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INTRODUCTION                                   1.1.1. Functional anatomy of pulmonary circulation 

1  INTRODUCTION 

1.1 Physiology of Pulmonary circulation 

1.1.1 Functional anatomy of pulmonary circulation 

During the passage of blood through the pulmonary circulation, gas exchange 

takes place and allows distribution of oxygen throughout the body. The right 

ventricle pumps desaturated blood from the body tissues and organs into the lungs via 

the pulmonary artery, which later branches into smaller vessels following the bronchi 

and bronchioles and finally, forms a huge network of capillaries. At the level of the 

bronchioles, the pulmonary arterioles have very thin walls. The alveoli, the terminal 

part of the respiratory tract, are surrounded by a diffuse network of capillaries, which 

provides a large surface area of approximately 30 m2. The capillary network is the 

prerequisite for an efficient gas exchange. Oxygenated blood from the capillary 

network passes into pulmonary venules which converge into pulmonary veins. The 

pulmonary veins empty the oxygenated blood into the left ventricle, which pumps the 

blood into the systemic circulation. 

              
The pulmonary circulation, as compared to the circulation of other organs, 

possesses a number of special features in order to adequately perform its job.  The 

branching of large muscular arteries in the pulmonary circulation gives rise to small, 

partially muscularized vessels possessing a low perfusion resistance. Whereas the 

systemic arterioles have a thick layer of smooth muscle cells, the pulmonary vessels 

of the corresponding size lack these cells. Even in the vessels of a greater caliber, the 

medial smooth muscle cell layer is much thinner in the lung as compared to the extra-

pulmonary vasculature. This helps to maintain low vascular resistance within the 

pulmonary circulation. The prevalence of low pressure and high flow in the 

pulmonary circulation also facilitates gas exchange by preventing fluid flux from the 

vessels into the interstitial space. In addition, it allows the right ventricle to operate 

at a low energy cost. A second anatomical feature is that arterioles and venules 

similar to those in the systemic circulation are not present in the pulmonary 

circulation. These arterioles are the site of most peripheral resistance to flow in the 

systemic circulation, and since they are absent in the pulmonary circulation much of 

the pulmonary arterial pressure is transmitted to the alveolar capillaries and probably, 

in a highly pulsatile flow.  
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Structurally, the transitional equivalents between arteries and capillaries exist in the 

lungs and they are often called ‘precapillary arteries’ and ‘postcapillary veins’. In 

contrast to the systemic arterial system, larger vessels contribute very little to the 

pulmonary arterial resistance. The longitudinal resistance distribution is spread 

relatively evenly over the precapillary, capillary, and postcapillary areas in the 

pulmonary circulation, where vessels are smaller than 100 μm. Besides, the lungs 

uniquely have two new elements: extra-alveolar vessels and corner cells. The extra-

alveolar vessels are arteries and veins surrounded by connective tissue cuffs into 

which surrounding alveolar walls radially insert. They increase in volume and length 

during inflation of lungs and decrease during deflation. The corner vessels, which are 

single alveolar wall capillaries, are located in corners and they cannot be closed by 

high air pressures.  

             
 Systemic circulation also differs from pulmonary circulation regarding their 

regulation. The most significant difference exists in their response to hypoxia. 

Hypoxia causes hypoxic pulmonary vasoconstriction (HPV), whereas hypoxic 

vasodilation occurs in autoregulated organs of the systemic circulation. The arterial 

pressure is the most important controlled variable in the systemic circulation. The 

feedback control system, the so-called arterial baroreflex located in the brain stem, 

and the various associated changes in the heart, vessels and endocrine functions are 

well known. On the other hand, the central nervous system does not regulate the 

pulmonary vasotone and pulmonary pressure remains remarkably constant even 

during increased flow induced by physical efforts or exercise. The maintenance of 

relatively constant pressure in the lungs is achieved by ‘active vasodilation’. The 

active vasodilation is attributable either to an autonomic regulatory mechanism acting 

on the pulmonary vessels or to the changes caused by the arterial baroreflex. This 

pressure homeostasis even in the event of increased flow, however, is also 

maintained by the high distensibility of the pulmonary vessels and additional 

recruitments of perfused vessels (Passive dilatation). Vascular tone in the pulmonary 

circulation is very important feature as it confers lung vasculature the ability to attain 

maximum vasoconstriction to maximum vasodilatation. There is rich supply of the 

autonomic nervous system as adrenergic, cholinergic and non-adrenergic non-

cholinergic (NANC) pathways in the lungs. 
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However, the contribution of the nervous system to pulmonary vascular tone is 

minor. Vessel tone rather depends on the cytoplasmic calcium concentration. The 

cytoplasmic calcium concentration, in turn, depends on the concentration of cyclic 

nucleotides as cAMP or cGMP. Besides, other factors such as catecholamine, nitric 

oxide, prostacycline and endothelin are also involved in modulating vascular tone. 

The normal vascular tone is of utmost importance for healthy vascular function as 

any impairment leads to pathological conditions. 

1.1.2 Hypoxic pulmonary vasoconstriction (HPV) 

Literature on HPV goes back to 18th century. Bradford and Dean described 

HPV in 18941 followed by J. Beyne in 19422. The investigation into this phenomenon 

was furthered with Euler and Liljestrand’s description in 19463. Teleologically, HPV 

is an adaptive mechanism that matches local ventilation with local perfusion in the 

pulmonary circulation by redistributing venous blood away from poorly oxygenated 

alveoli to regions of the lungs that are properly ventilated. Hence, HPV may be 

beneficial in patients with inhomogeneous ventilation distribution such as chronic 

obstructive pulmonary disease. Despite the beneficial effect, HPV can become life-

threatening when it is generalized, e.g. in high altitude. In such condition, it may lead 

to acute onset of pulmonary hypertension. The phenomenon of HPV is universal in 

mammals. However, considerable interspecies and inter-individual variability exist4.  

                 
Lungs elicit vasoconstriction within a few seconds of hypoxic exposure5 and 

the HPV reaction reaches its maximum after a few minutes. Interestingly, HPV is 

completely reversible upon returning to normal oxygen concentration. The 

phenomenon of HPV is present in an isolated pulmonary arterial smooth muscle cells 

and is elicited even in the absence of central nervous supply. This clearly implies that 

HPV is a local response to hypoxic environment and the mechanism is intrinsic to 

pulmonary artery wall. Despite a host of investigations carried out over the past 

years, the biochemical mechanism of hypoxic pulmonary vasoconstriction remains 

incompletely understood. One school of thought suggests that a decrease in partial 

oxygen pressure (PO2) inhibits smooth muscle cell (SMC) voltage-dependent 

potassium channels leading to membrane depolarization, influx of calcium and SMCs 

shortening, and hence, to vasoconstriction. 
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Others have proposed that the O2 sensor is linked to a NADPH oxidase, which is 

responsible for radical oxygen species (ROS) formation. ROS are responsible for 

redox modulation of transcription factors including Hypoxia-Inducible-Factor-1 

(HIF-1). HIF-1α expression in lung is induced by hypoxic conditions6. However, a 

consensus on oxygen sensing and subsequent pathophysiological sequelae has yet to 

be arrived at. 

                
Hypoxic vasoconstriction is inhibited by alkalosis, hypercapnia, 

prostaglandins, NO, calcium channel blockers, β2 agonists and endothelin 

antagonists, and it is enhanced by acidosis, endothelial dysfunction, NO inhibition 

and serotonin7. When only a small region of the lung is hypoxic, HPV can occur 

without significant effect on pulmonary arterial pressure8. However, when 

generalized hypoxia is present, as seen in many lung diseases and in high-altitude 

exposure, the subsequent pulmonary vasoconstriction contributes to pulmonary 

hypertension, right heart decompensation and, possibly, death. Persistent 

vasoconstriction induced by chronic hypoxia leads to structural remodeling of 

pulmonary vasculature and pulmonary hypertension, as will be discussed in the 

following section on hypoxia-induced pulmonary vascular remodeling. 

1.2 Pathophysiology of pulmonary vasculature 

1.2.1 Pulmonary vascular remodeling 

Pulmonary vascular remodeling, characterized by structural and functional 

changes of the architecture of pulmonary arterial walls, can occur as a primary 

response to injury or to other stimuli such as hypoxia. An increased muscularization 

and deposition of extracellular matrix are the salient features of structural 

remodeling. As a result, the lumen diameter and capacity for vasodilation are 

decreased. The structural alteration is followed by functional consequences such as 

an increased pulmonary vascular resistance and sustained pulmonary hypertension. 

Thus, the pulmonary arterial pressure may be elevated at rest and increased further on 

exercise. 

Understanding the morphological features of normal pulmonary arteries is 

important to understand the mechanism of remodeling. Proximal arteries are usually 

thin walled with respect to their luminal diameter.  
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The muscular media is composed of many elastic laminas separated by layers of 

smooth muscle cells. As the diameter of the arterial lumen decreases, the elastic 

laminas become less prominent and are replaced by smooth muscle cells. Beyond 

the terminal bronchioles and within the respiratory acinus, the arteries become only 

partially muscularized as the smooth muscle cell layer tails off in a spiral, with no 

smooth muscle cells found in the smaller intra-acinar arteries9, 10. The precapillary 

vessels contribute to the majority of the pulmonary vascular resistance and there is 

the greatest pressure drop at these precapillary segments. Hence, a small change in 

tone or wall structure in the precapillary vessels can lead to large elevations of 

pulmonary artery pressure, showing its crucial role in determining the pulmonary 

pressure. This area contains two smooth muscle–like cells, namely pericytes and 

intermediate cells. The so-called intermediate cells share the phenotypes of 

pericytes and smooth muscle cell. The most distal part of the precapillary arterioles 

consists of an endothelial layer, which is underlined by a single elastic lamina. The 

proximal pulmonary arteries usually differ from the distal ones in their 

susceptibility towards the remodeling process. The most severe alterations occur in 

the distal pulmonary arteries. 

                                 
Previous investigations have uncovered many events of the pulmonary 

vascular remodeling. A common feature is the appearance of a layer of smooth 

muscles in small peripheral, normally non-muscular, pulmonary arteries within the 

respiratory acinus. However, the cellular mechanism underlying muscularization is 

incompletely understood. Proliferation and differentiation of intermediate cells 

situated inside the internal elastic lamina of precapillary vessels could be attributable 

to the increase in smooth muscle cells11. Moreover, differentiation of pericytes and 

recruitment of interstitial fibroblast from the surrounding lung parenchyma may 

contribute to the process of muscularization in the most distal vessels devoid of an 

elastic lamina12. Such vessels devoid of elastic lamina range in size of 20-30 µm 

diameters. The consequence of vasoconstriction and remodeling of the small distal 

arteries will be a higher intraluminal pressure in the more proximal muscular arteries. 

Subsequently, proliferation and hypertrophy of smooth muscle cells and collagen 

deposition occurs in the media13, 14. In addition, proliferation of fibroblast, deposition 

of collagen in adventitia and the medial thickening lead to reduced lumen size14. 
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The cellular changes in the vascular layers during the process of remodeling have 

been summarized in table 1. 

      Table 1. Cellular changes in vascular layers during remodeling15 

Endothelium • Adhesiveness of platelets and granulocytes ↑  
• Anticoagulant activity ↓ and procoagulant activity ↑ 
• Contribution to plexiform lesion 

Intima • Fragmentation of internal elastic layer 
• Myofibroblasts: 

              -Proliferation of intermediate cells and increase in     
                contractile filaments with transition to myofibroblast 
              -Collagen deposition ↑ 
              -Migration and proliferation of smooth muscle cells (?) 

Media • Smooth muscle cells 
              - Proliferation ↑ 
              - Elastin deposition ↑ 
              - Distal migration (de novo muscularization of arterioles) 
              - Migration into intima (?) 

Adventitia • Fibroblast 
             -Proliferation ↑  
             -Collagen deposition ↑ 

 

Neointima is a form of vascular remodeling occurring in small and large 

arteries. It consists of a layer of cells and extracellular matrix between the 

endothelium and the internal elastic lamina16. Neointimal cells comprise 

myofibroblasts and do not express endothelial markers such as CD31, CD34 or factor 

VIII16, 17. It contributes significantly to the increased vascular resistance. Neointima 

formation is the hallmark of severe pulmonary hypertension. Studies with animal 

models have suggested that increased blood flow is important stimulus for neointima 

formation. The increased blood flow (induced by pneumonectomy) together with 

vascular injury (induced by monocrotaline) could induce the neointima formation in 

rat18, 19. It is likely that the neointimal cells arise by transdifferentiation of 

endothelial cells, by migration of smooth muscle-like cells from media, or by 

migration of adventitial fibroblast. However, the origin of neointimal cells in severe 

pulmonary hypertension is yet unknown.  

 

Severe pulmonary hypertension is also characterized by the formation of 

plexiform lesion, another important form of vascular remodeling. The disorganized 

proliferation of endothelial cells gives rise to plexiform lesion.  
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Within the lesion the endothelial cells are supported by a stroma containing matrix 

proteins and α-smooth muscle actin expressing myofibroblasts16. The investigations 

of the cell types in the plexiform lesions have shown that they differ between primary 

and secondary pulmonary hypertension. In primary pulmonary hypertension, the cells 

are monoclonal in origin, whereas in secondary pulmonary hypertension they are 

polyclonal in origin20. Pulmonary hypertension patients as well as animal models 

were investigated in the past to elucidate the mechanisms of pulmonary vascular 

remodeling. In these studies many factors have been identified such as potassium 

channels, Transforming Growth Factor-β (TGF-β) and Bone Morphogenetic Protein 

(BMP), serotonin (5-HT), Platelet Derived Growth Factor (PDGF), Epidermal 

Growth Factor (EGF) and Fibroblast Growth Factor (FGF). However, the process of 

remodeling is incompletely understood. 

1.2.2 Right ventricular (RV) adaptation 

In the normal heart, the right atrium contracts and empties its content into 

right ventricle (RV). The closure of the pulmonary valve during right atrial 

contraction prevents blood from flowing into the pulmonary artery and hence, allows 

the ventricle to fill in with blood. During RV contraction the tricuspid valve closes 

and the pulmonary valves open. The closure of the tricuspid valve prevents blood 

from flowing back into the right atrium and the opening of the pulmonary valve 

allows the blood to flow into the pulmonary artery toward the lungs. The right 

ventricle is a thin walled chamber having a mass about 1/6th of the left ventricle. It 

performs 1/4th of the stroke work because the pulmonary vascular resistance is 1/10th 

of the systemic vascular resistance. The RV is a compliant chamber capable of 

withstanding volume overload compared to pressure overload. A pressure overload, if 

sustained, induces RV hypertrophy as a compensatory response mechanism. The RV 

hypertrophy, characterized by the thicker ventricular wall and flattened inter-

ventricular septum, allows RV to adapt to an increased work. However, the structural 

alteration during hypertrophy, accompanied by reduced contractility, is followed by a 

relative coronary insufficiency contributing to RV failure.  

 

At a cellular level, cardiomyocytes undergo hypertrophy along with an 

enhanced protein synthesis and higher sarcomere organization.  
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The factors that influence cardiomyocyte hypertrophy are largely unknown.However, 

multiple molecular pathways involving Ca2+/Calcineurin/NFAT, G-Protein-coupled 

receptors (adrenergic, angiotensin and endothelin receptors), Phosphoinositide 3-

Kinase/Akt/Glycogen Synthase Kinase-3, Myocyte enhancer factor-2/Histone 

deacetylases, Na/H exchanger, Ca2+ cycling factors and others21 have been proposed. 

A reduction in the pressure by mechanical means have been shown to result in 

reversal of right heart dilation and dysfunction, and in improvement of  myocardial 

performance22. For example thromboendarterectomy for chronic large-vessel 

pulmonary embolism, correction of atrial septal defect, mitral valve replacement and, 

interestingly single-lung transplantation in patients with primary and secondary 

pulmonary hypertension. Thus, persistence of high pressure is regarded as the 

important factor. Overall, it seems that most of the molecular pathways leading to RV 

hypertrophy are provoked by the shear stress or pressure load of the right ventricle. 

                
Although the severity of pulmonary arterial hypertension depends on the degree 

and distribution of the pulmonary arteriopathy, the level of pulmonary artery pressure 

has only modest prognostic significance. It is rather the ability of the RV to 

compensate for the increased afterload that determines the severity and survival23. 

Hence, RV adaptation is important in determining the fate of pulmonary hypertension 

and the RV function is crucial especially in patients with left heart failure and severe 

lung disease23.  

1.3 Pulmonary hypertension 

1.3.1 Definition and classification 

In simple terms, pulmonary hypertension can be referred to any increment in the 

pulmonary arterial pressure (PAP) above normal values (Table 2). It is a disease of 

the lung vasculature, where the pulmonary arteries undergo vasoconstriction and 

remodeling leading to an increase in right ventricular afterload and development of 

cor pulmonale.  It is the third most common cardiovascular condition, after coronary 

heart disease and systemic arterial hypertension. The elevation in PAP may occur 

either as a consequence of underlying pulmonary vascular disease, which can be 

progressive and fatal. Moreover, the increased PAP may be simply a passive 

elevation in response to an elevated pressure in the left heart.  An accurate diagnosis, 

therefore, needs a thorough and careful consideration. 
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   Table 2. Normal values and range of pulmonary blood flow and vascular pressures 
 

Variable Mean Range of normal 

Q (l/min) 6.4 4.4-8.4 

Heart rate (bpm) 67 41-93 

PAP systolic (mmHg) 19 13-26 

PAP diastolic (mmHg) 10 6-16 

PAP mean (mmHg) 13 7-19 

PVR (dyn s/cm5) 55 11-99 

SAP mean (mmHg) 91 71-110 

Q, cardiac output; PAP, pulmonary artery pressure; PVR, pulmonary vascular resistance; 
SAP, systemic arterial pressure  

 

As a disease associated with a diverse etiology, classification of pulmonary 

hypertension is essential in order to facilitate the diagnosis. The World Health 

Organization Symposium in 197324 coined an original classification, which classified 

pulmonary hypertension into groups based on the known causes. Primary Pulmonary 

Hypertension (PPH) was classified as a separate entity of unknown cause. Others 

related to diseases with identifiable causes were termed as Secondary Pulmonary 

Hypertension (SPH)25. The Second World Symposium of pulmonary hypertension, 

held in 1998 in Evian, France, proposed a new classification for pulmonary 

hypertension26. The second symposium focused on the pathophysiological 

mechanisms, clinical presentation and therapeutic options. This was a simplified 

classification aiming to provide a useful guide for the clinician in evaluating 

pulmonary hypertension patients and developing treatment plan. In addition, the New 

York Heart Association (NYHA) functional classification for heart diseases 

established a new functional classification (Table 3). The NYHA classification was 

useful for comparison of patients with respect to the clinical severity of the disease process. 

In 2003, the 3rd World Symposium on pulmonary arterial hypertension proposed some 

modifications to the Evian classification27. In the modification, the term “primary 

pulmonary hypertension” was replaced with “idiopathic pulmonary hypertension”. In 

addition, the pulmonary capillary hemangiomatosis and pulmonary veno-occlusive 

disease were reclassified and risk factors were updated.  
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Moreover, the guidelines for the classification of congenital systemic-to-

pulmonary shunts were also included (Table 4). An overview of the most frequent 

causes and triggers and different pathomechanisms underlying development of 

pulmonary hypertension is provided in figure 1. 

