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1 

CHAPTER 1 

I. Introduction 

The retina is an anatomical component of the eye where light particles are captured and 

transmuted into neuronal signals for vision with the help of photoreceptor cells (rods and 

cones). In the mammalian retina, rods occupy a share of approximately 90% of photoreceptor 

cells and cones occupy the remaining 10%. Rods operate in dim light whereas cones operate 

in daylight and perform colour discrimination. The retina is an outpost of the central nervous 

system where several genes play a role in retinal dystrophies. Leber Congenital Amaurosis 

(LCA) is a subgroup of a set of early onset severe retinal dystrophies (EOSRD) causing 

severe visual impairment from birth with legal blindness at the age of 2 years[13]. This study 

investigates AIPL1 one of the genes underlying LCA. 

 

Figure 1: Structure of the human retina 

 

 a. Schematic representation of the human eye   b . Cross-section of the human 

retina 

a. Schematic representation of the human eye: Light passes through the pupil, lens and 

vitreous cavity before reaching the light-sensitive retina. b . Cross-section of the human 

retina: 

(1) Ganglion cell layer - axons form optic nerve connects the retina to the brain (2) Inner 

nuclear layer, which contains second-order neurons, such as bipolar, amacrine and horizontal 

cells (3) Outer nuclear or photoreceptor (PR) layer, which contains the cell bodies and nuclei 

of the rod and cone PRs (4) PR outer segments, which are densely packed with Opsin-

containing discs and are separated from the inner segments and cell bodies by a narrow 200 – 
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500 nm-long connecting cilium (not visible) (5) Retinal pigment epithelium (RPE), a 

monolayer of cells containing tight junctions that separates the neural retina from the choroid, 

which supplies blood to the RPE and PRs (outer retina). Notice the inverted orientation, in 

which light passes through the nerve fibre layers, inner retinal blood vessels and inner cell 

layers before reaching the light-sensitive PRs, which are located close to their blood supply. 

[92,105] (Fig reproduced with kind permission of: Nat Rev Genet. 2010 Apr;11(4):273-84. 

doi: 10.1038/nrg2717) 

 

1.1 Visual Pigments: Role of rods and cones 

In photoreceptors 11-cis retinal, a chromophore is a light sensitive component linked to an 

opsin apo-protein. Opsin activates signaling pathways and generates a cellular response to 

light. Opsins are G-protein coupled receptors with a binding pocket for 11-cis retinal. The 

visual pigment is thus formed when the apo-protein part of the opsin and 11-cis retinal 

combine [70]. The apo-proteins are not photosensitive by themselves. Opsins become 

photosensitive when 11-cis retinal is attached. Rhodopsin is the visual pigment of rod 

photoreceptors. In addition, three types of cone photoreceptors are present in humans, each 

one with a specific absorption peak at a wavelength corresponding to red, green, and blue 

light [12]. When light strikes the visual pigment, the isomerization of 11-cis retinal to all-

trans retinal in the binding pocket transforms the apo-protein into an active conformation and 

initiates phototransduction. While the newly formed all-trans retinal is required for the 

activation of opsin all-trans retinal must be released from opsin and fresh 11-cis retinal must 

be bound to regain light sensitivity [71]. 

1.1.1 Visual cycle 

The conversion of all-trans-retinal back to 11-cis-retinal requires a complex sequence of 

biochemical reactions involving several enzymes and retinoid binding proteins. Collectively, 

these reactions are known as the visual cycle or retinoid cycle. These biochemical reactions 

take place primarily in the retinal pigment epithelium (RPE). The recovery of 11-cis retinal 

during the visual cycle is important to maintain the sensitivity of the visual system [82] 

[57,59]. Abnormalities, dysfunction and/or death of retinal photoreceptors constitute the 

primary cause of visual impairment or blindness in most of the retinal degeneration diseases, 

such as Lebers’s congenital amaurosis (LCA), retinitis pigmentosa and macular degeneration. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=photoreceptor+degeneration+genetic+and+mechanistic+dissection+of+a+complex+trait
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1.2 Inherited retinal degenerations: Leber Congenital Amaurosis (LCA) 

Almost 150 years ago, Theodore Leber [61] described a severe form of vision loss at or near 

birth, which was later given his name. LCA accounts for at least 5% of all retinal dystrophies 

and is one of the main causes of blindness in children [44,77,84]. 

Table 1: List of genes frequently identified underlying LCA and EOSRD 

Gene Symbol Locus  Reference 

Retinale Guanylate cyclase 2D GUCY2D  LCA1 [76] 

Retinal pigment epithelium specific protein 65 kDa RPE65 LCA2 [35] 

Spermatogenesis Associated Protein 7 
SPATA7 LCA3 [73] [104] 

Aryl hydrocarbon receptor interacting protein-like 1  AIPL1 LCA4 [88] 

Leber congenital amaurosis 5 LCA5 LCA5 [15] 

Retinitis pigmentosa GTPase regulator interacting 

protein 1 

RPGRIP1 LCA6 [21] 

Cone-rod homeobox CRX LCA7 [28] 

Crumbs homolog 1 CRB1 LCA8 [18] 

Nicotinamide Nucleotide AdenylylTransferase 1 
NMNAT1  LCA9 [11,26,53] 

[75] 

Nephronophthisis 6 NPHP6 , 

CEP290 

LCA10 [16] 

Inosine monophosphate dehydrogenase 1 IMPDH1 LCA11 [8] 

Retinal degeneration 3 RD3 LCA12 [29,79] 

Retinol dehydrogenase 12 RDH12 LCA13 [74] 

Lecithin retinol acyltransferase  LRAT LCA14 [93] 

Tubby like protein 1 TULP1 LCA15 [19,68] 

Potassium Channel, Inwardly Rectifying, Subfamily 

J, Member 13   

KCNJ13  LCA16 [85] 

The disease was characterized by a reduced or abolished photoreceptor response to light, 

wandering nystagmus, and a normal fundus at birth [27] progressing to a typical appearance 

of retinitis pigmentosa. There has often been a failure to diagnose LCA because of the normal 

appearance of the fundus in the first months of life, leading to the misdiagnosis of cortical 

blindness. LCA and related early-onset retinal degenerations are caused by mutations in at 
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least 23 genes (http://www.ncbi.nlm.nih.gov/books/NBK1298/, http://www.retina-

international.org/sci-news/databases/disease-database/leber-congenital-amaurosis/). All these 

genes were identified to cause LCA but few of them are rare sometimes identified in very 

early onset.  

 

Figure 2: Schematic representation of the human retina - showing photoreceptors (PRs),  

muller glia, microglia, astrocytes, and vessels. The outer nuclear layer (ONL) is composed of 

the cell bodies of rod and cone PRs, the inner nuclear layer (INL) contains the cell bodies of 

several types of neurons (horizontal cells, bipolar cells, amacrine cells) as well as the bodies 

of Muller glia. The ganglion cell layer (GCL) contains ganglion cells. Left panel indicates the 
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list of genes underlying LCA. (Fig modfied from : http://www.retina-international.org/sci-

news/databases/disease-database/leber-congenital-amaurosis/) 

 

1.3 Aryl Hydrocarbon receptor Interacting Protein Like 1 (AIPL1) 

AIPL1 is the fourth gene linked with LCA [88]. The share of AIPL1 in LCA is about 7 %. 

Main features of AIPL1 are three tetratricopeptide repeat (TPR) domains, a poly proline rich 

region, and a FKBP506 binding domain.  

 

AIPL1 expression is limited to photoreceptors and the pineal gland, the gene consists of 6 

exons which encodes a 384 amino acid protein containing three tetratricopeptide (TPR) 

motifs [81,88,97] and belongs to FK506-binding protein (FKBP) family. [88]. Early studies 

revealed that AIPL1 is expressed only in rods and performs a function essential for the 

maintenance of rod photoreceptor [97]. Further studies revealed the presence of AIPL1 in rod 

and cone photoreceptors of the developing human retina but absent from cone photoreceptors 

in adult human retina [99]. Later it was disclosed that the presence of AIPL1 is endogenous 

in adult mouse and human cones, albeit the expression is very low in cone cells compared to 

rod cells [51]. Human AIPL1 protein sequence contains three tetratricopeptide (TPR) motifs, 

34 amino acid motifs that are thought to serve as interfaces for protein-protein interactions 

[7,20]. TPR motifs are found in proteins that mediate a variety of functions, including protein 

trafficking or protein folding. These proteins are usually associated with multiprotein 

complexes [7]. In addition, a Proline-rich region is present at the carboxyl-terminus of the 

protein, in humans. Similar sequences are found in situations requiring rapid recruitment or 

interchange of several proteins, such as signaling cascades or initiation of transcription [46]. 
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Figure 3: Schematic representation of AIPL1 protein [62] 

(Fig modified from: Biochemistry. 2013 Mar 26;52(12):2089-96. doi: 10.1021/bi301648q. 

Epub 2013 Mar 13) 

1.3.1 Role of TPR motifs in AIPL1 

The presence of TPR motifs downstream from a Peptidylprolyl isomerase (PPIase) domain in 

AIPL1 makes it a close relative of the larger members of the FK-506 binding protein (FKBP) 

family such as FKBP52 and AIP, which function in the maturation or translocation of steroid 

receptors and dioxin, respectively [50,78]. The TPR motif is an evolutionary and functionally 

conserved but degenerate motif found in a number of structurally unrelated proteins. It 

mediates the binding of specific protein-interaction partners [98]. The TPR motif consists of a 

34 aminoacid sequence comprising a pair of anti-parallel alpha helices that are arranged in 

large superhelical arrays of tandem repeats, forming a contiguous concave surface suitable 

for binding to a peptide ligand. Proteins containing TPR motifs are widely distributed across 

multiple classes of proteins involved in a variety of cellular functions [14,87]. 

The importance of the TPR domain in AIPL1 and its role in protein interactions were 

investigated by analyzing the mutations within the TPR domain of AIPL1, located between 

amino acid residues 181 and 330. At this site many LCA-associated mutations of AIPL1 were 

found [43]. Along with mutations the other aspect which abolished interactions is the removal 

of the chaperone TPR acceptor site (residues 329-384) (figure 4). 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=unique+proline+rich+domain+regulates+the+chaperone+function+of+AIPL1
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1.3.2 Chaperone role of AIPL1  

AIPL1 role as a chaperone was indicated by aligning of AIPL1 with the aryl hydrocarbon 

receptor interacting protein (AIP), in which AIPL1 shares 49% similarity with AIP [88]. The 

proteins of the FKBP family function as chaperones and typically do not act at the step of 

initial polypeptide folding. Rather, these proteins are “specialized chaperons” that assist 

specific client proteins in later stages of maturation, subunit assembly, transport, and 

degradation [7,9,106]. AIPL1 interacts with the molecular chaperones Hsp70 and Hsp90. 

Probing the role of these chaperons in AIPL1 chaperone activity showed that AIPL1 

cooperated with Hsp70, but not with Hsp90, to suppress the formation of NUB1 inclusions. It 

was shown that AIPL1 may use components of the Hsp70 and Hsp90 chaperone machineries 

to fulfill its important photoreceptor-specific functions [37]. 

1.3.3 Role of phosphodiesterase 6 (PDE6) in retina and influence of AIPL1 on PDE6 

In the retina phosphodiesterase 6 (PDE6) is highly represented and controls cytoplasmic 

levels of cyclic guanosine monophosphate (cGMP) in outer segments of the rods and cones in 

response to light [12]. Retinae lacking AIPL1 showed rod photoreceptor degeneration which 

is due to massive reduction of rod cGMP phosphodiesterase (PDE6) subunits (α, β and ) but 

the link between AIPL1 and the stability of PDE6 subunits is not known. Ex-vivo pulse label 

analysis demonstrated that AIPL1 is not involved in the synthesis of PDE6 subunits [54]. 

Instead, rod PDE6 subunits are rapidly degraded by proteasomes in the absence of AIPL1. 

This rapid degradation of PDE6 is due to the essential role of AIPL1 in the proper assembly 

of synthesized individual PDE6 subunits. It was shown that the catalytic subunit (α) of PDE6 

associates with AIPL1 in retinal extracts and is needed for the proper assembly of functional 

rod PDE6 subunits. [54] 
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Figure 4: Potential AIPL1 photoreceptor functions 

(Fig reproduced with kind permission of : Prog Retin Eye Res. Jul 2008; 27(4): 434–449. 

doi:  10.1016/j.preteyeres.2008.03.001) 

Schematic representation showing potential roles of AIPL1 within photoreceptors. AIPL1 is 

able to modulate the nuclear localization of NUB1, which may affect the NUB1 NEDD8 and 

FAT10 ‘busting’ activity (1) AIPL1 interacts with and enhances stability of the PDE 

holoenzyme (2) AIPL1 may enhance transport and stability of farnesylated proteins to the ER 

(3) or other target membranes (4). AIPL1 is likely to utilize the Hsp70 and Hsp90 chaperone 

machinery to execute its cellular functions [55].  

Through Yeast two-hybrid analysis it was demonstrated that AIPL1 is able to interact with 

and aid in the processing of farnesylated proteins in a farnesyltransferase-dependent manner 

[98]. Protein prenylation directs protein-membrane interactions and is important for the 

maintenance of retinal and photoreceptor cytoarchitecture. AIPL1 may protect the 

http://dx.doi.org/10.1016%2Fj.preteyeres.2008.03.001
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farnesylated protein from proteasomal degradation, or chaperone the targeted translocation of 

the farnesylated protein to an appropriate target membrane or to the ER for further 

processing.  

1.4 Alternative splicing  

Alternative splicing enables one gene to produce multiple mature transcripts with different 

sequences [38]. Genome-wide analyses revealed that 40 - 60% of human genes undergo 

alternative splicing [69]. Alternative splicing gives rise to functionally different proteins with 

specific biological function [90] and the regulation of alternative splicing is important for 

diverse biological processes. There are several types of alternative splice events, which vary 

in frequency. In vertebrates, the inclusion or skipping of entire exons are the most frequent 

alternative splice event [49]. Defects in splicing are associated with cancer [45,47,48] and 

other human diseases [103]. The advancements in proteomics have revealed many novel 

splice variants of the genes responsible for retinal disorders. Recent studies on alternative 

splicing and retinal degeneration reported mutations in alternatively spliced retina-specific 

exons of the widely expressed Retinitis pigmentosa GTPase regulator (RPGR) and COL2A1 

(collagen, type II, alpha 1) genes underlying X-linked RP and ocular variants of Stickler 

syndrome, respectively [64].  

1.4.1 Alternative splicing in AIPL1 

Alternative splicing of AIPL1 was shown to be common among mammals and affects regions 

encoding functionally important protein domains [41]. In addition, the alternatively spliced 

exons have been found to harbor mutations underlying LCA. Since alternative splicing is 

thought to broaden the functional range of a gene, the question arises to what extent the 

AIPL1 isoforms functionally differ and whether this affects the impact of mutations occurring 

in the alternatively spliced AIPL1 exons [41].  

Besides a major full length mRNA, the alternative splice variants were less abundant. SV2 

and SV3 appear rarely whereas the frequency of SV4 and SV5 is very rare[42]. Given that 

AIPL1 is involved in both, cell cycle progression and photoreceptor maturation, different 

splice variants of AIPL1 may be required to fulfill specialized functions in these pathways. 

Interestingly, the alternatively spliced exons do harbor LCA-causing mutations in man. In 

case of  LCA due to exon 2, 3 or 5 mutations, fully functional minor AIPL1 isoforms are 

supposed to be generated because mutations would be excluded from mature alternative 

transcripts (Exon 2 p.Gly64Arg, Exon 3 p.Thr114Ileu and Exon 5 p.Glu226Glu). This may 
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attenuate the resulting disease phenotype in comparison with mutations occurring in 

constitutively spliced exons (Exon 2 p.W178* and Exon 5 p.Gly262Ser). Recently the 

prevalence of sequence variants in AIPL1 was presented [95]. The study investigated the 

likelihood of disease causation of the identified variants, subsequently undertaking a detailed 

assessment of the phenotype of patients with disease causing mutations. The study reported 

that despite the associated phenotype being characterized by early onset severe visual loss in 

patients there was some evidence of a degree of retinal structure and functional preservation, 

which was most marked in the youngest patient. It was suggested that there are patients who 

have a reasonable window of opportunity for gene therapy in childhood. The identified splice 

variants of AIPL1 present transcriptional
 
in–frame deletions of the protein coding region, 

presumably
 

giving rise to different isoforms of the AIPL1 protein. Interestingly, the 

alternative splicing events seem to affect important protein functions since the peptidyl–

prolyl–isomerase domain
 
and the binding site of cell cycle regulator NUB1 are involved 

[2,40]. 

