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Abstract

Biological systems are complex and full of interconnected feedback loops, which require
going beyond reductionist endeavors to map the genome, transcriptome, and proteome and
consider the whole system instead. This is the goal of systems biology, and it often involves
the integration of multiple descriptions of biological systems at different scales of time
and space. Since predictions about such complex systems are hard to make, mathematical
simulations are used to quantitatively assess the phenomena under study. However, most
mathematical models of biological systems are unfit for the sort of hierarchical composition
required for this task both due to their structure and due to the programming or modeling
language used. In engineering, systems of much larger size and similar complexity have been
successfully modeled using the language Modelica, which is largely unknown in systems
biology. This dissertation therefore asks if Modelica can be used to tackle the challenges of
multi-scale modeling in systems biology. In place of the vast amount of biological models
available, the dissertation focuses on models of the cardiovascular system, since this is an
active and relevant field of research that showcases a lot of the typical complexity of biological
systems.

To assess the benefits of Modelica for systems biology, I first establish a set of requirements
for modeling languages in systems biology in general by examining the properties of a
subsystem in detail. I assess whether Modelica fulfills these requirements using models
of the human baroreflex, the Hodgkin-Huxley model of the squid giant axon, and a one-
dimensional model of the human atrioventricular node. As there are other languages that
aim to solve similar issues, I then contrast their abilities with those of Modelica. This bridges
to a broader investigation of the benefit of software engineering techniques in general, such
as object orientation, structured documentation, or unit testing. Finally, I discuss and provide
some improvements for the usability of Modelica in a biological context.

The results of this dissertation indicate that Modeling languages used for systems biology
should be modular, declarative, human-readable, open, graphical, and hybrid. From all
investigated language candidates, Modelica fulfills these requirements to the fullest extent.
Using other languages is possible, but brings drawbacks either in modularity, openness, or the
graphical representation of models. However, SBML and CellML, which are recommended
standard languages in systems biology, have the clear benefit of including domain-specific
features such as semantic annotation using ontologies, and they also benefit from a high
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acceptance and interoperability with other tools in the community. Regardless of the concrete
language, software engineering techniques should be applied to mathematical modeling
similar to other pieces of software. Among other benefits, this could actually guarantee that
the methods of a simulation study are reproducible. In the case of Modelica, this means
that the language has to fit better into a typical software engineering workflow, which
can be achieved by separate tools for code editing, vector graphics editing, and structured
documentation, which are provided as part of this dissertation. At the bottom line, Modelica
is not the perfect solution to every problem of systems biology, but at the very least it is a
great source of inspiration that should either be used as the basis of or be partly incorporated
into future languages.
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Zusammenfassung

Biologische Systeme sind komplex und voller miteinander verbundener Rückkopplungs-
schleifen, die es nötig machen, über reduktionistische Bemühungen zur Kartierung des
Genoms, Transkriptoms und Proteoms hinauszugehen und stattdessen das gesamte System
zu betrachten. Das ist das Ziel der Systembiologie und erfordert oft die Integration mehre-
rer Beschreibungen biologischer Systeme auf unterschiedlichen Zeit- und Raumskalen. Da
Vorhersagen über solch komplexe Systeme schwer zu treffen sind, werden mathematische
Simulationen verwendet, um die studierten Phänomene quantitativ zu bewerten. Die meisten
mathematischen Modelle biologischer Systeme sind jedoch sowohl aufgrund ihrer Struktur
als auch aufgrund der verwendeten Programmier- oder Modellierungssprache nicht für die
hierarchische Zusammensetzung, die für diese Aufgabe erforderlich ist, geeignet. In den
Ingenieurwissenschaften wurden viel größere und ähnlich komplexe Systeme erfolgreich mit
der Sprache Modelica modelliert, die in der Systembiologie noch weitgehend unbekannt ist.
Diese Dissertation stellt daher die Frage, obModelica verwendet werden kann, um die Heraus-
forderungen der Multiskalenmodellierung in der Systembiologie anzugehen. Stellvertretend
für die große Menge an verfügbaren biologischen Modellen konzentriert sich die Dissertation
auf Modelle des Herz-Kreislauf-Systems, da dies ein aktives und relevantes Forschungsgebiet
ist sowie ein gutes Beispiel für die typische Komplexität biologischer Systeme.

Um den Nutzen von Modelica für die Systembiologie zu beurteilen, stelle ich zunächst eine
Reihe von Anforderungen für Modellierungssprachen in der Systembiologie im Allgemeinen
auf, indem ich die Eigenschaften eines Subsystems im Detail untersuche. Ob Modelica diese
Anforderungen erfüllt, bewerte ich anhand von Modellen des menschlichen Baroreflexes,
des Hodgkin-Huxley-Modells des Tintenfisch-Riesenaxons und eines eindimensionalen Mo-
dells des menschlichen atrioventrikulären Knotens. Da es auch andere Sprachen gibt, die
darauf abzielen, ähnliche Probleme zu lösen, stelle ich dann ihre Fähigkeiten denen von
Modelica gegenüber. Dies leitet über zu einer breiteren Untersuchung des Nutzens von
Softwareentwicklungstechniken, wie z. B. Objektorientierung, strukturierte Dokumentation
oder Komponententests, im Allgemeinen. Abschließend erarbeite und diskutiere ich einige
Verbesserungen für die Verwendbarkeit von Modelica in einem biologischen Kontext.

Die Ergebnisse dieser Dissertation zeigen, dass in der Systembiologie verwendete Modellie-
rungssprachen modular, deklarativ, menschenlesbar, offen, grafisch und hybrid sein sollten.
Von allen untersuchten Sprachkandidaten erfüllt Modelica diese Anforderungen im größten
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Maße. Die Verwendung anderer Sprachen ist möglich, bringt jedoch Nachteile entweder in
der Modularität, Offenheit oder der grafischen Darstellung von Modellen mit sich. SBML
und CellML, die in der Systembiologie empfohlene Standardsprachen sind, haben jedoch den
klaren Vorteil, dass sie domänenspezifische Funktionen wie semantische Annotation mithilfe
von Ontologien erlauben, und sie profitieren auch von einer hohen Akzeptanz und Inter-
operabilität mit anderen Tools in der Community. Unabhängig von der konkreten Sprache
sollten Softwareentwicklungstechniken auf die mathematische Modellierung ähnlich wie bei
anderen Softwarekomponenten angewendet werden. Damit könnte unter anderem die Repro-
duzierbarkeit der Methoden einer Simulationsstudie garantiert werden. Im Fall von Modelica
bedeutet dies, dass sich die Sprache besser in einen typischen Software-Engineering-Workflow
einfügen muss, was durch separate Tools für die Codebearbeitung, die Bearbeitung von Vek-
torgrafiken und die strukturierte Dokumentation erreicht werden kann, die im Rahmen dieser
Dissertation bereitgestellt werden. Unter dem Strich ist Modelica nicht die perfekte Lösung
für alle Probleme der Systembiologie, aber zumindest eine gute Inspiration, die entweder als
Grundlage für zukünftige Sprachen verwendet oder teilweise in sie einfließen sollte.
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1. Introduction

The subject of biological study is life itself, which poses immense opportunities and challenges
for scientific research. The recent pandemic of the Coronavirus disease 2019 (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown that
scientific progress in medical and biological questions is not easy to achieve, even when
scientists across the whole world work together towards a common goal. It has also shown
that there are biological questions that can only be answered by computer simulations.

In the case of the COVID-19 pandemic it was simply not possible to conduct experiments
that would help to predict the spread of the disease because of the required scale, the urgency
with which results were required, and of course the ethical aspect that one cannot simply
infect a human being with a potentially deadly disease. Fortunately, epidemiologists could
use mathematical modeling to calculate possible trajectories of the number of infections
and hospitalizations given different intervention scenarios and to provide scientific evidence
as basis for political decisions (Ndaïrou et al. 2020; Tuan, Mohammadi, and Rezapour 2020;
Mandal et al. 2020).

These models can also be used in other areas of biology. At the smallest level, they can, for
example, help explain the binding mechanism of the main active agent in the COVID-19 drug
Paxlovid developed by Pfizer (Ahmad et al. 2021). Similar studies might inform drug discovery
to reduce cost, speed up development, and improve success-rates, which are estimated at
4.3% for patent applications that actually lead to a product reaching the market (Pammolli,
Magazzini, and Riccaboni 2011).

While there are already many successful modeling studies, the example of COVID-19 also
shows that to understand and treat a disease like COVID-19, it is not enough to just look
at the virus in a cell culture in a Petri dish or just at the population dynamics. Instead, the
interplay between the virus, the cells that it infects, the function of the lung and respiratory
tract, and the behavior of the human patient in the population has to be considered across
all levels of biological organization. For example, at the organ level, SARS-CoV-2 can not only
affect the lung, but also the heart and the kidney (Bader et al. 2021). To understand how and
why the virus can enter cells of different organs, one has to look at the angiotensin-converting
enzyme 2 (ACE2) receptor, a small protein in the cell membrane (Scialo et al. 2020). As a
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1. Introduction

second example, coronavirus variants are identified by mutations at the genetic level, but
to determine whether they are variants of concern, the reproduction rates in the upper
respiratory tract have to be investigated (Tao et al. 2021; Hou et al. 2020).

This calls for larger, more complex models, which incorporate effects at more than one level of
organization and across all relevant areas of human physiology (Bardini et al. 2017). To build
such models, it is imperative that tools are used that can manage the inherent complexity and
that allow to combine existing models for all involved biological entities. In the engineering
domain, the modeling language Modelica is an established solution precisely for integrating
large, complex models across many engineering domains (Elmqvist 1978). Up until now, it is
largely unknown in biology.

1.1. Systems Biology

Why is it that drug development takes 13.9 years on average with an average success rate
of only 4.3% (Pammolli, Magazzini, and Riccaboni 2011)? Why is it not enough to sequence
the full genome of a virus such as SARS-CoV-2 (Chiara et al. 2021) to figure out an effective
treatment of the disease it causes? There seems to be a fundamental difference between
engineering, where taking apart a machine or studying its blueprint immediately reveals its
function, and biology, where analysis of living organisms proves to be more difficult.

The most important difference between biology and engineering is that the objects under
study are the result of evolution—a random process guided by billions of years of ever-
changing environmental influences (Darwin 1872; Palsson 2000). There is no designer’s intent
or small set of well-understood forces that would allow to easily identify the function of a
component and to predict the results of a small change (Green 2015; Voit 2018). For example,
the light does not directly fall on the photosensitive cells in the vertebrate eye, but must first
pass through the optical nerve fibers, which is also the reason why we have a blind spot in
our vision (Serb and Eernisse 2008). From a design standpoint this is an obvious flaw, but
evolution does not find the global optimum (i.e. the “best” solution), but only performs small
steps to improve the adaptation of an organism to the environment based on its existing
traits, thus moving towards local optima but never taking “intermediate” steps that would
lead to a temporary disadvantage (Dawkins 1996). Our nerve cells are another example,
since they require dozens of different types of ion channels to fire an electrical signal that
essentially serves a similar purpose as a switch being flipped on and off in a short period of
time (Bean 2007). In general, evolved systems are therefore more complex than their designed
counterparts.
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1.1. Systems Biology

In the past, researchers tackled this immense complexity mainly by a reductionist approach,
investigating and cataloging the parts of organisms to understand the whole (D. Noble
2002). This has led to important discoveries such as deoxyribonucleic acid (DNA) as the basic
building block of life (Franklin and Gosling 1953; Watson and F. H. C. Crick 1953) and a vast
amount of knowledge about biochemical pathways that govern cell metabolism (Michal and
Schomburg 2012). The hope that the focus on small parts of an organism can lead to an
understanding of the behavior and traits of the whole organism is founded in the so-called
“central dogma” of molecular biology (F. H. Crick 1958). In short, it states that there is a
one-way flow of sequential information from DNA to proteins. Proteins, which are strands
of amino acids that fold into macromolecules that govern cell functions, cannot transfer this
information back to the genetic level.

This view is appealing, because it promises a simple way to understand living organisms in a
bottom-up approach, but there are some processes that challenge it (here and in the following
see A. D. Goldberg, Allis, and Bernstein 2007). The most important of these processes are
methylation, which is the adding or removing of methyl groups to a DNA strand, and histone
modification, which is an alteration in the proteins that are the “spools” around which DNA
is wound inside the cell nucleus. Both methylation and histone modification are protein-
mediated processes that regulate whether a gene is expressed, i.e. whether the information
contained in it can be read by the cell. Gene expression can also be inherited along with the
DNA itself. This constitutes a backwards flow of information from proteins to DNA. The
flow is not symmetric, since the genetic code itself remains unchanged, but it does affect the
resulting traits of the organism.

In general, there is no true one-way flow of information anywhere in biology due to an
abundance of feedback loops across all organizational levels (Ferrell 2013). A feedback loop
arises when changes in one physiological quantity like blood pressure, hormone levels, or
gene expression levels, ultimately results in a further modification of the same quantity after
an arbitrary number of intermediary steps. If raising the quantity leads to a further increase
or lowering it leads to a further decrease, this is called a positive feedback loop. Positive
feedback loops allow rapid responses to small changes in incoming signals, and they can act
as irreversible switches (Ferrell 2013): For example, the voltage-gated sodium channels in a
nerve cell start to open when the membrane voltage exceeds a certain threshold, resulting in
an inflow of positively charged sodium ions, which increases the membrane voltage even
further (Klabunde 2012). This positive feedback loop ensures that an action potential can be
generated within less than a millisecond until it is stopped by a negative feedback loop.

In negative feedback loops, an increase of a quantity leads to a later decrease or vice versa.
They ensure that the system stays within certain “healthy” boundaries by introducing
oscillations as regulatory mechanism (Ferrell 2013). For example, a rise in blood pressure in
the aorta of a human being leads to an activation of baroreceptors, which send a nerve signal
to the autonomic nervous system, which in turn produces a chemical signal that decreases
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1. Introduction

the heart rate, thus decreasing the blood pressure in the aorta and closing the feedback loop
(Klabunde 2012). If one blanks out the intermediate levels, an increase in blood pressure
ultimately leads to a decrease at a later time—a self-regulating negative feedback loop. If
the negative feedback is both strong and delayed, oscillations can also be more pronounced,
which enables repetitive behavior such as the cell cycle (Ferrell 2013).

These feedback loops exist on all organizational levels from gene regulation to interactions
between different organs or whole organisms, and they interact with each other (Ferrell 2013).
As already mentioned, the positive feedback loop of the sodium channel is only stopped by
another negative feedback loop that operates on the same signal with a small delay (Klabunde
2012). This occurs, for example, in nerve cells of the autonomic nervous system, which again
play a part in the negative feedback loop of the aortic baroreceptors (Wehrwein and Joyner
2013).

These interconnected feedback loops can also introduce bifurcations, which are states where
a small change in a single parameter can introduce qualitative changes in the observed
behavior (Leite and Wang 2010). They act much like switches between different states (Ferrell
2013). Returning to the example of the autonomic nervous system, each nerve cell has a
threshold potential (here and in the following see Martin et al. 2021). If the cell is stimulated
by an external signal from another nerve cell, it is critically important if the stimulation
potential is above or below the threshold. If it is lower, the cell will slowly return to its resting
potential, but if it exceeds the threshold, the cell generates an action potential, which can
then travel to other nerve cells and, for example, trigger a heart beat.

In general, any physiological quantity within an organism can influence almost any other
quantity in that organism and even small quantitative errors in a prediction of one of these
quantities may lead to a complete misjudgment of the overall behavior (Voit 2018). It is no
surprise then, that the reductionist approach in its naïve form of studying isolated parts1

has its limits in finding answers to biological questions (Kitano 2002): Whenever one studies
a part of an organism in isolation, the results of such experiments may have only limited
explanatory value of actual biological processes, as the perturbations introduced by the
feedback loops in the live organism—in vivo—may lead to very different behavior (Voit 2018).
This property of biological phenomena is called emergence. For example, the action potential is
an emergent behavior of nerve cells that cannot be accurately predicted by only investigating
individual ion channels or other exchange mechanisms (Martin et al. 2021). An example that
can be observed in everyday life is the swarming behavior of fish, birds, or insects (Kelley

1 Although the debate between molecular biology and systems biology is sometimes framed as a debate between
reductionism and holism, the overloaded philosophical meaning of the terms can distract from the actual
discussion (Gatherer 2010). I therefore only use the term reductionism and restrict it to this naïve form here, in
order to explain the ideas behind systems biology without giving the impression that they constitute a rejection
of reductionism per se.
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1.1. Systems Biology

and Ouellette 2013). Observing a single animal may yield some insight into its movement
patterns, but the function of diverting and confusing predators only becomes apparent when
observing the swarm as a whole.

To overcome this limitation of reductionism, one needs to shift the focus of experiments from
single biological units like cells, proteins, or genes, to networks of these units including all
major interactions between them (Voit 2018). In recent years, this has become tangible due
to the advent of high-throughput technologies, allowing the accumulation of vast amounts
of knowledge about the lowest levels of biological organization (Tyers and Mann 2003).
The resulting branches of study are called genomics for information about genes in DNA,
transcriptomics for knowledge about ribonucleic acid (RNA), proteomics for proteins, and so
on, which has led to the use of the blanket term omics for all these data-intensive low-level
disciplines (Karczewski and Snyder 2018). The eponymous suffix omics indicates that the
object of study is the totality of the individual entities, highlighting the importance of the
interplay between them (Yadav 2007).

The problem in the application of the knowledge generated by these omics studies is the
size and complexity of the network between the individual units (Hammer et al. 2004). For
example, describing the mechanisms involved in myocardial infarction purely by using omics
data would be like describing the cause for a malfunctioning website in terms of electrical
charges on transistors. In both cases, such an analysis is possible in theory, but not helpful in
practice, if the goal is that a human should understand what is going on. In order to pose
high-level biological questions, some or all parts of the biological networks therefore have to
be replaced by higher-level abstractions. For the study of myocardial infraction this might
be heart muscle cells and blood vessels, for which high-level rules can be formulated. These
abstractions still have to be informed by the omics knowledge, but they can summarize that
knowledge in a way that presents relevant information in a simplified way and neglects
irrelevant information. Of course, the decision what is deemed relevant or irrelevant highly
depends on the research question. Therefore, to represent all biology, descriptions of varying
degrees of abstraction are required, leading to a hierarchical view of biology with several
layers of organization from genes to proteins to cells and all the way up to whole ecosystems
(Hammer et al. 2004). Borrowing from systems theory, such a hierarchical representation of
a network of biological units is called a biological system (Wolkenhauer 2001).

The study of these biological systems is called systems biology (Kitano 2002). Due to the
increased size and complexity of the objects of study in this field, it is often no longer possible
to perform qualitative analysis and draw conclusions by human intuition (D. Noble 2002).
Instead, quantitative methods like mathematical modeling are required to factor in all the
feedback loops and bifurcations.
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1. Introduction

1.2. Mathematical modeling of biological systems

Making predictions about a biological system is challenging due to the complexity introduced
by interwoven feedback loops. Omics-based knowledge such as biochemical pathways only
allows a post-hoc explanation of observed behavior, but no predictions (Voit 2018). For
example, it is known that an administration of insulin will lower the blood sugar of diabetes
mellitus patients (here and in the following see De Meyts 2016). Using the data available
about metabolic pathways, this behavior can be explained as insulin binding to a receptor
protein in the cell membrane, changing its conformation, and thus activating an intracellular
signal cascade, which after several intermediate steps leads to the transport of the insulin-
sensitive glucose transporter GLUT4 from intracellular vesicles to the cell membrane, where it
facilitates the diffusion of glucose into the cell. If, however, one were to develop an alternative
to insulin, or try to target a different part of the insulin signal transduction pathway, a
prediction of the actual effects of candidate substances would be much harder. To do this one
would have to identify all possible interactions of the substance with any of the hundreds
of individual molecules involved in the insulin signal transduction pathway and then track
the resulting changes through the whole pathway. Due to interwoven feedback loops, some
changes might both lead to an increase and a decrease in a specific molecule concentration.
Using only the qualitative information of the pathway structure, it is not possible to know
whether the sum of these influences will be a net positive or a net negative (Voit 2018).

This leaves only two possible options: Either one needs to perform a wet-lab experiment,
recording how live cells or organisms react to the substance in question under controlled
laboratory conditions; or quantitative information—such as specific reaction rate constants
or substance concentrations—has to be collected and used to perform the same experiment
in silico as a computer simulation (Palsson 2000). While wet-lab experiments and clinical
trials are the only way to know for certain how the actual biological system behaves, they are
also time-consuming, expensive, and can fail due to small perturbations. This is, for example,
reflected in drug discovery, which is a process involving a considerable amount of trial and
error with success rates of clinical trials as little as 3.4% for oncology and still only 20.9% for
all other therapeutic groups (Wong, Siah, and Lo 2019). Drugs can also already fail in earlier
stages such as preclinical trials, which have a success rate of 31.8% (Takebe, Imai, and Ono
2018). Additional to difficulty and price, some experiments cannot be performed by isolating
cells or tissue in vitro in a test-tube or Petri dish, but must be executed in vivo in animal
testing or clinical trials (Doke and Dhawale 2015). This raises ethic considerations, especially
with regard to the low success rates of drug discovery (Festing and R. Wilkinson 2007). While
there ultimately is no alternative that yields the same certainty as an in vivo experiment, it is
clear that animal suffering should be reduced to a minimum.

6



1.2. Mathematical modeling of biological systems

This leads to the second option to make and test predictions of complex biological systems:
mathematical modeling. If a biological system can be described in sufficient detail as a set of
variables and equations, in silico experiments can be conducted by changing the parameters
of these equations and calculating the resulting state of the system after a given time period
(Di Ventura et al. 2006; Palsson 2000). It is usually very hard if not impossible to formulate a
mathematical model in closed form, that is a set of functions xi(t) that can simply calculate
the exact value of all variables xi of the system at any time twithout considering intermediate
time steps (here and in the following see Borzì 2020). Instead, mathematical models are
based on incremental numeric solutions, which only describe the change of the system
from one small time step to the next. This is especially convenient since this is the exact
kind of information that can be obtained from omics data: Is there an immediate positive
or negative link between variables a and b? In order to perform simulations that allow
accurate predictions, these qualitative links between variables have to be supplemented with
quantitative parameters that define the strength of the link. In contrast to the variables of
the system, parameters cannot change during the simulation and do not depend on any other
variables or parameters. Instead, they have to be determined in advance either by directly
measuring them in wet-lab experiments, or by parameter fitting, which is a mathematical
optimization procedure that finds values that allow the model to reproduce the recordings of
a wet-lab experiment as closely as possible (Voit 2018). Once parameter values have been
found, evaluating the system step by step propagates changes through all feedback loops
and, after a sufficiently long iteration, provides the desired prediction how the whole system
changes after a given time period.

Mathematical models are used in many areas of biology across all levels of organization. The
following examples are selected to show the diversity of the application area, but they do
not necessarily constitute the most influential studies in that respective area:

Ecosystem Bologna, Chandía, and Flores (2016) estimate the impact of human population
on the Lake Edward hippos in the Virunga National park between Congo and Uganda.
In a more general approach, Gilad et al. (2004) used a mathematical model to find
evidence that the spatial distribution of certain key species called “ecosystem engineers”
can explain species loss events.

Organism Steppe et al. (2006) investigate the sap flow of a beech tree, comparing a hydraulic
and an electrical analog model which both include a stem growth component that was
not considered in previous models.

Organ Seidel (1997) created a mathematical model of the human baroreflex, which regulates
the heart rate variability. The model is also used in this dissertation. As a second
example, Gardiner et al. (2011) also developed an organ-level mathematical model to
assess the quantitative importance of renal oxygen shunting, which is the diffusion of
oxygen from arteries to veins thus bypassing the kidneys and leading to an oxygen
deficiency (hypoxia).
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Cellular Courtemanche, Ramirez, and Nattel (1998) developed an electrophysiological model
to study action potential generation in human atrial cells. Mendoza-Juez et al. (2012)
investigate tumor cell metabolism using a mathematical model that takes dynamical
changes in the metabolism into account when a tumor cell switches from mainly using
glucose to lactose and vice versa, with the ultimate goal to better inform metabolic
therapies.

Molecular Perley et al. (2014) modeled T-cell activation in the human immune system as a
complex signalling network involving four different signalling pathways, identifying
several key regulation factors.

Genetic Woller et al. (2016) used a mathematical model involving gene expression levels to
simulate the circadian clock of the liver responsible for synchronizing the metabolism
to food timing, finding evidence that food and exercise timing might be key factors to
avoid metabolic disorders.

Behind the scenes, these models rely on different mathematical formalisms, i.e. formal
systems that allow to define themodel in such away that it can be simulated using generalized
approaches developed for this kind of formal representation (here and in the following see
Gershenfeld 2011; Banerjee 2014). To classify these formalisms, a few key distinctions can
be made: First, a model can either use continuous or discrete time steps. Continuous time
models represent the system state as a continuous trajectory of a set of variables that can be
evaluated at any point in time from the start to the end of the simulation. These trajectories
are calculated using differential equations, which define the gradient of the state variables
at the current time depending on the current state.2 Differential equation solvers then
either assume that the system will follow this linear gradient between sufficiently small
time steps or employ techniques like the Runge-Kutta method, to calculate a more accurate
value for the next time step. The most common formalism used for differential equations
are ordinary differential equation (ODE), which require all equations of the system to be
given in gradient form. Alternatively, differential-algebraic equations (DAEs) also allow the
inclusion of direct relations between variables without using derivatives to state conservation
laws such as the conservation of mass. An example for a typical continuous model using
differential equations are action potential models, which define the continuous trajectory of
the membrane potential.

Leaving the continuous world behind, discrete time models define explicit time steps and
their equations govern the state transition from step n to step n+1. Formalisms for discrete
time models include so-called difference equations, which are the discrete equivalent of
differential equations, and discrete-event simulations (DESs), which define state transitions
in the form of events that can be triggered by changes of variable values (Fishman 2013).

2 This is true for first-order differential equations. In higher-order differential equations, a higher-order derivative
is defined instead of the gradient, which can then also depend on the lower-order derivatives of variables.
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For example, early models of the human baroreflex included many beat-to-beat models,
which only measured variables such as blood pressure once per heart beat, allowing for very
efficient long-time simulations (DeBoer, Karemaker, and Strackee 1987).

The second major distinction factor of modeling formalisms is the inclusion of spatial dis-
tribution (here and in the following see Gershenfeld 2011; Banerjee 2014). While ODE only
consider time derivatives, partial differential equations (PDE) can also include derivatives
across spatial dimensions, which enables two- or three-dimensional models of tissue. In PDE
models, special care has to be taken to choose correct boundary conditions at the edges
of the simulation space. The most common method for solving PDE is the finite element
method (FEM), which discretizes the spatial dimensions with sufficiently high resolution so
that the discretization error does not affect the overall behavior of the model. If not only the
time but also the state of the system is discrete, it can be described as a cellular automaton,
that is a grid of cells, which change their state in fixed time steps depending on the previous
state of themselves and their neighbors (Wolfram 1983).

Third, modeling formalisms can also be classified in deterministic and stochastic representa-
tions (here and in the following see Gershenfeld 2011; Banerjee 2014). All previously discussed
formalisms are deterministic, which means that they will always produce the same trajecto-
ries when the same initial conditions are used. Conversely, stochastic formalisms introduce a
random element to simulations, which is governed by probability distribution functions. This
can both be helpful at the micro scale, e.g. for collision probabilities of chemical molecules
(Gillespie 1977), or at the macro scale, e.g. for the behavior of individuals in an ecological
model (Black and McKane 2012). The stochastic extensions of already covered formalisms
are called stochastic differential equations (SDEs) for ODEs, stochastic partial differential
equations (SPDEs) for PDEs, and discrete-time Markov chain (DTMC) for discrete formalisms
(Grimmett and Stirzaker 2020).

Finally, the state of the system can also depend on earlier values of variables (here and
in the following see Banerjee 2014). For example, a neural signal from the baroreceptors
that measure aortic blood pressure will take some time to travel to the autonomic nervous
system (ANS) (Wehrwein and Joyner 2013). In the continuous case, time dependencies
introduce delay differential equationss (DDEs), which introduce delay terms to specify the
value of a variable at an earlier time in the simulation. In the discrete case, DESs can already
represent this behavior by scheduling events for future time steps and jumping to this time
step instead of just following a fixed time increment (Fishman 2013).

Some models require a mix of these formalisms and not every mix has its own name or theory
(Bardini et al. 2017). However, there are many specialized mathematical frameworks, which
allow to handle one or multiple formalisms very well for a specific set of models. This includes,
for example, Petri nets for DES (Reisig 1985) and bond graphs for DAE or ODE (Thoma 1975).
A framework that has gained popularity in systems biology in particular is agent-based
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modeling (ABM), which can be seen as an alternative to equation-based modeling altogether
(here and in the following see Macal and North 2005). In ABM, the main components are not
equations but so-called agents, which are independent units with their own memory that
exhibit goal-based behavior guided by rules. These rules can be implemented in any of the
aforementioned formalisms, and agents can also have a set of meta-rules, which allows to
change the rules based on information about the environment or their own internal state.

In order to move from a theoretical mathematical framework to an actual simulation, models
must be implemented in one of the many available modeling languages: Most models are
still built with general-purpose programming languages (Clerx et al. 2016) such as FORTRAN
(Chivers and Sleightholme 2018), C (Kernighan and Ritchie 1988), C++ (Stroustrup 2013),
and Java (Sierra and Bates 2005).3 In these languages, the numerical method, such as the
Runge-Kutta method for solving ordinary differential equation (ODE), must be implemented
by the modeler, and the equations of the model must be brought in the specific form that is
required by this specific method and implementation. The benefit of this approach is that
it allows full control of the code that is being run, but this amount of control makes it also
inflexible and error-prone (Clerx et al. 2016).

A step-up towards comfort and flexibility are specialized languages, which focus on numerical
problems likeMATLAB (TheMathWorks 2022c) and the open-source equivalent Octave (Eaton
et al. 2021). In these languages, numerical solvers are part of the standard library, allowing
the modeler to focus solely on writing the equations of the system and configuring the
parameters of the solver. An alternative to this approach is to use a specialized library in
a general-purpose language, which includes numerical solvers and other utility functions
for mathematical modeling. Examples of this are SimuPy (Margolis 2017) for Python (Van
Rossum and Drake 2009) and DifferentialEquations.jl (Rackauckas and Nie 2017) for Julia
(Bezanson et al. 2017).

Other languages completely detach the mathematical description of the model from the
code that is required to solve the resulting equation system. For example, Modelica (Elmqvist
1978), Antimony (Smith et al. 2009), and the Simscape (The MathWorks 2022d) language
withinMATLAB fall in this category withModelica translating models to C code, Antimony to
Python, and Simscape to MATLAB. On a smaller scale, this can also be achieved by developing
embedded domain-specific languages (DSLs) in other languages such as Python (e.g. PySB
(Lopez et al. 2013) and Python Simulator for Cellular systems (PySCeS) (Olivier, Rohwer, and
Hofmeyr 2005)) or Julia (e.g. Modia (Elmqvist, Henningsson, and Otter 2016)).

3 Clerx et al. (2016) looked at 60 models of action potential generation that were cited in D. Noble, Garny, and
P. J. Noble (2012). For other modeling areas, quantitative evaluations are hard to find, but it can be assumed that
numbers are similar where similar mathematical foundations are used.
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As a final step towards modeling convenience, graphical tools can be used to guide the user
in building and analyzing their models (Hoops et al. 2006). These tools often use Extensible
Markup Language (XML)-based exchange formats such as SBML (Hucka et al. 2003) and
CellML (Clerx et al. 2020), which are not designed to be read and written directly by humans
but still allow to save the mathematical definition of a model in a tool-independent way.

This multitude of languages, tools, and formalisms allows introducing in silico experiments
wherever there is enough reliable data to inform the model design and parameter fitting
processes. With this, mathematical modeling saves costs, time, and reduces animal suffering
in in vivo studies.

1.3. Multi-scale modeling

As the basic idea of systems biology is to investigate biological systems at a larger scale,
recent years have seen increasingly complex models that span multiple scales of time and
space along with initiatives that strive to collect and integrate models for a specific biological
system:

• Karr et al. (2012) achieved a breakthrough by building a whole-cell model ofMycoplasma
genitalium, which includes the function of all 525 genes of the bacterium and is able to
simulate the whole cell cycle up to cell division.

• Millard, Smallbone, and P. Mendes (2017) developed a model of similar scale for the
cell metabolism of Echerichia coli, including 62 metabolites.

• In Germany, the successive projects HepatoSys, Virtual Liver Network, and Liver
Systems Medicine (LiSyM) (Desmond 2022), collected models of the human liver and
aim to inform medical practice with their findings (Jansen et al. 2019).

• Both the National Simulation Resource (NSR) at the University of Washington (J. B.
Bassingthwaighte 2000; J. Bassingthwaighte and Jardine 2022) and the International
Union of Physiological Sciences (IUPS) (P. Hunter, Robbins, and D. Noble 2002; Inter-
national Union of Physiological Sciences 2022) have launched projects to explore the
human physiome by collecting and combining physiological models.

• Plants in silico (X.-G. Zhu et al. 2016) follows a similar approach for plant physiology.
• The Blue Brain Project (Markram 2006; École polytechnique fédérale de Lausanne

2022a) aims to build digital reconstructions and perform simulations for the mouse
brain.
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All of these projects have one property in common: They face the challenge of incorporating
model parts and performing simulations across multiple scales of space and time. For example,
Karr et al. (2012) model metabolic interactions of molecules and genes in the cell at a timescale
of seconds to ultimately observe the cell division after ten hours. On the spatial scale, the
Blue Brain Project aims to build a model that starts with individual ion channels in the cell
membrane of neurons at the nanometer scale and reaches to the centimeter scale for the
whole rodent brain (École polytechnique fédérale de Lausanne 2022b).

In general, biological experiments often span multiple scales of time and space, because the
independent variable4, which is manipulated by the researcher, resides either several scales
lower or higher than the dependent variables that are observed (Walpole, Papin, and Peirce
2013; Bardini et al. 2017). Beta-blockers block Norepinephrine-activated ion channels in
heart muscle cells, thereby inhibiting the effect of sympathetic nervous activity on the action
potential—an independent variable on the scale of milliseconds and micrometers (Wiysonge
et al. 2017). The goal of treatment and therefore the dependent variable is the long-term
treatment of increased blood pressure (hypertension) across the whole body, which increases
the scales involved to meters and years (Wiysonge et al. 2017).

An example for the opposite directions are neurological studies, like the work of S. C. Miller
et al. (2009), which measures oxytocin levels in humans before and after petting their dog.
In this case, the independent variable is the interaction with the dog which takes place on
a scale of meters and minutes, and the dependent variable is the oxytocin level which is
observed across the same timescale but acts on a molecular scale of nanometers. The reason
for this multi-scale entanglement is that all levels of organization in a biological system from
genes to proteins to cells to tissue to organs to whole organisms, populations and ecosystems
are linked by both upward and downward causations (Bardini et al. 2017).

Even when both the dependent and independent variable are on the same scale, the relevant
causal link between them may still span multiple higher or lower levels of organization. For
example, understanding of how two molecules interact with each other might require a
quantum mechanical representation of both molecules as intermediary step (Warshel 2014).
In all these cases of multi-scale phenomena, a mathematical model that wants to allow
the observation of changes in the dependent variable based on changes to the independent
variable has no other choice but to model the scales of time and space in between them in
some detail.

Thesemulti-scale models pose unique challenges due to their complexity. The simplest way to
cover multiple scales is a micro-level model, which focuses on the lowest organizational level
involved and finds equations describing components at this level (Bardini et al. 2017). In the

4 Here I refer to the general terminology of scientific experiments, where an independent variable is modified in
order to observe and measure its relation with another variable that depends on the independent variable by
some law or rule.
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next step, thousands of these homogeneous components are combined and connected to each
other to reach the next hierarchical layer. While this is the simplest approach conceptually,
the resulting models are computationally demanding, which limits the distance that can be
spanned to one or two scales (Pitt-Francis, Garny, and Gavaghan 2006).

The alternative is a multi-level approach, which combines several descriptions of the system
at different organizational levels (Bardini et al. 2017). In this case, the equations used for the
different parts of the system are heterogeneous. For example, a cardiovascular model could
include organ-level equations for the lung, the autonomic nervous system, the blood vessels,
and the kidney, but at the same time include a more detailed description of the heart that
reaches to the cellular level to simulate action potential propagation.

It is important to distinguish the terms level and scale: A scale is a measurable dimension,
which can be expressed by the metric prefix (milli, kilo, etc.), whereas a level is a layer of
abstraction that corresponds to a conceptual category (here and in the following see Bardini
et al. 2017). Usually the levels of a model correspond to biological levels of organization (cell,
tissue, organ, etc.) but there can also be models that mix several conceptual levels at the same
organizational level. One example could be a model of a sodium channel that is composed
of two sets of equations, one for the short-term behavior of action potential generation,
and one for the long-term behavior of excitability regulation through slow inactivation.
In this example, the whole model can be described purely on the organizational level of
macromolecules, but still has the two conceptual levels of “short-term” and “long-term”.

The advantages of having multiple levels in a model are twofold: First, the computational
complexity of multi-level models can be reduced by numerous approaches (Dada and P.
Mendes 2011). Secondly, the hierarchical approach makes it easier to directly observe
variables of interest, since they are explicitly modeled instead of being implicitly defined
by the state variables of thousands of individual components (here and in the following see
Bardini et al. 2017). The downside of multi-level models is that the model itself becomes more
complex, because different equations are needed at each hierarchical level and interactions
between levels have to be described explicitly. Often, these descriptions have to be taken
from multiple preexisting models, which have to be fitted together. This raises the issue of
reproducing models published by other researchers and reusing them in a different context
than the one they were originally designed for.
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1.4. Reproducibility of mathematical models

As the complexity and size of models grows, they become increasingly difficult to handle and
existing modeling workflows and tools start to reach their limits (here and in the following see
Porubsky et al. 2020). One area where this is especially apparent are reproduction attempts
of the methods and results of a modeling study by a different lab. Reproducibility is one of
the cornerstones of the scientific method itself, but it is especially important for multi-scale
models. This is true regardless of the model structure: A micro-level model requires a model
of the lowest-level unit, which is duplicated across spatial dimensions, while a multi-level
model is composed of heterogeneous sub-models per definition (Bardini et al. 2017). In
both cases, it is likely that these base components will be provided by a different study and
possibly a different research team. In order to build a new multi-scale model, it is therefore
necessary to obtain executable code of these base components that can produce the same
results as the original study. Such a one-to-one reproduction of a study’s methods provides
a first indicator if a model is reliable in the sense that it actually behaves as described in
the accompanying publication. However, in order to use a model as a component in a new
multi-scale model, it must also still produce correct results if the model code is adjusted, and
it must be usable with different simulation tools. Adjustments may include a change of input
signals, an embedding of the code in another code base, a redesign of the model structure, or
even a complete translation of the model equations into a different modeling language. It is
therefore essential that the model’s behavior and properties can be reproduced under varying
experiment conditions. Without components that fulfill these reproducibility requirements,
there is little hope to build complex multi-scale models.

One of the promises of in silico experiments is that they should have fewer issues with
reproducibility than wet-lab experiments, which can fail easily due to a complex and intricate
environment that is susceptible to small perturbations (Porubsky et al. 2020). For regular
biological research, close to 80% of researchers state that they have failed to reproduce the
results of an experiment by someone else (Baker 2016) and reproducibility rates as low as
11% have been observed for a set of landmark studies in preclinical cancer research (Begley
and Ellis 2012). For in silico studies in systems biology, the rates are indeed better, but unfor-
tunately they are also far from perfect. In Tiwari et al. (2021), the curators of the BioModels
database—one of the largest databases for mathematical models of biological systems—state
that only 51% of 544 model submitted to the database were directly reproducible, meaning
that at least one figure of the original article could be reproduced from the submitted code
without major adjustments. A smaller study of models in quantitative systems pharmacology
found similar results with only 4 of 12 examined models being reproducible in the sense
that figures from the original article could be generated via an existing “run” script (Kirouac,
Cicali, and Schmidt 2019). As a single extreme example, Topalidou et al. (2015) required three
months to reproduce a computational model of the basal ganglia. The reproducibility issues
encountered in these articles are listed in table 1.1.
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Reproducibility issue reference recoverable

missing executable simulation script K, T no
missing parameter values T no
missing initial values T no
missing data K, T no
structural errors in equations T no
incorrect parameter or initial values T no
sign errors T yes
typographical errors in parameter values (e.g. 0.1 vs. 0.01) T yes
unit errors (e.g. µs vs. ms) T yes
insufficient code documentation T yes
mismatch between variable names in article and code T yes

Table 1.1.: Overview of common reproducibility issues for mathematical models in
systems biology. References are T: Tiwari et al. (2021), K: Kirouac, Cicali, and
Schmidt (2019); “recoverable” means that reproduction was still possible with
manual effort.

The main reasons for a reproduction attempt to fail were missing information of all kinds,
structural errors in equations, or non-obvious errors in parameter or initial values (see table
1.1). Several other types of errors and obscurities could be overcome by researchers given
enough time and expertise, but made reproductions cumbersome. Taken together, these
issues constitute major hurdles for the development of multi-scale models and need to be
addressed to allow scientific progress in systems biology (Porubsky et al. 2020).

Numerous researchers have picked up on this and suggested solutions at various levels
of the academic system.5 Modeling-specific suggestions generally fall into the following
categories: suggestions for a) what to publish, b) where to publish it, c) which format to use
for publications, and d) how to improve journal procedures.

Regarding what to publish, there is a consensus that, since missing code or data is one of
the major reasons for failed reproduction attempts, all scripts containing simulation setup or
plotting commands should be published along with the model specification (Sandve et al.
2013; Lewis et al. 2016; Medley, A. P. Goldberg, and Karr 2016; Waltemath and Wolkenhauer
2016; Stodden, Seiler, and Z. Ma 2018; Mulugeta et al. 2018; Hellerstein et al. 2019; Kirouac,
Cicali, and Schmidt 2019; Papin et al. 2020; Porubsky et al. 2020). In particular, there should be
an executable piece of code that can be used to run simulations from the article without any
manual adjustments. Additionally, the simulation output of the model should be published

5 A literature research produced 13 major publications between 2013 and 2020, which listed a total of 42 distinct
recommendations. In this section I only present those suggestions that occurred in multiple publications or that
are broadly applicable.
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along with any other experimental data required to reproduce plots in the article (Sandve et al.
2013; Medley, A. P. Goldberg, and Karr 2016; Waltemath and Wolkenhauer 2016; Stodden,
Seiler, and Z. Ma 2018; Kirouac, Cicali, and Schmidt 2019; Porubsky et al. 2020).

When deciding where to publish a model, specialized model databases such as BioModels
(Malik-Sheriff et al. 2019), the IUPS Physiome Model Repository (Sarwar et al. 2019), or the
ModelDB (McDougal et al. 2017), which allow model discovery via semantic information,
should be favored (Medley, A. P. Goldberg, and Karr 2016; Waltemath and Wolkenhauer 2016;
Mulugeta et al. 2018; Porubsky et al. 2020). In a broader sense, this is covered by the guiding
principles that scientific data in general should be Findable, Accessible, Interoperable, and
Reusable (FAIR) (M. D. Wilkinson et al. 2016). In systems biology, the FAIR initiative has
lead to the development of SEEK, a research platform for sharing various research artifacts
including models and simulations (Wolstencroft et al. 2015). FAIRDOMHub is a web-service
built upon SEEK that allows systems biology researchers to upload and share their research
assets in a FAIR manner (Wolstencroft et al. 2017).

A publication format that gained specific interest in the systems biology community is literate
programming in the form of electronic notebooks that mix textual descriptions and code
(Sandve et al. 2013; Topalidou et al. 2015; Lewis et al. 2016; Waltemath and Wolkenhauer
2016; Medley et al. 2018; Mulugeta et al. 2018; Hellerstein et al. 2019). However, electronic
notebooks can be too rigid for the creation of large and complex models and pose some
difficulties for version control (Medley et al. 2018). Alternatively, and especially for larger
models, workflow systems such as Galaxy (Afgan et al. 2018) or the Konstanz Information
Miner (KNIME) (Berthold et al. 2008) can be used to publish simulation procedures in a format
that ensures methods reproducibility through the use of standardized components (Sandve et
al. 2013; Waltemath and Wolkenhauer 2016; Medley et al. 2018). Regarding formats for model
exchange and annotation, the COmputational Modeling in BIology NEtwork (COMBINE)
also collects and promotes a set of standard suggestions for the field of systems biology
(Waltemath et al. 2020).

Academic journals are also in part responsible for promoting and ensuring reproducibility.
This can include the adoption of publication checklists such as Minimal Information Re-
quired In the Annotation of biochemical Models (MIRIAM) (Novère et al. 2005) and Minimal
Information About a Simulation Experiments (MIASE) (Waltemath et al. 2011), which have
to be completed by authors to ensure that they follow reproducibility guidelines (Lewis et al.
2016; Waltemath and Wolkenhauer 2016). Additionally, a “seal of approval” could provide
missing incentives for researchers to put additional effort into assuring that their work is
reproducible beyond the required minimum for publication (Lewis et al. 2016; Waltemath
and Wolkenhauer 2016; Kirouac, Cicali, and Schmidt 2019; Papin et al. 2020; Porubsky et al.
2020). Ultimately, the only way to guarantee the reproducibility of the methods of an in
silico experiment is for the reviewers to actually perform this reproduction. One of the
most promising approaches is a pilot project that is a collaboration between the Center for
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Reproducible Biomedical Modeling (Sauro et al. 2022) and the journal PLOS Computational
Biology : Authors can opt in to an additional step in peer review where reviewers evaluate the
reproducibility of their methods (Papin et al. 2020). An alternative approach is taken by the
journal Physiome, which exclusively publishes articles that demonstrate the consistency and
reproducibility of already published in silico studies and that are assessed by independent
Physiome curators (Nickerson and P. J. Hunter 2017). This effectively generates a “seal of
approval” that integrates with existing measures of academic success, since it increases
publication and citation count.

