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Zusammenfassung

Die Themen dieser Dissertation sind die notwendigen und die hinreichenden Bedingungen fiir
die Frameeigenschaft in L?(R?) bei irregulren Shearlet-Systemen. Zu diesem Zweck fiihren wir
die Konzepte der Dichte irregulirer Shearlet-Systeme ein, die als geeignete Ansétze zum Erken-
nen der Verbindung zwischen der Geometrie diskreter, mit den irregulren Shearlet-Systemen
verbundener Mengen (parametrisiert durch Raum/Scherung/Skalierung) einerseits, und ihren
Frame-Eigenschaften andererseits dienen. Um im Bezug auf die Dichte die notwendigen Bedin-
gungen fr die Existenz irreguldrer Shearlet-Systeme herzuleiten, benutzen wir die sogenannte
homogene Approximationseigenschaft (homogeneous approximation property HAP), die von Ga-
bor und Wavelet-Frames erfllt wird, und die wir fiir die irregularen Shearlet-Frames herleiten.
Dann benutzen wir Folgerungen aus der HAP fr die irreguldren Shearlet-Frames, um notwendige
Dichtebedingungen zu bekommen, die bewirken, dadie Systeme Frames im L?(R?) sind. Wir
geben Bedingungen fr die Zeit/Skala/Scherungs Parameter fiir die notwendigen Bedingungen
an, ebenso fr die einzelne erzeugende Funktion, damit die dazugehorigen irreguldren Shearlet-
Systeme Frames in L?(R?) sind. Wir geben weiterhin eine Reihe von Konstruktionsbeispielen fiir
die Shearlet-Frames an. Wir schliefen mit einer Untersuchung der Stabilitateigenschaften der
irreguléren Shearlet-Frames.
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Abstract

This thesis discusses the necessary and sufficient conditions for irregular shearlet systems to
be frames for L?(R?). For this purpose, the notions of densities for irregular shearlet systems are
introduced, and they are used as efficient tools for observing the connection between the geometry
of discrete sets of space-scale-shear parameters associated with irregular shearlet systems and
their frames properties. In order to derive the necessary conditions for the existence of irregular
shearlet frames in terms of the densities, we employ the Homogeneous Approximation Property
(HAP) which is satisfied by Gabor and wavelet frames to obtain the HAP for irregular shearlet
frames. We then use the consequence of the HAP for irregular shearlet frames to establish
necessary density conditions for irregular shearlet systems to be frames for L?(R?). For sufficient
conditions, we specify conditions of the time-scale-shear parameters and the single generating
function, so that the associated irregular shearlet systems are frames for L?(R?). Additionally,
we provide several examples of constructions of shearlet frames. Finally, we study the stability
issue on irregular shearlet frames.
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Chapter 1

Introduction

Wavelet theory originated from signal theory which has the goal to represent functions that are
local in time and frequency. The classical method used in signal theory is the Fourier transform
which transforms a signal f in the time domain to another function f in the frequency domain.
However, the Fourier transform provides information on the frequency content over the whole
duration of the signal, but it does not tell what frequencies occur at a specific time. To overcome
this disadvantage, Gabor [35] modified the Fourier transform by multiplying the signal with a
translated window function 1 inside the integral,

Qd,f(w,b):/f(t)w(t—b)e_%“’tdt. (1.1)
R

This method is known as the continuous Gabor transform. One can shift this window to any
point ¢ in time by means of the translation parameter b. In general, the window function )
should be smooth and resemble a characteristic function closely, so that f is windowed by the
shifted support of 1. For this reason, its transform provides information about the frequency
decomposition of f on that time window. However, this method still has a drawback in that
the size of the window is fixed, and since this fixed window is used for all frequencies in the
transformation, there is a limit as to how well the signal can be localized in time.

In 1984, Grossmann and Morlet [42] defined an integral transform which is now often called
the continuous wavelet transform. It is similar to the continuous Gabor transform but uses the
two-parameter family of functions 1, (t) = |a|™ (L — b), comprising both translations by
real numbers b and dilations by positive real numbers a. The continuous wavelet transform of
f € L3(R) is given by

=a t_ . .
Wl (ab) = a™” HZ seye (5 b )a (12)

The continuous wavelet transform can be expressed as an inner product Wy f(a,b) = (f,¥q) in
L?(R), and Grossmann and Morlet showed that it is directly related to the theory of group repre-
sentations. By using Duflo and Moore’s theory of square integrable representations, Grossmann
and Morlet classified those functions 1 € L?(R) which allow for the reconstruction formula,

1
== / / (F ) da b, (1.3)

R R+
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as a weak integral in L%(R) (see Section 2.4 for more details).

However, for practical applications, it is much easier to work with series than with weak inte-
grals. Therefore, instead of reconstructing the function f from its continuous wavelet transform
in the sense of the weak integral (1.3), one searches for discrete subsets I' = {(a?,bk) : j, k € Z},

a>1,b>00f R" x R so that
1
f= a1 Z (fs k) Vik (1.4)

J,kEZL

with convergence in L?(R) for some A > 0. This leads us to the concepts of frames introduced
by Duffin and Schaeffer [24]. A frame is a collection of vectors {1;};c.s in a Hilbert space H such
that
AllFIP <Y WL P < BJIFIP forall f eH,
Jj€J

with some constants 0 < A < B < oo. In particular, such a collection of functions {1 }; ez in
(1.4) is called a tight frame. More precisely, tight frames can be realized as a generalization of
orthonormal bases (see more details in Section 2.1). In order words, they provide the advantage
of allowing redundancy in contrast to orthonormal bases (see, for instance, Benedetto and Fickus
[5], Casazza et al. [10] and Goyal, Kovacevi¢ and Kelner [37]).

Over the last decade, wavelets and frames have merged together, and had a growing impact
on many fields due to their unifying role in mathematical theory as well as their success in ap-
plications. Especially, wavelets can provide optimally sparse representation for piecewise smooth
functions in one dimension. However, recently it was observed that although wavelets are good
at catching point singularities, they do not efficiently detect singularities along curves or surfaces
in higher dimensions. In fact, in order to achieve sparse representations for multivariate func-
tions with singularities along curves or surfaces, one needs to use the “directional representation
scheme” which is richer in directions and allows more support shapes for its basis elements. This
observation inspired several approaches to overcome the limit of wavelets, such as ridgelets by
Candés and Donoho [7], curvelets by Candés and Donoho [8], contourlets by Do and Vetterli [23]
and recently shearlets by Guo et al. [47], Guo and Labate [46], Guo, Kutyniok and Labate [45],
Kutyniok and Labate [61], Labate et al. [64], and Easley, Labate and Lim [26].

The curvelet system, in particular, is one of the most successful directional representation
system for images and provides nearly optimal approximations for two-dimensional piecewise
smooth functions with discontinuities along C?-curves. However, the construction of curvelets
requires a rotation operation and corresponds to a two-dimensional frequency partition based on
the polar coordinate. This causes the discrete implementation for discrete data, sampled on a
rectangle grid, to be very challenging.

In recent years, Guo et al. [47] introduced the construction of an efficient representation
system for multivariate functions, which is called the shearlet system. The shearlet system has
many similarities to the curvelet system. For example, both of them provide optimally sparse
representations for two-dimensional piecewise smooth functions with discontinuities along C?-
curves. However, unlike the curvelet system, the shearlet system is a two-dimensional affine-like
system in the sense that it is generated by applying translations followed by anisotropic dilation
and shearing to a single function ¢ € L%(R?) called the generating shearlet. Moreover, Labate
et al. showed in [64] that the shearlet system is associated with a generalized Multiresolution
Analysis which is a more convenient setting for discrete implementations.

In [61], Kutyniok and Labate introduced the continuous shearlet transform of f € L*(R?)
defined by SHy f(a, s, t) = (f, Ts, 4,4 Ds,4,%), where D, and T} are the dilation and translation
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operators, respectively. Similar to wavelet system, the shearlet system is a discrete analogue of
its continuous counterpart. Guo, Kutyniok and Labate [45], Guo and Labate [46], Kutyniok and
Labate [62] and Labate et al. [64] studied the shearlet system SHy(I") of the form:

SHw(F) - {Tcsbkaj/ZAaJmDSbkaijaj1/} ‘) keZ,me Zz} >

1 . C e .
where A, = ( 8 \95 ) and S; = ( 0 i > are anisotropic dilation and shear matrices, respec-
tively. More precisely, the above shearlet system is obtained by sampling the continuous shearlet
transform at the points lying on the following discrete subset I' of R x R x R?,

= {(aj,bk‘aj/z,chkaj/zAajm) gk € Z,m e Z?}, a>1landb,c>0.

Such a system is called a reqular shearlet system. It was proved that for a certain choice of
the generating shearlet v, the regular shearlet system SH,(I") constitutes a Parseval frame for
L?(R?) (Guo, Kutyniok and Labate [45], Guo and Labate [46] and Labate et al. [64]). However,
in many real applications, one requires the samplings step to be fluctuated. That is, the discrete
set I' might be chosen as an arbitrary discrete subset A of Rt x R x R2. We call such a shearlet
system SH,(A) associated with A an drregular shearlet system. In [62], Kutyniok and Labate
considered the construction of irregular shearlet frames associated with an irregular discrete
subset A = {(a;,5;k, S5, Aa;)}j kezmezz of RT X R x R?. They proved that under some
regularity conditions on v, i.e., ¢ is band-limited, the irregular shearlet system SHy(A) is a
frame for L?(IR?).

The main objectives of this thesis are to derive necessary and sufficient conditions for the
existence of irregular shearlet frames. More precisely, in the first part of this thesis, we introduce
the new notion of densities for shearlet systems and use them as efficient tools for deriving
necessary conditions for the existence of irregular shearlet frames. In the second part of this
thesis, we improve the construction of irregular shearlet frames by Kutyniok and Labate [62]
by replacing the assumption on band-limitedness of the generating shearlet 1) with a mild decay
assumption on ¢. We then derive some sufficient conditions on {a;};cz C R* and {sjx}jrez CR,
so that the irregular shearlet system is a frame for L?(R?). Furthermore, we analyze the stability
of irregular shearlet frames under the perturbation of the translation parameter.

1.1 Density for Irregular Gabor and Wavelet Systems

The concept of density is well established as a useful tool in studying irregular frames, especially
to establish necessary conditions for the existence of general frames. For example, the Density
Theorems for irregular Gabor systems introduced by Ramanathan and Steger [68], Grochenig
and Razafinjatovo [41] and Christensen, Deng and Heil [14] provide necessary conditions for an
irregular Gabor system to be a frame or a Riesz basis. An irregular Gabor system G, (A) is
generated by applying modulations and translations to a function g € L?(R) which is sometimes
called the generator, as follows :

Gy(A) = {e%ibxg(t —a): (a,b) € A},

where A is a discrete subset of R?2. The authors (Ramanathan and Steger [68], Grochenig and
Razafinjatoro [41] and Christensen, Deng and Heil [14]) used the notions of upper and lower
Beurling density DT (A), D~ (A) of A, which measure the average number of points of A lying in
unit cubes, to formulate the following Density Theorem.
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Theorem 1.1 (Density Theorem for Irregular Gabor Frames). Let g € L%(R) and let A C R? be
discrete. Then the Gabor system Gg(A) has the following properties:

(a) If G4(A) is a frame for L*(R), then 1 < D=(A) < D*(A) < oc.
(b) If G4(A) is a Riesz basis for L*(R), then D~(A) = DT (A) = 1.

Theorem 1.1 shows that if G4(A) forms a frame for L?(R), then the set A cannot be locally “too
sparse” or “too dense” in the time-frequency domain. The cut-off density D~ (A) = DT(A) =1,
which separates frames from non-frames, is sometimes called the Nyquist density.

Variation of the density theorem were stated and proved by several authors. Ramanathan and
Steger [68] introduced the notion of Homogenous Approximation Property (HAP) which has been
used as an important tool in the proof of the density theorem. Grochenig and Razafinjatoro [41]
employed the HAP and used the fact that Gabor frames fulfill the HAP to show Nyquist density
condition for Gabor systems. However, this approach requires some restrictions on the choice of
generator g. Without any restrictions on g and A, Christensen, Deng and Heil [14] showed the
same results for the higher-dimensional case and extended these to multiple generators for the
Gabor systems. For the history and development of density theorem for Gabor systems we refer
the reader to Heil [50].

Concerning density results for irregular wavelet system, a notion of affine-Beurling density
for irregular wavelet systems were introduced in parallel by Heil and Kutyniok [51] and Sun and
Zhou [74]. In particular, Heil and Kutyniok [51] considered weighted irreqular wavelet systems of
the form

Wy (A, w) = {w<a, DY2D,Tp(t) = w(a, b)Y 202y (f - b) (a,b) € A} |

where ¢ € L2(R) is called a generating wavelet, A is a discrete subset of R x R, and w : A — R
is a weight function. The authors introduced the notion of upper and lower weighted affine
densities D} (A), D, (A) of A. These are used as suitable tools for the study of the geometry of
the affine group.

So far, the most widely exploited and studied wavelet system is the classical wavelet system

Wi(T) = {Dgi Tob(t) = a2 (a7t — bk) = 4,k € Z},

where I' = {(a’,bk)}; kez for a > 1 and b > 0. It was shown by numerous authors (Daubechies
[21], Heil and Walnut [53], Chui and Shi [17], Christensen [11], Frazier et al. [33], etc.) that for
a certain ¢ € L%(R), the classical wavelet system is a frame or even an orthonormal basis for
L?(R) for any @ > 1 and b > 0. From the density point of view, Heil and Kutyniok showed in
[51] that the classical wavelet system, which is an unweighted system, even possesses a uniform
affine-Beurling density, i.e., DT(I') = D™(I') = 35—

Notice that the classical wavelet system is not invariant under integer translations. By switch-
ing the order of dilation and translation operators in the classical wavelet system, we obtain the
shift-invariant system, {TprD,;1}, called the co-affine system. In [38], Gressman et al. proved
that the co-affine system cannot be a frame. In [51], Heil and Kutyniok showed that the lower and
upper affine Beurling densities of the discrete set I' = {(a?, bk, ¢Sk Auim)}j kezmezz associated
with the co-affine system are D~ (T') = 0 and D (T") = oo, respectively.

The quasi-affine system, introduced by Ron and Shen [69], is one of the most notable shift-
invariant systems. The success of this system comes from the fact that it provides a complete
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characterization of the frame property of its corresponding affine system. In particular, the
quasi-affine system is a weighted system of the form

Wy (D, w) = {DyTitb - j < 0,k € ZY U{a?/*TyDyiep - § > 0,k € Z},

1 :j<0keZ

with w(j,k):{a—j cj>0,k€eZ

and I' = {(a’,bk) : j < 0,k € Z} U {(a/,a™7bk) : j > 0,k € Z}.

In particular, quasi-affine systems can be viewed as a special cases of oversampled affine
systems. An oversampled affine system, introduced by numerous authors ( Chui and Shi [16],
Gressman et al. [38], Hermandez et al. [55] and Johnson [57]), is a weighted system of the form

. bk 1
W¢(F,w) = {rjl./2a—J/2w <a_Jt — l;—) c4 k€ Z}, with w(j, k) = -
J J

where 7; > 0 for any j € Z and the corresponding discrete set is I' = {(aj, %)} — In
particular, it was shown by Chui and Shi [16] that if the original wavelet system is a ]f7rame for
L?(R), then the oversampled affine system is also a frame for L?(R) with the same frame bounds.
Heil and Kutyniok [51] showed that an oversampled affine system possesses a uniform weighted
affine-Beurling density, i.e., D (I') = D, (T') = ﬁ, which coincides with the affine-Beurling
density for the classical wavelet system.

From these insightful examples of wavelet systems, Heil and Kutyniok [51] established neces-
sary conditions for the existence of wavelet frames in terms of density in the following theorem.
Additionally, it was shown by Daubechies [21] that if the classical wavelet system is a tight frame
for a special choice of generating wavelet 1, then its frame bounds are exactly equal to ﬁ. The
question is now: Does the number ﬁ play the role of a Nyquist density for the wavelet system?
Studies by Daubechies [21], Balan [3] and recently Kutyniok [59] revealed that there does not
exist a Nyquist density for the wavelet system. In [59], Kutyniok derived the relationship between
density, frame bounds and the admissibility constant, and then used it to demonstrate why there
does not exist a Nyquist density for the wavelet system.

In [51] and [52], Heil and Kutyniok derived the following necessary density conditions for the
irregular wavelet system to be a frame:

Theorem 1.2 (Density Theorem for Irregular Wavelet Frames [51], [52]). Given a nonzero
function ¢ € L*(R), a subset A of Rt x R and a weight function w : A — RY, the following
statements hold:

(a) If Wy(A, w) possesses an upper frame bound for L*(R), then D (A) < co.
(b) If Wy(A) is a frame for L*(R) and satisfies the HAP, then D™(A) > 0.

On the other hand, Sun and Zhou [74] introduced another notion of affine-Beurling density
with respect to another affine group. However, their approach has to use some special weighted
functions in order to derive a uniform density for classical wavelet systems. By employing the
isomorphism on the affine group, Kutyniok [60] showed how to obtain a uniform affine-Beurling
density for classical wavelet systems without the necessity to add weights. In [74], Sun and Zhou
also proved a similar necessary density conditions theorem (Theorem 1.2) for unweighted irregular
wavelet systems.
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So far density results can only provide necessary conditions for the existence of general ir-
regular frames without any assumptions on the choice of generating function . However, in
order to derive sufficient density conditions for the existence of irregular frames, one needs to
know not only density conditions of the discrete set A but also for which class of functions v, the
corresponding system forms a frame.

1.2 Construction of Irregular Wavelet Frames

As we have mentioned before, the frame properties of classical wavelet systems in L?(R) are
very well understood. The classical construction of smooth regular tight wavelet frames in one
dimension was introduced by Daubechies, Grossman and Meyer [22]. In recent years, the problem
of the construction of multivariate wavelet frames has attracted considerable attention. For the
regular multivariate case, the wavelet system is generated by a family of functions of the form

Wy(T) = {|det A|9/2p(A™ 9z —bk) : j € Z,k € Z"}, T = {(A),bk):j € Z,k €L},

where A € GL,(R) and b > 0. Dai, Larson and Speegle [20], Speegle [70] and Yang and Zhou [80]
showed that for a fixed expansive matrix A ( all eigenvalues A of A have absolute values greater
than one), the regular wavelet system, generated by a band-limited function ¢ € L?(R"), forms a
frame for L?(R™). In [54], [55] and [63], Hermandez, Labate, Weiss and Wilson introduced a large
class of functions ¢ € L?(R"™), which satisfies a certain condition called the locally integrability
condition (LIC), and characterized the existence of the regular tight wavelet frame generated by
this class of functions.

More generally, the dilation matrix can be chosen to be an arbitrary matrix A; € GLy(R),
which yields the irregular wavelet system W,,(A) defined by,

Wy (A) = {|det A;|V2p(A e —bk) 1 j € Z,k € Z™}, A= {(A;,bk):j € Z,k € Z"}.

So far, there are two approaches to construct irregular wavelet frames. The first approach is
based on the stability of the regular wavelet frame (Gréchenig [39], Zhou and Li [78], Chui and
Shi [15], Olsen and Seip [67], Favier and Zalik [27], Christensen and Wenchang [13] and Sun and
Zhou [76], [77]). More precisely, stability means the following: For a given regular wavelet system

{a=9/?y(a772—bk)}jkez. The irregular wavelet system {a}l/Zzp(a;lx—bk)}Lkez ({a;}jez C RY)
is a frame, if a; is sufficiently close to a/ (“stable”) and b is small enough. However, their
constructions required rather complicated conditions on 1 or the sequence {a;};ez.

The another approach is obtained by sampling the continuous wavelet transform on an irreg-
ular discrete set A. In [1] and [2], Aldroubi, Cabrelli and Molter studied the irregular wavelet
system {|det Aj|_1/21/)(Aj_13: —bj 1) }jkez generated by a band-limited function 1 and arbitrary
grids {b; 1} rez C R™. Under a certain assumption on {b; 1 };rez, they introduced a general con-
struction of irregular wavelet frames of L?(R"). In [81], Yang and Zhou considered the irregular
wavelet system {a;-l/ 2w(ajx — bk)}jez kezn generated by a non-bandlimited function ¢, and with
arbitrary dilation factors a; € RT. With some simple regularity assumptions on the sequence

{a;};ez, the authors derived sufficient conditions for the irregular wavelet system to be a frame
for L?(R™):

Theorem 1.3 ([81]). Let {a;j}jcz be an increasing sequence of positive numbers, and let ¢ €
L?(R™). Then the following conditions hold:
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(i) There exists a constant L > 0 such that

L<Y [0 "9 for any & € R™\ {0}.

JEZ
(ii) There exists constants C >0, a > 0 and 3 > n such that
[(€)] < Cmin{lg|*, ¢} for any & €R™\ {0},

Then the irreqular wavelet system {a?/2¢(ajx — bk)}jezkezn is a frame for L*(R™).

Furthermore, Yang and Zhou [81] also studied the stability of irregular wavelet frames when
the translation parameter b and the generating wavelet i are perturbed.

1.3 Overview of the Thesis

Since shearlet systems are considered to be two-dimensional affine systems, it is natural to ask
whether shearlet systems possess properties similar to wavelet systems. In this thesis, we focuss
on the study of frame properties of irregular shearlet systems.

In the first part of this thesis, i.e., Chapter 3 and 4, we extend the density results for one-
dimensional wavelet systems by Heil and Kutyniok [51] to shearlet systems. The starting point
is a generalized notion of weighted density for shearlet systems. In Chapter 3, we introduce the
new notions of weighted density for shearlet systems, depending on the different choice of groups,
which we call shearlet group S = Rt x R x R2. More precisely, we define the notions of densities
for shearlet systems associated with four different types of shearlet groups: S; —S4. We also show
some connections between shearlet groups by employing the isomorphism from one to another
shearlet group. Then we compute the upper and lower density for the classical shearlet systems
associated with each shearlet group S; — S4. In some examples, we also include the computation
of densities of discrete subsets associated with oversampled shearlet systems and the co-shearlet
systems. Because of the group isomorphism between shearlet groups, it suffices to study the
shearlet system associated with shearlet group S;. More precisely, in this thesis we mainly study
the irregular shearlet system of the form

SHiy(A) = {a®*)(SsAgz — 1) : (a,5,t) € A},

where ¢ € L?(R?) and A is a discrete subset of S;. We end Chapter 3 with a converse theorem
(Theorem 3.24) for the density associated with S;. That is, for given certain finite numbers
a > [ > 0, we show for which discrete subset A of S; the corresponding upper and lower
densities are equal to a and [, respectively.

Inspired by the density theorem for irregular wavelet frames by Heil and Kutyniok [51], in
the first part of Chapter 4, we begin with deriving necessary density conditions for the irregular
shearlet system to possess an upper frame bound (Theorem 4.1). By adapting the HAP for
irregular wavelet frames introduced by Heil and Kutyniok [52] and Sun [73], and the HAP for
coherent frames by Grochenig [40], we show that irregular shearlet frames also possess a HAP
(Theorem 4.6). We derive a consequence of the HAP for irregular shearlet frames, the Comparison
Theorem (Theorem 4.8), which we then use to establish necessary density conditions for the
existence of a lower frame bound for irregular shearlet frames (Theorem 4.9).
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In the second part of this thesis (Chapter 5), we study irregular shearlet systems SHy (A)
with A = {(aj, sk, cm)}; kezmezz C S1, ¢ > 0. We extend the construction of band-limited
irregular shearlet frames by Kutyniok and Labate [62] to the case of non-bandlimited irregu-
lar shearlet frames. In Chapter 5, we show how the construction of irregular wavelet frames

{a?/zw(ajx — bk)}jez kezn with the scalar dilations a; € RT by Yang and Zhou [81] can be

adapted to the irregular shearlet systems {a§/41/J(SSkAajx — cm)}; kezmeze With the composite
dilation matrices s, Ay; € GL2(R). In particular, by replacing the band-limited assumption of ¢
with mild decay condition on 1, we specify some conditions on {a;}jez C RT and {si}rez C R,
so that SH1 ,(A) is a frame for L?(R?) (Theorem 5.4). We also present the construction of reg-
ular shearlet frames SHLw(aj, k,cem) for j,k € Z and m € Z? (Theorem 5.7), and provide some
numerical examples to estimate frame bounds. Finally, we study perturbations of the translation
parameter ¢, and show the stability of the associated irregular shearlet frames (Theorem 5.10).



Chapter 2

Basic Background

This chapter is devoted to mathematical concepts used in this thesis. With a few exceptions
all results are stated without proof. We begin this chapter with the notion and basic properties
of frames. We then recall the definition of Fourier transform in L?(R") and its well-known
properties. Furthermore, we include some basic concepts of group representations. Finally, we
review the continuous wavelet transform from the group theoretical point of view.

2.1 Frames

In this section we briefly review the definition of frames and its basic properties. Additional
details and proofs can be found in Christensen [11], Duffin and Schaffer [24], Casazza [9] and Han
et al. [48].