1.4.2 Splicing pattern in AIPL1 

Gene expression analysis with qPCR revealed the presence of six different splice variants in 

AIPL1 [41]. 

Splice 

variant 
Sequence features (skipped peptide) 

% of total 

transcript* 
ORF length 

MW of predicted 

isoform 

1 All 6 exons included 50-80 1.155 bp / 384 aa 43.9 kd 

2 Exclusion of exon 2 (aa 33-92) 10-20 975 bp / 324 aa 36.8 kd 

3 Exclusion of exon 3 (aa 93-155) 10-20 966 bp/ 321 aa 35.0 kd 

4 Exclusion of exon 5 part (aa 215-238) 5-10 1.083 bp / 360 aa 40.9 kd 

5 Exclusion of exon 2 part (aa 33-54) Rare 1.089 bp / 362 aa 41.2 kd 

6 
Exclusion of exon 2 part (aa 33-40), 

Exclusion of exon 5 part (aa 215-238) 
Very rare 1.059 bp / 352 aa 39.9 kd 

*estimated from RT-PCR and cloning frequency 

Table 2: Splicing pattern in AIPL1 
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1.5 Centromere Protein F 

The centromere is an essential structure that is required for the accurate segregation of 

genetic material during mitosis and meiosis. It serves as a platform upon which the 

kinetochore assembles, thus, it is a vital structure for mitotic spindle attachment that is 

required to guide chromosomal movements during cell division [32]. CENP-F, also named as 

mitosin, is a large human protein of 3113 amino acid residues initially identified as cell-cycle 

dependent kinetochore-associated protein in human cells using human autoimmune serum 

[83]. Its expression and localization is cell cycle dependent [22]. The protein level is low in 

G1 phase but elevated from S to early M phase [110].  

 

CENP-F is a large protein interacting with different partners through distinct protein 

domains. It posses 11 leucine zipper motifs [110], which are potential dimerization motifs 

found in DNA-binding proteins [60]. Several such motifs in the C-terminus are involved in 

its kinetochore-targeting and interaction with Activating Transcription Factor 4 (ATF4) 

[107,108]. Residues 2961-3001 of CENP-F bind to Retinoblastoma protein(Rb) [5,110] 

whereas residues 2930-2958 contain a strong nuclear localization signal (NLS) [109]. 
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Figure 5: Schematic illustration of important functional regions of CENP-F [101] 

(Fig reproduced with kind permission of : Chromosoma. 2006 Aug;115(4):288-95. Epub 

2006 Mar 25) 

 

CENP-F encodes a protein that associates with the centromere-kinetochore complex [66,101]. 

The protein is a component of the nuclear matrix during the G2 phase of interphase. In late 

G2, the protein associates with the kinetochore and maintains this association through early 

anaphase. Small GTpase Rab5 takes part in chromosome congression and regulates 

localization of CENP-F to the kinetochores [86]. CENP-F localizes to the spindle midzone 

and the intracellular bridge in late anaphase and telophase, respectively, and is predicted to be 

subsequently degraded [63].The localization of this protein suggests that it may play a role in 

chromosome segregation during mitotis. It is thought to form either a homodimer or 

heterodimer. CENP-F represents the first transiently associated kinetochore protein that has 

been identified acting as an antigen in autoimmune disease [83]. Autoantibodies against this 

protein have been found in patients with cancer or graft versus host disease [10]. 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=cenpf+mitosin++is+more+than+a+mitotic+marker
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Figure 6:  Schematic illustration of CENP-F in cell cycle 

(Fig according to: Ref: http://www.ncbi.nlm.nih.gov/gene/1063) 

 

1.5.1 Leucine Zipper Motifs role in protein interactions 

In mitosin/CENP-F family proteins, one of the striking structural characteristics is the 

richness in leucine zipper motifs [33,63,109]. These motifs may mediate protein-protein 

interactions with other proteins. Leucine heptad repeats are frequently involved in protein-

protein interactions and are found three times in the mitosin C terminus. The C terminus of 

mitosin is essential for its role in influencing cell cycle progression [110]. They may regulate 

the signaling for kinetochore localization by conveying a conformational change within 

mitosin. Removal of the region containing the leucine heptad repeats abolishes the 

homodimerization and heterodimerization capacity of the C terminus. Protein-protein 

interactions via leucine heptads in the C terminus may regulate the signaling for kinetochore 

localization by conveying a conformational change within mitosin.          
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1.6 Relationship between AIPL1 and cell cycle regulatory proteins 

During photoreceptor maturation, retinal degeneration observed in LCA patients with AIPL1 

mutations may result from a defect in the regulation of cell cycle progression. AIPL1 

interaction with NUB1 may function in the regulation of cell cycle progression and mutation 

in AIPL1 may lead to photoreceptor cell death by disrupting the normal regulation of the cell 

cycle [1]. The expression of AIPL1 in developing photoreceptors and the early onset of 

vision loss in patients with LCA suggests that AIPL1 function is critical during the period of 

rod and cone photoreceptor development [99]. 

For maintenance of the retinal cytoarchitecture and photoreceptor structure, protein 

modification by prenylation is essential in vision. AIPL1 interacts with farnesylated proteins 

and is important in the processing of farnesylated proteins in the retina [81]. Farnesylation is 

a specific type of prenylation, the addition of a farnesyl or geranylgeranyl residue to specific 

proteins. Several retinal proteins, cGMP phosphodiesterase (PDE), transducin, and rhodopsin 

kinase (RK) are known to be farnesylated [3,30,39,58]. The second possible role of AIPL1 is 

the control of photoreceptor proliferation and differentiation. AIPL1 plays a dual role during 

retinal development, regulating retinal progenitor cell proliferation and or cell fate 

specification during early stages of development and rod morphogenesis during later stages 

of development. This hypothesis is consistent with the severity and timing of onset of the 

AIPL1-associated LCA in children. 
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1.7 Aim of the study: 

Previous studies of Aryl hydrocarbon interacting protein like 1 (AIPL1) revealed several 

splice variants at the mRNA level of AIPL1 in human tissue samples [41]. In these studies 

the splice variants could not be resolved at the protein level. Here a differentiation of the 

splice variants at the protein level was approached by separated expression of cloned splice 

variants compared to human tissue samples.  

Further an interaction with the cell cycle regulator protein NUB1 (NEDD8 Ultimate Buster 

1), which plays a role in controlling many biological events, particularly cell cycle 

progression, by down regulating NEDD8 expression was reported[1]. Yeast two hybrid 

studies identified the C-terminal portion of another cell cycle protein - Centromere protein F 

(CENP-F) - to interact with AIPL1 [41]. Interaction of AIPL1 and CENP-F would support an 

early onset of disease like in LCA. In addition, various molecular features of both AIPL1 and 

CENP-F further supported such an interaction. Investigations of an interaction between these 

two proteins using both prokaryotic and eukaryotic models were approached using expression 

of AIPL1 in human cell lines with intrinsic expression of the housekeeping gene CENP-F. 
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            CHAPTER 2 

2. MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and Reagents 

All chemicals used for the study were of reagent grade if not otherwise stated.   

Name Supplier Order no 

Acrylamide/Bis-acrylamide Solution 

30%, 37:1 
Serva, Heidelberg  10688.01 

Agarose (small DNA low melt) Biozym, hess. Oldendorf 870093 

Ampicillin Sigma-Aldrich, München A9518 

Ammonium persulphate (APS) 

(NH4)2S2O8 
Merck, Darmstadt 001201-0500 

Alkaline Phosphatase  Roche Diagnostics, Mannheim 713023 

Accutase PAA, Pasching L 11-007 

Bromophenolblue Merck, Darmstadt 11746.0005 

5-Bromo-4-chloro-3-indoloylphosphat-p-

tolidin (BCIP-T) 
MBI-Fermentas, St. Leon-Rot R0821 

BSA 10X Pierce, Thermo Fisher, Schwerte 37520 

B-PER Bacterial Protein Extraction Reagent Pierce, Thermo Fisher, Schwerte 78248 

CHAPS 3-(3-Cholamidopropyl)-

dimethylammonio)-1-propanesulphonate 
Merck, Darmstadt 1.11662.0010 

Coomassie Plus Protein Assay Reagent Pierce, Thermo Fisher, Schwerte 23238 

4',6-diamidino-2-phenylindole (DAPI) Invitrogen, Darmstadt D1306 

Dimethylformamid (DMF) Roth, Karlsruhe T921.1 

Dimethylsulfoxid (DMSO) Sigma-Aldrich, München D5879 

DMEM (High Glucose without L-Glutamin) PAA, Pasching E15-009 

DMEM (High Glucose) Gibco BRL, Darmstadt 41965-070 

DMEM with Glucose + L-Glutamin PAN Biotech, Aidenbach 720107 

DMEM with L-Glutamin 
BRL / Life technologies, 

Darmstadt 
41965-021 
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Ethidium bromide Sigma-Aldrich, München E 8751 

Ethylenediaminetetraacetic acid (EDTA) Roth, Karlsruhe 8043.2 

ECL Plus Western Blotting Detection 

Reagents 
GE Healthcare, Solingen RPN2209 

Ethanol abs. p.A., 99.8% (C2H6O) Roth, Karlsruhe 9065.2 

Formaldehyde (CH2O) Merck, Darmstadt 1.04003.1000 

Formamid (CH3NO) Merck, Darmstadt 822279.100 

Fluorescence Mounting Medium DAKOCytomation, Hamburg S3023 

Glycerine (C3H8O3) Roth, Karlsruhe 7530.1 

Glycin (C2H5NO2) Roth, Karlsruhe 3908.2 

Hydrochloric acid (HCL) Merck, Darmstadt 1.00317.1000 

Imidazol (C3H4N2) Merck, Darmstadt 8.14223.0250 

Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) 
MBI-Fermentas, St. Leon-Rot R0392 

Isopropanol (C3H8O) Roth, Karlsruhe 6752.1 

Kannamycin Sigma-Aldrich, München K1377 

Lipofectamine
®
 LTX and PLUS

TM
 Reagents Invitrogen, Darmstadt 15338-100 

Lumi-Phos WB Chemiluminescent Substrate 

(AP) 
Pierce, Thermo Fisher, Schwerte 34150 

Luminol  Sigma-Aldrich, München A4685 

Luria Broth Base Invitrogen, Darmstadt 12795027 

Lysozyme Sigma-Aldrich, München L 6876 

3-(N-morpholino) propanesulfonic acid 

(MOPS, C7H15NO4S) 
Fluka, München 69947-100G 

Methanol (CH4O) Roth, Karlsruhe 4627.2 

M-PER Mammalian Protein Extraction 

Reagent 
Pierce, Thermo Fisher, Schwerte 78503 

Sodium Chloride (NaCl) Merck, Darmstadt 1.06404.5000 

4 Nitroblue-tetrazolium chloride (NBT) MBI-Fermentas, St Leon-Roth R0841 

Sodium hydroxide (NaOH) Roth, Karlsruhe 6771.1 

Nitrocellulose Transfer Membrane 

300 mm x 3 m, 0.2 µm 
Whatman, Dassel 10401396 

NucleoSpin Extract II Macherey Nagel, Hilden 740609.250 
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Phenol (C6H5OH) Roth, Karlsruhe 0038.1 

Paraformaldehyde Merck, Darmstadt 8.18715.0100 

Ponceau S Solution Sigma-Aldrich, München P 7170 

Para Hydroxy Coumarin acid (C9H8O3) Sigma-Aldrich, München C9008 

Roti Load 1 reducing Roth, Karlsruhe K929.1 

Roti load 2 Non reducing Roth, Karlsruhe K930.1 

Sodium dodecyl sulphate (SDS), Ultra pure Roth, Karlsruhe 232601 

Tetracycline Sigma-Aldrich, München T3383 

Tetra methylene diamine (TEMED)  Roth, Karlsruhe 2367.01 

Thiourea (CH4N2S) Roth, Karlsruhe HN37.2 

Triton X-100 Roth, Karlsruhe 3051.3 

Tris (hydroxymethyl) aminomethane Merck, Darmstadt 1.08382.2500 

Tween 20 Roth, Karlsruhe 9127.1 

Xylenecyanol Merck, Darmstadt 10590.0005 

Xylol (C8H10) Roth, Karlsruhe 9713.3 

 

2.1.2 Oligonucleotides 

Primers for PCR 

Gene Primer Nr Seq 

AIPL1 AIPL1-For 787 GATCCGAATTCGCATGGATGCCGCTCTGCTC 

AIPL1 AIPL1-Rev 788 TGGTGAAGCTTGTGCTGCAGCGAGTGCCCTG 

 

2.1.3 Vectors 

Vector  Order no  

pCR2.1 TOPO  Invitrogen, Darmstatd K4560.01 TA cloning 

pQE-TriSystem His-Strep 2 Qiagen, Hilden 32942 Over expression 

pCMV6-AC-GFP  Origene, Rockville, USA PS100010 Expression mammalian cells 
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2.1.4 Cell lines 

HEK293 Cell line LGC standards (ATCC), Wesel CRL-1573 

HeLa Cell line LGC standards (ATCC), Wesel CCL-2.1 

 

2.1.5 Competent cells 

Type of cells Genotype Supplier Order no 

E.Coli XL1 Blue 
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 

relA1 lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)] 

Stratagene, 

Heidelberg 
200249 

E.Coli M15 
NaI

S
, Str

S
, Rif

S
, Thi

-
, Lac

-
, Ara

+
, Gal

+
, Mtl

-
, F

-
, 

RecA
+
, Uvr

+
, Lon

+
. 

Qiagen, 

Hilden 
34210 

One Shot
®
 TOP10 

cocomp
TM

 E.coli 

electrocomp. E.coli  

F
- 
mcrA Δ(mrr-hsdRMS-mcrBC) 

φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara-leu)7697 galU galK rpsL (Str
R
) endA1 

nupG 

Invitrogen, 

Karlsruhe 

C 4040-52 

 

2.1.6 Enzymes 

Function  Enzyme Supplier Order no 

DNA-

Amplification 

Phusion
®
 Hot Start II 

DNA Polymerase 

 

Thermo Scientific, 

Schwerte 

F-549S 

DNA-Restriction EcoRI NEB, Frankfurt R0101 

 HindIII NEB, Frankfurt R0104 

DNA-Ligation T4-DNA-Ligase NEB, Frankfurt  M0202S  
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2.1.7 Antibodies 

Antibody Lable Host Type Supplier Order No 

Mouse polyclonal to AIPL1   Mouse Polyclonal Abcam, 

Cambridge, UK 

ab68636 

His Ab-Rabbit polyclonal to 6X His tag  HRP Rabbit Polyclonal Abcam, 

Cambridge, UK 

ab 1187 

Chicken anti human AIPL1   Chicken Polyclonal, 

Egg yolk 

Davids Biotech, 

Regensburg 

 

Anti-Human Full length AIPL1 Ab   Rabbit Polyclonal, 

Serum 

[81]  

Anti-Human C-terminus  CENP-F Ab   Rabbit Polyclonal Santa Cruz 

Biotechnology, 

Heidelberg 

sc-22791 

Anti-Rabbit IgG (whole molecule) – 

peroxidase conjugated 

HRP Goat  Sigma-Aldrich, 

München 

A0545 

Anti-Mouse IgG (whole molecule)  HRP Rabbit  Sigma-Aldrich, 

München 

A9044 

Anti-Chicken IgY (IgG) (whole molecule) HRP Rabbit  Sigma-Aldrich, 

München 

A 9046 

Donkey anti-rabbit IgG (H+L) Alexa 

Fluor 488 

Donkey  Invitrogen, 

Darmstadt 

A21206 

Goat anti-chicken IgG (H+L) Alexa 

Fluor 488 

Goat  Invitrogen, 

Darmstadt 

A11039 

Goat IgG anti-chicken IgY Alexa 

Fluor 564 

Goat  Invitrogen, 

Darmstadt 

A11040 

 

 

Goat anti-rabbit IgG (H+L) Alexa 

Fluor 546 

Rabbit  Invitrogen, 

Darmstadt 

A11010 
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Goat anti- mouse IgG (H+L) Alexa 

Fluor 488 

Mouse  Invitrogen, 

Darmstadt 

A11001 

 

2.1.8 BUFFERS 

10x PBS 1.37 M NaCl (80g/l) 

 27 mM KCl (2g/l) 

 100 mM Na2HPO4 (14.4g/l)  

 18 mM KH2PO4 (2.4 g/l) 

 ad 1 l Aq. dest 

pH adjusted to 7.2 with HCl 

Sterilized and autoclaved. 