If reproducibility is to be assessed objectively—be it by journals or individual researchers—it
is important to clearly define what is meant by the term. Unfortunately, the word repro-
ducibility has been used ambiguously in scientific literature (Plesser 2018). The Association
for Computing Machinery (ACM), uses the term reproducibility when a different team can
use a modified experimental setup to generate the same results as the original study. If the
same experimental setup is used instead, this is called replicability, and if the team also is the
same the term repeatability is used (Association for Computing Machinery 2022b). A com-
peting terminology by Claerbout and Karrenbach (1992) also uses the terms replicability and
reproducibility, but with interchanged meanings. Due to this confusion, Goodman, Fanelli,
and Ioannidis (2016) proposed a different terminology that only uses the term reproduction,
avoiding the linguistic similarity to repetition and replication, and instead focuses on the
question of what should be reproduced—methods, results, or inferences. The ACM changed
their terminology in August 2020 (Association for Computing Machinery 2022a) to fit the
definition by Claerbout and Karrenbach (1992). However, I agree with the assessment of
Plesser (2018) that an explicit distinction of the reproduction target is preferable over an
implicit distinction using words that have ambiguous meaning in common language. In this
dissertation, I therefore specify the subject of reproduction whenever my own work is con-
cerned or I can be sure of the definition used by others. When I refer to work where I do not
know which terminology was applied, I fall back to simply using the word “reproducibility”
without further specification.

1.5. Model engineering

In addition to the modeling-specific solutions discussed in the previous section, researchers
also advocate for general software engineering solutions that can facilitate reproducibility
across multiple aspects. The key observation to make here is that a mathematical model can
be seen as a piece of software. The Encyclopaedia Britannica defines software as “instructions
that tell a computer what to do” (The Editors of Encyclopaedia Britannica 2021). Certainly,
a formal model definition is an essential part of the instructions required to perform an
in silico experiment on a computer. As such, it seems obvious that the rules for software
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engineering should—at least to some extent—also apply to the creation of mathematical
models (Hellerstein et al. 2019). Following Hellerstein et al. (2019), I use the term model
engineering for this application of software engineering techniques to mathematical modeling.

In fact, numerous software engineering techniques are recommended in recent literature:

• Structured and thorough documentation of the model code can complement the
methods section in a scientific article with additional details that facilitate reproduction
attempts (Lewis et al. 2016; Waltemath and Wolkenhauer 2016; Stodden, Seiler, and
Z. Ma 2018; Mulugeta et al. 2018).

• Version control helps to trace provenance of model parameters and documents which
version of a model was used for individual experiments (Sandve et al. 2013; Lewis et al.
2016; Medley et al. 2018; Mulugeta et al. 2018; Hellerstein et al. 2019; Porubsky et al.
2020).

• Unit tests verify the correctness of model components and in a version controlled
codebase they can identify changes that accidentally break methods reproducibility
(Medley, A. P. Goldberg, and Karr 2016; Medley et al. 2018; Mulugeta et al. 2018;
Hellerstein et al. 2019; Porubsky et al. 2020).

• Open standards can be used to make models available to a larger audience and increase
interoperability betweenmodels (Medley, A. P. Goldberg, and Karr 2016; Waltemath and
Wolkenhauer 2016; Kirouac, Cicali, and Schmidt 2019; Mulugeta et al. 2018; Porubsky
et al. 2020).

• Appropriate file formats and style guides help to keep the code human-readable and
facilitate results reproduction in a different language or with different tools (Medley
et al. 2018; Hellerstein et al. 2019).

• Modularity of model code facilitates the reproduction of results in a different context
than the original experiment setup (Lewis et al. 2016; Hellerstein et al. 2019; Porubsky
et al. 2020).

• Object-orientation in particular is a technique for establishing modularity that is well-
suited to represent biological structures (Mulugeta et al. 2018; Hellerstein et al. 2019;
Porubsky et al. 2020).

• Virtual machine specifications go beyond the code itself to make the environment
reproducible that the model code needs to be executed (Sandve et al. 2013; Lewis et al.
2016; Waltemath and Wolkenhauer 2016; Porubsky et al. 2020).

• Long-term archiving of code ensures results reproducibility for future generations
(Medley, A. P. Goldberg, and Karr 2016).

As already indicated, these techniques do not only facilitate a one-to-one reproduction of
methods or results, but also the reuse of models in a different context that may require their
modification (Waltemath and Wolkenhauer 2016; Hellerstein et al. 2019). This is especially
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important for multi-scale models, which often consist of multiple component models from
different sources (X.-G. Zhu et al. 2016). Typically, these component models have to be
adjusted to fit into the context of the larger multi-scale model by changing or adding
interfaces between components and the next higher organizational level or by replacing
a coarsely defined part of a model by a more detailed version (Dada and P. Mendes 2011;
Neal et al. 2015). This is similar to the idea that software must be maintainable, because its
requirements may change during its life cycle or because it contains undetected errors, which
only become apparent in specific situations (Riaz, E. Mendes, and Tempero 2009). Many of
the aforementioned techniques—such as modularity, version control, documentation, style
guides, and unit tests—focus precisely on this problem.

To sum up all benefits of software engineering techniques for mathematical modeling, Heller-
stein et al. (2019) coin the term model engineering. They argue that while models currently
available in databases such as BioModels are largely still manageable without paying much
attention to design aspects at the code level, this will change when modeling moves from
whole-cell models to whole-tissue, whole-organ, or even whole-organism models. Software
engineering has already made this transition from small single-file applications to huge
interconnected systems comprising millions of lines of code decades ago (Ostrand, Weyuker,
and Bell 2005). Similarly, mathematical modeling should also be considered an emerging en-
gineering discipline that will require more structured solutions in the near future (Hellerstein
et al. 2019).

1.6. Modelica

In the context of model engineering, it is interesting to look at other engineering disciplines
that also use mathematical modeling for specification, optimization, and diagnosis. This
includes, for example, aerospace, automobile or power plants (Briese, Klöckner, and Reiner
2017; Bouvy et al. 2012; Casella and Leva 2006). A language that has gained substantial interest
in these areas is Modelica (Mattsson and Elmqvist 1997). It is described as a “non-proprietary,
object-oriented, equation based language to conveniently model complex physical systems”
(Modelica Association 2022d). As such, it could very well also be suited to model complex
biological systems.

Indeed, the size of industrial Modelica models is often well beyond the size of state-of-the-art
biological models. The largest open-source Modelica libraries such as Buildings (Wetter
et al. 2014) and Integrated District Energy Assessment Simulations (IDEAS) (Jorissen et al.
2018) have well over 100,000 lines of code. One of the largest individual models is the model
codenamed RETE_G in the work of Casella et al. (2016). It is a proprietary model of the Italian
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electrical transmission grid without Sardinia and with a representation of European network
connections. It was generated from a Python script parsing a list of network connections
and has close to 600,000 equations.

Modelica is also widespread in other areas such as aerospace (Briese, Klöckner, and Reiner
2017) and automobile (Bouvy et al. 2012), but it is currently largely unknown in systems
biology. A notable exception is the Physiolibrary (Mateják et al. 2014) and the corresponding
Physiomodel (Mateják and Kofránek 2015), an integrative model of human physiology. It is
based on HumMod (Hester et al. 2011), a model with over 5,000 variables, whose predecessor
has been used in the Digital Astronaut Project by NASA (Summers, T. Coleman, and Meck
2008). In the Physiomodel project, Modelica is used precisely because the previous way of
defining the HumMod model as a collection of thousands of XML files turned out to be a
major barrier for its use in other projects, where it would have to be adjusted (Kofránek
et al. 2017). With over 80,000 lines of code, the Modelica version approaches the size of
aforementioned industrial Modelica applications and shows that biological models of this
size are both required and can be realized with Modelica.

Both the ability to manage large and complex models and the influence of ideas from the
engineering domain make Modelica an interesting tool for the development of multi-scale
models and the application of model engineering techniques. The main goal of this disserta-
tion is the assessment of the usefulness of Modelica and the general concepts employed in
the Modelica ecosystem for the modeling of biological systems.

1.7. Cardiovascular modeling

In a single dissertation it is not possible to explore all areas of systems biology where Modelica
could be of use. This work is therefore only focused on models of the cardiovascular system.
One reason for this is their undeniable relevance: In 2017, ischemic heart disease was the
leading global cause of death measured in years of live lost (Roth et al. 2018). Additionally,
multi-scale cardiovascular models are particularly interesting as an accurate description of
cardiovascular phenomena often involves not only the heart but also the lung, the ANS and
kidney and relevant phenomena reach from changes in ion concentrations at the biochemical
level to overall patient health at the organism level (Klabunde 2012). Regarding time scales,
the action potential that triggers a heartbeat occurs over few milliseconds, but clinical
heart rate variability (HRV) analysis uses ultra-short-term (60–240 seconds), short-term
(approximately 5 minutes), and 24-hour recordings (Shaffer and Ginsberg 2017).
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The history of cardiovascular models starts with the first model of a single heart cell by
D. Noble (1962). This model was an adaptation of the Hodgkin-Huxley model for a neuron
in the squid giant axon (Hodgkin and Huxley 1952). Much like a neuron, a heart cell can
generate an electrical signal called an action potential, but this action potential has a different
shape and some heart cells are capable of spontaneous action potential generation, which
does not require an external stimulus (Klabunde 2012). The Hodgkin-Huxley-model showed
that the action potential generation is mainly governed by two ion channels in the cell
membrane, which are selective for sodium and potassium ions respectively and change their
conformation with the electric potential between the inside and outside the cell membrane.
D. Noble adjusted this model to show that the same mechanism could explain the behavior
of cells in the Purkinje fibers—a network spanning the ventricles, which propagates electrical
signals from the atrioventricular node (AVN), which itself receives signals from the sinoatrial
node (SAN), the primary pacemaker of the heart (Klabunde 2012).

Since then, models of the heart have evolved both in spatial dimensions and in detail.
Two-dimensional micro-level models span from the cellular level to the tissue level (Moe,
Rheinboldt, and Abildskov 1964; Barr and Plonsey 1984; Winslow et al. 1993) and allow
to investigate the propagation of an action potential through the heart muscle. In recent
years, three-dimensional models have put the organ level in reach (Seemann et al. 2006;
Bin Im et al. 2008) and grow ever more detailed. Strocchi et al. (2020) provided full four-
chamber geometries of human hearts, but models based on these anatomical structures
remain confined to simplified conduction and membrane mechanics.

Since large two- and three-dimensional models are computationally demanding, they often
use less detailed formulations for the individual cells. One prominent choice is the FitzHugh-
Nagumomodel, which simplifies the Hodgkin-Huxley model to just two differential equations
(FitzHugh 1961; Nagumo, Arimoto, and Yoshizawa 1962). At the same time, the Purkinje fiber
model by D. Noble has been extended by additional ion channels and also active transport
of ions through the membrane by pumps. For example, Di Francesco and D. Noble (1985)
include several additional ion channels as well as the sodium-potassium-pump, which is
responsible for return the membrane potential to its resting state, and the uptake and release
of calcium ions by the sarcoplasmic reticulum, which is both relevant for the membrane
potential and muscle contraction. Detailed models using Hogdkin-Huxley-style equations
now exist for atrial (Courtemanche, Ramirez, and Nattel 1998), SAN (Zhang et al. 2000; Kurata
et al. 2002), AVN (Inada et al. 2009), Purkinje fiber (Sampson et al. 2010), and ventricular
cells (O’Hara and Rudy 2012). In some cases, however, this level of detail is not sufficient
to replicate in vitro experiments on single cells, which is why even more detailed Markov
formulations are becoming popular, which take into account more subtle state changes of ion
channels and pumps beyond the dichotomies of open/closed and inactivated/not inactivated
(Iyer, Mazhari, and Winslow 2004; Greenstein et al. 2000; Mazhari et al. 2001).
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Similar to heart cells, the heart itself is also typically represented with simplified equations
if it is just one part of a larger model. Such models that reduce the spatial complexities
involved in a system to a few key points in the spatial dimension are called zero-dimensional
(Kamoi et al. 2014) or lumped parameter models (Díaz-Zuccarini and LeFèvre 2007). These
representations of the heart generally fall into one of three categories: beat-to-beat, averaged
continuous, or electrical analog models. Beat-to-beat models also discretize the timescale
and calculate relevant variables for the current heart beat based on their value at the last beat
(DeBoer, Karemaker, and Strackee 1987). Conversely, averaged models do not use discrete
beat events but instead use the heart rate as a continuous variable in the system and derive
the average blood pressure during the heart cycle from this variable (Saul et al. 1991). The
third category are electrical analog models, which define the heart in terms of an oscillating
circuit that produces a continuous curve for the rise and fall of the blood pressure during
systole and diastole (Kamoi et al. 2014). Like averaged models, electrical analog models
typically do not introduce the notion of a beat as a discrete event, but rather only allow to set
the heart rate as a parameter (Shimizu et al. 2018). Multiple approaches can be combined to
obtain hybrid models that are both able to represent blood pressure with sub-beat precision
and identify beats as discrete events and include beat-to-beat relationships between variables
(Seidel 1997).

The circulation of blood through the body forms a loop, which is why most models that
include the heart also include the vasculature in some way. One of the first models of
integrated physiology was Guyton, T. G. Coleman, and Granger (1972). It also includes the
baroreceptor, which generates a neural signal that is used by the ANS to control the heart
rate through the secretion of norepinephrine and acetylcholine; the lung, which is responsible
for oxygenating the blood, and the kidneys, which regulate the salt and water content in the
blood. In general, models of the vasculature can, similar to models of the heart, be categorized
by the amount of spatial information that is taken into account. Guyton, T. G. Coleman,
and Granger (1972) represent blood pressure and other variables at a few individual points
in the body, which is why this model can be categorized as zero-dimensional model. Later
approaches model fluid dynamics in the vasculature in one to three dimensions (here and in
the following see Morris et al. 2016). This is difficult and computationally demanding, since
it involves solving the Navier-Stokes equations for fluid motion, which are nonlinear PDE.
The benefit, however, is that subtle turbulences and disease conditions like aneurysms can
be accurately simulated.

In the light of all these different approaches, one of the current and upcoming challenges
in cardiovascular modeling is to combine the information gained from different models to
obtain experimental results with high precision at the organ or organism level. Both the IUPS
Physiome Project (P. Hunter, Robbins, and D. Noble 2002) and the NPR Physiome Project
(J. B. Bassingthwaighte 2000) have dedicated their efforts towards this goal. My dissertation
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aims to support this work, which is why I do not focus on spatial micro-level models, but start
my investigation with a high-level lumped parameter model and then investigate possible
integration points for other models, which represent parts of the model in greater detail.

1.8. The Seidel-Herzel model as multi-scale modeling
platform

Themodel that stands at the center of this dissertation is the Seidel-Herzel model (SHM) of the
human baroreflex, which was developed by H. Seidel in his PhD thesis under the supervision
of H. Herzel (here and in the following see Seidel 1997). It came to the attention of my
working group, because it is a relatively small and thus manageable model that nevertheless
produces realistic heart rate variability (HRV) curves through the careful introduction of
noise terms.

HRV describes the variation in the time interval between heartbeats (Ernst 2014). It is a
promising application area for physiological models since HRV is strongly connected to
the activity of the autonomic nervous system (ANS) and therefore allows to non-invasively
assess its function. It is a valuable risk indicator for several disease conditions in which ANS
function plays a role including diabetes, obesity, atherosclerosis, coronary artery disease, and
ischemic sudden death (Xhyheri et al. 2012). However, the causal link between diseases and
increased or decreased HRV parameters is often still only partly understood (Fairchild et al.
2009; Thio et al. 2018). Mathematical models such as the SHM might be one way to shed
further light on these mechanisms.

The SHM is a hybrid lumped-parameter model, which only uses a single variable for blood
pressure without any spatial distribution, but includes the function of the baroreceptors,
the ANS including the sympathetic and parasympathetic system, the lung, and the signal
transduction at the heart including the SAN and AVN (Seidel 1997). With this setup, it is
able to simulate first and second degree atrioventricular block (Seidel 1997), carotid sinus
hypersensitivity (Seidel and Herzel 1998), congestive heart failure (Kotani et al. 2005), and
primary autonomic failure (Kotani et al. 2005) as well as treatment options such as the ad-
ministration of atropine or metoprolol (Kotani et al. 2005). Additionally, it exhibits interesting
dynamical properties including Mayer waves, which are fluctuations in the heart rate on the
order of 10 seconds, (Seidel 1997); bifurcations (Seidel and Herzel 1998); and cardiorespiratory
synchronization (Kotani et al. 2002). From a technical standpoint it also poses interesting
challenges as it includes delay terms, and it mixes discrete beat events with continuous
variables such as systemic arterial blood pressure. In some ways it can already be seen as a
multi-scale and multi-level model since most equations describe physiological phenomena
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on the organ level, but the ANS is modeled on the biochemical level through norepinephrine
and acetylcholine concentrations (Duggento, Toschi, and Guerrisi 2012). In terms of time,
the systolic blood pressure changes significantly over a few milliseconds, but the slowest
observed phenomenon are the aforementioned Mayer waves with a frequency of roughly ten
seconds (Seidel and Herzel 1998). More than that, however, the SHM is a great target for
extension to move to even lower scales by replacing a component of the model with a more
detailed version.

In particular, an interesting target for extension is the AVN, which controls the conduction of
beat signals from the atria to the ventricles. A more detailed representation would allow to
simulate the effects of premature ventricular contraction (PVC) (Ip and Lerman 2018; Walters
et al. 2018) and atrial fibrillation (Marrouche et al. 2018; Pereira et al. 2020), which are both
active fields of medical research. Here, the first (D. Noble, Garny, and P. J. Noble 2012) and
only6 detailed model of the AVN was developed by Inada et al. (2009) as a micro-level model
consisting of a one-dimensional string of a few hundred individual cells featuring multiple
ion channels and pumps. It operates at a lower scale than the SHM, but is considerably
larger with over 100 heterogeneous equations per cell (Inada et al. 2009). Incidentally, the
model suffers from all the reproducibility issues summarized in table 1.1, which also makes it
a great target to investigate possible countermeasures for these issues.

1.9. Research questions

To sum up, some aspects of biology can only be understood by investigating biological
systems as a whole, but their inherent complexity due to an interplay of multiple feedback
loops requires a quantitative approach. Mathematical modeling can fulfill this requirement,
but traditional approaches of structuring and communicating these models are reaching
their limits due to an increase in model size and complexity and the need for models that
span multiple scales of time and space. This leads to issues in reusability and reproducibility,
which persist in many models. In search for a robust solution, the software engineering
domain seems to be a promising source of inspiration, since it needs to handle source code
at much larger scales. The modeling language Modelica in particular already incorporates
many of these ideas, such as a declarative, object-oriented syntax. Due to the vast amount
of biological models, it is necessary to restrict the focus of the analysis to cardiovascular
models and in particular the SHM, which can serve as an example for many of the typical
challenges for multi-scale models in systems biology.

6 According to a search among over 600 models in the Physiome Model Repository (Yu et al. 2011).
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With this dissertation I therefore want to investigate the potential benefits of using Modelica
in a model engineering context to build reproducible and reusable models that can serve as a
robust basis for multi-scale—and in particular multi-level—cardiovascular models. This task
is split up systematically into the following research questions.

RQ01–RQ03 are a systematic deconstruction of the original research question “What are the
benefits of the modeling language Modelica for systems biology?”.

RQ04 and RQ05 broaden the view and reflect my own insight during the dissertation that
it is not so much about Modelica but about a general software engineering mindset that is
present in Modelica and required in systems biology.

1.9.1. RQ1: What are the requirements for a modeling language in
systems biology?

Before I can assess the usefulness of Modelica, it is critical to get a detailed understanding of
the specific challenges posed by biological systems in general and multi-scale modeling in
particular. What—if anything—distinguishes biological models from physical ones? Where
do classical approaches fail, and what can and has to be done to improve upon them?

1.9.2. RQ2: Does Modelica fulfill these requirements?

Once I have established requirements, I want to critically assess the language Modelica in
light of these criteria. I want to examine the properties that distinguish Modelica from other
modeling languages, examine existing biological projects in Modelica in more detail and also
have a look at the Modelica ecosystem to identify potential clashes with the needs of the
systems biology community with regard to openness versus an industrial and proprietary
focus.

1.9.3. RQ3: How does Modelica compare to other existing languages?

Of course, Modelica is not the only language that has promising potential for multi-scale
modeling. Other candidates such as MATLAB/Simulink, systems biology markup language
(SBML), CellML, Python- and Julia-based DSLs have to be examined with similar scrutiny
in order to assess both whether Modelica’s benefits are unique to it and whether other
languages have benefits in areas where Modelica is lacking.
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1.9.4. RQ4: Can software engineering techniques in general address
the challenges of systems biology?

This question broadens the view away from a single language and more towards a general
model engineering mindset. I want to examine which software engineering techniques
were particularly helpful during my own modeling tasks. This includes an assessment of
object-oriented software design, structured documentation, version control, unit testing,
virtualization and continuous integration, and the long term archiving of code.

1.9.5. RQ5: What are the tools and language improvements required
to increase the usability of Modelica for systems biologists?

Assuming that RQ2 has a positive answer, the lack of adoption of Modelica in the systems
biology community might be due to other factors such as impaired usability or openness of
tools. With this question I want to address possible improvements or additional tools that
could remedy this situation and bridge the gap between Modelica and the systems biology
community.

1.10. Document structure

In the following chapters, I will first give a summary of the publications that are a part of
this cumulative dissertation followed by additional contributions presented at the Interna-
tional Modelica Conference. Chapter three then consists of an in-depth discussion of the
aforementioned overreaching research questions of this dissertation combining insights from
all the work presented in chapter two. My final conclusion and open questions can be found
in chapter four, followed by the full text of the publications presented in chapter two.
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This section presents a short summary of the scientific publications that are a part of this
cumulative dissertation or were otherwise created in conjunction with it. Section 2.1 presents
articles published in scientific journals, while section 2.2 contains contributions presented
at conferences and section 2.3 lists other publications that are not immediately relevant for
the main research questions. Copies of the full published articles from sections 2.1 and 2.2
can be found in section 8. For a full explanation of the methods employed to reach the main
findings, the reader is therefore referred there. However, the rest of this document does
not assume detailed knowledge beyond the summaries presented here, which also provide
context to locate the work in the overall dissertation project.

2.1. Journal articles

2.1.1. Characteristics of mathematical modeling languages that
facilitate model reuse in systems biology: A software
engineering perspective

C. Schölzel et al. (2021a). “Characteristics of Mathematical Modeling Languages
That Facilitate Model Reuse in Systems Biology: A Software Engineering Per-
spective.” In: npj Systems Biology and Applications 7.1, art. no. 27. doi: 10.1038
/s41540-021-00182-w.

This publication is the centerpiece of this dissertation. It was conceived after I had already
performed a one-to-one translation of Seidel’s original implementation of the SHM in C
to Modelica (which is detailed in section 2.2.1). This first implementation already showed
improvements in reusability, because the code followed the biological structure of themodeled
system instead of the imperative logic of the loop used for solving the differential equations.
However, it was only a first proof of concept and a thorough investigation of the characteristics
of Modelica that were responsible for this improvement was warranted.
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In order to do this I specifically wanted to have a closer look at areas of the code that weremost
challenging and might still be improved in terms of reusability. The most obvious example
was the cardiac conduction system that regulates if and when a beat signal generated by the
sinus node actually triggers a contraction of the ventricles: In the original implementation
of the SHM in C, this part of the model was scattered across three conditional statements
involving 8 variables with names such as ts, tse, and tvs in a file with 560 lines of code. My
first Modelica implementation gathered these conditional statements in a Modelica class
called Contraction, which only contained code relevant for the cardiac conduction system,
used speaking variable names, and measured only 65 lines of code.

This separation was only possible, because Modelica is a modular language that allows to
write both continuous and discrete parts of a model in a declarative style independent of
the surrounding logic of the integration loop introduced by the differential equation solving
algorithm. This is a clear indication that language choice influences the understandability
and thus reusability of a mathematical model. However, it turned out that just having a
Modelica implementation of the cardiac conduction system was not enough to guarantee
reusability.

My colleague, V. Blesius, wanted to extend the SHM with a trigger for premature ventricular
contractions (PVCs). When I tried to help her with the implementation, I quickly noticed
that the Contraction model did not provide any guidance to decide which variables and
conditions would have to change to incorporate the additional external signal. It was still a
monolithic part within an otherwise modular model, and in this part every variable somehow
depended on almost every other variable. I decided to completely re-implement the whole
cardiac conduction system by following the same modular modeling style that previously
was applied to the SHM as a whole. In the resulting modular version, the PVC extension was
straightforward.

This made it clear to me that there are two parts of the puzzle: Choosing a language that offers
the right tools and features, and knowing how to apply them effectively and consistently. I
therefore went on to investigate language characteristics that can facilitate model reuse on
a larger scale. I re-examined both the whole SHM and the cardiac conduction system and
performed a literature research for best practices facilitating reusability and identified six
individual language characteristics: In my opinion, modeling languages should …

• …be modular to support structuring the code according to the biological structure of
the modeled system

• …be declarative so that model code can express what is modeled instead of having to
define how to simulate it

• focus on human-readability overmachine-readability to facilitate version control, enable
reproduction in different languages, and minimize tool dependence
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• …be open in the sense that the compiler, the language itself, and associated tools
should be published under an open-source license in order to remove barriers for reuse
and reproduction

• …support a graphical representation of models to increase its understandability at a
higher level and to communicate the model to domain experts

• …and be hybrid in the sense that it supports multiple modeling formalisms, the most
common being ODEs or preferably DAEs along with discrete events.

This is summarized in the acronym MOdular, Declarative, human-Readable, Open, Graphical,
and Hybrid (MoDROGH). While I started my investigation with Modelica, a number of
languages exhibit theMoDROGHcriteria to some extent including but not limited toMATLAB
(with the Simulink environment and the Simscape language), the SBML, CellML, Python-
based DSLs (such as PySB, the PySCeS, SimuPy or PyDSTool), Antimony, and Julia-based
DSLs (such as Modia, DifferentialEquations.jl, or ModelingToolkit.jl).

Indeed, there is no single “best” language with regard to these characteristics, but there
exist trade-offs between each pair of languages, which makes it all the more important
that modelers are aware of these differences when choosing a language. Additionally, the
example of the PVC extension of the cardiac conduction system of the SHM shows that it
is not enough to simply use a suitable language. Instead, modelers must be aware of the
MoDROGH characteristics to utilize them consistently and effectively.

2.1.2. An understandable, extensible and reusable implementation of
the Hodgkin-Huxley equations using Modelica

C. Schölzel et al. (2020). “An Understandable, Extensible, and Reusable Imple-
mentation of the Hodgkin-Huxley Equations Using Modelica.” In: Frontiers in
Physiology 11, art. no. 583203. doi: 10.3389/fphys.2020.583203.

The next logical step after establishing the MoDROGH characteristics was to test their
benefits using a different model. As mentioned in section 1.7, the next model of interest after
the implementation of the SHM was the one-dimensional model of the rabbit atrioventricular
node by Inada et al. (2009). However, this model is too large to examine the full code of an
implementation in detail.

Since the Inada model is based on the Hodgkin-Huxley equations, the original Hodgkin-
Huxley model (Hodgkin and Huxley 1952) seemed to be a perfect intermediate step. It is
usually communicated either directly through the differential equations or through circuit
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diagrams, but both are not ideal entry points for novices since they only indirectly represent
the modeled system and therefore require previous knowledge about another formalism
(either differential equations or electrical systems). For experts, additional limitations of
these representations become apparent when considering large extensions like the Inada
model, which includes additional ion channels and pumps up to a total of over 100 equations
that interact with each other. It is clear that such models would benefit from some kind of
modularization to reduce their complexity. I therefore implemented a modular version of
the Hodgkin-Huxley model in Modelica, applying the guidelines established along with the
MoDROGH characteristics.

In order to objectively assess whether I reached my goal to increase the understandability of
the model, I used cognitive load theory (CLT)—a proven theory in cognitive psychology. In
short CLT states that understandability is inversely related to the amount of items that have
to be kept in working memory at the same time in order to process a piece of information.
Understandability is also lower, if there is a high element interactivity between these items.

The analysis showed that the cognitive load of the Modelica implementation of the Hodgkin-
Huxley model was indeed decreased by a factor of six. For extensions of the model, the
picture was similar: In the monolithic version, cognitive load grows quadratically with each
additional equation due to high element interactivity. In contrast, extensions of the new
implementation did not increase cognitive load significantly due to the modular structure
and reuse of common code structures. This suggests that the modular implementation is a
promising basis for the implementation of the Inada model.

The only major limitation of this approach is the fact that the abstractions in a modular
model only allow to examine one component at a time in full detail. An expert who is already
familiar with typical equation structures of the domain might indeed prefer to directly
look at a list of equations to get an overview of the overall model structure. Fortunately, a
modular and declarative modeling style also allows to present a model in different views. As
a proof of concept, I created ModelicaScriptingTools.jl (MoST.jl)—a Julia library that both
facilitates running and testing Modelica models in Julia and is able to generate a HyperText
Markup Language (HTML) documentation listing all equations, parameters, variables, and
functions used in a Modelica model (Schölzel 2021b). The equations are grouped by the
modular structure of the model to combine the benefits of modularity with the precision
of mathematical formulas. A future version of this library could even allow the automatic
generation of supplements for scientific articles, ensuring the completeness and correctness
of the equations therein.
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2.1.3. Countering reproducibility issues in mathematical models with
software engineering techniques: A case study using a
one-dimensional mathematical model of the atrioventricular
node

C. Schölzel et al. (2021b). “Countering Reproducibility Issues in Mathematical
Models with Software Engineering Techniques: A Case Study Using a One-
Dimensional Mathematical Model of the Atrioventricular Node.” In: PLOS ONE
16.7, art. no. e0254749. doi: 10.1371/journal.pone.0254749.

While I was indeed able to reuse most of the code of the modular version of the Hodgkin-
Huxley model and easily fit the additional ion channels into the existing code structure,
the re-implementation of the Inada model proved to be challenging due to a host of other
reasons:

• Some equations and parameters were missing in Inada et al. (2009). Most of them
could be recovered from other sources.

• There were small errors in equations and parameters including sign errors, shifted
floating points and missing unit conversions.

• Although the article states that the code is available for download from the journal,
it was not. Contacting the authors was unsuccessful, but I could obtain a copy after
contacting the journal.

• Both the original implementation in C and the CellML version published in the
Physiome Model Repository (PMR) were not executable, i.e. they did not contain
enough information to reproduce plots from the article.

• For some parts of themodel, no reference plots were available, and for existing reference
plots the experiment protocol was not given.

• Some parts of the model contained cryptic equations, whose semantics could only be
recovered after following a long chain of references.

When I encountered these issues, I noticed that I already had unconsciously ensured that
most of them could not occur for my own models by following common best practices in
software engineering. I simply had used these techniques for my own convenience to avoid
time-consuming bug fixing, but I noticed that a systematic re-evaluation of their benefit for
mathematical modeling in general might be of interest.

This investigation showed that along with theMoDROGH characteristics, continuous integra-
tion, continuous delivery, version control, unit testing, object orientation, long-term archiving
systems, structured documentation, and published reference outputs are beneficial with
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respect to reproducibility. Used together they can guarantee exact methods reproducibility,
i.e. that running the same software on a different machine yields the same results, and
facilitate results reproducibility, i.e. the reuse of models in a different environment.

2.2. Conference papers

2.2.1. Modeling biology in Modelica: The human baroreflex

C. Schölzel et al. (2015). “Modeling Biology in Modelica: The Human Baroreflex.”
In: Proceedings of the 11th International Modelica Conference. Versailles, France,
pp. 367–376. doi: 10.3384/ecp15118367.

This and the following papers constitute early work that was conducted before the first
journal article described in section 2.1.1. They were presented at the International Modelica
conference in order to receive input from the Modelica community and to get a first feel for
the strengths and weaknesses of the language. In particular, I wanted to know if Modelica
can at all truthfully represent a biological model.

There is some reason for doubt, since there is a major difference between biological and
physical models even though both use the same mathematical structures: Especially in an
engineering context, physical systems can be broken down to well-understood components
and laws, forming a unifying theory. Such a unifying theory does not yet exist for biological
systems, where descriptions at higher organizational levels are often very rough approxima-
tions of the underlying mechanisms, which are often only partially known. As a result, model
components become rather heterogeneous. For example, while even two fundamentally
different electrical circuits will still consist of the same basic components like resistors and
capacitors, there might be no overlap at all between equations used for a high-level descrip-
tion of the pumping behavior of the heart and the low-level electrophysiological behavior of
an ion channel within a single heart cell.

As a first proof of concept, I wanted to reproduce the simulation output of the original
C implementation of the SHM of the human baroreflex—which I thankfully could obtain
from the author—as exactly as possible7 while still utilizing the object-oriented features of
Modelica to structure the code according to the actual biological structure of the modeled
system. Indeed, it turned out that Modelica fit quite well to this task. Dividing the model

7 This first implementation did not contain the noise terms that Seidel added to the base period of the heart and
lung, because they would have hindered an exact one-to-one comparison. Following the request of another
researcher, I later added the noise terms in version 1.7.0 of the model (Schölzel 2021a).
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into components yielded a natural and intuitive representation of the baroreflex which hides
implementation complexity and avoids code repetition through encapsulation, inheritance,
and object instantiation. Regarding the simulation output, visual differences in blood pressure
and heart rate seem only to occur due to the fact that Modelica uses a more complex and
precise method of finding the exact point in time when a discrete event occurs than the
simple conditional statements introduced to the manual implementation of the fourth order
Runge-Kutta method by Seidel.

Only two areas of the model posed difficulties: One was a complicated formula for the
“broadening” of the baroreceptor response, which was quite computationally expensive in
Modelica.8 The other were the complex rhythms in the cardiac conduction system involv-
ing refractory periods and spontaneous depolarizations of the AVN. Here, the Modelica
implementation that seemed straightforward was rejected by the OpenModelica compiler
and I needed to add additional continuous variables to emulate the discrete events. This
highlights some small areas for possible improvement of the Modelica language and its
open-source compilers. However, even without these improvements, the translation of the
SHM to Modelica was successful and yielded a fully functional model that is equivalent to
the original C implementation.

Comparing the two versions, Modelica was able to adapt well to the biological structure of
the modeled system, while the C implementation required to strictly follow the imperative
logic of the main Runge-Kutta loop and the C language. Considering the fact that neither
the many heterogeneous components nor the different mathematical formalisms of the SHM
model could hinder this process, this paints a very promising picture for future projects
implementing biological systems in Modelica.

2.2.2. Mo|E — A communication service between Modelica compilers
and text editors

N. Justus et al. (2017). “Mo|E – A Communication Service between Modelica
Compilers and Text Editors.” In: Proceedings of the 12th International Modelica
Conference. Prague, Czech Republic, pp. 815–822. doi: 10.3384/ecp17132815.

During the implementation of the SHM it turned out that the OpenModelica integrated
development environment (IDE) OMEdit (Fritzson et al. 2005) did not fit well in a typical
software engineering workflow. For example, it did not allow saving intermediate versions
of files that still contained syntactical errors, and comment lines and formatting changes

8 This could probably be replaced by a simple low-pass filter, if the constraint is dropped that the resulting model
must be a one-to-one representation of the formulas used in the original C implementation.
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introduced to increase code readability could be lost when a model was saved to disk and
reopened.9 To an extent, the Modelica Development Tooling (MDT) (A. D. I. Pop et al. 2006)—a
plugin for the Eclipse IDE (des Rivières and Wiegand 2004)—can address this, but like OMEdit,
Eclipse is a fully-fledged IDE, which means that it can be slow and difficult to use.

Especially for smaller projects, a simple solution based on a structured text editor would
be preferable and ideally could allow switching between different compilers on the fly,
thus increasing the interoperability of models. I therefore advertised and supervised a
bachelor’s thesis that aimed to communicate with the OpenModelica compiler from one
of the structured text editors commonly used by software engineers. Inspired by a similar
project called ENSIME (ENSIME contributors 2022) for the language Scala, my student N.
Justus, chose to implement a server process that communicates with text editor plugins via
a series of simple Hypertext Transfer Protocol (HTTP) requests (Justus 2016a). The major
advantage of this architecture is that it simplifies the implementations of text editor plugins
and therefore allows to easily support multiple text editors.

The resulting project Modelica-pipe-editor (Mo|E) (Justus 2022a; Justus 2022b) gives the
modeler full control of the Modelica source code including features such as error highlight-
ing, code completion, navigation based on code structure, documentation rendering, and
displaying the type of variables and parameters. Mo|E is the first part of a larger suite of
open source Modelica tools called Modelica Tool Ensemble (MoTE) (Justus et al. 2022).

2.2.3. MoVE — A standalone Modelica vector graphics editor

N. Justus, C. Schölzel, and A. Dominik (2017). “MoVE – A Standalone Model-
ica Vector Graphics Editor.” In: Proceedings of the 12th International Modelica
Conference. Prague, Czech Republic, pp. 809–814. doi: 10.3384/ecp17132809.

Modelica allows the annotation of model components with vector graphics icons, which
can then be used to compose larger models by drag and drop. This is especially interesting
for biological systems, which are often explained using diagrams featuring drawings of the
systems components. Unfortunately, this is another area where the only available open source
solution, namely OMEdit (Fritzson et al. 2005), lacks many convenience features compared
to a standalone vector graphics editor like Inkscape (Inkscape developers 2022). Additionally,
it is not possible to import vector graphics created with other tools into Modelica models
since Modelica uses its own annotation language, which is incompatible with standards

9 This critique pertains to OpenModelica version < 1.11.0. OpenModelica has since received updates that address
loss of information, but currently in version 1.17.0 still does not, for example, preserve custom formatting of
annotate() statements.
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such as the Scalable Vector Graphics (SVG) format (Quint 2003). I therefore advertised and
supervised another student project, also by N. Justus, to implement a standalone editor for
the Modelica vector graphics format (Justus 2016b).

The resulting Modelica Vector graphics Editor (MoVE) (Justus 2022c) is a platform-indepen-
dent Java application that features, for example, selection through transparent components,
manual adjustment of stacking order, rotation handles, a snap-to-grid function, and alternate
drawing modes for straight lines, perfect circles and perfect squares. As remaining limitations,
MoVE cannot be used to place connector icons, which are required to graphically connect
components arranged by drag and drop, or handle icon inheritance. For these applications, the
Modelica Diagram Editor (MoDE) (Hoppe 2017; Hoppe 2022) was planned, but unfortunately
never fully realized.

Since August 2019, MoVE is superseded by the Inkscape plugin Modelica iNKscape plu-
gin (MoNK), which works around the incompatibility between SVG and Modelica by only
supporting a subset of SVG. MoNK was only published on Zenodo (Schölzel 2020) and
GitHub (Schölzel 2022a), but does not have an accompanying publication in an academic
journal or conference proceedings.

2.3. Other scientific work

During this dissertation I also published other scientific work that is not directly related to
the main findings of the dissertation. I very briefly summarize these publications here in
chronological order for the sole purpose of giving a full account of my scientific work.

Silicon Heart: An easy to use interactive real-time baroreflex simulator

M. Menzel et al. (2015). “Silicon Heart: An Easy to Use Interactive Real-Time
Baroreflex Simulator.” In: Computing in Cardiology 42, pp. 973–976. doi: 10.110
9/CIC.2015.7411075.

Silicon Heart was an experiment in modularizing a Java implementation of the Kotani et al.
(2005) model to the extreme of physically separating of the computing units across several
Raspberry Pi (Richardson and Wallace 2013) units. The aim of this project, which I supervised
along with my own supervisor A. Dominik, was to create a learning tool for both medical
and computer science students to get first insights into the world of mathematical modeling
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by pushing some actual buttons and observing the resulting change in the clicking sound
and blinking light of the Silicon Heart. It won the best poster award at the 2015 Computing
in Cardiology conference.

Can electrocardiogram classification be applied to phonocardiogram data?—An
analysis using recurrent neural networks

C. Schölzel and A. Dominik (2016). “Can Electrocardiogram Classification Be
Applied to Phonocardiogram Data? – An Analysis Using Recurrent Neural
Networks.” In: Computing in Cardiology 43, pp. 581–584. doi: 10.22489/CinC.2
016.167-215.

The Computing in Cardiology conference was an opportunity to get a glimpse at current
medical topics including other modeling attempts. This poster contribution, however, was
a side project applying machine-learning techniques—which were my previous research
focus—to electrocardiogram (ECG) and phonocardiogram (PCG) data.

Brutus der Orkschamane erklärt die Brute-Force-Methode: Gamification und
E-Learning in der Veranstaltung “Algorithmen und Datenstrukturen”

C. Schölzel (2018). “Brutus der Orkschamane erklärt die Brute-Force-Methode:
Gamification und E-Learning in der Veranstaltung ,Algorithmen und Daten-
strukturen‘.” In: Proceedings der Pre-Conference-Workshops der 16. E-Learning
Fachtagung Informatik. Frankfurt, Germany.

In parallel to my dissertation, I also developed tools and concepts to improve the learning
experience of my students. This included an extensive gamification project for an introductory
course to algorithms and data structures, which featured the development of two web-
platforms for tracking points and skills and for automatic evaluation of student submissions
for programming exercises as well as an entertaining story introducing characters such as
Brutus, the orc shaman, who freshened up the dry theoretical lecture content.

Nonlinear measures for dynamical systems

C. Schölzel (2019). Nonlinear Measures for Dynamical Systems. Version 0.5.2.
Zenodo. doi: 10.5281/ZENODO.3814723.

An additional thesis aim that was discarded later on was the improvement of the SHM
with regard to the physiological plausibility of variables other than the blood pressure and
heart rate. For this task I implemented all nonlinear measures for HRV suggested in Task
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Force of the European Society of Cardiology and The North American Society of Pacing and
Elecrophysiology (1996) in Python to ensure that modifications of the SHM would not shift
any of these measures out of the prescribed range for a healthy patient. The resulting Python
package nolds has since been used in many research projects in different fields (e.g. Gilpin
2021; Hamzi and Owhadi 2021; Santana et al. 2021).

Webmodelica: a Web-Based Editing and Simulation Environment for Modelica

N. Justus and C. Ifland (2022). THM-MoTE/Webmodelica: A Web-Based Modelica-
toolbox. url: https://github.com/THM-MoTE/webmodelica (visited on Mar. 7,
2022).

The Master’s thesis of N. Justus (Justus 2019) continued his work on the MoTE and was also
supervised by me in addition to my own supervisor A. Dominik. This project provided a
web-service that reduces the hurdle for students and researchers to perform simulations
in Modelica. It featured a web-based structured code editor and simulation and plotting
environment based on Mo|E. Unfortunately, the project was discontinued before it could be
opened to the public.

HRT assessment reviewed: A systematic review of Heart Rate Turbulence
methodology

V. Blesius et al. (2020). “HRT Assessment Reviewed: A Systematic Review of
Heart Rate Turbulence Methodology.” In: Physiological Measurement 41.8, art.
no. 08TR01. doi: 10.1088/1361-6579/ab98b3.

As already mentioned in section 2.1.3, I worked together with my colleague V. Blesius to
investigate PVCs in the SHM since she wanted to investigate heart rate turbulence (HRT).
This paper constitutes her overview of the assessment of HRT in literature, finding several
discrepancies that severely hinder the comparability of studies. As coauthor, I assisted with
the interpretation of results and reviewed the manuscript.

NeuroKit2: A Python toolbox for neurophysiological signal processing

D. Makowski et al. (2021). “NeuroKit2: A Python Toolbox for Neurophysiological
Signal Processing.” In: Behavior Research Methods 53.4, pp. 1689–1696. doi:
10.3758/s13428-020-01516-y.

37

https://github.com/THM-MoTE/webmodelica
https://doi.org/10.1088/1361-6579/ab98b3
https://doi.org/10.3758/s13428-020-01516-y


2. Results

One of the major projects using my Python package nolds was NeuroKit2. The first author D.
Markowski consulted me several times to resolve discrepancies between my implementation
and other existing implementations of the algorithms in nolds. Together we found several
points for improvement both in his and my code, which is why he invited me as a coauthor for
the publication of NeuroKit2. The package itself is intended as a high-level, low-barrier entry
point for neurological researchers, who want to analyze ECG, electroencephalogram (EEG),
and other types of data.

Comparability of Heart Rate Turbulence Methodology: 15 Intervals suffice to
calculate Turbulence Slope Amethodological analysis using PhysioNet data of 1074
patients

V. Blesius et al. (2022). “Comparability of Heart Rate Turbulence Methodology:
15 Intervals Suffice to Calculate Turbulence Slope A Methodological Analysis
Using PhysioNet Data of 1074 Patients.” In: Frontiers in Cardiovascular Medicine
9, art. no. 793535. doi: 10.3389/fcvm.2022.793535.

The second paper by V. Blesius continues the investigation of HRT methodology by providing
a clear answer which of the prevalent variants of one parameter should be used for further
analysis. The parameter in question was the number of intervals after a PVC that are used to
find the turbulence slope, which is the steepest incline across five consecutive data points after
the PVC. Again, I assisted with the interpretation of results and reviewed the manuscript.
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The results presented in the previous section now allow to answer the research questions
formulated in section 1.9. This will be done by devoting a section to each question and
discussing how the findings of my individual publications contribute to an overall answer
of this question. For the sake of brevity, I only briefly explain the relevant findings without
deriving them in full detail. The interested reader is thus always referred to the full articles
in section 8.

3.1. Requirements for modeling languages in systems
biology (RQ1)

In order to discuss requirements, it is always worthwhile to investigate the current state
of the art and to identify possible areas of improvement. This will be done in section 3.1.1
followed by a detailed introduction of the MoDROGH characteristics established in Schölzel
et al. (2021a) and an investigation where they proved useful in my own work in section 3.1.2.

