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1. Summary 

Barley mild mosaic virus (BaMMV) and Barley yellow mosaic virus (BaYMV), 

members of the genus Bymovirus in the family Potyviridae, are the causal agents for 

barley yellow mosaic disease in winter barley in Europe and Asia. Due to 

transmission of BaMMV and BaYMV via the soil-borne plasmodiophorid Polymyxa 

graminis, which can survive in the soil for many years, can reinfect the roots of barley 

plants given the suitable environmental conditions, thus breeding of resistant cultivars 

is the only efficient and environmentally friendly way to prevent high yield losses 

caused by this disease. 

In 2004, it was shown that the BaMMV resistance of Chikurin Ibaraki 1 is imparted 

by a single recessive gene named rym15 that is located on chromosome 6HS. This 

resistance gene was previously localized in a genetic map of Chikurin Ibaraki 1 × 

Plaisant, however the order of flanking markers EBmac0874 and Bmag0173 was 

found to be inverted compared to the previous genetic map of Hordeum vulgare Lina 

× Hordeum spontaneum Canada Park. Therefore, in the present study, the first step 

towards identifying the causal gene was to construct a medium-resolution map of the 

chromosome segment containing rym15. This was achieved using a set of 522 F2 

plants derived from the two F2 populations Igri × Chikurin Ibaraki 1 (I×C, 180 plants) 

and Chikurin Ibaraki 1 × Uschi (C×U, 342 plants), respectively, derived from crosses 

of different susceptible parents with the resistance donor. The phenotypic results 

revealed segregation ratios of 250s:92r (I×C, χ
2
=0.659) and 140s:40r (C×U, χ

2
=0.741), 

suggesting the presence of a single recessive resistance gene against BaMMV in 

Chikurin Ibaraki 1. The order of all markers was the same in both F2 populations and 

in accordance with the physical map (Morex v2 genome assembly). Two single 

nucleotide polymorphisms (SNPs)-based competitive allele specific PCR (KASP) 

markers designated rym15_1 and rym15_8 were selected as new flanking markers for 

the target locus rym15. Using these two flanking markers, two sets of 139 (I×C) and 
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284 (C×U) segmental recombinant inbred lines (RILs) were selected from 2174 (I×C) 

and 5728 (C×U) F2-plants, respectively. Subsequently, a total of 32 KASP markers 

were used for marker saturation of the target locus rym15 in these RILs. 

High-resolution maps were constructed and the target interval was downsized to 0.161 

cM and 0.036 cM in the two respective crosses, corresponding to a physical interval 

of 11.3 Mbp in the I×C RILs and 0.281 Mbp in the CxU RILs according to the Morex 

v3 genome sequence. 

In the target region of 0.281 Mbp, a set of six high confidence (HC) and two low 

confidence (LC) genes was identified. Blast analysis revealed functional SNPs in two 

HC genes. This work lays the foundation for gene identification of the target locus 

rym15. 
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1. Zusammenfassung 

Die Gelbmosaikviren BaMMV (Barley mild mosaic virus) und BaYMV (Barley 

yellow mosaic virus) gehören zur Gattung Bymovirus in der Familie der Potyviridae 

und sind die Erreger der Gelbmosaikvirose der Gerste, die insbesondere in Europa 

und Asien aufritt. Da BaMMV und BaYMV über den bodenbürtigen Protisten 

Polymyxa graminis übertragen werden, dessen Dauersporen über viele Jahre im 

Boden überdauern und bei entsprechenden Umweltbedingungen die Wurzeln der 

Gerstenpflanzen infizieren, ist die Züchtung resistenter Sorten der effizienteste und 

umweltfreundlichste Weg, um hohe Ertragsverluste durch diese Krankheit zu 

vermeiden. 

Im Jahr 2004 wurde gezeigt, dass die BaMMV-Resistenz der japanischen Herkunft 

Chikurin Ibaraki 1 durch ein rezessives Resistenzgen (rym15) auf Chromosom 6HS 

bedingt ist, welches in der Population Chikurin Ibaraki 1 × Plaisant lokalisiert wurde. 

Es zeigte sich jedoch, dass die flankierenden Marker EBmac0874 und Bmag0173 im 

Vergleich zu der früheren genetischen Karte der Population Hordeum vulgare Lina × 

Hordeum spontaneum Canada Park invertiert vorlagen. In der vorliegenden Studie 

bestand daher der erste Schritt zur Isolation von rym15 in der Erstellung einer Karte 

mit mittlerer Auflösung zur exakten Lokalisierung von rym15. Dazu wurden 522 

F2-Pflanzen derPopulationen Igri (s) × Chikurin Ibaraki 1 (r, I×C, 180 Pflanzen) bzw. 

Chikurin Ibaraki 1 (r) × Uschi (s, C×U, 342 Pflanzen) verwendet. Die 

Phänotypisierungen ergaben Spaltungsverhältnisse von 250s:92r (I×C, χ
2
=0,659) bzw. 

140s:40r (C×U, χ
2
 =0,741), was auf das Vorhandensein eines einzigen rezessiven 

Resistenzgens gegen BaMMV in Chikurin Ibaraki 1 hindeutet. Die Reihenfolge aller 

Marker war in beiden F2-Populationen gleich und in Übereinstimmung mit der 

physikalischen Karte (Morex v2 Genom-Assembly). Zwei auf SNPs (Single 

nucleotide polymorphisms) basierende KASP- (kompetitive allelspecific PCR) 

Marker (rym15_1, rym15_8) wurden als neue flankierende Marker für den Ziellocus 

rym15 ausgewählt. Unter Verwendung dieser beiden flankierenden Marker wurden 
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aus 2174 (I×C) bzw. 5.728 (C×U) F2-Pflanzen zwei Sätze von 139 (I×C) und 284 

(C×U) segmentalen RILs (rekombinante Inzuchtlinien) erstellt. Anschließend wurden 

insgesamt 32 KASP-Marker für die Markerabsättigung des Ziellocus rym15 in diesen 

segmentalen RILs verwendet. Basierend auf dieser hochauflösenden Kartierung, 

wurde das Zielintervall in den beiden Kreuzungen auf 0,161 cM bzw. 0,036 cM 

verkleinert. Dies entspricht gemäß der Morex v3-Genomsequenz einem physischen 

Intervall von 11,3 Mbp in der I×C-Population und von 0,281 Mbp in der 

CxU-Population. 

In der Zielregion von 0,281 Mbp wurden sechs Gene mit hoher Signifikanz (HC) und 

zwei mit niedrigerer Signifikanz (LC) identifiziert. Die Blast-Analyse ergab 

funktionelle SNPs in zwei HC-Genen. Diese Arbeit bildet die Grundlage für die 

Isolation des Resistenzgens rym15. 
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2. Introduction 

2.1. Barley 

Barley (Hordeum vulgare L.) belongs to the genus Hordeum in the tribe Triticeae of 

the grass family Poaceae (Gaut, 2002). It is the fourth most important cereal crop 

with respect to production area after wheat, maize, and rice. To date, barley is 

produced in more than 100 countries (FAOSTAT, 2022). In 2020, barley was 

cultivated on 51.6 million hectares with a production of 157.03 million tons 

worldwide, of which 61%, 14.9%, 13.1%, 4.5% and 6.6% were produced in Europe, 

Asia, Americas, Africa and Oceania, respectively (FAOSTAT, 2022). In the last 

decade (2011-2020), as the largest producer of barley, the average production in each 

year was around 18.1 million tons in the Russian Federation, followed by France and 

Germany with an average production of 11.3 and 10.6 million tons, respectively 

(FAOSTAT, 2022). 

As one of the founder crops of Old World agriculture, wild barley (Hordeum 

spontaneum) is the progenitor of cultivated barley (Hordeum vulgare L.) (Zohary et 

al., 2012). Evidence from ancient barley grains discovered in the Near East Fertile 

Crescent indicate that barley was domesticated in that region about 8,000 B.C (Nesbitt 

and Samuel, 1996). This hypothesis was supported by Badr et al. (2000), who used 

data from 400 amplified fragment length polymorphism (AFLP) markers in 317 wild 

and 57 cultivated barley lines to determine that the Israel-Jordan region is the 

domestication area of barley. Additional studies confirmed that the Fertile Crescent is 

the domestication region of barley (Lev-Yadun et al., 2000; Zohary et al., 2012). 

Furthermore, analysis of the Bkn-3 allele indicated that the Himalayas may be 

considered a region of domesticated barley diversification (Badr et al., 2000). Using 

1,309 DArT (Diversity Arrays Technology) markers, Dai et al. (2012) analyzed the 

genetic differentiation between wild barleys from the Near East and Tibet. The results 

indicated that the Tibetan Plateau and its vicinity is another domestication center of 

cultivated barley. 
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Barley is mainly used for animal feed, malting and human food. Between 2011 and 

2020, around 65%, 20%, 5% and 7% of the total global barley consumption were 

respectively used for animal feed, industrial, human food and other purposes (Badea 

and Wijekoon, 2021). In most countries, barley is mainly used as livestock feed and 

only a small portion is used for human nutrition (Giraldo et al., 2019). However, in 

some areas of North Africa and the Near East, which are characterized by harsh living 

conditions, barley is still a major food (Badea and Wijekoon, 2021). Moreover, more 

than 69% of farmland is used for barley cultivation in Tibet. Naked (hulless) barley is 

still a major stable food in this region, accounting for more than 65% of the total food 

production (Al-Menaie et al., 2013). 

Thanks to its specific chemical composition and health benefits, the use of barley in 

processed foods has recently increased. Barley grains contain significant quantities of 

medicinally beneficial functional compounds, such as β-glucan, vitamin E and 

resistant starch. Those compounds can reduce serum cholesterol and blood glucose 

levels, and promote intestinal function (La et al., 2022). Additionally, barley grass is 

rich in functional ingredients, such as calcium, iron, magnesium, β-carotene, 

chlorophyll, gamma-aminobutyric acid, tryptophan, vitamins (A, B1, B2, B6, C and 

K), alkaloid and polyphenols (Lahouar et al., 2015; Zeng et al., 2018). 

2.2. Barley yellow mosaic disease 

Plant diseases are major factors causing severe yield losses and quality reductions. 

Barley yellow mosaic disease was first reported in Japan (Ikata and Kawai, 1940). 

Subsequently, during the 1950s, the disease was found in China (Kühne, 2009; Ruan 

et al., 1984; Zhou and Cao, 1985) and South Korea (Lee et al., 1996, 2006; Park et al., 

2005). Around 1980s, due to the barley yellow mosaic disease, serious yield losses 

occurred in Northern Europe, especially in Germany (Huth and Lesemann, 1978; 

Huth, 1984; Proeseler et al., 1984). Later on, the disease was detected in many other 

countries such as the United Kingdom (Hill and Evans, 1980), the Netherlands 

(Langenberg and Van Der Wal, 1986), Ukraine (Fantakhun et al., 1987), France 
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(Signoret and Huth, 1993), Spain (Achon et al., 2005) and Poland (Jezewska and 

Trzmiel, 2009). Moreover, a BaYMV isolate was identified in Iran, which is the first 

occurrence of such viruses in this region (Hosseini et al., 2014). Barley yellow mosaic 

disease can cause yield losses up to 50% when susceptible barley varieties are grown 

on infested soils (Plumb et al., 1986; Huth, 1989a; Adams and Hill, 1992). In case of 

extended periods of frost, infected susceptible barley varieties are more sensitive to 

frost damage, which can lead to complete yield losses (Huth, 1988). In China, the 

occurrences of this disease caused nearly 100% yield losses of barley in the 

mid-1970s (Chen, 2005; Kühne, 2009). 

Barley yellow mosaic disease is caused by two different viruses, Barley yellow 

mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) (Huth and Adams, 

1990). Both viruses have similar particle morphology (Huth et al., 1984) and belong 

to the genus Bymovirus in the family Potyviridae, transmitted by the root-inhabiting 

fungal-like plasmodiophorid Polymyxa graminis (Adams et al., 1988). The differences 

between two viruses are mainly reflected in the serological properties (Huth et al., 

1984; Kashiwazaki et al., 1989), nucleotide sequence of the capsid proteins 

(Kashiwazaki et al., 1992; Schlichter et al., 1993) and the reactions of barley cultivars 

to virus inoculation (Huth and Adams, 1990; Götz and Friedt, 1993; Ordon et al., 

1997). The virus can be differentiated into strains according to the spectrum of 

pathogenicity to barley genotypes. In Europe, two strains of BaYMV (BaYMV and 

BaYMV-2) and three strains of BaMMV (BaMMV, BaMMV-SIL and BaMMV-Teik) 

have been identified (Huth, 1989b; Huth and Adams, 1990; Hariri et al., 2003; Kühne 

et al., 2003; Kanyuka et al., 2004; Habekuss et al., 2008). In Japan, eight strains in 

five pathological groups (I to V) of BaYMV, i.e. I-1, I-2, I-3, II-1, II-2, III, IV, and V 

(Kashiwazaki et al., 1989; Okada et al., 2004; Sotome et al., 2010) as well as two 

Japanese BaMMV strains (BaMMV-Kal and BaMMV-Nal) have been classified 

(Nomura et al., 1996). In Korea, six BaYMV isolates (Yeonggwang, Gunsan, 

Goseong, Jeonju, Gangin, and Daegu) and two BaMMV isolates (Yeonggwang and 

Gunsan) are known (Jo et al., 2018). In China, more than 10 strains of both viruses 

were identified so far (Chen et al., 1992; Chen et al., 1999; Zheng et al., 1999). 
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BaMMV and BaYMV are positive-sense single stranded RNA-viruses with a similar 

genomic organization comprising two RNA molecules designated RNA1 and RNA2 

(Kashiwazaki et al., 1990; Kashiwazaki et al., 1991; Davidson et al., 1991; 

Peerenboom et al., 1996). RNA1 is approximately 7.7 kbp and encodes for the coat 

protein (CP), the cytoplasmatic inclusion protein (C1), the protease (NIa), the 

genome-linked viral protein (VPg), the RNA-dependent RNA polymerase (NIb) as 

well as the 6K1, 6K2 and P3 proteins (Kashiwazaki et al., 1990). RNA2 is approx. 3.6 

kbp and only encodes for the two proteins P1 (Cysteine proteinase activity) and P2 

(unknown function), which might not be absolutely required for viral replication in 

infected cells (Davidson et al., 1991; You and Shirako, 2010). The comparison of the 

complete nucleotide sequence of RNA1 and RNA2 of BaMMV and BaYMV revealed 

a low level of sequence identity (Kashiwazaki, 1996; Meyer and Dessens, 1996). 

In natural infection, the virus moves from the roots to the leaves, which usually occur 

in autumn at temperatures below 20 °C. Symptoms of the virus infection will be 

visible on the leaves in winter or early spring. During spring, when the average 

temperature increases and exceeds 20 °C, disease symptoms disappear (Jiang et al., 

2020). In general, infected plants show a mosaic of pale green and yellow 

discolorations on young leaves, stunted growth, reduced number of tillers and a 

delayed maturation (Jiang et al., 2020). The virus may remain virulent inside the 

resting spores of the vector P. graminis for longer than a decade (Huth, 1991). When 

environmental conditions are suitable, the virus infection will be reinitiated on the 

susceptible host plants, thus the use of virus-resistant barley cultivars is the only 

practical and environmentally friendly way to control soil-borne barley yellow mosaic 

disease (Kanyuka et al., 2003). 

