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1 Introduction

One of the central questions in complexity theory asks for the power of nonde-
terminism in bounded-resource computations. Traditionally, nondeterministic
devices have been viewed as having as many nondeterministic guesses as time
steps. The studies of this concept of unlimited nondeterminism led, for exam-
ple, to the famous open LBA-problem or the unsolved question whether or not
P equals NP. In order to gain further understanding of the nature of nonde-
terminism in [4, 11] it has been viewed as an additional limited resource at the
disposal of time or space bounded computations.

Motivated by the search for problems that are neither in P nor NP-complete
the same authors investigated the so-called S-hierarchy [12]. They considered
languages acceptable by polynomial-time bounded Turing machines that make
a polylogarithmic number of nondeterministic steps. The hierarchy relies on the
exponent of the logarithm. For every ¢ € N the class of languages acceptable
with O(log®) nondeterministic steps is included in the class acceptable with
O(log®*!) nondeterministic steps. Clearly, since the hierarchy is in between P
and NP none of the inclusions is known to be strict, but on the lower end of
the hierarchy they proved P to be the class of languages acceptable with O(log)
nondeterministic transitions.

In [2] limited nondeterminism is added to deterministic complexity classes inde-
pendent of the computational model for the class. For these Guess-and-Check
models the nondeterministically chosen bits are added to the input. If one of
the choices can be verified as a witness, then the original input is accepted.

Extensive investigations are also done on limited nondeterminism in the context
of finite automata and pushdown automata. In [13] the nondeterminism is
restricted dependent on the size of finite automata. The authors prove an
infinite nondeterministic hierarchy below a logarithmic bound, and relate the
amount of nondeterminism to the number of states necessary for deterministic
finite automata to accept the same language.

An automata independent quantification of the inherent nondeterminism in reg-
ular languages is dealt with in [6]. The relation between the degree of nonde-
terminism and the degree of ambiguity is considered in [7]. Recently, measures
of nondeterminism in finite automata have been investigated in [10].

Two measures for the nondeterminism in pushdown automata are proposed
in [19]. By bounding the number of nondeterministic steps dependent on the
length of the input a hierarchy of three classes is obtained. A modification of
the measure can be found in [17]. The second measure depends on the depth
of the directed acyclic graph that represents a given pushdown automaton.
The corresponding proof of an infinite nondeterministic hierarchy of properly
included classes is completed in [18]. Recently, a further modification and
generalization has been investigated in [9].

A good survey of limited nondeterminism reflecting the state-of-the-art at its
time is [5].

Back to our first reference [4] which is part of the pioneering works in this field.



In the early days of complexity theory the proper inclusion between the deter-
ministic and nondeterministic real-time multitape Turing machine languages
has been shown [8]. In [4] this result is refined by showing an infinite hier-
archy between the deterministic real-time Turing machine languages and the
languages acceptable by real-time Turing machines whose number of nondeter-
ministic steps is logarithmically bounded. Observe, that due to the previously
mentioned result for the lower end of the §-hierarchy a corresponding hierarchy
for polynomial-time computations does not exist. Here we are going to gen-
eralize this result to arbitrary dimensions and extend it to time complexities
in the range between real-time and linear-time. Recently, in [14] an infinite
time hierarchy of deterministic Turing machines in that range has been shown.
The hierarchy relies on time bounds of the form id 4+ r where r is a sublinear
function. In the present work we exhibit infinite nondeterministic hierarchies of
properly included classes for those time bounds. Since the models in question
are too weak for diagonalization we use counting arguments that are based on
a generalization of a well-known equivalence relation. By calculation different
numbers for induced and distinguishable equivalence classes for a family of wit-
ness languages the properness of the inclusions are established by contradiction.

A variant of the witness languages and the same technique is used to make
another step towards the exploration of the world below linear-time. We present
a two-dimensional proper hierarchy where each line is an infinite dimension
hierarchy for a fixed amount of nondeterminism, and each column is an infinite
nondeterministic hierarchy for a fixed dimension.