3.1.1. Classical approaches fail for multi-scale models

The classical approach to mathematical modeling in systems biology has a narrow focus on
the biological findings with only peripheral interest in mathematical structure and model
code. Some authors do discuss the choice of equation structures and the rationale behind
seemingly arbitrary fitting functions. For example, at one point Lindblad et al. (1996) report
that “the action potential fits were improved by small reductions in the slope factor for
inactivation (obtained from Boltzmann fits to the data in Fig. 2A)”, which is quite a detailed
rationale for a single number in an equation. Other authors only choose to state what was
changed and which equations were used without discussion—often to the point that the
actual equations only occur as an uncommented appendix block at the end of the article or
even just in a supplement. This is, for example, the case for Kurata et al. (2002), who show
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two equations in the main article and list the rest only in the appendix; and Inada et al. (2009),
whose equations are only given as a supplement. Model code is even less perceived as an
important part of a simulation study. Code is usually not shown at all, not part of the review
process, and often not even available for download along with the research article (Kirouac,
Cicali, and Schmidt 2019; Stodden, Seiler, and Z. Ma 2018). Sometimes, the programming
language is named, but without version number or any other details such as the type of
differential equation solver that was used (Stodden, Seiler, and Z. Ma 2018). An example is
Hulsmans et al. (2017), which combine the Inada AVN model with a model for macrophages
and adjust it to the physiology of a mouse. I could have used this work to gain some insight
how to integrate the Inada model into the SHM, but it turned out that the mathematical
model was only briefly described in a single paragraph and although the paper has a data
availability section, the model code is not even mentioned there.

In consequence, if code is available, one can then clearly see that it was written for the
purpose of performing a single in silico experiment without regard to future reuse by other
researchers. Both the original versions of the SHM and the Inada model contained no
README or any other information that explained where to find which part of the model.
They also contained code from preliminary versions that was deactivated and while Seidel
manually implemented a Runge-Kutta method, Inada et al. did not provide the main file
required to execute the simulation at all. They were both written in the imperative language C
with no modularization with respect to the biological structure of the model. These examples
seem to be representative of a large portion of today’s models: While declarative languages
like SBML and CellML are on the rise and are recommended by the COMBINE, most models
are still built with imperative and general-purpose languages like MATLAB, C, C++, and
FORTRAN (Clerx et al. 2016; Mulugeta et al. 2018), and most SBML models in the BioModels
database are monolithic (Cooling et al. 2010).

I have shown that even a model as simple as the Hodgkin-Huxley model of the squid giant
axon can benefit from a declarative and modular model structure that pays more attention
to understandability and extensibility. However, one can also argue that such a complex
code structure would be simply overkill for experienced systems biologists, who are already
familiar with all kinds of mathematical representations but not with software engineering
concepts. This is certainly true for the Hodgkin-Huxley equations and probably also for many
other small- to medium-sized models. Researchers would not use the classical approach to
mathematical modeling so often, if it was not working for their use cases.

However, this argument looses ground with increasing model size and complexity. Multi-scale
and especially multi-level models consist of multiple heterogeneous parts that are typically
reused from existing models, which can be the small- and medium-sized models described
before. Even the AVN cells in the Inada model, which mostly only contain equations at the
cell level, already are composed of individual currents that are reused from three different
preexisting models (Inada et al. 2009; Lindblad et al. 1996; Zhang et al. 2000; Kurata et al.
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2002). Figure 1 in section 8.3 shows that when one follows the full chain of references required
to understand the model, it turns out that it contains reused parts of at least nine other
articles. If these individual models are not built with reuse in mind and researchers have
to sift through appendices with dozens of possibly erroneous equations or large files of
undocumented imperative code, this is a considerable hurdle to building a multi-level model
based on them.

To facilitate the development of large multi-scale models, the central focus of model design
therefore has to shift towards reusability. In order to reuse a model, researchers from
different working groups must be able to download the model code and run simulations,
thus reproducing the methods of the original study. However, reuse typically goes beyond a
one-to-one reproduction of published methods and instead also involves different tools in
different contexts and with different goals. For example, Inada et al. reused the equations
for the fast sodium channel and the inward rectifier channel from the atrial cell model of
Lindblad et al. (1996) for their model of an AVN cell and Seidel used a model by Warner
(1958), which describe the baroreceptor response in dogs, for a model of the human heart. In
both cases this is not a direct reproduction of methods, but an indirect reproduction of the
results of the underlying article.

Reuse and reproduction of this kind requires a detailed understanding of the model equations
and the assumptions that they carry explicitly or implicitly. For example, Lindblad et al. (1996)
have variable intracellular sodium and potassium concentrations, while Inada et al. (2009)
assume that these concentrations remain constant. Other examples include biochemical
models where either simplified Michaelis-Menten kinetics can be assumed or more detailed
kinetic laws can be used instead (Chou and Voit 2009; Hill, Waightm, and Bardsley 1977). As
a model is by definition a simplification of reality, no model is free from such assumptions
and for each biological system exist different sets of assumptions that are valid for different
simulation scenarios. It is therefore unlikely that reusing a model in a different scenario is
possible by just copying and pastingmodel code and renaming variables. Some understanding
of the structure and semantics of the equations will be required, even if just to identify which
parts of an equation belong to the part that is being reused and which ones do not.

Even the simulation results of an otherwise understandable model might not be easily
reproducible in another context if the model structure is not somewhat tailored towards
extensibility. A monolithic code structure, in which all model parts are firmly entangled with
each other, may be made understandable with appropriate documentation. However, it will
still require a lot of effort to identify which parts of the model need to change if it is to be
extended or to be broken apart for reuse in a different context. One example for this are my
two Modelica versions of the cardiac conduction system within the SHM: Each parameter
and variable of the first, monolithic implementation was documented as precisely as possible,
yet still the PVC extension was only possible with the second, modular implementation that
was built with the goal to facilitate such extensions.
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In summary, multi-scale modeling requires model reuse, which in turn requires results
reproducibility, understandability and extensibility. Classical approaches using imperative
languages to build monolithic structures tailored to a single experiment are not fit to provide
these requirements.

3.1.2. MoDROGH characteristics

Some shortcomings of the classical approach to mathematical modeling are closely tied to
language and design aspects. This includes the imperative nature of MATLAB, C, C++ and
FORTRAN and the lack of modularity in published model code. The MoDROGH characteris-
tics, which are explained in detail in section 8.1, summarize language features that, if applied
consistently, can fulfill the reusability requirements established in the previous section. Here,
I will only briefly introduce the characteristics and discuss their importance with respect to
my own modeling tasks, assessing where they were most effective.

Modular

A language that is modular provides support for defining models as composition of small
self-contained components with clearly defined minimal interfaces. There is a broad con-
sensus in software engineering that large monolithic structures tend to hinder reusability,
understandability, and extensibility (Sarkar et al. 2009; Clark and Baldwin 2000). If they are
carefully designed and well documented, they can work fine for small- to medium-sized
projects, but generally speaking it is preferable when code is split into clearly defined sections
that each only address one specific concern.

My first Modelica implementation of the cardiac conduction system of the SHM utilized all
MoDROGH characteristics apart from being graphical and modular. The missing modularity
alone was the main reason that hindered its reuse and extension with a trigger for PVC. The
modular version of the model was not only more extensible but also more understandable to
the point that it revealed small inconsistencies in the structure of the SHM. In fact, I would
argue that one of the main advantages of modularity in the context of systems biology is the
fact that modularizing a model both requires and facilitates a deeper understanding of the
modeled system.

An extreme case of this is the handling of the intracellular calcium concentration by the
sarcoplasmic reticulum in the Inada model. Inada et al. (2009) only present this part of the
model in monolithic form, not further discussing any of the involved parts. This part could
be split into two diffusion reactions, the calcium uptake by the SERCA pump and calcium
release by ryanodine receptors, but it was neither possible to modularize the system without
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understanding it, nor was it possible to understand it without separating the entangled
equations into their modular form. The reason for this is that in a monolith, only the top
level needs to mean anything to the reader. In contrast, a modular structure describes the
system at a lower organizational level and thus also must assign meaning to entities on this
organizational level—if only by naming the individual modules.10

Declarative

While imperative languages describe sequences of actions, declarative languages just define
properties of the desired result without specifying how this result is to be reached (J. W. Lloyd
1994). Essentially they add a layer of abstraction that allows—in the context of mathematical
modeling—to focus on what is modeled instead of how to solve equations. This adds a
lot of flexibility for reuse in a different context that is otherwise missing with imperative
implementations.

For example, the original C implementation of the SHM was entirely imperative in nature
with a hard-coded main loop following a fourth order Runge-Kutta algorithm. The description
of the cardiac conduction system was scattered throughout this large loop and entangled
with the imperative solver logic. This made it quite hard to extract this description and to
reproduce it in Modelica. Additionally, it masked mathematical and biological inconsistencies
inside the model, such as the fact that the trigger for the refractory period of the sinus node
was actually not checked when a sinus signal was produced but only after the signal had
already reached the ventricles. The benefit of declarativeness is therefore twofold: First, it
allows for flexibility in choosing solvers and changing other aspects of the simulation protocol.
Secondly, more focus on the mathematical structures means that they can be checked more
strictly by the compiler, which gives additional guidance for understandable, analyzable, and
robust model design.

Human-readable

Every modeling language is human-readable to some degree, but while languages like SBML
and CellML are designed as intermediate languages, which are used for model exchange and
must be transformed into some other representation for convenient editing (Dräger et al.

10 This part of the InaMo implementation also showcases the importance of choosing the interfaces between modules
deliberately, which is an important part of modularization: A first version of the modular calcium handling used
concentrations and concentration gradients as main interface variables. This was consistent with the equation
structure presented in Inada et al. (2009), and it simplified some equations in monolithic form, but in the modular
version it required additional conversion terms and, most importantly, interfered with the model semantics.
Some equations in the model were implicitly based on the conservation of mass between two or more connected
compartments containing calcium ions. However, this conservation of mass can only be explicitly expressed using
substance amounts, because there is no conservation law governing concentrations. After changing the interface
to substance amounts accordingly, the model became both simpler and more intuitive.
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2009; A. K. Miller et al. 2010), other languages like Antimony and Modelica are top-level
languages directly designed to be read and written by humans in text form (Choi et al. 2018;
Mattsson and Elmqvist 1997).

The PMR contained an implementation of Inada et al. (2009) in CellML (C. M. Lloyd 2009).
For the first few months, this was the only reference code available for my implementation
of InaMo. For a researcher without previous experience with CellML tools, this was difficult,
because it required both learning to use a new tool and getting familiar with an unknown
model. The raw XML code also offered no alternative route of understanding the model
directly, because the equations in MathML (ISO/IEC 2016) were too convoluted to be of use.
What was needed was a textual representation of the model that could be opened in a text
editor to quickly find the relevant pieces with a keyword search.

Fortunately, this was possible with the CellML Text representation provided by the tool
OpenCOR (Garny and P. J. Hunter 2015). In other tools, learning the code representation
and search features of the tool would be required and one could never be fully sure if every
detail was displayed or if the tool abstracted away or could not interpret some information
contained within the model file. Since the CellML model did not reproduce any plots from
Inada et al. (2009) but was advertised to do so in the documentation, I wanted to look at the
version history to see if anything might have changed since the time when the reproduction
was performed. Again, this was difficult, because large but meaningless structural changes
due to automatic processing of XML code can obscure the relevant semantic edits made by a
human researcher.

In short, one can say that for maximum understandability of model code, there should be as
little automatic processing steps between the writer and reader of a model file as possible.
Ideally, the language is designed for direct code editing in a text editor, which also facilitates
literate coding practices proposed by other researchers (Lewis et al. 2016; Waltemath and
Wolkenhauer 2016; Medley et al. 2018; Hellerstein et al. 2019). Languages with more focus on
machine-readability like XML can still be used for model distribution, but they should not be
the single medium for making the source code of a model available to other researchers. The
example of CellML Text shows that it is possible to use a human-readable source language
for viewing and editing, which is then translated into a more machine-readable distribution
language for simulation with a range of compatible tools.

Even within a language designed to be directly read andwritten by humans, however, code can
be confusing if it is not documented. Virtually all languages provide some form of comments
for code documentation, but some additionally allow structured documentation in the form of
human-readable labels that are part of the syntax and can be assigned to individual variables,
subcomponents, or equations (see for example Kramer 1999). Following the argument made
in the discussion of the modular characteristic, such structured documentation can facilitate
understandability by assigning meaning to lower-level components. Additionally, these kinds
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of documentation labels persist across multiple representations of the model and allow, for
example, automatic generation of HTML or Portable Document Format (PDF) documentation
as with MoST.jl.

Open

As in any scientific discipline, proprietary licenses can be a major hurdle to the reproduction
of mathematical models and can also stand in the way of other best practices. For example,
MATLAB licenses only allow the use of free continuous integration (CI) services since version
R2020a and there is no guarantee that future licensing changes will not return to disallowing
such use of the software (The MathWorks 2022a). Additionally, research projects frequently
require special solutions that are not readily available in state-of-the-art software. Devel-
oping dedicated extensions of tools is only possible if this is allowed and supported by the
manufacturer or if the tool is published as open source software. For multi-scale models this
is especially important since the span over multiple scales can require additional techniques
to manage the computational complexity of simulations which do not yet have widespread
support in simulation tools (Dada and P. Mendes 2011).

Graphical

As already established, biological systems are complex and full of feedback loops. A purely
textual description of a biochemical pathway with dozens or even hundreds of species would
probably be confusing to say the least. Unsurprisingly, diagrams that visualize such feedback
loops are an integral part of any biology textbook and when the discussion moves to higher
organizational layers, such as the cell or organ layer, the individual components in the
diagram also tend to be illustrated with drawings rather than just text (Gerstner et al. 2014;
Voit 2018). While these diagrams could also be provided as an image file that is completely
separate from the code and thus independent of the modeling language, they become more
useful the more directly they are coupled to the model code as this facilitates transfer of
information between the two representations.

For each of the models I implemented—be it the Hodgkin-Huxley model, the SHM, or the
Inada model—I frequently switched between textual and graphical representations of the
model in order to understand and analyze its behavior and to find bugs in my implementation.
For this task, it was especially important that the diagram was accurate. This can be ensured
in amodeling language, when the diagram representation is defined in the form of annotations
in the model code itself that define the appearance and placement of model components.
Additionally, this type of support for graphical annotations also allows composing models in
a graphical fashion by drag and drop. This was especially useful to quickly create small test
examples akin to unit tests.
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Hybrid

As explained in section 1.2, there are multiple mathematical formalisms that can be used
to create a model of a biological system including, for example, ordinary differential equa-
tions (ODEs), differential-algebraic equations (DAEs), discrete-event simulation (DES), or
frameworks like Petri nets and bond graphs. However, as more and more complex systems
are modeled, it is increasingly unlikely that a single formalism can describe the system. As
a simple example, consider an organ-level model of the human heart, like the SHM, which
requires both a continuous blood pressure curve (an ODE), but also has a discrete switch
between systole and diastole (an event in a DES). In the case of the SHM, there is also a
stochastic element in the base period of the heart and lung (similar to a SDE11), and a delay
between the baroreceptors and the ANS (a DDE).

Such a model that uses more than one mathematical formalism is called hybrid, and con-
sequently a modeling language is also called hybrid, if it supports multiple mathematical
modeling formalisms. The aforementioned mix of discrete and continuous model parts is
important for many multi-level models as a shift between levels of organizations may require
a shift in discreteness (Walpole, Papin, and Peirce 2013). Very low (genetic, molecular), and
very high levels (organ, organism, population) may feature discrete state changes and indi-
vidual entities, while intermediate levels (cell, tissue) tend to be more adequately described
by continuous processes.

Another, more indirect requirement for hybridity, is again due to the abundance of feedback
loops in biological systems. If a purely ODE model is modularized in form of blocks that have
an input and an output, these feedback loops become algebraic loops where the output of a
component is fed back as its input, either directly or through some other components (Lee
et al. 2015). There are techniques to handle such algebraic loops, but they can pose issues
both with the accuracy and the speed of the simulation (Shampine, Reichelt, and Kierzenka
1999; The MathWorks 2022b). A more elegant solution is to support DAEs, especially in
implicit form, which can be used to define acausal connections between components via
conservation laws that do not require defining whether a variable is an input or an output
of a component (Ascher and Petzold 1998). For example, by using Kirchhoff’s current law,
electrophysiological models like the Hodgkin-Huxley model and the Inada model can be
realized as electrical components of a circuit diagram that are even fully compatible with the
predefined electrical components in the Modelica.Electrical standard library (Salam and
Rahman 2018).

11 Strictly speaking, the stochasticity in the SHM is not explicitly modeled as a continuous stochastic differential
equation (SDE) but as random fluctuations introduced on a beat-by-beat basis through a discrete event.
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3.2. Modelica as modeling language for systems biology
(RQ2)

After establishing the requirements for modeling language in systems biology, the next
step is to assess to what extent the language Modelica can actually fulfill them. Since this
investigation requires some technical detail, the core language concepts are first introduced
in section 3.2.1. Section 3.2.2 follows with a discussion of each of the MoDROGH criteria. To
understand the success of Modelica in the engineering domain and thus the benefits it might
bring for systems biology, it is also necessary to investigate the Modelica ecosystem and to
look at existing biological projects that already have been performed by other researchers.
This will be done in sections 3.2.3 and 3.2.4 respectively.

3.2.1. A very brief introduction to object-oriented modeling with
Modelica

In order to talk about the features of Modelica, it is necessary to introduce the language on
the code level. However, due to the complexity of Modelica I will only be able to scratch the
surface in this section. For a far more comprehensive introduction, the interested reader is
therefore referred to Michael Tillers excellent e-Book “Modelica by Example” (Tiller 2020).
Here, I will only try to give a rough first impression of the coding style and features of
Modelica.

A good example to use for this task is the simple predator-prey model that was independently
developed by Alfred J. Lotka (Lotka 1910) and Vito Volterra (Volterra 1926b; Volterra 1926a). In
this model, two differential equations describe the evolution of the populations of a predator
and a prey species on the timescale of years:

dN1

dt
= β1N1 − δ1N2N1 (3.1)

dN2

dt
= β2N1N2 − δ2N2 (3.2)

The variables denoted with N are population sizes, the β parameters are birth rates, and
the δ parameters are death rates. Variables and parameters with the subscript 1 refer to the
prey population, while those with subscript 2 refer to the predator population. The β and δ
parameters have to be set to concrete numbers that stay fixed during the simulation. The
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population variables N1 and N2 will change during the simulation, but their initial value
must also be given beforehand. A first Modelica implementation of this model might look as
follows:

1 model LotkaVolterra "simple predator-prey model"

2 Real N1 "size of predator population";

3 Real N2 "size of prey population";

4 parameter Real beta1 = 0.1 "birth rate of prey";

5 parameter Real beta2 = 0.02 "birth rate of predator";

6 parameter Real delta1 = 0.02 "death rate of prey";

7 parameter Real delta2 = 0.4 "death rate of predator";

8 equation

9 der(N1) = beta1 * N1 - delta1 * N2 * N1;

10 der(N2) = beta2 * N1 * N2 - delta2 * N2;

11 initial equation

12 N1 = 10;

13 N2 = 10;

14 end LotkaVolterra;

[3.1]

The translation from equations to code is straightforward in this example: Both variables and
parameters are prefixed with the data type Real and parameters are denoted as such using
the parameter keyword. Equations that are true all the time are placed in a block starting
with the equation keyword and initial conditions, which only hold at t = 0, are placed in an
initial equation block. The der() function denotes the time derivative of the variables N1
and N2.

While this model is already fully functional, there are a lot of possible improvements that
can, and should, be made:

• Variables and parameters should be renamed with respect to their biological function
rather than their mathematical equivalents in equations 3.1 and 3.2, since this would
facilitate the goal of the model to explain biological processes.

• The growth rates beta1 and delta2 measured in individuals per second are different
from the fractional growth rates beta2 and delta1 measured in individuals per indi-
viduals of the other population per second. This should be clarified by adding unit and
data type information.

• The unit of N1 and N2 is not defined properly. These variables should be given in
numbers of individuals, but with the current parameter settings, the minimum forN2 is
0.7, suggesting that a value of 1 actually means, for example, one thousand individuals.

• To ensure interoperability with other models, time should be measured in seconds
and not in years and the parameter values should be changed accordingly while still
keeping a secondary time variable in years for plotting purposes.
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These details become all the more important, if the model is extended and becomes more
complex. Say a third species should be added to the model: a larger predator N3, which
preys on both populations N1 and N2. The mathematical representation of the model then
becomes:

dN1

dt
= β1N1 − δ1,2N2N1 − δ1,3N3N1 (3.3)

dN2

dt
= β2,1N1N2 − δ2,3N2N3 (3.4)

dN3

dt
= β3,1N1N3 + β3,2N2N3 − δ3N3 (3.5)

While it is possible to extend the model in this fashion, increasing numbers of species will
make it more likely that a slip occurs: a N4 that should have been an N3, or a missing or
duplicated item in a sum. At the very least, it would be easier to do this if one could operate
at a higher level of abstraction and just specify species relations like “Wolves eat lynxes”
or “It is assumed that hares always have enough food to reproduce at a fixed rate”. This
becomes possible when taking a closer look at the equations and their composition. Any
Lotka-Volterra-like model with an arbitrary number of species will only be composed of three
template terms:

• A “birth” template for prey species x that do not themselves act as predators of the
form βxNx;

• a “predation” template for interactions between predator y and prey x, which intro-
duces the addend βy,xNxNy to the predator population and the addend −δx,yNyNx

to the prey population
• and a “death” template of the form −δyNy for apex predators y, which are not eaten

by any other species in the model.

These templates constitute the higher level relations that are needed to facilitate the extension
of the model. The remaining core requirement is a way to automate the summation of
instances of these templates to form the equations of the system. In Modelica, this can be
done by using connectors like the following:

1 connector Species

2 LVUnits.PopulationSize amount "number of individuals";

3 flow LVUnits.PopulationRate rate "local change to population";

4 end Species;

[3.2]
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This code introduces two variables amount and rate and combines them to a so-called
connector. Instead of the generic Real in the previous example, the variables now have
the custom types PopulationSize and PopulationRate that specify their semantics. These
types are defined in a separate package called LVUnits:

1 package LVUnits

2 type PopulationSize = Real(unit="1", quantity="PopulationSize", min=0)

3 "population size in numbers of individuals";

4

5 type PopulationRate = Real(unit="1/s", quantity="PopulationRate")

6 "change in population size as individuals per second";

7

8 type GrowthRate = Real(unit="1/s", quantity="GrowthRate", min=0)

9 "exponential growth rate of population";

10

11 type FractionalGrowthRate = Real(

12 unit="1/s", quantity="FractionalGrowthRate", min=0

13 ) "fraction of growth rate contributed per individual of second population";

14

15 constant Real secondsInYear(unit="s/y") = 60 * 60 * 24 * 365;

16

17 function from_perYear "unit transformation from 1/y to 1/s"

18 input Real py(unit="1/y");

19 output Real ps(unit="1/s");

20 algorithm

21 ps := py / secondsInYear;

22 end from_perYear;

23 end LVUnits;

[3.3]

The types in this class are effectively just normal Reals with additional information: the
physical unit; a unique string identifying the physical quantity; an explanatory documentation
string; and a constraint that some of them must be non-negative (min=0), which generates
errors when it is violated during a simulation. The function from_perYear and the constant
secondsInYear will be used to handle the timescale conversion in the following. Note that,
unlike the previously shown equation block, the algorithm block in Modelica functions uses
imperative assignment statements akin to general-purpose programming languages (denoted
by :=) instead of declarative equations (denoted by =).

Back to the Species connector, the only code that remains unexplained in listing 3.2 is the
flow keyword assigned to the variable rate, which is exactly the mechanism that automates
the summation of template instances. In a three species Lotka-Volterra model where the
species N1, N2, and N3 are hares, lynxes, and wolves, the rate equation for hares may be
composed as follows:

1 connect(hares.species, hare_birth.born);

2 connect(hares.species, lynxes_eat_hares.prey);

3 connect(hares.species, wolves_eat_hares.prey);

[3.4]

The three connect() equations connect four different instances of the Species connector
across four model components. In general, each of these connectors can itself contain an
arbitrary number of variables, and a single connect() equation is translated into individual
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equations for all these variables. In this case, we have the two variables amount and rate,
where rate is a flow variable, which requires special treatment. After the connect() equations
have been resolved, the model will have the following actual equations:

hares.species.amount = hare_birth.born.amount (3.6)

hares.species.amount = lynxes_eat_hares.prey.amount (3.7)

hares.species.amount = wolves_eat_hares.prey.amount (3.8)

0 = hares.species.rate (3.9)

+ hare_birth.born.rate

+ lynxes_eat_hares.prey.rate

+ wolves_eat_hares.prey.rate

Normal variables in connectors lead to simple equalities as in 3.6–3.8. However, the flow

keyword in listing 3.2 instead introduces a conservation law by collecting all connected
variables in a group and generating the single equation 3.9, which ensures that the sum of
these variables balances out to zero—similar to Kirchhoff’s current law or the conservation
of mass and energy in a closed system (Salam and Rahman 2018; Hesthaven 2018). By
treating the change in population size as a “flow” of individuals, one can thus define and
combine an arbitrary number of components that produce individuals like hare_birth and
components that consume individuals like lynxes_eat_hares and wolves_eat_hares. To
make the resulting system of equations solvable, exactly one reservoir component hares is
required, which does not add anything to the flow, but is instead used to capture the net
flow. The compiler achieves this by solving 3.9 for hares.species.rate and thus collecting
the negative sum of local flows introduced at all other components in this variable (hence
the term reservoir ).

This process of introducing zero sums with the flow keyword is exactly what is needed to
build the differential equation 3.3 as a sum of template terms. Currently, equation 3.9 is an
algebraic equation that does not yet include any derivative. The derivative comes into play
inside the hares component, which is an instance of the model Population:

1 model Population "population of a species"

2 Species species(start=initial_size, fixed=true);

3 parameter LVUnits.PopulationSize initial_size = 10000 "initial population size";

4 equation

5 der(species.amount) = -species.rate;

6 end Population;

[3.5]
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This component serves as a reservoir for individuals of a species. It establishes the functional
relationship between the rate and amount variables in the species connector and allows
to set an initial population size with the parameter initial_size. The negative sign is
needed to keep the intuitive convention that positive local rates in other components will
increase the population and negative rates will decrease it. By default, Modelica treats the
start parameter as a fallback value that can and must be overwritten by an explicit initial
equation.12 The parameter fixed changes this behavior so that the value of start actually
serves as that initial condition (which thus “fixes” the initial value in the sense that it can
no longer be overwritten by initial equations). Combining equation 3.9 with the equation
introduced by this component finally yields the sum of template terms for equation 3.3:

dhares.amount
dt

= hare_birth.born.rate (3.10)

+ lynxes_eat_hares.prey.rate

+ wolves_eat_hares.prey.rate

The template addends are defined similarly in the producing and consuming components:

1 model FixedBirth

2 Species born;

3 parameter LVUnits.GrowthRate birth_rate = LVUnits.from_perYear(0.1);

4 equation

5 born.rate = birth_rate * born.amount;

6 end FixedBirth;

[3.6]

1 model FixedDeath

2 Species dying;

3 parameter LVUnits.GrowthRate death_rate = LVUnits.from_perYear(0.1);

4 equation

5 dying.rate = -death_rate * dying.amount;

6 end FixedDeath;

[3.7]

1 model Predation

2 Species predator;

3 Species prey;

4 parameter LVUnits.FractionalGrowthRate birth_rate = LVUnits.from_perYear(0.0002);

5 parameter LVUnits.FractionalGrowthRate death_rate = LVUnits.from_perYear(0.0002);

6 equation

7 predator.rate = birth_rate * prey.amount * predator.amount;

8 prey.rate = -death_rate * predator.amount * prey.amount;

9 end Predation;

[3.8]

These directly correspond to the three birth, death, and predation templates that we identified
earlier. The Species connectors are named after the role that the species takes within the
component. For FixedBirth and FixedDeath this is not very relevant, but in Predation it
allows to intuitively distinguish between the predator and the prey population.

12 An example of an initial equation block in Modelica can be seen in listing 3.1 on lines 11–13.
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With the template components and the connect() equations to combine them, it is now
possible to build the full model entirely on a higher level of abstraction:

1 model LV3

2 Population hares;

3 Population lynxes;

4 Population wolves;

5 FixedBirth hare_birth;

6 FixedDeath wolf_death;

7 Predation lynxes_eat_hares;

8 Predation wolves_eat_hares;

9 Predation wolves_eat_lynxes;

10 Real time_years(unit="y") = time / LVUnits.seconsInYear "time in years";

11 equation

12 // Hares have always enough food to reproduce at fixed rate

13 connect(hare_birth.born, hares.species);

14 // Lynxes eat hares

15 connect(lynxes_eat_hares.prey, hares.species);

16 connect(lynxes_eat_hares.predator, lynxes.species);

17 // Wolves eat hares

18 connect(wolves_eat_hares.prey, hares.species);

19 connect(wolves_eat_hares.predator, wolves.species);

20 // Wolves eat lynxes

21 connect(wolves_eat_lynxes.prey, lynxes.species);

22 connect(wolves_eat_lynxes.predator, wolves.species);

23 // Wolves die at a fixed rate independent of other populations

24 connect(wolves.species, wolf_death.dying);

25 end LV3;

[3.9]

For example, the connect-equation in line 13 corresponds to the aforementioned statement
“It is assumed that hares always have enough food to reproduce at a fixed rate.”, and lines 15
and 16 constitute the statement “Lynxes eat hares.”. This can be made even more intuitive
by adding graphical annotations to the model, which define icons for components, place
these components on a diagram coordinate system, and represent the connect-equations
with lines between components. For the sake of brevity, I will not go into detail about these
graphical annotations here, but only show an example how a connection line between the
components hares and hares_birth might look in the code.

1 connect(hares.species, hare_birth.born)

2 annotation(Line(points = {{80, -16}, {80, 12}}));
[3.10]

These annotations do not have to be written manually, but can be generated via an interactive
diagram view with a drag and drop interface in the OpenModelica connection editor OMEdit
(Fritzson et al. 2005). An example of a resulting diagram can be seen in figure 3.2.1. Because
they are tied to the code constructs they represent, they automatically stay up to date
when the code changes. For example, when the above connect-equation is removed without
removing the annotation, this results in a syntax error. If an editor like OMEdit is used, it
can also be assured that, for example, the positional values of connection lines are updated
when the component at one end of the connection is moved.
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Figure 3.1.: Graphical representation of the three-species Lotka-Volterra model
shown in listing 3.9. The whole diagram is defined within Modelica code
using the Modelica annotation syntax. Icons for components are defined in the
component class and include the special template string %name, which is replaced
with the name of the component upon instantiation. Lines between components
are defined by annotating connect equations as shown in listing 3.10.

With this modular and graphical design, the extension of the model by yet another species
becomes trivial as one can directly translate the high-level model assumptions one would
write down on paper into code. With the graphical annotations it is not even required to write
any code. One just selects the appropriate components from a tree view of available models,
drags them into the diagram and connects them with lines much like a circuit diagram.

When such a modular model is compiled, the modular structure will be stripped by the
Modelica compiler and the connect-equations are transformed to regular mathematical
equations leaving an equation system that is identical to the mathematical representation
in equations 3.3–3.5 with some additional trivial alias equations of the form x = y. In fact,
OpenModelica models compile to C code that, albeit containing a lot of boilerplate code, is
not that different in structure from the C code written by Seidel or Inada et al. One could
say that in this regard Modelica is to C what C is to Assembly: It does not add any more
capabilities per se, but it facilitates the creation of more complex structures, because the user
can operate on a higher level of abstraction and has to care less about the technical details
of lower levels.

The main caveat is that while the language does facilitate design patterns that make models
reusable and extensible, no modeler is required to use these design patterns. In fact, most
novices will probably shun the complex features as there is a high initial barrier to under-
standing them and to applying them effectively. After all, the first monolithic version of
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the Lotka-Volterra model presented in this Section was also perfectly valid Modelica code
that “gets the job done”. For the language Python there exists a neologism that code can
be more or less “pythonic”, meaning that it is designed with the same goals and ideals in
mind that are associated with the language and thus exploits its strengths and avoids its
weaknesses (Alexandru et al. 2018). In the same sense, Modelica code can be written more or
less “modelica-esque” and one has to understand and accept the mindset behind the design
choices of the language in order to utilize its benefits.

3.2.2. Fulfillment of MoDROGH characteristics

Modular

Modelica was designed to support modularity via object orientation. At the core, everything
in Modelica is a class. The special keywords like connector, model, package, or function,
only impose certain restrictions on what can be contained within the class definition. These
classes are templates that can be used to compose complex models via instantiation and
inheritance (E. Freeman et al. 2004). Instantiation assigns a name to a copy of the abstract
class template to form a concrete object. In the previous example, this would correspond to
adding the object hares of the Population class to a model. While the different Population
instances hares, lynxes, and wolves share the same code, they represent distinct entities in
the equation system.

Inheritance includes the code of one class in the definition of another, more specialized class.
In contrast to instantiation, the included code is not assigned a separate name, but instead
resides on the same hierarchical level as the rest of the code in the inheriting class. For
example, my Modelica implementation of the Hodgkin-Huxley model contained a base class
for ion channels in general and two specialized versions for the sodium and the potassium
channel respectively. Since Modelica allows multiple inheritance, one class can inherit code
from multiple other classes, which allows, for example, to inherit both graphical code from
an icon class and equations from another class.

Both instantiation and inheritance can be further customized by changing parameter values,
redefining parts of the class labeled as replaceable, or overwriting certain types of equations.
With this, almost all conceivable hierarchical structures can be represented with Modelica
code, allowing, in theory, to build models of arbitrary complexity.

However, Modelica still has one more mechanism for modularity that adds another level
of abstraction around Modelica code. The Functional Mock-up Interface (FMI) allows to
encapsulate any Modelica model as a so-called Functional Mock-up Unit (FMU), which acts
as an opaque box that defines interface variables and parameters and contains executable C
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code (Blochwitz et al. 2012). FMUs can be used in two different ways: In model exchange, the
FMU acts as a function that computes a single time step and that can be used from within an
existing solver. FMUs for co-simulation already integrate the numeric solver into the FMU,
which just receives inputs and then runs its internal simulation for a specified amount of
time. Importing tools can use this functionality to couple multiple FMUs together and thus
form another hierarchical layer of abstraction above the capabilities of Modelica itself.

The main selling point of the FMI is that the technology is essentially independent of the
modeling language used to define the individual FMUs. One might couple a Modelica FMU
created with OpenModelica with one that was created with Dymola and combine those with
a third FMU generated from MATLAB code that has nothing to do with Modelica altogether.
Implementing tool support just requires handling an XML-basedmetadata format and plain C
code, which is why there are already over 150 tools implementing the FMI standard (Modelica
Association 2022g). On the downside, the choice of defining FMUs as opaque boxes means
that they have to be used as a whole and do not allow manipulation of internal details.

Declarative

Even with all the modular structure, the basic building blocks of Modelica models still are
mathematical variables and equations. This is illustrated by the fact that equations do not
have to be written in explicit form. For example, Ohm’s law could be written as i = v /

r but also as i * r = v (Salam and Rahman 2018). The order in which equations have to
be solved and the variables for which they have to be solved are decided by the Modelica
compiler and the differential equation solver, so the modeler does not have to think about
such low level issues. As a welcome side effect, Modelica compilers are quite strict with
regard to the mathematical correctness of models and are able to flag many design errors
that an imperative implementation in C might have readily accepted. The flow keyword
introduced earlier also imposes such additional mathematical constraints in order to make
conservation laws explicit and thus avoid breaking them due to numerical errors. Such a
feature only makes sense in a declarative mathematical context, and it would be difficult to
implement in an imperative language (Ascher and Petzold 1998).

Another declarative aspect of Modelica are unit definitions, which are realized by the two
parameters unit and quantity that can be specified for any variable. While unit contains
a parsable unit string that can be used for automated unit consistency checks, quantity
is used to further distinguish between different quantities that have the same unit and
also to group together different units that can be used for the same quantity. For models
of biological systems, however, more fine-grained semantic identification of variables is
required in the form of referencing terms in a standardized ontology like the Systems Biology
Ontology (SBO) (Courtot et al. 2011). Since Modelica has an industrial and physical focus,
such a construct does not exist in the language. With the present version of the language, it
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could be emulated in two ways: Either so-called “vendor-specific” annotations can be used to
add information of arbitrary structure to a variable or class, or one could define ontological
terms within a dedicated ontology library and then associate classes and variables with these
library objects via multiple inheritance. These approaches will be discussed in more detail in
section 3.5.4.

Human-readable

Modelica fulfills both major aspects of the human-readable characteristic: It is designed
to be directly written by humans in text form without intermediate processing steps, and
it has extensive documentation features: Variables, classes, and equations can all have an
explanatory documentations string and carry any additional tool-dependent information
in structured form via vendor-specific annotations. Classes can additionally include a full
HTML document for more detailed explanations. The human-readability of source code is
only limited by the fact that the format for graphical annotations is quite verbose and can
therefore obscure the actual variables and equations of the model. This can be alleviated by
editors that allow to collapse these annotations for better visibility and by outsourcing icon
definitions into separate classes that can then be included via inheritance.

As discussed in section 3.1.2, an expressive language also has downsides, the main point being
that its complexity makes it harder for tools to directly support the language. In the Modelica
ecosystem, this is alleviated by the FMI, which defines a model exchange format based
on XML and C code, which is much easier to implement. Modelica models can therefore
be distributed both as human-readable source code and as executable FMU, which allows
interoperability with other tools and languages.

Open

The language Modelica itself and most widely used libraries are open source. There also
exists an open source Modelica compiler named OpenModelica (Fritzson et al. 2005), which
also offers a fully fledged IDE called OpenModelica Connection Editor (OMEdit). A second
open-source option called JModelica unfortunately recently moved to a proprietary for-profit
model (Åkesson, Gäfvert, and Tummescheit 2009; Modelon AB 2022). In principle, this
fulfills all requirements for the open characteristic. In practice, however, one has to consider
that OMEdit does not offer the same convenience as commercial alternatives like Dymola
(Dassault Systèmes 2022). The open source tools are continuously improved and actively
developed, but they lag behind in certain less used but nevertheless important features like
automatic conversion scripts for backwards compatibility of libraries.
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Additionally, most tools—commercial as well as open—do not implement the full extent of
the formal Modelica specification, or there are certain corner cases where the specification
can be interpreted in different ways. This leads to small inconsistencies between tools that
are nevertheless serious enough that it cannot be guaranteed that a model developed in tool
A can also be loaded in tool B. For maximum interoperability and openness, the research
community therefore has to commit to using open source alternatives or at least ensure that
published models are compatible with these open source tools.

Graphical

The Modelica language is built with two equally important model representations in mind.
Models can be created, viewed, and edited both as textual code and as graphical diagrams.
The lowest hierarchical layer of components must be defined as code, but from there on
upwards, both views can be used interchangeably depending on the nature of the task at
hand. This is possible, because the graphical annotations are stored directly in the code
and tied syntactically to the individual components and equations that they represent. This
facilitates a split workflow: Experienced Modelica developers work directly on the code level
to create generalized libraries for application domains such as Modelica.Electrical for
circuit diagrams (Modelica Association 2022e) or Chemical for chemical reaction networks
(Mateják et al. 2015).

Users of these libraries do not have to concern themselves with the code containing the
mathematical details, but only need higher-level domain knowledge to graphically combine
the right library components in the diagram view so that the resulting model represents
their use case. In a certain way, my implementation of the Hodgkin-Huxley and Inada
models followed a similar workflow where I first identified and extracted general “library”
components and then used their graphical representation to recreate the high-level biological
structure of the modeled system.

Hybrid

Modelica models are differential-algebraic equation (DAE) systems, but they also can contain
complex discrete logic like in a discrete-event simulation (DES). In industrial settings, this
is important for “cyberphysical” systems that introduce control logic for machines that
manipulate processes in the physical world. For biological systems, this can be interesting
when crossing from one organizational level to another. For example, the tissue level blood
pressure trajectory might best be characterized with ordinary differential equations (ODEs),
but at the organ level one might want to study HRV—an entirely discrete phenomenon that
requires a discrete beat signal (Seidel 1997).
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By supporting DAEs and not just ODEs, Modelica allows an acausal modeling style that is
especially suited to represent feedback loops. The support for discrete models is not limited
to the re-initialization of continuous variables due to discrete events, but instead variables
can themselves be labeled as discrete, allowing to explicitly declare discrete structures of
arbitrary complexity. Additionally, DDEs and stochastic terms in events13 are also supported,
the latter through noise generating components in the Modelica Standard Library (Beutlich
et al. 2020). This flexibility of Modelica is perhaps best illustrated by the fact that frameworks
like Petri nets, bond graphs, finite state automata (FSA), and agent-based modeling can
and have been implemented as Modelica library (Proß et al. 2012; Cellier and Nebot 2005b;
Modelica Association 2022b; Sanz, Bergero, and Urquia 2018).

Summary

Modelica has an extensive feature set that fulfills all MoDROGH criteria. However, the size
of this feature set itself can be a drawback, since it constitutes a high initial barrier for novices
that have to understand all these features before they can write or extend Modelica models.
This can be alleviated by a strong reliance on standardized libraries, but still these libraries
have to be programmed by modelers versed both in Modelica and the application domain,
and the application domain needs to be understood well enough to allow such a standardized
representation. Additionally, open source Modelica tools lack some convenience features and
there is no preexisting support for annotating Models with ontology terms.

3.2.3. The Modelica ecosystem

To understand what distinguishes Modelica from other modeling languages it is also worth-
while to take a look at the Modelica ecosystem. Modelica is characterized by a large and
diverse user base with an equal mix of academic and industrial applications centered around
a core commitment to open source standards. Regarding the sheer size, the Modelica com-
munity is about three times as large as the community of SBML and CellML combined.14 Its
dual focus on research with industrial application is already reflected in the conception of
the language based on a PhD thesis of H. Elmqvist (Elmqvist 1978), who then founded the
Company DynaSim AB to commercialize and further develop the Modelica precursor Dymola.
Version 1.0 of Modelica was designed by a group of 14 people, of which five were affiliated
with a university, five with a company, and the remaining four with industry-related research

13 Note that SDE, which introduce continuous-time stochasticity, are not supported by Modelica.
14 The International Modelica Conference reported over 400 attendants in 2019 (Modelica Association 2022a) while

the COMBINE meeting reported 101 attendants in the same year (Waltemath et al. 2020). A search for the topic
keywords “Modelica” vs “SBML” OR “CellML” on Web of Science performed on the 4th of May 2021 reveals a
similar ratio of 296 to 126 articles since 2017.

59



3. Discussion

institutes (Mattsson and Elmqvist 1997). Today, the language development is guided by the
nonprofit Modelica Association. Two thirds of its institutional members are regular compa-
nies, while the other third consists of universities, research institutes and university-related
spin-off companies (Modelica Association 2022f).

Perhaps, the best indicator how Modelica benefits from contributions of both sides is the
International Modelica Conference, which is an academic event that also hosts vendor booths
and tutorials (Modelica Association 2022c). Articles from attendants with an industrial
background tend to focus towards scalability and special features and libraries that are
required in certain industrial applications. Two examples from the domain of electrical power
system are a model by Casella et al. (2016), which is among the largest Modelica models to
date, and the PowerSystems library, which provides basic components for such models and
is one of the largest Modelica libraries (Franke and Wiesmann 2014).

In contrast, researchers with an academic background usually do not have use cases of
this size, but contribute more creative and flexible approaches investigating cutting edge
experimental features in open source solutions. Examples include PDEModelica (Saldamli
2006) and its spiritual successor PDEModelica1 (Šilar, Ježek, and Kofránek 2018), which define
language and compiler extensions to handle PDEs, or parallelization approaches (Braun et al.
2020; Walther et al. 2014). The combination of industrial and academic interests within such
a large user base yield a stable environment for continuous advancement of the language
and ensure that Modelica will probably remain relevant in the foreseeable future.

3.2.4. Existing biological projects in Modelica

Other researchers have already used Modelica for biological projects in the past. These
projects mainly fall into two categories. The first class of articles are large integrated models
that have exactly the requirements outlined in section 3.1:

• The lab of Jiří Kofránek works on large, integrated models of human physiology. They
translated the diagram-based Guyton model of circulatory regulation into a graphical
model using MATLAB/Simulink (Kofránek, Rusz, and Matoušek 2007). However, after
comparing Simulink to Modelica, they decided to use Modelica for future projects,
because Modelica’s acausal connections allow building models whose structure fol-
lows the physical structure of the modeled system rather than the calculation process
(Kofránek et al. 2008). One of their largest recent projects is the Physiomodel (Mateják
and Kofránek 2015), a reimplementation and extension of the HumMod model (Hester
et al. 2011), which is a large 5,000 variable model developed in the lab of Thomas
Coleman, one of the authors of the Guyton model. Kofránek et al. argue that while

60



3.2. Modelica as modeling language for systems biology (RQ2)

HumMod was the most complete and up-to-date integrated model of human physi-
ology, other researchers still preferred to use older models, because configuring and
extending HumMod on the basis of thousands of individual XML files seemed too
cumbersome. In contrast, the Physiomodel is based on the Physiolibrary (Mateják
et al. 2014), a robust library of standardized and well-documented physiological model
components, which can be used to extend and adapt the Physiomodel as well as to
build own large- or small-scale models of human physiology. The group continues to
build physiological models in Modelica for use in medical and educational scenarios,
including, for example, a kidney simulator for e-learning (Šilar et al. 2019).

• Another, similarly ambitious, biological Modelica model is SteatoNet, a 9,000 variable
model of the hepatic metabolism including 159 metabolites (Naik, Rozman, and Belič
2014). Unfortunately, the authors do not go into detail about their reasons to choose
Modelica over other language candidates. Like the Physiomodel, SteatoNet is also
based on a component library called SysBio that is available as a supplement to the
article.

• A third, more recent example is the work of Ploch et al. (2019), who present a framework
for modeling a biorefinery. Their use case is a pretreatment process called OrganoCat,
which makes native biomolecules in plant-derived biomass accessible for transfor-
mation. The preprocessed feedstock is then subjected to microbial conversion by
Corynebacterium glutamicum, which involves 50 metabolites. They do still use MAT-
LAB to run the compiled simulation and optimization code, but the actual modeling
task was performed using Modelica and the visualization tool Omix. Like the Phys-
iomodel and SteatoNet, this model is also based on a custom Modelica library of
biochemical unit operations.

