Kopplungsanalyse zur Identifizierung genetischer Defekte bei erblichem Strabismus

Inauguraldissertation

zur Erlangung des Grades eines Doktors der Medizin

des Fachbereichs Medizin

der Justus-Liebig-Universität Gießen

vorgelegt von

Pszola, Felix

aus Hagen, Westfalen

Gießen, 2017

Aus der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität Gießen

Direktorin Prof. Dr. med. Birgit Lorenz

Gutachter: PD Dr. Dipl-Biol. Markus Preising Gutachter: Prof. Dr. med. Ulrich Müller Tag der Disputation: 01.11.2017

Inhaltsverzeichnis

I	Ei	nleitung	1
	I.1	Definition des Strabismus	1
	I.2	Anatomische und physiologische Grundlagen	2
	I.3	Pathophysiologie des frühkindlichen Strabismus und Amblyopie	6
	I.4	Grundlagen der Genetik	8
	I.5	Genetik des Strabismus	11
	I.6	Zielsetzung	15
IJ	M	aterial und Methoden	17
	II.1	Material- und Gerätenachweis	17
	II.2	Kopplungsanalyse	18
	II.3	Sequenzierung	29
	II.4	Probanden	29
	II.5	Genotypisierung	30
I	I Eı	gebnisse	40
	III.1 Info	Erfassung der Stammbäume und Charakterisierung der Familien und der mationsgehalt	eren 40
	III.2	Bewertung des Informationsgehalts der Marker	48
	III.3	Kopplungsanalyse	51
	III.4 Aus [,]	Charakterisierung der Loci mit hoher Kopplungswahrscheinlichkeit wahl von Kandidatengenen zur Sequenzierung	und 75
	III.5	Sequenzierungen	79
Г	V D	iskussion	81
	IV.1	Bewertung der Methodik	81
	IV.2	Bewertung der Ergebnisse	84
	IV.3	Bewertung des Materials	87
	IV.4	Ausblick	90
V	Zu	usammenfassung	93

VI	Abs	stract					96
VII	Abl	kürzungsverzeic	hnis				98
VII	IAbl	oildungsverzeic	hnis				100
IX	Tab	ellenverzeichni	S				103
Х	Literaturverzeichnis 105						
XI	Anl	nang					114
X	II.1 Jeneł	Datendateien nunter im mlink	zur -Date	Berechnung	der	Kopplungswahrscheinlichkeiten	mit .114
Х	XI.2	Informationsge	ehalt o	der Marker in t	abella	nrischer Form	.126
Х	XI.3	Ergebnisse der 129	·Корр	olungsanalyse	der ei	nzelnen Familien in tabellarischer F	⁷ orm
Х	XI.4	Amplifikations	sprod	ukte der Mikro	satell	iten	.147
XII	Ehr	enwörtliche Erk	därun	g			162
XII	IDar	ıksagung					163

I Einleitung

I.1 Definition des Strabismus

Als Strabismus wird die Fehlstellung der Augen zueinander bezeichnet. Die Angaben zur Prävalenz variieren zwischen 2 - 4 und 5 - 7% der Bevölkerung. (Engle 2007; Kaufmann 2004)

Grundsätzlich lässt sich Strabismus in latentes Schielen, Heterophorie, und manifestes Schielen, Heterotropie, einteilen. Bei latenten Formen liegt ein muskuläres Ungleichgewicht vor, welches durch das zentrale Nervensystem kompensiert werden kann. Dies ist bei manifestem Schielen nicht mehr möglich. (Sachsenweger 2003)

Die Richtung des Abweichens der Sehachsen ist ein anderes Unterscheidungsmerkmal beim Strabismus. Man unterscheidet Abweichungen nach innen (Esotropie), Abweichungen nach außen (Exotropie) und Abweichungen in der vertikalen Ebene, Hyper- bzw. Hypotropie. Das "Collaborative Project of the National Institute of Neurological Disorders and Stroke" ermittelte eine Inzidenz von 3% für Esotropie und 1,2% für Exotropie unter 39.227 Kindern. (Chew 1994)

Als Strabismus incomitans oder Lähmungsschielen bezeichnet man Schielformen mit variablem, von der Blickrichtung abhängigem, Schielwinkel. Die Ursachen sind Lähmungen einzelner oder mehrerer Augenmuskeln. Das Lähmungsschielen macht etwa 5% aller Strabismusformen aus. (Engle 2007) Demgegenüber steht der Strabismus concomitans, eine heterogene Gruppe von Erkrankungen, bei welchen der Schielwinkel in allen Blickrichtungen ungefähr gleich bleibt. Hierzu zählen mit 75 – 95 % die meisten Schielformen. (Engle 2007; Sachsenweger 2003; Wright 2003)

Des Weiteren unterscheidet man den angeborenen bzw. frühkindlichen Strabismus vom in höherem Lebensalter erworbenen Strabismus.

Die häufigste Form des Strabismus concomitans ist mit ca. 80 - 90% die primäre kongenitale Esotropie, das frühkindliche Schielsyndrom, welches angeboren oder in den ersten sechs Lebensmonaten erworben sein kann. (Sachsenweger 2003; Wright 2003) Weitere Formen sind Exotropie, Hypertropie, Mikrostrabismus und das primäre Monofixations-Syndrom. (Engle 2007)

I.2 Anatomische und physiologische Grundlagen

Als Orbita wird die von mehreren Knochen begrenzte Augenhöhle bezeichnet, welche dem Bulbus oculi, sowie den äußeren Augenmuskeln und Leitungsbahnen Raum bietet und die Augenbewegung im Zusammenspiel mit bindegewebigen Strukturen sichert. (Sachsenweger 2003; Drenckhahn 2003)

Die äußeren Augenmuskeln gehen aus den mesenchymalen Verdichtungen nahe der Augenanlage hervor, die ihrerseits dem prächordalen Mesoderm entspringen. Sie steuern die Bewegungen des Auges. Man unterscheidet vier gerade Mm. recti und zwei schräge Mm. obliqui. Die Mm. recti entspringen gemeinsam vom Anulus tendineus communis (*Zinni*) und verlaufen unter Bildung eines Muskeltrichters bis zu ihrem jeweiligen Ansatz vor dem Bulbusäquator. (Drenckhahn 2003)

Muskel	Hauptfunktion	Nebenfunktion	Innervation
M. rectus	Adduktion	Keine	N. oculomotorius
medialis			(III), Ramus
			superior
M. rectus	Elevation	Adduktion u.	N. oculomotorius
superior		Innenrotation	(III), Ramus
			superior
M. rectus	Depression	Adduktion und	N. oculomotorius
inferior		Außenrotation	(III), Ramus inferior
M. obliquus	Elevation	Außenrotation und	N. oculomotorius,
inferior		geringe Abduktion	Ramus inferior
M. obliquus	Depression	Innenrotation und	N. trochlearis (IV)
superior		geringe Abduktion	
M. rectus	Abduktion	Keine	N. abducens (VI)
lateralis			

Tabelle 1: Funktion extraokulärer Muskeln

Innerviert werden sie vom N. oculomotorius (Mm. recti mediales, inferiores, superiores), sowie vom N. abducens (M. rectus lateralis) (siehe Tabelle 1). Der schräge M. obliquus superior entspringt am Oberrand des Anulus tendineus communis, verläuft versetzt oberhalb des M. rectus medialis und geht vor der Trochlea, einem sehnig-knorpeligen Ring, in seine Endsehne über, wird dort umgelenkt und inseriert am posterioren Teil des Bulbus. Innerviert wird er vom N. trochlearis. Der M. obliquus inferior entspringt medial am Rand des Os lacrimale, verläuft unterhalb des Bulbus parallel zum Verlauf der Endsehne des M. obliquus superior nach lateral und inseriert dort posterior und caudal der Ansatzstelle des M. rectus lateralis. (Drenckhahn 2003)

Abbildung 1: Wirkungsweise der äußeren Augenmuskeln um die drei Hauptachsen. (Drenckhahn 2003)

Die Muskeln bestehen aus 20.000 – 30.000 Muskelfasern, die sich zu etwa gleichen Teilen auf das innere Stratum bulbare und das äußere Stratum orbitale verteilen. Eine muskuläre Einheit besteht aus 20 – 100 Muskelfasern, was nur etwa einem Zehntel bis Fünfzigstel der Anzahl der skelettmuskulären Einheiten entspricht. Die Zusammensetzung der Muskeln besteht aus einem relativ hohen Anteil von Tonusfasern und einer Vielzahl unterschiedlicher Formen schneller und langsamer Zuckungsfasern, unter denen sich eine spezielle Form der schnellen ermüdbaren Fasern befindet, welche sich durch das superschnelle, extraokuläre Myosin und dessen schwere Myosin-Kette, codiert durch das MYH13-Gen auf Chromosom 17, auszeichnet. Immunhistochemische Untersuchungen zeigten das Verteilungsmuster dieses speziellen extraokulären Myosins in der Nähe der zentralen Innervationsstellen. (Briggs 2002) Die extraokulären Muskeln besitzen die größte Diversität an Fasern aller Säugetiermuskeln. Dadurch sind sowohl schnelle sakkadenförmige Augeneinstellbewegungen, als auch langes Fixieren eines Punktes möglich. (Drenckhahn 2003; Netter 2006) Diese Vielzahl unterschiedlicher Fasertypen innerhalb der extraokulären Muskulatur kann durch spezifische Expression von 400 Genen im Vergeich zu anderen Skelettmuskeltypen erklärt werden. (Porter 2001)

Das orbitale Gurtungssystem, bestehend aus den Retinacula musculorum und den Lacerti musculorum, sichert die ungehinderte Beweglichkeit des Bulbus, beispielsweise vor Retraktion, die sonst durch Kontraktion der Mm. recti hervorgerufen würde. Das Netzwerk aus Retinacula und Lacerti musculorum enthält neben viel kollagenem auch elastisches Bindegewebe, sowie glattmuskuläre Anteile. Auch streben Anteile des M. orbitalis, sowie ein besonderes elastisch-muskulöses Band, das *Lockwood*-Ligament, in das untere Geflecht mit ein. Die bindegewebige Führung sichert so die muskuläre Bewegung in verschiedenen Bulbusstellungen und bietet dem Auge Schutz vor Vibrationen. (Drenckhahn 2003; Netter 2006)

Die Ausführung von Augeneinstellbewegungen erfolgt über die Augenmuskelkerne im Mittelhirn. Diesen vorgelagert sind Kerne im Stamm- und Mittelhirn. Dazu fließen Informationen aus der Sehbahn über die Collicoli superiores und Informationen zur Kopfbewegung aus den Vestibulariskernen mit ein. Das occipitale Sehzentrum liefert die Impulse für reflektorische Augenbewegungen. Bewusste Bewegungsinitiierung erfolgt durch Anteile des Frontalhirns. Die Länge, bzw. Stärke der Augeneinstellbewegungen wird durch das Kleinhirn bestimmt. Das komplexe Zusammenspiel dieser Zentren ermöglicht die Koordination der Augenbewegungen. (Trepel 2008; Silbernagl 2012)

Abbildung 2: Horopter, modifiziert nach Zenz (Zenz, 2015)

Fixation ist das Einstellen des beobachteten Objekts von der peripheren Retina auf das Zentrum des schärfsten Sehens (Fovea centralis) durch ruckartige Augenbewegungen (Sakkaden). Durch langsame Augenbewegungen wird die Fovea einem sich bewegenden Objekt nachgeführt.

Aufgrund horizontaler Unterschiede der von den beiden Augen gelieferten Bilder mit zentralnervöser Fusion der Einzelbilder durch das Sehzentrum kommt es zu einem dreidimensionalen Bild mit Tiefenwahrnehmung. Dieses binokulare Sehen bezeichnet man als Stereoskopie. (Trepel 2008)

Mit dem Modell des Horopterkreises lässt sich die binokulare Tiefenwahrnehmung veranschaulichen: Ein Kreis verläuft durch die beiden Knotenpunkte innerhalb der Linsen

sowie den gemeinsamen Fixationspunkt (siehe Abbildung 2: Horopter). Fixiert wird hier der Punkt 3, die anderen Punkte stellen beliebige Punkte auf dem Horopter dar. Objekte auf dem Horopterkreis treffen auf korrespondierende Netzhautstellen, Objekte außerhalb treffen auf querdisparate Netzhautstellen und erzeugen unbewusste Doppelbilder. Der Radius des Kreises variiert mit der Nähe des Fixationspunktes. Dinge werden als näher im Vergleich zum Horopter empfunden, wenn die horizontale Abweichung auf der Netzhaut nach temporal gerichtet ist. Auf diese Weise entsteht binokulare Tiefenwahrnehmung. (Sachsenweger 2003; Silbernagl 2012)

I.3 Pathophysiologie des frühkindlichen Strabismus und Amblyopie

Historisch besteht eine kontroverse Diskussion über den Bezug des frühkindlichen Schielens zur Entwicklung zentralnervöser Sehwahrnehmung und Stereoskopie. Nach der Worth-Theorie ist die Ursache für das Entstehen der kongenitalen Esotropie eine angeborene Fehlfunktion der kortikalen Fusion und hat dementsprechend eine schlechte Prognose. Die Chavasse-Theorie dagegen sieht die Ursache für eine Störung der kortikalen Fusion in einem motorischen Ungleichgewicht der Augenmuskeln durch das frühkindliche Schielen. Nach dessen Therapie sei eine vollständige Entwicklung des binokularen Sehens und Stereoskopie möglich. (Wright 2003) Klinischen Erfahrungen nach ist stereoskopisches Sehen nach Behandlung des Strabismus in Abhängigkeit vom Alter zum Zeitpunkt der Diagnosestellung möglich. Stereoskopisches Sehen entwickelt sich in den ersten Lebensjahren. Liegt in diesem Zeitraum, insbesondere im ersten Lebensjahr, eine Störung vor, führt dies zu einer irreversiblen funktionellen Sehschwäche (Amblyopie). (Sachsenweger 2003) Beim Strabismus liegen die fixierten Objekte nicht auf korrespondierenden Netzhautstellen, eine binokulare Tiefenwahrnehmung ist somit nicht möglich und es entstehen Doppelbilder. Eine Ausnahme bildet der Mikrostrabismus, bei welchem eine anomale Netzhautkorrespondenz vorliegt. Doppelbilder werden so vermieden und es resultiert stereoskopisches Sehen mit reduziertem Visus. (Sachsenweger 2003) Tierversuche an Makaken haben mittels histochemischer Untersuchungstechniken gezeigt, dass von Strabismus betroffene Tiere mit unilateraler Amblyopie im Vergleich zur Kontrollgruppe ein Defizit im Stoffwechsel der für die Tiefenwahrnehmung verantwortlichen Areale des primären visuellen Kortex haben. Die Gewebeanteile des primären visuellen Kortex (die okulären Dominanzsäulen) des nichtdominanten (amblyopen) Auges zeigten anhand der histochemisch markierten Mitochondrien eine niedrigere Stoffwechselaktivität als die Gewebeanteile des dominanten (nicht amblyopen) Auges. (Wong 2005)

Heutzutage bestreitet niemand mehr den Einfluss des frühkindlichen Strabismus auf die Entwicklung des stereoskopischen Sehens und den Einfluss auf die Entstehung einer Amblyopie, jedoch bleibt die Ursache des kongenitalen Strabismus noch immer unklar.

Eine Vielzahl an Studien beschäftigt sich mit den Risikofaktoren. Die im Rahmen eines systematischen Reviews durchgeführte Auswertung von insgesamt 41 Risiko- und Umweltfaktorstudien sowie Familien- und Zwillingsstudien konnte einen signifikanten Einfluss verschiedener Faktoren auf die Entstehung von Strabismus concomitans belegen. Hierbei erwiesen sich die Heterogenität der Erkrankung und der erfassten Kollektive sowie die unterschiedlichen Studiendesigns als Hindernisse für den Vergleich. Durch multiple Studien gestützt werden die Faktoren: Refraktionsanomalien, Zigarettenrauchen während der Schwangerschaft, Frühgeborenenretinopathie, geringes Geburtsgewicht und familiäre Disposition. (Maconachie 2013) Eine Studie beschreibt höheres mütterliches Alter als disponierend für frühkindliche Esotropie. (Chew 1994)

Der Einfluss einer Hyperopie aufgrund des akkomodativen Strabismus auf die Entstehung einer frühkindlichen Esotropie ist häufig beschrieben und wird seit über 100 Jahren kontrovers diskutiert. (Snellen 1913) Im Rahmen der Auswertung multipler Studien zeigte sich ein signifikanter Einfluss. (Maconachie 2013) Dabei ist eine geringe Hyperopie von < 3dpt disponierender als eine ausgeprägte Hyperopie. (Birch 2005) Nicht berücksichtigt wurde in o.g. Review die Studie der Arbeitsgruppe um Sanfilippo von 2012. Diese groß angelegte Zwillingsstudie mit 1.462 Zwillingspaaren konnte einen signifikanten Zusammenhang von Refraktionsanomalien und Esotropie nicht bestätigen. (Sanfilippo 2012) Heutzutage ist die zeitnahe Korrektur einer Hyperopie erste Maßnahme bei Vorliegen einer frühkindlichen Esotropie. (Sachsenweger 2003)

Wenige Studien beschäftigen sich mit feingeweblichen oder anderweitig morphologisch greifbaren Korrelaten der Erkrankung im Bereich der extraokulären Muskulatur oder des orbitalen Bindegewebes. Die Arbeitsgruppe um Demer führte feingewebliche Untersuchungen der extraokulären Muskulatur, gewonnen bei Korrekturoperationen, durch. Es konnte jedoch bisher kein konstantes pathologisches Muster gefunden werden. Diskutiert wird die Anzahl und Länge der Sarkomere. (Lorenz 2010) Demer und Kollegen beschreiben allerdings nach Auswertung von MRT-Untersuchungen in einer Folgestudie einen signifikanten Zusammenhang morphologischer Veränderungen des orbitalen Bindegewebes und kongenitalem Strabismus. (Demer 2014) Nur bei fehlerfreiem Zusammenspiel der unterschiedlichen Gewebearten ist eine aufeinander abgestimmte Augenbewegung möglich. (Ye 2014; Altick 2012)

Die familiäre Disposition für Strabismus concomitans wird schon seit Jahrhunderten beobachtet und ist durch o.g. Studien belegt. Die genetischen Ursachen sind jedoch aktuell noch immer weitgehend unverstanden. (Engle 2007; Elias 2001; Lorenz 2012; Preising 2015)

I.4 Grundlagen der Genetik

Als Genom bezeichnet man die Gesamtheit der erblichen Informationen. Der kodierende Anteil des Genoms (Gene), aus welchem biologisch aktive Ribonukleinsäure (RNS) transkribiert wird, ist relativ klein. Innerhalb der Gene unterscheidet man kodierende Sequenzen, die Exone, von den nichtkodierenden Intronen. Des Weiteren sind weite Teile des Genoms zwischen den Genen aus repetitiven Sequenzen zusammengesetzt, welche ohne biologische Funktion sind. (Alberts 2007)

Beim Menschen liegt die Erbsubstanz Desoxyribonukleinsäure (DNS) zum größten Teil innerhalb des Zellkerns der Körperzellen in Form von 22 geschlechtsunabhängigen Chromosomen und einem geschlechtsabhängigen Chromosom vor. Man spricht von haploiden Zellen, wenn sie über einen einfachen Chromosomensatz von 23 Chromosomen verfügen, wie es beim Menschen bei den Keimzellen, den Spermien und Eizellen, der Fall ist. Alle anderen zellkernhaltigen Zellen verfügen über einen doppelten Chromosomensatz und werden als diploid bezeichnet. Die gleichen Loci auf den beiden Schwesterchromosomen bezeichnet man als Allele. Damit können sowohl die beiden Genkopien bezeichnet sein, als auch die Sequenzen an einem definierten Ort auf dem Schwesterchromosom, oder die Variationen eines genetischen Markers. In diploiden Zellen kann der entsprechende Abschnitt beider Chromosomensätze gleich sein, was als homozygot bezeichnet wird, oder unterschiedlich, was als heterozygot bezeichnet wird.

Ein kleinerer Teil des menschlichen Erbguts findet sich zusätzlich in den Mitochondrien. Die im Zytoplasma der Zellen vorhandenen Organellen enthalten ringförmige DNS, die mit der von Bakterien verwandt ist. (Alberts 2007; Strachan 2005) Es werden bei Säugetieren insgesamt 13 Proteine kodiert. (Jansen 2000) Mitochondriale Merkmale werden ausschließlich maternal vererbt. Im Gegensatz zur X-chromosomalen Vererbung geben Männer das Merkmal niemals weiter. (Lorenz 2012; Strachan 2005)

Die Mitose dient der Kernteilung und damit der Vorbereitung der Zellteilung. Diese ist nötig zur Zellvermehrung im Rahmen des Körperwachstums sowie dem Austausch alter oder funktionsgeschädigter Zellen. Während der Mitose durchläuft die Zelle verschiedene Phasen, welche mit der Zellteilung enden. Mütterliche und väterliche homologe Chromosomen tauschen dabei keine genetischen Informationen aus. Es werden daher Tochterzellen erzeugt, die über die gleiche genetische Information verfügen wie die Mutterzellen. (Strachan 2005)

Als Meiose bezeichnet man zwei aufeinanderfolgende Zellteilungen spezialisierter diploider Zellen mit nur einer DNS-Replikation. Resultat dieser Keimbahn sind daher bei männlichen Individuen vier haploide Spermatozoen und bei weiblichen Individuen, aufgrund einer asymmetrischen ersten Zellteilung, eine reife Eizelle und drei kleine Polkörperchen. Diese Zellen enthalten voneinander unterschiedliches genetisches Material, was auf zwei Mechanismen der ersten Zellteilung, der Meiose I, zurückzuführen ist. Nach einer Paarung der homologen elterlichen Chromosomen gelangen diese unabhängig voneinander in die Tochterzellen. Es geschieht auf diese Weise eine zufällige Durchmischung der elterlichen Chromosomen. Des Weiteren kommt es zur Rekombination. Bei den gepaarten homologen elterlichen Chromosomen entstehen in verschiedenen Abschnitten Strangbrüche und anschließende wechselseitige Wiederverknüpfungen, Crossovers. Entscheidend für die Rekombinationen sind die sog. Chiasmata, die physikalische Verbindungsstellen sind und die erforderliche Nähe zwischen den homologen Strangenden herstellen. (Strachan 2005)

Im Gegensatz zu den meisten Merkmalen des Menschen, welche für ihre Expression auf eine große Anzahl von Genen und äußeren Faktoren angewiesen sind, spricht man von einem monogenen oder mendelnden Merkmal, wenn ein einziger Genlocus sowohl erforderlich und gleichzeitig ausreichend für die Expression eines Phänotyps ist. Mendelsche Erbgänge treten nur bei paarig vorhandenen Chromosomen auf. (Lorenz 2012; Strachan 2005)

Dabei bezeichnet man ein Merkmal als autosomal dominant, wenn es sich in einem Lebewesen manifestiert, welches für den entsprechenden Locus heterozygot ist, d.h. unterschiedliche Allele in den beiden Chromosomensätzen aufweist. Weist ein Elternteil das Merkmal auf, so beträgt die Wahrscheinlichkeit für ein Kind 50% das Merkmal zu erben unter der Voraussetzung, dass das Elternteil heterozygot ist. (Lorenz 2012; Strachan 2005)

Als autosomal rezessiv wird ein Merkmal bezeichnet, wenn es sich nur in einem homozygoten Lebewesen mit gleichen Allelen in den beiden Chromosomensätzen manifestiert oder bei Vorliegen einer Compound-Heterozygotie. Bei letzterer sind unterschiedliche Mutationen in den beiden Allelen für das Auftreten des Merkmals verantwortlich. Meistens sind die Eltern eines Betroffenen symptomfreie Überträger. Die Wahrscheinlichkeit für nicht betroffene Eltern ein betroffenes Kind zur Welt zu bringen beträgt 25% wenn beide Eltern heterozygot sind. (Lorenz 2012; Strachan 2005)

Liegt der Genort eines Merkmals auf dem X-Chromosom kommt es zur Xchromosomalen Vererbung. Bei einem X-chromosomal rezessiven Erbgang sind fast ausschließlich Männer betroffen. Frauen können ebenfalls betroffen sein, wenn der Vater Merkmalsträger und die Mutter Überträgerin (Konduktorin) ist. (Lorenz 2012) Der Xchromosomal dominante Erbgang betrifft Frauen häufiger als Männer, eine Erkrankung verläuft bei Frauen jedoch milder. (Strachan 2005)

Im Gegensatz dazu ist bei einer Y-chromosomalen Vererbung immer der Vater eines Betroffenen betroffen und jeder Sohn erbt das Merkmal. (Strachan 2005)

Als polygene Merkmale bezeichnet werden Merkmale, welche für ihre Ausbildung ein Zusammenspiel mehrerer Gene erfordern. Der einfachste Fall ist die digene Vererbung, bei der Mutationen zweier Gene ursächlich sind. Falconers Polygentheorie diskontinuierlicher Merkmale definiert eine stufenlos vorhandene Anfälligkeit für ein dichotomes Merkmal, welches polygen determiniert ist und sich in der Bevölkerung normalverteilt. Wird ein Schwellenwert überschritten, so entwickelt sich das Merkmal. (Falconer 1996; Strachan 2005; Lorenz 2012)

– – Verteilung bei den Geschwistern von Erkrankten

Abbildung 3: Polygenes Schwellenmodell für dichotome mendelnde Merkmale nach Falconer (1996)

Man spricht von multifaktorieller Vererbung, wenn sowohl genetische als auch exogene Faktoren als ursächlich für das Auftreten eines Merkmals angesehen werden. Zwar wird für eine Vielzahl von Krankheiten eine multifaktorielle Genese angenommen, jedoch steht die Erforschung aufgrund der komplexen Zusammenhänge noch am Anfang. (Lorenz 2012)

I.5 Genetik des Strabismus

Genetisch weitgehend verstanden sind die Formen des Strabismus incomitans. Sie sind assoziiert mit syndromalen Krankheiten wie dem Duane-Syndrom, kongenitaler Fibrosesyndrome der extraokulären Muskeln und anderer Syndrome, welche unter dem Begriff der "Congenital Cranial Dysinnervation Disorders" zusammengefasst werden. (Engle 2007; Wright 2003) Diese Formen des Strabismus vererben sich nach den mendelschen Gesetzen und konnten mit Mutationen verschiedener Gene, die für die Entwicklung der Motoneuronen der extraokulären Muskulatur wichtig sind, assoziiert werden. (Michaelides 2004) Auch unter den vielfältigen klinischen Manifestationen der Mitochondriopathien wie dem Kearns-Sayre Syndrom finden sich Formen des Strabismus incomitans. Hier sind Deletionen in der mitochondrialen DNS krankheitsverursachend. (Engle 2007)

Dem gegenüber steht der Strabismus concomitans. Die genetischen Grundlagen sind hier weitgehend unverstanden. (Engle 2007; Maconachie 2013; Michaelides 2004) Dabei konnte ein genetischer Einfluss nachgewiesen werden:

Große Familienstudien, bei welchen Familien mit mindestens einem Betroffenen eingeschlossen wurden, zeigten Inzidenzen zwischen 15% und 65%. Zu berücksichtigen ist dabei jedoch der unterschiedlich nahe Grad der Verwandtschaft. (Maconachie 2013) Bei einer der Studien lagen Informationen über die klinische Entität vor: 80% der Betroffenen zeigten eine esotrope Form des Strabismus concomitans. (Dufier 1979) Diese und andere Studien zeigten keine Hinweise für eine autosomal dominante oder rezessive Erblichkeit der Erkrankung. Auch andere Erbgänge, wie X-chromosomale Vererbung, lassen sich auf die Ergebnisse nicht anwenden. (Maconachie 2013) Für Verwandte 1. Grades von Betroffenen ist das Risiko an Strabismus zu erkranken um den Faktor 3 erhöht. (Chew 1994) Allgemein wird von einem relativen Risiko des Faktors 3 – 5 für alle Formen des kongenitalen Strabismus concomitans ausgegangen. (Engle 2007)

Im Rahmen der Rekrutierung geeigneter Familien für die vorliegende Kopplungsanalyse konnte eine Studie diese Zahlen präzisieren. Krankenblätter aus dem Archiv der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität aus den Jahren 2001 bis Juli 2008 wurden im Hinblick auf Indexfamilien ausgewertet, in welchen mindestens zwei Mitglieder Formen des primären Strabismus aufweisen. Es zeigten sich insgesamt 20.813 Patienten mit primärem Strabismus. Unter diesen fanden sich 2.380 Fälle mit einer positiven Familienanamnese (11,4%). Als häufigste Schielformen zeigten sich mit 66,9% die Esotropie, gefolgte von der Exotropie mit 20,9%. (Preising 2015)

Kleine Zwillingsstudien mit Kohortengrößen bis 39 Probanden legen eine signifikante genetische Beteiligung an der multifaktoriellen Pathogenese nah. Dabei konnte man bei monozygoten Zwillingen (MZ) eine Konkordanz für Strabismus concomitans von 14 - 91% und bei dizygoten Zwillingen (DZ) von 22 - 60% belegen. (Maconachie 2013)

Eine groß angelegte Zwillingsstudie untersuchte den genetischen Einfluss für Esound Exo-Deviationen. Dabei zeigten sich für Eso-Deviationen Korrelationen zwischen monozygoten Zwillingen von 64% und zwischen dizygoten Zwillingen von 33%, wohingegen für Exo-Deviationen jeweils fast identische Werte von 55% (MZ) und 53% (DZ) gezeigt werden konnten. Es wird daher auf einen signifikanten genetischen Einfluss für esophore und esotrope Formen des Strabismus concomitans geschlossen. (Sanfilippo 2012) Dieses Ergebnis wird durch die Ergebnisse von Preising gestützt. Es zeigte sich eine signifikante Erblichkeit der esotropen Formen, jedoch keine signifikante Erblichkeit der exotropen Formen. (Preising 2015) Anhand dieser Ergebnisse stellt sich die Frage, weshalb Exo-Deviationen zwar familiär gehäuft auftreten, jedoch keine wesentliche genetische Komponente zu haben scheinen. Diesbezüglich lassen sich Umweltfaktoren als prädisponierend für die Entstehung von Exo-Deviationen lediglich vermuten.

Die Erblichkeit ist von der untersuchten Population abhängig. So zeigt sich innerhalb der weißen Bevölkerung eine Prävalenz von 2 - 4%, innerhalb der afrikanischen und asiatischen Bevölkerung jedoch nur 0,6%. (Gover 1944; Nordloew 1964; Molnar 1967)

Die genannten Zwillings- und Familienstudien belegen den Einfluss der Erblichkeit, v.a. der Eso-Form des Strabismus concomitans, wobei der Erbgang bislang unklar bleibt. Sie widerlegen des Weiteren einen einfachen, den mendelschen Gesetzen folgenden, monogenen, Erbgang. Das gehäufte Auftreten von Strabismus concomitans in betroffenen Familien lässt eine multifaktorielle Genese annehmen. Genetisch lässt sich die Erblichkeit entweder durch ein di-, bzw. polygenes Modell oder durch ein monogenes Modell mit variabler Expressivität erklären. (Engle 2007; Lorenz 2012; Preising 2002) Variable Expressivität äußert sich in dem gehäuften Auftreten von primärer Monofixation bei Eltern von Kindern mit kongenitaler Esotropie. (Scott 1994)

Für die Identifizierung krankheitsverursachender Genloci komplexer Krankheiten eignen sich Assoziationsstudien in großen Kollektiven. Bezüglich des Strabismus concomitans stellt sich jedoch die Auswahl von Probanden u.a. aufgrund der Vielzahl an klinisch ähnlichen Strabismusformen als schwierig dar. Wichtig ist jedoch die Homogenität des Kollektivs, da sonst eine Aussage über gemeinsame genetische Ursachen nicht möglich ist. (Lorenz 2012; Preising 2002)

Die genetische Homogenität ist bei der Durchführung von Kopplungsanalysen betroffener Familien gegeben. Ausnahmen bilden große Stammbäume mit parallelen Zweigen, bei denen eine unterschiedliche genetische Ursache für die Ausprägung eines gleichen oder ähnlichen Merkmals denkbar wäre. (Preising 2015) Die bisher durchgeführten Kopplungsanalysen unterschieden z.T. nicht zwischen den Formen des Strabismus concomitans, d.h. es wurden sowohl esotrope als auch exotrope Formen eingeschlossen. Nach bisherigem Forschungsstand und gestützt durch die Ergebnisse von Preising ist eine gemeinsame genetische Grundlage für Exotropie und Esotropie, die gemeinsam mit bestimmten Umweltfaktoren oder anderen genetischen Faktoren die Schielform definiert, denkbar. Möglich ist jedoch auch, dass unterschiedliche genetische Ursachen die Ausprägung der esotropen oder exotropen Formen bestimmen. (Preising 2015)

Bisher durchgeführte genomweite Kopplungsanalysen konnten noch keinen Locus zweifelsfrei identifizieren:

In einer der Studien konnte im Jahr 2003 eine Kopplung mit einem LOD-Score von 4,51 bei einer Familie an den STBMS1-Locus auf Chromosom 7p für einen rezessiven Erbgang gezeigt werden, die jedoch bei den sechs in der Studie ebenfalls analysierten Familien ausgeschlossen wurde. Einschlusskriterium war nichtsyndromaler, familiärer Strabismus. Es wurde nicht zwischen Eso- und Exo-Deviationen unterschieden. (Parikh 2003)

Eine im selben Jahr erschienene ebenfalls genomweite Studie führte ausschließlich nichtparametrische sib-pair-Analysen und nichtparametrische Kopplungsanalysen für 30 Stammbäume durch. Auch hier war das Einschlusskriterium nicht-syndromaler, familiärer Strabismus. Zwischen Eso- und Exo-Deviationen wurde nicht unterschieden. Auf eine klinische Stratifizierung wurde Zugunsten eines größeren Kollektivs verzichtet, da sich in anderen Studien gezeigt hatte, dass eine Unterscheidung zwischen Eso- und Exo-Deviationen zu keiner Steigerung der Teststärke führt. (Leal 2000) Die untersuchten Stammbäume beschränkten sich dabei auf zwei Generationen. Die erreichten Ergebnisse zeigten in der Kopplungsanalyse mehrere nicht-signifikante Kopplungen auf mehreren Chromosomen und keine signifikanten Ergebnisse für die sibpair-Analyse. Aufgrund der geringen Größe der analysierten Stammbäume wurde die Teststärke der Studie als zu gering bewertet. (Fujiwara 2003)

Der einzige signifikante, zuvor von der Arbeitsgruppe um Parikh (2003) beschriebene, Locus, STBMS1, wurde 2009 Gegenstand einer weiteren Kopplungsanalyse. Rekrutiert werden konnten Proben von zwölf Familien mit Fällen von primärer Esotropie. Es zeigte sich für eine von zwölf untersuchten Familien eine Kopplung im Bereich des STBMS1-Locus für einen dominanten Erbgang (LOD = 3,21). Für drei Familien konnte diese Kopplung ausgeschlossen werden, die anderen acht waren nicht informativ. (Rice 2009)

2011 erfolgte eine weitere genomweite Kopplungsanalyse unter Verwendung von 10.000 Einzelnukleotid-Markern und Einschluss von insgesamt drei Kindern mit nichtsyndromaler Esotropie, sowie einem Kind mit esotropem Duane Syndrom. Es fanden sich signifikante Kopplungsergebnisse auf dem kurzen Arm von Chromosom 3 (3p26.3 – 3p26.2, LOD = 3,18) und auf dem langen Arm von Chromosom 6 (6q24.2 – 6q25.1, LOD = 3,25). Nach Ausschluss des von Duane-Syndrom betroffenen Kindes zeigten sich nichtsignifikante Peaks (LOD = 2,00 und LOD = 2,32). Die Autoren schlossen aus ihren Ergebnissen auf ein "Allelsharing" der genannten Loci von frühkindlicher Esotropie und Duane-Syndrom. (Khan 2011)

Einen anderen Weg schlug die Arbeitsgruppe um Altick 2012 ein, indem Unterschiede in der Genexpression extraokulärer Muskeln zwischen Strabismus-Betroffenen und nicht Betroffenen untersucht wurden. Muskelproben von Kindern mit kongenitalem horizontalem Strabismus sowie Proben verstorbener Organspender wurden per quantitativer PCR in Microarrays analysiert. Auf diese Weise konnten 604 Gene mit signifikant veränderter Expression gefunden werden. Eine erhöhte Expressivität wiesen dabei v.a. Gene mit funktionellem Bezug zur extrazellulären Matrix auf, eine reduzierte Expressivität wiesen Gene mit funktionellem Bezug zur Kontraktilität auf. Konkret wurden 22 von 87 skelettmuskelspezifischen Genen bezüglich ihrer Expressivität als reduziert, keines aber als erhöht beschrieben. Die Regulation der Expressivität entsprechender Gene habe einen direkten Einfluss auf die Pathogenese des Strabismus. (Altick 2012) Denkbar wäre jedoch auch, dass die veränderte Expressivität der beschriebenen Gene Resultat des Strabismus ist und nicht, wie von Altick und Kollegen postuliert, die Ursache des Strabismus.

