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ABSTRACT

The realization of efficient semiconductor lasers on GaAs substrates operating at 1.55 um and beyond remains a technological challenge. As
a potential solution, epitaxial heterostructures with type-II band alignment are currently discussed as an active region. Each individual layer
in such heterostructures features a comparably large bandgap energy; therefore, spurious effects in laser operation such as reabsorption,
multi-photon absorption, or Auger scattering are expected to be suppressed. The actual laser operation occurs across the internal interfaces
as the electron and hole wave functions have their extrema in adjacent layers. Hence, a large wave-function overlap is key for efficient
recombination. A direct comparison of symmetric and asymmetric Ga(N,As)/Ga(As,Bi) type-II quantum well heterostructures reveals that
the symmetry of the layer arrangement drastically influences the charge-carrier recombination: disorder in the Ga(As,Bi) layer has more
prominent effects for the asymmetric configuration compared to the symmetric one. The temperature dependence of the emission energy is
mainly influenced by the Ga(N,As)-electron layers, while the temperature dependence of the full width at half maximum and the excitation
dependence of the emission energy are dominated by the Ga(As,Bi)-hole layers. Photoluminescence excitation spectroscopy reveals the
corresponding carrier-relaxation paths to the type-II transition.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0036073

Conventional near- and mid-infrared lasers on the InP or the bandgap of the GaAs host.'"*’ These specific attributes of the type-I

GaSb platforms suffer from intrinsic loss channels such as Auger recom-
bination or carrier leakage.'” One approach to reduce such detrimental
losses significantly and, additionally, migrating these infrared light emit-
ting devices onto GaAs substrates is using a sequence of spatially indi-
rect (type-II) transition between adjacent layers.”” Such type-II
heterostructures serve as active regions in infrared laser structures. They
provide vast flexibility in an emission energy design by variation of the
elemental composition. For example, Ga(N,As) and Ga(As,Bi) layers
may act as electron quantum wells (QWs) and hole QWs, respectively.
Recently, dilute Bi-containing semiconductors are gaining increasing
interest” " since the incorporation of bismuth into GaAs results in a
rapid decrease in the bandgap."' " In a band anti-crossing picture
where the isoelectronic Bi level interacts with the upper valence bands
(VBs) associated with GaAs, this shift is predominantly weighted on
them."”""” Nitrogen atoms, on the other hand, induce a large shift of the
conduction band (CB) if incorporated into GaAs, again decreasing the

QWs lead to a flexible design regarding the type-II emission since
band-offsets can, therefore, be tuned independently. Furthermore, the
pseudomorphic growth of Ga(N,As)/[Ga(As,Bi)] leads to a tensile
(compressive) strained layer on GaAs. This offers the possibility for
strain-balanced heterostructures on GaAs substrates.”’

Here, we perform early stage investigations on such type-II struc-
tures that are desired for use as active medium in surface emitting
lasers. Temperature-dependent photoluminescence (PL) spectroscopy
provides access to the fundamental emission properties of III-V semi-
conductors. Additionally, the temperature dependencies reveal disor-
der effects and, thus, enable in-depth studies on localized states of the
structures constituents. Additionally, excitation-density-dependent PL
data provide information on state filling effects and tail states.
Photoluminescence excitation spectroscopy (PLE) as an absorption-
like technique not only provides information on oscillator strength but
also traces the carrier recombination paths of the type-II transition.
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The samples are mounted in a helium-flow cryostat enabling
temperature-dependent measurements from 4K up to 400K; this
includes the range of operation temperatures of many 10s °C common
to diode lasers. The sample’s photoluminescence (PL) is imaged onto
the 500 yum entrance slit of a 1 m Czerny-Turner spectrometer and is
detected by a liquid-nitrogen cooled germanium detector using the
phase sensitive line-scan lock-in technique. The system yields a spec-
tral resolution of 2 nm. For the PL experiments, a diode-pumped con-
tinuous-wave intracavity frequency-doubled Nd:YAG laser excites the
sample at 2.33eV (532nm). The excitation light is mechanically
chopped at 109 Hz; its intensity is controlled using reflective neutral-
density filters. A maximum excitation density of 11.3 kW /cm? is esti-
mated on the sample. For the PLE experiments, a spectrally filtered
super continuum source provides the tunable excitation. A 0.25 m
Czerny-Turner-type monochromator defines a bandpass of 5nm. The
raw PLE data are corrected regarding different excitation densities due
to the nonlinear emission of the super-continuum laser and the non-
linear optical response of the spectrograph.