In the next section we recall briefly the basic definitions of the model in ques-
tion and its constructible functions. The central equivalence relation, an upper
bound of distinguishable equivalence classes for Turing machines and a pre-
liminary result of a technical flavor are shown. In Section 3 we present the
nondeterministic hierarchies for time complexities of the form id + r. Finally,
in Section 4 the two-dimensional hierarchy is established.

2 Preliminaries

We denote the rational numbers by Q, the integers by Z, the positive integers
{1,2,...} by N and the set NU {0} by No. The reversal of a word w is denoted
by wf. For the length of w we write |w|. We use C for inclusions and C if the
inclusion is strict. Let e; = (0,...,0,1,0,...,0) (the 1 is at position ¢) denote
the ith d-dimensional unit vector, then we define

Eg={0}U{ei|1<i<dyU{—e;|1<i<d}.

For a function f : Ng — N we denote its i-fold composition by fli, i € N. If f
is increasing then its inverse is defined according to

fYn) = min{m € N | f(m) > n}.



The identity function n — n is denoted by id. As usual we define the set of
functions that grow strictly less than f by

o(f)y={g:Ng = N| limM:O},

n—oo f(n)
In terms of orders of magnitude f is an upper bound of the set
O(f) ={g:No = N|Ing,ce N:Vn>ng:9(n) <c-f(n)}

Conversely, f is a lower bound of the set Q(f) ={g:No = N | f € O(g)}-

A nondeterministic d-dimensional Turing machine with k& € N tapes consists
of a finite-state control, a read-only one-dimensional one-way input tape and &
infinite d-dimensional working tapes. On each tape a read-write head is posi-
tioned. At the outset of a computation the Turing machine is in the designated
initial state and the input is the inscription of the input tape, all the other
tapes are blank. The read-write head of the input tape scans the leftmost sym-
bol of the input whereas all the other heads are positioned on arbitrary tape
cells. Dependent on the current state and the currently scanned symbols on the
k+1 tapes, the Turing machine nondeterministically changes its state, rewrites
the symbols at the head positions of the working tapes and possibly moves the
heads independently to a neighboring cell. The head of the input tape may
only be moved to the right. With an eye towards language recognition the
machines have no extra output tape but the states are partitioned in accepting
and rejecting states. More formally:

Definition 1 A nondeterministic d-dimensional Turing machine with k € N
tapes (NTMY) is a system (S, T, A, 6, s, F'), where

1. S is the finite set of internal states,
T is the finite set of tape symbols containing the blank symbol i,
A C T\ {u} is the set of input symbols,

sg € S is the initial state,

S

F C S is the set of accepting states,

6. § is the partial transition function mapping from S x (AU {u}) x T* into
the subsets of S x T* x {0,1} x E%.

Since the input tape cannot be rewritten we need no new symbol for its current
tape cell. Due to the same fact § may only expect symbols from AU {u} on the
input tape. The set of rejecting states is implicitly given by the partitioning,
i.e.,, S\ F. The unit vectors correspond to the possible moves of the read-write
heads.

Let M be an NTM%. A configuration of M is a description of its global state
which is a (2(k + 1) + 1)-tuple (s, fo, f1,---, fx,P0,P1,-.-,Pk) Where s € S is
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Figure 1: Two-dimensional Turing machine with k¥ working tapes and an input
tape.

the current state, fo: Z — AU{u} and f; : Z¢ — T are functions that map the
tape cells of the corresponding tape to their current contents, and py € Z and
pi € Z% are the current head positions, 1 < i < k.

The initial configuration (so, fo, f1,---, fk,1,0,...,0) at time 0 is defined by
the input word w = a7 - - - a,, € A*, the initial state sy and blank working tapes:

_Jan f1<m<n
folm) = {u otherwise
filmi,...,mg) =u for1<i<k

Successor configurations are nondeterministically chosen according to the global
transition function A: Let (s, fo, f1,---, fx,P0,P1,---,Pr) be a configuration.
Then