5x SDS-PAGE sample buffer 

0.225 M Tris    (2.72g/100 ml) 

50% glycerol    (50ml/100 ml) 

5% SDS    (5g/100 ml) 

0.05% bromophenol blue  (0.05g/100 ml) 

0.25 M DTT    (3.8 g/100 ml) 

 dissolved in Aq. bidest, pH 6.8 
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Western Transfer buffer (1x) 

50 mM Tris base   (6.06 g/l) 

380 mM Glycine  (28.5 g/l) 

0.001 % SDS   (1 g/l) 

Methanol   (200 ml)  

 dissolved in Aq. bidest 

 

10x TBE buffer 

890 mM Tris base   (108 g/l) 

890 mM Boric acid   (55 g/l) 

20 mM EDTA   (5.84 g/l) 

 

dissolved in Aq. bidest, pH 8.0 

 

1x TE Buffer 

10 mM Tris    (1.21 g/l) 

1 mM EDTA    (0.29 g/l) 

 

dissolved in Aq. bidest, pH 8.0 using HCl 

LB medium 

25 g of Luria Broth(Invitrogen) was dissolved in 1 l of deionized water and autoclaved at 121 
o
C for 15 min Stored at room temperature. 
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2.1.9 READY KITS 

Name  Supplier Order no 

OneStep RT-PCR Kit Qiagen, Hilden 210210 

Long range two step RT-PCR kit Qiagen, Hilden 205922 

TOPO-TA Cloning Kit Invitrogen, Darmstadt K4560-01 

Illustra triplePrep Kit  GE Healthcare, Solingen 28-9454-34 

Just Spin Gel Extraction Genaxxon Bioscience, Ulm S5337.0250 

Ni-NTA agarose Qiagen, Hilden 30210 

Espresso tabletised media sets Enbase, Biosilta, Oulu, Suomi ENP1000 

Pierce
® 

BCA Protein Assay Kit Thermo Scientific, Schwerte 23236 

His Mag Sepharose Ni GE-Healthcare, Solingen 28-9799-17 

6x DNA Loading Dye Fermentas, St. Leon-Rot #R0611 

Resuspension Buffer S1 Macherey-Nagel, Hilden 740516.1 

Lysis Buffer S2 Macherey-Nagel, Hilden 740517.1 

Neutralization Buffer S3 Macherey-Nagel, Hilden 740518.1 

Qiagen Plasmid Mini Kit Qiagen, Hilden 12123 

QIAfilter Plasmid Midi Kit Qiagen, Hilden 12243 

Qiagen Plasmid Maxi Kit Qiagen, Hilden 12163 

NucleoSpin Extract II Macherey-Nagel, Hilden 740609.250 

 

2.1.10 Molecular weight standards 

Name Supplier Order no 

Spectra
TM

 Multicolor Broad Range
  Fermentas SM1841 

GeneRuler 1kb DNA Ladder  Fermentas SM3011  
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2.2 Equipment and devices 

Function Type Supplier 

Blotelutor B44 Biometra
®
, Göttingen 

Centrifuge 4K15 Sigma, Osterode, Harz 

 Rotor 12169-H  

Centrifuge 1-15 PK Sigma, Osterode, Harz 

 Rotor 12024-H  

Electrophoresis chambers Compact S Biometra
®
, Göttingen 

Electrophoresis power supply Model PS9009 Biometra
®
, Göttingen 

Balances  ALC models 98648-012-74 ACCULAB, Sartorius, Göttingen 

Fluorescence microscope BZ-8100
E
 Keyence, Neu-Isenburg Hessen 

Geldryer Mididry D62 Biometra
®
 , Göttingen 

Inverted Microscope Model IT400 VWR, Darmstadt 

Incubator CO2 Incubator C150 Binder , Tuttlingen 

Ice machine AF80 Scotsman, Berlin 

Laminar air flow MSC ADVANTAGE 1.2 Fischer scientific , Langenselbold 

Photometer Biophotometer Eppendorf, Hamburg 

Mini Centrifuge MCF-2360 LMS, Tokyo, Jp 

ROTATOR STR4  Stuart Scientific, Chelmsford, UK 

Magnetic stirrer RCT CL IKAMAG
® 

RCT CLASSIC, 

Staufen 

Mini Rocking Platform WT16 Biometra
®
, Göttingen 

Mini-Tumbling Table WT17 Biometra
®
, Göttingen 

Multiporator
®

 Electrofusion  Eppendorf, Hamburg 

Themocycler T Professional Basic  Biometra
®
, Göttingen 

 T-Professional Gradient  

Power Pack P25 T Biometra
®
, Göttingen 

Polyacrylamide Gel 

electrophoresis Apparatus  

Minigel-Twin Biometra
®
, Göttingen 

PAGE Apparatus for precast 

gels 

E260 SERVA, Heidelberg 

Homogenizer Precellys
®

 peQLab Biotechnologie, Erlangen 
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Shaker CERTOMAT
®
 MO II Sartorius, Göttingen 

Blockthermostat TB2 Thermoblock Biometra
®
, Göttingen 

Thermomixer Thermomixer Comfort Eppendorf, Hamburg 

UV-Illuminator BioDoc Analyze Gel 

Analysis (BDA) 

Biometra
®
, Göttingen 

Water bath TW12 Julabo, Seelbach 

 

2.2.1 Computer aided data processing 

Software Web links 

Chromas lite  http://www.mybiosoftware.com/sequence-analysis/1979  

Gentle http://gentle.magnusmanske.de/ 

Vector NTI 11 http://de-de.invitrogen.com/site/de/de/home/Products-and-

Services/Applications/Cloning/vector-nti-software.html 

Image J http://imagej.en.softonic.com/ 

CLC work bench 6 http://www.clcbio.com/products/clc-genomics-workbench/ 

BZ-II Analyzer http://www.keyence.de/ 
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2.3 Methods of molecular biology 

2.3.1 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) is used to amplify DNA to generate millions of copies 

of a particular DNA sequence. PCR relies on thermal cycling, consisting of cycles of repeated 

heating and cooling of the reaction for DNA melting and enzymatic replication of the DNA. 

Primers (oligonucleotides) complementary to the margins of the target sequence along with a 

DNA polymerase are key components to enable selective and repeated amplification. Almost 

all PCR applications employ a heat-stable DNA polymerase, such as Taq polymerase, an 

enzyme originally isolated from the bacterium Thermus aquaticus. The PCR involves three 

temperature incubation steps that are repeated. In the first step called denaturation, the two 

strands of the target DNA molecule are separated (denatured) by heating the DNA up to 98 

°C. This breaks the hydrogen bonds between the bases, yielding two separate strands. In the 

second step, called annealing, two primers forward and reverse hybridize to complementary 

sequences on the single strands. Annealing temperatures range between 50 °C and 72 °C. 

During the third step, called extension, the primers are extended by a thermostable DNA 

polymerase at 72
 
°C. As PCR progresses, the DNA generated itself is used as a template for 

replication, setting in motion a chain reaction in which the DNA template is exponentially 

amplified. PCR can be extensively modified to perform a wide array of genetic 

manipulations. PCR amplified DNAs, were used for cloning to generate recombinant 

molecules. Further used to study the functional genomics, gene expression, protein structure–

function relationships and protein-protein interactions. 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/DNA_replication
http://en.wikipedia.org/wiki/DNA
http://en.wikipedia.org/wiki/DNA_sequence
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http://en.wikipedia.org/wiki/DNA_melting
http://en.wikipedia.org/wiki/Enzyme
http://en.wikipedia.org/wiki/DNA_replication
http://en.wikipedia.org/wiki/Primer_(molecular_biology)
http://en.wikipedia.org/wiki/DNA_polymerase
http://en.wikipedia.org/wiki/Taq_polymerase
http://en.wikipedia.org/wiki/Thermus_aquaticus
http://en.wikipedia.org/wiki/Chain_reaction
http://en.wikipedia.org/wiki/Exponential_growth
http://en.wikipedia.org/wiki/Genetic_engineering
http://en.wikipedia.org/wiki/Genetic_engineering
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Phusion
®
 Hot Start II 

Component         20µl reaction        Final conc. 

Aq. bidest 13.4µl  

5x Phusion
®
 HF Buffer 4 µl 1 x 

10 mM dNTPs 0.4 µl 200 µM each 

Primer a (AIPL1-F) 0.5 µl 0.5 µM 

Primer b (AIPL1-R) 0.5 µl 0.5 µM 

Template DNA 0.4 µl (150 ng/µl)  

DMSO 0.6 µl (3%) 

Phusion
®
 Hot Start II 

DNA Polymerase (2 U/µl) 
0.2 µl 0.02 U/µl 

 

Cycle step Temp.      Time Cycles 

Initial denaturation 98
o
C 30 s 1 

Denaturation 

Annealing 

Extension 

98
o
C 

60
o
C 

72
o
C 

5-10 s 

30 s 

40 s 

30 

Final extension 
72

o
C 

4
o
C 

10 min 

Hold 
1 
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2.3.2 Agarose gel electrophoresis 

Gel electrophoresis is the standard lab procedure for separating DNA by size for visualization 

and purification.  

Preparation of a Standard 1% Agarose Gel 

1g of agarose powder was mixed in an Erlenmeyer flask along with 100 ml of 1x TBE buffer. 

The flask was heated in microwave for 2 min until the agarose was completely dissolved. 

Later agarose solution was cooled down for 5 min and ethidium bromide (EtBr) was added to 

a final concentration of approximately 0.3 μg/ml. EtBr binds to the DNA and allows 

visualization of the DNA under ultraviolet (UV) light. Agarose was poured into a gel tray 

with the well comb and placed the gel at 4 °C for 15 minutes until it had completely 

solidified. 

Loading Samples and Running an Agarose Gel 

To all the samples 6x DNA Loading dye (Fermentas) at 20% of the sample volume was 

added and vortexed. Once solidified, the agarose gel was placed into the gel chamber 

(electrophoresis unit) and filled with 1x TBE buffer until the gel was covered. Molecular 

weight ladder of 350 ng   was loaded into the first lane of the gel followed by samples into 

the additional wells of the gel. Gel run was carried at 100 V for 1 h until the dye line was 

approximately 80% of the way down the gel. Then the gel was carefully removed from the 

gel chamber. DNA fragments were visualized using the BioDocAnalyze Gel Analysis (BDA) 

with UV light. 

2.3.3 Isolation of DNA from agarose gels 

For isolation of DNA from agarose gels, Genaxxon’s justSpin
®
 columns were chosen due to 

the following advantages. 

The columns did not require special agaroses. No melting or lysation procedures are 

necessary to dissolve the agarose. There was no requirement of additional buffers or 

solutions, vacuum manifolds or repeated centrifugation procedures. No desalting procedures 

were necessary and the columns could be used for small- and big-sized DNA. 
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The isolated DNA could be used directly for subsequent experiments. 

The DNA band was excised from the agarose gel with a clean, sharp scalpel (as the volume 

of the elute is proportional to the gel slide dimensions, the excised gel block was kept as 

small as possible). The excised agarose slice was placed in the spin column on top of the 

column media in a 1.5 ml tube. The tube was placed in a centrifuge (Sigma, type model 1-

15PK, rotor 12024-H) and centrifuged at 5867 g for 10 min at room temperature. The elute 

containing the DNA could be used directly for cloning experiments or other applications 

without further purification or precipitation steps. 

2.3.4 Cloning 

PCR products were cloned into plasmid vectors using specific restriction endonuclease sites. 

Isolated vector plasmid DNA was digested by restriction enzymes and analyzed by gel 

electrophoresis. Glycerol stocks were prepared for positive clones. 

2.3.4.1 Restrictionendonuclease digestion 

Double stranded DNA molecules hydrolyze at specific sites with the help of restriction 

endonucleases. Endonucleases recognize specific sequences in a DNA sequence and cut at 

these sites in a reproducible fashion hydrolyzing the backbone of DNA between deoxyribose 

and phosphate groups. Amplification of DNA was done with a primer set possessing an 

EcoRI site in the forward and a HindIII site in the reverse primer. Amplified PCR products 

were cloned into the expression vector digested with the same restriction sites EcoRI and 

HindIII. Restriction digestion of recombinant DNA with EcoRI and HindIII confirmed the 

presence of all the inserts and the vector backbone.  

Reaction mix – Table 

Sample  7.5 µl 

Restriction endonuclease 1 (5 U) 0.5 µl  

Restriction endonuclease 2 (5 U) 0.5 µl  

Restriction buffer 1.0 µl 

Aq. Bidest 10.5 µl 

Total 20.0 µl 
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Restrictionendonuclease digestion was carried out for 1 hr at 37
 
°C the temperature optimum 

of endonucleases. 

2.3.4.2 Dephosphorylation 

To prevent self ligation of a vector dephosphorylation was carried out using Antartic 

phosphatase. 

Restriction digestion mix 20 µl 

Antartic phosphatase (5U) 1 µl  

Antartic phosphatase buffer 2.5 µl 

Aq. Bidest 1.5 µl 

Total 25.0 µl 

 

Dephosphorylation was carried out for 30 min at room temperature. For inactivating the 

restriction enzyme the assay was kept in a heat block at 65 °C for 5 min. 

2.3.4.3 Ligation 

Two crucial procedures in cloning are ligation of insert to the vector DNA and transformation 

of the ligation product i.e. the recombinant molecule into bacteria. Ligation was 

accomplished using the enzyme DNA ligase, usually from the bacteriophage T4. It requires 

ATP and magnesium ions to catalyze the formation of phosphodiester bond between 

juxtaposed 5’ phosphate and 3’ hydroxyl termini in double-stranded DNA or RNA. T4 DNA 

ligase will join blunt end and cohesive end termini as well as repair single stranded nicks in 

duplex DNA, RNA or DNA/RNA hybrids. 
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Reaction mix – Table 

Vector 1.0 µl 

Insert 5.0 µl 

5 X ligase buffer 4.0 µl 

T4 DNA ligase 1.0 µl 

Aq. Bidest 9.0 µl 

Total 20.0 µl 

 

Ligation was carried out at room temperature for 1 hour. 

2.3.4.4 Transformation 

2.3.4.5 Preparation of competent bacterial cells 

In a 15 ml reaction tube 5 µl Glycerol stock (XL1-Blue) and 5 ml LB medium as given in 

(2.1.8) supplemented with a bacterial strain specific antibiotic (tetracycline resistance coded 

on the F plasmid) were incubated at 37
 
°C for overnight in an orbital shaker at 180 rpm. 

100 ml LB medium in a 500 ml Erlenmeyer flask supplemented with the required antibiotic 

were inoculated with 2 ml overnight culture and were grown at 37
 
°C and 180 rpm in an 

orbital shaker for 2 hours until an OD600 of 0.6 was reached. The OD600 was tested for every 

30 minutes using a spectrophotometer. Later, the cell suspension was filled into 50 ml tubes 

and kept on ice for 30 min. Subsequently the reaction tubes were placed in a centrifuge 

(Sigma, model 4K15, rotor 12169-H) and centrifuged at 5100 g for 5 min at 4
 
°C. Afterwards 

the supernatant was discarded. 

The pellet was resuspended in 50 ml ice cold 1 mM HEPES and centrifuged at 5100 g for 5 

min at 4
 
°C. The supernatant was discarded and the pellet resuspended in 25 ml cold 1 mM 

HEPES. The pellet was centrifuged for 5 min at 5100 g and 4 °C. The supernatant was 

discarded, and the pellet was resuspended in 10 ml cold 10% glycerine. 