Definition 2.1 (Definition/Facts). (a) A sequence {f; : j € J} in a Hilbert space H is a frame
if there exist 0 < A < B < oo such that for all f € H we have

AIFIP <D OIS )P < BIIFIP (2.1)
JjeJ
The numbers A and B are called the upper and lower frame bounds respectively. The frame is
tight if A= B, and if A= B =1, we called {f; : j € J} a Parseval frame.
We remark that any orthonormal basis in a Hilbert space is a Parseval frame. On the other
hand, even a Parseval frame needs not be a basis.
(b) Let {f; : j € J} be a frame for a Hilbert space ‘H with frame bounds 0 < A < B < oo.
Then the frame operator
Sf=Y (ff)fi, VfeEH
JjeJ
is a bounded, positive and invertible operator on H.
A direct computation yields
(Sf. £ =) 1)
JjeJ
This implies
Ald < S < BId,

where Id denotes the identity operator on H.
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(c) Let {f; : j € J} be a frame for a Hilbert space H with frame bounds 0 < A < B < c0. A
sequence { f] :j € J}in H is called the dual frame for {f; : j € J}, if it allows reconstruction of
f € H by

F=Y 0, YfeH
Jj€J

In particular, we can choose f] = S‘lfj for all j € J, and {S‘lfj :j € J} is called the canonical
dual frame with lower frame bound % and upper frame bound %. Then we have the frame
eTPansions

F=Y ST =Y (S s Y ieN.

jeJ jeJ
(d) The trace-class operator of T on a Hilbert space H, denote it by tr(7), is the sum

> (Tej,ej), where {e; : j € J} is any orthonormal basis for H.
JjeJ

Proposition 2.1. Let {f; : j € J} be a sequence in a Hilbert space H which satisfies only the
upper frame bound estimate in (2.1). Then we call {f; : j € J} a Bessel sequence and the
constant B is a Bessel bound, such that

2
chfj < BZ |c;]? for any {c;}jes € *(J).

JjeJ 9 jeJ

The following result is about the estimate of the trace of an operator which is stated in
Grochenig [40].

Proposition 2.2 ([40]). Let T' be a positive trace operator on a Hilbert space H and {f; : j € J}
be a frame with frame bounds 0 < A < B < co. Then

%Z(Tfj7fj> <tr(T) < % (T fj: I5)-

JjeJ JjeJ
2.2 The Fourier Transform in Higher Dimensions

We will use the following spaces of continuous functions throughout this thesis.
Definition 2.2. Let p € {0,1,2,...}. Then

1. CP(R") ={f:R™ — C: fis p times continuously differentiable}.

2. CE(R™) = {f € CP : f has compact support}.

3. C®°(R™) ={f:R" — C: f is infinitely differentiable}.

4. CX(R™) = {f € C*°: f has compact support}.

5. S(R™) = {f € C°(R™) : f and all of its derivative decay rapidly}. The space S(R") is
called the Schwartz class.

We recall the definition and the well-know properties of Fourier transform in higher dimen-
sions. Details can be found in Gasquet, Witomski and Ryan [36] and Stein [72].
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Definition 2.3. The Fourier transform of f € L*(R™) N L?(R") is defined by

FRO=FE) = | e de.
Similarly, the inverse Fourier transform of f € LY(R™) N L?(R™) is given by

F@)=J(@)= | [,

Since F' and I preserve the L?-norms, and L'(R") N L?(R") is dense in L?(R"), the maps F
and F extend to unitary operators on L?(R").

Theorem 2.3 (Plancherel). (i) The Fourier transform F is a unitary operator on L?*(R™).
(ii) F is the inverse operator of F, i.e., Ff=fforalfe L2(R™).

Theorem 2.4. The Fourier transform F and its inverse Fourier transform F are linear one-to-
one maps from S(R™) onto S(R™).

2.3 Group Theoretical Foundations

In this section, we briefly review the important group-theoretical concepts needed in this thesis.
For more information on group-theoretical background we refer to Nachbin [66], Young [82],
Folland [31], [32] and Stein [71].

Definition 2.4. A topological group is a set G which is both a group and topological space, such
that the group operations (g, h) — gh from G x G into G and g — ¢! from G into itself are
continuous in this topology. Any subgroup of a topological group G becomes a topological group
in the relative topology of G.

A locally compact group is a topological group whose topology is locally compact and Haus-
dorff.

Let us consider some examples of topological groups:

1. The set R™ with its usual topology and with addition as the group operation is a locally
compact group.

2. The set Q of rational numbers, with the subspace topology induced from R and with
addition as the group operation is a topological subgroup of R, but it is not locally compact.

3. GL,(R), the group of n x n real-invertible matrices.
Let M, (R) denote the set of all n x n matrices with entries in R. M, (R) is a finite
dimensional normed linear space, isomorphic to R™. Give GL,(R) the relative topology of
M, (R). Then GL,(R) is a multiplicative locally compact topological group.

Definition 2.5. Let G be a locally compact group and H be a Hilbert space. A representation
m of G on 'H is a mapping satisfying:

1. m: G —U(H). (U(H) is the group of unitary operators on H),

2. m is a homomorphism: 7, = 7y, for all g,h € G,
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3. m is continuous with respect to the strong operator topology of U(H), that is g — 7€ is
continuous for each £ € H.

A representation 7 of a locally compact group G on a Hilbert space H is called irreducible if {0}
and H are the only closed subspaces of H which are invariant under 7, for each g € G.

Definition 2.6. A representation 7 of a locally compact group G on a Hilbert space H is called
square integrable if

1. 7 is irreducible,

2. there exists a vector ¢ € H\{0} such that [, |(1, mg1))|*du(g) < oo where p is the left Haar
measure on G. That is, the function g — (¢, m49) is square integrable. Such a vector 1 is
called admissible.

In dealing with representations of locally compact groups, measures and integrals are impor-
tant tools.

Definition 2.7. A Borel measure p on a locally compact group G is called left translation
invariant or a left Haar measure provided that for every continuous compactly supported function
f on G and every h € G we have

/f(hg)du(g)z/f(g)du(g)-
G G

A right Haar measure 7y is defined similarly.

Definition 2.8. Let G be a locally compact group, H Hilbert space, and F' : G — H continuous.
If there exists a vector f € H such that

(1) = / (F(g).h) du(g),  VheN
G

then we say that f = [ F(g)du(g) as a weak integral in H.
G

2.4 The Abstract Wavelet Transform

In the most general sense, wavelets can be defined by group representations as we will explain
below. This section is devoted to the continuous wavelet transform in its abstract setting. For
more detail we refer to Heil and Walnut [53], Grossmann and Morlet [43], Bernier and Taylor [6],
Fiihr [34] and Louis, Maass and Rieder [65].

Definition 2.9. Let G be a locally compact group whose left Haar measure is p, and let 7, :
G — U(H) be a unitary representation of G on a Hilbert space H. Given a vector ¢ € H, the
collection {my1} of vectors in H is called the family of wavelets generated by v, and 9 is called
the mother wavelet. The mapping Wy, taking f € ‘H to a continuous function on G defined by

(Wyf)(9) = (f,mg)n (2.2)

is called the wavelet transform of f with respect to 1.
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Numerous authors have studied the theory of wavelets from the point of view of square
integrable group representations. The following important theorem links the wavelet transform
to the theory of square integrable representations:

Theorem 2.5. (Duflo-Moore [25]): If 7 is a square integrable representation of a locally compact
group G on H, then there exists a unique densely defined operator K on H, self adjoint and positive
which satisfies the following:

i) The set of admissible vectors in H coincides with the domain of K, that is dom K = {1 €
H : 9 is admissible }.

it) If ¢ is an admissible vector and f is an arbitrary vector in H, then

Wy fll2e) = Vel flln
where ¢y, = || Kv|[3,.

i11) If the group G is unimodular, then K is a multiple of the identity.

Thus, if the representation 7 is square integrable, then there exists a dense set of vectors v
in ‘H such that

Wyl = Veullflln,  VieH (2.3)
for some constant ¢y, i.e. the wavelet transform Wy, associated with 1) is a multiple of an isometry
from H into L?(G). It turns out that equality (2.3) holds if and only if for all f € H,

f=L / (W f)(9) gt dia(a) (2.4)
Cy Ja

as a weak integral in H.

The traditional wavelet transform operates on functions defined on R", thus we will choose
H = L*(R™) from now on.

Definition 2.10. Let G* be the group consisting of pairs (a,b) € GL,(R) x R™ together with
the group operation
(z,y) - (a,b) = (za,a 'y + b)

and the product topology. G is called the affine group. This kind of group construction is called
a semi-direct product, and thus G is also called the semi-direct product of GL,(R) and R",
written GL,(R) x R™.

If D is a closed subgroup of GL,(R) then G = {(a,b) € G*,a € D,b € R"} is a closed
subgroup of G¥, and G is the semi-direct product D x R™. We call D the dilation subgroup of G
and R”™ the translation subgroup of G.

Note that the Haar measure dv(a,b) on G is simply the product of the Haar measure du(a)
on D with the Lebesgue measure dA(b) on R”. In fact, for any f € L'(G),

/f((a;,y) - (a,b))dv(a,b) = //f(xa,a_ly + b)dA(b)dp(a)
G

D Rn

_ / / F(a, b)dA(b)dp(a)

D Rn

= / f(a,b)dv(a,b).
G
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This shows that dv(a,b) = d\(b)du(a) is left translation invariant. There is a natural repre-
sentation 7 of G* on L?(R") given by

Tap (@) = |det a| 2P(a 2 — b) = Yau(2) (2.5)

for (a,b) € G* and ¢ € L?(R™). If G is a subgroup of G* as in definition 2.10, then the wavelet
transform Wy, induced by v and the representation 7 becomes

Wy f(a,b) = (f, Yap) = (a=lz — b)dx (2.6)

\/|det al /n
for f € L?(R") and (a,b) € G.

Remark 2.1. We want to find a reconstruction formula for the wavelet transform (2.6). From
the discussion following the Duflo-Moore theorem we know that if (2.3) holds then reconstruction
formula (2.4) follows, which here becomes

f(z) = / / Wi £(a. ) s (2)AA(B) dp(a) (2.7)

D R»

in case ¢y = 1. Thus, we need to investigate under what condition (2.3) holds.
Note that by scaling the function v we may always assume that cy = 1.

Remark 2.2. When discussing the wavelet transform, one usually makes use of the tools of the
Fourier transform. Since the Fourier transform F : f — f constitutes a unitary operator on
L?(R™), 7 induces a representation

p=FrF (2.8)

of G* on L*(R™). Let us compute this representation. For 1Z = Fy € L*(R") and ¢ € R",
PlapyP(€) = Frgp F(FP)(€)
= / (W(mb)?/)) ($)e_2”i<5’””> dx

Rn

= / |det a7 (a e — b)e 2HED) dy

R
= / |det a|'/?y(x — b)e 2m&a2) gy

= |det a!/2eml et / (a)e 26 dy

= |det a|'/?e 2’”“%( Te) = hap(€)

where elements & of R™ are now written as row vectors, and x are column vectors.
Formula (2.6) for the wavelet transform becomes now

N

(W f)(a,b) = (f, T anyh) = (f: plapyt) = (s Pap)
~ | det ayl/2 / F(©)D(aTg)ermitea) ge. (2.9)



Chapter 3

Shearlet Groups and their Weighted
Density

In this chapter, we will review four definitions of a continuous shearlet transform from a group
theoretic point of view and determine the relationship between them. Furthermore, we will give
definitions of weighted density for each shearlet system and show their basic properties which will
be used in Chapter 4. Finally, we will give special examples of discrete subset of RT x R x R? and
compute their density. We shall mention that many ideas and proofs of this chapter are inspired
by Heil and Kutyniok [51] and Kutyniok [58].

3.1 Continuous Shearlet Transform Associated to the Shearlet
Group §,
In this section we show that the continuous shearlet transform is directly related to the theory

of group representations as the following results show. In order to define the shearlet group we
first require the following lemma.

Lemma 3.1. Let S; = RT x R x R? be equipped with the group multiplication
(a,s,t)-(a,s',t) = (ad’,s" + svVa,t + SgAgrt),

1 s

where A, = ( 0 1

and S = < > fora>0 and s € R*. Then (S1,-) forms a group.

a 0
0 Va )’
Proof. The identity element of S; is e; = (1,0,0), and inverses are given by

since
(a,s,t) - <1,_—S,—S_sAlt> = <1,_—S +i7_S_SA1t+S_SA1t> = (1,0,0)
PRV Va va TR TR
and

1 —s s
<5, %,—STEA;Q (a,s,t) = <1,s — %\/E,t — SSAG(STEAit)> = (1,0,0)

15
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because
S_ A =AtSTL

a

The fact that the group multiplication is associative can be shown as follows:
((a,s,t)- (a',s, 1)) - (a",s" 1) = <aa', s+ sV, t + SsrAa/t) (a", 8" ")
= (aa’a”, §"+ (' + sVa )WVWa" t" + S Agn (' + Ss/Aa/t))
= <a(a’a”), (s" 4+ s'Va") + sVa'a’, (t" + Sy Agnt’) + SSHAQH(SS/Aalt)>
= (a, s,t) - (a'a”, "+ SVt + SsuAaut'>
= (a,s,t)- ((d',s, 1) (a",s",1")),

where we have used that

S An S — a” S//\/J a/ s/ﬁ _ a/a” S/\/aa//_i_sl/\/m
S// (1" S/ a/ p— 0 W 0 \/J = 0 \/W

- SS//+S/\/Q7Aa’a” .

Definition 3.1. The set S; = RT x R x R? equipped with the multiplication given by
(a,s,t)-(a,s',t) = (ad',s" + svVa,t' + SgAgt),
is called the shearlet group.

Throughout this thesis we shall use the notations T} f(z) = f(z —t), t € R? and Dy, f(x) =
|det M|~Y2f(M~'z), M € GLy(R) as the translation and dilation operator on L?(R?), respec-
tively.

Let 1 € L?(R?), and define o1 : S; — U(L*(R?)) by

o1(a, 5, )9 (@) = Dy 151 Tip(w) = a*/ (83 Aa — 1) = P 0(0), (3.1)
for (a,s,t) € Sq. This is a unitary representation which can be shown as follows:
o1(a, s, t) [Jl(a’, s, t/)w(x)] = a4y (a',s", ) (SsAgz — t)
= (ad')**% (Sy A (Ss Az —t) — 1))
= (ad)3*y (SS,+8 varAaarm — (8 + SS/Aa/t)>
=0 (aa', s +svad, t + SS/ASrt) Y(x)
=01 ((a,s,t) - (d, ¢, 1)) ().

Definition 3.2. Let o1 : S; — U(L*(R?)) be a unitary representation of S; on L?(R?). Given
Y € L?(R?), the family {o1(a,s,t)y : (a,s,t) € S1} of functions in L?(R?) is called shearlets. The
mapping SHi 4 taking f € L?(R?) to a continuous function on Sy defined by

SHLw(CL, S, t) = <f7 0'1((1, S, t)¢> = <f7 DA515;1Ew> = <f7 Q;[)a,s,t>7 (32)

is called the continuous shearlet transform.
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Remark 3.1. The first definition of a continuous shearlet transform was introduced by Guo,
Kutyniok and Labate [45] and then the studies of Kutyniok and Labate [61] and Dahlke et al.
[18], [19], but in a different form as in (3.2). We will show in the subsequent sections that there
are other definitions of continuous shearlet transform, depending on the choice of a group multi-
plication, and show the relationship between these definitions in the sense of group isomorphism.

Note that the left-Haar measure dus, (a, s, t) on Sy is simply the product of the Haar measure
dv(a) = %“ on R and the Lebesgue measure dsdt on R x R2. We have, for any f € L'(S;),

/ a, s t)-(a,s,t))dus, (a,s,t) ///f da,s+ s'va,t+ SsAut") dv(a)dsdt

S R2 R R+

:///f(a,s,t)du(a)dsdt

R2 R R+
This shows that dpug, (a, s, t) = dadsdt ds dt js left translation invariant.

Definition 3.3. We call a function ¢ € L?(R?) admissible if it satisfies

N 2
Cw = / / M dulduz < 00, (3.3)
uy

R R+
and we call the condition (3.3) the admissibility condition.

Proposition 3.2. Let 1) € L*(R?) and Va5t be defined as in (3.1). Then the continuous shearlet
transform
SHiy: f— SHiyf

maps LQ(Rz) into H = L2 (Sl, daclilsdt).

Furthermore,
(SHiuf, SH1ypg)1 = Cylf, 9) L2 ®2) (3.4)
where ) )
Cp = / / M duyduy < 0. (3.5)
R R+ !

Remark 3.2. By the polarization identity, the equality (3.4) is equivalent to
ISHLwflIF = CyllfIE for all f € L*(R?). (3.6)

Proof of Proposition 3.2. It suffices to prove (3.6) which also implies injectivity. By the
Plancherel Theorem, for any f € L?(R?), we have

HSHwastfHH—/ //
I /W

19

( 99 s dt

ff) ( TA 16) 2mi(€,Aq tss df —dsdt
R2
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Now we will set F, o(€) = f(€)Y(SsTAz1E). Since both f,4h € L*(R?), the product is also in
L'(R?) by the Caughy Schwarz inequality. Inside the absolute value, the integral is the inverse
Fourier transform Fy, ; of Fy s, so that

SHiy(a,s,t)f 2 = a=3/? F 15 Clt dt —ds
H ,1/1( ) HH
R JR+

:/R/R+ / |Fas |dt}—ds

:/R/R+ / 1200, ]dt}—ds

= [ [ |Lfor]ismazof a| 5

- [ 1t [ [lasmazel s ae

- [er| [ [ (e ) ae e
(

= [ f©rF /R/R )

2
- [ tras | [ [ (uii’;m‘duldw

= CyllfI3 = Cyll F113:

2
da du2] d€

<

This proves the proposition. O

Proposition 3.3. (Reconstruction formula for the continuous shearlet transform) Let o1 be a
unitary representation of Sy on L%*(R?), and let 1) € L?(R?). Then (3.6) holds if and only if for
all f € L*(R?)

1 dads dt
f= C_ilf/R?/R R+(8H17¢(a,s,t)f)al(a,s,t)l/} - (3.7)

i a weak sense.

Proof. (=) Assume (3.6) holds. By the polarization identity, for all f € L?(R?) we have equality
(3.4). Divide (3.4) by Cy and rewrite the inner product in L*(S;) as

dadsdt

1
(f,9) = C_w /R2/R R+(8Hl’w(a’S’t)f)(SHLw((I,S,t)g)
! ———~dadsdt
- O_w/R/R | (SHiu(a.s,0f)(g 01005, 06) —
: da ds dt
- C_w/R?/R R+(3H1’”’(a’37t)f)<01(a737t)¢,g> —
da ds dt

1
= C—w/RQ/R R+((8H17¢(a,s,t)f)al(a,s,t)zp,g> -
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This means that
da dsdt

1
f=g | [ ] srtsasnnmse
Y JR2 JR JRT a
as a weak integral.

(<) Assume that the reconstruction formula (3.7) holds in a weak sense. By going backwards in
the above computation, one easily verifies that (3.6) holds, i.e., SH; 4 is an isometry. O

Remark 3.3. It turns out that the equality (3.4) gives a reconstruction formula if and only if
the admissibility condition (3.3) holds.

3.2 Weighted Density for Shearlet Systems of S;

It was shown in the previous section that we can reconstruct a function from its shearlet transform
in the form of a weak integral, but in general computations, it is much easier to work with series
than with weak integrals. That leads to the question of how can we find a discrete subset A of
S1 such that the associated family of functions {t4,st}(a,s,t)en, called shearlet system, is a frame
for L2(R?), where 1, s is defined as (3.1).

Since the study of density of a sequence of time-scale parameters associated with wavelet
systems have turned out to be an effective tool for deriving necessary conditions for the existence
of an upper and lower frame bound, it is natural to ask whether shearlet systems share similar
properties because shearlet systems are indeed an two-dimensional affine-like systems. This will
be explored in the next chapter.

In this section we will introduce notions of density for shearlet systems and study their basic
properties.

For all h > 0, we let @), denote a fixed family of neighborhoods of the identity element

e=(1,0,0) in S
h h h h\?2
— —h/2 _h/2 A e
Qn=le ,e )x[2,2>x[2,2>.

Then, for (z,y, z) € S1, we define Qp(x,y, z) to be the set @}, left-translated via the group action,
so that it is centered at the point (z,y, 2), i.e.,

Qh(wayaz) - (x7y7 Z) . Qh
h hoh\?
= {(:Ea,s +yva,t+ SsAqz) tac e eM?) s e [—g, 5) te [—5, 5) }

Definition 3.4. Let X = {x;};c; be a sequence of elements in S;.

(i) X is called Qp-dense in Sy, if |J x; - Qp = S1.
el

(i) X is called separated, if for some compact neighborhood @}, we have z;-QpNx;-Qp =0, @ # j,
and called relatively separated, if X is a finite union of separated sets.

We choose the left-invariant Haar measure ug, = %“ ds dt, to define the volume of Qp(x,y, 2):

h h h h

2 2 2 e2 1
ugl(Qh(w,y,Z))zugl(Qh)Z////Edadsdtldt2=h4-

—h-L-L.-%
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Let A be a discrete subset of S;. For a weight function w : A — RT, we define the weighted
number of elements of A lying in a subset K of S; to be

#Hu(K) = Z w(a, s,t).

(a,s,t)eK

Definition 3.5. Let A be a discrete subset of S;. Then the upper weighted density of A is

DJ(A) =limsup sup FHw(AN Qf(x,y, Z)),
h—0o0 (%y,Z)eSl h

and the lower weighted density of A is

D, (A) =liminf inf #uw(A N Qn(z, y, z))
h—o0 (90,972)681 h4

Remark 3.4. Intuitively, the density of A is a measurement of the average number of points
of A lying in sets Qn(x,y,z). Since the points in A do not normally spread uniformly, a single
definition of density is not enough to capture this behavior appropriately. Therefore, in the
definition, we move the sets Qp, via a group multiplication, i.e., Qn(z,y,2) = (z,y,2) - Qp, in
order to find the mazimum and minimum average of points of A lying in sets Qp(x,y,z). We
then use the upper and lower limits to define the upper and lower density, respectively. In the
sequent propositions, we will show how to compute the density of several kinds of discrete subsets

A of Si.

In the next technical lemma, we will show that there exist sets of the form Q(x,y, z) which
lead to a covering of the shearlet group Si, but not a disjoint one. However, the number of
overlaps of those sets Qp(x,y, z) is independent of (x,y, z) € S, which can be seen in the second
and third parts of the following lemma.

Lemma 3.4. Let h > 0 and r > 1 be given, and let
X, = {(ejh,he_h/4k, he_h/2m) g k€ Z,me Z%).
Then the following statements hold:
1. Xy is Qp-dense in S;.

2. Any set Qn(x,y, z) intersects at most

1 1 1
Ny = (7’ + 2)(7’ + 1)3 |:€h/2 + m] |:€h + T‘—I-—1:| |:€3h/4 + m:|

elements in X1, i.e., Xy is relatively separated.

3. Any set Q.p(x,y,z) contains at least

N, :=r(r+ 1)3egh/4

elements in X7.
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Proof. 1. Fix any (z,y,z) € S;. We show that there exist (a,s,t) € Qp, j,k € Z, and m € Z?
such that

(2,9,2) = (ae?", s + he " kv/a, t + he "2 Agm)
= (ejh’ he_h/4k7, he—h/Qm) . (CL, S,t) c Qh(ejh, he_h/4k:, he—h/Zm).

In particular,

z=ae" | y=s+ he_h/4k‘\/5, and z =t + he "2S,A,m.

These three equalities are equivalent to

. Inz Ina

=T h (3:8)
h/4 h/4
=Y X (3.9)
hy/a  hy/a
(- t1)el/?  s(zg —ty)el/?
mi = ha ha s (310)
N (22 — tg)eh/2
my = (3.11)

Now we observe the following;:

Let a € [e7/2,¢"/?). Following from (3.8), we form the interval (e _ 1 e 4 1) which
contains a unique integer j.

Take the same number a as above, and s € [—%,2). Following from (3.9), we form the

interval [y}f\%l — ;%, yhe—\h/gl %) which contains an integer k.
Now take a as above, and ty € [—%,%) By (3.11), we form the interval

[Z2eh/2 eh/2 Zzeh/z eh/2

e T Sva hoa + m) which contains an integer ms.

Now take a,s and ty as above. Using (3.10), we form the interval
h/2 h/2 toeh/2 h/2 h/2 h/2 toeh/2 h/2 . .
zie _ szze stoe e zi1e _ szze stoe e
{ e o 50 —Ta S T 5, ) which  contains an
integer mj.

Thus {Qp(e?", he "4k, he ™ "?m) : j,k € Z,m € Z?} is a covering of Sy, i.e., X; is Q;-dense in

Sy.

2. Fix (z,y,2) € Sy, and suppose (u,v,w) € Qui(x,y, 2)NQp(e?", he "*k, he="/?m). Then there
exist (a,s,t) € Qqp, and (d/,',t') € Q), such that

and  (u,v,w)

xayaz) ' (CL?Sat)
axr,s + y\/aa t + SSAaZ) S QTh(x7 Y, Z)
eI he M4, he_h/zm) (a8t

delt s + he MRV al t + he_h/2SS/Aa/m) € Qp(elh, he Mk, he_h/zm).