All samples are grown in an Aixtron AIX200-GFR-MOVPE reac-
tor and the structural parameters are verified by X-ray diffraction
(XRD). The used precursors are triethylgallium (TEGa), tertiarybuty-
larsine (TBAs), unsymmetrical dimethylhydrazine (UDMHy), and
trimethylbismuth (TMBi). A GaAs buffer layer is grown on a semi-
insulating GaAs substrate to achieve a flat and reproducible surface for
all samples. The asymmetric type-II sample consists of 3x Ga(N,As)/
Ga(As,Bi) layers, while for the symmetric type-II sample, a second
Ga(N,As) layer is introduced before the Ga(As,Bi) layer. This results
in a 3x Ga(N,As)/Ga(As,Bi)/Ga(N,As) heterostructure, which is also
referred to as the W-type structure. The thickness of the Ga(N,As)
layer in the asymmetric Ga(N,As)/Ga(As,Bi) structure is 8 nm, while
all other layers” thicknesses are 4 nm. The N or Bi fractions are 1.1%
and 4.0%, respectively. Each of these stacks is capped by a thin,
roughly 50 nm wide GaAs layer.

Figure 1 provides an overview of the characteristic spectral emis-
sion signatures of all samples. The normalized PL spectra (the scale
factors are given next to the respective curves) at 300 K show two
distinct peaks: the most pronounced luminescence feature is found at
energies below the GaAs-related emission at 1.42 eV. Both the emis-
sion energies and the spectral line shapes of the Ga(N,As) and
Ga(As,Bi) reference samples differ significantly. The emission from
the Ga(As,Bi) reference shows strong inhomogeneous broadening and
an exponentially decaying low-energy tail (blue line). This is due to
extended tail states due to microscopic composition fluctuations (alloy
disorder) as well as Bi clusters.””*’ The PL from the Ga(N,As) refer-
ence sample (red line) is distinctly narrower and its low energy tail is
much steeper. The PL of both the type-II sample and the W-type sam-
ple has its maximum at approximately 1.1 eV. The relative intensities
of the room temperature emission are in agreement with our expecta-
tions: the type-I structures show higher intensities than the type-II
structures, since they have higher oscillator strengths. The Ga(As,Bi)
QW sample shows more inhomogeneous broadening and, hence,
slightly lower intensities in comparison to the Ga(N,As) reference
structure. The lack of wave-function overlap of electrons and holes in
the spatially indirect arrangements explains the lower intensities of the
type-II specimens. A direct comparison of the symmetric and asym-
metric type-II structures indicates a higher overlap of electron and
hole wave function in the symmetric heterostructures, which leads to

scitation.org/journal/apl

300K, 11.3kW/cm?
Ga(As,Bi)
Ga(N,As)
— Type-ll
— W-Type

x18.1

norm. PL-Intensity (arb. u.)

1.0 11 1.2 1.3 14

Energy (eV)

FIG. 1. PL spectra of all samples at 300 K.

higher PL-intensities. The line shape of both spatially indirect transi-
tions inherits characteristics from the Ga(N,As) and the Ga(As,Bi)
photoluminescence properties, while the actual line shapes of the type-
IT and the W-type samples differ slightly. We perform a detailed disor-
der analysis and investigate state filling and potential relaxation paths
to get more insight in emission and relaxation properties.

Temperature-dependent PL measurements can reveal a so-called
S-shape behavior in disordered type-I quantum well samples™ *° as
disorder affects their emission properties. Commonly, both the PL
maximum, its full width half maximum, and its decay dynamics are
affected.”