The second class of existing projects using Modelica for biological problems is foundational
work that aims to enable a workflow for a whole class of modeling tasks with Modelica:

• To some extent, Ploch et al. (2019) can also be considered to be part of this category.
• One of the earlier approaches in this area is the BondLib library for formulating bond

graphs in Modelica (Cellier and Nebot 2005b). Bond graphs are a very low-level,
graphical formalism for physical models, which are especially suited for Modelica,
because they allow to quickly leave the complicated code level and then only operate
on the diagram level composing more complex components via drag and drop of the
atomic elements. The authors advocated for the use of this formalism in hierarchical
modeling of human hemodynamics (Cellier and Nebot 2005a).

• At the same time, Larsdotter Nilsson and Fritzson developed the Modelica libraries
BioChem and Metabolic, which provide components for modeling biochemical re-
actions and metabolic processes (Larsdotter Nilsson and Fritzson 2005a; Larsdotter
Nilsson and Fritzson 2005b). More recently, researchers from the Bielefeld University
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used Modelica to develop a library for extended hybrid Petri nets, called PNLib (Proß
et al. 2012), in order to model biological systems with this formalism. This lead to
the development of VANESA (Brinkrolf et al. 2014; Brinkrolf et al. 2018), an IDE for
developing and simulating models based either on the Petri net formalism or on bio-
logical networks. For Petri net models, VANESA uses the PNLib in conjunction with
the OpenModelica compiler.

• Last but not least, Maggioli, Mancini, and Tronci (2020) recently developed SBML2Mod-
elica, a tool that can transform almost any SBML Level 3 version 2 model into human-
readable Modelica code.

As a common theme, it can be seen that Modelica is powerful enough to represent other
formalisms and even other languages. However, it is seemingly only used for very large
projects—maybe, because its expressiveness also makes it quite complicated at the code level.

3.3. Comparing Modelica to other modeling languages
(RQ3)

While my investigation started with Modelica, it is by far not the only language that exhibits
the MoDROGH characteristics. Section 1.2 already presented a general classification of
alternative approaches including MATLAB, SBML and CellML, as well as Python- or Julia-
based DSLs. In the following, the most widely used language candidates from each of these
categories are compared to Modelica in terms of their fulfillment of the MoDROGH criteria.
These sections only highlight key differences. For a more detailed characterization of these
languages, the reader is referred to section 8.1 including the article supplement. An additional
element that was not part of the investigation in Schölzel et al. (2021a) is the support for
DDE and SDE, which is summarized in section 3.3.5. Finally, the individual comparisons lead
to a summary in section 3.3.6.

3.3.1. MATLAB/Simulink+Simscape

For a fair comparison between Modelica and MATLAB (The MathWorks 2022c), the Simulink
environment (The MathWorks 2022e) and the Simscape language (The MathWorks 2022d)
have to be considered. Simulink adds a graphical layer to MATLAB models, allowing drag
and drop composition of models, and Simscape allows defining acausal Simulink components
that extend the otherwise block-based system to the same level of expressiveness as Modelica.
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Recently, full support for export and import of FMUs has been implemented in Simulink
(Rouleau 2019). With this setup, the feature sets of MATLAB and Modelica are almost
identical. In contrast to MATLAB, Modelica adds more flexibility for modular model design
by supportingmultiple inheritance and overwriting of parameter values and explicit equations
during instantiation and inheritance. In the declarative characteristic, only Modelica offers
opportunities for adding ontology support via multiple inheritance or custom structured
annotations and in the graphical characteristic, MATLAB only supports bitmaps and not
vector graphics.

However, far more important than these differences is the fact that MATLAB is not open
in any way. Neither the language, nor the compiler, nor tools and editors are available as
open source software, which has severe implications for the accessibility of models and the
extensibility of the environment. For example, a project like PDEModelica for MATLAB would
only be possible with direct support from the company Mathworks. This lack of openness
also affects the human-readable characteristic, since, while Simscape is designed to be read
and written by humans, it can only be used within Simulink models, which are stored in a
proprietary binary format that is not guaranteed to be backwards compatible. Without a
licensed version of the exact same MATLAB and Simulink version that were used to create
the model, there is no guarantee that another researcher would even be able to view its code.
It is, in fact, quite likely, that models stored in Simulink format will become unusable binary
blobs within a few decades, regardless of how well they have been archived.

3.3.2. SBML and CellML

SBML (Keating et al. 2020) and CellML (Clerx et al. 2020) are both state-of-the-art solutions,
which are recommended by the COMBINE (Waltemath et al. 2020). While SBML seems to
be tailored to the biochemical level on the surface, it supports arbitrary ODE and even DAE
models, and the SBML level 3 specification introduces so-called packages, which provide
hierarchical composition, and a code-based graphical representation much like Modelica.
CellML follows a more general approach with no special constructs for any organizational
level. Its feature set is very similar to SBML, but only supports linking external image files as
graphical representation without further tying those diagrams to the model structure.

Compared to Modelica, the first obvious difference is that both SBML and CellML have built-
in support for the semantic annotation of model parts with ontology terms. Because they
originate in the systems biology community, they are much more advanced than Modelica
in capturing the biological semantics of a model. On the downside, both SBML and CellML
lack in human-readability, because they are not designed as top-level languages, which are
directly read and written by humans. Instead, they are designed as exchange formats for a
diverse ecosystem of tools that provides graphical interfaces or higher-level textual languages
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to edit the model content. The raw model files are XML files with MathML equations.
Experienced modelers may understand and even write such files by hand, but for novices
they provide a considerable barrier. This is not much of an issue most of the time, because
these languages are widely used and researchers need only one of the over 100 tools that
support SBML to read an SBML file (Bergmann, Shapiro, and Hucka 2021). However, despite
this interoperability, the transfer of a model from one tool to another may hide information
of optional or tool-specific SBML constructs that are not understood by the tool used for
reading.

Maybe even more important is the fact that while modularity is one of the core principles
of Modelica, both SBML and CellML were conceived without modularity in mind and only
added capabilities for model composition in later versions. The SBML level 3 package comp,
which defines features for the hierarchical composition of models, is neither widely supported
by SBML tools15, nor is it often used in published models16. Even with the package, there is
no support for full object orientation or any similarly powerful method for modular design.
CellML has added support for modular composition in version 1.1 (Cooling, P. Hunter, and
Crampin 2008). The implementation of this feature is mandatory for tools, but the capabilities
are very basic, only allowing the import of one model file in another and the definition of
basic interfaces but not any kind of modification or more complex structural properties.
In contrast to SBML, the user adoption rate of modular composition features is higher.17

Despite their shortcomings in terms of some MoDROGH characteristics, both SBML and
CellML currently offer a much more seamless modeling experience than Modelica in the
systems biology community, simply because of their wide acceptance in tools and databases.

3.3.3. Python-based solutions

Python is a general-purpose programming language that is widely used in systems biology
(Python Software Foundation 2022b; Van Rossum and Drake 2009). Python itself does not
fulfill many of the MoDROGH criteria, but there are two general approaches to use Python
for mathematical modeling that are worth discussing: General libraries for solving ODE or
DAE systems, and packages that define embedded DSLs for specific types of mathematical
models.

15 For example, the SBML Test Suite Database (California Institute of Technology 2022) lists 13 tools that report
success on test 000001, which tests a basic SBML model without any optional features, but only 5 of these also
report success on test 01127, which includes basic code using the SBML comp package.

16 Of 812 models published in the BioModels database from 2014 onwards (which is after the publication of the
SBML comp package in November 2013), only one actually uses SBML comp in the model code.

17 The PMR lists 92 projects using CellML version 1.1 and 72 of them include at least one import directive. However,
the majority of the 649 models in the database was written in CellML version 1.0, which does not support this
feature.
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Libraries for solving differential equations typically only provide low-level functions for
solving equation systems without much regard to model design, which is why they mostly
lack support for modularity, structural documentation, and graphical representation. They
are mostly designed as a reliable lower level upon which more user-friendly solutions can be
built. Examples for this are SimuPy (Margolis 2017) and PyDSTool (Clewley 2012).

Building on this basic functionality there are several Python packages that define DSLs
to facilitate model creation and maintenance. These embedded DSLs are simple human-
readable languages that can be used to supply model definitions as a large string in a Python
program. They are easier to read and write than the technical definitions required by the
basic solver packages, but in order to achieve this simplicity they have to restrict both their
expressiveness and the set of models that can be described to a rather narrow focus on a
specific domain. Therefore, they lack several features which would be required for large
multi-scale models such as, again, support for modularity, structural documentation, and
graphical representation. Despite these shortcomings, embedded DSLs have an important
advantage with regard to hybrid models: Since they are embedded in a general-purpose
language, it becomes easier to couple them with other packages or DSLs that cover other
modeling formalisms or domains. Typical examples for Python-based DSLs include PySB
(Lopez et al. 2013) which focuses on rule-based reaction models and PySCeS (Olivier, Rohwer,
and Hofmeyr 2005), which focuses on cellular systems.

One notable exception to the narrow focus of DSLs is the Tellurium project with its embedded
DSL Antimony (Choi et al. 2018; Smith et al. 2009). Antimony retains the simplicity of PySB
and PySCeS, but adds sophisticated features for modularity, being one of the two major tools
that supported the SBML comp package since its creation in 2013 (SBML.org 2022). It still
supports neither a graphical model representation nor structural documentation and the
modularity features are similarly limited as those of SBML, but it can serve as a more human-
readable top-level language to define large hierarchical SBML models in an understandable
way. It also has the advantage that it includes modularity as a core language concept, so
that one can be sure that each tool that supports Antimony also supports hierarchical model
composition.

3.3.4. Julia-based solutions

Besides Python, Julia is another general-purpose language that has very promising features
with regard to mathematical modeling (Bezanson et al. 2017). On the lower level, the package
DifferentialEquations.jl (Rackauckas and Nie 2017) provides full support for ODE and DAE
including physical units and implicit equations forms. Like SimuPy and PyDSTool, it is too
low-level to be used for large multi-scale models, but it can power other solutions such as
DSLs.
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Julia facilitates the creation of embedded DSLs by providing powerful meta-programming
features that allow to extend the syntax of the language. DSL code therefore does not need
to be formatted as a string literal, but can be directly written as modified Julia code that
seamlessly integrates with other parts of the language. There are two similar projects that
use these capabilities to define DSLs for MoDROGH-style mathematical modeling:

The first is Modia (Elmqvist, Henningsson, and Otter 2016), which is a re-implementation
of the Modelica syntax within Julia. The Modia project is still in an experimental stage and
lacks, for example, graphical capabilities, but it can serve as a proof of concept what could be
possible with embedded DSLs in Julia.

The second Julia-based DSL of interest is ModelingToolkit.jl, which takes a very similar
approach and whose syntax is also inspired by Modelica (Y. Ma et al. 2021). Unlike Modia,
the project is already mature and has a growing user base. Modularity is achieved through a
similar object-oriented approach as in Modelica, but additionally all features of the language
Julia can also be used for model composition, including multiple dispatch, which can be
seen as a more flexible version of the classical object-oriented paradigm (Bezanson et al.
2017). This also has implications for the declarative characteristic, since imperative Julia
code can be mixed with the declarative syntax for defining model components. On the
one hand, this can lead to less code duplication, but on the other hand extracting a purely
declarative description of a ModelingToolkit.jl model without removing any information
about the model structure may prove challenging. Regarding openness, ModelingToolkit.jl
has the clear advantage that the code for compiling and simulating models is also part of
the same environment in which models are defined, which makes it accessible to implement
extensions. In consequence, ModelingToolkit.jl already supports more modeling formalisms
than Modelica, including, for example, PDEs and SDEs. As an interesting additional feature,
it also allows to automatically convert code written for DifferentialEquations.jl, SBML and
CellML models into this high-level human-readable syntax. Like Modia, however, it currently
does not feature any graphical capabilities.

Moving from the language to the ecosystem, the company Julia Computing also recently
started the project JuliaSim (Rackauckas et al. 2021), which aims to enable “industrial scale
modeling and simulation” (Julia Computing 2022) in Julia. JuliaSim is not a single package
but a full modeling environment more akin to Tellurium. Models are defined using Model-
ingToolkit.jl or imported from Modelica or other languages using the FMI. The project also
includes graphical composition of biochemical pathway models using the Pumas platform
(Rackauckas et al. 2020). Unfortunately, while the programming language Julia is open source,
the JuliaSim environment is not.
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3.3.5. Support for DDE and SDE

The original investigation in Schölzel et al. (2021a) only considered DAE and DES support for
the hybrid category, but since the SHM features both DDE and stochastic elements akin to
SDE, a satisfactory answer to RQ3 also includes an investigation of these formalisms. Table 3.1
shows an overview of how well these features are supported across the MoDROGH languages
presented in this dissertation. As already mentioned, Modelica lacks in support for SDE, since
it only supports to add stochastic noise at discrete events. Here, three categories of languages
seem to have an advantage over Modelica: PySB and PySCeS both specialize in models at
the biochemical level where stochasticity is common; MATLAB covers an even broader range
of application areas than Modelica and thus also provides functions for simulating SDE; and
both DifferentialEquations.jl and ModelingToolkit.jl can leverage the fact that they are DSLs
embedded in a general-purpose programming language with packages that support a wide
range of algorithms.
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DDE ✓ ✓ ✓ ✗ ✗ (✓) ✗ (✓) (✓) ✓ ✓ ✗
SDE (✓) ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✓ (✓) ✓

Table 3.1.: Overview of support for DDE and SDE in MoDROGH languages. Differen-
tialEquations.jl and ModelingToolkit.jl are abbreviated to DiffEq.jl and ModTK.jl
respectively. A check mark means full support, while a check mark in parentheses
means that the feature is only supported for discrete events and not as continuous
part of differential equations.

Conversely, rather few languages have the same level of DDE support as Modelica: Again,
MATLAB and DifferentialEquations.jl stand out, because they are embedded in a larger
environment with diverse application areas. In particular, it is interesting that of the systems
biology-specific solutions only SBML fully supports this formalism, although it is clearly
required for models like the SHM. As is often the case with SBML, the general support in
the language does not mean that all tools also support this feature: PySCeS and Antimony
explicitly state that delay expressions in imported SBML models will be discarded.
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3.3.6. Summary

It is apparent that there is a major trade-off between feature-rich general-purpose solutions
like Modelica, MATLAB, and ModelingToolkit.jl on the one side and systems biology-specific
solutions that have lower complexity and barrier of entry on the other side. The advanced
features for modular and hierarchical model design of Modelica, MATLAB, and Modeling-
Toolkit.jl currently cannot be matched in any of the other solutions. They provide robust
solutions for arbitrary model complexity, demonstrated by the size of already existing models.
Of these three candidates, MATLAB has a clear disadvantage with regard to openness. When
choosing between Modelica and ModelingToolkit.jl, the question is whether the increased hy-
bridity and extensibility of ModelingToolkit.jl or the comprehensive capabilities for graphical
representation and composition of Modelica are more important for the modeling project.

However, leveraging all of these advanced features is only possible with education and
experience, and the exact features that allow to handle model complexity might make models
less understandable for novices. This is especially true when considering that there is currently
no standard way to tie biological semantics to Modelica models. While SBML and CellML
are less feature-rich, they fit much more seamlessly into existing systems biology workflows
and environments. In this conflict, Antimony might be seen as a step in the right direction,
as it alleviates some shortcomings of SBML by providing another layer of abstraction above
the already accepted standards. Maybe a future Antimony-like language could provide the
same advanced modularity features as Modelica or ModelingToolkit.jl and still compile to
valid SBML for interoperability with other tools.

3.4. Software engineering approaches for challenges in
systems biology (RQ4)

My work with Modelica has not only shown benefits of the language in particular, but also
benefits associated with general best practices of software engineering, which is in line with
the ideas formulated by model engineering (Hellerstein et al. 2019). This section discusses
the use of these techniques in my own work and their promise for mathematical modeling in
systems biology in general.
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3.4.1. Object-oriented software design

In a way, object-orientation can be seen as the idea to find a natural representation of physical
and biological structure within a computer program (Kay 2003). It was conceived to promote
and simplify code reuse and maintainability of large software projects. Instead of having
only a set of procedures passing data around in ways that become increasingly hard to trace
with increased program size, the main idea is to couple data and procedures to so-called
objects, which are independent of each other and only communicate via clearly defined
messages (for an introduction to object-oriented programming see Phillips 2018; McLaughlin,
Pollice, and West 2007). Both the goals and the biological/physical analogy fit perfectly to
the task of multi-scale modeling in systems biology. In my modeling tasks, I could mostly
just translate the structure of the biological system directly into the object-oriented structure
of the model. At the top level, the SHM consists of objects such as Baroreceptors, Lung, and
Heart. Similarly, InaMo includes top-level objects like ANCell, or CurrentClamp, and one
hierarchical step below there are LipidBilayer, InwardRectifier, or SodiumPotassiumPump.
An interesting exception is the modular version of the cardiac conduction system of the SHM.
Here, the model structure does not separate by physical entities, but rather by different
effects of the same biological structure (i.e. tissue in the atrial ventricular node), which leads
to object names such as RefractoryGate, Pacemaker, and AVConductionDelay. However,
even in this case the object-oriented paradigm was a natural fit to the way I thought and
talked about the model with my colleagues. The InaMo example shows that this can be
done on multiple levels of organization. It is possible to combine multiple objects to a new
higher-level object or to split up the code for one object into several lower-level objects.

Perpendicular to this hierarchical composition, object orientation also allows different levels
of abstractions. Each concrete object is an instance of an abstract class, which serves as a tem-
plate for creating objects of a specific type. For example, the SHM contains two objects of the
type/class NeurotransmitterAmount for the concentrations of Norepinephrine and Acetyl-
choline. These objects share the exact same code and only differ in their parameter settings
and their connections to other objects. Taking this idea one step further, there can be classes
that are even more abstract, capturing similarities between different entities in the system. In
InaMo, TransientOutwardChannel, InwardRectifier, and RapidDelayedRectifierChannel
are all more specific versions of the general class IonChannelElectric. The equations and
variables that occur in each of these classes are only defined once in IonChannelElectric

while the other classes import these components via inheritance. In contrast to composition,
inheritance does not involve another layer but allows combining and reusing code at the
same organizational level. This is particularly interesting, if a language allows multiple in-
heritance from different parent classes. In my projects I mostly used this feature to inherit
both functionality from a general class and a graphical representation from an icon class,
but it would also be possible to combine different types of functionality like defining a
RefractoryPacemaker that is both a Pacemaker and a RefractoryGate.
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Regardless of the kind of inheritance used, classes in an object-oriented piece of software
have to be self-contained: To serve as interchangeable modules, objects cannot access
arbitrary internal details of other objects. For example, the LipidBilayer in InaMo must
be connectable to any kind of current components, be it an ion channel, an ion pump or
something else. Therefore, it would be too limiting, if the code in LipidBilayer assumed that
there was, for example, an activation gate or a sodium concentration at the other side of the
connection. Instead, components should only be connected through a minimum number of
clearly designated interface variables, forming a well-defined interface. This is required both
for maintenance, as a limited number of shared variables allows an easier localization and
tracking of errors in the system, and for reuse, as it becomes clear which kind of connections
to the outside are supported and required by the class.

There is a debate in the systems biology community that this encapsulation principle can be
detrimental, because model reuse may happen in unforeseen ways and unusual connections
to internal details of a component may be required (Clerx et al. 2016; Neal et al. 2014). For
example, a fixed parameter for the intracellular sodium concentration might actually become
a variable in the context of the reuse, which requires adding this variable to the interface,
since there might be multiple components that need to access this shared concentration
value. However, I would argue that it is actually beneficial if such a major change to a model
component cannot be done without accessing its code. When properly designed, interfaces
capture the assumptions that a model is based on. For example, if the temperature of the
cell medium is a fixed parameter, this is a clear indicator that the model may be lacking
equations that would be required to capture dynamical changes to that temperature and
this is indeed the case in large parts of InaMo. At the very least, such a switch should not be
done without carefully examining the internal equations of the model, which is enforced by
a clear, and possibly rigid, interface definition.

Taken together, hierarchical composition, inheritance, and interfaces make it possible to
handle programs and models of arbitrary size and complexity. This is apparent by huge
software projects powered by object-oriented programming languages, such as the Firefox
browser with 21 million lines of code (Abadie and Ledru 2020) or Google, who famously uses a
single source code repository of 2 billion lines of code for all of its services (Potvin 2015). With
Modelica, I have made the same observations for mathematical models: In principle, object-
orientation allows to split a model of arbitrary size into small, maintainable components that
each have only a few dozen lines of code. However, it also became apparent that mathematical
models require some additional features to these core concepts. Examples include the
grouping of several interface variables to a single connector to reduce the complexity of
connections, and the overwriting and deletion of variables and equations during inheritance.

While object orientation is a natural fit to facilitate elegant multi-scale modeling, modern
general-purpose programming languages also use other paradigms to handle complexity.
Functional programming, which allows using functions themselves as values that can be
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passed as arguments to another function like numbers or strings, can complement object
orientation, because it “modularizes” computations and data flow. In fact, Modelica does
support creating new functions by fixing parameters of an existing function to a default value,
and it also allows using functions as values. I used this both in HHmodelica and in InaMo
to compose fitting functions used inside ion channel models and to avoid code duplication.
With regard to ModelingToolkit.jl, the multiple dispatch mechanism of Julia, which decides
which version of a function to use based on the data type of the arguments that are passed
to it, might also act as a replacement for the traditional view of object-orientation presented
above.

3.4.2. Documentation

In software engineering, there is a consensus that in order to be maintainable and reusable,
code must be well-documented (Martraire 2019). Virtually all programming languages allow
comments in the form of text that can be added to a source code document and that is ignored
by the compiler. This can be used to explain complex and unintuitive lines of code, but it is
only useful when looking directly at the relevant line in the source code where an item of
interest is defined. However, when exploring an unknown code base or writing own code,
one often wants to know the detailed definition of a code item that is not defined but just
mentioned in the code one is currently analyzing or writing. Here, structured documentation
is required—i.e. documentation that is tied to the code item it explains and that can therefore
be automatically retrieved whenever that item is mentioned.

In mathematical modeling, such documentation can, for example, come in the form of short
labels for models, parameters, variables, or components. Additionally, a model or component
may require some more in-depth discussion in form of a rich-text document, for example
in HTML format, that is embedded in the source code. The benefit of such structured
documentation over simple comments is that it can enrich the presentation of the model in
many formats. Editors and other tools can parse the documentation and display it alongside
the item that it documents, export formats like FMI can use it to create summaries of the
model content, and it can even be used to automatically create a documentation website (e.g.
using a tool like MoST.jl). This is especially important since it can enrich model discovery in
databases and web services like BioModels or the PMR. While it is possible to copy parts
of normal comments or external documents to achieve these goals, this quickly becomes
cumbersome once changes to the code require a change in the documentation. It is better to
only have to change a single label in proximity to the changed line of code than to have to
remember to update several websites and other external documents, which might lead to
oversights.
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In my own modeling experience, Modelica’s structural documentation features were invalu-
able in the re-implementation of the Inada model. Here, I constantly had to remember why
equations looked as they do, why parameter values in tests differed from the parameter
values for the main model, or how my own base classes and interfaces were structured. The
documentation of InaMo now contains the result of my research through 9 articles and two
other code bases and aims to explain every single parameter setting so that future researchers
will not have the same overhead when reusing my code. This thorough explanation can be
found in the code itself, in the exported FMU file and in the online documentation of the
model, which are all created from a single source.

3.4.3. Version control

Research is always ongoing work that is subject to frequent changes. Mathematical models
are no exception. Seidel’s and Inada’s C code, and the CellML version of the Inada model all
showed signs of being edited after their initial publication. For my own models, the version
number of each of them changed several times: 10 for SHM, 3 for SHMConduction, 7 for
HHmodelica, and 8 for InaMo. Each of these changes included substantial modifications to
the models and their tests. This makes it apparent that it is important to track these changes
and to document which exact version of a model or script was used in a publication in order
to achieve an exact reproduction of its methods.

The software engineering solution for this problem are Version Control Systems (VCSs) like Git
(Chacon, Long, and the Git community 2022). These systems can handle arbitrary plain text
documents by identifying changed lines and allowing the user to add a meaningful comment
to each small change performed on a document. While each of these so-called commits
already carry a unique identifier, programmers can also use human-readable labels to identify
when these small-scale changes constitute a shift from one version of the code to another.
Ideally, this should be accompanied by a separate document called a changelog, which
summarizes the small-scale commit messages to explain which meaningful top-level changes
were performed since the last version (Lacan and Fortune 2017). With these instruments,
it is easy to keep track of what changed when and why and, in particular, to identify why
some test might work with one version of the software but not with the following version.

Especially for the Inada model, I would have welcomed both a coarse-grained changelog and
fine-grained commit messages in order to know when and why the Acetylcholine-sensitive
channel was added, which experiments were performed using this code, and whether this
branch of development was continued and used for the experiments in the article or not.
Such information could have saved a lot of time spent on research and testing during the
reimplementation.
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There is one major caveat with regard to VCSs: They assume that each change in a document
is due to a meaningful and conscious decision by a human being. This assumption is violated
when documents are not edited directly in a text editor or IDE, but through a graphical user
interface, or a definition in a different, higher-level language that is automatically translated.
Such automatic translation can introduce structural changes such as a reordering of elements
that is ultimately meaningless but will show up as numerous changed lines in the VCS. This
is true for SBML and CellML models and, to some extent, also for graphical annotations in
Modelica models. When one is not careful, such clutter can obscure actually meaningful
changes.

Additionally, the value of the VCS is diminished if it can only show changes on a lower level
that the programmer is not actually familiar with. For example, a change in an equation
in a SBML model will result in a block of changed MathML lines, which may be quite hard
to decipher, because SBML tools usually do not show the raw MathML code, but a human-
readable representation. To some extent, this can be alleviated by making the VCS aware
of the structure of these documents and providing alternative, high-level views for these
changes, but such solutions are not implemented in standard VCS solutions like Git.

3.4.4. Automated testing

The abundance of positive and negative feedback loops in biological systems makes it ex-
tremely hard to pinpoint the source of an error in a model. Taking the example of the SHM,
if one observes that the blood pressure is too high, the reason for this may be an error in
the equations for the blood pressure curve in the heart, or it might be that the equations
of the sympathetic system produce an abnormally large activity, or the sensitivity of the
baroreceptors to absolute blood pressure might be too low. Without a way to test each of
these model parts individually, there is no way to tell which part of the loop is the source for
erroneous behavior.

One of the first things that I did when implementing the SHM in Modelica was to just
focus on the baroreceptors themselves and then build a small test model that simulated the
reaction of the baroreceptors to a predefined blood-pressure curve. This effectively breaks
the feedback loop and allows the modeler to observe whether the behavior of this single
component is plausible when it is isolated from the rest of the model.

This general concept is called a unit test in software engineering (here and in the following see
S. Freeman and Pryce 2010). The idea is that in order to narrow down the search for errors,
the smallest parts of the system that can still be considered to be self-contained units should
be tested for a range of different inputs, comparing the actual output to the expected output.
By doing this, it is ensured that the failure of such a unit test can only mean that the error is
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within a single unit, which should only span a few dozen lines of code. For mathematical
modeling, unit tests have the additional value that they make it easier to reuse only parts of
a model. When these parts are subjected to unit tests, a researcher that wants to reuse them
both knows their expected behavior in isolation and has an example of how to extract them
from the code base.

A prime example is the CaHandling component in InaMo, which I transformed from a
monolithic to a modular representation in order to make it more understandable. This part
of InaMo had to undergo several major changes, because I had some misconceptions about
the model and equation structure at first. To localize errors, I implemented small tests for
each of the components such as the SERCA pump, the Ryanodine receptors, and diffusion
components. These tests highlighted several accidental errors that I introduced during the
modification of the overall CaHandling system.

The CaHandling system also shows some peculiarities of unit tests in mathematical modeling.
Most importantly, defining the expected output of a model is not as easy as determining the
expected output of, for example, a function that should sum up its arguments. The output of
any simulation is usually a time course of some variables. In order to write a unit test that
does more than ensuring that the model compiles successfully, it is therefore preferable to
store a reference simulation output along with the model. The test can then be as simple as
requiring an exact match within some tolerance between the actual simulation output and
the reference.

This principle of comparing the output of a program with the output of a previous version
is called a “diversifying” test and if it is used to ensure that modifications do not lead to
unforeseen errors (i.e. “regressions”), it is further classified as a regression test (Liggesmeyer
2009). It would also be possible to use qualitative descriptions of the expected output like
“Variable a has a peak of height 12 at time t = 0.5s.”, but this would require special testing
libraries that support the translation of such coarse concepts to actual mathematical tests on
the output data. In fact, storing reference data in the repository even has the added benefit
that researchers who want to reproduce the model in a different language can use the very
same reference output to test and even quantify the difference between their implementation
and the original one. On the downside, one must be very careful when there is a desired
change in behavior that requires to update the reference data, because it must be ensured by
manual inspection that no additional, unwanted changes slip under the radar.

There are, of course, also errors that do not occur in isolation, but only when components are
connected to each other. Therefore, the same structures and libraries used for unit tests are
also used for so-called integration tests, which test the behavior of the whole system in some
clearly defined cases (S. Freeman and Pryce 2010). For mathematical modeling, this principle
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can be used to test the very same simulations that are performed in the accompanying
research article. These tests can even serve as a documentation of the exact experiment
protocol used.

3.4.5. Virtualization and continuous integration

Unit, regression, and integration tests are more useful if they are performed often, preferably
for each small change to the code, because this allows pinpointing errors to just one such
small change. Additionally, even if the tests run on one machine, they may fail on another
system because of a different behavior of the operating system, missing dependencies, or
missing configuration files. These issues can be addressed by continuous integration (CI)
(Shahin, Ali Babar, and L. Zhu 2017). The basic idea of this technique is to increase software
reliability by running tests—especially integration tests, hence the name—frequently in an
automated pipeline. CI is usually performed in a virtual machine or a container, in order to
have a minimalist, clearly defined environment, which also shields the server from errors
in the software that is being tested. This means that a CI script has to include the full
information that is required to set up the software on a machine that is completely separated
from the development environment. It is even possible to simultaneously run tests on different
operating systems with different versions of dependencies in order to detect errors that might
only occur in a specific setup. This guarantees methods reproducibility and facilitates results
reproducibility of any software-based study.

For mathematical modeling, it has the additional benefit that a CI script needs to contain all
the information that is required to set up the environment and to run simulations. If Inada
et al. published their model code publicly with an accompanying CI script, or if the CellML
Model Repository performed automated tests on published models, most if not all errors
that I encountered in my re-implementation could probably have been fixed by the authors
before publication.

Even when one does not consider reusability, CI also helps during the development process.
I noticed that, due to the abundance of feedback loops in models of biological systems,
changing one part of the model could make virtually any other part fail. To make matters
worse, I would often only notice these errors much later in the development after I had made
several other changes, making it quite hard to pinpoint the defective lines of code. To manage
these unforeseen interactions, I needed to run the full test suite for all model parts after each
change to the code. Doing this manually was cumbersome and slowed down my workflow, so
I implemented an automated CI pipeline. Looking back, I would estimate that even creating
the pipeline from scratch with limited prior knowledge about CI tools still resulted in an
overall reduction of the development time, because it cut down on debugging time.
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Regarding reusability, the CI scripts did not only guarantee that my methods were repro-
ducible with the OpenModelica versions, which I was using at the time of publication, but
they also helped me realize that there were new issues with OpenModelica version 1.15
and onward due to changes in the compiler logic. By fixing this issues I could allow other
researchers to reuse my models with newer OpenModelica versions up to version 1.17.

The same workflow systems used for CI can also be used to automate the release of software
artifacts, which is called continuous deployment (CD). For example, each version of my
implementation of the SHM, HHmodelica, and InaMo, also includes a FMU of the main model
of the respective project in order to keep the barrier for other researchers to run their own
simulations with themodel as low as possible. This FMU is automatically generated whenever
a tag with a new version is pushed to the Git repository. Similarly, HTML documentation
generated by MoST.jl is also updated automatically for each new model version.

3.4.6. Long-term archiving of code

Even if the methods of software-based research projects are reproducible at the time of
publication, this is not a guarantee that it will stay reproducible in the following decades. If
the software is published on a private or institute website by the authors, limited funding and
short-term contracts may mean that the maintaining researchers leave the institution after a
few years and take up other projects, abandoning the website maintenance for time reasons.
A more sustainable approach is to upload software artifacts to a journal website along with
the corresponding research article. However, still, journal websites and databases are subject
to changes that might, as in the case of the Inada model, bury these artifacts, rendering them
inaccessible for other researchers over time. It becomes clear that the long-term archiving of
code is a nontrivial task that requires dedicated solutions. There are already many interesting
approaches of which I want to highlight a few:

Dryad is a general research data repository for any field and any data format based on
open-source software (Cruse et al. 2022; White et al. 2008). It is manually curated to
ensure data quality and archived through the Merritt Repository of the University of
California Curation Center (UC3) (The Regents of the University of California 2022b).
At the top level, Dryad provides citable Document Object Identifiers (DOIs) for entries
and works together with publishers such as Wiley, The Royal Society, and PLOS to
cross-link published data to the corresponding article and check compliance with
journal requirements.

BioModels was originally designed as a database for SBML models at the European Bioin-
formatics Institute of the European Molecular Biology Laboratory (EMBL-EBI), but
now accepts all model formats (Malik-Sheriff et al. 2019). Like Dryad, it is in part
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manually curated with strict guidelines for SBML models, although curation is not
available for non-SBML models. Both curated and non-curated models are always
linked to a publication. BioModels is an ELIXIR Deposition Database, which means
that it meets certain technical quality and governance criteria and aligns with the
FAIR principles (Durinx et al. 2017). However, I am not aware of a long-term archiving
strategy employed by BioModels. On the surface-level, BioModels does not use DOIs
but their own unique model identifiers. The BioModels website offers a rich set of
features for model exploration using semantic metadata.

Zenodo is a service for storing and publishing all kinds of research data, and is hosted
at the CERN Data Centre (Cern Data Centre 2022). Like Dryad, it is based on open-
source software, and it provides citable DOIs for entries. Uploads are not curated and
therefore integration with journals is only possible in a more loosely fashion. As part
of the CERN Data Centre, Zenodo follows high standards for long-term storage.

The GitHub Archive Program is a long-term archiving service for software hosted on
GitHub (GitHub 2022b). It employs a pace-layers strategy (Brand 2018) with a hi-
erarchy of backup services from low-latency short-term solutions to slower long-term
solutions. On the extreme end, the GitHub Arctic Code Vault is designed to store
software artifacts for at least 1000 years. The GitHub Archive Program does not use
manual curation or separate identifiers like DOIs, but it ensures that source code
repositories hosted on GitHub will be available for future uses for as long as possible
without any need for manual intervention by the repository owner. On the downside,
this system is only designed for source code and other text documents and not large
volumes of binary data.

From this selection it becomes apparent that there are many approaches and that there are
trade-offs between them. Zenodo and Dryad are well-suited for recordings of wet lab or in
silico experiments, while GitHub is a good choice for model source code, and finally BioModels
is especially interesting for SBML models. For my own models, I chose to combine multiple
approaches to achieve optimal reliability and accessibility. The GitHub Archive Program
ensures the long-term storage of my models, while Zenodo makes individual versions of
the models citable using a DOI, and BioModels makes them discoverable through the FAIR
principles.
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3.5. Required tools and language improvements for
mathematical models of biological systems (RQ5)

During my dissertation I encountered many areas where the modeling process with open-
sourceModelica tools could be improved either in general or with specific regard tomulti-scale
models in systems biology. For most of these issues, I drafted solutions that I either realized
myself or by supervising a bachelor’s or master’s thesis. This section will give an overview
both of the issues and the suggested solutions.

3.5.1. Mo|E

When I first started working with Modelica, the OpenModelica IDE OMEdit (version 1.9) was
still missing a lot of convenience features and did not fit very well in my software engineering
workflow. One of the major concerns was that it focused very much on graphical model
composition over model design on the code level. Among other inconveniences, comments
in the code could be lost or moved around the document, and purely structural changes like
indentation could be discarded or rearranged when the model was saved. As mentioned
in section 3.4.3, this creates major issues with VCSs, because it can obscure meaningful
changes in a large chunk of meaningless artifacts due to restructuring. The focus on the
graphical composition also meant that model files could only be saved when they were fully
syntactically correct, because otherwise they could not be loaded for editing again.

Additionally, OMEdit did not support advanced code editing features like, for example,
code completions, automatic detection of type errors or references to non-existing variables,
multiple cursors, VCS integration, or a search engine for editor commands that is accessible
from a keyboard shortcut. Structured text editors like Atom (GitHub 2022a), Visual Studio
Code (Microsoft 2022b), and Sublime Text (Sublime HQ 2022), provide most of these features
out of the box, but for error reporting and code completion they require language-aware
plugins. Mo|E provides such a plugin for Atom and allows the easy definition of plugins for
other editors. It was the Bachelor’s thesis of Nicola Justus, which I supervised.

Mr Justus drew inspiration from the ENSIME project (ENSIME contributors 2022), which
provides a language server for the language Scala that decouples language-aware code
from editor plugins, which only have to implement the simple HTTP-based protocol to
communicate with the server process. Mo|E takes the same approach, using a custom error-
tolerant Modelica parser in the server to also provide code completions in a document that
is not fully syntactically correct. In general, it removes the extra automatic processing step
between writer and reader of model code that is introduced in OMEdit, ensuring that the
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code stays exactly as it was written and allowing fine-grained manual structuring to make
the code itself as understandable as possible. It also allows applying a multitude of software
engineering tools like VCS, multi-cursor editing or static code analysis, which allows the
design of Modelica models in a modern software engineering workflow.

3.5.2. MoVE and MoNK

Even though OMEdit was and is focused on graphical composition of models, the vector
graphics editor is another weak point of the software. In version 1.9, there was, for example,
no way to undo changes, and it was impossible to select an element that was situated
“behind” a transparent element. In version 1.18, there is currently still no support for bringing
an element to the front or moving it to the back of the graphical stack. This situation is
unfortunate since vector graphics have clear advantages in a scientific setup where model
icons will not only be viewed inside the IDE, but also in varying sizes in PDF documents, on
websites, and on posters.

In order to facilitate and promote the use of Modelica’s vector graphics feature, I wanted to
allow Modelica developers to edit Modelica vector graphics with the same convenience that is
provided by professional tools such as Inkscape (Inkscape developers 2022) or Adobe Illustrator
(Adobe 2022). In general, there are two approaches for this: Developing a standalone vector-
graphics editor for Modelica models; or translating an SVG document created by another tool
into Modelica syntax. With MoVE, I first pursued the first approach, because the Modelica
vector graphics format is incompatible with SVG. Like Mo|E, this project was performed by
Nicola Justus and supervised by me as preparation for Mr Justus’ Bachelor’s thesis. MoVE
did provide a rudimentary implementation of the features that were missing in OMEdit and
improved on usability and convenience. However, it turned out that, even with the limited
amount of primitives provided by the Modelica syntax, making the features stable enough to
provide the same convenience as professional tools required a great amount of effort, because
there were a lot of corner cases to consider.

Since my own time for maintaining the project was quite limited, I decided to no longer
develop MoVE, but instead try the second approach, translating SVG documents to Modelica
syntax. The resulting Inkscape plugin MoNK does neither support all SVG primitives nor can
it create every possible Modelica primitive, but there is a sufficiently large common ground
between the two formats that allows for satisfactory results in almost all cases, requiring only
minimal manual adjustment of the resulting Modelica code. The most noticeable downsides
include difficulties in handling smoothed paths and polygons, text placement, Modelica
fill patterns, and SVG elements that have no direct equivalent in Modelica. On the upside,
however, MoNK allows to shift the major part of Modelica icon design to professional tools
offering a lot of design features that would be impossible to re-implement in an IDE like
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OMEdit or a standalone editor like MoVE without a large development team dedicated only
to this feature. Although it is designed as Inkscape plugin, the MoNK script can also be used
to translate SVGs from other sources like Adobe Illustrator, or preexisting icons from online
databases.

3.5.3. MoST.jl

Defining unit tests for mathematical models in general and Modelica models in particular
is not straightforward with existing tools. General-purpose unit testing frameworks in
programming languages like Python or Julia are mostly focused on testing whether the
output of a single function call matches an expected result and not on comparing trajectories
of continuous variables through time (Python Software Foundation 2022a; Bezanson et al.
2022). Specific Modelica libraries for defining unit tests exist, but they are either part of
proprietary tools, in an early stage like XogenyTest (Elsheikh et al. 2022), or discontinued like
MoUnit (Samlaus et al. 2014). Some large Modelica projects like OpenModelica (Sjölund, A.
Pop, and perost 2022) and the BuildingsPy library (The Regents of the University of California
2022a) include custom libraries for regression tests that do not require changing the code
of Modelica models themselves. These libraries are tailored to the specific projects and
cannot easily be extracted from their environment. Additionally, they do not provide concise
top-level summaries of test success or failure like comparable libraries for general-purpose
programming languages.

Due to these shortcomings, I decided to implement my own test script using the libraries
OMJulia.jl (Kumar et al. 2022), which allows connecting to the OpenModelica Compiler
(OMC) from a Julia script, and the built-in unit testing features of the Julia standard library.
During the development of my Modelica models, this script grew into the library MoST.jl,
which aims to make thorough testing of Modelica models as easy as possible for the end
user. Consider the following example code:

1 using ModelicaScriptingTools

2 using Test

3

4 withOMC("test/out", "test/res") do omc

5 installAndLoad(omc, "Modelica"; version="3.2.3")

6 @testset "Example" begin

7 testmodel(omc, "Example"; refdir="test/regRefData")

8 end

9 end

[3.11]

This script installs and loads the required version of the Modelica Standard Library (MSL) if
required and possible, loads the model Example from the library folder test/res checking
it for any kind of errors and reporting them in a human-readable way. Then it reads the
simulation settings from the model annotation—including a custom vendor-specific annota-
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tion, which can be used to filter relevant variables—and performs the simulation, writing the
output to the folder test/out. Additionally, if a file with corresponding name exists in the
directory test/regRefData, a regression test is performed, checking for missing variables,
varying output lengths, and differences above the default relative tolerance of 10−6 between
the output and reference data after both have been resampled to the same size. From the
user’s point of view all this work just requires a few lines of code, which can be configured to
their liking.

To facilitate running unit tests in a CI workflow, I also implemented the GitHub action setup-

openmodelica (Schölzel 2022b). With this action, the user only has to specify which version
of OpenModelica they would like to install instead of going through the slightly complicated
process of adding a package repository and its authentication keys to the package manager
apt.

Apart from providing an easy-to-use unit testing library, MoST.jl also attempts to solve a
different problem. While hierarchical composition facilitates model development and reuse, it
can make it hard to get an overview of the actual equations that are used in a model, because
the user has to traverse through all intermediary levels to reach the actual mathematical
representation at the lowest code level. This can be solved in twoways: First, one can facilitate
quick transitions through the model hierarchy, for example by providing an HTML-based
documentation where the user can jump from model to model using hyperlinks.

Secondly, it would be helpful to be able to generate a mathematical summary of the whole
model that is independent of the modeling language, much like the lists of parameters
and equations encountered in journal articles. If this second option can be automated, it
could also help to reduce human error in published model equations. MoST.jl attempts to
provide both solutions by extending the Julia library Documenter.jl (Piibeleht, Hatherly,
and Ekre 2022). Documenter.jl allows writing documentation for Julia packages using an
extended version of Markdown that can, among other things, contain statements that import
documentation strings from Julia functions. The extensions provided by MoST.jl allow the
same functionality for Modelica models. For example, a documentation of the main model
of the HHmodelica project might look as follows:

1 ## Full modular model

2

3 ```@modelica

4 %outdir=../out

5 HHmodelica.CompleteModels.HHmodular

6 ```

[3.12]

The special language code @modelica tells Documenter.jl to not format the code block as
such, but instead output a model summary defined by MoST.jl. This summary contains…
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• the rendered HTML documentation string found in the annotation of HHmodular,
• the full model code,
• all equations of the DAE system defined by the model, grouped by the model hierarchy

and cleaned of alias variables, introduced due to connect equations,
• a list of all functions that are called in the equation list, avoiding duplications due to

parameter changes,
• and a list of all variables and parameters involved in the DAE system, including units,

parameter values, and labels.

The procedure to create this summary is quite involved and error-prone, due to the amount of
cleanup and simplification that is required to make the raw compiler output human-readable,
but the first experimental results are promising. It might turn out that in order to solve
this robustly, the simplification features have to be integrated into the OMC itself, but
since this makes models much more approachable both for novices and experts, it might
be worth to further pursue this route. An example can be seen at https://cschoel.github.
io/hh-modelica/dev/.

3.5.4. Ontology support

As mentioned in section 3.2.2, one of the main shortcomings of Modelica with regard to the
use in systems biology is the lack of support for annotating models and their components
with ontology terms. There are two possible ways to remedy this that I want to outline here.

The first approach uses so-called vendor-specific annotations. These can be added to any
model or model component and take the form __VendorName(key1=value1, key2=value2,

...). Values for keys can be arbitrary Modelica data including Arrays, Objects, and primitive
numbers, Booleans, or strings. With this feature, it would be easy to just add something like
the following to a model of the human heart:

1 model Heart

2 ...

3 annotation(

4 __ModelicaOntologyExtension(

5 file="HUPSON.owl",

6 id="http://sig.uw.edu/fma#Heart",

7 label="Heart"

8 )

9 );

10 end Heart;

[3.13]
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The benefit of this route is that vendor-specific annotations are a very powerful tool to add
data of almost any shape to almost any part of a model. On the downside, tools need to
support this kind of information in order to make it valuable for a user of the model who
does not want to look directly into the source code to uniquely identify model components.
Systems biology researchers would either have to implement their own Modelica-based tools,
or work together with open source tools like OpenModelica to add support for such a feature
into the existing tools.

The second approach therefore attempts to leverage existing Modelica features as much
as possible. Since Modelica supports multiple inheritance, the extends keyword can be
exploited to import ontology information into a model as part of the type system. This
requires that the Ontology is transformed into a Modelica library that does not provide
any functionality, but only the desired unique labeling. To illustrate this idea, consider the
following example code using the human physiology simulation ontology (HuPSON) (Gündel
et al. 2013):

1 package HUPSON

2 model heart "heart"

3 parameter HUPSONInfo hupson(

4 definition= "A hollow organ located slightly to the left ..."