(Slaf()af{a"'7f]lcap6ap117"' 7p;¢) € A(saf()afla"' 7fk7p0ap17"' 7pk)

if and only if there exists

(8’,3}'1, ey Ty JO5 Ty - - - 7jk) € 5(37 fO(PO),fl(Pl)a s 7fk(pk))
such that
/ _ J filma,...oma) i (ma, ... ma) # pi
fi(ml,...,md)_{xi if('rnl,,’fnd):pZ
pi =pi+Jji, Po="ro+jo
for 1 < i < k. Thus, the global transition function A is induced by §.
Throughout the paper we are dealing with so-called multitape machines:

NTM? = | J NTM{
keN



A single transition step is called nondeterministic if the machine has more than
one choice for its next move. Otherwise the transition is called deterministic.
We obtain a natural way to measure the nondeterminism of a computation
simply by counting the number of its nondeterministic transitions. In the sequel
we refine the nondeterminism by placing bounds on the number of allowed
nondeterministic transitions. Clearly, the bounding functions themselves will
be bounded by the time complexity. Let g : Ng — Ng be a function. A d-
dimensional Turing machine whose number of nondeterministic transitions for
all possible computations on all inputs w is bounded by ¢(|w|) is denoted by
g-NTM¢. For the constant function g(n) = 0 we obtain computations that can
be performed by deterministic Turing machines (DTM?). In [4] the definition
of Turing machines that obey the bound g is in some sense weaker. There the
minimum number of nondeterministic transitions made during any computation
that accepts w is taken. Since weaker bounds might yield more powerful devices
here we remark that all of the following negative results remain valid even in
the weak case. This is obvious for positive results.

A Turing machine M = (S,T, A, , s, F) halts iff the transition function is
undefined for the current configuration. An input word w € A* is accepted
by M if the machine halts at some time in an accepting state, otherwise it is
rejected. L(M) = {w € A* | w is accepted by M} is the language accepted
by M. Let ¢t : Ny — N, ¢(n) > n+ 1, be a function, then M is said to be
t-time-bounded or of time complexity t iff it halts for all possible computations
on all inputs w after at most ¢(|w|) time steps. If ¢ equals the function id + 1
acceptance is said to be in real-time. The linear-time languages are defined
according to time complexities ¢ = ¢ - id where ¢ € Q with ¢ > 1. Since time
complexities are mappings to positive integers and have to be greater than or
equal to id + 1, actually, ¢ - id means max{[c - id],id + 1}. Accordingly, for
functions that bound the nondeterminism g(n) actually means [g(n)]. But for
convenience we simplify the notation in the sequel.

The family of all languages which can be accepted by g-NTM? with time com-
plexity ¢ is denoted by g-TIME?(t). For NTM? resp. DTM? language families
we use the corresponding notation NTIME®(#) resp. DTIME®(t).

In order to prove tight hierarchies dependent on bounding functions in general
honest functions are required. Usually the notion honest is concretized in terms
of computability or constructibility of the functions with respect to the device
in question.

Definition 2 Let d € N be a constant. A function g : Ng — Ny is said to be
DTM¢constructible iff there exists a DTM® which for every n € N on input 1™
halts after exactly g(n) time steps.

Another common definition of constructibility demands the existence of an
O(f)-time-bounded Turing machine that computes the binary representation
of the value g(n) on input 1". Both definitions have been proven to be equiva-
lent for multitape machines [15].

The following definition summarizes the properties of the honest functions used



throughout the paper and names them.

Definition 3 The set of all functions g with the property g(m -n) < g(m) +
g(n) whose inverses are increasing, unbounded DTM-constructible functions
is denoted by Z~Y(DTM?). Accordingly, the set of functions {g~' | g €
I 1 (DTM?)} is denoted by 7 (DTMY).

Since we are interested in a refinement of the nondeterminism we need small
bounding functions below the logarithm. The constructible functions are nec-
essarily greater than the identity. Therefore, the inverses of constructible func-
tions are used. The properties increasing and unbounded are straightforward.
At first glance the property g(m - n) < g(m) + g(n) seems to be restrictive,
but it is not. It is easily verified that almost all of the commonly considered
bounding functions below the logarithm have this property. As usual here we
remark that even the family .7 (DTM?) is very rich. More details can be found
for example in [1, 20].