 

Table 3. WHO functional classification of pulmonary hypertension 
 
Class I     Patients with pulmonary hypertension but without resulting limitation of physical        

activity. Ordinary physical activity does not cause undue dyspnea or fatigue, 

chest pain or near syncope. 

   Class II  Patients with pulmonary hypertension resulting in sight limitation of physical 

activity. They are comfortable at rest. Ordinary physical activity causes undue 

dyspnea or fatigue, chest pain or near syncope. 

   Class III  Patients with pulmonary hypertension resulting in marked limitation of physical 

activity. They are comfortable at rest. Less than ordinary activity causes undue 

dyspnea or fatigue, chest pain or near syncope. 

Class IV  Patients with pulmonary hypertension. They are unable to carry out any physical 

activity without symptoms. These patients manifest signs of right heart failure. 

Dyspnea and/or fatigue may even be present at rest. Discomfort is increased by 

any physical activity. 
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  Table 4. Revised Clinical Classification of Pulmonary Hypertension  

1.  Pulmonary arterial hypertension (PAH)  

• Sporadic or idiopathic (IPAH)  

• Familial (FPAH) 

• Associated with (APAH) 

• Collagen vascular disease 

• Congenital systemic-to-pulmonary shunts 

• Portal hypertension, HIV infection, Drugs and toxins 

• Others (thyroid disorders, glycogen storage disease, Gaucher disease, 

HHT, hemoglobinopathies, myeloproliferative disorders, splenectomy) 

• Associated with significant venous or capillary involvement 

• Pulmonary veno-occlusive disease (PVOD) 

• Pulmonary capillary hemangiomatosis (PCH) 

• Persistent pulmonary hypertension of the newborn                                         

  2. Pulmonary hypertension with left heart disease 

• Left-sided atrial or ventricular heart disease 

• Left-sided valvular heart disease  

  3. Pulmonary hypertension associated with lung diseases and/or hypoxemia 

• Chronic obstructive pulmonary disease 

• Interstitial lung disease and developmental abnormalities 

• Sleep-disordered breathing and alveolar hypoventilation disorders 

• Chronic exposure to high altitude 

4. Pulmonary hypertension due to chronic thrombotic and/or embolic disease 

• Thromboembolic obstruction of proximal and distal pulmonary arteries 

• Non-thrombotic pulmonary embolism (tumor, parasites, foreign 

material) 

5. Miscellaneous  

• Sarcoidosis, Histiocytosis X, etc. 
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Figure 1. Most frequent causes and triggers which lead to pulmonary hypertension 

through different pathomechanisms.  

Hypoxic pulmonary vasoconstriction (HPV), inflammation, mechanical stress, primary 

obliteration and idiopathic factors lead to vasoconstriction and pulmonary vascular 

remodeling. Vasoconstriction and vascular remodeling are hallmarks of pulmonary 

hypertension. In situ thrombosis of the small pulmonary arteries often aggravates the 

evolution of the diseases (Adapted from Olschewski H. and Seeger W.15) 

1.3.2 Pulmonary arterial hypertension (PAH) 

Pulmonary arterial hypertension is a disease affecting the pulmonary vascular 

endothelium and is manifested by a progressive elevation in pulmonary vascular 

resistance followed by right ventricular failure and death. It is a complex disease 

caused by diverse etiological or associated risk factors. It includes three main classes 

namely, idiopathic pulmonary hypertension (IPAH), familial pulmonary hypertension 

(FPAH) and PAH related to risk factors or associated conditions (APAH, see Table 

4). IPAH, as the name implies, is a disease of an unknown etiology. It is 

characterized by a mean pulmonary arterial pressure of >25mmHg at rest or 

>30mmHg during exercise and by an absence of other causes such as parenchymal 

lung disease, chronic thromboembolic disease, left-sided valvular or myocardial 

disease, congenital heart disease, or systemic connective tissue disease28, 29.  
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It is a rare and fatal disease with the median survival being approximately 2.8 years 

in untreated adults. Ernst Romberg was first to describe an IPAH patient in 189130, 

which was later termed as primary pulmonary hypertension (PPH)31. PPH was the 

term used previously to describe what is now known as IPAH. Later, Dresdale and 

colleagues reported a case terming it PPH in 195132. Afterwards, the case was known 

to be the first documented case of familial pulmonary arterial hypertension (FPAH).  

      
FPAH has drawn attention and interest over the past years because of the 

identification of gene responsible for PAH. The gene, formerly known as PPH1, 

encodes for bone morphogenetic protein type II receptor (BMPR II)33, 34. BMPRII has 

been found to localize at locus 2q33 of chromosome 235. Mutations and deletion in 

the gene for BMPR II are thought to account for 60% of familial cases of IPAH and 

possibly 10-26% of sporadic cases34, 36, 37.Family studies have revealed that the 

disease is inherited in an autosomal dominant fashion with low penetrance.  The 

relative risk of developing the disease in an affected family is as low as 15-20% in 

most families but as high as 80% in others38. Trembath and colleagues reported 

families with hereditary hemorrhagic telangiectasia (HHT). They found  members of 

the families with pulmonary hypertension, not always associated with the clinical 

manifestation of HHT39, 40. Genetic investigation revealed mutations in activin-like 

kinase type-1 (ALK1) receptor gene. Interestingly, both genes encoding BMPRII and 

ALK1 belong to the members of the TGF-β superfamily. Hence, it seems likely that 

other members may contribute to the disease. 

               
Clinically, most patients with PAH display exertional dyspnea, indicating their 

inability to increase cardiac output during exercise. Exertional chest pain, syncope 

and edema reflect severity of pulmonary hypertension and impaired right heart 

function. Pathologically, IPAH is defined by the obstruction of small pulmonary 

arteries associated with plexiform lesions, medial hypertrophy, concentric laminar 

intimal fibrosis, fibrinoid degeneration and thrombotic lesions. The disease 

progression is accompanied by increase in pulmonary vascular resistance followed by 

increase in load on right heart. Subsequently, cardiac output falls and RV failure 

ensues. The mean age at diagnosis of IPAH is 36, although it can occur at any age.  
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1.3.3 Chronic thromboembolic pulmonary hypertension (CTEPH) 

Thromboembolism is one of the important factors associated with pulmonary 

hypertension. CTEPH refers to the pulmonary hypertension characterized by 

intraluminal thrombus organization and fibrous stenosis or complete obliteration of 

pulmonary arteries resulting into increased vascular resistance and progressive right 

heart failure. Chronic thromboembolism has emerged as a leading trigger for severe 

pulmonary hypertension. Originally, it was believed that 0.1% to 0.5% of patients 

who survived an episode of acute pulmonary embolism developed CTEPH41. 

However, the true incidence and prevalence are not known accurately as it is 

hampered by the observation that up to two thirds of these patients have no history of 

clinically overt acute pulmonary embolism42. Studies on CTEPH have suggested that 

the initiating event leading to progressive pulmonary vascular remodeling may be the 

pulmonary embolism, either as a single or as recurrent episodes. However, the 

reasons for incomplete resolution of pulmonary emboli permissive to recurrent 

episode of pulmonary embolism have not been identified. The normal pulmonary 

vasculature is predominantly fibrinolytic. Tissue type plasminogen activator (t-PA) 

and plasminogen activator inhibitor-1 (PAI-1) secretion by pulmonary vascular 

endothelial cells is not different between lungs from CTEPH patients and donor 

lungs43, 44. This suggests an absence alterations in the fibrinolytic system in patients 

with CTEPH45. However, an elevated level of factor VIII has been found in CTEPH46 

as well as in patients with other forms of pulmonary hypertension47. Regarding other 

hemostatic alterations,  prothrombotic activities  attributable to abnormal 

erythrocytes or platelet activation have also been implicated48, 49. 

 
Based on the experimental findings and associated risk factors of CTEPH, 

inflammation has been hypothesized to be involved in maintaining prothrombotic 

state and impairing resolution of thromboemboli in CTEPH48, 50. This hypothesis is 

supported by the elevated plasma levels of the proinflammatory cytokines and its 

correlation with magnitude of pulmonary hypertension in patients with CTEPH51. 

Experimental data have linked angiopoetin-1, a signaling molecule involved in 

angiogenesis and smooth muscle cell proliferation, to pulmonary hypertension, and 

angiopoetin-1 has been found to be upregulated in the lungs from CTEPH patients52.  
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In addition, plasma levels of endothelin-1 in patients and upregulation of type B 

endothelin receptors on pulmonary arterial smooth muscle cells has been 

demonstrated53. Hence, an alternative hypothesis suggests that a primary arteriopathy 

of pulmonary vessels and secondary in situ thrombosis are attributable to the 

pulmonary vascular occlusion54. Regarding the genetic basis, the genetic link for 

CTEPH has not yet been determined. However, the expression of BMPR-1A, a 

transmembrane protein required for BMPR-II signaling, is markedly downregulated 

in lungs from patients with CTEPH as well as in other forms of pulmonary 

hypertension55. The available data suggest that the molecular mechanisms for 

pulmonary vascular remodeling in CTEPH appear to be similar to those seen in 

severe pulmonary hypertension of other etiology. However, the in-depth insight into 

the detail of the pathogenesis is still poorly understood and requires further studies. 

1.4 Animal models of pulmonary hypertension/ vascular remodeling 

1.4.1 Monocrotaline-induced pulmonary hypertension 

Monocrotaline, a pyrrolizidine alkaloid, can be obtained by extracting the seeds 

of Crotalaria Spectabilis. This phytotoxin is used experimentally to produce pulmonary 

vascular syndrome in rats characterized by proliferative pulmonary vasculitis, pulmonary 

hypertension (PH) and cor pulmonale56, 57. Following a single subcutaneous or intra-

peritoneal injection in rats, it causes vascular injury and inflammation, particularly 

endothelial injury during the initial sub acute phase (first week). Pulmonary 

hypertension and vascular remodeling develop at 3-4 weeks post injection. 

Monocrotaline (MCT) must first be activated by the liver to the putative electrophile 

monocrotaline pyrrole (MCTP)58, 59. Short term stabilization of MCTP by red blood 

cells facilitates subsequent transport to the lung60, where MCTP elicits vascular 

insult. Monocrotaline induces severe pulmonary hypertension, characterized by 

massive wall thickening of pulmonary arteries  accompanying a dramatic increase in 

media cross-sectional area and a reduction of lumen area61. The monocrotaline-

induced pulmonary hypertension is by far the strongest model of experimental 

pulmonary hypertension and shares characteristics with many forms of pulmonary 

hypertension in human, particularly with PPH. It has been widely used for the 

preclinical studies to investigate several pharmacological compounds such as 

prostacyclin analogues and phosphodiesterase-5 inhibitor62, 63. Moreover, another 

monocrotaline-induced rat model of severe PAH has recently been reported64. 
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In this model, occlusive neointimal lesions in distal pulmonary ateries have been 

described to develop in endothelin B receptor deficient rat treated with 

monocrotaline. Nevertheless, species differ in their susceptibility to develop 

monocrotaline-induced pulmonary hypertension. Mice, in particular, are resistant to 

the pulmonary vascular effects of monocrotaline.  

1.4.2 Hypoxia-induced pulmonary hypertension/vascular remodeling    

Most animals under chronic hypoxic condition reliably develop pulmonary 

hypertension and structural remodeling of pulmonary vessels65-67. It is therefore that 

chronic hypoxic exposure has been commonly used as a stimulus to induce 

pulmonary hypertension reproducibly in laboratory animals. Particularly, small 

animals such as rodents and chickens are employed.  

 

Chronic hypoxic condition can be achieved either by normal air at hypobaric 

pressure (320 mmHg) or by oxygen-poor air at normal pressure (10% oxygen). 

Around 50% increase in the mean pulmonary arterial pressure and a doubling in 

weight of the right ventricle has been observed in rats under hypoxic environment for 

2-3 weeks65. Pulmonary artery muscularization is another important pathological 

feature. Both muscular and non-muscular arteries undergo chronic hypoxia-induced 

muscularization leading to doubling of muscular arterial wall thickness and partial 

muscularization of normally non-muscular distal pulmonary arteries13, 65. These 

vascular changes are similar to those seen in patients with pulmonary hypertension 

caused by obstructive and restrictive diseases or living at high altitude. However, the 

hypoxia-induced pulmonary hypertension is only partially stable. The hemodynamic 

changes during chronic hypoxic exposure have been shown to be resolved within 

around 10 days after the animals are brought to normal air68. Interestingly, 

muscularization of small pulmonary arteries reverses more slowly (1 month), whereas 

large vessels regress only partially14, 69, 70. Hypoxia-induced pulmonary vascular 

remodeling in rats differs from that induced by monocrotaline. In general, the 

remodeling may not be induced as strong by hypoxia as it is by monocrotaline. 

Angiotensin II has been shown to play a pivotal role in hypoxia-induced but not in 

monocrotaline-induced pulmonary artery remodeling61. Clearly, hypoxic pulmonary 

vascular remodeling may not completely mimic the strong vascular remodeling as 

observed in severe human pulmonary hypertension.  
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However, it has remained a convenient model to study the key process of distal 

pulmonary artery muscularization. Recently, a rat model of severe pulmonary 

hypertension, characterized by occlusion of precapillary pulmonary artery lumen by 

endothelial cell proliferation, upon inhibition of VEGF receptor 2 and chronic 

hypoxic exposure has been reported71.  

 

The hypoxia-induced pulmonary hypertension model has been adapted to mice 

in which analytical techniques and tools are well established and available. In 

addition, the possibility to employ genetically engineered mice provides a huge 

potential to study the mechanisms of pulmonary vascular remodeling. Investigation 

into mice genetically engineered for a specific metabolic pathway or other factors is 

an effective approach to determine the function of specific gene products, 

particularly when pharmacological inhibitors for such gene products or factors are 

unavailable or lack specificity. Similar to chronic hypoxic rats, chronic hypoxic mice 

do not exhibit as strong vascular remodeling as is observed in pulmonary 

hypertension in human patients. Another well-characterized model for hypoxia-

induced pulmonary hypertension is the chronically hypoxic newborn calf66. This 

model seems to induce strong alteration in hemodynamics and structure of the 

pulmonary vasculature. Hypoxic calves develop suprasystemic pulmonary 

hypertension with exuberant medial and adventitial thickening, and the lesions are 

close to that seen in patients. It is likely that newborn pulmonary circulation is more 

susceptible to hypoxia 

 

Interestingly, transgenic mice overexpressing S100A4/Mts1, a calcium 

binding protein, have recently been reported to develop pulmonary arterial changes 

resembling human plexogenic arteriopathy with intimal hyperplasia in about 5% of 

their population72, 73. Moreover, a regulation of S100A4/Mts1 by serotonin 

transporter and receptor has also been reported74. S100A4/Mts1 mice revealed a 

greater RVSP and RVH at baseline, which increased further upon their exposure to 

chronic hypoxia and was sustained after 3 months “recovery” in room air. 

Unfortunately, S100A4/Mts1 mice failed to develop more severe pulmonary vascular 

disease75, suggesting a need for further investigation to develop a more robust mouse 

model that resembles human pulmonary hypertension. 
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1.5 Plasminogen activation system 

The plasminogen activator (PA)/plasmin system represents very efficient 

proteolytic machinary, and its enzymatic cascade participates in the control of fibrin 

degradation and tissue remodeling. It involves the serine proteases urokinase type 

plasminogen activator (u-PA), tissue type plasminogen activator (t-PA), plasminogen 

activator inhibitors (PAIs), plasmin and u-PA receptor (uPAR). Plasmin is generated 

from plasminogen upon proteolytic cleavage by u-PA and t-PA. Plasmin has broad 

substrate specificity and acts as an effector protease in the plasminogen activation 

cascade. The proteolytic activity of plasmin can degrade intravascular fibrin as well 

as extracellular matrix proteins such as fibrinogen, fibronectin and vitronectin, and 

activate matrix metalloproteinases76. Among the PAs, t-PA is mainly involved in 

intravascular fibrinolysis. Besides, t-PA has been reported to operate in stress-

induced neuronal plasticity and participates in neuronal plasticity such as in memory 

and learning77, 78. On the other hand, u-PA exerts not only proteolytic but also 

intracellular signaling functions by binding to its high affinity receptor (uPAR) on 

cell surface. This endows u-PA with the ability to perform functions such as cell 

migration and tissue remodeling, in addition to fibrinolysis. Interestingly, 

plasminogen can also become membrane-bound. The occurrence of receptors for 

plasminogen and u-PA on the same cell results in the formation surface-associated 

plasmin. Thus, it generates broad-spectrum proteolytic activity, which is restricted to 

cell surface and protected from circulating inhibitors, such as α2-antiplasmin. 

Overall, u-PA has been shown to be involved in pericellular proteolytic, cell 

migratory, adhesive and more recently characterized chemotactic functions by virtue 

of its proteolytic as well as intracellular signaling function.  

1.5.1 Urokinase (u-PA) and its variants  

Various cell types such as vascular endothelial and SMCs, epithelial cells, 

fibroblasts, monocytes/macrophages and cancer cells secrete u-PA79, 80. u-PA, secreted as a 

single chain polypeptide (scu-PA), has molecular weight of ∼54 kDa and 411 amino 

acid81. scu-PA can convert plasminogen into plasmin. However, it has no peptidase 

activity to synthetic substrates. A proteolytic cleavage at K158-I159 peptide bond in 

scu-PA gives rise to the highly active two chain u-PA (tcu-PA) held together by a 

single peptide bond.  
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The high molecular weight tcu-PA (HMW tcu-PA) possesses protease activity against 

both synthetic substrates and plasminogen82. Out of the two chains, the N-terminal A-

chain (light chain) includes growth factor domain (GFD) and kringle domain (KD), 

whereas the C-terminal B-chain (heavy chain) contains the serine protease domain 

(PD). A further cleavage of urokinase at K135-K136 releases the amino terminal 

fragment (ATF) and generates a catalytically active low molecular weight urokinase 

(LMW u-PA)81. The ATF (1-135 amino acids) comprises the GFD and the KD, 

whereas the LMW u-PA (135-411 amino acids) comprises the protease domain (PD). 

Thus, proteolytic cleavage gives rise to several variants of u-PA (figure 2).  

 
 

 
 

 
 
Figure 2. Variants of urokinase upon proteolytic cleavage.                                                      

(a) Domain structures of the urokinase (u-PA) and (b) Different variants of u-PA are shown. 

G, growth factor-like domain; K, kringle domain; P; protease domain; HMW, high 

molecular weight; LMW, low molecular weight; ATF, Amino-terminal fragment (Adapted 

and modified from Stepanova V.V. and Tkachuk V.A., 200283). 
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1.5.2 Urokinase (u-PA) and its receptor (uPAR) 

Urokinase binds to its specific cell surface receptor (uPAR) through the N-

terminal growth factor-like domain. uPAR, a cysteine-rich glycoprotein with a 

molecular mass of ∼55 kDa, was first identified on human monocytes and on U937 

line cells84. uPAR is organized into three homologous molecular domains (D1, D2, 

D3) joined by linker sequences. Full length uPAR binds efficiently to u-PA through 

its domain D1, which encompasses the u-PA binding site. uPAR is linked covalently 

to the outer layer of the cell membrane via a glycosyl-phosphatidylinositol (GPI) 

anchor attached to its carboxyterminal end located in domain 385. Localization of 

uPAR on the cell surface shows a specific pattern. Similar to other GPI-anchored 

proteins, uPAR is concentrated in special intrusion of the plasma membrane, the 

caveolae. The proteolytic cleavage of D1-D2 linker region generates truncated forms 

of GPI-uPAR (c-uPAR). Receptor shedding has also been observed in case of uPAR. 