5 id= "http://sig.uw.edu/fma#Heart",

6 synonyms= {"hearts", "cardiac"},

7 subClassOf= HUPSON.anatomical_part,

8 ...

9 );

10 end heart;

11 end HUPSON;

12

13 model Heart

14 extends HUPSON.heart;

15 ...

16 end Heart;

[3.14]

Using such a structure, existing Modelica tools will display the information that HUPSON.
heart is a base class of the Heartmodel. Moreover, this also means that Heart objects have a
regular Modelica parameter called hupson, which contains a record with all ontology-related
information attached to the heart term in HuPSON, including the unique identifier of the
term. The content of this parameter can be inspected with the same tools used to inspect
other Modelica parameters. Links to other ontology terms can be implemented by actually
referencing them in the hupson parameter. It is likely that such a translation of ontologies
to Modelica libraries can even be automated. The only remaining downsides in comparison
with the approach using vendor-specific annotations are that it is not easily possible to
annotate equations in this way and that by adding hupson objects as actual parts of the
model, unnecessary clutter is added to the model that might slow down compilation and
simulation.
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3.5.5. Modelica features in COMBINE languages

There is one remaining downside of Modelica that is hard to overcome: The systems biology
community has already decided on using SBML and CellML as standard languages. Both
are suitable in general, but lack some of the features of Modelica, most notably its support
for object orientation. Another approach, which may even be undertaken in parallel to a
gradual adoption of Modelica for very large models, could be to extend these languages with
the necessary features. This would have to cover three major areas:

1. Graphical model representation must be promoted and supported more widely. As
far as I can tell, SBML’s support seems sufficient on the language level, although the
separation between the layout and rendering package might be confusing for users if
it is not abstracted away properly by editing and viewing tools. To avoid the Modelica
situation where vector graphics are possible but cumbersome to use, an alternative
approach might also be to just embed a SVG image in a SBML/CellML model (which
should be easy since all these formats are XML files) and require that each top-level
element in the SVG is connected semantically to a component or connection term of
the model.

2. Human-readability and better version control could be achieved by adding another
layer of human-readable languages on top of SBML/CellML. This process has already
started with Antimony and CellML Text, but both formats are currently mostly used
as editing help within other tools and environments. Instead, they should be used as
primary, standalone source files, which can be kept under version control and from
which SBML and CellML code can be generated on the fly.
In order to do this, both languages need to be extended with additional mechanisms
that represent the full feature set of SBML/CellML. Here, Modelica might serve as
inspiration how complicated modeling features can be implemented in a human-
readable syntax.

3. Advanced modularity support might be the highest barrier to build large-scale models
in SBML/CellML, because in both languages this would require substantial extensions
to the core language constructs. As outlined in section 3.4.1, I believe that the object-
oriented paradigm—either in its classical form or as the multiple dispatch variant
used by Julia—is perfectly suited to solve the scaling- and reusability-related problems
of large multi-scale models. There are other concepts with similar power, such as
functional programming, but I am not aware of any projects that use those to implement
models of a similar size as Modelica.
Therefore, I think that both SBML and CellML should strive towards supporting full
object orientation, including (multiple) inheritance, hierarchical composition, and
interfaces with variable grouping. Future versions of SBML should also incorporate
this feature as a core language concept, not just as an optional add-on.
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There are probably other, more specialized areas where language design in Modelica could
inspire language design in SBML and CellML and maybe also vice versa. In any way I believe
that a collaboration between language developers and communities of both sides would be
beneficial for scientific progress in mathematical modeling as a whole.
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Summing up the answers to the initial research questions, it can be said that modeling
languages for systems biology should be MOdular, Declarative, human-Readable, Open,
Graphical, and Hybrid (MoDROGH) (RQ1) to facilitate reusability and that Modelica does
fulfill all of these criteria with small concessions regarding openness (RQ2). OtherMoDROGH
languages either lack in modularity (SBML, CellML, most DSLs), openness (MATLAB), or
graphical model representation (ModelingToolkit.jl, Antimony), but the COMBINE languages
SBML and CellML currently beat Modelica in terms of ontology support as well as inter-
operability and acceptance within the systems biology community (RQ3). Additional to
the language choice, the application of software engineering techniques to mathematical
modeling seems a natural fit that is warranted for larger projects and benefits go as far as
guaranteeing methods reproducibility through continuous integration (RQ4). Tool support
should concentrate on embedding model design into a typical software engineering workflow
with structured editors (Mo|E) and automated testing and documentation (MoST.jl), as well
as enabling other domain specific features such as vector graphics editing (MoVE/MoNK)
or ontology support (RQ5). Finally, the perfect language for future systems biology models
might not exist yet, but could be developed as a combination of the features of Modelica and
existing standards, such as an extension of SBML and CellML or a Modelica-like language
that uses SBML or CellML as exchange format.

In consequence, these findings reveal the need for changes on multiple levels: Individual
modelers have to choose suitable approaches, institutions have to reconsider their infrastruc-
ture, and the systems biology community has to provide structures and incentives. In the
following I will therefore go into detail what can be done at each of those levels, closing with
a list of open questions for future research.

4.1. Implications at the personal level

There are twomain contributions that modelers themselves canmake to facilitate the creation
of large multi-scale models. First, they can focus on model reusability as integral part of
their model design. By providing changelogs, reference simulation outputs, structured
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documentation, CI, and CD, the barrier for someone who has never seen the model before to
start developing their own extensions and derivations should become as low as possible. In
particular, it should take as few steps as possible to get from the article text to running a
simulation of the described model. Researchers should also be proud of their own reusability
efforts and should advertise them in model descriptions and scientific articles in order to
proliferate the reusability techniques that they used.

The second major contribution on the individual level is making conscious, informed choices
at every step. This means choosing Modelica or ModelingToolkit.jl over SBML and CellML
for large projects where it may provide benefits, but it could also mean to use Antimony
instead, if compatibility to existing systems biology modeling tools is valued higher than
the advanced modularity features of Modelica, or even using SBML directly if there is an
additional argument to use SBML features not supported by Antimony. The important part
is just that there is a reason for choosing a language or tool beyond the fact that using it is
the path of least resistance. This reason should then also guide the model design, ensuring
that the required features are actually used to their fullest potential. In particular, if Modelica
is chosen as a programming language, models should also be written in a modelica-esque
style. Finally, the structure of the model code and equations themselves should also be
consciously chosen to reflect the structure of the biological system that is being modeled as
far as possible. Following these guidelines, it is likely that both the implementation process
will become more pleasurable and the resulting model will be of more value to the scientific
community.

4.2. Implications at the institutional level

Institutions can work to acquire software engineering expertise in their research groups and
can provide infrastructure to facilitate the applications of the techniques presented in this
dissertation. For example, they can provide custom GitHub actions like setup-openmodelica,
a Jenkins server (Jenkins Governance Board 2022) with specialized Docker images (Boettiger
2015) or NF-CORE (Ewels et al. 2020) pipelines that contain all the software that is required
to simulate models and create plots. Such a service can be used to establish CI/CD pipelines,
which only have to be set up once and can then be reused by all modelers in the institution
or working group with minor modifications.

Once the infrastructure is available, it may also be worthwhile to establish policies that
incentivize and promote the use of such structures. Institutions can write guidelines for
good practice regarding reusability, reproducibility and archiving, and create lab workflows
that both make it frictionless and intuitive to follow them, and check that they are actually
being followed. To attain the expertise required for this, working groups at universities can
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directly cooperate with their software engineering departments on publications, and they
can also encourage their systems biology students to take optional courses in object-oriented
programming, software testing, and software design in general.

Last but not least, reproducibility can also be facilitated if more reproducibility studies are
undertaken and published. Reproducing the methods of an in silico study can, for example,
be a good introduction for graduate or PhD students into the academic publishing workflow.

4.3. Implications at the community level

The largest Multi-scale models have already reached an extent that goes beyond what a single
working group or institution can manage. Consequently, it is clear that interdisciplinary
structures at the level of the whole systems biology community are required to facilitate their
creation. The most important requirement might be the recognition and training of what I
would call a “component library engineer”. Since all successful biological Modelica models
that I have come across are based on a well-designed library of base components, it is likely
that future multi-scale models should also be based on similar structures. The problem here
is that the creation of such a library both requires a strong software engineering background,
in order to make the library scale well from small test examples to large actual models, and
an equally strong understanding of mathematical modeling and the biology of the modeled
system. Currently, this combination of expertise is rare, and it is highly unlikely that all
modelers who are interested in multi-scale modeling will be able to acquire such detailed
knowledge and experience in software engineering. However, the uplifting perspective on
this situation is that a well-designed component library can support a multitude of models.
Take, for example, the NEST simulator (Jordan et al. 2019) for spiking neural network models,
which powers hundreds of models in computational neuroscience.

This example shows that only a few “component library engineers” are required, which could
collaborate from different working groups of adjacent disciplines. I strongly believe that
Modelica would currently be the right choice for most of these component library projects,
because unlike other alternatives like SBML, CellML, and ModelingToolkit.jl, Modelica is
specifically designed for this kind of workflow, focusing both on powerful design features for
library creators and ease of use for library users.

The second major requirement on the community level are incentives for reusability and
good model design. First and foremost, model engineering should be recognized not only as a
service discipline but as primary source for scientific improvement in systems biology. This
warrants its inclusion as subsection or article type within existing journals or perhaps also
the creation of a dedicated journal. Additionally, systems biology journals can use check-lists
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or “seals of approval” for the adherence to reusability and reproducibility requirements. This
would put more emphasis on good model design and would provide incentives for researchers
to refactor their code for usability. Maybe this could also lead to a “component library award”
much like the library award issued at the Modelica conference to promote the creation of
high-quality Modelica libraries (Modelica Association 2022c).

As a last consideration, infrastructure at the community level should acknowledge that while
standardization and interoperability are highly desirable, there will always be good reasons
to use non-standard tools. As a concrete example, the BioModels database was originally
designed to just host SBML models, but has been opened to other models formats. This
openness towards experimentation with new solutions is crucial to overcome the limitations
of existing standards. To save resources, BioModels currently does not provide the same
indexing and curation capabilities for non-SBML formats, but if a format is more widely
used over time, the support could be extended. Better yet, if the whole platform code
is published under an open-source license18, advocates for a specific model format can
implement their own converters and provide a way to extract metadata from models that
improves interoperability with the format of their choice and the formats promoted by the
platform.

4.4. Open questions

The following open questions represent limitations of dissertation with regard to the width
of the investigation. Several topics could not be explored here but would be interesting for
the broader question of how modeling languages can support large and complex multi-scale
models in general.

4.4.1. Partial differential equations

In this dissertation, I have focused on ODE/DAE models with discrete subsystems, but there
are other formalisms which are important for multi-scale modeling. In particular, partial
differential equations (PDE) allow a natural representation of variable changes across spatial
dimensions. This can be, for example, used for two- or three-dimensional representations on
the tissue or organ level, which are especially common in cardiovascular modeling. Modelica
currently does not allow PDE, but in recent years, research for PDE support has gained
traction with PDEModelica1 (Šilar, Ježek, and Kofránek 2018). Of all the alternative languages

18 Currently, the main tools are available on Sourceforge (Chelliah et al. 2022), including a Java-library that interfaces
a web application programming interface (API), but the server-side setup does not seem to be available.
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mentioned in 3.3, only Julia (with DifferentialEquations.jl or ModelingToolkit.jl) and MATLAB
support PDEs, with the latter offering no support to integrate them into Simulink/Simscape
models.

Within the systems biology community there are two additional projects that are worth to
consider: FieldML is a cousin to CellML developed by the IUPS Physiome project, which
is intended to be interoperable with CellML models in future versions (Britten et al. 2013).
JSim, the modeling language developed and used for the NPR Physiome project, supports
both ODE and PDE, but unfortunately mostly lacks support for modularity (Butterworth
et al. 2013). In this area, a more thorough investigation akin to the one performed in this
dissertation would be worthwhile to identify whether PDE models have similar or different
requirements for their design and which languages would be most suited to couple ODE/DAE
and PDE models together for multi-scale modeling.

4.4.2. Stochastic differential equations

Similar to PDE, SDE were excluded from this dissertation. In principle, many modeling
languages including SBML, Modelica, the MATLAB environment SimBiology, and Modeling-
Toolkit.jl support SDE. However, it is to be expected that there are also differences between
the languages which make them more or less suited for complex stochastic models. An
in-depth investigation of this feature could reveal another language characteristic that is
important in this area, or it could strengthen the evidence for the benefit of the existing
MoDROGH characteristics.

4.4.3. Parameter estimation

The MoDROGH criteria only cover model creation and communication. However, another
integral part of in silico experiments is the fitting of model parameters to reproduce data
obtained from a wet lab experiment. Mathematical modeling can only produce biological
insight, if a close relationship between the mathematical formulations and the real biological
world is maintained. All the languages investigated in this dissertation provide some form
of parameter estimation either directly embedded in the language or as separate tools in
the language ecosystem. Modelica in particular has a language extension called Optimica
(Åkesson 2008), which can be used with OpenModelica (Open Source Modelica Consortium
2022) in order to optimize models to fit a broad range of conditions. Like for PDE and SDE,
it might be interesting to investigate whether there are fundamental differences between
languages in this regard and whether these differences only come in the form of tool support
or can be tied to language features.
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4.4.4. Alternatives to classical object-oriented programming

While I have shown that object orientation is well-suited to handle the kind of complexity
that comes with large multi-scale models, this should not be seen as a reason to discard
other approaches from the software engineering domain completely. Most modern high-level
programming languages are either multi-paradigm languages, which freely mix different
paradigms such as functional or object-oriented programming, or they focus on one paradigm
but borrow some concepts from other paradigms. An example is the inclusion of lambda ab-
stractions to create anonymous functions in the most widely used object-oriented languages
Java and C++ (Mazinanian et al. 2017; Järvi and J. Freeman 2010). As mentioned in section
3.4.1, Modelica also has some features that could be interpreted as functional programming.
However, using these features requires some effort, so it might be interesting to investigate if
a fully-featured functional programming style can be of use in mathematical modeling. In
particular, ModelingToolkit.jl might be a good staring point for this investigation as Julia
allows a functional programming style in principle and can be easily extended with more
complex functional features. The multiple dispatch mechanism of Julia, which is an unusual
but very flexible implementation of the object-oriented paradigm, might also in itself be
interesting to investigate in a modeling context.

4.4.5. Support for multi-scale techniques in languages

As mentioned in section 1.3, micro-level models, which simulate all parts of the model at the
smallest scale, are limited by their computational complexity. If more than two organizational
levels should be spanned by amodel, special techniques are required to combinemathematical
descriptions at different scales, only simulating with the finest granularity when and where
it is required. Dada and P. Mendes (2011) list a total of nine different approaches to do this,
but during my research for this dissertation I have not found any language or tool that aims
to incorporate any of them into solvers or language constructs. In order to grow multi-level
models beyond the current state of the art, an investigation would be required how such
techniques can be applied systematically and with minimal modeling effort overhead.

4.4.6. Language Server Protocol implementation for Modelica

In the introduction of Mo|E I mentioned that the language server approach was inspired
by the ENSIME project. This project is now retired in favor of metals (Metals 2022), a
similar language server for Scala, which uses the Language Server Protocol (LSP) (Microsoft
2022a). The benefit of LSP is that it is a programming language-independent standard for
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communication between a compiler and a text editor. As such, clients for a LSP server can be
built upon generic solutions, which requires even less effort than implementing the HTTP
calls required for Mo|E while at the same time providing much more advanced features like
code refactoring. A re-implementation of Mo|E with the LSP, which was already started at
our lab as proof of concept, would allow tool vendors to support Modelica with minimal
effort, increasing the interoperability of Modelica models. A similar project could also be
undertaken for other languages like SBML and CellML.
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5. Data and code availability

The models and software developed in this dissertation can be found on GitHub, Zenodo, and
BioModels as seen in tables 5.1 and 5.2. All other data that might be relevant to reproduce
or continue this work can be found in my thesis archive at https://github.com/CSchoel/
thesis-archive.

Model GitHub Zenodo BioModels

SHM CSchoel/shm 10.5281/zenodo.5027354 MODEL2101280001

SHM-conduction CSchoel/shm-conduction 10.5281/zenodo.4585654 MODEL2103050002

HH-Modelica CSchoel/hh-modelica 10.5281/zenodo.5018521 MODEL2103050003

InaMo CSchoel/inamo 10.5281/zenodo.4775302 MODEL2102090002

Table 5.1.: Database identifiers for models developed in this dissertation. Lists user
and repository name for GitHub, DOI for Zotero, and model ID for BioModels.

Software GitHub Zenodo

Mo|E THM-MoTE/mope-server
THM-MoTE/mope-atom-plugin

MoVE THM-MoTE/MoVE

MoDE THM-MoTE/MoDE

MoNK THM-MoTE/MoNK 10.5281/zenodo.4134955

MoST.jl THM-MoTE/ModelicaScriptingTools.jl 10.5281/zenodo.4792305

setup-openmodelica THM-MoTE/setup-openmodelica

Table 5.2.: Database identifiers for software developed in this dissertation. Lists user
and repository name for GitHub and DOI for Zotero. Mo|E, MoVE, and MoDE
were not developed by me but by students under my supervision.
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ARTICLE OPEN

Characteristics of mathematical modeling languages that
facilitate model reuse in systems biology: a software
engineering perspective
Christopher Schölzel 1✉, Valeria Blesius1, Gernot Ernst2,3 and Andreas Dominik 1

Reuse of mathematical models becomes increasingly important in systems biology as research moves toward large, multi-scale
models composed of heterogeneous subcomponents. Currently, many models are not easily reusable due to inflexible or confusing
code, inappropriate languages, or insufficient documentation. Best practice suggestions rarely cover such low-level design aspects.
This gap could be filled by software engineering, which addresses those same issues for software reuse. We show that languages
can facilitate reusability by being modular, human-readable, hybrid (i.e., supporting multiple formalisms), open, declarative, and by
supporting the graphical representation of models. Modelers should not only use such a language, but be aware of the features
that make it desirable and know how to apply them effectively. For this reason, we compare existing suitable languages in detail
and demonstrate their benefits for a modular model of the human cardiac conduction system written in Modelica.

npj Systems Biology and Applications            (2021) 7:27 ; https://doi.org/10.1038/s41540-021-00182-w

INTRODUCTION
As the understanding of biological systems grows, it becomes
more and more apparent that their behavior cannot be reliably
predicted without the help of mathematical models. In the past,
these models were confined to single phenomena, such as the
Hodgkin-Huxley model of the generation of neuronal action
potentials1. They have served their purpose up to a point where
now it is necessary to take into account the upward and
downward causations that link all levels of organization in a
biological system from genes to proteins to cells to tissue to
organs to whole organisms, populations, and ecosystems2. These
causations span effects on multiple scales of space and time,
which need to be included in models. This can be achieved by two
different approaches. A micro-level model combines thousands of
individual homogeneous submodels to reach the next higher
scale. This approach requires a vast amount of computing power
and is therefore usually limited to span a distance of only two
scales. More wide-spanning multi-scale models can be achieved
by the multi-level approach, which combines both macro- and
micro-level descriptions of a system by different models3. While
micro-level parts of such a model may look as described above,
the macro-level parts feature heterogeneous descriptions of
subsystems and their high-level interactions. For this approach,
a wide variety of techniques exist that reduce the computational
complexity of resulting models4. While both approaches require
the reuse of existing models, the multi-level approach additionally
involves the combination of independent submodels, which may
have been designed for different purposes and in different labs.
These submodels may even use different modeling formalisms,
thus forming a multi-class model5.
The first step in building a model consisting of several

submodels is to regenerate the individual parts from the literature.
This can already be a challenge due to several issues with
reproducibility in systems biology including incomplete model
descriptions, errors in formulas, availability of the code or missing

descriptions of experiment setup or design choices6–8. A recent
study by curators of the BioModels database showed that only
51% of 455 published models were directly reproducible8. In an
extreme case, Topalidou et al.9 report requiring three months to
reproduce a neuroscientific model of the basal ganglia.
We experienced similar reproducibility issues first-hand when

we translated the Seidel-Herzel model (SHM)—a macro-level
model of the human baroreflex, which is able to simulate many
disease conditions and exhibits interesting dynamical properties
—into a form that would be more amenable to extension and
reuse10–12. Even though we could reach out to the author of the
model to obtain his original implementation in C, the translation
process was still quite challenging. The C code was monolithic and
imperative in nature, describing calculation steps instead of
mathematical relations and containing details that where not
described in the corresponding PhD thesis. We had to carefully
extract the meaning of each line of code in order to build a
modular, declarative version that produced the same simulation
results. For this task, we chose the modeling language Modelica,
since it provides a lot of flexibility for modular model design.
However, when we wanted to extend the model with a trigger for
premature ventricular contractions (PVCs), it turned out that even
our new version was not suitable for reuse. In fact, the component
that described the cardiac conduction system remained mono-
lithic and lacked a graphical representation, which made it hard to
identify the equations and variables that would have to be
changed. This situation—having to untangle the semantics and
code of an existing model to extend or adjust it for use in a
different context—is emblematic of the challenges faced when
building multi-scale and especially multi-level models. Our
example shows that issues with reproducibility and reuse reach
down to the engineering level. The modeling language and the
design principles applied to the construction of a model can
facilitate or hamper further use. This also holds for the
aforementioned case of Topalidou et al.9, since the original model
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was implemented in Delphi, which is also an imperative language
and, therefore, not well suited for mathematical modeling.
Even though the need for design principles on the engineering

level is apparent, most publications about best practices for
reproducibility and reusability do not address it. Instead, existing
approaches broadly fall into three (overlapping) categories. They
tend to focus on (a) biological validity13–18, (b) high-level choices
of modeling formalisms and techniques19–21, or (c) model
documentation, annotation, and distribution7,22,23. Apart from
these general discussions about reusability, there also are authors
who advocate for individual modeling techniques, such as
modular model design24 in CellML or coupling models via
semantic annotations25. However, while the latter work is
applicable to multiple languages, it only focuses on one, albeit
central, part of model design, namely the composition of multiple
models or model parts. This means that researchers who want to
select a suitable language for their modeling task still have little
guidance available. The best assistance for choosing a modeling
language currently comes from the list of accepted standards
published by the Computational Modeling in Biology Network
(COMBINE)22,26. The COMBINE suggests to use CellML and the
Systems Biology Markup Language (SBML) with the main reason
that these are standard exchange formats that have a high
interoperability among several tools. While this is true and a great
improvement over the previous state of the art, standardization,
and interoperability alone cannot guarantee reusable model
design. For example, the BioModels database27 features curated
models in SBML format, but most of these models are monolithic
and therefore require further modification if only parts of the
model should be reused28. In the aforementioned reproducibility
study, the curators of this database found that the reproducibility
rate for SBML models was only slightly higher (56%) than the
overall rate of reproducibility across all models (51% including
models written in SBML, MATLAB, Python, C, R, and other
languages)8. Our previous example of the translation of the SHM
also shows that using a suitable language is a necessary but not
sufficient criterion for the model to actually be reusable.
Additionally, no single language or even a small set of prescribed
languages is likely to cover all use cases which may arise in
systems biology, especially when considering multi-class models,
which combine entirely different model formalisms7.
Even when the discussion is restricted to the formalisms of

ordinary differential equations (ODEs) and discrete events, there
are a multitude of languages to choose from. As mentioned
above, the COMBINE lists SBML and CellML as accepted standard
languages. Both are markup languages based on the eXtensible
Markup Language (XML) and designed to be written and read by
software tools and not directly by humans. While SBML has a clear
focus on metabolism and cell signaling models, CellML, despite its
name, is not targeted toward a specific level of organization.
MATLAB is a proprietary domain-specific programming language
designed for scientific computing in general, which is also popular
in systems biology (https://www.mathworks.com/products/
matlab.html). It provides an environment for graphical block
diagrams called Simulink (https://www.mathworks.com/products/
simulink.html) and a declarative language for designing physical
systems called Simscape (https://www.mathworks.com/products/
simscape.html). The MATLAB environment SimBiology is another
alternative based on block diagrams, which is targeted toward
pharmacological models, but can, like SBML, model arbitrary ODE-
based dynamical systems (https://de.mathworks.com/products/
simbiology.html). While MATLAB is still popular29,30, the open-
source programming language Python also gains increasing
interest in the community29,31–34. Usually models are not built in
Python itself, but researchers have created packages such as
PySB33 and the Python Simulator for Cellular systems (PySCeS)31

that define embedded domain-specific languages (DSLs) which
facilitate the creation of mathematical models for specific use cases.

With Tellurium34 there also exists a broader python-based
environment that supports multiple COMBINE standards and uses
the declarative modeling language Antimony35. Another emer-
ging language for the definition of embedded DSLs for
mathematical models is Julia, which has a similar focus as Python
but is more extensible and tends to have better runtime
performance36. Finally, Modelica is an open-source declarative
modeling language primarily used in engineering37. It has a large
user base both in industry and research, but is still largely
unknown in systems biology. Notable exception include the
Physiolibrary38—a Modelica library for physiological models—and
SBML2Modelica39—a tool that translates SBML models to
Modelica. This extensive list of language candidates makes it
apparent that researchers need guidelines to choose between
these candidates and to write model code that actually uses the
desirable characteristics of the chosen language.
In recent years there has been increasing interest to apply

techniques from software engineering (such as unit testing,
version control, or object-oriented programming) to modeling in
systems biology28,30,40. Hellerstein et al.40 even go so far to
suggest that systems biologists should rethink the whole
modeling process as “model engineering”. To date they are the
only authors that we are aware of who actually give explicit
guidelines for how to write model code (e.g., they suggest to use
human-readable variable names).
In this article we share our experience with extending the SHM

and generalize our findings from this example to expand on the
idea of model engineering in three ways: First, we propose a list of
desirable characteristics that make a model language suitable for
building reusable multi-scale models. Second, we give guidelines
on how these characteristics can be exploited during model
design to increase the reproducibility and reusability of a
particular model. Third, we compare state-of-the-art language
candidates with respect to the aforementioned characteristics.
From these candidates, we chose one, namely Modelica, to

demonstrate the reasoning behind the characteristics, guidelines,
and language assessment using the example of the cardiac
conduction system within the SHM. We transform the existing
monolithic model into a modular structure and show how this
facilitates the PVC extension. After we present our results we
reflect on the impact that each of the language characteristics and
the choice of Modelica, in particular, has on the usefulness of
the model.

RESULTS
Desirable characteristics for a mathematical modeling
language for systems biology
The following characteristics were developed from literature review
and/or from our personal experience with Modelica and the SHM.
The goal of these characteristics is to facilitate the creation and
analysis of multi-scale, multi-level, and multi-class models. We,
therefore, focus on increasing reproducibility, understandability,
reusability, and extensibility. The resulting characteristics are that a
modeling language should be modular, human-readable, hybrid,
open, declarative, and graphical. Each characteristic will be
introduced with arguments for its usefulness, a brief set of
guidelines on how it may be applied to full effect, examples where
this was relevant in our implementation of the SHM, and references
to other authors that advocate this feature. To easily refer to these
characteristics we form the mnemonic MoDROGH for Modular,
Descriptive, human-Readable, Open, Graphical, and Hybrid. We will
also use the term “MoDROGH language” for a language that
exhibits all or most of these characteristics.
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MoDROGH characteristics: Modular
In order to replace or reuse parts of a model, they have to be
identified in the code. The modeling language should make this
as easy as possible, using separable components with clear
interfaces. The number of variables in the interface should be
minimal, encapsulating internal implementation details so that
using and connecting the component becomes as easy as
possible. Some languages facilitate this by allowing the definition
of connector components, which group interface variables
together, so that the interface has, e.g., a single electrical pin
connector instead of two separate variables for current and
voltage. Interfaces are important to define intended biological
transitions between model components and to document
assumptions, even if rigid interfaces can limit reuse. It can even
be argued that it is beneficial if a component cannot easily be
reused in an environment with different assumptions, since such
a switch of assumptions will likely require more change than
adding a variable to the interface. For quick experimentation, it
can be an advantage if the language allows connecting arbitrary
internal variables of components, but published versions of a
model should always have a clear interface concept to remain
understandable.
Modularization and encapsulation are reliable tools to handle

complexity in large software projects, so it is reasonable to expect
that they will also be able to manage the complexity of biological
systems. Modularity also inherently facilitates reusability, since
clearly defined self-contained modules are easier to reuse than a
set of equations that has to be extracted from a tightly coupled
model. To allow reuse of components within the same model, it
must be possible to import multiple instances of a module and
assign individual identifiers to them. This can be further facilitated
by supporting full object-orientation, allowing a component to
inherit variables, equations, and possibly annotations from one or
more parent components, which define common structure and
behavior. Additionally, components are also easier to reuse if
individual variables and equations may be overwritten or removed
during instantiation and inheritance. Some languages also allow the
reuse of models across different languages, tools, and platforms by
using a standardized exchange format or a standardized interface. In
systems biology, SBML is a standard exchange format for hundreds
of tools, allowing the use of models in a multitude of different
contexts often through the use of translators that convert SBML to
different languages. In contrast, the Functional Mock-up Interface
(FMI) is a model exchange format maintained by the Modelica
Association41,42 that focuses more on a unifying interface than a
unified language. It is not used to translate models into other
languages, but rather to distribute models in an encapsulated
format that is independent of the underlying formalism, which is
especially interesting for multi-class models.

Guidelines. Modules should be small enough to be understand-
able at first glance, but still self-contained. If a formula or concept is
used multiple times in a model, it should be defined as a module
once and then referenced. In software engineering this concept is
called DRY for “don’t repeat yourself”. Modules should have clearly
defined, minimal interfaces, which explicitly state possible
connection points to the outside world. Both modules and their
interfaces should follow the biological structure of the system. If a
module represents more than one biological entity or an equation
in the module conflates effects from multiple distinct causes, it
might be worth to investigate whether splitting up the corre-
sponding module further might increase its understandability and
flexibility for reuse and extension. Interfaces should represent the
transfer of some physical quantity between biological entities and
should only expose variables whose meanings are clear and do not
require an understanding of the module’s internal organization or
function. If possible, each module should be tested individually,
which is called a “unit test” in software engineering.

Importance in SHM modeling task. Since the SHM features a
multitude of feedback loops, locating errors was very tedious with
the original monolithic model. Systematic debugging became
only possible when we isolated the different parts of the system,
such as the baroreceptors, and subjected them to controlled input
signals to observe the component output. It was also possible to
reuse several components within the SHM: the parasympathetic
and the sympathetic system share a base class that only leaves the
sign of the baroreceptor influence open for definition and the four
different release equations for norepinephrine and acetylcholine
are also governed by a common base class.

References. There is a consensus that multi-scale modeling
requires some form of modularity for hierarchical composi-
tion24,25,28,43–45. More specifically, Hellerstein et al.40 and Mulugeta
et al.30 both suggest that object-oriented programming might be
an especially promising way to implement modularity. Many
researchers advocate for clearly defined interfaces2,28,44,46, but
there is also critique with regard to a loss of flexibility for reuse
and the requirement to consider all code-level elements of a
model as potential coupling points25,29.

MoDROGH characteristics: human-readable
This characteristic covers two loosely connected aspects: The
fundamental readability of model files with a text editor and the
readability and understandability of definitions within the model.
Every modeling language has to be both human-readable so

that a human can write the code to define a model and machine-
readable so that a software tool can interpret that code to run
simulations. However, as Fig. 1 shows, there is a trade-off between
the two and languages can choose to support the one at the cost
of the other. On the one end of the spectrum, languages like
Antimony or Modelica, whose syntax is closer to natural language
and easier to read and write for humans using just a text editor,
require more effort for specialized parsers to build abstract syntax
trees, which can then be processed by compilers and other
software tools. The middle ground is formed by XML-based
languages like SBML and CellML. XML files already have a tree
structure and parsers for XML exist for virtually all modern

Fig. 1 Simple variable definition with assignment rule in three
modeling languages with different levels of focus on human-
versus machine-readability. Each of the three code snippets
contains the same information defining a variable y, which depends
on another preexisting variable x. Antimony mainly focuses on how
humans would write equations in text form, but requires a
specialized parser. CellML Text—an intermediary editing language
used by the tool OpenCOR69—adds some syntax that is easy to
parse by a machine (due to using braces that do not conflict with
other symbols in the code), but is not an intuitive representation of
unit information for a human unfamiliar with the language. SBML
focuses more on machine-readability, since XML can be parsed by
the standard libraries of most modern programming languages,
ensuring minimal barriers for tool support. However, while the SBML
code is still readable and editable in a text editor, it takes some
effort and familiarity with the language to decipher the meaning
from the symbols.
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programming languages, which lowers the barrier to implement
support for an XML-based format in a software tool and, therefore,
increases interoperability between tools. While XML files can still
be viewed and edited in a text editor, this requires familiarity with
the language and tends to be cumbersome for larger edits.
Especially the Mathematical Markup Language (MathML) format
used both by SBML and CellML for storing equations can be hard
to write and decipher without tool assistance. SBML and CellML,
therefore, rely on software tools that use graphical interfaces or
intermediary languages to ease model editing. On the machine-
readable end of the spectrum, MATLAB Simulink uses a
proprietary binary format that is tailored specifically to the
MATLAB software toolchain. This can both reduce storage space
and implementation effort for parsers, but also means that it is
impossible to inspect model files without the corresponding
software.
For model exchange and interoperability between different

tools, XML-based formats have the clear advantage that support-
ing their import or export in a tool requires very little
programming effort. This is illustrated by the success of SBML
and FMI, which are both based on XML and are supported by
over 100 tools each (http://sbml.org/SBML_Software_Guide/
SBML_Software_Matrix, https://fmi-standard.org/tools). Increased
interoperability also facilitates model reusability, because it
becomes more likely, that a researcher who wants to reuse a
model can simply import it in their tool of choice without having
to translate it to another language first.
However, for model development and for publishing models to

other researchers, languages with a strong focus on human-
readability are preferable, because they allow tool-independent
access to a model and because they are more suitable for version
control. Due to their verbose syntax, XML-based languages are
typically not designed to be written by humans directly but by
software tools, which provide intermediary languages or graphical
interfaces to facilitate editing. The translation between these
different representations is performed automatically during export
and import, which is convenient, but if the feature sets of the
exporting and the importing tool do not overlap completely, there
is a risk that information is lost. For example, a SBML model
written with tool A may include layout information for a graphical
representation of the model, but when it is loaded in tool B, which
uses a purely equation-based representation, this layout informa-
tion may be discarded. If tool B does not show a warning message,
there is no way for the user to know that the model contained this
information unless they look at the SBML code itself. This problem
is less likely to occur, if the model is written in a language more

focused toward human-readability, which is then also used
directly for editing. In this case, both tool A and tool B would
display the same code and while tool B does not display the
graphical representation, the user would notice the presence of
the layout annotations and could choose to view the model in a
tool that does support them. Additionally, the more a language
focuses on human-readability, the more easily it can be translated
to slides, websites, articles, and other formats, which makes it
easier to communicate the details of a model to other researchers.
It can also be archived more safely, as it will still be easily readable
decades into the future, even if the tools used to create it and to
view its contents will not be available anymore. Finally, version
control software can be immensely helpful for tracking errors, for
finding the exact versions of a model used to generate plots in an
article, and for understanding the rationale behind modeling
design choices. Standard solutions like Git operate under the
assumption, that the documents under version control are written
by humans and that element order, white space, and other details
all are results of deliberate choices and, therefore, carry meaning.
This is not the case for XML-based documents written by tools,
which can artificially inflate changesets between document
versions with management data or structural changes that carry
no meaning and therefore obscure the changes that are actually
relevant. While there are specialized solutions to distinguish
semantic from structural changes in XML documents47, this is still
an active field of research and not yet broadly implemented in
version control software. Also, even with these solutions,
researchers might only be familiar with the tool that generated
the file and not the content of the file itself, which makes it harder
for them to localize and understand changes between model
versions.
It is possible to combine the benefits of XML-based exchange

formats and languages that focus more on human-readability, if
these exchange formats are used and published in addition to a
more human-readable representation of a model. This can be seen
as analogous to software packages in general purpose program-
ming languages. Open source software projects are usually both
published as some kind of easily installable artifact—a file that not
even has to be human-readable at all—and also as human-
readable code in an online repository, which can be used to
analyze and extend the software.
Moving from the question of the general file format to the

content of the file, it can be said that readable code is largely the
responsibility of its authors. However, a language may facilitate a
clean coding style by providing expressive language constructs
and documentation features or hinder it by introducing visual

Fig. 2 Simple predator-prey model in a language without (PyDSTool) and with (Modelica) support for documentation strings. a While
regular Python comments (#) can be used to annotate PyDSTool models, they are ignored by the compiler and are only useful when reading
the code directly. bModelica comments are part of the model syntax and can therefore be read by tools to, e.g., provide automated tooltips in
dialogs and graphs or to enrich model summaries in databases.
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clutter. One example for this is the verbose use of {dimension-
less} that is required after each constant in an equation in
CellML Text as seen in Fig. 1. Additionally, languages can also add
human-readable documentation strings to variables and compo-
nents or incorporate an HTML document for a more detailed
model description. In contrast to comments in traditional
programming languages, which are ignored by the compiler,
these documentation features can enrich model presentation
across various tools and representations including graphical
dialogs or HTML representations within a model database. An
example for this can be seen in Fig. 2.

Guidelines. Model files stored in a version-controlled repository
and published in model databases should be written in languages
that focus on human-readability. If possible, models should
additionally be published in a more easily machine-readable
exchange format like XML to lower the barrier for direct reuse. If
the language has support for structured documentation that is
semantically tied to individual components or variables, this form of
documentation should be preferred over unstructured comments.
Every parameter, variable, and model component should at least be
documented with a short human-readable label. Any non-obvious
design choices or complex equations should also be documented.

Importance in SHM modeling task. On several occasions during
our implementation, we accidentally introduced errors in one part
of the model while correcting an issue in a different part. To
recover from these errors, it was crucial that we could quickly skip
through the changes made since the last known working version.
This was facilitated by the fact that Modelica focuses on keeping
model files easily human-readable. With an XML-based format, we
would have had more difficulties to make sense of the differences
between versions.

References. Hellerstein et al.40 and Zhu et al.43 stress the
importance of keeping model files under version control. The
authors of Tellurium specifically state that human-readable
languages can facilitate reproducibility and exchangeability34.
Dräger et al.48 found that existing tools struggle to make all the
information in the XML-based description of SBML models
accessible in a comprehensive form, which led them to develop
a tool called SBML2LaTeX, which generates human-readable
reports from SBML models.

MoDROGH characteristics: hybrid
A language is hybrid if it supports multiple modeling formalisms
and thus multi-class models. The most common form of hybrid

models and languages cover both continuous ODE or differential
algebraic equations (DAEs) and discrete events, but other
combinations are possible. The distinction between ODE and
DAEs is important here since physical conservation laws, such as
conservation of mass or energy, are algebraic constraints, which
cannot always be formulated with pure ODE. Incorporating them
in a model can, however, have the benefit of making connections
between components acausal, which means that variables do not
have to be designated as input or output and instead the solver
can choose the appropriate resolution order. This avoids errors
and performance issues related to algebraic loops, simplifies
model descriptions, and allows reusing components in different
contexts. As with DAEs, support for discrete events also comes in
different forms. Many languages support the reinitialization of
continuous variables through discrete events. In this formalism the
only discrete part of the model is a set of equations that define
boolean values based on the state of the system. When these
values switch from false to true, events are generated, which can
introduce discontinuities in an otherwise continuous system. For a
fully hybrid model that involves more complex discrete parts it is
preferable that the language also supports the explicit declaration
of discrete variables. The value of these variables remains constant
between events, but they may be defined with complex equation
systems, which are solved during each event instance. As a result,
they can make models that require complex event triggers more
understandable as can be seen in Fig. 3.
It is important to note that we do not argue that a modeling

language should support as many formalisms as possible, but
rather a combination of formalisms that go well together. If other
formalisms are required, the language should rather aim to allow
the coupling of models across languages with standardized
interfaces such as the FMI41,42. Additionally, there is a trade-off
between fully supporting a modeling formalism, such as ODE or
DAEs and being able to assign a domain-specific meaning to
language constructs. For example, SBML, PySB, and Antimony all
use biological terms tied to the biochemical level to describe the
parts of a model. This makes the language easier to understand
and use for domain experts, but may prove challenging when
building a multi-scale model that has to extend beyond the
biochemical level.

Guidelines. A model should clearly indicate which variables
are discrete and which are continuous. Event triggers, which
define the transition between discrete and continuous parts of
the model, should be examined and tested with extra care. If the
language allows them, acausal connections should be preferred
over causal input-output relationships, since acausality
facilitates reuse.

Fig. 3 Definition of a discrete variable x_max in a language with (Modelica) and without (Antimony) support for declaring discrete
variables. The variable x_max captures the peak value of the continuous variable x obtained within two seconds after an event event. a The
Modelica model defines a discrete boolean variable in_window, to simplify the when condition later in the code. The information that this
variable is discrete already lies in the type definition as Boolean. For real variables like x_max, there exists a keyword discrete, which
determines that the variable value may only change within a when equation. b The same model structure and semantics can also be achieved
in Antimony, but the discrete variables in_window and x_max each need an explicit rate rule to ensure that their value only changes when
an event occurs (lines 3 and 8). Additionally, two events are needed to emulate the boolean variable in_window: One to update the value
when the condition becomes true (line 4) and one to do so when it becomes false (line 5).
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Importance in SHM modeling task. At first, it was not clear for us
whether the contractility of the heart in the SHM was a continuous
or discrete variable. This confusion led to a severe error in an early
version of the model. Our current implementation defines the
variable with the keywords discrete Real to clearly indicate
this distinction. Discrete variables were also required to disen-
tangle the semantics of the cardiac conduction system, which is
introduced in detail in the “Results” section.

References. In their 2017 review, Bardini et al.2 argue that multi-
scale models in systems biology, in general, should strive toward a
hybrid approach. The same has also previously been stated by
other researchers49–51. In particular, the authors of PyDSTool argue
that hybrid models based on DAEs are well-suited to represent
multi-scale models32.

MoDROGH characteristics: open
As a prerequisite for reproducibility and collaboration, models and
simulation tools need to be accessible for everybody. In particular,
the hurdle to run a quick simulation of a model to determine its
usefulness for a specific task should be as low as possible. An
openly accessible model definition also means that readers can
offer feedback and corrections to improve the model. Preferably
the language itself, the compiler and associated tools should all
have an open-source license. Additionally, collaboration is also
facilitated if the language can be used on different platforms.

Guidelines. Readers of a paper should be able to download
the model code and to simulate it with open-source tools. The
download should also include explicit licensing information. The
model repository should include everything necessary to repro-
duce plots and other results of the corresponding paper. It should
also be under version control and include a human-readable
changelog. Other researchers should be able to point out errors
and suggest corrections.

Importance in SHM modeling task. Without the reference code of
Seidel, our re-implementation of the SHM would not have
achieved a perfect agreement with the original. To weed out
our last errors, which only showed quantitative and not
qualitative differences in the plots, we needed to simulate both
models with identical solver settings and manually compare the
output data. Additionally, some small errors in the published
formulas became only apparent when we compared them with
their C implementation.

References. Many large projects and databases such as the
Physiome Model Repository of the IUPS Physiome project52, the
NSR Physiome project53, the BioModels database27, the virtual
liver network54, Plants in silico43 and SEEK23 already provide open-
source implementations of models. Mulugeta et al.30 also
specifically advocate for more version control and changelogs
(in the form of e-notebooks).

MoDROGH characteristics: declarative
The mathematical formalism for biological models can already be
complicated in itself. A modeling language should not require the
adaptation of the model to the execution logic of the language,
obscuring the original definition. Instead, the language should
adapt to the model if it is presented in a clean mathematical
formulation. This way the code can focus on expressing meaning
rather than structure, which facilitates understanding. This also
includes the possibility to formulate ODE and DAEs not only in
explicit form, i.e., with a single variable on the left-hand side of the
equation, but also in implicit form, i.e., with arbitrary mathematical
terms on the left and right-hand side. For example, specifying u =
r * i should be equivalent to the equation u / r = i and the

solver should decide for which variable this equation needs to be
solved.
As a consequence of such a declarative style, errors reported by

the compiler can also focus on meaning rather than just grammar,
increasing the soundness of the model. One important example of
this is that declarative languages usually allow the declaration and
automatic checking of proper units for variables and parameters.
Missing or wrong unit conversions are a common source of error
in modeling that can be all but eliminated this way. Unit
definitions also add semantic information and therefore make
the model more understandable. Additionally, if the model is
described in a declarative style, it is possible for automated tools
to identify and extract meaningful parts of the model. This
facilitates tool support—e.g., in the form of numerical solvers,
optimization, and verification toolchains—and also allows con-
necting model parts to standardized ontological terms. For the
latter it is preferable if the support for ontologies is already
included in the language itself.

Guidelines. Models should follow strict mathematical rules to fit
nicely into the chosen formalism. If the language allows it,
equations should be written exactly as one would write them in
a scientific paper to convey their meaning, choosing freely between
explicit and implicit form. If a model needs workarounds in the form
of code that has to be added to make the model compile but that
does not add new information about the modeled system, it may
be worthwhile to revisit design choices and check the mathematical
soundness of the model. In our own experience we found that most
workarounds could be removed and the resulting model behaved
more soundly and was easier to understand. Models should also
specify units for all variables, preferably using the International
System of Units (SI). If possible, automated unit consistency checks
should be performed before publishing a model. Additionally, if the
language supports semantic annotation with ontological terms, this
feature should be used for all variables and components.

Importance in SHM modeling task. The original SHM was
implemented in C, which is an imperative language. Most of the
reference code that we consulted for our re-implementation was
responsible for management tasks, such as storing a history of
variables that enter equations with a delay, debugging output, or
a manual implementation of an integration loop with the Runge-
Kutta method. Although most equations were defined as separate
functions, we sometimes had difficulties untangling the semantics
of the model from the main integration loop.
One area of the model that was highlighted by the Modelica

compiler as not mathematically sound was the systemic arterial
blood pressure, which is given by an algebraic equation during
systole and by an entirely separate differential equation in diastole.
This issue only became apparent, because we had to translate the
imperative C code, which simply used an if-expression to switch
between the two states, into a declarative form, which required a
consistent equation structure. This consistent structure could be
established by manually differentiating the systolic equation and
then only switching between two different expressions for the
derivative.