Due to the small time bounds the devices under investigation are too weak for
diagonalization. In order to separate complexity classes counting arguments
are used. The following equivalence relation is well-known. At least implicitly
it has been used several times in connection with real-time computations, e.g.
in [8, 16] for Turing machines and in [3] for iterative arrays.

Definition 4 Let L C A* be a language over an alphabet A and | € Ny be a
constant. Two words w and w' are l-equivalent with respect to L if and only if

ww; € L <= ww, €L

for all w; € A'. The number of l-equivalence classes of words of length n — I
with respect to L (i.e. |lww;| = n) is denoted by N(n,l,L).

The underlying idea is to bound the number of distinguishable equivalence
classes. The following lemma gives a necessary condition for a language to be
(id + r)-time acceptable by a g-NTM¢.

Lemma 5 Let 7 : Ngo = N and g : Ng — Ny be two functions and d € N be a
constant. If L. € g—TIMEd(id + 1), then there exist constants p,q € N such that

N(’I’L, la L) < p(l+’r(n))d-q9(").

Proof. Let M = (S,T,A,d,sq,F) be a (id + r)-time g-NTM? that accepts a
language L.

In order to determine an upper bound for the number of /-equivalence classes we
consider the possible situations of M after reading all but [ input symbols. The
remaining computation depends on the current internal state and the contents
of the at most (2(147(n))+1)¢ cells on each tape that are still reachable during
the last at most [ + r(n) time steps.

Let p1 = max{|T], S|}.



For the (2(1 4 r(n)) 4+ 1)¢ cells per tape there are at most p(Z(HT(n))H) dif-
ferent inscriptions. For some k € N tapes we obtain altogether at most

k(2(14r(n))+1)%4+1 (k+1)-3¢
Py

different situations. For p = p; these are less than
p(l+7‘(n))d‘

Now let ¢ be the maximal number of choices that M has for any nondetermi-
nistic transition step. It follows that the number of different computation paths
is at most ¢9"). Since the number of equivalence classes is not affected by the
last [ input symbols in total there are at most (p(l”("))d)qg(n) classes. O

The next result is somehow technical but it is a helpful tool for calculating the
order of magnitude of the lower bound for the number of induced equivalence
classes.

No — N be two functions such that
), then

g :
f(n
( ) c 2Q(fg
Proof.

g 10\ 9
(2f> S (2f —g> (20 s (237 160)" > (210)" = 215 € 9279
g g g

a

Lemma 6 Let f : Ng —» N and
ng € N:Vn > ng:log(g(n)) < 1f

3 Nondeterministic Hierarchies Below Linear-Time

In this section we will present nondetermlmstlc hierarchies for time complexities
in the range between real-time and ¢d + id?. Our result covers the hierarchy for
the special case of real-time computations that have been proved in [4]. Since
throughout the section we fix the dimension to be 1 we write g-NTM, f-TIME
etc. instead of g-NTM!, f-TIME! etc.

Theorem 7 Let f : Ng = Ng, g : Ngo = Ng and » : Ng — N be increasing
functions. If f € 7 1 (DTM), f € O(log), g € o(f) and r € O(zd2) then

f-TIME(id) \ g-TIME(id + 1) # 0.

Proof. At first we define a witness language Iy for the assertion. The words
of Ly are of the form

ambf_l(m)Cme1$ e $w2m¢y

where m € N is a positive integer, the words y, w; € {0,1}" such that |w;| =
ly| = f~1(m) for 1 < i < 2™. In addition, there exists at least one subword w;
that matches the reversal yt of y.



The basic idea for the construction of an accepting real-time f-NTM M is as
follows. In a first phase M guesses the position ¢ of the matching subword.
Then the corresponding subword is stored on a tape and, finally, is compared
to y. Special attention has to be paid such that M obeys the bound f for any
input. More detailed:

The machine M reads the m symbols a and stores them onto a tape. When
the first b appears in the input a constructor for f~!(m) is simulated in order
to verify the number of b’s. Up to now no nondeterministic transitions have
been performed. Moreover, due to the verified number of b’s the machine M
may in any case perform m nondeterministic transitions.