Both full-length and cleaved uPAR can be shed, thus generating soluble uPAR forms. 

GPI-specific phospholipase C or D can cleave and release the receptor from the 

plasma membrane86. Soluble uPAR forms have been found in biological fluids, both 

in vitro and in vivo87. The full length scu-PA as well as tcu-PA can bind to uPAR on 

the cell surface. The role of u-PA binding to u-PAR is not just limited to localize u-

PA on the cell surface. Activation of receptor-bound scu-PA by plasmin is more 

efficient than that of free urokinase88, thus enhancing the pericellular proteolytic 

activity. However, binding of u-PA to its receptor is species-specific i.e. human u-PA 

does not bind to murine uPAR and murine u-PA does not bind to human uPAR89.  

 

uPAR also acts as a receptor for vitronectin (VN)90, 91. However, the intact 

uPAR is required for efficient vitronectin binding as its cleavage prevents interaction 

with ligand92. uPAR binding to vitronectin concentrates proteolytic activity on the 

cell surface and extracellular matrix by trapping soluble urokinase receptor-urokinase 

complexes93. The uPAR/vitronectin interaction can be modulated not only by u-PA but also 

PAI-1. The presence of u-PA enhances binding affinity between uPAR and vitronectin 
94, whereas uPAR binding to VN is inhibited by PAI-1, because both uPAR and PAI-

1 bind to the overlapping regions on VN, close to the integrin binding site95.  
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         The u-PA\uPAR system has intracellular signaling function as well. Since the GPI-

anchored uPAR does not contain a transmembrane domain, it cannot per se transduce 

signals into the intracellular space.  Intracellular signaling through uPAR, hence, depends on 

its cooperation with other transmembrane adaptor proteins. Integrins represent a set of 

molecules that can interact with uPAR on the cell surface.  Several integrin families such as 

β1, β2, β3 and β5 have been identified96, 97. Integrins are ubiquitous, heterodimeric, 

membrane-spanning cell surface receptors that are capable of interacting with ECM proteins 

such as vitronectin, collagen, fibrin, laminin, and fibronectin. The interaction occurs via the 

integrin recognition motif Arg-Gly-Asp (RGD). The cytoplasmic domains of integrins are 

linked to components of the cytoskeleton and are implicated in the triggering of discrete 

intracellular signaling events98. The lateral association and functional interactions between 

the u-PA/uPAR system and integrins crucially affect the adhesive and motile cellular 

phenotype. Thus, this dual activity of uPAR in a proteolytic and/or non-proteolytic fashion 

together with the initiation of intracellular signaling is believed to influence cellular 

behaviour in many physiological and pathophysiological processes such as angiogenesis, 

inflammation, wound repair and tumor progression/metastasis 99, 100 (Figure 3). 
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Figure 3. Interaction between u-PA/uPAR system and Integrins 

The interaction between u-PA/uPAR system with integrins has been shown to alter not only 

the integrin adhesive function but also triggers signal transduction pathways, thereby 

affecting cell adhesion/migration and cytoskeletal reorganization etc. Moreover, functional 

crosstalk between the u-PA/uPAR system and integrins occurs by virtue of the capacity of 

uPAR and PAI-1 to bind to the ECM component vitronectin. By this, uPAR and PAI-1 

compete mutually and with integrins for interaction with VN thus interfering with cell 

adhesion. Within this adhesion scenario, u-PA acts as an important modulator by 

dissociating of PAI-1 from VN (-) and enhancing uPAR-VN binding affinity (+). (Adapted 

and modified from Reuning U. et.al.99) 

 

Gene-targeted animal models provide a valuable tool to study components of u-

PA/uPAR system and other interacting molecules in vivo101. Interestingly, constitutive 

knockout mice of u-PA or uPAR gene survive, suggesting that the mice adapt to the absence 

of u-PA by a redundant systems or that u-PA/uPAR system is not essential for particular 

function in vivo. It is likely that the role of u-PA in vivo is mainly the generation of plasmin, 

whereas uPAR might have only a negligible role in enhancing plasmin generation. Still, the 

exact molecular nature of certain u-PA/uPAR-triggered signal transmission routes remains 

to be established102. 

 

          In addition to uPAR, scu-PA and tcu-PA also bind to receptors of the low density 

lipoprotein receptors (LDLR) family namely, the LDLR-relative protein/α2 macroglobulin 

receptor (LRP//α2-MR) and the very low density lipoprotein receptor (VLDLR)103-105. 

Moreover, u-PA devoid of growth factor-like domain can also bind to the surface of SMC 

and other cells either through the kringle domain or protease domain, suggesting presence of 

an additional receptor on the plasma membrane. Besides, it indicates that variants of u-PA 

can affect cellular function independently or in cross-talk with uPAR/CD8783.  

 

1.5.3 Inhibitors of urokinase  

Plasminogen activator inhibitor-1 (PAI-1) is the principle physiological inhibitor of 

urokinase. Like other plasminogen activator inhibitors, PAI-1 is a member of the serine 

protease inhibitor (Serpin) gene family.  
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In addition to platelets, which contain a large pool of PAI-1 mostly in an inactive form, 

macrophages, endothelial cells as well as many other types of cells in culture secrete PAI-1, 

and it has a molecular mass of ∼54 kDa 106-108. Cells secrete active form of PAI-1, which is 

rapidly inactivated unless it binds to vitronectin (VN). Vitronectin stabilizes the active 

conformation of PAI-195. PAI-1 forms complexes with single chain as well as two chain 

forms of both t-PA and u-PA109. The inhibition of plasminogen activators (PA) by PAI-1 is 

followed by the endocytosis. Upon binding by the PAI-1 to the receptor bound u-PA on the 

cell surface, this trimeric complex is endocytosed into the cell. Endocytosis occurs by means 

of the cell surface receptors, LRP//α2-MR or VLDLR104, 110. After internalization urokinase-

inhibitor complex dissociates from the uPAR in the endosomes followed by the degradation 

of the complex in the lysosomes, whereas the uPAR is recycled to the cell surface111.  Thus, 

endocytosis serves as the regulatory mechanism by which u-PA and t-PA are cleared from 

the cell surface, the circulation and the extracellular space. It was also demonstrated that the 

scu-PA and tcu-PA, bound to the LRP/α2-MR, can be internalized and degraded even in the 

absence of PAI-1112. However, inactivation of urokinase by the presence of PAI-1 

significantly facilitates the endocytosis113, 114 and thus, efficient internalization of receptor 

bound u-PA. PAI-1 has significantly higher affinity to bind to vitronectin compared to 

uPAR115 and because PAI-1 recognizes and binds to the same site contained within 

the somatomedin domain (SMD) of the vitronectin molecule as uPAR does, it 

competes with uPAR for vitronectin binding116. However, the affinity of PAI-1 for 

vitronectin is markedly reduced when PAI-1 is complexed to u-PA117. In agreement 

with these data, Stefansson and Lawrence showed that active PAI-1 directly impairs 

smooth muscle cell (SMC) adhesion and migration by limiting the binding of 

vitronectin to the integrin receptor αvβ3
118. Paradoxically, Tanaka and colleagues 

showed that PAI-1 could enhance, rather than impair, smooth muscle cell 

migration119. These authors suggest that the results may be explained by a reduction 

in the stringency of binding, which in turn allows for greater cellular motility. In 

addition to plasminogen activator inhibitors, the regulation of u-PA may also involve 

other inhibitors such as the protease nexin-1 (PN-1) and protein C inhibitor120, 121. 

These inhibitors can also inactivate urokinase activity on the cell surface. Hence, 

regulation of u-PA activity or plasminogen activation cascade may occur at different 

levels as depicted in figure 4.  
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Figure 4. Plasminogen activation cascade.                                                                     

Activation of scu-PA into tcu-PA by several factors including plasmin leads to activation of 

plasminogen into plasmin. Plasmin acts as the end effector factor to degrade ECM proteins, 

activate pro-MMPs and latent growth factors etc. α2-M, alpha-2-macroglobulin; α2AP, alpha      

-2-antiplasmin. (Adapted and modified from Myöhänen H and Vaheri A., 2004) 

 
 

1.5.4 Coagulation and fibrinolysis in pulmonary arterial hypertension 

Pulmonary arterial hypertension involves alterations in the pulmonary 

vasculature such as vasoconstriction, smooth muscle and endothelial cell 

proliferation, and thrombosis, suggesting that there may be disturbances in the 

normal relationships between vasodilators and vasoconstrictors, growth inhibitors 

and mitogenic factors, and antithrombotic and prothrombotic determinants122.  

Individuals with IPAH have been reported to exhale less nitric oxide (NO) than 

normal, and the production of NO in the lung is inversely related to the degree of 

pulmonary hypertension123, suggesting alteration in vascular tone. It has also been 

shown that individuals with PAH have an increase in exhaled NO concomitant with a 

decrease in pulmonary artery pressure after initiation of vasodilator therapy with the 

prostacycline124. Furthermore, Christman and collaborators reported an increase in 

the release of thromboxane A2 and a decrease in prostacyclin in IPAH as well as 

secondary PAH patients125.  

scu-PA 
tcu-PA 

Plasminogen 

Plasmin 

PAI-1, PAI-2 

PAI-1, PAI-2, α2M 

α2AP, α2M 

Plasmin               
Other proteinases  
(kallikrein, trypsin) 

Autocatalysis           
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Indirectly, these data suggested an imbalance of vasoconstrictor and vasodilators, 

indicating a reduced antithrombotic potential. The endothelium plays a key role in 

maintenance of normal coagulation and anticoagulation function by elaborating a 

variety of substances such as humoral factors, heparan sulfates, thrombomodulin, t-

PA, u-PA and von Willebrand factor (vWF)126, 127. Endothelial dysfunction or injury 

may, hence, contribute to the thrombotic process, a feature that worsens pulmonary 

hypertension. Moreover, a relative deficiency of the antithrombotic molecules, 

prostacyclin and NO, and slowing of blood flow in pulmonary circulation secondary 

to luminal narrowing further enhances thrombogenicity128. Thrombus formation leads 

to narrowing of the pulmonary vessel lumen, and to aggravating the pulmonary 

hypertension(PH)129. Accumulating body of literatures suggest that endothelial 

dysfunction and haemostatic alteration with hypercoagulable state present in PH 

patients130.  Several factors have been implicated in the same.  

 

P-selectin is a glycoprotein that is expressed in α-granules of activated platelets 

and granules of endothelial cells. An increased P-selectin level is a marker of 

endothelial dysfunction and/or platelet activation and may indicate the presence of a 

hypercoagulable state131. Sakamaki and collaborators analyzed plasma from patients 

with primary as well as secondary PH. They found an elevated level of P-selectin and 

decreased level of thrombomodulin132. Others have also reported elevated P-selectin 

and thrombomodulin133, 134. Thrombomodulin, which is expressed with high 

abundance in the pulmonary circulation, is an endothelial membrane receptor for 

thrombin, and binding of thrombin to thrombomodulin results in the activation of 

protein C. In addition, the receptor-bound thrombin has no procoagulant effect. vWF, 

a large multimeric glycoprotein, is constitutively produced in endothelium (in the 

Weibel-Palade bodies) and megakaryocytes (in the α-granules of platelets). Its 

primary function is to bind to other proteins, particularly Factor VIII. It is important 

in blood coagulation. Several studies have found higher vWF level in blood plasma 

of patients with PH. Kawut et.al. measured vWF in PH patients and found that 

increased vWF levels were associated with worse survival in PH patients, suggesting 

that endothelial dysfunction and injury may have impact on disease course135.  
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Welsh et. al. detected a decrease in soluble thrombomodulin, a rise in the PAI-1 and 

an elevated euglobulin lysis time in PPH patients. In SPH patients, they observed an 

increase in vWF antigen and fibrinogen and a decrease in fibrinolytic activity. They could 

also demonstrate a correlation between the loss of fibrinolytic activity and the degree of 

elevation of mean pulmonary artery pressure in both PPH and SPH136, suggesting a role for 

the abnormalities in the coagulation mechanisms in perpetuation of pulmonary hypertension. 

Others have also reported an alteration in plasminogen activation system leading to a 

procoagulant-anti-fibrinolytic state47, 133, 137, 138. The gender specific analysis of the observed 

prothrombotic state in PPH patients showed a female specific alteration in plasma levels of 

the major components of the plasminogen activation system (PAI-1 and t-PA), and a basal 

activation of coagulation as indicated by an increase in markers of the thrombin activation 

system (Thrombin/antithrombin complex, prothrombin fragment)139. Thus, the 

procoagulant state in the PH patients is favored by the slowing of blood flow in the 

pulmonary circulation secondary to the luminal narrowing, by the presence of a relative 

deficiency of prostacyclin and NO, and by the switch of the hemostatic balance favouring 

coagulation and blocking fibrinolysis.  

 

The available data suggest that the alteration in thrombin and plasminogen 

activation likely result in hypercoagulable environment conducive to in-situ 

thrombosis (Figure 5). Such alteration in hemostatic balance reflects a generalized 

diseased endothelium, which may be ineffective in maintaintaining patency of the 

pulmonary vasculature.  This could also be the basis for the observed increase in 

survival of the patients with pulmonary hypertension in response to the wider use of 

chronic anticoagulation therapy after termination of non randomized studies140. 

Whether these alterations in the hemostatic balance may represent a primary 

disturbance or are the secondary response to vascular injury of different origins still 

remains to be explored.  
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Figure 5. Abnormalities in coagulation and fibrinolysis in PAH.  

As discussed in the text various abnormalities in coagulation and fibrinolysis have been 

observed in patients with pulmonary hypertension, which are likely attributable to favor 

hemostatic balance towards procoagulant state conducive to in situ thrombosis. In situ 

thrombosis is often associated with and aggravates pulmonary hypertension. F1.2-

prothrombin fragment, TAT-thrombin/antithrombin complex, vWF-vonWilebrand factor 

(Adapted and modified from Welsh et.al., 1996136). 

 

1.5.5 Urokinase system in pulmonary vascular remodeling 

Animal models, different forms and features of pulmonary vascular 

remodeling, and the plasminogen activation system have been already discussed 

above. In this section, the urokinase system in hypoxic pulmonary vascular 

remodeling will be discussed. Apart from the above mentioned factors such as 

prostacyclin, nitric oxide, endothelin, potassium channel, serotonin and  growth 

factors such as TGF-β superfamily members and PDGF, proteases have also been 

implicated in the development of pulmonary hypertension141. Among the proteases, 

the previous studies have implicated matrix metalloproteinases (MMPs) in 

remodeling processes owing to their function in extracellular matrix degradation and 

their influence in cellular events142. Endogenous vascular elastase (EVE), a serine 

proteinase, is such an example.  
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It has been demonstrated that EVE mediates the structural remodeling of pulmonary 

arteries by degrading extracellular matrix and releasing growth factors143-145. 

Moreover, inhibition of serine elastase activity could abrogate pulmonary vascular 

remodeling in animal models143, 146, suggesting that it may be a key proteinase to 

mediate vascular remodeling. However, also an involvement of the MMP system in 

the process of remodeling is likely, as serine elastase may increase MMP expression 

through release of degraded matrix peptides147, 148 or by inhibition of tissue inhibitors 

of MMPs149.  

 
Likewise, the plasminogen activation system has been investigated and 

implicated in the process of tissue and vascular remodeling. In the past, the 

involvement of u-PA and PAI-1 (components of fibrinolytic system) in arterial 

wound healing and neointima formation was investigated by employing in vivo 

models of arterial injury150-157. Initial studies on mouse model of electrically- or 

mechanically-induced arterial injury ascribed u-PA the role to promote neointima 

formation by enhancing cellular migration independent of its receptor150, 153, 157. The 

logical strategy for subsequent studies was to investigate the role of PAI-1, the 

principle physiological inhibitor of u-PA and t-PA. Studies employing animal models 

of copper- or ferric chloride-induced arterial injury yielded paradoxical findings 

demonstrating PAI-1 to enhance neointima formation/vascular remodeling151, 152. 

Similarly, intima-promoting role for PAI-1 has also been demonstrated in other 

mouse models such as carotid artery ligation and balloon carotid injury158, 159.  

Moreover, transforming growth factor-β (TGF-β), through PAI-1 dependent 

pathways, has been shown to induce neointimal growth154, 156. On the other hand, 

PAI-1 has been found to play an inhibitory role in neointima formation150, 160, adding 

further complexity to the contribution of fibrinolytic system in neointima formation. 

In vitro and in vivo studies were performed to investigate cellular events induced by 

the components of fibrinolytic system that might explain the in vivo findings. The 

observation that u-PA promotes cellular proliferation and migration161-164 supports its  

role to enhance neointimal growth/vascular remodeling. On the other hand, PAI-1 has 

also been shown to contribute to cell proliferation and migration, and to inhibit 

apoptosis165-168. This is in line with the in vivo findings that PAI-1 enhances 

neointima formation/ vascular remodeling.  
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Although the complexity seems to be deepening and hence, the consensus looks still 

to be far away, the contradiction is likely attributable to differing models and 

methods used in various studies. However, the complexity has been further worsened 

with two recent investigations, which employed  PAI-1 knockout mice and carotid 

artery ligation model but yielded contradictory findings159, 160.  This suggests that the 

precise role of plasminogen activation system in vascular remodeling is yet poorly 

understood.  

 
Despite the numerous studies that were carried out to determine the role of 

fibrinolytic system in the process of remodeling in the systemic vasculature, efforts 

to study the role of u-PA or PAI-1 specifically in pulmonary vascular remodeling are 

almost negligible. The problem to study pulmonary vascular remodeling in mice is 

also limited by the availability of models, as hypoxia-induced pulmonary vascular 

remodeling is the only one available. On the other hand, clinical studies have 

investigated the components of coagulation and fibrinolytic system. However these 

studies are limited to the analysis of plasma samples from the patients with pulmonary 

hypertension and their primary aim was to find possible markers for the disease. 

Coagulation profiles of patients with primary pulmonary hypertension have revealed lower 

fibrinolytic and higher plasma PAI-1 activity, indicating an altered haemostasis with 

hypercoagulable and depressed fibrinolytic state47, 133, 136-139. In an experimental level, a 

coordinated induction of PAI-1 and inhibition of plasminogen activator gene expression in 

lungs and an enhanced PAI-1 antigen and activity levels in plasma were observed in mice 

exposed to hypoxia169. The coagulation profile of mice upon hypoxic exposure indicated that 

the elevated level of PAI-1 might mediate the pulmonary vascular response to hypoxia. 

Instead, knockout mice study attributed u-PA the role to mediate the pulmonary vascular 

response to chronic hypoxia170. Clearly, the available literature is not robust enough to safely 

judge on the precise role of u-PA in hypoxic pulmonary vascular remodeling. Besides, it is 

most relevant to examine the function of PAI-1, the principle physiological inhibitor of u-

PA. No studies have yet examined PAI-1 directly in hypoxia-induced pulmonary vascular 

remodeling. Hence, a comprehensive study to understand the role of u-PA in an 

experimental animal model is highly desirable.  
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1.6 Aim of the study 

In general, the aim of this study was to investigate the role of urokinase-type 

plasminogen activator (u-PA) and its inhibitor, plasminogen activator inhibitor 1 (PAI-1), in 

pulmonary vascular remodeling and subsequent right ventricular hypertrophy (RVH) by 

employing a mouse model of chronic hypoxia-induced pulmonary hypertension. Hence, we 

aimed to address the following questions. 