Centrifugation was repeated and the pellet was resuspended in 5 ml cold 10% glycerine. 

After a further centrifugation the pellet was resuspended in 1 ml cold 10 % glycerine. The 

cells could be used directly for transformation. 100 µl aliquots were prepared from the rest of 
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the cell suspension and froze them in liquid nitrogen and stored at -80 °C for later 

applications. 

2.3.4.6 Bacterial transformation by electroporation: 

Plasmid DNA was diluted to 5 ng/µl with Aq. bidest, and competent cells were thawed on 

ice. 1.5 µl (7.5 ng DNA) were incubated with 50 µl competent E.coli cells on ice in 0.2 ml 

tubes for 15 - 30 min. Electroporation cuvettes were cooled on ice. After incubation, the 

suspension was filled into the cooled (cuvettes avoiding any air bubbles). The transformation 

was performed at 2000 V using a multiporator (Eppendorf), and the transformed sample was 

flushed out of the cuvette with 1 ml LB-medium into a 1.5 ml tube. The transformed sample 

was incubated at 37
 
°C for 1 hour, 180 rpm and 100 µl of the sample was plated on LB-Agar 

supplemented with vector specific antibiotic. LB-agar plates were incubated overnight at 37
o 

C 

2.3.5 Preparation of plasmid DNA 

2.3.5.1Preparation of plasmid DNA (Miniprep) 

Overnight cultures were prepared by picking bacterial colonies from an LB plate into 5 ml of 

LB medium supplemented with appropriate antibiotics. Bacterial cultures were incubated 

overnight at 37 °C with shaking. 

DNA was extracted from 1.5 ml of bacterial culture using the Macherey and Nagel Mini Prep 

buffers. Bacterial culture was taken into a 1.5 ml reaction tube and pelleted at 5000 g for 5 

min in a centrifuge. The supernatant was discarded and the pellet was resolved in 100 µl of 

resuspension buffer (S1). 100 µl of lysis buffer (S2) was added, and the tube was inverted 

once. In the next step 100 µl of neutralization buffer (S3) was added, and the tube was 

inverted once again. The set up was centrifuged at 10,000 g for 10 min, and the supernatant 

was removed into a fresh tube. 700 µl of ice cold absolute ethanol was added to the 

supernatant and centrifuged for 30 min at maximum speed 15,000 g at 4 °C. 

Later the supernatant was discarded and 200 µl of 70% ethanol were added to the pellet and 

centrifuged for 5 min at full speed and 4 °C. Next the supernatant was discarded and the 

pellet was air dried for 5 min. The pellet was dissolved into 40 µl of TE buffer and proceeded 

for measuring DNA concentration and analytical digestion. 
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2.3.5.2 Preparation of plasmid DNA (Maxiprep) 

Maxi preps were prepared according to the manufacturer's instructions using the Qiagen 

Plasmid Maxi kit from 500 ml (low copy) bacterial overnight culture. Bacterial culture was 

collected into a reaction tube and pelleted at 6000 x g for 15 min at 4 
o
C in a centrifuge. The 

supernatant was discarded and the bacterial pellet was homogeneously resuspend in 10 ml 

buffer P1. 10 ml buffer P2, was added and mixed thoroughly by vigorously inverting 4 - 6 

times, and incubated at room temperature for 5 min. 10 ml buffer P3, was added and mixed 

thoroughly by vigorously inverting 4 - 6 times and incubated on ice for 20 min. 

The lysate was centrifuged at 20,000 x g for 30 min at 4
o
C and the supernatant was 

recentrifuged at 20,000 x g for 15 min at 4 °C. 

Qiagen-tip 500 was equilibrated by applying 10 ml buffer QBT and allowed the column to 

empty by gravity flow. The supernatant was applied to the Qiagen-tip and allowed to enter 

the resin by gravity flow. The Qiagen tip was washed with 2 x 30 ml buffer QC. Buffer QC 

was allowed to move through the Qiagen-tip by gravity flow. DNA was eluted with 15 ml 

buffer QF into a clean 50 ml tube. 

The DNA was precipitated by adding 10.5 ml room temperature isopropanol to the eluted 

DNA and mixed. The precipitation was centrifuged at 15,000 x g for 30 min at 4
o
C and 

carefully the supernatant was decanted. The DNA pellet was washed with 5 ml room 

temperature 70% ethanol and centrifuged at 15,000 g for 10 min. Carefully the supernatant 

was decanted. The pellet was air dried for 5-10 min and redissolved DNA in a suitable 

volume of buffer. 
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2.3.6 Quantification of nucleic acid 

The quality and quantity of isolated nucleic acids were determined spectrophotometrically, 

using an Eppendorf biophotometer. The A260/ A280 ratio was indicative of the degree of purity 

of the nucleic acid. Aq. bidest was used as solvent to suspend the nucleic acids and each 

sample was placed in a quartz cuvette. With a sample of solvent spectrophotometer was set at 

zero. For more accurate readings of the nucleic acid sample of interest, the samples were 

diluted to give readings between 0.1 and 1.0. Contamination of nucleic acid solutions makes 

spectrophotometric quantitation inaccurate. For an indication of nucleic acid purity 

OD260/OD280 ratio is calculated. Purified DNA has an OD260/OD280 ratio of ~1.8. Low ratios 

could be caused by protein or phenol contamination. 

 

2.3.7 Sequence analysis of plasmids: 

Sequencing of the samples was carried out to verify positive clones. DNA sequencing 

reactions were performed at Seqlab, Göttingen using Sanger sequencing with dye terminator 

technology. Seven micro litre containing 700 ng of sample were used for sequencing. 

Sequences were aligned using Vector NTI and chromatograms were analysed using Chromas 

lite. 

Reaction set up for sequencing: 

Sample 5 µl 

Forward Primer 2 µl 

Total 7 µl 

 

2.3.8 Preparation of Glycerol stocks 

For long-term storage and to increase shelf life bacterial cultures were stored using glycerol. 

200 µl of pure glycerol along with 800 - 1000 µl of bacterial solution was added into a 

cryotube and mixed thoroughly by inverting the tube. The mixture was frozen in liquid 

nitrogen for 4 - 5 min and then stored at -80 °C. 
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2.3.9 Overexpression of recombinant proteins 

2.3.9.1 Growth of standard E.coli expression cultures (100 ml) 

10 ml of the culture medium was inoculated containing both ampicillin (100 μg/ml) and 

kanamycin (25 μg/ml) in a 50 ml flask, and the cultures were grown overnight at 37 °C. 100 

ml of prewarmed media (with antibiotics) was inoculated with 5 ml of overnight cultures and 

grown at 37 °C with vigorous shaking until an OD600 of 0.6 was reached. 1 ml sample was 

taken immediately before induction. This sample was the noninduced control; Cells were 

pelleted and resuspend in 50 μl 5x SDS-PAGE sample buffer (reducing) and stored frozen (-

20 °C) until SDS-PAGE analysis. Expression of the protein was induced by adding 1 M IPTG 

to a final concentration of 1 mM. Cultures were incubated for an additional 4 – 5 h. A second 

1 ml aliquot was collected. This was the induced sample, Cells were pelleted and resuspended 

in 100 μl 5x SDS-PAGE sample buffer (reducing) and stored frozen at –20 °C until SDS-

PAGE analysis. The cells were harvested by centrifugation at 4000 x g for 20 min. Further 

extraction of protein was carried out from the harvested cell pellet using B-PER kit 

(PIERCE). Initially 1 ml fractions of the pellets of non-induced control and induced sample 

were resuspended in 5x SDS-PAGE sample buffer for performing SDS-PAGE. At the end the 

whole bacterial culture was centrifuged and the pellet was resuspended in B-PER. The 

supernatant with extracted protein was used for protein purification using Ni_NTA agarose. 

Further these samples were dissolved in 5x SDS-PAGE sample buffer before loading. 

 

2.3.9.2 Over expression with EnPresso
TM

 Tablet cultivation set 

For expressing recombinant protein in bacteria enpresso Enbase® kits were used because 

higher volumetric yields of soluble recombinant proteins could be obtained due to controlled 

physiological state. The higher volumetric yields enabled the use of lower culture volumes 

and could thus significantly reduce the amount of time and effort needed for downstream 

processing or process optimization. 

Enbase
®
 Medium contained two tablets with media components and a polysaccharide 

complex as substrate, a booster tablet with complex additives for optimal pH conditions and 

EnZ I’m: mixture of filter sterilized enzymes. 

Preculture was set up in a 1.5 ml reaction tube with 1 ml LB medium including Ampicillin 

(100 µg/ml), Kanamycin (50 µg/ml) and 1 µl of glycerol stock. The culture set up was 

incubated at 37
 
°C and vigorous shaking for 6 hours. The Enbase

®
 medium tablets were 

resolved in 50 ml of sterile water in a sterile 500 ml flask until tablets were dissolved. The 
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required antibiotics were added to the medium that was inoculated with 500 μl of the pre-

culture and 25 μl of EnZ l’m from the kit. The flask was fastened with an AirOtop seal. 

Further the culture was incubated at 30
 
°C at 200 rpm overnight. After overnight culture, 

inducing agent (IPTG), booster tablet (black bag) and 50 μl of EnZ l’m were added and 

incubation continued for protein production. Protein was harvested after 6 hours of 

cultivation. 

 

2.3.10 Protein extraction 

2.3.10.1 Protein extraction from tissue 

Protein extraction from tissue was carried out using the GE Healthcare illustra triplePrep Kit. 

According to the manufacturer’s instructions with illustra triple prep DNA, RNA and protein 

can be isolated simultaneously. Tissue homogenization and lysis were carried out using 

Precellys 24 homogenizer in precellys-glas-kit 0.5 mm beads in 2.0 ml tubes. The mini 

column (orange o-ring) was placed into a 2 ml collection tube provided. Homogenized lysate 

was transferred into the mini column and spun it for 1 min at 11000 g. The entire flow 

through was transferred to a new 1.5 ml micro centrifuge tube and 600 µl of protein 

precipitation buffer type 1 were added and mixed vigorously and incubated for 5 min at room 

temperature to precipitate the proteins. Further spun it for 10 min at 16000 g. As much 

supernatant as possible was carefully removed by pipetting and protein wash was done by 

adding 1 ml of distilled water to the protein pellet. The pellet was actively dispersed by 

pipetting up and down for 5 times and spun for 1 min at 16 000 g. Protein resuspension was 

carried out by adding 300 µl of 2-D DIGE buffer for easy protein re-suspension and 

incubated for 5 min at room temperature. Protein resuspended in 2-D DIGE buffer was used 

for SDS-PAGE by mixing with 1 volume of 20% SDS. Sample loading buffer (i.e 1 volume 

of 2x Laemmli buffer) was added and incubated at 70 
o
C for 10 min before gel loading. 

2.3.10.2 Bacterial protein extraction: 

After overexpression of protein in bactrerial cells using 1 M IPTG 1 ml of the culture was 

collected and centrifuged at 8000 g for 5 min and pelleted. Later, the pellet was processed 

towards extraction of protein using B-PER Bacterial protein Extraction Reagent (Pierce). The 

cells were resuspended in 300 µl of B-PER reagent by vigorous vortexing the mixture until 

the cell suspension was homogeneous. The suspension was centrifuged (Sigma, type model 

4K15, rotor Nr.12169-H) at 11,627 g for 8 min to separate the soluble proteins from the 
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insoluble proteins. Collect the supernatant (soluble fraction) and resuspend pellet (insoluble 

fraction) in 300 µl of B-PER reagent. To determine the solubility of recombinant protein, 10 

µl of each the soluble and insoluble fractions were used for SDS-PAGE and western blotting 

assays 

2.3.10.3 Mammalian protein extraction: 

Protein was expressed in HEK293 cell lines in 6 well plates for 24 hrs. A GFP probe 

(pCMV6-AC-GFP) was used as a positive control to determine transfection efficiency 

Depending on the transfection efficiency protein extraction was carried out using Mammalian 

Protein Extraction reagent (M-PER
®
) from PIERCE. Culture medium was carefully removed 

from the adherent cells and 200 - 400 µl of M-PER were added per well. The lysate was 

collected and transferred to a microcentrifuge tube. Samples were centrifuged at 14,000g for 

5 - 10 min to pellet the cell debris. The supernatant was transferred to a fresh tube for further 

analysis. 

 

2.3.11 Determination of protein concentration by Bradford Assay 

The Bradford protein assay is a spectroscopic analytical method used to measure the protein 

concentration in a solution. The concentration of the protein is measured dependent on the 

amino acid composition of the protein. This assay is a colorimetric protein assay, which is 

based on absorbance shift of the dye Coomassie Brilliant Blue G-250 in which under acidic 

conditions the red form of the dye is converted into its blue form by assaying the binding to 

the protein. 

The concentration of protein in each sample was measured using the Coomassie Plus Kit. A 

50 µl aliquot of unknown sample was diluted into a cuvette with 1.5 ml of Coomassie Plus 

reagent and mixed well. The reaction mix was incubated for 10 min at room temperature. 

Subsequently the absorbance of dye was measured at 595 nm with a spectrophotometer. The 

photometer was set zero with buffer according to the extraction technique, used as blank and 

subsequently absorbance of the samples was measured to calculate the protein concentration 

against a standard. Equal amounts of protein were loaded in subsequent assays. 

 

http://en.wikipedia.org/wiki/Colorimetric
http://en.wikipedia.org/wiki/Assay
http://en.wikipedia.org/wiki/Absorbance
http://en.wikipedia.org/wiki/Coomassie_Brilliant_Blue
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2.3.12 Purification of His tagged proteins using Ni-NTA resin under native conditions. 

2.3.12.1 Buffers for purification under native conditions 

Lysis buffer 

 50 mM NaH2PO4 (6.90 g/l) 

 300 mM NaCl (17.54 g/l) 

 10 mM imidazole (0.68 g/l) 

 ad 1 l Aq. dest 

pH adjusted to 8.0 using NaOH. 

 

Wash buffer 

 50 mM NaH2PO4 (6.90 g/l) 

 300 mM NaCl (17.54 g/l)  

 20 mM imidazole  (1.36 g/l) 

 ad 1 l Aq. dest 

pH adjusted to 8.0 using NaOH. 

Elution buffer 

 50 mM NaH2PO4 (6.90 g/l) 

 300 mM NaCl (17.54 g/l) 

 250 mM imidazole (17.00 g/l) 

 ad 1 l Aq. dest 

pH adjusted to 8.0 using NaOH. 

 

 

2.3.12.2 Purification of over expressed and extracted recombinant proteins using 

Ni_NTA resin 

After over expression and protein extraction the desired products were purified using Ni/NTA 

resin. 500 µl of lysis buffer with a concentration of 20 mM imidazole was added to 4 ml of 

B-PER extracted protein lysate followed by the addition of 1.2 ml of 50% Ni-NTA slurry and 

mixed gently at 4 °C for 1 h. Imidazole in the lysis buffer suppressed the binding of non-

tagged contaminating proteins and lead to increased purity after fewer wash steps. If the 

tagged protein did not bind under these conditions, the concentration of imidazole was 

reduced to 1 - 5 mM. 



39 

A 5 ml pipette tip was packed with glass wool, which acted as a filter. Later, the protein 

lysate with Ni-NTA slurry mixture was loaded onto the column and the flow through was 

collected. The flow-through was saved for SDS-PAGE analysis. 

The column was washed twice with wash buffer (4 ml) and the wash fractions W1 and W2 

were collected for further analysis. In the final step the elution of protein was carried out four 

times using 0.5 ml elution buffer. Finally 10 % of glycerol was added to the samples and 

stored at -20 till performing a SDS-PAGE. For lysis and washing the buffer contained 20 mM 

imidazole and for elution 500 mM, immidazole were used. Based on the results the 

concentration of the immidazole was adjusted. 

2.3.13 Concentrating protein samples using the centriprep
®
 centrifugal filter devices 

Centriprep centrifugal filter devices are disposable ultrafiltration devices used for purifying, 

concentrating, and desalting biological samples. Centriprep devices consist of a sample 

container with a twist-lock cap, a filtrate collector containing a low adsorptive Ultracel YM 

regenerated cellulose membrane, plus an air-seal cap for sample isolation. 