(u,v,w)

= (
= (
= (
= (
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In particular, ax = a’e’? with a € [e™""/2,e™/2) and o’ € [e™"/2 eM/?). We have

g MrHD/2 < oih < g oh(r+1)/2. (3.12)
ng r+1 . e r+l

and h 2 =J=7 2

This is satisfied for at most r 4+ 2 values of j.
_\oh/4 h/4
Further, k = ($=80¢"" 4 yvae " with s € [—zh ) and s’ € [, 2), so that

e e 203
y\/aeh/t <T+1> hyo yv/ae <r+1> hy2
— e <k< + e, 3.13
ha' 2 ha 2 (3:13)

For a given value of a € [e~"™"/2 ¢"/2) and o' € [e~"/2,e"/?), this is satisfied for at most (r +
1)e"/2 + 1 values of k.
Furthermore, we have

he™m = A S Auz + A S 0 1)
_,_/

=:(C1,C2)T
he 2, Oy + lizt) _ Saty
( he™"?my > - Gy + 222 |

with t,t, € [—%,%), and t1,t9 € [—%,%) , hence

Creh/? B s'eh?(ty — th) C(r+ 1)eh < < Ciel? §'eM2(ty —th) (1 +1)et

— 3.14
h a'h 2 e oh 2 (3.14)
Coel? (1 +1)e3h/4 Coel? (1 +1)e3h/4
— < < . 1
h 2 SMEE T T (3.15)
For a given value of a € [e7"/2 e™/2), o’ € [e"/2,e"/?), s € [, 1) and s’ € [-2, 1), (3.14)

2
is satisfied for at most (r 4 1)e” 41 values of m1, and (3.15) is satisfied for at most (r+1)e3/4 41
values of mg. Thus Q,p(z,y, z) can intersect at most

3| h/2 1 h 1 3h/4 1
(T+2)(7’+1) |:€ / +7’+—1:| |:€ +7‘+—1:| |:€ / +m:|

sets of the form Qy,(e’", he "/*k, he="/?m).

3. There are at least r values of j satisfies (3.12). For a given value of j, there are at least
(r+1)el/? values of k satisfies (3.13). Furthermore, for a given value of j and k, (3.14) is satisfied
for at least (r + 1)e values of m, and for a given value of j, (3.15) is satisfied for at least
(r 4+ 1)e3"/* values of my. Thus Q4 (x,y, z) must intersect at least r(r + 1)3¢%"/4 sets of the form
Qh(ejh,he_h/4/<;, he_h/zm). O

By using the above lemma, the following proposition provides some information on the struc-
ture of subsets A of the shearlet group S;, which have finite upper weighted density and positive
lower weighted density.

Proposition 3.5. For A C Sy and w: A — R™, the following conditions are equivalent:

1. Df(A) < oo.
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2. There exists an h > 0 such that sup #,(ANQp(z,y,2)) < 0.
(z,y,2)€S1

Also the following conditions are equivalent
1. D;(A) > 0.

2. There exists h > 0 such that ( in)f . #Hu(ANQp(z,y,2)) > 0.
x,Y,2)ES]
Proof. (=) is trivial.
(<) Suppose there exists h > 0 such that R := sup #4,(ANQp(z,y,2)) < 0.
(z,y,2)€S1
For 0 < t < h, we have #, (AN Q¢(x,y,2)) < #uw(ANQn(x,y,2)) for all (z,y,2) € S;.

Hence sup #u,(ANQ(z,y,2)) < R.Ift > h, assume ¢ = rh where r > 1. By Lemma 3.4 the
(z,y,2)ES1

box Q,1(z,v,2) is covered by a union of at most N, sets of the form Qp,(e/", he M4k, he_h/zm).
This implies

sup  #u(ANQun(7,,2)) < Ny sup  #4, (AN Qu(e™, he ™4k, he "/ ?m))

(z,y,2)€S1 §,kEL,METL?
<N, -R.
Thus,
N.R
—+ . r
D™(A) < hinjolép W
: (r+2)(r +1° [ 4o 1 h 1 3h/4 1
=R-1 0 7
i lfis;fp (rh)* ¢ +r—|—1 ¢ +7‘—|—1 ¢ +7‘—|—1
. (T + 2)(T + 1)3 h/2 1 h 1 3h 1
=R-1 / /4
S (rh)* c +7‘+1 e+r+1 ° +7‘+1
eIh/4
= T < 00.
A similar argument shows the last equivalent conditions. O

3.3 Special Examples of Discrete Subsets of S; and their Densi-
ties

We start with the example of the well-known class of shearlet systems which was first introduced

by Guo, Kutyniok and Labate [45].

3.3.1 Classical Shearlet Systems

Definition 3.6. Let 1 € L?(R?), a > 1, and b,c > 0 be given. By sampling the continuous
shearlet transform (3.2) on the discrete subset A; of Sy of the form

Ay = {(a?,bk,cm) : j, k € Z,m € Z*}, (3.16)
we obtain the system induced by ¢ and A of the form
SH1y(A1) = {D 151 Temt) = a¥ /P (Spr Ay - —em) : j k € Z,m € 72}, (3.17)
al

which we call the classical shearlet systems.
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The plots of A; corresponding to each coordinate are illustrated in Figure 3.1. Next we will
show that SH; (A1) possesses the uniform density Eﬁ'

a

a

to

to

t,

Figure 3.1: The set Ay = {(47, 2k, m1,m2)}; k.my.maez Plotted with along one coordinate fixed

Proposition 3.6. Let Ay = {(a/,bk,cm) : j,k € Z,m € Z*} C S; where a > 1 and b,c > 0.

Then
1

bc?lna

Proof. Fix (z,y,z) € S1. If (a’,bk,ecm) € Qp(x,vy, 2), then

D¥ (A1) =D (A1) =

1 —y 1a—1 » al ya’/? -1g-1
<E7 ﬁ7—Am Sy Z) . (CLJ’bk,CTTl) = (;713]{3 — W,Cm - SbkAajAm Sy z | € Qh,
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)’

where Qy = [e™/2,61%) x [~,4) x [
Now

|

e the fact that % € [e="/2, M) implies

h .
log, x — na <j<log,r+

2lna

This is satisfied for at most ﬁ + 1 and at least % — 1 of values of j.

yail?

e Further, bk — 7z € [—%, %) implies

<k< .
by/r 20— T bz 2D
For a given value of j, this is satisfied for at most % + 1 and at least % — 1 values of k.

2 .
e Furthermore, cm — SbkAajAw_lsy_lZ =7€ [—%, %) , that is

1 e 1
m= ZSbkAaijlSy 12 —

=:(C1,C2)T
this implies
h h

C—-—< <C+ — 3.18
2c ms e 2c ( )

j/2z_2_£< < 2 P2 10 3.19
“ T 9c =2 =1 c\/E+2c' (3-19)
For a given value of j and k, (3.18) is satisfied for at most % + 1 and at least % — 1 values of my,

and for a given value of j, (3.19) is satisfied for at most % + 1 and at least % — 1 values of mo.

We compute

[i—l] [@—1] [@—1]2§#(Am@h(m,y,z)) < [i+1] [ﬁ+1] |:%+1:|2 (3.20)

Ina b c Ina b

Thus,

#(Al N Qh(aja Y, Z))
h4

Dt (A1) =limsup sup
h—oo  (z,y,2)€S:

ht Ina b c12
<li —_— 1+ — | |1+ =] |1+ = 21
= lﬂsip(bc21na)h4[ L } [ +h} 53 (3:21)
ht Ina b c12

= lim ———— 14+ — | |1+ =] |1+~

h1—>nc:o(bc2lna)h4[ L } [ +h} =
_ 1
~ b2lna’
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and

D=(Ay) = liminf  inf AL C@n(@.Y,2))

h—oo (z,y,z)ES1 h4
h* Ina b c1?
>liminf ———— |1 ——| |1 - —| |1 — = .22
s (bc?Ina) h* [ h ] [ h] { h] (3:22)
h* Ina b c1?
=lim 1= 1— 2| [1=-2
hoe (b2 Ina) b [ h ] [ h] [ h]
B 1
~ bc2lna’
Therefore, pzt < D™(A1) < D¥ (A1) < gy implies D (A1) = D™ (A1) = gz =

Remark 3.5. It can be seen from the proof that for a given (x,y,z) € S1, the maximum and
minimum number of points (a,bk,cm) € Ay lying on the set Qu(z,y, ) differ only by the terms
+1 in each factor, e.g. in (3.20) . This is not significant as each +1 only contributes a lower
power of h in the product in limits (3.21) and (3.22). To make the proof shorter and more
transparent, (3.20) can be rewritten by

2
#(0Quo2) = o5 () + O,

Ina b

for large h. Then

ht 1
+ 1 3
DT (Ay) = hhmsup [(bcz I a) it + h4(9(h )]

= 1 h74+i(9(h3)
Tl | (0P ma) it T A

= liminf [(L + i(9(113)]

h—oo | (bc?lna)ht ~ h?
1 _
"~ b?lna D (A).

3.3.2 Oversampled Shearlet Systems

The notion oversampled shearlet systems is obtained similarly to the oversampled affine sys-

tems in higher dimensions by Herméndez et al. [55], [54]. That is, for a given classical

shearlet system SHp,(A) = {DAale—lecmw : j,k € Z,m € Z?} for a > 1 and b,c > 0,
al

the corresponding oversampled shearlet system can be obtained by choosing a larger collec-

tion translations instead of the lattice translation set {cm},,cz2, in other words, it is defined

R; _ .
as SH, 5" (M) = {|det R;x[~/2D s Ten tm¥ 3ok € Zym € 72}, for {R;1.}jrez C GLa(R).
More specifically, under the appropriate choice of {R; 1} kez, one can construct the oversampled
systems which are shift-invariant. The most notable oversampled shift-invariant systems are the

quasi-affine systems introduced by Ron and Shen [69]. For more detial on oversampled and quasi
affine systems, we refer the reader to Herméndez et al. [55], [54] and Ron and Shen [69].

Definition 3.7. Let ¢p € L?(R?), a > 1, and b,c > 0 be given, we define the oversampled
shearlet systems generated by 1) relative to the sequence of matrices {R; 1} rez C GL2(R) as the
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collection of functions the form
R; _
SH % (A) = {| det R; 4] 1/2DA;j15 gt i 3,k € Zom € 72}

Remark 3.6. (1) The oversampled shearlet system is indeed a weighted shearlet system
R; .

SHlil’}k (A) with

1

_ [ (. —1 L 2 j ~1, _
A= {(a ,bk,ch7km) i keZ,mel } and w(a ,bk,cRMm) At Rial

(2) The definition of oversampled shearlet systems defined as above is a special case of the
notion of oversampled affine systems in higher dimensions introduced by Hermdndez et al. [55].

In the following, we choose the matrix I, to be a diagonal matrix for any j, k € Z, and show
that the corresponding oversampled shearlet systems possess exactly the same uniform weighted
density as the classical shearlet systems.

Proposition 3.7. If SH, R (A) is an oversampled shearlet system which {R; i }; kez s a sequence
of diagonal matrices, then A has the uniform weighted density

1

Proof. Fix (z,y,z) € S;. If (aj,bk,ch_’;m) € Qn(z,y,2), then

I —y —1g-1 j -1\ _ 1
<E’ ﬁ7_Ax Sy Z) . (aJ,bk7ch7km) = ;,bk - \/_ CR km SbkAajA S S Qh,

where Q= [/, ¢h/2) x [4,8) x [4,4)".

Similar argument as in Proposition 3.6, this requires

h h
—— <3< 2
log, x g =7 S Og“x+2lna’ (3.23)
/2 /2
v ﬁ S kS va + ﬁ, (3.24)
bz 2 bz | 2b
and ch_Jim — SbkAajA;ISy_lz =€ [—%, %)2, that is
=:(C1,C2)T
h h
Cr = o Irii < mi < O il (3.25)
h
Cg—%]r(22]<m2<02+—\7‘ ). (3.26)

By the explanation in Remark 3.5, it is enough to observe that for a fixed (z,y,2) € S1, (3.23)

is satisfied for approximately % values of j. For a given value of j, there are approximately Z
(1 1)
values of k satisfying (3.24). Further, for a given value of j,k and mg, there are about —2*— l |

2.2)
and —L2%— l | values of my, me € Z satisfying (3.25) and (3.26), respectively. We compute

, 2,2)
1 h hhlrj,kl hlr 2|

|detRj,k|m.g. c c

#uw(ANQn(,y,2)) = +O(h).
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Thus,
w A m ) )
D} (A) =limsup sup sl Qf(x y.2))
h—oo (z,y,2)ES1 h
h4]r(1 12 2)‘ 1
=i Lk Ly Lo
I;Ijisolip be? In a| det R;, k\ O( )
ht 1
= lim |—— ht
hooo | b2 Ina h40( )
B 1
~ bc2lna’
A similar argument shows D (A) = Eﬁ' O

In the following results, we consider the oversampled shearlet systems associated to the se-
quence of shear matrices {Spk }rez, for b > 0. More precisely, we study the following unweighted
shearlet systems:

SHYHA) = {Wjam = Dy-15-1Tesyumt < 3.k € Zym € Z°Y,

where A = {(a’, bk, cSpm) : j, k € Z,m € Z*}. Similar computations show that this oversampled
shearlet systems also possess a uniform density.

Proposition 3.8. IfSHfzf/}k (A) is an oversampled shearlet system with R; . = Sy, for all j,k € Z
and b > 0, then A has uniform density

1

D¥(A) = D™(A) = 7.

Proof. Fix (z,y,2) € Sy. If (a?, bk, cSprm) € Qpn(x,y, ), then

1 —y e » al yaj/2
=Y A @ bk, em) = | & bk =YY Ay AT
<3:’\/§’ 2 Sy z) (a’, bk, cm) <$,b \/E ,em — SppAgi S € Qn,

where Q= [e™2,¢1/2) x [4, ) x [4,4)°.

By using the same argument as in Proposition 3.6 , this requires

h h
1 - —— <5< — 2
08, %~ 5y — < J S loga o+ 5, (3.27)
yal’?  h yal’?  h
<k 4 — 3.28
N (3:28)
and cSppm — SpAALTS, 2 =7 € [—% %) that is
=:(C1,C2)T
Cy h Cy h
2T < <242 .
c 2c_m2_ C+26 (3.29)
ﬁ—bk;mg—ﬁ <my < g—bkmg—kﬁ. (3.30)
c 2c c 2c
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For a fixed (z,y,2) € Sy, (3.27) is satisfied for approximately ﬁ values of j. For a given value
of 7, there are approximately % values of k satisfying (3.28), and % values of my satisfying (3.29).
Furthermore, for a given value of j, k and mo, there are about % values of m; satisfying (3.30).
We compute

h h [h\?
AN Qo) = o (2) + 00,
Thus,

AN
DT(A) =limsup sup #( QZ(xn% z))
h—o0 (Z‘,y7z)681 h
= lim h _ 1
~ hoo (b2Ina) bt bc?lna’

1

A similar argument shows D™ (A) = 57—

This completes the proof. O

3.3.3 Co-Shearlet Systems

Since the classical shearlet systems are a family of functions written as {D -1 1Tt @ j, k €
o Pbk

Z,m € 72}, by switching the operators we obtain the new systems, called the co-shearlet systems.

Definition 3.8. Let 1) € L?(R?), a > 1, and b,c > 0 be given. The systems of the form

{TemD 4151 = @ (SpkAgs (- — em)) : j, k € Z,m € Z°},
al

are called the co-shearlet systems.

a

Figure 3.2: The set A = {(47, k, 47m +2/ma, 2jm2)}j7k,ml,m2€z corresponding to the coordinates
(a> S, t2) = {(4]7 ka 2]m2)}j7k7m262'
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We note that the co-shearlet systems are unweighted systems, and equal to the systems
{D A sl;chSbk Ami j,k € Z,m € Z?}. In this case, the corresponding set A of co-shearlet
systems is the set {(a’,bk,cSpAgim) : 4,k € Z,m € Z*}.

Figure 3.2 gives a sketch of the set A with ¢ =4 and b,c¢ = 1 for the co-shearlet systems. As
compared to the set A for the classical shearlet systems, illustrated in Figure 3.1, the points in
A are not uniform in distance, and are more densely located on the ty-axis. For this reason, we
have the following results which show that the co-shearlet systems can possess neither an upper
nor lower frame bound.

Proposition 3.9. Fiza > 1, b,c > 0, and set A = {(a’, bk, cSp Aim) : j, k € Z,m € Z*}. Then
DY(A) =00 and D™ (A)=0.
Proof. Fix (z,y,2) €S. If (a’, bk, cSpr Aim) € Qp(z,y, 2), then

1 — . @’ all?
(E’ \/—% —A;lsy—lz> (a7, bk, cSpr Agym) = <; bk — %,chkAajm -~ SbkAajA;15y—12> € Q.

This requires the following conditions:

o % € [e="/2,eM?) implies

| —L< P <1 +L
08a ® 2lna_j_0gax 2lna’

o bk — % € [—%, %) implies

yal’?  h yal’?2  h
— < k< —. 31
N R N (3:31)

o cSpA,m — SbkAajAw_lsy_lZ =v€ [—%, %)2 implies

1 .
m=— A8y + A;1S 2
C |
=:(C1,C2)T
We have

a=J bka=J
my = Cp + "o ’Yz’

C
s
my = 02 + c Y2,

where 1,72 € [—%, %) Hence

. h . h

Ci—a (14 b]k\)2—c <m <Cy+a(1+ b]k:\)2—c, (3.32)
a_]/2h a_]/2h

o — <mo < Cy + )
2c 2c

(3.33)
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It is enough to show that for a fixed (z,y,2) € S; and for a given value of j and k, there are
approximately a=7(1 + b|k:|)% values of my satisfying (3.32) and #

(3.33). We compute

values of mo satisfying

yal/2  h
ﬂoga Z‘-i-ﬁ] (ﬁ—’_%—l b a—j/2h
= _j _ 2
#(AN Qnl.y.2)) Z ¥ [ (1 + blk]) ] [ o)
j=|log, z— Jk Ly(l]/Q hJ

By changing x, we can make this quantity arbitrary small or large. For instance, it can be seen
from Figure 3.2 that if x lies very close to the t9-axis, this quantity is very large. On the other

hand, this quantity is close to zero when x is far from the ¢s-axis. Hence we can conclude that
D~ (A) =0 and D*(A) = oc. O

3.4 Other Shearlet Groups and their Weighted Densities

In Heil and Kutyniok [51], Sun and Zhou [74] and Kutyniok [58], the density notion for the affine
group can be defined in many different way, depending on the choice of group multiplication.
In this section, we will study the other three definitions of shearlet groups and define a density
notion for each shearlet group.

3.4.1 Shearlet Group S,

Let Sy be the group consisting of (a,s,t) € Rt x R x R? together with the group multiplication
(a,s,t) % (d',s',t") = (ad’,s' + sV, t + A7 LS.
The identity element of Sy is (1,0,0), thus (a,s,t)~! = (%, —\/—, —S5:A t)
Similar to the definition of shearlet group S; defined in Section 3.2, there is a unitary repre-
sentation o9 of Sy on L?(R?) given by

o3(a, 8, )¢(x) = TD -1 g11(x) = a®/*4p(Ss Au(a — 1))

for (a,s,t) € Sy and ¢ € L?(R?). Then the continuous shearlet transform SHs,, induced by 1
and the unitary representation oo becomes

S‘Hg@f = <f, Ug(a, S,t)¢> = (f,ﬂDA;1S;11/J>, (3.34)
for f € L?(R?).

Remark 3.7. (Connection between S; and S; and between SH; and SHs):
Let @15 :RT x R x R? — R* x R x R? be defined by

Dy 9(x,y,2) = (:E,y,A;15;1Z) . (3.35)
Now we prove that ®12 is a group isomorphism. Since A;lSs_lA;ISy_l = AamlSyjs\/_, it
follows from (3.85) that
@172((61,8,75) : (ZE,y,Z)) = 2((117 Y+ 5\/5E z2+ 8 Axt)
- (aa: y+ svz, AazlSyisf(z + SyAxt))
= (a,s,A;'S7') = (2,9, A, 'S )
= @172((1, Sat) * @1’2(33‘,2/, Z)'
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Since @19 is bijection, this shows ®1 2 is a group isomorphism from Sy to Ss.
Let A be a subset of S1, it follows from the above isomorphism that

SHip(A) = SHap(P12(A)). (3.36)

In the following the definition of density of a discrete subset A of S can be similarly defined
as before. Recall that the set of neighborhoods of the identity {Qp : h > 0} was defined by
Qp = [e "2 el/?) x [—%, %) X [—%, %)2, for h > 0. For (x,y,z) € Sg we define

Qh(x>y> Z) = (ﬂj‘,y, Z) *Qh = {(!EG,S + y\/E,Z + Ax_lsy_lt) : ((I,S,t) € Qh}

Since the left-invariant Haar measure for the group Ss is given by dus, = /adads dt, we can
compute the volume of Qp(z,y, z) by

borhoph et op3
i [ [ s
—g /-3 /-g e

2

Let A be a subset of Sy with associated a weight function w : A — R™. Then the upper and
lower weighted densities of A are defined, respectively, by

#w(A N Qh(x7 Y,z )
%(egh/ﬂt — e—3h/4)’

Dy (A) =liminf inf #g(A“Qh(%y,z))'
h—oo (z,y,2)E€S2 %(e3h/4 _ e—3h/4)

DJ(A) =limsup sup
h—oo (x,y,2)ESs

As already shown in Proposition 3.5, the following proposition will describe how a subset A
of Sy possesses finite upper density and positive lower density.

Proposition 3.10. For A C Sy the following conditions are equivalent.
1. Df(A) < oo.

2. There exists h > 0 such that sup F#4,(ANQr(x,y,2)) < co.
(wyyvz)ESQ

Also the following conditions are equivalent:
1. D (A) > 0.

2. There exists h > 0 such that ( in)f . #uw(ANQp(z,y,2)) > 0.
T,Y,2)ED2

Proof. The proof is similar to the Proposition 3.5 and stated in Appendix B. ]

Lemma 3.11. Given a > 1, h > 0 and a # 0. Then the following statement holds true

2%a (e%h _ e—‘%) Hogax-i-ﬁ] ‘ e’ (a2ae% _ e—%)
) @ — 1 < ) a® < pr— : (3.37)
j=llog, e 577 ]
% <ea2_h — ao‘e_aTh) llogg 2+ 57, ] . x%a” <ea7h — a_o‘e_aTh>
(2) o —1 < Z a® < ] , (3.38)

j=[log, I—gl}ﬁ1

for any x € RT.
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Proof. The proof is given in the Appendix A O

Recall that Ay = {(a’,bk,em) : j,k € Z,m € Z?} is the discrete set associated to the classical
shearlet systems SHy (A1). Then it follows from the isomorphism (3.35) that

Q1 9(Ay) = {<I>1,2(aj, bk,em) : j,k € Z,m € Z2}
= {(a’, bk, cA_}' Spytm) : j, k € Z,m € Z*} =: Ao,

It is obviously that As is a discrete subset of Ss.

In order to obtain the classical shearlet systems for this case, we sample the continuous
shearlet transform (3.34) on the discrete subset Ag of Sg defined as above. Then we obtain the
following systems:

S'ng(l\g) = {TCA*?Sl;;mDA”Sﬁlw(:E) = a3j/41,Z)(SbkAaj:E —cm):j,ke€Z,me Zz}.
al 5

Then we also call SHa(A2) the classical shearlet systems, which indeed coincides with
SHip(A1).

However, the following results show that the system SHj,(A2) does not possess a uni-
form density in contrast to the system SHj (A1) which possesses a uniform density DT (A;) =
D™ (A1) = g

c?lna’

Proposition 3.12. Let Ay = {(aj,bk,cA;lelgﬁlm) 4,k € Z,m € Z*} where a > 1,b > 0,¢ > 0.
Then

3 3a®/? 3a®
_ A — < DT(A _—.
2bc2(a3/? — 1) D(A2) < 2bc2(a3/? — 1) < DA < 2bc2(a3/? — 1)

Proof. Fix (z,y,2) € Sa. If (a7,bk, cA}' S 'm) € Qu(,y, 2), then
L Y g4 7 bk, A
b Sy ) ] b AL m)
al -
- <;7bk ﬁam —5,A z+ch15 %A S Sor m> € Q-

This requires the following conditions

1 — L <4<l + h
%8a® T Slng =7 =% T 9y,
yad’?  h yal’? h
——<k< 4+ —. 3.39
bvx 20~ T bz % (3:39)
a2 hall? a2 hai/?
Co—— ——< < Cy——= 3.40
20\/5 26\/__m2_ 2 \/§+2c\/5 (340)
J . a’ j
1 — (yvaa!? — bkz) 22 — ha < Cl— — (yv/za/? — bk )m2 R s
T cx  2cx 2cx

For a fixed (z,y,z) € Sg, and for a given value of j, there are approximately % values of k

satisfying (3.39) and there are approximately hcaj/; values of mg satisfying (3.40). Further, for
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given values of j, k and mo, there are approximately % values of my satisfying (3.41). We

compute

“Oga Z‘-‘rﬁ—l . .
R\ ( ha'/?\ [ hdl
sup  #(A2NQu(x,y,2)) = sup E <E> (c\/E) ( > O(h3e3h/4),

(xvyvz)egz (xvyvz)ESZ . h cx
]:“Oga T %na

(3.42)

log, o+ 57 | ; :
, , h\ ( ha?/?\ [ hal 3 3n/4
inf  #A2NQp(z,y,2)) < inf Z <3> (cﬁ) <—> O(h3e3h4).