I.6 Zielsetzung

Stammbäume größerer Familien ermöglichen die Durchführung von Kopplungsanalysen, um die Gene komplexer genetischer Erkrankungen zu identifizieren. (Lorenz 2012) In dieser Arbeit wurden 7 Familien mit nicht syndromalem familiärem Strabismus auf mögliche Kopplung an Loci auf den Chromosomen 3, 7 und 18 untersucht, an denen in vorangegangenen Kopplungsanalysen teils signifikante und teils nichtsignifikante Kopplungen gezeigt worden waren. (Parikh 2003; Fujiwara 2003; Rice 2009)

Zielsetzung der Studie war es, die vorhandenen Kopplungsanalysen zu ergänzen und ggf. weiter zu präzisieren. Auf diese Weise sollte die Anzahl infrage kommender Gene auf eine kleine Zahl fokussiert werden. In einem besonderen Fokus standen hier Gene, welche im Zusammenhang mit dem Zytoskelett, dem Energiemetabolismus, der extrazellulären Matrix, sowie der Reizleitung stehen. Kandidatengene in den Bereichen erhöhter Kopplungswahrscheinlichkeiten sollten im Anschluss an die Kopplungsanalyse in der DNS betroffener Familienmitglieder sequenziert und auf Mutationen untersucht werden. Im Falle eines Mutationsnachweises sollte eine Segregation dieser Mutationen innerhalb der Familien untersucht werden, indem die entsprechenden Gene in weiteren Familienmitgliedern sequenziert wurden.

II Material und Methoden

II.1 Material- und Gerätenachweis

Tabelle 2: Materialnachweis

Material	Bestellnummer	Hersteller
GoTaq DNA Polymerase 5 u/µl	M300B	Promega GmbH
		(Mannheim)
dNTP Set	#R0181	MBI Fermentas (St.
		Leon-Rot)
EZ Load Molecular Rulers 20 bp	170-8351	Bio-Rad Lab. GmbH
		(München)
GeneRuler DNA Ladder Mix 100 bp	SM0331	MBI Fermentas (St.
		Leon-Rot)
Ethidiumbromid 1% Lösung	1.11608	Merck KGaA
		(Darmstadt)
Trishydroxymethylaminoethan	1.08382.2500	Merck KGaA
		(Darmstadt)
EDTA-2Na	8043.2	Roth GmbH + Co. KG
		(Karlsruhe)
LE Agarose	840004	Biozym Scientific
		GmbH (Hess.
		Oldendorf)
Qiaxcel DNA High Resolution Kit	929002	Qiagen (Hilden)
(1200)		

Tabelle 3: Gerätenachweis

Gerät	Hersteller
Research Einkanalpipette 0,01 – 1 µl	Eppendorf AG (Hamburg)
Research Einkanalpipette 0,5 – 10 µl	Eppendorf AG (Hamburg)
Research Einkanalpipette 2 – 20 µl	Eppendorf AG (Hamburg)
Research Einkanalpipette 10 – 100 µl	Eppendorf AG (Hamburg)
Research Einkanalpipette 100 – 1000 µl	Eppendorf AG (Hamburg)
Horizon 11.14 Elektrophoresekammer	Biometra Whatman (Göttingen)
Geldokumentationssystem mit UV-	MWG-Biotech AG (Martinsried)
Lichtkasten	
Qiaxcel	Qiagen (Hilden)

II.2 Kopplungsanalyse

II.2.1 Grundlagen

Als Kopplungsanalyse bezeichnet man ein Verfahren zur Bestimmung genetischer Entfernungen zweier Loci zueinander. Das Verfahren, das sich des Konzeptes der genetischen Kopplung bedient, welches 1911 von Morgan erstmals beschrieben wurde, wird seit Jahrzehnten für die Kartierung von Genen eingesetzt und hat bis heute im Zeitalter der Genomik einen festen Stellenwert bei der Lokalisation von Krankheitsloci. (Ott 1999)

Die Segregationsanalyse von genetischen Markern innerhalb von Familien mit Betroffenen zu einem zu untersuchenden Merkmal, respektive einer zu untersuchenden Erbkrankheit, ist dabei die Grundlage. Für die Segregationsanalyse werden genetische Marker benötigt. Das sind genetische Merkmale innerhalb der DNS, welche es ermöglichen, einen Chromosomenabschnitt in einem Stammbaum zu verfolgen. Genetische Marker müssen bestimmte Kriterien erfüllen. Die erste Voraussetzung dabei ist ein möglichst hoher Grad an Polymorphie des Merkmals: Es muss in mindestens zwei unterschiedlichen Ausprägungen, d.h. Allelen vorliegen. Eine weitere Voraussetzung stellt die Vererbung nach mendelschem Muster dar. Ein Gütekriterium für Marker ist, dass möglichst viele zufällig ausgewählte Personen für diesen Marker heterozygot sind. (Ott 1999) Des Weiteren ist es für den Zweck der Kartierung von Genen notwendig, dass verwendete Marker in etwa gleichmäßigen und möglichst geringen Abständen über das Genom verteilt zur Verfügung stehen. Je geringer der Abstand zwischen zwei Markern ist, desto weniger Meiosen, d.h. im Endeffekt Patientenproben, sind notwendig, um eine Kopplung nachzuweisen. Genetische Marker sind ohne physiologische Funktion und interferieren nicht mit anderen Loci. Sie sind daher nicht an Selektionsprozesse geknüpft und vererben sich dem Hardy-Weinberg-Gleichgewicht folgend. (Strachan 2005)

Erste geeignete Marker waren die restriction fragment length polymorphisms (RFLPs). Sie wurden erstmalig 1975 von Southern beschrieben. RFLPs sind Einzelnukleotidaustausche, die zu Änderungen von Erkennungssequenzen für Restriktionsendonukleasen führen. der Methode wird DNS Bei mit Restriktionsendonukleasen behandelt und bei Vorhandensein enzymspezifischer Bindungsstellen findet eine Spaltung des DNS-Stranges statt. Die unterschiedlich langen Spaltprodukte konnten im Southern-Blot mittels radioaktiv markierten Sonden nachgewiesen werden. Ein aufwendiges Verfahren, welches heute durch die PCR ersetzt werden kann. Der entscheidende Nachteil jedoch ist der geringe Informationsgehalt, da einerseits nur unterschieden werden kann ob eine enzymspezifische Erkennungssequenz vorliegt und andererseits die RFLPs vergleichbar selten im Genom vorkommen. RFLPs können als Untergruppe der Single Nucleotide Polymorphisms (SNPs, siehe unten) angesehen werden. (Strachan 2005)

Besser geeignet sind die seit 1985 eingesetzten Minisatelliten oder *variable numer* of tandem repeats (VNTRs), da sie einen höheren Grad an Polymorphie aufweisen als die RFLPs. Es handelt sich um hochvariable tandemartige 5- – 50-fache Wiederholungen kurzer DNS-Sequenzen von 12 – 100 bp. Durch die variable Anzahl der tandem repeats sind zahlreiche Allele möglich, die sich durch ihre Fragmentlängen unterscheiden. Als nachteilig erweist sich auch hier die ungleichmäßige Verteilung über das Genom in Form von Clusterbildung an den Chromosomenenden. (Strachan 2005; Nakamura 1987)

Den nächsten Schritt in der Entwicklung polymorpher Marker stellen die ab 1989 verwendeten Mikrosatelliten dar. Diese Marker zeichnen sich durch repetitive Di-, Triund Tetranukleotide aus. Die Mikrosatellitensequenzen sind mittels PCR amplifizierbar und in der Gelelektrophorese auswertbar. Die ursprünglich dominierenden Dinukleotidrepeats (CA)_n wurden schrittweise durch die Tri- und Tetranukleotidrepeats abgelöst, da diese die eindeutigeren Amplifikationsergebnisse in der Nachweis-PCR erzielen. Aufgrund ihrer relativ gleichmäßigen Verteilung über das Genom sind sie zeitweilig der Standard für PCR-Kopplungsanalysen geworden. (Strachan 2005)

Die Einzelnukleotidpolymorphismen (SNPs), zu denen die RFPLs, aber auch Polymorphismen, die keine Restriktionsschnittstelle beeinträchtigen, gehören, zeichnen sich durch die höchste Dichte unter den genetischen Markern aus. Der Nachweis erfolgt mittels Microarrays oder DNS-Sequenzierung. Da für Genotypisierungen keine Gelelektrophorese notwendig ist, haben sie hierbei außerdem den Vorteil eines sehr hohen Durchsatzes. Sie eignen sich besonders für automatisierte Verfahren im großen Maßstab, sind im Vergleich zu Mikrosatelliten jedoch weniger informativ, da sie in der Regel nur 2 Allele besitzen. (Wang 2001; Ott 1999)

Die Vererbung der mendelnden genetischen Marker, z.B. der Mikrosatelliten, lässt sich in einem Stammbaum verfolgen. Voraussetzung dafür sind phasendefinierte Vererbungen, d.h. es muss feststellbar sein, ob es zu einer Rekombination gekommen ist oder nicht. Fehlen elterliche Haplotypen, sind beide Eltern homozygot oder haben beide identische heterozygote Allele spricht man von einer nichtinformativen Meiose, die Phase bleibt undefiniert. Liegen jedoch in einem Stammbaum für einen genetischen Marker genug Informationen vor, dass ein Rückschluss auf die Verteilung der Allele gezogen werden kann, so bietet sich die parametrische Kopplungsanalyse an. Hierbei werden Parameter wie der Vererbungsmodus, die Genhäufigkeiten, bzw. die Prävalenz der Erkrankung und die Penetranz des zu untersuchenden Merkmals berücksichtigt. (Ott 1999)

Die Kopplungsanalyse misst anhand der Genotypen des Stammbaums, welche durch die Marker definiert die verwendeten genetischen werden, jeweiligen Rekombinationsfrequenzen und ermöglicht so eine Aussage zur Kopplung der entsprechenden Loci an den Locus der untersuchten Erbkrankheit. Die Rekombinationsfrequenz steht für die Häufigkeit des Auftretens von Crossovers in einem Abschnitt des Chromosoms während der Meiose. Bei Crossovers kommt es zur Paarung homologer Chromosomen aus jeweils 2 Chromatiden, einem folgenden Bruch des DNS-Stranges und anschließender Wiedervereinigung an den sog. Chiasmata. Bei diesem Prozess kommt es zum Austausch von DNS-Fragmenten und somit genetischer Information von mütterlichem und väterlichem Chromatid. Die Wahrscheinlichkeit des Auftretens eines Crossovers steigt mit der Entfernung zweier Loci zu einander und wird daher als Maß für deren physikalische Distanz angewandt. Je weiter die Loci voneinander entfernt sind desto zufälliger werden ihre Allele rekombiniert, bis hin zu einer zufälligen Verteilung weit entfernter Loci oder Loci auf unterschiedlichen Chromosomen. Bei großen Distanzen zwischen zwei Loci können mehrere Crossovers auftreten, die sich gegenseitig neutralisieren können (Interferenz).

Definiert ist der genetische Abstand ω zwischen zwei Loci auf der genetischen Karte als 1 Centimorgan (cM), wenn die Rekombinationsfrequenz $\Theta = 1\%$ beträgt. Berechnet wird dieser Abstand durch die Haldane-Funktion:

$$\omega = 1/2 \ln(1-2\Theta)$$

oder

$$\Theta = 1/2(1-e^{-2\omega})\Theta$$

Die auf diese Weise gewonnene genetische Karte korreliert nicht gut mit der physikalischen. Zwar verhalten sich beide Karten monoton, vergrößert sich die Distanz auf der genetischen, so vergrößert sie sich auch auf der physikalischen Karte, jedoch können gleiche genetische Abstände in unterschiedlichen physikalischen Distanzen resultieren. (Ott 1999) Verschiedene genetische Regionen zeigen unterschiedliche Rekombinationsfrequenzen, so treten nahe des Zentromers, der Telomere oder in der X-Y-Paarungs-Region vermehrt Crossovers auf. Des Weiteren existieren sog. "hot spots" an denen ebenfalls überdurchschnittlich häufig Rekombinationen beschrieben werden, wie beispielsweise die Region des Gens der Muskeldystrophie nach Duchenne. (Strachan 2005)

Will man nun für ein mendelndes Merkmal bestimmen ob eine Kopplung vorliegt, so kann es in manchen Fällen reichen, die Rekombinanten (R) und die Nichtrekombinanten (NR) zu zählen und so die Rekombinationsfrequenz (Θ) zu bestimmen. Θ steht für die Anzahl der Rekombinanten in allen betrachteten Meiosen. 1 – Θ entspricht dem Anteil der Nichtrekombinanten. Liegt keine Kopplung vor entspricht $\Theta = 0.5$. Eine Rekombination ist gleich wahrscheinlich wie eine Nichtrekombination. Das Verhältnis der Wahrscheinlichkeiten für Rekombinationen bei Vorliegen einer Kopplung und bei Fehlen einer Kopplung zeigt an ob eine Kopplung vorliegt oder nicht. Als LOD-Wert (Z) bezeichnet man den dekadischen Logarithmus des Verhältnisses dieser Wahrscheinlichkeiten.

$$Z = \log_{10} \frac{(1 - \Theta)^{NR} \cdot \Theta^{R}}{0.5^{(NR+R)}}$$

Der LOD-Wert ist also eine Funktion der Rekombinationsfrequenz und wird für einen Bereich von Θ -Werten bestimmt. Er erreicht bei der wahrscheinlichsten Rekombinationsfrequenz sein Maximum.

Z = 3,0 entspricht einer Wahrscheinlichkeit von 1000:1, was dem Schwellenwert p = 0,05 für Signifikanz entspricht. So spricht Z > 3,0 für das Vorliegen einer Kopplung, bei Z < -2 ist eine Kopplung unwahrscheinlich. Das notwendige Signifikanzniveau ist jedoch auch von der Größe des untersuchten genetischen Abschnitts abhängig. So steigt die Wahrscheinlichkeit einer zufällig auftretenden Kopplung mit der Größe des untersuchten Abschnittes. Schwellenwerte für die Signifikanz lieferten Altmüller und Kollegen nach Analyse von 101 Kopplungsanalysen komplexer Krankheiten. Hier wird unterschieden zwischen p-Werten, bzw. LOD-Werten für das Gesamtgenom und Werten für einzelne Abschnitte:

Ist eine Kopplung vorbeschrieben, wird diese durch einen p-Wert $\leq 3 \ge 10^{-7}$, bzw. ein LOD-Wert von $\geq 5,4$ bestätigt, was einem zufälligen Vorkommen einer Kopplung bei Analyse eines gesamten Genoms von 1% entspricht.

Für das Screening des Gesamtgenoms wird ein p-Wert $\leq 7 \ge 10^{-4}$ bis 3 $\ge 10^{-5}$, bzw. ein LOD-Wert $\ge 3,6$ bis 5,3 empfohlen. (Altmüller 2001)

Mittels Computerprogrammen wie *Merlin*, *Mlink* und *Genehunter* lassen sich die Wahrscheinlichkeiten für mehrere Marker berechnen und graphisch mit Hilfe einer hinterlegten (physikalischen) Markerrahmenkarte darstellen. (Abecasis 2002; Kruglyak 1996) Es entsteht eine Kurve, welche die LOD-Werte den Positionen auf der hinterlegten Karte zuordnen. Zu beachten ist dabei, dass die dargestellten quantitativen Werte lediglich auf Modellen beruhen. Nichtsdestotrotz entspricht die Stelle mit dem höchsten LOD-Wert dem wahrscheinlichsten Locus für ein Gen, welches im Zusammenhang mit der zugrunde gelegten Erkrankung steht. Datenbanken wie *Ensembl* liefern Informationen über Kandidatengene an entsprechender Stelle. Die verschiedenen Algorithmen der Programme bieten Vor- und Nachteile bei der Handhabung der Stammbäume. Der *Elston*-

Steward-Algorithmus liegt dem Programm *Mlink*, welches Komponente des *Linkage*-Paketes ist, zugrunde. Er kann beliebig große Stammbäume verarbeiten, bietet aber sehr begrenze Fähigkeiten Multimarkerdaten zu verarbeiten, da die Zahl der Allele und Loci limitiert ist. (Lathrop 1985; Ott 1999) Mehr Allele erlaubt der *Lander-Green-Algorithmus* der Programme *Merlin* und *Genehunter*. Dieser allerdings begrenzt die Größe der Stammbäume aufgrund von Speicherengpässen. (Abecasis 2002; Kruglyak 1996; Strachan 2005)

Die parametrische Kopplungsanalyse eignet sich bei bekanntem genetischem Modell hervorragend um ein Genom zu analysieren. (Kruglyak 1996; Ott 1999)

Der parametrischen Kopplungsanalyse steht die nichtparametrische Kopplungsanalyse gegenüber. Eine Methode, die modellfrei arbeitet. Hierbei wird also kein bestimmter Erbgang für die zu untersuchende Erkrankung angenommen. Die untersuchten Loci werden hierbei auf eine Übereinstimmung ihrer Allele zwischen den betroffenen Probanden untersucht. Im Gegensatz zum Prinzip einer Assoziationsstudie wird hierbei die Kopplung von Loci an den untersuchten Phänotyp innerhalb einzelner Stammbäume gemessen und nicht die Frequenz eines bestimmten Allels innerhalb einer Kohorte. Von einer Kopplung ist auszugehen, wenn Betroffene innerhalb des Stammbaums eine höhere Übereinstimmung von Allelen an dem untersuchten Locus aufweisen als nach den mendelschen Regeln zu erwarten wäre. (Strachan 2005) Die einfachste Form der nichtparametrischen Kopplungsanalyse ist die "affected sib pairs"-Analyse. (Kruglyak 1996). Betrachtet man ein Geschwisterpaar, von dem beide Geschwister an einer genetisch bedingten Krankheit betroffen sind, so ist es wahrscheinlich, dass sie ein bestimmtes Allel gemeinsam besitzen, welches die Krankheit bedingt. Genehunter berücksichtigt bei der Kopplungsanalyse jedoch auch fernere Verwandtschaftsgrade. Die Aussagekraft einer nichtparametrischen Kopplungsanalyse steigt mit der Information über die Identität der Allele. Hierbei steht das Prinzip der Identität durch Abstammung ("Identity by descent", IBD) dem Prinzip der Identität durch den Status ("Identity by state", IBS) gegenüber. (Strachan 2005) Es wird berechnet, wie viele IBD-Allele erkrankte Geschwister gemeinsam haben und das Ergebnis wird mit einer einfachen mendelschen Vererbung verglichen. Die IBS-Methode berücksichtigt nur den Genotyp betroffener Geschwister. Die IBD-Methode bezieht die Informationen über die Herkunft der Allele mit ein, womit die Aussagekraft der Studie steigt. Nichtparametrische Kopplungsanalysen profitieren besonders von hochpolymorphen genetischen Markern, da damit die Wahrscheinlichkeit sinkt, dass beide Eltern ein gleiches Allel tragen. (Ganten 2013) An die Stelle des LOD-Wertes tritt der nichtparametrische Kopplungswert (NPL). (Strachan 2005; Ott 1999; Kruglyak 1996)

Die Genauigkeit des NPL-Wertes und damit die Signifikanz nimmt bei der Analyse von wenigen oder unterschiedlich großen Stammbäumen ab. Hierbei werden alle möglichen Vererbungskonstellationen berücksichtigt und die Nullhypothese zugrunde gelegt. Die Genauigkeit sinkt dementsprechend mit Unvollständigkeit der genetischen Informationen. (Nyholt 2000)

Als Schwellenwerte für die Signifikanz der nichtparametrischen Kopplungsanalyse einer komplex vererbten Krankheit unter Verwendung von 10 Stammbäumen gibt Kruglyak an: $p \le 0,05$ entspricht einem NPL-Wert von 1,65, $p \le 0,01$ entspricht einem NPL-Wert von 2,33, $p \le 0,001$ entspricht einem NPL-Wert von 3,09 und $p \le 0,0001$ entspricht einem NPL-Wert von 4,27. Bei Simulationen wurde die Teststärke ermittelt. Bei 100 von 100 Versuchen wurde eine Signifikanz von $p \le 0,05$ erreicht. Die erforderliche Anzahl von Stammbäumen, eine Kopplung mit dieser Signifikanz zu detektieren, wurde mit 2 angegeben. Den Versuchen liegt eine genetische Karte mit einer Auflösung von 10 cM zugrunde. (Kruglyak 1996)

Praktisch unterscheidet man zwischen der Multipoint- und der Singlepoint-Kopplungsanalyse. Die Multipoint-Analyse betrachtet im Gegenteil zur Singlepoint-Analyse nicht nur zwei benachbarte Loci, sondern mehrere Loci gleichzeitig. Der Vorteil besteht darin, dass einerseits der begrenzte Informationsgehalt einzelner Marker durch andere Marker kompensiert werden kann, andererseits stellt es ein effizienteres Verfahren dar, als für jedes mögliche Marker-Marker Intervall die Rekombinationsfrequenz einzeln zu bestimmen. Mit *Genehunter* lassen sich sowohl parametrische als auch nichtparametrische Multipoint-Kopplungsanalysen durchführen. Kruglyak und Kollegen zeigten auf, dass der Informationsgehalt bei einer Multipoint-Analyse um ca. 20% höher ist als bei einer Singlepoint-Analyse. (Kruglyak 1996)

Aufgrund der Annahme einer komplexen, di- oder polygenen Erblichkeit des Strabismus concomitans bietet sich die Durchführung einer nichtparametrischen Kopplungsanalyse an. Das Ziel dieser Studie ist jedoch, die vorhandenen Kopplungsergebnisse anderer Studien in den zur Verfügung stehenden Familien zu überprüfen. Es wurden daher sowohl parametrische, als auch nichtparametrische Modelle berechnet. **II.2.2 Definition der zu untersuchenden Loci und Auswahl der Marker** Da die Zielsetzung dieser Studie die Verifizierung der Ergebnisse vorangegangener Kopplungsanalysen ist, wurden entsprechende Markerpositionen auf den Chromosomen 3, 7 und 18 ausgewählt. Hier hatten sich erhöhte Kopplungswahrscheinlichkeiten gezeigt, die z.T. bislang nicht in anderen Studien untersucht wurden. Die Marker wurden jeweils in Clustern zu mehreren Markern in Abhängigkeit von der Verfügbarkeit in einem möglichst geringen Abstand ausgewählt.

Auf Chromosom 3 zeigte die Arbeitsgruppe von Fujiwara 2003 in einer nichtparametrischen, genomweiten Kopplungsanalyse mehrere nicht-signifikante Kopplungen auf (D3S1263 NPL = 1,34; D3S1285 NPL = 1,34; D3S1292 NPL = 1,29). (Fujiwara 2003) Es wurden insgesamt 20 Mikrosatellitenmarker ausgewählt, um o.g. Loci zu untersuchen.

Rice und Kollegen beschrieben im Jahr 2009 bei einer Familie einen LOD-Wert von 3,21 auf Chromosom 7 unter einem dominanten Modell. Bei drei weiteren Familien konnte eine Kopplung dieses Locus signifikant ausgeschlossen werden. (Rice 2009) Parikh und Mitarbeiter beschrieben im Jahr 2003 eine Kopplung bei einer Familie mit einem LOD-Wert von 4,51 unter einem rezessiven Modell. (Parikh 2003) In dem untersuchten Bereich liegt u.a. der STBMS1-Locus. In dieser Studie wurden neun Mikrosatellitenmarker ausgewählt um o.g. Ergebnisse zu untersuchen. Die Arbeitsgruppe um Fujiwara zeigte einen NPL-Wert von 1,34 bei dem Mikrosatelliten D7S640. (Fujiwara 2003) Entsprechend wurden auch in diesem Bereich drei Mikrosatellitenmarker ausgewählt.

Auf Chromosom 18 beschrieb die Arbeitsgruppe von Fujiwara im Jahr 2003 nichtsignifikante Kopplungen (D18S464 NPL = 1,34; D18S1102 NPL = 1,32; D18S1161 NPL = 1,34). (Fujiwara 2003) Es wurden insgesamt 17 Mikrosatellitenmarker in den entsprechend vorbeschriebenen Abschnitten ausgewählt.

Für die Kopplungsanalysen dieser Studie wurden Mikrosatelliten verwendet, da sie sowohl einen hohen Informationsgehalt hatten, als auch in ausreichender Dichte in den untersuchten Bereichen des Genoms vorhanden waren. Mit Hilfe der Online-Datenbank *Ensembl* (http://www.ensembl.org/index.html) wurden geeignete Marker ermittelt, wobei darauf geachtet wurde, dass jeder selektierte Marker über eine große Zahl von möglichst gleichmäßig verteilten Allelen verfügt. Die verwendeten Di-, Tri- und Tetranukleotidrepeats verfügten über 3 – 19 Allele. Die Fragmentlängen der Amplifikationsprodukte der unterschiedlichen Mikrosatelliten beträgt dabei zwischen 100 - 300 bp, abhängig von der Art der Nukleotidrepeats und deren Anzahl. Eine tabellarische Darstellung der Amplifikationsprodukte findet sich im Anhang (Tabellen 29 – 34).

Die Informationen über die verwendeten Mikrosatellitenmarker wurden im *Mlink*-Datenformat erstellt. Dazu wurde das zum *Linkage*-Programmpaket gehörende Programm *Preplink* verwendet. (Lathrop 1985)

Zeile	Dateiinhalt	Beschreibung
1	3 0 0 5	Anzahl der Loci, Risiko Locus,
		geschlechtsgebunden (wenn 1),
		Programmcode
2	0 0.0 0.0 0	Mutations Locus, Mutationsrate
		männlich, Mutationsrate
		weiblich, Haplotyp Frequenz
		(wenn 1)
3	1 2 3 4 5 6 7 8	Reihenfolge der Loci
4	1 2	Krankheitslocus: "Affection
		status", Anzahl der Allele
5	0.9999 0.0001	Gen Frequenzen
6	1	Anzahl der "liability classes"
7	0.0 1.0 1.0	Penetranzen beschreiben einen
		vollständig penetranten,
		dominanten Krankheitslocus
8	39	Art des Locus: "numbered
		alleles", Anzahl der Allele
9	0.11111 0.11111 0.11111 0.11111	Allelfrequenzen
	0.11111 0.11111 0.11111 0.11111	
10	0.11111	
10	37	Art des Locus: "numbered
		alleles", Anzahl der Allele
11	0.14286 0.14286 0.14286 0.14286	Allelfrequenzen
	0.14286 0.14286 0.14286	
22	0.0	Geschlechtsspezifische
22		Rekombination, Interferenz
23		Inter-Marker-Distanzen
24	1 0.05 0.5	Programmspezifische
		mormationen

Abbildung 4: Struktur des *mlink*-Datenformats anhand einer Beispieldatei für einen dominanten Erbgang und zwei Loci

Die ersten beiden Zeilen der Datendatei enthalten Informationen über eine Vielzahl an Parametern, darunter die Anzahl der Loci, ob es sich um autosomale oder gonosomale Loci handelt, einige für die Kopplungsanalyse in dieser Studie nicht relevante Informationen und einen ebenfalls nicht relevanten Programmcode. Darauf folgt eine Zeile, in welcher die Reihenfolge der Loci definiert wird. Die Zeilen 4 – 7 widmen sich der Beschreibung des Krankheitslocus. Hier werden die Parameter für das zu simulierende genetische Modell, den angenommenen Erbgang, angegeben. Das Feld "Gen Frequenzen" in Zeile 5 bezieht sich ebenfalls auf den Krankheitslocus: In Bezug auf eine Krankheit wird hier die Prävalenz definiert. In Zeile 6 werden *liability classes* definiert. Hiermit können unterschiedliche Penetranzen in Abhängigkeit weiterer

Faktoren wie beispielsweise dem Alter definiert werden. Zeile 7 gibt die Penetranzen eines die Erkrankung auslösenden Locus in folgender Reihenfolge an: Nicht betroffen, heterozygot, homozygot. Die Zeilen 8 – 11 beinhalten Informationen über zwei Loci mit 9, bzw. 7 Allelen, welche jeweils durchnummeriert werden und alle für ihren Locus die aufweisen. Zeile 22 erlaubt die Definition gleiche Allelfrequenz von geschlechtsspezifischen Rekombinationsraten. In Zeile 23 werden die Distanzen zwischen den Markern definiert. Die letzte Zeile enthält programmspezifische Informationen. (Lathrop 1985)

Im Anhang sind die Datendateien für die Chromosomen 3, 7 und 18 inklusive der verwendeten Marker und der Parameter, welche der Berechnung der Kopplungswahrscheinlichkeiten unter Annahme unterschiedlicher Erbgänge zugrunde liegen, aufgeführt.

II.2.3 Genehunter

Parametrische und nichtparametrische Singlepoint- und Multipoint-Kopplungsanalysen der erfassten Stammbäume erfolgten mit der Software *Genehunter 2.1* für jede Familie im Einzelnen und kumulativ für alle Familien. Nach Auswertung der einzelnen Familien ergibt sich ein kumulativer Wert für jeden untersuchten Marker bzw. für die Inter-Marker-Stellen der Multipoint-Analyse. Durch diese kumulative Auswertung erhöht sich die Aussagekraft der Ergebnisse.

Die Ergebnisse der Kopplungsanalyse wurden in graphischer Form als Zuordnungen der errechneten LOD-, bzw. NPL-Werte zu den entsprechenden chromosomalen Positionen auf der HuRef-Karte (Version 6), einer auf der kompletten Sequenzierung des menschlichen Genoms basierenden physikalischen Karte, in Megabasenpaaren (Mbp) ausgegeben. (Axelrod 2009)

Zusätzlich dargestellt und ihrer jeweiligen physikalischen chromosomalen Position zugeordnet werden die Bezeichnungen der Mikrosatellitenmarker.

Des Weiteren ermöglicht *Genehunter* eine Beurteilung der Markerdichte. Die Software misst den Anteil der aus den Marker-Daten gewonnenen Vererbungsinformationen im Vergleich mit den maximal zu erwartenden Vererbungsinformationen, welche durch die Struktur der Stammbäume definiert werden. Hierdurch ist v.a. eine Bewertung der Markerdichte, bzw. der Vererbungsinformationen für die unterschiedlichen untersuchten chromosomalen Abschnitte möglich. (Ott 1999; Kruglyak 1996) Der Informationsgehalt einer Kumulation aller Familien hinsichtlich der vorhandenen Markerinformationen wurde graphisch dargestellt und bewertet.

II.3 Sequenzierung

Die Sequenzierung der Kandidatengene erfolgte durch ein externes Labor. Die sequenzierten Abschnitte wurden zuvor durch eine PCR amplifiziert.

II.4 Probanden

Die Rekrutierung der Probanden erfolgte einerseits prospektiv, andererseits retrospektiv.

Die retrospektive Rekrutierung der Probanden war Gegenstand einer im Vorfeld dieser Kopplungsanalyse erfolgten Studie. Untersucht wurden 20.813 Krankenblätter von Patienten mit primärem Strabismus aus dem Archiv der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität Gießen der Jahre 2001 bis Juli 2008. Es resultierten 2.380 Patienten (11%) mit einer positiven Familienanamnese von mindestens einem weiteren Fall von primärem Strabismus. 42 dieser Familien erschienen aufgrund ihrer Familienstruktur mit mehreren Betroffenen über mehrere Generationen für Kopplungsanalysen geeignet und wurden mittels eines Fragebogens gebeten, den Datensatz zu ergänzen. Davon antworteten 17 Familien, von denen drei wiederum an einer Blutentnahme und einer augenärztlichen Untersuchung teilnahmen. (Preising 2015)

Aufgrund der Erkenntnis einer geringen Rekrutierungsrate des retrospektiven Ansatzes von nur drei Familien erfolgte seit 2011 eine direkte Rekrutierung aus dem Patientenkollektiv der Ambulanz der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität Gießen. Auch hier ist das Einschlusskriterium eine positive Familienanamnese von mindestens einem weiteren Fall von primärem Strabismus.