 

  Expression of u-PA and PAI-1 in chronically hypoxic murine lungs  

  u-PA activity in chronically hypoxic murine lungs  

  Expression of u-PA and PAI-1 in human lungs from patients with IPAH and CTEPH as 

well as donor lungs 

  u-PA activity in human lungs from patients with IPAH and CTEPH as well as donor 

lungs 

 Effect of inhibition of u-PA activity in chronic hypoxia-induced pulmonary vascular 

remodeling and subsequent RVH 

 Effect of the absence of u-PA and PAI-1 gene in chronic hypoxia-induced pulmonary 

vascular remodeling and subsequent RVH 

 Effect of continuous u-PA infusion in chronic hypoxia-induced pulmonary vascular 

remodeling and subsequent RVH 
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2 MATERIALS 

2.1 Chemicals, Reagents, Injecting solution and substances 
Substance or reagents Trade names or kits Company 
Chromogenic substrate 
(H-D-Val-Leu-Lys-
pNA·2HCl ) 

S-2251 
 
 

Chromogenix-Instrumentation 
laboratory SpA, Italy 
 

HMW-urokinase Human urokinase American Diagnostica, USA 
Plasminogen 
 

Plasminogen 
 

Chromogenix-Instrumentation 
laboratory SpA, Italy 

Tissue lysis buffer for 
RNA isolation 

 RNAzol 
 

Wak-Chemie Medical, Germany 
 

DNA polymerase 
 

Hot start Taq® DNA 
polymerase 

Qiagen 
 

Reverse transcriptase 
 

Omniscript® Reverse 
Trascriptase Kit 

Qiagen 
 

PCR primers 
 

Primers 
 

Metabion International AG, 
Germany 

Protein concentration 
determination kit 

BCA™ Protein Assay kit 
 

Pierce, USA 
 

Tissue-Tec Tissue-Tek®O.C.T.™ Sakura, The Netherland 

t-PA Actilyse Dr. Karl Thomae GmbH, Germany 
HMW tcu-PA Actosolv Hoechst GmbH, Germany 
ECL reagents 
 

ECL immunodetection kit 
 

Amersham pharmacia biotech 
 

Sodium hydroxide 1N 
(1mol/l)  Sodium hydroxide 

Merck 
Darmstadt, Germany 

Chlorhidric acid 1N 
(1mol/l) Chlorhidric acid 

Merck 
Darmstadt, Germany  

Ketaminhydrochloride 
100 mg/ ml 

Ketamin® 
 

Pharmacia  
Erlangen, Germany 

Lidocainhydrochloride 
2% 

Xylocain® 
 

Astra Zeneca 
Wedel, Germany 

Sterile isotonic Saline 
solution (0.9% NaCl)  

Physiological  
Saline solution 

Baxter S.A. 
München, Germany 

50% O2, 50%N2  Ventilation gas 
Air Liquid (ehem. Messer) 
Siegen, Germany 

Enrofloxacine 
oral solution Baytril 2,5%® 

Bayer Vital GmbH 
Leverkusen, Germany 

u-PA inhibitor CJ-463 Curacyte AG, Munich, Germany 
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2.2 Consumables 
Substance or reagents 

 
Trade names or kits 

 
Company 

 

Nitrocellulose membrane Hybond ECL membrane Amersham parmacia Biotech 
Micro-well plate Micro-well plate Nunc, Denmark 
Single use syringes 
1ml, 2ml, 5ml, 10ml 

Inject Luer® 
 

Braun 
Melsungen, Germany 

Needles 
26G (0,9mm x 25mm) 

BD Microlance 3® 
 

Becton Dickinson 
Germany 

Medical adhesive bands Durapore® 3M, St. Paul, MN, USA 
Cannula for vein catheter 
support 22G and 20G 

Vasocan 
Braunüle® 

Braun Melsungen, Germany 
 

Gauze 
5 x 4 cm 

Purzellin® 
 

Lohmann und Rauscher 
Rengsdorf, Germany 

Single use gloves 
 

Transaflex® 
 

Ansell Surbiton Surrey, UK 
 

Gauze 
 

Gauze balls 
size 6 

Fuhrman Verrbandstoffe GmbH 
Much, Germany 

Perfusor-tubing 
150 cm 
 

Original-Perfusor®-
tubing 
 

Braun 
Melsungen, Germany 
 

Combi-Stopper 
 

Combi-Stopper 
 

Intermedica GmbH 
Kliein-Winternheim, Germany 

Stopcock for infusion 
therapy and pressure 
monotoring 

Discofix®- 
 
 

Braun 
Melsungen, Germany 
 

Napkins 
 

Napkins 
 

Tork 
Mannheim, Germany 

Threads 
Nr. 12 

Surgical threads 
 

Coats GmbH 
Kenzingen, Germany 

Surgical threads 
non-absorbable 
Size 5-0 

ETHIBOND EXCEL® 
 
 

Ethicon GmbH 
Norderstedt, Germany 
 

Surgical threads with 
needle 
Size 5-0, 6-0 and 7-0 

ProleneTM 
 
 

Ethicon GmbH 
Norderstedt, Germany 
 

Surgical instruments 
 

Surgical instruments 
 

Martin Medizintechnik 
Tuttlingen, Germany 

Heating pad 
 

Thermo-Lux® 
 

Witte und Suttor 
Murrhardt, Germany 

Tracheal cannula 
 
 

from BD Microlance 3 
15or 20G shortened to 
1,5cm 

Becton Dickinson 
Germany 
 

Osmotic mini pump 
 
 

Alzet OMP (Model 
2004) 
 

Durect Corporation, CA, USA 
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2.3 Systems, machines and softwares 

System, machines 
and software 
 

Trade names or kits 
 
 

Company 
 
 

Ventilator for mice SAR830A/P Ventilator 
IITH Inc. Life Science 
Woodland Hills, CA, USA 

PET-Tubes with 
different 
 diameters 

Tygon® 
 
 

Saint-Gobain Performance 
Plastics Charny, France 

Computer and 
Monitor     
Transducer 
 
 

Combitrans Monitoring Set 
Mod. II for arterial Blood  
Pressure Measurement 

Braun, Melsungen, Deutschland 
 
 

PCR machine 
 

GeneAmp® PCR system 2400
 

Applied Biosystem 
 

Transfer machine 
 

Trans-Blot® SD semi-dry 
Electrophoretic transfer blot 

Bio-Rad 
 

ELISA reader Tecan Spectrafluor plus,  MTX Lab Systems, Inc. 
Software for 
densitometry 

AlphaEase 
 

AlphaInnotech 
 

Software (ELISA 
reader) 

Magellan 
 

Tecan, Inc 
 

Software (vascular 
morphometry and 
scanning) 

Leica Qwin 
 

Leica, Germany 
 

Centrifuge (hematocrit 
measurement) 

Adams autocrat centrifuge 
 

Clay Adams, Parsippany, NY, 
USA. 

 

2.4 Materials for histology 

Substance or reagents 
or appliances 

Trade names or 
kits Company 

Parafilm 
 

 Parafilm 
 

American National Can 
Menasha, Wisconsin, USA 

Automated microtome RM 2165 Leica Microsystems, Nussloch, Germany 
Flattening table HI 1220 Leica Microsystems,Nussloch, Germany 
Flattening bath for 
paraffin sections 

HI 1210 
 

Leica Microsystems, Nussloch, Germany 
 

Tissue embedding 
machine 

EG 1140H 
 

Leica Microsystems, Nussloch, Germany 
 

Cooling plate EG 1150C Leica Microsystems, Nussloch, Germany 
Tissue processing  
automated machine 

TP 1050 
 

Leica Microsystems, Nussloch, Germany 
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Stereo light microscope 
 

DMLA 
 

Leica Microsystems, Nussloch, 
Germany 

Digital Camera Microscope 
 

DC 300F 
 

Leica Microsystems, Nussloch, 
Germany 

Ethanol, 70%, 95%, 99,6% Ethanol Fischer. Saarbrücken, Germany 
Isopropanol (99,8%)  Isopropanol Fluka Chemie, Buchs, Swiss 
Methanol  Methanol Fluka Chemie, Buchs, Swiss 
Formaldehyde alcohol free 
(≥37% ) 

 Formaldehyde 
 

Roth, arlsruhe, Germany 
 

Roti-Histol (Xylolersatz)  Formalin Roth, Karlsruhe, Germany 
Xylol  Xylol Roth, Karlsruhe, Germany 
Hydrogen peroxide  
 

Hydrogen peroxide30% 
pro analysi 

Merck,Darmstadt, Germany 
 

Cover slips 24x36mm Cover slips  Menzel, Germany 

Tissue embedding cassettes 
 

Universal-embedding 
cassettes 

 
Leica Microsystems, Nussloch, 
Germany 

Histological glass slices 
 

Superfrost Plus® 
 

R. Langenbrinck, Emmendingen, 
Germany 

Microtom blades  
 

  

Microtom blades  S35 
 
 

Feather, Japan (über Produkte 
für die Medizin AG, Köln, 
Germany) 

Paraffin embedding medium 
 

Paraplast Plus® 
 

Sigma Aldrich, Steinheim, 
Germany 

Pikric acid  Pikric acid Fluka Chemie, Buchs, Swiss 
Mounting medium 

 
Pertex® 

 
Medite GmbH, Burgdorf, 
Germany 

Sodium Chloride (NaCl) Natriumchloride pro analysi Roth, Karlsruhe, Germany 
Di-
sodiumhydrogenphosphate 
dihydrate 

Di-
Natriumhydrogenphosphat 
Dihydrat, pro analysi 

Merck, Darmstadt, Germany 
 

Potassium hydrogen 
phosphate 

Kaliumdihydrogenphosphat 
pro analysi 

Merck, Darmstadt, Germany 
 

Trypsin Digest All 2® Zytomed, Berlin, Germany 
Avidin-Biotin-Blocking 
reagent 

Avidin-Biotin-Blocking Kit 
 

Vector/ Linaris, Wertheim-
Bettingen, Germany 

Goat Serum 
 

Normal Goat Serum 
 Alexis Biochemicals, Germany 

Substrat Kit 
 

Vector VIP Substrat Kit 
 

Vector/ Linaris, Wertheim-
Bettingen, Germany 

Substrat Kit 
 

DAB Substrat Kit 
 

Vector/ Linaris, Wertheim-
Bettingen,  

Avidin with fluroscein Fluorescein avidin DC Vectastinkit, Vector Laboratories

Methylgreen  Methylgreen 
Vector/ Linaris, Wertheim-
Bettingen, Germany 
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2.5 Antibodies 
 
Antibodies Dilution (application) Company 
Mouse anti-human anti-alpha-
smooth muscle Actin; Clone 1A4 
monoclonal,  

 Dilution 1:900 (IHC) 
 
 

Sigma Aldrich 
Steinheim, Germany 

Rabbit anti-human anti-von 
Willebrand factor, polyclonal 

 Dilution 1:900 (IHC) 
 

Dako Cytomation 
Hamburg, Germany 

Rabbit anti-mouse u-PA IgG 
fraction 

Dilution 1:1000 (IHC) 
 

Loxon, Germany 
 

Rabbit polyclonal anti-PAI-1 
antibody (H-135) 

Dilution 1:50 (IHC) 
 

Santacruz Biotechnology 
 

Rhodamin-conjugated donkey 
anti-rabbit antibody 

Dilution 1:100 (IHC) 
 

Jackson Immunoresearch 
 

Rabbit anti-mouse u-PA IgG 
fraction 

Dilution 1:1000 (WB) 
 

Loxon, Germany 
 

Rabbit polyclonal actin antibody Dilution 1:3000 (WB) Abcam 
Rabbit anti-mouse PAI-1 
polyclonal antibody (MI48034) 

Dilution 1:2000 (WB) 
 

Innovative research 
 

Monoclonal antibody against 
uPA B-chain 

Dilution 1μg/ml (WB) 
 

American Diagnostica 
 

HRP conjugated Secondary 
antibodies (anti-rabbit or anti-
mouse or anti-goat) 

Dilution 1:2000 (WB) 
 
 

Dako cytomation, Denmark. 
 
 

Biotinylated Secondary anti-
mouse and anti-rabbit antibody 
 

 Dilution 1:250 
(Vectastain Elite ABC 
Kits) (IHC) 

Vector/ Linaris 
Wertheim-Bettingen, Germany 
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3 METHODS 

3.1  Animals 

Adult u-PA knockout (Plautm1Mlg, Jackson Laboratories), PAI-1 knockout 

(Serpin1tm1Mlg, Jackson Laboratories) and their wild type genetic background mice 

C57Bl/6N were procured from Charles River, Germany. Mice were given free access to 

water and food, and were kept under controlled temperature (~ 22°C) and light (12/12-hour 

light/dark cycle) throughout the experimental period. The experimental protocol for mouse 

experiment is depicted in Figure 6. The methods for exposure of mice to hypoxia or 

normoxia and their treatment with different substances have been discussed in detail in 

separate headings below. All experiments were performed as per the institutional guidelines 

that comply with national and international regulations. Approval from the local ethic 

commission was obtained for the experiments and registered as GI 20/10 Nr. 46/2004. 

 

Figure 6. Schematic protocol for mouse experiment.                                                                                 

Mice were kept for 28 day under normoxia and hypoxia, followed by obtaining the read-outs 

and required tissue samples. RVSP-right ventricular systolic pressure, RVH-right ventricular 

hypertrophy, n- number of mice in the group. 

u-PA inhbitor (intraperitoneal), n=8

Saline (intraperitoneal), n=8 

Wild type, n=8 

u-PA knockout, n=8 

PAI-1 knockout, n=8 

Saline (infusion), n=8 

u-PA (infusion), n=8 

u-PA inhbitor (intraperitoneal), n=8

Saline (intraperitoneal), n=8 

Wild type, n=8 

u-PA knockout, n=8 

PAI-1 knockout, n=8 

Saline (infusion), n=8 

u-PA (infusion), n=8 

28 Days 28 Days 

Read-out 

-RVSP 

-RVH 

-Pulmonary artery muscularization 

-u-PA activity analysis 

-u-PA/PAI-1 expression analysis 

Hypoxia (10% O2) Normoxia (21% O2) 
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3.2 Induction of pulmonary hypertension in mice by hypoxia 
 

Pulmonary hypertension was induced in mice by exposure to hypoxia (10 % 

inspired O2 fraction, FIO2 10%) in a normobaric chamber for 28 days as described 

previously171. Constant level of hypoxia was maintained with the aid of an auto-

regulatory control unit (model 4010, O2
 controller, Labotect; Göttingen, Germany) 

supplying either nitrogen or oxygen. Excess humidity in the system was prevented by 

condensation in a cooling system. CO2 was continuously removed by soda lime. 

Cages were opened for food and water supply and for cleaning. The chamber 

temperature was maintained at 22–24°C. Control animals were placed in similar 

conditions in a normoxic chamber with a normal oxygen environment (21% inspired 

O2 fraction, FIO2 21%). Thus, the automatic system was in place to maintain the 

chamber environment as hypoxic or normoxic. 

3.3  Treatment of mice with u-PA and u-PA inhibitor 

 Mice were treated with u-PA and specific u-PA inhibitor throughout the 

experimental period. Benzylsulfonyl-D-Ser-Ser-4-amidinobenzylamide (CJ463), described 

previously as inhibitor 26172, was used as u-PA inhibitor. Stock solution of CJ463 (0.5 

mg/100 μl) was prepared in 0.9% NaCl.  Intraperitoneal injection of CJ463 was given to 

mice at a dose of 20 mg/kg body weight (BW) twice a day. Control mice received the same 

volume of 0.9% NaCl. Human two-chain u-PA was infused intravenously into mice via 

Osmotic Mini-pump (OMP). Subcutaneous implantation of OMP was performed by aseptic 

surgery 24 hours before mice were exposed to hypoxia or normoxia. Two doses of u-PA as 

1427 and 7135 U/day were delivered through the OMP. Control mice received saline via 

OMP.  

3.4  Hemodynamic and right ventricular hypertrophy (RVH) measurement in mice 

For general anesthesia mice were given intraperitoneal injection of ketamine and 

xylazine combination (100 mg/kg and 15 mg/kg body weight respectively). The anesthetic 

mixture was prepared as 20 μl ketamine/20 µl xylazine/40 µl NaCl and the required 

volume as per the dose was injected. The anesthetized animals were placed on a heating 

pad in order to maintain the body temperature within the physiological range. Tracheotomy 

was performed to ventilate the animals artificially with 10ml/kg body weight and a 

frequency of 120 per second. 
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A positive end expiratory pressure (PEEP) of 1.0 cm H2O was used throughout the 

experiment, while inspiratory oxygen (FIO2) was set at 0.5. Through a small opening in the 

chest a 26-guaze stainless steel needle attached to a fluid-filled force transducer was inserted 

into the right ventricle to measure the right ventricular systolic pressure (RVSP). The 

transducer was calibrated at zero at the level of hillum before every measurement. RVSP 

was recorded for 10 minutes and the saved data was printed for analysis. Total blood was 

collected directly from right ventricle for hematocrit measurement and plasma separation. 

Hematocrit was measured immediately by capillary centrifugation technique. The capillary 

tube containing the whole blood was spun in an Adams Autocrit Centrifuge for about 5 

minutes and hematocrit value was noted. Plasma was separated from the citrated blood by 

centrifuging at 1500 g for 10 minutes. After centrifugation, the upper phase containing 

plasma was carefully separated and stored at -20°C in clean eppendorf tubes until used for 

further analysis. The heart was dissected under a dissection microscope. The right ventricle 

(RV) was separated from left ventricle and septum (LV+S). After separation, the RV and 

LV+S were placed on glass slides and dried for one week at room temperature. The right 

ventricle and left ventricle plus septum were weighed to obtain the right ventricle to left 

ventricle plus septum ratio (RV/LV+S), as an index of right ventricular hypertrophy.  

3.5  Histology and morphometric analysis of murine lungs 

After completion of hemodynamic measurement the murine lungs were first flushed 

with sterile saline solution at a constant pressure of 22 cm H2O above the pulmonary 

hillum in order to get rid of blood. They were then perfused with phosphate-buffered 

paraformaldehyde through pulmonary artery and with saline through trachea with a constant 

pressure of 22 and 11 cm H2O respectively. The heart and the lungs were removed en block. 

The heart was subject to dissection for RVH measurement as described. The lungs were 

stored in phosphate buffered paraformaldehyde for the next 24 hours and then in 0.1 mol/L 

phosphate buffer till dehydration process. The individual lung lobe was placed in 

histological cassettes and was dehydrated in an automated dehydration station followed by 

embedding in paraffin blocks. 3 μm sections of the lung lobes in a transversal anatomical 

plan were prepared. Immunostaining of the lung sections was done using the standardized 

protocol. Mouse anti-α-SMC actin antibody and polyclonal rabbit anti-human v-WF 

antibody were used as primary antibodies. All reagents from the kits including the 

corresponding biotinylated secondary antibodies were used as suggested by the supplier 

(Avidin-biotin blocking kit, Vectastain ABC kit, VIP and DAB substrate kits).  
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Counterstaining was done with methyl green. Given below is the protocol summarized in 

tabular form (Table 5). 