2.3. BaMMV/BaYMV resistance genes in barley 

Up to now, twenty-two resistance genes have been reported, of which 19 are 

recessively inherited resistance genes derived from the primary (H. 

vulgare/spontaneum) gene pool of barley, two are dominant resistance loci (Rym14 
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and Rym16) that originate from the secondary gene pool of H. bulbosum and a third 

dominant locus Rym17 is derived from a Pakistani barley accession (see review of 

Jiang et al., 2020). The first isolated BaYMV/BaMMV resistance gene rym4, which 

encodes the eukaryotic translation initiation factor 4E (eIF4E), was initially mapped 

on chromosome 3HL in the early 1990s (Graner and Bauer, 1993; Kanyuka et al., 

2005; Stein et al., 2005). Subsequently, the amino acid substitutions and/or 

insertions/deletions (InDels) of eIF4E were reported to be the causal function of 

several allelic genes including rym5, rym6, rym10, rymHOR4224 and rymHOR3298 (see 

review of Jiang et al., 2020). Another cloned BaMMV/BaYMV resistance gene, 

rym1/11, encodes a protein disulfide isomerase like 5-1 (PDIL5-1), which causes 

resistance due to non-functional alleles or amino acid substitutions of the host factor 

gene HvPDIL5-1 (Yang et al., 2014a, b). 

In Japan, initial barley resistance breeding programs used only a single resistance 

gene rym5 (Ogawa et al., 1987). However, the resistance of this gene was rapidly 

overcome by the new isolate BaYMV III (Kashiwazaki et al., 1989). Similarly, the 

majority of resistant barley cultivars in Europe carried rym4 as the only resistance 

source (Stein et al., 2005). However, in the late 1980s, rym4 was overcome by the 

new virus isolate BaYMV-2 in Germany and the United Kingdom, and later in other 

European countries (Huth, 1989b; Hariri et al., 1990; Adams, 1991; Steyer et al., 1995; 

Kühne et al., 2003). In addition, the rym4 allelic resistance gene rym5, which is also 

efficient against BaYMV-2, was overcome by the European isolates BaMMV-Teik 

and BaMMV-SIL (Habekuss et al., 2008; Kanyuka et al., 2004). In East Asia, BaYMV 

resistance conferred by rym1/11 has also been overcome (Shi et al., 2019; Jiang et al., 

2022). In China, the resistance gene rym4 is not effective against BaYMV isolates 

BaYMV-CN_NY and BaYMV-CN_YZ, and isolates of both BaMMV 

(BaMMV-CN_NY and BaMMV-CN_YZ) and BaYMV (BaYMV-CN_DZ and 

BaYMV-CN_NY) are virulent to rym5 (Jiang et al., 2022). Thus, the identification of 

new BaMMV/BaYMV resistance resources is critical in future barley breeding 

programs. Another option is the creation of new alleles of resistance genes by targeted 

mutagenesis of the cloned recessive resistance genes rym4/5 and rym1/11 by Cas9 
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endonuclease in BaMMV/BaYMV-susceptible barley cutivals (Hoffie et al., 2021). 

2.4. Molecular markers 

The development of DNA marker technologies in the 1980s had a major impact on 

plant breeding (Nadeem et al., 2018), and molecular markers are now a powerful tool 

for marker-assisted selection (MAS), quantitative trait locus (QTL) analysis and 

genetic association studies. DNA markers include (1) hybridization-based restriction 

fragment length polymorphism (RFLP), (2) PCR-based markers like AFLPs, cleaved 

amplified polymorphic sequences (CAPS), sequence tagged sites (STS) or simple 

sequence repeat (SSR) markers, and (3) single nucleotide polymorphism (SNP) 

markers identified by DNA sequencing (Jones et al., 2009). 

The RFLP technique was developed in the beginning of 1980s. In this marker 

technology, restriction enzymes cut DNA at restriction sites resulting in fragments 

with varying length that can be sorted by gel electrophoresis. Next, Southern blotting 

is conducted and the membranes are exposed to fluorescence- or radioactive-labelled 

DNA probes, which hybridize with complementary DNA sequences (Beckmann and 

Soller, 1983). RFLPs are co-dominant, reliable, highly reproducible and can be used 

for gene mapping, QTL analysis and genetic fingerprinting. However, RFLPs have 

three disadvantages: (1) the number of detected independent loci is low, (2) a high 

quality and large amount of DNA is needed, and (3) it is a laborious and expensive 

approach (Beckmann and Soller, 1983). For these reasons, RFLP has now been 

superseded by PCR- or sequencing-based markers. 

The PCR-based CAPS technique was originally named PCR-RFLP markers due to a 

combination of RFLP and PCR (Maeda et al., 1990). First the target DNA is amplified 

by PCR, then the products are cleaved by restriction enzymes on specific sites, and an 

agarose gel or acrylamide gel is used to detect the presence/absence of restriction sites 

(Konieczny and Ausubel, 1993). CAPS markers are co-dominant, have no 

requirement for radioactivity or blotting and have been applied in MAS and 

map-based cloning studies (Weiland and Yu, 2003; Spaniolas et al., 2006). As for 
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CAPS, AFLP markers also combine the RFLP and PCR technology to detect 

variations in the restriction sites, i.e. DNA is digested followed by PCR (Vos et al., 

1995). First, two restriction enzymes are used for the digestion of DNA, next each end 

of the resulting fragments is ligated with adapters. Then, using primers developed 

according to the known sequences of adapters plus additional bases, a subset of 

fragments is amplified using PCR and visualized by gel electrophoresis (Becker et al., 

1995). AFLPs are dominant, detect a large number of loci and reveal a high number of 

polymorphisms (Thomas et al., 1995; Keim et al., 1997; Qi et al., 1998). Co-dominant 

STS markers are a class of molecular markers for specific amplification with a 

specific primer sequence, which is identified by a known and unique DNA sequence 

of 200 to 500 base pairs (Jones et al., 2009). SSR markers, also known as 

microsatellites (Litt and Luty, 1989), are short (one to six nucleotides), tandemly 

repeated DNA sequences. They are amplified by PCR to generate DNA fragments 

which can be distinguished by high-resolution gel or capillary electrophoresis based 

on the varying number of repeated sequences in microsatellite regions between 

individuals (Kalia et al., 2011). The development of SSR markers is expensive and 

time consuming. However, SSR analysis requires only a small amount of DNA. Due 

to the properties of co-dominance and high reproducibility, SSR markers have been 

used for mapping, population genetic analyses, determination of hybridity, protection 

of germplasm, cultivar identification, gene pool variation analysis and as diagnostic 

markers of economically valuable traits (Powell et al., 1996; King et al., 2008). 

In the late 1990s, as increasing quantities of DNA sequence became available, focus 

changed to SNP markers. SNPs are the most common DNA variants in eukaryotic 

genomes, occurring in the range of one SNP every 100–300 bp (Xu, 2010). SNPs 

derive from single-nucleotides substitutions which can be transversions 

[purine-pyrimidine exchanges (C/G, T/A, C/A or G/T)] or transitions [purine-purine 

or pyrimidine-pyrimidine exchanges (C/T or G/A)], and are distinguished from InDels 

(Vignal et al., 2002; Hayward et al., 2012). They are co-dominant markers with high

reproducibility and are usually bi-allelic (Casci, 2010). SNPs have arisen by 

mutations during evolution. Thus, the distribution patterns are different among 
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individuals. However, those individuals that have a common ancestor are more likely 

to share identical SNP alleles (Jones et al., 2009). 

Due to the above mentioned characteristics, SNPs are the basis for SNP microarrays 

such as the Illumina InfiniumTM assay (Imelfort et al., 2009). In case of barley, the 

9k Illumina SNP chip (Comadran et al., 2012) was constructed using SNP data from 

10 different cultivated barley genotypes. This SNP chip includies roughly 7,900 SNPs, 

of which 36% (2,832) are derived from the former Barley Oligonucleotide Pooled 

Assay (BOPA) markers (Close et al., 2009) and 64% (5,010) are new. Five years later, 

the 50k Illumina SNP chip (Bayer et al., 2017) was developed from exome capture 

data of 170 cultivated accessions and the published barley pseudomolecule assembly 

(Beier et al., 2017; Mascher et al., 2017). The 50k Illumina SNP chip contains 44,040 

working assays, of which 14% (6,251) are from the 9k iSelect platform, and the rest 

(86%) are new SNPs (Bayer et al., 2017). Today, SNP markers are the most 

commonly used markers for the detection of genetic diversity in various crops 

(Baloch et al., 2017) and for construction of linkage maps in several plant species 

(Semagn et al., 2006; Majeed et al., 2019). 

Another widely used SNP genotyping platform is Competitive Allele Specific PCR 

(KASP) designed by LGC Genomics (https://www.lgcgroup.com/). Three components 

are needed for this assay: (1) template DNA of samples, (2) a common primer and two 

competitive allele-specific primers having one fluorophore (FAM or HEX) attached as 

a tail, and (3) Taq polymerase and fluorescence resonance energy transfer (FRET) 

cassettes (KASP Master Mix) in the buffer solution. The KASP assay can detect both 

alleles in a single reaction. It has many advantages, for example being cost effective, 

simple, tolerant to variability in DNA quality and able to assay a large number of 

individuals in a very short time (He et al., 2014a). KASP markers are frequently 

applied in marker-assisted recurrent selection, marker-assisted backcrossing and fine 

mapping of genes of interest (Semagn et al., 2014). 

In addition, genotyping-by-sequencing (GBS) is an important tool for generating new 

markers (He et al., 2014b). Nowadays, GBS has become a low-cost, powerful and 

simple platform to detect SNPs or InDels in almost all species (Elshire et al., 2011). 
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First, the sample DNA is digested with one or two specific restriction enzymes and a 

barcode adapter is ligated to the end of DNA fragments. Then, the sample DNA is 

amplified by PCR and the products are pooled. The pooled samples are then 

processed with next generation sequencing (NGS) technologies (He et al., 2014b). 

GBS is rapid, cost-effective and highly reproducible. It can simultaneously perform 

SNP discovery and genotyping across individual lines within a population (Sonah et 

al., 2013). It has been applied in the characterization of germplasm, population studies 

and breeding of diverse plant species (Poland and Rife, 2012). GBS-derived SNPs are 

also used in genotyping and genetic analysis (Beissinger et al., 2013). In addition, 

compared to array-derived SNPs, the SNPs from GBS have more power to detect rare 

alleles in diverse germplasm collections (Darrier et al., 2019). 

2.5. Barley genomic resources 

As a self-pollinating diploid plant species with a genome size of around 5.1 Gbp 

(Doležel et al., 1998), barley has become a model plant for genetic studies in Triticeae 

(Schulte et al., 2009). For a long time, due to the large size and repeat-rich 

composition of the Triticeae genomes, the genome sequence assembly of barley was 

an intractable problem. Over the last decades, gene isolation by map-based cloning 

was limited due to the lack of barley genomic resources. During this period the 

published genetic linkage/consensus maps have been an important source of genetic 

markers for mapping of target genes in barley. These resources included different 

marker systems from RFLP (Graner et al., 1991; Kleinhofs et al., 1993) to SSR 

markers (Ramsay et al., 2000; Varshney et al., 2007), as well as SNP markers (Close 

et al., 2009; Comadran et al., 2012; Muñoz-Amatriaín et al., 2011). In addition,

different genetic maps have been published based on RFLP, SSR and SNP markers, 

with different marker densities (Rostoks et al., 2005; Stein et al., 2007). 

Moreover, by using an approach which incorporated chromosome sorting, NGS, array 

hybridization, and systematic exploitation of conserved synteny with model grasses, 

an ordered, information-rich scaffold of the barley genome (“genome zipper”) 
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containing an estimated 86% of the barley genes was developed (Mayer et al., 2011). 

This resource was applied in genetic mapping of several genes in different cereal 

species, for example the BaMMV/BaYMV resistance gene rym11 (Lüpken et al., 

2013), the BaMMV resistance gene rym7 (Yang et al., 2013), the Rrs1 gene against 

scald in barley (Hofmann et al., 2013), the restorer gene Rfp3 in rye (Hackauf et al., 

2017) and the Russian wheat aphid resistance gene Dn2401 in wheat (Staňková et al., 

2015). 

Nowadays, as NGS and third-generation sequencing (TGS) became achievable and 

affordable, the significant improvement of the barley reference genome has facilitated 

marker saturation of target genes of interest. The initial barley reference genome 

assembly from cultivar Morex meanwhile has three different pseudomolecule 

versions: Morex v1 (hierarchical short-read assembly based on bacterial artificial 

chromosomes (BACs); Mascher et al., 2017); Morex v2 (whole genome sequencing 

(WGS) short-read; Monat et al., 2019); and Morex v3 (whole-genome long-read; 

Mascher et al., 2021). In order to generate a high-quality barley genome sequence, the 

International Barley Genome Sequencing Consortium (IBSC) was established in 2006 

(Schulte et al., 2009). A physical map of 4.98 Gbp was developed comprising 9,265 

BAC contigs with an estimated N50 contig size of 904 kilobases. More than 3.90 Gbp 

were anchored to a high-resolution genetic map and a set of 26,159 high confidence 

(HC) genes with homology support from other plant genomes was identified (The 

International Barley Genome Sequencing Consortium, 2012). In 2017, the 

chromosome-conformation capture sequencing (Hi-C) was used to derive the linear 

order of sequences. The updated assembly Morex v1 represents 4.79 Gbp of the 

genome with an N50 value of 1.9 Mbp. A set of 39,734 HC loci and 41,949 low 

confidence (LC) loci was identified (Mascher et al., 2017). Two years later, TRITEX 

was used to generate an improved annotated reference genome assembly with a 

physical size of 4.65 Gbp and a scaffold N50 value of 43.7 Mbp. In total, 32,787 HC 

and 30,871 LC gene models were annotated on the v2 pseudomolecules (Monat et al., 

2019). Recently, the new version of barley reference genome Morex v3 has been 

published, with a scaffold N50 value of 118.9 Mbp. The updated assembly was 
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obtained by using accurate circular consensus long-read sequencing on the PacBio 

platform, which captures a much higher amount of highly repetitive sequence than 

short-read assemblies. This generated an updated reference genome assembly for 

barley with near-complete representation of the repeat-rich intergenic space (Mascher 

et al., 2021). The Morex v3 pseudomolecules were annotated using the same 

transcriptomic resources as used for Morex v2, but with an improved version of the 

PGSB annotation pipeline. Finally a set of 35,827 HC and 45,860 LC genes was 

identified (Mascher et al., 2021). Barley genome sequence datasets are available via 

several online databases, such as EnsemblPlants, Nord-Gen, BARLEX, MorexGenes, 

GrainGenes, HvGDB, Bex-DB, BarleyDB and BarleyVarDB, which contain different 

information and offer different tools for simple analysis such as BLAST, 

genome-specific primer design and creation of graphical figures of a specified 

genomic region based on the genomic resources (for a review see Riaz et al., 2021). 