The PL-maximum energy shows a characteristic nonmonotonic
behavior in energy with increasing temperature. A typical S-shape is
observed, which is ascribed to thermally activated hopping processes
of carriers between localized (tail-) states. This behavior is highly
affected by the excitation density and is most pronounced for the
lowest excitation density where least states are filled.”” Here, excitation
fluxes of 1.4 kW/cm? enable a full temperature-range analysis.
Figure 2(a) displays the experimentally determined PL-maxima of all
samples. The data are plotted as the colored squares, while the black
lines act as guides to the eye. Here, the Ga(As,Bi) QW sample (blue
rectangles) shows a broad disorder-related S-shape having its mini-
mum at approximately 150 K (indicated by the blue dashed line). The
local minima are reached for temperatures ranging from 50K up to
200 K. In comparison, the Ga(N,As) QW sample’s PL-maxima (red
rectangles) only show a very slight S-shape with its minimum at 40 K
(indicated by the red dashed line) spanning across the more narrow
temperature range from 20K to 100 K. In a straightforward approxi-
mation, the PL-maxima for the type-II and W-type samples can be
assumed to be a linear superposition of the properties of the corre-
sponding type-1 reference QWs. Both the electron density-of-states
(eDOS) and hole density-of-states (hDOS) should influence the spa-
tially indirect transition between two different layers. The experimental
findings support this picture for both the type-II and the W-type
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FIG. 2. Temperature dependency of the PL-maxima (a) and FWHM (b) is plotted as rectangles. The black lines are guides to the eye, while the dashed lines indicate the
disorder-induced local minima (maxima) of the Ga(N,As) reference samples (red) and Ga(As,Bi) reference samples (blue) PL-maxima (FWHM).

samples. Here, the S-shape has its minimum at a temperature of
80K and closely resembles the findings for the Ga(N,As) layer
regarding the temperature shift of the PL peak position. The temper-
ature of the local minimum of the S-shape is defined by the mobility
edge of the carriers. Thus, symmetrizing the layer arrangement by
introducing a second Ga(N,As) layer leads to a decrease in the
mobility edge. The disorder of the Ga(As,Bi) layer influences the
width of the S-shape. Nonetheless, the S-shape is more narrow for
the type-II and W-type samples than for the Ga(As,Bi) QW sample.
The direct comparison of the data for the type-II and the W-type
sample reveals that the S-shape of the W-type sample appears to be
influenced more by the Ga(N,As) layer. Two mechanisms can
explain such a behavior. On the one hand, the electron wave func-
tions are mostly located in the Ga(N,As) layers and will leak well
into the Ga(As,Bi) layer by design, while the hole wave functions are
well confined in the Ga(As,Bi) layer. The electron wave function in
the asymmetric arrangement, however, has less overlap with the
hole wave function in the Ga(As,Bi) layer than in a symmetric
arrangement. On the other hand, we need to consider the joint den-
sities-of-states for both types of heterostructures. This becomes evi-
dent when considering the combined densities-of-states for both
types of heterostructures. While the asymmetric type-II structure

consists of one electron-Ga(N,As) layer and one hole-Ga(As,Bi)
layer, the symmetric W-type structure has two electron-Ga(N,As)
layers. Both Ga(N,As) layers are not perfectly identical due to
growth constraints and we have to include the possibility for nonde-
generate states. Accordingly, the joint DOS for the type-II sample
can be expressed approximately as eDOSg, as) - hDOSga(as i)
while the second Ga(N,As) layer has to be taken into account for the
W-type structure yielding eDOSg, (N, As)modified * NDOSga(as,si)- Here,
€DOSGa(N,As)modified includes changes in the electron-DOS originat-
ing from the additional Ga(N,As) layer. This explains the differences
observed for the samples with symmetric and the asymmetric
type-1I transition, respectively. PLE measurements confirm these
assumptions and will be discussed below.

The analysis of the FWHM provides additional information on
the electronic properties. The FWHM is shown in Fig. 2(b). Similar to
the PL-maxima, the Ga(As,Bi) structure shows the strongest disorder
features. The FWHM has its maximum at 190 K (indicated by the blue
dashed line). The Ga(N,As) QW FWHM peaks at 80 K (red dashed
line). Again for both, the type-II sample and W-type sample, the
FWHM reassembles the FWHM line shape of the type-I QWs.
However, the FWHM is dominated by the linewidth of the Ga(As,Bi).
The electrons and holes are more separated in the asymmetric type-II
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structure than in the symmetric type-II structure, as the former shows
weaker confinement due to the wider Ga(N,As) layer width. The
resulting difference in wavefunction overlap leads to different temper-
ature ranges in which electrons and holes become mobile, as the corre-
sponding wave functions have their maxima in the Ga(N,As) and
Ga(As,Bi) layers, respectively. The PL spectra shown in Fig. | already
hint different ensembles of tail states for the Ga(N,As) and the
Ga(As,Bi) QW sample. The tail states of the Ga(As,Bi) layer should
influence the emission of the type-II transition tremendously, due to the
known disorder in the Ga(As,Bi) valence bands.”’ Temperatures above
300K are most relevant for device operation. Here, a clear difference
between the type-I and type-II samples emerges. The FWHM of the
type-II and W-type samples increases rapidly in contrast to the type-I
samples, which show an expected increase in the FWHM according to
the carrier distribution as a function of the temperature. Most likely,
the increase in the FWHM above 300K observed for the type-II and
W-type samples originates in additional transitions’' between electron
states in the Ga(N,As) layer and higher hole states in the Ga(As,Bi) layer.