While reading the ¢’s M sequentially simulates constructors for 20,21, ... 271,
This takes 20+ 2 4 ... 4+2m~1 = 2™ _ 1 time steps and is, therefore, well suited
to verify the number of ¢’s.

In addition parallel to the first step of a construction a bit is guessed. This
bounds the number of nondeterministic transitions appropriately to m. The
sequence of guessed bits is a binary number between 0 and 2™ — 1 that selects
the matching subword w;. M needs this number in unary on one of its working
tapes. Therefore, if the guessed bit is 1, during the subsequent construction 1’s
are written. If the guessed bit is 0, then nothing is written on that tape.

During the last phase M simply deletes one 1 for each w; appearing in the
input. When the last 1 has been deleted the subword is stored on a tape and
is (later on) compared to the y in reverse order. We conclude that M works in
real-time and obeys the bound f and, hence, Ly € f-TIME(id).

The second part of the proof is to show Ly ¢ ¢g-TIME(id 4+ r). The idea is
to approximate the numbers of induced and distinguishable equivalence classes
and to show their different growth rates. Therefore, in contrast to the assertion
we assume L is acceptable within time id + r by some g-NTM.

For the lengths n of the words in I.; we obtain:

no=m+f7H(m)+ 2"+ 27 (f7H(m) +1) + f7H(m)
< fTHm) + 27 (F7H(m) +3) + fH(m)
< (2" +2)- (f7H(m) +3)
Since f € O(log) we have f~! € Q(2%) and, thus, n < c;(f1(m))? for some
c1 € N.
Due to Lemma 5 for constants p,q € N the number of equivalence classes
distinguishable by M is as follows:



N(n, f~*(m), L1)

< pUH m)+r(n)-go™

< p(f‘l(m)+r(c1-f‘l(m)2))'q9(”'f_1(m)2) since r, ¢ are increasing
< U m)+r(ed 1 (m)?)) g er s TH )

< p(f—1(m)+c2.f—l(m)).q0(f(01)+f(f_1(m))+f(f_1(m)))

for some c3 € N since r € O(id%) and f(z-y) < f(z) + f(y)

(c3-f~1 (m)).q0(64+2-m)

<p for some c¢3,c4 € N

< pO(f‘l(m))-q"(m)
< pOU=Hm)of2m)
< oI~ m)2m) < ol (m)2m)

On the other hand, consider two different words
a™b T M 2™ i $wome  and ambf_l(m)czmw'lﬂi o $whm g

They are not f !(m)-equivalent with respect to L; if the sets {wy,...,wom}
and {w], ..., whn} are not equal. Therefore, L; induces at least

f7H(m)
N 1) = (7, )

equivalence classes. Since f~! € Q(2) we have log(2™) = m < 2f~!(m) and
may apply Lemma 6 such that

N(n, f~(m), Ly) > 220 (m)2™)

From the contradiction Ly ¢ g-TIME(id + r) follows. O

In general, a logarithmic upper bound for the number of nondeterministic tran-
sitions seems quite natural, since all positions of subwor(lis or symbols or what-
ever can be guessed in binary. An upper bound of ¢d2 for the time beyond
real-time appears not very natural. Unfortunately, we have no result for the
range between id + i¢d2 and linear-time that could shed some 1light on that
bound. The previous theorem says also that below time id 4+ ¢d2 nondetermi-
nism cannot be saved at the cost of time. So, in some sense nondeterminism is
a more powerful resource than time. Thus, between two bounds for the non-
determinism there fits a certain amount of time without affecting the language
acceptance power.

Example 8 Since .7 (DTM) contains 2/ and is closed under composition the

functions log[i] for 4 > 1 are belonging to .7 ~1(DTM). They satisfy all condi-
tions of Theorem 7.

10



DTIME(id +log) C --- C logl'l-TIME(id +log) C logP-TIME(id+1log) C log-TIME(id + log)
U

DTIME(id + log?) c --- C logPl-TIME(id + logi?) c logPl-TIME(id + log?) C log-TIME(id + log®)
U

DTIME(id + logPl) C --- C logPl-TIME(id + logl®l) c logll-TIME(id + 10gPl) C log-TIME(id + logl)
U

U
DTIME(id) Cc - C  logBl-TIME(id) c  log? -TIME(id) c  log-TIME(id)

The infinite time hierarchy for the deterministic classes has been shown in [14].