Meanwhile, several consensus maps in barley were released with different densities 

based on a different number of examined populations (Muñoz-Amatriaín et al., 2014; 

Silvar et al., 2015; Abed et al., 2021). In addition, a first barley pan-genome was 

established, comprising one wild barley and 19 cultivated accessions (Jayakodi et al., 

2020) and based on a comprehensive survey of GBS data from more than 22,000 

accessions from the German National gene bank (Milner et al., 2019). Subsequently, a 

short-read assembly of the wild barley accession ‘OUH602’ has been released, with 

comparable quality to the recently published pan-genome assemblies (Sato et al., 

2021). Moreover, a chromosome-scale assembly of the Japanese elite malting barley 

cultivar ‘Haruna Nijo’ has been published recently that is of similar quality to the 

Morex v2 reference (Sakkour et al., 2022). In conclusion, the updated barley cultivar 

Morex reference assemblies, the pan-genome assemblies with 20 diversity accessions 

and the additional assembly resources for wild and elite barley not only make 

previously hidden genetic variation accessible to genetic studies and breeding, but 

also promote the use of wild barley alleles in breeding programs. 
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2.6. Map-based gene isolation 

Currently, there are two basic approaches for studying gene functions: reverse 

genetics from gene to phenotype and forward genetics from phenotype to gene 

(Takahashi et al., 1994). Reverse genetics strategies disrupt or modify a specific gene 

and then the phenotype is scored, while forward genetics requires the cloning of the 

causative gene underlying a particular phenotype for the trait of interest. As a forward 

genetics strategy, the efficient strategy for gene isolation called map-based cloning 

has been widely applied and well advanced in crops (Stein and Graner, 2005). This 

approach is based on the phenotype analysis of the mutant individual, the initial 

genetic mapping and fine mapping of the target gene, the physical map construction 

of the corresponding causative molecular locus and the functional analysis of the 

candidate genes (Peters et al., 2003). Many factors, e.g. the population size (Dinka et 

al., 2007), the distribution of crossovers along chromosomes (The International 

Barley Genome Sequencing Consortium, 2012), the genetic/physical ratio across the 

genome (Kunzel et al. 2000), phenotyping (Cobb et al., 2013) and the number of 

markers, mainly determine the success of map-based cloning. 

Recombination is a main driver of genetic variation, however recombination rates are 

highly variable between different species (Nachman, 2002; Auton et al., 2012; Stapley 

et al., 2017), between populations of the same species (Kong et al., 2010; Salomé et 

al., 2012; Spence and Song, 2019) and among individuals of the same population 

(Wang et al. 2012). Recombination rates vary even along chromosomes. On Triticeae 

chromosomes, gene density and recombination rate are higher in telomeric regions 

than centromeric regions (Dvorák, 2009). This general trend has been observed in 

sequence data from barley (The International Barley Genome Sequencing Consortium, 

2012; Zeng et al., 2015; Muñoz-Amatriaín et al., 2015; Dreissig et al., 2019), wheat 

(Raats et al., 2013; Choulet et al., 2014) and Ae. tauschii (Luo et al., 2013). Variation 

in recombination rate is influenced by epigenetic information, such as DNA 

methylations (Melamed-Bessudo and Levy, 2012; Mirouze et al., 2012; Yelina et al., 

2012; Habu et al., 2015), histone modifications and nucleosome positions (Choi et al., 
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2013). In addition, environmental conditions are reported to effect recombination 

rates. However, there is no clear consensus due to the differences between species and 

experimental systems. For example, the relationship between temperature and 

recombination was found to be positive or negative (Bomblies et al., 2015; Jackson et 

al., 2015; Phillips et al., 2015). Other studies found that the relationship between 

temperature and recombination resembles an U-shaped curve, with elevated 

recombination rates found at low and high temperatures (Plough, 1917; Plough, 1921; 

Lloyd et al., 2018; Modliszewski et al., 2018), or a reverse U-shaped curve (Wilson, 

1959). Moreover, recombination rates were shown to vary drastically depending on 

variations in meiotic genes (Brand et al., 2018; Dreissig et al., 2020; Barakate et al., 

2021). 

Recombination events may be increased by using multi-parent advanced generation 

inter-crosses (MAGIC) to generate fully inbred recombinant populations by crossing 

multiple founders through two-way, four-way and eight-way crossing (Cavanagh et al., 

2008). Substantial changes in recombination patterns in plants may be achieved by 

clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 

9 (Cas9), thus recombination rates could also be increased by using the latest tools in 

genome editing (Schmidt et al., 2020). In addition, it is reported that a shift of just 

10°C in growth temperature is sufficient to increase overall recombination frequency 

(Phillips et al., 2015). Moreover, in the post-NGS era, the advances in molecular 

biology, biotechnology and genomics, and the dramatic reduction in sequencing cost 

have reduced half the time span taken for fine mapping and gene cloning using 

non-NGS-based markers (Jaganathan et al., 2020). 
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3. The goals of this work 

As mentioned above, barley yellow mosaic disease causes yield loss of barley up to 

50% and the widely used resistance genes rym4/5 and rym1/11 have been overcome, 

stressing the importance of the identification of the new BaMMV/BaYMV resistance 

resources. 

The present study is based on the work of Le Gouis et al. (2004), in which the 

BaMMV resistance locus rym15 derived from Chikurin Ibaraki 1 was initially 

mapped on the short arm of barley chromosome 6H between the flanking markers 

EBmac0874 and Bmag0173. However the order of these two markers in that study is 

inverted compared to the genetic map of Hordeum vulgare Lina × Hordeum 

spontaneum Canada park (Ramsay et al. 2000). As this gene is effective only against 

BaMMV, it was hypothesized that this gene may be different from the previously 

isolated BaMMV resistance genes mentioned above. Therefore, the main objectives of 

the present PhD thesis were (i) remap the target locus rym15 and identify SNP-based 

flanking markers by medium-resolution mapping, (ii) develop a high-resolution 

mapping population for rym15, (iii) saturate the locus using data from the 50K 

Infinium SNP chip, GBS and PacBio SMRT sequencing, the barley reference genome 

and the barley pan-genome resources, and (iv) predict potential candidate genes for 

the BaMMV resistance locus rym15. 
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the presence of a single recessive resistance gene. After 
screening the parents with the 50 K Infinium chip and 
anchoring corresponding SNPs to the barley reference 
genome, 8 KASP assays were developed and used to 
remap the gene. Newly constructed maps revealed a 
collinear order of markers, thereby allowing the identi-
fication of high throughput flanking markers. This study 
demonstrates how construction of medium-resolution 
mapping populations in combination with robust pheno-
typing can efficiently resolve conflicting marker order-
ing and reduce the size of the target interval. In the ref-
erence genome era and genome-wide genotyping era, 
medium-resolution mapping will help accelerate candi-
date gene identification for traits where phenotyping is 
difficult.

Keywords Barley · BaMMV mechanical inoculation · 
rym15 · Medium-resolution mapping · SSR · KASP

Introduction

Barley yellow mosaic disease is caused by two related 
viruses, barley yellow mosaic virus (BaYMV) and 
barley mild mosaic virus (BaMMV). The disease can 
heavily impact winter barley cropping, with 40–80% 
yield loss in 2-rowed barley in Japan (Usugi 1988; 
Ohto 2000), and 50% losses in Europe (Plumb et  al. 
1986; Adams et  al. 1992; Overthrow et  al. 1999) up 
to complete yield loss, e.g., in some counties of the 
Yangtze River Valley (Chen 1993, 2005; Chen and 

Abstract Barley mild mosaic virus (BaMMV), trans-
mitted by the soil-borne protist Polymyxa graminis, has 
a serious impact on winter barley production. Previ-
ously, the BaMMV resistance gene rym15 was mapped 
on chromosome 6HS, but the order of flanking markers 
was non-collinear between different maps. To resolve 
the position of the flanking markers and to enable 
map-based cloning of rym15, two medium-resolution 
mapping populations Igri (susceptible) × Chikurin Iba-
raki 1 (resistant) (I × C) and Chikurin Ibaraki 1 × Uschi 
(susceptible) (C × U), consisting of 342 and 180  F2 
plants, respectively, were developed. Efficiency of the 
mechanical inoculation of susceptible standards varied 
from 87.5 to 100% and in  F2 populations from 90.56 to 
93.23%. Phenotyping of  F2 plants and corresponding  F3 
families revealed segregation ratios of 250 s:92r (I × C, 
χ2 = 0.659) and 140 s:40r (C × U, χ2 = 0.741), suggesting 
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Ruan 1992). Both viruses belong to the genus Bymo-

virus in the family Potyviridae and are transmit-
ted by the root-infecting plasmodiophorid Polymyxa 

graminis L. However, the two causal viruses differ 
in their temperature optima, serological properties, 
and transcriptomes and their ability to infect different 
barley genotypes (Huth and Adams 1990; Habekuß 
et al. 2008). Use of resistant cultivars is the most eco-
nomical and environmentally friendly way to control 
these soil-borne viruses (Kanyuka et  al. 2003). So 
far, 22 resistance genes against barley yellow mosaic 
disease have been reported, of which most are reces-
sive genes (see review of Jiang et al. 2020). However, 
many of these resistance genes are no longer effective. 
For example, the resistance gene rym4 is ineffective 
against BaYMV-2, which appeared in the late 1980s; 
the resistance gene rym5 was overcome by the strain 
BaMMV-Sil in France and BaMMV-Teik in Germany 
(Hariri et al. 2003; Vaianopoulos et al. 2007; Habekuß 
et  al. 2008). It may therefore be expected that this 
trend will continue in the future; based on this, it is 
essential to identify and further characterize new 
sources of resistance and to develop diagnostic mark-
ers for marker-assisted selection (MAS) in barley.

About half of the known virus resistance genes in 
crops are recessive (Kang et  al. 2005; Robaglia and 
Caranta 2006; Wang and Krishnaswamy 2012). Plant 
viruses need to recruit the host cells’ machinery to com-
plete the infectious life cycle; thus, mutation in the host 
factors genes may result in virus resistance (Garcia-
Ruiz, 2018). Several of these recessive resistance genes 
are isoforms of eukaryotic translation initiation fac-

tor 4E (eIF4E), and eIF4G (Moffett 2009; Hashimoto 
et al. 2016). Up to now, two recessive resistance genes 
against BaMMV/BaYMV in barley have been isolated. 
The resistance to BaMMV/BaYMV impacted by the 
rym4/5 locus is due to the host factor gene HvEIF4E 
(Kanyuka et al. 2005; Stein et al. 2005), while rym1/11 
resistance is caused by sequence variations of the host 
factor gene Protein Disulfide Isomerase Like 5–1 (HvP-

DIL5-1) (Yang et al. 2014a). Out of twenty-two reported 
BaMMV/BaYMV resistance genes, six are allelic forms 
of HvEIF4E, i.e., rym4, rym5, rym6, rym10, eIF4E-

HOR4224, and eIF4EHOR3298, while two (rym1 and rym11) 
are allelic forms of HvPDIL51 (Perovic et  al. 2014; 
Yang et al. 2014a; Shi et al. 2019).

The Japanese barley landrace Chikurin Ibaraki 1 is sus-
ceptible to BaYMV in Japan (Ukai and Yamashita 1980). In 
contrast to this, Chikurin Ibaraki 1 was found to be resistant in 

response to three European strains, i.e., BaMMV, BaYMV-1, 
and BaYMV-2 (Götz and Friedt 1993; Lapierre and Signoret 
2004). Werner et al. (2003) demonstrated that an uncharacter-
ized recessive resistance locus on chromosome 5HS effective 
against BaYMV and BaYMV-2 originates from Chikurin 
Ibaraki 1 and segregates independently from the Carola-
derived rym4 resistance that is effective against BaYMV and 
BaMMV. Further analysis of a doubled haploid (DH) map-
ping population derived from the cross of the Chikurin Iba-
raki 1 and the susceptible winter barley cv. Plaisant located 
the recessive resistance gene effective against BaMMV on the 
short arm of chromosome 6H that was subsequently named 
rym15 (Le Gouis et al. 2004). However, the study showed that 
the order of flanking markers EBmac0874 and Bmag0173 
is inverted compared to the genetic map of Lina × Hordeum 

spontaneum Canada Park (Ramsay et al. 2000). To date, this 
discrepancy in the marker order spanning the resistance locus 
has hindered further map-based cloning efforts for rym15.

During BaMMV/BaYMV testing in fields, there 
are many obstacles, e.g., an uneven distribution of 
the virus, simultaneous occurrence of two viruses 
(BaMMV and BaYMV), and similarity of the symp-
toms (Huth et  al. 1984). In addition, only 1 cycle of 
winter barley resistance testing per year highlights 
the demand for a reliable and efficient testing method 
of soil-borne viruses of barley. Consequently, the 
mechanical inoculation method could overcome the 
variation in year-to-year scoring of the resistance reac-
tion from the same genotype in the same field that is 
due to the abovementioned variable environmental 
factors (Friedt 1983; Pandey 2006). Up to now, sev-
eral mechanical inoculation methods for BaMMV 
were developed, e.g., based on soaked sponge rub-
bing (Friedt 1983), airbrush (Adams et al. 1986), fin-
ger rubbing (Kashiwazaki et al. 1989; Habekuß et al. 
2008), spray gun (Ordon and Friedt 1993), or stick 
with gauze (SWG) methods (Jonson et  al. 2006). 
Those studies suggested that the additives, the inocu-
lation stages, the temperatures, and the inoculation 
techniques of the virus might influence the inoculation 
efficiency. While BaMMV is readily transmissible, 
the efficiency of BaYMV is much lower and is usu-
ally below 50% (So et al. 1997). Therefore, the knowl-
edge of various degrees of mechanical inoculation effi-
ciency should be taken in account for optimization of 
map-based cloning projects.

In the past 25 years, molecular markers have been 
increasingly used in the genetic analysis of vari-
ous traits and nowadays have become the basic tool 

Mol Breeding (2021) 41: 7676   Page 2 of 13



1 3

for effective mapping of resistance genes in all crop 
plant species (Garrido-Cardenas et  al. 2018; Perovic 
et  al. 2019). Various codominant marker platforms 
have been used effectively to map resistance genes in 
crop plants. Simple sequence repeat (SSR) markers 
or microsatellites are highly polymorphic and repro-
ducible; however, they are not amenable for high 
throughput even in the case of modified capillary sys-
tems (Perovic et al. 2013a) nor as abundant as single-
nucleotide polymorphism (SNP). Due to the property 
of abundance and high throughput, SNP markers have 
become the most amenable for gene mapping and 
breeding (Silvar et  al 2011; Rasheed et  al. 2017; Lu 
et al. 2020).

In case of barley, SNP arrays (Comadran et  al. 
2012; Bayer et al. 2017) provide the accurate physi-
cal marker position based on the most recent refer-
ence genome assembly data (Mascher et  al. 2017; 
Monat et al. 2019). This feature greatly enhances the 
efficiency of breeding and genetic studies in barley 
(Perovic et al. 2020). Based on the published barley 
reference sequence (Mascher et al. 2017) and exome 
capture data (Russell et al. 2016), the 50 K Illumina 
Infinium genotyping array was developed, featuring 
49,267 SNP markers that were converted into 44,040 
working assays (Bayer et al. 2017). Compared with 
the 9 K Infinium iSelect array, which contained 7842 
markers (Comadran et al. 2012), the 50 K Illumina 
Infinium array possesses around six times more 
markers, resulting in cheaper genotyping costs per 
sample.

The main objectives of the present study were 
to construct two medium-resolution maps for the 
BaMMV resistance gene rym15, resolve the discrep-
ancy in the order of flanking markers, and develop 
robust high-throughput amenable flanking markers as 
a prerequisite for map-based cloning of the resistance 
gene rym15.