Table 5.  Double Immunostaining protocol  for paraffin embedded murine lung section 
 
Incubation 
time (minute) 

Reagents Preparation for next step 

10 Rotihistol   
10 Rotihistol   
10 Rotihistol   
5 Ethanol absolute 99.6%   
5 Ethanol absolute 99.6%   
5 Ethanol 96%   
5 Ethanol 70% -Prepare H2O2  (3%) 

15 H2O2-Methanol (3%)   
5 H2O  -Trypsin ⇒ RT (i.e. bring to room temperature) 
5 PBS -Prepare Trypsin  

10 Trypsin (Incubate at 
37°C) 

  

5 PBS -Avidin Blocking Reagent⇒ RT 
15 Avidin Blocking   
5 PBS -Biotin Blocking Reagent ⇒ RT 

15 Biotin Blocking   
5 PBS   

15 10% BSA -Prepare Mouse Ig Blocking Reagent (MIgBR) ⇒
RT (M.O.M. Kit) 

5 PBS   
60 Mouse Ig Blocking (1) -Prepare Protein Blocking Reagent, PBR (2) 

2 x 2 PBS   
5 M.O.M. PBR (2) -Prepare α-actin Ab   

30 Primary Ab (α-actin) -Prepare M.O.M. biotinylated IgG reagent (3),       
-Prepare ABC reagent  

2x2 PBS   
10 M.O.M. biotinylated 

IgG reagent (3) 
  

2x2 PBS   
5 ABC reagent (4)   

2x5 PBS -Prepare VIP Substrate  

3-4 Vector VIP substrate -Check color intensity on white sheet 

5 water   

5 PBS Avidin Blocking Reagent ⇒ RT 

15 Avidin Blocking   

 

 
Contd.
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5 PBS Biotin Blocking Reagent ⇒ RT 

15 Biotin Blocking   

5 PBS   

15 10% BSA   

5 PBS -Prepare Blocking Serum (Vectastain Kit) 

20 Blocking Serum -Prepare Primary Ab 

30 Pab (vWF), 37°C   

5 PBS -Prepare Biot. 2ndary Ab (Rabbit Kit) 

30  Biotinylated Sec Ab   

5 PBS - Prepare ABC reagent  

30 ABC reagent   

5 PBS -Prepare DAB substrate:  

½ DAB Substrate Kit -Check color intensity on white sheet 

5 H2O   

3 Methylgreen             - Apply methyl green at 60°C and                    

1 Distilled water   

2 Ethanol 96%   

2 Ethanol 96%   

5 Isopropylalcohol   

5 Isopropylalcohol   

5 Rotihistol   

5 Rotihistol   

5 Xylol   

Apply cover slip using gluing agent 

 
The sections were examined under light microscope using computer based 

image processing system and pulmonary vascular morphometry was performed as 

described previously173. The computer software recognizes the brown and purple 

staining of endothelium and smooth muscle cells respectively, and analyzes the 

purple staining along the vessel periphery. At 40X magnification, 80-100 intra-acinar 

vessels (20-70 µm) accompanying either alveolar duct or alveoli were analyzed in 

each mouse by an observer blinded to the treatment.  
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Vessels were categorized as non-muscular (<5%) and muscular (>5%) based on α-

SMC actin staining and were quantified as percentage of all vessels. The percentage 

of non-muscular (NM) and muscular (M) arteries was expressed as the ratio (NM/M). 

Furthermore, the immunostained sections were used to count alveoli and pulmonary 

arteries (15-50μm external diameter). The sections were scanned randomly at x20 

magnification using scanning software. Vessels and alveoli from five fields in each 

lung section and five lungs from each experimental group were counted by two 

independent investigators. The number of vessels per 100 alveoli was calculated and 

analyzed. 

3.6 Characterization of human lungs obtained from transplant programme 

Human lung tissues were obtained from donor lungs and patients, both IPAH and 

CTEPH undergoing lung transplantation. IPAH (n = 5) and CTEPH (n = 5) diagnosis was 

set up on clinical data and confirmed by histopathological examination of explanted lung 

tissue. In addition, donor lungs were characterized by histology and found to be free from 

major inflammatory changes. Lung tissues were snap-frozen after explantation for mRNA 

and protein extraction or were embedded in paraffin blocks for immunohistochemistry. 

Detail of lung tissue preparation for gene expression or protein analysis is discussed in the 

following section. The study protocol for tissue donation was approved by the Ethik-

Kommission am Fachbereich Humanmedizin der Justus-Liebig-Universitaet Giessen of the 

University Hospital Giessen and Marburg (Giessen, Germany) in accordance with national 

law and with Good Clinical Practice/International Conference on Harmonization guidelines. 

3.7 Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) 

analysis 

For gene expression analysis, total RNA was isolated from both human and mouse 

lung tissues using guanidine-thiocyanate acid phenol (RNAzol, Wak-Chemie Medical, 

Germany). Similar protocol was followed for RNA isolation from lung tissue samples from 

human (h) and the half of the right lung from mice (m). The concentration of RNA was 

determined spectrophotometrically. The protocol used for RNA isolation is as follows. 

•Homogenize the lung tissue with RNAsol (3 ml., depending on the quantity of 
tissue). The homogenate can be stored at –80°C till next step. 

 
•Add Chloroform (CHCl3) @10% of the volume of RNAsol (i.e. 300 μl 
chloroform), and immediately vortex briefly but strongly. 
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•Incubate for 20 minutes on Ice. 
 
•Centrifuge @5000 rpm at 4 °C for 45 minutes (It separates RNA). 
 
•Transfer the upper phase containing RNA to a new eppendorf tube. 
 
•Add an equal quantity of Isopropanol into the eppendorf as the volume of upper 
phase is transferred. 
 
•Invert the tube a couple of time to mix with Isopropanol, and incubate it for 1 hour 
at -20°C (It precipitates RNA). 
 
•Centrifuge @13000 rpm at 4°C for 20 minutes (It makes the pellet of RNA 
precipitate). 
 
•Wash pellet with 70% Ethanol (ice cold). This step can be done twice, each time 
mixing with about 1 ml of ethanol and Centrifuging to make the pellet. 
 
•Centrifuge @13000 rpm at 4°C for 20 minutes. 

 
•Remove ethanol carefully, and let the RNA in the eppendorf tube to dry at room air  
 (performed under hood). 
 
•Mix the pellet properly with RNAse free water (30-50 μl, depending on the mass of 
the pellet). 
 
•Measure the RNA concentration and store  RNA at -80°C 

 

 

2 μg of RNA was used as template to synthesize first strand cDNA in a 

reverse transcription reaction using commercial kit (Omniscript RT kit). The cDNA 

was amplified by PCR using hot start DNA polymerase. Numbers of PCR cycles were 

optimized so that analysis of PCR products could be carried out within the linear 

range of amplification. PCR products were electrophoresed in 2% agarose gels. The 

PCR products were scanned and densitometric analysis of the PCR products was 

performed by the image analysis software. Integrated density value (IDV) for PCR 

products of u-PA or PAI-1 in each sample was normalized against the IDV for β-

actin of the same sample. The normalized IDV in hypoxia was expressed as 

percentage of normalized IDV in normoxia.Similarly, the normalized IDV for u-PA 

or PAI-1 in case of the human lungs tissues (IPAH and CTEPH) was expressed as 

percentage of normalized IDV in the healthy donor lungs. The following are the 

primers used.  
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Table 6. Primers used for the PCR amplification of cDNA 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.8 Western blot analysis 

The snap frozen lung tissue samples from both mice and human were processed 

for western blot analysis. The right halves of the lung tissues from mice (normoxic 

and hypoxic) and the lung tissues from human (IPAH, CTEPH and donor) were 

pulverized by mortar and pestle. The pulverized tissue was treated with lysis buffer 

(50 mM Tris, 150 mM NaCl, 5 mM EDTA, 1% TritonX100, 0.5% Natrium 

deoxycholat, pH to 7.4) containing protease inhibitor (PMSF, 1 mM final 

concentration).  The ground tissue treated with lysis buffer was incubated for about 

an hour on ice, followed by centrifugation at 13000 rpm at 4°C for 10 minutes. The 

supernatant was obtained and used for protein concentration determination by 

Bicinchonic acid technique. The lung tissue samples (50 μg protein) were separated 

by SDS-PAGE (10%). The separated proteins were then transferred from SDS-PAGE 

to Hybond ECL nitrocellulose membranes using a semi-dry blotting technique. The 

membranes were blocked with 5% non-fat dry skim milk in TBST (20 mmol/L Tris, 150 

mmol/L NaCl, pH 7.4, 0.1% Tween-20). The membranes were incubated with primary 

antibodies at 4°C overnight. The following primary antibodies were used.  

  S: ACC CTG AAG TAC CCC ATC G 
AS: CAG CCT GGA TAG CAA CGT AC  

hβ-actin 

   S: GCT GGT GCT GGT GAA TGC 
AS: CCT GGT CAT GTT GCC TTT CC 

hPAI-1 

   S: ACT CTG CCA CTG TCC TTC AG 
AS: CGG TGC CTC CTG TAG ATG G  

hu-PA 

   S: CTA CAG CTT CAC CAC CAC AG 
AS: CTC GTT GCC AAT AGT GAT GAC 

mβ-actin 

   S: GGC GAG TAC TGC AAG TTC C 
AS: CGG TCT CGG GAC AGA ATC C 

mMMP-2 

   S: CCT GGT GCT GGT GAA TGC 
AS: CTG GTC ATG TTG CCC TTC C 

mPAI-1 

   S: TTC CAG TGT GGC CAG AAG G 
AS: CCA GGC TGT CTT CCC TGT AG 

mu-PA 

Primer sequence (5'              3')           
(S: Sense primer; AS: Anti-sense primer)   

(c)DNA 
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Rabbit anti-mouse u-PA IgG fraction, monoclonal antibody against u-PA B-chain, 

rabbit polyclonal actin antibody, rabbit polyclonal anti-PAI-1 antibody, rabbit anti-

mouse PAI-1 polyclonal antibody and mouse monoclonal anti β-actin antibody. 

Incubation with primary antibody was followed by washing with TBST (3 washing 

for 15 minutes each). The membranes were then incubated with secondary antibody 

for about 90 minutes at room temperature. Biotinylated anti-rabbit or anti-mouse 

secondary antibodies were used followed by detection of immune complex with an 

enhanced chemiluminescence (ECL) immunodetection kit. During each incubation 

and washing step, the membranes were subject to gentle shaking. The membranes 

were stripped by incubating with stripping buffer (100 mM β-mercaptoethanol, 2% 

Sodiumdodecyl sulphate, 62.5 mM Tris) at 60°C for about an hour under gentle 

shaking followed by washing with TBST and blotting for β-actin.  

 
Blot intensity was quantified by densitometric analysis using AlphEase 

software (Alpha Innotech). Integrated density value (IDV) for u-PA or PAI-1 in each 

sample was normalized against the IDV for β-actin in the corresponding sample. The 

normalized IDV in hypoxia was expressed as percentage of normalized IDV in 

normoxia. Similarly, the normalized IDV in diseased lungs (IPAH, CTEPH) was 

expressed as percentage of normalized IDV in healthy donors.  

3.9 Casein gel zymography 

The lung tissue samples (both human and mice) prepared for protein analysis 

were used for casein gel zymography. Lung homogenates (15 μg protein) were 

separated by SDS-PAGE (10%) containing casein (1mg/ml) (Sigma) and plasminogen 

(5μg/ml). In addition, u-PA and pre-stained protein standard (SeeBlue plus, 

Invitrogen) were also loaded. Upon completion of electrophoresis, the gel was 

incubated at 37°C in 1% Tween 80 for 2 hours. The gel was then incubated at 37°C 

with PBS containing 0.1% Tween 80 followed for 16 hours. The gels were stained 

with Coomassie blue. Destaining was done with 10% acetic acid to visualize the lytic 

zones. To confirm that the caseinolytic activity was u-PA dependent, another gel was 

incubated in buffer containing the specific u-PA inhibitor, CJ463 (0.5mM). To check 

the specificity of CJ463, t-PA was also loaded in a gel with or without incubation 

with buffer containing CJ463.  
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The part of the gels containing pre-stained protein standard was carefully cut and 

removed after electrophoresis and before processing the remaining part of the gel. 

The pre-stained protein marker was used for identifying molecular weight.  

3.10 Immunohistochemistry 

3.10.1 Cryo-preserved murine lung    

Wild type mice (n=6) were exposed to hypoxia and normoxia for 4 weeks as 

mentioned. The lungs were flushed with physiological saline solution and processed as 

follows. Right lungs were cryo-preserved for RNA and protein analysis, and left lungs were 

used for immunohistochemistry. Tissue-Tek was filled in a 1 ml syringe and warmed at 

60°C in order to increase the fluidity followed by infusion of Tissue-Tek into left lung 

carefully so as to inflate the lung, while avoiding leakage. The Tissue-Tek infused lungs 

were snap-frozen and stored at -80°C.  The cryo-preserved lungs were sectioned to obtain 5 

μm thick sections. Single immunofluorescent staining was performed as described by 

supplier. Briefly, following fixation of tissue sections with cold acetone for 10 

minutes, they were air dried and washed with TBS (50 mM Tris, 0.15 M NaCl, pH 

7.6). Further steps for blocking, washing and incubation with primary antibody were 

performed as described before (section 3.5, Histology and morphometric analysis). 

Rabbit anti-mouse u-PA IgG fraction and rabbit polyclonal anti-PAI-1 were used as 

primary antibodies. The secondary antibody was Rhodamin-conjugated donkey anti-

rabbit antibody. Serial sections were stained using polyclonal rabbit anti-human Von-

Willebrand Factor antibody to identify the blood vessels. Biotinylated anti-rabbit 

secondary antibody was then used followed by washing and incubating with 

fluorecein avidin DC for 5 minutes. Finally, after washing with TBS buffer (50 mM 

Tris, 0.15 M NaCl, pH 7.6) tissue sections were incubated with DAPI (1μg/ml) for 10 

minutes to stain nucleus. Sections were examined and photomicrographs were 

obtained. 

3.10.2 Paraffin-embedded human lungs (donors, IPAH and CTEPH) 

The formalin-fixed and paraffin-embedded human lung tissues from patients, 

both IPAH and CTEPH, and donors (n=3) were subjected to sectioning to obtain 3 

μm thick tissue sections. Immunostaining was performed using the avidin-biotin 

complex (ABC) peroxidase method as described in detail in section 3.5.  
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Sections were incubated with monoclonal anti-human u-PA antibody (20μg/ml 

concentration) for 1 hour at 37°C, and with polyclonal rabbit anti-PAI-1 antibody 

overnight at 4°C. Biotinylated anti-mouse IgG and anti-rabbit IgG were used 

respectively as secondary antibodies. Negative control sections for staining received 

no primary antibody. Visualization of antigen-antibody complex was performed using 

a chromogenic substrate for peroxidase linked to secondary antibody (VIP substrate 

kits). Peroxidase-substrate reaction products elicit purple or violet color. 

Counterstaining was done with methyl green.  

3.11 u-PA activity analysis in plasma and lung homogenates 

u-PA activity in plasma and lung homogenates was determined using a 

chromogenic substrate (S-2251) as described174, with some modification. Briefly, 

serial dilution of standard stock solution (1000 U/ml) of HMW u-PA, plasminogen 

(50 µg/ml) and substrate (2mM) were prepared in Tris buffer (100 mM Tris, 0.5% 

Tween-20 and 0.1% BSA, PH 7.6). Equal volume (50 µl) of plasma samples and 

serially diluted standards were pipetted into a micro-well plate, followed by addition 

of 50 µl of plasminogen and 50 µl of Tris buffer into the samples and standard. 

Finally, substrate (50 µl) was added making a total volume of 200 µl in each well. 

The plate was incubated at room temperature with gentle shaking. As the highest 

standard developed color, the absorbance was read at 405 nm in an ELISA reader. A 

reading was also taken before adding substrate to measure the background 

absorbance. A standard curve was obtained from the standard to confirm the linearity 

between u-PA activity and substrate degradation. The u-PA activity was calculated 

by computer software (Magellan) and expressed as unit of activity per unit sample 

volume or per unit protein mass in the sample loaded. Before calculating the activity, 

background absorbance was subtracted from the final absorbance. For lung 

homogenates, all samples (containing equal quantity of protein) were diluted with 

buffer to have equal final volume and 50 μl (containing 6.25 μg protein in mouse 

lung homogenate and 20.8 μg protein in human lung homogenate preparation) was 

loaded into the well and u-PA activity was measured as described for plasma 

samples.  
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3.12 Data analysis 

Data are expressed as mean ± SEM. Statistical analysis of the data from mice 

experiments such as right ventricular systolic pressure (RVSP), right ventricle/ left 

ventricle plus septum (RV/LV+S) ratio, non-muscular/ muscularized (NM/M) vessels 

ratio was performed by one-way ANOVA and subsequent Neuman-Keul test. A value 

of P<0.5 was considered to be statistically significant. T-test was used to perform 

statistical analysis of the data from molecular biological experiments. 
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4 RESULTS 

4.1    Expression of u-PA and PAI-1 in the lungs of patients with CTEPH and IPAH as 

compared to donor lungs 

In the human lung homogenates, the expression of u-PA and PAI-1 was 

analyzed both at mRNA and protein level. In addition, u-PA activity was also 

analyzed. 

4.1.1  u-PA and PAI-1 expression at mRNA level 

  We first investigated the u-PA and PAI-1 expression at transcript level in 

diseased and healthy lungs. Semi-quantitative RT-PCR analysis revealed an enhanced 

expression of u-PA in both IPAH (x 2) and CTEPH (x 1.5) lungs, whereas elevated 

transcript level of PAI-1 was found only in IPAH (x 1.4) as compared to the healthy 

donor lungs (Figure 7). Surprisingly, PAI-1 transcript in CTEPH lungs was 

comparable to that in the healthy donor lungs (Figure 7). Overall, IPAH lungs 

showed significant induction of u-PA and PAI-1 as compared to the donor, whereas 

in CTEPH lungs the induction appeared somewhat less pronounced. 
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Figure 7. u-PA and PAI-1 gene expression in the lungs of patients with CTEPH and 

IPAH. 

The lung samples from healthy donors (n=5) and patients with CTEPH (n=4) and IPAH 

(n=5) were homogenized, total RNA was isolated and RT-PCR was performed as described 

in methods. (a) RT-PCR products of the lung homogenates upon agarose gel electrophoresis. 

(b) Densitometric analysis of band intensity of PCR product. Normalized (against β-actin) 

integrated density value (IDV) of band intensity in pulmonary hypertension patients as 

percentage of normalized IDV of healthy donors are given (lower panel). Bar represents 

mean ± SEM. *P<0.05. n.s., non-significant (unpaired T-test). The PCR was done two times.  

 

4.1.2 Expression of u-PA and PAI-1 at protein level                  

We then performed western blot analysis to check the expression of u-PA and PAI-1 

at protein level. A clear upregulation of both u-PA and PAI-1 proteins was observed 

in IPAH and CTEPH as compared to healthy donors (figure 8). In addition, a 

complex between u-PA and PAI-1 was also detected in the diseased lungs, 

predominantly in CTEPH when a non-reducing gel was probed for u-PA (figure 8a). 