4 Nondeterminism versus Dimension

Relating time and nondeterminism in the previous section we have fixed the
third resource under consideration to its minimum, i.e., the dimension to 1. Now
we are going to relate nondeterminism and dimension and fix the minimal time,
i.e., real-time. It will turn out that there exist two-dimensional hierarchies. An
example for the iterated logarithm is depicted in Figure 2.

log - TIME(id) log -TIME?(id) log -TIME3 (id) log-TIME*(id)
U U U U
logZ -TIME(id) C logl?-TIME?(id) C log!® -TIME?(id) C logl? -TIME*(id) C ---
] U ] U
logPl-TIME(id) C logl®-TIME2(id) C logl® -TIME?(id) C logl®!-TIME*(id) C ---
] ] ] U
U U U U

DTIME(id) < DTIME%(id) < DTIME3(id) < DTIMEY(id) cC ---

Figure 2: Two-dimensional hierarchy for the iterated logarithm.

4.1 Nondeterministic Hierarchies for Any Dimension

At first we prove the ‘column hierarchies’, i.e., nondeterministic hierarchies for
arbitrary dimensions.

Theorem 9 Let f : Ng — Ng and g : Ng — Ny be two increasing functions and
d € N be a constant. If f € -1 (DTM?), f € O(log) and g € o(f), then

g-TIME%(id) C f-TIME®(id).

11



Proof. Basically, the witness language is of the same structure as in the
previous proof. But since dimensions are a powerful resource a refined control
of the length and the number of the subwords is necessary. In addition, an
accepting machine needs some hints in order to obey the given bounds. The
length of the subwords must not exceed a maximum with respect to a bounding
value. Define

ug(m) = max{v € N| (vt 2™")(v+1)- 24+ v-d <m?*. f~(m)}.

Observe that ug(m) is increasing and unbounded since f~!(m) is increasing
and unbounded. Now the words of the language Lo are of the form

ambffl(m) C2’" w1 $w{%¢w2$w§¢ - ¢wl$wlR¢d1 ... djy

where m € N is a positive integer, y, w; € {0,1}" such that |y| = |w;| < ug(m)
for 1 <i<land!l=|w|% ! 2™ With j = (d — 1)|w;| we require di,...,d;
Ey 1.

The acceptance of such a word is best described by the behavior of an accepting
f-NTM? M.

The behavior of M until the first subword w; appears in the input has been
described in the proof of Theorem 9. Parallel to what follows M verifies the
lengths of the w; and y to be equal. Since the polynomials are constructible
and the constructible functions are closed under multiplication M can check
the number / to be u%! - 2™ and the number j to be (d — 1) - u. The value
f~1(m) is given by the number of b’s. Therefore, M can simulate a constructor
for m@*! . f~1(m) and, hence, check that lwi$wie - - - qwwiteds - djy| <
m*l . f=1(m) what implies u < ugq(m).

During its first phase M has guessed a value in the range between 0 and 2™ — 1
with m nondeterministic transitions. This value selects a block of u%~! con-
secutive subwords wz-$wZR¢. Clearly, the guessed value can be decreased corre-
spondingly in order to detect the time step at which the guessed block appears
in the input. Now M stores the subwords w; of the block in a d-dimensional
area of size uf. If, for example, the head of the corresponding tape is located
at the coordinates (ji,...,J4—1,0) then the following subword w; is stored into
the cells (j17 s 7jd717 0)7 (jla s ’jdfla 1)7 RN (j17 cee ’jdfla uU— 1) Subsequently
M moves the head back to position (ji,...,j4—1,0) while reading and verify-
ing wf. While reading the following symbol ¢ the head changes to the new
coordinates.

The last phase leads to acceptance or rejection. After storing all subwords of
the block M keeps the head on the current position until d; appears in the
input. While reading the d; M moves the head by adding d; to the current
position. Since d; € E;_1 the dth coordinate is not affected. This phase leads
to a head position (j1,...,74-1,0). Now the subword y is read and compared to
the subword w; stored at that position (if there is stored a subword at all). M
accepts if and only if both are equal. Altogether M works in real-time and obeys
the bound f for the nondeterministic transitions. It follows Ly € f-TIME?(id).