So konnten in die vorliegende Studie insgesamt acht Familien mit 47 DNS-Proben, davon 24 Proben Betroffener, eingeschlossen werden. Innerhalb dieses Kollektivs weisen die Mitglieder von sieben Familien frühkindliche Esotropie auf und die Mitglieder einer Familie Exotropie. Ein positives Ethikvotum (201/10) der Ethikkommission des Fachbereichs Medizin der Universität für die Verwendung des genetischen Materials unter pseudonymisierten Bedingungen liegt vor.

Die Isolierung der DNS aus peripheren Blutzellen erfolgte durch das Labor für Molekulare Ophthalmologie der Klinik und Poliklinik für Augenheilkunde.

II.5 Genotypisierung

Die Stammbäume wurden mit der Computer Software *Cyrillic 2.1* erfasst. (Chapman 1997) Anschließend wurden die genetischen Informationen, welche durch Polymerase-Ketten-Reaktion und Kapillarelektrophorese gewonnen wurden, in die jeweiligen Stammbäume eingefügt.

II.5.1 PCR

Die Polymerase-Ketten-Reaktion (PCR) diente der Vervielfältigung ausgesuchter DNS-Abschnitte, welche durch flankierende Oligonukleotide, das sogenannte Primerpaar, definiert wurden. Diese Primer binden aufgrund ihrer Basenabfolge an komplementäre DNS-Sequenzen und definieren so den zu amplifizierenden Abschnitt des Erbgutes. Bei der Auswahl der Primer war die Wahrscheinlichkeit für Fehlpaarungen zu minimieren. Dabei ist auf eine geeignete Basenzusammensetzung, auf ähnliche Schmelztemperaturen des Primerpaares sowie auf selbstkomplementäre Sequenzen der einzelnen Primer und des Primerpaares zu achten. In dieser Arbeit wurden ausschließlich Primer aus der *Ensembl* Datenbank verwendet. (Bronwen 2016)

Der erste Schritt der PCR besteht in der Denaturierung der doppelsträngigen DNS. Die Strangtrennung erfolgt bei Temperaturen von 94°C. Beim darauffolgenden Annealing binden die Primer an ihre komplementären Sequenzen. Die optimale Annealingtemperatur muss vor der eigentlichen PCR experimentell mittels einer Gradienten-PCR ermittelt werden und lag im Bereich zwischen 50 und 65°C. Im nächsten Schritt erfolgt die Elongation der Primer durch eine DNS-Polymerase bei 72°C, indem diese zur Template-DNS komplementäre Nukleotide an das Oligonukleotid des Primers anhängt. Die Schritte Annealing, Elongation, sowie anschließende erneute Denaturierung wurden zyklisch 35-fach wiederholt, wodurch eine exponentielle Vermehrung der Ausgangssequenz erreicht wurde.

Mastermix Ansatz			Gradient		
	Ohne	Mit	Ansatzgröße:	60µ1	
	DMSO	DMSO			
	[µl]	[µl]			
H ₂ O	4,1	3,54		Temperatur	Dauer
Puffer (5x)	3	3	Hot Start:	94 °C	5 min
dNTP	2,4	2,4	35 Zyklen		
(1,25 mM)					
MgCL ₂	1,2	1,2	Annealing:	50-65 °C	1 min
(25 mM)					
Primer	0,6	0,6	Extension:	72 °C	1 min
(10 mM)					
Primer	0,6	0,6	Denaturierung:	94 °C	1 min
(10 mM)					
Polymerase	0,06	0,06	Zyklus 36		
(5 U/µl)					
DMSO	0	0,6	Annealing:	50-65 °C	1 min
DNS	3	3	Extension:	72 °C	10 min
(20 ng/µl)					
Gesamt	15	15			

Tabelle 4: Verwendete Primer

Marker	Primersequenz kodierender Strang	Primersequenz Gegenstrang	Annealing Temp- eratur	Fragment [bp]	Zusatz
	_		[°C]		
D18S1376	TGGAACCAC TTCATTCTTG	ATTTCAGACC CCAGATAGG	55,0	192 - 208	
D18S471	TTGAAACGC AACATAGAG G	TGCAACATG CACAGACAC	55,0	251 - 264	
Marker	Primersequenz Primerseque		Annealing	Fragment	Zusatz
----------	---------------------------	-------------	-----------------	-------------	--------
	kodierender Strang	Gegenstrang	Temp- eratur	[bp]	
			[°C]		
D18S1163	CGCCACACA	CCCACCCTTA	54,8	196 - 212	
	CTCTCACACA	TGAGTTCATT			
	C	TAACC		1 = 2 1 2 2	
D18S843	GTCCTCATCT	CCACTAACT	56,6	179 - 193	DMSO
	GIAAAACGG	AGITIGIGAC			
D185464	GCCAGACTTT	TTTCCTGAAT	55.0	283 - 291	
D105404	GTGCCATTTC	CTCTTGTGGT	55,0	205 271	
		TTG			
D18S1116	TCTGCCACTT	CAATGTTTTA	55,7	150 - 179	
	TTTATGGG	ACTTCTAGG			
		ACAAAT			
D18S463	GAGGCAAAC	CCACAGGGA	55,0	172 - 184	
	AGATCAATC	CTTCCATTCA			
D1961102	CALLA		55.0	208 220	
D1851102	TTGGAGCC	GCGTCTGTG	55,0	208 - 220	
D18S1096	TAAACATAG	TAGGATTCTC	60.2	194 - 214	DMSO
	GCTCTCAGG	CAGAGGCAA	00,2	171 211	Diffeo
	GG	A			
D18S469	ATTCAAACA	AAGTGCATC	50,5	234 - 244	DMSO
	CGCTTGTCA	CCAGTCATT			
D18S1161	GTCCGTCCAA	GGAGAGCCA	51,4	82 - 108	DMSO
	CGTCCAA	CACCTATCCT			
D1991271		GCTGTCAGA	52.0	122 152	DMSO
D18515/1	CLACCATTGG	GACCTGTGTT	55,0	155 - 155	DMSO
		G			
D7S1819	CAATAGCCCT	TACCTACCTA	61,0	168 - 192	
	GACCTTATGC	CCTACCTCTA	,		
		TGGC			
D7S2201	AGTTCAACCT	TCAAGCCAA	58,4	101 - 117	
	GGGCAACAT	GGCATTTTCT			
D792552	A	A	52 (165 177	
D/82555	CCCCACT		52,6	165 - 1//	
	UUUUACI	ACATT			
D7S1790	GGAGAAGGA	ACAAAAAGT	55.0	240 - 257	
2,21,20	GGGAGGGAT	TGCAATCCCT			
	AG	G			
D7S2200	ACCCCTGAG	AACCTTCAG	60,0	164 - 184	
	ATGATAGAT	AATGCCATG			
DECES	AGACA	AG	7 0 0	172 201	
D/8513	AGIGITITGA	ATATCITICA	58,0	173 - 201	
	GTTAAT	G			
	UTIAAI	U			

Marker	Primersequenz kodierender	Primersequenz Gegenstrang	Annealing Temp-	Fragment [bp]	Zusatz
	Strang	o gonou ang	eratur [°C]	[~P]	
D7S2557	GCCTCAATTA	GCTTAAACC	55,0	149 - 163	
	CAATTCAAC	AGATGGAGT			
D7S3051	ACTGATATA	TCTGAGGATT	55.0	146 - 182	
D755051	AGCTTGGAA TGCA	CCTCCTTCCT	55,0	140 102	
D7S503	ACTTGGAGT	GTCCCTGAA	58,4	148 - 180	
	AATGGGAGC	AACCITTAAT			
D7S1822	AG		573	243 - 271	
D751022	GTAGTTGAAT	TCTTGCTCTC	57,5	273-271	
	A	Т			
D7S640	GTCTTCCAGC	GCACATCAC	60,2	113 - 144	DMSO
	CCACCC	CAACAACG			
D7S1824	GCACCTGTTT	CCAGCCTGT	68,0	163 - 199	
	GATICAGICA	GIGACIAIGI			
D3S1597	AGTACAAAT	GCAAATCGT	52,6	162 - 180	
	ACACACAAA TGTCTC	TCATTGCT			
D3S1263	CTGTTGACCC	TAAAATCAC	58,0	231 - 249	
	ATTGATACCC	AGCAGGGGT TC			
D3S3602	AAAATCCTA	ATCAGAAAA	55,0	114 - 132	
	ACCCAAAAT	TAACAGAGG			
D202505	GT	GC	(0.4	2(0, 272	
D383595	AAATICAAA		60,4	269 - 273	
	CC	G			
D3S3547	CATGACTGG	ATTGCGAAT	52.6	196 - 228	
	AACCCTGG	CAGAAAATG	,-		
		С			
D3S2407	TGTACCCTAT	GGAGTTCAA	63,0	204 - 222	
	AGAAGTAAG	GGTTACAGT			
D2025(4	ACCAGG	CAGC	67.6	106 000	
D3S3564	AGCIAAACA		57,5	186 - 220	
	GCAT	IUATAUUUA			
D3S2420	ACAAGTGCG	CAGGAGCCT	59.0	93 - 108	
	AAACTCTGCC	CTAAGTCAG			
	Т	CA			
D3S1285	ATTTAGAAA	TCTGTTCATC	60,0	232 - 242	
	ACCCATACA	ACAGGGGTA			
	GCATGGC	GCATC			

Marker	Primersequenz kodierender Strang	Primersequenz Gegenstrang	Annealing Temp- eratur [°C]	Fragment [bp]	Zusatz
D3S1284	GCCTTGGGG GTAAATACTC T	GGAATTACA GGCCACTGC TC	58,8	155 - 177	
D3S3508	TACAGGGGT CATTGATATG C	TTGATTTTAC TCAAACAAT TCAG	55,7	178 - 190	
D3S3606	AAAATTCCCT GCAGTGGGA	GGGGCTCGA AAGACAGTA AA	56,6	155 - 181	
D3S1292	TGGCTTCATC ACCAGACC	CAGATTCAA GAGGCACTC CA	56,6	142 - 166	DMSO
D3S1590	CCTTGAGGAT GACAGGGTT	CATTGAATA GTTGTGTGTTGC CA	56,6	201 - 213	DMSO

II.5.2 Gelelektrophorese

Die Qualitätsprüfung der Amplifikationsprodukte erfolgte mittels Agarose-Gelelektrophorese. Das Prinzip beruht darauf, dass die Phosphatgruppen der DNS als Protonendonatoren fungieren und die DNS somit in einem Agarosegel durch ein elektrisches Feld nach ihrer Größe aufgetrennt werden kann. Die DNS wandert bei einer angelegten Spannung von der Kathode in Richtung zur Anode mit unterschiedlicher Geschwindigkeit in Abhängigkeit ihrer Länge. (Pingoud 1997)

Durch Anfärben mit Ethidiumbromid kann die DNS unter UV-Licht im Transilluminator "Bio Doc Analyse" sichtbar gemacht und mittels des dazugehörigen digitalen Gel-Dokumentationssystems ausgewertet und gespeichert werden. Als Referenz dient hier ein Molekulargewichtsmarker (DNS-Leiter) mit unterschiedlichen Fragmentlängen.

Agarose ist ein Polysaccharid, welches aus roten Meeresalgen gewonnen wird. Das lineare Polymer löst sich beim Erhitzen und bildet beim Abkühlen doppelhelikale Strukturen, welche sich parallel zu Bündeln zusammenlagern und ein dreidimensionales Netzwerk bilden, das von der Konzentration der Agarose abhängig große Poren bildet. Zweiprozentige Gele eignen sich für die Auftrennung von Fragmenten mit Längen bis zu 1.000 bp, darüber sind niederprozentigere Gele geeigneter. Andere Verfahren, wie die Pulse-Field-Elektrophorese kommen bei Fragmentgrößen über 15 kbp zum Einsatz. (Pingoud 1997; Seyffert 2003)

Zur Herstellung eines zweiprozentigen Agarosegels wurde 1x-TBE-Puffer verwendet, der in einem Erlenmeyerkolben zusammen mit Agarose bei 700 W in der Mikrowelle aufgekocht wurde. Nach Zugabe von Ethidiumbromid wurde das Gel in eine Kammer gegossen und ein Taschenkamm in der Kammer platziert. Nach Aushärtung des Gels wurde der Kamm entfernt und die DNS-Proben in die Taschen pipettiert.

Die Gelelektrophorese wurde durchgeführt, um den Erfolg der PCR zu bewerten. Die endgültige Analyse der PCR-Produkte erfolgte mittels einer Kapillarelektrophorese.

10x TBE-		100 ml Agarose-C	Gel:	100 ml Agarose-Gel:						
Puffer			Max. 48 Proben			Max. 48 Proben				
1 M Tris	121,1		10x TBE-Puffer	10		10x TBE-Puffer	10			
	g/l			ml			ml			
0,83 M	51,36		H2O	90		H2O	90			
Borsäure	g/1			ml			ml			
10 mM	3,72		Agarose	2 g		Agarose	2 g			
EDTA 2	g/l									
H ² O *2										
Na										
			Ethidiumbromid	6 µl		Ethidiumbromid	6 µl			
			1%			1%				
			Laufbedingungen	50		Laufbedingungen	50			
				min			min			
				bei			bei			
				100			100			
				V			V			

II.5.3 Kapillarelektrophorese

Das *Qiaxcel*-System der Firma *Qiagen* ermöglicht mit dem *DNA-High-Resolution-Kit* eine hochauflösende DNS-Elektrophorese. Die Auflösung der Kapillarelektrophorese ist im Vergleich zur Agarosegelelektrophorese der entscheidende Vorteil des Systems für die Auswertung der Mikrosatellitenmarker-PCR-Produkte. Die Mikrosatellitenmarker wurden dahingehend ausgewählt, möglichst viele Allele zu führen. Die Sensitivität der verwendeten Elektrophoresekartusche ermöglicht nach Herstellerangaben eine Auflösung von 3 – 5 bp bei Längen zwischen 100 – 500 bp. (Qiagen 2013)

Weitere Merkmale des *Qiaxcel*-Systems stellen die hohe Geschwindigkeit der Analyse von 12 Proben in 7 Minuten, die hohe Sensitivität, die eine geringe Menge an benötigtem Probenmaterial erfordert, sowie die automatische Auswertung dar. Die Funktionsweise ähnelt der einer Gelelektrophorese. Vergleichbar dazu wird jede Probe in ihrer Kapillare einer Spannung ausgesetzt und wandert in Richtung der Anode, wobei sie einen Fluoreszenzfarbstoff aufnimmt und einen Detektor passiert. Die dazugehörige Software *Qiaxcel Screengel* ermöglicht Analyse, weitere Bearbeitung und Dokumentation der Ergebnisse. Die Fragmentlängen werden anhand zweier Referenzen interpoliert. Zum einen werden jeder Probe zwei Referenz-Fragmente zu 15 und 500 bp als sog. *Alignment-Marker* zugefügt. Zum Zweiten wird bei jedem Lauf, d.h. pro Experiment, eine Spur dem sog. *Size-Marker* vorbehalten, welcher ähnlich des Molekulargewichtsmarkers der Gelelektrophorese unterschiedliche Fragmentlängen von 20 – 500 bp in Intervallen von 20 bp enthält. Auf diese Weise wird die hohe Auflösung des Systems um eine hohe absolute Genauigkeit in der Bestimmung der Fragmentlängen ergänzt. (Qiagen 2013)

Die Analysen wurden mit dem Analyse-Profil *DNA-High-Resolution* mit der dazugehörigen Software *Qiaxcel Screengel 1.2* nach Herstellerangaben durchgeführt. Die Ergebnisse wurden sowohl als Rohdaten im *Qiaxcel* Datenformat, als auch in einer separaten Tabelle protokolliert und anschließend mit der Software *Cyrillic 2.1* in die Stammbäume übertragen. (Chapman 1997)

Qiaxcel Ansatz	
1 μl PCR-Produkt	Pro Probe
15 µl QX Dilution Buffer	Pro Probe
2 µl QX Mineral Oil	Pro Probe
1 µl QX DNA Size Marker 20 – 500bp	Pro Experiment / 95 Proben
15 µl QX Alignment Marker	Pro Kapillare

II.5.4 Visualisierung der Genotypen und Datenexport für die Kopplungsanalyse

Die Genotypen wurden mit der Stammbaum-Software *Cyrillic* 2.1 in die Stammbäume übertragen. (Chapman 1997) Die numerischen Allele entsprechen den unterschiedlichen Allelen. Beispielhaft zeigt die Abbildung den Stammbaum der Familie 181 mit den entsprechenden Genotypen für die verwendeten Mikrosatellitenmarker auf Chromosom 18.

Abbildung 5: Genotypen der Familie 181, Chromosom 18

Familie	Individuum	Vater	Mutter	Geschlecht	Betroffen	Marker	Marker
						1	n
F181	1	0	0	1	1	66	14
F181	2	0	0	2	2	16	15
F181	3	1	2	1	2	61	15
F181	4	1	2	1	2	66	41
F181	5	1	2	1	2	66	41

Die Informationen über die Genotypen wurden in das *Mlink*-Datenformat aus *Cyrillic 2.1* exportiert. (Chapman 1997)

Abbildung 6: Beispieldatei für das Mlink Datenformat für Stammbäume im Linkage Package (Lathrop 1985; Ott 1999)

Die Zahlencodes sind entsprechend der *mlink* Dokumentation automatisch von der Exportfunktion von *Cyrillic 2.1* verschlüsselt worden. Die Einträge in den Spalten "Marker 1" und "Marker n" stehen für das entsprechende (numerische) Allel des entsprechenden Markers. Es konnten beliebig viele Marker exportiert werden. Das Allel 0 kann anstelle fehlender Daten angegeben werden. Dies war im Falle einzelner nicht eindeutiger Messergebnisse der Kapillarelektrophorese notwendig.

III Ergebnisse

III.1 Erfassung der Stammbäume und Charakterisierung der Familien und deren Informationsgehalt

Im Folgenden werden die Stammbäume der in die Studie eingeschlossenen Familien dargestellt und hinsichtlich ihres Informationsgehalts anhand der Familienstruktur und des vorhandenen Probenmaterials für parametrische und nichtparametrische Kopplungsanalysen bewertet.

Abbildung 7: Stammbaum der Familie 181

Familie 181 verfügt über betroffene Probanden in zwei Generationen, von welchen sich insgesamt fünf Probanden aus zwei Generationen zur Verfügung stellten. Vier der fünf Probanden sind Betroffen. Es konnten Proben von jedem Familienmitglied gewonnen werden. Die Familie eignet sich aufgrund des vollständigen Probenmaterials und des hohen Anteils Betroffener sehr gut für parametrische und nichtparametrische Kopplungsanalysen.

Abbildung 8: Stammbaum der Familie 199

Familie 199 verfügt über zwei Generationen mit nicht betroffenen Eltern und zwei betroffenen Kindern. Es konnten von jedem Familienmitglied Proben gewonnen werden. Aufgrund des vollständigen Probenmaterials und zwei Betroffenen von vier Probanden eignet sich diese Familie gut für parametrische und nichtparametrische Kopplungsanalysen. Anhand des Stammbaums ist ein dominanter Erbgang (bei vollständiger Penetranz) ausgeschlossen. Daher wird der dominante Erbgang bei diesem Stammbaum in der Kopplungsanalyse nicht berücksichtigt.

III.1.3 Familie 904

Abbildung 9: Stammbaum der Familie 904

Familie 904 verfügt über zwei Generationen mit einem betroffenen Elternteil und vier betroffenen Kindern. Es konnten Proben von allen betroffenen Probanden gewonnen werden. Von Nachteil ist die Unvollständigkeit des Probenmaterials durch das Fehlen der väterlichen Probe. Hierbei geht Informationsmaterial sowohl für die parametrische als auch die nichtparametrische Kopplungsanalyse verloren, da z.B. die Identität durch Abstammung für die nichtparametrische Analyse nicht gesichert werden kann. Aufgrund der hohen Anzahl betroffener Proben innerhalb einer Familie eignet sich diese Familie jedoch trotzdem sehr gut für die Durchführung einer parametrischen und einer nichtparametrischen Kopplungsanalyse.

Abbildung 10: Stammbaum der Familie 2231b

Für Familie 2231b liegen Proben aus drei Generationen vor. In Generation 2 konnten Proben der beiden Betroffenen gewonnen werden. Das elterliche Probenmaterial ist in beiden entsprechenden Generationen vollständig. Eine der Betroffenen aus Generation 2 hat zwei nicht betroffene Kinder, für die ebenfalls vollständiges Probenmaterial vorliegt. Das Fehlen der drei Proben in Generation II wirkt sich nicht negativ aus, da vollständige Proben über drei Generationen vorliegen und der Anteil Betroffener mit zwei von sieben Probanden hoch ist. Diese Familie eignet sich anhand des vorliegenden Probenmaterials sehr gut für die Durchführung einer parametrischen und einer nichtparametrischen Kopplungsanalyse.

Anhand des Stammbaums ist ein dominanter Erbgang unwahrscheinlich. Daher wird der dominante Erbgang bei diesem Stammbaum in der Kopplungsanalyse nicht berücksichtigt.

Abbildung 11: Stammbaum der Familie 2231m

Familie 2231m umfasst vier Generationen. Die Familie ist die einzige in die Studie eingeschlossene Familie, deren betroffene Mitglieder das Merkmal Exotropie aufweisen. Da neben der kumulativen Auswertung der Kopplungsanalysen über alle Familien eine separate Auswertung der einzelnen Familien erfolgte, konnte diese Tatsache berücksichtigt werden.

Es konnten insgesamt elf Proben aus den Generationen II bis IV gewonnen werden. Darunter befinden sich drei Betroffene.

Des Weiteren sind Proben paralleler Familienzweige aus drei Generationen erfasst.

Der Informationsgehalt des Stammbaums für parametrische und nichtparametrische Kopplungsanalysen ist sehr hoch, da mit drei Betroffenen von elf Proben ein hoher Anteil Betroffener innerhalb der Familie repräsentiert ist und über drei Generationen vollständiges Probenmaterial vorliegt.

Es muss berücksichtigt werden, dass in den parallelen Zweigen dieses Stammbaums unabhängig vom Phänotyp eine genetische Heterogenität vorliegen kann. Für die Individuen IV:3 und IV:4 liegt hier aber kein Probenmaterial vor, weshalb deren Genotyp in der Kopplungsanalyse nicht berücksichtigt werden kann.

Anhand des Stammbaums ist ein dominanter Erbgang unwahrscheinlich. Daher wird der dominante Erbgang bei diesem Stammbaum in der Kopplungsanalyse nicht berücksichtigt.

III.1.6 Familie 2249

Abbildung 12: Stammbaum der Familie 2249

Familie 2249 verfügt über vier Generationen. Es konnten insgesamt vier Probanden gewonnen werden, die den Generationen III und IV angehören. Von den Probanden sind drei Betroffene. Hierbei handelt es sich um Drillinge einer nicht betroffenen Probandin. Es konnte leider die entsprechende väterliche Probe aus Generation III nicht gewonnen werden, was insbesondere für parametrische Kopplungsanalysen von Nachteil ist. Es muss berücksichtigt werden, dass in den parallelen Zweigen dieses Stammbaums unabhängig vom Phänotyp eine genetische Heterogenität vorliegen kann und damit eine unterschiedliche genetische Ursache der Ausprägung des Merkmals zugrunde liegen kann. Aus diesem Grund und aufgrund des hohen Anteils Betroffener (3/4) eignet sich die Familie insbesondere gut für nichtparametrische Kopplungsanalysen.

Anhand des Stammbaums ist ein dominanter Erbgang unwahrscheinlich. Daher wird der dominante Erbgang bei diesem Stammbaum in der Kopplungsanalyse nicht berücksichtigt.

Abbildung 13: Stammbaum der Familie 2257

Von Familie 2257 wurden vier Generationen erfasst. Insgesamt liegen drei Proben vor. Von Generation II bis IV konnte jeweils ein betroffener Proband rekrutiert werden. Aufgrund des unvollständigen Probenmaterials ist die Familie für parametrische Kopplungsanalysen ungeeignet. Für nichtparametrische Analysen stellt der hohe Anteil Betroffener (3/3) jedoch einen Vorteil dar. Von Nachteil ist die Unvollständigkeit der elterlichen Proben, da auch bei der nichtparametrischen Analyse der Informationsgehalt durch Bestimmung des Status durch Abstammung steigt.

Anhand des Stammbaums ist ein dominanter Erbgang unwahrscheinlich. Daher wird der dominante Erbgang bei diesem Stammbaum in der Kopplungsanalyse nicht berücksichtigt.

Abbildung 14: Stammbaum der Familie 2378

Von Familie 2378 liegen insgesamt 8 Proben aus drei Generationen vor. Darunter finden sich Proben von drei Betroffenen. Es liegen auch Proben paralleler Familienzweige über 2 Generationen vor. Aufgrund der beiden vollständig durch Proben repräsentierten Familien in Generation II und III eignet sich dieser Stammbaum gut für die Durchführung parametrischer Kopplungsanalysen. Für nichtparametrische Verfahren ist diese Familie aus diesem Grund ebenfalls sehr gut geeignet.

III.2 Bewertung des Informationsgehalts der Marker

Es folgen die graphischen Darstellungen des Informationsgehalts der Marker auf den Chromosomen 3, 7 und 18.

Abbildung 15: Informationsgehalt der Marker auf Chromosom 3

Die Abbildung zeigt den Informationsgehalt der Marker auf Chromosom 3 kumuliert für alle analysierten Stammbäume. Mit steigender Markerdichte steigt der Informationsgehalt. Angegeben wird der Anteil der extrahierten Vererbungsinformation von der maximal zu extrahierenden Vererbungsinformation. Erkennbar ist, dass die drei untersuchten Loci jeweils um die Marker D3S1263, D3S1285 und D3S1292 mit 50 – 65% repräsentiert sind.

(s. Anhang: Tabelle 8: Informationsgehalt der Marker auf Chromosom 3)

Abbildung 16: Informationsgehalt der Marker auf Chromosom 7

Auf Chromosom 7 wurden insgesamt zwei Abschnitte auf beiden Armen des Chromosoms untersucht. Der STBMS1-Locus sowie der Locus des Mikrosatellitenmarkers D7S640. Auch hier zeigt sich der Anteil der extrahierten Vererbungsinformationen bei 50 - 60 %.

(s. Anhang: Tabelle 9: Informationsgehalt der Marker auf Chromosom 7)

Abbildung 17: Informationsgehalt der Marker auf Chromosom 18

Auf Chromosom 18 wurden drei Abschnitte untersucht. Die Loci jeweils um die Mikrosatelliten D18S464, D18S1102 und D18S1161. Es zeigt sich, dass 50% der Vererbungsinformationen extrahiert werden.

(s. Anhang: Tabelle 10: Informationsgehalt der Marker auf Chromosom 18)

III.3 Kopplungsanalyse

Es folgt die Darstellung der Ergebnisse der Kopplungsanalysen für die Chromosomen 3, 7 und 18. In tabellarischer Form werden die Ergebnisse der kumulativen nichtparametrischen Kopplungsanalyse (NPL) und die Ergebnisse der parametrischen Kopplungsanalysen (LOD) unter Annahme eines autosomal rezessiven sowie eines autosomal dominanten Erbgangs dargestellt. Es wird für jeden Marker sowohl der Multipoint-Kopplungswert (MP) als auch der Singlepoint-Kopplungswert (SP) angegeben.

Graphisch erfolgt die Darstellung der kumulativen Kopplungsanalysen und in bestimmten Fällen auch die Darstellung einzelner Familien. Im Anhang finden sich die tabellarischen Ergebnisse der einzelnen Familien (Tabellen 11 - 28).

III.3.1 Chromosom 3

Es folgt zunächst die Darstellung der Ergebnisse der Kopplungsanalyse in kumulativer Auswertung aller Familien für Chromosom 3 in tabellarischer und graphischer Form.

Die folgende Tabelle gibt die Kopplungsergebnisse der nichtparametrischen und der parametrischen Kopplungsanalyse nach kumulativer Auswertung an. Des Weiteren sind die kumulativen Ergebnisse nach Ausschluss von Familie 2231m angegeben, da Familie 2231m als alleinige Familie innerhalb des Kollektivs über das Merkmal Exotropie verfügt. Ein Ausschluss dieser Familie bei der parametrischen kumulativen Auswertung des dominanten Erbgangs war nicht erforderlich, da dieser Erbgang für diese Familie unwahrscheinlich ist und von vornherein keine Kopplungsanalyse unter Annahme eines dominanten Erbganges erfolgt ist.

Tabelle 5: Kopplungsergebnisse für Chromosom 3, kumulative Auswertung aller Familien

Marker	Position HuRef [Mbp]	APL MP	NPL MP ohne 2231m	NPL SP	NPL SP ohne 2231m	LOD rezessiv MP	LOD rezessiv MP ohne 2231m	LOD rezessiv SP	LOD rezessiv SP ohne 2231m	LOD dominant MP	LOD dominant SP
D3S1597	9,3	0,75	0,97	-0,02	0,15	-104	-104	-104	-104	0,58	0,90
D3S1263	11,45	1,44	1,73	1,53	1,80	-104	0,49	-104	1,85	-104	-104
D3S3602	13,86	1,02	0,92	0,45	0,31	-104	-104	-104	-104	-1,61	-1,35
D3S3595	14,58	1,00	0,95	0,45	0,48	-104	-104	-104	-104	-1,49	-0,96
D3S3547	30,16	-0,26	-0,44	-0,40	-0,60	-104	-104	-104	-104	-104	-104
D3S2407	41,44	-0,33	0,15	-0,05	0,45	-104	-104	-104	-104	-2,53	-1,90
D3S3564	42,46	0,74	1,30	0,68	1,23	-104	-104	-104	-104	-1,94	-1,06
D3S2420	48,02	0,61	1,07	0,07	0,42	-104	-104	-104	-104	-104	-104
D3S1285	64,94	1,59	1,87	0,72	0,94	-104	-104	-104	-104	-0,01	0,98
D3S2454	70,37	1,13	1,48	0,69	0,74	-3,24	-3,40	2,06	2,06	-0,34	1,00
D3S1562	71,22	0,99	1,34	-0,11	0,22	-104	-104	-104	-104	-0,46	-1,66
D3S3568	71,55	0,94	1,29	0,96	1,03	-10,5	-10,6	1,72	1,72	-0,45	0,57
D3S1284	73,01	1,63	2,06	3,19	3,41	-104	-104	-104	-104	1,08	1,87
D3S3581	74	1,50	1,94	-0,17	0,15	-104	-104	-104	-104	1,06	0,07
D3S3653	76,5	1,25	1,63	0,11	0,11	-104	-104	-104	-104	0,82	0,60
D3S3507	78,56	1,50	1,86	0,18	0,20	-104	-104	-104	-104	0,48	-0,26
D3S3508	80,17	1,81	1,84	1,33	1,42	-10 ⁴	-104	-104	-104	-0,34	0,02
D3S3606	124,58	0,50	0,38	0,34	0,37	-3,05	-2,22	0,63	0,62	-0,16	0,00
D3S1292	129,01	0,61	0,39	0,67	0,71	-104	-104	-104	-104	-0,34	-0,13
D3S1590	132,33	0,70	0,37	0,96	0,85	-2,24	-2,54	1,25	0,95	-0,51	0,28

Abbildung 18: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, kumulative Auswertung aller Familien

Der Marker D3S1263 erzeugt in der vorliegenden Studie einen suggestiv signifikanten NPL-Wert (NPL_{MP} = 1,44; NPL_{SP} = 1,53). Die beiden flankierenden Mikrosatellitenmarker D3S1597 (NPL_{MP} = 0,75; NPL_{SP} = -0,02) und D3S3602 (NPL_{MP} = 1,02; NPL_{SP} = 0,45) liegen 2,15 bzw. 2,41 Mbp entfernt und liefern in der Singlepoint-Analyse niedrige Werte, wodurch sich ein Locus für Kandidatengene um den Marker D3S1263 scharf begrenzen lässt.

Der Locus um den Marker D3S1285 zeigt sein Maximum bei D3S1284 mit einem hochsignifikanten Wert (NPL_{MP} = 1,63; NPL_{SP} = 3,19). Die Kurven der Darstellung machen deutlich, dass die flankierenden Marker D3S1285, D3S2454, D3S1562 und D3S3568 sowie D3S3581, D3S3653, D3S3507 und D3S3508 in der Multipoint-, aber z.T. auch in der Singlepoint-Analyse ebenfalls hohe NPL-Werte erreichen. Eine Kopplung dieses Locus ist also anhand der vorliegenden nichtparametrischen Kopplungsergebnisse wahrscheinlich. Interessant ist, dass die flankierenden Marker D3S1562 (NPL_{MP} = 0,99; NPL_{SP} = -0,11) und D3S3581 (NPL_{MP} = 1,50; NPL_{SP} = -0,17) in der Singlepoint-Analyse eine Kopplung nahezu ausschließen, wodurch sich ein scharf

begrenzter Locus von nur 2,45 Mbp für Kandidaten-Gene bei D3S1284 ergibt. Dieser Marker ist 8,07 Mbp von dem Marker D3S1285 entfernt.

Die Marker im Bereich um D3S1292 (NPL_{MP} = 0,61; NPL_{SP} = 0,67) zeigen in der Singlepoint-Analyse keine signifikanten Ergebnisse mit maximalen Werten bei D3S1590 (NPL_{MP} = 0,70; NPL_{SP} = 0,96). Eine Kopplung kann anhand dieser Ergebnisse weder bestätigt noch ausgeschlossen werden.

Die obige Kumulation der Kopplungsergebnisse setzt sich zusammen aus den Einzelergebnissen der eingeschlossenen Familien. Hierbei fließen auch die Ergebnisse der Familie 2231m mit exotropen Merkmalsträgern ein, die keine annähernd signifikanten NPL-Werte ergaben.

Abbildung 19: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, kumulative Auswertung aller Familien nach Ausschluss von Familie 2231m aufgrund exotroper Merkmalsträger

An dieser Stelle soll kurz erwähnt sein, dass die signifikanten Werte der kumulativen Auswertung der nichtparametrischen Kopplungsanalyse, wie oben dargestellt, nach Ausschluss von Familie 2231m leicht signifikanter ausgefallen sind.