Furthermore, densitometric analysis of blot intensity revealed a significant elevation 

of u-PA and PAI-1 in IPAH (x 2.6 and x 3 respectively) and CTEPH (~ x 2 and x 4 

respectively) as compared to healthy donor lungs (figure 8c). Interestingly, u-PA and 

PAI-1 complex were also significantly upregulated in IPAH (x 2.8) and CTEPH (x 4) 

(figure 8c). The u-PA and PAI-1 transcript level data corroborated with that of the 

protein level except for PAI-1 in CTEPH, where we observed higher PAI-1 protein 

level despite the absence of induction at transcript level.  
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Figure 8. u-PA and PAI-1 protein in the lungs of patients with CTEPH and IPAH. 

The lungs samples from healthy donors (n=4) and patients with CTEPH (n=4) and IPAH 

(n=4) were homogenized and protein concentration was determined as described in methods. 

Western blot analysis of the lung homogenates under (a) non-reducing and (b) reducing 

conditions. (c) Densitometric analysis of blot intensity. Normalized (against β-actin) IDV of 

blot intensity of pulmonary hypertension patients as percentage of normalized IDV of the 

healthy donors are given. Bar represents mean ± SEM. *P<0.05 (unpaired T-test). The 

western blot was performed twice.  

4.1.3 u-PA activity in the lungs of CTEPH and IPAH patients as compared to 

donor lungs  

We sought to investigate if the higher induction at protein level would lead to 

a change in u-PA activity. u-PA activity in the lung homogenates was assessed by 

casein gel zymography as well as chromogenic substrate assay. Interestingly, an 

enhanced u-PA activity was evident in IPAH (x 1.2) as well as CTEPH (x 2.1) 

compared to healthy donor lungs as revealed by casein gel zymography (figure 9a, 9b 

left bar graph).  

IPAH CTEPH DONOR 

N
or

m
al

iz
ed

 In
te

gr
at

ed
 D

en
si

ty
 V

al
ue

 
(%

 o
f D

on
or

)

0

100

200

300

400

500

DONOR
IPAH
CTEPH

∗∗ ∗

∗∗ ∗

u-PA PAI-1 u-PA-PAI-1 
complex 

(b) 

(c) 

   β-actin 

   PAI-1 



 
  

Urokinase-type plasminogen activator (u-PA) in pulmonary vascular remodeling 56

RESULTS                              4.1.3. u-PA activity in the lungs of CTEPH and IPAH patients 

Moreover, chromogenic substrate assay performed on the same lung homogenates 

also showed an enhanced u-PA activity in the lungs of IPAH (x 1.2) and CTEPH (x 

12) as compared to healthy donors (figure 9b right bar graph). Overall, the results 

showed that u-PA activity was enhanced in CTEPH and IPAH lungs as compared to healthy 

donor lungs, and the enhanced activity was in agreement with the enhanced protein level. 

However, the u-PA activity data did not corroborate precisely with the pattern of protein 

level observed in IPAH and CTEPH. 

 

 

 
Figure 9. u-PA activity in the lungs of patients with IPAH and CTEPH  

The lung homogenates from IPAH, CTEPH and donors were used for casein gel 

zymography (n=4) and chromogenic substrate assay (n=5). (a) Casein gel zymographs. The 

lower gel was incubated with buffer containing u-PA inhibitor (CJ463) as described. The 

caseinolytic zone due to t-PA activity is evident even in the presence of CJ463. (b) 

Densitometric analysis of lytic zones. IDV of u-PA activity in patients as percentage of the 

IDV in healthy donors are given (left bar graph). u-PA activity in (Unit/ 20μg of protein) as 

measured from chromogenic substrate assay is given (right bar graph). Bar represents mean 

± SEM.  *P<0.05 ; #P=0.049  n.s., non-significant (unpaired T-test) . The experiments were 

done at least twice.  
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4.1.4  Localization of u-PA and PAI-1 in the lungs from IPAH, CTEPH and 

donors 

Our observation of an upregulation of u-PA and PAI-1 protein, and their 

complex formation prompted us to look for the spatial distribution of u-PA and PAI-1 

in IPAH, CTEPH and donor lungs. In donor lungs, positive staining for u-PA and 

PAI-1 was observed in epithelial, vascular endothelial (intima) as well as media cells 

and macrophages. As expected, lungs from both IPAH and CTEPH patients showed 

extensive vascular remodeling as compared to donor lungs. Enhanced 

immunoreactivity for both u-PA and PAI-1 was evident in CTEPH and IPAH versus 

donor lungs, although quantitative analysis was not performed (figure 10). Moreover, 

immunostaining revealed a tendency towards differential distribution pattern of u-PA 

and PAI-1 under conditions of pulmonary hypertension as compared to donor lungs. 

Overall, a more pronounced staining for u-PA was encountered in the interstitial and 

alveolar compartments, whereas staining for PAI-1 appeared to be more prominent in 

the vascular compartment. 
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Figure 10. Localization of u-PA and PAI-1 in the lungs of IPAH, CTEPH and Donors.  

3 μm thick sections of paraffin-embedded lungs from donor as well as patients with IPAH 

and CTEPH were immunostained for u-PA and PAI-1 as described in methods. 

Representative photomicrographs of immunostained lung sections are shown (x40 

magnification). Control (negative control) sections were stained with identical protocol 

except that the primary antibody was omitted (x10 magnification). Scale = 50μm. 

4.2 Expression of u-PA and PAI-1 in chronically hypoxic mouse lungs 

After analyzing u-PA and PAI-1 regulation in CTEPH and IPAH versus donor 

lungs, we investigated the regulation of these factors in murine model of chronic 

hypoxia-induced pulmonary vascular remodeling.  The chronically hypoxic mouse 

lungs were investigated for expression of u-PA and PAI-1 at both mRNA and protein 

level. In addition, u-PA activity in the same lung homogenates was also analyzed. 

4.2.1 u-PA and PAI-1 gene expression under hypoxia 

The lung homogenates from mice that were exposed to hypoxia or normoxia for 28 

days were analyzed. Semi-quantitative RT-PCR showed a clear upregulation of both u-PA 

and PAI-1 genes under hypoxia (figure 11a). Densitometric analysis revealed a significant 

induction of u-PA and PAI-1 transcripts under hypoxia (P< 0.05 vs. normoxia) (figure 11b).  
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Figure 11. u-PA and PAI-1 gene expression in chronically hypoxic lungs.  

Mice were exposed to hypoxia or normoxia (28 days). The lungs from the exposed mice 

were obtained and homogenized. (a) RT-PCR products of RNA extracted from lung 

homogenates (n=6). (b) Densitometric analysis of the band intensity.  Normalized (against 

β-actin) IDV of PCR products in hypoxia as percentage of the normalized IDV in normoxia 

are. Bar represents mean ± SEM. *P<0.05. (Unpaired T-test). The experiments were done 

twice.  

4.2.2 u-PA and PAI-1 protein level under hypoxia 

We also checked whether the enhanced u-PA and PAI-1 gene expression 

would result in correspondingly increased protein levels during hypoxia. Western 

blot showed an increase in u-PA and PAI-1 protein levels (figure 12a), although not 

as strong as at transcription level. Densitometric analysis of the blot intensity 

revealed a mild induction (≈1.5 fold) of u-PA and PAI-1 proteins under hypoxia 

figure 12b). The mild induction, despite the high level of transcripts, in chronically 

hypoxic lungs suggests that a regulation likely operates at post-transcriptional or 

translational level. 
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Figure 12. u-PA and PAI-1 protein in chronically hypoxic lungs.  

Mice were exposed to hypoxia or normoxia (28 days) and lung samples were obtained.  The 

lungs were homogenized and protein concentration was determined as described in methods.  

(a) Western blot performed on the lung homogenates (n=4) are shown.                           

(b) Densitometric analysis of the blot intensity. Normalized (against β-actin) IDV (lower 

panel) in hypoxia as percentage of normalized IDV in normoxia are given. Bar represents 

mean ± SEM.  #P=0.0493; n.s., non- significant (unpaired T-test). The experiments were 

done twice.       

                                                                                                                                  

4.2.3  Influence of hypoxia on lung u-PA activity  

We then asked for the consequences of the observed upregulation of u-PA and PAI-1 

on u-PA activity. u-PA activity in the lung homogenates was analyzed by casein gel 

zymography and chromogenic substrate assay. Interestingly, a significant, 30-50% reduction 

of u-PA activity (p<0.05 vs. normoxia) was observed in lung homogenates from hypoxic 

mice (Figure 13a, 13b, 13c left bar graph). We also checked lung homogenates from chronic 

hypoxic PAI-1 KO mice for u-PA activity by chromogenic substrate assay. Despite the 

higher baseline u-PA activity under normoxia, a reduced u-PA activity (∼20%) was 

observed in PAI-1 mice under hypoxia (Figure 13c right bar graph). This suggests that the 

reduced u-PA activity may be attributable to other factors and not only PAI-1. Overall, the 

results showed that u-PA was negatively regulated at functional level under hypoxia albeit 

the induction at transcript and protein level.  
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Figure 13. u-PA activity in chronically hypoxic lungs.  

The lung homogenates used for RT-PCR and WB were used for casein gel zymography and 

chromogenic substrate assay (n=6). (a) Casein gel zymographs. The lower gel was incubated 

with buffer containing CJ463 as described. (b) Densitometric analysis of lytic zones. IDV of 

u-PA activity in hypoxia as percentage of the IDV in normoxia are given. (c) u-PA activity 

(Unit/ mg of protein) as measured from chromogenic substrate assay for wild type mice 

alone (left bar graph) and together with PAI-1 KO mice (right bar graph) are given. Bar 

represents mean ± SEM. n.s., non-significant (unpaired T-test). 
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RESULTS                    4.3. Hypoxia-induced PH and RVH in wt, knockout and treated mice 

4.2.4 Localization of u-PA and PAI-1 under hypoxia 

We were interested to characterize the spatial distribution of u-PA and PAI-1 

in the lung tissue to know where at the tissue level the hypoxia-associated 

modulation of u-PA was taking place. Immunohistochemical analysis of normoxic 

lungs revealed localization of u-PA mostly in vessels, bronchi and alveolar septae 

and PAI-1 immunoreactivity in bronchial epithelium, vessels and – to only a minor 

extent – also in septae. Under hypoxic conditions, u-PA and PAI-1 staining pattern 

was similar to control but staining intensity appeared increased in the vessel walls 

(Figure 14). Overall, the vessels, septae and bronchi seemed to be the predominant 

source of u-PA and PAI-1. 

 

 
Figure 14. Localization of u-PA and PAI-1 in chronically hypoxic murine lungs.  

Left Lungs from the mice exposed to hypoxia or normoxia (28 days) were infused with 

Tissue-Tek and stored at -80οC. Immunohistochemical staining was performed on 

cryosections of the lung tissues as described in methods. Representative photomicrograph of 

lung sections immunostained for u-PA, PAI-1 and vWF. Immunostaining for vWF was done 

on the serial sections to identify blood vessels, and it also served as control. 

4.3 Hypoxia-induced right ventricular hypertrophy (RVH) in wild type, u-PA and 

PAI-1 deficient mice as well as in u-PA inhibitor (CJ463) and u-PA treated mice 

After analyzing the hypoxia-induced changes of u-PA and PAI-1 at molecular level, 

we employed this animal model to investigate the role of u-PA in pulmonary vascular 

remodeling. A comprehensive approach was applied. u-PA and u-PA inhibitor treated as 

well as u-PA and PAI-1 knockout mice were investigated.  

Hypoxia Normoxia 
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RESULTS                                 4.3. Hypoxia-induced RVH in wt, knockout and treated mice 

Exposure of wild type mice to 28 days of hypoxia (10%) did result in pulmonary vascular 

remodeling, indirectly proved by a significant increase in the right ventricular to left 

ventricular plus septum [RV/(LV+S)] ratio (figure 15a) as well as in the right ventricular 

systolic pressure (RVSP) (Figure 15b). Surprisingly, exposure of u-PA and PAI-1 knockout 

mice to hypoxia did not affect the hypoxia-induced RV/(LV+S) ratio and RVSP, suggesting 

that the absence of either u-PA or PAI-1 did not interfere with the magnitude of right 

ventricular hypertrophy (figure 15a, 15b). Similarly, daily treatment with the highly specific 

urokinase inhibitor CJ463 by intraperitoneal injection did not exert any influence on the 

natural course of right ventricular hypertrophy. This was evident by the significant 

increase in RV/(LV+S) ratio and RVSP under hypoxia (figure 15a, 15b) and suggests 

that loss of u-PA activity did not impair the chronic hypoxia-induced pulmonary 

vascular remodeling. In addition to the above mentioned marker of right heart 

hypertrophy i.e. [RV/(LV+S)], we also analyzed the left ventricle plus septum 

weights alone to ensure that they had no influence on the observed [RV/(LV+S)] 

quotient. We did not observe any significant difference in the weight of the left 

ventricle plus septum between normoxic and hypoxic mice, thus excluding any left 

ventricular reason for the change in [RV/(LV+S)] quotient as noted above (Table 5). 

These results suggest that neither inhibition of u-PA nor absence of u-PA or PAI-1 

did affect development of pulmonary vascular remodeling. 
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RESULTS                                 4.3. Hypoxia-induced RVH in wt, knockout and treated mice 

 

Figure 15. RV/(LV+S) and RVSP of wt, u-PA and PAI-1 KO mice as well as in CJ463 

treated mice. Wild type (n=8), u-PA knockout (n=8) and PAI-1 knockout mice (n=5) were 

exposed to hypoxia or normoxia (28 days). Wild type mice (n=8) in the treatment groups 

received either saline or CJ463 throughout the hypoxic or normoxic exposure. 

Intraperitoneal injection of 100 μl of saline or CJ463 (20 mg/kg BW) was given twice a day. 

Hemodynamic and right heart hypertrophy measurements were performed as described in 

methods. (a) RV/(LV+S) ratio and (b) RVSP are given. Bar represents mean ± SEM. 

*P<0.05; n.s.- non-significant; KO- knockout. Experiment with knock out mice (u-PA and 

PAI-1) was done twice. 

 
Table 7. Hematocrit, BW and LV+S of mice under hypoxia or normoxia (28 days). 
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Values are mean ± SEM, WT-wild type, i.p.- Intraperitoneal, Inf- Continuous intravenous 

infusion through Osmotic mini pump, BW-body weight, (-/-) - knockout 
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RESULTS                                4.3. Hypoxia-induced RVH in wt, knockout and treated mice 

We genotyped the mice used in the experiment to ensure that the gene was absent in 

the knockout mice (figure 16a, 16b). In addition, pilot experiments were conducted to 

confirm that the u-PA inhibitor was effective in our experimental set up. As expected, we 

could verify that by such application mode of CJ463 plasmatic u-PA activity would be 

greatly reduced (figure 17). In addition, application of the same dose as used herein was 

recently found to suppress primary tumor growth in a heterotopic Lewis lung carcinoma 

model [Ruppert et al, personal communication].  

 

 
Figure 16. PCR genotyping of u-PA and PAI-1 knockout mice. 

(a). PCR products obtained using u-PA and Neo-specific primers and (b). PCR products 

obtained using PAI-1 and Neo-specific primers are shown. bp- base pair, ko-knockout, WT-

wild type. 

 
Figure 17. u-PA activity in plasma upon u-PA inhibitor (CJ463) treatment.   

Mice were given intraperitoneal injection of CJ463 and saline as described. Plasma samples 

from CJ463 or saline treated mice, with and without adding u-PA ex vivo, were analyzed for 

u-PA activity using chromogenic substrate as described. Plasma u-PA activity (U/ml) is 

given. Bar represents mean ± SEM. *P=0.0003 and #P=0.12 (T-test) (n=3). 
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RESULTS                                 4.3. Hypoxia-induced RVH in wt, knockout and treated mice 

After investigating the effect of modulating endogenous u-PA on the chronic 

hypoxia-induced right ventricular hypertrophy, we sought to study if application of 

exogenous u-PA will have any effect. We administered u-PA as a continuous infusion by 

implanting osmotic mini pump (OMP) subcutaneously into the mice as described in 

methods. In contrast to those observations on u-PA inhibitor treated and knockout mice, 

chronic infusion of u-PA via OMP turned out to have a mild and dose-dependent, beneficial 

effect on the extent of right heart hypertrophy (figure 18a, 18b). We found an increase in 

plasmatic urokinase activity in pilot experiments 1 week after exogenous urokinase 

application via OMP. In addition, long-term stability of the u-PA preparation had been 

investigated in advance and was shown to be, on average, 50% at d14 and 20% at d28 of the 

initially provided activity upon incubation at 37°C in vitro. Accordingly, an elevation of u-

PA activity could be observed at d28 especially in the high dose as compared to saline 

treated mice (Figure 19).  
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RESULTS                4.4. Hypoxia-induced muscularization in wt, knockout and treated mice 

 
Figure 18. RV/ LV + S and RVSP of chronically hypoxic mice receiving continuous u-

PA infusion.  

Mice (n=8) were given infusion throughout their exposure to hypoxia or normoxia (28 

days). Surgical implantation of Osmotic mini-pump (OMP) was performed for u-PA and 

saline infusion, and hemodynamic as well as right ventricular hypertrophy measurements 

were done as described in methods. (a) RV/(LV+S) and (b) RVSP are given. The lower dose 

group RVSP was similar to the saline control and is not shown. Bar represents mean ± SEM. 

*P<0.05; n.s.-non-significant.  

 
Figure 19. Plasma u-PA activity of mice receiving continuous u-PA infusion.  

Mice received u-PA infusion through surgically implanted Osmotic mini-pump (OMP) 

throughout their exposure to normoxia/hypoxia (28 days). Control mice received saline. u-

PA activity was measured at day 28 by chromogenic substrate as described. Representative 

plasma u-PA activity (U/ml) is given. Bar represents mean ± SEM. *P<0.05 (n=5-6); n.s.-

non-significant (unpaired T-test). 
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RESULTS                4.4. Hypoxia-induced muscularization in wt, knockout and treated mice 

4.4 Hypoxia-induced muscularization in wild type, u-PA and PAI-1 deficient mice as 

well as in CJ463 and u-PA treated mice 

We then investigated the degree of chronic hypoxia-induced pulmonary vascular 

remodeling under various conditions as used for right ventricular hypertrophy. As 

anticipated, all hypoxic groups, irrespective of treatment or genotypes, had enhanced 

immunoreactivity for α-SMC actin at day 28, suggesting an increased muscularization of 

pulmonary arteries (figure 20). Staining intensity seemed to be somewhat less pronounced in 

the experimental group receiving high dose u-PA infusion. Again not surprisingly, the ratio 

of non-muscularized vs. muscularized (NM/M quotient) vessels was greatly depressed in 

wild type mice in response to chronic hypoxia (figure 21). In full accordance with the 

unaffected extent of right heart hypertrophy in the u-PA and PAI-1 knockout and the CJ463 

treated mice, this NM/M quotient also turned out to be unaffected in these groups. In 

contrast, chronic infusion of the high dose of u-PA resulted in a significant increase of the 

NM/M quotient (Figure 21). These results suggested that hypoxia-induced pulmonary 

arterial muscularization was not impaired either by inhibition of u-PA activity or in the 

absence of u-PA or PAI-1, but was significantly depressed in the mice receiving a high dose 

of u-PA.  
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RESULTS                4.5. Attenuation of hypoxia-induced loss of vessels upon u-PA infusion 

Figure 20. Immunohistochemical analysis of pulmonary vessel muscularization in wild 

type, u-PA and PAI-1 ko as well as CJ463 and u-PA treated mice.  

