 1, that is,
u = d− 1 and |U ∩H| > (q − 1)θd−2.

Now, for all P ∈ U⊥ ∩ H we have U ⊆ P⊥ and in view of the definition of a tight
set the fact that |P⊥ ∩ T | ≥ |U ∩ H| ≥ (q − 1)θd−2 implies P ∈ T , that is, we have
U⊥ ∩ H ⊆ T with dim(U⊥) = d. Note that, if U⊥ ∩ H would be a cone, then Lemma
3.1.6 would imply |T | ≥ |U⊥ ∩ H| > (q − 1)θn−1, a contradiction to |T | = xθd−1 and
x ≤ q − 1. Hence, U⊥ ∩ H is a subspace S. Furthermore, since H does not contain
subspaces of dimension d, Lemma 3.1.3 shows dim(S) = d− 1.
Finally, consider a point Q ∈ U⊥ \ S. Then Q ∈ S⊥, since U⊥ ∩H = S, and S ⊆ S⊥,

since S is a subspace of H. Furthermore, from U⊥ = 〈S,Q〉 we have U⊥ ⊆ S⊥. Hence,
S ⊆ U and, since S and U have the same dimension, we even have S = U . However,
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this is a contradiction to the fact that U ∩H is a cone and hence we conclude that U ∩H
must be a subspace V .
Now, Lemma 3.1.3 shows that V is either U or a hyperplane of U and, since every

subspace contained in H has dimension at most d−1, we have dim(V ) ≤ d−1. However,
since u ≥ d− 1, this only leaves two possibilities: Either u = d− 1 and U is a subspace
of H, or u ∈ {d− 1, d} and V = U ∩H is a subspace of dimension u− 1.

Lemma 3.2.7. Suppose that x ≤ q − 1 and that T contains two subspaces U1 and U2
such that U1 ∩ U2 6= ∅ and dim(〈U1, U2〉) ≥ d − 1. Then 〈U1, U2〉 has dimension d − 1
and is contained in T .

Proof. We set U := 〈U1, U2〉 as well as S := U1 ∩ U2 and note that Lemma 3.2.5 ii)
already shows U ∩ H ⊆ T . Now, Lemma 3.2.6 shows that U ∩ H is a subspace and,
since U is spanned by U1 and U2 and since Ui ⊆ T ⊆ H, we have U ⊆ H. However, this
implies dim(U) ≤ d− 1 and thus dim(U) = d− 1, as claimed.

Lemma 3.2.8. Let U be a subspace of P contained in T , set u := dim(U) and suppose
that one of the following two conditions holds:

1 ≤ u ≤ d− 2 ∧ x ≤ q − 1 or u = 0 ∧ 2x ≤ q + 1.

Then U is contained in at most θd−u−3 subspaces W of dimension u+1 such that W ∩H
is a cone contained in T .

Proof. For u = d − 2 we have θd−u−3 = θ−1 = 0 and the statement is implied by
Lemma 3.2.6. Therefore, we may assume that 0 ≤ u ≤ d − 3 and we let W1, . . . ,Ws

be the pairwise distinct subspaces in question, that is, for all i ∈ {1, . . . , s} we have
dim(Wi) = u+ 1, U ≤Wi and Wi ∩H is a cone contained in T .
We now prove by induction on i ∈ {1, . . . , s} that W i := 〈W1, . . . ,Wi〉 meets H in a

cone contained in T . For i = 1 this is obviously trivial and thus we may suppose that
the statement holds for some i with 1 ≤ i < s. Now, for u = 0 condition iv) and for
u ≥ 1 condition iii) of Lemma 3.2.5 is satisfied and thus we may apply said Lemma to
the subspaces W i and Wi+1 to see that W i+1 ∩H is contained in T , too. Since W1 ∩H
is a cone with W1∩H ⊆W i+1∩H we know that W i+1∩H may not be a subspace, that
is, it is also a cone, as claimed.
Now, we know that W s ∩ H is a cone contained in T and thus Lemma 3.2.6 implies

dim(W s) ≤ d− 2. Therefore, the number of (u+ 1)-dimensional subspaces of W s which
contain U is at most sq2 [u, u + 1, d − 2] = θd−u−3, that is, we have s ≤ θd−u−3, as
claimed.