Abbildung 20: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, Familie 2231m

Die Darstellung der nichtparametrischen Kopplungsergebnisse von Familie 2231 auf Chromosom 3 zeigt, dass keine annähernd signifikanten NPL-Werte erreicht wurden. Zu berücksichtigen ist, dass die Merkmalsträger dieser Familie als Alleinstellungsmerkmal innerhalb des Kollektivs eine exotrope Form des Strabismus aufwiesen.

Im Folgenden werden die Ergebnisse der Familien 181, 199 und 904 graphisch dargestellt, da hier teilweise signifikante Ergebnisse erzielt werden.

Auf eine graphische Darstellung der Kopplungsergebnisse der Familien 2257, 2231b und 2378 wird aufgrund durchgehend nicht-signifikanter Werte verzichtet.

Abbildung 21: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, Familie 181

Analog zu den Ergebnissen der kumulativen Auswertung der Kopplungsergebnisse zeigt Familie 181 Maxima bei den Loci um D3S1263, D3S1284 und D3S1292.

Der Marker D3S1263 selbst erreicht kein signifikantes Niveau (NPL_{MP} = 0,31; NPL_{SP} = 0,77). Auch die Ergebnisse der flankierenden Marker liegen im negativen bis niedrigpositiven Bereich.

Der Marker D3S2454 bildet in der Singlepoint-Analyse ein lokales Maximum (NPL_{MP} = 0,28; NPL_{SP} = 0,77) und flankiert die Marker D3S1285 und D3S1284 (NPL_{MP} = -0,77; NPL_{SP} = 1,55), dessen Singlepoint-Ergebnis mit 1,55 als suggestiv signifikant zu bewerten ist.

Abbildung 22: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, Familie 199

Auch Familie 199 zeigt ein lokales Maximum bei dem Locus um den Marker D3S1263. Es finden sich durchgehend hohe Multipoint-NPL-Werte für die Marker D3S1597 bis D3S3595 von 1,24 bis 1,41. In der Singlepoint-Analyse fällt an diesem Locus besonders der Marker D3S3602 mit einem NPL-Wert von 1,41 auf.

Der Locus um D3S1285 zeigte bei der Multipoint-Analyse durchgehend negative bis niedrig-positive Werte. In der Singlepoint-Analyse fällt ein Maximum bei D3S1284 auf $(NPL_{MP} = -1, 19; NPL_{SP} = 1, 06).$

Durchgehend negativ zeigen sich die Ergebnisse für den Locus um D3S1292.

Abbildung 23: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, Familie 904

Analog zu der kumulativen Auswertung der Kopplungsergebnisse zeigt die Auswertung von Familie 904 ein Maximum bei dem Marker D3S1284. An diesem Locus, definiert durch die Marker D3S1285 bis D3S3508, zeigen sich in der Multipoint-Analyse NPL-Werte von -0,20 bis maximal 2,22 für den Marker D3S1284.

Für die beiden anderen untersuchten Loci um D3S1263 und D3S1292 ist bezogen auf Familie 904 eine Kopplung sowohl bei Singlepoint- als auch bei Multipoint-Analyse unwahrscheinlich bis ausgeschlossen.

Abbildung 24: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3, Familie 2249

Die Darstellung der nichtparametrischen Kopplungsanalyse von Familie 2249 zeigt erhöhte Kopplungswahrscheinlichkeiten an den drei untersuchten Loci. Die hohen Werte werden durch hohe Kopplungswahrscheinlichkeiten mehrerer Marker erzeugt und erklären sich durch die Multipoint-Kopplungsanalyse.

Der Locus um D3S1263 erreicht signifikant hohe Multipoint-NPL-Werte. Die Multipoint-Analyse ergibt für alle 4 Marker an diesem Locus Werte 2,27 bis 2,39. Die Singlepoint-Ergebnisse liegen weniger hoch, erreichen jedoch ebenfalls suggestiv signifikante Werte von 1,47 für den Marker D3S1497 und 1,53 für den Marker D3S3595.

Auch die Werte des Locus um D3S1285 liegen in der Multipoint-Analyse auf hoch signifikantem Niveau von 2,39 bis 2,45. In der Singlepoint-Analyse liegen die Maxima dieses Locus bei D3S3568 (NPL_{SP} = 1,63), D3S1284 (NPL_{SP} = 1,53) und D3S3508 (NPL_{SP} = 1,96).

Ebenfalls hohe Ergebnisse zeigt der Locus D3S1292 mit Multipoint-NPL-Werten von 2,27 bis 2,44. Das Maximum in der Singlepoint-Analyse liegt bei D3S1292 und ist ebenfalls signifikant (NPL_{SP} = 2,14).

Abbildung 25: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3 unter Annahme eines rezessiven Erbgangs, kumulative Auswertung aller Familien

Unter Annahme eines rezessiven Erbgangs zeigen sich Peaks im Bereich D3S2454 (LOD = 2,06), D3S3568 (LOD = 1,72) bei der Singlepoint-Analyse.

Der Peak im Intervall D3S2420 bis D3S1285 der Multipoint-Analyse ist unspezifisch und erreicht kein Signifikanzniveau.

Die interessierenden Loci D3S1263, D3S1285 und D3S1292 sind in den Ergebnissen nicht repräsentiert.

Keine der eingeschlossenen Familien erreicht signifikante Werte unter der Annahme eines rezessiven Erbganges. Es wird daher auf eine detaillierte Darstellung verzichtet.

Abbildung 26: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 3 unter Annahme eines dominanten Erbgangs, kumulative Auswertung aller Familien

Auf Chromosom 3 zeigt sich unter Annahme eines dominanten Erbgangs kein signifikanter Anstieg der Kopplungswahrscheinlichkeit. Die Darstellung zeigt, dass eine Kopplung der untersuchten Bereiche auf Chromosom 3 unter einem dominanten Modell für alle Familien ausgeschlossen ist. Auf eine einzelne Darstellung der untersuchten Familien wurde verzichtet. Keine der Familien zeigte signifikante Kopplungswahrscheinlichkeiten.

III.3.2 Chromosom 7

Es folgt zunächst die Darstellung der Ergebnisse der Kopplungsanalyse in kumulativer Auswertung aller Familien für Chromosom 7 in tabellarischer und graphischer Form.

Tabelle 6: Kopplungsergebnisse für Chromosom 7, kumulative Auswertung aller Familien

Marker	Position HuRef [Mbp]	NPL MP	NPL MP ohne 2231m	NPL SP	NPL SP ohne 2231m	LOD rezessiv MP	LOD rezessiv MP ohne 2231m	LOD rezessiv SP	LOD rezessiv SP ohne 2231m	LOD dominant MP	LOD dominant SP
D7S1819	4,41	-0,97	-0,09	-0,01	0,16	-104	-104	-104	-104	-104	-104
D7S2201	5,54	-1,15	-0,21	-0,54	-0,57	-104	-104	-104	-104	-104	-104
D7S2553	7,27	-0,95	-0,06	-0,24	-0,25	-104	-104	-104	-104	-6,18	0,00
D7S1790	9,09	-0,77	0,09	0,03	0,37	-104	-104	-104	-104	-6,56	-0,70
D7S2200	9,33	-0,77	0,09	1,01	0,91	-104	-104	-104	-104	-104	-104
D7S513	11,51	-1,05	-0,11	0,79	0,34	-104	-104	-10 ⁴	-104	-104	-104
D7S2557	15,16	-0,66	0,12	0,44	0,47	-104	-104	-104	-104	-104	-104
D7S3051	18,17	-0,52	-0,55	-0,53	-0,40	-104	-104	-104	-104	-104	-104
D78503	19,35	-0,42	-0,24	0,22	0,58	-104	-104	-104	-104	-104	-104
D7S1822	120,65	-0,01	-0,51	-0,59	-0,46	-104	-104	-104	-104	-1,29	-0,10
D7S640	126,96	0,39	0,83	0,81	1,37	-104	-104	-104	-104	-104	-104
D7S1824	134,31	1,73	2,10	1,30	1,90	-10 ⁴	-104	-10 ⁴	-104	-10 ⁴	-104

Abbildung 27: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 7, kumulative Auswertung aller Familien

Bei kumulativer Auswertung der nichtparametrischen Kopplungsanalyse aller eingeschlossenen Familien zeigen sich für den STBMS1-Locus in der Multipoint-Analyse durchgehend negative NPL-Werte. Lediglich in der Singlepoint-Analyse erreichen die Marker D7S1790 bis D7S2557 positive Werte mit einem Maximum bei D7S2200 (NPL_{MP} = -0.77; NPL_{SP} = 1.01).

Bei einer der sieben eingeschlossenen Familien (Familie 2249) zeigen sich für den STBMS1-Locus signifikante NPL-Werte. Eine detaillierte Darstellung folgt.

Für den Marker D7S640 wurde ein nichtsignifikantes Ergebnis gemessen (NPL_{MP} = 0,39; NPL_{SP} = 0,81). Der Marker D7S1824 zeigt in der kumulativen Auswertung gute Ergebnisse sowohl in der Singlepoint- als auch in der Multipoint-Kopplungsanalyse (NPL_{MP} = 1,73 = NPL_{SP} = 1,30). Aufgrund des signifikanten Ergebnisses ist eine Kopplung des Markers anzunehmen. Der Marker befindet sich 7,35 Mbp entfernt von dem Marker D7S640. Aufgrund dieser Ergebnisse werden die nichtparametrischen Kopplungsergebnisse der Familien, die die kumulativen Werte erzeugen, im Folgenden detailliert dargestellt.

Die parametrischen Kopplungsanalysen der einzelnen Familien ergeben auf Chromosom 7 unter Annahme eines rezessiven bzw. eines dominanten Erbganges durchgehend negative LOD-Werte. Auf eine detaillierte graphische Darstellung dieser Analysen wird daher verzichtet.

Abbildung 28: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 7, Familie 2249

Familie 2249 zeigt signifikante Kopplungsergebnisse für beide interessierenden Loci. Sowohl im Bereich des STBMS1-Locus finden sich signifikante Kopplungswahrscheinlichkeiten für den Marker D7S2200 (NPL_{MP} = 2,45; NPL_{SP} = 2,00) als auch im Bereich des Markers D7S640 (NPL_{MP} = 2,22; NPL_{SP} = 1,78).

Abbildung 29: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 7, Familie 2231m

Bei Familie 2231m ergibt sich ein annähernd signifikanter NPL-Wert von 1,34 für den Marker D7S513 sowohl in der Singlepoint- als auch in der Multipoint-Analyse. Zu beachten ist, dass die Mitglieder von Familie 2231 als einzige innerhalb dieses Kollektiv das Merkmal Exotropie zeigen. Der Locus um D7S640 zeigt keine Hinweise auf eine Kopplung bei durchgehend negativen NPL-Werten von D7S640 und den flankierenden Marker.

Abbildung 30: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 7, Familie 181

Der von Fujiwara und Kollegen vorbeschriebene Locus D7S640 erzeugt bei Familie 181 nicht signifikante Singlepoint- und Multipoint-NPL-Werte von jeweils 0,26. Der Marker befindet sich 7,35 Mbp entfernt von dem Marker D7S1824, für den ein annähernd signifikanter NPL-Wert von 1,55 in der Singlepoint-Analyse und ein signifikanter NPL-Wert von 2,13 in der Multipoint-Analyse gemessen wird.

Die Auswertung der Mikrosatellitenmarker bei Familie 181 ergab keinen Hinweis auf eine Kopplung des STMBS1-Locus.

Abbildung 31: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 7, Familie 2231b

Familie 2231b erzeugt signifikante NPL-Werte sowohl in der Singlepoint- als auch in der Multipoint-Analyse der Marker D7S640 (NPL_{MP} = 1,41; NPL_{SP} = 1,41) und D7S1824 (NPL_{MP} = 1,41; NPL_{SP} = 1,41).

Die Messungen bei Familie 2231b ergeben keinen Hinweis auf eine Kopplung des STMBS1-Locus.

Auf eine graphische Darstellung der nichtparametrischen Kopplungsergebnisse der Familien 199 und 2378 wird an dieser Stelle aufgrund nichtsignifikanter Ergebnisse verzichtet.
III.3.3 Chromosom 18

Es folgt zunächst die Darstellung der Ergebnisse der Kopplungsanalyse in kumulativer Auswertung aller Familien für Chromosom 18 in tabellarischer und graphischer Form.

Tabelle 7: Kopplungsergebnisse	für	Chromosom	18,	kumulative	Auswertung
aller Familien					

Marker	Position HuRef [Mbp]	NPL MP	NPL MP ohne 2231m	NPL SP	NPL SP ohne 2231m	LOD rezessiv MP	LOD rezessiv MP ohne 2231m	LOD rezessiv SP	LOD rezessiv SP ohne 2231m	LOD dominant MP	LOD dominant SP
D18S1376	5,22	1,23	1,32	0,79	0,85	-104	-104	-104	-104	-1,01	-1,66
D18S471	5,94	2,08	2,22	0,61	0,66	-104	-104	-104	-104	0,52	0,35
D18S1163	7,44	2,94	3,19	2,16	2,31	-104	-104	-104	-104	1,89	1,11
D18S843	8,88	2,25	2,65	0,31	0,33	-104	-104	-104	-104	1,29	0
D18S464	9,92	1,74	2,18	0,34	0,70	-104	-104	-104	-104	-0,13	-0,96
D18S1116	11,44	1,87	2,21	0,05	0,06	-104	-104	-104	-104	-104	-104
D18S482	11,85	1,91	2,21	0,59	0,63	-104	-104	-104	-104	-1,79	-104
D18S866	23,37	1,44	1,72	0,68	1,06	-104	-104	-104	-104	-2,36	-0,96
D18S877	26,73	1,33	1,59	0,67	0,89	-104	-104	-104	-104	-104	-104
D18S847	27,70	1,30	1,43	0,83	0,72	-104	-104	-104	-104	-104	-104
D18S463	28,14	1,68	1,78	1,48	1,58	-3,15	-3,44	2,16	2,16	-7,52	0
D18S456	31,16	1,59	1,28	-0,04	-0,21	-104	-104	-104	-104	-7,94	-1,13
D18S1102	31,78	1,63	1,24	0,93	0,99	-104	-104	-104	-104	-104	-104
D18S1096	33,04	1,52	1,13	1,47	1,23	-104	-104	-104	-104	-3,93	-1,27
D18S469	68,04	1,49	1,75	1,44	1,37	-104	-104	-104	-104	-104	-104
D18S1161	68,98	0,22	0,41	-0,40	-0,26	-104	-104	-104	-104	-104	-104
D18S1371	69,79	-0,23	-0,07	-0,61	-0,31	-104	-104	-104	-104	-104	-104

Abbildung 32: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18, kumulative Auswertung aller Familien

Die nichtparametrische Kopplungsanalyse von Chromosom 18 ergibt einen signifikanten Wert für D18S1163 bei der Multipoint- und der Singlepoint-Analyse (NPL_{MP} = 2,94; NPL_{SP} = 2,16). Während bei der Singlepoint-Analyse die flankierenden Marker D18S471 (NPL_{MP} = 2,08; NPL_{SP} = 0,61) und D18S843 (NPL_{MP} = 2,25; NPL_{SP} = 0,31) kein Signifikanzniveau erreichen, werden bei der Multipoint-Analyse die Kopplungsergebnisse der flankierenden Marker berücksichtigt. Es resultiert eine flachere Kurve.

Der Marker D18S464 (NPL_{MP} = 1,74; NPL_{SP} = 0,34) profitiert in der Multipoint-Analyse von dem positiven Kopplungsergebnis von D18S1163, der sich nur 2,48 Mbp entfernt befindet.

Für den Marker D18S1102 liegen annähernd signifikante Ergebnisse in der Multipoint-Analyse vor (NPL_{MP} = 1,63; NPL_{SP} = 0,93). Die flankierenden Marker D18S456 (NPL_{MP} = 1,59, NPL_{SP} = -0,04) und D18S1096 (NPL_{MP} = 1,52; NPL_{SP} = 1,47) lassen eine Kopplung dieses gemeinsamen Locus vermuten. D18S1161 erzeugt weder bei der Multipoint- noch bei der Singlepoint-Analyse annähernd signifikante Werte (NPL_{MP} = 0,22; NPL_{SP} = -0,40). Der Marker D18S469 befindet sich 0,94 Mbp entfernt auf Chromosom 18 und erreicht annähernd signifikante Kopplungsergebnisse (NPL_{MP} = 1,49; NPL_{SP} = 1,44).

Im Folgenden werden die nichtparametrischen Kopplungsergebnisse der Familien 181, 904 und 2249 näher dargestellt, da hier teilweise signifikante Einzelergebnisse erzielt werden. Auf eine Darstellung der Familien 199, 2231m, 2231b, 2257, und 2378 wird aufgrund negativer oder niedrig positiver NPL-Werte verzichtet.

Abbildung 33: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18, Familie 181

Familie 181 erzeugt das Maximum bei D18S1163 (NPL_{MP} = 1,29; NPL_{SP} = 1,55), das sich auch in den Ergebnissen der kumulativen Auswertung aller Familien zeigt. Signifikanzniveau erreicht der Marker jedoch nicht. Die anderen interessierenden Loci um D18S1102 und D18S1161 zeigen bei dieser Familie negative NPL-Werte.

Abbildung 34: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18, Familie 904

Auch Familie 904 erzeugt das Maximum für den Locus um D18S464. Die Marker D18S1163 bis D18S463 erzeugen signifikante NPL-Werte von 1,77 bis 3,08 in der Multipoint-Analyse und verbinden die beiden durch die Arbeitsgruppe um Fujiwara beschriebenen Maxima bei D18S464 und D18S1102. Die hohen Werte erzeugen jedoch die Marker D18S1163 (NPL_{SP} = 2,89) und D18S847 (NPL_{SP} = 1,94), was die Kurve der Singlepoint-Analyse deutlich macht. Diese beiden Maxima der Singlepoint-Analyse liegen 20,26 Mbp voneinander entfernt. Möglicherweise handelt es sich innerhalb dieser Familie um einen gemeinsam gekoppelten Locus.

Der Locus um den Marker D18S1161 zeigt für Familie 904 negative NPL-Werte.

Abbildung 35: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18, Familie 2249

Für Familie 2249 ergeben sich sowohl in der Singlepoint- als auch in der Multipoint-Analyse signifikante NPL-Werte für die drei untersuchten Loci um D18S464, D18S1102 und D18S1161.

Der Locus um D18S1464 zeigt sein Maximum bei dem Marker D18S1376 (NPL_{MP}= 2,44; NPL_{SP} = 2,04).

Der Marker D18S1102 selbst zeigt das Maximum (NPL_{MP} = 2,42; NPL_{SP} = 1,96).

Der Locus um D18S1161 erreicht das Maximum bei dem Marker D18S1371 (NPL_{MP} = 2,44; NPL_{SP} = 2,07).

Abbildung 36: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18, Familie 2231m

Die Familie exotroper Merkmalsträger zeigt einen maximalen NPL-Wert für den Marker D18S1096 (NPL_{MP} = 1,33; NPL_{SP} = 0,89).

Abbildung 37: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18 unter Annahme eines rezessiven Erbgangs, kumulative Auswertung aller Familien

Es findet sich unter Annahme eines rezessiven Erbganges nach kumulativer Auswertung aller Familien ein lokales Maximum bei der Singlepoint-Analyse für den Marker D18S463 (LOD_{MP} = -3,15; LOD_{SP} = 2,16).

Keine der analysierten Familien zeigte hoch positive oder annähernd signifikante Ergebnisse bei der parametrischen Kopplungsanalyse unter Annahme eines rezessiven Erbgangs. Es wird daher auf eine Einzeldarstellung der Familien verzichtet.

Abbildung 38: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von Chromosom 18 unter Annahme eines dominanten Erbgangs, kumulative Auswertung aller Familien

Die kumulative Auswertung der Kopplungsergebnisse der eingeschlossenen Familien unter Annahme eines dominanten Erbganges ergibt für die untersuchten Loci auf Chromosom 18 lediglich für den Locus um D18S1163 einen positiven LOD-Wert. Das Maximum liegt bei dem Marker D18S1163 (NPL_{MP} = 1,89; NPL_{SP} = 1,11). Für die anderen beiden untersuchten Loci zeigen lediglich negative bis schwach positive Werte.

Keine der eingeschlossenen Familien erreicht hoch positive oder signifikante Werte. Eine Kopplung eines der untersuchten Loci unter Annahme eines dominanten Erbgangs erscheint anhand der vorliegenden Ergebnisse unwahrscheinlich.

III.4 Charakterisierung der Loci mit hoher Kopplungswahrscheinlichkeit und Auswahl von Kandidatengenen zur Sequenzierung

Die Ergebnisse der nichtparametrischen Kopplungsanalyse zeigen im Bereich einiger Marker signifikante oder annähernd signifikante Kopplungswahrscheinlichkeiten. Es wurden anhand der Kopplungsergebnisse Loci definiert. Diese Loci wurden im Rahmen dieser Studie untersucht und auf mögliche Kandidatengene hin geprüft. Dabei wurde auf die Genom-Datenbank *ensembl* zugegriffen. (Bronwen 2016)

Im Hinblick auf die Genfunktion wurde anhand verfügbarer Literatur eine Auswahl, entsprechend der Zielsetzung dieser Studie, getroffen. Die Funktion der ausgewählten Gene sollte im Zusammenhang mit dem Zytoskelett, dem Energiemetabolismus, der extrazellulären Matrix, sowie der Reizleitung einer Zelle stehen. Gene für die ein Einfluss auf die Genese neurologischer oder ophthalmologischer Erkrankungen beschrieben wird, wurden ebenfalls eingeschlossen.

Die folgende Darstellung dieser Gene soll die Auswahlkriterien der Kandidatengene verdeutlichen, die im nächsten Schritt der vorliegenden Studie zunächst bei Betroffenen, später bei den Foundern einer Sequenzierung unterzogen wurden.

III.4.1 Chromosom 3

Der Mikrosatellitenmarker D3S1263 befindet sich auf dem kurzen Arm von Chromosom 3 (3p25.3). Anhand der Kopplungsergebnisse der beiden flankierenden Marker D3S1597 und D3S3602 lässt sich ein Kandidatengen-Locus auf 4,56 Mbp begrenzen.

Innerhalb dieses Bereichs finden sich in der *ensembl*-Datenbank 44 transkribierte Gene. (Bronwen 2016) Im Hinblick auf die Funktion der Gene werden im Folgenden 7 Gene präsentiert, die im Zusammenhang mit dem Zytoskelett, dem Energiemetabolismus, der extrazellulären Matrix oder der Reizleitung einer Zelle stehen.

Das *MTMR14*-Gen spielt eine wichtige Rolle im Kalziumhaushalt der Skelettmuskulatur. (Romero-Suarez 2010) Defekte in diesem Gen führen zur autosomal dominant vererbten zentronuklearen Myopathie Typ 1 (CNM1), einer langsam fortschreitenden generellen Muskelschwäche oft einhergehend mit Ptose und Augenbewegungsstörungen. (Tosch 2006; Bitoun 2005) Anhand eines Mausmodells konnte nachgewiesen werden, dass entsprechende *MTMR14*-Knockout-Tiere an Muskelschwäche und leichterer muskulärer Ermüdbarkeit litten. Dies konnte auch an einzelnen Muskeln nachgewiesen werden. (Shen 2009)

CAMK1 ist eine Komponente der Calmodulin-abhängigen Protein-Kinase-Kaskade. Diese grundlegende Signalkaskade steuert eine Vielzahl von Zellfunktionen, u.a. die Zellproliferation, Ausbildung von Axonen und des zentralen Nervensystems, Energiehaushalt der Zelle, sowie Immunantworten. (Colomer 2007)

ATG7 ist essentiell für die Autophagie von Zellen und damit wichtig für die ZNS-Entwicklung und die Herzmuskelzellentwicklung. Ein Defekt kann u.a. zu neurodegenerativen Erkrankungen führen. (Komatsu 2006)

Für *RAF1* wird eine Beteiligung an der Axonentwicklung, der Zellproliferation, der Zytoskelettorganisation und der Herzentwicklung beschrieben. (Li 1991)

IQSEC1 ist beteiligt an der Aktin-Zytoskelettorganisation und der Regulation Proteinsignaltransduktionen. (Chen 2003)

TIMP4 exprimiert v.a. im zentralen Nervensystem, aber auch in anderen Geweben wie den äußeren Augenmuskeln, einen irreversiblen Inhibitor der Matrixmetalloproteasen MMP-1, MMP-2, MMP-3, MMP-7 und MMP-9. Diese spielen neben einer regulativen Funktion in der extrazellulären Matrix neuen Forschungserkenntnissen zufolge auch eine Rolle bei der Steuerung einzelner Zellfunktionen durch proteolytische Eingriffe in verschiedene Signalkaskaden. (Rodriguez 2010) Für die durch *TIMP4* inhibierten Metalloproteasen MMP1 und MMP2 konnte eine signifikante genetische Assoziation mit Refraktionsanomalien gezeigt werden. (Wojciechowski 2010) Metalloproteasen waren auch Gegenstand einer Studie der Arbeitsgruppe von Kitada aus dem Jahr 2003. Hier wurde gezeigt, dass die Genexpression von *TIMP1* und -2 zwischen dem M. rectus medialis und dem M. rectus lateralis von Strabismus-Patienten variiert. (Kitada 2003)

PPARG wird zum größten Teil in Fettgewebe exprimiert und spielt eine große Rolle im Fettstoffwechsel. Es kann zu Insulinresistenz führen. Zum geringeren Teil wird das Gen jedoch auch in anderen Zelltypen, u.a. Muskelzellen, exprimiert. (Elbrecht 1996) Eine Studie wies mittels quantitativer Reverse-Transkriptase-PCR eine signifikant höhere Expression von *PPARG* im orbitalen Fett- und Bindegewebe bei Patienten mit aktiver endokriner Orbitopathie nach. (Mimura 2003)

Altick untersuchte die Genexpression der extraokulären Muskeln von Strabismus-Patienten im Vergleich zur Genexpression nicht erkrankter Patienten. Die Muskelbiopsien wurden im Rahmen von Korrekturoperationen von Strabismus-Patienten und für die Vergleichsgruppe an nicht betroffenen Körperspendern gewonnen. Hierbei konnte anhand Microarray-Untersuchungen eine signifikant unterschiedliche Expression für über 600 Gene nachgewiesen werden. Augenmuskeln betroffener Probanden wiesen eine signifikant verringerte Expression von Genen auf, welche im Zusammenhang mit der Muskelkontraktilität stehen. Entgegengesetzt dazu zeigten Gene, welche im Zusammenhang mit der Extrazellulärmatrix stehen, eine signifikant erhöhte Expressivität auf. Für *TIMP4*, Inhibitor von Metalloproteasen, wurde in o.g. Studie eine Minderung der Expression von 26% der Vergleichsgruppe beschrieben. *PPARG* wies eine reduzierte Expression von 74% der Vergleichsgruppe auf. (Altick 2012)

Die beiden Gene *PPARG* und *TIMP4* wurden aufgrund ihrer Position in dem annähernd signifikant gekoppelten Locus D3S1263 und der Ergebnisse der Studie der Arbeitsgruppe um Altick ausgewählt, um im Rahmen der hier vorgelegten Studie sequenziert zu werden. (Altick 2012)

Der Locus um den Marker D3S1285 liegt ebenfalls auf dem kurzen Arm von Chromosom 3 (3p14.1) und zeigt sein Maximum bei D3S1284 mit einem hochsignifikanten Wert (NPL_{MP} = 1,63; NPL_{SP} = 3,19). Aufgrund der negativen NPL-Werte der flankierenden Marker wird der gekoppelte Locus auf 2,45 Mbp eingegrenzt. In diesem Bereich finden sich insgesamt acht Gene, darunter fand sich ein Gen, welches direkt an der Signaltransduktion von Zellen beteiligt ist: *GPR27* ist ein Mitglied der G-Proteingekoppelten Rezeptor-Familie und regt nach extrazellulären Stimuli intrazelluläre Signalkaskaden an. (Matsumoto 2000)

III.4.2 Chromosom 7

Der Marker D7S1824 liegt auf dem langen Arm von Chromosom 7. Die Begrenzung dieses Locus anhand der vorliegenden Kopplungsergebnisse ist nur unvollständig möglich, da nur ein flankierender Marker verwendet wurde: D7S640 befindet sich 7,35 Mbp entfernt. Es wurde daher der auf Kandidatengene zu prüfende Bereich auf 4 Mbp begrenzt. In diesem Bereich finden sich insgesamt 37 proteincodierende Gene. Für keines davon konnte anhand verfügbarer Literatur ein naher Zusammenhang zu Genfunktionen mit Bezug zu Zytoskelett, Energiemetabolismus, extrazellulärer Matrix oder Reizleitung festgestellt werden.

Der STBMS1-Locus zeigt in der kumulativen Kopplungsanalyse keine signifikanten Kopplungswahrscheinlichkeiten. Daher wurde auf eine Prüfung dieses Locus auf Kandidatengene verzichtet.

III.4.3 Chromosom 18

Der Mikrosatellit D18S1163 liegt auf dem kurzen Arm von Chromosom 18 (18p11.23). Im umgebenden Chromosomenabschnitt, d.h. im Locus begrenzt durch die Mikrosatelliten D18S1376 bis D18S464 von 4,7 Mbp Länge, fanden sich 16 Gene, darunter vier Gene, welche den Zielkriterien entsprechen.

EPB41L3 ist ein Adapterprotein, welches auf nahezu allen Zelloberflächen zu finden ist. Den vorliegenden Studien zufolge hat es Einfluss auf die Nervensystementwicklung, Myelinisierung von Axonen, Fibroblasten-Entwicklung und als Tumorsuppressorgen. (Wang 2014; Einheber 2013)

PTPRM ist ein Gen, welches für einen Zellrezeptor codiert und in unterschiedlichen Geweben exprimiert wird. Der Rezeptor ist Bestandteil einer Familie von Rezeptoren, welche an der Zelladhäsion beteiligt sind und weitreichende Eigenschaften, u.a. Einfluss auf die Axonentwicklung und kollektive Zellmigration haben. (Aricescu 2007; Craig 2015)

NDUFV2 codiert ein Protein, welches in den Mitochondrien an der Atmungskette beteiligt ist. Mutationen führen zu Mitochondriopathien mit Kardiomyopathie und Enzephalopathie. (Benit 2003) Chen und Kollegen konnten nachweisen, dass ein Knockout des Gens in utero zu einem Abbruch der Nervensystementwicklung führt. Des Weiteren wurde ein Einfluss auf die Zytoskelettfunktion von Neuronen beschrieben. Es wird ein Zusammenhang zwischen der *NDUFV2*-Funktion und neuropsychiatrischen Erkrankungen vermutet. (Chen 2015)

TWSG1 ist ein BMP-Antagonist, ein Wachstumsfaktor, und damit an der embryonalen Entwicklung beteiligt. (Chang 2001) Sun und Kollegen zeigten, dass *TWSG1* im zentralen Nervensystem von Menschen exprimiert und konnte eine signifikante Assoziation zwischen *TWSG1*-Mutationen und Hydrozephalus aufzeigen. (Sun 2010)

III.5 Sequenzierungen

Es wurde im Rahmen dieser Studie eine Sequenzierung der Gene *TIMP4* und *PPARG* durchgeführt. Ziel war es hierbei, Mutationen der Gene bei Indexpatienten und deren Vererbung innerhalb der Familie nachzuweisen.

Es wurde aus vier Familien jeweils der Indexpatient ausgewählt. Im ersten Schritt erfolgte die Sequenzierung der fünf Exone von *TIMP4* und der sieben Exone von *PPARG* mittels des Forward-Primers bei jedem der Indexpatienten. Zeigten sich hier Mutationen oder konnten Mutationen anhand des Sequenzierungsergebnisses des Forward-Primers nicht ausgeschlossen werden, erfolgte in einem zweiten Schritt die Sequenzierung der jeweiligen Exone mittels des Reverse-Primers.

III.5.1 *TIMP4*

Die Ergebnisse der Sequenzierungen von *TIMP4* zeigten keine reproduzierbaren Mutationen in den untersuchten Familien.

III.5.2 PPARG

Die Ergebnisse der Sequenzierungen von *PPARG* zeigten keine reproduzierbaren Mutationen in den untersuchten Familien.

IV Diskussion

IV.1 Bewertung der Methodik

Die Kopplungsanalyse ist ein seit vielen Jahren etabliertes Verfahren um Loci krankheitsverursachender Gene zu identifizieren. Zwar ist der Modus der Vererbung des frühkindlichen Strabismus unklar, jedoch wird eine komplexe, di- oder polygene Vererbung vermutet. (Preising 2002; Preising 2015; Lorenz 2012)

Die parametrischen Kopplungsanalysen setzen ein genetisches Modell voraus. Zugrunde gelegt werden muss entweder ein monogener rezessiver oder ein monogener dominanter Erbgang. Verglichen mit den nichtparametrischen Verfahren weisen die parametrischen Verfahren die größere Teststärke auf, vorausgesetzt das richtige genetische Modell wird zugrunde gelegt. Die nichtparametrische Kopplungsanalyse wird in der Literatur als geeignete Methode beschrieben, chromosomale Loci komplex vererbter Erkrankungen zu identifizieren, da sie modellfrei arbeitet. (Kruglyak 1996) Von Nachteil ist jedoch, dass ausschließlich genetische Informationen Betroffener verarbeitet werden. In einem Vergleich der Teststärken beider Verfahren wurde die Überlegenheit der parametrischen Verfahren zu nutzen, da auf diese Weise nur ein geringer Anstieg des Typ 1 Fehlers gemessen wurde. (Paula 1999) Im Rahmen der vorliegenden Studie wurden sowohl parametrische als auch nichtparametrische Verfahren angewendet. Zum Zeitpunkt dieser Studie stellte dieses Vorgehen eine adäquate Methode dar, sich der Beantwortung der Fragestellung der genetischen Ursachen des Strabismus concomitans zu nähern.