Material and methods

Plant material

The resistant Japanese cultivar Chikurin Ibaraki 1 was 
crossed with the susceptible cultivars Igri and Uschi. A 
set of 342 and 180  F2 plants derived from the crosses 
Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 

1 × Uschi (C × U) was used to construct the medium-res-
olution maps for BaMMV resistance gene rym15 (Sup-
plementary Table 1). In addition,  F3 progeny was used 
for the validation of phenotypic data (Supplementary 
Table 2).

Resistance test

A set of 522  F2 plants and corresponding  F3 families 
(Supplementary Table 2) was mechanically inoculated 
by the isolate BaMMV-ASL, and the crossing parents 
(Chikurin Ibaraki 1, Igri, and Uschi) and Maris Otter 
(positive control) were included in all 15 batches of 
the phenotypic analysis. After sowing, the plants were 
cultivated in the greenhouse for 7  days followed by 
cultivation in a growth chamber at 12 °C, 70% relative 
humidity, and 16-h (14:00–6:00) photoperiod (illu-
minance 20 klux). The mechanical inoculation was 
conducted according Perovic et al. (2014) with minor 
changes. All plant samples were inoculated at the 2- to 
3-leaf stage two times at an interval of 5–7 days using 
sap extracted from the leaves of infected Maris Otter 
by homogenization in 0.1 M  K2HPO4 buffer, pH 9.8. 
Approximately, 0.2  mL of buffer was used for each 
1 g of infected leaf material. To aid mechanical inoc-
ulation, 0.1 g of carborundum (mesh 400) was added 
per 1 mL sap. Six weeks after the first inoculation, the 
leaves of tested plants were sampled and the double 
antibody sandwich ELISA (DAS-ELISA) was carried 
out according to Clark and Adams (1977) using poly-
clonal antibodies prepared at JKI (Quedlinburg, Ger-
many). Virus particles were estimated via extinction 
at 405 nm using a Dynatech MR 5000 microtiter-plate 
reader at 30 min and 60 min after addition of p-nitro-
phenyl phosphate (PNPP) substrate buffer. All  F2 and 
 F3 plants with an extinction E405 > 0.1 were qualita-
tively scored as susceptible.

Based on the phenotypic data of susceptible parental 
lines Igri, Uschi, and positive control Maris Otter, the 
success rate of the mechanical inoculation method firstly 
was calculated by dividing the number of ELISA-pos-
itive susceptible plants with the total number of inocu-
lated ones of these three genotypes. To evaluate the 
inoculation efficiency in the populations, the genotypic 
data of susceptible  F2 (homozygous/heterozygous) and 
 F3 (homozygous) plants were compared with the phe-
notypic data; the efficiency was calculated using the fol-
lowing equation:
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DNA extraction and SSR marker analysis

In order to make the genetic analysis by SSR markers for 
all  F2 plants and parental lines Chikurin Ibaraki 1, Igri, 
and Uschi, DNA was extracted from barley seedlings 
of 14 days old using CTAB (cetyltrimethylammonium 
bromide) method according to Stein et al. (2001). The 
concentration and quality of DNA were estimated using 
the NanoDrop ND-1000 spectrophotometer (PeQLab, 
Erlangen, Germany). A set of six SSR markers linked to 
rym15 (Bmac0127, Bmac0018, Bmag0867, Bmag0870, 
EBmac0874, and Bmag0173; Le Gouis et  al. 2004) 
was chosen for genotyping the parental lines and 522 
 F2 plants. PCR reaction consisting of 1 μL of tem-
plate DNA (25–30  ng/μL), 1 μL of 10 × buffer, 1 μL 
of 25 mM  MgCl2, 0.2 μL of 10 mM dNTP-Mix, 0.25 
μL of each forward primer (10.0 pmol/μL) and reverse 
primer (10.0 pmol/μL), and 0.08 μL of 5 U HOT FIRE-
Pol DNA polymerase (Solis BioDyne, Tartu, Estonia). 
M13-tails were added to the forward primers, for SSR 
amplification, so that 0.1 μL of M13 primer (10.0 pmol/
μL) (5′-CAC GAC GTT GTA AAA CGA C-3′) labeled 
with 5′ fluorescent dyes was added to the reaction mix in 
a final volume of 10 μL (Macdonald et al. 2006; Perovic 
et al. 2013b). DNA was amplified in a GeneAmp PCR 
System 9700 (Applied Biosystems) for all SSR mark-
ers under the following conditions: 94  °C for 5  min; 
followed by touchdown PCR with 12 cycles of 30 s at 
94 °C, 30 s at 62 °C, 30 s at 72 °C, and then 35 cycles 
with 30 s at 94 °C, 30 s at 56 °C, and 30 s at 72 °C, and a 
final extension at 72 °C for 10 min. Amplified products 
(1 μL) were checked on an agarose gel (1.5%). For the 
capillary-based scoring, 1 μL of the PCR product was 
mixed with Hi-Di™ formamide (Applied Biosystems) 
and GeneScan™-500 ROX™ size standard (Applied 
Biosystems) (0.03 μL ROX: 14 μL HiDi™ formamide). 
The mixture was then denatured for 5 min at 94 °C and 
subjected to capillary electrophoresis in an ABI PRISM 
3100 genetic analyzer (Applied Biosystems). Data was 
collected using 3130xl data collection software v3.0 
(Applied Biosystems). The size of the detected alleles 
was determined using the GeneMapper v4.0 (Applied 
Biosystems).

The physical position of the SSR markers was deter-
mined by blasting forward and reverse primers against 

the barley reference genome sequence (http:// webbl ast. 
ipk- gater sleben. de/ barley_ ibsc/) using default param-
eters of blastN.

50 K Illumina Infinium genotyping array and KASP 
marker development

In order to identify polymorphisms between parental 
lines (Chikurin Ibaraki 1, Igri, and Uschi) and develop 
markers for genetic analysis for both populations, the 
DNA of three parental lines (Chikurin Ibaraki 1, Igri, 
and Uschi) was analyzed by using the 50  K Illumina 
Infinium genotyping array at the company TraitGenet-
ics (Gatersleben, Germany). The additional informa-
tion (locus name, position, and sequence) on 50 K array 
SNPs was downloaded from iSelect (http:// bioinf. hutton. 
ac. uk/ isele ct/ app/). The SNP dataset was filtered using 
Excel software; on each chromosome, the homozygous 
SNPs between Chikurin Ibaraki 1 and Igri were identi-
fied and the same analysis was conducted for Chikurin 
Ibaraki 1 and Uschi. Based on the Infinium 50 K data, 
a set of eight SNPs was selected for the design of com-
petitive allele-specific PCR (KASP) assays (rym15_1, 
rym15_4, rym15_6, rym15_8, rym15_11, rym15_13, 
rym15_15, rym15_17, Supplementary Table 3) by using 
the website BatchPrimer3 (You et al. 2008); the parame-
ter of product size is 70–150 base pair. All eight KASPs 
were used to genotype the three parental lines and 522 
 F2 plants. The PCR reaction consisted of 2.2 μL of tem-
plate DNA (25–30 ng/μL), 0.2 μL of common primer 
(10.0 pmol/μL), 0.08 μL of each allele-specific primer 
1 and allele-specific primer 2 (10.0 pmol/μL), and 2.5 
μL of 2 × KASP Master Mix. DNA was amplified in the 
CFX96 Touch Real-Time PCR Detection System (Bio-
Rad) with the following conditions: 94 °C for 15 min; 
followed by PCR with 9 cycles (− 0.6 °C/cycle) of 20 s 
at 94 °C, 1 min at 61 °C, and then 25 cycles with 20 s at 
94 °C, 1 min at 55 °C, and a final cool down at 30 °C for 
1 min. If necessary, recycling with the following condi-
tions was performed: 94 °C for 3 min, followed by PCR 
with 9 cycles of 20 s at 94 °C, 1 min at 57 °C, and a 
final cool down at 30 °C for 1 min. The fluorescence sig-
nals from HEX and FAM for the specific alleles were 
detected using the same Detection System (Bio-Rad) at 
37 °C after thermal cycling was complete. At the end of 

BaMMV inoculation efficiency =
number of susceptible plants (based on ELISA scores)

total number of plants analysed for BaMMV (based on marker analysis)
× 100%
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the run, the results were displayed in the data analysis 
software under “Allelic Discrimination” (LGC, Guide to 
running KASP genotyping on the Bio-Rad CFX-series 
instruments).

Linkage analysis

The observed segregation ratios of  F1:2 (1:3) and  F2:3 
(1:2:1) for the inheritance of a single recessive gene 
were tested using chi-squared (χ2). Based on the geno-
typic and verified phenotypic data of all  F2 plants, the 
genetic maps were constructed using the software Join-
Map v.4 (Van Ooijen 2006) applying the Kosambi func-
tion (Kosambi 1944) and a LOD score of 3.

Results

Phenotypic analysis

A set of 522  F2 plants was mechanically inoculated 
using BaMMV-ASL isolate. In order to test integrity 
of individual  F2 plants, the phenotypic analysis of cor-
responding  F3 families was conducted (Supplementary 
Table 4). Based on phenotyping of the  F2 and  F2:3 gen-
erations, 342 (I × C) and 180 (C × U)  F2 plants showed 
the segregation of 250 s:92r (χ2 = 0.659) and 140 s:40r 
(χ2 = 0.741), respectively. Chi-square test indicated 
that these ratios fit to a 3  s:1r segregation ratio (Sup-
plementary Table 4). In the  F3 generation, the ratio of 
non-segregating susceptible to segregating suscepti-
ble to resistant  F2:3 plants from I × C and C × U was 
74:176:92 (χ2 = 2.187) and 53:87:40 (χ2 = 2.078), 
respectively. Chi-square test indicated that these ratios 
fit to a 1:2:1 segregation ratio (Supplementary Table 4). 
Overall, the resistance data of  F2 populations I × C and 

C × U suggest a single recessive gene causing resistance 
against BaMMV in Chikurin Ibaraki 1.

The entire phenotypic analysis of all  F2 plants and 
corresponding  F3 families was accomplished in 15 
batches due to the space and time constraints in the 
growth chamber. Regarding analysis of susceptible con-
trol genotype, out of 204 DAS-ELISA-analyzed Maris 
Otter plants, seven escaped from the virus inoculation. 
At the same time, for the parental line Igri, five out of 
40 inoculated ones escaped, while all of 36 Uschi plants 
were successfully inoculated. Based on these data, 
the inoculation rates in the susceptible control Maris 
Otter as well as the susceptible parental lines Igri and 
Uschi are 96.35%, 87.5%, and 100%, respectively. In 
the populations I × C, 16 false positives and 13 escapes 
were identified among the  F2 plants, while in the pop-
ulation C × U, nine plants were false positive and 13 
escaped (Supplementary Table  5). Accordingly, 29 
(8.47%, I × C) and 22 (12.22%, C × U)  F2 plants with the 
deduced  F2 phenotypic data based on  F2:3 phenotyping 
analysis were used for further linkage analysis. Based on 
all phenotypic data of the susceptible  F2 (homozygous/
heterozygous/recombinant) and  F3 (homozygous) plants 
in the populations I × C and C × U, the efficiency of inoc-
ulation method varied from 90.56 to 93.23% (Table 1).

Molecular marker genotyping

The genotyping of three parental lines using the 50 K array 
identified 14,863 (Chikurin Ibaraki 1 and Igri) and 13,678 
(Chikurin Ibaraki 1 and Uschi) polymorphic SNPs (Fig. 1; 
Supplementary Table  6). In total, 9310 SNPs (68.06%) 
were identical among parental combinations. On the target 
chromosome 6H, 1679 (Chikurin Ibaraki 1 and Igri) and 
1565 (Chikurin Ibaraki 1 and Uschi) SNPs were identified, 
of which 1076 SNPs (68.75%) were in common.

Table 1  Efficiency of the mechanical inoculation method of BaMMV

a The number of different types of susceptible plants based on the genotypic analysis
b The number of susceptible plants based on phenotypic analysis

F2 population Heterozygous 
susceptible  F2

Homozygous 
susceptible  F2

Recombinant 
susceptible  F2

Homozygous 
susceptible  F3

Total Efficiency

Igri × Chikurin Ibaraki 1 161a 74a 7a 150a 329a 90.56%

151b 72b 6b 126b 355b

Chikurin Ibaraki 1 × Uschi 79a 50a 7a 130a 266a 93.23%

70b 47b 6b 125b 248b
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Three parental lines were genotyped using six SSR 
and eight KASP markers (Table 2; Fig.  2). The geno-
typic ratios of all markers in  F2 families from both the 
 F2 populations fitted to a 1:2:1 segregation ratio (Sup-
plementary Table 7). The physical position of all used 
markers was determined using the blastN alignment 

algorithm against both publicly available Morex assem-
blies (Table 2). The two distal, telomeric SSR markers 
Bmag0173 and Bmag0870 span around 299.78 Mb on 
chromosome 6H according to the Morex v2 assembly. 
Controversially, for the SSR marker Bmag0173, no 
hits on chromosome 6H in Morex v1 could be found, 

Fig. 1  Landscape of the 50 K SNP array marker distribution 
on seven barley chromosomes. All SNPs from the 50 K Illu-
mina Infinium iSelect genotyping array are presented in grey. 
SNPs between Chikurin Ibaraki 1 and Igri are presented in 
blue. SNPs between Chikurin Ibaraki 1 and Uschi are pre-

sented in green. Consensus SNPs from the comparison are pre-
sented in purple (Chikurin Ibaraki 1 and Igri; Chikurin Ibaraki 
1 and Uschi). The interval between flanking markers rym15_1 
and rym15_8 is presented in yellow
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while the blastN alignment of the reverse primer against 
Morex v2 revealed a hit on chromosome 6H (Supple-
mentary Table 8).

Medium-resolution map construction

The resistance gene rym15 was mapped between the 
two flanking markers rym15_1 and rym15_8 (Supple-
mentary Fig. 1) within a genetic window of 3.5 cm and 
3.7  cm in the  F2 populations I × C and C × U, respec-
tively (Fig. 3). At the same time, the physical size of the 
interval according to Morex v2 assembly was estimated 
to be 137 Mb. Between the two flanking markers, 141 
and 109 SNPs were identified at the I × C and C × U 
populations, respectively, of which a set of 85 SNPs 
(77.98%) was in common.

Discussion

Following initial genetic mapping of the gene of interest, 
the next step towards positional isolation of candidate 
genes is an immediate screening of a large population 
with dense markers segregating at the locus of inter-
est, commonly referred to as high-resolution mapping. 
In the present study, due to the non-collinear order of 
previously published flanking markers (Le Gouis et al. 
2004; Ramsay et al. 2000) and the high rate of resistant 
genotypes that were identified during infection of the 
first batch of  F2 plants, we decided to remap the gene at 
medium resolution in a smaller population to resolve the 
previous discrepancies. Instead of developing the high-
resolution mapping populations by using the previous 
flanking markers, analysis of 342 (I × C) and 180 (C × U) 
 F2 plants was conducted. The main aim of this step was 
to take into account an actual ratio of hampered pheno-
typing and to optimize map base cloning by mapping 
the gene to a smaller interval. The use of KASP mark-
ers with a precise position in contrast to the previously 
flanking SSR markers (Le Gouis et al. 2004), together 
with the construction of a medium size mapping popu-
lation, might help optimizing costs and time constrains 
during map-based cloning.

