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SUMMARY 

Pulmonary arterial hypertension (PAH) is a progressive disease defined by an 

elevation of pulmonary vascular resistance due to sustained vessel contraction 

and enhanced vascular remodeling. The abnormal tone and remodeling in the 

pulmonary vasculature are believed to be related, at least in part, to the 

decrease of cyclic nucleotide levels that are controlled by cyclic nucleotide 

phosphodiesterases (PDEs).  

 

PDEs, of which 11 families have been identified, maintain homeostasis of the 

second messengers by catalyzing the hydrolysis of cAMP and cGMP with 

diverse compartmentalization and substrate specificities. Interestingly, 

increased expression of some PDE isoforms has been observed in PAH and 

beneficial effects of PDE5 inhibitors, PDE1 inhibitors and PDE3/4 inhibitors 

have been reported in clinical or experimental PAH. The role of PDE7-11 in 

PAH has not been investigated, thus we aimed to investigate the expression 

profile of those higher isoforms. In addition, we were interested in the 

contribution of these enzymes to the pathophysiology of PAH using the well-

established monocrotaline (MCT)-induced pulmonary hypertensive rat model.  

 

In this study, a prominent increase of PDE10A expression was observed 

among the multiple newly identified PDEs (PDE7-11) which are all present in 

lung tissue. Interestingly, the upregulation of PDE10A is specific in the 

pulmonary vasculature of pulmonary hypertensive subjects without significant 

changes in the systemic vasculature such as aorta or femoral artery.  

 

As one of the most recently described PDEs, PDE10A is characterized as a 

cAMP-PDE and a cAMP-inhibited cGMP-PDE. Research on PDE10 is mainly 

focused on neurological studies because of its abundant expression in the brain. 

We demonstrated for the first time the predominant localization of PDE10A in 

the media of the small pulmonary arteries and nuclear compartmentalization in 

pulmonary arterial smooth muscle cells (PASMCs). In accordance, both 

PDE10A expression and cAMP hydrolyzing activity are remarkably increased in 

PASMCs from MCT-induced PH rats as compared to control rats, suggesting a 
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contribution of PDE10A to the proliferative phenotype of PASMCs in the 

process of PH. Futher more, PDE10A immunoreactivity is strongly increased in 

pulmonary arteries of IPAH patient lung sections as compared to the donors, 

indicating clinical relevance of the findings obtained from the MCT model. 

 

The anti-proliferative effect of PDE10 inhibition is proved to be largely relevant 

to an increase of intracellular cAMP levels that may subsequently alter 

downstream signaling events such as phosphorylation of the cAMP response 

element binding protein (CREB). In our investigation, we found that inhibition of 

PDE10A by employing a selective inhibitor of PDE10 (papaverine) or PDE10A 

specific small interfering RNA (siRNA) promoted intracellular cAMP generation, 

induced CREB phosphorylation and attenuated proliferation of PASMCs from 

MCT-induced PH rats.  

 

Furthermore, treating MCT-PH rats with the PDE10 inhibitor papaverine for 14 

days by intravenous infusion markedly reduced right ventricular systolic 

pressure values as well as total pulmonary vascular resistance index, without 

effects on the systemic arterial pressure. In addition, the percentage of fully 

muscularized peripheral pulmonary arteries was significantly decreased.  

 

Taken together, this study supports a central role of PDE10A in progressive 

pulmonary vascular remodeling and suggests a novel therapeutic opportunity 

for the treatment of pulmonary arterial hypertension. 
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ZUSAMMENFASSUNG 

Die pulmonal-arterielle Hypertonie (PAH) ist durch einen zunehmend 

ansteigenden Gefäßwiderstand definiert, welcher durch dauerhafte Kontraktion 

kleiner Pulmonalarterien und ein verstärktes vaskuläres Remodeling zu einem 

Anstieg des Blutdrucks im Lungenkreislauf führt. Diese pathologischen 

Veränderungen der Pulmonalgefäße werden u.a. auf ein geringeres 

Vorhandensein der zyklischen Nukleotide cAMP und cGMP zurück geführt, was 

maßgeblich durch die Aktivität zyklischer Nukleotid- Phosphodiesterasen 

(PDEs) bestimmt wird. 

 

Die Familie der PDEs umfasst derzeit 11 Mitglieder. Sie hydrolysieren cAMP 

und cGMP zu AMP bzw. GMP und haben durch ihre zelluläre und intrazelluläre 

Verteilung und Substratspezifität einen bedeutenden Einfluss auf die 

Homöostase dieser second messenger. Sowohl in experimenteller PAH als 

auch in klinischen PAH-Studien konnte bereits gezeigt werden, dass eine 

erhöhte Expression bestimmter PDEs vorliegt und dass die Behandlung mit 

PDE5-, PDE1- und PDE3/4-Inhibitoren gefäßerweiternd wirkt und zudem einen 

antiproliferativen und antimigrativen Effekt auf vaskuläre Zellen hat. Die Rolle 

der PDEs 7 bis 11 in PAH ist bisher jedoch noch unzureichend erforscht. Daher 

war unser Ziel heraus zu finden, ob Mitglieder dieser PDEs in der 

Pathophysiologie der PAH eine Rolle spielen. Für diese Untersuchungen diente 

uns das bereits etablierte experimentelle Modell der Monocrotalin (MCT) -

induzierten pulmonalen Hypertonie in der Ratte.  

 

Bei der Untersuchung der PDE-Expression im Lungengewebe zeigte sich 

neben der Expression der PDEs 7 bis 9 und der PDE11 eine deutlich erhöhte 

Expression der PDE10A. Diese konnte zudem spezifisch in der verdickten und 

veränderten Gefäßmuskulatur der Pulmonalarterien immunhistochemisch 

lokalisiert werden. In systemischen Gefäßen wie der Aorta oder der 

Femoralarterie konnten jedoch keine signifikanten Veränderungen in der 

PDE10A-Expression festgestellt werden.  
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Als eine der erst kürzlich beschriebenen PDEs wird die PDE10A als cAMP-

PDE und als cAMP-inhibierte cGMP-PDE bezeichnet und wird wegen ihres 

Vorkommens im Gehirn hauptsächlich in neurologischen Studien untersucht. In 

dieser Arbeit konnten wir erstmalig zeigen, dass die PDE10A eine 

vorherrschende Expression in der Media kleiner Pulmonalarterien aufweist und 

in pulmonal-arteriellen glatten Muskelzellen (PASMCs) überwiegend nukleär 

lokalisiert ist. Im Vergleich zu Kontroll-PASMCs ist sowohl die Expression als 

auch die cAMP-hydrolysierende Aktivität der PDE10A in PASMCs aus MCT-

injizierten Ratten deutlich erhöht, was eine Mitwirkung der PDE10A bei der 

Proliferation der PASMCs und dem Fortschreiten der PAH vermuten lässt. 

Desweiteren ist die PDE10A Immunoreaktivität in pulmonalen Arterien der 

untersuchten Lungenbereiche von IPAH Patienten im Vergleich zu denen der 

Spender stark erhöht, was darauf hinweist, daß eine klinische Relevanz dieser 

Ergebnisse, die vom MCT Modell gezeigt wurden vorliegt. 

 

Phosphodiesterase-Inhibitoren führen meist zu einer Erhöhung der 

intrazellulären cAMP-Konzentration, was im Folgenden Auswirkungen auf den 

Phosphorylierungsstatus und somit die Aktivität von Transkriptionsfaktoren wie 

CREB (cAMP response element binding protein) hat. Unsere Untersuchungen 

zeigten, dass die Hemmung der PDE10A durch Verabreichen des Inhibitors 

Papaverin oder durch die Verwendung PDE10A-spezifischer kleiner 

einzelsträngiger RNAs (siRNAs) zu einer gesteigerten intrazellulären cAMP-

Konzentration führt, die Phosphorylierung von CREB induziert und die 

Proliferation von PASMCs aus MCT-injizierten Ratten mit PAH vermindert. 

Überdies wird die PASMC-Proliferation, verglichen mit der Hemmung weiterer 

cAMP-abbauender PDEs, am meisten durch Inhibition der PDE10A verringert. 

 

Die Behandlung von MCT-PH-Ratten mit dem PDE10A Inhibitor Papaverin für 

14 Tage per intravenöse infusion reduzierte deutlich den systolischen Druck 

des rechten Ventrikels ebenso wie den gesamten pulmonal-vaskulären 

Widerstand, ohne den systemische Blutdruck zu beeinflussen. Ebenso war der 

Prozentsatz von voll muskularisierten peripheren pulmonalen Arterien deutlich 

durch diesen therapeutischen Ansatz gehemmt. 
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 Zusammenfassend deuten diese Ergebnisse darauf hin, dass die PDE10A 

eine zentrale Rolle im vaskulären Remodeling-Prozess einnimmt und daher ein 

therapeutisches Ziel zur Behandlung von pulmonaler Hypertonie darstellen 

könnte.
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1 INTRODUCTION 

1.1 Pulmonary hypertension (PH) 
Pulmonary hypertension is a fatal disease which is clinically characterized by a 

progressive rise in pulmonary vascular pressure. When untreated, right 

ventricle overload leads to right ventricular hypertrophy and in the end stage 

right heart failure and death with an average survival time as short as 2.8 

years1. Pulmonary hypertension has a multifactorial pathobiology. Moreover, 

available therapies for PH were shown to improve the prognosis, but not to cure 

the disease. 

 

1.1.1 Definition of pulmonary hypertension 
The first description came from autopsy specimens more than a century ago by 

a German physician- Ernst von Romberg2, and until 1951 the first clinical and 

hemodynamic study was made ante mortem3. In pulmonary hypertension the 

average pressure in the pulmonary artery is higher than 25 mmHg at rest or 30 

mmHg during physical activity, while the pressure in a normal pulmonary artery 

is about 15 mmHg at rest4.  

 

1.1.2 Classification of pulmonary hypertension 
Pulmonary hypertension was initially classified into two categories including 

primary pulmonary hypertension and secondary pulmonary hypertension5, 

simply based on the presence or absence of identifiable causes. With more 

understanding of the disease, the classification of PH has gone through a 

series of changes. The latest and probably the best classification up to now is 

the Dana Point Classification made on the 4th World Symposium on PH held in 

2008 in Dana Point, California,  which divided the PH into five groups6 (Figure 1) 

that shared similar pathophysiologic mechanisms and clinical presentation as 

well as therapeutic approaches. 
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Tabel 1: Updated classification of PH (Dana Point, 2008) 
 
1. Pulmonary arterial hypertension (PAH) 

1.1. Idiopathic PAH 
1.2. Heritable 

1.2.1. BMPR2 
1.2.2. ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia) 
1.2.3. Unknown 

1.3. Drug- and toxin-induced 
1.4. Associated with 

1.4.1. Connective tissue diseases 
1.4.2. HIV infection 
1.4.3. Portal hypertension 
1.4.4. Congenital heart diseases 
1.4.5. Schistosomiasis 
1.4.6. Chronic hemolytic anemia 

1.5 Persistent pulmonary hypertension of the newborn 
1’. Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary 
hemangiomatosis (PCH) 
              
2. Pulmonary hypertension owing to left heart disease 

2.1. Systolic dysfunction 
2.2. Diastolic dysfunction 
2.3. Valvular disease 

3. Pulmonary hypertension owing to lung diseases and/or hypoxia 

3.1. Chronic obstructive pulmonary disease 
3.2. Interstitial lung disease 
3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern 
3.4. Sleep-disordered breathing 
3.5. Alveolar hypoventilation disorders 
3.6. Chronic exposure to high altitude 
3.7. Developmental abnormalities 

4. Chronic thromboembolic pulmonary hypertension (CTEPH) 
 
5. Pulmonary hypertension with unclear multifactorial mechanisms 

5.1. Hematologic disorders: myeloproliferative disorders, splenectomy 
5.2. Systemic disorders: sarcoidosis, pulmonary Langerhans cell 
histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis 
5.3. Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid 
disorders 
5.4. Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on 
dialysis 
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1.1.3 Histology and concepts of pulmonary arterial hypertension (PAH) 
pathology 
1.1.3.1 Histology and pathology 
The common histological features in PAH are the remodeling of all three layers 

of the pulmonary vasculature (intimal, medial and adventitia layer) as well as 

the formation of plexiform lesion (Figure 1)4.  
 