(z,,2)€S2 (z,y,2)€82 N cT
)= “0&1 T=5Tma

(3.43)

By using Lemma 3.11, we obtain

Mog, o+ 511

3/2(,3h/4 _ ,—3h/4 a®T 3Ina 3

3/2@ (e € ) Z 35/2 3/2 (a’e
X a3/2 1 < a <z

3h/4 _ o=3h/4)

- (3.44)

. h
j=Ilog, x—m]

(/4 _ g3/2¢3h/4) [log, 7+ 5717 (/4 — q=8/2=3h/4)

3/2 35/2 3/2,.3/2
x < Z a <a’’‘x B 1

AT (3.45)

- h
]:DOga m_gléa

Therefore, it follows from (3.42) and (3.44) that

lim
h—o00

h3 a3/2(63h/4 _ e—3h/4) O(h363h/4)
2bc2h3(e3h/1 — ¢=3h/1) ' a3/2 — 1 2p3(e3h/1 — ¢=3h/1)

#(A2 N Qh(:Ev Y, Z))

§h3(e3h/4 _ e—3h/4)

< D%(Ag) =limsup sup
h—oo (z,y,2)ES2

B3 (a3e3h/4 _ e—3h/4) O(h3e3h/4) ]

< i
—o 2bc2h3 (e3h/4 — e=3h/4) ad/2 — 1 2p3(e3h/4 — ¢=3h/1)

h—o00

Hence /
3a3/? 3a®
— < DT(A)) < ————.
20c2(a?/2 — 1) (A2) 2bc2(a?/2 — 1)

Similarly, by (3.43) and (3.45), we obtain

3 3a3/2

— <D (M) < —————.
2bc2(a3/? — 1) <D7(A) < 2bc2(a3/? — 1)

This completes the proof. O

Remark 3.8. (Uniform Density ) : The above results show that the density for classical shearlet
systems SHa(A2) cannot possess a uniform density such as the density of classical shearlet
systems SH1 (A1) did in Proposition 3.6, although the systems coincide with each other. The
reason for this behavior will be explained later.
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In order to obtain a uniform density for the systems SHa . (A2), we will use the group iso-

morphism ®1 9 connection between S; and Sy and choose the sets (Qn)n>0 to be another sequence
of boxes in So. So now we choose the sequence of neighborhoods of the identity in So by

@h = (1)172(Qh) = {(a,s,A;lSs_lt) : (a,s,t) € Qh},

where Qh = [6_%76%) X [_%7 %) X [_%7 %)27 and let éh(x7y7 Z) = (‘Tayaz) *@h fOT’ (‘Tayaz) € SZ-
Then the following lemma shows that this choice of neighborhood gives the desired property.

Proposition 3.13. Let a > 1,b > 0,¢ > 0 and define Ay = {(aj,bk,cA;leb_klm) ke Z,me
7?}. Then

- #M N Qn(r,y,2) . #(AN Q. 2) 1
limsup sup — = liminf inf = = .
h—oo (x,y,2)€Ss USy (Qh) h—oo (z,y,2)E€S2 I (Qh) bctlna

Proof. First we investigate that

h h _h_ (h—sty)
ez 2 2va T a2g
s, (Qn) = pis, (P1,2(Qn)) = / / / / Va dty dty dsda = h* = ps, (Qn).
“h Thh (—rSsty)
e 27273/ 34

Since ®1 2 is an isomorphism, we obtain

. #(Ao N Qn(2,,2)) _ #(P12(P1(N2)) N (2., 2) * P12(Qn))
limsup sup = = limsup sup 7}
h—oo (z,4,2)€8 p15,(Qn) h—oo (2,y,2)€S2 h
, #(P15(A2) N Qn(z,y, 2))
=limsup sup 1
h—oo (z,y,2)ES1 h
= DT (®75(A2))

1
= DTN = pag

The remaining claim can be proved by the same argument. O
Remark 3.9. (Dependency on the set Q) As we have shown in the previous lemma, by
choosing a different choices of sets of sequence @y, of neighborhoods of the identity in So leads

to different values of the associated densities, and also changes a non-uniform density into a
uniform density.

3.4.2 Shearlet Group S;3

Let S3 be the group consisting of (a,s,t) € Rt x R x R? together with the group multiplication
(a,s,t) * (a',s',t') = (ad',s + s'a,t + SsA.t’).

The identity element of Sz is (1,0,0), thus (a,s,t)~! = %, —%, —A;lSS_It).
a
Similar to the definition of the shearlet group S; defined in Section 3.2, there is a unitary

representation o3 of S3 on L2(R?) given by

o3(a, s, t)0(x) = TyDs,a,0(x) = a ¥ (A1 ST (z — t))
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for (a,s,t) € S3 and ¢ € L*(R?). Then the continuous shearlet transform SHs,, induced by 1
and the unitary representation o3 becomes

SH3.yf(a,s,t) = (f,03(a,s,t)¢) = (f,TtDs, 4,%), (3.46)
for f € L?(R?) and (a, s,t) € S3.
Remark 3.10. (Connection between S; and S3 and between SH; and SHs):
Let @13 : RT x R x R?2 — R* x R x R? be defined by

1
(1)173($,y,2) = <;7_%7S—%A;Z> . (347)

We note that
S,(QH\/;)AL =S5_s A5 4 A
vaz ax

m»—‘

o NG % and S_ (y\ji\/_)A S Ax =5_ A
Now we prove that ®1 3 is a group isomorphism. From (3.47), it follows that:
D1 3((a,s,t) - (z,y, 2)) = P1g(az,y + sv/x,z + SyAst)

1 —(y+svx)
e — T = — sv/x A AZB
(aaz’ Vvar ’S% ﬁ(z—l—Sy 2

:<1 Vv S-S

1 1
B (a"ﬁs—%f‘;t) * (E’_ﬁ’s-izA;Z>
= ¢1,3(a7 Sat) * (1)1,3(%?47 Z)-

N———

Since @13 is bijection, this shows ®1 3 is a group isomorphism from S; to Ss.
Let A be a discrete subset of Sy, it follows from the above isomorphism that

S'Hlﬂp(A) = SH3,¢((I>1,3(A)), (348)

We remark that the continuous shearlet transform (3.46) is the same as defined by Kutyniok
and Labate [61], [62] and Dahlke et al. [18], [19]. Similarly, the discretization of continuous
shearlet transform was achieved by sampling this continuous shearlet transform (3.46) on the
discrete subset Az of Sg of the form

As = {(a?,bka?’?, ¢Sy 52 Agim) : j, k € Zym € 72},
where a > 1 and b,c > 0. Then we obtain the system:

S’Hg,d,(Ag) = {Tcs '/2AaijS ./2Aaj1/1(x) = DAajS,kacmw(x) 4k €Z,m € Z2}

bkal bkal

= {a_gj/4¢(5bkAa7jx —cem): j k€ Z,m e 7%},

which coincides with the classical shearlet systems SHy (A1) defined by (3.17). This is because
of the isomorphism:

Py 3(A1) = {®13(a?,bk,cm) : j,k € Z,m € Z*}
= {(a™’, —bk:a_j/z,cS_b,mfj/zAafjm) 4k € Z,m e Z?}
= As.



3.4. OTHER SHEARLET GROUPS AND THEIR WEIGHTED DENSITIES 37

In Subsection 3.3.1, we showed that the associated set Ay of SHy (A1) possesses the uniform
density p— lna A natural question is whether the associated set Az of SH3 ,(A3) does possess a
uniform density when considering the other group multiplications.

To answer this question, we first introduce a notion of density for a discrete subset of Sg.

Recall the set Qj = [e~"/2,e"/?) x [— g, g) X [—5, 5) h > 0. For (z,y, z) € S, we define

Qh(%% Z) = (‘Tayaz) * Qh = {(xaay + S\/E7Z + SyA:L‘t) : (CL,S,t) € Qh}

Since the left-invariant Haar measure for the group S3 is given by dus, = Z—g ds dt, we can
compute the volume of Qp(z,y, z) by

piss (Qn) = /h/h/ / dsdt hi(eh —e™h).

Let A be a discrete subset of S3 with associated weight function w : A — R™*. Then the upper
and lower weighted density of S3 is defined, respectively, by

D} (A) =limsup sup #w(/; ﬂth(x_,}i/, Z)),
h—oo (z,y,2)€Ss h3(eh — e—h)

_ o : #uw(AN Qu(z,y,2))
D (A) =1 f f .
w(d) fces (x,ylg)egg h3(eh —eh)

The following proposition is analogous to Proposition 3.5. It describes how a subset A of S3
possesses finite upper density and positive lower density.

Proposition 3.14. For A C S3 the following conditions are equivalent.
1. Df(A) < oo.
2. There exists h > 0 such that sup F#4,(ANQr(x,y,2)) < co.
(wyyvz)ESS

Also the following conditions are equivalent
1. D (A) > 0.

2. There exists h > 0 such that ( in)f . #Huw(ANQn(z,y,2)) > 0.
T,Y,2)ES3

Proof. The proof is identical to that of Proposition 3.5. We leave the proof to the Appendix
C. O
Proposition 3.15. Let Ag = {(aj,bk;aj/2,chkaj/2Aajm) ik € Z,m € Z*} where a > 1 and
b,c > 0. Then

1 2 4

a1y <) S gaE gy < DT < bc2(52 1y

Proof. Fix (z,y,z) € Sg. If (aj,bkaj/z,chkaj/zAajm) € Qn(zx,y,z), then

1 _ _ . .
<;’ _%’ —A; 159 12) * (azjv bkaj/27 CSpqisz Aaim)

g <— ———|——x,—A_IS Z+CS }Alsbkaj/214a]m> G Qh
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This requires the following conditions

h
1 — <3< . 4
Bt T og =7 = Ogax+2lna (3.49)
ya=I/?2  hy/za=i/? ya=3/2  hyfra=i/?
gy Sk — (3.50)
—3/2 —3/2 —j/2 /2
290 B hv/za < my < 290 hfa ' (3.51)
c 2c c 2c
_ ) ) . hxa™J
- <7y22c Ay (bka’ — yaj/z)mg) a’ — w;; <my
Yzo — 21 - - . hza™I
< - — + (bka’ —ya?)ma ) a™7 + (3.52)

It suffices to investigate that for a fixed (x,y,z) € S3, and for a given value of j, there are
approximately %a‘j /2 values of k satisfying (3.50) and there are approximately %a‘j /2 values
of my satisfying (3.51). Furthermore, for given values of j, k and ms, there are approximately

hxa J values of m1 satisfying (3.52). By using (3.37) in Lemma 3.11, we obtain

sup  #(A3NQn(z,y,2)) = sup
(x,y,2)€S3 (z,y,2)ES3

h
[IOgam_gléa] <h3$

bc? _2j> O

]:D —1—21na‘|
h3a4(eh —a 66 h)

h3 h
bc2(a? — 1) + O,
h3a®(e"—a=2e"") 3,h
and sup  #(A3 N Qu(w,y,2)) > vl iy e O(h’e").
(z,y,2)€S3
Therefore
. h3a?(eh —a=2eh) 1 O(h3eh)
lim 22 D 3(h o h) T T3(eh — o h
h—o0 bc?(a? — 1) h3(eh —e=m) = h3(eh —e~h)
. #(A30Qh($7yvz))
< DT (A3) =limsup sup
( ) h—oo (z,y,2)€Ss h3(eh - e_h)
) h3a* (e — a=be™h) 1 O(h3el)
< lim . +
h—o0 bc2(a? — 1) h3(eh —e=h) ~ h3(eh —e=h)
Hence ) .
a " a
bc2(a? — 1) < D7(As) < bc2(a?2 — 1)
A similar argument shows m <D™ (A3) < Wzl) O

3.4.3 Shearlet Group S,

Let S4 be the group consisting of (a,s,t) € Rt x R x R? together with the group multiplication

(a,8,t) @ (a,s',') = (ad, s + 8'v/a,t' + A1 S, )

a’

The identity element of Sy is (1,0,0), thus (a,s,t)~! = <1 \/—, —A7 153\[ >



3.4. OTHER SHEARLET GROUPS AND THEIR WEIGHTED DENSITIES 39

Similarly, there is a unitary representation o4 of S4 on L?(R?) given by
ou(a, s, t)p(@) = Ds,aTip(x) = a=*/ (A1 ST e — 1)

for (a,s,t) € Sy and ¢ € L*(R?). Then the continuous shearlet transform SHy,, induced by 1
and the unitary representation o4 becomes

SH4,1/Jf = <f7 0'4(&, S, t)l/’> = <f7 DSsAs,—Ttw% (353)
for f € L?(R?) and (a, s,t) € S4.

Remark 3.11. (Connection between S; and S; and between SH; and SHy):
Let @14 :RT x R x R?2 — R* x R x R? be defined by

Oy 4(2,y,2) = <% —%, z> . (3.54)

Next, we will show that ®1 4 is a group isomorphism. From (3.54), it follows that:
q)174((a7 S, t) : (‘Ta Y, Z)) = @174(0,%, Yy + S\/Ea z+ SyAZ‘t)

(1 —(y+sva)
= <ax’ N 2+ Sy Ayt

1 ]
(o e )
:<1 _it>®<l Y Z)

a’ +Ja’ ' Jx
= ®y4(a,s,t) ® Py a(x,y,2).

Since @14 is bijection, @14 :S1 — Sy is a group isomorphism. Let A be a discrete subset of Sy,
it follows from the above isomorphism that

S'Hlﬂp(A) = SH4,¢((I>1,4(A)), (355)

In order to define the density of a discrete subset of Sy, we require the following ingredients.
For (x,y,z) € Sy we define

Qh(‘rayaz) = (.’L’,y, Z) ® Qh = {(ma Y+ S\/E i+ Aglss_lz) : (a737t) S Qh}7

where ), = [e_h/z,eh/z) X [—%,%) X [ 55 2) h > 0.
Since the left-invariant Haar measure for the group S, is given by dus, = ag% ds dt, we can
compute the volume of Qp(z,y, z

aa 3/ h/4 _ _—h/4
pis, (@n) = /—/g/ /h/zag/zdsdt_%( e~ M.

Let A be a discrete subset of S4 with associated weight function w : A — R™. Then the upper
and lower weighted densities of A are defined, respectively, by

L #u(ANQu(,y, 2))
DL =ty S

o #u(ANQu(,y, 2))
Dy, (A) = hhnlgo}f (w,yl,Izl)fES4 2h3(eh/4 o e_h/4) '

Similar results as in Proposition 3.5 in Section 3.2 hold for subsets A of S4 as follow.
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Proposition 3.16. For A C Sy the following conditions are equivalent.

2. There exists h > 0 such that sup F#4,(ANQr(x,y,2)) < co.
(wyyvz)ESZI

Also the following conditions are equivalent
1. D;(A) > 0.

2. There exists h > 0 such that ( in)f . #u(ANQp(z,y,2)) > 0.
T,Y,2)ES,

Proof. The proof is analogous to the proof of Proposition 3.5. We give the proof of this proposition
in the Appendix D. O

In order to obtain the classical shearlet system for this case, we use the same procedure as
for the previous two cases.

Recall that Ay = {(a’,bk,cm) : j,k € Z,m € Z*} is the discrete set associated to SHi ,(A1).
Then it follows from the isomorphism (3.54)
@1 4(A1) = {®@14(a’,bk,cm) : j, k € Z,m € 77}
= {(a™7, —bka™% em) : j,k € Z,m € Z?} =: 4.

Now, by sampling the continuous shearlet transform (3.53) on the discrete subset Ay of Sy
defined as above, the classical shearlet system SHy (A4) is now defined by

SHay(Ma) ={Ds 4 _ Temtb(x) = a®/ (AT S7) a—em)

_ a3j/4¢(5bkz4aj$ _ cm) : ],k € Z,m € 22},

—b

which coincides with SHj (A1) as well as SHa (A2) and SH3 (As).

The following results show that the density for SHy . (A4) is not a uniform. However, by a
similar argument as in Remark 3.8, using the group isomorphism connection between S; and Sy,
we can obtain a uniform density for SHy (A4).

Proposition 3.17. Let Ay = {(a’,bka?/?,em) : j,k € Z,m € Z*} C Sy where a > 1 and b, ¢ > 0.

Then
1 Va a
_— A — Y <Dt _
w2 (va—1 P WS garsmn <P M <gam
Proof. Fix (z,y,2) € Sy. If (a7, bka?/?, em) € Qp(x,y,2), then
1 —y o , , a’ Y bkaﬁ
(E) ﬁ) _Ailsy\}gz> ® (ajvbka]/27cm) = ;7 \/* \/’ cm = A IS k13/2A1/xS \/_Z € Qh'

=:(C1,C2)T
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This requires the following conditions

h
—-— << . .
log,, 2lna_‘7_log“x+2lna (3.56)
ya=I/%2  hy/xa=i/? ya=I?  hy/xa=I/?
— <k< . .
b 2b sks b + 2b (3:57)
h h
Cy — B} <emp <Ci+ 5 (3.58)
h h
CQ - 5 S CImo S CQ + 5 (359)

It suffices to observe that for a given j, there are approximately MI;m values of k satisfying
the condition (3.57). Furthermore for a given j, k, there are approximately (%)2 values of m; and
my satisfying condition (3.58) and (3.59). Using (3.38) in Lemma 3.11, we have

llog, o+ 57 | i
hy/za=/?
inf Ay z,y,2)) = inf VT L O(h3eA
(x,yvz)ESzl#( 1N Qu(@,y,2)) (w,y,2)€81 Z h bc? ( )
j=[log, z— 5771
3 h _h
< h \/5(64 — ¢ 4) —|—O(h3€h/4),

. (rvylgfe&; #(As N Qn(2,y,2)) > Tar7a

Therefore

— I T . #(AmQh(‘Tayaz))
< DrA)=lminf il e — ey

3 Lo _h 3 h/4
< lim h*va(es a 1) _ O(fz ")
h=oo 1 2bc2(y/a — 1)h3(e1 —e~ 1)  2h3(e1 — e~

by

)

Hence

| ] Ja
w2 (ya—1 <P M= g m—y

Ja .
wertye T < DT (M) < gz

Remark 3.12. As we have seen in Section 3.2 and Section 3.4, the definition of density for
shearlet systems can be defined in different ways depending on the different choices of group
multiplications. The classical shearlet systems associated with these four shearlet groups S1 — Sy
possess different values of density, even all systems are coincided. This is because a different
group multiplication leads to different behavior of the points and also different covering sets in
each group. This behaves almost the same as affine-Beurling density for wavelet systems.

As we have mentioned, the shearlet systems are two-dimensional affine-like systems. More
specifically, the classical shearlet systems associated with Sg and Sy all correspond to those classical
wavelet systems introduced by Sun and Zhou [74] and by Heil and Kutyniok [51], respectively. For

A similar argument shows

O
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the classical wavelet systems, it was shown that the systems introduced by Heil and Kutyniok [51]
possess a uniform density, in contrast to the systems introduced by Sun and Zhou [74]. However
this does not hold for their associated shearlet systems. In other words, for classical shearlet
systems, there is only the classical shearlet systems associated with S1 which possess a uniform
density.

3.5 Range of Density

We end this chapter by finding the range of density of a subset of S;. That is, for any prescribed
finite a > 3 > 0, does there exist some I' C S; such that DT(T') = « and D~ (T") = 37

In order to answer this question, we need to study some basic properties of subsets I" of S; of
the form I' = A x T where A C RT x R and T C R2.

First we need to define densities for subsets of RT x R and subsets of R2.

Lemma 3.18. The set RT™ x R equipped with the group multiplication
(a,s) * (', s') = (ad,s' + sVa)
forms a group, which we denote by D.

Proof. The identity element of S is e; = (1,0), and inverses are given by

since
and

The associativity can be shown as follows:
((a,s) = (d',s")) * (a",s") = (aa', s’ + sﬁ) x (a”, ")
= <aa’a’/, "+ (s + SW)W)
(a(a’a”), (s" + s'Va") + SW)
(a,s) * (a’a”, s + s’ﬁ)
= (a,s) = ((d’,s") * (a", s")) .
]

For all h >0, let Kj, = [e™/2,e"/2) x [-2 1) Then for (z,y) € RT x R, we define Kj,(z,y)
by

h h

Ku(z,y) = (z,y) * K), = {(m,s +yva) raele? eM?) s e [—5, 5) }



3.5. RANGE OF DENSITY 43

We choose the left-invariant Haar measure up = %“ds to define the volume of Kj(x,y):
h h

2 ez
1
1 (K (2,9)) = pp(Kp) = / / Ldads = 1.
h _h

T2e 2
Let A be a subset of D. Then the upper density of A s

D+(K) = limsup sup #(AN Igh(x’ v))
h—oo (z,y)€D h

)

and the lower density of A is

D~(R) = liminf inf ZOEn@:Y)
h—oo (z,y)€D h2

The following lemma and proposition can be proven similar to Lemma 3.4 and Proposition 3.5.
Lemma 3.19. Let h > 0 and r > 1 be given. Then the following statements are true:
1. {Kp(e? he Mk) : 4,k € Z} is a covering of D.
2. Any set Kp(z,y) intersects at most N, = (r + 2) - [(r+ 1)eh/* + 1] sets of the form
K (7", he="/4E).
3. Any set Kyp(x,y) contains at least N, := (r + 1)2e"/* sets of the form Kj(e?", he="/*k).

Proposition 3.20. If/NX C D, then the following conditions are equivalent.

1. DT(A) < o0.
2. There exists h > 0 such that sup #(ANKp(z,y)) < oo.
(z,y)eD

Also the following conditions are equivalent

1. D=(A) > 0.

2. There exists h > 0 such that ( in)fD#(K N Kp(z,y)) > 0.
T,y)€E

Lemma 3.21. Let A = {(a/,bk) : j,k € Z} C D where a > 1 and b > 0. Then

1

DY(A)=D"(A) = e

Proof. Fix (z,y) € D. If (a/,bk) € Kp,(z,y), then

1 —y j _ a’ yal/?
<a;’\/§>*(a’bk)_<x’bk NG € Ky,

where G, = o2, /%) [4,4).
Hence
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o % € [e="/2,eM?) implies

h
1 - — < 1 3.60
08a %~ 57— < J <loga @+ 57— (3.60)
o bk — ¥al% ¢ [—ﬁ ﬁ) implies
VT 272 p

yal’?  h yaj/2 h
- —<k< .61
by/x  2b b\/_ (361)

For a fixed (z,y) € D and a > 1, there are approximatively % values of j satisfying (3.60)
and % values of k satisfying (3.61). We compute

~ h2
#(ANKy(z,y)) = Tina +O(h?).
Thus,
~ ANK
DT (A) = limsup sup #(A N ;(x,y))
h—oo (z,y)ED h
1 [ h? 1
=i — h?)| = —.
ey eaen 12 [blna Ol )} bina
A similar argument shows D~ (A) = YT O

We recall the definition of Beurling density. For a subset T' of R?, the upper Beurling density
of T is

# (T 0 Ey()
DT (T) = limsup sup 5 ,
h—oo xzeR2 h
and the lower Beurling density of T is
D™ (T) = liminf inf #<Tmf{h(x)>
() = liinf inf, ——57—
where K, n(z) =z+ [—5, %)2 is a square centered at x with side lengths h. The following lemma

shows Beurling density for lattices on R2.

Lemma 3.22. Let a > 3 > 0,h > 0 be given, and let T be a subset of R? of the form:

T = {%(ml,mg) Ly € ZF U {0}, ms € Z} U {\/LB

Then DY(T) =a, D=(T) = 3.

(my,mg) :mq €Z ,mg € Z} .

Proof. If h > \/— \/—, then at most [h/a]? and at least [[hy/B] — 1] points of T lie in the set
Kp(z). Therefore D(T) = a and D~ (T) = 8. O
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In the following lemma, we now adapt a result shown in Kutyniok [59] to show that the
density of I' C Sy, where I is of the form A x T', can be computed directly from the densities of
subsets A of RT x R and T of R2.

Lemma 3.23. Let A C D and T C R. If T possesses an upper Beurling density D+(~T) and a
lower Beurling density D~ (T'), then D= (AxT) = D~ (A)D~(T) and DT (AxT) = DY (A)D*(T).

Proof. Assume that T possesses a lower Beurling density D~ (T"). Then, for any fixed € > 0, there
exists hg > 0 with

<e, for all z € R?, h > hy. (3.62)

For each (z,y,z) € S1, we consider
#(F N Qh(:Ev Y, Z)) = #(F N {(ZE(I, s+ y\/a>t + SsAaZ) : ((1, S, t) € Qh})
h h\?
= Z #<t€|:—§,§> .t—|—Ssl_y\/§A%/ZET>.
(a’,s")EANK R (2,y)
Rewriting the right hand side,

h 2
> #(te[—i—) t+ S ,Aa,zeT>
) 2°2 s'—y\/ L& o

(a’,s’)ET\ﬂK;L(x,y z
h h\?
= Z # (Tﬂss,_y\/gz‘lzlz-i- |:—§,§> > .
(a’,s")EANK (x,y)

By dividing by h*, taking the infimum over all (z,y, z) € S, and together with (3.62), we get

#(A N Ky (z,y)) #(0'NQp(x,y,2))

inf D (T)—¢€) < inf
(x}yn)E]D h2 (D(T) =) < (x,yl,Izl)ESl h4
AN Ky(z,

for all h > hg. Then apply the lim inf as h — oo and noting that we can choose € arbitrary small,
hence B B
D (AxT)=D (A)D(T).