Lung sections of the mice exposed to hypoxia or normoxia (28 days) were immunostained 

for α-SMC actin (purple, arrow) and vWF (brown, arrow head) to identify muscular and 

endothelial layers of vessels respectively. Representative photomicrographs of lung sections 

are shown.  (Scale bar=20 μm, x 40 magnification), ko -knockout. 

 

 
 

Figure 21. Morphometric analysis of pulmonary vessel in wild type, u-PA and PAI-1 

knockout as well as CJ463 and u-PA treated mice.  

The immunostained lung sections (for α-SMC actin and vWF) were subject to 

morphometric analysis as described in methods. Non-muscular (NM) to muscular (M) vessel 

ratios (NM/M) are given. Bar represents mean ± SEM. *P<0.05; n.s.- non-significant. There 

was no significant difference among the normoxic control groups independent of treatments 

or genotypes, and among the hypoxic wild type and saline control groups (n = 4-6). 

  

 

(N
M

/M
) v

es
se

l r
at

io

0.0

0.3

0.6

0.9

1.2

1.5

1.8

Control Control PAI-1 ko u-PA ko u-PA 
inhibitor 

u-PA 
infusion 

Normoxia Hypoxia 

∗ 
n.s. 

n.s. 
n.s. 

∗



 
  

Urokinase-type plasminogen activator (u-PA) in pulmonary vascular remodeling 70

RESULTS                4.5. Attenuation of hypoxia-induced loss of vessels upon u-PA infusion 

4.5 Attenuation of hypoxia-induced loss of pulmonary vessels upon u-PA infusion 

As mentioned, chronic hypoxia leads to vascular rarefaction. We sought to 

investigate if u-PA infusion has any influence on the chronic hypoxia-induced 

changes in pulmonary vascular density. Analysis of distal pulmonary arteries 

revealed a significant reduction in number of arteries per 100 alveoli in hypoxic 

control mice (1.1±0.13) compared to normoxic control (2.07±0.3) (P< 0.05) (figure 

22), indicating hypoxia-induced loss of peripheral pulmonary arteries. Interestingly, 

no significant reduction in arteries was found in hypoxic mice receiving u-PA 

infusion (1.88±0.19) (P> 0.05 vs. normoxic control) (Figure 22). The result suggests 

a beneficial effect of u-PA infusion in preserving peripheral pulmonary arteries under 

hypoxia.  

 

Figure 22. Attenuation of loss of pulmonary vessels in hypoxic mice upon u-PA 

infusion.  

Mice receiving saline or u-PA infusion through OMP were exposed to hypoxia or normoxia 

(28 days). Immunostaining of lung sections and counting of pulmonary arteries and alveoli 

were performed as described in Methods. Arteries/100 alveoli are given. Bar represents 

mean ± SEM. *P<0.05; n.s.- non-significant (n=5). 
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DISCUSSION                 5.1. Regulation of u-PA and PAI-1 in lungs from patients and mice 

5 DISCUSSION 

 In the present study, we firstly analyzed u-PA and PAI-1 expression, and u-PA 

activity in lung homogenates from patients with different forms of pulmonary 

hypertension (IPAH, CTEPH) as well as from mice exposed to chronic hypoxia. The 

expression and activity pattern in hypoxic murine lungs was not identical to that 

observed in IPAH and CTEPH patients. Secondly, by employing a mouse model of 

chronic hypoxia-induced pulmonary hypertension, we demonstrated that neither the 

inhibition or absence of u-PA nor the absence of PAI-1 exerted a major effect on the 

course of pulmonary vascular remodeling and RVH under hypoxia. Somewhat 

contradictory, we could observe a beneficial role of a permanent u-PA infusion on 

pulmonary vascular remodeling in chronically hypoxic mice. In view of our results, 

the following aspects need to be discussed: 

5.1 Regulation of u-PA and PAI-1 in the lungs of patients with pulmonary 

hypertension and in murine lungs in response to chronic hypoxia 

5.1.1 u-PA and PAI-1 in the lungs from patients with IPAH and CTEPH 

In our study, expression analysis clearly revealed an induction of u-PA and 

PAI-1 at transcript and protein level in IPAH and CTEPH versus donor lungs, except 

that in CTEPH lungs, PAI-1 transcript was comparable to donor lungs. In agreement 

with the enhanced u-PA and PAI-1 protein, an elevated level of u-PA-PAI-1 complex 

was also detected in lungs of PH patients. Moreover, analysis of plasminogen 

activator activity showed enhanced u-PA activity in the lung homogenates from 

patients, both in CTEPH and IPAH, despite the increased PAI-1 expression on 

protein level. Immunohistochemical analysis revealed an enhanced immunoreactivity 

for u-PA and PAI-1 and forwarded a differential distribution pattern of u-PA and 

PAI-1 under conditions of pulmonary hypertension as compared to donor lungs. In 

detail, a more pronounced staining for u-PA was observed in the interstitial and 

alveolar compartments as compared to the vascular compartment, where it was 

largely confined to the endothelium. In contrast, PAI-1 tended to localize more in the 

vascular compartment and, in here, in the media of the vessels. These results will be 

discussed in separate sections followed by a summary. 
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DISCUSSION                 5.1. Regulation of u-PA and PAI-1 in lungs from patients and mice 

PAI-1 as well as u-PA expression in the lungs from IPAH patients 

Our findings with regard to PAI-1 are in line with previous clinical studies, in 

which higher plasma PAI-1 antigen as well as activity levels were detected in 

patients with IPAH47, 136, 137, 175. Moreover, Hoeper and collaborators found 

considerably higher arterial PAI-1 than mixed venous PAI-1 level in PPH patients47, 

suggesting the lung to be a major source of PAI-1 under these conditions. This, in 

turn, strongly supports our observation that PAI-1 protein is induced in the lungs of 

patients with IPAH. In addition, alterations of the fibrinolytic system in patients with 

pulmonary hypertension were characterized in other studies by quantifying t-PA and 

PAI-1 in plasma. Despite a significant gender-based difference not only of t-PA and 

PAI-1 but also of u-PA in normal human plasma176, no difference in plasma levels of 

t-PA antigen and activity was detected between PPH patients and healthy control 

individuals. In this patient category, however, performance of a peripheral venous 

occlusion test resulted in a weaker increase in mean circulating t-PA activity as 

compared to control subjects138. The authors reasoned that an impaired fibrinolytic 

capacity in PAH patients may underlie this finding. Other authors have ascribed such 

impairment of the fibrinolytic system to the elevated concentration of PAI-1137. With 

regard to u-PA in IPAH patients, we observed an upregulated transcript and protein 

level in the lung homogenates. Moreover, u-PA has yet not been extensively studied 

under such clinical conditions.  

 
PAI-1 and u-PA expression in the lungs from CTEPH patients 

A higher basal antigen but similar activity level of t-PA and PAI-1 was 

detected in plasma from CTEPH patients44, whereas an unaltered endothelial 

fibrinolytic potential was observed in thrombus free area of pulmonary arteries from 

CTEPH patients177 as compared to the donors. Taking together, these findings did not 

suggest any alteration in net fibrinolytic potential in patients with CTEPH. However, 

we observed an enhanced PAI-1 protein level in the lung homogenates of CTEPH 

patients similar to IPAH patients. Our result is in agreement with the findings of a 

clinical study by Huber and collaborators, who found a comparable prothrombotic 

situation in patients with primary pulmonary hypertenstion as well as in patients with 

CTEPH138. Likewise our results are supported by the findings of elevated PAI-1 

expression in pulmonary artery of patients with pulmonary thromboembolism, as 

demonstrated by immunohistochemical analysis178.  
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Surprisingly enough, PAI-1 transcripts in CTEPH lungs was comparable to donor 

lungs and did not correlate with the protein level in our study. This suggests that 

PAI-1 might be differentially regulated at translational/ posttranslational levels under 

conditions of pulmonary hypertension. Such differential regulation might involve 

stabilization of PAI-1 by vitronectin179, induction of PAI-1 by u-PA in epithelial 

cells180 and the ability of PAI-1 to transform into other immunologically detectible 

conformations181, 182, leading to the higher PAI-1 protein level in the diseased lungs. 

Alternatively, the enhanced pulmonary PAI-1 protein level in CTEPH could be 

explained by remote production in alternate tissues such as liver183, 184 and adipose 

tissue185 and accumulation in the pulmonary circulation.  

 
With regard to u-PA in CTEPH patients, we observed an upregulation in both 

transcript and protein level in the lung homogenates. Our results did agree with Lang 

and collaborators, who demonstrated an elevated expression of u-PA by 

immunohistochemical and in situ hybridization analysis of pulmonary artery 

specimens from patients with pulmonary thromboembolism178.  However, u-PA has 

not been extensively studied in the lungs from patients with CTEPH in such clinical 

studies.  

 
Taken together, we observed enhanced protein and activity of u-PA in lung 

homogenates from IPAH and CTEPH patients as compared to donor lungs. At a quick 

glance our findings appear contradictory to these previous reports47, 133, 137, 139 which 

suggested reduced plasminogen activator activity due to enhanced anti-fibrinolytic 

activity. However, difference in sampling (lung homogenate versus plasma) may well 

underlie such differences. In this regard, changes in the peripheral circulation may 

not adequately reflect local changes within the pulmonary circulation, as has been 

suggested previously. Even within the pulmonary circulation, differences in view of 

plasminogen activator regulation have been reported186. Likewise, we have to 

consider that analysis of u-PA and PAI-1 expression and activity in lung 

homogenates does not provide detailed information on the compartment- or cell-

specific distribution within the lung. Modulation of coagulation system in cell- and 

compartment-specific manner has been demonstrated in vivo in endotoxin-challenged 

murine lungs187.  
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In this line, we also observed different spatial distribution of u-PA and PAI-1 in the 

lungs from patients with IPAH and CTEPH.  PAI-1 tended to be localized more in 

endothelium of the vascular compartment, whereas u-PA appeared to be preferatially 

distributed in interstitial and alveolar compartment.This indicates a disparate 

distribution of u-PA and PAI-1 protein in CTEPH and IPAH versus donor lungs. Our 

results thus suggest that the enhanced plasminogen activator activity observed in lung 

homogenates from IPAH and CTEPH patients could originate from the interstitial and 

alveolar compartments. Increased turnover of u-PA and PAI-1, and higher 

plasminogen activator activity have been further supported by our observation that 

complex of u-PA and PAI-1, in addition to free u-PA, was also detectable in the 

diseased lungs. Recently, Hoeper and coworkers have suggested that the molecular 

mechanisms involved in pulmonary vascular remodeling in CTEPH appear to be 

similar to those seen in severe pulmonary hypertension of other etiology45. In line 

with this concept, the similar alteration in u-PA and PAI-1 in both disease categories 

as observed in this study suggest that the components of the fibrinolytic system might 

be involved in a similar fashion in the disease processes, both of IPAH and CTEPH. 

5.1.2 u-PA and PAI-1 in the murine lungs in response to chronic hypoxia 

On the experimental level, we observed an enhanced u-PA and PAI-1 gene 

expression in murine lungs exposed to chronic hypoxia and this corresponded with an 

enhanced protein level. Interestingly, casein gel zymography and chromogenic 

substrate assay on the same lung homogenates showed a reduction in u-PA activity 

under hypoxia. Immunohistochemical analysis revealed that u-PA and PAI-1 were 

mostly localized in vessels, bronchi and alveolar septae. Under hypoxic conditions, 

u-PA and PAI-1 staining pattern was similar to control but staining intensity 

appeared to be increased in the vessel walls.  

 
Previously, an enhanced PAI-1 expression was reported in the lungs of mice exposed 

to short-term hypoxia169, and we could expand this observation in the current study where 

we found persistently elevated PAI-1 levels in chronically hypoxic murine lungs. Taking 

together, this suggests that an induction of PAI-1 gene persists throughout the hypoxic 

exposure, probably driven by hypoxia responsive transcription factors such as hypoxia 

inducible factor-1α (HIF-1α), early response gene-1 (Egr-1) and CCAAT/enhancer binding 

protein α (C/EBPα)188-190.  
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With regard to u-PA expression, a downregulation of u-PA was demonstrated in the lungs 

from mice under short-term hypoxic exposure169. However, we found an induction of u-PA 

gene expression in murine lungs kept under hypoxia for 28 days, indicating a possible 

difference in u-PA regulation dependent on the duration of hypoxic exposure.  

 

Protein levels of u-PA and PAI-1 were increased under hypoxia, but these 

changes were not as significant as compared to the induction at mRNA level. Such 

discrepancy may be attributable to posttranscriptional/ translational regulation. In 

this regard, the co-localization of u-PA and PAI-1 as observed in this murine study, 

in concert with known upregulation of urokinase receptor (uPAR) under hypoxia191, 

192, might result in rapid degradation of u-PA complexed to its inhibitor upon 

internalization into the cells via uPAR193. Despite the slightly increased u-PA protein 

levels we observed a reduced u-PA activity in chronically hypoxic murine lungs as 

compared to normoxic control lungs by means of casein gel zymography, and this 

was further confirmed by chromogenic substrate assay for plasminogen activator 

activity. Thus, our data suggest a shift towards reduced u-PA activity under chronic 

hypoxia and hence a suppressed fibrinolytic potential in hypoxic lungs.    

 
Overall, the expression of u-PA and PAI-1 at transcript and protein level in 

the lungs from chronic hypoxia-exposed mice showed some similarities to that in 

IPAH and CTEPH lungs. PAI-1 as well as u-PA was observed to be induced both in 

the experimental and clinical lung samples. Strikingly, the u-PA activity in the lung 

homogenates from the patients with pulmonary hypertension was clearly higher 

compared to that from hypoxic mice, which may- in part- be related to the 

differential expression pattern of u-PA in the human CTEPH/ IPAH versus the 

chronically hypoxic murine lungs. In addition, a complex heterogeneity of 

etiological/environmental factors is involved in development of pulmonary arterial 

hypertension (PAH), with hypoxia being just one environmental factor associated 

with an increased risk of the development of PAH122, 194.  Unlike in clinical PAH, in 

the experiemental model of chronic hypoxia relatively mild vascular remodeling is 

induced that is also reversible upon return to normoxia68. Other models such as 

transgenic mouse75 or monocrotaline-injected rat57, 195 models of PH have been suggested to 

more closely represent the histopathology and molecular changes observed in PAH. 
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Although monocrotaline injection alone does not produce a severe vascular 

remodeling as observed in PAH, pneumonectomized rats that receive monocrotaline 

do develop severe pulmonary hypertension with neointimal formation19.  Recently, a 

rat model of severe pulmonary hypertension, characterized by occlusion of 

precapillary pulmonary artery lumen by endothelial cell proliferation, upon inhibition 

of VEGF receptor 2 and chronic hypoxic exposure has been reported71. Moreover, 

another rat model of severe PAH, characterized by the development of occlusive 

neointimal lesion in distal pulmonary ateries, has also been described64. Hence, the 

experimental model itself may- in part- explain the observed differences in view of 

regulation of fibrinolysis between chronic hypoxic murine lungs and patients with 

IPAH/CTEPH. Unfortunately, we were not able to establish a murine model of 

monocrotaline-based PH and there is no other murine model of severe PH available 

so far.   

5.2 Development of hypoxia-induced pulmonary vascular remodeling and RVH in 

wild type, u-PA and PAI-1 knockout and u-PA inhibitor (CJ463) treated mice 

Despite being upregulated on mRNA level, u-PA activity in lung tissue was 

found to be downregulated under conditions of chronic hypoxia for 28 days. A 

further reduction of u-PA activity by means of a u-PA specific low molecular weight 

inhibitor (CJ463) or complete absence of u-PA in case of the u-PA knockout mice did 

not result in any difference in RVH under these conditions. Accordingly, we could 

also not observe any change in the muscularization pattern of the pulmonary arteries 

in response to hypoxia in these three groups. Together, although being differentially 

regulated complete suppression of the endogenous u-PA activity seem not to result in 

any difference in the development of pulmonary vascular remodeling and RVH in the 

currently applied model of chronic hypoxia. As evident from the analysis of u-PA 

activity in wt and PAI-1 knockout mice, the net u-PA activity of lung tissues ranged 

between absence of u-PA activity (u-PA ko), ~2 (wt) and ~8 (PAI-1 ko mice) U/mg 

protein and our data would imply that there is no modulation of RVH by any 

mechanism conceivable within this range of u-PA activity.  

 
Our data are in sharp contrast to those of Levi and collaborators170 who 

observed a clearly less pronounced extent of pulmonary vascular remodeling and 

right ventricular hypertrophy in u-PA knockout mice exposed to chronic hypoxia.  
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On the basis of their results, these authors suggested that u-PA based plasmin 

generation plays a detrimental role in pulmonary vascular remodeling by enhancing and 

facilitating smooth muscle cell proliferation and migration. At a quick glance, the 

discrepancy between their and our data is not easily explainable. However, Levi and 

coworkers reported values of RV/(LV+S) for normoxic (≈ 0.3) and hypoxic (>0.5) wild type 

mice that are tremendously higher than any previously reported value in this model from 

our173 or other groups146 and, as such, raise questions as to the correctness of the method 

they applied. Usually, such high values of RV/(LV+S) are not encountered in murine models 

of hypoxia-induced pulmonary hypertension, rather they are observed in animal models with 

a much severe form of pulmonary vascular remodeling such as in the model of 

monocrotaline-induced pulmonary hypertension143, 173. In addition, there are clear 

methodological differences in view of the pressure used for lung fixation, size and number 

of the vessels examined, and method of analysis. For fixation of the lungs the authors 

applied very high pressures of 30 and 100cm H2O via trachea and right atrium respectively. 

Verhoeffs-van Gieson elastica stain was used to categorize the vessels into different degree 

of muscularization regardless of defined vessels size. On the other hand, we stained for von 

Willebrand′s factor and α-smooth muscle cell (SMC) actin to perform computer based 

morphometric analysis as reported by our group173, 196 and others146. Importantly, we 

analyzed smaller size (within defined range), and considerably large number of vessels. 

Finally, by analyzing the efficacy of an u-PA inhibitor at a dose that has recently been 

shown to retard growth of ectopic Lewis Lung Carcinoma tumors due to inhibition of 

angiogenesis (Ruppert et.al., unpublished observations) we added a second experimental 

group of u-PA downregulation that forwarded similar results as compared to the u-PA knock 

out mice. 

 

Our data from u-PA knockout and u-PA inhibitor treated mice suggested possibilities 

for redundant mechanisms mediating (mal)adaptive response of pulmonary vasculature to 

chronic hypoxia, unlike the proposed mechanism based on plasmin-induced activation of 

MMPs197. Indeed, there are reports proving plasmin-independent activation of MMP system. 