References. Few researchers in systems biology explicitly distin-
guish between imperative and declarative languages. Zhu et al.55

state that declarative languages are desirable, because it allows
the description of the biological processes “in a natural way”.
Several language authors also state that their respective modeling
language is declarative29,33,56,57, but they do not explain why this
is important. Of these, only the authors of JSim57 and Myokit29

state that declarative languages allow concentrating on what is
modeled and not how the equations are solved, make models
more understandable, and facilitate their analysis both by
researchers and software tools.
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MoDROGH characteristics: graphical
Discussing or even just understanding a model is difficult if the
model is only described in the form of code or mathematical
equations. This is especially true when the input of domain
experts is required, who are not computer scientists or
mathematicians. For this purpose most papers in biology use
some kind of diagram to transport the general structure of the
model in a graphical way. Here, there is a trade-off between two
different visualization types:

1. Automatically generated abstract graphs of variable depen-
dencies are an exact representation of the model and are
well-supported by tools, which reduces the effort required
to build these representations. However, automatic graph
layout is a nontrivial problem: Different algorithms or
parameter settings can lead to large differences in the
layout58. Most algorithms also do not scale well to large
graphs and additional techniques are required to group
nodes according to semantic similarity59. Additionally, to the
lack of grouping capabilities, automatic graph visualizations
also solely rely on the variable names to convey the role of a
variable—e.g., whether it is the product, reactant or catalyst
of a reaction—or the kind of variable interactions—e.g., if
the correlation is positive or negative. Consequently, this
approach is mainly suited to represent the mathematical
dependencies of variables, but not to give an intuitive
overview of the model structure or to analyze the biological
relations between modeled concepts.

2. Manual drawings of the biological interactions with
respective images and symbols capture the essence of the
information required to understand the model and can
quickly be processed by the reader. This also has the
additional benefit that the model can be discussed with
domain experts that are familiar with the biological
concepts, but not with mathematical modeling. However,
they are less accurate, not standardized, and require a lot of
manual effort. This can also mean that when a model is
extended or otherwise updated, changes may not be
immediately reflected in the drawing, since it may only be
updated at a later stage or not at all.

There are multiple hybrid approaches that try to address the
shortcomings of pure type 1 or type 2 visualization. The Systems

Biology Graphical Notation (SBGN)60 allows the illustration of
models with standardized abstract structural diagrams, which
serve a similar function as circuit diagrams in electrical engineer-
ing. SBGN diagrams do not display variables, but represent the
actual physical entities and processes with unambiguous,
standardized glyphs. While there exist tools that can generate
SBGN diagrams automatically, like CySBGN61, some manual
arrangement is required to produce satisfactory results. The
standardization of SBGN also comes at the expense of the
biological intuitiveness of the resulting diagram. Instead of
immediately recognizable biological icons, researchers have to
learn and interpret a series of abstract glyphs. For metabolism
pathways this is no issue, since species that are part of a reaction
are typically identified by their name and not by any two- or three-
dimensional structure that could be used as an icon. However, e.g.,
for action potential models it would be preferable to represent ion
channels and pumps by schematic drawings and to have a visual
separation between the inside and outside of a cell. Such a
graphical representation is especially helpful if it is standardized
across different models. For example, the Physiome Model
Repository52 uses the same icons for ion channels and pumps
across all curated action potential models, which are drawn by the
now discontinued tool OpenCell (http://physiomeproject.org/
software/opencell/about). A similar standardized icon language
could also be beneficial for models at the tissue or organ level.
Like type 1 and type 2 visualizations, SBGN graphs are

independent of the capabilities of the language with which the
model was written. They are generated by tools that do not need
to have any connection with the modeling language itself.
Modeling languages can support them by referencing image files
or XML files containing SBGN as part of the model documentation,
but they have to be maintained separately. An example of this can
be seen on the left side in Fig. 4.
This is addressed by another hybrid approach that goes a step

further toward the analogy with circuit diagrams and integrates
layout and rendering information directly into the model
structure. It is mainly prevalent in languages with an industrial
background, such as Modelica and MATLAB, but is also
implemented in the SBML level 3 layout and rendering
packages62,63. In this approach, model components are assigned
graphical annotations, which define how the component should
look and where it should be placed in the diagram representation

Fig. 4 Two different ways in which modeling languages can support graphical representations of models as part of their syntax. a CellML
allows to include diagrams or plots as figures in the model documentation. The image files remain separate from the model code and have no
semantic connection to it except for the figure caption. bModelica allows to add graphical annotations using a vector graphics syntax. Models
and their components can have icons graphics (//(1)), which can be placed in a diagram coordinate system (//(2)) and connected with
lines (//(3)). This graphical representation is tied to the structure of the model. If, e.g., a component is removed from a model, the placement
annotation (//(2)) must also be removed, which automatically updates the diagram and ensures that it still accurately reflects the new
model structure.
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of the model. In a modular language, this information can be used
to build tools that allow to construct models by dragging and
dropping component icons and connecting them with lines, much
like a circuit diagram. An example of this can be seen on the right
side in Fig. 4. The resulting diagrams are both an accurate
reflection of the connections between model components,
because they are intrinsically tied to the functional model code,
and can be understood quickly, since they are arranged manually
and use biological imagery. If the model changes and, e.g., a
component is removed, the graphical annotation also has to be
removed, because the compiler would otherwise produce an error
message. This ensures that graphical representations stay up to
date when a model is changed. Creating symbols and images for
components requires effort, but this has to be done only once for
each component and the arrangement and connection may even
be easier than writing the equations that connect the components
in code.
As becomes apparent, this last approach should be favored for

multi-scale models, although it has to be noted that it is also
possible to combine multiple approaches in the same language.

Guidelines. All interactions between the individual modules in a
model should have a graphical representation in the correspond-
ing diagram. Each diagram should only have a few components. If
it becomes too crowded, some components should be grouped
together to form a hierarchical structure. Each individual
component in the diagram should be represented with an
intuitive symbol that either corresponds to the appearance or
function of its biological equivalent. Components should be
visually grouped according to their function and interaction to
facilitate understanding.

Importance in SHM modeling task. The original SHM features a
graphical representation in the form of 23 text boxes that are
connected by arrows. While this does give an overview of the
physiological effects present in the model, one of our first steps to
better understand the model was to augment this diagram by
grouping the effects by the organs to which they belong and
adding respective icons. Our Modelica implementation now
features a fully visual diagram with 15 components that is
guaranteed to be faithful, since it is tied to the equations in the
code. It helped us on several occasions to discuss the model with
domain experts, such as physicians and chemists.

References. The Physiolibrary is a Modelica library for physiolo-
gical models that has graphical representations for each
component38. ProMoT is a modeling tool that allows the
composition of modular models in a graphical way44. Alves
et al.64 compare 12 different simulator tools, giving higher ratings
to those that have graphical representations for model compo-
nents. Mangourova et al.65 state that it is preferable when a
modeling tool for integrative physiology provides a graphical way
of composing models since this can reduce development time.

Existing languages exhibit MoDROGH characteristics to
varying extent
As mentioned in the introduction, there are multiple suitable
languages available that implement the MoDROGH characteristics
to some extent. In this section, the most prominent examples will
be discussed with respect to each characteristic (highlighted in
italics). We consider a “modeling language” to be any language
used for describing and distributing mathematical models. This
includes exchange formats such as CellML and SBML, languages
that are embedded in a general-purpose programming language
like Python or Julia, and standalone languages like Modelica. We
selected languages that are currently popular either in systems
biology or in mathematical modeling in general with a tendency

toward general-purpose modeling languages that are not
restricted to a specific organizational level or model type. As an
additional criterion, languages had to exhibit at least some
MoDROGH characteristics. We have to emphasize that the list is
not comprehensive, but we tried to cover examples for all major
trends in modeling languages.

MoDROGH languages: MATLAB
MATLAB is perhaps the most widely known language used for
solving ODE (https://www.mathworks.com/products/matlab.html).
The MoDROGH criteria can be best fulfilled when using the
Simulink environment (https://www.mathworks.com/products/
simulink.html) with the embedded language Simscape (https://
www.mathworks.com/products/simscape.html). The SimBiology
environment can be used as an alternative, which is comparable
to SBML in its expressiveness regarding rules and reactions and
can also export models to SBML (https://de.mathworks.com/
products/simbiology.html). It is, however, tailored toward phar-
macological models and not as feature-rich as Simulink and
Simscape, which is why we restrict our analysis on the latter
combination. Simscape realizes modularity through full object-
orientation with class definitions, instantiation, and inheritance,
although Simscape classes can only have one parent class, in
contrast to MATLAB classes, which allow multiple inheritance.
Through Simulink, models can be imported from different
languages using the FMI, but export of Simscape models with
this interface is currently not supported. The language is also
declarative allowing to freely mix between implicit and explicit
formulation of DAEs, which are written in a concise syntax that
focuses on human-readability. It supports documentation strings
for components and human-readable labels for variables. Unfor-
tunately, the readability of Simscape is hampered by the fact that
Simscape has to be used in conjunction with Simulink, which
saves models in a proprietary binary format, which is not readable
in a text editor and not even openly documented. This issue is
further aggravated by the fact that backward compatibility to
older versions of the model format is not guaranteed65. Units are
supported and a mandatory consistency check is performed at the
interfaces between components. There is no built-in support for
ontologies, but since Simscape supports object-orientation, “is-a”
relationships, which designate a component as an instance of a
concept, might be expressed by building a large type hierarchy of
ontological terms. This would require all models to use this type
hierarchy and, therefore, reduce flexibility in designing generic
base classes, since Simscape only allows single inheritance.
Simscape classes can be used as graphical components within
Simulink to create larger systems by arranging and connecting
them via drag and drop. Hybrid systems are supported with index-
reduction for DAEs and discrete events and variables. Unfortu-
nately MATLAB, Simulink, and Simscape are proprietary tools that
are not open in any way, requiring license fees and prohibiting
custom extensions.

MoDROGH languages: SBML
In systems biology, the SBML is a widely-used open language for
describing biological models—mostly at the level of biochemical
pathways66. SBML level 3 includes an optional language module
for hierarchical composition, which allows building modular
models via the import of components during which individual
variables can also be overwritten or deleted. Because it uses a
subset of MathML to describe equations, SBML is declarative, and
hybrid and in theory allows the definition of arbitrary DAEs in
explicit and implicit form. SBML is based on XML, which makes it
highly machine-readable and in turn facilitates interoperability
between tools, because support for model import or export can be
implemented easily. Unit definition is possible but optional and
tools are not required to interpret them. However, libSBML, the
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most popular library for working with SBML models, can perform
automatic unit consistency checks67. Support for discrete events is
limited to reinitialization of continuous variables. The reliance on
MathML and XML is also a drawback, because it limits the human-
readability of model files and presents challenges for version
control software that is not equipped to distinguish structural
from semantical changes. Individual components can be anno-
tated with textual notes, Systems Biology Ontology (SBO) terms, or
Minimal Information Required In the Annotation of Models
(MIRIAM) metadata. Using the SBML level 3 packages for layout
and rendering, graphical annotations can be assigned to model
components. The high interoperability between SBML tools
resulting from its focus on machine-readability is a major
advantage, because researchers can use a tool that is designed
to fit their specific use case and can reuse models across tools.
Due to the wide acceptance of SBML, it can be expected that most
researchers will have at least one such tool available so that the
visual clutter of the XML files is no issue for model reuse. However,
most of these tools do not support all optional SBML packages
with the consequence that in practice support for modularity,
graphical annotations, and DAEs in implicit or explicit form may be
limited to specific tools.

MoDROGH languages: CellML
CellML is similar to SBML, but focuses on building more general
component-based models68. It is also open, declarative and hybrid
with the same considerations for being based on XML and
MathML. In contrast to SBML, it does not only support units, but
enforces that every variable in a valid CellML model must have a
unit definition. Modelers can still choose the special value
dimensionless to designate that a variable does not have a
unit, but they have to make this choice consciously and explicitly.
The language itself does not require tools to check the consistency
of these units, but OpenCOR, one of the main tools for creating
and simulating CellML models, does perform automated consis-
tency checks when a model is loaded or saved69. OpenCOR can
also somewhat alleviate the downside in human-readability,
because it defines a so called “CellML Text” language, which can
be used to view and manipulate the model in a more human-
readable text format69. However, “CellML Text” has limited
expressiveness only allowing the definition of explicit and not
implicit equations and it is only used for viewing and editing and
not for model storage. It also does not contain annotations, which
can be defined in CellML through embedded metadata files in
Resource Description Framework (RDF) format, which can also
contain ontological annotations. Since version 1.1, modular CellML
models can be hierarchically composed of sub-models24,70. To
support the graphical representation of models, CellML provides
constructs for referencing externally-stored graphical files and
formatting figure captions. This feature allows modelers to link
models with an associated image and is used by the curators of
the Physiome Model Repository—the primary clearinghouse for
CellML models—to display relevant figures on a model’s webpage.
However, as there is no semantic link between figure elements
and model code, it is the responsibility of the modeler to keep the
figure up to date when the model is changed.

MoDROGH languages: Python
Python is an open-source programming language that is popular
in data science (http://www.python.org). The language itself is
imperative, but it can be extended with some declarative features
for special purposes. In systems biology, notable efforts include
PySB33 and the PySCeS31. These packages define their own
declarative domain-specific languages (DSLs) within Python to
tackle specific biological use cases. PySB focuses on rule-based
reaction models while PySCeS focuses on ODE, structural analysis,
and metabolic control analysis. There also exist general-purpose

packages, such as SimuPy71 and PyDSTool32, that allow users to
create and analyze models built with ODE, DAEs, and discrete
events.
All aforementioned python-based solutions are open and

declarative and Python itself focuses on human-readability.
However, the modeling packages mainly rely on the modeler to
use the features of Python to implement modularity concepts and
to document their models by themselves. Also, none of them
support any graphical representation of models. Notably, SimuPy
and PyDSTool lack slightly in human-readability and declarative-
ness because they require a very specific and low-level technical
format for defining equations. Exceptions in terms of modularity
are SimuPy’s block diagrams and PySB’s macros. The fact that the
environment is not declarative in itself leads to the drawback that
only PySB supports ontological annotations and only PySCeS
supports the definition (but not consistency checks) of units.
Regarding the hybrid characteristic, the differences are most
pronounced since PySB is not hybrid at all, featuring only specific
biochemical rules without events, while PySCeS and SimuPy allow
discrete events as well as ODE and only PyDSTool is able to also
handle DAEs. None of these packages support the explicit
declaration of discrete variables.

MoDROGH languages: Antimony
Antimony35 is a declarative modeling language with an emphasis
on human-readability used by the open Python-based environ-
ment Tellurium34, which can be used for model building,
simulation, and analysis. Since Tellurium version 2, Antimony
also supports the structural annotation of models with terms from
the SBO or general MIRIAM metadata. Antimony is modular by
design, allowing the definition of components that can be
imported in other models. As in SBML, individual variables and
equations can be overwritten or deleted during import. It is hybrid
in the sense that it allows discrete events, but it only supports
explicit ODE and not DAEs and it lacks support for declaring
discrete variables. Like SBML, Antimony focuses on models on the
level of biochemical pathways by providing a special syntax for
reactions. It has no support for embedding any form of graphical
model representations.

MoDROGH languages: Modelica
Modelica is an open-source declarative modeling language
primarily used in engineering37. It is very similar to MATLAB’s
Simulink environment and the Simscape language. In fact,
Simulink was developed before Modelica and Modelica before
Simscape, which suggests some influence between the languages
in both directions. Modelica supports modularity via object
orientation including the overwriting of variables and explicit
equations, and, in contrast to Simscape, multiple inheritance. Most
Modelica tools support the FMI, allowing the reuse of models
across different languages. Like Simscape, it also allows grouping
of interface variables to connectors, which can be used to connect
models graphically via drag and drop. It is human-readable and
declarative allowing to define a model with a mix of explicit and
implicit DAEs. Models can be annotated with documentation
strings for individual components, a full HTML documentation for
classes and machine-readable annotations, which do not support
ontologies by default but have a flexible extension mechanism
with so-called vendor-specific annotations. As in Simscape, “is-a”
relationships between model components and ontological terms
can also be implemented via a type hierarchy. While this
introduces design restrictions in Simscape, Modelica supports
multiple inheritance and therefore allows maintaining ontological
type hierarchies in addition to generic base classes. Units are
supported and optional consistency checks can be performed.
Modelica is also fully hybrid with support for discrete events and
variables as well as arbitrary DAEs. With additional, open-source
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libraries, it is also capable to express models, e.g., as bond graphs,
Petri nets and finite state machines. The Modelica ecosystem is a
mix of open academic tools and commercial tools for use in
industry while most libraries are open-source. There are two
actively maintained open-source Modelica compilers called
JModelica and OpenModelica, the latter including a fully-fledged
integrated development environment (IDE)72,73. However, Dymola,
the most widely-used Modelica IDE, is proprietary and not fully
compatible with open-source alternatives (https://www.3ds.com/
products-services/catia/products/dymola/). Therefore, Dymola
models may need to be adjusted slightly to run with open-
source compilers or vice versa.

MoDROGH languages: Julia
Julia is an open programming language that is mainly used for
data science36. It is imperative by nature, but the language can be
extended with macros, which are more powerful than the
respective capabilities of Python, to allow declarative modeling.
Elmqvist et al. use this feature for Modia, an implementation of the
Modelica syntax within Julia74. Modia is currently still experi-
mental. It ismodular, hybrid, and focuses on human-readability, but
lacks, for example, the graphical features of Modelica.
In general, Julia offers strong support for differential equations

with packages such as DifferentialEquations.jl which supports
hybrid systems including DAEs, partial differential equations (PDEs)
and discrete events, but not the declaration of discrete variables75.
The syntax of this package focuses on human-readability and is
declarative, but only allows either a fully-implicit or semi-explicit
formulation of the whole system of DAEs with a mass matrix. Like
Python-based solutions, annotation and modularization in this
package is up to the modeler using the features of the language
Julia which supports a multiple dispatch mechanism, which can be
used to accomplish the same functionality as object orientation
except for encapsulation. However, units with automated
consistency checks can be supported though the Unitful.jl
package75. Like Modia, DifferentialEquations.jl offers no graphical
representation of models.

MoDROGH languages: comparison of existing candidates
A summary of the available languages and their features can be
found in Table 1. Notably, Simscape and Modelica stand out by
supporting full object-oriented design of models, explicit declara-
tion of discrete variables, an integrated graphical representation,
which allows biological drawings and manual arrangement,
acausal connections between components, cross-language import
of models via the FMI, grouping of interface variables as
connectors, and unrestricted mixing of implicit and explicit
equation formats. The feature-richness of these languages is not
surprising, since both are established industry standards, which
are used in multiple disciplines to build large and complex models.

Between the two candidates, Modelica additionally provides a
mostly open environment, multiple inheritance, overwriting of
variables and some equations during instantiation and inheri-
tance, export to other languages via the FMI, and machine-
readable annotations, which can, in theory, be used to implement
support for ontologies. On the downside, this ontology support
must be implemented manually and is not included in major tools
and while open source tools do exist, they only make up a part of
the Modelica ecosystem and are not necessarily fully compatible
with proprietary solutions.
Although it is certainly not the only option and it is as of now

foreign to the systems biology ecosystem, we think that Modelica
is a suitable choice to demonstrate the benefits of the MoDROGH
characteristics since it implements them to the fullest extent
among our selection of languages.

Modularizing a model of the human cardiac conduction
system facilitates reuse
The Seidel-Herzel model (SHM) describes the autonomic control of
the heart rate in humans at a high level of abstraction10. It was
developed and implemented by Henrik Seidel in 1997 using the
programming language C. We chose this model because
preliminary versions, which have been published as individual
peer-reviewed articles11,76, have gained substantial research
interest and are able to simulate several relevant disease
conditions such as first and second degree atrioventricular
block10, carotid sinus hypersensitivity11, congestive heart failure77,
and primary autonomic failure77 as well as treatment options such
as the administration of atropine or metoprolol77. It is also
especially interesting with regard to its dynamical properties such
as the emergence of Mayer waves10, bifurcations11, and cardior-
espiratory synchronization78. In a previous paper, we translated
the SHM to Modelica12, and we recently also published our full
model code as an open-source reference implementation79. The
model is therefore freely available, able to produce physiologically
relevant results, large enough to benefit from engineering
methodology, and yet small enough to allow an in-depth analysis
at the source code level. It is not representative of lower-level
metabolism and cell signaling models, which are currently the
most common type of models encountered in systems biology,
but it is well suited to showcase what is needed for future multi-
scale models, which inevitably have to leave these well-explored
levels behind to generate new insights. In fact, the model can
already be considered to span multiple scales of time since it
includes effects at the sub-second level as well as on the level of
multiple minutes80.
To be more specific, the SHM can be classified as a hybrid

(discrete and continuous), deterministic, quantitative, macro-level
model. All effects in the model are described on the organ level,
including the time course of systemic arterial blood pressure

Table 1. Evaluation of language candidates with respect to the desirable MoDROGH characteristics established in this paper.

MATLABa SBML CellML pySB PySCeS SimuPy PyDSTool Antimony Modelica Juliab

Modular ✓ (✓) ✓ (✓) ✕ (✓) ✕ ✓ ✓ (✓)

Declarative ✓ ✓ ✓ (✓) (✓) (✓) (✓) ✓ ✓ (✓)

Readable ✕ (✓) (✓) (✓) (✓) (✓) (✓) (✓) ✓ (✓)

Open ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ (✓) ✓

Graphical ✓ ✓ (✓) ✕ ✕ ✕ ✕ ✕ ✓ ✕

Hybrid ✓ (✓) (✓) ✕ (✓) (✓) ✓ (✓) ✓ ✓

A check mark in parentheses means the language has the respective characteristic in principle, but not to its full extent or with noticeable drawbacks. A more
detailed version of this table with regard to individual language features can be found in Supplementary Table 1.
aUsing the Simulink environment and the Simscape language.
bUsing macro packages that extend the language.
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generated by the pumping of the heart; the Windkessel effect of the
expanding arteries dampening the initial rise in blood pressure;
the arterial baroreceptors generating a neural signal depending on
the absolute value and the increase in blood pressure; the
autonomic nervous system emitting norepinephrine and acetylcho-
line as hormone and neurotransmitter based on signals from the
baroreceptor and the lungs; and the cardiac conduction system with
the sinoatrial node (SA node) as main pacemaker and the
atrioventricular node (AV node) as a fallback system.
In the following, only the conduction system is examined. It takes

an input signal from the SA node (based on norepinephrine and
acetylcholine concentrations) and includes the refractory behavior of
the SA node limiting the maximum signal frequency, the delay
between a signal from the SA node and the actual ventricular
contraction, and the AV node generating a signal if no signal has
been received for a given period of time. There is a little confusion
about the refractory behavior, because the wording in Seidel’s thesis
suggests that he wanted to model the refractory period of the
ventricles, but in the code, the refractory state is checked before the
delay between SA node and ventricles is applied. In the original
model, these effects were tightly coupled within a single piece of
code comprising five parameters, and 13 variables and equations—
not counting additional parameters and variables for initial
conditions. We found that this complexity makes it hard to
understand and modify the model, which is why we translated it
into a modular structure using Modelica. We will explain Modelica-
specific language constructs as they appear in the code examples,
but for a more complete introduction to Modelica in a biological
context the reader is referred to the Lotka-Volterra examples in ref. 81

as well as our own implementation of the Hodgkin-Huxley model82.
The modular version separates the code into the three

components RefractoryGate, Pacemaker and AVConduc-
tionDelay. These components are connected via a unifying
interface using a base class UnidirectionalConduction-
Component, which takes a Boolean signal as an input and
produces a Boolean output. These inputs and outputs are only
true for the exact point in time when a signal is issued (i.e., they
behave as a sum of Kronecker deltas). In Modelica, this behavior
can be indicated by defining a type alias InstantSignal.

type InstantSignal = Boolean(quantity="sum of Kronecker deltas"); 
connector InstantInput = input InstantSignal annotation(...); 
connector InstantOutput = output InstantSignal annotation(...); 

The new type is functionally identical to the base type
Boolean, but by overwriting the built-in variable quantity it
includes additional information that is both human-readable and
can be interpreted by graphical tools to enhance understand-
ability. The next two lines achieve two separate goals: first, the
keyword connector designates InstantInput and Instan-
tOutput as part of the interface of a class to the outside world.
Second, specifying the input and output causalities ensures
that input signals can only be connected to output signals and
vice versa. This distinction can also be reflected in the graphical
representation, which is defined in annotation() statements,
which are shown here without their content for the sake of
brevity. The base model UnidirectionalConductionCom-
ponent, which has one input and one output, then becomes

partial model UnidirectionalConductionComponent
  InstantInput inp "input connector" annotation(Placement(...)); 
  InstantOutput outp "output connector" annotation(Placement(...)); 
annotation(Icon(...)); 

end UnidirectionalConductionComponent; 

Note that the model is declared as partial which indicates
that it is only a template that cannot be used on its own but must

be extended by defining other models that include the following
declaration.

extends UnidirectionalConductionComponent; 

This statement imports all variables and equations of the base
class into the current model, which ensures that all components
will have an input and output connector named inp and outp
without the need to define these variables multiple times. Models
can also inherit graphical annotations from base classes, which
can define a common look and connector placement for the
graphical representation.
The three main components RefractoryGate, Pacemaker,

and AVConductionDelay all extend UnidirectionalCon-
ductionComponent. For the sake of brevity, we will only show
the code for the RefractoryGate here while the code for the
other two components can be found in the methods section. The
RefractoryGate represents the refractory behavior of the SA
node which cannot be excited for a certain time period after it has
fired a signal. For our model this means that the output equals the
input except that after each signal there is a time period
d_refrac in which incoming signals are ignored. This results
in the following definition:

model RefractoryGate "lets signal pass if refractory period has passed"
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Gate; 
import SI = Modelica.SIunits; 
parameter SI.Time t_first = 0 "time of first signal"; 
parameter SI.Duration d_refrac = 1 "duration of refractory period"; 
Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?"; 

protected
discrete SI.Time t_last(start=t_first, fixed=true) "time of last output"; 

equation
  outp = inp and refrac_passed; 
when outp then

    t_last = time; 
end when; 

end RefractoryGate; 

This model showcases several language features: It designates
parameters with the parameter keyword, indicating that their
value will not change during the simulation. It uses the
Modelica.SIunits package, which contains types with unit
definitions according to the SI. It documents each variable with a
short informative explanation. It defines the helper variable
t_last in a protected environment, which indicates that this
variable is only relevant inside this component and should be
hidden from other components. It contains an event using
the when keyword, which can be used to assign values to discrete
variables and to reinitialize continuous variables. It uses the
pre() function to distinguish between the value of t_last
before and after the event, which is required, because equations
do not assume any causality. It explicitly marks t_last as
discrete, which ensures that it must be defined within a when
equation and indicates to the reader that it remains constant
between events. It also employs multiple inheritance by including
two extends statements: one for the base class containing the
interface connectors, and one for an icon class containing the
graphical annotation code. The latter is not strictly required, but it
is convenient for readability, because it allows keeping verbose
icon annotations in a separate file.
The other two components follow a similar design structure. The

Pacemaker represents the capability of the AV node to generate
spontaneous action potentials in the absence of a signal from the
SA node. This means it lets incoming signals pass through but also
issues a signal on its own when the output has been silent for the
duration of its period period. To ensure that signals during the
refractory period do not prematurely reset the pacemaker, it needs
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a separate reset input, which is only triggered when the output
signal has also passed the refractory gate. The AVConduction-
Delay represents the time delay that occurs due to the slow
conduction between AV node cells. It delays an incoming signal by
a duration that depends on the elapsed time since the last output
signal has been issued. As mentioned above, the code for both of
these components can be found in the methods section.
To form the full model of the cardiac conduction system, the

components have to be connected through their interface
variables. In Modelica, this is usually done in graphical tools like
OpenModelica through a drag and drop interface. For this, the
aforementioned annotation() statements come into play.
They define the icons and the placement of components and
connection lines in a vector graphics format. An example for the
placement of the inp connector may look as follows:

InstantInput inp "input connector" annotation( 
 Placement( 
   visible = true, 
   iconTransformation( 
     origin = {-108, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0

    ) 
  ) 
); 

This ensures that the resulting diagram in Fig. 5 is not a separate
image file that has to be maintained separately, but is instead
directly tied to the actual model structure. To keep the model code
simple and short we defined the icon annotations in separate classes
whose code can be found in Supplementary Listing 23–27. As seen
in Fig. 5 we chose an open fence gate for the refractory gate, a
metronome for the pacemaker, and an hourglass for the delay. The
components are simply connected in order with the exception that
the reset of the pacemaker component is only triggered if the signal
also passed the refractory component. The resulting composite
Modelica model ModularConduction looks as follows:

model ModularConduction
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Heart; 
import SI = Modelica.SIunits; 

  RefractoryGate refrac_av(d_refrac=0.364) "refr. time of AVN" annotation(...); 
  Pacemaker pace_av(period=1.7) "AV node pacemaker behavior" annotation(...); 
  AVConductionDelay delay_sa_v "delay from SAN to ventricles" annotation(...); 
discrete SI.Duration d_interbeat(start=initial_T, fixed=true); 
discrete SI.Time cont_last(start=0, fixed=true); 

equation
connect(inp, pace_av.inp) annotation(...); 
connect(pace_av.outp, refrac_av.inp) annotation(...); 
connect(refrac_av.outp, pace_av.reset) annotation(...); 
connect(refrac_av.outp, delay_sa_v.inp) annotation(...); 
connect(delay_sa_v.outp, outp) annotation(...); 
when outp then

   d_interbeat = time - pre(cont_last); 
    cont_last = time; 
end when; 

end ModularConduction; 

Note that we do not show the content of the annotation()
statements here for the sake of brevity. The full code can be
found on GitHub and in Supplementary Listing 1–27. Since the
model itself receives a Boolean input from the SA node and
provides a Boolean output for the Ventricles, it is itself a
UnidirectionalConductionComponent. Components are
used by defining variables of the types RefractoryGate,
Pacemaker, and AVConductionDelay. The definitions also
overwrite the parameters d_refrac and period to adjust the
general Pacemaker and RefractoryGate models to their
specific use case in this model. The inputs and outputs of the
components are connected via connect() equations. In this
case, connect(a, b) is synonymous with the equation a = b,
but more complex connectors can connect multiple variables
within a single statement and can also handle conservation laws.
The model also introduces the additional variable d_inter-
beat, which allows using the interbeat intervals as a higher-level
feature.
The structure defined in this model (and seen in Fig. 5)

deviates from the original SHM because the refractory behavior
is situated at the AV node instead of the SA node. Additionally,
the delay component models the complete delay from the SA
node to the ventricles but is actually applied after the
components for the AV node. To remain closer to physiology,
one could split the delay component into two delays—one
before and one after the AV node—and similarly add another
refractory gate for the SA node. However, in Supplementary
Note 1 we show that this simplified structure closely replicates
the behavior of the SHM and even reveals some minor
inconsistencies in the original model.
We also used our modular version to implement the trigger for

PVC, which initially uncovered the problems with the monolithic
version. It turned out that this extension now becomes possible
without much effort, since it is easier to determine the effect of a
PVC on the individual components one by one than to describe its
effect on the whole system at once. A complete discussion of the
extension can be found in Supplementary Note 2 and a diagram
of the resulting model can be seen in Fig. 6.

DISCUSSION
The model that we chose to demonstrate the benefit of the
MoDROGH characteristics is quite small as compared to, e.g.,
current whole-cell models, which can involve 28 or more
individual interconnected components83. It can be argued that
one needs to look at models of this scale to really assess the
impact of model engineering decisions and language choice.
However, we think that more than the size or structure of the
model, the context of its reuse is the most important factor that
allows us to generalize our findings to different areas of
mathematical modeling. To extend the SHM, we needed to
identify the correct integration points for the new effect in the
model, which in turn required us to first separate the model into

Fig. 5 Diagram of the modular conduction model with symbols for the components. Components from left to right: Pacemaker for the
pacemaker effect of the AV node, RefractoryGate for the refractory behavior of the SA node and AVConductionDelay for the
combined delay between the SA node and the ventricles. The C in a black box indicates that the main variable of the component is held
constant while the stopwatch symbol for the delay should indicate that the duration is time-dependent. Components have their input on the
left, their output on the right and the pacemaker has the additional reset input at the bottom.
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modules that each represent only a single physiological effect. We
think that this requirement to understand and break up existing
models for reuse in a different context represents one of the main
challenges of multi-scale modeling in general. Additionally, larger
models would not allow an in-depth discussion of their code
within a single research article, since there would be simply too
much interrelated code to discuss. We, therefore, chose the
cardiac conduction system of the SHM as a “minimal working
example”, which is just large enough to show the effects that we
want to discuss but still small enough to cover the whole code in
this article. This is in accordance with common practices in
computer science textbooks where general design patters for the
construction of large software systems are discussed based on
small examples84. It is also important to note that the language
Modelica and the techniques that we discuss here can be, and to
some extent have been, applied to build large models. Examples
include the Physiolibrary, a library to build multi-organ or whole-
body circulatory models38, the Guyton model of physiological
regulation85 or even larger examples from industrial settings such
as end-to-end simulation of launch vehicles86 or electrical power
systems with thousands of components87. For our specific
example, an application to a model of relevant size is also
tangible, because our model of the cardiac conduction system can
be seamlessly integrated in our Modelica implementation of the
full SHM, which features 15 interconnected components and also
utilizes the MoDROGH characteristics12.
This leads to our initial research question to assess how the

modular, declarative, readable, open, graphical, and hybrid nature
of a MoDROGH language helped in the modeling process of the
conduction model. We discuss this for each individual character-
istic (highlighted in bold) and then sum up the impact on the
model design goals of reproducibility, understandability, reusa-
bilty, and extensibility and reflect on our choice to use the
modeling language Modelica.
Regarding the modular characteristic, the first noteworthy

observation is a reduction in the amount of items that a researcher
has to process simultaneously to understand the model. The
modular implementation of the cardiac conduction system
consists of small components with at most three parameters
and seven variables and equations including only two to three
interface variables. This stands in contrast to the five parameters
and 13 variables and equations of the monolithic version. This can
be seen as an indicator for increased understandability88. The
Pacemaker, RefractoryGate and ConductionDelay mod-
els all are quite generic and it is easy to imagine that they could be
reused in a different model that requires these effects. This also
facilitated the extension of the model with a trigger for PVCs,
which required the incorporation of a second RefractoryGate

to model not only the refractory behavior of the SA node but also
of the ventricles (see Fig. 6). In this case, the component could be
reused without modification.
This extension was our initial goal, which sparked the discussion

about language characteristics and design guidelines for mathe-
matical models. When we originally tried to implement this
behavior in the monolithic version, we found it extremely hard to
pinpoint the lines of code that would need to change. Now, with
the modular version, the question was not “Which variables do I
have to change?” but “Which influence does a PVC have on
physiological component X?”. The discussion shifted from
technological considerations to physiological ones, which made
the extension possible without much effort. In the original model,
several variables and equations would have to be added, making
the already complicated system almost unmanageable. The
benefits of modularity become even more apparent when moving
from the conduction model to the whole SHM.
Since the whole ModularConduction model is also encap-

sulated with a simple interface consisting of an input, an output,
the interbeat interval and the timestamp of the last contraction it
can seamlessly be integrated into our modular version of the SHM.
In fact, switching between the monolithic and modular imple-
mentation becomes as simple as changing the type of a variable
from MonolithicConduction to ModularConduction. This
is in stark contrast to the original implementation by Seidel in C,
where the variables and equations for the conduction system
were scattered throughout the code of the whole model. As a
welcome side effect, the separation of the model into individual
physiological effects also revealed some design flaws in the
original. For example, it was not quite clear if the refractory term
referred to the refractory behavior of the SA node, the AV node, or
the ventricles and in Supplementary Note 1, we discovered that
the C implementation introduces a seemingly unphysiological
time-dependence in the effective duration of the refractory
period.
It has to be said that the components we developed are only

reusable within their physiological context. In contrast to, e.g.,
reaction equations in metabolism models, physiology is not yet
standardized enough to have a unifying theory that allows
building libraries of components that can be used in multiple
tissue or organ models. However, the Physiolibrary can be seen as
a first approach in this direction, which also uses Modelica38.
Regarding the human-readable characteristic, all variables,

parameters, and components in our model have human-readable
labels that clearly specify which physiological quantity they
represent. The full version of the model code, which can be
found in Supplementary Listing 1–27 and at https://github.com/
CSchoel/shm-conduction, also contains additional documentation.

Fig. 6 Diagram of the extension of the modular conduction model with a trigger for (PVCs). The components are the same as in Fig. 5 with
additional components and connections highlighted in blue: reset inputs, second RefractoryGate (right) for the refractory period of the
ventricles, two logical OR gates and one AND gate. The letters on the outside of the rectangle represent the connections of the model to the
outside world: the input from the SA node (S), the output to the ventricles (V) and the trigger signal for PVCs (PVC).
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This is important for the understandability of the model but also
for reuse and extension. Reuse requires the identification of
possible connection points between variables in different models
based on their semantics. Extension could, for example, involve
the replacement of one variable or component with a more
complex representation, which models the same concept in more
detail.
The new model also removed an undocumented technical

workaround from the original where the interaction between
refractory time, spontaneous beats by the AV node, and the
time delay were resolved indirectly: a scheduling system kept
track of the next time a beat would be issued, giving
precedence to beats that enter the schedule at a later time
but would take effect earlier. A diagram of this system can be
seen in Supplementary Fig. 1. This indirect implementation was
hard to understand, because the schedules have no direct
physiological equivalent. The AV node, for example, does not
signal the sinus node ahead of time to indicate when it will
issue the next beat. This system was therefore replaced by an
explicit, more readable version by only considering actual
signals and no schedules.
Modelica focuses on human-readability over machine-read-

ability, which enabled us to discuss code-level details in this
article and makes it possible to quickly review changes in a
version control tool like Git (https://git-scm.com/). This made it
easy for us to spot bugs by tagging working versus broken
versions and identifying the lines that changed between the
working and the broken state. In contrast, editing software for
XML-based formats with less focus on human-readability may re-
order lines from one version to another without consequence
for the overall functioning of the model and without these
changes being apparent to the modeler. This can result in long
line change messages in popular version control systems such as
Git, which complicates locating the individual line that
introduced an error.
Another advantage of fully human-readable code can be seen

in the experiment setup, which we show in the methods section.
This model contains the code __OpenModelica_simula-
tionFlags (s = "dassl"), which tells the OpenModelica
compiler to use the Differential Algebraic System SoLver
(DASSL)89 to solve the equation system. This information can
only be interpreted by OpenModelica and not by other tools,
which might not support this solver. However, since Modelica is
designed to be written by humans directly, researchers who
inspect the model can easily find this information without
knowing that it is there. In contrast, if the model was written in
an XML-based language, researchers would probably not look at
the raw code, but load the model in a tool that uses an
intermediary language or a graphical user interface to display the
model content. It is likely that such a tool would just discard
information that it cannot process, making it possible that details
like these tool-dependent solver settings might be overlooked in
reproduction attempts.
However, our model also has a downside with regard to its

human-readability: the visual annotations, which are only helpful
within a tool like OpenModelica, do introduce visual clutter when
the model is only viewed in text form. To some extent, we could
alleviate this issue by separating icon definitions into separate files
and base classes and including them via multiple inheritance. Yet
still the model ModularConduction has to include verbose
annotation() statements for the placement and connection of
components.
Moving on to the hybrid characteristic, the example model is

purely discrete and therefore not hybrid in itself. However, it is
important to note that we could use the same language to

describe this discrete model that we also used for the rest of the
SHM, which is mainly continuous. It was, for example, not needed
to explicitly set the derivatives of the discrete variables to zero,
which would introduce visual clutter and therefore reduce
understandability. While our example cannot directly show the
benefits of DAEs and acausality, these features are included in
the implementation of the SHM that we published previously.
One example of this are the acetylcholine kinetics, which use the
following connector interface.

connector SubstanceConcentration
Real concentration "concentration of the substance"; 
flow Real rate "rate of concentration change"; 

end SubstanceConcentration; 

The keyword flow indicates that the variable rate is subject
to a conservation law: At each connection point in the system,
the sum of acetylcholine flow from and to all connected
components must be zero. In the SHM, the acetylcholine
concentration is only determined by a single Neurotrans-
mitterRelease component, which is connected to the
parasympathetic system, but it is easy to imagine an extension
that includes multiple uptake sites. In such an example, the
automatic generation of the conservation law by Modelica would
allow to separate the effects of all connected components, which
only have to declare their individual contribution to the
acetylcholine concentration. This both leads to better encapsula-
tion, making the model more understandable, and it facilitates
extension since additional components that have an influence on
the concentration can be added without changing any of the
equations of the existing components.
The openness of both the Modelica language and the

OpenModelica IDE ensures that readers can easily run simula-
tions themselves. They simply have to download the latest
release from the Github repository at https://github.com/
CSchoel/shm-conduction, download and install OpenModelica
and load the models using the "Load library" option in the “File”
menu. This means that our results can be easily reproduced
regardless of available licenses or of the user’s operating system
and that researchers who might want to reuse the model or
components can quickly run simulations to assess the usefulness
of the model for their use case.
However, there may still be some barriers. First, Modelica is

not yet widely known in systems biology, which makes it likely
that researchers will have to become familiar with a new tool
and language in order to reproduce our findings. Second,
engineers that use Modelica for industrial applications mostly
turn toward proprietary solutions like Dymola (https://www.3ds.
com/products-services/catia/products/dymola/), which can be
more feature-rich than and not fully compatible with
OpenModelica.
One area where the declarative characteristic comes into play

in our example are unit definitions. Even though the example
model only contains time-related variables and no other
physical quantities, the fact that we introduced proper SI units
is still helpful for understanding. For example, it avoids errors, if
the components are reused in another model that measures
time in milliseconds instead of seconds. Unfortunately, Modelica
does not enforce unit definitions or unit consistency checks.
However, when these optional unit declarations are used
consistently, they help to quickly identify and solve such order
of magnitude errors.
In his C implementation, Seidel implemented a fourth order

Runge-Kutta method himself, making this the only numerical
method available. By using a declarative language, it becomes

p-
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ossible to easily switch between different solvers which can
improve numerical accuracy. Not being tied to a specific
numerical method also increases interoperability between
models and thus reusability.
Another benefit of the declarative specification that becomes

apparent in our example is the increase in mathematical
soundness and clarity. The C implementation contained some
design choices that were convenient for programming, but
neither for understanding nor physiological plausibility. For
example, the original model mixed variables that represent
actual signals and time stamp variables that schedule signals for
the future (see Supplementary Fig. 1). To comprehend these
formulas a context switch from the physiological meaning to the
technical representation is required. Another hurdle for under-
standing the model is the unclear causality. In the SHM, every
effect is triggered by the contraction, even if there is no actual
signal feedback from the ventricles to the AV node on a
physiological level. By separating the model into smaller physio-
logically meaningful modules with a unified interface, the Modelica
compiler automatically hinted at these concerns, e.g., because
variables were missing.
One downside of choosing Modelica is that we could not

demonstrate the benefit of augmenting a model with semantic
information using ontologies. However, the use of the SIunits
package and the definition of the InstantSignal type to
indicate Kronecker delta behavior of in- and outputs show how
this could be achieved through a type hierarchy: The variables in
the model do not only have units, but we also distinguish
between the type Time for a point in time and Duration for a
difference between two points in time. Similarly, Instant-
Signal is technically equivalent to the type Boolean, but
carries additional semantic information about the shape of the
signal. In much the same way, one could build large type
hierarchies containing all terms of an ontology like the SBO,
Chemical Entities of Biological Interest (ChEBI)90 or Ontology of
Physics for Biology (OPB)91. Another way to implement ontology
support in Modelica would be so called vendor-specific annota-
tions of the form annotation(__VendorName(key=value,
...)), which could be added to components and variables. Since
ontology terms are typically identified through Uniform Resource
Identifiers (URIs), which are not human-readable, and because
there are currently no graphical Modelica tools that support such
ontologies, the first approach using the type system seems
preferable for now.
Regarding the graphical characteristic, the diagram in Fig. 5

helps to understand the model at first glance. It can both be used
as an entry point for understanding and for communicating the
model to a domain expert who is not familiar with mathematical
modeling or the language Modelica. The same would not be
possible with more detailed SBGN graphs or automatically
generated graphs of variable interactions, which would also
include internal variables of components and helper variables. At
the same time, the diagram is not just a separate image file but it
is generated from annotation() statements in the individual
components themselves. This means that it will remain up to date
if components are added or removed or new connectors are
included so that other researchers can rely on the accuracy of
the diagram if they want to understand, reuse, or reproduce the
model. The annotations also allow building more complex models
or small test cases using drag and drop in a graphical tool like
OpenModelica72, which can facilitate reuse and extension. For
example, the PVC extension required very little changes in the
code. Most of the changes could be applied by adding a
RefractoryGate component and three logical AND and OR
gates to the diagram which can be seen in Fig. 6.

