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1. INTRODUCTION
Since the work of G. S. Jones [10] on the equation

(1) = —ay(t — D1 + y()] (1)

with real parameter «, several methods were developed to prove the existence
of periodic solutions of differential delay equations; see, for example, the
papers of Grafton [7], Nussbaum [l4, 15], Kaplan and Yorke [11-13], and
Chow [3]. Bifurcation from the trivial solution was studied, notably by Chafee

[2], Nussbaum [16-18], Cushing [6], and Chow and Mallet-Paret [4, 5].
We consider the equation

¥'(8) = —of (a(t — 1)) )

with parameter « > 0. We assume that f is a continuous real function defined
on R with property

(H) §f(€) > 0 for ¢ # 0, f bounded from below,
f differentiable at ¢ = 0, f'(0) = 1.

These equations generalize Eq. (1) in a certain sense: With regard to solutions
¥ > —1, Eq. (1) is equivalent to Eq. (2) with f(£) = ef — 1 by the trans-
formation x = log(1 + y).

In [16], Nussbaum showed that there is a continuum of (initial values ?f)
nontrivial periodic solutions of Eq. (2) which bifurcates from the trivial solution
at « = 7/2. The instability of the linear equation

#(1) = —aa(t — 1) 3

implies that for every o > n[2 there is a periodic solution of Eq. (2) which
belongs to the continuum. For o /2, the zero solution of Eq. (3) is stable—
see Theorem 5 in [20] and Chap. 4 in [1]. In this case, Nussbaum’s result
provides no information about nontrivial periodic solutions in the continuum-

In this paper we give sufficient conditions on the function fin Eq. (2) such



that the continuum given by Nussbaum’s result leaves the bifurcation point
at o =: /2 in the direction of decreasing o (Theorem 3). This means in particular
that there are equations of type (2) which have nontrivial periodic solutions
also in the case of asymptotically stable linearization « < #/2.

We shall derive Theorem 3 with the aid of Theorem 2, which is our central
result. Theorem 2 establishes a relation between the slope of the function of
on the right side of Eq. (2) and the amplitudes of periodic solutions. It will
be proved by a variant of a method invented by Kaplan and Yorke in order to
show the existence and certain stability properties of periodic solutions [12, 13].

In addition, Theorem 2 leads to global results on the location of the con-
tinuum of periodic solutions given by Nussbaum. Corollary 1 below permits
an application of this type to the well-studied example (1).

Theorem 3 does not apply to Eq. (1). Chow and Mallet-Paret who extended
the local theory of Hopf bifurcation to functional differential equations proved
that Hopf bifurcation to the right takes place if the parameter o in Eq. (1)
passes the critical value /2 [4]. Their work should also imply local results
similar to our Theorem 3. However, the technique of averaging, which is
used to determine the direction of Hopf bifurcation, requires additional
smoothness properties of the function f in Eq. (2).

2. REsULTS

We shall deal with a special kind of periodic solutions.

DeriNrTioN. A differentiable periodic function x: R — R with period
? > 0is said to be slowly oscillating if x has zeros 2, , 2, > #; such that 8" <0
in 2,2 4+ 1),0 <a’ in (% + 1,2+ 1)and & <0in (2, + 1, 5 + 2.

X

Z Z, 4 Zg Z o+ A L3P %

Ficure 1

Let C denote the Banach space of continuous functions ¢: [——‘1,0] — R
Wwith supremum-norm, and equip the set C x R* with the metric §(¢, ),
(‘/% B) 1l — ¢ + | « — Bl. We restate Nussbaum’s Theorem 2.1 in [16]

0 a slightly different way as



TaeoreM 1 (Nussbaum). Let f: R— R be a continuous function with
property (H). Then there exists a closed connected set P C C X R* with the
following properties:

(i) (0,7/2)e P, and for every « > w2 there is a function @& C with
(907 0‘) € P’
(i) ¢ # 0, (p,o)eP and a # 72,
(iii) if (p, )P and ¢ 5~ 0, then ¢ increases on [—1,0], ¢(—1) =0,
and @ is the restriction of a slowly oscillating periodic function x which satisfies
x'(t) = —of (x(t — 1)) on R.