A)                     B) 
 

 

 

 

 

 
 
Figure 1: Histology of PAH. A) Muscular pulmonary artery from a PAH patient with 
medial hypertrophy (white arrow), luminal narrowing by intimal proliferation (black arrow), 
and proliferation of adventitia (X). B) Characteristic plexiform lesion from an obstructed 
muscular pulmonary artery (black arrow). (Gaine, S. P. & Rubin L. J., 1998)4 
 

The abnormalities of the pulmonary vasculature comprise 1) medial 

hypertrophy of large pulmonary arteries and muscularization of distal 

precapillary arteries; 2) proliferation in the adventitia of small pulmonary arteries 

and arterioles; 3) intimal hyperplasia that is particularly occlusive in vessels at 

100–500 µM; 4) plexiform lesions of arterial branches distal to an obstructed 

larger artery; 5) loss of precapillary arteries7, 8 (Figure 2). 
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Figure 2: Scheme of pathological abnormalities in PH throughout the pulmonary 
circulation. (Rabinovitch,M.,2008)7 
 
 
1.1.3.2 Molecular and cellular regulators 
Diverse stimuli like inflammation, shear stress and hypoxia lead to 1) 

vasoconstriction, due to the imbalance between vasodilators and 

vasoconstrictors; 2) vascular remodeling, resulting from the imbalance between 

mitogenic and anti-mitogenic mediators; 3) in situ thrombosis caused by 

abnormalities of blood coagulation factors and fibrinolytic factors9, 10, all of 

which result in increased pulmonary pressure in PAH. Recent pathophysiologic 

studies have addressed evidences on a couple of key factors mediating the 

process of PAH, among which nitric oxide, prostacyclin, vasoactive intestinal 

peptide, Endothelin-1, potassium channels and serotonin11-13 are widely 

investigated. 

 

1.3.3.2.1 Nitric oxide 
Over the past decades, nitric oxide (NO), which is synthesized by a family of 

NO synthase enzyme (NOS) from the amino acid L-arginine in endothelial cells, 

is believed to be a vasodilator targeting SMC on soluble guanylyl cyclase 
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(sGC)/vasorelaxation pathway. The activation of sGC in SMCs leads to cGMP 

accumulation and consequently PKG activation and reduction of intracellular 

calcium, which leads to vasodilation. Cyclic GMP is removed by 

phosphodiesterases (PDEs). Diminished eNOS expression in pulmonary 

vasculature has been demonstrated in PH patients, particularly in IPAH 

patients14. Furthermore, eNOS-null mice are more susceptible to stimuli that 

trigger pulmonary hypertension as compared to the wild-type mice15, 16, 

suggesting that NO not only acts as a vasodilator, but also inhibits smooth 

muscle cell proliferation17 and platelet aggregation18. All of these factors 

indicates that NO plays an important role in PAH. 

 

1.3.3.2.2 Prostacyclin and thromboxane A2  
Prostacyclin is an arachidonic acid metabolites, and is synthesized in 

endothelial cells by prostacyclin synthase. It is a vasodilator and can prevent 

vascular SMC proliferation and platelet aggregation via adenylate cyclase 

(AC)/cAMP-dependent pathways. Thromboxane A2 is produced by endothelial 

cells and platelets and increases vasoconstriction and activates platelets19. In 

patients with PAH, decreased level of prostacyclin accompanied by increased 

level of thromboxane A2 were observed by urine analysis20. Correspondingly, 

expression of prostacyclin synthase is reduced in small and medium-sized 

pulmonary arteries in PAH patients21. Therefore the imbalance between 

prostacyclin and thromboxane A2 favours vasoconstriction, thrombosis, as well 

as vessel wall remodeling associated with PAH development.  

 

1.3.3.2.3 Vasoactive intestinal peptide (VIP) 
Decreased VIP immunoreactivity in serum and lung tissue, shown in  IPAH 

patients, may contribute to the pathogenesis of PAH considering its potential 

roles as a pulmonary vasodilator and an inhibitor of PASMC proliferation and 

platelet aggregation22. VIP−/− mice exhibit spontaneous PAH in the absence of 

hypoxia and VIP may act as an endogenous modulator of calcineurin-NFAT 

(nuclear factor of activated T cells) transcriptional activation23, 24. It is also 

demonstrated that VIP may act through its receptors in vasculature to activate 

cAMP and cGMP systems22, but the key mechanisms involved are unclear. 
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1.3.3.2.4 Endothelin-1 (ET-1) 
ET-1 is predominantly produced by endothelial cells and is a potent 

vasoconstrictor. In addition, it acts as mitogen that promotes inflammation and 

SMC proliferation. Elevated ET-1 levels in lung and circulation are reported 

from rats with hypoxia-induced PAH25 and from PAH patients26, which strongly 

supports the concept that the endothelin system plays a crucial role in the 

development of PAH. The effects of ET-1 in the lung are complex and depend 

on two different ET-1 receptors named ETA and ETB. ETA presents mainly in 

SMCs while ETB locates in both SMCs and endothelia cells27. Through its 

action on ETA and  ETB in PASMCs, ET-1 evokes Ca2+ sparks in PASMCs via 

activation of phospholipase C and consequently causes vasoconstriction and 

sustained activation of protein kinase C, which mediates mitogenic actions28, 29. 
In contrast to the activation of ETB in PASMCs, ET-1 activates the endothelial 

ETB receptor, which leads to the release of vasodilator and antiproliferative 

agents  like NO and prostacyclin30 and promotes clearance of circulating ET-131 

in pulmonary vasculature. 

 
1.3.3.2.5 Potassium channels 
Reduced expression and function of voltage-gated potassium channels (Kv), 

notably Kv1.5 and Kv2.1, was observed in PASMCs either from IPAH patients32 

or from rats with hypoxia-induced PAH33. The selective loss of these Kv 

channels on PASMCs leads to membrane depolarization, sustained increase of 

the intracellular calcium by  Ca2+ influx,  and promotes both vasoconstriction 

and cell proliferation.  

 

1.3.3.2.6 Serotonin 
Serotonin (5-HT, 5-hydroxytryptamine) is considered as both a 

vasoconstrictor34 and a mitogen that promotes smooth muscle cell 

hypertrophy35. Elevated 5-HT in plasma was observed in IPAH patients. More 

recently, a number of studies showed that the 5-HT transporter (5-HTT) and 5-

HT receptors in the pulmonary vasculature are increased in both clinical and 

experimental PAH36, 37. In mice, selective 5-HTT inhibitors protect against 

hypoxic pulmonary hypertension38; while transgenic 5-HTT overexpression in 

smooth muscle results in PH39.  
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1.1.4 Pharmacological and clinical therapies 
Major pharmacological therapies include therapy with vasodilators and more 

recently therapy with agents targeting pulmonary vascular remodeling. To 

maximize therapeutic benefits and minimize side effects, combination therapy 

with existing drugs under different mechanisms of action is essential.  

 

1.1.4.1 Prostacyclin 
Prostacyclin analogues promote vasodilation as well as inhibit vascular 

proliferation and platelet aggregation40. Intravenous epoprostenol was the first 

approved approach to improve the symptoms and survival of PAH patients41, 42. 

Because of the short half-life of epoprostenol, longer-active prostacyclin 

alternatives such as iloprost and treprostinil with the same or better efficacy and 

less side effects have been developed in clinical trial for intravenous, 

subcutaneous or inhaled treatment of PAH43-46. 

 

1.1.4.2 Inhaled NO and sGC stimulators 
Inhaled NO, being delivered directly to pulmonary resistance vessels, has been 

proven to be a potent and selective pulmonary vasodilator with minor systemic 

effects47 via NO-sGC-cGMP pathway. Since long-term use of Inhaled NO is 

limited by its short half-life, drugs that activate sGC in a NO-independent 

manner are considered as innovative alternatives to direct NO donors48. 

Recently several compounds have shown beneficial effects on vasodilation and 

vessel remodeling via inhalation in experimental PAH animals49, 50. Moreover, 

riociguat (BAY 63-2521), a sGC stimulator, was reported to improve pulmonary 

hemodynamic parameters and cardiac index to a greater extend than inhaled 

NO in PAH patients51.  

 

1.1.4.3 Endothelin antagonists  
ET-1 acts as an important vasoconstrictor and mitogen in the development of 

PAH. Pharmacologic antagonists against ET-1 receptors with variable 

specificities are under a widespread investigation for PAH treatment. Oral 

bosentan, a dual endothelin receptor antagonist, improves hemodynamics and 

exercise capacity, as well as survival of PAH patients52, 53. However bosentan 

has been reported to cause liver dysfunction in a great percentage of patients. 
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While ETA specific antagonists consisting of sitaxsentan54 and ambrisentan55 

both improve exercise capacity of PAH patients in clinical trails, with a low 

incidence of hepatic toxicity.  

 

1.1.4.4 Phosphodiesterase 5 (PDE5) inhibitors 
Sildenafil was initially used for erectile dysfunction and subsequently proved to 

be a therapeutic candidate for PAH based on the high abundant expression of 

PDE5 in pulmonary vasculature as compared to systemic vasculature56, 57. By 

inhibiting the breakdown of cGMP, sildenafil can augment the NO-sGC-cGMP 

signaling in pulmonary vasculature, resulting in pulmonary vasodilation and 

inhibition of SMC proliferation. Beneficial effects including improved symptoms, 

hemodynamics, exercise capacity and survival have been shown by a one-year 

extension study after a daily oral treatment with sildenafil for 12 weeks57.  

 

1.1.4.5 Tyrosine kinase inhibitors 
Platelet-derived growth factor (PDGF), as a growth factor, induces cell 

proliferation and migration. In an experimental PH model, PDGF and its 

receptors are increased and by applying imatinib, a multi-inhibitor for tyrosine 

kinase, the pulmonary vascular remodeling process was reversed58.  

Furthermore, beneficial effects of imatinib on PAH patients have also been 

shown in three cases of clinical trails59-61. But more evaluations with much 

larger number of PAH patients are required in randomized clinic studies. 

 

1.2 Phosphodiesterases (PDEs) 
1.2.1 Cyclic nucleotides (cAMP and cGMP) 
Adenosine 3’, 5-cyclic monophosphate (cAMP) and guanosine 3’, 5’-cyclic 

monophosphate (cGMP) have been defined as second messengers half a 

century ago62. Both cAMP and cGMP play critical roles in various tissues by 

regulating diverse signaling pathways in multidimension, not only because of 

their time-dynamic presenting, also due to their subcellular 

compartmentalization63. Extracellular signaling is translated into changes of 

cAMP and cGMP via different membrane receptors, which subsequently lead to 

multiple cell responses by coordinated activation of cyclic nucleotide-dependent 

protein kinases (PAK and PKG). In the case of the vasculature, they regulate 
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the vascular tone as well as the smooth muscle cell growth64. Physiologically, 

intracellular levels of cAMP and cGMP are controlled in homeostasis between 

their rate of synthesis by adenylyl and guanylyl cyclases and their rate of 

hydrolysis by cyclic nucleotide PDEs respectively63-65(Figure 3). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3: cAMP and cGMP signaling pathway. Prostacyclin, forskolin, arterial natriuretic 
peptide (ANP), brain natriuretic peptide (BNP) and NO, activate adenylate cyclase (AC) or 
guanylate cyclase (GC) to generate cAMP and cGMP from ATP or GTP. The intracellular 
second messenger cAMP and cGMP activate protein kinases (PKA and PKG), which 
phosphorylate downstream proteins and induce cellular responses. Phosphodiesterases 
(PDEs) counter the effects of the stimuli by degrading cAMP and cGMP into 5’AMP and 
5’GMP. (Modified from Schermuly R.T., 2005) 
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1.2.2 Cyclic nucleotide PDEs 
PDEs are a superfamily of enzymes that catalyze the hydrolysis of 3’,5’-cyclic 

nucleotides (3’,5’-cAMP/cGMP) to the corresponding nucleotide 5’-

monophosphates (5’-AMP/GMP)66 (Figure 4). Both cAMP and cGMP are tightly 

regulated by the differentially distributed PDE isoforms in cells to maintain 

physiological functions. 

 

 
 
Figure 4: Cyclic nucleotide hydrolysis by PDEs. (Lugnier, C., 2006)66 
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1.2.2.1 PDE classification 
To date, with 21 genes encoding PDEs identified in the human genome, PDEs 

are subdivided into 11 isoforms (PDE1-PDE11) bases on their amino acid 

sequences, substrate specificities, kinetics, allosteric regulators and inhibitor 

sensitivities63 (Figure 5).  

 

 

Figure 5: Structure of PDE families. The number in parenthesis presents the number of 
genes composing the subfamily. (Conti M & Beavo J. 2007)63 
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Among those PDEs, PDE4, PDE7, and PDE8 selectively hydrolyze cAMP; 

PDE5, PDE6, and PDE9 are selective for cGMP, while 5 other subfamilies 

(PDE1, 2, 3, 10, and 11) hydrolyze both cyclic nucleotides with varying 

efficiency63, 65-68 (Table 2).  
 