Since the BaMMV resistance gene rym15 originates 
from a non-adapted landrace and is currently not used 
in breeding programs in Germany, a detailed evalua-
tion of the mechanical inoculation was performed. The 
ELISA score revealed that 96.35%, 87.5%, and 100% 
of susceptible control Maris Otter and susceptible T

a
b

le
 2

 
 P

hy
si

ca
l p

os
iti

on
 a

nd
 a

lle
le

 s
iz

e/
ty

pe
s 

of
 S

SR
 a

nd
 K

A
SP

 m
ar

ke
rs

M
ar

ke
r

B
m

ag
01

76
E

B
m

ac
08

74
B

m
ag

08
67

B
m

ac
01

27
B

m
ac

00
18

B
m

ag
08

70
ry

m
1
5

_1
ry

m
1
5

_4
ry

m
1
5

_6
ry

m
1
5

_8
ry

m
1
5

_1
1

ry
m

1
5

_1
3

ry
m

1
5

_1
5

ry
m

1
5

_1
7

Ph
ys

ic
al

 
po

si
-

tio
n_

M
or

ex
 

v1

St
ar

t
-

15
0,

28
4,

73
3

26
1,

54
1,

30
6

27
1,

88
2,

72
1

29
3,

92
5,

24
2

39
7,

65
0,

91
6

10
0,

09
2,

05
9

17
5,

28
4,

34
2

20
0,

04
4,

74
0

24
0,

37
3,

11
6

28
7,

52
1,

97
0

31
9,

25
0,

93
5

33
8,

66
6,

32
2

34
8,

22
6,

69
6

E
nd

-
15

0,
28

4,
84

4
26

1,
54

1,
43

4
27

1,
18

2,
69

9
29

3,
92

5,
22

3
39

7,
65

1,
03

6
-

-
-

-
-

-
-

-

Ph
ys

ica
l 

po
si

-
tio

n_
M

or
ex

 
v2

St
ar

t
-

14
8,

34
3,

96
3

25
8,

37
9,

49
2

27
2,

69
9,

16
3/

27
26

99
61

6
29

5,
20

7,
40

2
39

5,
51

7,
13

4
99

,2
16

,3
48

17
4,

15
2,

95
4

19
8,

36
4,

82
0

23
5,

70
7,

33
5

28
9,

17
1,

67
9

32
1,

03
2,

49
9

33
9,

01
1,

25
1

34
7,

64
3,

45
5

E
nd

95
,7

36
,

83
2

14
8,

34
4,

15
3

25
8,

37
9,

62
2

27
2,

69
9,

27
8/

2
72

69
97

33
-

39
5,

51
7,

25
4

-
-

-
-

-
-

-
-

A
lle

le
 

si
ze

/
ty

pe

Ig
ri

14
2

21
4

14
9

13
5

15
6

13
5

A
A

A
T

A
A

C
T

U
sc

hi
14

2
20

9
14

4
14

4
15

6
12

2
A

A
A

T
A

A
C

T

C
hi

- ku
ri

n 
Ib

a-
ra

ki
 1

14
9

19
1

13
7

13
7

15
0

14
8

G
G

G
C

C
G

G
C

Mol Breeding (2021) 41: 76 Page 7 of 13    76



 

1 3

parental lines Igri and Uschi, respectively, were infected. 
The susceptible control cultivar Maris Otter showed a 
higher rate of infectivity than parental cultivar Igri, cor-
responding to previous studies (Yang et al. 2014b; Shi 
et  al. 2019). At the same time, parental cultivar Uschi 
revealed a higher infection rate than Maris Otter, albeit 
with a lower number of tested plants. In the case of  F2 
and  F3 plants, the efficiency of the mechanical inocula-
tion varied from 90.56 to 93.23% in the I × C and C × U 
populations, respectively. In the  F2 populations, we 
analyzed a currently used method based on finger rub-
bing for mechanical inoculation which revealed about 
10% escapes. However, the efficiency in the present 
study was much higher than in similar studies (Shi et al. 
2019; Pidon et al. 2020), although a similar inoculation 
method (Habekuß et al. 2008) was used.

The combined  F2 and  F2:3 analysis revealed that a sin-
gle recessive resistance gene on chromosome 6H named 
rym15 conferred the resistance against BaMMV in the 
Japanese cultivar Chikurin Ibaraki 1. The order of mark-
ers in two constructed medium-resolution maps turned 
out to be collinear, and all mapped markers showed the 
same order in the genetic map and physical map accord-
ing to the reference position at the Morex v1 and v2 

assemblies (Mascher et al. 2017; Monat et al. 2019). In 
both constructed maps, the markers EBmac0874 and 
Bmag0173 are inverted compared to the previous map 
(Le Gouis et al. 2004); in addition, in the present study, 
the interval fixed by these two markers is out the frame 
of the target region containing rym15 locus. Accord-
ing to the physical position of the reverse primer at the 
Morex v2 genome assembly, the Bmag0173 revealed 
to be distal to EBmac0874, which corresponds to the 
order in the present study. These two markers have been 
used in several studies, and some maps show the same 
order as the present study (Ramsay et al. 2000; Varshney 
et al. 2007; Friesen et al. 2006; Gupta et al. 2011), and 
some show the discrepancy in the order in comparison 
with the present study (Cakir et al. 2003a, b; Le Gouis 
et al. 2004). In addition, the distances of these two mark-
ers are very different between the maps, which could be 
explained by the use of a different type of population, 
the size of the population, and the differences in the 
genetic background of the genotypes used. In conclu-
sion, the discrepancy of the SSR markers EBmac0874 
and Bmag0173 is commonly known and not unique. A 
hypothetical explanation of discrepant mapping could 
be co-migration of fragments from two or more loci in 

Fig. 2  Chromatograms of the SSR markers EBmac0874 (left) 
and Bmag0173 (right) used for mapping of the resistance gene 
rym15. The order of genotypes for both markers are resist-
ant parent Chikurin Ibaraki 1, susceptible parent Igri, second 

susceptible parent Uschi, one  F2-plants from cross Igri × Chi-
kurin Ibaraki 1, and one  F2-plants from cross Chikurin Ibaraki 
1 × Uschi
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certain genotypes versus presence of single bands in 
other genotypes.

The high-quality barley reference sequences Morex 
v1 and Morex v2 (Mascher et  al. 2017; Monat et  al. 
2019) provide more precise information than the draft 
barley genome sequence (The International Barley 
Genome Sequencing Consortium, 2012). The study of 
leaf rust resistance gene RphMBR1012 (Fazlikhani et  al. 
2019) has shown the efficient use of the barley reference 
sequence (Morex v1), especially in marker saturation. 
In the present study, the SNPs derived from the 50 K 
Illumina Infinium genotyping array were positioned on 
the physical map based on the published barley refer-
ence sequence. For the previous flanking SSR marker 
Bmag0173, no information about physical position on 
chromosome 6H could be found in Morex v1, while 
based on the Morex v2 assembly, the physical position 
of the reverse primer provide more precise information; 
thus, it could be used as reference information when 
comparing the order of these two previous flanking 

markers, reflecting the improvement of Morex v2 com-
pared to the Morex v1.

A major constraint in map-based cloning projects 
is the interplay between the size of the target region 
defined by flanking markers and the number of  F2 
plants needed for delineation of a single candidate gene. 
However, barley and other Triticeae are rich in repeti-
tive DNA which hampers gene isolation (Krattinger 
et al. 2009). Nevertheless, nowadays, based on the ref-
erence sequence of Morex, high-throughput genotyp-
ing (e.g., via genotyping-by-sequencing or high-density 
SNP arrays) can considerably improve the efficiency of 
marker development in barley. In the present study, the 
KASP markers were developed in a short time based on 
the screening of parental lines by using 50 K Illumina 
Infinium genotyping array. The medium-resolution 
maps we constructed provide more reliable results for 
delineating the target gene. In case of incorrectly scored 
phenotypes, this step greatly reduces the risk that a gene 
of interest may lie outside of putative flanking markers 
which span a very short interval.

Fig. 3  Genetic maps of 
BaMMV resistance gene 
rym15. Maps were con-
structed based on analysis 
of 342 and 180  F2 plants 
derived from the crosses 
Igri × Chikurin Ibaraki 1 
(left) and Chikurin Ibaraki 
1 × Uschi (right). Collinear-
ity between the two genetic 
maps is shown with black 
lines
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The next step for isolating the resistance gene 
rym15 is the construction of a high-resolution map. 
For this, high-resolution mapping populations will be 
constructed by screening the newly developed, robust 
flanking markers in around 8000  F2 plants from both 
 F2 populations. For marker saturation, a set of 85 
informative SNP markers was identified between the 
flanking markers rym15_1 and rym15_8 based on the 
50 K SNP array screen. Based on information on cor-
responding candidate genes (high confidence and low 
confidence) in the genome interval covered by these 
SNPs, promising genes will be selected for marker 
development for further saturation of the rym15 locus. 
Meanwhile, the KASP markers developed in the pre-
sent study can already be efficiently used in breeding 
programs attempting to transfer rym15 to elite barley 
cultivars.
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Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), which are transmitted 
by the soil-borne plasmodiophorid Polymyxa graminis, cause high yield losses in barley. In 
previous studies, the recessive BaMMV resistance gene rym15, derived from the Japanese 
landrace Chikurin Ibaraki 1, was mapped on chromosome 6HS of Hordeum vulgare. In this 
study, 423 F4 segmental recombinant inbred lines (RILs) were developed from crosses of 
Chikurin Ibaraki 1 with two BaMMV-susceptible cultivars, Igri (139 RILs) and Uschi (284 RILs). 
A set of 32 competitive allele-specific PCR (KASP) assays, designed using single nucleotide 
polymorphisms (SNPs) from the barley 50 K Illumina Infinium iSelect SNP chip, genotyping by 
sequencing (GBS) and whole-genome sequencing (WGS), was used as a backbone for 
construction of two high-resolution maps. Using this approach, the target locus was narrowed 
down to 0.161 cM and 0.036 cM in the Igri × Chikurin Ibaraki 1 (I × C) and Chikurin Ibaraki 
1 × Uschi (C × U) populations, respectively. Corresponding physical intervals of 11.3 Mbp and 
0.281 Mbp were calculated for I × C and C × U, respectively, according to the Morex v3 genome 
sequence. In the 0.281 Mbp target region, six high confidence (HC) and two low confidence 
(LC) genes were identified. Genome assemblies of BaMMV-susceptible cultivars Igri and Golden 
Promise from the barley pan-genome, and a HiFi assembly of Chikurin Ibaraki 1 together with 
re-sequencing data for the six HC and two LC genes in susceptible parental cultivar Uschi 
revealed functional SNPs between resistant and susceptible genotypes only in two of the HC 
genes. These SNPs are the most promising candidates for the development of functional 
markers and the two genes represent promising candidates for functional analysis.

Keywords: barley, BaMMV resistance, high-resolution mapping, rym15, candidate gene

INTRODUCTION

Barley (Hordeum vulgare ssp. vulgare), the fourth most cultivated cereal in the world (FAOSTAT, 
2022), is mainly used for animal feed and malting. The soil-borne barley yellow mosaic disease, 
caused by Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), 
significantly affects the yield of winter barley in large parts of Europe and East Asia (Kühne, 2009). 
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Due to transmission of BaMMV and BaYMV via the soil-
borne plasmodiophorid Polymyxa graminis (Adams et al., 1988; 
Kanyuka et  al., 2003), it is of prime importance to improve 
the genetic resistance in modern cultivars to ensure winter 
barley cultivation despite the increasing frequency of 
infested fields.

A total of 22 resistance genes against BaYMV and/or 
BaMMV were reported up to now, of which the two recessive 
genes rym1/11 and rym4/5 have been the predominant sources 
of breeding for commercial BaMMV/BaYMV resistant barley 
cultivars (Jiang et al., 2020). However, a predominant European 
isolate BaYMV-2 became virulent on rym4-carrying barley 
varieties (Kühne et  al., 2003; Rolland et  al., 2017). Another 
widespread BaYMV-2 resistance gene rym5 is overcome by 
the European isolates BaMMV-Teik and BaMMV-SIL (Kanyuka 
et  al., 2004; Habekuß et  al., 2007), the Japanese isolate 
BaYMV-III (Nishigawa et  al., 2008) and isolates of BaMMV 
in France (Rolland et al., 2017). In addition, in China, BaYMV 
isolates BaYMV-CN_NY and BaYMV-CN_YZ were virulent 
to rym4, and rym5 was overcome by BaYMV isolates 
BaYMV-CN_DZ and BaYMV-CN_NY, as well as BaMMV 
isolates BaMMV-CN_NY and BaMMV-CN_YZ. Remarkably, 
the isolate BaYMV-CN_NY was also virulent to accessions, 
which carried rym1/11 and rym5 (Jiang et  al., 2022). Thus, 
it is critical to search for alternative BaMMV/BaYMV resistance 
resources and identify diagnostic markers for marker-
assisted selection.

During recent decades, in addition to SNP arrays (Bayer 
et  al., 2017), next-generation sequencing (NGS) technologies 
have been widely applied in plant breeding. For instance, using 
NGS technology, cost-effective genotyping-by-sequencing (GBS) 
approaches have been developed and widely used in barley 
genetic studies (Poland et  al., 2012). SNPs assayed with high-
density SNP arrays and GBS enable navigation between genetic 
maps and physical genome positions. Using both kinds of 
markers in tandem can be advantageous because polymorphisms 
of GBS-derived SNPs and SNPs included in arrays tend to 
target complementary haplotypes or genome regions (Darrier 
et  al., 2019; Negro et  al., 2019). Furthermore, GBS-derived 
SNPs have more power to detect rare alleles in diverse germplasm 
collections, while SNP arrays are prone to ascertainment bias. 
On the other hand, array-derived SNPs have the advantage 
of highly robust calling of alleles at the same SNPs across 
multiple populations (Darrier et  al., 2019).

Third-generation sequencing technologies, such as Pacific 
Biosciences (PacBio) and Oxford Nanopore Technologies, operate 
on different principles (Eid et  al., 2009; Jain et  al., 2015). 
Compared to the short-read approaches, the assembly data 
obtained by using long-read sequencing methods can provide 
more information regarding variants residing in the repeat-rich 
intergenic space or copy-number variants at complex loci 
(Mascher et  al., 2021). However, until very recently, error rates 
of both sequencing platforms were significantly higher than 
short-read NGS methods (Hu et  al., 2021). Depending on the 
DNA fragment length and quality, Oxford Nanopore Technologies 
MinION/GridION can provide reads longer than 1 Mb, with 
read accuracy of 87–98% and reads for an N50 of 10–60 kb, 

and the newest PacBio sequencing improvement Sequel 2 can 
generate high-fidelity (HiFi) reads up to 20 kb with more than 
99% accuracy with N50 of 10–20 kb using the single-molecule 
circular consensus sequence technology (Wenger et  al., 2019; 
Logsdon et  al., 2020; Miga et  al., 2020).

Recently, a barley pan-genome was assembled comprising 
19 cultivated accessions and one wild barley (Jayakodi et  al., 
2020). Furthermore, the updated barley reference genome Morex 
v3 was released by the use of accurate circular consensus long-
read sequencing, and a set of 35,827 high confidence (HC) 
and 45,860 low confidence (LC) genes was identified (Mascher, 
2020; Mascher et  al., 2021). The availability of those online 
resources facilitates the study of the genome and its relationship 
with target traits in barley. For the present study, the assembly 
of our susceptible parental line Igri is of particular relevance 
as a sequence resource for narrowing down and annotating 
the rym15 target region.