12



Now assume Lo is real-time acceptable by some g-NTM¢ M’. A contradiction
for the numbers of induced and distinguishable equivalence classes is derived as
follows.

Two words )
™’ T M $wlie - - - qwSwie

and )
a™bf T M 2T wife - - - qwl$wi e

are not (d - u)-equivalent with respect to Lo if the sets {wi,...w;} and
{wi,...,w]} are not equal. There are (ud—21-2m) different subsets of {0,1}"

with u?~1 - 2™ elements. Consider words with u = ug(m). We obtain at least

U
N(n, u- d7 L2) Z <Ud_1 . 2m)

equivalence classes. From the definition of uy(m) follows u? - 2™ € Q(m?+t! .

f7Hm).
Since f is of order O(log) its inverse f~1 belongs to ©(2/¢). This implies u?-2™ €
Q(m®1! . 2m) and, thus, u? € Q(m*!) and, hence, m € o(u). We conclude
(d—1) -log(n) + m < tu and so log(u? ! -2™) < tu. Now we can apply
Lemma 6 and obtain

N(n,u-d,Ly) > 90(u2™)

In order to bound the number of distinguishable equivalence classes we approx-
imate g as follows:

g(n) < (m+ f~1(m)+2™ +m®t. f~1(m)) since g is increasing

< g(f~t(m) - (m*1 +3)) since f1(m) € Q(2™)

< g((f7(m))?)

< o(f((f7H(m))?))

< o(f(f~H(m)) + f(f~H(m))) since f(z-y) < f(z) + f(y)
< 0(2-m) = o(m)

Finally, we conclude

N(’I’L, u - d, L2) < p(u-d)d.qg(n) < po(u)d_qo(m)
S pO(ud).o(2m) S 20(ud-2’")

From the contradiction Ly ¢ g-TIME?(id) follows what completes the proof. O

4.2 Dimension Hierarchies for Refined Nondeterminism

Our last result concerns the ‘line hierarchies’ of the previous example, i.e.,
dimension hierarchies for the bounds of nondeterminism in question. The proof
follows the ideas of the previous results but the witness language is simpler.
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It will turn out that dimensions are a very powerful resource since the witness
language is even acceptable by a deterministic Turing machine if an additional
dimension is provided.

Theorem 10 Let g : Ny — Ng be an increasing function and d € N be a
constant. If g € o(log) then

DTIME®*1(id) \ g-TIME®(id) # 0.

Proof. The words of a language L3 are of the form
wiSwi'e - qwSwiieds - - djy

where u € N is a positive integer such that y,w; € {0,1}* for 1 < i <[, and
I =u?. With j = d-u we require dy,...,d; € Ey.

A (d+1)-dimensional deterministic real-time acceptor M for L3 works similarly
as described in the previous proof. Here the length d - u and the number u?
can be verified by constructors that operate with the length of wy as argument.
Moreover, all subwords w; are stored in a (d + 1)-dimensional area of size u?+?.
Again, an input is accepted if the y matches the subword which is stored at the
position that is reached by interpreting the d;.

The lower bound for the number of induced equivalence classes is once more due
to the observation that two words are not equivalent if their sets of subwords
w; are different.

Since log(u?) = d - log(u) < %u by applying Lemma 6 we obtain

u

2} > g0,
ut) =

N(n,u-d-+u, L) > (
For the number of real-time g-NTM? distinguishable equivalence classes we
calculate for p,q € N:

d
N(n,u-d+u,Ls) < pldutu)tqr(@urayuiurau)

d cq-udtt
< pO@®gCr D g1 some ¢ € N

< O(ud)-getoscrw™™ e g is increasing
< O(ut).qo(OUoBw)
; po(ud).qo(lozg(u))

< pO(ud)-o(u)

< poludtl) _ go(udtl)

Therefore, L3 cannot belong to g-TIME?(id) and the assertion follows. O

14
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