Lemma 3.2.9. Let U be a subspace that is contained in T and maximal with respect to
this property, and let u denote its dimension. If 1 ≤ u ≤ d− 2, then we have x ≥ q, and
if u = 0, then we have 2x ≥ q + 2.

Proof. We remark that the condition 2x ≤ q + 1 for u = 0 will only be used when
we apply Lemma 3.2.8. Furthermore, note that we prove both parts of the claim at
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once and do so in three steps, leading the assumption that the claim does not hold to
a contradiction. Finally, also note that for u < 0 there is nothing to prove, that is, we
may assume u ≥ 0 and then ∅ 6= U ⊆ T implies x ≥ 1.

Now, we assume that either 1 ≤ u ≤ d − 2 and x ≤ q − 1, or u = 0 and 2x ≤ q + 1
holds and count pairs (Q,R) ∈ (U⊥ ∩ T )× (T \U⊥) with Q ∈ R⊥ in two different ways.
In the first step we first choose the point Q of the pair (Q,R) and determine a lower
bound on the number m of these pairs. In the second step we first choose the point R of
the pair (Q,R) and determine an upper bound on m. In the third step we then compare
these two bounds, yielding a contradiction and concluding the proof.
Thus, we first count pairs by first choosing a point Q of U⊥ ∩ T . Any such point Q

occurs in

ξQ := |Q⊥ ∩ T | − |Q⊥ ∩ U⊥ ∩ T |

pairs and for Q ∈ U we have U⊥ ⊆ Q⊥ and Lemma 3.2.2 shows

ξQ = |Q⊥ ∩ T | − |U⊥ ∩ T | = (x− 1)(θd−2 − θd−u−2).

Hence, it remains to study Q /∈ U . In this case 〈U,Q〉 is (u + 1)-dimensional and,
since Q ∈ U⊥, it is totally isotropic. Furthermore, from the maximal choice of U we
know that 〈U,Q〉 is not contained in T , that is, there exists a totally isotropic point
P ∈ 〈U,Q〉 \ T . Now, U⊥ ∩Q⊥ = 〈U,Q〉⊥ is contained in P⊥ and, since T is a tight set,
we have |U⊥ ∩Q⊥ ∩ T | ≤ |P⊥ ∩ T | ≤ xθn−2. Therefore, in this case we find

ξQ ≥ |Q⊥ ∩ T | − xθd−2 = q2(d−1).

Consequently, the total number m of pairs (Q,R) under consideration satisfies

m ≥ |U |(x− 1)(θd−2 − θd−u−2) + (|U⊥ ∩ T | − |U |)q2(d−1)

and, using |U | = θu as well as |U⊥ ∩ T | = θd−1 + (x − 1)θd−u−2 given in Lemma 3.2.2,
we find

m ≥ (x− 1)θu(θd−2 − θd−u−2) + (θd−1 + (x− 1)θd−u−2 − θu)q2(d−1). (3.2)

Secondly, we count pairs (Q,R) in question by first choosing R ∈ T \U⊥. For each such
point R, the subspaceW := 〈U,R〉 has dimension u+1 and the number of pairs in which
R occurs is |W⊥∩T |. Since R is not contained in U⊥ the setW ∩H is not a subspace and
thus it is a cone. Obviously, if this cone is not contained in T , that is if W ∩H contains
a point P that is not contained in T , then we have |W⊥ ∩ T | ≤ |P⊥ ∩ T | = xθn−2. But
also if the cone W ∩ H is contained in T we find a bound, because then we may use
the fact that W⊥ ∩ H is a subset of U⊥ ∩ H which does not contain the q2u points of
U \ (R⊥ ∩ U). Therefore, in this case R occurs in at most |U⊥ ∩ T | − q2u pairs. Note
that the number of choices for R is |T | − |U⊥ ∩ T |. Hence, if ν is the number of points
R ∈ T \ U⊥ for which 〈U,R〉 meets H in a cone that is contained in T , then we find