In the past 20 years, map-based cloning turned out to 
be  efficient for the isolation of candidate genes for important 
traits (Jaganathan et  al., 2020). Up to now, two BaMMV/
BaYMV resistance loci were cloned through map-based cloning: 
rym4, rym5, and rymHOR3298, as allelic variants of the eukaryotic 
translation initiation factor 4E (eIF4E; Kanyuka et  al., 2005; 
Stein et  al., 2005; Shi et  al., 2019), and rym1/11 encoding a 
protein disulfide isomerase like 5–1 (PDIL5-1; Yang et  al., 
2014). The updated and improved genomic resources for barley 
have simplified marker saturation and accelerated gene isolation 
(Perovic et al., 2018). The availability of public reference genome 
assemblies and low-cost, high throughput sequencing platforms, 
which can generate millions of polymorphisms for genetic 
mapping, provide a great opportunity for genetic mapping 
studies (Jaganathan et  al., 2020).

Chikurin Ibaraki 1 is susceptible to BaYMV in Japan (Ukai 
and Yamashita, 1980). Interestingly, this Japanese cultivar was 
found to be resistant to three European strains, that is, BaMMV, 
BaYMV-1, and BaYMV-2 (Götz and Friedt, 1993; Lapierre 
and Signoret, 2004). The first genetic mapping of the Chikurin 
Ibaraki 1 derived BaMMV resistance locus rym15 revealed 
that it is inherited recessively and located on chromosome 
6HS (Le Gouis et  al., 2004). In a previous publication (Wang 
et  al., 2021), two medium-resolution maps were constructed 
by using a set of 180 (I × C) and 342 (C × U) F2 plants. In 
this publication mapping was done by the use of six SSR 
markers and eight KASP markers (rym15_1 to rym15_17) that 
were developed based on a 50 K Illumina Infinium iSelect 
screen of three parental lines and phenotyping of corresponding 
F2-F3 families, the gene was fixed between KASP markers 
rym15_1 and rym15_8 in an interval around 137 Mb according 
to the barley reference assembly Morex v2 (Wang et  al., 2021). 
Based on this information, in a current study, two high-resolution 
mapping populations comprising 2,218 (I × C) and 5,870 (C × U) 
F2 plants were developed and corresponding F4 segmental RILs 
were phenotyped using the BaMMV-ASL isolate, the present 
study aimed to (1) construct a high-resolution mapping 
population of rym15, (2) narrow down the target region, and 
(3) predict potential candidate genes for BaMMV resistance 
gene rym15.
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MATERIALS AND METHODS

Plant Material and Construction of the 
High-Resolution Mapping Populations
To construct high-resolution mapping populations for rym15, 
two segregating F2 populations comprising 2,218 and 5,870 F2 
plants were produced based on the crosses between the resistant 
cultivar Chikurin Ibaraki 1 and the susceptible cultivars Igri 
and Uschi, respectively. DNA of F2 plants was extracted at 
the two-leaf stage using the efficient 96-sample multiplex DNA 
extraction protocol described by Milner et  al. (2019). All F2 
plants were analyzed using the co-dominant flanking markers 
rym15_1 and rym15_8 which we  identified in a previous study 
(Wang et  al., 2021). Those F2 plants carrying a recombination 
event within the target interval were self-pollinated and selfed 
seeds were harvested. For each recombinant F2 plant, a set of 
12 seeds was sown in 96 Quick pot trays (8 × 12). DNA of 
F3 plants was extracted as described above and subsequently 
analyzed with the same markers, that is, rym15_1 and rym15_8, 
in order to identify segmental homozygous recombinants. 
Homozygous recombinant F3 plants were selfed and 
corresponding F4 plants were subsequently used for the 
construction of a high-resolution mapping population. By this 
approach, two high-resolution mapping populations of 139 
(I × C) and 284 (C × U) F4 segmental RILs were developed and 
subsequently used for resistance testing (Table  1).

Resistance Test
All 423 RILs were mechanically inoculated with a predominant 
isolate BaMMV-ASL (derived from Aschersleben, Germany) 
under controlled growth chamber conditions according to 
Perovic et  al. (2014). A set of 6 plants per segmental RIL 
were sown randomly in 60 Quick pot trays (6 × 10). In each 
tray, a set of 6 plants of cultivar Maris Otter was used as 
positive control, and three plants of the resistant parent Chikurin 
Ibaraki 1 and three plants of the susceptible parent Igri or 
Uschi were sown. Five to six weeks after the first inoculation, 
the mosaic symptoms on the plants were estimated visually 
and the double antibody sandwich enzyme-linked 
immunosorbent assay (DAS-ELISA) was carried out according 
to Clark and Adams (1977), using polyclonal antibodies and 
conjugate IgG (Loewe Biochemica, Sauerlach, Cat. No.07006S). 
The virus titer was estimated via extinction at 405 nm using 
a Dynatech MR 5000 microtiter-plate reader at 45 min and 
90 min after addition of p-Nitrophenyl Phosphate (PNPP). Plants 
with an extinction E405 > 0.10 were qualitatively scored as 
susceptible. Segregation of resistant and susceptible F4 RILs 

was analyzed using the chi-square tests for goodness of fit to 
the expected segregation ratios (1r:1 s).

GBS Library Construction, Sequencing, 
and Data Analysis
Genomic DNA of the parental lines (Chikurin Ibaraki 1, 
Igri, and Uschi) was extracted using the CTAB (cetyl 
trimethylammonium bromide) method according to Stein 
et  al. (2001) and digested with PstI and MspI (New England 
Biolabs) according to Wendler et  al. (2014). GBS libraries 
were loaded on 2% Ultra PureTM Agarose Gel from Invitrogen 
stained with SYBRGold. Size selection from 250 bp to 600 bp 
was performed visually and gel extraction of cut gel pieces 
was performed using MinElute Gel Extraction Kit from Qiagen. 
The GBS libraries were sequenced in loading concentration 
of 10pM on Illumina® MiSeq™ (Illumina, San Diego, 
United States) with 150 cycles, single-end reads, using a custom 
sequencing primer. Sequence data were analyzed using a 
Galaxy web server (Giardine et  al., 2005; Blankenberg et  al., 
2010; Goecks et al., 2010). The sequencing reads were trimmed 
by using the tool Trim Galore (version 0.4.0) with a quality 
threshold of 30 to remove the low-quality reads and also 
the reads shorter than 50 bp. Alignment was performed against 
the genome assembly Morex v3 (Mascher, 2020) by using 
the trimmed sequencing reads of three parental lines. This 
step was conducted using BWA-MEM (version 0.7.17; Li, 
2013) with default parameters. SNP calling was performed 
using MPileup version 1.8 (Li and Durbin, 2009) and the 
polymorphisms between resistant (Chikurin Ibaraki 1) and 
susceptible (Igri and Uschi) parental lines were filtered in 
the resulting VCF file (Danecek et  al., 2011). Variant sites 
were retained in case they presented a minimum SNP quality 
score of 40, minimum genotype quality of 5, and minimum 
number of homozygous/heterozygous reads covering a position 
per sample of 2/4.

Whole-Genome Re-Sequencing of 
Chikurin Ibaraki 1 and Data Analysis
In order to obtain the whole-genome sequencing data of 
resistance donor line Chikurin Ibaraki 1, a seed bulk of Chikurin 
Ibaraki 1 was grown for 7 days and dark treated for 48 h 
(INRA-CNRGV Plant Genomic Center, Toulouse, France). High 
molecular weight (HMW) DNA was isolated using a Qiagen 
G-100 DNA extraction kit following the manufacturer’s protocol 
(https://www.qiagen.com/us/products/discovery-and-
translational-research/dna-rna-purification/dna-purification/
genomic-dna/qiagen-genomic-tips/). The DNA was quantified 

TABLE 1  |  Screening of F2 plants for the construction of rym15 high-resolution mapping populations.

Crosses
Number of 

analyzed F2 plants

Number of 
recombinant F2 

plants

Recombination 
frequency

Number of segmental RILs (F4) χ 2 1:1 (df = 1, 
p > 0.05)

Resistant Susceptible

Igri × Chikurin Ibaraki 1 2,174 162 3.72% 67 72 0.18 (P = 0.6714)
Chikurin Ibaraki 1 × Uschi 5,728 288 2.51% 140 144 0.056 (P = 0.8129)
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on a QBit (Invitrogen) and the quality was checked by using 
NanoDrop One (Thermo Scientific) according to the A260/
A280 and A260/A230 ratios. The fragment size estimation was 
conducted by using the FEMTO pulse (Agilent). Subsequently, 
lyophilized DNA samples were used for PacBio SMRT sequencing 
(Center for Genomic Analysis, University of Kiel). Library 
preparation was conducted using the HiFi SMRTbell Express 
2.0 kit (Pacific Biosciences, Menlo Park, USA) including 
BluePippin (Sage Science Inc., Beverly Massachusetts) size 
selection with a lower cutoff of 10 kb. Sequencing was performed 
on the Sequel II instrument on 6 SMRTcell 8 M, movie time 
of 30 h (Pacific Biosciences, Menlo Park, USA). PacBio HiFi 
data was assembled with the HiFi read assembler hifiasm 
(Cheng et  al., 2021). The HiFi reads were deposited under 
project ID PRJEB50079 at the European Nucleotide Archive  
(ENA).

Marker Saturation
Genomic DNA of the constructed 423 segmental homozygous 
F4 RILs was extracted using the CTAB method according to 
Stein et  al. (2001). DNA samples of RILs were adjusted to a 
final concentration of 20 ng/μl and subsequently used for 
marker saturation.

Based on the physical position of the previous flanking 
markers rym15_1 and rym15_8, a set of 28 SNPs derived 
from the 50 K Illumina Infinium iSelect SNP chip (8 SNPs), 
GBS (8 SNPs) and assembly data (12 SNPs) located in the 
target interval was converted to KASP markers using 
BatchPrimer3 and PolyMarker (You et  al., 2008; Ramirez-
Gonzalez et  al., 2015) algorithms. Furthermore, another two 
KASP markers located between markers rym15_1 and rym15_8 
were selected from a previous study (Wang et  al., 2021; 
Supplementary Table S1).

The high-resolution mapping populations derived from 
crosses I × C and C × U were genotyped using 32 and 29 
KASP markers, respectively (Supplementary Table S1). PCR 
amplification was conducted in a 5 μl reaction volume consisting 
of 2.5 μl PACE™ (PCR Allele Competitive Extension) 
Genotyping Master Mix (Part. No.001–0002, 3CR Bioscience), 
0.08 μl of each allele-specific primer 1 and allele-specific primer 
2 (10.0 pmol/μl), 0.2 μl common primer (10.0 pmol/μl) and 
2.2 μl template DNA (20 ng/μl). For KASP analysis, DNA was 
amplified in the CFX96 Touch Real-Time PCR Detection 
System (Bio-Rad, Hercules, CA, USA) with the following 
conditions: 94°C for 15 min; followed by PCR with 9 cycles 
of 20 s at 94°C, 1 min at 61°C; and then 25 cycles with 20 s 
at 94°C, 1 min at 55°C, and a final cool down at 37°C for 
1 min. If necessary, a re-cycle with the following conditions 
was performed: 94°C for 3 min; followed by PCR with 9 cycles 
of 20 s at 94°C, 1 min at 57°C and a final cool down at 
37°C for 1 min. The fluorescence signals from HEX and FAM 
for the specific alleles were detected using the same Detection 
System (Bio-Rad, Hercules, CA, USA) at 37°C after thermal 
cycling was complete. The physical position of the KASP 
markers was determined by blasting primers against the barley 
reference genome sequences (Mascher et al., 2017, 2021; Monat 

et al., 2019) using blastN at the IPK barley blast server 
(https://galaxy-web.ipk-gatersleben.de).

Linkage Analysis
Linkage analysis was performed by setting the number of 
recombinant gametes in relation to the number of gametes 
analyzed (Pellio et  al., 2005). The genetic resolution of the 
population (% recombination) was calculated by dividing the 
number 1 by the number of gametes. To correct for those 
plants which died during cultivation, a “Corrected genetic 
resolution” for the remaining RILs was applied by dividing 
the % recombination identified for the F2 generation by the 
number of those remaining RILs (Lüpken et  al., 2013).

Collinearity of the Target Region Between 
Resistant and Susceptible Cultivars
The physical position of the new flanking markers identified 
in the present study was determined according to the sequence 
assembly of Morex v3. In order to visually compare the target 
region between the genotypes Chikurin Ibaraki 1, Igri, and 
Morex (Jayakodi et  al., 2020; Mascher, 2020), the flanking 
markers were blasted against the whole-genome sequence of 
Chikurin Ibaraki 1 and Igri by using the tool Multiple Alignment 
using Fast Fourier Transform (MAFFT; Katoh and Standley, 
2013) in the Galaxy web server (Giardine et al., 2005; Blankenberg 
et al., 2010; Goecks et al., 2010). The target region was identified 
in these two genotypes according to the best hits of both 
flanking markers, and the alignments of the target region 
between the three genotypes were plotted and visualized as a 
dot-plot with D-GENIES webpage (Cabanettes and Klopp, 2018) 
by using the Minimap2 aligner (Li, 2018).

Identification and Re-Sequencing of 
Candidate Genes
In the target region, the HC and LC genes were identified 
according to the gene annotation of Morex v3 (Mascher, 2020).1 
In order to extract the corresponding genes from Chikurin 
Ibaraki 1 assembly data, the sequences of HC and LC genes 
in the target interval of Morex were used as query for a 
BLASTN (Altschul et al., 1997) search against the target region 
of Chikurin Ibaraki 1. For the susceptible parental line Igri, 
annotated genes in the target interval were identified according 
to the pan-genome database available on the IPK Galaxy Blast 
Suite (Deng et  al., 2007; Jayakodi et  al., 2020).2

In order to obtain the gene sequence of 6 HC and 2 LC 
genes in the second susceptible parental line Uschi, based on 
the gene sequences of Morex v3 and Igri, the corresponding 
primers for re-sequencing of all identified genes were developed 
by using the online tool primer3 (Supplementary Table S2).3 
PCR amplification was conducted in a 30 μl reaction volume 
consisting of 3 μl of template DNA (25-30 ng/μl), 3 μl of 10 × buffer 
BD (detergent-free buffer), 3 μl of 25 mM MgCl2, 0.6 μl of 

1�https://wheat.pw.usda.gov/GG3/content/morex-v3-files-2021
2�https://galaxy-web.ipk-gatersleben.de/
3�http://primer3.ut.ee/cgi-bin/primer3/primer3web_results.cgi
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10 mM dNTP-Mix, 0.75 μl of each forward primer (10.0 pmol/
μl) and reverse primer (10.0 pmol/μl), 0.6 μl of HOT FIREPol 
DNA polymerase (Solis BioDyne, Tartu, Estonia) and 18.3 μl 
double distilled water. The DNA was amplified in a GeneAmp 
PCR System 9,700 (Applied Biosystems) under the following 
conditions: 94°C for 5 min; followed by touchdown PCR with 
12 cycles of 30 s at 94°C, 30 s at 62°C, 30 s at 72°C; and then 
35 cycles with 30 s at 94°C, 30 s at 56°C, 30 s at 72°C; and a 
final extension at 72°C for 10 min. Amplified products (1 μl) 
were checked on an agarose gel (1.5%) and analyzed using 
the imaging system Gel Doce™ XR and the Quantity One® 
1-D analysis software (4.6.2; Bio-Rad, Hercules, CA, USA). 
PCR products were purified and sequenced by the company 
Microsynth AG (Balgach, Switzerland). Obtained sequences 
were edited and the polymorphisms between parental lines 
(Chikurin Ibaraki 1, Igri, and Uschi) were identified using 
Sequencher 5.1 software (Gene Codes, Ann Arbor, MI, 
United  States).