The comparison of the data from the type-II sample and the
W-type sample reveals a different weighting of Ga(As,Bi) and
Ga(N,As) signatures in the temperature dependence of the PL. The
influence of the Ga(AsBi) disorder signatures is decreased with
the introduction of a second Ga(N,As) layer. In order to further analyze
the tail states of the structures, we perform excitation-density-dependent
PL measurements.

The reasoning of localized states is an exponential density of
states. This is illustrated in Fig. 3(a). The arrow indicates the shift of
the PL maximum, while the shaded area draws the saturated states.
Higher excitation-densities result in occupation of more and more of
the localized states. Therefore, the PL-maximum shifts toward higher
energies as a result of this state filling process.”” The PL-maxima at 4 K
as a function of excitation density are plotted in Fig. 3(b) for the type-
II structures. We observe an exponential behavior of the PL-maxima
for both samples. Within our experimentally accessible range, the
excitation-density-dependent PL measurements expose a shift of the

3
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FIG. 3. The correlation between an exponential DOS and the excitation-density
dependent shift of the PL-maxima is illustrated in (a). The shaded area indicates
the increasing excitation density, while the blue arrow indicates the shift of the PL-
maxima. The excitation-density-induced shifts of the PL-maxima at 4K are drawn
as scatter plots for the type-ll structures (b) and the reference samples (c).

ARTICLE scitation.org/journal/apl

PL-maxima of 50 meV and 78 meV for the asymmetric and symmetric
structure, respectively. This means that the slope of the DOS in the
probed regime increases slower in the case of the W-type sample. We
attribute this higher impact of disorder to the aforementioned
differences in the two Ga(N,As) layers of the W-type structure. The
PL-maxima of the reference samples are shown in Fig. 3(c) instead.
The PL-maxima shift is 16 meV and 50 meV for the Ga(N,As) QW
and the Ga(As,Bi) QW, respectively. Therefore, the results indicate the
major role of localized states in the Ga(As,Bi) hole-layer on the disor-
der properties of the type-II transition. Additionally, this is in good
agreement with the previous assumption that the influence on the
FWHM of the Ga(As,Bi) layer originates in the tail states of the joint
DOS. Within the low excitation regime, the results show that the low-
energy tail states of the Ga(As,Bi) layer influence the emission of the
type-II transition, since they enable transitions from excited states into
localized states in the band tails.

PLE data reveal the carrier recombination paths in type-II struc-
tures. Notably, PLE data are complex as they contain information
about the absorption process, relaxation pathways, and recombination
probabilities.”” Hence, it contains information on the joint DOS and
reveals which layers contribute most in feeding the spatially indirect
transition in the heterostructures. Figure 4 shows PL and PLE data at a
lattice temperature of 4K as the solid line and shaded area, respec-
tively. An additional set of PL data is taken using the super continuum
laser at an emission energy of 2.33 eV (532 nm) to relate PL and PLE
data. Figure 4(a) displays the spectra of the asymmetric type-II struc-
ture, and the data of the symmetric W-type structure are plotted in
Fig. 4(b). Both samples have similar PL features. At 1.5eV, the GaAs
layer luminescence is detected followed by some nitrogen cluster states
around 1.4 eV (Ref. 33) and the PL of the type-II transition at 1.1 eV.
The dashed vertical line indicates the detection energy for the PLE
measurements. While the PL line shapes are quite similar, the PLE
spectra of the asymmetric and symmetric structures reveal some dis-
tinct differences. Naively, two low-energy peaks originating from the
Ga(N,As) and the Ga(As,Bi) layer are expected in addition to the pro-
nounced increase for energies above 1.5eV associated with GaAs.
Both the asymmetric and symmetric samples show a signal below
energies of the GaAs regime. This signature of the Ga(N,As) layer
exhibits well-known effects like Coulomb-enhancement for energies
above the exciton resonances.”* For the symmetric W-type structure,
the low-energy tail of the resonance at 1.35eV is much steeper. In
addition, the resonance itself seems to be sharper than for the
asymmetric structure. Again, we attribute this to the stronger carrier
confinement, which results in higher absorption,33 and to the above
discussed changes in the joint DOS. The energy regime below the
Ga(N,As) signature features an additional signature at approximately
1.25eV, which is attributed to the Ga(As,Bi) layer. The PLE signal of
the Ga(As,Bi) layer for the symmetric type-II arrangement below the
Ga(N,As) layer energy regime is barely observable and clearly less
intense than that of the asymmetric type-II arrangement. This behav-
ior is explained by the nature of light absorption in QWs: (1) thinner
QWs show stronger absorption due to the stronger carrier confine-
ment and (2) the absorption of QWs does not depend on the amount
of material but on the number of QWs.*” Thus, for the asymmetric
type-II structure, the weaker PLE signature of the Ga(As,Bi) layer can
be attributed to the stronger inhomogeneous broadening, which was
already observed in the temperature-dependent measurements. The
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FIG. 4. Normalized PLE (shaded area) and normalized PL (solid line) data are
plotted for the asymmetric (a) and symmetric (b) type-Il samples. The dashed line
indicates the detection energy used for the PLE measurements.