A centriprep device with Ultracel YM-30 membrane was used for concentrating the samples. 

Samples were centrifuged twice for 5 min at 1500 g. After the second centrifugation 

concentrate is collected into a suitable container. Protein concentration of the samples was 

measured and further analysis of samples was performed.  

 

10x SDS Running buffer: (1 liter) 

250 mM Tris   (30.2 g/l) 

1.92 M Glycine  (144.0 g/l) 

1 % SDS   (10 g/l) 

pH 8.3 
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1x SDS-PAGE sample buffer 

0.045 M Tris.Cl   (0.5 g / 100 ml) 

10% glycerol    (10 ml / 100 ml) 

1% SDS    (1 g / 100 ml) 

0.01% bromophenol blue  (0.01 g / 100 ml) 

0.05 M DTT    (0.7 g / 100 ml) 

Preparation of 6x His Protein Ladder 

6x His Protein Ladder   (lyophilized, 250 µg) 

1x SDS-PAGE sample buffer  250 µl 

2.3.14 Gel electrophoresis of proteins - SDS-PAGE 

Polyacrylamide gel electrophoresis in the presence of SDS (Sodium dodecyl sulphate) is the 

most common form of protein gel electrophoresis. SDS is an anionic detergent applied to 

linearize proteins and to impart a negative charge to linearized proteins. SDS binds to the 

unfolded proteins giving all proteins a similar shape i.e random coil or extend conformation 

and a uniform charge-to-mass ratio. Coating proteins with a negatively charged detergent 

minimizes the effects of a protein’s net charge. Therefore, during electrophoresis in the 

presence of SDS, the mobility of a protein depends primarily upon its size. i.e., mobility is 

inversely proportional to protein mass. 

2.3.14.1 Preparation of His tagged marker 

250 µl of 1x SDS-PAGE sample buffer containing the reducing agent dithiothreitol (DTT) 

were added to lyophilized 6x His Protein ladder (Qiagen, Hilden) and proteins were allowed 

to dissolve at room temperature for 30 min. After the proteins were dissolved the whole set 

up was transferred to a micro centrifuge tube and heated at 98
o 

C for 10 min. Appropriate 

aliquots were prepared and stored at -20 
o
C. Any applied aliquot was heated immediately 

before loading the gel. It is important to perform this heating step for the time, and at the 

temperature recommended. Insufficient heating leads to detection of protein aggregates as 

extra bands. 
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2.3.14.2 Protein electrophoresis using manually pepared acrylamide gels 

 

Table 3: Gel mixture 

Resolving gel  Final 

conc. 

 Stacking gel  Final conc. 

1.5 M Tris/HCl pH 

8.8 

3.13 ml 400 mM  0.5 M Tris/HCl pH 6.8 2.5 ml 200 mM 

20% SDS 62.5 µl 3.5 mM  20% SDS 25 µl 3.1 mM 

30% Acrylamide 5 ml 1.7 M  30% Acrylamide 1.1 ml 844.1 mM 

Aq. Dest 4.37 ml 19.4 M  Aq. Dest 1.4 ml 13.9 M 

10% APS 100 µl 3.5 mM  10% APS 50 µl 3.9 mM 

TEMED 10 µl 6.9 mM  TEMED 7.5 µl  12.9 mM 

 

2.3.14.3 Loading and running: 

After the preparation of stacking gel and resolving gel, the gel was placed into the 

electrophoresis chamber (Compact S Biometra
®

, Göttingen) so that the open side of the 

cassette is facing towards the cathode buffer tank. Electrophoresis buffer is added and the 

comb was pulled steadily out of the gel. Remaining gel rests above the sample wells were 

removed eventually. The sample wells were rinsed thoroughly avoiding any air bubbles. 

Before loading the samples the wells were loaded with 1x sample buffer for the confirmation 

of lanes and loading the samples proceeded further. 20 - 50 µg of protein sample were loaded 

per lane, along with suitable positive and negative controls. The gels were run at 120 volts for 

90 min. After the gel run was finished electrophoresis chamber, power supply, 

electrophoresis buffer and the gel cassette were removed. Subsequently gels could be stained 

or used for blotting.  

2.3.14.4 SDS-PAGE using precast 8 - 16% gradient SERVAGel
TM

 TG 

SERVAGel
TM

 TG gels are ready to use Tris-Glycine gels, which are designed for vertical 

slab gel electrophoresis and suited for discontinuous separation of proteins. These pre-cast 

gels help in achieving high resolution with excellent band sharpness in less time period. Gel 

loading and running was carried out as mentioned in 2.3.15.3. 
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2.3.15 Polyacrylamide Gel Staining Protocol 

For staining the SDS-PAGE gels, LabSafe™ GEL Blue was used, which is based on 

coomassie dye and only stains proteins, leaving a clear background resulting in high band 

visibility. After SDS-PAGE the gel was washed three times for 5 min in a large volume of 

deionized water. Subsequently an adequate volume of LabSafe™ GEL Blue stain was added 

to cover the gel. The gel was shaken gently for 1 hour. Later the stained gel was rinsed in a 

large volume of deionized water, three times for 10 min each to remove background colour. 

The stained gel was stored in deionized water. 

 

2.3.16 Western Blotting 

Western transfer buffer: 

50 mM Tris base  (6.06 g/l) 

380 mM Glycine  (28.5 g/l) 

0.001 % SDS (1 g/l) 

20% w/v Methanol (200 ml/l) 

 dissolved in Aq. bidest 

 

Nitrocellulose Transfer Membrane 

300 mm x 3 m, 0,2 µm 

Whatman, Thermo Scientific, 

Schwerte 

10401396 

Gel Blotting Paper 460 x 570 mm, 1 mm 

GB003 

Whatman, Thermo Scientific, 

Schwerte 

09-301-404 

Gel Blotting Paper 580 x 580 mm, 3 mm 

GB005 

Whatman, Thermo Scientific, 

Schwerte 

09-301-199 

 

Proteins were transfered to nitrocellulose membranes by semi-dry blotting 

The order of the blotting filter papers (thick 3 mm GB005 and thin 1 mm GB004), 

Nitrocellulose Transfer Membran 0.2 µm and gel are as follows 
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Figure 7: Western blotting transfer order. Arrow shows direction of transfer  

Following gel electrophoresis, the separated proteins were transferred to a solid support for 

further analysis. Electroblotting was used due to the speed and efficiency of transfer. The gel 

and blotting membrane were assembled into a sandwich along with several sheets of filter 

paper which protected the gel and blotting membrane and helped to ensure close contact 

between their surfaces. 1x western transfer buffer was used for blotting. Filter papers and 

membrane were precisely cut to the size of the gel and nitrocellulose was prewetted in 

transfer buffer. Thick and thin filter papers were soaked in transfer buffer and applied directly 

to the surface of the gel. Blotting was carried out for 1 h at 200 mA followed by confirmation 

of protein transfer by Ponceau S staining. 

 

2.3.17 Ponceau S staining of proteins on nitrocellulose membranes 

 
To estimate the efficiency of protein transfer after blotting, the membrane was stained with 

Ponceau S. This stain is reversible and produces pink bands on a light background. The 

nitrocellulose membrane was washed with Millipore water for 1 min, incubated in Ponceau S 

solution for 2 - 3 min with constant shaking at room temperature. Subsequently, the 

membrane was destained by washing with demineralized water to the desired contrast. 

Finally, it was documented by a digital camera. To remove the stain completely, the 

membrane was washed again with TBS-T under constant shaking. 
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2.3.18 Antibody Hybridization on nitrocellulose membranes 

Buffers for antibody hybridization 

TBST 

10% 10X TBS  (100 ml/l) 

0.1% Tween
®
 20  (1 ml/l) 

ad 1 l Aq. bidest. 

Blocking buffer 

5% milk powder in TBST 

 

TBS-Triton X 100 (1 liter) 

10% 10x TBS  (100 ml/l) 

0.2 % Triton X 100  (2 ml/l) 

ad 1 l Aq. bidest. 

Blocking buffer for primary and secondary antibodies 

5% Nonfat Dried Milk in 100 ml of 1x TBST/TBS-Triton X 100 

Dissolved with gentle stirring. 

Stored at 4
o
C 

 

Chemiluminiscence detection buffers for horse radish peroxidase (HRP) 

Solution A (stored at 4
o
C) 

100 mM Tris-HCl (200 ml pH 8.6) 

1.4 mM Luminol (0.05 g / 200 ml) 

Solution B (stored at room temperature in the dark) 

6.7 mM Para Hydroxy Coumarin acid (0.011g) 

ad 10 ml of DMSO 

H2O2 (30%) 

1 ml of Solution A was mixed with 0.3 µl H2O2 (30%) and 100 µl Solution B. The solution 

mix was distributed well on the membrane and incubated for 2 min. For small membranes 

(Length 7 cm x Width 8 cm) 4 ml Solution A + 1.2 µl H2O2 (30%) + 400 µl Solution B was 

used. 
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All incubation and wash steps were performed on a rocking platform or orbital shaker. The 

membrane was washed twice for 10 min each with TBS buffer at room temperature and 

subsequently incubated for 1 h in blocking buffer at room temperature. 

The membrane was washed twice for 10 min each in TBS-Triton X 100 buffer at room 

temperature and afterwards for 10 min with TBS buffer at room temperature. The blot was 

incubated with a primary antibody solution of optimized antibody dilution at room 

temperature for 1 h. Subsequently the membrane was washed twice for 10 min each time in 

TBS-Tween/Triton buffer at room temperature. Washing of the membrane was repeated 

twice for 10 min in TBS buffer at room temperature. The membrane was incubated with an 

optimized dilution of secondary antibody in blocking buffer for 1 h at room temperature. 

Milk powder was used to reduce background. The blot was washed 4 times for 10 min each 

in TBST at room temperature. Chemiluminescent detection was carried out by reaction, 

Afterwards the membrane was covered with a thin clear plastic foil, and exposed to X-ray 

film. 

2.3.19 Stripping and reprobing Western blots 

Western blot stripping buffer 

Mild stripping: 

Stripping buffer: 

 0,25 mM Glycine (15 g/l) 

 0.001 % w/v SDS (1 g/l) 

 0.01 % Tween 20 (10 ml/l) 

 ad 1 l Aq. bidest. 

pH adjusted to 2.2 

 

Removal of primary and secondary antibodies from a western blot membrane is carried out 

with stripping. It is useful to investigate more than one protein on the same blot. 

100 ml of stripping buffer was used to cover the membrane. The blot was incubated at room 

temperature for 5 – 10 min. The buffer was discarded and the membrane was washed for two 

times 10 min each with 1x PBS and two times 5 min each with 1x TBS-Tween
®
20. 

Subsequently the membrane was further proceeded to blocking. 
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2.3.20 Mammalian Cell culture: 

Complete DMEM (Culture medium) 

435 ml DMEM (high glucose) 

5 ml Pencillin/Streptomycin (100x) (Final concentration 1x) 

10 ml L-Glutamin (4 mM) 

50 ml Fetal calf serum (FCS) (Final concentration 10%) 

500 ml 

Freezing medium 

90 ml FBS 

10 ml DMSO 

100 ml 

2.3.20.1 HEK 293 - cell line 

HEK293 is a human embryonic kidney cell line (HEK), the wild type has been transformed 

by transfection with the adenovirus 5 to a permanently culturable form (293). In 1977, the 

cell line was established for the first time [34]. The cell line is considered to be well 

cultivated and is a good basis for studies of proteins expressed by transfection. The cells have 

an epithelial morphology and grow in an adherent cell layer. The cells were obtained from 

LGC standards (ATCC) and were cultured in complete DMEM. HEK293 cells were used for 

overexpression of AIPL1. 

2.3.20.2 HeLa cell line 

Hela cells are adherently growing human carcinoma cells, which were isolated in 1951 from 

a cervix epithelial carcinoma of an American patient Henrietta Lacks. This cell line was the 

first epithelial cell line that has been cultivated continuously and is now known as the 

standard cell line. The cells were obtained from LGC standards (ATCC) and were cultured in 

complete DMEM. HeLa cells were used to avoid cell stacks and allowed spreading of cells or 

extended areas of cytoplasm. HeLa cell lines were used for immunocyctochemistry studies.  
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2.3.20.3 Culture of cell lines: 

All cell culture work was done under a clean bench. The cultivation of cells was carried out 

in 100 mm cell culture dishes by adding 10 ml complete DMEM medium to the cells. Cells 

were grown in an incubator maintained at 37 °C, 5% CO2, and 95% humidity. For passage of 

adherent cells, the medium was removed with sterile glass pipettes and washed once with 5 

ml of 1x PBS. 2 ml of accutase were added to the cells and were incubated for 2 - 5 min. 8 ml 

of medium was added to the cells detached from the bottom of the cell suspension and 

approximately 1x 10
6
 cells were transferred into a new cell culture dish with 5 ml of medium 

and placed in an incubator (37 °C, 5% CO2 and 95% humidity). 

2.3.20.4 Long term storage of cell lines: 

For storage, the cell lines were frozen. The medium was removed with a sterile glass pipette 

and 5 ml of accutase was added to the cells. The plates were placed in an incubator for 2 - 5 

min. 10 ml of medium were added to the detached cells und cells were resuspended. The cell 

suspension was transferred to a 15 ml centrifugation tubes and pelleted at 125 g for 10 min. 

The cell pellet was resuspended at a concentration of about 1x10⁶ cells in freezing medium 

This suspension was aliquoted (1 ml) in cryotubes. The cryotubes were stored for 24 h at -80 

°C and then transferred to liquid nitrogen at -196 °C. Frozen cells could be re-cultured by 

thawing the cryovials in a water bath at 37 °C. Cells were then pelleted by centrifugation and 

the DMSO containing medium was removed. The process was repeated washing the cells 

with 1X PBS before resuspending them in the appropriate medium. 

 

2.3.21 Heterologous expression in HeLa cells for immunocytochemistry 

HeLa cells were seeded with sufficient space to spread in eight imaging chamber microscopic 

slide bottom (PAA, Pasching). The cells were grown in complete DMEM medium at 37 °C 

and 5% CO2 over night in an incubator. 

 

2.3.21.1 Transfection of HeLa cells using lipofectamin
® 

250 ng of pQE-TriSystem His.Strep 1 constructs were transiently transfected into 50 - 60% 

confluent HeLa cells. By using Lipofectamine
TM

 (Invitrogen, Darmstadt) reagent according 

to the manufacturer's protocol for HeLa cells. 
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Plasmid DNA (250 ng) was diluted in 100 µl DMEM medium and vortexed thoroughly. 

Followed by the addition of 0.5 µl PLUS reagent gently mixed and incubated for 5 min at 

room temperature. 1.5 µl of Lipofectamine was added to the mix and incubated at room 

temperature for 30 min, DNA-Lipid complexes were added dropwise to the cells, and the 

plate was shaken for 10 minutes at 80 rpm. The cells were incubated at 37 °C and 5% CO2. 

Transfected cells were examined 24 hours after transfection. 

2.3.21.2 Transfection of HeLa cells using Roti
®
-Fect PLUS 

The cells were incubated for 18 - 24 hours at 37 °C at 5% CO2 in an incubator until they grew 

50 - 60% confluent. Nucleic acid and transfection reagent stock solutions were thawed to 

room temperature and gently swirled. The following solutions were prepared in reaction 

tubes: 

A: 0.5 µg DNA dissolved in 30 µl DMEM medium, which contained neither serum nor 

antiobiotics. 

B: 2.5 µl Roti
®
-Fect PLUS dissolved in 30 µl DMEM medium, which contains neither serum 

nor antibiotics. 

Set ups were mixed carefully by pipetting. 

Solution A and B were bought together without mixing them and incubated at room 

temperature for 15 - 20 min so that the nucleic acid/lipid complexes could form. Nucleic 

acid/lipid complexes were added after 20 min to the cells, and mixed carefully by swivelling 

gently. The cells were incubated at 37° C in a CO2 incubator and the transfection medium 

was replaced with fresh complete medium after 4 hours. pCMV6-AC-GFP was used as a 

transfection efficiency control vector expressing Green fluorescent protein (GFP). GFP 

expression and transfection rate were tested 24 hours after transfection. At a transfection rate 

of more than 70% of the cells immunocytochemistry was subsequently performed. 