Wie bei anderen Kopplungsanalysen auch, erwies sich bereits die Rekrutierung des bezüglich ihrer Erkrankung homogenen Kollektivs als problematisch. Hier bietet die Kopplungsanalyse im Vergleich zur Assoziationsstudie den Vorteil, dass bereits mit einem relativ kleinen Kollektiv signifikante Ergebnisse erzielt werden können, wenn die Familien eine geeignete Struktur haben. (Paul 1994; Preising 2002; Preising 2015; Lorenz 2012)

Probleme technischer Natur ergeben sich im Rahmen der Genotypisierung. In dieser Studie wurden ausschließlich hochpolymorphe Marker verwendet. Es zeigte sich jedoch, dass es, trotz sorgfältiger Auswahl der Marker in Hinblick auf Allel-Verteilung, häufig zu nichtinformativen Konstellationen kam. Die Identität durch Abstammung blieb so häufig unbekannt, wodurch der Informationsgehalt auch bei der nichtparametrischen Kopplungsanalyse sank. Kopplungsanalysen profitieren von hochpolymorphen genetischen Markern, da damit die Wahrscheinlichkeit sinkt, dass beide Eltern ein gleiches Allel tragen. (Kruglyak 1996; Strachan 2005)

Leider konnten trotz erneuter Isolation der DNS aus den Vollblutproben und Wiederholung der Messungen in einigen Fällen keine Fragmentlängen bestimmt werden. Gründe hierfür könnten eine Verunreinigung des Probenmaterials sein.

Der Informationsgehalt der Segregationsanalyse steigt mit der Anzahl der verwendeten Marker. Die Darstellung der extrahierten Vererbungsinformationen macht deutlich, dass diese für die untersuchten Marker auf allen drei untersuchten Chromosomen bei etwa 50 – 60% der maximal zu extrahierenden Informationen liegen. Je weniger Vererbungsinformationen extrahiert werden, desto wahrscheinlicher ist das Nicht-Detektieren einer Kopplung. Wird jedoch eine Kopplung detektiert, so vergrößert sich mit sinkender Markerdichte der Bereich in dem Kandidatengene lokalisiert sein können. Die Steigerung der Markerdichte würde den Anteil der extrahierten Vererbungsinformationen erhöhen.

Durch die limitierte Anzahl verfügbarer Mikrosatellitenmarker ist der Anteil der extrahierten Vererbungsinformationen ebenfalls limitiert. Aus diesem Grund wurden in der vorliegenden Studie auch Mikrosatellitenmarker, deren Amplifikationsprodukte Dinukleotid-Repeats entsprechen, verwendet. Da diese sich ggfs. lediglich um zwei Basenpaare in den Fragment-Längen unterscheiden und damit zwar innerhalb (jedoch auch unmittelbar an) der Grenze der physikalischen Auflösung (2 bp) des verwendeten Elektrophorese-Gerätes lagen, waren Fehlinterpretationen der Ergebnisse nicht ausgeschlossen. (Qiagen 2013)

Grundsätzlich liegt der Nachteil einer Kopplungsanalyse darin, dass man über die genetischen Rückschlüsse verwendeten Marker nur indirekt auf die krankheitsverursachenden Gene erzielen kann. Die Sequenzierung von durch Kopplungsanalysen gewonnenen Kandidatengenen ist notwendig, um krankheitsverursachende Mutationen nachzuweisen.

Im Hinblick auf einige der genannten Probleme bei der Durchführung einer Kopplungsanalyse lassen sich die Vorteile einer Assoziationsstudie diskutieren. Im Unterschied zu Kopplungsanalysen ist man bei Assoziationsstudien nicht auf möglichst vollständige Stammbäume ganzer Familien angewiesen. Die im Folgenden noch näher vorgestellten Studien verwenden SNPs als genetische Marker und vergleichen die Allele betroffener und nicht betroffener Probanden. So können Aussagen zur Assoziation von Krankheiten mit bestimmten Allelen gemacht werden. Eine direkte Aussage über ursächliche Sequenzveränderungen lassen sich mit den SNP-Analysen wie bei einer Kopplungsanalyse nicht treffen. Deshalb sind im Anschluss weitergehende Auswertungen, wie Genanalysen, notwendig. Problematisch im Vergleich zu einer Kopplungsanalyse kann für Assoziationsstudien das Vermengen der verschiedenen klinischen Varianten des Strabismus sein, da unterschiedliche genetische Ursachen vorliegen können. Es bietet sich an, große Studien mit nachfolgenden Subanalysen durchzuführen, um die Kosteneffizienz und die Teststärke der Studien zu erhöhen. (Engle 2009; Lorenz 2012)

Im Jahr 2014 veröffentlichte die Arbeitsgruppe um Bosten eine genomweite Assoziationsstudie um genetische Faktoren der Entstehung von Heterophorien, der latenten Form des Strabismus, zu identifizieren. Für Heterophorien und Strabismus werden gemeinsame Ursachen diskutiert und die großangelegte Zwillingsstudie von Sanfilippo und Kollegen zeigte eine Erblichkeit der Eso-Deviationen, also Esotropie und Esophorie, wohingegen ein genetischer Einfluss für Exo-Deviationen nicht gezeigt werden konnte. (Sanfilippo 2012) Bosten und Kollegen zeigten innerhalb ihres Kollektivs von 988 Probanden mit horizontaler oder vertikaler Heterophorie eine signifikante Assoziation eines Locus auf 6p22.2 mit horizontaler Heterophorie. Der entsprechende Locus befindet sich in einem Intron des Gens ALDH5A1, welches eine Rolle im Neurotransmitter-Stoffwechsel der Gamma-Amino-Buttersäure (GABA) spielt. Mutationen des Gens können zu verschiedenen neuropsychologischen Erkrankungen z.T. mit Strabismus führen. (Bosten 2014)

Seit dem Jahr 2009 läuft im Boston children's hospital eine weitere genomweite Assoziationsstudie mit 605 Probanden. Ergebnisse liegen aktuell noch nicht vor. (Andrews 2009) Auch Kopplungsanalysen mit Familien innerhalb des Kollektivs des Boston children's hospital sollen erfolgen. Kopplungsanalysen einzelner geeigneter Familien können weiterhin dazu beitragen, krankheitsdefinierende Loci zu bestimmen.

IV.2 Bewertung der Ergebnisse

Das Ziel der durchgeführten Studie war, Ergebnisse publizierter genomweiter Kopplungsanalysen in Familien aus der Patientenkohorte des Labors für Molekulare Ophthalmologie der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität Gießen, zu verifizieren. Die publizierten Kopplungsergebnisse waren sehr heterogen und teilweise auch widersprüchlich aufgrund statistisch signifikanter und nicht signifikanter Kopplungen an verschiedenen Loci. (Engle 2007; Parikh 2003; Fujiwara 2003; Rice 2009)

Die parametrischen Kopplungsanalysen der hier vorgelegten Studie zeigten für die untersuchten Marker auf Chromosom 3, 7 und 18 bei keiner der Familien signifikante Ergebnisse.

Bei der kumulativen Auswertung der nichtparametrischen Kopplungsanalyse von Chromosom 3 zeigten sich für diejenigen Loci Maxima, die auch von der Arbeitsgruppe um Fujiwara veröffentlicht wurden (D3S1263 NPL = 1,34; D3S1285 NPL = 1,34; D3S1292 NPL = 1,29). (Fujiwara 2003) Der Ausschluss der Familie 2231m, deren Merkmalsträger das Merkmal Exotropie tragen, führte zu keiner wesentlichen Änderung der Ergebnisse.

Der Marker D3S1263 erzeugte in der vorliegenden Studie einen suggestiv signifikanten NPL-Wert (NPL_{MP} = 1,44; NPL_{SP} = 1,53). Die beiden flankierenden Mikrosatellitenmarker D3S1597 (NPL_{MP} = 0,75; NPL_{SP} = -0,02) und D3S3602 (NPL_{MP} = 1,02; NPL_{SP} = 0,45) liegen 2,15 bzw. 2,41 Mbp entfernt und lieferten in der Singlepoint-Analyse niedrige Werte, wodurch sich ein Locus für Kandidatengene um den Marker D3S1263 scharf begrenzen ließ. Bei der Prüfung dieses Locus auf Kandidatengene fanden sich 44 transkribierte Gene, von denen 7 Gene im Zusammenhang mit dem Zytoskelett, dem Energiemetabolismus, der extrazellulären Matrix oder der Reizleitung einer Zelle stehen. Von diesen 7 Genen wurde bei 2 Genen in einer aktuellen Studie eine reduzierte Expressivität innerhalb der Augenmuskeln von Strabismus-Patienten beschrieben. (Altick 2012) Diese beiden Gene, *TIMP4* und *PPARG*, wurden im Rahmen der vorliegenden Studie sequenziert. Hierbei fanden sich keine reproduzierbaren Mutationen bei den untersuchten Betroffenen.

Der Marker D3S1285 (NPL_{MP} = 1,59; NPL_{SP} = 0,72) zeigte in der Multipoint-Analyse ebenfalls ein hohes Ergebnis. Mit dem Ergebnis des benachbarten Markers D3S1284 wurde ein signifikantes Ergebnis an diesem Locus erzielt (NPL_{MP} = 1,63; NPL_{SP} = 3,19). Die flankierenden Marker D3S1285, D3S2454, D3S1562 und D3S3568 sowie D3S3581, D3S3653, D3S3507 und D3S3508 erreichten in der Multipoint-, aber z.T. auch in der Singlepoint-Analyse, ebenfalls hohe NPL-Werte. Eine Kopplung dieses Locus ist also anhand der vorliegenden nichtparametrischen Kopplungsergebnisse wahrscheinlich. Interessant ist, dass die flankierenden Marker D3S1562 (NPL_{SP} = -0,11) und D3S3581 (NPL_{SP} = -0,17) in der Singlepoint-Analyse eine Kopplung nahezu ausschließen, wodurch sich ein scharf begrenzter Locus von nur 2,45 Mbp für Kandidaten-Gene bei D3S1284 ergibt. Dieser Marker ist 8,07 Mbp von dem Marker D3S1285 entfernt, der von der Arbeitsgruppe um Fujiwara vorbeschrieben wurde. Bei der Prüfung dieses Locus fanden sich insgesamt acht Gene, darunter ein Gen, welches direkt an der Signaltransduktion von Zellen beteiligt ist: *GPR27*, ein Mitglied der G-Protein-gekoppelten Rezeptor-Familie.

Die Marker im Bereich um D3S1292 (NPL_{MP} = 0,61; NPL_{SP} = 0,67) zeigten in der Singlepoint-Analyse keine signifikanten Ergebnisse mit maximalen Werten bei D3S1590 (NPL_{MP} = 0,70; NPL_{SP} = 0,96). Eine Kopplung konnte anhand dieser Ergebnisse weder bestätigt noch ausgeschlossen werden.

Auf Chromosom 7 wurde durch die Arbeitsgruppe um Fujiwara ein NPL-Wert von 1,34 für den Mikrosatelliten D7S640 beschrieben. (Fujiwara 2003) Des Weiteren liegt auf Chromosom 7 der STBMS1-Locus. Rice und Mitarbeiter wiesen bei einer von vier Familien unter einem dominanten Modell einen LOD-Wert von 3,21 nach. (Rice 2009) Parikh und Mitarbeiter beschrieben bei einer von acht Familien unter einem rezessiven Modell eine Kopplung mit einem LOD-Wert von 4,51. (Parikh 2003)

Für den Marker D7S640 wurde ein nichtsignifikantes Ergebnis gemessen (NPL_{MP} = 0,39; NPL_{SP} = 0,81). Der Marker D7S1824 zeigte in der kumulativen Auswertung gute Ergebnisse sowohl in der Singlepoint- als auch in der Multipoint-Kopplungsanalyse (NPL_{MP} = 1,73 = NPL_{SP} = 1,30). Aufgrund des signifikanten Ergebnisses ist eine Kopplung des Markers anzunehmen. Der Marker befindet sich 7,35 Mbp entfernt von dem Marker D7S640. Die Prüfung dieses Locus auf Kandidatengene ergab, dass keines der 37 proteinkodierenden Gene anhand verfügbarer Literatur in nahem Zusammenhang

zu Genfunktionen mit Bezug zu Zytoskelett, Energiemetabolismus, extrazellulärer Matrix oder Reizleitung steht.

Eine Kopplung des STBMS1-Locus ist anhand der kumulativen Auswertung der nichtparametrischen Multipoint-Kopplungsanalyse ausgeschlossen. Für eine von sieben Familien (Familie 2249) zeigte sich jedoch ein signifikanter NPL-Wert für den Marker D7S2200 (NPL_{MP} = 2,45; NPL_{SP} = 2,00). Die Ergebnisse der parametrischen (rezessiven) Analyse blieben auch für diese Familie im nichtsignifikanten Bereich. Ein dominanter Erbgang ist bei dieser Familie anhand des Stammbaums unwahrscheinlich.

Fujiwara und Kollegen beschrieben auch auf Chromosom 18 nichtsignifikante Kopplungsergebnisse (D18S464 NPL = 1,34; D18S1102 NPL = 1,32; D18S1161 NPL = 1,34). (Fujiwara, 2003)

Für den Marker D18S464 wurde in der vorliegenden Studie dieses Ergebnis reproduziert (NPL_{MP} = 1,74; NPL_{SP} = 0,34). Es muss jedoch berücksichtigt werden, dass der Marker in der Multipoint-Analyse von dem positiven Kopplungsergebnis für den Marker D18S1163 (NPL_{MP} = 2,94; NPL_{SP} = 2,16) profitiert, der sich nur 2,48 Mbp entfernt befindet. Bei dem signifikanten Ergebnis für diesen Marker kann eine Kopplung dieses Locus vermutet werden. Innerhalb des Locus, der durch die flankierenden Marker begrenzt wird, fanden sich insgesamt 16 Gene, darunter 4 Gene, welche die Auswahlkriterien erfüllten.

Für D18S1102 liegen ebenfalls annähernd signifikante Ergebnisse in der Multipoint-Analyse vor (NPL_{MP} = 1,63; NPL_{SP} = 0,93). Die flankierenden Marker D18S456 (NPL_{MP} = 1,59, NPL_{SP} = -0,04) und D18S1096 (NPL_{MP} = 1,52; NPL_{SP} = 1,47) lassen eine Kopplung dieses gemeinsamen Locus vermuten.

Der Marker D18S1161 zeigte weder bei der Multipoint- noch bei der Singlepoint-Analyse annähernd signifikante Werte (NPL_{MP} = 0,22; NPL_{SP} = -0,40). Der Marker D18S469 befindet sich 0,94 Mbp entfernt auf Chromosom 18 und erreichte in der vorliegenden Studie annähernd signifikante Kopplungsergebnisse (NPL_{MP} = 1,49; NPL_{SP} = 1,44). Die vorliegende Studie kann die Ergebnisse der genomweiten nichtparametrischen Kopplungsanalyse der Arbeitsgruppe um Fujiwara, bei welcher sich erhöhte, jedoch nichtsignifikante, Kopplungswahrscheinlichkeiten verschiedener Loci u.a. auf den Chromosomen 3, 7 und 18 fanden, z.T. reproduzieren. Für den STBMS1-Locus lag bei der nichtparametrischen Kopplungsanalyse bei einer Familie eine signifikante Kopplungswahrscheinlichkeit vor, während die kumulative Auswertung eine Kopplung dieses Locus ausschließt. Die parametrischen Kopplungsanalysen der hier vorgelegten Studie zeigten für die untersuchten Marker auf Chromosom 3, 7 und 18 bei keiner der Familien signifikante Ergebnisse, was die These einer multifaktoriellen Ursache des Strabismus concomitans unterstützt. Zwar ergaben sich durch die nichtparametrische Kopplungsanalyse signifikante Werte, jedoch zeigten sich sowohl auf Chromosom 3 als auch auf Chromosom 18 nach kumulativer Auswertung signifikante NPL-Werte. Eine Familie zeigte signifikante NPL-Werte für Marker auf beiden genannten Chromosomen, andere Familien zeigten keine signifikanten NPL-Werte für die genannten Loci, jedoch signifikante Ergebnisse für andere Marker. Eine mögliche Schlussfolgerung ist eine sekundäre ursächliche Beteiligung der beiden Loci an der Pathophysiologie des Strabismus concomitans. Denkbar ist auch ein Dosisschwellenmodell, bei dem eine bestimmte Anzahl betroffener Gene die Schwelle determiniert, ab wann die Erkrankung zum Tragen kommt. Die Bereiche erhöhter Kopplungswahrscheinlichkeit sind mit 4,56 Mbp auf Chromosom 3 und 4,5 Mbp auf Chromosom 18 schmal, was ebenfalls einen Zusammenhang mit einer multifaktoriellen Vererbung und dem Zusammenspiel mehrerer unabhängiger Loci nahelegt. Auf Chromosom 7 ergab sich für einen Locus bei zwei Familien ein signifikanter, bzw. ein nahezu signifikanter NPL-Wert. In diesem Fall weist eine der Familien das Merkmal Exotropie auf. Eine ausreichende Polymorphie des Markers vorausgesetzt kann dieses Ergebnis auf eine gemeinsame genetische Komponente von esotropen und exotropen Formen des Strabismus concomitans hinweisen.

IV.3 Bewertung des Materials

In diese Studie wurden acht Familien mit mindestens zwei von primärem Strabismus betroffenen Patienten eingeschlossen. Lediglich bei zwei Familien konnten nur zwei Proben Betroffener gewonnen werden. Bei vier Familien wurden drei Proben Betroffener rekrutiert, bei einer Familie lagen vier Proben Betroffener vor und bei einer weiteren Familie lag der Anteil sogar bei fünf Betroffenen. Bei einer der Familien lagen Proben betroffener Probanden über drei Generationen vor. Im Vergleich zu den genannten, genomweiten Kopplungsanalysen ist das Kollektiv dieser Studie klein, es konnten jedoch größere Familien mit einem wesentlich höheren Anteil Betroffener rekrutiert werden. Die wenig umfangreichen Stammbäume der meist 2-Generationen-Familien wurden als limitierender Faktor der Studien von Fujiwara und Kollegen aus dem Jahr 2003 und auch der Folgestudie von Fujiwara, Shaaban und Kollegen aus dem Jahr 2009 angesehen. (Fujiwara 2003; Shaaban 2009) Voraussetzung für signifikante Kopplungsergebnisse ist ein Kollektiv aus Familien mit Betroffenen, welche sich über möglichst viele Generationen (Meiosen) verteilen. (Paul 1994; Preising 2002; Preising 2015; Lorenz 2012) Im Hinblick auf die Zielsetzung dieser Studie, die Überprüfung ausgewählter Loci auf Kopplungen und die Validierung vorhandener Kopplungsergebnisse, erscheint das Kollektiv aufgrund des hohen Anteils Betroffener gut geeignet.

Es wurden sieben Familien mit esotropen Formen des primären Strabismus und eine Familie mit exotropen Formen des primären Strabismus rekrutiert. Dies wurde um die Homogenität des Kollektivs sicherzustellen bei der Auswertung der Ergebnisse berücksichtigt. Damit lag ein hinsichtlich der Erkrankung homogenes Kollektiv vor und die Möglichkeit der kumulativen Durchführung einer Kopplungsanalyse unter Einbezug aller vorhandener Stammbäume war gegeben. Die vorangegangenen Studien zeigten keine Steigerung der Teststärke nach Ausschluss einer der beiden Formen des Strabismus concomitans, daher erfolgte auch eine kumulative Durchführung unter Einschluss der Familie mit exotropen Merkmalsträgern.

Es konnten in vielen Fällen nur vereinzelte Proben innerhalb umfangreicher Stammbäume gewonnen werden: Bei drei der acht Familien lagen Proben nur von einem Elternteil vor. Unvollständiges Probenmaterial reduziert den Informationsgehalt entsprechender Stammbäume sowohl für die parametrischen Kopplungsanalyseverfahren als auch für das nichtparametrische Kopplungsverfahren. Die Phase kann in diesen Fällen zwar definierbar sein, wenn ersichtlich ist, welche Allele als Haplotyp von einem Elternteil stammen, es kann jedoch unklar bleiben von welchem Elternteil die weitervererbten Allele stammen. (Ott 1999) Der Informationsgehalt dieser Familien ist daher für parametrische Verfahren, bei denen die Annahme über den Modus der Vererbung der untersuchten Krankheit berücksichtigt wird, als gering zu bewerten. Auch im Rahmen des nichtparametrischen Kopplungsanalyseverfahren kommt es zu einem Informationsverlust durch unvollständiges Probenmaterial, da die Identität des Genotyps durch Abstammung ggfs. nicht bestimmt werden kann, womit die Teststärke sinkt. Eine "affected sib-pairs"-Analyse durch Bestimmung der Identität durch den Status ist jedoch möglich. (Ganten 2013; Strachan 2005)

Bei der Rekrutierung geeigneter Familien für die vorliegende Kopplungsanalyse zeigten sich zwei Probleme. Der Anteil der Familien, die aufgrund mehrerer Betroffener innerhalb aufeinanderfolgenden Generationen für Kopplungsanalysen geeignet sind, ist sehr klein und beträgt in der Vorstudie zu dieser Arbeit mit 42 Familien 1,8% der 2.380 ausgewerteten familiären Fälle. Im Vergleich dazu fanden sich 1.900 Familien mit zwei Betroffenen, was 79,8% entspricht. Des Weiteren ist bei retrospektiver Rekrutierung die Resonanz der Patienten zur Teilnahme an der Studie sehr gering. Von den 42 angeschriebenen Familien waren letztendlich nur drei Familien zur Teilnahme an der Studie bereit. Eine höhere Erfolgsrate war bei direkter Rekrutierung der Patienten aus der Ambulanz gegeben. (Preising 2015)

Auch bei anderen Kopplungsanalysen erwies sich die Rekrutierung geeigneter Familien als das limitierende Moment. So sind beispielsweise die Ergebnisse einer japanischen genomweiten nichtparametrischen und "affected sib-pairs"-Kopplungsanalyse der Arbeitsgruppe um Fujiwara aufgrund der geringen Zahl von 30 Familien mit betroffenen Kindern nicht signifikant. Als Gründe werden dort selbstkritisch das zu kleine Kollektiv und die mangelnde Compliance potentieller Probanden angegeben. (Preising 2015; Fujiwara 2003) Es folgte eine Erweiterung der Einschlusskriterien. Durch die Erweiterung der Einschlusskriterien auf Familien mit betroffenen Elternteilen konnte das Kollektiv auf 55 Familien erweitert werden. Es ergaben sich für die nichtparametrische Kopplungsanalyse der Arbeitsgruppe von Fujiwara und Shaaban signifikante Kopplungsergebnisse auf den Chromosomen 4 und 7, deren Ergebnisse bei der Auswahl der Markerposition bei der hier vorgelegten Studie jedoch nicht mehr berücksichtigt werden konnten. (Shaaban 2009)

Im Hinblick auf die Rekrutierung geeigneter Familien für Kopplungsanalysen oder anderer Methoden zur Lokalisation krankheitsverursachender Gene lassen sich alternative Herangehensweisen diskutieren. So bieten sich isolierte Kollektive mit erhöhter Prävalenz des kongenitalen Strabismus aufgrund der genetischen Homogenität an. (Preising 2002) Diesbezüglich zeigte eine Studie eine erhöhte Prävalenz von Strabismus und Mikrostrabismus in den bayerischen Städten und Landkreisen Neumarkt (Opf.), Postbauer-Heng, Amberg, Hauzenberg und Pocking. Die Daten wurden in Kooperation mit lokalen Augenärzten gewonnen. Von den 104 im Rahmen der Studie angeschriebenen, beteiligten sich jedoch nur 17 mit Informationen. Auch die in den Praxen verwendete Office-Software und die teilweise handschriftlichen Dokumentationen waren limitierende Faktoren dieser Studie. (Zitzlsperger 2002) Eine Kliniken gemeinschaftliche landesweite Rekrutierung an wäre daher ein vielversprechenderer Ansatz. (Preising 2015)

IV.4 Ausblick

In Zukunft werden alternative Methoden die Identifikation ursächlicher genetischer Faktoren komplex vererbter Krankheiten erleichtern.

Die neuen Hochdurchsatz-Sequenzierungstechniken ermöglichen im Gegensatz zur konventionellen Sequenzierungstechnik nach Sanger die parallele Verarbeitung mehrerer Tausend bis Millionen DNS-Sequenzen. Die Kosten für die Sequenzierung des gesamten Genoms eines Menschen sind in den letzten Jahren exponentiell gesunken und das "Whole Genome Sequencing" wird bereits kommerziell angeboten. Die Möglichkeit, auch die nicht kodierenden Abschnitte des Genoms außerhalb der Gene und ihrer regulatorischen Sequenzen beurteilen zu können, wird von manchen als Vorteil gewertet. Von Nachteil ist der verhältnismäßig hohe Preis. Günstiger ist das "Whole Exom Sequencing". Hierbei werden nur die kodierenden Anteile inklusive der Introne sequenziert. Die entstehenden hohen Datenmengen der Hochdurchsatzsequenzierung stellen entsprechend hohe Anforderungen an die Datenverarbeitung und die statistische Auswertung, schaffen aber auch einen besseren und ursachenbezogenen Überblick über die Sequenzveränderungen der Gene der Betroffenen (Engle 2009; Ropers 2014; Ye 2014) Es besteht die Möglichkeit, das gesamte Genom Betroffener oder ganzer Familien auf Mutationen zu untersuchen. Ein Ansatz wäre ein "Whole Exom Sequencing" der Betroffenen innerhalb eines bezüglich der Erkrankung homogenen Kollektivs von Familien zur Identifikation von Missense-Mutationen und die anschließende Prüfung auf Konkordanz und Segregation der Mutationen innerhalb der Familien.

Einen anderen Ansatzpunkt stellt die Erforschung des Einflusses epigenetischer Faktoren dar. Der Einfluss auf die Entwicklung einzelner Zellen wird allein durch die Tatsache,

dass die unterschiedlichen Zellarten eines Organismus über die gleichen genetischen Informationen verfügen, belegt. Die Aktiviät der Gene wird hauptsächlich durch die beiden Faktoren Methylierung der DNS und Eigenschaften der Histone, der Proteine, die als Gerüst für die DNS dienen und den Zugang zu dieser kontrollieren, determiniert. Die posttranslationale Modifikation der Histone ist ein Beispiel für aktuelle Forschung auf dem Gebiet der Epigenetik und kann in Zukunft das Verständnis ophtalmologischer Erkrankungen verbessern. (Shechter 2014)

Ein konkretes Beispiel für epigenetische Strabismus-Forschung ist die Erforschung des Proteoms, der Gesamtheit der vom Genom codierten Proteine eines Individuums. Die Forschungsgruppe um Liu untersuchte mit einer Technik namens *"surface-enhanced laser desorption/ionization time as determined by time-of-flight mass spectometry*" (SELDI-TOF-MS) die Unterschiede im Proteom zwischen esotropen und nicht-esotropen monozygoten Zwillingen und konnte drei Proteine mit reduzierter Expression und ein Protein mit erhöhter Expression nachweisen. Es wird von den Autoren angenommen, dass ein Protein dem *"glucagon precursor, pituitary adenylate cyclase-activating polypeptide*" (PACAP) entspricht, was in einer Folgestudie überprüft werden soll. Das Protein ist neben einer Funktion als Neurotransmitter an der Entwicklung der visuell geleiteten Augenentwicklung und der Entwicklung des Nervensystems beteiligt. Das kodierende Gen *ADCYAP1* liegt auf dem kurzen Arm von Chromosom 18 (18p11.32). (Liu 2011)

Die Entwicklung von Tiermodellen könnte die Forschung nach den genetischen Ursachen des kongenitalen Strabismus in Zukunft erleichtern. Bisherige Versuche induzierten Strabismus u.a. bei Katzen und zeigten abnormale Entwicklungen des visuellen Cortexes. (Bui Quoc 2012) Albinismus ist mit Esotropie assoziiert und Defekte im *TYR*-Gen siamesischer Katzen zeigten einen Pigmentierungsmangel stammnaher Körperregionen. Anatomisch zeigt sich bei den Versuchstieren und auch bei Menschen, dass die Axone des retinalen Ganglions im höheren Maß zur gegenüberliegenden Seite des Gehirns kreuz als physiologisch normal ist. Hinweise auf eine direkte Verantwortlichkeit von Gendefekten von *TYR* und der Entstehung von Strabismus beim Menschen gibt es aber nicht. Es besteht jedoch die These, dass Gene, welche die korrekte Bildung des Chiasmas steuern, mitverantwortlich für die Entstehung von Strabismus sein könnten. (Rengstorff 1976; Kaas 2005; Burdon 2003; Ye 2014)

Neben neuen technischen Möglichkeiten, welche eine zunehmende Rolle im Verständnis komplexer Krankheiten spielen, ist auch die geistige Herangehensweise von Bedeutung. Brodsky versteht Strabismus als Beispiel für zu lineares Denken in der Medizin und beschreibt es als eine neurologische Erkrankung und letztlich als Symptom. Die Erforschung erfordere eine dynamische Suche nach der Kausalität. Er warnt vor der Verwechslung von Ursache und Wirkung in einer Zeit mit steigender Anzahl infrage kommender Einflüsse für die Entstehung von Krankheiten. (Brodsky 2010)

V Zusammenfassung

Strabismus als ein Ungleichgewicht der Aktivität der Augenmuskeln, bzw. ihrer Koordination, ist mit einer Prävalenz von 3% eine häufige kinderophthalmologische Erkrankung, die zu einer irreversiblen Sehschwäche und fehlender Tiefenwahrnehmung führen kann. Strabismus concomitans, Begleitschielen, ist mit ca. 75 - 95% die häufigste aller Strabismusformen. Es existieren chirurgische und konservative Therapieoptionen. Während eine familiäre Disposition nachgewiesen ist, ist die Ätiologie weitgehend Die Erforschung der genetischen Komponente des Strabismus unklar. als Grundlagenforschung kann die biochemischen Zusammenhänge beleuchten und zu einem neuen Verständnis der Erkrankung führen. Aktuell wird von einer multifaktoriellen und komplexen genetischen Ursache ausgegangen. Eine genomweite nichtparametrische Kopplungsanalyse von 30 Stammbäumen wurde von der Arbeitsgruppe um Fujiwara im Jahr 2003 durchgeführt und konnte keine signifikanten Ergebnisse erzielen. Parametrische Kopplungsanalysen, durchgeführt von Parikh und Kollegen im Jahr 2003 sowie von Rice und Kollegen im Jahr 2009, zeigten signifikante Ergebnisse unter Annahme eines rezessiven, respektive eines dominanten Erbganges bei jeweils einer Familie für den STBMS1-Locus auf Chromosom 7. Die vorliegende Studie dient der Verifizierung dieser bisherigen Kopplungsanalysen in Familien mit erblichem Strabismus und verbesserten Einschlusskriterien. Dazu wurden 47 Probanden aus sieben Familien mit von frühkindlicher Esotropie Betroffenen und aus einer Familie mit von frühkindlicher Exotropie Betroffenen in die Studie eingeschlossen. Einschlusskriterium war das Vorhandensein von mindestens zwei Betroffenen innerhalb der jeweiligen Familie.

Durchgeführt wurden parametrische und nichtparametrische Multipoint- und Singlepoint-Kopplungsanalysen mit Mikrosatellitenmarkern auf Teilabschnitten der Chromosomen 3, 7 und 18. Die Loci mit erhöhten Kopplungswahrscheinlichkeiten und die dort liegenden Gene wurden anhand vorhandener Literatur charakterisiert. Gene mit Funktion im Zusammenhang mit dem Zytoskelett, dem Energiemetabolismus, der extrazellulären Matrix oder der Reizleitung sind als Kandidatengene ausgewählt worden. Diese sollten im Anschluss in der DNS der Indexpatienten der Familien sequenziert und auf Mutationen untersucht werden. Im Falle eines Mutationsnachweises sollte eine Segregation dieser Mutationen innerhalb der Familien untersucht werden, indem die entsprechenden Gene in weiteren Familienmitgliedern sequenziert werden sollten. Auf Chromosom 3 wurde für den Marker D3S1263 ein nichtsignifikanter nicht parametrischer Kopplungswert (NPL) von 1,44 in der Multipoint-Analyse berechnet. Innerhalb dieses Locus von 4,56 Mbp fanden sich 44 transkribierte Gene, von denen sieben Gene die definierten Kriterien erfüllten. Unter diesen Genen fanden sich TIMP4, ein Inhibitor von Metalloproteasen der extrazellulären Matrix, und PPARG, das im Fettstoffwechsel involviert ist. Für die beiden Gene wurde in einer aktuellen Studie eine Minderung der Expression von 26% bzw. 74% der Vergleichsgruppe beschrieben. Es wurden Sequenzierungen von TIMP4 und PPARG bei den Indexpatienten von vier Familien durchgeführt, ohne das Mutationen nachgewiesen werden konnten. Der Marker D3S1284 zeigte einen annähernd signifikanten NPL-Wert von 1,63 in der Multipoint-Analyse. Innerhalb dieses Locus fanden sich acht transkribierte Gene, von denen ein Gen den Zielkriterien entsprach. Auf Chromosom 7 zeigte sich ein signifikanter NPL-Wert von 1,73 für den Marker D7S1824. In diesem Bereich fanden sich insgesamt 37 transkribierte Gene, von denen keines den Zielkriterien entsprach. Für den STBMS1-Locus zeigte eine Familie für den Marker D7S2200 einen signifikanten NPL-Wert von 2,45. Für die anderen sechs Familien wurde eine Kopplung an diesem Locus ausgeschlossen. Auf Chromosom 18 wurde ein maximaler NPL-Wert von 2,94 für den Marker D18S1163 erreicht. Innerhalb dieses Locus fanden sich insgesamt 16 transkribierte Gene, wovon vier den Zielkriterien entsprachen.

Die vorliegende Studie kann die Ergebnisse der genomweiten nichtparametrischen Kopplungsanalyse der Arbeitsgruppe um Fujiwara z.T. bestätigen. Mehrere Genloci wurden identifiziert, für die z.T. signifikante nichtparametrische Kopplungswerte gemessen wurden. Die Analyse dieser Loci ergab insgesamt acht Kandidatengene auf Chromosom 3 und vier Kandidatengene auf Chromosom 18. Auf Chromosom 7 fand sich für den STBMS1-Locus nur bei einer Familie eine signifikante nichtparametrische Kopplungswahrscheinlichkeit. Die parametrischen Kopplungsanalysen ergaben in keinem Fall einen Hinweis auf das Vorliegen einer Kopplung.