Table 2. Characteristics and distribution of PDEs (Modified from Siuciak J.A., 2006) 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2.2 PDE10 
PDE10 is one of the most recently described PDEs and was originally 

characterized as a single member of a dual-substrate gene family in 1999 from 

rodent as well as from human brain69-72. PDE10 transcripts were particularly 

abundant in brain, thyroid and testis. PDE10A is the only isoform of PDE10 

subfamily and contains a consensus PDE catalytic domain in the C-terminus 

and two GAF domains in the N-terminus (Figure 6)69, 70. Different from the GAF 

domain of other PDE families, the GAF domain of PDE10A is the only one that 

binds to cAMP instead of cGMP, which may contribute to the allosteric 

stimulation of PDE10A73, 74.   
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Figure 6: Structure of PDE10A. 
 
 
Existing in multiple splice variant forms, PDE10A has the capacity to hydrolyze 

both cAMP and cGMP; however it has higher affinity for cAMP and is more 

efficient with cAMP as the substrate. The Km for cAMP is approximately 0.05 

µM, whereas the Km for cGMP is 3 µM. In addition, the Vmax for cAMP 

hydrolysis is fivefold lower than for cGMP70. Because of this kinetic pattern, 

cGMP hydrolysis by PDE10A is potently inhibited by cAMP in vitro, suggesting 

that PDE10A functions as a cAMP-PDE and a cAMP-inhibited cGMP-PDE in 

vivo69-71. Papaverine (Figure 7), a naturally occurring plant alkaloid and smooth 

muscle relaxant, can be used as a potent inhibitor of PDE10 exhibiting a low Ki 

of 17 nM as compared to PDE3A/B (Ki = 279 and 417 nM, respectively)75. 

 

 

 

 

 

 

 

 
Figure 7: Structure of papaverine. 
 
 
1.2.2.3 Pathophysiological roles of PDEs in PAH and inhibitors 
Given the intricate expression patterns in distinct tissues and cells, each 

member of PDE family participates in discrete pathophysiological processes 

such as penile erection, asthma, pulmonary hypertension, atherosclerosis, 

heart failure, and inflammation. Furthermore, subcelluar compartment of PDEs 

leads to diverse signal transduction pathways in a space-dynamic and time-

dynamic manner. Therefore, other than fundamental concerns, PDEs are of 

great pharmacological interest64. 

GAF GAF PDE catalyticGAF GAF PDE catalytic
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Because of the crucial regulation role of cyclic nucleotides in signaling 

transduction, the concept that PDEs are involved in the pathological process of 

PAH is widely accepted76. Interestingly, expression and activities of PDEs were 

reported to be altered in both experimental and human PAH77. Expression 

profiling of single member of the PDE super family in healthy and remodeled 

pulmonary vasculature revealed that PDE1, PDE3 and PDE5 isoforms are 

differentially regulated78-81. In preclinical and clinical studies we have shown 

that the inhibition of PDE1 by 8MM-IBMX78 and PDE5 by sildenafil57, 80 

stabilizes the second messenger signaling and regulates vascular remodeling, 

vascular tone and optimization of gas exchange. Moreover, in MCT-induced PH 

rats, inhibition of PDE3 and PDE4 isoforms was found to partly reverse the 

pathological inward remodeling in PH82, 83. Given that higher PDEs (PDE7-11) 

were defined more recently, further investigations should be performed to 

understand the possible involvements of higher PDEs in PAH and to improve 

the therapy of PAH by pharmacological PDE inhibitors. 
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2 AIMS OF THE STUDY 

In the pulmonary vasculature, PDEs modulate various signaling pathways via 

the tight control of the cyclic nucleotides. Expression of PDEs is altered in PAH 

and inhibitors of PDEs suppress pulmonary vascular remodeling, while the role 

of the most newly identified PDEs (PDE7-11) has not been investigated yet. 

The substrate specificity, as well as the cellular and subcellular distribution, of 

these newly identified PDEs may provide additional exciting insights in the 

pathophysiology of PAH. Our aim was to identify and characterize cellular 

functions of previously newly identified PDEs in pulmonary vascular remodeling 

in PAH and to offer new selective therapy targets for PAH. In this study, a 

series of study were undertaken as follows: 

 

1. Gene expression pattern of newly identified PDEs both in lung tissue and 

primary PASMCs from control and MCT-induced PH rats. 

2. Changes in enzyme activity as well as localization of the candidate PDE in 

the lung and PASMCs from control and MCT-induced PH rats.  

3. In vitro effects of inhibiting the candidate PDE by siRNA and the 

pharmacological inhibitor. 

4. Molecular mechanisms which may be involved in affecting the cellular 

responses after inhibition of the candidate PDE. 

5. Therapeutic effects of the candidate PDE inhibitor on pulmonary 

hemodynamics and remodeling of MCT-induced PH rats. 

6. Expression and localization of PDE10A in donors and IPAH lungs.  
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3 MATERIALS AND METHODS 

3.1 Materials 
3.1.1 Chemicals, reagents and kits 
Most of the chemicals were purchased either from Sigma-Aldrich (USA) or from 

Merck (Germany). The rests are listed as follows.  

Product       Company 
Baytril (quinolone antibiotic)    Bayer, Gemany 

Bovine serum albumin  powder   Serva, Germany 

Bovine serum albumin solution (2 mg/ml)   Bio-Rad, USA 

cAMP EIA kit       Cayman Europe, Estonia 

[3H]-cAMP       Amersham, USA 

DAPI        Dakocytomation, USA 

Dc protein assay kit      Bio-Rad, USA 

DEPC water       Roth, Germany 

Digest All 2 (trypsin)      Vector, UAS 

Domitor (Medetomidinhydrochlorid, 100 mg/ml) Pfizer, USA 

DNA Ladder (100 bp, 1 kb)    Promega, USA 

Enhanced chemiluminescence (ECL) kit  Amersham, USA 

Fluorescent mounting medium    Dakocytomation, USA 

GoTaq® PCR Core System I    Promega, USA 

ImProm-IITM Reverse Transcription System  Promega, USA 

Ketavet (Ketaminhydrochlorid, 100 mg/ml)  Pharmacia, USA 

Milk powder       Roth, Germany 

N,N’-Methylene-bis-Acrylamide solution, Rotiphorese gel 30 

Roth, Germany 

NovaRED substrate kit     Vector, USA 

Protein rainbow markers     Amersham, USA 

QAE Sephadex A-25     Amersham, USA 

RIPA buffer       Santa Cruz, USA 

RNase Away Molecular Bioproducts, 

USA 

Saline (NaCl 0.9%)      B. Braun, Germany 

Scintillation solution (Rotiszint®eco plus)  Roth, Germany 



MATERIALS AND METHODS 

- 17 - 

SDS Solution, 10% w/v     Promega, USA 

Sildenafil       Pfizer, USA 

SYBR® GreenER™ qPCR SuperMixes Universal kit Invitrogen, USA 

[3H]-thymidine (1 mCi/ml)     Amersham, USA 

Tris-HCl 0.5 M, pH 6.8     Amresco SOLON, USA 

Tris-HCl 1.5 M, pH 8.8     Amresco SOLON, USA 

Trizol        Invitrogen, USA 

UltraPure water      Cayman Europe, Estonia 

X-tremeGENE siRNA Transfection Reagent  Roche, Germany 

 

3.1.3 Cell culture medium 
DMEM/F12, Opti-MEM and HBSS are purchased from Invitrogen (USA). Fetal 

bovine serum is from Biowest (Germany). The rest including PBS, L-glitamine, 

penicillin/streptomycin and Trypsin/EDTA are all purchased from PAN 

(Germany). 

 

3.1.4 Antibodies 
Primary antibody      Company 
Mouse anti-αSMA monoclonal antibody   Sigma-Aldrich, USA 

Mouse anti-GAPDH monoclonal antibody  Sigma-Aldrich, USA 

Rabbit anti-PDE10A polyclonal antibody  Novus, USA 

Rabbit anti-PDE10A polyclonal antibody  Scottish Biomedical, UK 

Rabbit anti-CREB polyclonal antibody   Millipore, USA 

Rabbit anti-p-CREB (Ser133) polyclonal antibody Millipore, USA 

 

HRP-conjugated secondary antibody   Company 
Rabbit anti-mouse IgG     Sigma-Aldrich, USA 

Goat anti-rabbit IgG      Pierce, USA 

  
Fluor-conjugated secondary antibody  Company  
Alexa Fluor® 488 goat anti-rabbit IgG   Invitrogen, USA 
FITC conjugated goat anti-rabbit IgG   Invitrogen, USA 
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3.1.5 Oligonucleotides 
Small interfering RNA (siRNA) 
siRNA pairs were designed and purchased from Eurogentec (Belgium). The 

siRNA duplex is made of two strands of 19 complementary RNA bases with 

3’dTdT overhangs (Table 3). The negative control si-scramble is a duplex with 

a random sequence which does not march to any genes. 

Table 3: Sequence for PDE10 siRNA pair 
Gene  siRNA Sequence 

Sense strand 5´  GGACAGCUUGGAUUCUACA  3´ rat PDE10A 
Antisense strand 5´  UGUAGAAUCCAAGCUGUCC  3´ 

 

Primers 
Primer oligonucleotides were all purchased from Metabion (Germany). The 

sequences for realtime-PCR are listed in Table 4 and the sequences for 

standard PCR are listed in Table 5. 

Table 4: Primer sequences for quantitative realtime-PCR 
Gene (rat)  Primer Sequence 

Forward 5´  ATCAGCCACCCAGCCAAA  3´ PDE1A 
113bp Reverse 5´  GGAGAAAACGGAAGCCCTAA  3´ 

Forward 5´  CACAAGCCCAGAGTGAACC  3´ PDE3A 
123bp Reverse 5´  TGGAGGCAAACTTCTTCTCAG  3´ 

Forward 5´  GTCGTTGCCTTGTATTTCTCG  3´ PDE3B 
103bp Reverse 5´  AACTCCATTTCCACCTCCAGA  3´ 

Forward 5´  GAAGAGGTTCCCACCCGTA  3´ PDE7A 
85bp Reverse 5´  CTGATGTTTCTGGCGGAGA  3´ 

Forward 5´  GGCTCCTTGCTCATTTGC  3´ PDE7B 
99bp Reverse 5´  GGAACTCATTCTGTCTGTTGATG  3´ 

Forward 5´  TGGCAGCAATAAGGTTGAGA  3´ PDE8A 
97bp Reverse 5´  CGAATGTTTCCTCCTGTCTTT  3´ 

Forward 5´  CTCGGTCCTTCCTCTTCTCC  3´ PDE8B 
147bp Reverse 5´  AACTTCCCCGTGTTCTATTTGA  3´ 

Forward 5´  GTGGGTGGACTGTTTACTGGA  3´ PDE9A 
107bp Reverse 5´  TCGCTTTGGTCACTTTGTCTC  3´ 

Forward 5´  GACTTGATTGGCATCCTTGAA  3´ PDE10A 
115bp Reverse 5´  CCTGGTGTATTGCTACGGAAG  3´ 

Forward 5´  CCCAGGCGATAAATAAGGTTC  3´ PDE11A 
87bp Reverse 5´  TGCCACAGAATGGAAGATACA  3´ 

Forward 5´  ATGTCCGGTAACGGCGGC  3´ PBGD 
135bp Reverse 5´  CAAGGTTTTCAGCATCGCTAC  3´ 
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Table 5: Primer sequences for standard PCR 
Gene (rat)  Primer Sequence 

Forward 5´  CGATAGAACACGGCATCATC  3´ αSMA 
525bp Reverse 5´  CATCAGGCAGTTCGTAGCTC  3´ 

Forward 5´  GGGTGAAACCCCACGACATT  3´ Calponin 
552bp Reverse 5´  CGTCCAGCTCTGGATATTCC  3´ 

Forward 5´  GCCAGAACAAGGAACTCCGA  3´ SM-MHC 
529bp Reverse 5´  GTTCCATTGAAGTCTGAGTCCC  3´ 

Forward 5´  GTCACCAGGGCTGCCTTCT  3´ GAPDH 
121bp Reverse 5´  CATTGAACTTGCCGTGGGTA  3´ 

 

 

3.1. 6 Equipments          
Equipment      Company                                                          
BioDoc Analyzer     Biometra, USA 

Cell culture incubator, Hera Cell   Heraeus, Germany 

Electrophoresis chamber    Biometra, USA 

Fluorescence microscope    Leica, Germany 

Freezer (+4˚C, -20 ˚C, -80 ˚C)   Bosch, Germany 

Infinite® 200 microplate reader   Tecan, Switzerland 

Inolab PH meter     WTW, Germany 

Light microscope     Hund, Germany 

Liquid scintillation counter, LS 6500  Beckmann, USA 

Multifuge centrifuge     Heraeus, Germany 

Mx3000P® QPCR system machine  Stratagene, USA 

Spectrophotometer      NanoDrop Technologies, USA 

PCR-thermocycler     Biometra, Germany 

Pipetboy and pipettes    Eppendorf, USA 

Power supply     Biometra, USA 

Precellys®24 homogenizer    Bertin Technologies, France  

Shaker      Biometra, USA 

Water bath for cell culture    Medingen, Germany 

Water bath for tubes    HLC, Germany 

Western blot unit     Biometra, USA 

Vortex machine     VWR, Germany 
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3.1. 7 Other materials 
Falcon tubes, PCR tubes, glass pipettes and cell culture dishes and plates 

were purchased from Greiner Bio-One (Germany). Others are as listed below. 