RESULTS

High-Resolution Mapping Populations for 
rym15
Two crosses were used for the construction of the high-
resolution mapping populations. In total, 2,218 and 5,870 F2 
plants derived from I × C and C × U were sown, of which 
2,174 and 5,728 germinated and were analyzed subsequently. 
From these, 162 (3.725% recombination) and 288 (2.514% 
recombination) segmental recombinant F2 plants were identified, 
respectively (Table  1). Initially, for the population I × C, a 
total of 2,174 F2 plants providing a genetic resolution of 
0.0230% recombination was screened for recombination events 
between the previous flanking markers rym15_1 and rym15_8 
and a genetic distance of 3.725% recombination was determined. 
Due to the non-survival of recombinant plants, the corrected 
genetic resolution provided by 139 remaining RILs equaled 
0.02679% recombination. For population C × U, a total of 
5,728 F2 plants providing a genetic resolution of 0.0087% 
recombination were screened for recombination events between 
the flanking markers rym15_1 and rym15_8 and a genetic 
distance of 2.514% recombination was determined. Due to 
the non-survival of recombinant plants, the corrected genetic 
resolution provided by 284 remaining RILs equaled 0.00885% 
recombination.

BaMMV Phenotyping
The BaMMV infection experiment showed a segregation 
of 67 resistant and 72 susceptible, as well as 140 resistant 
and 144 susceptible RILs in the population I × C and C × U, 
respectively, which fit to the expected 1r:1 s ratio. Chi-square 
test in the population I × C (χ2 1r:1 s = 0.180, df = 1, p = 0.6714) 
and C × U (χ2 1r:1 s = 0.056, df = 1, p = 0.8129) for goodness 
of fit indicated that the resistance against BaMMV is 
controlled by a single gene (rym15) in both populations 
(Table  1).

Marker Saturation of the rym15 Locus
GBS analysis of three parental lines identified 27,017 (Chikurin 
Ibaraki 1 and Igri) and 29,197 (Chikurin Ibaraki 1 and Uschi) 
polymorphisms. In total, 20,099 polymorphisms (74.39%) were 
identical among both comparisons. On the target chromosome 
6H, a set of 3,388 (Chikurin Ibaraki 1 and Igri) and 3,813 
(Chikurin Ibaraki 1 and Uschi) polymorphisms was identified, 
of which 2,488 (73.44%) were in common. In the target region 
between the previous flanking markers rym15_1 and rym15_8, 
a set of 365 (Chikurin Ibaraki 1 and Igri) and 396 (Chikurin 
Ibaraki 1 and Uschi) polymorphisms was identified, of which 
301 (82.47%) were in common (Supplementary Table S3).

The rym15 target region was saturated with a set of 32 
KASP markers that span a 133 Mb interval on chromosome 
6H in Morex v3. Out of these 32 markers, three polymorphisms 
(QBS134, QBS135, and QBS140) could not be  reproduced in 
the population C × U (Supplementary Table S1). In the 
population I × C, mapping of all 32 markers reduced the target 
interval of rym15 from 3.5 cM to a smaller region of 0.161 cM 
between markers QBS140 and QBS159, and 18 markers 
co-segregated with the target locus (Figure 1). In the population 
C × U, analysis of all 29 markers reduced the interval harboring 
rym15 from 3.7 cM to 0.036 cM between markers QBS143 and 
QBS151, and 7 markers co-segregated with the target gene 
rym15 (Figure  1).

BLASTN comparison of marker sequences against the barley 
reference sequence Morex v3 revealed that all mapped markers 
are co-linear genetically and physically in both mapping 
populations, and the physical size of the target region in the 
population I × C and C × U is 11.3 Mb and 0.28 Mb, respectively 
(Figure  2). The marker saturation revealed a large difference 
of recombination distribution between the two populations 
(Figure 2). In the population C × U, the recombination frequencies 
have been estimated from 1.51 to 190.19 Mb/cM, while the 
population I × C shows suppressed recombination, of which 
the physical/genetic ratio varies from 7.95 to 686.07 Mb/cM. In 
the population C × U, the recombination event between markers 
QBS143 and QBS144 (1.51 Mb/cM), as well as QBS150 and 
QBS151 (7.91 Mb/cM) are crucial for mapping the target gene 
rym15 to a smaller interval of 0.28 Mb. In contrast, those 
markers co-segregated with rym15 in the population I × C 
(Figure  2).

Similarity of Target Region Between 
Parental Lines
Taking advantage of the second population C × U, the physical 
size of the target region between markers QBS143 and QBS151 
encompassed 281 kb according to Morex v3 (Figure 2). Blasting 
the flanking marker sequences against the Chikurin Ibaraki 1 
and Igri genome assemblies revealed that the corresponding 
physical size of the target region is around 282 and 285 kb, 
respectively (Supplementary Figure S1). A dot-plot analysis 
comparing the target region between the parental lines Chikurin 
Ibaraki 1 and Igri, and between Chikurin Ibaraki 1 and Morex 
v3, revealed a substantial co-linearity and similarity with identity 
ranging from 75 to 100% (Supplementary Figure S1). The 
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micro co-linearity between physical and genetic order of all 
used markers was consistent. In the other pan-genome accessions, 
the physical size of the target region ranged from 0.26 (Golden 
Promise) to 0.34 Mb (HOR3365; Supplementary Table S4).

Candidate Gene Analysis at the rym15 
Locus
In our previous medium-resolution maps of rym15, the interval 
was mapped between the two markers rym15_1 and rym15_8 

A D EBC

FIGURE 1  |  Genetic maps of rym15 and collinearity of common molecular markers. (A) An initial genetic map of rym15 based on a set of 217 DH lines derived 
from the cross of Chikurin Ibaraki 1 × Plaisant (Le Gouis et al., 2004). (B) Medium-resolution map of rym15 based on a set of 180 F2 lines derived from the population 
Igri×Chikurin Ibaraki 1 (Wang et al., 2021). (C) High-resolution map of rym15 based on a set of 139 F4 segmental RILs in the population Igri ×Chikurin Ibaraki 1. 
(D) Medium-resolution map of rym15 based on a set of 342 F2 lines derived from the population Chikurin Ibaraki 1 × Uschi (Wang et al., 2021). (E) High-resolution 
map of rym15 based on a set of 284 F4 segmental RILs in the population Chikurin Ibaraki 1 × Uschi. The target gene rym15 is highlighted in red, the bold font 
indicates previous flanking markers from the initial and medium-resolution maps, while the new flanking markers identified from high-resolution mapping are shown 
in blue.

A B C

FIGURE 2  |  High-resolution genetic maps of rym15 and physical map of barley chromosome 6HS. (A) High-resolution map of rym15 based on a set of 139 F4 RILs 
in the population Igri×Chikurin Ibaraki 1. (B) Physical map of Morex on chromosome 6HS according to Morex v3. (C) High-resolution map of rym15 based on a set 
of 284 F4 RILs in the population Chikurin Ibaraki 1 × Uschi. The recombination rates (Mb/cM) are listed left of the genetic maps for both populations. The target gene 
rym15 is highlighted in red and the flanking markers are shown in orange (Igri×Chikurin Ibaraki 1) and blue (Chikurin Ibaraki 1 × Uschi). Crucial recombination events 
in the population Chikurin Ibaraki 1 × Uschi are highlighted in blue.
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with a physical size of 133 Mb according to the Morex v3 
reference genome. In this region, 620 HC genes and 1,025 LC 
genes are located (Wang et  al., 2021). Due to extensive marker 
saturation in the present study, the physical size of the target 
region was reduced to 281 kb in the population C × U. In this 
region a set of 8 genes was identified, of which 6 are HC and 
two are LC genes. The annotation of two LC genes HORVU.
MOREX.r3.6HG0573640 and HORVU.MOREX.r3.6HG0573660 
are ATP-dependent DNA helicase and Retrovirus-related Pol 
polyprotein from transposon TNT 1–94, respectively. Out of 
the 6 HC genes, four encode zinc finger CCCH domain-containing 
proteins (HORVU.MOREX.r3.6HG0573600, HORVU.MOREX.
r3.6HG0573610, HORVU.MOREX.r3.6HG0573620 and HORVU.
MOREX.r3.6HG0573650). The other two HC genes are coding 
for non-structural maintenance of chromosome element 4 (NSE4) 
and D-alanine-D-alanine ligase family (HORVU.MOREX.
r3.6HG0573590 and HORVU.MOREX.r3.6HG0573630; Figure 3). 
Meanwhile, according to the annotation data of Igri, in the 
target region, the same number of the HC genes was found 
with the same order and description as in Morex v3 (Horvu_
IGRI_6H01G211100.1, Horvu_IGRI_6H01G211200.1, Horvu_
IGRI_6H01G211300.1, Horvu_IGRI_6H01G211400.1, Horvu_
IGRI_6H01G211500.1, and Horvu_IGRI_6H01G211600.1). 
Furthermore, the order of those 6 HC and two LC genes in 
Chikurin Ibaraki 1 was revealed to be  the same as in Morex 
and Igri. Finally, the alignment analysis of the coding region 
of the 6 HC and two LC genes from three parental lines shows 
that three HC genes (HORVU.MOREX.r3.6HG0573620, HORVU.
MOREX.r3.6HG0573630, and HORVU.MOREX.r3.6HG0573650) 
and two LC genes (HORVU.MOREX.r3.6HG0573640 and 
HORVU.MOREX.r3.6HG0573660) are monomorphic between 
resistant and susceptible genotypes. In contrast, for the remaining 
three HC genes, one functional SNP was identified for each 
of the genes (HORVU.MOREX.r3.6HG0573590, HORVU.MOREX.
r3.6HG0573600, and HORVU.MOREX.r3.6HG0573610; Table 2).

Further analyses of the sequence of Golden Promise, which 
is susceptible to BaMMV, revealed the same three HC genes 
(Horvu_GOLDEN_6H01G188600, Horvu_GOLDEN_6H01G188 
700, and Horvu_GOLDEN_6H01G188800). The alignment of 
these three HC genes between Chikurin Ibaraki 1 and Golden 
Promise revealed that one HC gene (Horvu_GOLDEN_6H01G 
1887000) has the same coding sequence in both genotypes. 
For the remaining two HC genes Horvu_GOLDEN_6H01G188600 
and Horvu_GOLDEN_6H01G188800, one functional SNP was 
detected in each gene between Chikurin Ibaraki 1 and Golden 
Promise. Thus, only two HC genes (HORVU.MOREX.r3.6HG 
0573590 and HORVU.MOREX.r3.6HG0573610) are promising 
candidates in the target region (Table  2). Meanwhile, it was 
shown that the functional SNPs-derived KASP markers QBS146 
(located in HC gene HORVU.MOREX.r3.6HG0573590) and 
QBS148 (located in HC gene HORVU.MOREX.r3.6HG0573610) 
co-segregated with the target locus rym15 in both populations.

DISCUSSION

In the present study, phenotypic analysis of 423 F4 segmental 
RILs showed that the BaMMV resistance of Chikurin Ibaraki 

1 is controlled by a single gene. This confirms results of previous 
studies (Le Gouis et  al., 2004; Wang et  al., 2021). By high-
resolution mapping, the target region harboring rym15 was 
narrowed down to 281 kb and 6 HC candidate genes were 
identified for the BaMMV resistance locus rym15. Functional 
SNPs between resistant and susceptible genotypes were detected 
in only two HC genes, representing a substantial step toward 
cloning of rym15.

It is well known that recombination rates are not fixed and 
a significant inter-individual variability has been reported for 
virtually every species, such as bacteria, fungi, plants, and 
animals (Simchen and Stamberg, 1969; Brooks, 1988; Fisher-
Lindahl, 1991; Petes et  al., 1991). Various studies about 
recombination rates and gene densities in barley show that 
gene density is not uniform along the chromosome and is 
usually correlated with recombination frequency (Han et  al., 
1998; Künzel et al., 2000; Rostoks et al., 2002). On chromosome 
6HS, the calculated recombination frequency and gene density 
are not high in the region between markers rym15_1 and 
rym15_8 (Muñoz-Amatriaín et  al., 2015). In the present study, 
the use of two different mapping populations reflects the 
different recombination rates within a defined interval. The 
population I × C showed a reduced recombination rate in this 
region compared with the population C × U. A set of 18 and 
7 markers co-segregated with the target locus rym15 in the 
population I × C and C × U, respectively. Four markers, which 
co-segregated with rym15 in the population I × C revealed 
crucial recombination events between QBS143 and QBS144 
(1.51 Mb/cM), as well as QBS150 and QBS151 (7.91 Mb/cM) 
in the population C × U, facilitating narrowing of the rym15 
interval to 281 kb.

The accuracy of genome sequence information in the target 
region is key to identifying candidate genes in a resistance 
donor. Previously, cloning of BaYMV/BaMMV recessive resistance 
genes rym4/5 and rym1/11 was assisted by bacterial artificial 
chromosome (BAC) clones, which is a cumbersome and time-
consuming process (Stein et  al., 2005; Yang et  al., 2014). As 
third-generation sequencing technologies recently become 
achievable and affordable, a recent study comparing different 
long-read sequencing methods revealed that the PacBio HiFi 
sequencing method performed best for sequence assembly of 
barley (Mascher et al., 2021). In the present study, re-sequencing 
of the resistant donor Chikurin Ibaraki 1 was conducted using 
PacBio HiFi reads. Finally, a set of two HC genes was identified 
with the assistance of the whole-genome assembly of Chikurin 
Ibaraki 1. In future, this assembly may be used to map another 
recessive BaYMV resistance gene present in Chikurin Ibaraki 
1, which is located on chromosome 5HS (Werner et  al., 2003). 
The availability of the barley pan-genome, comprising a set 
of 20 diverse barley accessions including the population I × C 
susceptible parental line Igri (Jayakodi et al., 2020), was critically 
important for the rym15 candidate gene identification.

It is well known that new pathogen variants may be virulent 
to major resistance genes. For example, the isolated resistance 
gene rym4/5 has been overcome in different regions of Europe 
and East Asia, and another resistance gene rym1/11 became 
susceptible to isolate BaYMV-CN_NY in China as well (Kühne 
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FIGURE 3  |  Candidate genes in the rym15 target region of 281 kb. (A) Graphical genotypes of 284 F4 RILs derived from population Chikurin Ibaraki 1 × Uschi 
carrying recombination events between rym15_1 and rym15_8. Marked with red color are those located in the coding region of high confidence genes. (B) A set of 
six high confidence and two low confidence genes positioned in the target interval.

TABLE 2  |  Functional SNPs between resistant (Chikurin Ibaraki 1) and susceptible (Igri, Uschi and Golden Promise) lines originated from three candidate genes.