Diese Ergebnisse stützen die These einer multigenen Genese des Strabismus concomitans. Möglich ist eine ursächliche Beteiligung unterschiedlicher Gene, im Sinne eines Dosisschwellenmodells, bei dem eine bestimmte Anzahl betroffener Gene die Schwelle zur Krankheitsdetermination definiert. Die nichtparametrische Kopplungsanalyse ist eine geeignete Methode um die Anzahl von Kandidatengenen des Strabismus concomitans zu reduzieren. Zum Zeitpunkt der Durchführung dieser Studie konnten Kopplungsanalysen keine krankheitsverursachenden Gene zweifelsfrei nachweisen. Aufgrund des methodebedingten indirekten Rückschlusses auf die krankheitsverursachenden genetischen Variationen stellen alternative Methoden wie das "Whole Exom Sequencing", die diesem Nachteil nicht unterworfen sind, in Zukunft vielversprechende Ansätze dar.

VI Abstract

Strabismus as an imbalance of the eye muscles, or their coordination, with a prevalence of 3% is a frequent pediatric ophthalmological entity, which may lead to irreversible visual impairment and lack of depth awareness. Strabismus concomitans, concomitant squint, is the most common of all strabismus forms with approximately 75 - 95%. There are surgical and conservative therapy options. While familial disposition is proven, the aetiology is largely unclear. The identification of the genetic components of strabismus in basic research can illuminate the biochemical relations and lead to a new understanding of the disease. A multifactorial and complex genetic cause is currently being developed. A genome-wide nonparametric linkage analysis of 30 pedigrees was carried out by the Fujiwara group in 2003 and could not achieve any significant results. Parametric linkage analyses carried out by Parikh and colleagues in 2003 as well as by Rice and colleagues in 2009 showed significant results assuming a recessive or a dominant inheritance in one family for the STBMS1 locus on chromosome 7. The purpose of the present study is to verify these linkage analyses in families with hereditary strabismus and optimized for the inclusion criteria. Fourty-seven subjects from seven families with early-onset esotropia and from one family with early-onset exotropia were included in the study. Inclusion criterion was the presence of at least two affected individuals within the families.

Parametric and non-parametric multipoint and single-point linkage analyses with microsatellite markers were carried out on partial sections of chromosomes 3, 7 and 18. The loci with increased linkage likelihoods and the genes located there were characterized by the published literature. Genes with function in combination with cytoskeleton, energy metabolism, extracellular matrix or the neural innervation of the muscle have been selected as candidate genes. These were subsequently sequenced in the DNA of the index patients and examined for mutations. In the case of mutation detection, segregation of these mutations within the family should be investigated by sequencing the corresponding genes in further family members.

On chromosome 3, a non-parametric linkage score (NPL) of 1.44 was measured for the marker D3S1263 in the multipoint analysis. Within this locus of 4.56 Mbp 44 transcribed genes were found, of which seven genes fulfilled the defined criteria. Among these genes, *TIMP4*, an inhibitor of metalloproteases in extracellular matrix and *PPARG* involved in lipid metabolism, were found. For the two genes, a reduction in the expression of 26% and 74% of the control group was described in a recent study. Sequencing of *TIMP4* and

PPARG was performed in the index patients of four families. No mutations were identified within the families. The marker D3S1284 showed an approximately significant NPL value of 1.63 in the multipoint analysis. Within this locus, eight transcribed genes were found, of which one gene corresponded to the target criteria. On chromosome 7, a significant NPL score of 1.73 was found for the marker D7S1824. In this area a total of 37 transcribed genes were found, none of these corresponded to the target criteria. For the STBMS1 locus, one family showed a significant NPL score of 2.45 for the marker D7S2200. For the other six families, a linkage of this locus was excluded. A maximum NPL score of 2.94 for the marker D18S1163 was achieved on chromosome 18. Within this locus a total of 16 transcribed genes was found, of which four corresponded to the target criteria.

The present study partly confirms the results of the genome-wide non-parametric linkage analysis of the work group around Fujiwara. Several genetic loci have been identified, for which in some cases significant nonparametric linkage scores were measured. The analysis of these loci revealed a total of eight candidate genes on chromosome 3 and four candidate genes on chromosome 18. On chromosome 7, only one family found significant non-parametric linkage likelihood for the STBMS1 locus. The parametric linkage analyses did not show any linkage.

These data support an oligogenic genesis of strabismus concomitans. A causal involvement of different genes is possible, in the sense of a dose threshold model in which a certain number of affected genes defines the threshold for disease genesis.

Nonparametric linkage analysis is a suitable method to reduce the number of candidate genes of concomitant strabismus. At the time of this study, linkage analyses were unable to detect any disease-causing genes. Due to the method-related indirect deduction for the disease-causing genetic variations, alternative methods such as "Whole Exom Sequencing", which are not subject to this disadvantage, are promising approaches in the future.

VII Abkürzungsverzeichnis

bp	Base pair, Basenpaar, komplementäre Nukleobasen, physikalische
	Einheit für Länge von DNS
	Dana mamba anatia mataina
BMP	Bone morphogenetic proteins
сM	Centimorgan, Maßeinheit der genetischen Distanz w, gibt die
	Wahrscheinlichkeit einer Rekombination in Prozent an
DMSO	Dimethylsulfoxid
DNS	Desoxyribonukleinsäure
dNTPs	Desoxyribonukleosidtriphosphate
dpt	Dioptrie, Maßeinheit für die Brechkraft
DZ	Dizygote Zwillinge
EDTA	Ethylendiamintetraessigsäure
IBD	"Identity by descent", Abstammungsidentisch
IBS	"Identity by state", Eigenschaftsidentisch
Kpb	Kilo base pairs, 1.000 Basenpaare
LOD	Logarithmic Odds Ratio, Formelzeichen Z
M.	Musculus
Mbp	Mega base pairs, 1.000.000 Basenpaare
Mm.	Musculi
MP	Multipoint
MRT	Magnetresonanztomographie
MZ	Monozygote Zwillinge
N.	Nervus

Nn.	Nervi
NPL	Non-Parametric-Linkage-Score
NR	Anzahl Nichtrekombinanter bezüglich einer betrachteten Meiose
PCR	Polymerase chain reaction, Polymerase-Kettenreaktion
R	Anzahl Rekombinanter bezüglich einer betrachteten Meiose
RFLP	Restriktionsfragmentlängenpolymorphismus
RNS	Ribonukleinsäure
SNP	Einzelnukleotidpolymorphismus
SP	Singlepoint
TBE	TBE-Puffer: TRIS-Borat-EDTA-Puffer
TRIS	Tris-(hydroxymethyl)-aminomethan
UV	Ultraviolettstrahlung
VNTR	"variable number of tandem repeats", Minisatelliten
Ζ	Formelzeichen des LOD-Wertes
Θ	Omega (groß), Formelzeichen der Rekombinationsfrequenz
ω	Omega (klein), Formelzeichen der genetischen Distanz, wird in der Einheit cM angegeben

VIII Abbildungsverzeichnis

Abbildung 1: Wirkungsweise der äußeren Augenmuskeln um die drei Hauptachsen.
(Drenckhahn 2003)
Abbildung 2: Horopter, modifiziert nach Zenz (Zenz, 2015)
Abbildung 3: Polygenes Schwellenmodell für dichotome mendelnde Merkmale nach
Falconer (1996)11
Abbildung 4: Struktur des mlink-Datenformats anhand einer Beispieldatei für einen
dominanten Erbgang und zwei Loci27
Abbildung 5: Genotypen der Familie 181, Chromosom 18
Abbildung 6: Beispieldatei für das Mlink Datenformat für Stammbäume im Linkage
Package (Lathrop 1985; Ott 1999)
Abbildung 7: Stammbaum der Familie 18140
Abbildung 8: Stammbaum der Familie 19941
Abbildung 9: Stammbaum der Familie 90442
Abbildung 10: Stammbaum der Familie 2231b43
Abbildung 11: Stammbaum der Familie 2231m44
Abbildung 12: Stammbaum der Familie 224945
Abbildung 13: Stammbaum der Familie 225746
Abbildung 14: Stammbaum der Familie 237847
Abbildung 15: Informationsgehalt der Marker auf Chromosom 348
Abbildung 16: Informationsgehalt der Marker auf Chromosom 749
Abbildung 17: Informationsgehalt der Marker auf Chromosom 1850
Abbildung 18: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, kumulative Auswertung aller Familien53
Abbildung 19: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, kumulative Auswertung aller Familien nach Ausschluss von Familie
2231m aufgrund exotroper Merkmalsträger54
Abbildung : NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, Familie 2231m
Abbildung 21: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, Familie 18156
Abbildung 22: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, Familie 19957

Abbildung 23: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, Familie 90458
Abbildung 24: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3, Familie 224959
Abbildung 25: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3 unter Annahme eines rezessiven Erbgangs, kumulative Auswertung aller
Familien
Abbildung 26: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 3 unter Annahme eines dominanten Erbgangs, kumulative Auswertung aller
Familien
Abbildung 27: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 7, kumulative Auswertung aller Familien63
Abbildung 28: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 7, Familie 224964
Abbildung 29: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 7, Familie 2231m
Abbildung 30: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 7, Familie 18166
Abbildung 31: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 7, Familie 2231b67
Abbildung 32: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18, kumulative Auswertung aller Familien
Abbildung 33: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18, Familie 18170
Abbildung 34: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18, Familie 90471
Abbildung 35: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18, Familie 224972
Abbildung 36: NPL-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18, Familie 2231m73
Abbildung 37: LOD-Werte der Singlepoint- und Multipoint-Kopplungsanalysen von
Chromosom 18 unter Annahme eines rezessiven Erbgangs, kumulative Auswertung aller
Familien74

IX Tabellenverzeichnis

Tabelle 1: Funktion extraokulärer Muskeln2
Tabelle 2: Materialnachweis 17
Tabelle 3: Gerätenachweis 18
Tabelle 4: Verwendete Primer
Tabelle 5: Kopplungsergebnisse für Chromosom 3, kumulative Auswertung aller
Familien
Tabelle 6: Kopplungsergebnisse für Chromosom 7, kumulative Auswertung aller
Familien
Tabelle 7: Kopplungsergebnisse für Chromosom 18, kumulative Auswertung aller
Familien
Tabelle 8: Informationsgehalt der Marker auf Chromosom 3126
Tabelle 9: Informationsgehalt der Marker auf Chromosom 7127
Tabelle 10: Informationsgehalt der Marker auf Chromosom 18
Tabelle 11: Ergebnisse der Singlepoint-Analyse NPL Chromosom 3129
Tabelle 12: Ergebnisse der Multipoint-Analyse NPL Chromosom 3130
Tabelle 13: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 3131
Tabelle 14: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 3132
Tabelle 15: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 3
Tabelle 16: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 3
Tabelle 17: Ergebnisse der Singlepoint-Analyse NPL Chromosom 7135
Tabelle 18: Ergebnisse der Multipoint-Analyse NPL Chromosom 7136
Tabelle 19: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 7137
Tabelle 20: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 7138
Tabelle 21: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 7
Tabelle 22: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 7140
Tabelle 23: Ergebnisse der Singlepoint-Analyse NPL Chromosom 18141
Tabelle 24: Ergebnisse der Multipoint-Analyse NPL Chromosom 18142
Tabelle 25: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 18143
Tabelle 26: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 18144
Tabelle 27: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 18 145
Tabelle 28: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 18 146
Tabelle 29: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
--
3 - Teil 1 (D3S1597 - D3S3564)147
Tabelle 30: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
3 - Teil 2 (D3S2420 - D3S1590)150
Tabelle 31: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
7 – Teil 1 (D7S1819 – D7S513)
Tabelle 32 Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
7 - Teil 2 (D7S2557 - D7S1824)154
Tabelle 33: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
18 - Teil 1 (D181376 - D18S1116)156
Tabelle 34: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom
18 - Teil 2 (D181102 - D18S1371)

X Literaturverzeichnis

- Abecasis, G. R. (2002). Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. *Nature Genetics*(30), S. 97-101.
- Alberts, B. (2007). *Molecular Biology of the Cell* (Bde. 95-107). New York: Garland Science, Taylor & Francis Group.
- Altick, A. (2012). Differences in Gene Expression between Strabismic and Normal Human Extraocular Muscles. *Investigative Ophthalmology & Visual Science*, 53(9), S. 5168-5177.
- Altmüller, J. (2001). Genomewide scans of complex human diseases: true linkage is hard to find. *The American Journal of Human Genetics*, 69(5), S. 936-950.
- Andrews, C. (2009). Genetics of comitant strabismus: A study based at children's hospitalBoston.Abgerufenam23.11.2014vonhttp://www.ashg.org/2009meeting/abstracts/fulltext/f10870.htm
- Aricescu, A. (2007). Structure of a tyrosine phosphatase adhesive interaction reveals a spacer-clamp mechanism. *Science*(317), S. 1217-1220.
- Axelrod, N. (2009). The HuRef Browser: a web resource for individual human genomics. *Nucleic Acids Research*(37), S. 1018–1024.
- Benit, P. (2003). Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. *Human Mutation*(21), S. 582-586.
- Berwin, B. (1998). CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. *Neuron*(21), S. 137-145.
- Birch, E. E. (2005). Risk factors for accomodative esotropia among hypermetropic children. *Investigative Ophthalmology & Visual Science*, 46(2), S. 526-529.
- Bitoun, M. (2005). Mutations in dynamin 2 cause dominant centronuclear myopathy. *Nature Genetics*(37), S. 1207 - 1209.
- Bosten, J. M. (2014). Suggestive Association With Ocular Phoria at Chromosome 6p22. Investigative Ophtalmology & Visal Science(55), S. 345-352.

- Brady, O. (2013). The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. *Human Molecular Genetics: Oxford Journals*(22), S. 685-695.
- Briggs, M. M. (2002). The superfast extraocular myosin (MYH13) is localized to the innervation zone in both the global and orbital layers of rabbit extraocular muscle. *The Journal of experimental biology*, 205(20), S. 3133-3142.
- Brodsky, M. C. (2010). Causality in the systems era of pediatric ophthalmology: the Buddha's smile. *American Journal of Ophthalmology*(3), S. 305-309.
- Bronwen, L. (2016). *The Ensembl gene annotation system*. Abgerufen am 15. 11. 2016 von http://www.ensembl.org
- Bui Quoc, E. (2012). Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: anatomy, physiology, and mechanisms. *Frontiers in Neuroanatomy*, 11(5), S. 68.
- Burdon, K. P. (2003). Investigation of albinism genes in congenital esotropia. *Molecular Vision*(9), S. 710-714.
- Chang, C. (2001). Twisted gastrulation can function as a BMP antagonist. *Nature*(410), S. 483-487.
- Chapman, C. (1997). *About Cyrillic 2*. Abgerufen am 26. 11. 2015 von http://www.apbenson.com/about-cyrillic-2/
- Chen, E. (2003). Control of myoblast fusion by a guanine nucleotide exchange factor, Loner, and its effector ARF6. *Cell*(114), S. 751-762.
- Chen, T. (2015). NDUFV2 regulates neuronal migration in the developing cerebral cortex through modulation of the multipolar-bipolar transition. *Brain Research*(1625), S. 102-110.
- Chew, E. (1994). Risk factors for esotropia and exotropia. *Arch Ophtalmol, 112*, S. 1349-1355.
- Colomer, J. (2007). Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease. *Subcellular Biochemistry*(45), S. 169-214.

- Craig, S. E. (2015). Regulation of development and cancer by the R2B subfamily of RPTPs and the implications of proteolysis. *Seminars in Cell and Developmental Biology*(37), S. 108-118.
- Demer, J. L. (2014). Connective tissues reflect different mechanisms of strabismus over the life span. Journal of American Association for Pediatric Ophthalmology, 18(4), S. 309-315.
- Drenckhahn, D. (2003). Anatomie. München Jena: Urban & Fischer Verlag.
- Dufier, J. L. (1979). Inheritance in the etiology of convergent squint. *Ophtalmoligica*(4), S. 225-234.
- Einheber, S. (2013). The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. *Glia*, *61*(2), S. 240-53.
- Elbrecht, A. (1996). Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma-1 and gamma-2. *Biochemical and Biophysical Research Communications*(224), S. 431-437.
- Elias, I. (2001). The Genetics of Strabismus. American Orthoptic Journal, 51, S. 67-74.
- Engle, E. C. (2007). Genetic Basis of Congenital Strabismus. *Arch Opthalmol.*(125), S. 189-195.
- Engle, E. C. (2009). National Eye Institute Workshop to Identify Gaps, Needs, and Opportunities in Ophthalmic Genetics. Abgerufen am 23. 11. 2014 von http://www.nei.nih.gov/strategicplanning/ophthalmic.asp
- Falconer, D. S. (1996). Introduction to Quantitative Genetics (4th Edition). Essex: Benjamin Cummings.
- Fujiwara, H. (2003). Genome-wide Search for Strabismus Susceptibility Loci. Acta Medica Okayama, 57(3), S. 109-116.
- Gaedigk, R. (1994). ICA1 encoding p69, a protein linked to the development of type 1 diabetes, maps to human chromosome 7p22. *Cytogenetics and Cell Genetics*, S. 274-276.

- Ganten, D. (2013). *Grundlagen der Molekularen Medizin*. Berlin Heidelberg: Springer-Verlag.
- Gilles, D. (1997). Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. *Nature Genetics*(17), S. 65-70.
- Gover, M. (1944). Physical impairments of members of low-income farm families 11,490 persons in 2,477 families, 1940. *Public Health Report, 59*, S. 1163-1184.
- Jansen, R. P. (2000). Origin and persistence of the mitochondrial genome. *Human Reproduction, 15*, S. 1-10.
- Kaas, J. H. (2005). Serendipity and the Siamese cat: the discovery that genes for coat and eye pigment affect the brain. *ILAR journal / National Research Council, Institute* of Laboratory Animal Resources(46), S. 357-363.
- Kaufmann, H. (2004). Strabismus. Stuttgart: Georg Thieme Verlag.
- Khan, A. O. (2011). Infantile esotropia could be oligogenic and allelic with Douane retraction syndrome. *Molecular Vision*(17), S. 1997-2002.
- Kim, J. (1997). Cloning of the human cDNA sequence encoding the NADH:ubiquinone oxidoreductase MLRQ subunit. *International Journal of Biochemistry and Molecular Biology*(43), S. 669-675.
- Kitada, M. (2003). Different levels of TIMPs and MMPs in human lateral and medial rectus muscle tissue excised from strabismic patients. *Strabismus*, 11(3), S. 145-155.
- Komatsu, M. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. *Nature*(441), S. 880-884.
- Kruglyak, L. (1996). Parametric and Nonparametric Linkage Analysis: A Unified Multipoint Approach. *The American Journal of Human Genetics*(58), S. 1347-1363.
- Lambert, E. (2003). Tissue inhibitor of metalloproteinases-1 signalling pathway leading to erythroid cell survival. *The Biochemical Journal*, *15*(372), S. 767-774.

- Lathrop, G. M. (1985). Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. *The American Journal of Human Genetics*, *37*(3), S. 482-498.
- Leal, S. M. (2000). Effects of stratification in the analysis of affected-sib-pair data: Benefits and costs. *The American Journal of Human Genetics*(66), S. 567-575.
- Li, P. (1991). Raf-1: a kinase currently without a cause but not lacking in effects. *Cell*, 64(3), S. 479-482.
- Liu, G. (2011). Differential expression of proteins in monozygotic twins with discordance of infantile esotropic phenotypes. *Molecular vision*(17), S. 1618-1623.
- Lorenz, B. (2010). Neuroanatomical Strabismus. In J. L. Demer, *Pediatric Ophthalmology, Neuro-Ophthalmology, Genetics*. Berlin Heidelberg: Springer-Verlag.
- Lorenz, B. (2012). Genetik des Strabismus und des Nystagmus. In H. Kaufmann, & H. Steffen, *Strabismus*. Stuttgart: Georg Thieme Verlag.
- Maconachie, G. (2013). Risk Factors and Genetics in Common Comitant Strabismus, A Systematic Review of the Literature. *JAMA Ophthalmology*, *131*(9), S. 1179-1186.
- Matsumoto, M. (2000). An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system. *Biochem. Biophys. Res. Commun*, S. 576-582.
- Michaelides, M. (2004). The genetics of strabismus. *Journal of Medical Genetics*(41), S. 641-646.
- Mimura, L. Y. (2003). Peroxisome proliferator-activated receptor-gamma gene expression in orbital adipose/connective tissues is increased during the active stage of Graves' ophthalmopathy. *Thyroid*, 13(9), S. 845-850.
- Missler, M. (1998). Neurexophilins form a conserved family of neuropeptide-like glycoproteins. *The Journal of Neuroscience*(18), S. 3630-3638.

- Molnar, L. (1967). On the heredity of squinting (in german). Klin. Monatsbl. Augenheilkunde(150), S. 557-568.
- Nakamura, Y. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. *Science*, S. 1616-1622.
- Nakamura, Y. (2012). Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. *Human Molecular Genetics*, 21(5), S. 1099-1110.
- Netter, F. (2006). Atlas der Anatomie des Menschen. Stuttgart: Georg Thieme Verlag.
- Nordloew, W. (1964). Squint: the frequency of onset at different ages and the incidence of associated defects in a Swedish population. *Acta Ophtalol (Copenh.)*(42), S. 1015-1037.
- Nyholt, D. (2000). All LODs Are Not Created Equal. *The American Journal of Human Genetics*(67), S. 282–288.
- Ott, J. (1999). Analysis of Human Genetic Linkage. Baltimore, Maryland: The John Hopkins University Press.
- Parikh, V. (2003). A strabismus susceptibility locus on chromosome 7p. Proceedings of the National Academy of Sciences of the United States of America, 100(21), S. 12283-12288.
- Paul, T. O. (1994). The heritablility of strabismus. Ophthalic Genet. (15), S. 1-18.
- Paula, C. (1999). Direct Power Comparisons between Simple LOD Scores and NPL Scores. *The American Journal of Human Genetics*(65), S. 847–857.
- Pingoud, A. (1997). Arbeitsmethoden der Biochemie. Berlin: De Gruyter Incorporated, Walter.
- Podgor, M. J. (1996). Associations between siblings for esotropia and exotropia. Arch Ophtalmol., 114, S. 739-744.
- Porter, J. D. (2001). Extraocular muscle is defined by a fundamentally distinct gene expression profile. *Proceedings of the National Academy of Sciences, 98*(21), S. 12062–12067.

- Preising, M. (2002). Towards identification of genes in regionally accumulated strabismus. *Strabismus*(10), S. 157-161.
- Preising, M. (2015). Zur Rekrutierung geeigneter Familien für die Identifikation ursächlicher Gene des erblichen Strabismus. *Klinische Monatsblätter für* Augenheilkunde(232), S. 1158-1164.
- Qiagen. (2013). *QIAxcel Advanced System*. Abgerufen am 26. 11. 2015 von https://www.qiagen.com/de/shop/automated-solutions/dna-analysis/qiaxcel-advanced-system/
- Qiagen. (2013). *QIAxcel DNA Kits*. Abgerufen am 26. 11. 2015 von https://www.qiagen.com/de/shop/automated-solutions/dna-analysis/qiaxcel-dna-kits/#
- Rengstorff, R. H. (1976). Strabismus measurements in the Siamese cat. *American journal* of optometry and physiological optics(53), S. 643-646.
- Reynolds, J. D. (1986). Strabismus in monozygotic and dizygotic twins. *American Journal of Orthoptistics*(36), S. 113-119.
- Rice, A. (2009). Replication of the Recessive STBMS1 Locus but with Dominant Inheritance. *Investigative Ophtalmology & Visual Science*, 50(7), S. 3210-3217.
- Rodriguez, D. (2010). Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. *Biochimica et Biophysica Acta (BBA) - Molecular Cell Research*, 1803(1), S. 39-54.
- Romero-Suarez, S. (2010). Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging. *Aging*, 2(8), S. 504-513.
- Ropers, H. (2014). Neue Sequenzierungstechniken: Konsequenzen für die genetische Krankenversorgung. Ad-hoc-Stellungnahme der Berlin-Brandenburgischen Akademie der Wissenschaften. Abgerufen am 28. 11. 2015 von http://www.bbaw.de/publikationen/stellungnahmenempfehlungen/Stellungnahmen-Gendiagnostik.pdf

Sachsenweger, M. (2003). Duale Reihe Augenheilkunde. Stuttgart: Georg Thieme Verlag.

- Sanfilippo, P. G. (2012). Heritablility of Strabismus: Genetic Influence Is Specific to Eso-Deviation and Independent of Refractive Error. *Twin Research an Human Genetics*, 15(5), S. 624-630.
- Scott, M. H. (1994). Prevalence of primary monofixation syndrome in parents of children with congenital esotropia. *Journal of pediatric ophthalmology and strabismus*(31), S. 298-302.
- Seyffert, W. (2003). Lehrbuch der Genetik. Heidelberg: Spektrum Akademischer Verlag.
- Shaaban, S. (2009). Chromosomes 4q28.3 and 7q31.2 as New Susceptibility Loci for Comitant Strabismus. *Investigative Ophthalmology & Visual Science*, 50(2), S. 654-661.
- Shaaban, S. (2009). Investigation of parent-of-origin effect in comitant strabismus using MOD score analysis. *Molecular Vision*(15), S. 1351-1358.
- Shechter, D. (2014). Seeing Beyond the Double Helix. Journal of Pediatric Ophthalmology and Strabismus, 51(5), S. 268.
- Shen, J. (2009). Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. *Nature Cell Biology*(11), S. 769-776.
- Silbernagl, S. (2012). Taschenatlas Physiologie. Stuttgart: Georg Thieme Verlag.
- Snellen, H. (1913). Die Ursache des Strabismus convergens concomitans. *Albrecht von Graefes Archiv für Ophthalmologie*, *84*(3), S. 433-439.
- Strachan, T. (2005). *Molekulare Humangenetik*. Heidelberg: Spektrum Akademischer Verlag.
- Sun, M. (2010). The expression of twisted gastrulation in postnatal mouse brain and functional implications. *Neuroscience*, *159*(2), S. 920-931.
- Tao, H. (2011). Mutations in prickle orthologs cause seizures in flies, mice, and humans. *American journal of human genetics*(2), S. 138–149.
- Tomas, N. (2014). Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. New England Journal of Medicine(371), S. 2277-2287.

- Tosch, V. (2006). A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. *Human Molecular Genetics: Oxford Journals*, 15(21), S. 3098-3106.
- Traboulsi, E. I. (2001). The Genetics of Strabismus. *American Orthoptic Journal*(51), S. 67-74.
- Trepel, M. (2008). Neuroanatomie. München: Elsevier GmbH.
- Wang, J. (2014). A 130-kDa protein 4.1B regulates cell adhesion, spreading, and migration of mouse embryo fibroblasts by influencing actin cytoskeleton organization. *The Journal of Biological Chemistry*, 289(9), S. 5925-5937.
- Wang, Z. (2001). SNPs, Protein Structure, and Disease. *Human mutation*(17), S. 263-270.
- Wojciechowski, R. (2010). Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families. *Investigative Ophtalmology & Visual Science*(10), S. 4989-4995.
- Wong, A. (2005). Suppression of Metabolic Activity Caused by Infantile Strabismus and Strabismic Amblyopia in Striate Visual Cortex of Macaque Monkeys. *Journal of the American Association for Pediatric Ophthalmology and Strabismus*(9), S. 37-47.
- Wright, K. (2003). Pediatric Ophthalmology and Strabismus. New York: Springer Science & Business Media.
- Ye, X. C. (2014). Strabismus genetics across a spectrum of eye misalignment disorders. *Clinical genetics*, 86(2), S. 103-111.
- Zenz, R. (2015). *Wikimedia Commons*. Abgerufen am 26. 11. 2015 von https://de.wikipedia.org/wiki/Datei:Horopter.png
- Zitzlsperger, M. (2002). In search for increased prevalence rates of strabismus and microstrabismus in two Bavarian districts, Oberpfalz and Niederbayern, to spot populations for gene identification. *Strabismus*, 10(2), S. 163-168.

XI.1 Datendateien zur Berechnung der Kopplungswahrscheinlichkeiten mit Genehunter im mlink-Datenformat

Datendatei	Chromosom	3,	rezessiver	Erbgang:
------------	-----------	----	------------	----------

Zeile	Dateiinhalt	Beschreibung
1	21 0 0 5	Anzahl der Loci, Risiko Locus,
		geschlechtsgebunden (wenn 1),
		Programmcode
2	0 0.0 0.0 0	Mutations Locus, Mut. Rate
		männlich, Mut. Rate weibl, Haplotyp
		Freq. (wenn 1)
3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Reihenfolge der Loci
	16 17 18 19 20 21	
4	1 2	Krankheitslocus: "Affection status",
		Anzahl der Allele
5	0.97 0.03	Gen Frequenzen: Prävalenz
-		Nicht betroffen 0.97
		Betroffen 0.03
6	1	Anzahl der "liability classes"
7	0.0 0.1 0.9	Penetranzen beschreiben einen
		rezessiven Krankheitslocus
		Homozygot nicht betroffen: 0.0
		Heterozygot betroffen 0.1
		Homozygot betroffen 0.9
8	3 9 # D3S1597	Art des Locus:numbered alleles".
Ũ		Anzahl der Allele
9	0.1111111111111	Allelfrequenzen
-	0.11111111111111	
	0.11111111111111	
	0.1111111111111	
	0.1111111111111	
	0.11111111111111	
	0.11111111111111	
	0.1111111111111	
	0.11111111111111	
10	3 9 # D3S1263	Art des Locus: "numbered alleles",
		Anzahl der Allele
11	0.11111111111111	Allelfrequenzen
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	

Zeile	Dateiinhalt	Beschreibung
	0.11111111111111	
	0.11111111111111	
	0.1111111111111	
12	3 10 # D3S3602	Art des Locus: "numbered alleles",
		Anzahl der Allele
13	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Allelfrequenzen
14	3 3 # D3S3595	Art des Locus: "numbered alleles".
		Anzahl der Allele
15	0 333333333333333	Allelfrequenzen
10	0 33333333333333333	r mom equenzen
	0 33333333333333333	
16	3 17 # D3\$3547	Art des Locus: numbered alleles"
10	5 17 11 D 5 5 5 5 4 7	Anzahl der Allele
17	0.058823520/1176/7	Allelfrequenzen
1/	0.0588235294117647	Anemequenzen
	0.0582525254117647	
	0.0582525294117647	
	0.0582525294117647	
	0.0582525294117647	
	0.0588255294117047	
	0.0588255294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
10	0.058823529411/64/	
18	3 6 # D3S2407	Art des Locus: "numbered alleles",
10		Anzahl der Allele
19	0.166666666666666	Allelfrequenzen
	0.166666666666666	
	0.166666666666666	
	0.166666666666666	
	0.166666666666666	
	0.1666666666666666	
20	3 18 # D3S3564	Art des Locus: "numbered alleles",
		Anzahl der Allele
21	0.055555555555555	Allelfrequenzen
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	
	0.055555555555555	

Zeile	Dateiinhalt	Beschreibung
	0.05555555555555	
	0.055555555555555	
	0.055555555555556	
	0.055555555555556	
	0.055555555555556	
	0.055555555555556	
	0.055555555555556	
	0.055555555555555	
	0.0555555555555556	
22	3 8 # D3S2420	Art des Locus:numbered alleles".
		Anzahl der Allele
23	0.125 0.125 0.125 0.125 0.125 0.125	Allelfrequenzen
	0.125 0.125	
24	3 6 # D3S1285	Art des Locus: "numbered alleles".
		Anzahl der Allele
25	0 16666666666666	Allelfrequenzen
20	0.166666666666666	memequenzen
	0.166666666666666	
	0.166666666666666	
	0.16666666666666	
	0.16666666666666	
26	$3 \ 2 \ \pm \ D3S2454$	Art des Locus: numbered alleles"
20	5 2 m D552454	Anzahl der Allele
27	0505	Allelfrequenzen
27	$3.12 \pm D3S1562$	Art des Locus: numbered alleles"
20	5 12 # 0551502	Anzahl der Allele
29	0.0833333333333333	Allelfrequenzen
2)	0.08333333333333333	memequenzen
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
	0.0833333333333333	
30	3 3 # D3S3568	Art des Locus: numbered alleles"
50	5 5 # D555506	Anzahl der Allele
31	0 333333333333333	Allelfrequenzen
51	0.33333333333333	
	0.3333333333333333	
32	0.3333333333333333 3 10 # D3S1284	Art des Locus: numbered alleles"
52	5 IV # D351204	Anzahl der Allala
22	0101010101010101010101	Allalfraguanzan
21	2 2 # D2S2581	Art dos Logues numbered alleles"
34	5 5 # D555501	Ant des Locus, "numbered aneles,
l	1	Alizalli del Allele

Zeile	Dateiinhalt	Beschreibung
35	0.333333333333333	Allelfrequenzen
	0.333333333333333	
	0.333333333333333	
36	3 5 # D3S3653	Art des Locus:numbered alleles".
		Anzahl der Allele
37	0202020202	Allelfrequenzen
38	$3.4 \pm D3S3507$	Art des Locus: numbered alleles"
50	5 4 11 D 5 5 5 5 0 1	Anzahl der Allele
20	0.25.0.25.0.25.0.25	Allalfraguanzan
39	$0.25 \ $	Art das Lasus, numbered allalas"
40	5 / # D555508	Art des Locus: "numbered aneres,
41	0 1 429571 429571 42	Anzani der Allele
41	0.14285/14285/143	Allelfrequenzen
	0.14285/14285/143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
42	3 14 # D3S3606	Art des Locus: "numbered alleles",
		Anzahl der Allele
43	0.0714285714285714	Allelfrequenzen
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0 0714285714285714	
	0 0714285714285714	
	0 0714285714285714	
	0.0714285714285714	
44	3 13 # D3S1292	Art des Locus: numbered alleles"
		Anzahl der Allele
45	0.0769230769230769	Allelfrequenzen
т.)	0.0769230769230769	Anemequenzen
	0.0769230769230769	
	0.0709230709230709	
	0.0709230709230709	
	0.0760220760220760	
	0.0709230709230709	
	0.07(02207(02207(0	
	0.0769230769230769	
	0.0769230769230769	
	0.0769230769230769	
	0.0769230769230769	
	0.0769230769230769	
	0.0769230769230769	

Zeile	Dateiinhalt	Beschreibung
46	3 7 # D3S1590	Art des Locus: "numbered alleles",
		Anzahl der Allele
47	0.142857142857143	Allelfrequenzen
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
48	0 0	Geschechtlechsspez. Rekombination,
		Interferenz
49	0.1 2.15 2.41 0.72 15.58 11.28 1.02	Intermarkerdistanz (Map-Distance)
	5.56 16.92 5.43 0.85 0.33 1.46 0.99	
	2.5 2.06 1.61 44.41 4.43 3.32	
51	1 0.01000 0.50000	Rekombinationsfraktion Start,
		Iteration, Stop