On the downside, it can be argued that the connection in Fig. 5
which points back from the refractory component to the
pacemaker component is unintuitive and may be confusing when
the model is interpreted physiologically. This can be remedied by
introducing another layer of abstraction, which combines the
components Pacemaker and RefractoryGate to a single
component RefractoryPacemaker. We did not do this in our
implementation to keep the model code as simple as possible, but
in a larger model such an intermediary component may be
advisable.
As of now, our discussion was focused on Modelica, but there

are multiple languages with MoDROGH characteristics. Addition-
ally, our example revealed some shortcomings of Modelica with
respect to modeling biological systems. We, therefore, want to
recapitulate which features of the language were especially
beneficial for our model design, which features were lacking,
and what are the trade-offs that have to be made when switching
to another language.
Our Modelica implementation made heavy use of object

orientation, including multiple inheritance; it featured discrete
variables with human-readable labels; it relied on the graphical
representation for creating and communicating the toplevel
model structure; it provided minimal interfaces by encapsulating
helper variables and defining explicit connectors; and it used the
built-in support for SI units. Unfortunately, unit definition are not
enforced in Modelica, which means that it is up to the modeler
to ensure their reliable use. Modelica also does not support
semantic annotation of model components with ontological
terms. We showed how this can be achieved with a type
hierarchy or with vendor-specific annotations, but still ontology
support would have to be added to open-source Modelica tools
to be of practical use.
As an alternative, MATLAB with the Simulink environment

and the Simscape language is the only other language
presented in the results section that supports full object
orientation, declaration of discrete variables, and integrated
graphical annotations. In contrast to Modelica, it also enforces
unit checks at the interfaces between components. The only
technical downside of this language is that Simscape classes
do not support multiple inheritance. However, this is probably
no issue since we only used multiple inheritance to import the
annotation code for icons. Simulink only supports icons as
links to separate image files and not as verbose vector
graphics code. This has the benefit of not cluttering the code
and, therefore, removing the requirement for multiple
inheritance, but it also has the drawback that it is not possible
to define a common appearance for all components by
inheriting parts of the graphical annotation from the base
class. Apart from the technical aspects, the biggest drawback
of MATLAB is that it is not open. If we had used MATLAB
instead of Modelica, researchers who want to repeat our
experiments could still download the code from GitHub, but
they would need licenses for Matlab, Simulink, and Simscape
to run the simulations.
From the open alternatives, Julia with the Modia package

comes closest to the features we used for our example model. It
has the drawback of not supporting any graphical representation
and still being in an experimental stage. If one instead makes the
switch to the more stable DifferentialEquations.jl, the support for
object-orientation, declaration of discrete variables, variable labels,
and encapsulation is lost.
To compensate the shortcomings of Modelica, CellML might be

the best fit, since it is the only language from those presented in
the results section that enforces unit definitions. Additionally, it
also supports model annotation with terms from an ontology and
as an accepted COMBINE standard it is part of an established
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ecosystem for mathematical modeling in systems biology. With
SemGen, there even exists a tool for semantics-based annotation
and composition of CellML (and SBML) models92. On the
downside, CellML does not support full object orientation for
composing models. This means that base classes that define an
interface need to be imported as components of the model, which
requires a more verbose syntax. It also does not support the
explicit declaration of discrete variables but does support variable
reinitialization due to discrete events. To implement a variable like
the interbeat interval d_interbeat, which stays constant
between events, an additional equation would have to be added
to the model, which sets the derivative of this variable to zero. This
both introduces unnecessary code and makes the model less
understandable as there is no clear distinction between discrete
and continuous parts apart from the labels assigned to the
variables. CellML also follows a different philosophy for graphical
annotations, providing basic support for referencing and caption-
ing externally-stored images as part of the documentation for the
whole model. Finally, the language is not designed to be written
directly by humans and instead relies on the use of appropriate
tools to view and edit models.
It becomes clear that there is no single "best" language. Further

development is needed to obtain a language that supports all the
MoDROGH characteristics to their fullest extent. This development
could start with Modelica, leveraging a flexible and industry-
proven general-purpose modeling language and extending it to fit
the needs of the systems biology community. It could also start
with CellML or SBML, which are already proven languages with
widespread support in the systems biology community, and which
could borrow some software engineering features and standards
from languages like Modelica or Simscape. Other approaches and
foundations are also possible and it may even make sense to not
pursue the "perfect" language at all, but to focus more on
interoperability between languages that fit the specialized needs
of smaller modeling domains.
In conclusion, using a modeling language that is Modular,

Descriptive, human-Readable, Open, Graphical, and Hybrid
(MoDROGH) can make models more reproducible, under-
standable, reusable, and extensible. Because there is no single
best language, modelers have to decide which features are
most important for them and which trade-offs they are willing
to make. They should be aware of the beneficial characteristics
of the language and use them consistently as we described in
our guidelines and showed in our modular example model of
the cardiac conduction system. The situation that a model
needs to be dissected, modified, and extended to be used in a
different context is common in multi-scale, multi-level, and
multi-class models and therefore it is likely that our findings
translate to large areas of systems biology. Mathematical
modeling in systems biology has become an engineering
challenge that requires engineering solutions. Models should
no longer be implemented with only a single purpose in mind,
but as reliable parts of larger systems. We hope that this article
can spark a discussion in the community to put more emphasis
on these engineering aspects of mathematical modeling in
the development, selection, and application of modeling
languages.

METHODS
Material
We used Mo∣E version 0.6.393 to write the code of our models and
OpenModelica version 1.13.072 as well as Inkscape version 0.91 (https://
inkscape.org/) to add the component icons. OpenModelica version
1.17.0-dev.344+gc8233fa62a was used for all simulations in conjunction

with Julia version 1.5.3 and the packages OMJulia (v0.1.0) and
ModelicaScriptingTools (v1.1.0-alpha.4). For plotting we used Python
version 3.9.1 with the packages matplotlib (v3.3.4), numpy (v1.20.0), and
pandas (v1.2.1).
In the following we will show and explain our Modelica code for the

models and simulations. To keep it short, we do not show the code of the
original monolithic version and of the graphical annotations. We also do
not include most of the documentation strings, which are present in the
full version. They can be found in Supplementary Listing 1–27 and at
https://github.com/CSchoel/shm-conduction. Please also note that this
article was previously published as a preprint94.

Modular conduction model
The fundamental part of the modular model of the human cardiac
conduction system is the interface component UnidirectionalCon-
ductionComponent, which serves as a base class for all other
components. It has already been shown in the results section. It defines
the input and output connectors inp and outp, which are Booleans that
are wrapped in a custom type InstantSignal to indicate that they
behave as a sum of Kronecker deltas, meaning that they are only true for
the exact instants in time when events occur:

type InstantSignal = Boolean(quantity="sum of Kronecker deltas"); 
connector InstantInput = input InstantSignal annotation(...); 
connector InstantOutput = output InstantSignal annotation(...); 

partial model UnidirectionalConductionComponent
  InstantInput inp "input connector" annotation(Placement(...)); 
  InstantOutput outp "output connector" annotation(Placement(...)); 
annotation(Icon(...)); 

end UnidirectionalConductionComponent; 

The keyword connector designates the types InstantInput and
InstantOutput as part of the interface of a class and allows the
assignment of a basic icon representation in the form of an annotation
() statement. The content of these annotation statements can be quite
verbose, which is why we only show them in the full code in
Supplementary Listing 1–27 as well as on GitHub. The model Unidir-
ectionalConductionComponent is defined as partial to desig-
nate that it is not designed to be used as a finished component but has to
be extended in some way—in this case by defining the relationship
between the input and the output.
The RefractoryGate has already been shown in the results section.

The component passes on its input signal as output signal, but only when
the elapsed time since the last signal left the component is larger than the
refractory period:

model RefractoryGate "lets signal pass if refractory period has passed"
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Gate; 
import SI = Modelica.SIunits; 
parameter SI.Time t_first = 0 "time of first signal"; 
parameter SI.Duration d_refrac = 1 "duration of refractory period"; 
Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?"; 

protected
discrete SI.Time t_last(start=t_first, fixed=true) "time of last output"; 

equation
  outp = inp and refrac_passed; 
when outp then

    t_last = time; 
end when; 

end RefractoryGate; 

The function pre() is used here to denote the value right before an
event instead of the value right after the event. The when statement
describes an event which can define states of discrete variables and can
reinitialize continuous variables. This model also introduces a pro-
tected section which contains variables and parameters that should not
be visible from the outside.
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The Pacemaker model propagates incoming signals, but also adds its
own signal if there was no input for a certain period of time. Additionally,
this component, too, has to ignore incoming signals during the refractory
period. This can be implemented by decoupling the reset of the
pacemaker timer from the output of the component and instead treating
the reset signal as an additional input. It is assumed that this reset signal is
only triggered if the signal passes not only the pacemaker but also the
subsequent RefractoryGate component. The pacemaker component
itself still resets when a spontaneous output signal is generated to
maintain the invariant that the output signal will not be true for a
prolonged period of time:

model Pacemaker "pacemaker eliciting spontaneous signals"
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Metronome; 

  InstantInput reset "resets internal clock"; 
import SI = Modelica.SIunits; 
parameter SI.Period period = 1 "pacemaker period"; 

protected
discrete SI.Time t_next(start=period, fixed=true) 

"scheduled time of next spontaneous beat"; 
  InstantSignal spontaneous_signal = time > pre(t_next) 

"signal generated spontaneously by this pacemaker"; 
equation
  outp = inp or spontaneous_signal; 
when spontaneous_signal or pre(reset) then

    t_next = time + period; 
end when; 

end Pacemaker; 

The ConductionDelay model puts incoming signals on hold and
releases them after a certain time has passed. Physiologically the duration
of the delay for each signal depends on the time that has passed between
the last signal leaving the component and the current input signal. The
original model silently assumed that there will never be a second input
signal while a signal is put on hold. Therefore, this assumption is kept, but
made more explicit by using the helper variable delay_passed in the
when condition:

partial model ConductionDelay "delay depending on prev. cycle duration"
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Hourglass; 
import SI = Modelica.SIunits; 
discrete SI.Duration d_delay "delay duration"; 
Boolean delay_passed(start=false, fixed=true) = time > t_next 

"if false, there is still a signal currently put on hold"; 
protected
discrete SI.Duration d_outp_inp(start=0, fixed=true) 

"time between last output and following signal"; 
discrete SI.Time t_last(start=0, fixed=true) "time of last output"; 
discrete SI.Time t_next(start=-1, fixed=true) 

"scheduled time of next output"; 
equation
  outp = edge(delay_passed); 
when inp and pre(delay_passed) then

    d_outp_inp = time - pre(t_last); 
    t_next = time + d_delay; 
end when; 
when outp then

    t_last = time; 
end when; 

end ConductionDelay; 

Modelica does already have support for explicit delays, but this feature is
tailored toward continuous variables. Therefore, we use a scheduling
solution with the variable t_next, which indicates the time when the next
signal should leave the component. This is similar to the approach in the
original C implementation of the SHM, but here this scheduling system is
encapsulated in a single component and the respective helper variables are

defined in a protected environment so that they do not show up in the
simulation output.
Note that this is again only a partial model, which does not specify

the behavior of the variable d_delay. This allows the separation of the
general delay logic from the physiological equation for the AV node which
is modeled in the AVConductionDelay:

model AVConductionDelay "conduction delay between SA node and ventricles"
extends ConductionDelay; 
import SI = Modelica.SIunits; 
parameter SI.Duration k_avc_t = 0.78 "maximum increase in delay duration"; 
parameter SI.Duration d_avc0 = 0.09 "minimal delay duration"; 
parameter SI.Duration tau_avc = 0.11 "reference time for delay duration"; 
parameter SI.Duration initial_d_avc = 0.15 "initial value for delay"; 

initial equation
  d_delay = initial_d_avc; 
equation
when inp and pre(delay_passed) then

    d_delay = d_avc0 + k_avc_t * exp(-d_outp_inp/tau_avc); 
end when; 

end AVConductionDelay; 

Currently, this separation is only performed to increase readability and
to not further complicate the already complex ConductionDelay
component. Additionally, if the delay was split into two components, as
discussed in the results section, the second delay component could also
inherit the base equations from ConductionDelay, which would avoid
code duplication.
Finally, the model ModularConduction combines the aforemen-

tioned components using connect() equations to connect the input
and output variables. These equations are represented as lines in the
graphical representation which are again defined in annotation()
statements:

model ModularConduction
extends UnidirectionalConductionComponent; 
extends SHMConduction.Icons.Heart; 
import SI = Modelica.SIunits; 

  RefractoryGate refrac_av(T_refrac=0.364) 
"refractory component for AV node" annotation(...); 

  Pacemaker pace_av(period=1.7) 
"pacemaker effect of AV node" annotation(...); 

  AVConductionDelay delay_sa_v 
"delay between SA node and ventricles" annotation(...); 

discrete SI.Duration d_interbeat(start=1, fixed=true) 
"duration of last heart cycle"; 

discrete SI.Time cont_last(start=0, fixed=true) 
"time of last contraction"; 

equation
connect(inp, pace_av.inp) annotation(...); 
connect(pace_av.outp, refrac_av.inp) annotation(...); 
connect(refrac_av.outp, pace_av.reset) annotation(...); 
connect(refrac_av.outp, delay_sa_v.inp) annotation(...); 
connect(delay_sa_v.outp, outp) annotation(...); 
when outp then

   d_interbeat = time - pre(cont_last); 
    cont_last = time; 
end when; 

end ModularConduction; 

As already mentioned in the results section, this model also shows
how parameters like d_refrac and period can be adjusted when
the components are imported. Note also that the model Modular-
Conduction is again an UnidirectionalConductionCompo-
nent and can therefore be used as a component in a larger model such
as the SHM.
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Modular contraction experiment setup
Simulation experiments can also be defined directly in Modelica syntax.
The following code was used to produce Supplementary Fig. 2:

model ModularExample
  ModularConduction modC; 
  MonolithicConduction monC; 
equation
  modC.inp = monC.inp; 
if time < 5 then

    monC.inp = sample(0,1); 
elseif time < 15 then

    monC.inp = sample(0,3); 
elseif time < 20 then

    monC.inp = sample(0,0.05); 
elseif time < 30 then

    monC.inp = sample(0,0.8); 
elseif time < 40 then

    monC.inp = sample(0,0.2); 
else

    monC.inp = sample(0,1.8); 
end if; 
annotation( 

    experiment( 
      StartTime = 0, StopTime = 50, 
      Tolerance = 1e-6, Interval = 0.002
    ), 
    __OpenModelica_simulationFlags(s = "dassl") 
  ); 
end ModularExample; 

Here, the built-in function sample(start, interval) is used to issue
signals from the SA node at a precise interval. The interval length is switched
every five to ten seconds using an if statement. In addition to the
experiment setup, the experiment protocol is also given by the experiment
() annotation, which defines the start and stop times of the interval, the
requested step size for the output and the tolerance used in the solver
settings. The vendor-specific annotation __OpenModelica_simulation-
Flags is used to define the DASSL89 as the default solver. For Supplementary
Fig. 2, the variables monC.d_interbeat and modC.d_interbeat were
plotted against simulation time.

DATA AVAILABILITY
The data for figures in the data supplement can be generated from the model code
available on GitHub (https://github.com/CSchoel/shm-conduction), Zenodo95, and
BioModels (https://www.ebi.ac.uk/biomodels/MODEL2103050002). No other datasets
were generated or analyzed during the current study.

CODE AVAILABILITY
The full code of the models, experiments, and plots used in this article can be found
on GitHub, Zenodo, and BioModels. The model of the cardiac conduction system is
uploaded as https://github.com/CSchoel/shm-conduction95, and https://www.ebi.ac.
uk/biomodels/MODEL2103050002. The identifiers for the Modelica implementation
of the SHM are https://github.com/CSchoel/shm-conduction79, and https://www.ebi.
ac.uk/biomodels/MODEL2101280001, respectively.
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The Hodgkin-Huxley model of the squid giant axon has been used for decades as the

basis of many action potential models. These models are usually communicated using

just a list of equations or a circuit diagram, which makes them unnecessarily complicated

both for novices and for experts. We present a modular version of the Hodgkin-Huxley

model that is more understandable than the usual monolithic implementations and that

can be easily reused and extended. Our model is written in Modelica using software

engineering concepts, such as object orientation and inheritance. It retains the electrical

analogy, but names and explains individual components in biological terms. We use

cognitive load theory to measure understandability as the amount of items that have

to be kept in working memory simultaneously. The model is broken down into small

self-contained components in human-readable code with extensive documentation.

Additionally, it features a hybrid diagram that uses biological symbols in an electrical

circuit and that is directly tied to the model code. The new model design avoids many

redundancies and reduces the cognitive load associated with understanding the model

by a factor of 6. Extensions can be easily applied due to an unifying interface and

inheritance from shared base classes. The model can be used in an educational context

as a more approachable introduction to mathematical modeling in electrophysiology.

Additionally the modeling approach and the base components can be used to make

complex Hodgkin-Huxley-type models more understandable and reusable.

Keywords: understandability, cognitive load theory, Modelica, mathematical modeling, software engineering,

model engineering, Hodgkin-Huxley, action potential

1. INTRODUCTION

Since 1952, when Alan Hodgkin and Andrew Huxley published their conductance-based model
of the action potential generation in the squid giant axon, the Hodgkin-Huxley (HH) model has
been the basis of countless research projects to further the understanding of ionic currents and
action potentials in neurons and cardiac myocytes (Hodgkin and Huxley, 1952). Today’s models
feature more types of ion channels and pumps than the three channels identified by Hodgkin
and Huxley, but they still use the same electrical analogy and equation structure, which is why
we will call them HH-type models in the following (Courtemanche et al., 1998; Inada et al., 2009;
Fabbri et al., 2017; Bai et al., 2018). Although other types of ion channel models, such as Markov
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Models, are emerging, HH-type models are still the gold standard
(Winslow et al., 1999; Fink and Noble, 2009). The descriptions
of these HH-type models usually follow one of three explanatory
approaches: Either the differential equations are given directly
with a short biological explanation of the major variables or
a diagram of the electrical analogy is shown and explained in
biological terms or a combination of both. Often a biological
drawing of the cell is also provided, but it is only used to
explain themodeled concepts and not tied to themodel equations
themselves. This holds for research articles (Courtemanche
et al., 1998; Inada et al., 2009), simulation toolkits (Hines and
Carnevale, 1997; Jordan et al., 2020) and textbooks (Voit, 2013;
Gerstner et al., 2014). However, these approaches pose significant
challenges for novices and limit the productivity of experts: A
novice has to become familiar with the formalism of differential
equations or with circuit diagrams at the same time as they try
to understand the model itself. Experts will have overcome this
barrier already, but they are also faced with much more complex
HH-type models that can easily grow to over 100 equations.
These equations all interact with each other in a multitude of
feedback loops, making it extremely difficult to spot small errors
or to reproduce and extend the model. The risk associated with
these barriers is 2-fold: On the one hand, students may choose
not to specialize in systems biology or electrophysiology, because
they perceive the field to be too difficult. On the other hand,
a published model that is described in this way may generate
new insights, but prove to be too hard to reuse and extend.
For example, the latter seems to be the case for a model by
Inada et al. (2009) (116 equations) which has been labeled as
“groundbreaking” (Noble et al., 2012) but has only been used for
simulations by two other research groups in 10 years. It becomes
apparent that there is room for improving the understandability
of HH-type models and that this should be a goal of both
the initial model design and its presentation in scientific and
instructional material.

One area from which such an improvement may originate is
software engineering, because software development faces similar
problems of understandability: The building blocks of source
code are easy to grasp, but creating and maintaining projects
with millions of lines of code requires additional organization.
A widely established solution to handle this complexity is
modularization. Instead of overseeing the whole project at once,
software engineers identify individual functions and parts of
a system and create small modules to represent them. Each
component only has a few lines of code and a limited number of
connections to the outside world which makes it understandable.
To form the whole system, the modules can be connected at a
higher level of abstraction, where each of them can be considered
to be a single entity.

In recent years, multiple researchers have advocated to
borrow concepts from software engineering for systems biology,
culminating in the formulation of the term “model engineering”
(Hellerstein et al., 2019). In accordance with this movement, we
found that the modeling language and consistent application of
relevant language characteristics can have a significant impact
on the model quality (Schölzel et al., 2020). In this paper
we therefore present a novel modular implementation of the

original HH model that is based on the electrical analogy, but
explains and visualizes each component in biological terms.
The model is written in the modeling language Modelica and
makes heavy use of the features of this language and of software
engineering techniques.

Due to the aforementioned anticipated benefits of these
techniques we pose the following research questions:

RQ1 Can the understandability of the HH model be improved
by a modular implementation that bridges the gap between
biological meaning and electrical analogy?

RQ2 Can a modular implementation of the HH model serve
as a unifying basis for extensions and therefore facilitate the
creation of more complex HH-type modules?

For the investigation of these questions, the term
understandability is central, as our model does not differ
from other solutions in terms of its output, but only its
presentation. We may find our assessment of what makes a
model more or less understandable intuitive, but in a scientific
context it is not sufficient to rely on intuition alone. This is
especially true, when it involves reasoning about the experiences
of other people which may have quite a different background
and perspective. Therefore, a model for understandability is
needed that is based on scientific evidence. For this task we use
cognitive load theory (CLT), a popular and well-validated theory
in cognitive psychology which frames understandability in terms
of the amount of items that have to be kept in active working
memory and the degree of interactivity between them.

CLT is introduced in more detail in section 2.1 along with
model engineering, the language Modelica, and the biological
basis of the Hodgkin-Huxley model followed by an overview over
the software engineering concepts that we apply and the resulting
model structure. Section 2 describes our rationale for reducing
cognitive load, for the component hierarchy, and the design of the
individual model components. Section 3 then shows and explains
the resulting model code including the graphical representation
followed by a discussion of the implications of the new model
structure for understandability and extensibility. Finally, section
4 sums up the answers to our research questions and discusses
possible alternative approaches, limitations and future work.

2. MATERIALS AND METHODS

2.1. Background
2.1.1. Model Engineering
To this day, many models are still built for a single purpose
without guidelines regarding code quality. However, when
models grow beyond a certain point, the modeling process
becomes an engineering task and the goal should not only
be to produce a model that is working and mathematically
sound, but also to build it with an architecture that facilitates
the anticipated use cases and makes the code maintainable and
accessible to other researchers (Hellerstein et al., 2019). This
includes documentation, testing, naming of variables, and the
use of established design patterns. In a previous work we have
found the consistent use of an appropriate modeling language
that is modular, descriptive, (human)-readable, open, graphical,
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and hybrid (MoDROGH) to be a major driving factor for
model quality in terms of understandability and reproducibility
(Schölzel et al., 2020).

2.1.2. Modelica and Object-Oriented Programming
There are a few established and emerging languages that
exhibit MoDROGH-characteristics, such as the systems biology
markup language (SBML) (Hucka et al., 2003), CellML (Cuellar
et al., 2003), Simscape (The MathWorks, Inc., 2020), or
embedded domain-specific languages (DSLs) written in Python
or Julia (Olivier et al., 2005; Lopez et al., 2013; Elmqvist
et al., 2016; Rackauckas et al., 2020)1. In our opinion, the
modeling language Modelica (Mattsson and Elmqvist, 1997) is
a particularly interesting example, because it is an industrial
standard that emphasizes the engineering aspect of model
design. In contrast to SBML, CellML, as well as Python-
and Julia-based DSLs, Modelica supports full object oriented
design (e.g., through model inheritance), discrete variables for
the seamless integration of continuous and discrete model
parts, the graphical composition of models via drag and drop,
implicit differential/algebraic equations for acausal connections
between components via conservation laws, cross-language
export and import via the Functional Mockup Interface
(Blochwitz et al., 2012), grouping of interface variables to
connectors, and unrestricted mixing of implicit and explicit
equation formats. It shares these features with Simscape, but
unlike Simscape, Modelica provides an open environment,
more flexible mechanisms for model inheritance including
multiple inheritance and overwriting of variables and equations,
and extensible annotations, which could, e.g., be used to
implement support for ontological terms to the language.
Weak points of Modelica are the lack of existing support
for biological terminology and ontologies and the fact that,
while the OpenModelica integrated development environment
(IDE) (Fritzson et al., 2005) is open-source, many users prefer
the proprietary IDE Dymola (Dassault Systèmes, 2020), which
has its own compiler that is not always fully compatible
with OpenModelica.

In Modelica, modularity is realized by the principles of object-
oriented programming (Gamma et al., 1994). Code is structured
in classes that can be instantiated to reuse the same code at
different positions in a project and that can inherit behavior
and interfaces from abstract base classes. This reuse is not
only encouraged from one project to the following but also
within one project. This corresponds with one of the guiding
principles in software engineering called “don’t repeat yourself”
(DRY) suggesting that one should avoid writing duplicated code
with only very small differences, such as constant values or
variable names (Hunt and Thomas, 2000). Both DRY and object
orientation are most effective, when the implemented system can
be broken down into structurally similar components, which is
the case for the HH model.

1For a comparison of different language candidates see the supplementary note in

Schölzel et al. (2020).

2.1.3. The Biological Basis of the Hodgkin-Huxley

Model
The Hodgkin-Huxley model explains the time course of the
membrane potential of the squid giant axon during an action
potential by means of three ion channels: A sodium channel
lets Na+ cations enter the cell, which increases the potential. A
delayed-rectifier potassium channel permits K+ cations to leave
the cell, lowering the potential back toward the resting state.
Finally, a leak channel is responsible for maintaining the resting
potential while the other channels are closed. Both the sodium
and the potassium channel have voltage-dependent gates—
molecules that change their conformation with the membrane
potential to activate or inactivate the channel. The sodium
channel has both a fast activation gate and a slightly slower
inactivation gate, allowing the channel to open for a short period
of only a few milliseconds. The delayed-rectifier potassium
channel only has an activation gate with slower kinetics while the
leak channel is assumed to be always active.

2.1.4. Cognitive Load Theory
As mentioned in the introduction, we use cognitive load theory
(CLT) as a model for understandability (Sweller, 2019). In short,
CLT is based on the architecture of the human brain, which
has a very limited capacity for new information in the working
memory, but can easily transfer stored information from long-
term memory to working memory. The amount of items that
have to be kept in working memory to process an information
is called the cognitive load. The main driving factor of this metric
is element interactivity. Independent elements can be processed
one by one, but when elements have high interactivity they have
to be kept in working memory simultaneously. Hence, cognitive
load can be reduced in two ways: First, expertise can allow a
person that has understood a concept to further on process it as
a single item instead of the several items it comprises. Second, a
part of cognitive load does not originate from the complexity of
the taught concept itself, but from the way it is presented and can
therefore be reduced by choosing appropriate methods to present
the information and instruct the learner.

2.2. Model Design and Structure
For the sake of simplicity, we will consider the amount of
variables, parameters, and equations that constitute a model or
model component as an indicator of its cognitive load and thus its
understandability. Our goal is therefore to produce small model
components that have a low amount of elements and to reduce
element interactivity by introducing clearly defined interfaces
between these components that allow the learner to view one
component as a single item to be kept in working memory once
they understand it.

For this task we identify the following components in the HH
model: The lipid bilayer that separates the ionic concentrations
and therefore electrical charge on the outside and the inside of
the cell; the sodium, potassium, and leak channels; the voltage-
dependent gates inside the sodium and potassium channels; and
the current clamp that holds the current constant in order to
measure the voltage with reference to a ground electrode. All of
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these components reside on the same hierarchical layer, except
for the gates which are components of an ion channel class.

To build the full model, two kinds of connections between
non-gate components are required: First, each component has
a positive electrical pin on the extracellular side and a negative
electrical pin on the intracellular side, allowing current to flow
through the component as positive outward current. Second,
the voltage-dependent gating molecules of the sodium and
potassium channels react more quickly at higher temperatures,
which establishes the need for an input-output temperature
connection from the lipid bilayer to the ion channels.

In the design of the Modelica model we follow our guidelines
established in Schölzel et al. (2020), i.e., implementing small
self-contained modules; describing only the “what” of the
model, not the “how”; keeping the code human-readable
with speaking names and additional documentation strings
for variables and parameters; using only open-source tools
(namely OpenModelica) for ease of reproduction; and adding
a graphical representation for each component. We also
published the full code of the model on GitHub as well as in
the Supplementary Data Sheet 1 including every information
required to reproduce our results. As mentioned in section
2.1.2, graphical annotations are part of the Modelica code. This
encompasses connection annotations that define the coordinates
of the line connecting two components and more complex icon
annotations that define a component icon as vector graphic. As
the latter can be quite large and tend to clutter the otherwise
human-readable code, we define all icons in separate classes and
include them via inheritance with the extends statement.

The model was implemented using OpenModelica version
1.16.0 (Fritzson et al., 2005) and Mo|E version 0.6.3 (Justus et al.,
2017) as well as Inkscape version 0.91 (Inkscape Developers,
2020) to add the component icons. Simulations can be replicated
with OpenModelica on Windows, Linux, and macOS. The code
is available on GitHub under the MIT license at https://github.
com/CSchoel/hh-modelica.

3. RESULTS

3.1. Model Code
The first thing to consider in a software engineering task are the
required interfaces. Hence, we start our implementation of the
HH model by defining the following basic connectors:

connector TemperatureInput = input Real(unit="degC");

connector TemperatureOutput = output Real(unit="degC");

connector ElectricalPin

flow Real i(unit="uA/cm2");

Real v(unit="mV");

end ElectricalPin;

Here, TemperatureInput and TemperatureOutput
follow a simple input-output relationship. All components that
have a TemperatureInput will be connected to a single
component with a TemperatureOutput that determines the
global temperature value. ElectricalPins that are connected
to each other will all have the same voltage v, but can have
different currents i (indicated by the keyword flow). During
compilation, Modelica will generate an equation following

Kirchhoff’s current law that ensures that the sum of all connected
currents equals zero. This allows to connect an arbitrary number
of components without having to determine the direction
of the flow. For the sake of terminology and for a visual

distinction PositivePin and NegativePin are introduced

as subclasses without any functional difference from the base

class.

connector NegativePin

extends ElectricalPin;

annotation(...);

end NegativePin;

connector PositivePin

extends ElectricalPin;

annotation(...);

end PositivePin;

Annotation code that defines the connector icons is not given

here for the sake of brevity and will be completely omitted

for further code examples. The same is true for most of the

documentation strings. These details can be viewed on GitHub

and the resulting visual design can be seen in Figure 1.
Since most components will have an electrical connection

both to the inside and the outside of the cell, it is beneficial to

introduce another base class for those two-pin components:

partial model TwoPinComponent

PositivePin p "positive extracellular pin";

NegativePin n "negative intracellular pin";

Real v(unit="mV") "potential difference between pins";

Real i(unit="ua/cm2") "current flowing through comp.";

equation

0 = p.i + n.i;

v = p.v - n.v;

i = p.i;

end TwoPinComponent;

This base class already introduces three small equations that

connect the positive (extracellular) and negative (intracellular)

pins. The first equation again follows Kirchhoff’s current law

to ensure that the sum of all currents entering and leaving the

components is zero. The other equations just introduce two

helper variables: The variable v can be used to measure (or

define) the voltage at this component as a difference between

the potential at the positive and the negative pin. The variable i
measures or defines the current flowing through the component

from the negative to the positive pin. The model is declared as
partial since the number of equations and variables is not
balanced. It does not yet specify the current-voltage relationship
but leaves it open for implementation in specific subclasses.

The simplest TwoPinComponent that specifies this
relationship is the LipidBilayer:

model LipidBilayer

extends TwoPinComponent;

extends HHmodelica.Icons.LipidBilayer;

TemperatureOutput temp = temp_m;

parameter Real temp_m(unit="degC") = 6.3 "temperature";

parameter Real c(unit="uF/cm2") = 1 "capacitance";

parameter Real v_init(unit="mV") = -90 "initial stim.";

initial equation

v = v_init;

equation

der(v) = 1000 * i/c;

end LipidBilayer;
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This model inherits the variables and equations of
TwoPinComponent and the graphical annotations from
the icon LipidBilayer. It therefore only has to introduce one
additional equation that describes the component as a capacitor,
which separates the inside from the outside and is charged when
a current is applied. A factor of 1,000 has to be introduced
to measure the derivative der(v) in millivolt instead of volt
per second. Since the voltage v only enters the equation as a
derivative, the initial value has to be determined. Hodgkin and
Huxley used this degree of freedom to simulate a “short initial
stimulation” of the Membrane, assuming that it has been kept
at a constant V = 0 until the time t = 0 where the voltage
is suddenly changed to V = Vinit and is then left to develop
under a constant current. In this implementation this behavior is
reflected by the parameter v_init. Additionally, the membrane
temperature is defined through the parameter temp_m and
propagated via the output connector temp.

The temperature is passed on to the Gates, which describe
the conformation changes of gating molecules in an ion channel:

model Gate "molecule that opens/closes an ion channel"

replaceable function fopen = expFit(sx=1, sy=1);

replaceable function fclose = expFit(sx=1, sy=1);

Real n(start=fopen(0)/(fopen(0) + fclose(0){)},

fixed=true);

input Real v(unit="mV");

TemperatureInput temp;

protected

Real phi = 3^((temp-6.3)/10);

equation

der(n) = phi * (fopen(v) * (1 - n) - fclose(v) * n);

end Gate;

In contrast to the LipidBilayer the Gate does not inherit
from TwoPinComponent, since it is not a component in the
electric circuit itself but only a part of the IonChannel. Here, n
is the gating variable that determines the ratio of gatingmolecules
that are in “open” conformation. The rates with which molecules
change formations depend on the current voltage v through the
functions fopen, which gives the rate of change from closed to
open, and fclose, which gives the rate of change from open to
closed. Instead of having variables α and β that change with an
equation as in the original formulation by Hodgkin and Huxley,
fopen and fclose actually can be seen as variables that store
the whole fitting functions. This allows us to keep the code DRY
by reusing these functions to determine the starting value for
n as the steady state that would be achieved by holding the
membrane voltage constant as V = 0mV. In the original model,
a change in one of the fitting parameters for the equation for α

would also require a change in the stating value for n which is
not immediately transparent by the description. The functions
fopen and fclose are explicitly declared as replaceable
so that each ion channel can redefine them as required. For
this the three fitting functions expFit, logisticFit and
goldmanFit are required in the original HH model. For the
sake of simplicity we will only discuss expFit here:

function expFit "exponential fitting function"

input Real x "input value";

input Real sx "scaling factor for x axis";

input Real sy "scaling factor for y axis";

output Real y "result";

algorithm

y := sy * exp(sx * x);

end expFit;

In function definitions, Modelica switches from the usual
declarative implementation style to an imperative style as in
C or MATLAB. In an algorithm section, equations are
variable assignments where an expression on the right-hand
side is evaluated and stored in the variable on the left-hand
side. This is also indicated by the assignment operator :=
which has a direction in contrast to the equals sign used for
normal equations. During compilation, an algorithm section
is transformed to a single equation that depends on all input
variables and determines the value of all output variables of
the function definition. Here, a simple exponential relationship
is defined between the main input x and the output y that
can be scaled by the additional fitting parameters sx and sy.
These fitting parameters are fixed to a constant value when the
function is instantiated as, for example, function fclose =
expFit(sx=1, sy=1). The resulting function now has only
x left as the single mandatory input and can therefore be called as
fclose(x) for any real value x. The functions logisticFit
and goldmanFit follow the same general structure, but realize
different fitting functions with additional fitting parameters.

As mentioned before, the Gate component is part of an
IonChannel component. As there are three different ion
channels in the HH model, it again makes sense to introduce a
common base class:

partial model IonChannel "ionic current through membrane"

extends TwoPinComponent;

extends HHmodelica.Icons.IonChannel;

Real g(unit="mmho/cm2") "ion conductance";

parameter Real v_eq(unit="mV") "equilibrium potential";

parameter Real g_max(unit="mmho/cm2") "max conduct.";

equation

i = g * (v - v_eq);

end IonChannel;

This component is a two-pin component and inherits a graphical
annotation from an icon component. It adds the missing
relationship between current and voltage by introducing a
conductance variable g. If g is constant, the IonChannel
behaves as a simple electrical conductor with the only exception
that the voltage is relative to the equilibrium potential for the ions
transported by this channel. This is true for the LeakChannel
which only introduces the additional equation g = g_max. The
sodium and potassium channels, however, have voltage- and
temperature-dependent gates. Therefore, GatedIonChannel
is introduced as another base class that is the same as
IonChannel but with an additional TemperatureInput
called temp. The delayed-rectifier potassium channel, which
lets K+ cations pass through the membrane when it is open,
then becomes:

model PotassiumChannel "channel selective for K+ cations"

extends GatedIonChannel(g_max=36, v_eq=12);

extends HHmodelica.Icons.Activatable;

Gate gate_act(

redeclare function fopen=

goldmanFit(x0=-10, sy=100, sx=0.1),

redeclare function fclose= expFit(sx=1/80, sy=125),

v=v, temp=temp
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)"activation gate";

equation

g = g_max * gate_act.n ^ 4;

end PotassiumChannel;

This component inherits variables and equations from
GatedIonChannel and at the same time changes the
values for the maximum conductance and the equilibrium
potential. It uses a Gate component and redeclares the
appropriate fitting functions to use for fopen and fclose.
The only additional equation introduced is the dependency
between the conductance and the gating variable n. As Hodgkin
and Huxley determined, four gating molecules have to be in the
open conformation simultaneously in order to allow ion transfer
through a delayed-rectifier potassium channel. This is realized
by taking the fourth power of the gating variable n.

The sodium channel, which lets Na+ cations pass through the
membrane, looks similar but a little more complex:

model SodiumChannel "channel selective for Na+ cations"

extends GatedIonChannel(g_max=120, v_eq=-115);

extends HHmodelica.Icons.Activatable;

extends HHmodelica.Icons.Inactivatable;

Gate gate_act(

redeclare function fopen=

goldmanFit(x0=-25, sy=1000, sx=0.1),

redeclare function fclose=

expFit(sx=1/18, sy=4000),

v=v, temp=temp

)"activation gate";

Gate gate_inact(

redeclare function fopen=

expFit(sx=1/20, sy=70),

redeclare function fclose=

logisticFit(x0=-30, sx=-0.1, y_max=1000),

v=v, temp=temp

)"inactivation gate";

equation

g = g_max * gate_act.n ^ 3 * gate_inact.n;

end SodiumChannel;

Here we have three molecules that form an activation gate and
one molecule that forms an inactivation gate. The gates again
only differ in the choice of fitting functions and values for their
fitting parameters.

With this we already have all individual components that
constitute the cell membrane. To measure and to perform
experiments, however, we still need a model of the current clamp
which keeps the current through themembrane constant in order
to measure the voltage relative to a ground electrode:

model ConstantCurrent

extends TwoPinComponent;

parameter Real i_const(unit="ua/cm2");

equation

i = i_const;

end ConstantCurrent;

model Ground

PositivePin p;

equation

p.v = 0;

end Ground;

model CurrentClamp

extends HHmodelica.Icons.CurrentClamp;

PositivePin p "extracellular electrode";

NegativePin n "intracellular electrode(s)";

parameter Real i_const(unit="ua/cm2") = 40;

ConstantCurrent cur(i=i_const);

Ground g "reference electrode";

Real v = -n.v "measured membrane potential";

equation

connect(p, cur.p);

connect(n, cur.n);

connect(g.p, p);

end CurrentClamp;

This is the first part in the model where we use Modelica’s
connect equation to connect smaller components to one
large component. The Ground component simply sets the
potential of the extracellular compartment to zero while the
ConstantCurrent component ensures that the cell has a
constant positive outward current. The additional variable v
captures the actual membrane potential that would be measured
by a real current clamp experiment.

Now that all components are defined, putting together the
whole HH model becomes as simple as just placing them side
by side, connecting positive with positive and negative with
negative pins of neighboring components as well as connecting
the TemperatureOutput of the LipidBilayer to all
TemperatureInput connectors:

model HHmodular

PotassiumChannel c_pot;

SodiumChannel c_sod;

LeakChannel c_leak;

LipidBilayer l2;

CurrentClamp clamp;

equation

connect(l2.p, c_pot.p);

connect(c_pot.p, c_sod.p);

connect(c_sod.p, c_leak.p);

connect(c_leak.p, clamp.p);

connect(clamp.n, c_leak.n);

connect(c_leak.n, c_sod.n);

connect(c_sod.n, c_pot.n);

connect(c_pot.n, l2.n);

connect(l2.temp, c_pot.temp);

connect(c_pot.temp, c_sod.temp);

end HHmodular;

Annotations can be used to place the components on a coordinate
system and to give the connections a graphical representation.
Usually these annotations are not written manually but generated
by an IDE like OpenModelica, where the components can
be placed on a diagram view via drag and drop. Due to
restrictions in space we do not show all the annotations here
but only an example for the placement of the LipidBilayer
and the connection between the LipidBilayer and the
PotassiumChannel:

...

LipidBilayer l2 annotation(

Placement(visible = true, transformation(

origin = {-67, 3},

extent = {{-17, -17}, {17, 17}},

rotation = 0

))

);

...

equation

connect(l2.p, c_pot.p) annotation(

Line(

points = {{-66, 20},{-66, 40},{-33, 40},{-33, 20}},
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FIGURE 1 | Diagram view of the modular Modelica implementation of the

Hodgkin-Huxley model. Each component has a positive electrical pin on the

top/outside and a negative electrical pin on the bottom/inside. From left to

right the components are: LipidBilayer, PotassiumChannel,

SodiumChannel, LeakChannel, and CurrentClamp. Extra connections

in red represent temperature dependence of gating variables.

color = {0, 0, 255}

)

);

...

The resulting diagram is shown in Figure 1. The lipid bilayer is
represented similar to diagrams in biology textbooks with circles
on the outside and curved black lines pointing to the inside of the
membrane. The channels are displayed as pores that are either
open for the leak channel or closed for channels that have to be
activated for ions to pass. The sodium channel additionally has a
hinged lid to represent the inactivation gate. Finally, the current
clamp is represented by two electrodes piercing the membrane.

3.2. Model Validation
When compiled, the modular version of the HH model reduces
to the exact same equation system as the original monolithic
version. Due to the modularization there are multiple versions
of one variable, but this only leads to the addition of a few trivial
equations of the form x = y or the form x = −y. Figure 2 shows
a plot of the monolithic and modular version to ensure that both
are functionally equivalent. This means that there are now two
very different implementations with the same functionality which
can and have to be analyzed for their suitability according to the
research questions we established in our introduction.

3.3. Assessment of Understandability (RQ1)
With RQ1, we asked if the understandability of the HH model
can be improved by a modular implementation that bridges
the gap between biological meaning and electrical analogy.
Using cognitive load theory as a framework, we will assume
that a model is more understandable if it requires fewer items
to be kept in working memory simultaneously. Although the
modular implementation has more lines of code in total, it
separates the model into small digestible parts. When a novice,
for example, wants to know what a Gate is, they only have
to process five variables and one equation, each of which
are documented with their physiological meaning. When they

FIGURE 2 | Comparison of the monolithic and modular versions of the HH

model. The plot shows perfect alignment of the voltage curves. Note that we

plot the membrane potential Vm as difference between the potential on the

inside and the potential on the outside of the cell. This conforms with current

standards, but is in contrast to the original equations by Hodgkin and Huxley,

which define V as the displacement from the resting potential with opposite

sign. We used the equation Vm = Er − V, assuming a resting potential Er of

−75 mV, which is also used in the HH-implementation in the BioModels

database (Le Novère, 2020) and corresponds to the resting potential of the

squid giant axon in vivo (Moore and Cole, 1960).

understand this component, they know that its purpose is to
produce a value between zero and one which is based on voltage
and temperature and represents the ratio of gating molecules in
open conformation. Once this concept is stored in long-term
memory it can be recalled as a single item into working memory.
This means that, when the learner moves on, the two gates in
SodiumChannel can be processed as two items instead of
twelve2. Moving from component to component, the modular
version presents the reader with at most two equations and five
variables or parameters at the same time. This constitutes a very
low cognitive load compared to the 15 equations and 33 variables
and parameters of the monolithic version that are presented all at
once or in loose groups without clearly defined interfaces.

One way to facilitate the transfer of new concepts in long-
term memory is to anchor them to existing knowledge. Our
implementation does this by annotating each component and
each variable or parameter in that component with biological
terms3. The implementation also uses speaking variable names
wherever possible to keep a close link between the biological
and themathematical representation—a common best practice in
software engineering (that could also be applied to a monolithic
version). Some parts of themodel, such as the seemingly arbitrary
fitting function goldmanFit, require more explanation which
can be given in Modelica by adding an HTML string to the
component for a detailed documentation.

Finally, on the highest hierarchical level, the component
HHmodular has still only five variables but ten connect
equations. For this model, however, a novice does not need to
read any code at all to understand it, because they can use the
diagram in Figure 1 instead. Since it is defined directly in the
code and tied to the individual components it is not only a
simplified documentation but an accurate graphical reflection of

2This benefit is even more pronounced considering that the formulas for the α

and β variables in the original model each consist up to seven seemingly arbitrary

mathematical operations that are now given a meaning by introducing the named

and documented fitting functions expFit, logisticFit, and goldmanFit.
3Due to spatial limitations we do not show all these annotations in this paper, but

they can be found at https://github.com/CSchoel/hh-modelica/.
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the underlying implementation. This means that understanding
the model on this level of abstraction is not any harder than
understanding a corresponding biological drawing in a textbook.
Assuming that the learner is already familiar with what is
modeled, the implementation can again be anchored easily to that
existing knowledge.

3.4. Assessment of Extensibility and
Reusability (RQ2)
With RQ2, we asked if a modular implementation of the HH
model can serve as a unifying basis for extensions and therefore
facilitate the creation of more complex HH-type modules. The
current implementation already could reduce some duplicate
equations in the original model by reusing already existing code.
The current-voltage relationship of the three ion channels, the
rate of conformation change in the three different gates, and
the fitting functions expFit and goldmanFit each had to
be defined only once. Furthermore, the introduction of the
replaceable functions fopen and fclose eliminated the need
to define starting values for the gating variables. When new
components are added to the model, it is highly probable that
some of these existing components can be used to reduce the
implementation effort. Even more importantly, the argument
for the reduction of cognitive load by modularization gets more
weight as the model grows in size. In the modular version, the
only point where cognitive load may increase due to extensions
and therefore make the model less understandable is when there
are too many individual models at the highest hierarchical layer.
However, even then it is possible to form groups of components
(e.g., a group for all potassium-sensitive channels or for all
ion pumps) that are then connected on a new even higher
hierarchical level. Conversely, the cognitive load associated with a
monolithic model will grow with each variable and each equation
that is added to the model.

To give one specific example, a reasonable extension could be
the inclusion of slow inactivation of sodium channels. In contrast
to fast inactivation, that stops the influx of Na+ cations after a
few milliseconds, slow inactivation takes place over seconds or
even minutes of prolonged or high frequency depolarizations,
reducing the number of sodium channels available for activation
(Payandeh, 2018). This could be realized by simply adding
another Gate component to the SodiumChannel and
introducing a ratio p_slow that determines how much of the
total current is attributed to slow as opposed to fast inactivation.
The conductance equation would then change from

g = g_max * gate_act.n ^ 3 * gate_inact.n;

to:

g = g_max * gate_act.n ^ 3

* (p_slow * gate_inact_slow.n + (1-p_slow) * gate_inact_fast

.n);

Apart from choosing appropriate fitting functions for the new
gate, this would be the only change required. Arguably a
monolithic model would not require more changes, but it would
be more difficult to first identify which equations have to change
and thus it would be easier to make a mistake by missing
or interchanging an equation or variable. We encountered this

problem in a previous work with a model of the human cardiac
conduction system (Schölzel et al., 2020).