Gene SNP

Codon
Amino acid 
substitution

Morex v3 Igri Golden Promise
Chikurin 
Ibaraki 1

Igri Uschi
Golden 
Promise

HORVU.MOREX.
r3.6HG0573590.1

Horvu_
IGRI_6H01G211100.1

Horvu_
GOLDEN_6H01G188600.1

G T T T GCA- > TCA Ala(A)- > Ser(S)

HORVU.MOREX.
r3.6HG0573600.1

Horvu_
IGRI_6H01G211200.1

Horvu_
GOLDEN_6H01G188700.1

G A A G GAC- > AAC Asp(D)- > Asn(N)

HORVU.MOREX.
r3.6HG0573610.1

Horvu_
IGRI_6H01G211300.1

Horvu_
GOLDEN_6H01G188800.1

A G G G TGA- > TGG Ter(*)- > Trp(W)
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et  al., 2003; Kanyuka et  al., 2004; Habekuß et  al., 2007; 
Nishigawa et  al., 2008; Rolland et  al., 2017; Jiang et  al., 
2022). These examples highlight the importance of identifying 
new genetic resources that are resistant to new virulent virus 
isolates. The two HC genes carrying functional SNPs between 
resistant and susceptible cultivars are NSE4 (HORVU.MOREX.
r3.6HG0573590) and a zinc finger CCCH domain-containing 
protein (HORVU.MOREX.r3.6HG0573610), which have not 
yet been reported as resistance genes against BaMMV/
BaYMV. According to the information obtained from UniProt 
(https://www.uniprot.org/), the candidate gene HORVU.
MOREX.r3.6HG0573590 promotes sister chromatid alignment 
after DNA damage and facilitates double-stranded DNA break 
(DSBs) repair via homologous recombination between sister 
chromatids (Watanabe et  al., 2009). In contrast, the other 
candidate gene HORVU.MOREX.r3.6HG0573610 encodes a 
zinc finger CCCH domain-containing protein. This kind of 
protein was reported to be  involved in cell fate specification 
and developmental processes in plants, as well as in the 
response to biotic and abiotic stress (Ai et  al., 2022). Several 
studies confirmed that the CCCH-type zinc finger protein 
is responsible for resistance against different pathogens in 
different plant species. For example, a novel CCCH-type zinc 
finger protein GhZFP1 derived from cotton (Gossypium 
hirsutum) positively regulates resistance to the fungal pathogen 
Rhizoctonia solani in tobacco (Guo et  al., 2009). The study 
of rice CCCH-type zinc finger protein C3H12 concluded 
that this gene is positively regulated to mediate resistance 
against the bacterial pathogen Xoo (Deng et al., 2012). Another 
study shows that the pepper TZnF protein CaC3H14 is 
involved in the defense response of pepper to infection by 
Ralstonia solanacearum (Qiu et  al., 2018). Furthermore, an 
Arabidopsis CCCH protein C3H14 is a positive regulator 
for basal defense against Botrytis cinerea mainly by WRKY33 
signaling (Wang et  al., 2020). Moreover, the predicted K 
homology (KH) domain in the gene HORVU.MOREX.
r3.6HG0573610 usually has an RNA-binding function (Burd 
and Dreyfuss, 1994). Considering all the evidence, it seems 
that the gene HORVU.MOREX.r3.6HG0573610 is the most 
likely candidate for BaMMV resistance encoded by rym15. 
Functional analysis of the two candidate genes, for example 
by gene editing (Hoffie et al., 2021) will likely lead to cloning 
of the causal gene for rym15.

CONCLUSION

In the present study, two high-resolution mapping populations 
were constructed, comprising 423 F4 segmental RILs from the 
crosses of I × C (139 RILs) and C × U (284 RILs). Phenotypic 
analysis revealed that the resistance against BaMMV encoded 
by rym15 is controlled by a single gene. Using combinations 
of different whole-genome and targeted sequencing methods, 
detected polymorphisms between parental lines were converted 
to KASP markers and subsequently analyzed on all RILs. 
Combining the genetic and phenotypic data, two high-resolution 
maps were constructed. The physical size of the target region 

was reduced to a 0.28 Mb region containing six HC and two 
LC genes. Taking advantage of public genome assemblies 
including the susceptible cultivar Golden Promise and Igri 
assembly data, functional SNPs between resistant and susceptible 
parental lines were detected in only two HC genes. However, 
the functional analysis of these two genes is still needed to 
identify the causal gene for rym15.
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6. General Discussion 

6.1. Barley genome resources greatly facilitate gene isolation in barley 

The increased accessibility of genome sequence information and publicly available 

genomic databases have brought barley breeding to a “genomic” era (Riaz et al., 

2021). Using genomics tools for accelerating crop improvement is referred to as 

genomics-assisted breeding (GAB, Varshney et al., 2005, 2021). During the last 

decades, many success stories demonstrated the potential of GAB in barley breeding, 

for example the isolation of the recessive resistance genes rym4/5 and rym1/11 against 

barley yellow mosaic disease (Kanyuka et al., 2005; Stein et al., 2005; Yang et al., 

2014b), the major seed dormancy genes QTL FOR SEED DORMANCY 1 (Qsd1) and 

Qsd2 (Sato et al., 2016; Nakamura et al., 2016; Hisano et al., 2021), the gene 

Uniculme4 (Cul4) that controls axillary bud differentiation and the development of 

the ligule (Pozzi et al., 2003; Druka et al., 2011; Tavakol et al., 2015), and a gene that 

encodes a P-type heavy metal ATPase 3 (HvHMA3) responsible for grain Cd 

accumulation in barley (Lei et al., 2020). 

In the present study, barley reference assemblies, barley genomic databases and 

molecular tools, as well as bioinformatics- and genomics-based approaches were 

applied to accelerate the identification of candidate genes for the BaMMV resistance 

gene rym15. The genome assembly of the susceptible parental line Igri is included in 

the barley pan-genome (Jayakodi et al., 2020). In combination with re-sequencing 

data from the resistant donor Chikurin Ibaraki 1, this led to the identification of 12 

SNPs flanking rym15 in a 1.18 Mbp region between flanking markers QBS141 and 

QBS155. This was critical to downsizing the target region to 0.28 Mbp. The ability to 

develop and use KASP markers from these 12 SNPs for fine mapping reflected the 

importance of the availability of the barley references and pan-genome resources, due 

to the absence of polymorphisms in the mentioned region of 1.18 Mbp from GBS and 

SNP-array data. In addition, the BaMMV-susceptible barley accession Golden 

Promise is also included in the barley pan-genome. Combining data from this 
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genotype with WGS data of Chikurin Ibaraki 1, followed by blast analysis of HC 

genes in these two genotypes, decreased the number of candidate genes for the 

BaMMV resistance locus rym15. 

During the study period, the use of the barley reference genomes Morex v1, v2 and v3 

not only accelerated the identification of candidate genes for the target locus rym15, 

but also witnessed improvements in accuracy and completeness of each updated 

version of the Morex reference genome. Notably, in the step of medium-resolution 

mapping of rym15, no hits on chromosome 6H in Morex v1 were found for the SSR 

marker Bmag0173, while the blastN alignment of the reverse primer against Morex 

v2 revealed a hit on chromosome 6H. Thus, the physical position of Bmag0173 in 

Morex v2 could be used as reference information when comparing the order of the 

two previous flanking markers EBmac0874 and Bmag0173, which were inverted in 

previous studies (Le Gouis et al., 2004; Ramsay et al., 2000). However, it has to be 

noticed that the region between these two SSR markers is not within target region of 

0.281 Mbp in the present study. This discrepancy emphasizes the importance of 

remapping the gene when using different mapping populations. Usually, after 

low-resolution mapping of the target locus, the following step is the construction of 

high-resolution mapping populations for the target locus by using the flanking 

markers identified in low-resolution maps. In the present study, medium-resolution 

maps were constructed in order to identity new flanking markers, based on SNP chip 

data with known precise positions compared to previous SSR markers. Unexpectedly, 

the results revealed that the locus rym15 is not located in the previously identified 

region. 

In addition, several map-based cloning studies also revealed the accuracy 

improvements of the updated version of the Morex reference genome. For example, 

fine mapping of barley male-sterility gene msg26 (Qi et al., 2019) identified an 

inversion between the genetic and physical map of Morex v1. Based on the genetic 

analyses in barley and collinear studies in wheat and rice, the results indicated that the 

interval (ca. 45 kbp on chromosome 4HL) in barley was incorrectly assembled in the 

reference sequence Morex v1 (Mascher et al., 2017). Another study about fine 
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mapping of leaf rust resistance gene Rph28 used Morex v1 and v2 as references 

(Mehnaz et al., 2021). The quality of genome assemblies within the target region on 

chromosome 5HL was determined for both Morex v1 and v2 using the genomic 

similarity search tool YASS, which revealed a putative 310 kbp inversion from 640.59 

to 640.90 Mbp. In this region, only two HC genes were detected in Morex v1, while 

10 HC genes were found in v2. Finally the Morex v2 was used as a road map in this 

study (Mehnaz et al., 2021). 

6.2. Different recombination rates among the different populations 

The recombination rate in the target region is one of the key factors for narrowing 

down the target region of the gene of interest. The big difference of recombination 

rates between the two populations C×U and I×C revealed the advantage of using 

population C×U for the identification of two HC genes for the BaMMV resistance 

locus rym15 in the present study. However, it is not possible to determine which 

factors account for differences of the recombination rates among the two populations. 

It is known that crossover frequencies can be significantly different between male and 

female meiosis (Devaux et al., 1995; Cistue et al., 2011; Phillips et al., 2015). In these 

two crosses, the resistant parental line Chikurin Ibaraki 1 was used as male and 

female in I×C and C×U, respectively. However, the cross was conducted with 

different susceptible parental lines and the size of the generated population was 

different. 

Mascher et al. (2017) reported that disease resistance genes are located in the distal 

regions with high recombination rates, while the genes involved in photosynthesis are 

located in interstitial regions with low recombination rates. Similarly, the gene density 

distribution is not uniform along the chromosomes. The centromeric regions are 

known to have a low gene density which increased towards the distal ends. However, 

there were also gene-dense regions with suppressed recombination regions identified 

on barley chromosomes 2H (approx. 200–250 Mbp) and 5H (approx. 100–150 Mbp) 

(Muñoz-Amatriaín et al., 2015). A total of six HC and two LC genes were located in 
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the target region of 0.281 Mbp. According to the released consensus map, the gene 

density and recombination frequency in this region is relatively low 

(Muñoz-Amatriaín et al., 2015). 

6.3. Candidate genes for rym15 

The HC genes found within the fine-mapping interval of rym15, 

HORVU.MOREX.r3.6HG0573590 and HORVU.MOREX.r3.6HG0573610, encode 

for the non-structural maintenance-of-chromosome element 4 (NSE4) and a 

zinc-finger Cysteine3Histidine (CCCH) domain containing protein, respectively. Up 

to now, neither gene has been reported as resistance gene against BaMMV/BaYMV. 

In plants, NSE4 plays a role in DNA double strand break repair, meiotic synapsis and 

recombination (Zelkowski et al., 2019). It also preserves genome stability and 

controls seed development (Díaz et al., 2019). The second candidate gene belongs to 

the CCCH gene family and exhibits RNA binding and processing activity in animals 

and plants (Bai and Tolias, 1996; Wang et al., 2008). Moreover, zinc-finger CCCH 

domain containing proteins are reported to be involved in plant growth, development, 

and adaptive responses to the environment (Bogamuwa and Jang, 2014). 

Recently, a study provided a comprehensive characterization of barley CCCH 

transcription factors, their diversity and biological functions (Ai et al., 2022). In this 

study, a set of 53 protein-encoding CCCH genes was identified in barley, of which 

nine are located on chromosome 6H. In the target region of 0.281 Mbp, four 

zinc-finger domain containing proteins were identified. The second candidate gene 

(HORVU.MOREX.r3.6HG0573610) and another nearby located zinc-finger domain 

containing protein (HORVU.MOREX.r3.6HG0573620) are a pair of tandemly 

duplicated genes that cluster in the same clade of the phylogenetic tree (Ai et al., 

2022). Both have two zf-CCCH domains and one K homology (KH) domain. 

However, the characterized cis-acting regulatory elements in the promoter region of 

the two zinc-finger domain containing protein genes are different. In HC gene 

HORVU.MOREX.r3.6HG0573610, three GC-motifs (CCCCCG) were identified that 
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are involved in anoxic specific inducibility. These are absent in the duplicated gene 

HORVU.MOREX.r3.6HG0573620. Moreover, the subcellular localization prediction 

showed that the candidate gene HORVU.MOREX.r3.6HG0573610 is located in the 

nucleus, while the HORVU.MOREX.r3.6HG0573620 is located in the chloroplast (Ai 

et al., 2022). Nevertheless, in addition to the two candidate genes, the gene expression 

analysis of gene HORVU.MOREX.r3.6HG0573620 may be conducted to examine 

whether this gene also functions in BaMMV resistance, even though no functional 

SNP could be identified between resistant and susceptible genotypes. 

6.4. Outlook 

To conclude, the medium-resolution maps identified new flanking markers rym15_1 

and rym15_8. All markers showed the same order in two mapping populations and the 

barley reference assembly Morex v2 (Wang et al., 2021). By using the flanking 

markers rym15_1 and rym15_8, the high-resolution mapping populations were 

constructed and the target region was downsized to 11.3 Mbp and 0.281 Mbp in 

population I×C and C×U, respectively. In target region, a set of six HC and two LC 

genes was identified. Blast analysis revealed functional SNPs at two HC genes (Wang 

et al., 2022). Overall, the results obtained in the present study are the end point for 

mapping of the target locus rym15. The identified markers QBS146 and QBS148 may 

be used for MAS of the BaMMV resistance locus rym15. The segmental F4 

recombinant inbred lines (RILs) and sequence assembly data of Chikurin Ibaraki 1 

that were generated in the present study can also be used for map-based cloning of 

another BaYMV resistance gene derived from Chikurin Ibaraki 1, which is located on 

chromosome 5HS. Meanwhile, this work represents the starting point for gene 

identification of the target gene rym15. 

Usually the gene function has to be confirmed by complementation or mutant analysis 

once a candidate gene has been identified (Stein and Graner, 2005). Like the 

previously isolated BaMMV/BaYMV resistance genes rym4/5 (Kanyuka et al., 2005; 

Stein et al., 2005) and rym1/11 (Yang et al., 2014b), the target gene rym15 is also 
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recessively inherited. The full-length cDNA of candidate genes 

HORVU.MOREX.r3.6HG0573590 or HORVU.MOREX.r3.6HG0573610 from 

susceptible genotype Igri/Uschi could be transformed to resistant genotype Chikurin 

Ibaraki 1, resulting in transgenic plants which possess both an endogenous resistance 

allele and the putative susceptibility allele (present as the transgene). In addition, the 

project partner IPK, who has created new alleles of EIF4E gene (rym4) by Cas9 

endonuclease in Igri (Hoffie et al., 2021), is presently carrying out CRISPR-Cas9 

validation studies for two HC genes in the BaMMV-susceptible cultivar Golden 

Promise. To date, genome editing in barley has been mostly carried out in this 

genotype due to the superior transformation efficiency (Murray et al., 2004; Ibrahim 

et al., 2010; Lim et al., 2018) and the availability of the genome reference sequence 

(Schreiber et al., 2020; Jayakodi et al., 2020). Results from this ongoing work, based 

on the map-based medium-resolution and fine-mapping of  rym15 from  Chikurin

Ibaraki 1, are likely to lead to cloning of the causal gene for rym15 in the foreseeable 

future. 
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