Datendatei Chromosom 3, dominanter Erbgang (ausschnittsweise, auf Änderungen zu o.a. Datendatei beschränkt):

Zeile	Dateiinhalt	Beschreibung
7	0.0 0.9 0.9	Penetranzen beschreiben einen
		dominanten Krankheitslocus
		Homozygot nicht betroffen: 0,0
		Heterozygot betroffen 0,9
		Homozygot betroffen 0,9

Datendatei Chromosom 7, rezessiver Erbgang (ausschnittsweise, auf Änderungen zu o.a. Datendatei beschränkt):

Zeile	Dateiinhalt	Beschreibung
1	13 0 0 5	Anzahl der Loci, Risiko Locus,
		geschlechtsgebunden (wenn 1),
		Programmcode
2	0 0.0 0.0 0	Mutations Locus, Mut. Rate
		männlich, Mut. Rate weibl, Haplotyp
		Freq. (wenn 1)
3	1 2 3 4 5 6 7 8 9 10 11 12 13	Reihenfolge der Loci
4	1 2	Krankheitslocus: "Affection status",
		Anzahl der Allele
5	0.97 0.03	Gen Frequenzen: Prävalenz
		Nicht betroffen 0,97
		Betroffen 0,03
6	1	Anzahl der "liability classes"

Zeile	Dateiinhalt	Beschreibung
7	0.0 0.1 0.9	Penetranzen beschreiben einen
		rezessiven Krankheitslocus
		Homozygot nicht betroffen: 0,0
		Heterozygot betroffen 0,1
		Homozygot betroffen 0,9
8	3 10 # D7S1819	Art des Locus: "numbered alleles",
		Anzahl der Allele
9	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Allelfrequenzen
10	3 7 # D7S2201	Art des Locus:numbered alleles".
10		Anzahl der Allele
11	0 142857142857143	Allelfrequenzen
11	0 142857142857143	7 memequenzen
	0.142857142857143	
	0.142857142857143	
	0.142857142857142	
	0.142057142057143	
	0.14265/14265/145	
10	0.14203/14203/143	A st day I a gray survey have d all a las"
12	5 / # D/82335	Art des Locus: "numbered aneres,
10	0 1 400 571 400 571 40	Anzani der Allele
13	0.14285/14285/143	Allelfrequenzen
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
14	3 8 # D7S1790	Art des Locus: "numbered alleles",
		Anzahl der Allele
15	0.125 0.125 0.125 0.125 0.125 0.125	Allelfrequenzen
	0.125 0.125	
16	3 8 # D7S2200	Art des Locus: "numbered alleles",
		Anzahl der Allele
17	0.125 0.125 0.125 0.125 0.125 0.125	Allelfrequenzen
	0.125 0.125	
18	3 15 # D7S513	Art des Locus: "numbered alleles",
		Anzahl der Allele
19	0.06666666666666666	Allelfrequenzen
	0.06666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.06666666666666666	
	0.0666666666666666	
	0.066666666666666	
1	0.0000000000000000000000000000000000000	I

Zeile	Dateiinhalt	Beschreibung
	0.06666666666666666	
	0.0666666666666666	
20	3 7 # D7S2557	Art des Locus: "numbered alleles",
		Anzahl der Allele
21	0.142857142857143	Allelfrequenzen
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
22	3 14 # D7S3051	Art des Locus: "numbered alleles",
		Anzahl der Allele
23	0.0714285714285714	Allelfrequenzen
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
24	3 17 # D7S503	Art des Locus: "numbered alleles",
		Anzahl der Allele
25	0.0588235294117647	Allelfrequenzen
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
	0.0588235294117647	
26	3 15 # D7S1822	Art des Locus: "numbered alleles",
		Anzahl der Allele

Zeile	Dateiinhalt	Beschreibung
27	0.06666666666666666	Allelfrequenzen
	0.0666666666666666	-
	0.06666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.06666666666666666	
	0.06666666666666666	
	0.0666666666666666	
	0.0666666666666666	
	0.06666666666666666	
	0.0666666666666666	
28	3 16 # D7S640	Art des Locus: "numbered alleles",
		Anzahl der Allele
29	0.0625 0.0625 0.0625 0.0625 0.0625	Allelfrequenzen
	0.0625 0.0625 0.0625 0.0625 0.0625	1 I
	0.0625 0.0625 0.0625 0.0625 0.0625	
	0.0625	
30	3 19 # D7S1824	Art des Locus: "numbered alleles",
		Anzahl der Allele
31	0.0526315789473684	Allelfrequenzen
	0.0526315789473684	-
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
	0.0526315789473684	
32	0 0	Geschlechtsspez. Rekombination,
		Interferenz
33	0.1 1.13 1.73 1.81 0.25 2.18 3.65	Intermarkerdistanz (Map-Distance)
	3.01 1.18 101.30 6.31 7.35	
34	1 0.01000 0.50000	Rekombinationsfraktion Start,
		Iteration, Stop

Datendatei Chromosom 7, dominanter Erbgang (ausschnittsweise, auf Änderungen zu o.a. Datendatei beschränkt):

Zeile	Dateiinhalt	Beschreibung
7	0.0 0.9 0.9	Penetranzen beschreiben einen
		dominanten Krankheitslocus
		Homozygot nicht betroffen: 0,0
		Heterozygot betroffen 0,9
		Homozygot betroffen 0,9

Datendatei Chromosom 18, rezessiver Erbgang:

Zeile	Dateiinhalt	Beschreibung
1	18005	Anzahl der Loci, Risiko Locus,
		geschlechtsgebunden (wenn 1),
		Programmcode
2	0 0.0 0.0 0	Mutations Locus, Mut. Rate
		männlich, Mut. Rate weibl,
		Haplotyp Freq. (wenn 1)
3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Reihenfolge der Loci
	17 18	
4	1 2	Krankheitslocus: "Affection status",
		Anzahl der Allele
5	0.99 0.01	Gen Frequenzen: Prävalenz
		Nicht betroffen 0,97
		Betroffen 0,03
6	1	Anzahl der "liability classes"
7	0.0 0.1 0.9	Penetranzen beschreiben einen
		rezessiven Krankheitslocus
		Homozygot nicht betroffen: 0,0
		Heterozygot betroffen 0,1
		Homozygot betroffen 0,9
8	3 9 # D18S1376	Art des Locus: "numbered alleles",
		Anzahl der Allele
9	0.1111111111111	Allelfrequenzen
	0.1111111111111	
	0.1111111111111	
	0.1111111111111	
10		
10	5 0 # D1884/1	Art des Locus: "numbered alleles",
11		Anzahl der Allele
		Allelfrequenzen
	0.10000000000000/	

Zeile	Dateiinhalt	Beschreibung
	0.1666666666666666	
	0.1666666666666666	
	0.1666666666666666	
12	3 9 # D18S1163	Art des Locus: "numbered alleles",
		Anzahl der Allele
13	0.11111111111111	Allelfrequenzen
	0.11111111111111	1
	0.11111111111111	
	0.1111111111111	
	0.1111111111111	
	0.1111111111111	
	0.1111111111111	
	0.1111111111111	
	0.1111111111111	
14	3 8 # D18S843	Art des Locus: "numbered alleles",
		Anzahl der Allele
15	0.125 0.125 0.125 0.125 0.125 0.125	Allelfrequenzen
	0.125 0.125	-
16	3 5 # D18S464	Art des Locus: "numbered alleles",
		Anzahl der Allele
17	0.2 0.2 0.2 0.2 0.2	Allelfrequenzen
18	3 10 # D18S1116	Art des Locus: "numbered alleles",
		Anzahl der Allele
19	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Allelfrequenzen
20	3 9 # D18S482	Art des Locus: "numbered alleles",
		Anzahl der Allele
21	0.11111111111111	Allelfrequenzen
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
	0.11111111111111	
22	3 6 # D18S866	Art des Locus: "numbered alleles",
		Anzahl der Allele
23	0.166666666666666	Allelfrequenzen
	0.166666666666666	
	0.166666666666666	
	0.166666666666666	
	0.166666666666666	
24	0.166666666666666	
24	3 / # D1888//	Art des Locus: "numbered alleles",
25	0 1 4 2 9 5 7 1 4 2 9 5 7 1 4 2	Anzahl der Allele
25	0.14285/14285/143	Allelfrequenzen
	0.14285/14285/143	
	0.14285/14285/143	
	0.142857142857143	

Zeile	Dateiinhalt	Beschreibung
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
26	3 7 # D18S847	Art des Locus: "numbered alleles",
		Anzahl der Allele
27	0.142857142857143	Allelfrequenzen
	0.142857142857143	1
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
28	3 7 # D18S463	Art des Locus:numbered alleles".
		Anzahl der Allele
29	0 142857142857143	Allelfrequenzen
2)	0 142857142857143	r mom oquonzon
	0 142857142857143	
	0 142857142857143	
	0 142857142857143	
	0 142857142857143	
	0 142857142857143	
30	$3.6 \pm D188456$	Art des Locus: numbered alleles"
50	5 0 # D105450	Anzahl der Allele
31	0 16666666666666	Allelfrequenzen
51	0.16666666666666	Miemequenzen
	0.16666666666666	
	0.16666666666666	
	0.16666666666666	
	0.166666666666666	
32	$3.7 \pm D18S1102$	Art des Locus: numbered alleles"
52	5 / # D1051102	Anzahl der Allele
33	0 142857142857143	Allelfrequenzen
55	0.142857142857143	Mienrequenzen
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
	0.142857142857143	
3/	0.142037142037143 3 12 # D18S1006	Art des Locus: numbered alleles"
54	5 12 # D1851090	Anzahl der Allele
35	0.0833333333333333	Allelfrequenzen
35	0.0833333333333333	Anemequenzen
	0.083333333333333333	
	0.0833333333333333	
	0.08333333333333333	
	0.0833333333333333333333333333333333333	
	0.08333333333333333	
	0.0822222222222222	
	0.0000000000000000000000000000000000000	
1	0.0000000000000000000000000000000000000	

Zeile	Dateiinhalt	Beschreibung
	0.08333333333333333	
	0.08333333333333333	
	0.08333333333333333	
36	3 6 # D18S469	Art des Locus: "numbered alleles",
		Anzahl der Allele
37	0.1666666666666666	Allelfrequenzen
	0.1666666666666666	
	0.1666666666666666	
	0.1666666666666666	
	0.1666666666666666	
	0.1666666666666666	
38	3 14 # D18S1161	Art des Locus: "numbered alleles",
		Anzahl der Allele
39	0.0714285714285714	Allelfrequenzen
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
	0.0714285714285714	
40	3 10 # D18S1371	Art des Locus: "numbered alleles",
		Anzahl der Allele
41	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Allelfrequenzen
42	0 0	Art des Locus: "numbered alleles",
		Anzahl der Allele
43	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Geschlechtsspez. Rekombination,
	0.1 0.1 0.1 0.1 0.1 0.1 0.1	Interferenz
44	0	Rekombinationsraten
45	1111111111111111111	Programmspezifische
		Informationen

Datendatei Chromosom 18, dominanter Erbgang (ausschnittsweise, auf Änderungen zu o.a. Datendatei beschränkt):

Zeile	Dateiinhalt	Beschreibung
7	0.0 0.9 0.9	Penetranzen beschreiben einen
		dominaten Krankheitslocus
		Homozygot nicht betroffen: 0,0
		Heterozygot betroffen 0,9
		Homozygot betroffen 0,9

XI.2 Informationsgehalt der Marker in tabellarischer Form

Tabelle 8: Informationsgehalt der Marker auf Chromosom 3

Marker	Position	Informationsgehalt
	HuRef	
	[Mbp]	
D3S1597	9,30	0,64
D3S1263	11,45	0,60
D3S3602	13,86	0,57
D3S3595	14,58	0,68
D3S3547	30,16	0,65
D3S2407	41,44	0,70
D3S3564	42,46	0,71
D3S2420	48,02	0,65
D3S1285	64,94	0,63
D3S2454	70,37	0,73
D3S1562	71,22	0,71
D3S3568	71,55	0,71
D3S1284	73,01	0,70
D3S3581	74,00	0,66
D3S3653	76,50	0,63
D3S3507	78,56	0,66
D3S3508	80,17	0,67
D3S3606	124,58	0,46
D3S1292	129,01	0,60
D3S1590	132,33	0,52

Marker	Position	Informationsgehalt
	HuRef	
	[Mbp]	
D7S1819	4,41	0,68
D7S2201	5,54	0,71
D7S2553	7,27	0,69
D7S1790	9,09	0,73
D7S2200	9,33	0,74
D7S513	11,51	0,74
D7S2557	15,16	0,76
D7S3051	18,17	0,71
D7S503	19,35	0,71
D7S1822	120,65	0,70
D7S640	126,96	0,68
D7S1824	134,31	0,52

Tabelle 9: Informationsgehalt der Marker auf Chromosom 7

Marker	Position	Informationsgehalt
	HuRef	
	[Mbp]	
D18S1376	5,22	0,70
D18S471	5,94	0,73
D18S1163	7,44	0,67
D18S843	8,88	0,56
D18S464	9,92	0,61
D18S1116	11,44	0,67
D18S482	11,85	0,65
D18S866	23,37	0,66
D18S877	26,73	0,77
D18S847	27,70	0,74
D18S463	28,14	0,67
D18S456	31,16	0,65
D18S1102	31,78	0,74
D18S1096	33,04	0,73
D18S469	68,04	0,72
D18S1161	68,98	0,63
D18S1371	69,79	0,73

Tabelle 10: Informationsgehalt der Marker auf Chromosom 18

XI.3 Ergebnisse der Kopplungsanalyse der einzelnen Familien in tabellarischer Form

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D3S1597	9,30	0,00	0,00	0,00	-0,45	-1,41	1,47	-1,00	1,34
D3S1263	11,45	0,71	0,77	0,56	-0,45	0,71	0,82	0,00	1,19
D3S3602	13,86	1,41	-0,77	-0,32	0,45	-0,71	1,53	0,00	-0,31
D3S3595	14,58	0,70	-0,52	0,22	0,00	-0,71	0,41	1,00	0,15
D3S3547	30,16	0,70	-0,52	-0,32	0,45	0,7	-0,82	0,00	-1,34
D3S2407	41,44	1,41	-0,52	-0,44	-1,34	-1,41	1,9	0,00	0,25
D3S3564	42,46	1,33	-0,52	0,475	-1,34	1,41	1,0	0,00	-0,45
D3S2420	48,02	0,70	-0,78	0,41	-0,89	0,71	1,40	0,00	-1,34
D3S1285	64,94	0,00	0,00	-0,04	-0,45	0,71	0,6	0,00	1,14
D3S2454	70,37	0,00	0,78	0,12	0,00	0,00	0,61	0,00	0,45
D3S1562	71,22	-0,70	-0,53	-0,13	-0,89	0,71	0,90	0,00	0,33
D3S3568	71,55	0,00	0,00	-0,17	0,00	0,71	1,63	0,00	0,55
D3S1284	73,01	1,06	1,55	2,25	0,00	1,41	1,53	0,00	1,21
D3S3581	74,00	0,00	-0,77	0,22	-0,89	0,00	0,41	0,00	0,55
D3S3653	76,50	-0,70	0,00	0,37	0,00	-0,70	1,11	0,00	0,22
D3S3507	78,56	0,00	-0,25	0,06	0,00	0,00	0,52	0,00	0,19
D3S3508	80,17	0,00	0,00	1,00	0,00	0,00	1,96	0,00	0,79
D3S3606	124,58	0,00	0,00	0,70	0,00	0,00	0,93	-1,00	0,34
D3S1292	129,01	-0,71	0,77	-0,85	0,00	-0,71	2,14	0,00	1,23
D3S1590	132,33	0,00	0,77	0,48	0,45	0,00	0,73	0,00	0,26

Tabelle 11: Ergebnisse der Singlepoint-Analyse NPL Chromosom 3

Marker	Positio	199	181	904	2231	2231	2249	2257	2378
	n				m	b			
	HuRef								
	[Mbp]								
D3S1597	9,30	1,24	0,28	-0,27	-0,45	-1,41	2,39	-1,00	1,34
D3S1263	11,45	1,35	0,31	-0,30	-0,50	0,03	2,39	-0,19	0,99
D3S3602	13,86	1,41	-0,77	-0,34	0,45	-1,35	2,38	0,73	0,36
D3S3595	14,58	1,41	-0,77	-0,34	0,30	-1,34	2,27	1,00	0,29
D3S3547	30,16	1,33	-0,74	-0,37	0,45	0,11	-0,82	0,65	-1,34
D3S2407	41,44	1,41	-0,75	-0,44	-1,34	-1,41	2,41	0,44	-1,26
D3S3564	42,46	1,41	-0,75	-0,19	-1,34	1,41	2,43	0,43	-1,31
D3S2420	48,02	1,06	-0,77	-0,23	-1,11	1,35	2,44	0,33	-1,34
D3S1285	64,94	0,00	0,05	-0,20	-0,45	1,35	2,39	0,07	1,29
D3S2454	70,37	-1,41	0,28	-0,13	-0,72	1,41	2,45	-0,01	1,34
D3S1562	71,22	-1,41	-0,08	-0,13	-0,76	1,41	2,45	-0,02	1,34
D3S3568	71,55	-1,41	-0,21	-0,13	-0,77	1,41	2,45	-0,03	1,34
D3S1284	73,01	-1,19	-0,77	2,25	-0,84	1,41	2,45	-0,05	1,34
D3S3581	74,00	-1,05	-0,77	2,22	-0,89	1,01	2,45	-0,07	1,34
D3S3653	76,50	-0,69	-0,77	2,14	-0,77	0,00	2,45	-0,10	1,29
D3S3507	78,56	0,00	-0,77	2,08	-0,66	0,00	2,44	-0,14	1,29
D3S3508	80,17	0,00	-0,77	2,03	0,26	0,00	2,44	-0,16	1,33
D3S3606	124,58	-0,62	0,28	-0,66	0,38	-0,50	2,32	-1,00	1,20
D3S1292	129,01	-0,75	0,38	-0,85	0,70	-0,61	2,44	-0,92	1,34
D3S1590	132,33	-0,66	0,29	-0,76	1,01	-0,53	2,27	-0,86	1,22

Tabelle 12: Ergebnisse der Multipoint-Analyse NPL Chromosom 3

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D3S1597	9,30	0,00	0,00	0,00	0,30	-104	0,98	0,00	0,60
D3S1263	11,45	0,30	0,60	0,65	-104	0,29	0,48	0,00	-0,48
D3S3602	13,86	0,60	-104	-104	-104	-104	1,00	0,00	-0,05
D3S3595	14,58	0,30	0,00	0,38	0,00	-104	0,30	0,00	-0,18
D3S3547	30,16	0,30	0,00	-104	-104	0,30	-104	0,00	-104
D3S2407	41,44	0,60	0,00	-104	-104	-104	1,03	0,00	-0,35
D3S3564	42,46	0,58	0,00	0,65	-104	0,60	0,54	0,00	-104
D3S2420	48,02	0,30	-104	0,63	0,00	0,29	0,96	0,00	-104
D3S1285	64,94	-104	0,00	0,48	0,31	0,30	0,43	0,00	-0,35
D3S2454	70,37	0,30	0,60	0,25	0,00	0,30	0,60	0,00	0,00
D3S1562	71,22	-10 ⁴	0,00	-104	0,01	0,30	0,51	0,00	-0,57
D3S3568	71,55	0,30	0,00	0,27	0,00	0,30	0,90	0,00	-0,05
D3S1284	73,01	0,52	0,40	-104	0,00	0,60	1,00	0,00	-0,24
D3S3581	74,00	0,00	-104	0,38	0,00	0,00	0,30	0,00	-0,05
D3S3653	76,50	-104	0,00	0,52	0,00	-104	0,86	0,00	-0,30
D3S3507	78,56	-10 ⁴	-10 ⁴	0,25	0,00	-104	0,36	0,00	-0,24
D3S3508	80,17	-10 ⁴	0,00	-104	0,01	-104	1,05	0,00	-0,21
D3S3606	124,58	0,00	0,00	0,73	0,01	0,00	0,52	0,00	-0,63
D3S1292	129,01	-104	0,60	-104	0,00	-104	1,11	0,00	-0,33
D3S1590	132,33	0,00	0,30	0,60	0,30	0,00	0,45	0,00	-0,40

Tabelle 13: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 3

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D3S1597	9,30	0,55	0,57	-1,05	0,30	-104	1,19	0,00	0,60
D3S1263	11,45	0,58	0,60	-1,12	-104	-1,05	1,19	0,00	0,29
D3S3602	13,86	0,60	-104	-104	-104	-104	1,19	0,00	-0,71
D3S3595	14,58	0,60	-1,93	-3,93	-2,35	-104	1,16	0,00	-0,72
D3S3547	30,16	0,57	-0,86	-104	-104	-0,50	-104	0,00	-104
D3S2407	41,44	0,60	-1,06	-104	-104	-104	1,19	0,00	-1,45
D3S3564	42,46	0,60	-1,11	-2,94	-104	0,60	1,20	0,00	-104
D3S2420	48,02	0,48	-104	-0,22	-0,28	0,58	1,20	0,00	-104
D3S1285	64,94	-104	0,45	-0,43	0,31	0,58	1,19	0,00	-1,41
D3S2454	70,37	-2,48	0,60	-1,01	0,16	0,60	1,20	0,00	-2,31
D3S1562	71,22	-104	0,43	-104	0,13	0,60	1,20	0,00	-3,31
D3S3568	71,55	-2,40	0,34	-6,95	0,12	0,60	1,20	0,00	-3,38
D3S1284	73,01	-1,79	-2,57	-104	0,06	0,60	1,20	0,00	-3,36
D3S3581	74,00	-1,90	-104	-1,45	0,01	0,45	1,20	0,00	-2,68
D3S3653	76,50	-104	-5,43	-1,27	-0,12	-104	1,20	0,00	-1,90
D3S3507	78,56	-104	-104	-1,99	-0,28	-10 ⁴	1,20	0,00	-1,26
D3S3508	80,17	-104	-2,38	-104	-0,37	-10 ⁴	1,20	0,00	-0,73
D3S3606	124,58	-0,77	0,53	-0,45	-0,83	-0,86	1,17	0,00	-1,84
D3S1292	129,01	-104	0,60	-104	0,05	-104	1,20	0,00	-1,87
D3S1590	132,33	-0,93	0,59	-0,97	0,30	-0,86	1,15	0,00	-1,53

Tabelle 14: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 3

Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D3S1597	9,30	0,00	0,00	0,90
D3S1263	11,45	0,00	0,00	-104
D3S3602	13,86	-0,96	0,00	-0,39
D3S3595	14,58	-0,96	0,00	0,00
D3S3547	30,16	-0,96	0,00	-104
D3S2407	41,44	-0,96	-0,70	-0,24
D3S3564	42,46	-0,96	-0,40	0,30
D3S2420	48,02	-0,96	-0,70	-104
D3S1285	64,94	0,00	-0,22	1,20
D3S2454	70,37	0,00	0,00	1,00
D3S1562	71,22	-0,96	-0,70	0,00
D3S3568	71,55	0,00	-0,16	0,73
D3S1284	73,01	0,48	0,82	0,57
D3S3581	74,00	-0,96	0,00	1,03
D3S3653	76,50	0,00	0,00	0,60
D3S3507	78,56	0,00	-0,26	0,00
D3S3508	80,17	0,00	0,53	-0,51
D3S3606	124,58	0,00	0,00	0,00
D3S1292	129,01	0,00	-0,70	0,58
D3S1590	132,33	0,28	0,00	0,00

Tabelle 15: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 3

Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D3S1597	9,30	-0,59	-0,03	1,20
D3S1263	11,45	-0,72	-0,03	-104
D3S3602	13,86	-0,96	-0,04	-0,61
D3S3595	14,58	-0,96	-0,04	-0,49
D3S3547	30,16	-0,96	-0,17	-104
D3S2407	41,44	-0,96	-0,70	-0,87
D3S3564	42,46	-0,96	-0,08	-0,90
D3S2420	48,02	-0,96	-0,70	-104
D3S1285	64,94	-0,57	-0,65	1,20
D3S2454	70,37	-0,86	-0,69	1,20
D3S1562	71,22	-0,96	-0,70	1,20
D3S3568	71,55	-0,96	-0,70	1,20
D3S1284	73,01	-0,95	0,82	1,20
D3S3581	74,00	-0,96	0,81	1,20
D3S3653	76,50	-0,96	0,80	0,98
D3S3507	78,56	-0,95	0,79	0,64
D3S3508	80,17	-0,94	0,78	-0,18
D3S3606	124,58	-0,38	-0,60	0,81
D3S1292	129,01	-0,50	-0,70	0,86
D3S1590	132,33	-0,64	-0,68	0,80

Tabelle 16: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 3

Marker	Position HuRef	199	181	904	2231m	2231b	224 9	2257	2378
	[Mbp]								
D7S1819	4,41	0,71	-0,52	-0,04	-0,45	0,00	0,85	0,00	-0,58
D7S2201	5,54	-0,71	-0,77	-0,32	0,00	0,00	0,73	0,00	-0,45
D7S2553	7,27	-0,71	-0,26	0,00	0,00	-0,71	0,73	0,00	0,27
D7S1790	9,09	0,00	-0,26	-0,54	-0,89	0,71	0,78	0,00	0,28
D7S2200	9,33	0,71	-0,77	0,01	0,45	0,00	2,00	0,00	0,45
D7S513	11,51	0,71	-0,26	-0,85	1,34	0,00	1,75	0,00	-0,45
D7S2557	15,16	0,71	-0,52	0,54	0,00	0,00	1,96	-1,00	-0,45
D7S3051	18,17	-1,41	0,00	-0,65	-0,45	-0,71	2,16	0,00	-0,45
D7S503	19,35	-1,41	-0,52	0,00	-0,89	0,00	2,20	0,00	1,25
D7S1822	120,65	-0,71	0,77	-0,65	-0,45	0,00	0,82	-1,00	-0,45
D7S640	126,96	0,00	0,26	0,73	-1,34	1,41	1,78	-1,00	0,45
D7S1824	134,31	0,00	1,55	0,00	-1,34	1,41	1,00	0,00	1,06

Tabelle 17: Ergebnisse der Singlepoint-Analyse NPL Chromosom 7

Marker	Position	199	181	904	2231m	2231b	2249	2257	2378
	HuRef								
	[Mbp]								
D7S1819	4,41	0,03	-0,76	-0,46	-1,28	0,00	2,22	-0,81	-0,47
D7S2201	5,54	0,00	-0,77	-0,77	-0,44	0,00	2,28	-0,82	-0,45
D7S2553	7,27	0,00	-0,77	-0,75	-0,44	0,00	2,35	-0,85	-0,12
D7S1790	9,09	0,01	-0,77	-0,78	-0,45	0,00	2,44	-0,89	0,22
D7S2200	9,33	0,01	-0,77	-0,82	-0,26	0,00	2,45	-0,89	0,26
D7S513	11,51	0,02	-0,75	-0,85	1,34	0,00	2,45	-0,93	-0,22
D7S2557	15,16	0,01	-0,74	-0,85	0,36	0,00	2,45	-1,00	0,45
D7S3051	18,17	-1,41	-0,69	-0,65	-0,45	-0,63	2,45	-0,95	0,45
D7S503	19,35	-1,41	-0,70	-0,62	-0,47	0,00	2,45	-0,94	0,60
D7S1822	120,65	-1,14	0,37	-0,65	-0,45	0,00	0,82	-1,00	0,26
D7S640	126,96	-1,11	0,26	-0,03	-1,34	1,41	2,22	-1,00	0,45
D7S1824	134,31	0,00	2,13	-0,04	-1,34	1,41	2,01	-0,86	0,91

Tabelle 18: Ergebnisse der Multipoint-Analyse NPL Chromosom 7

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D7S1819	4,41	0,30	0,00	-104	-104	0,00	0,49	0,00	-0,51
D7S2201	5,54	-104	-104	-104	0,00	-104	0,45	0,00	0,60
D7S2553	7,27	-104	-104	0,00	0,00	-104	0,45	0,00	-0,40
D7S1790	9,09	0,00	-104	-104	0,00	0,30	0,46	0,00	-0,44
D7S2200	9,33	0,30	-104	0,55	0,30	-104	1,07	0,00	0,60
D7S513	11,51	0,30	-104	-104	0,30	-104	1,06	0,00	-104
D7S2557	15,16	0,30	0,00	-104	0,00	-104	1,05	0,00	-104
D7S3051	18,17	-104	0,00	-104	0,31	-104	1,12	0,00	-104
D7S503	19,35	-104	0,00	0,00	0,00	-104	1,13	0,00	-0,70
D7S1822	120,65	-104	0,60	-104	0,30	-104	-104	0,00	-104
D7S640	126,96	0,30	0,60	0,75	-104	0,60	1,07	0,00	-104
D7S1824	134,31	-104	0,00	0,00	-104	0,60	0,54	0,00	-0,49

Tabelle 19: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 7

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D7S1819	4,41	-1,05	-1,35	-104	-104	-1,07	1,14	0,00	0,55
D7S2201	5,54	-104	-104	-104	0,31	-104	1,16	0,00	0,60
D7S2553	7,27	-104	-104	-3,14	0,31	-104	1,18	0,00	0,60
D7S1790	9,09	-1,59	-104	-104	0,31	-3,15	1,20	0,00	0,60
D7S2200	9,33	-1,54	-104	-2,84	0,31	-104	1,20	0,00	0,60
D7S513	11,51	-1,35	-104	-104	0,31	-104	1,20	0,00	-104
D7S2557	15,16	-1,43	-0,84	-104	0,31	-104	1,20	0,00	-104
D7S3051	18,17	-104	-0,60	-104	0,31	-104	1,20	0,00	-104
D7S503	19,35	-104	-0,54	-1,03	0,30	-104	1,20	0,00	-1,41
D7S1822	120,65	-10 ⁴	0,60	-10 ⁴	0,30	-10 ⁴	-10 ⁴	0,00	-10 ⁴
D7S640	126,96	-0,36	0,60	0,56	-104	0,60	1,14	0,00	-104
D7S1824	134,31	-104	0,51	0,47	-104	0,60	1,08	0,00	-0,89

Tabelle 20: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 7

Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D7S1819	4,41	-0,96	0,00	-104
D7S2201	5,54	-0,96	0,00	-104
D7S2553	7,27	0,00	0,00	0,00
D7S1790	9,09	0,00	-0,70	0,00
D7S2200	9,33	-0,96	-0,26	-104
D7S513	11,51	0,00	-0,70	-104
D7S2557	15,16	-0,96	0,53	-104
D7S3051	18,17	0,00	-0,70	-104
D7S503	19,35	-0,96	0,00	-104
D7S1822	120,65	0,00	-0,70	0,60
D7S640	126,96	-0,96	0,00	-104
D7S1824	134,31	0,56	0,00	-104

Tabelle 21: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 7
Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D7S1819	4,41	-0,96	-0,57	-104
D7S2201	5,54	-0,96	-0,60	-104
D7S2553	7,27	-0,95	-0,65	-4,58
D7S1790	9,09	-0,96	-0,70	-4,90
D7S2200	9,33	-0,96	-0,69	-10 ⁴
D7S513	11,51	-0,80	-0,70	-104
D7S2557	15,16	-0,96	-0,67	-104
D7S3051	18,17	-0,85	-0,70	-104
D7S503	19,35	-0,96	-0,70	-104
D7S1822	120,65	-0,51	-0,70	-0,07
D7S640	126,96	-0,96	-0,62	-104
D7S1824	134,31	0,56	-0,47	-104

Tabelle 22: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 7

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D18S1376	5,22	0,00	-0,52	-0,44	0,00	0,71	2,04	0,00	0,45
D18S471	5,94	0,00	-0,77	0,54	0,00	0,00	1,22	0,00	0,75
D18S1163	7,44	-0,71	1,55	2,89	0,00	0,71	0,82	0,00	0,86
D18S843	8,88	-0,71	0,00	0,53	0,00	0,00	0,78	0,00	0,28
D18S464	9,92	0,00	-0,52	0,38	-0,89	0,71	0,07	1,00	0,22
D18S1116	11,44	0,00	0,00	0,60	0,00	0,00	0,00	0,00	-0,45
D18S482	11,85	-0,71	0,00	0,56	0,00	0,71	0,82	0,00	0,30
D18S866	23,37	-0,71	-0,77	0,43	-0,89	0,71	1,91	1,00	0,25
D18S877	26,73	0,71	0,00	-0,04	-0,45	0,71	1,32	1,00	-1,34
D18S847	27,70	-0,71	-0,52	1,94	0,45	0,00	0,82	1,00	-0,63
D18S463	28,14	0,00	0,77	0,48	0,00	0,71	1,96	0,00	0,27

Tabelle 23: Ergebnisse der Singlepoint-Analyse NPL Chromosom 18

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D18S1376	5,22	-1,37	-0,77	-0,44	0,00	1,39	2,44	0,91	1,31
D18S471	5,94	-1,41	-0,77	1,94	0,00	1,41	2,45	0,92	1,33
D18S1163	7,44	-1,41	1,29	3,08	-0,14	1,41	1,83	0,95	1,29
D18S843	8,88	-0,90	0,08	3,36	-0,64	1,41	1,25	0,98	0,83
D18S464	9,92	-0,54	-0,77	3,38	-0,85	1,41	0,81	1,00	0,47
D18S1116	11,44	0,00	-0,74	3,37	-0,56	1,40	0,98	1,00	-0,17
D18S482	11,85	-0,05	-0,73	3,37	-0,44	1,40	1,03	1,00	-0,16
D18S866	23,37	-1,39	-0,77	2,93	-0,47	1,39	2,13	1,00	-0,74
D18S877	26,73	0,01	-0,77	2,23	-0,45	1,41	1,68	1,00	-1,34
D18S847	27,70	0,00	-0,07	1,94	-0,10	1,41	0,82	1,00	-1,31
D18S463	28,14	0,15	0,26	1,77	0,05	1,23	1,60	1,00	-1,31

Tabelle 24: Ergebnisse der Multipoint-Analyse NPL Chromosom 18

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D18S1376	5,22	0,00	0,00	-104	0,00	0,30	1,08	0,00	0,60
D18S471	5,94	0,30	-104	-104	0,00	0,30	0,90	0,00	-0,18
D18S1163	7,44	-10 ⁴	0,00	0,65	0,01	0,30	0,48	0,00	-0,27
D18S843	8,88	-10 ⁴	0,00	0,63	0,00	0,00	0,46	0,00	-0,44
D18S464	9,92	0,00	0,00	0,52	0,00	0,30	-10 ⁴	0,00	-0,30
D18S1116	11,44	-104	0,00	0,67	0,00	0,00	0,00	0,00	-0,30
D18S482	11,85	-10 ⁴	0,00	0,65	0,00	0,30	0,48	0,00	-0,48
D18S866	23,37	-104	-104	0,57	0,00	0,30	1,03	0,00	-0,35
D18S877	26,73	0,30	0,00	-104	0,29	0,30	0,94	0,00	-104
D18S847	27,70	-10 ⁴	0,00	-10 ⁴	0,29	0,30	-10 ⁴	0,00	-0,40
D18S463	28,14	0,00	0,60	0,60	0,00	0,30	1,05	0,00	-0,40

Tabelle 25: Ergebnisse der Singlepoint-Analyse LOD rezessiv Chromosom 18

Marker	Position	199	181	904	2231	2231	2249	2257	2378
	HuRef				m	b			
	[Mbp]								
D18S1376	5,22	-2,12	-1,55	-104	0,01	0,60	1,20	0,00	0,60
D18S471	5,94	-2,15	-104	-104	0,01	0,60	1,20	0,00	0,57
D18S1163	7,44	-104	-1,96	0,75	0,13	0,60	1,00	0,00	0,15
D18S843	8,88	-104	-1,71	0,87	0,00	0,60	0,63	0,00	-0,42
D18S464	9,92	-2,81	-1,61	0,88	0,03	0,60	-10 ⁴	0,00	-0,67
D18S1116	11,44	-104	-1,52	0,89	0,22	0,60	0,22	0,00	-1,18
D18S482	11,85	-104	-1,51	0,89	0,29	0,60	0,33	0,00	-1,19
D18S866	23,37	-104	-104	0,69	0,28	0,60	1,11	0,00	-1,16
D18S877	26,73	-1,65	-2,48	-104	0,29	0,60	0,93	0,00	-104
D18S847	27,70	-10 ⁴	0,44	-10 ⁴	0,29	0,61	-10 ⁴	0,00	-2,76
D18S463	28,14	-0,37	0,60	-2,45	0,29	0,55	0,88	0,00	-2,66

Tabelle 26: Ergebnisse der Multipoint-Analyse LOD rezessiv Chromosom 18

Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D18S1376	5,22	-0,96	-0,70	0,00
D18S471	5,94	-0,96	0,53	0,78
D18S1163	7,44	0,56	0,82	-0,27
D18S843	8,88	0,00	0,00	0,00
D18S464	9,92	-0,96	0,00	0,00
D18S1116	11,44	0,00	0,00	-104
D18S482	11,85	0,00	0,00	0,00
D18S866	23,37	-0,96	0,00	0,00
D18S877	26,73	0,00	0,00	-10 ⁴
D18S847	27,70	-0,96	0,82	-10 ⁴
D18S463	28,14	0,00	0,00	0,00

Tabelle 27: Ergebnisse der Singlepoint-Analyse LOD dominant Chromosom 18

Marker	Position	181	904	2378
	HuRef			
	[Mbp]			
D18S1376	5,22	-0,96	-0,70	0,65
D18S471	5,94	-0,96	0,82	0,66
D18S1163	7,44	0,56	0,82	0,50
D18S843	8,88	0,20	0,82	0,27
D18S464	9,92	-0,96	0,81	0,02
D18S1116	11,44	-0,80	0,81	-104
D18S482	11,85	-0,77	0,81	-1,83
D18S866	23,37	-0,96	0,81	-2,21
D18S877	26,73	-0,96	0,82	-104
D18S847	27,70	-0,96	0,82	-10^4
D18S463	28,14	-0,96	0,78	-7,34

Tabelle 28: Ergebnisse der Multipoint-Analyse LOD dominant Chromosom 18

XI.4 Amplifikationsprodukte der Mikrosatelliten

Im Folgenden werden nach Chromosomen unterteilt die absoluten Fragmentlängen der Amplifikationsprodukte aller Mikrosatelliten und Probanden in bp angegeben, die mit der Qiaxcel Kapillarelektrophorese bestimmt wurden. Es wurden auch Fragmente erfasst, die nicht in dem zu erwartenden Fragment-Längen-Bereich des entsprechenden Markers liegen. Für einige Kombinationen aus Marker und Probanden-DNS konnten auch nach wiederholter Messung keine Fragmentlängen ermittelt werden. Diese Daten wurden bei der Kopplungsanalyse konsequenterweise nicht berücksichtigt.