Material      Company 

96-well microplate     Corning, USA 

AGFA cronex 5 medical X-ray film  AGFA, Belgium 

Chromatography column    Bio-Rad, USA 

Film casette      Kodak, USA 

Filter tips (10, 100, 1000µl)   Nerbe plus, Germany 

Gel blotting paper     Whatman, USA 

Nitrocellulose membrane    Pall Corparation, USA 

Osmotic minipump (2 mL)     Durect Corparation, USA 

Precellys bead mill sample tube   Bertin Technologies, France 

Radiographic film hypersensitive   Amersham, USA 

Santilation tube     Nerbe plus, Germany 

Tips (10, 100, 1000µl)    Eppendorf, USA 

Reaction tube     Sarstedt, Germany 

Real time tube     Thermo Fisher, USA 

Tissue culture chamber slide   BD Falcon, USA 

 

3.2 Methods 
3.2.1 Animals  
Adult male Sprague-Dawley rats (250-300 g in body weight) were purchased 

from Charles River Laboratories (Sulzfeld, Germany). The experiments were 

performed in accordance with the National Institutes of Health Guidelines on 

the Use of Laboratory Animals. Both the University Animal Care Committee and 

the Federal Authorities for Animal Research of the Regierungspräsidium 

Giessen (Hessen, Germany) approved the study protocols. 

 

3.2.1.1 Monocrotaline-induced pulmonary hypertensive rat model 
Alkaloid monocrotaline was dissolved in 1 mol/L HCl and then adjusted to pH 

7.4 with 1 mol/L NaOH, resulting in a clear solution with a final concentration of 

20 mg/ml58. Rats were randomized for a one-shot subcutaneous (s.c.) injection 

of 60 mg/kg MCT to induce pulmonary hypertension, or an injection of the same 
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volume of saline to be as a control. Drinking water supplemented with antibiotic 

Baytril was given to MCT-injected rats for 2 weeks at the second day of MCT 

injection. Both of the control and MCT rats were kept up to 4 weeks for cell 

isolation, while for in vivo experiments rats were subjected to hemodynamic 

studies after 5 week of MCT injection.  

 

3.2.1.2 Experimental groups 
The animals were classified into the following three groups: 1) rats injected with 

saline and sacrificed after 35 days (Control, n=9); 2) MCT-injected rats 

subjected to minipump implantation from day 21 to day 35 with saline 

(MCT[35d]/saline, n=8); 3) MCT-injected rats subjected to minipump 

implantation from day 21 to day 35 with 5 mg/ml papaverine 

(MCT[35d]/papaverine, n=8). 

 

3.2.1.3 Surgical preparation and hemodynamic measurements 
Three weeks after MCT injection, rats were subjected to papaverine treatment 

for 2 weeks by implantation of osmotic minipumps (Alzet Model 2 mL). At day 

21, after the rat was anaesthetized with an intraperitoneal injection (i.p.) of 

ketamine (9 mg/kg body mass) and medetomidine (100 µg/kg body mass), a 

minipump filled with 2 ml saline or with 2 ml papaverine (5 mg/ml) was 

implanted in the dorsal subcutaneous region under sterile conditions and a 

tunneled catheter (PE 50 tubing) was inserted into the left jugular vein. The 

releasing rate of the minipump is 5 µl per hour. After wound-closing with 

sutures, the rats were recovered from anesthesia by an intraperitoneal injection 

of naloxon and atipazemol (50 and 100 µg/kg body mass). At the end of the 

treatment, the rats were anesthetized with an intraperitoneal injection (i.p.) of 

ketamine (9 mg/kg body mass) and medetomidine (100 µg/kg body mass), 

followed by an intramuscular (i.m.) injection of heparin (50 IU/kg body mass) to 

measure the hemodynamic parameters. The rats were then tracheotomized 

and ventilated at a frequency of 60 breaths/min, with a positive end expiratory 

pressure at 1 cm H2O throughout. To measure right ventricular pressure, a right 

heart catheter (PE 50 tube) was inserted through the right jugular vein and to 

measure arterial pressure a polyethylene catheter was inserted into the left 

carotid artery84. 
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3.2.1.4 Histological assessment of the degree of muscularization of small 
pulmonary arteries 
Three µm lung sections from blocks fixed in 3% paraformaldehyde solution 

were applied to a double staining with the anti-von Willebrand-factor antibody 

(1:900) and anti α-SMA antibody (1:900) for the analysis of small peripheral 

pulmonary artery muscularization. In each rat, 80 to 100 intraacinar arteries 

(20-50 µm) were categorized by the software as full muscularized,  partially 

muscularized, or nonmuscularized, as previously described84. 

 

3.2.1.5 Tissue preparation 
After the hemodynamic measurement, the lungs were flushed with saline via 

the pulmonary artery, the left lobes were snap frozen in liquid nitrogen and 

stored at -80°C for molecular studies while the right lobes were fixed in 3% 

paraformaldehyde solution for histological studies. Lungs for pulmonary artery 

isolation were freshly dissected and immersed in ice-cold Hank’s balanced salt 

solution (HBSS) containing penicillin/streptomycin (P/S, 100 units/ml).    

 

3.2.2 Isolation of pulmonary arterial smooth muscle cells (PASMCs) 
Rat PASMCs were cultured from peripheral small pulmonary artery explants as 

previously described85. To isolate PASMCs, the freshly dissected rat lung was 

removed of lung parenchyma and interstitial tissues around the arteries until the 

small pulmonary arteries were completely exposed under a dissecting 

microscope. Then the adventitia layer was removed by micro-dissection. Artery 

segments were cut open along the longitudinal axis and the endothelium was 

gently removed by scraping the luminal surface. The arteries were minced into 

1 mm2 explant pieces and maintained in Dulbecco's modified Eagle's 

medium/F12 (DMEM/F12) supplemented with 10% fetal bovine serum (FBS), 

P/S (100 units/ml) and 2 mM L-glutamine. After 5 days PASMCs started to 

migrate from the explants, followed by 10 days of culturing. The morphology of 

PASMCs was observed under contrast microscopy and the early passages 

(passage 2-5) were used for all experiments. Every experiment in the following 

was performed with primary PASMCs isolated from at least 3 individual rats. 
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3.2.3 RNA interference 
Transient transfection of siRNA was performed with X-tremeGENE siRNA 

transfection reagent according to the manufacturer’s protocols. PASMCs were 

subcultured to 40% confluence in antibiotic-free DMEM supplemented with 10% 

FBS and 2 mM L-glutamine. siRNA and transfection reagent were diluted in 

opti-MEM and mixed within 5 min after dilution at a final ratio of 4:1 

(transfection reagent µl to siRNA µg). After incubation for 20 min at RT, 

transfection of 100 nM siRNA was performed in opti-MEM for 5 h, followed by 

culturing in DMEM supplemented with 10% FBS and 2 mM L-glutamine up to 

24 h (for RNA isolation) or 48 h (for protein isolation, enzyme immunoassay 

and proliferation assay). The RNA interference was well established and 

repeated at least three times. 

 

3.2.4 Polymerase chain reaction (PCR) 
3.2.4.1 RNA isolation 
Total RNA from tissues or cells was extracted using Trizol according to the 

manufacturer's instructions. 50 mg lung tissue was applied to 1 ml Trizol and 

homogenized by Precellys24 homogenizer, or 2×106 PASMCs were collected 

in 1 ml Trizol. Trizol lysates were kept at RT for 5 min to dissociate the RNA 

from histone proteins. Then add 0.2 ml chloroform, vigorously mix for 15 sec 

and centrifuge under 12000 rpm at 4°C for 30 min. After that, the transparent 

upper layer was carefully transferred to a new tube and gently mixed with 0.5 

ml 2-propanol. After 15 min the mixture was centrifuged under 12000 rpm at 

4°C for 15 min and the RNA pellet was washed with 1 ml 75% ethanol and 

dried in the air. RNA was dissolved in DEPC-water and stored at -80°C. The 

concentration and quality of RNA were estimated by NanoDrop 

spectrophotometer.  

 

3.2.4.2 Reverse transcription-PCR (RT-PCR)   
cDNA was synthesized by a two-step RT-PCR using ImProm-II™ reverse 

transcription system according to the manufacturer’s instructions. 1 µg RNA in 

5 µl reaction A was denatured at 70°C for 5 min, followed by a quick chill for 5 

min and addition of 15 µl reaction B. The reverse transcription reactions were 
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subjected to cDNA synthesis by firstly annealing at 25°C for 5 min and 

incubating at 42°C for 60 min, followed by thermal inactivation of reverse 

transcriptase at 70°C for 15 min. The cDNA was stored at -20°C. 
 

Reaction A component Volume Final concentration

Total RNA, 1µg/ul 1 µl 1 µg/20µl 

Oligo(dT)15 primer, 0.5 µg/µl 1 µl 1 µg/20µl 
 

Reaction B component Volume Final concentration

ImProm-II™ 5X reaction buffer 4 µl 1 X 

MgCl2, 25 mM 2 µl 2.5 mM 

dNTP mix, 40 mM 1 µl 2 mM 

RNasin® ribonuclease inhibitor 1 µl 20 u/20µl 

ImProm-II™ reverse transcriptase 1 ul 0.5 u/20µl 

Nuclease-free water to a final volume 15 µl  
 
 
3.2.4.3 Standard PCR 
cDNA GoTaq® PCR core system I was applied for standard PCR using the 

program as follows. The annealing temperature is 58°C for GAPDH, αSMA (α-

smooth muscle actin), SM-MHC (smooth muscle-myosin heavy chain) and 

Calponin. PCR reaction mixture was made as listed.  
 

PCR reaction component Volume Final concentration

cDNA 2 µl 0.5 µg/25µl 

MgCl2, 25mM 2 µl 2 mM 

dNTP mix, 40mM 0.5 µl 200 µM 

Upstream primer, 10 µM 0.75 µl 0.3 µM 

Downstream primer, 10 µM 0.75 µl 0.3 µM 

5X Green GoTaq® flexi buffer 5 µl 1.0 X 

GoTaq® DNA polymerase 0.25 µl 1.25 u/25µl 

Nuclease-free water to a final volume  25 µl  
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PCR programm Temperature Time Cycle 

Initial denaturation 95°C 2 min 1 

Denaturation 95°C 1 min  

Annealing Variable 1 min 30 

Extension 72°C 1 min/kb  

Final extension 72°C 5 min 1 

Soak    4°C indefinite 1 
 
 
3.2.4.4 Quantitative realtime- PCR (qRT-PCR ) 
The intron-spanning primer pairs were designed using the Primer3 program 

and are shown in Table 3. Primers were cross checked to insure the specificity 

by blasting to the whole genome. The product size is controlled within the range 

of 80 bp-150 bp.  
 

qRT-PCR reaction component Volume Final concentration

cDNA 2 µl 0.2 µg/25µl 

MgCl2, 25 mM 1 µl 1 mM 

ROX, 25 µM 0.1 µl 100 µM 

Upstream primer, 10 µM 0.5 µl 0.2 µM 

Downstream primer, 10 µM 0.5 µl 0.2 µM 
2X SYBR® GreenER™ SuperMix 
Universal buffer 12.5 µl 1.0 X 

Nuclease-free water to a final volume  25 µl  
 

qRT-PCR was performed on a Mx3000P® QPCR system machine using 

SYBR® GreenER™ qPCR SuperMixes Universal kits according to 

manufacturer’s instructions. For the negative control, the cDNA was omitted. 

The annealing temperature for every gene is 58°C. By using the MxPro™ 

QPCR software, a dissociation curve was generated for each gene to ensure a 

single product amplification and the threshold cycle (Ct values) for each gene 

was determined. The comparative 2-∆∆Ct method was used to analysis mRNA 

fold changes between control and MCT, which was calculated as Ratio = 2-(∆Ct 
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control-∆Ct MCT) where Ct is the cycle threshold, and ∆Ct (Ct target－Ct reference)  is the 

Ct value normalized to the reference gene Porphobilinogen Deaminase (PBGD) 

obtained for the same cDNA sample. Each reaction was run in duplicate and 

repeated three times independently. The calculated 2-∆∆Ct was transformed into 

a percentage using the control as 100% to show the mRNA expression 

difference. 