Let us now look for conditions which guarantee that the pairs (p, a)eP
with « > /2 (or with a > /2 and ¢ # 0) have a certain distance from (0, ).
It turns out that it is sufficient to ensure that the amplitudes min x or max %
of the corresponding periodic solutions are bounded away from zero. As an
example, consider the function f = f; with fy(§) = ¢ for £ = —1, fi(§) = -1
for ¢ < —1. Then every solution x > —1 of Eq. (2) satisfies Eq. (3), which
has no slowly oscillating periodic solution for o > /2 (sec Theorem 5 and
Theorem 6 in [20]). Therefore, minx < —1 for every slowly oscillating
periodic solution of Eq. (2) with a > /2.

We may expect a similar behavior with vast amplitudes of periodic solutions
if the differential equation is more unstable than in the preceding example.
If we interpret Theorem 5 in [20] in the sense that the instability of the linear
equation (3) increases with «, then we should conjecture that Eq. (2) becomes
more unstable if the slope of the function g == of is increased. Concerning
the amplitudes of periodic solutions, we are led to

THEOREM 2. Let g: R— R be a continuous function with £g(€) >0 for
¢ 0. Assume that g is differentiable in an interval (a,b), a < 0 < b, with
g'(0) = n|2 and g'(€) > n[2 for ¢ +£ 0, a < & < b. It follows that the equation

§'(t) = —g(x(t — 1)) “
has no slowly oscillating periodic solution with x(R) C (a, b).

The example g = #/2 f; shows that the condition g'(£) > =/2 for § 0
cannot be weakened. We prove Theorem 2 in Section 3.

. I‘ HEOREM 3. Let f: R — R be a continuous function with property (H) which
is differentiable in an interval (—a, a), a > 0, with f'(§) = 1 for | §| < a

(1) Then there is a neighborhood U of (0, [2) in C X R' with o < |2 for
every pair (p, o) in the nonempty set (P 0 UN{(0, o) | o > O}

(i) If in addition f'(¢) > 1 for 0 < | ¢ | < a, then there is a neighborhood
U of (0,7/2) in C X R* with « < =|2 for every pair (@, «) in the nonempty
set (PN UN(0, ) | « > 0}
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Proof of Theorem 3. (i) Let (p, @) € P, 7/2 < o < 3. Then ¢ = x| [—1, 0]
with a slowly oscillating periodic solution x of Eq. (2). Theorem 2 for g = of
gives @ < max x = ¢(0) or x(%; + 1) = minx < —a < 0, since x is slowly
oscillating. @(0) = max ¥ < a and x(2; + 1) < —a imply

7,41 2 +1

—a e b ) —alm) = [ ¥ ds = —a f Fx(s — 1)) ds

2y

> —amaxf| [0, max ] = —3 maxf| [0, max x] = —3f(¢(0)),

since f* > 0 on [0, a). We infer the existence of § > 0 with || @] = ¢(0) > S
for every (p, o) € P with 7/2 < & < 3. Set U= {pe Cllloll <8 x {0, 3)}
Obviously, « <l mw/2 for every (p, )€ P N U. Theorem 1 implies that
(PN UN(O, o) | « > 0} is nonempty.

(i) As above, Theorem 2 yields the existence of § > 0 with | ¢ || > 8 for
Po)eP, n2 <a<2 @0 St Us={peCllel <8 x{0,2)} The

conclusion follows as in (i).

Now let us consider Eq. (1) which is equivalent to a simple population growth
model (see G. L. Hutchinson [8]). Theorem 2 yields upper bounds for the
(negative) minima of slowly oscillating periodic solutions.

CorROLLARY 1. For every slowly oscillating periodic solution y of Eq. (1) with
«>7[2, we have —1 < miny < 720 — 1.