The second claim can be proved in a similar way. O
We now can state the converse result as follow:

Theorem 3.24. Let o > 8 > 0 be given and let I' = A x T be a subset of S1, where A=

e%,bk g,k € Z} is a subset of D, forb >0 and T = { =-=(my,ms) : my € Zt U {0}, my € Z U
Ja

{ﬁ(mhmz) tmy €Z7,mg € Z} is a subset of R?. Then

DYT)=a and D~ ()= 3.
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Proof. It follows from Lemma 3.21 that A possesses a uniform density, and it is easy to compute

that D*(A) = D~ (A) = 1. It follows from Lemma 3.23 that

DY) = DT (A)D*(T)=a, and D™ ()= D (A)D~(T) =g

This proves the theorem. O



Chapter 4

Existence of Irregular Shearlet
Frames

The density theorem has been known as one of the most efficient tools to derive necessary con-
ditions for the existence of frames. In this chapter, we use the notion of density for shearlet
systems associated with the shearlet group S, introduced in Section 3.2, to derive necessary den-
sity conditions for an irregular shearlet system SH; ,(A) to be a frame. We begin this chapter
by deriving necessary density conditions for the existence of an upper frame bound. Then we
discuss how the Homogenous Approximation Property (HAP) for irregular shearlet frames leads
to necessary density conditions for the existence of a lower frame bound. We would mention that
many ideas and proofs in this chapter are inspired by Heil and Kutyniok [51], [52] and Grochenig
[40].

4.1 Existence of an Upper Frame Bound

In this section we restrict our attention to the necessary density conditions for the shearlet
system to possess an upper frame bound, i.e., to form a Bessel sequence. The following theorem
is analogous to part (a) of Theorem 1 by Heil and Kutyniok [51].

Theorem 4.1. With the notations used in Section 3.2, let v € L?*(R?) be a nonzero function
and A be a discrete subset of Sy. If SHi,(A) possesses an upper frame bound for L*(R?), then
DT(A) < oo.

Proof. Suppose that DT (A) = co. We now show that SHy ,(A) does not possess an upper frame
bound. More precisely, we prove that for each N > 0 there exists some g € L?(R?) such that

Z ’<g7wa,s,t>‘2 > N.

(a,s,t)EA
Choose any 1 € L?(R?)\ {0} with ||5||]2 = 1. Since the shearlet transform is continuous, there
exist h > 0 and (a, s,t) € Qn(p, q,r) such that

0= inf SH a,s,t)| > 0.
(a,s,t)th(p,q,r) ‘ lﬂzjn( )‘

Choose N > 0. Since D*(A) = oo, it follows from Proposition 3.5 that there exists some
(x,y,2) € S1 such that #(A N Qp(z,y,2)) > N. Define

g:=o01((z,y,2) - (p,q,7) " ).

47



48 CHAPTER 4. EXISTENCE OF IRREGULAR SHEARLET FRAMES

Note that g € L?(R?) and ||g||2 = ||n]]2 = 1. Also observe that we have

1

(a,s,t) € Qn(x,y,2) = (p,q,7) - (z,y,2)" " - (a,s,t) € Qn(p,q,1).

Therefore we can compute that

Y lgaias el Y o y.2)  (ar) Do, s )P

(a,s,t)EA (a,s,t)EANQp (2,y,2)
= Z |<77,01((p,q,7‘) : (:L'vyvz)_l : ((I,S,t))¢>|2

(a,s,t)EANQp (2,y,2)
= Z ’SHLWI((%(J’T) : (‘Tﬂyaz)_l : (a737t)) ‘2

([l,S,t)EAﬂQh (m7y7z)

> #(A N Qu(x,y,2))6% > N&°.

th (p,q,'f‘)

Since ||g||2 = 1, this shows that SHy yn(a,s,t) cannot possess an upper frame bound. O

4.2 Homogeneous Approximation Property for Irregular Shear-
let Frames

In this section, we will show that irregular shearlet frames, associated with a natural class of
generating shearlets By, possess the analogue of the HAP. As a consequence of the HAP, we
obtain necessary density conditions for the existence of a lower frame bound for irregular shearlet
systems in the subsequent section.

First of all, in Subsetion 4.2.1, we explain how to define the amalgam space on the shearlet
group S1, and how the natural class of generating shearlets By can be established. Then we discuss
the HAP and the comparison theorem for shearlet frames in Subsection 4.2.2 and Subsection 4.2.3,
respectively.

4.2.1 Amalgam Spaces on the Shearlet Group S,

Given h > 0, recall that X; = {(e/", he "4k, he="?m) : j,k € Z,m € Z?}, defined as in Lemma
3.4, is relatively separated in S;. Set Bj . = Bjrm(h) = Qn(eh, he M4k, he_h/zm), where Qy,
is a compact neighborhood of e in S; defined as in the previous chapter.

Now, for each 1 < p < oo, the amalgam spaces Ws, (L>°, LP) on the shearlet group S; can be
defined as a mixed-norm consisting of functions f : S; — C as follows:

Definition 4.1. For 1 < p < oo, the amalgam space on the shearlet group Sy is defined by

1/p

We, (L=, LP) = S f € LP(S1) : Ifllwe, woetry = | Do D IF X8, il <oop. (4.1)
1,k€EZ me7?

For the extensive references to amalgam spaces, we refer to Heil [49] and Feichtinger and
Grochenig [28]. Analogously, we denote the amalgam space W, (C, LP) as the closure of the
subspace of Wg, (L*°, LP) consisting of continuous functions in Wg, (L*°, LP). Furthermore, for
1 <p<gq< oo, we have Wg, (L, LP) C Ws, (L>, L9).
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In general, the natural class of generating shearlets would be the space Eo comprising of all
functions v such that SH; 41 € Ws, (C, L'). Unfortunately, our class of generating shearlets By
defined in the following theorem is smaller, but still contained in By.

Theorem 4.2. Let By denote the space of Schwartz-functions which satisfy
' __c 3
(Z) ’1/}('%')‘ S (1+Hngo)a y where C > 0 and a > 2

(ii) supp ¥ € {[—ay, —ao) U ag, a1]} x [=b,b], 0 < ag < a1 and b > 0 with

28
96| < e

—_— where 3> 4a + 1.
1+ [I€]13)%

Then
1. By C By where By = {1 € L2(R?) : SH1 4t € We, (C, L)}
2. If f,?/) S B(], then S'Hwa S ng (C,Ll).

Remark 4.1. It is obvious that the space By is dense in L?(R?) and each element in By is
admissible.

In order to prove this theorem, we require the following preliminary lemmas. They are
analogous to Lemma 4.5 and Lemma 4.6 of Dahlke et al. [19].
Lemma 4.3. For a > 1, let |f(x)] < W and |p(x)] < W Then the shearlet
transform fulfills
max{1,d?}

‘SHL@Z;]C(CL, S7t)’ < Ca3/4 9 :|a—1/27

v (a,s,t) €Sy

Ag's't
max{1,d}

(e e}

4]

2
where d? = <1+%> max{a%,é .

Proof. Recall the group isomorphism between S; and Sz in Remark 3.10:

1
SHl,wf(aa S, t) = 8H3,¢f <a, _\/ia7 S_\}}Aét> . (42)

By changing variables, the proof follows from (4.2) and Lemma 4.5 of Dahlke et al. [19], which

shows that
max{1,d*}

|SHs.pf(a,s,t)] < Ca=3/ r_1/2

1+ st
max{1, 0
where d? = (1 + |s|?) max{a?, a}. O

Lemma 4.4. Let supp v € {[—a1, —ao] U [ag, a1]} x [—b,b] where 0 < ag < ay and b > 0 and f
satisfies

. €28
< ————7, > 0.
FOI= g 7
Then the following estimate holds true:
38/2
|SH1yf(a,s,t)] < Ca3/* a4 V (a,s,t) € Sy.

(1+a?)f(Va+[s[)P’
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Proof. It was shown by Dahlke et al. [19] in Lemma 4.6 that under the same assumption,
SH3 . f(a,s,t) is bounded by

p 1
< Og-34_ 9 ) )
[SH3.yf(a,5,1)] < Ca (1+a2)8 (1+|s])B

By (4.2) and changing variables, this complete the proof of this lemma. O
Now we can give the proof of Theorem 4.2.

Proof of Theorem 4.2. To prove this, it is enough to prove that for any f,v € By, SHiyf €
Ws, (C, L'). Suppose that f,1) € By. In particular, we have:

(i) ¥ and f are Schwartz functions,

(i) 3C > 0 and « > 2 such that |f(z)|, [ (z)] < (1+H5H ek

(iii) supp ¥ € {[—a1, —ao] U [agp,a1]} x [~b,b], and f satisfies
28

1f)] < MW, where 8 > 4a + 1.

Furthermore, we obtain from (ii) that

dx < oo.

(1+ [Jz]loo)
/<1+||x||oo>|w<:c>|dx sch(

14 [Jz[]3)*
R2

By Lemma 4.3 and Lemma 4.4, we obtain that there exists C; > 0 such that

max{1,d*} ' aP/?
[ TSP

[e.9]

|SH . f(a,s,t)* < Cra®? (4.3)

AZtsT M
L+ H max{1,d}

for all (a,s,t) € Sy, where § > 4a+ 1 and o > %
Now, set h = 1, and Bj . = Bjrm(l) = Q1(e?, ke~ V% e=1/2m). Suppose that (a,s,t) €
B j.m for some j,k € Z and m € Z?. Hence

(a,5,t) = (e/ ke /4, e72m) - (x,y, 2)
= (wel,y + ke Az, 2 + e_l/QSyAxm),

).

for some (z,y,2) € Q1 = [e~1/2,e/?) x [_%v %) X [_
Therefore

N[

)

D=

° 6‘7_1/2 S a é €]+1/2,

k
o« PL—f<lsl <kl 44

e

o 2|8, Apml|oe — L < |ltlloo < e7V2][SyApm]|o + 1.
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By above, we have

- L _ [|m|[oo 1
t]loo = €™ V2(|S, Apm|os — = > e /2 —— -
- v 195 Mool [ 4z oo 2
_ 12 |Im|] oo 1 2mlle 1
(L+lphmax L, LY 27 3¢ 2
3
> Hn;!m, for any ||m||s > 76.
Next, let
SN ISHuwf X8|l = S1+ Sa+ S5+ S,
JEZ KET meZ2
where

0
T S DD SR VSR

J==00 kEZ {meZ?:||m||oc> 3¢ }

2= Y SHuuf

J=1 k€L {mez2:||m|oo> 3}

0
Sy = Z Z Z HSHwa'XBj,k,mHoo’

J==00 k€Z {meZ?:||m||o0< % }

S=3 Y SHuuf

§=1 k€Z {mez2:||ml|0 <3¢}

oo’

oo’

In order to prove that SH; 4 f € Ws, (C, L'), we will first show that each S, S, S3 and Sy are
finite, and this implies that SH; , f € Ws, (L, L'). Since SHi yf is continuous, this completes
the proof.

Estimate Si: Suppose that (a,s,t) € Bjjm, with j < 0, k € Z and m € Z2,||m||s > 3¢

5
2
Thenagl,d2:<1—|—‘i(|l) max{l l}:M>l,and

Vva a?’a a
A7'So |1 I£]12 a® [|m||? [[mlloo
1 —2 5 I >1 = >1 > e =
+Hmax{1,d} M AR 2 setya shra(i e | Ml
a?||m||?
>14 —_ e <1
2l gong g oSt
It follows from (4.3) that
+|s))? a®/2
SH a,s,t)]> < Cra®/? (Va .
STl (sl G s[1 o e2llmlz, 1*7Y? (L4 a?)P(Va+[s])?
@ [ +9e2<1+\s|>4}
(1—|—|s|)40‘_2 a36/2

< Cla3/2
- 9¢2(1 4 a—1/2 B8 £B—2
2042 { (st llmllio] a7 (1 n l_\/j;>
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. oB20+3% 1
SO W st
<C’1€(6_2a+%)j/2. 1 s > ﬂ_l
T mlRT (Ve 2lk|)fte T Ve 2
That is
S o e(B—20+73)j/4 1
H a, s, t)] < .
St € O
Therefore
0
Sl = Z Z Z HSHlvwf.XBj,k;m [e’)
j:_wkez{m622'||m||w>3£}
(B—2a+1)j/4 —(a—1)
e S S I =R DI L

j=—00 kEZ {mEZQ:||m||oo>%}
Estimate Sy: Suppose that (a,s,t) € Bjj,, with j > 0,k € Z, m € Z* and ||m|[ec > 2.
Then a > 1 and d? = (\/_a# If d®> > 1, then

2 2
2] a? ||ml|*

> 1+
Pl AalBl16]1% —  9e2(Va+ |s))?a* (1 + [s])?

2
o1y il

T 9 (Va+]s])?

AZLST 1t
max{1,d} ||

| >4

[ a>1].

By (4.3), we have

(Va+|s|)? a0/
|SH1f(a,s,t)|* < Cla3/2 .
" ) L gl a=1/2 " (1 +a?)B(\/a +|s])?
9e +
—(B+1) /2(\/a+ |S|)4a 1
S Cl _1/2 : 3
[9e2(y/a + [s])* + ||m]|2]* (Va+|s])
< C a_(6+1)/2 1 1
: lumu?a-l g e
e —(B+1)j/2 1

BT Vet 2Pt

Hence

- Z Z Z H‘SHLWC " XBjk,m Hoo

J=1 k€Z mez2 ||m||o0> 3¢

<Clze B+1J/4Z \f+2\k! e > [

keZ meZ2
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On the other hand, if d? < 1, then

2
1] - [l 13
a*(1+1s)> = 9e?a®(Va+|s])?

A-1§-1
H o 5 fas 1]

max{l,d} || —

Then we have from (4.3) that

1 a®8/2

1+ w]w” (T a2 (Va+[s])P
9e2a2 (/a-+[s))?

|SH1 . f(a,5,1)]* < Cra®/?

o a—(6—4a—1)/2(\/a+ |S|)4a—2 1
>~ 1 :
9e2a2(v/a + |s))4 + [|m||2)* "2 (Va+[s])?
<c a—(6—4a—1)/2 1 )
, .
ST BT @+ fs)) e [we>1]
o~ (B—4a—1);/2 1

<C T - :
Im|[38~1 (Ve +2[k|)f—ot2

Hence

a— _a_l)
52<Clze o 1]/42 Ve + 2[k|) (6 1at2)/3 2 lImfloe™* < o0

{meZ2:||ml|oo> 3}

Estimate S3: Suppose that (a,s,t) € Bjgm with 7 < 0 (ie, a < 1),k € Z, m € Z* and
||m|es < 3. It follows from Lemma 4.4 that

438/2
B
a¥(1+a2)0 (1+ 11
ot

<C—=3
(1+ [s[)?
o(B+3)i/2

MNCE

|SH 1 f(a,s,t)] < Ca®/t.

Hence

0
Sy = Z Z Z HSHLu;f'XBj,k,mHOO

j=—0o kEZ {mezz.HmHm<3j}

C (3e + 1) Zeﬁ+ y/zz +2|1<;|

j=—o00

Estimate S4: Suppose that (a,s,t) € Bjgm with j > 0 (ie., a > 1),k € Z, m € 7Z? and
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||mles < 3. Tt follows from Lemma 4.4 that

3/4 a3b/?
[SH1pf (a,5,1)| < Ca®/*- :
a(a=2 + 1) (Va+ |s|)
B3 1
<Caq 2t . ——
- (1+]s])?
C e_(g—%)j
VT
Hence
B ZZ D [SH1wf - X8y k|l
J=1 kEL {mez?: Hm\\ooé%}
Cloer WY s <
= = (Ve +2[k|)?
= €z
This completes the proof. _

4.2.2 Homogeneous Approximation Property for Irregular Shearlet Frames

In the following definition, we give two types of definitions of the HAP for shearlet group Sy, the
Weak and Strong HAP, and show that shearlet frames associated with a generating function
belonging to our class By fulfill the Strong HAP. We begin with the following definitions for the
Weak and Strong HAP which are analogous to those used by Balan et al. [4] for a general class
of frames associated with a discrete Abelian group, and by Heil and Kutyniok [52] for wavelet
frames.

Definition 4.2. Let 1) € L?*(R?) and A C S; such that SHy 4(A) = {o1(a,s,t)1 : (a,s,t) € A}
is a shearlet frame for L*(R?). Also, assume that {¢, s : (a,s,t) € A} is its dual frame.
For each h > 0 and (p,q,r) € Sy, define a space

W (h, (p,q,7)) = span {Ya,ss : (a,5,t) € (p,q,7)Qn N A}.
(a) A frame SH; 4(A) is said to possess the Weak HAP if for each f € L*(R?), and
Ve>0, 3R = R(f,e) >0 such that V(p,q,r) € S;
dist (01(p, ¢, 7)f, W(R, (p,q,7))) <e. (4.4)
(b) A frame SHi (A) is said to possess the Strong HAP if for each f € L*(R?), and
Ve>0, 3R = R(f,e) >0 such that V(p,q,r) € S;

O-l(p)q)r)f - Z <Jl (p7 Q7T)f> O-l(a785t)¢>7;a,s,t < €. (45)

(a,s,t)E(p,q,T’)QRﬂA 2
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Remark 4.2. 1. It follows from Theorem 4.1 that if SH14(A) is a frame for L*(R?), then

DT (A) < co. This means that there are only finitely many points of A contained in each box

(p,q,7)Qn, therefore W (h,(p,q,r)) is a finite dimensional space. N

2. It is obvious that the function > (o1(p,q,7)f,o1(a, s,t))1a st is an element of
(a,5,t)€(p,q,r)QrRNA

W (R, (p,q,r)), therefore the Strong HAP implies the Weak HAP.

Before we prove that SHy ,(A) with ¢ € By satisfies the Strong HAP, we require the following
technical lemma.

Lemma 4.5. Let ¢,g € By and A C Sy. Furthermore, let SHi,(A) be a frame for L?(R?).
Given €,8 > 0. Then there exists some R = R(g,€e) > 0 such that

Z |SH17¢9(IE,:U,Z)|2 < €,
(w7yvz)€(p7q77‘)71A\QR

_R
2

fOT’ each (p7Q7T) € Sl7 where QR - [6 7e§) X [_§7 g) X |:_§7 %)2

Proof. Let § >0 and R’ > 1 be given, and define R = (1 + %)2 SR +6 (1+ g)z e + 6.
First, we claim that

Q5 \ QR 7é ) = Q(S(p7q7r) N QR’ = (Dv (46)

for any (p,q,r) € S1. Suppose that there exist (a,s,t) € Qs(p,q,7) \ Qr. We need to show that
if (z,y,2) € Qs, then

(prq,7) - (x,y,2) = (px,y + gz, 2 + Syd,r) ¢ Qpr.

Notice that

(a7 S, t) ¢ QR7 (47)
(pryr)_l : (av Sat) = <%7 s — Q\/gyt - SsAaS—\%A%'r) € Q(Sy (4'8)
(z,y,2) € Qs. (4.9)

First, suppose that a > eg, then it follows from (4.7)-(4.9) that

R _ R
2 2

R_
e 2

[SIEY)

=e 526

ISEIS]

pr = =(azx) > e se

R R
Similarly, if a < e™ 2, then pr < e™ 2.
Next, we consider the term

y+q\/5:y_<3—q\/g> \/2\/54—3\/%\/5_

For the case s > %, we have

(e
N

VT = —5 -
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Similarly, if s < %, then y + ¢/x < —%/.
Finally, we want to show that ||z + SyA,7|[cc > %/. Since we have from (4.8) that ||t —
SSAaS_\/L_A;THOO < $ and from (4.7) that ||¢||s > &, we obtain

P p

185405 A rlloe 2 [illoe — It — SsAuS_ o Arrllo = 222,
VPP VP p 2
Hence
rlloe 2 — 2 = (£ 5) > _(R=9)
<= B a a al & 3 8\’
Q‘Ss_q\/g OOHA%HOO 2<1+‘8—q\/;‘)max{5,\/%} 2¢2 (1+2)

the last inequality is obtained by (4.8). This implies that

[I{loo _ || ]so R-6  R+9§

1 AN 1 = 5 5\2 2
ool Az [[oo (1+\y[)max{§ } 2¢% (14 95)

SyAzr||oo >
1y Aerlloe 2 o= 3
It follows from (4.9) that ||z||e < g. Then we have

Rl
||z + SyAeroo > ||SyAmT||oo —[l2lloc > o

Thus, we conclude that (p,q,7) - (2,y,2) = (pz,y + ¢v/x, 2 + SyA,r) ¢ Qr. This completes the
claim (4.6).

Next, let € > 0 be given. Since SH; (A) possesses an upper frame bound and by Theorem
4.1, we have D" (A) < co. Then it follows from Proposition 3.5 that

M= sup #(AmQh(x7y7 Z)) < 0.
(z,y,2)E€S1

We also have for any (p,q,r) € S; that

sup #((p,q,?")_lA N Qh(x>y> Z)) = Sup # (A N Qh ((pa %T)_l : (:Evyv Z)))

(%,y,2)€S1 (z,y,2)ES1
<M < oo. (4.10)
The sets Bjkm = Bjkm(d) for some § > 0, given in the beginning of this section, is generated

from relative separated sets. It follows from Lemma 3.4 that each point (z,y, z) € (p,q,7) 'A\Qr
must lie in some Bj t , and the claim (4.6) established that this is true when Bjj ,, N Qpr = 0.
Next, let us define

J:={(j,k,m) €EZLXZ xZ*: Bjrm N Qr = 0}.

Again, Lemma 3.4 implies that there are no element B;;, of {Bj,k,m}j,kez,melz intersecting
more than 24 <e% + %) (66 + %) (e% + %) of the others. Since i,g € By, by Theorem 4.2 we

have SHi g € Ws, (C, LY) C Wg, (C, L?). Tt follows from the definition of norm for Ws, (C, L?)
that if R’ is large enough, then

€
> ISH1g - X8,y 15 < U (4.11)
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By (4.10) and (4.11), this yields

> SH1pg(z, v, 2)> <M Y (ISH1 g X8, g2 < €
(z,y,2)€(p,q,r) "' A\QR (4,ke;m)€S
This proves the lemma. O

Theorem 4.6. (HAP) Let ¢ € By and A C Sy be given. If SHy 4 (A) is a frame for L*(R?) with
frame bounds 0 < A < B < oco. Then SHy (A) satisfies the Strong HAP.

Proof. First, we claim that SH (A) with ¢ € By fulfills the Strong HAP for any function in By,
and then extend this to all functions in L?(R?). Now, choosing g € By and € > 0, consider the
frame expansion for o1(p, q,7)g:

Ol(pv qv’r)g = Z <0-1(p7q7r)gv o1 (avsat)¢>1za,s,ta
(a,s,t)EA
with {¢a.ss : (a,5,t) € A} which is a dual frame for SHiu(A).

By using the fact that {zza,&t}(a,s’t)e[\ is also a frame with upper frame bound %, where A is the
lower bound of the shearlet frame SH; (A). We can now show the Strong HAP for any g € By:

lo1(p,q:m)g — > (01(p,¢,7)9, 01 (@, 8, 6) ) has 113

(a,si)éQR(p,q,r)ﬁA

= Z <Ul (p, %T)gval (CL, Sat)w>{£a,s7t

(a,s,t)EA\QR(p,q,r) 2

> (g, 01 (P, 7) "+ (a,5,1)) ¥)|

(a,87t)EA\QR(p,q,T’)

> S (e @s )

(a,87t)EA\QR(p,q,T’)

1
1 Z ISH1.p9 (z,y,2)* < e (4.12)
(m7y7z)€(p7Q7r)71A\QR

2

IN
|

| =

The last inequality holds because of Lemma 4.5.
Now suppose that f is any function in L?(R?) and choose any ¢ > 0. Since By is dense in
L?(R?), there exist g € By such that

eV A

— < . 4.13

f = 9gll2 Wiz (4.13)
Set R = R(f,¢) = R(g, 5). Then for any (p,q,7) € St, we have
||Jl(p7 qv’r)f - Z <01(p7 Q7T)f> O-l(avsat)w>1za,s,t||2
(a,S,t)EQR(pg,T)ﬁA
S Ho-l(puqar)f - O-l(p7Q7T)gH2
+ ||o1 (p7 q, 7")9 - Z <01 (p7 q, T)Q) 01 (CL, S, t)¢>7;a,s,t

(avsvt)eQR(pqur)mA 2
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+ Z <01(p7 qv’r)g - Ol(pv Q7T)f> 01 (%&ﬂ@&a,s,t

By (4.13), (4.12), and the frame property of {Ja,s,t}(a,&t)EAv we have that

||0-1(p7q7r)f - Z <Jl(p7 Q7T)f> O-l(a78at)¢>7;a,s,t||2
(a,s,t)eQR(p,q,r)ﬁA
1/2

6\/Z € 1
< +3+ |5 >

> 3\/§ 3 |<01(p7 qv’r)g - Ul(pv Q7T)f> 0’1(@73,15)7/)”2

(avsvt)eQR (p7q77")ﬁA

. ] B 1/2
< §+§+ |:Z‘|O-1(p7Q7T)g_01(p7Q7T)f||%:| <e€

The last inequality follows from {o1(a,s,%)¥}(4,64)ea POssesses the upper frame bound B. This
completes the proof of theorem. O

4.2.3 The Comparison Theorem for Irregular Shearlet Frames

In this subsection we will use the HAP to prove the comparison theorem between the density of
shearlet frames and the density of the another shearlet frames.