Lijnen and collaborators, by using gene-deficient mice, demonstrated that in vivo activation 

of proMMP-2 occurred independently of plasmin-(ogen), and activation of proMMP-9 

might occur via plasmin-dependent or plasmin-independent (MMP-mediated) mechanism198. 
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In addition, hypoxia-derived radicals could also activate MMPs199, 200, followed by MMP-

induced proteolysis leading to growth factor release, cell proliferation and migration201, 202 

and finally, to vascular remodeling. Moreover, MMP expression may be enhanced by an 

endogenous vascular elastase induced upon hypoxic exposure through release of degraded 

matrix peptides147, 148 or by inhibition of tissue inhibitors of MMPs149 and hence, may lead 

to vascular alteration.   

 

Rregardless of  mechanism yet to be elucidated, a vascular serine elastase 

distinct from u-PA has been demonstrated to be involved in chronic hypoxia-induced 

pulmonary vascular remodeling144, 146. It was found that hypoxia- as well as 

monocrotaline-induced pulmonary vascular remodeling was abrogated upon 

inhibition of this serine elastase activity143, 146. After 12 hours of hypoxic exposure, a 

transient increase in serine elastase activity was documented in murine lungs146.  In 

this regard, the procoagulant environment in pulmonary vasculature in response to 

hypoxia might be followed by the induction of serine elastase, suggesting a possible 

role for early hypoxia-induced haemostatic imbalance in facilitating serine elastase-

mediated pulmonary vascular alterations. The predominantly procoagulant milieu 

within vasculature leading to enhanced thrombin generation could favour 

transmigration leakage of serum factors through the leaky endothelial barrier203 and 

thus promote structural remodeling146.  

 

Plasminogen activator inhibitor (PAI-1) has been shown to inhibit apoptosis and 

to augment the proliferation of vascular smooth muscle cells (VSMCs)167, 204 165 in 

addition to promoting cellular migration166. This suggests a detrimental role for PAI-1 

in vascular remodeling. Indeed, absence or presence of PAI-1 has been shown to 

exert a deep influence on neointima formation in animal models of arteriosclerosis, 

however, with contradictory findings151, 152, 205, 206. Our data are also somewhat 

contradictory to these recent reports on the contribution of PAI-1 to neointima 

formation in models of arteriosclerosis. However, it has to be kept in mind that the 

currently employed model of hypoxia-induced pulmonary vascular remodeling is not 

associated with neo-intimal formation. It is rather associated with media thickening 

and muscularization of previously not muscularized vessels. To this end, our 

currently applied model is not directly comparable those models as reference above.  
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Moreover, PAI-1 has not yet been directly investigated in chronic hypoxia-induced 

pulmonary vascular remodeling. This study, to our knowledge, is thus the first to 

investigate the PAI-1 knockout mice in a murine model of hypoxia-mediated 

pulmonary vascular remodeling. 

5.3 Attenuation of hypoxia-induced pulmonary vascular remodeling and RVH in u-

PA treated mice  

Interestingly, we observed a significant attenuation in chronic hypoxia-induced 

RVH and muscularization of distal pulmonary arteries upon continuous u-PA 

infusion. Several explanations for this efficacy of exogenous u-PA application in the 

context of missing modulation by using u-PA and PAI-1 knockout mice are to be 

discussed.  

1. Efficient dissolution of intravascular fibrin and thus avoidance of   

thrombosis. 

An altered hemostasis, with predominant procoagulant and anti-fibrinolytic 

potential of pulmonary vasculature favoring in situ thrombosis, has been reported in 

humans with PAH 133. This procoagulant milieu favours disease progression. In an 

animal model of hypoxia-induced pulmonary hypertension, the pulmonary 

vasculature contributes to a procoagulant milieu due to induction of tissue factor (TF) 

as well as PAI-1207, 208 and thus, the hypoxic vasculature has higher tendency towards 

intravascular fibrin deposition and thrombosis166,209. The efficient dissolution of 

intravascular fibrin and thus avoidance of thrombosis by continuous infusion of u-PA 

might partially explain the beneficial effect observed in the current study. However, 

we do not have direct evidence in this regard and there is still uncertainity also in the 

literature about the true site and extent of intravascular clotting processes in this 

model. 

2. Alteration in neointima formation and SMC characteristics  

Alterations in vascular smooth muscle cell (VSMC) characteristics may play a 

key role in the vascular remodeling process such as medial thickening. Enhanced 

proliferation and migration, and reduced apoptosis are such features associated with 

altered VSMC phenotype.  
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Interestingly, studies investigating influence of u-PA161-164 and PAI-1165-168 on VSMC 

characteristics yielded quite paradoxical findings in view of their role in VSMC 

proliferation and migration. In this regard, the dual role of urokinase receptor system 

by virtue of its ability to interact not only with u-PA but also with vitronectin and the 

ability of PAI-1 to modulate these interactions might provide some explanation for 

the contradictory findings on cell migration100, 210, 211. Furthermore, such paradoxical 

observations were also made in studies involving experimental animal models. Depending 

on the animal model of arteriosclerosis being used, both u-PA150, 153, 157 as well as 

PAI-1151, 152,158, 159 were found to promote neointima formation, suggesting their role 

in VSMC proliferation and migration. The underlying reasons for these contradictory 

findings are yet not settled. At best, the data suggest that depending on the presence 

or absence of u-PA or PAI-1, model- or compartment-specific factors may influence 

VSMC proliferation and migration leading to neointima formation.  In the context of 

the herein presented study, however, exogenous application of excess u-PA might 

represent a very dominant signal and induce excessive proteolytic activity by 

plasminogen activation dependent proteases, namely plasmin and MMPs. It could be 

speculated that excessive proteolytic activities may have resulted in increased 

apoptosis of VSMC, as suggested in recent reports 212-217. However, we could not 

directly investigate the influence of u-PA infusion on VSMC apoptosis. 

3. Liberation of protective growth factors  

In the rat model of monocrotaline-induced pulmonary hypertension, 

supplementation with hepatocyte growth factor (HGF) has been shown to suppress 

media thickening and accumulation of extracellular matrix. Furthermore, an 

increased apoptosis and a decreased proliferation of VSMCs, in addition to a 

significantly increased lung vessel density, was suggested as underlying reason218. 

Recently, HGF has been shown to inhibit PDGF-dependent VSMC proliferation and 

to induce apoptosis of myofibroblast-like stromal cells in vitro218, 219. Moreover, 

HGF also possesses angiogenic properties220. The activity status of HGF, however, is 

partially depending on the plasminogen activation system. The release of 

extracellular matrix bound HGF as well as activation of pro-HGF into active HGF 

has been shown to be also induced by plasmin221-223. Thus, the observed beneficial 

effect of exogenous u-PA application in the current study might partly be attributable 

to protective role of plasmingen activation dependent HGF activity.  
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4. Influence on vessel formation/Loss of vessels  

The plasminogen activation system has been extensively studied in animal 

models of turmor growth and metastasis, where hypoxic microenvironment and 

angiogenesis are key features. In tumor models, blocking or deleting u-PA has been 

shown to reduce metastasis or tumour progression224, 225 suggesting that u-PA likely 

contributes to angiogenesis and tumor growth. Paradoxically, PAI-1 has also been 

reported to promote tumor growth and angiogenesis226-228. In contrast to tumor 

models, loss of vessels has been consistently demonstrated in chronic hypoxia-

induced pulmonary vascular remodeling143, 146. The only exception to this is the 

recent finding by Hyvelin et al. who demostrated a Rho kinase dependent capillary 

angiogenesis in chronically hypoxic rat lungs229. This discrepancy might be 

attributable to the differences in methodology and vessel size investigated. Moreover, 

angiogenesis does not seem to be a key event in hypoxic pulmonary vasculature, and 

thus the model in the current study is not directly comparable to a tumor model. 

Nevertheless, we observed an attenuation of chronic hypoxia-induced loss of 

pulmonary vessels by continuous infusion of exogenous u-PA. This could probably 

be explained by multiple effects of exogenous u-PA such as maintaining the normal 

fibrinolytic potential of vasculature by counteracting hypoxia-induced procoagulant 

milieu, by inducing excessive proteolytic activity leading to VSMC apoptosis and 

thus reduced muscularization of distal pulmonary vessels and by liberating other 

protective factors like HGF. Although we did not investigate further on these 

possible mechanisms, the maintainance of the distal pulmonary vasculature, as 

observed in the current study, offers as apparent explanation for the beneficial effect 

of continuous u-PA infusion. 

 

Putative explanation for the current findings 

As already discussed in detail, the putative explanation for the current findings 

can be summarized as follows. 

 

a. When u-PA is absent or inhibited, the remodeling process is unchanged. This could 

be attributable to higher PAI-1 levels in the concerned area of the hypoxic 

vasculature, indicating that the endogenous u-PA .activity is not high enough to exert 

any influence on the remodeling process. 
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b. In case of PAI-1 knock out, there may be theoretically an increased plasmin 

generation. However, other factors such as α2-antiplasmin and other serpins may still 

block plasmin generation or plasmin activity. In addition, spatial differences in the u-

PA vs PAI-1 expression may also limit the potential benefit of blocking PAI-1.  

 

c. When a large amount of exogenouse u-PA is infused, the only putative explanation 

for the observed beneficial effect in view remodeling of hypoxic pulmonary 

vasculature may be the induction of a high local u-PA gradient along the vessel wall, 

thereby counteracting local PAI-1 and other plasminogen activator/plasmin inhibitor 

acitivities.  
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6 SUMMARY 

Pulmonary hypertension, a devastating disease of complex and multifactorial 

pathogenesis, is characterized by sustained elevation in pulmonary artery pressure, 

pulmonary vascular remodeling and subsequent progressive right heart hypertrophy. 

The structure of the pulmonary vascular bed severely altered. A marked elevation in 

plasma levels of plasminogen activator inhibitor (PAI)-1 has consistently been 

reported in patients with severe primary pulmonary hypertension, and accordingly, an 

induction of PAI-1 and diminution of plasminogen activator (PA) have been 

described in hypoxia-exposed murine lungs. Hence, as also suggested by the clinical 

efficacy of warfarin treatment in PAH, alterations of the hemostatic balance towards 

predominance of procoagulant and antifibrinolytic activity in the pulmonary vascular 

compartment might potentially play an important role in the pathogenesis of 

pulmonary hypertension. In the present study, we aimed to investigate the effects of a 

modulation of u-PA system in pulmonary vascular remodeling. We firstly analyzed u-

PA and PAI-1 expression, and u-PA activity in lung homogenates from patients with 

different forms of pulmonary hypertension (IPAH, CTEPH) as well as from mice 

exposed to chronic hypoxia. Secondly, we investigated the potential role of u-PA in 

pulmonary vascular remodeling in a mouse model of hypoxia-induced pulmonary 

hypertension by employing wild type, u-PA and PAI-1 knock out (KO), specific u-PA 

inhibitor (CJ463)-treated and continuously u-PA-infused mice. 

 

Overall, the expression of u-PA and PAI-1 at transcript and protein level in the 

lungs from chronic hypoxia-exposed mice showed some similarities to that in the 

lungs from patients with IPAH and CTEPH. u-PA was induced at protein level in the 

lung homogenates from the patients as compared to donor lungs. However, the u-PA 

activity was either increased (CTEPH) or unchanged (IPAH). In line with the 

difference in u-PA activity, a different spatial distribution of u-PA and PAI-1 was 

observed in the lungs from patients with IPAH and CTEPH. On the other hand, 

reduced u-PA activity was observed in the lungs from chronically hypoxic mice, 

suggesting a differential regulation of u-PA activity in the lungs from hypoxic mice 

and patients with pulmonary hypertension.  
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By employing u-PA ko and specific u-PA inhibitor treated mice, we demonstrated 

that neither the inhibition of u-PA activity nor the absence of u-PA exerted a major 

effect on the course of chronic hypoxia-induced pulmonary vascular remodeling and 

RVH. Moreover, pulmonary vascular remodeling and subsequent RVH was not 

impaired also in PAI-1 ko mice exposed to chronic hypoxia. To further clarify the 

potential role of u-PA, we applied exogenous u-PA infusion into mice exposed to 

chronic hypoxia. Somewhat contradictory, we could observe a beneficial role of a 

permanent u-PA infusion on pulmonary vascular remodeling in chronically hypoxic 

mice.  

 

Our results suggest that endogenous regulation of u-PA and PAI-1 does not alter 

the course of pulmonary vascular remodeling induced by chronic hypoxia. This could 

probably be attributable to existence of redundant factors and regulation of u-PA 

functions at multiple levels in vivo. However, exogenous application of u-PA did 

attenuate pulmonary vascular remodeling, probably by yielding a high endoluminal to 

vascular wall u-PA gradient and thus excessive proteolytic activities. Further studies 

to precisely delineate the underlying mechanism are warranted. Our findings may 

have an important implication for future investigation of plasminogen activation 

system based therapeutic strategies with regard to pulmonary hypertension.  
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Pulmonaler Hochdruck, eine Erkrankung mit komplexer und multifaktorieller 

Pathogenese, ist charakterisiert durch eine Erhöhung des pulmonal-arteriellen 

Druckes, Umbauprozesse der Gefäßwand und progredienter Rechtsherzhypertrophie. 

Eine signifikante Erhöhung der Plasmaspiegel des plasminogen activator inhibitor 

(PAI)-1 wurde bei Patienten mit schwerem Lungenhochdruck beschrieben, verbunden 

mit einer Induktion von PAI-1 und einer Abnahme des plasminogen activator (PA). 

Aus diesem Grund könnte eine Dominanz prokoagulatorischer und 

antifibrinolytischer Mediatoren im pulmonalen Gefäßsystem eine bedeutende Rolle in 

der Pathogenese des Lungenhochdrucks spielen, was durch den erfolgreichen 

klinischen Einsatz von Warfarin bestätigt wird. In der vorliegenden Studie 

untersuchten wir die Effekte einer Modulation des u-PA Systems auf Umbauprozesse 

des pulmonalen Gefäßsystems. Zu Beginn analysierten wir die u-PA und PAI-1 

Expression und u-PA Aktivität in Lungenhomogenaten von Patienten mit 

verschiedenen Formen von Lungenhochdruck (IPAH, CTEPH) und Mäusen, welche 

chronischer Hypoxie ausgesetzt wurden. Im folgenden untersuchten wir einen 

möglichen Einfluss von u-PA auf pulmonale Gefäßumbauprozesse im Tiermodell des 

durch chronische Hypoxie ausgelösten Lungenhochdrucks mit Hilfe von Wildtyp, u-

PA und PAI-1 knockout Tieren, Behandlung mit einem spezifischen u-PA Inhibitor 

(CJ463) und kontinuierlichen u-PA Infusionen.  

 

Zusammenfassend zeigen sich beim Vergleich der u-PA und PAI-1 mRNA und 

Protein Expression von Mäusen, welche chronischer Hypoxie ausgesetzt wurden, und 

Lungen von Patienten mit   IPAH und CTEPH gewisse Gemeinsamkeiten. Im 

Vergleich zu Gesunden zeigen Lungen von Patienten mit Lungenhochdruck eine 

erhöhte u-PA Proteinexpression, wohingegen die u-PA Aktivität entweder erhöht 

(CTEPH) oder unverändert (IPAH) war. Ferner konnten wir eine unterschiedliche 

Verteilung von u-PA und PAI-1 in Lungen von Patienten mit IPAH und CTEPH 

beobachten. Im Kontrast zu diesen Daten war die u-PA Aktivität in Mäusen, welche 

chronischer Hypoxie ausgesetzt wurden, stark reduziert.  
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Durch den Einsatz von u-PA knockout Mäusen und einem spezifischen u-PA 

Inhibitor konnten wir zeigen, dass weder eine Inhibition der u-PA Aktivität noch ein 

Fehlen von u-PA Einfluss auf den Verlauf der durch chronische Hypoxie induzierten 

pulmonalen Gefäßumbauprozesse hat. Ferner waren diese Gefäßumbauprozesse bei 

PAI-1 knockout Tieren nicht beeinträchtigt. Um die Rolle von u-PA genauer 

aufzuklären applizierten wir Hypoxie-exponierten Mäusen u-PA Infusionen und 

beobachteten überraschenderweise einen günstigen Effekt auf pulmonale 

Gefäßumbauprozesse. 

 

Unsere Studie zeigt, dass eine Regulation von u-PA und PAI-1 keinen Einfluss 

auf den Verlauf der durch chronische Hypoxie induzierten Gefäßumbauprozesse hat. 

Dies spricht für die Existenz weiterer Faktoren und eine differentielle Regulation der 

u-PA Funktionen. Infusionen von u-PA konnten in unseren Experimenten die 

Gefäßumbauprozesse aufhalten, wahrscheinlich durch verstärke proteolytische 

Aktivität. Die Ergebnisse unserer Studie sollen Grundlage für weitere 

Untersuchungen zur therapeutischen Modulation des PA-Systems bei Patienten mit 

Lungenhochdruck sein. 
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ALK1  Activin-like kinase type-1  

ANOVA  Analysis of variance 

ATF   Amino terminal fragment  

BMPR II  Bone morphogenetic protein type II receptor  

CD   Cluster of différentiation 

COPD  Chronic obstructive pulmonary disease 

CTEPH  Chronic thromboembolic pulmonary hypertension 

EVE    Endogenous vascular elastase  

FPAH   Familial pulmonary arterial hypertension 

GFD   Growth factor domain  

HHT    hereditary hemorrhagic telangiectasia  

HMW   High molecular weight  

HPV   Hypoxic pulmonary vasoconstriction 

HPV   Hypoxic pulmonary vasoconstriction 

ECM   Extra cellular matrix 

IDV   Integrated density value  

IgG   Immunoglobulin 

IPAH   Idiopathic pulmonary arterial hypertension 

KD   Kringle domain  

KO   knockout 

LMW   Low molecular weight  

MCTP  Monocrotaline pyrrole  

MMPs  Matrix metalloproteinases  

mRNA  Messenger ribonucleic acid 

NM/M   The ratio of non-muscularized vs. muscularized vessels 

NO   Nitric oxide 

NYHA  New York Heart Association 

OMP   Osmotic Mini-pump  

PAH   Pulmonary arterial hypertension 

PAI   Plasminogen activator inhibitor 
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PAP   Pulmonary arterial pressure 

PASMC  Pulmonary artery smooth muscle cell 

PDGF  Platelet derived growth factor 

PEEP   Positive end expiratory pressure  

PH    Pulmonary hypertension 

PPH    Primary pulmonary hypertension 

PVR    Pulmonary vascular resistance  

ROS   Reactive oxygen species 

RT-PCR  Reverse Transcription- Polymerase chain reaction 

RV   Right ventricle 

RV/LV+S  Right ventricle per left ventricle plus septum ratio 

RVH    Right ventricular hypertrophy 

RVSP  Right ventricular systolic pressure 

scu-PA  Single chain u-PA 

SDS-PAGE  Sodium dodecyl-sulphate polyacrilamide gel electrophoresis 

SEM   Standard error mean 

SMC   Smooth muscle cell 

SPH   Secondary pulmonary hypertension 

tcu-PA  Two chain u-PA  

TF   Tissue factor  

TGF-β  Transforming growth factor-beta 

t-PA   Tissue-type plasminogen activator    

u-PA    Urokinase-type plasminogen activator 

uPAR   Urokinase-type plasminogen activator receptor 

VN    Vitronectin  

vWF   von Willebrand factor  

WHO   World Health Organization 

WT   Wild type 

HIF-1α  Hypoxia inducible factor-1α  

PN-1   Protease nexin-1  
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