 

qRT-PCR programm Temperature Time Cycle 

Activation 95°C 10 min 1 

Denaturation 95°C 30 sec  

Annealing 58°C 30 sec 40 

Extension 72°C 30 sec  

Denaturating 95°C 1 min  

Dissociation curve 55-95°C indefinite 1 

Soak    4°C indefinite 1 
 
 
3.2.4.5 Agarose gel electrophoresis of DNA 
PCR products together with DNA ladder (100bp, 1kb) were loaded on 1.5% 

agarose gel containing 1 µg/ml ethidium bromide and were run in tris-acetate-

EDTA (TAE) buffer at 100 V until separated. The DNA bands were detect by 

UV illumination and captured by BioDoc Analyzer. 
 

TAE buffer component Final concentration 

Tris-HCl 40 mM 

Acetic acid 40 mM 

EDTA , 0.5 M, pH 8.0    1 mM 
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3.2.5 Western blotting 
3.2.5.1 Protein isolation 
Total protein was extracted in RIPA buffer containing 1XTBS, 1% Nonidet P-40, 

0.5% sodium deoxycholate, 0.1% SDS, 0.004% sodium azide. PMSF, 

proteinase inhibitor cocktail and sodium orthovanadate (10µl each in 1 ml RIPA) 

were added to RIPA freshly before use. 100 mg lung tissue homogenized in 

800 µl RIPA or 2×106 PASMCs in 250 µl RIPA was centrifuged under 12000 

rpm for 30 min at 4°C and the supernatants were stored at -80°C. 

 

3.2.5.2 Protein concentration analysis 
A series of bovine serum albumin (BSA) solution from 0.2-1.6 mg/ml were used 

as standard. The protein samples were pre-diluted into the range of the 

standard and the concentration of each sample was double estimated by Dc 

protein assay kit based on the method of Bradford using a microplate reader. 

 

3.2.5.3 SDS-polyacrylamide (SDS-PAGE) gel electrophoresis 
Protein samples of the same concentration were mixed with 5× SDS gel-

loading buffer at a ratio of 4:1 (v/v) and denatured at 100°C for 5 min. Protein 

samples (30 µg for PDE10A, CREB and pCREB; 15 ug for GAPDH) or rainbow 

marker were loaded in the wells of 10% SDS-PAGE gel and run at 100-130 v 

for 2-3 hours to separate. Buffers are listed as follows.  
 

5×SDS gel-loading buffer component Final concentration 

Tris-Cl (2 M, pH 6.8) 375 mM 

SDS 10% (w/v) 

Glycerol   50% (v/v) 

β-Mercaptoethanol 12.5% (v/v) 

Bromophenol blue 0.02% (w/v) 
 

Running buffer component Final concentration 

Tris-HCl 25 mM 

Glycine 192 mM 

SDS 10% (w/v) 0.1% (w/v) 
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Resolving gel (10%) component Volume Final concentration 

Tris-Cl (1.5 M, pH 8.8) 0.625 ml 375 mM 

Acrylamid 30% (w/v) 0.5 ml 10% (w/v) 

SDS 10% (w/v) 25 µl 0.1% (w/v) 

APS 10% (w/v) 12.5 µl 0.05% (w/v) 
 

Stacking gel (6%) component Volume Final concentration 

Tris-Cl (0.5 M, pH 6.8) 1.5 ml 375 mM 

Acrylamid 30% (w/v) 2 ml 10% (w/v) 

SDS 10% (w/v) 60 µl 0.1% (w/v) 

APS 10% (w/v) 30 µl 0.05% (w/v) 

TEMED 6 µl 0.1% 

H2O    2.4 ml  
 

3.2.5.4 Immunoblotting 
The proteins separated on the SDS-PAGE were transferred to nitrocellulose 

membrane using an electrophoretic transfer machine. After being soaked in 

blocking buffer for 1 h at RT, membranes were probed with specific primary 

antibodies (rabbit polyclonal anti-PDE10A antibody,1:2000; rabbit polyclonal 

anti-CREB antibody, 1:000; rabbit polyclonal anti-phospho-CREB(Ser133) 

antibody, 1:000; mouse monoclonal anti-GAPDH antibody, 1:5000) overnight at 

4°C. After wash with TBST for 3 times, horse radish peroxidase (HRP)-

conjugated secondary antibodies (anti-rabbit, 1:50000; anti-mouse, 1:50000) 

were applied to the membranes respectively for 1 h at RT. After washing, the 

blots were developed with an enhanced chemiluminescence (ECL) kit for 5 min 

and chemiluminescence signal was captured on an X-ray film. Each blot was 

repeated twice independently with representative blots shown. 
 

Blotting buffer Final concentration 

Tris-HCl 50 mM 

Glycine 40 mM 

Methanol  20% (v/v) 
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TBST buffer ( pH 7.6) component Final concentration 

Tris-HCl 20 mM 

NaCl 137 mM 

Tween 0.1% (v/v) 

Blocking buffer component Final concentration 

Non-fat milk 5% (w/v) in TBST 
 
 
3.2.6 Immunohistochemistry 
Three µm lung sections were cut from lung blocks fixed in 3% 

paraformaldehyde solution. After deparaffinization in xylene and rehydration in 

a series of grade-decreasing ethanol solutions followed by phosphate-buffered 

saline (PBS), the antigen retrieval was achieved by 0.25% trypsin for 15min at 

37°C. Then a NovaRED horseradish peroxidase (HRP)-substrate kit was 

applied for immunohistochemistry staining according to the manufacturer’s 

instructions. After being treated with 3% hydrogen peroxide for 20 min to block 

the endogenous peroxidases and serum blocking for 1 h, the sections were 

subjected to anti-PDE10A polyclonal antibody (1:200, in 10% BSA) overnight at 

4°C. After washing, the corresponding secondary antibody conjugated with 

HRP was applied for 30 min. After washing, color development was carried out 

with a substrate/chromogen mixture, followed by counterstaining with 

hematoxylin. The sections were examined under a Leica DM 2500 microscopy 

using Leica QWin imaging software. Sections from 4 rats of each group were 

stained with the representative staining shown. The sections without secondary 

antibodies were negative controls. 

 

3.2.7 Immunocytochemistry 
Rat PASMCs grown on 8-well chamber slides were fixed with the ice-chilled 

acetone-methanol mixture (1:1) for 10 min at 4°C. After washing with PBS, the 

fixed cells were sequentially incubated with blocking buffer (3% BSA in PBS）

for 1 h at RT, and then the primary antibody against αSMA (1:1000 in blocking 

buffer) for 1 h at RT or against PDE10A (1:200 in blocking buffer) overnight at 

4°C. After the primary antibodies, cells were washed 5 times with PBS and 



MATERIALS AND METHODS 

- 30 - 

subjected to FITC-conjugated anti-mouse or Alexa Fluor® 488 anti-rabbit 

secondary antibody (1:1000 in blocking buffer) for 1 h at RT in dark. Then cells 

were washed 5 times with PBS and counterstained for nuclei with DAPI (500 

ng/ml in blocking buffer) for 3 min. After washing with PBS, the upper chamber 

was removed and the slide was covered with a cover slide using the fluorescent 

mounting medium. The staining was visualized using a Leica DMLA 

fluorescence microscope and Leica QWin imaging software. PASMCs from 3 

individual rats of each group were stained with the representative staining 

shown. The wells without primary antibodies were negative controls. 

 

3.2.8 PDE inhibitors 
3-Isobutyl-1-methylxanthine (IBMX) was used as a nonspecific PDE inhibitor. 8-

Methoxymethyl-IBMX (8MM-IBMX), erythro-9-(2-Hydroxy-3-nonyl) adenine 

(EHNA), milrinone, rolipram, sildenafil and papaverine were used as relatively 

selective PDE inhibitors for PDE1, PDE2, PDE3, PDE4, PDE5 and PDE10 

respectively.  

 
3.2.9 PDE activity assay 
cAMP specific PDE activities were determined by a modified method of 

Thompson and Appleman and Bauer and Schwabe86, 87. The PASMC protein 

was extracted by RIPA buffer and equalized to the same concentration for use. 

The reactions were performed with 10 µg protein in 100 µl reaction buffer at 

37°C for 15 min. Then the samples were boiled for 3 min, subsequently cooled 

for 5 min and incubated with 25 µl Crotalus atrox snake venom (20 mg/ml) for 

15 min at 37°C. After being chilled on ice, the samples were applied to QAE 

Sephadex A-25 mini-chromatography columns and eluted with 1ml ammonium 

formate (30 mM, pH 7.5). The elutes were collected in 2 ml scintillation solution 

and counted by a beta-counter giving a CPM (counts per minute) value. Data 

were expressed as picomoles of cAMP per minute per milligram of protein. 

(pmol cAMP / minute / mg protein). Each assay was performed in triplicate and 

repeated twice independently. 
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PDE activity reaction buffer Final concentration 

HEPES (1 M, pH 7.6) 40 mM 

MgCl2 5 mM 

BSA 1 mg/ml 

cAMP  1 µM 

[3H]-cAMP (1 mCi/ml) 1 µCi/ml 
 

 

3.2.10 cAMP enzyme immunoassay (EIA) 
Intracellular cAMP content of PASMCs was determined by a competitive non-

acetylated EIA, using a specific cAMP EIA Kit according to the manufacturer's 

instructions. At the end of culture, cells were washed twice with PBS and lysed 

in 0.1 M HCl at RT for 20 min. The lysates were collected and centrifuged 

under 12000 rpm for 30min at 4°C. The supernatant was transferred to a new 

tube and stored at -80°C. The protein concentration was estimated by the Dc 

protein assay as described before and equalized to 0.3 µg/µl for use. 50 µl 

protein samples or standard solutions were incubated in dark with 50 µl tracer 

and 50 µl antibody overnight at 4°C. After washing 5 times, the plate was 

incubated with Ellman’s solution for 90-120 min at RT with gentle shaking. The 

plate was read at a wavelength of 405 nm and the concentration was calculated 

by the ready-made Cayman EIA Double workbook. The standard curve was 

made as a plot of the %B/B0 value (%Bound/Maximum Bound) vs concentration 

of a series of known standards using a linear (y) and a log (x) axis. Using the 4-

parameter logistic equation obtained from the standard curve, the cAMP 

concentration of samples was determined and given as nmol/mg protein. Each 

sample was performed in duplicate and repeated twice.   

 

3.2.11 Proliferation assay 
PASMC proliferation was achieved by [3H]-thymidine incorporation assay as 

described previously58. PASMCs (around 1×104 cells/well) were seed on 48-

well plates and the following day the medium was substituted with DMEM/F12 

containing 0.1% FBS with or without siRNA to render the cells quiescent. After 

24-h serum starvation, cells were induced to cell cycle reentry by 10% FBS 
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together with different PDE inhibitors for 24 h. The concentration of PDE 

inhibitors used for proliferation assay was pre-proved for PDE selectivity 

according to the previous reports83, 88. During the last 4 h of FBS stimulation, 10 

µl [3H]-thymidine (0.01 µCi/ml) was added to 250 µl medium to incorporate into 

the DNA. Cells were then washed twice with 500 µl chilled HBSS, fixed with 

250 µl ice-cold methanol for 15 min at 4°C and then precipitated by 250 µl 10%  

trichloroacetic acid (TCA) for 15 min at 4°C. After washing with water, samples 

were finally lysed in 0.1 M NaOH, transferred into 4 ml scintillation solution and 

counted by a beta counter giving a CPM value. All labeling was performed on 

quadruplicate cultures and repeated twice independently. The proliferation of 

PASMCs under 10% FBS stimulation is shown as a percentage taking the CPM 

of unstimulated PASMCs under 0.1% FBS as 100%. 

 

3.2.12 Statistical analysis 
Data are expressed as mean and standard error of mean (SEM). All statistical 

analysis was performed with Student’s t-test between two groups or with one-

way ANOVA and Newman-Keuls post-hoc test for multiple comparisions, as 

appropriate. Difference between groups is considered significant when P＜0.05. 
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4 RESULTS 

4.1 Primary PASMCs isolation and characterization  
Small pulmonary arteries (Figure 8A, in white squares) dissected from the rat 

lung were subjected to PASMC isolation. Primary PASMCs in early passages 

exhibited typical spindle-shape morphology and grew with a “hill-and-valley” 

pattern (Figure 8B). To ensure the property and purity of isolated PASMCs, the 

presence of key vascular smooth muscle cell markers were assessed by semi-

quantitative PCR or by immunocytochemistry. Vascular SMC phenotype genes 

including αSMA, SM-MHC and calponin are all equally expressed in cells 

isolated from control and MCT-PH rats on mRNA level (Figure 8C), which is 

confirmed by a 98% positive staining in cells against αSMA (Figure 8D). 
 