symmetric W-type structure consists of two Ga(N,As) layers, which
contribute to the absorption process. Thus, the intensity of the
Ga(As,Bi) layer signature compared to that of the Ga(N,As) layer
signature is weaker in the W-type arrangement. The PLE data confirm
the hypothesis that the changes in the combined DOS introduced by
the second Ga(N,As) layer lead to these differences in PL and PLE
spectra. The rather weak signature of the Ga(As,Bi) layers suggests
that the electrons excited directly in the Ga(As,Bi) layer contribute
insignificantly to the recombination via the type-II transition in both
cases. The carriers recombining via the type-II transition are excited
mostly in the GaAs barriers or in the Ga(N,As) electron-layers. We,
hence, assume that the carriers excited directly in the Ga(As,Bi) layers
are mostly trapped in localized states and, thus, cannot contribute to
the type-II transition.

In summary, the analysis of the disorder signatures and the car-
rier recombination paths allows a clear distinction between the influ-
ences of the disorder properties of the emission of the two species of
layers on the type-II recombination. The Ga(N,As) and Ga(As,Bi)
layers feature a distinct behavior regarding their temperature-
dependency of both PL maximum and FWHM. The spatially indirect
transition for both the symmetric and asymmetric layer configurations
inherits properties evident for the type-I reference quantum wells.

ARTICLE scitation.org/journal/apl

This enables an assignment of the influence of the layers’ materials
properties on the type-II recombination. For both spatially indirect
samples, the electron layers mainly influence the PL maxima depen-
dence on temperature and excitation density, while the hole layers
influence the corresponding FWHM. These results are in good agree-
ment with straight-forward considerations taking into account that
holes feature larger effective masses than electrons and are, hence,
more confined in the Ga(As,Bi) layer. Thus, they have less impact on
the recombination across the interface. Excitation-density-dependent
PL data reveal the origin of the disorder signatures as localized tail
states in the Ga(As,Bi) hole layers. The Ga(N,As) electron layer influ-
ences the symmetric W-type heterostructure more than the asymmet-
ric one. These observations are conclusively explained when
considering the respective DOS’. The carriers excited in the Ga(N,As)
layer and GaAs barrier contribute more to the type-II transition than
the Ga(As,Bi) layer. The valence bands of the latter are dominated by
localized states. Thus, the charge carriers created directly in the
Ga(As,Bi) layer are trapped in these states and, hence, contribute less
to the recombination across the type-II interface.

Our results provide important implications for lasing applica-
tions utilizing such W-type arrangements. The rise of the FWHM at
temperatures above 300K is crucial for the minimum threshold cur-
rent needed for lasing, since it increases the amount of states that have
to be filled before reaching the inversion regime. A stronger carrier
confinement in the electron and hole layers can probably shift the
higher order type-II transitions out of the operation temperature
regime of future devices. Nonetheless, at higher carrier densities, we
expect these Ga(N,As)/Ga(As,Bi) heterostructures to perform more
efficient, since disorder plays a minor role and the stronger electro-
static attraction between electrons and holes in adjacent layers
improves their spatial overlap.
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