 

2.3.22 Immunocytochemistry 

4% Paraformaldehyde (PFA) (4.0 g/100 ml) 

ad 100 ml 1x PBS 

Paraformaldehyde was solved in 1x PBS in a covered flask at 70°C. The solution was swirled 

for a couple of hours until all the paraformaldehyde was dissolved. Further the solution was 
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allowed to cool down to room temperature and filtered through a 0.22 μm filter to remove 

any particulate matter and stored at 4°C. 

3% Blocking buffer 

 BSA 0.3 g 

 Triton X 100 200 µl 

 1x PBS  10 ml 

  

1X PBS 

 137 mM NaCl (8.0g/l) 

 2.7 mM KCl (0.2g/l) 

 10 mM Na2HPO4 (1.44g/l) 

 1.8 mM KH2PO4 (0.24 g/l) 

dissolved in 1 l Aq. bidest and pH adjusted to 7.2 with HCl 

Sterilized and autoclaved. 

HeLa cells were harvested 24 h after transfection, fixed in 4% PFA for 10 min, and washed 3 

times with 1x PBS each for 10 min. Fixed cells were incubated overnight with primary 

antibody. After extensive washing in 1x PBS for 3 times slides were incubated in secondary 

antibody solution for 1 h at room temperature in dark conditions. Later, the wells were 

washed twice with 1x PBS for every 10 min in the dark. Staining with DAPI (4’,6-diamidino-

2-phenylindole, dihydrochloride) followed. DAPI is a nuclear counterstain for use in 

multicolour fluorescent techniques. The blue fluorescence of DAPI stands out in vivid 

contrast to green, yellow, or red fluorescent probes of other structures. DAPI stains nuclei 

specifically, with little or no cyctoplasmic labeling. 

2.3.23 Heterologous expression in HEK293 cells and mammalian protein extraction 

HEK293 cells were seeded with sufficient space to spread in 6 well plate (Greiner bio-one, 

CELLSTAR
®

). The cells were grown in complete DMEM medium at 37 °C and 5% CO2 over 

night in an incubator. Further the transfection process was carried out as given in 2.3.21.1 

and 2.3.21.2  for HeLa cells. Transfected cells were examined 24 hours after transfection. 

The cells were further proceeded with protein extraction using M-PER kit as given in 

2.3.10.3.  
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                                              CHAPTER 3 

 

3. RESULTS 

Splice variants of human AIPL1 were identified and cloned into pCR
®
2.1-TOPO-TA vector 

[40]. To visualize the role of these splice variants at protein level they were subcloned into an 

expression vector pQE-TriSystemHis.Strep 1. An expression vector containing the tags His 

and Strep were chosen for sub cloning followed by over expression, protein purification and 

further proceeded to protein interaction studies. 

3.1 Sub cloning of AIPL1 splice variants into an expression vector: 

3.1.1 Identification of human AIPL1 splice variants 

In a previous project splice variants of AIPL1 were identified by RT-PCR from whole RNA 

isolated from human retinal tissue [42]. Along with splice variant 1 (full length splice variant) 

splice variants lacking complete exons 2 or 3 (splice variants 2 and 3), as well as variants 

showing shortened exons 2 or 5 (splice variants 4 and 5) or both exons 2 and 5 shortened 

(splice variant 6). Variants 4, 5 and 6 were formed by usage of an alternative acceptor splice 

sites in exon 2 and 5 which are located more or less further downstream of the regular 

acceptor splice sites. Detailed specifications of each human AIPL1 splice variant and encoded 

protein isoforms are summarized in (table 2). The splice variants were provided cloned into 

pCR
®
2.1-TOPO-TA for further processing (figure 8). To express the splice variants in 

cultured human cells the splice variants were subcloned into pQE-TriSystemHis.Strep 1 

(figure 9). 
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Figure 8:  pCR
®
2.1-TOPO-TA vector map with AIPL1 cloned into the TA-site 

The vector map represents all the 5 AIPL1 splice variants (SV1 - SV5) cloned with restriction 

enzymes EcoRI and HindIII. Functional elements of the vector: lac_promoter, T7_promoter, 

lacZ_a, f1_origin, NEOKAN_promoter, NeoR/KanR,  Ampicillin: Ampicillin reistance ORF 

and pBR322_origin. 

3.1.2 Cloning of splice variants 

pQE-TriSystemHis.Strep 1 is an expression vector possessing a His and a Strep tag along 

with the advantage of having prokaryotic promoter (T5) and eukaryotic promoter (CMV) to 

over express the recombinant constructs both in prokaryotic and eukaryotic systems. For 

subcloning the inserts were amplified with a Phusion
TM

 Hot start High-Fidelity DNA 

polymerase (Finnzymes) by using the primer set AIPL1-For and AIPL1-Rev (2.1.2) having 

internal EcoRI and HindIII restriction sites. 
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Figure 9: pQE-TrisSystem His.Strep 1 vector map and its elements - CMV: immediate 

early enhancer region, chicken: chicken actin promoter, T5 promoter, lac operator element, 

p10 promoter: promotor elements, RBS: ribosome binding site, Kozak: translation start, 

MCS: Multiple cloning site including EcoRI and HindIII sites, Strep-tag: Strep–tag coding 

sequence, 8xHis: 8xHis tag coding sequence, AMP: Ampicillin resistance coding sequence. 

 

 

Figure 10: Multiple cloning site of pQE-TrisSystem His.Strep 1 vector with restriction 

enzymes EcoRI and HindIII used for sub cloning of AIPL1 splice variants (SV1-SV5). T5 

promoter, lac operator element, p10 promoter: promotor elements, RBS: ribosome binding 

site, Kozak: translation start, MCS: Multiple cloning site, Strep-tag: Strep–tag coding 

sequence, 8xHis: 8xHis tag coding sequence 

These restriction sites were chosen because the mulitple cloning site sequence of the 

expression vector posses EcoRI and HindIII sites which were used as target sites for sub 
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cloning the amplified PCR products of AIPL1. The PCR products were cut out from an 

agarose gel and purified with the NucleoSpin
®
 Extract II kit (Macherey Nagel). Later the 

purified pCR2.1-TOPO
®

-AIPL1 splice variant clones were digested with EcoRI and HindIII 

(NEB) restriction enzymes according to chapter 2.3.4.1 and dephosphorylation was done as 

mentioned in chapter 2.3.4.2 Dephosphorylated products were ligated according to chapter 

2.3.4.3 into EcoRI and HindIII sites of the expression vector pQE-TriSystem His.Strep 1 

(Qiagen, Hilden) that codes for an additional C-terminal 8xHis tag. The ligated products were 

transformed into XL1-Blue competent cells as mentioned in chapter 2.3.4.5 and 100 µl of the 

transformation set up was plated on LB-Agar supplemented with ampicillin. LB-agar plates 

were incubated overnight at 37 °C. Positive clones were picked and grown in overnight 

cultures in LB medium with ampicillin followed by plasmid mini preps. 1.5 µg of each 

plasmid mini prep was checked using restriction digestion of constructs with EcoRI and 

HindIII and were analysed on 1% agarose gel (figure 12).  

 

Figure 11: Vectormap of pQE-Tri-SystemHis.Strep 1 Vector containing AIPL1 splice 

variants SV1 - SV5 

The vector map represents all five AIPL1 splice variants (SV1 - SV5) cloned with restriction 

enzymes EcoRI and HindIII. AI1 - AI6 represent AIPL1 exons (1 - 6). Functional elements of 

the vector are named in (Figure. 9). 
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3.1.3 Restriction digestion and sequence analysis 

All cloned splice variants were analysed through restriction endonuclease digestion using 

EcoRI and HindIII. pQE-Tris-system His.Strep 1 empty vector was used as a control. All 

plasmids were examined after restriction digestion on a 1% (w/v) agarose and gel 

electrophoresis performed for 1 hour at 100 V to assure that splice variants were cloned at the 

right size. The expected sizes of the insert were as follows, and empty vector pQE-TriSystem 

His.Strep 1 at 5.8 kb.  

 

Splice variant Insert size Construct size 

SV1 1,155 bp 6873 bp 

SV2 975 bp 6693 bp 

SV3 966 bp 6684 bp 

SV4 1,083 bp 6801 bp 

SV5 1,089 bp 6807 bp 

 

Table 4: Expected sizes of cloned AIPL1 splice variant fragments. 

 

Figure 12: Restriction endonuclease analysis of AIPL1 splice variant pQE-TriSystem 1 

His.Strep clones (SV1 - SV5). Vector backbone size was 5718 bp and the inserts were sized 

according to table 4. 
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PCR and restriction enzyme analysis of the constructs of pQE-Tris_AIPL1 on 1% agarose 

gel. Lane 1 and 8, M: DNA 1 kb molecular weight standard; lane 2, pQE-Tris plasmid with 

SV1 insert (pQE-Tris_SV1); lane 3, pQE-Tris_SV2; lane 4, pQE-Tris_SV3; lane 5, pQE-

Tris_SV4; lane 6, pQE-Tris_SV5; lane 7, pQE-Tris plasmid without insert. 

 

Plasmid mini preps showing the expected fragment sizes of vector and insert were sequenced 

which revealed that all splice variants were cloned in frame along with the specified 

restriction enzymes added and with the His tag. 

 

A

 

 

B 

Figure 13: A. Verification of forward frame conservation of the inserts towards start codon 

of the vector with chosen restriction site EcoRI.  

B. Verification of reverse frame conservation of the inserts towards stop codon of the vector 

with tags 8x His and Strep along with the chosen restriction site HindIII. SV1_R to SV5_R: 

splice variant specific clone for SV1 - SV5. 
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3.2 Over expression of AIPL1 splice variants in a prokaryotic expression system using 

the Enbase
®
 Flo cultivation system: 

For purification of His tagged proteins high amounts of protein yield were required. The 

Enbase® Flo cultivation system was used to over express the probes for achieving a higher 

yield of protein as mentioned in chapter 2.3.9.2.  

 

3.2.1 Recombinant protein purification and pull down experiments 

3.2.1.1 SDS-PAGE of Ni-NTA agarose purified probes of SV1 - SV5 

All identified AIPL splice variants (SV1 - SV5) were purified using Ni_NTA agarose as 

mentioned in chapter 2.3.12. All purification steps (Flow-through FT, wash 1, wash 2, elution 

1, elution 2, elution 3, and elution 4) were tested for AIPL1 by SDS-page. Equal volumes of 

the protein sample were loaded in all lanes. Proteins were analysed on SDS-PAGE and 

stained with LabSafe™ GEL Blue (figure 14) as given in methods section chapter 2.3.14 and 

2.3.15. 
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Figure 14: Coomassie-stained SDS-PAGE analysis of over expressed His tagged AIPL1 

(SV1 - SV5) purified by Ni-NTA agarose. M: molecular mass marker (kDa), FT: 

Flowthrough, W1: wash 1, W2: wash 2, E1: Elution 1 E2: Elution 2, E3: Elution 3, E4: 

Elution 4, kDa: kilo Dalton. 

 

3.2.1.2 SDS-PAGE of His tag purified and centriprep concentrated prokaryotic samples 

of AIPL1 splice variants SV1 - SV5 

The protein concentrations of over expressed AIPL1 splice variants (SV1 - SV5) with His tag 

in prokaryotic system were measured through Bradford assay and revealed the highest 

concentration of purified His-tagged protein in elution fraction two (E2) as clearly depicted in 

SDS-PAGE analysis (figure 14). Therefore, E2 fractions of all splice variants were used for 

further analysis. 
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To further increase the concentration of recombinant protein, E2 fractions were concentrated 

using centiprep columns (Millipore) as given in 2.3.19. The concentrated E2 fractions were 

analysed by SDS-PAGE with comassie blue staining (figure 15). The results shown in the 

SDS_PAGE (figures: 14 & 15) revealed that the chosen expression system was suitable for 

expressing the AIPL1 splice variants. The bands seen on the PAGE geles support that the 

expressed and purified proteins are of the expected size from the group of endogenous 

proteins produced along with the His tagged AIPL1 splice variants during the process of 

protein over expression. Further analysis was carried out by Western-blot. 

 

Figure 15: Coomassie-stained SDS-PAGE analysis of His tagged AIPL1 purified by Ni-

NTA agarose and concentrated samples of E2 fractions of (SV1 - SV5). Equal amounts of 

protein (10 µg) from each indicated extract were separated on SDS-PAGE. Lane 1: Molecular 

mass marker (kDa). SV1 – SV5: Elution step E2 from overexpressed and purified AIPL1. 

 

3.2.3 Immunoblot analysis of AIPL1 splice variants 

All overexpressed, purified, and concentrated AIPL1 splice variants were validated through 

Western blotting to confirm correct expression and to reveal size differences in splice 

variants.. The expression pattern of splice variants was analyzed both in a prokaryotic 

expression system and an eukaryotic expression system. Protein extracted from human retinal 

tissue as given in chapeter 2.3.10.1 was used as a positive control in the western blots. 

 

3.2.3.1 Western blot analysis of AIPL1 splice variants (SV1 - SV5) expressed in 

prokaryotic system 

The protein concentration of all splice variants from the prokaryotic expression system was 

measured using a Bradford assay and equal amounts of the protein (10 µg) were loaded on to 

each lane. Human protein from a retinal tissue sample was used as positive control and 

protein extract from HEK293 non-transfected cells was used as negative control. SDS PAGE 

was performed using the gradient SERVAGel
TM

 TG gels. Fermentas broad range 
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multispectrum colour marker was applied as molecular weight marker. Electrophoresis was 

performed at 50 V for 30 min until the protein samples entered the stacking gel. The 

electrophoresis proceeded further at 120 volts for 90 min. 

 

After electrophoresis the gel was transferred onto a Protan
® 

nitrocellulose membrane 

(Whatman
®
)
 
using the blotelutor (Biometra). Blotting was performed for 45 min at 200 mA. 

Transfer of proteins was confirmed through Ponceau S staining as given in chapter 2.3.17. 

Here a Ponceau S staining is exemplified and will not be shown in further chapters. 

Immunoblot detection of AIPL1 was carried out according to chapter 2.3.18 with a primary 

antibody against human AIPL1 [81]. The antibody was applied in 1% milk powder in 1x 

TBS-0.2% Triton X 100 blocking solution at a dilution of 1:5000. Secondary peroxidase-

conjugated Anti-Rabbit IgG (whole molecule) antibody from goat (SIGMA A0545) was 

applied at a dilution of 1:80,000 in 1% milk powder in 0.2% 1x TBS-Triton X 100 blocking 

solution. The blot was developed using the luminol reagent according to chapter 2.3.18. 

 

 

Figure 16: Western blot analysis of overexpressed and purified His tagged AIPL1 splice 

variants SV1 - SV5 in prokaryotic system.  

Equal amounts of protein from each splice variant extract were separated on SDS-PAGE and 

transferred onto nitrocellulose membrane. A: Ponceau S staining of the nitrocellulose 

membrane following electrophoretic transfer of proteins by SDS-PAGE gel separation. 

B: Western blot probed with an affinity purified rabbit anti-AIPL1 antibody at 1:5000 

dilution & Secondary Ab: Peroxidase-conjugated Anti-Rabbit IgG (whole molecule) antibody 

from goat (SIGMA A0545) at 1:80,000 dilution. M: molecular mass marker (kDa), +tive: 

retina protein as positive control, -tive: HEK293 non-transfected as negative control), AIPL1 

Splice Variants (SV1 - SV5). Note: A subtle difference in size could be seen for splice 

variansts SV1 vs SV2 and SV3 as well as SV4 and SV5. 
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3.2.3.2 Immunoblot detection of His tags in AIPL1 splice variants from SV1-SV5 

After over expression of recombinant AIPL1 with His tag in prokaryotic system the raw 

lysate contained the recombinant AIPL1 protein along with many other proteins originating 

from the bacterial host. To detect the His tagged proteins from raw lysate affinity purification 

was carried out using Ni-NTA agarose according to chapter 2.3.12. Ni-NTA agarose binds 

His-tagged fusion proteins from a mixture of endogenous proteins. The elute obtained from 

purification was used to detect the AIPL1 proteins with His tag using immunoblot analysis.  