First, we require the following lemma of trace formula. We omit the proof and refer to
Grochenig [40] or Lemma 2.2 in Chapter 2.

Lemma 4.7 ([40]). (Trace Formula) Let T be a positive trace-class operator on a Hilbert space
H and {hi}res be a frame with frame bounds 0 < A < B < oco. Then

1 1
E Z<Thk7hk> < tT(T) < ZZ<Thk’hk>
keJ keJ

Let ¢, ¢ € L2(R?), A,A C Sy, and SHi4(A) = {o1(a,s,t)¢ : (a,s,t) € A} be a given frame
whose density we want to study. Assume that SH; 4 (A) satisfies the Weak HAP. Furthermore,
let SHi4(A) = {o1(a,s,t)¢ : (a,s,t) € A} be a reference shearlet frame with frame bounds
0 < A < B < 0. Recall that we denote {Jms,t : (a,s,t) € A} the dual frame for SHy (A).

For h > 0 and each (p,q,r) € S1, we consider the finite-dimensional subspaces:

W (h, (p,q,7)) = span {Yu,ss : (a,5,t) € (p,q,7)Qn N A}
V(h7 (p7q7r)) = span {0'1((1, Sat)qb : (CL, Sat) € (p7q7r)Qh N A}

For any fixed € > 0, let R = R(¢,€) be the value such that SH; ,(A) fulfills the Weak HAP,
and let (a,s,t) € (p,q,7)Qn. If (z,y,2) € (a,s,t)Qr N A, then

(Z’,y, Z) € (a737t)QR - (paqar)QhQRa

and since QpLQr C Q r NA, and this implies

%7 we have (Z’,y, Z) € (qujr)QR—l—he%—l—RheT

R
R+he2 +Rhe

W(R,(a,s,t)) C W(R+ he? + Rhe%, (p,yq,7)). (4.14)
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This is valid for any (p,q,7) € S1,h > 0 and (a, s,t) € Qn(p,q, 7).

Let Py and Py be the orthogonal projections of L?(R?) onto V (h, (p,q,r)) and W(R—i—he% +
Rhe%, (p,q,7)), respectively. Finally, let T'= Py Py Py : V(h, (p,q,7)) — V(h,(p,q,7)). Then T
is a positive self-adjoint on L?(R?).

Now, we are ready to state the Comparison Theorem for irregular shearlet frames:

Theorem 4.8. (Comparison Theorem) With the notations we introduced above, set C' = ||¢||2.
Then for each € > 0, we have

9 pa)<p(A) and —LC=9_ pra) < pHA),
B(ez + Rez)? B(e2 + Rez)*

Proof. Since {o1(a,s,t)¢ : (a,s,t) € A} is a frame with frame bounds 0 < A < B < o0, by
Lemma 4.7 we have

tr(T)>—= > (T(o1(a,s,t)),01(a,5,t)8)

(a,s,t)EA

Z (T(o1(a,s,t)p),o1(a,s,t)p)

([l,S,t)E(p,q,T)Qh NA

> (Py Py Py (o1(a, s,t)0), 01(a, s, t)d)

([l,S,t)E(p,q,T)Qh NA

> (Pw Py (01(a, s,t)¢), Pyoi(a, s, t))

([l,S,t)E(p,q,T)Qh NA

\Y
W= &~

| =

| =

= % Z (Pw(o1(a, s,t)9),01(a, s,t)9)
(a,s,t)e(p,q,r)QhﬂA
= % [<01 (a7 S, t)(b? 01 (CL, S, t)¢> - ((PW - I)(Ul (a7 S, t)(b)a 01 (aa S, t)¢>] .

([l,S,t)E(p,q,T)Qh NA

By Cauchy-Schwarz inequality, (4.14), and applying the Weak HAP, we estimate the second
inner product by

(P = D)(o1(a,5,0)0), 01 (a,5,)0)] < | — Dot (a,5,0)6]2 - o1 (a, 5,162
= dist (o1(a,5,6)0,W(R + he* + Rhe®, (p,q,1))) - |6l
< dist (Ul(CL? S,t)¢, w (R7 (a7 37t))) : H(ﬁHQ

< el[pl]s < eC.

This yields a lower bound for the trace

1
tr(T)ZE C(C—e)
(a,s,t)e(p,q,r)QhNA
C(C—e)
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On the other hand, since T is a product of the orthogonal projections, its eigenvalues are
between 0 and 1, and

gid
4

tr (T') < rank (7)) < dim (W (R + he? + Rhe ,(p,q,7)))

< # ((p,q,r)QRMe%Rhe% N A) .
Therefore
C(C —e)
—5 #@uper)NA) < # (QRMngFRheg(p,q,r) N A)

< # (QR+he§+Rhe§(p’q’T) N A> (R+ he? + Rhe')*

(R+ he? + Rhet )} ht

Taking the infimum or supremum over all points (p, q,r) € Sy, and then take lim inf or lim sup
as h — 0o, we obtain

%D—(A) < D-(A)(e% + Re¥)t, and %DWA) < DH(A)(e® + ReFY,
respectively. Thus
CRC_G)R D™ (A) < D™(A), and Cﬁc_e)}% DT(A) < DT(A)
B(e2 + Rex1)* B(e2z + Re4)*

4.3 Existence of a Lower Frame Bound

Heil and Kutyniok [51], [52] and Kutyniok [60] gave two approaches to derive necessary density
conditions for the existence of a lower frame bound for the unweighted wavelet frames W,(A). The
first approach (Heil and Kutyniok [51]) was restricted to the sequence of time-scale parameters
A, without any restriction on the choice of generating wavelets ¢. In this approach, the authors
employed the fact that the continuous wavelet transform can be realized as the Bergman transform
on the upper half plane as one of the important method of the proof. Unfortunately, it is not clear
whether the continuous shearlet transform possesses this property. On the other hand, without
any restrictions on A, in the second approach [52], Heil and Kutyniok applied the HAP and
the Comparison Theorem for irregular for irregular wavelet frames to derive necessary density
conditions for irregular wavelet systems to possess a lower frame bound.

In the previous section, we have already shown that irregular shearlet frames fulfill the HAP.
In this section, by using the consequence of the HAP, the Comparison Theorem, we will establish
necessary density conditions for existence of a lower frame bound.

Theorem 4.9. Let ¢ € L%(R?) and A C Sy such that the shearlet system SHi(A) is a frame
for L?(R?) and satisfies the Weak HAP. Then

D™ (A) > 0.
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Proof. Let ¢ € L*(R?) with C := [|¢||2, and A = {(a’,bk,cm) : 5,k € Z,m € Z?} with a > 1
and b,c > 0 be given. Suppose that the shearlet system SH; 4(A) is a frame with frame bounds
0 < A< B < oco. We showed in Lemma 3.6 that SH; 4(A) possesses a uniform density,
D(A) = 3=—. Therefore, by applying the Comparison Theorem 4.8 to SHy (A) and SHy 4(A),
we have for any 0 < e < C:

D= (A) >




62

CHAPTER 4. EXISTENCE OF IRREGULAR SHEARLET FRAMES



Chapter 5

Construction of Irregular Shearlet
Frames

In previous constructions of shearlet frames by Guo, Kutyniok and Labate [45], Guo and Labate
[46], Kutyniok and Labate [62] and Labate et al. [64], shearlet frames are constructed using only
a band-limited generating function 1, i.e., ¥ has compact support.

In this chapter, we introduce an irregular discrete subset A of S; = RT x R x R? for which the
corresponding shearlet system SH; ,(A) generated by a certain decay function 1) € L?(R?) forms
a frame for L?(R?) and provide explicit estimates for frame bounds. Furthermore, we study the
perturbation of the translation parameter.

5.1 Construction of Irregular Shearlet Frames

Let us begin with the definition of irregular shearlet systems as introduced by Kutyniok and
Labate [62],

SH37'¢1(A3) = {TS§jkAajCOmDS§jkA@j’I;Z)(:L’) = DngkAajTCOm’lzZ)(l’)

= a; 3/21/1(A[;;S§_jix —com) : j,k € Z,m e Z*}, (5.1)

where As = {(aj, 5k, S5,, Aa,com) : j,k € Z,m € L}, with a; € R*,5;, € R and ¢g > 0.

; where s; € R, for j, k € Z, we obtain

. ~ 1 ~
By choosing a; = a; " and 5, = —

Sk_
N
SHsp(A3) = {aj?/ 2 (Aaj S%w - com> — aj?/ 29 (Ssp Agyz — com) : j, k € Zym € ZZ}
J
— SHy (),

where A = {(aj, sg,com) : j,k € Z,m € Z*} C RT x R x R

Kutyniok and Labate [62] proved that the irregular shearlet system (5.1) forms a frame for
L?(R?), provided that 1 is a band-limited function.

In this section, we replace the compact support assumptions on 1& by a certain mild decay
conditions on v, and derive sufficient conditions for irregular shearlet systems SHip(A):

SHip(A) = {Vjrm= a3/4¢(SskAajw —com):j,k €Z, m e Zz}

J

63
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to be frames for L*(R?). Many ideas and proofs of our work are inspired by Yang and Zhou [81],
Kutyniok and Labate [62] and Daubechies [21].
In the sequel, we consider irregular shearlet systems SHi (A) with ¢ € L?(R?) satisfying

Cymin{[&; T, |6 7P}
1+&+&n2 7

9 (&1,&2)| < (5.2)

where a > 0,7 > 4, 20 > 7, and
A = {(aj,sk,com) : j,k € Z,m € 73, ¢ > 0.
We assume that the sequence {a;}jez C RT is increasing such that for each p € (0,1) there exists
p € Z™ such that
a; .
— < Ui for all j € Z. (5.3)
@j+p

We also assume that the sequence {sj}rez C R satisfies

1
Supz < Cp < 00 for any v > 4. (5.4)

vk &= [T+ (s + )2/t

The following lemma gives useful properties of a sequence {a;};cz satisfying (5.3), and they
will be used for subsequent results. We omit its proof and refer to Lemma 2.1 in Yang and Zhou
[81].

Lemma 5.1 ([81]). If p € (0,1),p € Z" and {a;}jez C RT is an increasing sequence satisfying
(5.3), then for all a >0 and t > 0

1 1
(0% —Q —Q
E a pt ey E a; <pt 10

a; <t a; >t

In order to derive a sufficient condition for an irregular shearlet system SH; (A) to form a
frame, we need the following technical lemmas.

Lemma 5.2. Retain the same assumption as in (5.2), (5.3) and (5.4). We let

I'(w) = esssup Z ‘ skTA 5”1/) Ta; £—|—2w) a.e. w € R2.
{eR? 7,kEZ

Then the following estimates hold :

(i) M:= ST A7 15( < o6, (5.5)
{eR? ]kEZ
1 N A
(1)) R:= Z [F(—m)F(——m)] < Cgg for any ¢y > 0, (5.6)
mez2\{0} 0 “
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Proof. First we prove that for any & = (£1,&)7 € R? where & # 0, there exists a positive integer
: & &
jo such that ‘—ajoﬂ‘ <1< ‘ajo
(5.4) that

. Since aj—ip < p for any j € Z, it follows from Lemma 5.1 and

wo= Y s agof = (S X | Sl e -naa o e

JkeZ J<jo  j=jot+l) keZ

1

<D legtal™ )]
Ji<jo keZ <+)2+1+(_3k+\/a—]%)2>

(%-7151

5

_ 1
CY Y — —
jzjo+1 keZ <W +1+(_Sk+\/a—j§_1) )
-1 200
D p‘aj0+1§1‘ 1
<CF | — + up —
[mﬁm%u—mw C=w2) Jeria (14 (s +902)

< 2 P P .
<t [ty + = <

This proves the first equality (5.5).

In order to prove the second inequality (5.6), we note that for (§1,§Q)T € R%,& # 0 and
{aj}jez C RY, the set {(w1,w2) € R? : wy = 0 and aj_lﬁl = —2w, for some j € Z} has measure
zero. Therefore, we may assume that aj_1§1 + 2wy # 0. We estimate I'(2w) :

h — — —1/2
D(2w1,2w) = esssup > |4 (o561, —spa; 61+ 0; 26 |
EeR? ez

: ‘1/3 (a;lgl + 2w1, —skaj_lgl + a;1/2§2 + 2w2>‘

= esssup Z + Z Z

2
R \Gezlartal<lvlloo}  {i€Zila; er]>lwlloc} ) REZ
: ‘1/3 (a;lgl + 2w1, —skaj_lgl + a;1/2§2 + 2w2>‘

= esssup(/; + I2),
£ER?

0 (aj_lfl, —spa; &1+ aj_l/2§2>‘

where

L= ) > W(a;l&, —spa; &t a]‘_1/2§2)‘

{i€Zila; *61]<||wlc} KEL

L= Y > W(a;l&, —spa; &t a]‘_1/2§2)‘

{J€Zilay &1|>||wl|oo} KEZ

zﬁ(a;lfl + 2w1, —ska;lil—k aj_l/2§2 + 2w2) ‘

b (a;lgl + 2wi, —spaj et o) P + 2w2) ‘ .
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Let us first estimate I :

. — - - i N : j _IB
11§012 Z mln{|aj 1£1|a’|aj 1£1| 5}.mln{‘aj 1£1+2w1‘ ) |y 1£1+2w1‘ }
{§€Z:]a; &1 |<wl]] o}
N Y
w1
e

5 1

ol —. (5.7)
kel 1 £ 212 2 22
e o vm) | e (1 )+ (o v )|

Case 1: ||w]|eo = |w1] > |aj_1§1| , we have |aj_1£1 +2w1| > |wi|. Straightforward computation
gives

3 —v/2
n<ct Y minfleytal oy 6l oy e + 2w Z[1+<—Sk+ﬁ%z]

{(j€2Z:|a; 1| <|wr]} kEZ
- 1. - 1 1

< Cf Z mln{]aj el ’aj &l B} |w1 ] ’S}JPZ ~17/2

(jeZila7 61| <fon} §eR hez [1 +(—sp 5)2]
CoC? o U

< HwHﬁl Z mln{|aj 1£1|a’ |aj 1£1| 6}' (5.8)
© jEZ

Case 2 : ||w||eo = |wa| > ]aj_lgl\ and ]aj_lgl\ > |wi|. One can easily show that for any

z,y,2 € R,y # 0 and z # —1, the following inequality holds for some € > 1

(1+ 2)2 < emax{l,(l+z)2}'

T+ @rD) - P 9

Therefore, by using (5.9), the term I; as in (5.7) can be estimated as follows:

- 1 - . - @ -8
I < C} Z min{|a; 1£1|°‘,|aj 31 5}-mm{‘aj 1§1+2w1‘ s |a; 1£1+2w1‘ }
{i€Z:]a; €1<|wal}
) /2
w1
‘ 7 —y/4 Max 1,1+ a6
D+ (st A s
& /2
keZ 2w
05151

9

- Sl - . _ _ -8
< O3 Z min{|a; 1£1|°‘,|aj 31 5}-mm{‘aj Ye) + 2wy a; 1£1+2w1‘ }

{j€Z:la; €1 |<Jwal}
7/2}

.

1+ 2w1

—1
a; &1

v/2

) max {1,
Sup — 7
€€R ke, [1 + (—sk + 5)2]

—1
a; 31



5.1. CONSTRUCTION OF IRREGULAR SHEARLET FRAMES 67

oIflS‘l—F 2,“{15 , then we have
1 1

a
J

2

a+
M

I < CyCt Z min{\aj_lfllo‘, \aj_lfll_ﬁ} . min{‘aj_lﬁl + 2wy

{§€2:]a; &1|<|wal}

—B+3 1
—1 2
a; & +2w1‘ } . .
I |2ws| 2

For any £ € R\ {0}, o, v > 4 and 28 > 7, we have that min{|¢[*2,[¢|7%+2} < 1. Then we
obtain

00C12 : —l¢ja |,—1g |—-P
o< ==L %" min{lejtal®, o el 7. (5.10)

12w[1& jez

oIf 1> '1 + 291_| then we obtain

a;1§1
P g Gl
I < CyCF > min{|a; &1, la; 6|} ————
: -1 |2w2|2
{i€2:]a; &1|<|wal}
CoC? . _ 1. - 1.2
< =L min {lay " oyl - oy el (5.11)
[120]% jez
Therefore, by (5.8), (5.10) and (5.11), we can conclude that
CoC?
n< =L S min{Jo; 6" Joy |7} - max{1, |aj 1|7}
|wll% jez
For & # 0, there exists a positive integer jg such that ‘a5_1‘ <1< |8
Jo+1 Ao
CoCt - 1 - 102
L <=2 2 Z mln{]aj Ley |, |a; Ley| 5} -max{1, |a; ez}
2
|wllé jez
CoC?

. — — — — X
= LIS+ > [ min{ja 6], oy 6} - max{1, oy M P}

Wil [i<ho 2o+t
Since {a;};ecz is an increasing sequence, we have ]aj_lgl\ > ]aj_olgl\ > 1 for any j < jo. On the
other hand, for any j > jo + 1 we obtain that \aj_lfll < ]aj_01+1§1] < 1. Therefore by Lemma 5.1,

we can complete the estimate of I; as follows:

CoCt : B U . 1.2 : B U .
i Zmln{]aj 3l s la; 3l 5}']aj ez + Z mln{]aj 3l s la; 3l 5}

lwll% |i<io iZjotl
CyC? 1. . _

<= | D lagtal 4+ Y0 faytal®
|lwll& | <o i>jo+1

(5.12)

.
< &4 Lt .
loll& L= w72) - (1= p)
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Let us now estimate 5. Again by using Lemma 5.1, we obtain that
I, < C? > min{la; '&1|% o &[0} - min{la; & + 20|, |a; ' é + 2w}
{§€Z:|a; &[> w0}

—7/2
'ZL —11£> +1+<_Sk+\/_£>]

keZ
1

<t Y ey B

{7€2ila; 1>l |oc) SRIEE 1+ (—on + )2
< CoC} > jaj |
{jeZ:\a;1£1|>HwHoo}

||w||ﬁ 1—ph

(5.13)

By (5.12), (5.13) and since 23 > v > 0, we conclude that

I'(2w1,2ws) = esssup(ly + I2)
£€R?

C'OC1< p__ D >+C0C12 p ]
_

ol \L=p?72  1=p) o lwfjf L= p”
CoCh p p p

= l[(—5—1+1—a T
lwl& LNL—p72 H H

Hence, for any ¢y > 0, we have
1 1 1z 4 P P p m
> TG rCam)] s doct (ot ) 2
= G—1 — a _ B
[ 1—pP2 1—p 1—uw Z2\{0}H ‘

meza\foy b D c
p p —(Z-1)
>+ — a>+ B} > m[ G
2 L-p L= meZ\{0}

_x
2

~(3-),

Whereé’:2%002[< P+ pa>+ P ] m
R A AT me%\:{o}| |
This proves the last inequality.

Lemma 5.3. Suppose that {a;}jez, {sk}rez and ¢ € L?(R?) satisfy the assumptions in Lemma
5.2. Then for all f € L*(R?),

> 5 ||

1,k€EZ me7?

/Z > f© <£+ — A, 5% ) ST AT ) D

RQ 1,k€EZ me7?

O

1
—TA;jlg + —m> d¢.

€o

<
/‘\
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Proof. Let Q = [—%, %]2 For any f € L?(R?), by Plancherel’s Theorem we have

S5 [ = X 0

/f )m627ﬁ<5’145j15;k160m> dg

7,k€EZ meZ2 k€L meZ2 R
3/2 ) —T 2
=> Z /f<—A ,5T5>¢3 <_g>e2m<am> dé
J,k€Z mez? c
3/2 —T 2
= Z > / < Aq STE) P <—£>e2’”'<5’m> d¢
7,k€EZ me7? €22 q (&)
3/2 SR 2
Z Z /Z f( Aq ST §+l)> V) <_(§+1)>e2m'<5,m> d¢
J,k€Z mez? lez? €o
3/2 — T 2
_Z /Zf( A, ST§—|—Z)>¢<—(§+1)> d¢
7,kEZ le72 Co
32
:Z%—z/ Z f< Aqg ST(gH))
ikez. O 4 miez
& ( €+ ”) f (%AajSZ;(g + m))iﬁ <i(§ - m)) dé
0 Co
3/2 -

5 f( A%Sz;<5+m—w>«z<%<5+m—w> ¢

meZ?

S S (Rste) T (Eanstier ) o (e (Lie ) e

J,k€Z R2 MEZ?

This implies

Z Z ‘<f772)j,k7m>‘2

7,k€EZ meZ2
P A1\ [ §-T 41 1
-2 Z Zf £+ ACL s 1,[) af?[) SS,Aaf%-—m d£
J k J k j CO
Rz 7,k€EZ meZ?
This proves the lemma. O

We are now ready to state sufficient conditions for an irregular shearlet system to form a
frame for L?(IR?).
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Theorem 5.4. Suppose that {a;}icz, {sk} rez and ¢ € L*(R?) satisfy assumptions in Lemma
5.2. Purthermore, define A = {(a;, sg,com) : j,k € Z,m € Z*}. If

N 2
L::egsﬂiélfg ‘zﬁ(S;CTA;jlf) > 0, (5.14)
€
J,k€EZ

~

2

and 0 < ¢g < (%) , where C is the constant from Lemma 5.2, then SHi4(A) is a frame for

L?(R?) with frame bounds 0 < A < B < oo satisfying

1
A= [L R], and B = —[M + R], (5.15)
< €

~ X
where R = Cci and M are constants from equations (5.6) and (5.5), respectively.
Proof. By Lemma 5.3, for any f € L%(R?), we have

" = M(f) + R, (5.16)

JEZ k€L meZ?

where

1
N=522
€3

=i

12 > / Y f©f <£ + %AajS,{m> b <S;,CTA,;3.15>
0 7 keZ,

2 mez2\{0}

@ 0 (s57az2¢)[ ae.

. 1
Sl Al +—m ) de.

€0

<,
N
wn

By using the Cauchy-Schwarz inequality, we obtain

mos e S (L) (-La)] " )

0 mez2\{0} 0

It follows from (5.16) and (5.17) that
1/2
JIF et 2 izl 5 () ()]
meZ2\ {0} co ‘o
< ZZ S [ bisaml|

JEZ kEZ meZ?
1/2
DM UCONED)

£eR? S hez mez2\{0}
Thus, by (5.5), (5.6), we get

SIAR [£- 0] < 3 5 [(fduenl] < UFIE [br+E6).

JEL k€L meZ?

< 2||f||

This proves the theorem. O

Remark 5.1. The drawback of the construction of irreqular shearlet frames in Theorem 5.4 is
that it does not provide an explicit estimate for the lower frame bound.
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5.2 Construction of Irregular Shearlet Frames on the Cone

In this section, we are interested in the construction of frames for a space of functions whose
Fourier transforms are supported in the horizontal cone
1} .

Retain the same assumptions on {a;}jez C RT, {sp}rez C R and ¢ € L*(R?) in Lemma
5.2. We now discretize the continuous shearlet transform associated with S;. By choosing the
irregular discrete subset A of S; of the form

= {(51,52) eR?: & #£0, ?

A = {(aj,sk,com) : j,k € Z,m € Zz},

where |si| < ,/aj for all j,k € Z and ¢ > 0, we obtain the following shearlet systems:

SHi(A) = {0 hm = ) *$(Ss, Aa, - —com) : |sy| < /a7,5,k € Z,m € Z2). (5.18)

With some modification of the proof Theorem 5.4, we obtain the following sufficient condi-
tions:

Theorem 5.5. Suppose that {a;}jez, {sk}tkez and ¢ € L*(R?) satisfy all assumptions as in
Lemma 5.2. Furthermore, define A = {(aj, s, com) : |sp| < \/aj,j,k € Z,m € Z*}. If there

¥

exists L > 0 such that 0 < ¢y < (%) * where C is the constant from Lemma 5.2, and

T ~ 2
Ly Y iAol aecec
JEL {k:|sk|<\/aj}

then ‘/5?7/{17,/,(1\) is a frame for L2(C)Y := {f € L2(R2) : supp f € C} with frame bounds A and B
satisfying

1. .- 1

O<—2[L—R]§ASB§ [M+R], (5.19)
€0 Co

~ 7
where R = Ccd and M are constants from equations (5.6) and (5.5), respectively.

Proof. Let Q = [—3, %]2 For any f € L?(C)Y,we have

IIED DS )|

JEL {ki|sp|<y/a7} meL?