A)                                                             B) 
 
 
 
 

 
 
C)                 D) 
 

  

 

 
 
 
 
Figure 8: Primary PASMCs cultured from small pulmonary arteries. A) Pulmonary 
artery branches freshly dissected from a rat lung. The small artery (less than 0.5 mm in 
diameter) in the white square magnified in the right corner was used for PASMC isolation. 
B) Morphology of rat PASMCs with a 90% confluence at passage 1 observed by a phase-
contrast microscope. C) mRNA expression of vascular SMC phenotypic genes in both 
control and MCT PASMCs by semi-quantitive PCR. D) Immunocytochemistry staining of 
isolated cells against αSMA. PASMCs showed a positive staining of αSMA fibers in green 
with nucleus stained blue by DAPI.  
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4.2 Profiling of PDE7-11 expression in rat lungs and PASMCs 
4.2.1 Expression of PDE711 isoforms in rat lung tissue 
Expression of newly identified PDEs (PDE7-11) in lungs from both control rats 

and MCT-PH rats was investigated by qRT-PCR. In rat lung tissue, PDE7-11 

isoforms were all expressed on mRNA level. Out of those PDEs, PDE7A, 

PDE7B and PDE10A were significantly upregulated (264.7±16.2%, 

230.7±25.3% and 140.6±9.5% of control respectively), while PDE8B was 

downregulated (50.2±6.9% of control) in MCT-PH lungs as compared to control 

lungs. PDE8A, PDE9A and PDE11A were shown on the same level in both 

groups (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 
Figure 9: mRNA expression of PDE7-11 isoforms in rat lung tissue. Relative mRNA 
levels of PDE7-11 in lung homogenates from control rats (grey bars) and from 4-week 
MCT rats (black bars) were shown as a percentage of control by qRT-PCR after 
normalization to PBGD. *P < 0.05, **P < 0.01, ***P < 0.001 vs control lungs. n = 4 in each 
group. Values are expressed as mean ± SEM. 
 
 
4.2.2 Expression of PDE7-11 isoforms in rat PASMCs 
In the isolated PASMCs, we discovered that only PDE7A, PDE7B, PDE8A, 

PDE10A and PDE11A are present, with an increase of PDE7A (259.4±11.1% 

of control) and PDE10A (254.9±36.9% of control) in MCT-PH PASMCs as 

compared to control PASMCs (Figure 10). 
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Figure 10: mRNA expression of PDE7-11 isoforms in rat PASMCs. Relative mRNA 
levels of PDE 7-11 in PASMCs from control rats (grey bars) and from 4-week MCT rats 
(black bars) were shown as percentage of control by qRT-PCR after normalization to 
PBGD. **P < 0.01 vs control PASMCs. n = 4 in each group. Values are expressed as 
mean ± SEM. 
 
 
4.3 PDE10A localization and expression in pulmonary vasculature 
4.3.1 PDE10A localization in rat lung 
Since PDE10A was the first time described in the adult rat lung, 

immunohistochemistry was performed in lung sections to verify PDE10A 

expression pattern in rat lung. A stronger immunoreactivity of PDE10A was 

observed in lung specimens from MCT-PH rats, suggesting that the site-

specific change of PDE10A occurred especially in the medial layer of the 

pulmonary arteries (Figure 11 c,d). In contrast, only weak expression of 

PDE10A was detected in pulmonary vessels of control rat lung (Figure 11 a,b). 

In addition, immunoreactivity against PDE10A was also noted in bronchial 

SMCs of the small airways. 
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Figure 11: Immunohistochemistry staining of PDE10A in rat lung sections. 
Representative staining of lung sections from control rats (a,b) and MCT rats (c,d) shows 
dominant PDE10A expression in rat PASMCs. PA means pulmonary artery. Scale bar: 20 
µm. 
  
 
4.3.2 PDE10A expression is exclusively induced in pulmonary vasculature 
To investigate whether if PDE10A induction is specific in remodeled pulmonary 

vasculature, we examined PDE10A expression in the pulmonary artery and in 

the systemic arteries including aortic artery and femoral artery. qRT-PCR data 

showed a 2-fold  increase of PDE10A mRNA expression in the pulmonary 

artery of MCT-PH rats compared to control rats, with no changes in either the 

aortic artery or femoral artery (Figure 12).  

 

 

 

 

 

 

 

 

 
Figure 12: PDE10A mRNA expression in pulmonary and systemic vessels.  qRT-PCR 
analysis of PDE10A expression in the pulmonary artery (P.A.), aortic artery (A.A.) and 
femoral artery (F.A.) from control rats (grey bars) and 4-week MCT rats (black bars), 
shown as a percentage of control after normalization to PBGD. **P < 0.01 vs control. n = 4 
in each group. Values are expressed as mean ± SEM. 
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4.4 PDE10A expression, activity and localization in rat PASMCs 
4.4.1 Protein expression of PDE10A in rat PASMCs 
In corroboration of increased PDE10A expression on the immunoreactivity level 

and the mRNA level in pulmonary vessels, immunoblotting demonstrated a 1.6-

fold increase of PDE10A in MCT-PH PASMCs compared to control PASMCs 

(Figure 13A and 13B). 
 
A)                     B) 

 

 

 

 
 
 

Figure 13: PDE10A protein expression in rat PASMCs. A) Representative immunoblots 
against PDE10A with GAPDH as a loading control. B) Densitometric quantification of 
PDE10A expression in PASMCs is shown as a ratio by normalization to GAPDH in a bar 
graph. *P < 0.05 vs control PASMCs.  n = 3 in each group. Values are expressed as mean 
± SEM. 
 
 
4.4.2 Enzyme activity of PDE10A in PASMCs 
To assess the enzymatic activity of PDE10A, cAMP hydrolyzing PDE activity 

assays were performed. PDE activity assay demonstrated higher total cAMP 

hydrolyzing activity in MCT-PH PASMCs than in control PASMCs (8.72 vs 7.66 

pmol cAMP/minute/mg protein), which were both suppressed by IBMX to a 

similar basal level (1.9 pmol cAMP/minute/mg protein) (Figure 14A). 

Interestingly, the contribution of PDE10A to the total cAMP PDE activity 

increased from 38% to 53% in MCT-PH PASMCs as opposed to control 

PASMCs (Figure 14B and 14C). In contrast, the contribution of other cAMP 

hydrolyzing PDEs (PDE1, PDE2, PDE3 and PDE4) declined from 70% to 52% 

in MCT-PH PASMCs as compared to control PASMCs (Figure 14B and 14C).  
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Figure 14: cAMP PDE activity of control and MCT PASMCs. PDE activity assay was 
performed by applying different PDE inhibitors to protein lysates of PASMCs. A) Total 
cAMP activity in control and in MCT PASMCs. The PDE activity in both was remarkably 
suppressed by a non-selective PDE inhibitor (IBMX, 200 µM) to a similar basal level (black 
bars). †P < 0.05 vs control PASMCs; ***P < 0.001 vs total activity. cAMP activity of B) 
control PASMCs and C) MCT PASMCs attributed by PDE10A or other PDEs (PDE1, PDE2, 
PDE3 and PDE4). Total cAMP PDE activity was suppressed in varying degrees by a 
PDE10A inhibitor (papaverine, 10 µM) or by a combination of inhibitors against PDE1 
(8MM-IBMX, 30 µM), PDE2 (EHNA, 30 µM), PDE3 (milrinone, 5 µM)  and PDE4 (rolipram, 
10 µM). ***P < 0.001 vs total activity. n = 3 in each group. Values are expressed as mean ± 
SEM. 

 
 

4.4.3 Cellular localization of PDE10A in rat PASMCs 
Indicated by the high abundance of PDE10A in PASMCs by 

immunohistochemistry analysis of lung sections, we further investigated the 

cellular localization of PDE10A in PASMCs. Immunofluorescence staining 

showed a predominant presence of PDE10A in the nuclei of control PASMCs 

as well as MCT PASMCs (Figure 15).  
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Figure 15: Immunocytochemical staining of PDE10A in PASMCs. Cellular localization 
of PDE10A in control PASMCs and MCT PASMCs, shown by representative 
immunofluorescence. Green (PDE10A, FITC-conjugated); Blue (nuclei, DAPI). Staining is 
shown in a 400×magnification.  
 
 
4.5 Pulmonary hypersentive PASMCs are more proliferative than control 
PASMCs 
To examine whether PASMCs from MCT-PH rats are more proliferative, we 

applied [3H]-thymidine incorporation assay on both control and MCT-PH 

PASMCs under FBS stimulation. [3H] uptake is 80% higher in MCT-PH 

PASMCs than in control PASMCs (Figure 16). Due to this pathophysiology 

relevant cell phenotype of PASMCs from MCT-PH rats as compared to control 

PASMCs, all further experiments delineating the contribution of PDE10A were 

performed in MCT PASMCs. 

 

 

 

 

 

 

 
 
 
Figure 16: Cell proliferation of control and MCT PASMCs. Thymidine uptake of control 
and MCT PASMC under 10% FBS stimulation for 24-h. [3H]-thymidine incorporation was 
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shown with CPMA. ***P < 0.001 vs 10% FBS; †††P < 0.001 vs control. n = 4 in each group. 
Values are expressed as mean ± SEM. 
 
 
4.6 Pharmacological and genetic inhibition of PDE10A affects intracellular 
cAMP level and proliferation of PASMCs 
4.6.1 Effects of PDE10A inhibitor papaverine on cAMP accumulation and 
PASMC proliferation 
To investigate the functional role of PDE10A in MCT-PH PASMCs, we used the 

PDE10 inhibitor papaverine to block the endogenous PDE10A in PASMCs. EIA 

assay showed a basal intracellular cAMP level in MCT-PH PASMCs at 

0.53±0.02 (nmol/mg protein). Papaverine (10 µM; 25 µM) dose-dependently 

elevated intracellular cAMP to 0.87±0.20 and 1.15±0.17 (nmol/mg protein) 

respectively (Figure 17A). The proliferation of PASMCs stimulated by 10% FBS 

was reduced to 60% by 25 µM papaverine, as assessed by [3H]-thymidine 

incorporation assay (Figure 17B). 

 
A)                   B) 
                                                                                    
 

 

 

 

 
 
 
Figure 17: PDE10A inhibitor papaverine accumulates intracellular cAMP and 
attenuates PASMCs proliferation. A) Intracellular cAMP of PASMCs was remarkably 
increased after papaverine treatment. MCT PASMCs were treated with papaverine (0, 10, 
25 µM) for 24 h for cAMP EIA assay. The cAMP content of PASMC lysates is given as 
nmol/mg protein. *P < 0.05; ***P < 0.001 vs papaverine untreated. n = 4 in each group. B) 
PASMC proliferation was reduced by papaverine. After serum starvation MCT PASMCs 
were stimulated by 10% FBS alone or with papaverine (10 µM, 25 µM) for 24 h. [3H]-
thymidine incorporation was used to evaluate cell proliferation. †††P < 0.001 vs 0.1% FBS; 
*P < 0.05 vs 10% FBS. n = 4 in each group. Values are expressed as mean ± SEM. 
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4.6.2 Effects of PDE10A knockdown by si-PDE10A on cAMP accumulation 
and PASMC proliferation  
4.6.2.1 PDE10A knockdown by siRNA 
In addition to the inhibitor studies, siRNA targeting PDE10A was applied to 

knockdown the endogenous PDE10A in MCT-PH PASMCs to be more specific 

with PDE10A inhibition. PDE10A was successfully suppressed by 100 nM si-

PDE10A on the level of mRNA (25.2±0.4% of NTC) (Figure 18A), protein 

(Figure 18C) and activity (31.5±4.5% of NTC) (Figure 18D), while no changes 

accrued by 100nM scramble siRNA. In addition, to examine isoform-specific 

effects of si-PDE10A, the expression of other PDE isoforms was analyzed in 

the PASMCs treated with si-PDE10A or scramble siRNA. Results suggested 

that these effects were specific, and the PDE10A siRNA oligos had no effect on 

the expression of PDE1A, PDE3A and PDE3B isoforms (Figure 18B). 