Immunoblot detection of His tag was carried out according to chapter 2.3.16 with a 

polyclonal HRP tagged Rabbit anti-His antibody to 6X His (Abcam ab 1187). The antibody 

was applied in 1% milk powder in 1x TBS-0.2% Triton X 100 blocking solution at a dilution 

of 1:5000. The blot was developed using the luminol reagent according to chapter 2.3.18.   

 

Figure 17: Western blot analysis of over expressed and purified His tagged AIPL1 splice 

variants (SV1 - SV5) in prokaryotic system:  

6x: His-tagged molecular mass protein ladder as positive control, SV1 – SV5: AIPL1 Splice 

Variants (SV1 - SV5). Equal amounts of protein (10 µg) from each indicated extract were run 

on SDS-PAGE and were blotted onto nitrocellulose membranes. The blot was probed with 

HRP tagged His Ab-Rabbit polyclonal to 6X His (Abcam ab 1187) at 1:5000 dilution. Protein 

molecular mass markers (in kDa) are indicated on the left.  

 

From the immunoblot it was revealed that all the splice variants (SV1 - SV5) were possessing 

the His-tag since anti-His antibody detected all the splice variants of AIPL1. The size of the 

bands on the blot (figure 17) reveals all splice variants of AIPL1 were fully expressed 

including His tag within the limits of their sequence but did not show detectable size 

differences in this separation system.  
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3.2.3.3 Expression and purification of recombinant proteins in eukaryotic HEK293 cell 

lines 

All splice variants (SV1 - SV5) of AIPL1 were expressed in HEK293 cell lines. The reason 

for choosing HEK293 cell line was that AIPL1 is not expressed endogenously in this cell line 

[81] and that transfection levels are higher in this cell line, resulting in a higher level of 

AIPL1 expression. Protein extraction was carried out using M-PER (PIERCE) kit according 

to chapter 2.3.10.3. The concentrations of the extracted protein were measured by Bradford 

assay and equal amounts of protein (10 µg) were loaded onto each well. Bradford assay 

revealed the highest concentration of purified His-tagged protein in elution fraction two (E2) 

as clearly depicted in SDS-PAGE analysis (figure 18). Therefore, E2 fractions of all splice 

variants were used for further analysis. Human retinal protein was used as positive control 

and non transfected HEK293 cell were used as negative control.  

 

Figure 18: SDS-PAGE of Ni-NTA agarose purified probes (SV1 - SV5) from expression 

in eukaryotic HEK293 cell lines 

Coomassie-stained SDS-PAGE analysis of over expressed His tagged AIPL1 purified by Ni-

NTA agarose. M: Molecular mass marker (kDa), FT: Flowthrough, W1: wash 1, W2: wash 2, 

E1: Elution1 E2: Elution, E3:Elution 3, E4:Elution 4, kDa: Kilodalton. 
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Figure 19: SDS-PAGE of centriprep concentrated probes of AIPL1 SV1 - SV5 from 

expression in eukaryotic HEK293 cell lines 

Coomassie-stained SDS-PAGE analysis of His tagged AIPL1 purified by Ni-NTA agarose 

and concentrated samples of E2 fractions of (SV1 - SV5). M: Molecular mass markers (kDa). 

SV1 - SV5: Elution step E2 of eukaryotic SV1 - SV5 expression. 

 

 

 

Figure 20: Western blot analysis of AIPL1 splice variants (SV1 - SV5) (Eukaryotic) 

Western blot analysis of His tag purified protein from total cell extracts expressed in HEK293 

cells. Western blot probed with an affinity purified rabbit anti-AIPL1 antibody at 1:5000 

dilution & Secondary Ab: Peroxidase-conjugated Anti-Rabbit IgG (whole molecule) antibody 

from goat (SIGMA A0545) at 1:80,000 dilution. -tive: non transfected HEK293 cells as 

negative control, +tive: retinal protein extract as positive control, SV1 - SV5: expressed His 

tagged AIPL1. Equal amount sof protein (10 µg) from each extract were loaded onto each 

lane. Protein molecular mass markers (in kDa) are indicated on the left. 

 

Immunoblot results conclude the expression of all the AIPL1 splice variants (SV1 - SV5) in 

HEK293 cell lines. Anti-AIPL1 antibody detected all the splice variants over expressed and 

purified in mammalian cell lines HEK293. Compared to the prokaryotic protein expression 

system the mammalian protein expression system was less effective because The pQE-Tri-

SystemHis.Strep 1 system is optimized for bacterial culture and expresses suboptimal in 

human cells. In both systems double bands (figure 16 B, 17 and 20) were seen with Anti-

AIPL1 and Anti-His antibodies. The post translational modifications or the antibody used 

which is not a splice variant specific antibody could be possible reasons for the appearance of 

double bands. A subtle difference in size could be seen for splice variansts SV1 vs SV2 and 

SV3 as well as SV4 and SV5 (Figure 16 B, 17 & 20) 
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3.3. Intracellular localization  of human AIPL1 splice variants SV1-SV5 in HeLa cells: 

The pQE-TrissystemHis.Strep 1 based His tagged recombinant AIPL1 expression constructs 

(SV1 - SV5) were prepared to transfect HeLa cells to locate the expression of AIPL1 at the 

cellular level. Transfection of all the five splice variants, SV1 - SV5 was carried out as given 

in methods 2.3.21.1 and 2.3.21.2. Initially lipofectamine was used. It was substituted by 

Roti
®
-Fect PLUS in repeat applications. For detection, hybridization with primary antibodies 

against AIPL1 and His-tag were carried out independently to confirm that the 

immunoreactivity was not specific to the AIPL1 antibody compared to the anti-His-tag 

antibody. Alexa Fluor labeled secondary antibodies were used to visualize bound primary 

antibodies. HeLa cells were examined on a Keyence (BZ-8100
E
) fluorescence microscope 

after 24 hrs of transfection and immunocytochemistry was performed as given in chapter 

2.3.22. DAPI was used as a nuclear counterstain as described. 

Chicken anti-human AIPL1-Ab was applied at a dilution of 1:100 and probed with a 

secondary Alexa Fluor® 488-labled goat anti-chicken IgG (H+L) antibody (Invitrogen, 

Darmstadt A11039) at 1:1000 dilution. Incubation was carried out for 1 h. His-tagged AIPL1 

was detected by an anti-His antibody (ab1187, Rabbit, Abcam, Cambridge UK) and an Alexa 

Fluor® 488-labled secondary antibody donkey anti-rabbit IgG (H+L) (Invitrogen, Darmstadt 

A11039). Incubation of both primary and secondary antibody was done for 1 h each. All 

procedures were carried out at room temperature. Finally, slides were covered with Dako 

Fluorescence Mounting Medium (DAKO, Hamburg) and immunoreactivity (IR) was 

recorded on a Keyence (BZ-8100
E
) wide-field microscope with epifluorescence. 

Transient expression of splice variants SV1 - SV5 was detected in HeLa cells transfected 

with pQE-TriSystemHis.Strep 1 constructs. Fluorescent immunohistochemical labeling 

disclosed expression throughout the cytoplasm as could be seen by AIPL1-specific antibody 

and His-tag specific antibody (fig. 21 and 22). A splice variant specific localization pattern 

could not be obtained from evaluation of AIPL1 expression alone. 
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Figure 21: Heterologous expression of AIPL1 splice variants in HeLa cells: 

Immunofluorescent images showing intracellular localisation of AIPL1 proteins expressed in 

HeLa cells. Cells transfected with pQE-TriSystemHis.Strep 1-AIPL1 splice variant constructs 

(SV1 - SV5) were cultured for 24 h and then processed for immunofluorescence using 

Chicken anti-human AIPL1-Ab followed by Alexa Fluor® 488-labled goat anti-chicken IgG 

(H+L) antibody (Invitrogen, Darmstadt A11039). Nuclei were counterstained with DAPI 

(blue). A: SV1, B: SV2 C: SV3, D: SV4, E:SV5. Fluorescent labeling disclosed expression of 

AIPL1 throughout the cytoplasm. The scale bar represents 20 µm. Arrows: Indicate AIPL1 

expression throughout the cytoplasm. 
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Figure 22: Heterologous expression of His-tagged AIPL1: Immunofluorescent images 

showing cellular localisation of AIPL1 proteins expressed in HeLa cells. Cells transfected 

with pQE-TriSystemHis.Strep 1-AIPL1 splice variant constructs (SV1 - SV5) were cultured 

for 24 h and then processed for immunofluorescence using anti-His antibody followed by 

Alexa Fluor® 488-labled secondary antibody donkey anti-rabbit IgG (H+L) (Invitrogen, 

Darmstadt A21206). Nuclei were counterstained with DAPI (blue). A: SV1, B: SV2 C: SV3, 

D: SV4, E:SV5 Fluorescent labeling disclosed expression throughout the cytoplasm as could 

be seen by His-tag specific antibody. The scale bar represents 20 µm. Arrows: Indicate His-

tagged AIPL1 expression throughout the cytoplasm. 

 

3.3.1 Immunohistochemical co-detection of heterologously expressed AIPL1 and 

intrinsic CENP-F 

To check whether AIPL1 is colocalizing with CENP-F inside the cell transfection studies 

were performed in HeLa cell lines and transfected cells were probed for AIPL1 expression 

and CENP-F expression by immunohistochemistry. Colocalization between AIPL1 and 

CENP-F was evaluated for full length AIPL1 and different splice variants of AIPL1. The 

transfected recombinant AIPL1 and the intrinsic CENP-F were detected using AIPL1 and 

CENP-F antibodies. 

 

HeLa cells were seeded in silicone frames on microscope slides (PAA, Cölbe) and grown at 

37 °C and 5% CO2 over night in an incubator. Full length AIPL1 cloned in pQE-

TriSystemHis.Strep 1 vector (Qiagen) with a His-tag added at the C-terminus was transfected 

and expressed in HeLa cells as mentioned in chapter 2.3.21. His-tagged AIPL1 was detected 

by Anti-HIS antibody (ab1187, Abcam) and anti-AIPL1-ab (Chicken IgY against purified 

whole protein). CENP-F was detected by anti-CENPF-ab (sc-135865, Santa Cruz). 

Immunoreactivity (IR) was recorded on a Keyence (BZ-8100
E
) microscope by 

epifluorescence using the Z-stack feature. Digital images were evaluated for co-localization 

by Pearson‘s coefficient using the JACoP plugin in ImageJ (V. 1.44p). 
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 SV1 SV2 SV3 SV4 SV5 

Pearson’s coefficient r = 0.735 r = 0.836 r = 0.795 r = 0.675 r = 0.655 
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Figure 23: Immunohistochemical detection of intrinsic CENPF expression and transient 

AIPL1 expression in HeLa cells 

First column shows intrinsic CENPF expression, second column shows heterologous AIPL1 

expression, third column shows digital overlays of the single coloured images. Antibodies 

used- Primary: anti-AIPL1-ab (Chicken IgY against purified whole protein) & Primary Ab: 

anti-CENPF-ab (sc-135865, Santa Cruz).  Secondary (for AIPL1)-red lable: goat IgG anti-

chicken IgY (Alexa Fluor 564, Invitrogen A11040) & (For CENP-F) Secondary Ab-green 

lable: Goat anti- mouse IgG (H+L), Alexa Fluor 488, Invitrogen A11001). A: SV1, B: SV2 

C: SV3, D: SV4, E:SV5. The scale bar represents 20 µm. Arrows indicate: White - dividing 

cell, Yellow - pre-division cell and light Blue - resting cell. 

 

In HeLa cells heterogeneously expressed AIPL1 is spread for all splice variants throughout 

the cytoplasm in all stages of the cell cycle (figure 23A-E). Intrinsically expressed CENP-F is 

localized in the nucleus of the cells and to a lesser extent in the perinuclear cytoplasm 

especially during certain stages of cell divison (figure 23A-E). In the resting phase of cell 

divison CENP-F is almost absent. Co-localization of AIPL1 and CENP-F is seen in the 

perinuclear region and in the nucleus at certain stages of the cell cycle.  

 

Immunoreactivity (IR) against the AIPL1-specific antibody and the His-tag-specific antibody 

for AIPL1 was seen in the cytoplasm of HeLa cells. IR to intrinsically expressed CENP-F 

also localized to the cytoplasm in HeLa cells overlapping with the IR of AIPL1. 
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   SV1 SV2 SV3 SV4 SV5 

Pearson’s coefficient r = 0.694 r = 0.558 r = 0.434 r = 0.543 r = 0.658 
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Figure 24: Immunohistochemical detection of intrinsic CENPF expression and transient 

expression of His-tagged AIPL1 in HeLa cells 

First column shows intrinsic CENP-F expression by a CENP-F specific antibody (green), 

second column shows heterologous expression of His-tagged AIPL1 by a His-tag-specific 

antibody (red), third column shows digital overlays of single coloured images. Antibodies 

used- Primary:  polyclonal HRP tagged Rabbit anti-His antibody to 6X His (Abcam ab 1187) 

& anti-CENPF-ab (sc-135865, Santa Cruz). Secondary (for His)-red lable: goat anti-rabbit 

IgG(H+L), Alexa Fluor 546, Invitrogen A11010 & (For CENP-F)-green lable: Goat anti- 

mouse IgG (H+L), Alexa Fluor 488, Invitrogen A11001). A: SV1, B: SV2 C: SV3, D: SV4, 

E:SV5. The scale bar represents 20 µm. Arrows indicate: white -dividing cell, yellow - pre-

division cell, and light blue - resting cell. 

 

CENP-F, as stated earlier, takes part in cell cycle regulation. The influence of cell cycle 

regulating check points on CENP-F is huge. They control the vital functions of CENP-F, in 

other words they decide the fate of CENP-F. These check points control the CENP-F 

functions like stability, delay to the next phase or sometimes leads to depletion of CENP-F. 

During the co-localization studies it was seen that few cells were prepared to divide (Figure 

23 A,B & C yellow arrows) and few of them showed cell divison (Figure 23 A,B,C & D 

white arrows) and the remaining cells are in the resting phase (Figure 23 A,B,C & D light 

blue arrows). It was envisaged that splice variants (SV1 - SV5) of AIPL1 are colocalizing 

with CENP-F at different stages of cell cycle. 
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CHAPTER 4 

4. Discussion 

The research of the past two decades on both AIPL1 and CENP-F has revealed various roles 

of these genes in retinal dystrophies and cell cycle activities respectively. This is the first 

study on human AIPL1 splice variants. The existence of splice variants identified in AIPL1 

was investigated through various biochemical techniques at the molecular level.  

 

With approximately 7% AIPL1 mutations cover a major share of mutations causing Leber 

congenital amaurosis (LCA) compared to other known LCA genes. [17,20,89]. Knowledge 

on AIPL1 has progressed through various steps, from gene identification [88,89] followed by 

the clinical characterization of the phenotype [20,31,72,102] towards an increasing 

understanding of the molecular mechanism [37,54,65,67,80,99,100] cummulating in a 

treatment strategy [91,96]. AIPL1 mutations have been described to cause several types of 

retinal dystrophies such as LCA, juvenile Cone-rod dystrophy (CRD) and milder forms of 

EOSRD [20,89]. The prevalence of AIPL1 mutations in LCA and the severity of the resulting 

phenotype generate an interest in the function and pathofunction of AIPL1. The results 

obtained in this study provide information on AIPL1 interaction with centromere protein 

CENP-F and opens perspectives for further research on AIPL1 interactions with centromere 

genes.  

4.1 Impact of splicing on AIPL1 protein fucntion 

The splicing pattern observed in AIPl1 lead into the question what impact this splicing will 

have on the function of the AIPL1 protein. The identified alternative exons are encoding 

presumptively important structural domains. In exons 2 and 3 (Figure 3) this is a 

peptidylprolyl isomerase domain, that may act in folding of nascent proteins. So skipping of 

exon 2 or 3 could result in AIPL1 protein isoforms with diminished or even without 

chaperone function which was suggested to play a role in rod phosphodiesterase activation. 