m ≤ (|T | − |U⊥ ∩ T | − ν)xθd−2 + ν(|U⊥ ∩ T | − q2u). (3.3)
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Now, Lemma 3.2.2 implies |U⊥ ∩ T | ≥ θd−1 and, since u ≤ d − 2 and x ≤ q − 1, this
shows that the coefficient of ν in Equation (3.3) is non-negative. Therefore, Equation
(3.3) remains true if we replace ν by an upper bound for ν. Such an upper bound is
provided by Lemma 3.2.8, which shows that at most θn−u−3 subspaces W of dimension
u+1 on U meet H in a cone contained in T . Note that such a cone is a cone with vertex
U ∩R⊥ of dimension u− 1 over a Hermitian line H(1, q2) and thus has θu−1 + (q+ 1)q2u

points in H of which q2u+1 do not lie in U . Hence, we have ν ≤ θd−u−3q
2u+1, which

implies

m ≤ (|T | − |U⊥ ∩ T |)xθd−2 + θd−u−3q
2u+1(|U⊥ ∩ T | − q2u − xθd−2)

and, using |T | = xθd−1 as well as |U⊥ ∩ T | = θd−1 + (x − 1)θd−u−2 from Lemma 3.2.2,
we find

m ≤ (x− 1)(θd−1 − θd−u−2)xθd−2

+ θd−u−3q
2u+1(θd−1 + (x− 1)θd−u−2 − q2u − xθd−2). (3.4)

Finally, we compare the lower bound α for m in Equation (3.2) and the upper bound
β for m in Equation (3.4) and find a new bound of the form 0 ≤ β−α = f(x). Since β is
quadratic in x with positive coefficient of x2 and since α is linear in x, the polynomial f
has degree two in x with positive leading coefficient. Since 0 ≤ f(x) and 1 ≤ x ≤ q − 1,
it follows that 0 ≤ f(1) or 0 ≤ f(q). We derive the desired contradiction by showing
that this is not true. We have

f(1) = θd−u−3q
2u+1(θd−1 − q2u − θd−2)− (θd−1 − θu)q2(d−1)

= θd−u−3q
2u+1(q2(d−1) − q2u)− θd−u−2q

2(d+u)

≤ θd−u−3q
2u+1(q2(d−1) − q2u)− θd−u−3q

2(d+u+1) < 0

and straightforward calculations show f(q)(q2 − 1)2 = A+B + C with

A = −q4d−2u−5(q4 − 2q2 + 1)− q2d−1(q3 − 3q2 + 3q − 1),
B = −q2d+2u−3(2q4 − q3 + q2 − 1) + q2d−2u−2(q2 − 2q + 1) and
C = −q4d−4(q3 − q2 − q + 1) + q2d+2u+2 + q4u+1(q2 − 1).

Of these A and B are obviously negative and since u ≤ d − 2 we have C < 0 except
when u = d − 2 and q = 2. However, u = d − 2 may only occur if d ≥ 2 and then we
have B + C < 0. Hence, we have f(q) < 0 either way, concluding the proof.

Theorem 3.2.10. For every x-tight set T of H(2d, q2) with x ≤ q there is some y ∈ N0
with y ≤ x such that T is the disjoint union of y generators and an (x− y)-tight set T ′
such that T ′ does not contain a line of H(2d, q2). Furthermore, if x − y ≤ q+1

2 , then
x− y = 0.
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Proof. The proof of the claim is by induction on x and the case x = 0 with T = ∅ is
trivial. For the induction step we assume x > 0 and that x is such that the claim holds
for all tight sets of H with parameter smaller than x. Let T be an x-tight set of H and
let U be a subspace that is contained in T and maximal with respect to that property,
that is, let U be such that any subspace U ′ that is contained in T has dimension at most
dim(U). Since x > 0 we know that U is not the empty space.
If U is not a generator, then we know from x ≤ q and Lemma 3.2.9 that U must be a

point and we have x ≥ q+2
2 . Hence, in this case the claim is satisfied for y = 0.

Now, assume that U is a generator. Then it is immediate from the definition of T ,
that T \ U is a tight set of H and has parameter x− 1. From the induction hypothesis
we know that there is some y ∈ N0 with y ≤ x − 1 such that T \ U is the disjoint
union of y generators and an (x − 1 − y)-tight set T ′ which does not contain a line of
H. Furthermore, we also know that, if (x− 1− y) ≤ q+1

2 , then x− 1− y = 0. Hence, T
is the disjoint union of y + 1 generators and an (x− (y + 1))-tight set T ′ that does not
contain a line of H and, if x− (y + 1) ≤ q+1

2 , then x− (y + 1) = 0, as claimed.
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