=3 > Y / FOXC€)D(SaT Ag €)X EAG Suieom) g

JEZ {k:|si|<\/a; } meZ?

By arguments similar to the ones in Lemma 5.3, we get

|

JEL {kilsi| < /a7} mez?
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:i/z SN fe <§+ — A, STm )@(55@%)@( SolANE+ m) dg
c

2
08 JEL {k:|si|</aj} mez?
= M(f)+ R(f), (5.20)

o)

where

-2 % [l | (smaze)[ ae

0 j€z {klskl<ya;} &

QZ > / PA(; <§+ Aajs,{m>«$(5;kTA;jlg)¢3 @;TA;jlg+%m> de.

0 jEZ {ki[si|<\/aj} ¢ meZ2\{0}

By using the Cauchy-Schwarz inequality, we obtain
Lyiae 1 1 1/2
RIS gl X [ (Gm)r(-2m)| (5:21)
0 mez2\{0} 0
It follows from (5.20) and (5.21) that

2l {ess}nfz Y sl 3 [P<10m>r<1°m>]/]

JEL {k:|sk|<\/aj} meZ2\{0}

JEL {k:|sk|<\/aj} meZ?
L a2 2 a-T 4-1£)|? 1 1 12
< C_2||f||L2(C) ess sup Z Z ‘1,!) (SSk A, {)‘ + Z r —m r —m .
0 §ER? et {kifsil < a7} meZ2\{0} 0 0
Thus, by (5.5), (5.6), we get

1 - .2
%HJCH%%C) [L—ch} Z Z Z

JEL {kilsi| < yar} meZ?

A A 1 2119 ~ %
(f ¥k L2(C" = %Hf”m(c) [M—FCCO}.

Hence 3’7717,1,(1&) is a frame for L2(C)Y with the same estimates for the frame bounds as in
Theorem 5.4. O

5.3 Construction of Regular Shearlet Frames

In this section, we apply our results from Section 5.1 to derive sufficient conditions for a regular
shearlet system SH;p (I") to be a frame. In particular, we choose a discrete subset I' of S; as

L ={(a, k,com): j k € Z,m € Z*},

where a > 1 and ¢y > 0. In a fashion similar to previous constructions of shearlet frames by Guo,
Kutyniok and Labate [45], Guo and Labate [46], and Labate et al. [64], we choose 1) € L%(R?)
such that

(&1, €9) = 1 (E1)ibo (%) ae. £=(&,86)" e R?,
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where 91 € L?(R) is usually a wavelet, and 15 € L*(R).

Furthermore, inspired by Daubechies [21], we show some concrete examples of regular shearlet
frames and numerical estimates of the frame bounds of those frames. We start with the following
technical lemma.

Lemma 5.6. For any x € R and v > 0,
Z(1+k2 —Z 1+ /<:+x ZlJrk?
keZ ke

Proof. We consider for any 0 < z < 1 (other values of = can be shifted into this range by
translating with a suitable integer k). We therefore obtain that

1 1 1
D T e IR < % A+ ko) = % (L4 mm k2, (k+ 12}

kEZ

= Yirert X araror

keNU{0}
_Zl—l—k‘+$ Zl+k+1 +ZW

- keNU{0}
— Z 1+k:2 +Z 1+k2

kEN
S TEe s, Y TR, AT

ke—NU{0} keNU{O}

1
= Yarm- _Zl+k+a:)) Zm“

kEZ

O

The analogous sufficient conditions from Theorem 5.4 for a regular shearlet system to form a
frame can be stated as follow:

Theorem 5.7. Let I' = {(a’,k,com) : j,k € Z,m € Z?} with a > 1 and co > 0, and let
Y € L?(R?) satisfy

b(€1,62) = 1 (&) <§2> (5.22)
where 1,109 € L*(R) and 1o satisfies
N Cy
¢2(§)‘ < Atepn a.e. { €R, (5.23)
with v > 2 and Cy > 0. If 1y € L*(R) is such that
L:= inf ‘qﬁl —Ig) ‘ >0,

1<\§1|<a
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. 2
M := sup Z ‘¢1(a_]£1)‘ < 00,
1<[é1<a 7

and

c2)/” [Z T sup > [i(aIE)] - D

1 (a_j& + ﬂ) ‘
co

k 1<fé<a ez m1€Z\{0}
. : 3
-max{|a_151|%, aie + 2 } : Z || 7772
o
m2€Z\{0}
~ 1
2
L — =1 24
< CO [kgz (1 + k2),}/ ] I (5 )

then the regular shearlet system SHi ,(T) forms a frame for L?*(R?) with frame bounds

1 ~ 1 N

A== |C3L —— — 1| - R|, (5.25)
[ Emw
1 1 -

B=— |C3M |3 ———— +1| +R|. (5.26)
2 2 2
% keZ(l_‘_k)ﬁ{

Proof. Similar to the analogous proof of Theorem 5.4, we need only to estimate the terms M, L
and R in (5.15). By using Lemma 5.6, we derive

= ess supz Z ‘1/1 TAajlg ‘

EeR? 57 kez

- esssupzz ‘1#1 3 ‘

£eR? ez kez

2
&
< k+ a £1>‘

< sup hi(a ]61‘ supZ‘%( k+§)‘

1S‘51|Saj 7 EER ke7,

<C3 sup ‘1/11 ]51‘ 8111323[1+(/€+§>]_7

1<\§1|<a ER ke7,

1
Zm—kl

keZ

< 022 sup Z ‘1&1(&_%1)‘2 < 00.

1<l1/<a 7,

With a similar argument, we obtain

—egzﬁnfzzw TAQJE ‘

JEZ keZ
1 ~
> (2 I - ‘ J ‘
"o lé(hﬂ‘ﬁ)” 1<|1?1|<a% Yi(a&)| >0

Next, we use the same argument of the proof in Lemma 5.2 to estimate the term R by

1 1 1/2
ne 3 ) o)
Co Co
meZ2\{0}
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—esssup Y > > |di(aTIE))| (a_j§1+%>‘

EER? 72\ {0} jEL kel
N ) . —ka‘jfl + a‘j/2§2 + iﬂ
: 1/}2 —k+a]/2£—1 1/12 — i 0
&1 a6+

SCE)Y/2C22 (ZWJJ) sup ZWl( g Z

s <a_j§1 + m)‘
co

kez 1<|éi]<a ez m1€Z\{0}
ol
. . 2
-max{|a_351|g, a g + L } Z |m2|"7/2
0 ma€Z\{0}
- R
This completes the proof. O

In many traditional constructions of Parseval frames from regular shearlet systems (Guo,
Kutyniok and Labate [45], Guo and Labate [46], Kutyniok and Labate [62] and Labate et al.
[64]), the authors chose 1 to be a band-limited function. It is easy to show that if SHy 4 (T) is
induced by such a band-limited function ¢, then the remainder term R in (5.24) is equal to zero.
In this particular case, we obtain band-limited Parseval frames:

Example 5.1. Consider the discrete set I' = {(2/,k,com) : j,k € Z,m € Z*}, cg > 0. Let
(IS L2(]R2) be band-limited and defined by (5.22). Choose 11,19 € L*(R) with suppv; C
[—2, —%] U [2, 2] and supp Py C [—1, 1] satisfying the following properties:

SO =1 ae £€R, (5.27)
j€z
Yl +E))P=1 aefcR (5.28)
keZ

It follows from Theorem 5.7 that the remainder term R equals zero. Therefore SHi (I
is a Parseval frame for L?(R?). In particular, there are several choices of ¢; and 1o satisfying
(5.27) and (5.28), respectively. For instance, ¢¥; may be the Lemarié -Meyer wavelet and g is
an orthonormal scaling function (see Guo et al. [46] and Daubechies’s book [21] for more detail).

In the following examples, we will apply the construction of regular shearlet frames presented
in Theorem 5.7 to a non-bandlimited function ¢; € L?(R) whose Fourier transform ¥ has a
sufficiently fast decay. We should mention that the following example is inspired by the Mexican
hat example presented by Daubechies [21].

Example 5.2. Let I' = {(27,k,com) : j,k € Z,m € Z*}, co > 0, and ¢; € L?(R) be a function

of the form
2

~ £
di(6) =¢gler  forallg €R,

and let 15 € L%(R) be such that
- 1
Va(§) = i
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By (5.22), it follows that
2+'ye—%1

(& +&3)?

with v > 2. This function is plotted in Figure 5.1 for choices of v = 4. By using the formulas
(5.25), (5.26) and (5.24) in Theorem 5.7, we obtain the following estimated frame bounds

(1, &) = ae &= (6,6)7 € R?, (5.29)

Figure 5.1: The function t defined by (5.29) with the choice v = 4.

1 1 . . (o—j N2 ~
A== _ inf oig Ve Ce? | _ B
8|S ) (paz e _

1 1 s (972
B=— — +1 sup (277€)te~ @78 | L R,
c? (% (1+k2) > 1<$1<2j§€%

where

v/2 —j Q_M —j m1 2
—CO Z 1+l<:2“Y/4 +1| sup Z(Z &1)“e 2 . Z 2 §1+C—

ke 1§‘$1‘§2jez m1EZ\{0} 0
el ; my |2 1
a4+ 5" I 1
e 2 max ¢ [27761]2, (2776 + — Z TR
Co |ma |
mo€Z\{0}

In Table 5.1 we provide the numerically estimated frame bounds for SH; (I") for choices of
parameter 7 = 2.1,4 and ¢y varying from 0.2 to 0.8 (see Appendix E for the MATLAB code).
However, the ratio B/A we obtain are pretty large.

Remark 5.2. Although we choose the function ¢ in Example 5.2 as a function with expo-
nential decay, the ratio B/A still become large. The reason is because (Z m — 1> XK
keZ

(Z m + 1> for large value of parameters v, and this implies that
keZ

egs inf |¢( TA2] O «< eSéS %uP W( TA2]15)|
€
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Table 5.1: Estimated frame bounds for shearlet frames associated to 1 defined by (5.29).

v=2.1 vy=4
(&) A B B/A Co A B B/A
0.2 | 3.1381 14.4815 4.6147 0.2 | 0.6567 11.7929 17.9578
0.4 0.7845 3.6204 4.6149 0.4 ] 0.1641 29483 17.9665
0.6 | 0.3482 1.6095 4.6223 0.6 | 0.0729 1.3104 17.97533

In the following example, we overcome this problem by choosing a function i comprising of an
orthonormal wavelet 11 with certain decay and vanishing moments, and an orthonormal scaling
function .

Example 5.3. Let I' = {(2/, k,com) : j, k € Z,m € Z?}, and let 11 € L?(R) be a wavelet with a
vanishing moment of order o and a decay rate of 3, i.e., |11 (£1)] < min{[& |, |&1|7?) for almost
all &1 € R, and satisfying the following

Y lhRVYP =1  ae eR (5.30)

JEZ

Further, let ¢y € L?(R) be an orthonormal scaling function with a decay rate . That is,
|7/)2(£)| < Wa and

Dl +k)IP=1 aefeR (5.31)

keZ

It can be verified that this regular shearlet system SH; (") satisfies the hypotheses of The-

orem 5.4 with y = 3 and p = 1. Therefore, we use (5.15) in Theorem 5.4 to estimate the lower

and upper frame bounds A, B, and (5.6) in Lemma 5.2 to estimate the remainder term R. Then
we have

1 1
A= —=5[1-R] and B=—5[l+R], (5.32)
=0 0
where
1 20-3 20 1 20
R < (2¢)? — 41 - - 1|
;Z (1 + K2/ 93 _1  20—1 I; (1+ K20/ 25 —1
Z 1
Y_1q°
meznjoy 1M1

In Table 5.2, we have the estimates of the frame bounds A and B and the ratio B/A for
shearlet systems SH1 (") computed from (5.32). They are dependent on the choices of ¢g, o, 8
and . The numbers in the table show that for small values of ¢y and large numbers of «, 3 and
~ the ratio B/A is close to one. This indicates that the frame is close to being tight.
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Table 5.2: Estimated frame bounds for shearlet frames associated to 1 defined in Example 5.3.

a=1, 8 =25, =38 a=1 , =7, =12
Co A B B/A Co A B B/A
0.1 | 95.6643 104.3357 1.0906 || 0.1 | 99.8524 100.1476  1.0030
0.2 | 7.6574  42.3426  5.5297 || 0.2 | 22.6382  27.3618 1.2087

a=1, 8=38, v=12 a=5 , =8 , =12
(&) A B B/A (&) A B B/A
0.1 1 99.8726 100.1274 1.0026 || 0.1 | 99.9017 100.0983  1.0020
0.2 | 22.9610 27.0390 1.1776 || 0.2 | 23.4273  26.5727 1.1343
0.3 | 0.7889  21.4334 27.1701 || 0.3 | 3.1491 19.0731 6.0567

5.4 Stability of Irregular Shearlet Frames

In this section, we consider perturbations of the translation parameter ¢ for the irregular shearlet
frames already considered in the previous subsection. We would mention that many ideas in this
section are inspired by Yang and Zhou [81].

First, we begin with the stability of a frame in a Hilbert space. We omit the proof of this
results and refer the reader to Christensen and Heil [12] and Favier and Zalik [27].

Proposition 5.8 ([12], [27]). Let {f;} be a frame in a Hilbert space H with frame bounds A and
B. Assume {¢;} C H and {f; — gi} is a Bessel sequence with bounds M < A. Then {g;} is a
frame with bounds A[l — \/M/A)? and B[1 + \/M/B]?.

In the following, we choose ¥ € L%(R?) of the following form :

D€, ) = Dn (€)1 (%) ,

where ¢ and ¥ € L?(R) are functions satisfying the following properties :
e 1 € C(R), and

[61(9)] < Cominflel*, |7} ae.ceR. (5.33)
e Uy € C(R), and
dole)] < 2 (5:34)
IS aeep |

with C1, Cy > 0, v > 4 and 20 > .

Lemma 5.9. Assume that {Vjrem}jrezmezz 5 a shearlet system induced by A =
{(aj, sk,em)} ) kezmeze where ¢ > 0, {a;}jez and {si}rez satisfy assumptions in Lemma 5.2.
Let ¢ k.com = Deaj g em for j,k € Z, m € 72 and co > 0, and let g = ¢ — ). Then the following
statement holds:

>y ‘<f7 i kcom)

‘2
1,k€EZ me7?
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]

-1 my
a; &1+ 0

x
2

max{\aj_lglyg,

< g\lf!FsupZZ (2lcoa; &) + 2ma| + 1)+ >

&1eR _
JELZ M1 EL Ima|>|coa; ' &1[+[ma|

G R CTRIRACY

for any f € L*(R?).

m2
€0

()" (e )i o7+ )

)

1/2
Proof. Recall the dilation operator (D p)(z) = (%) © (éx) for all ¢ € L?(R?). Let ¢ =
D<o and g = ¢ — 9. It is easy to see that
~ Co /2 . Co
Gitcom(@) = DeaVjen)(@) and  Gream(®) = (L) Djom (=€) -

For any f € L?(R?), it follows from Lemma 5.3 that

Z Z ‘(fy gj,k,com>‘2

7,k€EZ meZ2

= Z >, /f <€+ AaJSZm)é(SszAajls)g(S;kTA;;HCim) dg

0 j keZ mez? R2 0

DD /If Ta; 5(‘ ( Agjlé—I—%m)‘d&

jkEZm622 R2
X ¥ [uer 1 (Z) 0 (Fsaracte) - o (sira.k¢)
m R2
(2) 0 (C—O(S;CTA;J_% + im)> — <S;kTA,;j1§ + im>‘ de
c Co €o

C
b (s 1/2£2> ‘

=23 Y [1H@P|(2)h (Late) b (a70)]
0 j keZ mez? R2

| /\

a-_lfl
-1 -1/2 mz
co\ Co, _1 mi - 1 mi A —S5ka; &1+ a; §2+
: (;)7/)1 <?(aj £1+E)>_7;Z)1 <aj £1+E>‘ 7/)2< 0 TE + I ) dg.

By using the Cauchy-Schwarz inequality, it follows that
<—ska Ley +a, M2 ’?—;) ‘

N 2
Z Z ‘ f kcom ‘
—ska._lgl +aj_1/2§2 .
(lj 1 ) ¢2 j 16 + 7::101

7,kEZ meZ2
AP s 3 5 1
(C—CO) ¥ (%0(@;151 + %)) — (aj_1§1 + ng—;)‘

j kEZ meZ?
IfI1(I + I), (5.35)

1) (Teite) = (o570)

1
_2
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where
Iy := sup Z Z Z

1 -1/2
g <_3ka §1+a; 52)‘
2 —1
cR2 | — i 51
SERTGRELMIEL. {maiimal<|coa; €1 +Ima |} %

_ —1/2 ma
0 < - 16,1 1;a+ "g—; — > (%)1/2 s (C_coaj_lfl> — 1 (“j_lfl)

12 . .
( ) ¢1< ( ;1514-21—01))—1#1 <0]151+T:—01>‘,
—srat ~1/2
I := sup Z Z Z s < e jil—;a] 62)‘
j

cR2 _
SERTSRELMIEL. {maimal>|coas €1 +lma |}

J <—ska le +a; 1/25 —1-72—02)‘
2 -1 m
RSy

/2 - R
' (C—co)l 21/}1 (C?O(aj—lgl + T—S)) — (aj_1§1 + T—;)'

Concerning I, straightforward computation gives

hemY Y Y%

{eR? jeZm1€Z{m2:|m2|S\Coa;151\+|m1|}keZ
‘ <%0)1/2112) (co _1&)_1’2}1< 1£1>
< Cp sup Z Z Z

e
2

. ( _52)2
—Si + \/@6—1

(= ) w1< ( ;151+T—;)> — <a;151+%1>'
Co 1/2 ~ Co _1 ~ 1

—) §1) =1 (a; &

w2 x () o (Tata) i (a'6)

1/2 .

: ‘(%0) (1 (%0(%-_151 + ?)) - a;'6 + %)

1

i
<Coswp Y 3 (2o ]+ 2 + 1) | (2) i
i

C
SQ€R 7 ez

1/2 . .
) ‘(%0) n <%0(aj—1§1 + TZ—;)) — 1) CL]-_1§1 + 7761_01> ‘ .

Concerning I, we apply the inequality (5.9) in Lemma 5.2 to the term I as follows:

2 —v/4
I < supz Z Z Z 1+<—sk+«/aj%> ]
£eR? ]EZmlel‘m2|>‘00a;151|+‘m1|k62 1
ol
mi 2
1 ‘1 * coa; *&

. [1 R (_Sk ., \/@%>2] v/4

2
mp 2 _ -2 m
(1+ T 51) + < Skt e + _Coa]g&) ]
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: (%0)1/2 ¥ (%0@]-_151) — ( '¢ > ( )1/2 ¥ (CO( la+ —)> Wy ( o+ T—()I)‘

ok
1. 2
max{\aj &1z, }
eR —
SR SeZ m1 €2 (g > coa; L6+l |

()6 (Late) = (o576 || () (2o 20 ) = (o776 + 2.

This completes the proof of lemma. O

-1 my
a; &1+ 0

<Gy Y Y

Now we are ready to state the theorem which shows the stability of irregular shearlet frames
under a perturbation of the translation parameter ¢y > 0.

Theorem 5.10. Suppose that {a;}jez, {sk}tkez and 1 € L*(R?) satisfy the same assumptions as
in Lemma 5.2. If {4} k.com,}jkezmez2 15 a frame for L?(R?) for some cy > 0, then there erists
6 > 0 such that {1; k.cm}jrezmezz s a frame for L*(R?) for any ¢ with 0 < |c — co| < 6.

Proof. Let ¢k com = De)jk.cm, it follows that

Dok com (&) = (%)1/2 D) osem (%5) :

Therefore {1} cm} is a frame for L%(R?) if and only if {¢;x com} is a frame for L?(R?). Now we
will prove that {¢; k cm} is a frame for L?(R?). To this end, we first let g = ¢ — 1.
It follows from Lemma 5.9 that

>N ‘<fa§j7k,com>‘2 => Y ‘<f7 @j,k,com—¢j7k,com>‘2

4,k€EZL meZ? J,k€Z meZ?

max{|aj_1§1|%7

-1 my
a; &1+ P

]

C’ _
< SIIfIP Supz Y | @leoa; &l + 2fma| + 1) + Y
0

&1€R j€Z micZ \m2\>|coa-71§1|+\m1\
1) (Lae) () || (L) w1< <}151+%>>“51<“5151+%>‘

. | s e 2
SC—2||f||2§up Yo | Cleodl+2im| + 1)+
0

EER m €7 [ma|>]co€|+|ma|
coNY/2 ~ ey - my Az My
.‘(_) w1<—<s+—>>—w1<§+—>‘- sup >
c c Co 0 GER ;o7

Next, for a fixed ¢y > 0, we claim that,

Clerclo sup Z (2lcoé] + 2/ma| + 1) + Z

€€R ez [ma|>|co€]+|ma|
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co\ » (o= mi\ - [z, m\|_
. (;) U <;(§ + a)) — <§ + a) ‘ =0. (5.37)
Case 1 : max{|§~|%, L %} ‘54— my |2 . Consider
- ‘5""% ’ co\Y?2 5 f(co,z my y oz, M
S | @]+ 2+ 1+ 30 B (D) (D ) i (6422
m1 €2 jmal>lcofl+lmal |52 |

2
2

‘5“‘ co\ 1/2 - 7
B 0 Co, >~ M1 F,
<3 | @leod] + 2l + 1)+ Y | |(2) e +'“E
my €Z [ma|>|co€|+|m1| E

b

o)’ —f
CO 05—,3 ng ‘
< - 1 2 2 1 T x
< ()77 +1) X | Clad+2mi+ 1+ 3 o
mi1E€Z |ma|>]co&|+|ma| c

Now we choose a fixed ¢ € (70 %) and £ € [5—61, 2—16] Let Ny be a positive integer such that
mal Il €] for any € € [5,5] C (—i L) and my € Z with |mq| > Ny. If |mq| > Ny,

co — 2c¢o co’ co

Thus for any N € Z* with N > Ny, we have

then %|m1| < ‘5—1—7’;—01 .

~

~ ‘g o i co\/2 » [cog,= m ~ [~ m
> | Ceodl+ 2+ )+ >0 = (D) (RE ) (64
< 5|2 c c Co &)
[ma|>N Ima|>[cog|+Ima| | 2
| 8 gpml
co) 058 dc ‘ o
< ( (% Plel
_((C) +1> ST |3+ 2mal) <m > + E:
lm1[>N i |m2\>|00§\+|m1\ =y
B o4
o 05— dc \’ =2 c 2
< ((2 1 342 — —
(") X Jevam () () 2 (o
|mi[>N | mo€Z
0.5-3 [ A
g((c—o) +1> 3|3+ 2mi) ( > +C—
¢ |m1|>N L ‘ml‘ﬁ 2

x

where C = (4¢)°~2 30 <%) * < oo for any v > 2.
mo€7Z

Therefore for any ¢ € (%, TO) N € Z* with N > Ny,

x

mi 2

co

_ 3
sup Y | (2lcod] +2/mi| +1) +Y ‘7

X
= mo | 2
ek myez [ma|>|cof|+ma | | B2

< Z sup | (34 2|mq]) + Z

& 1 1 ~
mal<N E€[~500%] jmal> o€ +lma| |22
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¢\ 0-5-8 4\ -~ 1
=2 1) (342 — C———
£ () ) [ () + a3

|ma|>N
(1+N)% co\z 7 <0 = m1> . <~ m1>
m%]\f ﬁE[ 26’21c] |m2>|C§0£|+m1 ’mg‘ ( ) C Co co
0.5-8 N -
_ 07
+|m1§|;N<< ) +1> (3+2Im1|)<|m1|> tO |

Since 1[11 is uniformly continuous, by letting ¢ — ¢y and N — oo respectively, the right-hand

side tends to zero. .,
my |2

Case 2 : max\{ |€ |%, =|¢ |% It can be proven in a similar way, and this completes

the proof of the claim (5.37).
Finally, for any & € R\ {0}, there exists a positive integer jo such that ‘ﬁ‘ <1<
0

o

aj()

, it follows from Lemma 5.1 that

> (%°> i (Geta) =i (o) [ 2 [|(T) 0 (Garta)| + [ (o57a)]
el (5 it X (2) el e | T erter? + ¥ el

j2jot+1 J<jo Jj2jo+1

()™ ((—)ﬁ . 1_pw) (2 1_pw>] | 538)

It follows from (5.36), (5.37) and (5.38) that for any ¢ € (0,1) there exists § > 0 such that

<y

Z Z ‘<JE7 ((gj,k,com - Q;j,k,com»r < EH.ﬂPy

7,k€EZ meZ2

for any ¢ with |c—co| < 8, which shows {(¢ — ) k.com}jrez.meze 18 & Bessel sequence on L?(R?).
Hence, by Proposition 5.8, for ¢ sufficiently close to co, {9jk,.com}jkezmez2 is thus a frame for
L?*(R?). This completes the proof of Theorem 5.10. O
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Appendix A

Technical Lemmas

Proof of Lemma 3.11. By using the geometric series, we obtain
aa(m+1) — g™

m
aj
a [
>
Jj=l

Since z < [z] <x+1and x — 1 < |x]| < z, it follows that

log, o+ -2
aa(loga :c—i—ﬁ-i—l) _ aa(loga x—ﬁ—i—l) Mlog, 2+ 577 | _
aj
a1 < E a’ < a1
a® — a® —
j:“(’gam_zl};a
h h [og, x+51—] h h
a%r%es — q%e 2 e o a2rPes — p% 7
= a1 < E a’ < a1
a® — a® —
j=log, 2— 51+
h K h K h
e (¥ — ) Tomztaizl o ge (@0 - F)
= — < g a™ < P
a® — a® —
j=log, =51+

This proves (3.37). A similar argument shows that
aa(loga :c—i—ﬁ-i—l) o aa(loga x—ﬁ)

_h
gollogaotsts)  ga(ogea—sfio+1)  logaTional
< g a™ <
a® —1 ' \ a® —1
JZUO&L w—m1
h h h h h
x® (eaT - ao‘e_%> Llogq 2+ 51na) o x%® (e% - a_ae_%)
< g a™ <
a® —1

<
a® —1 ' ,
JZUO&L w—m1
O

Lemma A.1. Let h,r > 0 and a # 0. The following statement holds true.
_ah(r—1) )

20 (eah<g+3> e ah<g+1>> [n 2+ 5] a (eah<;+5> . :
P < g e < oh 1 , foranyx € RT,
eh — eh —
j=lnaz—32 ]
]

Proof. Similar as in Lemma 3.11.
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Appendix B

Basic Facts about Density for
Shearlet Systems of S9

Lemma B.1. Let h > 0 and r > 1 be given, and let

Xy = {(e’", he Mk, hATL S}

eIh ™~ he— h/4k ) j7k€Z7m€Z2}

Then the following statements are true.
1. X5 is Qp-dense in So.