Tabelle 29: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 3 – Teil 1 (D3S1597 – D3S3564)

Marker	D3S1597	D3S1263	D3S3602	D3S3595	D3S3547	D3S2407	D3S3564
T "	1(3 100	221 240	114 122	2(0.272	10(220	204 222	10(220
Lange	162-180	231-249	114-132	269-273	196-228	204-222	186-220
Familie							
199.01	168, 176	235, 237	118, 124	271, 271	224, 229	200, 205	205,
							212, 215
199.02	kein	235, 237	117, 133	270, 270	223, 223	200, 205	204,
	peak						211, 215
199.03	167, 167	235, 235	124, 128	270, 270	223, 227	200, 205	214, 214
199.04	167, 175	235, 237	117, 125	270, 274	223, 223	205, 210	203, 212
181.01	166, 166	209, 211	117, 123	269, 269	227, 227	208, 208	203, 203
181.02	158, 158	208, 208	123, 128	268, 272	223, 227	203, 208	205, 217
181.03	167, 167	208, 208	123, 127	269, 269	227, 227	207, 207	203, 218
181.04	166, 167	232, 232	118, 124	266, 270	223, 227	202, 208	203, 205
181.05	158, 166	208, 208	124, 128	268, 268	227, 227	208, 208	203, 218
2231.01	166, 173	212, 212	119, 125	267, 267	229, 229	205, 205	204, 212
2231.02	167, 173	231, 235	120,120	267, 267	226, 228	206, 209	204, 213
2231.03	174, 179	231, 235	121, 121	267, 267	kein	207, 209	209, 213
					реак		
2231.04	168, 178	231, 235	119, 119	270, 270	223, 227	208, 208	209, 213

Marker	D3S1597	D3S1263	D3S3602	D3S3595	D3S3547	D3S2407	D3S3564
Länge	162-180	231-249	114-132	269-273	196-228	204-222	186-220
Familie							
2231.05	173, 177	208, 208	124, 124	269, 269	219, 219	200, 206	205, 213
2231.51	167, 177	231, 235	118, 134	269, 269	218, 227	206, 208	203, 203
2231.52	167, 173	237, 237	120, 135	269, 269	225, 227	204, 209	212, 216
2231.53	166, 172	237, 237	124, 124	268, 268	223, 227	207, 207	211, 211
2231.54	176, 178	244, 244	118, 124	269, 271	221, 225	209, 212	207, 211
2231.55	173, 177	233, 238	120, 135	268, 268	219, 225	206, 209	203, 212
2231.56	172, 172	235, 247	116, 124	267, 267	225, 227	201, 201	203, 212
2231.06	167, 173	231, 235	119, 125, 129, 134	269, 273	225, 227	203, 206	216, 219
2231.07	171, 178	231, 235	119, 123	268, 268	226, 227	205, 208	217, 220
2231.08	167, 178	231, 235	120, 126, 130, 136	269, 273	222, 226	203, 206	213, 217
2231.09	176, 176	239, 239	121, 121	270, 270	kein peak	kein peak	kein peak
2231.10	kein peak	245, 245	126, 130	271, 274	225, 225	203, 205	218, 218
2231.11	171, 173	239, 239	119, 123	270, 270	228, 228	203, 208	217, 217
2231.12	kein peak	237, 245	118, 124, 133	269, 269	223, 228	203, 203	212, 219
904.01	kein peak	239, 239	125, 128	269, 269	219, 227	203, 206	212, 216
904.02	kein peak	208, 208	125, 129	268, 268	219, 227	203, 209	212, 219
904.03	kein peak	208, 208	125, 125, 129	268, 268	219, 225	206, 209	212, 216
904.04	kein peak	208, 208	124, 124, 128	268, 268	219, 225	206, 209	212, 216

Marker	D3S1597	D3S1263	D3S3602	D3S3595	D3S3547	D3S2407	D3S3564
Länge	162-180	231-249	114-132	269-273	196-228	204-222	186-220
Eunge	102 100	201 217	111102	109 110	170 220		100 220
Familie							
904.05	kein peak	208, 208	124, 124, 129	268, 268	219, 219	206, 209	212, 216
2249.01	168, 178	233, 250	122, 128, 138	270, 271	227, 233	206, 206	214, 218
2249.02	168, 177	251, 251	120, 126, 130, 135	272, 272	223, 231	203, 206	214, 214
2249.04	167, 178	233, 251	119, 126, 135	270, 272	225, 231	206, 206	213, 217
2249.05	167, 175	233, 251	119, 125, 134	270, 271	224, 229?	206, 206	213, 217
2257.01	173, 173	237, 247	125, 125, 129	270, 274	220, 226	203, 207	212, 212
2257.02	163, 173	247, 247	125, 125, 129	269, 274	220, 226	207, 207	213, 213
2257.04	167, 167	237, 247	125, 125, 129	272, 273	220, 226	206, 208	214, 220
2378.01	167, 173	233, 243	119, 135	268, 268	216, 222, 228	kein peak	208, 208
2378.02	167, 174	244, 246	120, 136	268, 268	217, 231	207, 207	207, 207
2378.03	174, 178	233, 233	122, 122, 125	269, 274	225, 233	203, 203	207, 215
2378.04	169, 175	234, 244	122, 138	269, 269	224, 230	202, 207	206, 217
2378.05	175, 177	233, 233	120, 135	271, 271	221, 225, 235	199, 201, 207	214, 214
2378.06	174, 176	234, 245	119, 135	270, 270	217, 221, 230	201, 207	205, 216
2378.07	173, 178	233, 233	125, 125, 129	270, 274	kein peak	kein peak	214, 220
2378.08	167, 175	231, 240	125, 125, 129	270, 270	221, 225, 234	198, 204	205, 213

Tabelle 30: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 3 – Teil 2 (D3S2420 – D3S1590)

Marker	D3S2420	D3S1285	D3S1284	D3S3606	D3S1292	D3S1590
Länge	93-108	232-242	155-177	155-181	142-166	201-213
Familie						
199.01	91, 102	234, 238	168, 172	177, 186	163, 163	212, 212
199.02	90, 101	232, 239	168, 174	182, 182	153, 164	210, 210
199.03	94, 100	233, 240	nicht lesbar	181, 181	161, 161	208, 208
199.04	88, 88	232, 234	167, 171	182, 182	151, 159	208, 208
181.01	98, 107	234, 234	kein peak	173, 177	147, 151	208, 212
181.02	98, 100	240, 240	161, 170	183, 183	148, 148	208, 212
181.03	98, 100	234, 240	161, 169	171, 180	148, 148	207, 211
181.04	100, 105	234, 241	161, 167	172, 183	147, 147	208, 208
181.05	97, 97	234, 240	162, 170	172, 183	146, 146	209, 209
2231.01	98, 101	237, 241	168, 172	177, 183	148, 161	213, 213
2231.02	101, 101	237, 241	170, 170	177, 177	146, 159	208, 208
2231.03	92, 97	236, 243	168, 168	181, 185	159, 159	208, 208
2231.04	92, 100	241, 243	168, 168	177, 183	146, 159	210, 210
2231.05	97, 99	236, 240	162, 177	177, 177	151, 160	208, 208
2231.51	96, 99	232, 232	168, 168	175, 175	147, 160	206, 206
2231.52	91, 99	233, 237	172, 176	176, 176	160, 160	208, 208
2231.53	96, 96	234, 238	167, 167	179, 179	161, 168	206, 206
2231.54	91, 91	233, 239	168, 174	177, 183	160, 160	210, 210
2231.55	99, 99	232, 232	168, 176	177, 177	160, 160	207, 207
2231.56	96, 96	230, 236	162, 166	172, 172	160, 160	207, 207
2231.06	91, 91	234, 240	175, 175	175, 184	147, ?	202, 202
2231.07	91, 91	234, 240	175, 175	181, 181	151, 159	209, 209
2231.08	91, 97	234, 236	162, 175	174, 185	147, 160	207, 207

Marker	D3S2420	D3S1285	D3S1284	D3S3606	D3S1292	D3S1590
Länge	93-108	232-242	155-177	155-181	142-166	201-213
Familie						
2231.09	87, 87	231, 238	169, 178	171, 185	146, 146	210, 210
2231.10	88, 98	238, 238	169, 177	172, 185	147, 147	209, 209
2231.11	87, 87	237, 237	167, 177	175, 175	153, 161	207, 207
2231.12	92, 103	230, 236	168, 168	174, 177	147, 147	207, 207
904.01	95, 100	240, 240	168, 168	176, 184	163, 163	212, 212
904.02	95, 100	234, 240	168, 168	177, 185	163, 163	209, 209
904.03	92, 92	233, 240	168, 168	176, 183	146, 152	209, 209
904.04	92, 101	240, 240	168, 168	177, 186	146, 153	209, 209
904.05	99, 102	234, 241	168, 168	177, 177	146, 163	209, 209
2249.01	92, 97	237, 237	172, 175	171, 183	160, 160	207, 207
2249.02	95, 98	237, 237	171, 175	185, 185	147, 160	207, 207
2249.04	94, 99	237, 237	171, 175	172, 184	160, 160	202, 207
2249.05	93, 98	238, 238	171, 174	177, 188	160, 160	202, 202
2257.01	92, 94	240, 242	168, 175	172, 176	146, 146	208, 208
2257.02	91, 94	238, 238	168, 175	171, 183	146, 146	205, 205
2257.04	90, 96	235, 237	162, 168	177, 182, 187	147, 160	210, 210
2378.01	96, 98	233, 237	162, 162	175, 175	146, 146	207, 207
2378.02	88, 99	231, 233	163, 176	175, 175	147, 158	207, 207
2378.03	96, 99	238, 238	163, 171	172, 177	145, 158	208, 208
2378.04	89, 89	233, 238	163, 163	176, 176	147, 147	208, 208
2378.05	90, 98	238, 238	163, 163	177, 177	145, 160	208, 208
2378.06	91, 102	231, 238	163, 175	176, 176	145, 158	207, 207
2378.07	93, 101	239, 239	169, 169	172, 183	158, 169	208, 208
2378.08	98, 100	230, 237	164, 175	177, 177	158, 158	208, 208

Tabelle 31: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 7 – Teil 1 (D7S1819 – D7S513)

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	168-192	101-117	165-177	240-257	164-184	173-201
Familie						
199.01	176, 184	105, 109	174, 178, 181	240, 240	162, 166	179, 177
199.02	181, 185	95, 107	174, 176	240, 240	162, 166	179, 177
199.03	177, 185	106, 106	174, 178, 176	240, 240	162, 166	173, 179
199.04	180, 180	94, 102	173, 178, 175, 180	240, 240	166, 166	177, 177
181.01	172, 172	102, 106	172, 173, 175, 180	240, 244	170, 174	183, 200
181.02	176, 176	93, 105	172, 178, 175	239, 239	169, 177	197, 197
181.03	172, 176	105, 105	174, 180	243, 243	169, 174	183, 195
181.04	172, 172	93, 101	174, 175	240, 240	169, 177	195, 199
181.05	172, 172	94, 102	175. 179	240, 247	169, 177	197, 199
2231.01	184, 184	102, 102	176, 179	234, 238, 245	169, 169	195, 197
2231.02	180, 184	102, 106	177, 181	244, 244	165, 169	186, 196
2231.03	183, 183	104, 108	177, 177	237, 244	169, 169	179, 195
2231.04	179, 183	105, 109	177, 177	244, 244	169, 169	194, 197
2231.05	178, 178	105, 109	175, 181	240, 244	168, 168	195, 199
2231.51	174, 178	104, 108	176, 176	237, 237	163, 163	180, 186
2231.52	174, 178	103, 103	176, 176	238, 238	166, 166	195, 195
2231.53	kein peak	103, 107	172, 176	241, 249	166, 166	182, 195
2231.54	176, 176	103, 107	176, 176	239, 239	162, 166	179, 179
2231.55	173, 177	103, 103	175, 175	238, 238	162, 166	179, 195
2231.56	176, 176	103, 107	167, 175	239, 239	161, 165	184, 193

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	168-192	101-117	165-177	240-257	164-184	173-201
Familie						
2231.06	182, 182	104, 108	172, 177	240, 251	168, 172	178, 185
2231.07	181, 181	108, 108	177, 177	240, 247	172, 172	178, 194
2231.08	181, 181	105, 109	176, 176	240, 244	168, 172	170, 178
2231.09	176, 176	109, 109	179, 179	234, 234	kein peak	179, 195
2231.10	176, 176	102, 106	173, 178	231, 233	164, 164	178, 185
2231.11	176, 176	105, 109	172, 177	235, 235	164, 168	185, 194
2231.12	184, 192	101, 108	176, 176	237, 237	161, 165	180, 199
904.01	182, 186	108, 108	kein peak	240, 249	169, 169	187, 187
904.02	182, 186	107, 107	kein peak	239, 239	168, 168	189, 189
904.03	182, 182	100, 108	kein peak	240, 251	160, 176	176, 176
904.04	182, 186	100, 108	kein peak	251, 251	169, 177	176, 176
904.05	182, 182	107, 107	kein peak	241, 253	169, 177	175, 188
2249.01	175, 175	109, 109	176, 176	233, 233	161, 161	195, 199
2249.02	176, 176	109, 109	176, 176	232, 232	162, 170	195, 199
2249.04	177, 177	109, 109	176, 176	232, 232	164, 164	195, 199
2249.05	177, 177	108, 108	177, 177	232, 232	162, 162	195, 199
2257.01	164, 176	96, 108	177, 177	233, 242, 250	165, 169	201, 201
2257.02	163, 163	96, 108	178, 178	234, 243, 251	165, 165	195, 199
2257.04	163, 163	96, 107	178, 178	236, 244, 253	160, 164	195, 203
2378.01	171, 175	108, 108	177, 177	234, 234	164, 168	190, 192
2378.02	167, 171	101, 108	175, 175	234, 234	168, 168	177, 192
2378.03	170, 170	109, 109	177, 177	234, 234	165, 169	190, 192
2378.04	168, 176	102, 110	176, 176	234, 234	165, 169	177, 190

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	168-192	101-117	165-177	240-257	164-184	173-201
Familie						
2378.05	169, 177	102, 114	178, 178	233, 233	170, 170	177, 185, 190
2378.06	174, 178	106, 109	175, 175	233, 233	168, 172	192, 197
2378.07	174, 178	105, 109	176, 176	233, 233	167, 167	192, 202
2378.08	176, 176	104, 112	176, 176	238, 238	169, 169	kein peak

Tabelle 32 Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 7 – Teil 2 (D7S2557 – D7S1824)

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	149-163	146-182	140-180	243-271	113-144	163-199
Familie						
199.01	159, 161	148, 168	153, 171	236, 236	121, 123	179, 179
199.02	159, 161	146, 168	170, 176	237, 255	121, 133	178, 201
199.03	149, 159	146, 168	169, 173	236, 253	121, 133	177, 203
199.04	161, 161	148, 168	165, 173	237, 237	123, 132	184, 200
181.01	158, 158, 160	168, 168	173, 173	238, 257	123, 132	171, 171
181.02	149, 160	152, 168	151, 165	234, 234	120, 132	171, 188
181.03	149, 160	166, 170	150, 175	234, 238	123, 132	188, 188
181.04	148, 159	146, 177	165, 173	233, 237	125, 125	172, 172
181.05	159, 159	145, 166	165, 173	234, 238	123, 132	172, 172
2231.01	149, 149	156, 160	151, 175	234, 261	125, 134	160, 193
2231.02	149, 149	163, 167	171, 171	235, 236	125, 132	173, 193
2231.03	150, 150	159, 163	152, 175	235, 263	120, 133	162, 170
2231.04	150, 150	162, 162	176, 176	236, 238, 240	121, 133	171, 175

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	149-163	146-182	140-180	243-271	113-144	163-199
Familie						
2231.05	159, 161, 164	150, 162	174, 174	236, 250	115, 124	202, 202
2231.51	151, 151	171, 171	151, 172	234, 253	120, 132	193, 193
2231.52	152, 163	167, 167	176, 176	233, 235	124, 136	173, 201
2231.53	152, 152	163, 171	151, 17?	236, 261	126, 134	160, 160
2231.54	151, 162	167, 171	174, 174	234, 236, 237	120, 129	169, 173
2231.55	149, 162	166, 171	151, 176	234, 235	124, 124	192, 200
2231.56	151, 163	168, 172	172, 179	249, 253	115, 115	164, 164
2231.06	160, 160	162, 166	161, 161	235, 249	122, 134	168, 197
2231.07	150, 157, 161	158, 166	151, 161	249, 261	123, 134	169, 198
2231.08	150, 157, 161	166, 166	152, 162	236, 250	121, 132	169, 198
2231.09	159, 161	142, 166	163, 17?	238, 238	kein peak	kein peak
2231.10	160, 160	144, 164	156, 164	239, 252	117, 127	200, 200
2231.11	148, 157, 159, 161	156, 160	153, 163	236, 261	122, 137	166, 170
2231.12	159, 159	146, 150?	154, 179	236, 236	116, 116	165, 165
904.01	147, 158	142, 142	kein peak	246, 250	kein peak	kein peak
904.02	147, 158	143, 167	kein peak	236, 242	149, 149	kein peak
904.03	145, 148	144, 168	kein peak	241, 249	147, 147	kein peak
904.04	146, 148	144, 168	kein peak	245, 249	147, 147	kein peak
904.05	147, 159	143, 167	kein peak	242, 245	147, 147	kein peak
2249.01	149, 156, 160	167, 167	171, 186	236, 238	116, 127	168, 185
2249.02	148, 156	163, 167	152, 162, 170	237, 256	116, 127	184, 184

Marker	D7S1819	D7S2201	D7S2553	D7S1790	D7S2200	D7S513
Länge	149-163	146-182	140-180	243-271	113-144	163-199
Familie						
2249.04	148, 155, 159	167, 167	171, 187	235, 236, 238	116, 127	169, 185
2249.05	147, 147, 155, 159	166, 166	167, 184	234, 236, 238	116, 127	169, 185
2257.01	148, 148	143, 167	154, 177	236, 258	126, 133	186, 194
2257.02	145, 148	143, 163	178, 178	242, 257	123, 126	187, 195
2257.04	145, 145	143, 163	179, 179	242, 250	138, 138?	168, 196
2378.01	148, 157	161, 165	162, 169?	253, 258	114, 126	171, 187
2378.02	148, 159	160, 160	153, 169	257, 257	127, 134	170, 186
2378.03	149, 149	156, 160	161, 169	250, 254	114, 125	170, 186
2378.04	149, 158	159, 159	161, 169	239, 260	123, 123	170, 186
2378.05	146, 149	159, 164	174, 182	238, 238	123, 123	162, 186
2378.06	148, 159	159, 163	161, 168	237, 258	123, 123	186, 186
2378.07	148, 159	155, 167	170, 17?	236, 250	117, 128	186, 198
2378.08	149, 149	171, 174	180, 180	236, 249	123, 134	162, 198

Tabelle 33: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 18 – Teil 1 (D181376 – D18S1116)

Marker	D18S1376	D18S471	D18S1163	D18S843	D18S464	D18S1116
Länge	192-208	251-264	196-212	179-193	283-291	150-179
Familie						
199.01	202, 202	249, 255	202, 210	179, 182, 178, 185	291, 291	174, 181
199.02	202, 202	248, 253	201, 201	181, 184, 188	291, 291	172, 177
199.03	202, 202	248, 254	201, 201	179, 184, 189	291, 291	176, 181

Marker	D18S1376	D18S471	D18S1163	D18S843	D18S464	D18S1116
Länge	192-208	251-264	196-212	179-193	283-291	150-179
Familie						
199.04	202, 202	249, 254	201, 209	181, 187	291, 291	172, 179
181.01	203, 203	248, 255	201, 201	181, 188	292, 292	174, 179
181.02	193, 205	248, 257	209, 211	188, 188	288, 290	170, 175
181.03	192, 204	249, 257	202, 209	184, 189	290, 290	170, 177
181.04	202, 202	248, 254	201, 209	180, 187	288, 290	174, 179
181.05	201, 201	248, 255	202, 209	181, 188	286, 288	173, 177
2231.01	205, 205	248, 255	209, 209	181, 186	285, 289	172, 178
2231.02	201, 205, 209	248, 256	202, 210	180, 186	290, 290	172, 178
2231.03	205, 205	248, 255	202, 210	176, 179, 180	285, 289	173, 178
2231.04	200, 204, 205, 209	249, 256	203, 211	179, 182, 183	289, 289	172, 177
2231.05	201, 209	249, 254	202, 202	179, 182, 185	288, 290	173, 177
2231.51	204, 204	249, 256	201, 201	181, 186	290, 290	173, 180
2231.52	204, 204	248, 255	203, 210	173, 180, 187	291, 291	173, 178
2231.53	205, 205	249, 255	199, 209	178, 185	286, 286	173, 177
2231.54	204, 204	250, 256	203, 203	175, 184, 183, 190	291, 291	175, 179
2231.55	205, 205	248, 255	203, 211	180, 186	292, 292	172, 177
2231.56	200, 200	248, 258	198, 202, 205	178, 183, 185, 189	293, 293	171, 175
2231.06	197, 205	249, 255	197, 201	178, 185	287, 288	173, 177
2231.07	197, 205	249, 255	198, 202	178, 185	288, 288	173, 177
2231.08	197, 205	249, 255	202, 202	178, 181, 185	284, 291	172, 177

Marker	D18S1376	D18S471	D18S1163	D18S843	D18S464	D18S1116
Länge	192-208	251-264	196-212	179-193	283-291	150-179
Familie						
2231.09	191, 191	248, 254	201, 201	176, 180, 183	283, 285	kein peak
2231.10	191, 199, 203, 208	249, 255	198, 202	177, 180, 181	283, 285	172, 179
2231.11	201, 201	248, 254	197, 214	179, 182, 185	286, 286	169, 173
2231.12	198, 198	249, 255	197, 201	176, 179, 182	290, 300	173, 180
904.01	197, 201	249, 255	203, 203	173, 182	285, 289	173, 177
904.02	197, 205!	248, 258	202, 202	173, 181	285, 289	172, 177
904.03	197, 201	248, 254	202, 202	173, 182	285, 289	173, 178
904.04	206, 206	250, 258	201, 203	173, 182	285, 289	172, 177
904.05	198, 206	248, 255	200, 202	181, 181	289, 289	173, 177
2249.01	199, 203	249, 255	201, 203	179, 184, 184	289, 289	kein peak
2249.02	195, 203	249, 256	203, 203	180, 182, 186	288, 290	kein peak
2249.04	199, 203	248, 254	201, 203	179, 184	289, 290	kein peak
2249.05	199, 203	248, 254	200, 202	178, 185	292, 294	167, 172
2257.01	195, 199	249, 255	203, 203	179, 182, 187, 195	289, 289	183, 183
2257.02	196, 200	249, 254	203, 203	179, 182, 187, 195	289, 293	169, 177
2257.04	197, 197	248, 254	203, 203	176, 179, 184, 192	285, 289	169, 176
2378.01	196, 196	248, 254	199, 203	179, 181, 185	290, 290	166, 172
2378.02	195, 195	249, 255	200, 204	179, 182, 185	288, 288	166, 174
2378.03	196, 200	249, 255	199, 199	179, 182, 185	289, 289	171, 176

Marker	D18S1376	D18S471	D18S1163	D18S843	D18S464	D18S1116
Länge	192-208	251-264	196-212	179-193	283-291	150-179
Familie						
2378.04	196, 196	250, 255	200, 204	180, 183, 186	289, 289	168, 173
2378.05	196, 200	249, 249	199, 199	177, 180, 183	288, 289	168, 173
2378.06	196, 200	250, 250	199, 203	179, 184	289, 289	166, 173
2378.07	200, 200	249, 255	203, 203	179, 182, 185	290, 290	170, 175
2378.08	203, 203	249, 255	198, 203	176, 183	289, 289	167, 173

Tabelle 34: Fragmentlängen [bp] der Probanden-Marker-Kombinationen für Chromosom 18 – Teil 2 (D181102 – D18S1371)

Marker	D18S463	D18S1102	D18S1096	D18S469	D18S1161	D18S1371
Länge	172-184	208-220	194-214	234-244	82-108	133-153
Familie						
199.01	176, 186?	210, 216	199, 215	236, 236	kein peak	130, 141
199.02	174, 174	210, 216	214, ?	234, 234	96, 104	130, 151
199.03	174, 174	210, 216	215, 215	233, 238	95, 111	140, 151
199.04	174, 174	216, 220	200, 200	233, 238	103, 111	132, 140
181.01	175, 181?	212, 216	212, 212	230, 230	94, 94	139, 139
181.02	178, 178	216, 216	210, 218	231, 231	90, 93	140, 151
181.03	176, 176	212, 216	214, 220	232, 232	88, 94	139, 150
181.04	181, 181	216, 216	209, 209	230, 230	93, 93	140, 150
181.05	181, 181	216, 216	212, 220	230, 230	88, 92	139, 139
2231.01	176, 176	213, 215	213, 213	231, 231	80, 105	139, 139
2231.02	176, 176	211, 215	213, 213	232, 239	81, 99	140, 140
2231.03	176, 176	212, 216	212, 212	222, 222	95, 104, 107	141, 149

Marker	D18S463	D18S1102	D18S1096	D18S469	D18S1161	D18S1371
Länge	172-184	208-220	194-214	234-244	82-108	133-153
Familie						
2231.04	176, 176	214, 216	210, 210	235, 235	83, 96	142, 150
2231.05	176, 176	214, 218	210, 210	239, 243	94, 100	141, 141
2231.51	175, 175	kein peak	213, 213	231, 231	81, 98	140, 140
2231.52	176, 176	kein peak	206, 206	237, 237	93, 100	136, 147
2231.53	176, 176	kein peak	206, 206	233, 233	95, 103	140, 140
2231.54	175, 183	kein peak	196, 196	231, 231	93, 93	140, 148
2231.55	176, 176	kein peak	210, 210	233, 237	97, 100?	140, 140
2231.56	175, 175	kein peak	198, 215?	237, 237	90, 105, 108	140, 151
2231.06	174, 174	212, 220	207, 216	231, 231	91, 106	144, 144
2231.07	174, 174	212, 212	211, 217	231, 231	98, 106	136, 144
2231.08	174, 180	212, 216	212, 220	232, 232	81, 106	140, 144
2231.09	kein peak	212, 218	214, 216	kein peak	100, 116	130, 146
2231.10	175, 175	210, 216, 224	216, 222	234, 234	94, 94	143, 154
2231.11	175, 175	210, 218	212, 216	235, 235	93, 99	138, 146
2231.12	175, 175	kein peak	214, 216	234, 234	92, 96	128, 140
904.01	183, 195	212, 220	200, 216	241, 241	104, 112	137, 141
904.02	184, 195	212, 220	216, 216	240, 240	111, 111	137, 149
904.03	185, 192	212, 220	214, 214	239, 239	103, 112	138, 142
904.04	185, 192	212, 212	200, 216	239, 239	103, 103	138, 142
904.05	181, 181	212, 212	201, 219	239, 239	103, 112	143, 151
2249.01	176, 176	220, 220	200, 216	234, 238	93, 93	140, 144
2249.02	175, 183	218, 220	201, 219	234, 239	94, 94	136, 140
2249.04	176, 176	220, 220	200, 216	233, 238	94, 94	140, 144
2249.05	175, 175	220, 220	200, 216	234, 239	94, 94	141, 145

Marker	D18S463	D18S1102	D18S1096	D18S469	D18S1161	D18S1371
Länge	172-184	208-220	194-214	234-244	82-108	133-153
Familie						
2257.01	174, 182	212, 216	214, 214	235, 244	82, 95	137, 145
2257.02	175, 183	212, 220	210, 216	236, 241	83, 98	138, 142
2257.04	187, 187	213, 221	216, 216	236, 236	99, 99	143, 143
2378.01	177, 177	221, 223	217, 217	235, 242	95, 95	142, 146
2378.02	175, 175	211, 211	216, 216	234, 238	97, 103	141, 141
2378.03	178, 178	216, 216	201, 218	233, 233	97, 97	141, 145
2378.04	178, 178	210, 212	215, 215	233, 238	81, 96	137, 141
2378.05	176, 176	210, 214	201, 217	233, 237	96, 105	136, 140
2378.06	176, 176	210, 212	216, 216	233, 240	94, 94	141, 145
2378.07	176, 176	216, 216	202, 202	231, 231	96, 104	141, 145
2378.08	174, 174	kein peak	202, 210	234, 238	84, 105	137, 141

XII Ehrenwörtliche Erklärung

"Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und ohne unzulässige Hilfe oder Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nichtveröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten sowie ethische, datenschutzrechtliche und tierschutzrechtliche Grundsätze befolgt. Ich versichere, dass Dritte von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen, oder habe diese nachstehend spezifiziert. Die vorgelegte Arbeit wurde weder im Inland noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde zum Zweck einer Promotion oder eines anderen Prüfungsverfahrens vorgelegt. Alles aus anderen Quellen und von anderen Personen übernommene Material, das in der Arbeit verwendet wurde oder auf das direkt Bezug genommen wird, wurde als solches kenntlich gemacht. Insbesondere wurden alle Personen genannt, die direkt und indirekt an der Entstehung der vorliegenden Arbeit beteiligt waren. Mit der Überprüfung meiner Arbeit durch eine Plagiatserkennungssoftware bzw. ein internetbasiertes Softwareprogramm erkläre ich mich einverstanden."

Ort, Datum

Unterschrift

XIII Danksagung

Prof. Dr. med. Birgit Lorenz danke ich für die Bereitstellung des Arbeitsplatzes im Labor für Molekulare Ophthalmologie der Klinik und Poliklinik für Augenheilkunde der Justus-Liebig-Universität Gießen.

PD Dr. Dipl.-Biol. Markus Preising danke ich für die Vergabe des interessanten Promotionsthemas und für die Betreuung dieser Arbeit

Mein ganz herzlicher Dank gilt allen Mitarbeitern des Labors, die mir immer mit Rat und Tat zur Seite standen.