 

A)      B) 
 

 

 

 

 

 

 

C)      D) 
 
 

 

 

 

 
 
Figure 18: Knockdown of PDE10A by specific siRNA. MCT PASMCs were transiently 
transfected with 100 nM of si-scramble or si-PDE10A for 24 h or 48 h. PASMCs treated 
with transfection reagent alone is the negative control (NTC). A) PDE10A mRNA 
expression decreased after 24 h si-PDE10A transfection, as shown by qRT-PCR. ***P < 
0.001 vs NTC. n = 3 in each group. B) PDE1A, PDE3A and PDE3B mRNA expression 
after 24 h transfection of 100 nM si-scramble (grey bars) or si-PDE10A (black bars). n = 3 
in each group. C) Representative immumoblots showed suppressed PDE10A protein 
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expression in MCT PASMCs after 48 h si-PDE10A transfection. GAPDH was taken as a 
loading control. D) Total cAMP PDE activity in MCT PASMCs was dramatically reduced by 
48 h si-PDE10A knockdown, as estimated by PDE activity assay. *P < 0.05 vs NTC. n = 4 
in each group. Values are expressed as mean ± SEM. 
 
 
4.6.2.2 Knockdown of PDE10A by siRNA accumulates intracellular cAMP 
and attenuates PASMC proliferation 
With established siRNA knockdown conditions, the cAMP level of MCT-PH 

PASMCs was examined after PDE10A suppression by siRNA. Intracellular 

cAMP was increased to 1.00±0.10 (nmol/mg protein) in si-PDE10A treated 

PASMCs, compared with 0.48±0.04 (nmol/mg protein) in untreated PASMCs or 

0.55±0.03 (nmol/mg protein) in scramble siRNA treated PASMCs (Figure 19A). 

10% FBS stimulated proliferation of MCT-PH PASMCs was remarkably 

attenuated to 60% by si-PDE10A, without any changes with scramble siRNA 

(Figure 19B).      

 
A)                                          B) 

 

 

 

 

 

 

 
Figure 19: si-PDE10A accumulates intracellular cAMP and attenuates PASMC 
proliferation. A) Intracellular cAMP was increased in MCT PASMCs after PDE10A 
knockdown by siRNA for 48 h, evaluated by EIA assay. **P < 0.01 vs NTC. n = 4 in each 
group. B) PASMC proliferation was  attenuated by 48 h PDE10A knockdown, as shown by 
[3H]-thymidine incorporation assay. †††P < 0.001 vs 0.1% FBS; *P < 0.05 vs 10% FBS. n = 
4 in each group. Values are expressed as mean ± SEM. 
 
 
4.7 Inhibiton of PDE10A modulates CREB phosphorylation  
cAMP response element binding protein (CREB) is an important downstream 

target of cAMP. We attempted to address if CREB is modulated by PDE10A 

inhibition. Immunoblots indicated CREB activation with increased phospho-

CREB (Ser133) after “loss of function” of PDE10A using papaverine (10 µM; 25 

µM) (Figure 20A) and si-PDE10A (100 nM) (Figure 20B).   



RESULTS 

- 43 - 

 A)                                                               B) 
 

 
 
 
 
 
Figure 20: Activation of CREB by PDE10A inhibition. Protein from A) papaverine (24 h, 
10 µM; 25 µM) or B) si-PDE10A (48 h, 100 nM) treated MCT PASMCs was applied for 
immunoblotting against phospho-CREB (ser133) and total CREB, with GAPDH as a 
loading control. Each blot was repeated twice. 
 
 
4.8 Antiproliferative effects of PDE inhibitors on PASMCs. 
Since cAMP and cGMP are key factors in the regulation of cell cycle and 

vasculature remodeling, we tested the contribution of different PDEs to the 

proliferation of MCT-PH PASMCs by using selective PDE inhibitors. IBMX (300 

µM), as a universal PDE inhibitor, was used as a positive control and inhibited 

PASMC proliferation by 65%. PASMC proliferation was reduced similarly by ～

25% either with PDE3 inhibitor (milrinone), PDE4 inhibitor (rolipram) or PDE5 

inhibitor (sildenafil); while PDE10 inhibitor (papaverine) decreased PASMC 

proliferation by 40% (Figure 21), which is to a higher extent as compared to 

other PDE inhibitors. We concluded that among all these PDEs, PDE10 

contributes the most to proliferation of pulmonary hypertensive PASMCs.  

 

 

 

 

 

 

 

 

 

 

 
Figure 21: Anti-proliferative effect of isoform selective PDE inhibitors. MCT PASMCs 
underwent serum starvation and were subsequently stimulated to proliferate by 10% FBS. 

p-CREB

CREB

GAPDH

Pap 0 μM

Pap 10 μM

Pap 25 μM

43kDa

43kDa

36kDa

p-CREB

CREB

GAPDH

Pap 0 μM

Pap 10 μM

Pap 25 μM

43kDa

43kDa

36kDa

p-CREB

CREB

GAPDH

43kDa

43kDa

36kDa

NTC

si-scramble

si-PDE10A

p-CREB

CREB

GAPDH

43kDa

43kDa

36kDa

NTC

si-scramble

si-PDE10A

0.1% FBS

10% FBS

IBMX 300 µM

Milrin
one 3 µM

Rolipram 3 µM

Sildenafil 3
 µM

Papaverine 25 µM

PA
SM

C
s 

pr
ol

ife
ra

tio
n

 (f
ol

d 
in

cr
ea

se
 o

f N
TC

)

0

5

10

15

20

25

30

***

*** *** ***
***

†††  



RESULTS 

- 44 - 

PDE inhibitors (IBMX, 300 µM, universal PDE inhibitor; milrinone, 3 µM, PDE3 inhibitor; 
rolipram, 3 µM, PDE4 inhibitor; sildenafil, 3 µM, PDE5 inhibitor; papaverine, 25 µM, PDE10 
inhibitor) were applied respectively for 24 h. [3H]-thymidine incorporation was performed in 
the last 4 h of stimulation. †††P < 0.001 vs 0.1% FBS, ***P < 0.001 vs 10% FBS. n = 4 in 
each group. Values are expressed as mean ± SEM. 
 
 
4.9 Papaverine treatment on MCT-induced pulmonary hypertension in rats 
4.9.1 Effect of papaverine on hemodynamics 
Animal experiments with a MCT-induced PH rat model were performed to 

examine the therapeutic efficacy and anti-remodeling potential of PDE10A 

inhibition. Saline treated MCT-PH rats exhibited a significant increase in right 

ventricular systolic pressure (RVSP) on day 35 (77.2±9.74 vs 29.1±1.3 mm Hg) 

(Figure 22A), and in pulmonary vascular resistance index (PVRI) (2.90±0.24 vs 

0.90±0.13 mm Hg min/ml 100 g body weight) (Figure 22C) as compared to 

control rats. No significant changes in systemic arterial pressure (SAP) and 

systemic vascular resistance index (SVRI) occurred (Figure 22B and 22D). 

Treatment of these rats by continuous infusion of papaverine from day 21 to 

day 35 resulted in a significant reduction of RVSP (48.4±5.3 mm Hg) (Figure 

22A) and PVRI (1.73±0.28 mm Hg min/ml 100 g body weight) (Figure 22C), 

whereas SAP and SVRI did not change significantly (Figure 22B and 22D) as 

compared to saline treated animals. 
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Figure 22: Effect of papaverine on hemodynamics of MCT-PH rats. Papaverine was 
applied by continuous intravenous infusion with osmotic minipumps from day 21 to day 35. 
Control: n=9; MCT[35d]/saline: n=8; MCT[35d]/papaverine: n=8. A) Right ventricular 
systolic pressure (RVSP, mmHg), B) systemic arterial pressure (SAP, mmHg), C) 
pulmonary vascular resistance index (PVRI, mmHg min/ml 100 g body) and D) systemic 
vascular resistance index (SVRI, mmHg) are given as mean ± SEM.  ***P < 0.001 vs 
control; †P < 0.05 vs MCT[35d]. 
 
 
4.9.2 Effect of papaverine on pulmonary peripheral artery muscularization 
Morphology analysis of the degree of muscularization of the peripheral small 

pulmonary arteries (Figure 23) showed that control rat lungs consisted of a 

majority of nonmuscularized arteries (79.5±4.5%), with a small percentage of 

partially muscularized arteries (14.0±4.0%) and a smaller percentage of fully 

muscularized arteries (6.5±0.5%). In contrast, the percentage of non-

muscularized arteries decreased to 1.2±0.4%, and the percentage of partially 

and nonmuscularized arteries increased to 33.3±4.3% and 65.4±4.5% 

respectively, in saline treated MCT-PH rat lungs. Papaverine treatment 

decreased the proportion of fully muscularized arteries to 24.4±3.4%, 

accompanied by a significant increase in partially muscularized arteries to 

70.5±2.7% and in nonmuscularized pulmonary arteries to 5.0±1.2% (Figure 23). 
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A) 
 

 

 

 

 

 

 
B) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Effect of papaverine on the extent of muscularization of peripheral 
pulmonary arteries. A total of 80 to 100 intra-acinar vessels were analyzed in each lung 
from each group. A) Representative double immunostaining microphotographs of the rat 
lung sections to assess the muscularization of small pulmonary arteries. Staining was 
undertaken for von Willebrand-factor (brown, endothelial cells) and αSMA (purple, smooth 
muscle cells). B) The percentage of nonmuscularized (N), partially muscularized (P), or 
fully muscularized (M) pulmonary arteries related to the total number of pulmonary arteries 
is given as mean ± SEM.  ***P < 0.001 vs control; †P < 0.05 vs MCT[35d]. 
 
 
4.10 PDE10A expression in human lungs from donors and IPAH patients 
To ascertain clinical relevance of these findings, the expression and localization 

of PDE10A was investigated in human IPAH lungs by immunohistochemistry. 

As seen in Figure 8, a strong immunoreactivity of PDE10A was observed in 

pulmonary arteries, predominantly in the medial layer, of IPAH lung tissue 

(Figure 24, e-h). In contrast, only weak expression of PDE10A was detected in 

pulmonary arteries of donor lung tissue (Figure 24, a-d). 
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Figure 24: Pulmonary vascular expression and localization of PDE10A in lung 
tissues from donor and IPAH patients. Representative PDE10A immunostaining 
microphotographs of the human lung sections from donors (a-d) and IPAH patients (e-h). 
Scale bar: 20 µm. 
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5 DISCUSSION 

It is widely accepted that phosphodiesterases are key factors regulating the 

pulmonary vascular tone89-92 by mediating NO/cGMP pathway in pulmonary 

vasculature and PDE inhibitors are proved to be potent pulmonary artery 

relaxants in PAH80, 93-95. More recently, it was demonstrated that other than 

involvement in vascular tone, PDEs play an important role in modulating 

various signaling pathways in pulmonary vascular remodeling, via the tight 

control of the second messages - cAMP and cGMP. PDE1, PDE3, PDE4 and 

PDE5 have been reported to be increased in the vasculature of lung and 

inhibitors to those PDE subfamilies could suppress pulmonary vascular 

remodeling78, 80-83, 96, 97. However in addition to those well explored isoforms, 

there are some newly identified PDE isoforms (PDE7-11) in the PDE family. 

This brings up an important issue whether these PDEs are also involved in the 

pathogenesis of PAH. So it is of interest to determine the expression profile of 

those newly identified PDEs and to uncover which pathophysiological roles they 

may play in the development of PAH.   

 

5.1 PDE7-11 in PAH 
The present data demonstrate that multiple newly identified PDEs are 

expressed and altered (PDE7A, PDE7B and PDE10A) in the lungs of MCT-

induced pulmonary hypertensive rats. The mRNA expression analysis of PDE7-

11 in the lungs and in PASMCs demonstrated interesting tissue and cell 

specific patterns along with modulation of PDEs in healthy and hypertensive 

lungs. PDE10 isoform is mostly reported in brain diseases, based on the 

concept that PDE10A is not widely expressed outside of the central nervous 

system. However, we observed increased expression of PDE10A in MCT-PH 

lungs and MCT PASMCs as compared to controls. PDE7 is mostly involved in 

the immune system, such as T cell activation98. An upregulation of PDE7A and 

PDE7B was observed in MCT-PH rat lungs, whereas only PDE7A was 

upregulated in MCT-PH PASMCs as compared to control PASMCs, suggesting 

a distinct cellular localization of these two PDE7 isoforms. In accordance, 

PDE7A isoform was detected by RT-PCR in vascular SMCs other than in T 

lymphocytes, monocytes, neutrophils, airway SMCs, lung fibroblasts, epithelial 
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cells, and cardiac myocytes99-102 and has been implicated in the pathogenesis 

of chronic obstructive pulmonary disease and asthma100, 103. However, protein 

expression analysis of PDE7A in lungs and in PASMCs revealed a weak 

expression of PDE7A in pulmonary vasculature and with no significant changes 

in MCT PASMCs as compared to control PASMCs (data not shown). This 

suggests discordance between transcriptional and translational regulation of 

PDE7A in MCT-induced pulmonary vascular remodeling and needs further 

investigations. 