2. Any set Qun(x,y, z) intersects at most

3(r+5)h _3(r—=1)h (r+5)h _(r=1h
(em 1 —e 1 G )
e3h/2 — 1 r(eh —1)

N, i=1? ((r +1)e? + 1)

(r+5)h (r—=1)h

e 14 —e 4 T+ 2
et e B £

+

elements in Xs.

3. Any set Q.n(x,y,z) contains at least

3(r+3)h _3(r+1)h

Nr::rz(r+1)eh/2[e T e ¥ ), )

e3h/2 _ )

elements in Xs.

Proof. 1. Fix any (x,7,2) € S3. We show that there exists (a,s,t) € Qu, j,k € Z, and m € Z?
such that
(‘Taya ) (aejh S + he h/4k\/7 A eih hefh/4k(hm + t))
= (7" he Mk, hA J,LS 141/41@ ) * (a,5,t) € Qu(e’", he Mk, hA~ S !

eih 7h/4k )

In particular,

eih

z=ae’" | y=s+he"kva, and z= A" S_fh/zlk(hm—i—t).
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These three equalities are equivalent to

Inz Ina
B e B.1
j=— = (B.1)
h/4 h/4
p=de (B.2)
hy/a  hy/a
1 t
m = Eshe—h/zlkAeth —E (B?))
| S —
=:C
Now we observe the following;:
e For any a € [e7"/2,e"?), by using (B.1), we form the interval [lnTx - %, lnTm + %) which
contains a unique integer j.
e Take the same a, and s € [—%,%) Following from (B.2), we form the interval

h/4 hja  yoh/4 h/4 . . .
ye - e’ ye ' e’
[h\/a 57a hia + 2\/E> which contains an integer k.

e Take the same a as above, and ti,t2 € [—%,%) By using (B.3), we form intervals

[Cl — %,Cl + %) and [Cg — %,Cg + %) which contain a unique integer mj; and msg, re-
spectively.

Thus {Qy,(e’", he "k, hAeJhS 1*h/4k ):j,k € Z,m € Z?} is a covering of Sy, that means X3 is
Qp-dense in Ss.
2. Fix (z,y,2) € Sy, and suppose (u,v,w) € Quu(x,y,z) N Qu(el", he M4k hAeJhS ! hjapM m).
Then there exist (a, s,t) € Q. and (d’,s',t') € Qp such that
(u7 ,U7 w) = (':U7 y7 Z) * (a7 S? t)
= (az,s + yVa,z + A; 'S, ') € Qui(x,y, 2),
and  (u,v,w) = (/" he "4k, hA; ls- lfh/% Yx (a,s',t)

:(aéh8-+hethV_14ﬁ L g (hm )

eQMahm’MkhAﬂgpw%)
In particular, axz = a’e’? with a € [e7™"/2 e™/2) and o’ € [e~"/? eM?). We have

xe—h(r+1)/2 < ejh < $eh(r+1)/2’

Inz r+1 o _Inz r+1
_— = <9< — . .
and . 2 _j_h+ 5 (B.4)
This is satisfied for at most r + 2 values of j.
h/4 h
Further, k = & h\/)_/ + y\}/f/%ﬂ with s € [, 70} and s’ € [~ £, 1), so that
yvact (vl W2<kw<yvryﬂ-% T e (B.5)
hd 2 hd 2 ' '

For a given value of a € [e~""/2 ¢"/2) and o' € [e~"/2,e"/?), this is satisfied for at most (r +
1)e"/2 + 1 values of k.

Furthermore, we have z + A7 1S 1t = A JhS - (hm 4+ t'), therefore

e—h/4L

—1¢-1 /

hm = Sy —njaAginz +Spe—njag Ain Ay Sy t—1t
——————

=:C
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b yedh + he "/ Ageih/2
; A-lo—-1 _ x x NZ] :
Using that Sy —n/a,Acin Az S, = ( 0 oih/2 ), we obtain
NG

eh _ye
hm:<01>+ wtl—i_(

e‘h/4k‘%> b2 ) ( th )

Ca 6%2752 th
where o’ € [e7"/2 eM?), ' th t) € - % %) and s,ty,t2 € [—1F, 2h) , hence
Cy reih/2 1 (s reih/2 1
—Z )< < B.
h <2ﬁ+2 Sm2 s gt 2\r (B.6)
C yel —h/4 M2\ ty re/h 1
=1 2 _ (4 Z2)<
h+< . + he k\/E . 2x+2 <m
& _h eIh/2\ ty reth 1
< he M4 Z4(=+=). (B
h+< =4 b= 5 (o s (B.7)
For a given value of j, (B.6) is satisfied for at most T’ej/ + 1 values of ms , and for a given value

of j and k, (B.7) is satisfied for at most re’ | 1 values of m1. By using Lemma A.1, we obtain
that Q.n(z,y,2) can intersect at most

1n (r+1)
[+

> <(r+1)eh/2+1) <Tex—jh+1> <r€\22 +1>

=1 =5

1_+ . ) .
h 2,35h/2 jh jh/2
r-e re re
= (r+1)eh/2+1> + + +1
L T2
( 3(r+5)h _3(7“71)h) ( (r+5)h _(r=1)h

<2 ( 1 h/2 1) e 4 —e 1 e 2 —e 2
<r((r+1)e™* + T + D)

(r+5)h (r—1)h

e 4 —e 1 r42
( e ), 42

+

sets of the form Qp(e/", he™"/*k, hA JhS ! hyag )
3. There are at least r values of j such that satisfies (B.4). For a give value of j, there are at
least (r 4 1)e/? values of k satisfies (B.5). Further, for a given value of j, (B.6) is satisfied for

at least T6%2 values of mg, and for a given value of j and k, (B.7) is satisfied for at least Te]

values of m;. By Remark A.1, it follows that Q. (z,y, z) must intersect at least

1nx+ (7"+1)‘|

2 3jh/2 3(r+3)h _ _3(r+1)h
Z (r 4 1)eh/? <Te )Zr2(r+1)eh/2 [(e : c )+(T+1)

$3/2 e3h/2 —1 ,r.2
i lnz_ (r4+1)
J=1%E =]

sets of the form Qh(ejh he_h/4k hA JhS ! —nyag T m). [
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Proof of Proposition 3.10. (=) is trivial.
(<) Suppose there exists h > 0 such that R := sup #4,(ANQp(z,y,2)) < 0.
(z,y,2) €S2

For 0 < t < h, we have #, (AN Q¢(x,y,2)) < #Huw(ANQn(x,y,2)) for all (z,y,2) € Ss.
Hence sup #4,(ANQ(z,y,2)) <R.

(z,y,2)€S2
If t > h, assume t = rh where r > 1. By Lemma B.1 the box Q,x(x,y, z) is covered by a union
of at most N, sets of the form Qp,(e/", he M4k, hAe_j:,ll S}:elfh/%m). This implies

sup  #w(ANQua(2,y,2)) S Np- sup  #u(ANQu(e?" he "k, hAZL S L, m)

(z,y,2)€S2 §,kEL,METL?
<N, -R.
Thus,
N,
D7 (A) < limsup CTEDE R
r—00 3 (egT’h/4 _ e—37”h/4)
R r2 ((7‘ + 1)eh/2 + 1) (63(”;5)!1 B 6_3(7‘21)}1) ) (e('r+25)h B e_(r;l)h)
=R- lim
r—o0 2(T3h)3 (e3rh/4 — g=3rh/1) e3h/2 — 1 r(eh —1)
(r+5) (r-1)
+(e J:1 . — e~ 41h) n (T‘—I—Q)
r(eh/2 —1) r2
3e17h/4

= 213 (e3h/2 — 1) < .

A similar argument shows the last equivalent conditions. O



Appendix C

Basic Facts about Density for
Shearlet Systems of 53

Lemma C.1. Let h > 0 and r > 1 be given and let
X3 = {(ejh, hk‘ejh/z,hshkejh/erjhm) (g k€ Z,me Z%).
Then the following statements are true.
1. X3 is Qp-dense in S3.
2. Any set Qun(x,y, z) intersects at most

(e(r—l)h2h_ e—(r+5)h) N 4r4(63(r—1)h/4 _ e—3(r+5)h/4)
e?h —1 e3h/2 — 1
(e(r—l)h/2 _ e—(r+5)h/2) (e(r—l)h/4 _ e—(r+5)h/4)

] + 8r ] +8(r+1)

N, =3

+ (27°2 + 4r)

elements in X3.

3. Any set Q.n(x,y,z) contains at least

elements in Xs3.

Proof. 1. Fix any (z,y,2) € S3. We will show that there exist (a,s,t) € Qp, j, k € Z and m € Z?
such that

(2,9, 2) = (e’ hke?™? hkS,, jnj2 Agnm) * (a,s,t)
= (ae’" hke"? 4 5eIM/2 1S, sz Agin(m + 1)) € Qu(e’ hke! 2 hkS,, inss Aginm).

In particular,
z=ae’? y=(hk+s)e"? 2= Sy keins2Agin (hm +t).
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These three equalities are equivalent to

. Ina Ina
=t (C.1)
eI s
= N . (C.2)
1
= EAGJhShkeJh/QZ ht (03)
———
=:C

Now we observe the following

e For any a € [e7"/2,eM?), by using (C.1), we form the interval [B2 — 1 1Bz 4 1) which

contains a unique integer j.

[ye —jh/2 1 ye—ih/2

e For any s € [~%,2), by (C.2) we form the interval — 1 % + 1) which contains

a unique integer k.

e Following from (C.3), for any t € [—2%,2)2 we form intervals [C1 — 3,C1 + 3), and [Cy —
%, Cy+ %) which contain unique integers mi and mg, respectively.

Therefore {Qp, (e, hkel"/2, hSyeins2 Aginm) : 4,k € Z,m € Z*} is a disjoint covering of Ss, i.e,
X3 is Qp-dense in Sg.

2. Fix any (z,y,2) € Sg and suppose (u,v,w) € Qun(x,y,2) N Qpu(el”, hkejh/2,h5hkejh/2Aejhm).
Then there exist (a,s,t) € Q. and (a’,s',t') € Q), such that

(u,v,w) = (z,y,2) * (a, s,t)
= (az,y + sv/z,z + SyA,t)
and (u,v,w) = (e, hke!"/? WSy ins2 Aginm) x (a', s 1)
= (d'& hke"? 4 §'eIM2 S, s Ain (hm + 1)),

e In particular, ax = a’e/" with a € [e="™"/2 e™/2) and o’ € [e="/?,€M/?), we have

ln_x 7’+1< ‘<lnaz+7‘+1.

n 2 )= 2

Therefore, this is satisfied for at most r + 2 values of j.
e Further, y + s\/z = hke//? 4 s'ei"/2 ie., k = #(y + s/x) — %’, where s € [~ ™) and

s' € [, 5. Tt follows that
ye Ih/2 B (re™2\/x 4 1) k< ye=in/2 N (re?h2\/z 4+ 1)
h 2 - h 2 ’

For a given value of j, this is satisfied for at most re/"/2,/z + 2 values of k.
o Furthermore, z + Sy Ayt = Sy in/2 Agin (hm + t') with 1, ¢ € [T, 20) and #), ) € [-4,2). Tt

follows that ,
t
Ae]hS_ SyAgt —

hkeih/2 E

Tk

AeahS ! eih/2% +h
~—

=:C
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ze My ze I — hke M2\ /z

Note that A;}LS “lo S A, = < > Then we obtain

hkeih/27Y X 0 \/ge—jh/2
—jh ze b — hke=IM/2, /3 th
my = Cy + = t1+(yf \/_)tg——l
h h h
L VER g
me = Coy + 3 to -
Thus,
jh/2 jh/2
2_w < mgo §02_|_er—2+1)’ ((14)
—ih _ hke—IN/2 —jh 41
C’1—|—(yﬁe he \/if)tz_(r$e2+)§ml
—jh _ hke—IN/2 —jh 41
<4 e . ), rme L) (C.5)

For a given value of j and k these two inequalities are satisfies at most r/re™7 h/2 1 9 values of
my and at most rze 7" + 2 values of m;. Hence, by Lemma A.1 Q,,(x, ¥, z) can intersect at most

Inz | r+1
[L24+552]
(7‘\/56_’h/2 + 2)2 (rxe_’h + 2)

j=1E -4

1 +1
[+

_ [r3$3e—2jh i (2r2 n 4T)xe—jh 14232 30h/4 | ST\/Ee—jhﬂ 18

j:Lh]llac_rérlJ
<3 (e(r—l)h _ e—(r+5)h) N 2 (63(r—1)h/4 _ e—3(r+5)h/4)
— e2h 1 e3h/2 _ 1
(r—1)h/2 _ —(r+5)h/2 (r—1)h/4 _ —(r+5)h/4
2 G e ) (e e )
+ (2r° 4 4r) " + 8r 1 +8(r+1)
sets of the form Qp,(e/", hke?™/2 hS,, ins2 Aginm).
A similar argument proves the statement 3. O

The following proposition describes how a subset A of Sg possesses finite upper density and
positive lower density.

Proof of Proposition 3.14. (=) is trivial.

(<) Suppose there exists h > 0 such that R := sup #4,(ANQp(z,y,2)) < 0.
(z,y,2)E€S3

For 0 < t < h, we have #,(ANQ¢(x,y,2)) < #u(ANQn(x,y,2)) for all (x,y,z) € Ss.

Hence sup #4,(ANQ:(x,y,2)) <R.
(wyyvz)ESS
If t > h, assume ¢ = rh where r > 1. By Lemma C.1 the box Q,x(x,y, z) is covered by a union

of at most N, sets of the form Q(e/", hkelh/2, ISy, eins2Aginm). This implies

sup  Huw(ANQrn(z,9,2)) S Npw sup  #y (AN Qu(e?” hke?™?, hSy iz Acinm))
(z,y,2)€S3 3, kEZ,MEL?

<N, - R.
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Thus,

. N R
Dy(A) < hrm oL (rh)3 (et — e—Thy

i R (e(r—l)h _ e—(?“+5)h) 4 (63(7’—1)h/4 _ e—3(7’+5)h/4)
=R (rh)3 (et — e—rhy o2h _ Tar B3h/2 _ |
(r—1)h/2 _ ,~(r+5)h/2 (r=1)h/4 _ ,~(r+5)h/4
2 G e ) L o.le e )
+(2r" + 4r) 1 + 8r Y +8(r+1)
_ Re"
W1 -~

A similar argument shows the last equivalent conditions. O



Appendix D

Basic Facts about Density for
Shearlet Systems of S,

Lemma D.1. Let h > 0 and r > 1 be given. Let
Xy = {(e’", hke?™? he™2m) : j k € Z,m € 7%},
Then the following statements hold:
1. X4 is Qp-dense in Sy.
2. Any set Qn(x,y, z) intersects at most

(e(rF2h/4 _ =(r1)h/4) 1 1
eh/2 —1 T

N, == r(r +1)2 [e?’h/‘l + ﬁ] [eh T Jlr 1)]

elements in Xy.

3. Any set Q.p(x,y,z) contains at least

(erH2h/4 _ o= (r1)h/4)
eh/2 — 1

Ny :=r(r+1)%e™4

elements in Xy.

Proof. 1. Fix any (z,y,2) € S4. We will show that there exist (a,s,t) € Qp, j, k € Z and m € Z?

such that

(z,y,2) = (2" hke?/? he™m) @ (a, s, t)
= (ae’ hke’? 4 5?2t + he M2 AT ST m) € Qe hke 2 he ™ ?m).

In particular,

z=ae’ y=(hk+s)e’"? z=t+he M2A7 S m,
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are equivalent to

Ina Ina
= Th D
ye Ih/2 g
— _ 2 D.2
oh/2 oh/2
m = TSSAGZ TSSAat. (D3)
C

Now we observe the following

e Following from (D.1), for any a € [e~"/2, e/?)

contains a unique integer j.

, we form the interval [me -3, lnT 1) which

o Take the same number a as above and s € [—%, 2). Following from (D.2), we form the
interval [yeiéhm - %, ye*}ihm + %) which contains a unique integer k.
e Take a,s as above, and for any ty € [—%,%) By (D.3), we form the interval

h h/ . . .
Oy — ¢ /;\/E,C'g + #) which contains integers mgy. Further, by using (D.3) for any

. h/2 h/2 h/2 h/2 .
t € [—%, %), we form the interval [C’l - ‘;\/EtQ — 52,01 - ¢ ‘;L\/atQ + “) which

contains integers m;.

Therefore {Qp,(e/", hkelh/2, he_h/zm) :j,k € Z,m € Z?} is a covering of Sy, i.e., Xy is Qp-dense
in S4.

2. Fix any (z,y,2) € Sy and suppose (u,v,w) € Qpp(z,y,2) N Qh(ejh,hkejh/z,he_h/2m). Then
there exist (a,s,t) € Q. and (d’,s',t') € @ such that

(u,v,w) = (z,y,2) @ (a,s,t)
= (az,y + svx,t + A;71S712)
and (u,v,w) = (2, hke?2 he™m) @ (d', s, 1)
= (

a'eé" hkelt? 4 't he _h/zA 1S m).

e In particular, ax = a’e’” with a € [e=""/2,e"™/2) and o’ € [e7"/2,e"/?), we have

Inz r+1 . Inx r+1
b < i< =T
h y SISt

Therefore, this is satisfied for at most r + 2 values of j.

e Further, y + sz = hkel™? + s'edh/? e, k = ﬂ( + sy/x) — 8/, where s € [, th)
and s’ € [—5, 5) It follows that

ye Ih/2 B (rel"2/x 41) <k < ye /2 n (re?h2/z 4+ 1)
h 2 - T h 2 '

For a given value of j, this is satisfied for at most re/"/ 2/x + 2 values of k.



e Furthermore, t + A;1S;7 1z = ¢/ + he™"/2A 1S 'm with ¢ € [, 22)2 and ¢/ € [-4,4)2.

It follows that
/2 h/2

m = TSS/AalAngs_lz +eTSS,Aa,(t — ).

=:C
Then we get
eh/? ’ / ’ /
my = Ch + T[a (t1 — 1)) + s'Va/(t2 — th)]
h/2 / t _t/
mo = 02 + c \/(?}E 2 2).
Thus,
3h/4(p 4 h/4(p 41
02—%gm2g02+%, (D.4)
and
s'aleh/? el(r+1 s'Valeh/? el(r+1
o= D gy gy - D <o U, gy CUED ()

For any fixed a € [e7™/2,eh/2) o' € [e7h/2,e"/2), s € [0 Th) and &' € [-L4, 1), (D4) is
satisfied for at most e3*/4(r+ 1) 41 values of my and (D.5) is satisfied at most e (r +1)+1
values of m;.

By using Lemma A.1 we obtain that Q,,(x,y, z) can intersect at most

Inz | r+1
T2 1
> (Va2 1) (r+ 1) + D(E r + 1) + 1)
j= 15—
(r—1)h/4 _ —(r+5)h/4
< (1) + 1)+ 1) + 1) MG eh/2i1 )—i-(r—i-l)
1 1 (e(r—l)h/4 _ e—(r+5)h/4) 1
_ 2 | 3h/4 h 1
r(r+1) [e +7(7‘+1)] [e +(7‘+1)] YR —i—l—i—T
sets of the form Qy,(e’", hkel"'2, he="/?m).
A similar argument proves the statement 3. U

The similar results in Proposition 3.5 in Section 3.2 hold for subset A of S4 as follow.

Proof of Proposition 3.16. (=) is trivial.

(<) Suppose there exists h > 0 such that R := sup #4,(ANQr(z,y,2)) < 0.
(z,y,2)ESq

For 0 < t < h, we have #, (AN Q¢(x,y,2)) < #u(ANQn(x,y, 2)) for all (z,y,2) € Sy.

Hence sup #4,(ANQ(z,y,2)) <R.
(wyyvz)ESZI
If t > h, assume t = rh where r > 1. By Lemma D.1 the box Q,x(x,y, z) is covered by a union

of at most N, sets of the form Qp,(e/", hkelh/2, he_h/2m). This implies

sup  H#w(ANQup(z,y,2)) < Np.-  sup  F#u,(AN Qh(ejh, hkejh/z, he_h/2m))
(@,y,2)€84 3. kEL,MET2

<N, - R.
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Thus,

N,R
+ 1 .
D} (A) < hl;ri sup 2(rh)3(erh/* — e—Th/4)

_ r(r+1)2R 1 1
— A 2<rh>3<(erh/4 - e~Th/4) [em T 1>} [eh T 1>}
(e(r—l)h/4 _ e—(r+5)h/4) 1
eh/2 —1 L T
Re3h/2

P CEE

A similar argument shows the last equivalent conditions. O



Appendix E

Matlab Code

function [z] = ShearMexHat(xil,xi2,gamma)
% xil < x < xi2 : a fixed interval
% gamma : the decay rate
zb = fminbnd(Q@(xi) maxpsi(xi), xil, xi2);
za = fminbnd(Q(xi) minpsi(xi), xil, xi2);
fori=1:5
c(i) = i*0.2;
R(i) = c(i)A(gamma/2)(eta(gamma/4)+1)*..
rest(xil, xi2, c(i), gamma)* (2*zeta(gamma/2))
A(1)= 2*pi/((c(i))A2)*((et (gamma) 1)* minpsi(za)-rest(xil, xi2, c(i)));
B(i)= 2*pi/((c(i))A2)*(-(eta(gamma)+1)*maxpsi(zb)+ rest(xil, xi2, c(i)));
D(i)= B()/A();
end

% eta(gamma)= )" m (we use Maple to compute these values)
keZ

% R(i) : Remainder term, A(i) : Upper frame bound, B(i) : Lower frame bound

function yb = maxpsi(xi)
% yb = esssup Q/A)(S,;TA;&) ’
£ER?
yy=0; N = 20; a=2;
for m=-N:N
yy = hpsi(aAm*xi)+ yy;
end
yb =-yy;

function ya = minpsi(xi)
2
el a=T 41
% ya = egz[%&rzlf (S, AL €)

yy=0; N = 20; a=2;

for m=-N:N

yy = hpsi(aAm*xi)+ yy;
end
ya =yy;
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function f = hpsi(xi)
% f= |15, A1)
a=2;

f = abs(2/sqrt(3)*piA(-1/4)*(a*xi)A(2)*exp(-(a*xi)A2) /2)A(2);

‘ 2

function suma = rest(xil,xi2,c,gamma)
% suma = > [F(%m)F(—%m)] s
meZ?\{0}
for m1 =1:20
x(ml) = fminbnd(Q@(xi) res(xi,m1,c,gamma),xil,xi2);
val(ml) = sqrt(res(x(m1),m1,c,gamma)*res(x(ml),ml,-c,gamma));
end
suma = sum(val) ;

function f = res(xi,ml1,c,gamma)
1/2

% f = [F(%m)l"(—%m)]
a=2;tq=0; N=10;

for j=-N:N

tq = (hpsi(aAj*xi,m1,c,gamma)+hpsi(aAj*xi,-m1,c,gamma))-+tq;

end

f = -tq;
function f = hpsi(xil,m1,c,gamma)
% f = T(w) = esssup 3 ‘Q/S(SSETA;;&)‘ ‘@(S;CTA;&—I—ZL‘J)‘

EeR? ke
o
2 }
a=2;

f’: abs((2/sqrt(3)*pin(-1/4))Al*abs(a*xi1)A(2)* exp(-((a*xil)A2)/2)...
*abs((2/sqrt(3)*piA(-1/4))A1*(abs(a*xi1+2*pi*m1/bb))A(2)...
*exp(-((a*xil + 2*pi*m1/bb)A2)/2))*M(gamma);

% M(gamma) = max {|2_j£1|%,
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