Proof. Let v be such a solution. Theorem 1 in [20] gives y > —1. Set
¥i==log(y -+ 1). Then a'(f) == —a(er" " — 1). Our Theorem 2 with 4 : =
log /20, ;- oo, (&)1 ofef — 1) and a > 7/2 implies min x < log 203
hence, —] < miny < 720 — 1.

Corollary | may be used with the estimates of Jones [9] to describe the
location of the branch of slowly oscillating periodic solutions in C & R,
~ Because the result of Chow and Mallet-Paret on the direction of bifurcation

15 local, the problem of periodic solutions of Eq. (1) for a << #/2 remains open.



E. M. Wright’s Theorem 3 in [20] and the author’s Corollary 3 in [19] imply
that nonconstant periodic solutions are impossible for « in an open interval
(0, o) with 3/2 < oy < 7/2.

3

The proof of Theorem 2 is based on a technique used by Kaplan and Yorke
to prove the important Lemma 3.4 in [13]. Compare also [12]. In that lemma,
Kaplan and Yorke gave sufficient conditions such that the trajectories (¥, %)

and (y, y') in R? of two solutions x and y of a differential delay equation cannot
intersect.

Proof of Theorem 2. Assume that x is a slowly oscillating periodic solution
of Eq. (4) with period p such that x(R) C (a, b). We derive a contradiction.

Set I :== [z, 2, - p]. The trajectory X:I's ¢+ (x(2), x'(¢)) € R? is a simple
closed curve with (0, 0) ¢ X(I). There is a number ¢ > 0 such that the ellipse
E(c) :== {c(sin mt[2, m[2 cos mt[2) | 2 < t < 6} has a point in common with
X(I), while X(I)NE(c) = @ for 0 < ¢ <c. We have E(c) = Y([2,6])
for the trajectory Y: [2, 6] ¢+~ (3(2), ¥'(2)) € R? of the solution y: - ¢ sin wif2
of Eq. (3) with o« = #/2. Obviously, y is a slowly oscillating periodic function.

We may assume that there is a point § = (51, $2) € X(I) N E(c) with s, > 0

or with s, = 0 and s; > 0. The proof in the other case is the same, with some
signs reversed.

X(zy)

)

X+ N(3) Y(B) [ X(zy+ 1)

@)

Az
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We have X(t,) == S = Y(t,) with 2, + 1 <1, <2+ 1and 3 <f, <5
It will be sufficient to discuss the cases

(1) = -1 <t, <<z +2and

() 2 2<t, <2 + land X(2) ¢ E(c) for 2, + 1 <t <.

First, we have

@) x(t, —1) =0 = y(t, — 1) or ¥(t, — 1) < x(t, — 1) <O0.

Proof. x'(t,) =y'(t,) gives g(x(t, — 1)) = m/29(t, — 1). By 2, <1, — 1 < 2y,

#(t, — 1) -~ 0. Hence, x(t, — 1) =0 = y(t, — 1) or, by x(R)C(a,b) and
g€ - m2fora < ¢ <0,9(t, — 1) < x(t,— 1) <0.

(b) ~(z + 1) < y3) <O.

Proof. ¥'(z, + 1) =0 =»'(3) and »(3) < *(z + 1) <0 would imply
Xz, ~ 1)e E(¢') with 0 < ¢’ < c.

(€) By x(z,) = 0 and by 2’ > 0 on (%, -+ 1, 2], (b) implies the existence
of exactly one fe [z, -+ 1, z,) with x(f) = ¥(3).

% (%)

Y(3)

X(z+4)
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We have t, > 1

Proof. » 4 1 < t, < f gives x(t,) < x(f) = y(3) = min y | [3,.5] < ¥(ty),
2 contradiction. 1, = 1 gives ¥(t,) = x(ts) = &() = ¥(3) = miny | [2, 6],
therefore y/(2,) == 0; hence, &'(t;) = »'(t,) = 0, a contradiction to 2 + 1 <
h=1<uz,.