 

5.2 PDE10A in PAH 
An immunohistochemical study of PDE10A localization in the major mammalian 

tissues demonstrated the lack of PDE10A immunoreactivity in the peripheral 

organs (liver, kidney, lung, spleen, or heart) of any species. Different from their 

finding, in our studies we found the presence of PDE10A in lung vasculature. 

Moreover, PDE10A expression is prominently induced in the structurally 

remodeled pulmonary arterial muscular layer. In accordance, PDE10A mRNA 

and protein expression are increased in PASMCs isolated from MCT-PH rats 

as compared to control rats. Moreover, PDE10A is one of the major cAMP 

hydrolyzing PDEs and contributes more to the total cAMP PDE activity in MCT-

PH PASMCs compared with control PASMCs. Taken together, all these data 

suggest a likely contribution of PDE10A in the pathogenesis of PAH. 

 

The tissue distribution and cellular localization of PDEs are important clues to 

understand their pathophysiological functions and apply potential therapeutic 

strategies. PDE expression in a particular organ or cell type could suggest 

potential effects of a corresponding PDE inhibitor in vivo. For example, high 

levels of PDE5 expression in corpus cavernosum and lung are consistent with 

the therapeutic benefits in treating erectile dysfunction and pulmonary 

hypertension, respectively104, 105. PDE10A was identified only 10 years ago and 

demands a better understanding of its functions. Unique distribution of PDE10A 

in the brain and its enrichment in the striatum, made PDE10A as a potential 

therapeutic target for the treatment of neurological and psychiatric disorders106-

109. Recently nuclear PDE10A staining was noted in some endocrine organ and 
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PDE10A-selective inhibitors have also been claimed to be useful for the 

treatment of diabetes and obesity110.  

 

Although well characterized in brain, PDE10A is sparsely addressed in adult 

lung tissue69. The stronger expression in pulmonary arteries and in isolated 

PASMCs from the MCT-PH rat in our studies suggests that PDE10A may 

contribute to the proliferative phenotype of PASMCs. Although the specific 

functional role of PDE10A in lung tissue needs to be further characterized, this 

study also suggests a reactivation of PDE10A signaling in abnormal 

proliferative lung disease tissues, such as the tissues observed in pathological 

vascular remodeling. Moreover, we also found that PDE10A immunoreactivity 

was strongly increased in pulmonary arteries of IPAH patient lung sections as 

compared to the donors, indicating clinical relevance of the findings obtained 

from the MCT model. 

 

5.3 Influence of PDE10A on PASMC proliferation   
Vascular remodeling, which includes proliferation and hypertrophy of smooth 

muscle cells, is a characteristic feature of PAH8, 111. Recent studies have 

reported that targeting abnormal media proliferation blocks the development of 

PAH and attenuates pulmonary arterial remodeling in rodents and humans8, 58, 

59, 112. In the MCT-induced PH model, we found that PASMCs from MCT rats 

are much more proliferative than PASMCs from control rats, a result consistent 

with the reports demonstrating that PASMCs from pulmonary hypertensive 

vessels possess larger mitogenic potent85, 113. In our studies, a selective 

PDE10A inhibitor as well as selective PDE10A siRNA suppressed proliferation 

of PASMCs. More interestingly, among the major cAMP-hydrolyzing PDE 

inhibitors, PDE10 inhibitor papaverine was the most potential one to reduce 

PASMC proliferation. In this aspect, PDE10 selective inhibitors may thus act as 

more efficient anti-proliferative drugs compared with other PDE specific 

inhibitors, implying that PDE10A could be a useful therapeutic target for PAH 

and for other disorders characterized by increased PASMC proliferation.  
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5.4 Signaling pathway related to anti-prolifeative effect of PDE10 inhibiton   
Regarding to the critical role of cyclic nucleotide on cell proliferation, both 

cGMP and cAMP are believed to inhibit SMC proliferation in vitro and in vivo114, 

115. By applying the 8-Br-cAMP, a cAMP analogue resistant to PDE-mediated 

hydrolysis, cell cycle traverse was suppressed116. Also the unspecific PDE 

inhibitor IBMX - by inhibiting cAMP hydrolysis - can block the PASMCs 

proliferation stimulated by growth factors97. Moreover PDE3 and PDE4, as 

cAMP- PDEs, have been shown to play an essential role in cAMP catabolism in 

experimental PAH models and combined PDE 3/4 inhibitors increase cAMP 

levels and reverse pulmonary vascular remodeling82. Although PDE10A is a 

dual-substrate PDE, it is reported that the enzyme activity is stimulated by 

cAMP being bind to the GAF domains of PDE10A73, 74. Taken together, we 

speculate that PDE10A may mainly control cAMP level under the 

pathophysiological conditions, although we can not exclude the involvement of 

cGMP117. 

 

These anti-proliferative effects are largely due to an increase in intracellular 

cAMP level that may subsequently stimulate the activity of protein kinase A 

(PKA)118, 119. cAMP, produced by activation of G protein-coupled receptors 

(GPCRs) and activation of adenylate cyclases, binds to the regulatory subunits 

of PKA to release the catalytic subunits. In the cytoplasm, PKA catalytic 

subunits phosphorylate downstream targets; while in the nucleus, PKA catalytic 

subunits phosphorylate cAMP response element-binding protein (CREB), 

resulting in activation of DNA transcription of cAMP-responsive element-

containing genes. Deactivation of cAMP/PKA pathway is accomplished through 

degradation of cAMP to 5’AMP by cAMP-PDEs120, 121 (Figure 25). In line with 

this notion, several studies from our group and others have reported that 

compounds which activate adenylate cyclase or inhibit PDE counteract several 

pathways involved in SMC proliferation78, 83, 122. For example, cAMP in vascular 

SMCs was shown to decrease the expression of cyclin D1 and cdk2 as well as 

extracellular signal-regulated kinase (ERK) activation, and to increase the 

expression of the anti-proliferative molecules such as p53 and p21114, 123-125. In 

addition, there is now substantial evidence that cAMP/PKA signaling acts as a 

molecular gate to block cell cycle progression, largely via occupancy of the 
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cAMP response elements (CRE) in the promoter region of the cyclin A gene, 

along with an increase in the level and phosphorylation status of the CREB 

transcription factor126. But intracellular mechanisms leading to CREB 

phosphorylation are diverse, as well as the cellular responses after CREB 

phosphorylation are multiple127. From the research of PDE10A in brain, it was 

demonstrated that papaverine increases cAMP level and CREB 

phosphorylation by inhibiting PDE10A128. In accordance, we found that the ratio 

of phosphorylated CREB to total CREB was significantly increased in PASMCs 

after PDE10A inhibition by papaverine and PDE10A-selective siRNA. This may 

have important consequences for PAH in vivo, since CREB content has been 

shown to be diminished in SMCs in remodeled pulmonary arteries with PAH129.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 25: Diagram of the cAMP/PKA signaling in normal cells. (Modified from Bossis, 
I., 2004) 
 

5.5 Therapeutic effects of a PDE10 inhibitor on MCT-induced PH 
A couple of experimental or preclinical experiments showed PDE inhibitors 

exhibit therapeutic improvement not only via vascular relaxation, more 
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important, via reversing pulmonary vascular remodeling78-81. Cyclic nucleotide-

mediated cellular responses are governed not only by alterations in PDE 

expression but also by the activity of specific types of PDE isoforms. Studies on 

hypoxic PAH rat suggests that decrease in intracellular cyclic nucleotide levels 

in pulmonary arteries from pulmonary hypertensive rats is associated with 

increased PDE activity77, 113. Recently, Murray et al., demonstrated that the total 

cAMP-PDE and cGMP-PDE activity is increased in PAH PASMCs as compared 

to control PASMCs97. They investigated only the contribution of PDE1-5 to the 

total cAMP PDE activity and concluded that the increased the cAMP activity is 

mainly from PDE3 isoform. In agreement with these findings, an increase in the 

total cAMP-PDE activity was observed in a well-established experimental 

model of PH in our study. Notably, the relative contribution of PDE10A to total 

cAMP-PDE activity was found to be increased in MCT-PH PASMCs as 

compared to control PASMCs, indicating that PDE10A inhibition was more 

effective in increasing cAMP generation and inhibiting hyperproliferation of 

PASMCs from MCT-PH rats. This suggests that PDE inhibitors that raise cAMP 

in general, as well as PDE10A-selective inhibitors, offer a new target for 

therapeutic intervention in pulmonary hypertension. In line, treatment of MCT-

PH rats with the PDE10A inhibitor papaverine for 14 days markedly improved 

pulmonary hemodynamics. Right ventricular systolic pressure was significantly 

lowered as well as total pulmonary vascular resistance index with papaverine 

treatment, with no systemic effects. The structural changes of the lung 

vasculature such as high percentage of fully muscularized peripheral 

pulmonary arteries were significantly decreased with papaverine treatment. 

However, since papaverine is used as a potent vasodilator in the systemic and 

cerebral vasculature, we couldn’t rule out the possibility that papaverine may 

exert vasodilatory effect on pulmonary vessels130. Papaverine-induced 

vasorelaxation is believed to be related to reduced calcium influx following PAK 

activation after cAMP increase131, 132. Of note, although papaverine offers a 

good opportunity for the preclinical studies as a relatively selective PDE10 

inhibitor, still new PDE10 inhibitors with higher selectivity and potency are 

required to further explore the therapeutic aspects. 
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5.6 Limitations 
A limitation of this study is that the in vivo experiments were carried out in MCT-

induced PH rat model133-135. Monocrotaline is a toxic pyrrolizidine alkaloid from 

the plant Crotalaria spectablis. After a sinle injection of subcutaneous injection 

of MCT in rats, MCT is transformed in the liver to the active compound - MCT 

pyrrole, which bio-functionally leads to vascular injury136. Although it is the most 

commonly employed PH animal model to study the pathophysiological and 

possible therapeutic approaches, the exact mechanism through which MCT 

causes PH is not known completely yet. Most of the investigators believe that 

MCT causes endothelial injury, which eventually leads to medial hypertrophy 

and vasoconstriction in the pulmonary arterioles with no formation of intimal 

lesions in the peripheral pulmonary arteries136, 137. In contrast, the characteristic 

pathological changes in human pulmonary arterial hypertension include medial 

hypertrophy, intimal proliferation, in situ thrombosis, and plexiform lesions138. 

Thus, the results obtained from the MCT model may not be predictive of 

response to therapy in humans and needs to be evaluated in other alternative 

animal models of PAH. However, the increased immunoreactivity of PDE10A in 

remodelled pulmonary vasculature of IPAH patients show clinical relevance and 

promise to proceed further.  

 

5.7 Conclusion and perspectives 
In the present study, PDE10A expression and activity are shown to be 

increased in lung tissue and PASMCs of experimental PH. Loss-of-function 

studies using the PDE10A inhibitor papaverine and PDE10A-targeted siRNA 

showed increased cAMP generation and CREB phosphorylation, and reduced 

proliferation of PASMCs from MCT-PH rats. However the mechanism 

underlying those effects has not been clearly demonstrated. The common 

cAMP/PKA signaling is shown in the schematic overview of Figure 26. Agonists 

such as prostacyclin bind to receptors and activate G proteins, which in turn 

activate adenylyl cyclase to release cAMP. After binding of cAMP to the 

homodimer of regulatory subunits (RIα), catalytic subunits (PKAC) are released. 

Cytoplasma PKAC phosphorylates multiple cytoplasmatic targets. PKAC can 

also been translocated to nucleus and phosphorylates CREB, resulting in 

activation of DNA transcription of CRE-containing gene. We found that PDE10A 
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is majorly presented in nucleus, so it would be important to investigate if this 

specific compartmentalization of PDE10A regulates degradation of nuclear 

cAMP and cGMP, which may mediate relative cellular responses contributing to 

vascular remodeling.        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 26: Scheme of cyclic nucleotide signaling system regulated by PDE10 in 
PASMCs. 
 

The cellular response demonstrated that PDE10A plays a major role in the 

hyperproliferation of PASMCs. Furthermore, intravenous infusion of papaverine 

significantly improved pulmonary hemodynamics and significantly reversed 

structural changes underlying MCT-induced PH in rats. To the best of our 

knowledge this is the first study indicating a central role of PDE10A in 

progressive pulmonary vascular remodelling. Based on our findings, we 

speculate that PDE10 inhibition present a novel therapeutic approach to the 

treatment of PAH.  

 

Taken together, we have shown in this study the role of PDE10A in pulmonary 

vascular remodeling in a MCT-PH rat model and this offers another potent 
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theorapeutic option for PAH. It is of interest to examine on other models such 

as hypoxia PH model, as well to evaluate that if PDE10A is importantly involved 

in the pathogenesis of PAH patients. 
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