The alternatively expressed aminoacids encoded from the beginning of exon 5 lie within the 

binding site of one established interaction partner of AIPL1, the NUB1 protein and their 

exclusion might change the affinity for NUB1. So minor AIPL1 isoforms derived from the 

identified alternative transcripts are supposed to have individual properties and might even 

possess mutually exclusive chaperone and NUB1-binding activity.  
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4.2 Protein expression and purification studies of AIPL1 

As described in the introduction about the importance of splicing and identification of the 

AIPL1 splice variants, various molecular biology techniques were used to validate these 

identified splice variants. To study the role of splice variants of AIPL1 at protein level splice 

variants (SV1 - SV5) were sub cloned from pCR
®
2.1-TOPO-TA vector to pQE-

TriSystemHis.Strep 1. The idea behind sub cloning the splice variants into the Tris-System is 

to use them for expressing in both prokaryotic and eukaryotic systems. For recombinant 

protein expression studies the QIAexpress System (pQETriSystemHis.Strep 1) has been 

chosen. In this system genes could be expressed in prokaryotic and eukaryotic systems due to 

the presence of both T7 (prokaryotic) and CMV (eukaryotic) promoters. For over expression 

of proteins in prokaryotic system an enzyme-based glucose release system (EnBase
®
) was 

opted [56]. Enbase system boosts the production of proteins in higher amounts when 

compared to the normal prokaryotic protein production. The higher amounts of the crude 

protein could be used in protein purification assays to achieve the higher amounts of His-

tagged AIPL1 protein.The presence of His tag helps in producing the proteins with high 

purity. To pick only the His tagged AIPL1 proteins from the pellet of endogenous proteins 

produced during the expression, purification of expressed proteins was carried out by Ni-

NTA agarose where the divalent Ni ions bind specially to the His tagged AIPL1 proteins. The 

expressed proteins were purified and the concentration of protein fractions (FT, W1, W2, E1, 

E2, E3 & E4) revealed that E2 fraction possess the highest amount of protein. To analyze 

whether the system opted for expressing the AIPL1 splice variants yielded the right sized His 

tagged AIPL1 proteins, SDS-PAGE was performed from the various fractions obtained in the 

Ni-NTA agarose purification (FT, W1, W2, E1, E2, E3 & E4) (Figure 14 &18).  

Further the eluted E2 fractions (Figure 15 & 19) were concentrated using the centripreps for  

Western blot studies. In the prokaryotic system the cultures could be done in bulk amount and 

the production of protein in the system would be higher compared to the eukaryotic system. 

The expression of each splice variant was tested individually and all the splice variants were 

expressed in the similar fashion. In human cell lines, like HEK293 which was used in this 

study for eukaryotic protein expression, the enhancement of protein production in higher 

amounts was not possible like in the prokaryotic system. Therefore, the quantity of the 

expressed protein from whole cell pellet possess less AIPL1 protein. Quantity of protein is 

always directly proportional to the transfection rate. Repeated transfections were carried out 

by optimizing the conditions to obtain a good transfection efficiency. That was the one major 
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issue faced when expression studies were done in the eukaryotic system. Compared to the 

prokaryotic protein expression system the mammalian protein expression system was 

additional less effective because The pQE-Tri-SystemHis.Strep 1 system is optimized for 

bacterial culture and expresses suboptimal in human cells. All the expressed proteins were 

validated using the anti-AIPL1 antibodies as well as anti-His antibodies (Figure 16B, 17 & 

20). In both systems, double bands (Figure 16 B, 17 and 20) were seen with Anti-AIPL1 and 

Anti-His antibodies. Post translational cleavage is one of the reasons for the appearance of 

double bands. In this study double bands were seen in immunoblot detection with all the 

splice variants (SV1-SV5). Sometimes the double bands were not detected, it was envisaged 

that splice variants are acting differently during protein expression based on the protein 

domains present in these splice variants. 

 

4.2.1 Role of imidazole and FKBPs in protein purification 

Further to perform protein interaction studies a purified AIPL1 protein in higher amounts is 

required.To purify a desired protein, His-tagged AIPL1 in this study from a complex mixture, 

various factors play role  in the protein purification. Among these factors protein domains 

and buffers used for protein purification play vital role in obtaining a high quality protein. 

Previously a contamination of the elute with increased imidazole concentrations was reported 

using Ni-NTA spin columns. The studies identified an E. coli protein containing a domain 

homologous to FK506-binding proteins (FKBPs) as a persistent contaminant in immobilized 

metal affinity chromatography of recombinant proteins that were expressed in E. coli [36]. A 

band of the expected size 44 kDa and the other band of 30 kDa are observed frequently in our 

study. A cocktail of protease inhibitors was suggested to solve the problem of extra bands, 

later optimization of the imidazole concentrations and application of a cocktail of protease 

inhibitors solved this problem (figure 16B, 17 & 20). 

4.3 Immunoblot analysis of AIPL1 splice variants 

The presence of all splice variants was demonstrated through immunoblot analysis, both in 

the prokaryotic and eukaryotic systems (Figures: 16, 17 & 20). All splice variants expressed 

and analyzed through the western blot migrated at about the same size corresponding to full 

length of AIPL1. The various size differences SV1 - 43.9 kd, SV2 - 36.8 kd, SV3 - 35.0 kd, 

SV4 - 40.9 kd and SV5 - 41.2 kd of the AIPL1 splice variants could not be separated. The 

size difference between the splice variants varies from 0.3 kDa to 8.9 kDa. The small size 

differences of the splice variants may explain why the splice variants could not be separated 
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on PAGE gels using in vivo samples. This could be one major reason why the various splice 

variants were not identified in previous studies [23]. When observed in the positive control 

used for all the immunoblots a slightly bigger size of the wild type protein compared to the 

splice variants could be shown (Figure 16). The positive control sample was extracted from 

protein from human retinal tissue which is eukaryotic. Eukaryotic proteins are post 

translationally modified. This may be the reason for the greater molecular weight of human 

retinal protein and compared to proteins expressed in a prokaryotic host. 

4.4 Choosing CENP-F as a possible interaction partner of AIPL1  

In a preceding study using a Yeast two hybrid system an interaction of the C-terminal 120 

amino acids of CENP-F with AIPL1 was shown [40]. It arose interest in the influence of 

centromere proteins on photoreceptor maturation, while AIPL1 playing a key role in 

maintaining the morphology of the neuroretina by processing farnesylated proteins [81] and 

CENP-F playing a role in the segregation of cells. The interest lies in knowing what happens 

if AIPL1 is interacting with CENP-F and the influence of interaction on retinal 

cytoarchitecture. 

 

4.5 Features that support interaction between AIPL1 and CENP-F 

Prenylation is important for protein interaction and function. Protein farnesylation plays 

important roles in the membrane association and protein-protein interaction of a number of 

eukaryotic proteins[94]. During Farnesylation which is catalyzed through Farnesyltransferase 

(FTase) an isoprenoid is added to proteins terminating in a CAAX motif at the carboxyl 

terminus of the protein. Previous studies concluded that AIPL1 may interact with the C-

terminal prenylation motif in the cytosol dependent on the presence of farnesyltransferase 

[51]. CENP-F has a C-terminal CAAX motif [4] which is required for isoprenylation and 

carboxy methylation. It was shown that AIPL1 interaction enhanced the post translational 

farnesylation of proteins in the retina [81]. Various functions were assigned to AIPL1 which 

include protection of farnesylated proteins from proteasomal degradation in the cytosol, 

facilitated targeting of the protein to the ER for further protection or chaperone the 

farnesylated proteins to the target membrane. From this it was envisaged that AIPL1 

farnesylation could initiate protein interaction with CENP-F through C-terminal CAAX motif 

during photoreceptor proliferation, which protects and guide CENP-F towards its target. 

http://en.wikipedia.org/wiki/Isoprenoid
http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Sequence_motif
http://en.wikipedia.org/wiki/Carboxyl_terminus
http://en.wikipedia.org/wiki/Carboxyl_terminus
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Further Yeast-two hybrid studies, determined that AIPL1 interacts with NUB1 (NEDD8 

Ultimate Buster-1), a protein involved in regulating cell-cycle progression and proliferation 

[2]. In cell cycle progression NUB1 functions through down-regulating NEDD8 expression 

post-translationally by targeting NEDD8 and its conjugates for proteasomal degradation [52]. 

NEDD8 is involved in the degradation of many proteins including Cyclin D1 and p27kip1, 

acting in the regulation of cell cycle progression in the developing retina [24,25]. Recent 

studies suggested that AIPL1 regulates the ubiquitin like FAT10 pathway by interaction with 

FAT10 E1 activating enzyme UBA6 [6]. Ubiquitin which is a house keeping gene and plays 

role in cell cycle regulation, which supports the hypothesis that AIPL1 may show partial or 

complete interaction with cell cycle regulating proteins.  

4.6 Colocalization studies of AIPL1 and CENP-F 

Transfection studies were carried out to check the subcellular localization of AIPL1 and 

CENP-F using HeLa and HEK293 cell lines, which are not expressing AIPL1 intrinsically. 

CENP-F is a housekeeping gene, therefore a heterologous expression of AIPL1 should be 

able to show colocalization in these cell lines. The intrinsic expression of CENP-F in HeLa 

and HEK293 cells was expected to produce sufficient protein for interaction studies. The 

mammalian expression studies revealed that cytoplasmic localization of CENP-F and AIPL1 

was overlapping upon heterologous expression of AIPL1 in HeLa cells indicating a possible 

interaction. Cytoplasmic localization of CENP-F and AIPL1-SV1 were overlapping upon 

heterologous expression of AIPL1 in HeLa cells in perinuclear positions and in the nucleus 

(Figure 23 and 24). From the expression level of CENP-F it may be interpreted that 

colocalization occurs during cell division indicating a restricted interaction at certain stages 

of the cell cycle. Nuclear morphology implies colocalization of AIPL1 and CENP-F in 

dividing cells. Possibly pre-dividing and resting cells do not show colocalization indicating a 

function of AIPL1 upon proteins active during cell division. The reduced Pearson’s 

coefficient for SV3 (Figure 25) may indicate important domains of AIPL1 are involved in 

interacting with CENP-F due to the missing colocalization in the cyctoplasm. From (Figure 

23 and 24) it was clear that the expression of CENP-F differs in the cells based on the 

developmental stages of the pre-dividing, diving and resting. These images emphasize the 

redistribution of CENP-F and distinct punctate CENP-F patterns proximally located in 

relation to the centromeres can be seen. The interaction studies performed between AIPL1 

and CENP-F through immunoblot analysis did not show any interaction. May be that the 

interaction is transient between AIPL1 and CENP-F or that there are technical reasons that 
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hampered detection of interaction. The system used for the interaction studies had some 

limitations. An first hand the size of CENP-F (350 kDa) has to be mentioned which causes a 

problem in blotting with AIPL1 by overblotting of the smaller AIPL1 protein  in parallel 

transfer. Further CENP-F may not well enter the denaturating PAGE gel and thus is not 

represented on the blotted gel. Finally, the interaction may be too weak and underrepresented 

compared to interactions of AIPL1 with other cellular proteins. In this case the detection limit 

of the method would be insufficient. 

4.7 Future aspects in validating AIPL1 splice variants and protein interaction studies 

This study revealed the presence of splice variants (SV1 - SV5) in AIPL1 gene expression 

studies. One drawback to the functional studies of the variants at the protein level is the lack 

of specific antibodies recognizing certain variants exclusively, which would be extremely 

useful for delineating their overlapping and distinct functions. Further investigations are 

required to check the role of these splice variants in interaction studies with centromere 

proteins and for the maintenance of photoreceptor development. For performing interaction 

studies between AIPL1 and CENP-F full length cloning of CENP-F into an expression vector 

could be one option to add a tag to the protein which may ease the access to the interaction 

studies. On the other hand a tag may also interrupt important protein-protein or protein-

membrane interactions and may interfere with its physiological function. 
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           CHAPTER 5 

 

SUMMARY 

In this study an investigation of splice variants in human AIPL1, the fourth gene underlying 

Leber Congenital Amurosis (LCA), in relation to cell cycle regulating centromere protein 

CENP-F was accessed. 

The study addressed the presence of the splice variants (SV1 - SV5) of AIPL1 at the protein 

level and the activity of these splice variants in relation to CENP-F. The existence of these 

splice variants may play a vital role in interactions of AIPL1 with other proteins in retinal 

cells and may influence the activity of some AIPL1 mutations at various developmental 

stages of the retina. 

AIPL1 splice variants (SV1 - SV5) were cloned into an expression vector possessing an 

8xHis-tag and their expression was validated by transformation of prokaryotic cells and 

transient transfection into eukaryotic cells. The evaluation of the splice variants was assessed 

using protein over expression, purification by Ni-NTA agarose, and immunoblot studies. Ni-

NTA agarose was used to purify the expressed splice variants by their His-tag. The study 

confirmed that the splice variants were not prone to removal by protein quality control 

mechanisms of eukaryotic cells indicating a functional relevance. Unfortunately, the splice 

variants could not be distinguished by polyacrylamide gel electrophoresis hampering their 

proof in tissue samples. Colocalization between AIPL1 and CENP-F was shown in human 

cell lines probably upon cell division but the envisaged interaction between these two 

proteins could not be confirmed in immunoblot studies. 

CENP-F interaction with AIPL1 may open new views in revealing the link between 

photoreceptor maturation and segregation. Functional studies will have to clarify whether 

AIPL1 function is influenced by these variants in the development and maintenance of 

photoreceptors as well as to the pathogenicity of mutations located within the alternatively 

spliced exons. 
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CHAPTER 6 

 
Zusammenfassung 

 

In dieser Studie wurden Spleißvarianten des AIPL1, dem vierten Gen das mit der Leberschen 

kongenitalen Amaurose (LCA) assoziiert ist, auf ihre Beziehung zum Zellzyklusregulator 

Zentromerprotein F (CENP-F) untersucht. 

Die Studie befasste sich mit der Darstellung der AIPL1 Spleißvarianten (SV1 - SV5) auf 

Proteinebene und deren Aktivität in Bezug auf CENP-F. Die Existenz der Spleißvarianten 

könnte einen grundlegenden Einfluß auf die Interaktionen des AIPL1 mit anderen Proteinen 

der retinalen Zellen haben und die Funktion von AIPL1 Mutationen in verschiedenen 

Entwicklungstadien der Netzhaut beeinflußen. 

AIPL1 Spleißvarianten (SV1 - SV5) wurden in einen Expressionsvektor kloniert, der einen 

8xHis-tag exprimiert und ihre Expression wurde durch Transformation in prokaryotische 

Zellen und transiente Transfektion in eukaryotische Zelle bewertet. Dies wurde mittels 

Proteinüberexpression, Aufreinigung mit Ni-NTA Agarose und Immunoblotstudien 

untersucht. Ni-NTA Agarose wurde zur Aufreinigung der exprimierten Proteine über den 

8xHis-tag angwandt. Es zeigte sich, dass die Spleißvarianten expriomiert wurden und nicht in 

Proteinqualitätskontrollen der eukaryotischen Zellen entfernt wurden. Dies unterstützte die 

funktionelle Relevanz der Spleißvarianten. Eine Unterscheidung der Spleißvarianten über 

polyacrylamidgelelektrophoretische Auftrennungsverfahren konnte nicht durchgeführt 

werden, was die Möglichkeit eines Nachweises in Gewebeproben deutlich einschränkte. 

Eine Kolokalisation von AIPL1 und CENP-F konnte in humanen Zellinien mutmaßlich 

während der Zellteilung gezeigt werden. Eine direkte Interaktion zwischen diesen beiden 

Proteinen konnte im Immunoblot nicht bestätigt werden. 

Die Interaktion von CENP-F und AIPL1 eröffnet neue Interpretationsmöglichkeiten über die 

Verknüpfung von AIPL1 mit der Photorezeptorreifung und -verteilung. Funktionelle Studien 

werden klären müssen, ob AIPL1-Spleißvarianten die Funktion von AIPL1 in der 

Entwicklung und Unterhaltung der Photorezeptoren beeinflussen und inwieweit Mutationen 

in den alternativ gespleißten Exons Einfluß auf deren Pathogenität nehmen. 
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