(d) We want to describe the fact that the trajectory X'is outside the trajectory
Y near S in terms of the second components ' and y". To this end we introduce
2 parameter transformation which equates the first components. Set p:=
*|(t,) and q:=y| (3, t,). Both functions map their interval of definition
onto the interval (x(f), %(ts)) = (¥(3), (t,)), with a positive derivative. There-



fore, T :== q~1op defines a mapping from (%, 1,) onto (3, ¢,) with derivative
T = &']y’ o T > 0 and with x(t) = y(T(t)) for f < t < t,.

We have &'(t) = ' (T(t)) for f <t < t,.

Proof. 0 < &'(t) <y(T()) and «x(¢) = w(T(t)) imply X(t)e E(c) with
0 < ¢’ < ¢, a contradiction.

(¢) The case (ii): First, we have t, — 1 = {.

G- X =Y ()
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Proof. By (a), a(f) = y(3) = min y |2, 4] < y(1, — 1) < a(t, — 1), and
the assertion follows from 2, + 1 <t,— | < s, and from " >0 on
(21 + 1, 25).

Therefore, T maps (f, — 1, 1,) onto an open interval (¢%,¢,) with #* = 3.
We have T'(¢) > [ fort, — | <t < 1,.

Proof. 0 < ¥(t) < y(T(t)) and x(t) — y(T(¢)) imply X(t)e E(c) with
0 < ¢" < ¢ which is impossible in case (ii) for 1€ (t, — 1,1,) C (% -+ L fa)
Hence, x'(7) = y(T(1)), T'(t) = «'(t)y'(T(2)) > 1.

We obtain a contradiction to (a):

te ty
- f/l Idt < f}

1

I,/
T(t) dt - f L dt =t,—t*

[*
yields t* <t~ 1 < f,0rt, — L T(t) with 1€ (1, — 1, ). Hence, (1, = 1) =
x(t) = x(t, — 1), a contradiction.

. N L, . sstimate
(f) The case (i). First we use the transformation 7" to derive an estimat
from the fact that X approaches Y near S from outside.



We have 3/(t,) = x'(t,) %0 in case (i), since 2+ 1 <1, <& +2 <
%+ 1. So T may be defined on (7, t, + ¢) for some ¢ > 0 in the same way
asin (d). We obtain T'(t,) = t,and T'(¢,) = 1, by T" = &’[y’ o T'and x'(t,) =
y(ty) = ¥'(T(ty)).

Consider the difference d:=&"— 3" o T. d(t,) = 0, (c) and ¢ < ¢, give
0> [d(t) — d(t)]/t — t.. Hence, 0> d'(t) = #"(t) — »"(T(t)) T'(t:) =
Y(t) — 3'(1,) = —g'(x(tz — 1)) &/(t, — 1) + m/29/(t, — 1). By &'(t, — 1) < 0
(since z; << 1, — 1 <<z, + 1) and by g'(x(t, — 1)) = #/2, we arrive at 0 >
¥lte — 1) = y'(t, — 1),

On the other hand, we can show y'(¢, — 1) > &'(¢t, — 1). This is obvious if
¥(t,— 1) = 0. Let ¥'(¢, — 1) < 0. Then 2 <t,— 1 < 3. By (a) and by
n<t,— 1 <z+1, y3) <yt,—1) <x(t,— 1) <0 =y2). Hence,
e, == 1) - y(t*¥) with 2 <t* <3. ¥ <0 on (2,3) and y(t,— 1) <
Mt, — 1) = p(t*) imply 2 < t* < t, — | < 3. By our special choice of the
comparison solution ¥, we infer y'(¢, — 1) > ¥'(z*).

In addition, y'(t*) > «'(t, — 1).

Proof. v'(t*) < &'(t, — 1) < 0 and p(t*) = x(t, — 1) yield A(f, — 1)e
E(e') with 0 < ¢’ < e

Y(t\/—«)

N T

=K,

FIGURE 6
With this last assertion, we obtain y'(t, — 1) > &'(¢, — 1), and the proof
of Theorem 2 is complete.
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