Other extensions might involve defining an alternative Gate
that uses fitting functions to determine the steady state n∞
and time constant τ instead of α (fopen) and β (fclose)
(Destexhe and Huguenard, 2000; Goldman et al., 2001) or new
components based on TwoPinComponent, such as channel
formulations based on the Goldman-Hodgkin-Katz flux equation
(Huguenard and McCormick, 1992; Destexhe and Huguenard,
2000) or models of ionic pumps (Di Francesco and Noble,
1985; Matsuoka and Hilgemann, 1992). Even in these cases the
underlying interfaces can stay the same and parts like the current
clamp formulation, common base classes, and fitting functions
can be reused.

4. DISCUSSION

We showed that a modular version of the HH model that
uses software-engineering techniques to manage complexity is
beneficial both for novices and for experts, answering both of our
research questions in the affirmative.

RQ1 asked whether the understandability of the HH model
can be improved by a modular implementation. We showed that
this is the case using CLT as framework and demonstrating a drop
of the cognitive load by a factor of 6. The biological concepts
can be explained and understood one at a time with an accurate
graphical representation at the highest level of abstraction instead
of having to navigate through a multitude of equations and
variables with high element interactivity. In summary this means
that with our implementation a deeper understanding of the HH
model can be achieved in less time and it is likely that novices
learning the model in this way will make fewer errors when
recalling the learned concepts at a later time.

RQ2 asked whether the modular implementation can also
serve as a unifying basis for extensions and facilitate the creation
of more complex HH-type models. We showed that, in contrast
to the monolithic version, adding new components does not
significantly increase the cognitive load associated with the
model. We also demonstrated that many components of our
model are easily reusable which reduces development time and
increases interoperability of solutions.

Similar results like ours would have been possible, for
example, using CellML, or SBML with the SBML-comp package.
In fact, Wimalaratne et al. (2009) also used the Hodgkin-Huxley
model as an example to promote the support for hierarchical
composition of CellML models. However, we used some
Modelica features for our design that do not exist in these other
languages. This includes the graphical composition of models,
object-oriented programming with multiple inheritance, acausal
connections between electrical and chemical components, the
grouping of interface variables to connectors, and the annotation
of the experiment setup within the model file itself.

One limitation of this approach is that some experts might be
much more familiar with the formalism of differential equations
than with object-oriented software design. It might be easier
for them to reduce a group of equations to a single item in
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their working memory than it is to do the same with a piece
of code that represents a class. This means that, for models
of small to moderate size, the navigation through different
classes according to a modular design structure might actually
be detrimental to their understanding of the model and to their
productivity when working with it. A solution to this problem
could be to provide a third, equation-based representation of
the respective model in parallel to the existing graphical view
and the raw code. Authoring tools like OpenCOR for CellML
(Garny and Hunter, 2015) or COPASI for SBML (Hoops et al.,
2006) already provide these equation-based views. However,
they do not provide an overview of all equations in the whole
model, but only of the parts that are currently selected. For
Modelica we are only aware of a similar approach to OpenCOR
and COPASI in the proprietary IDE MapleSim (Maplesoft,
2020). Implementing such a representation in open-source tools,
such as OpenModelica would be possible due to the fact that,
like CellML and SBML, Modelica is declarative. OpenModelica
already has a feature to “instantiate” a model, which reduces
its structure to a “flat” format consisting of a single class
with a list of parameters, variables, and equations. Additionally,
OpenModelica models can be exported in an XML format that
contains all parameters, variables, and equations in a machine-
readable form. Based on these existing features, an “equation
view” could be implemented in the OpenModelica IDE OMEdit
that would allow experts to understand a model at first glance
based on the differential equations and without having to traverse
its hierarchical structure. Alternatively, such a representation
could be part of a documentation website associated with a
model or model library. As an added benefit a tool that provides
such an automated representation as typeset equations could
also provide an export as LaTeX or Word documents, which
can then be inserted in articles to guarantee that the published
version of the equations is exactly the same as the equations
used to simulate the model. We have implemented a first
prototype of such an equation-based web documentation using
the Julia package Documenter.jl (Piibeleht et al., 2020) and our
own package ModelicaScriptingTools.jl (Schölzel, 2020). The
resulting experimental documentation for the Hodgkin-Huxley
model presented in this article can be found at https://cschoel.
github.io/hh-modelica/dev/.

Another direction for future research is the application of our
techniques to larger and more complex models. We are already
using the model developed in this paper as a basis to reproduce

a large 116 equation model of the atrioventricular node (Inada
et al., 2009). We hope that this and other projects based on the
same methodology, be it with Modelica or another MoDROGH
language like CellML, may help to increase the quality and speed
of scientific progress in systems biology.
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Abstract

One should assume that in silico experiments in systems biology are less susceptible to

reproducibility issues than their wet-lab counterparts, because they are free from natural bio-

logical variations and their environment can be fully controlled. However, recent studies

show that only half of the published mathematical models of biological systems can be repro-

duced without substantial effort. In this article we examine the potential causes for failed or

cumbersome reproductions in a case study of a one-dimensional mathematical model of the

atrioventricular node, which took us four months to reproduce. The model demonstrates that

even otherwise rigorous studies can be hard to reproduce due to missing information, errors

in equations and parameters, a lack in available data files, non-executable code, missing or

incomplete experiment protocols, and missing rationales behind equations. Many of these

issues seem similar to problems that have been solved in software engineering using tech-

niques such as unit testing, regression tests, continuous integration, version control, archival

services, and a thorough modular design with extensive documentation. Applying these

techniques, we reimplement the examined model using the modeling language Modelica.

The resulting workflow is independent of the model and can be translated to SBML, CellML,

and other languages. It guarantees methods reproducibility by executing automated tests in

a virtual machine on a server that is physically separated from the development environment.

Additionally, it facilitates results reproducibility, because the model is more understandable

and because the complete model code, experiment protocols, and simulation data are pub-

lished and can be accessed in the exact version that was used in this article. We found the

additional design and documentation effort well justified, even just considering the immediate

benefits during development such as easier and faster debugging, increased understand-

ability of equations, and a reduced requirement for looking up details from the literature.
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1 Introduction

Mathematical modeling in systems biology, along with many other fields, is facing a reproduc-

ibility crisis [1, 2]. According to Stodden et al. [3], only an estimated 26 Curators of the Bio-

Models database recently found that of 455 ordinary differential equation (ODE) models, only

51 As a single extreme case, Topalidou et al. [4] reported requiring three months to reproduce

a neuroscientific model of the basal ganglia. The situation is similar to the reproducibility

issues in wet-lab experiments, but it is less understandable, since in silico experiments only

involving mathematical models are inherently free of the biological variations that complicate

their wet-lab counterparts.

When talking about reproducibility, it is important to clearly define this term [5]. We follow

the terminology of Goodman et al. [6], with the following modeling-specific adaptations:

Methods reproducibility is achieved if the same code can be used with the same simulation

tools and settings to produce the same results as the original study. Results reproducibility is

achieved if the model can be rebuilt in a different language, with a different architectural struc-

ture, or simulated with different simulation tools using the same experiment protocol to

achieve results that closely match those of the original study. Inferential reproducibility does

not concern the reproduction of simulation data, but the reproduction of the conclusions

drawn from the analysis of that data and the properties of the model. For the most part of this

article we will not talk about inferential reproducibility, as our focus lies on model design and

not on biological findings.

A lack in methods and results reproducibility can have direct consequences for the useful-

ness of a model. One example of this is the one-dimensional mathematical model of the atrio-

ventricular (AV) node by Inada et al. [7]. It has been labeled as “ground-breaking” [8], because

it was the first detailed model of the AV node, and it is still the only AV node model among

over 600 models in the Physiome Model Repository [9]. We chose it for our research, because

it is able to simulate many important phenomena of the cardiac conduction system including

AV nodal reentry while still remaining manageable in its own complexity. Moreover, the arti-

cle comes with a supplement that contains not only simulation results of the full model but

also a set of figures that show the characteristics of the individual ion channel and ion pump

models with up to eight individual plots for a single channel. Despite these indicators for a

high quality article, the methods of Inada et al. are unfortunately not reproducible as there is

no executable code available that can produce the results of the original study and reproducing

the results with a reimplementation in another language took us more than four months. It

seems intuitive that such difficulties in reproducibility may lead to fewer reproduction

attempts and therefore less scientific impact. The issues we encountered with the Inada model

may have prevented its widespread application, and thus, to some extent, hindered scientific

progress in cardiovascular modeling. Given the number of such cases, we believe that it is

unlikely that they arise out of a lack of scientific rigor. In contrast, it seems that the inherent

complexity of such models inevitably opens the door to human error and that new tools and

workflows are required to manage this complexity.

Researchers have already proposed several approaches to increase reproducibility in mathe-

matical modeling. The most pressing and obvious suggestion is to publish the full simulation

code, including executable scripts that produce the simulation results and plots that appear in

the corresponding article [1–3, 10–15]. Many also advocate the use of literate programming in

the form of electronic notebooks that mix textual descriptions and code as publication format

[1, 4, 10–13, 16]. However, Medley et al. [16] also note that electronic notebooks can be too

rigid for the creation of large and complex models and pose some difficulties for version con-

trol. Along with the code, data used for plots in the article should also be published, including
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the simulation output of the published model [1–3, 10, 14]. Both data and code could be stored

in specialized model databases that allow model discovery via semantic information [1, 2, 12].

Workflow systems such as Galaxy [17] or KNIME [18] can be used to publish simulation pro-

cedures in a format that ensures methods reproducibility through the use of standardized com-

ponents [1, 10, 16].

Other suggestions concern the role that academic journals can play in ensuring and pro-

moting reproducibility. Publication checklists [1, 11] or a “seal of approval” [1, 11, 14, 15]

could provide missing incentives for researchers to put more focus on all forms of reproduc-

ibility. A few journals even already experiment with publication workflows that aim to guaran-

tee methods reproducibility of published models. PLOS Computational Biology recently

started a promising pilot project in collaboration with the Center for Reproducible Biomedical

Modeling [19], which extends the peer review with an additional step in which reviewers spe-

cifically evaluate the methods reproducibility of the computational modeling aspects of a sub-

mission [15]. The journal Physiome takes a similar approach by publishing articles that

demonstrate the consistency and reproducibility of mathematical models already described in

other publications. Here, too, the actual methods reproducibility is assessed by independent

Physiome curators.

Apart from these suggestions, which are specific for mathematical modeling and/or systems

biology, researchers also advocate for the application of common best practices from software

engineering. This includes structured documentation [1, 3, 11, 12], version control [10–13,

16], unit testing [2, 12, 13, 16], the use of open standards [1, 2, 12, 14], human-readable code

with style guides [2, 13], modularity [11, 13], object-orientation [12, 13], the use of virtual

machine specifications [1, 10, 11], and the long-term archival of code [2].

Borrowing software engineering concepts for improving the methods and results reproduc-

ibility of mathematical models seems natural, since these models are, after all, software. As

models grow in size and complexity towards examples such as theMycoplasma genitalium
whole-cell model by Karr et al. [20] or the central metabolism of E. coli by Millard et al. [21],

they face the same kind of issues that software faces when it evolves from a single script of a

few lines of code to a complex system with thousands or millions of lines of code. While these

issues started to appear only fairly recently in systems biology, they are known for decades in

software engineering and efficient solutions have been and are still being developed. Heller-

stein et al. [13], therefore, argue that modelers should rethink their work as “model engineer-

ing” by applying software engineering techniques to the domain of mathematical modeling.

In our attempt to make the Inada model more reproducible, we build on the ideas of model

engineering and our own previous work. Most importantly, we found that languages that are

modular, descriptive, human-readable, open, graphical, and hybrid (MoDROGH) can help to

increase both methods and results reproducibilty as well as reusability, extensibility and under-

standability [22]. We verified the effectiveness of the consistent use of these characteristics by

creating and analyzing a modular version of the Hodgkin-Huxley (HH) model of the squid

giant axon [23]. Since the Inada model mainly consists of HH-type ion channels, it is highly

likely that this model can also benefit from our design approach. While implementing the HH

model, we also developed a workflow with unit tests that are run automatically on an online

server every time the code is updated. This concept is called continuous integration (CI) in

software engineering and was developed precisely to ensure that software can be installed and

run in an environment that is completely separate from the development environment [24]. It

is already used, for example, in the bioinformatics framework NF-CORE [25], and in the

OpenWorm project, which aims to model Caenorhabditis elegans [26]. We expect that this,

combined with a model architecture that follows the MoDROGH guidelines, and regression
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tests, which ensure that changes to a model do not affect the simulation output, can solve

many if not all the reproducibility issues present in the Inada model.

We believe that results from this case study will be applicable to a large set of systems biol-

ogy models for several reasons: The Inada model is a good example of the range of difficulties

and pitfalls one faces when trying to ensure the reproducibility of methods and results of an in
silico study. Inada et al. certainly tried to make their work as transparent as possible. Yet still,

the model exhibits all the common reproducibility issues identified by the BioModels repro-

ducibility study [27]—“recoverable” issues like sign errors, missing equations, order of magni-

tude, and unit errors, as well as “non-recoverable” issues such as missing parameter values,

missing initial values and errors in equations. It is also a representative example for challenges

in reproducing models in a multi-scale context. On the one hand, the full one-dimensional

model of the AV node is in itself a multi-scale model, since it covers cell and organ scales with

observed effects ranging from milliseconds to seconds. On the other hand, all 6 published

reproductions of the results of Inada et al. include the single AV cell model in a larger multi-

scale context, be it a 3D heart model [28–30], the cardiac conduction system [31], or a one-

dimensional ring model of the sinoatrial (SA) node [32, 33]. Finally, none of the techniques

and guidelines that we apply are specific to the Inada model or electrophysiological models in

general. The MoDROGH criteria were already applied to an organ-level model of the human

baroreflex [22] and both CI and regression tests are concepts borrowed from software engi-

neering, which are applicable to any piece of software. This should also allow to transfer our

results to other MoDROGH languages like the Systems Biology Markup Language (SBML)

[34] or CellML [35].

We therefore address the following research questions:

RQ1 What are the factors that hinder the reproduction of the methods and results of the Inada

model?

RQ2 Are software engineering techniques (in particular a MoDROGH design, regression tests,

and CI) suited to overcome the issues identified in RQ1?

We will answer these questions by first giving an overview of the Inada model, the

resources available for reproduction, and our design philosophy for the reimplementation in

Section 2. We then describe all reproducibility issues along with our solutions in Section 3. In

Section 4 we discuss the answers to our research questions as well as the general applicability

of the techniques that we presented and their limitations. Finally, we draw our conclusion in

Section 5.

2 Materials and methods

2.1 The Inada model

The one-dimensional mathematical model of the atrioventricular node (AV node) by Inada

et al. [7], which we simply call the Inada model in the following, consists of a one-dimensional

chain of different cell types: For the sinoatrial node cells and the atrial cells, preexisting models

are used, but for the atrionodal (AN), nodal (N), and nodal-His (NH) cells, the authors devel-

oped own formulations. In total these three new cell types are composed of eight ion channels,

two ionic pumps, and four compartments with variable Ca2+ concentrations:

• ion channels

• background channel (Ib)

• L-type calcium channel (ICa,L)
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• rapid delayed rectifier channel (IK,r)

• inward rectifier channel (IK,1)

• sodium channel (INa)

• transient outward channel (Ito)

• hyperpolarization-activated channel (If)

• sustained outward channel (Ist)

• ion pumps

• sodium calcium exchanger (INaCa)

• sodium potassium pump (Ip)

• compartments containing variable Ca2+ concentrations

• cytoplasm ([Ca2+]i)

• junctional sarcoplasmic reticulum (JSR) ([Ca2+]jsr)

• network sarcoplasmic reticulum (NSR) ([Ca2+]nsr)

• “fuzzy” subspace ([Ca2+]sub), which is the “functionally restricted intracellular space acces-

sible to the Na+/Ca2+ exchanger as well as to the L-type Ca2+ channel and the Ca2+-gated

Ca2+ channel in the SR” [7, 36]

• concentrations assumed to be constant

• extracellular calcium concentration ([Ca2+]o)

• intra- and extracellular sodium concentrations ([Na+]i, [Na+]o)

• intra- and extracellular potassium concentrations ([K+]i, [K+]o)

2.2 Available material

In the first stages of our reimplementation of the Inada model, we relied only on publicly

available data. This included the article by Inada et al., the supplementary data for this arti-

cle in PDF format, and the CellML version of the model, which was created by Lloyd [37]

and published in the Physiome Model Repository [9]. The CellML implementation con-

tained code that was not in the paper and did not produce simulation output that resembled

any of the plots in the original article. We therefore used it as a reference, but did not rely

on its correctness. We supervised two Bachelor’s theses that reimplemented the CellML

model in Octave and in Modelica. Both projects were able to reproduce some but not all the

reference plots in [7]. Before we implemented the current version, we therefore attempted

to obtain the original C++ implementation of Inada et al. by contacting the authors them-

selves and the editors of the Biophysical Journal. Unfortunately, we did not receive an

answer and our attempt to contact Lloyd for comments on the CellML model was equally

unsuccessful. In a second attempt at a later stage of the development, we reached out to the

production team of the Biophysical Journal and to the general help address of the Physiome

Model Repository. The former finally allowed us to obtain the C++ code and the latter clari-

fied some questions about the CellML implementation and improved our confidence in this

code.
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2.3 Implementation process

Due to the discrepancies between the article, the CellML code, and the C++ code, we decided

to implement the components of the Inada model one by one, testing each component before

moving on to the next. In order to obtain reference plots, experiment protocols and parameter

values as well as to understand the equations deeply enough to bring them into a modular

structure, we needed to examine a total of nine additional articles that were cited directly or

indirectly in the Inada model. The full tree of references can be seen in Fig 1. Additionally, an

estimation of the time spent on research, implementation, testing, bug fixing, and refactoring

and documentation can be seen in Fig 1 in S1 Text.

2.4 Model design

Our design philosophy was based on our own guidelines established for using the MoDROGH

criteria of suitable modeling languages for systems biology, which can improve the methods

and results reproducibility, understandability, reusability, and extensibility of models [22, 23].

In short, this includes the following design goals: The model should follow a modular design

with small self-contained modules with clearly defined, minimal interfaces. Each module

should only represent a single physiological compartment or effect. The code should be DRY

(for “don’t repeat yourself”), meaning that parts of the code that have similar structure are

only implemented once and then reused at the respective position. Equations structure and

variable names should convey their meaning, and should not be adjusted for brevity or

Fig 1. Tree of references that we traversed to obtain all relevant information to understand and test the model. Arrows

between nodes indicate that the article at the beginning of the arrow cites the article at the end of the arrow. Each node contains a

list of model parts that could only be reproduced by using this reference. This is further specified by distinguishing if the

reference was needed to determine parameter values (P), correct errors (E), untangle equation semantics for modularization (S),

obtain an additional (R) or the only available (R�) reference plot, or to reproduce the experiment protocol (X).

https://doi.org/10.1371/journal.pone.0254749.g001
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perceived ease of implementation. All variables and parameters should have International Sys-

tem of Units (SI) units and should be documented with at least a short sentence that explains

what they represent. The model should also have a graphical representation that explains the

modeled system using symbols that reflect the biological appearance or function of compo-

nents. This representation should be adjusted manually for understandability, and it should be

tied to the model equations to guarantee correctness and completeness. Additionally, the

model code should be available in an online repository. In our case the repositories are GitHub

(https://github.com/CSchoel/inamo), Zenodo [38], and BioModels (https://www.ebi.ac.uk/

biomodels/MODEL2102090002).

We use the same basic model structure as in a previous work, where we tested the viability

and benefits of building an electrophysiological model with these guidelines by implementing

the Hodgkin-Huxley model [23]. The cell models consist of a model of the lipid bilayer, a num-

ber of ion channels with a common base class, and separate models for voltage or current

clamp experiment protocols. The ion channel models again contain smaller modules that rep-

resent individual gating variables. All parts of the model are connected with a basic interface

for components in an electrical circuit diagram with the convention that the positive pin

resides on the outside of the cell while the negative pin is on the inside. An example of the full

composition structure of the AN cell model can be found in Fig 2. Like in the HH model, we

also used the modeling language Modelica [39], since it implements the MoDROGH criteria

to a large extent and lends itself well to the application of software engineering techniques

Fig 2. Hierarchical composition of AN cell model in InaMo version 1.4.1 as UML diagram. The composition arrow indicates that the model at the beginning of

the line is a part of the model at the end of the line, where the diamond shape is located.

https://doi.org/10.1371/journal.pone.0254749.g002
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because it is an established industry standard. However, similar results could also be achieved

using, for example, SBML [34], CellML [35], or Antimony [40].

2.5 Software versions

For our implementation we used OpenModelica version 1.16.0 [41] as Modelica compiler and

integrated development environment (IDE) and also version 0.7.2 of Mo—E [42] with the cor-

responding plugin for Atom version 1.49.0. For our test scripts we used Julia version 1.4.2 [43]

with version 1.1.0-alpha.3 of our own library ModelicaScriptingTools.jl [44]. We keep the code

under version control using Git [45] version 2.28.0 in a repository hosted on GitHub [46]. We

also use GitHub Actions [47] to run our CI scripts. The plots were produced using Python

3.8.3 [48] with the plotting library matplotlib version 3.1.2 [49, 50]. Icons were created using

Inkscape version 1.0 [51] with our extension MoNK version 0.2.0 that converts the Inkscape

vector graphics to Modelica annotation format [52]. The CellML model was analyzed using

OpenCOR version 0.6 [53].

3 Results

This section is structured according to the issues that hindered our reproduction of the results

of the Inada model. For each issue we first explain the problem in detail and then show how it

is solved in our Modelica reimplementation, which we will call InaMo in the following.

3.1 Missing equations and parameters

3.1.1 Problem description. The first and most obvious issue with results reproducibility

of the Inada Model are parameter values and equations that are missing in the article, which

are listed in Table 1. An example is the acetylcholine-sensitive potassium channel. The whole

channel equations, as well as the influence of acetylcholine on If and ICa,L, only exist in the

Table 1. Missing information in the Inada model including all parameters, equations and starting values that can-

not be found in the original article.

Component Affected part Recoverable from

IACh all equations C++ code

IACh parameter [ACh]i not recoverable

If ACh-sensitive term in equation C++ code

ICa,L ACh-sensitive term in equation C++ code

ICa,L parameter ach_l not recoverable

[Ca2+] handling equation for Vcell w.r.t. Cm C++ code

[Ca2+] handling parameter SLtot C++ code

[Ca2+] handling all parameters but SLtot and Vcell [54]

Ist parameter Est [54]

IK,r/IK,1/Ito parameter EK calculated from [K+]i, [K+]o

Ip parameters Km,Na, Km,K [55]

Ip parameter �I p called Ip,max in [7, S15]

INa parameter PNa called gNa in [7, S15]

Ito starting values r, qfast, qslow called q, rfast, rslow in [7, S16]

INaCa parameters Kx 1 and Qy 2 [56, 57]

1 x = ci, cni, 1ni, 2ni, 3ni, co, 1no, 2no, 3no
2 y = ci, co, n

https://doi.org/10.1371/journal.pone.0254749.t001
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C++ code. Neither the equations nor the parameters are mentioned in the article, and we are

not aware of any description in subsequent articles of the authors. The C++ code also does not

give a value for [ACh]i, which is set to zero in the CellML version. It is possible that this was a

planned extension, which was never realized and not used for the plots in the article, but with

the available material it is impossible to tell whether that is the case. Other parameters are

missing in the article, but could be recovered from cited literature or the C++ code. There

were also parameters that were hard to find due to naming confusions. One example that

caused severe errors for us was that the value given for gNa, the conductivity of INa, is actually

the value for the permeability PNa that is used to calculate gNa. As a last minor piece of missing

information, the article does not specify how the avoidable discontinuities in equations 1 and

14 of INa in table S3 should be handled.

3.1.2 Solution 1: Continuous integration. To ensure that such omissions do not hinder

reproduction of simulation results, it is not enough to rely on human diligence. With a total of

85 parameter values, there is a statistical argument to be made about the expected percentage

of errors that a single author or reviewer might be able to spot. Regardless of how the actual

numbers would turn out, it does not seem reasonable to expect or demand 100.

Such a guarantee is only possible, if the complete code that is required to run the simulation

on a different machine is published alongside with the model. Inada et al. did publish parts of

their code, but not the full version, which left us with some open questions regarding the ace-

tylcholine-sensitive potassium channel. In contrast, the CellML model is complete, but based

on errors that we found in the code one must assume that simulations were only performed

with the N cell model and not with the other two cell types.

For the new implementation, we therefore not only publish the full model definition but

also the scripts that we used for simulation and plotting. To ensure that the published code is

complete and does also work on other machines, we used the CI service GitHub Actions [47],

which is free for public open source projects. For each update of the code, a build in a fresh vir-

tual machine is started on the GitHub servers, which downloads the new release and runs the

simulation script. The current build status can be indicated to users with a small badge in the

repository, and if a build fails, the programmer is informed via e-mail. This mechanism guar-

antees that the repository contains everything that is required to perform simulations on a

machine that is physically separated from the original development environment, i.e. it guar-

antees methods reproducibility. The build scripts for CI services such as GitHub Actions are

easy to write and provide the additional benefit that they have to contain a full description of

the development environment including installation scripts and non-standard software depen-

dencies. The build script that we used for our implementation of the Inada model can be

found in Listing 1.

Listing 1. CI script for InaMo version 1.4.3 using GitHub Actions. The script creates a vir-

tual machine running the Ubuntu operating system, installs Julia, OpenModelica, the Mode-

lica Standard Library, and required Julia packages, and runs the unit tests defined in the file

scripts/unittests.jl. It runs automatically whenever a new commit is pushed to the

main branch of the Git repository.
on:
push:
branches: [ main ]
tags: ‘v�’

pull_request:
branches: [ main ]

jobs:
build:
runs-on: ubuntu-latest
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steps:
- uses: actions/checkout@v2
with:
submodules: true

- uses: julia-actions/setup-julia@v1
with:
version: 1.6

- uses: THM-MoTE/setup-openmodelica@v1
with:
version: 1.17.0

- name: Install Modelica standard library
run: sudo apt-get install omlib-modelica-3.2.3

- name: Install Julia requirements
run: |
export PYTHON=“”
julia --project=. -e ‘using Pkg; Pkg.instantiate()’

- name: Run unit tests
run: julia --project=. scripts/unittests.jl

3.1.3 Solution 2: Version control. Even if the complete code of a model is published, an

exact reproduction of methods might still fail, because of changes that have been added to the

code after the model was published. It might even be the case that a figure in an article was cre-

ated with a newer or older version of the code than other figures. One such uncertainty about

code versions is the question if the current IACh was included and activated in the simulations

performed by Inada et al. The C++ code gives some clues as it contains a list of major changes

with the date of the change. According to this information, IACh was added on 11/04/2008,

which is before the initial submission to Biophysical Journal on 27/02/2009. However, this is

still not enough to be sure that IACh was used for simulations, because another change—a res-

cue effect for ICa,L—was added on 23/10/2008, but the current parameter values used in the

published version clearly disable it. If the code was under version control and the history was

published, it would be possible to answer this question at least with some confidence by track-

ing the changes through time.

We therefore publish our reimplementation on GitHub [46], which uses the version control

software Git [45]. Additionally, we keep a human-readable log of major changes in a Mark-

down-formatted [58] text file called CHANGELOG.md in the repository. The simulation

results in S2–S32 Figs are tagged with the actual version used for the simulation.

Version control also has several other benefits beyond understanding when, how, and why

a model has been changed. Most prominently, it allows researchers to work on a model collab-

oratively and to merge changes made by different authors, which will become more important

in systems biology as models grow in size and models by different groups have to be integrated

into a single project. Additionally, version control facilitates debugging by allowing to effort-

lessly roll back changes to identify the exact edit that introduced an error in the code. Finally,

changes that may have to be reverted, like the rescue effect for ICa,L, can be developed on sepa-

rate branches, which can then either be abandoned or merged into the main branch, depend-

ing on whether the feature was deemed beneficial or not.

3.2 Errors in equations and parameters

Apart from missing information there are also errors both in equations and parameter values,

which can be seen in Table 2. These are typical oversights including sign errors and order of

magnitude errors related to unit conversion. An example of a sign error is the erroneous nega-

tive sign for Qn in equation 5 of INaCa in table S10. Order of magnitude errors can, for example,

be found in the parameters kx and kbx where x = fTC, fTMC, . . . in the equations for [Ca2+]
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handling, which all have the unit ms−1 in [54] but need to be multiplied by 1000 since [7] uses

seconds as unit of time.

As a second type of errors, there are inconsistencies between parameter values in the article

and in the C++ and CellML implementations, which can be found in Table 3. Some of them,

like the value used for Prel, seem to be undocumented changes that do have a large qualitative

effect on simulations. Others, like the value of 227700 instead of 222700 for kfTMC , seem to be

simple typing errors and oversights. Of these, it is notable that in the CellML model, the value

of Cm is switched between the NH and the N cell model, which should have stood out if the

model was verified in simulations.

These inconsistencies are even more pronounced in the initial values. Due to the large

number of initial values to keep track of, we do not show them here but only in Tables 1–3 in

S1 Text. It seems as though the initial states were chosen to resemble the near-steady state

achieved right before a pulse during a long-term simulation with a current pulse protocol.

However, this information is missing in the article. We only found this pattern through trial

and error and by a hint in the version history of the CellML model. Even with this knowledge,

still large inconsistencies remain between the article, the C++ model, and the CellML model

with some open questions. For example, we suspect that there is an order of magnitude error

in the reported initial value for the parameter fTC in the N cell model in the article. While these

errors do affect simulations for up to 20 seconds, all variables that need an initial value do

Table 2. Errors in the published equations of the Inada model including wrong signs, shifted floating points, and

missing unit conversions.

Component Affected part Kind of error/correction

[Ca2+] handling table S12, eq. 5 fCMi and fTC must have negative sign

INaCa table S10, eq. 5 Qn must have positive sign

Ist table S8, eq. 2 second occurrence of Vmust be negative

[Ca2+] handling parameters1 kx, kbx must be multiplied by 1000 (ms−1! s−1)

Ist variables τqa, τqi must be divided by 1000 (ms! s)

Ito variable tqfast constant 0.1266 must be 0.01266 instead

1 x = fCM, fCQ, fTC, fTMC, fTMM

https://doi.org/10.1371/journal.pone.0254749.t002

Table 3. Parameter values that differ between the published article and the C++ and CellML implementations.

Parameter Cell type Unit Value in article Value in C++ Value in CellML

Prel AN, NH s−1 5000 1805.6 1805.6

Prel N s−1 5000 1500.0 1500.0

Vcell AN, NH m3 3.500 � 10−15 4.398 � 10−15 4.400 � 10−15

Vcell N m3 3.500 � 10−15 3.189 � 10−15 3.190 � 10−15

Cm AN F 4.0 � 10−11 4.0 � 10−11 4.0 � 10−11

Cm N F 2.9 � 10−11 2.9 � 10−11 4.0 � 10−11

Cm NH F 4.0 � 10−11 4.0 � 10−11 2.9 � 10−11

kfTC all 1

mM�s 534 534 543

kfTMC all 1

mM�s 227700 222700 227700

Est N mV 37.4 37.4 -37.4

For Cm the reference article is [7], for all other parameters it is [54].

https://doi.org/10.1371/journal.pone.0254749.t003
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gravitate towards a steady state, meaning that these issues should not affect results or inferen-

tial reproduction.

3.2.1 Solution 1: Testing. Again, it becomes clear that neither authors nor reviewers can

be expected to find every single oversight within well over a hundred equations and parame-

ters. Like with missing information, automated tests are the only way to reliably ensure that a

piece of code of the size of the Inada model is free of errors. These tests can be run in a CI envi-

ronment, as described above, which means that each version of a model will be automatically

evaluated for errors that may have been introduced accidentally. For InaMo, we use three

kinds of automated tests, which are common in software engineering: unit tests, integration

tests and regression tests.

Unit tests are fine-grained tests for small software modules. In order to create unit tests,

these modules must be independent of the rest of the code. They are designed to pin down

errors to a single module and therefore increase the confidence in the correctness of these

modules. In mathematical modeling this is important, because often researchers do not want

to reproduce the results of the full model but only a part of it. This becomes considerably easier

if there is an existing test case for the part that should be reused. InaMo contains unit tests for

each individual current and gating variable in the model as well as for the diffusion reactions,

ryanodine receptor, SERCA pump, and buffer components in the [Ca2+] handling. Each of the

experiment models used for this test import the exact same components used for the full cell

model in an isolated environment where all external variables that influence the behavior of

the component are carefully controlled. Almost all of these experiments correspond to plots in

the original article or cited references (see Table 4). The only exception are the individual com-

ponents of the [Ca2+] handling, because neither Inada et al. [7] nor Kurata et al. [54] provide

plots at this level of detail.

Moving to the next category, integration tests help to ensure that there is no error in the

connection between modules when they are combined to a larger system. They work much in

the same way as unit tests, but are applied to the whole software instead of only individual

modules. This helps to spot errors that only emerge from the interaction between the individ-

ual modules. In InaMo, there are integration tests for each cell type (AN, N, and NH cells) as

well as both for constant and for varying [Ca2+]i. This prevents issues like in the CellML

model, where probably only N cells were tested.

The third category of tests are regression tests, which ensure that the output produced by a

piece of code does not change accidentally. They are typically used, when the output is large

and has a complex structure that is otherwise hard to incorporate in unit tests. In mathematical

modeling, these kinds of tests can serve three purposes. First, they ensure that changes to a

part of a model do not have unforeseen consequences in other parts of the model. Second, they

highlight these changes during the development process, which increases the probability that

plots and formulas in the corresponding article will be changed accordingly. Third, the mere

fact that regression tests require keeping reference output data in the repository helps to pre-

serve results reproducibility in the future, when the software that produces the simulation

results may not be available anymore. The repository for InaMo contains a separate sub-repos-

itory with reference data for all models used in unit and integration tests and the GitHub

Actions script performs regression tests for them. If changes are found, the plotting script can

be configured to output additional plots from the reference data so that these changes can be

inspected visually. Since Modelica is a human-readable language and the reference data is

stored in the human-readable CSV format, researchers in the far future will only need a simple

text editor to reproduce the results in this article.

3.2.2 Solution 2: Unit consistency checks. As another category of tests, which is specific

to mathematical models, automated unit consistency checks can help to avoid order of
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magnitude errors. In declarative languages like Modelica, SBML, or CellML, variables can be

annotated with unit definitions and software tools can track the conversion between units in

an equation with symbolic mathematics. A unit consistency check then produces an error or a

warning if an equation is found, where the right-hand side has a different unit than the left-

hand side. In InaMo, variables have unit definitions according to the SI wherever possible and

the tests in the CI script contain consistency checks, which are performed when loading the

individual models.

3.2.3 Solution 3: Modular model structure using object orientation. Unit tests require

model components to be defined in an independent modular structure. It must be possible to

run a simulation using only a single component and a minimal experiment setup surrounding

it. At the same time, the code of that component must be exactly the same code in the same file

that is used in the full cell model, because otherwise the unit test cannot make assertions about

the correctness of the full model.

Table 4. Summary of individual experiments that were reproduced with InaMo.

Part Figure Exact Issues/Required changes

ICa,L [7, S1] (✔) Thold = 5s, Vhold -70 mV, NH parameters, S1H: reference timescale must be multiplied

by 0.75

Ito [7, S2] ✖ Thold = 20s, NH parameters, S2E: current too high, S2D: higher minimum in reference

IK,r [7, S3] ✖ Thold = 5s, S3C: reference shifted towards higher voltages

If [7, S4] ✖ Thold = 20s, S4C: qualitative differences

Ist [7, S5] ✖ Thold = 15s, gst 0.27 nS, S5C: qualitative differences

Ist [54, 4] ✔ Thold = 15s

INaCa [7, S6] (✔) [Ca2+]o 2.5 mM, [Ca2+]sub = 0.00015 mM

INaCa [54,

17]

✔ kNaCa given as
pA
pF)multiply by Cm

INaCa [57,

19]

(✔) 0.25 nA < kNaCa< 1 nA chosen to fit plots

INa [65, 2] ✔ Thold = 2 s, Tpulse = 50 ms, nap  2:1
pl
s

Ib - trivial, no need for test

IACh - no description or plot available

IK,1 [65, 2] ✔
Ip [64,

12]

✖ reference mixes Ip with background currents

[Ca2

+]i

[7, S7] ✖ only as part of full cell simulation (see row below)

Cell [7, S7] ✖ Thold = 300 ms, Tpulse = 1 ms, Ipulse = −1.2 nA (AN), Ipulse = −0.95 nA (AN), AN, NH:

resting potential too high and action potential slightly too short, N: [Ca2+]i too high

The table shows the part of the model that is tested with the experiment, a reference to the original figure, the

information whether the plot could be reproduced exactly, and a list of issues and changes that were required to

obtain a good agreement with the original plot. For a visual comparison of plots, see Figs 2–33 in S1 Text. For the

exactness, ✔ means a near perfect reproduction was possible with minimal adjustments, (✔) means that significant

changes or manual parameter tuning were required, and ✖ means that even after adjustments only qualitative

agreement was achieved while some visible differences remain. In the last column, an equals sign (=) means that a

parameter value was not given in the original article and had to be determined by us, whereas an arrow ( ) means

that the parameter value was given, but had to be changed. The entry “NH parameters” means that we had to use the

parameters given for the NH cell model, while Inada et al. report that they used parameter settings of the AN cell

model.

https://doi.org/10.1371/journal.pone.0254749.t004
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With InaMo, we therefore consequently follow a modular design structure with minimal

interfaces between components. Each component is defined in its own file, which is imported

both in the unit test of that component and in the full cell model. The full hierarchical compo-

sition of the AN cell model can be seen in Fig 2. An example that shows how the component

SodiumChannel is used both in the unit test SodiumChannelIV and in the full cell

model ANCell is presented in Listing 2.

Listing 2. Example for construction of unit tests and full cell model out of the same compo-

nents. The component SodiumChannel is used both in SodiumChannelIV, which

defines a voltage clamp experiment to test the current-voltage relationship of INa that is used as

a unit test, and in ANCellBase, which is the base for the full AN cell model. In both cases,

an instance of SodiumChannel with the name na is defined and then connected to other

components in the model using connect() equations. Additionally, in ANCellBase, the

initial values of gating variables are adjusted. The ellipses (. . .) denote code that is not shown

including inheritance from base classes, additional components and connections, and graphi-

cal annotations.
model SodiumChannelIV “IV relationship of I_Na (Lindblad 1996,
Fig. 2b)”

. . .

InaMo.Currents.Atrioventricular.SodiumChannel na annotation(. . .);
. . .

equation
connect(vc.p, na.p) annotation(. . .);
connect(vc.n, na.n) annotation(. . .);
. . .

end SodiumChannelIV;
model ANCellBase “base model for AN cell type”

. . .

InaMo.Currents.Atrioventricular.SodiumChannel na(
act.n.start = 0.01227,
inact_slow.n.start = 0.6162,
inact_fast.n.start = 0.7170

) annotation(. . .);
. . .

equation
. . .

connect(na.p, p) annotation(. . .);
connect(na.n, n) annotation(. . .);
. . .

end ANCellBase;

A modular, object-oriented design is not only beneficial because it allows defining unit

tests, but it also in itself can help to reduce possible sources of errors by reducing redundancy

in the code. For example, the CellML implementation of the Inada model is split into three

separate files for the AN, N and NH cells. This means that every error that is found in the

model has to be corrected in all three files, leaving the opportunity open for additional over-

sights. Conversely, the C++ implementation handles all model types in a single file, but this

also creates a problem. The code that sets parameter values uses conditional branches based on

which cell type should be simulated. Because of the monolithic structure, values need to be

defined for each current, even for those currents which are not present in the selected cell type.

This led to an error that the parameter Est for the current Ist had a wrong sign in the AN and

NH cell setup. For the C++ implementation, this is no issue, since Ist is only used in the N cell

model, where the sign was corrected. However, it appears that this error was accidentally trans-

mitted to the CellML model, where all three cell types have the wrong sign for Est.
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In InaMo, we follow the DRY (don’t repeat yourself) principle of software engineering:

Each component and parameter is defined exactly once in the code, reusing common struc-

tures as much as possible to reduce redundancies. In an object-oriented language like Mode-

lica, this can be achieved in two ways: First, components can be instantiated, which means that

their code is imported into a model under a chosen name. Two instances of a component can

have different parameter settings, allowing, for example, to use the same component GateTS
both for the activation and inactivation gate of an ion channel as shown in Listing 3. Second,

models can also inherit components, parameters, and equations from common base classes.

This is similar to composition via instantiation, but has the added benefit that the inherited

parts directly become a part of the model without the need to access them through a compo-

nent name. For example, this is very useful for the ion channels in the Inada model, which

almost all follow an electric analog. The base class IonChannelElectric defines the basic

behavior of an ion channel as voltage-dependent resistor with an attached voltage source and

can be reused for Ib, IACh, If, IK,1, ICa,L, IK,r, Ist, and Ito. This is shown in Listing 4.

3.2.4 Solution 4: Specialized testing library for Modelica models. There are currently

not many solutions for automated tests that are specifically designed for mathematical models.

To facilitate the creation of such tests as much as possible, new tools are required. One promis-

ing approach is to use libraries that can run simulations from within general purpose program-

ming languages such as Python or Julia and to then use the existing capabilities for automated

testing that exist in these languages.

We therefore developed the Julia library ModelicaScriptingTools.jl (MoST.jl) [44], which

uses the library OMJulia.jl [59] developed by the OpenModelica project [41]. With essentially

three relevant lines of code, which can be seen in Listing 5 and 7, the library establishes com-

munication with the OpenModelica compiler (OMC), and then loads a given model, runs a

simulation with it and performs a regression test. During model loading and simulation,

checks for unit consistency as well as for compiler errors and warnings are performed and any

issues are reported with human-readable error messages that include the original compiler

message if possible. This means that modelers do not need an in-depth knowledge of the Julia

language, or any other programming language, to benefit from thorough automated testing.

As shown in Listing 1, they can also set up a CI pipeline for their Modelica project with just

two calls to the julia executable. If required, however, more fine-grained tests and separate

simulation scripts can be defined using the application program interfaces (APIs) of MoST.jl

and OMJulia.jl for model inspection and simulation and the testing capabilities of Julia.

An experimental feature of MoST.jl also aims to solve the problem of errors occurring in

equation and parameter lists in articles by automatically generating a human-readable docu-

mentation of a model. This is based on the function dumpXMLDAE in the OpenModelica

scripting application programmer interface (API), which generates an eXtensible Markup Lan-

guage (XML) file containing a flat list of all parameters, variables, functions, and equations in a

composite model. The equations are not only listed as code but additionally as content Mathe-

matical Markup Language (MathML), which allows to automatically translate them to presen-

tation MathML, which can be, e.g., rendered in a web browser. Since MoST.jl is written in

Julia, we can use the highly extensible documentation generator Documenter.jl to generate an

HTML documentation of a model by simply inserting an annotated code-block in a Mark-

down-formatted text file as shown in Listing 6. This can, again, happen in a CI pipeline, ensur-

ing that there is an accurate human-readable documentation for each version of the model.

However, automatic generation of such a documentation from a composite model is not triv-

ial, as variables and functions can have multiple aliases, which introduce clutter that has to be

reduced. Additionally, variables have to be grouped to keep the list of equations clear and the

variable names in the equations short enough for a visually pleasing presentation. The current
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implementation state of this feature is enough to give an idea what is possible, but does not yet

produce output that can be used as a supplement in an academic journal. An example for

InaMo can be seen at https://cschoel.github.io/inamo/v1.4/models/examples/#Tests-for-I_K,1.

Listing 3. Example for composition via instantiation in InaMo. The gating model GateTS

implements the generic Hodgkin-Huxley equation. The ion channel model SodiumChan-
nel uses two instances of GateTS with different names inact_fast and inact_slow for

fast and slow inactivation. Both instances use different fitting functions to replace the generic

placeholder function ftau for the time constant of the gating variable. This reduces both the

need to redundantly define the Hodgkin-Huxley equations and fitting functions like

genLogistic and therefore keeps the code DRY.
model GateTS
import InaMo.Functions.Fitting.�;
. . .

replaceable function ftau = genLogistic;
replaceable function fsteady = genLogistic;
Real n(start = fsteady(0), fixed = true) “ratio of molecules in open

conformation”;
outer SI.ElectricPotential v_gate “membrane potential of enclosing

component”;
. . .

equation
der(n) = (fsteady(v_gate)—n) / ftau(v_gate);

annotation(. . .);
end GateTS;
model SodiumChannel

. . .

GateAB act(. . .);
function inact_steady = pseudoABSteady(. . .);
GateTS inact_fast(
redeclare function fsteady = inact_steady,
redeclare function ftau = genLogistic(
y_min = 0.00035, y_max = 0.03+0.00035, x0=-0.040, sx=-1000/6.0)

);
GateTS inact_slow(
redeclare function fsteady = inact_steady,
redeclare function ftau = genLogistic(
y_min = 0.00295, y_max = 0.12+0.00295, x0=-0.060, sx=-1000/2.0)

);
Real inact_total = 0.635 � inact_fast.n + 0.365 � inact_slow.n;

equation
open_ratio = act.n^3 � inact_total;

end SodiumChannel;

Listing 4. Example for ion channel in InaMo. Most ion channels share a base class IonCh-
annelElectric that implements the base equations for the electrical analogy to a conduc-

tor coupled to a voltage source. Full ion channel models such as

SustainedInwardChannel then only have to define the open_ratio that determines

the opening and closing of the channel in dependence of the gating variables.
partial model IonChannelElectric “ion channel based on electrical
analog”
extends Modelica.Electrical.Analog.Interfaces.OnePort;
parameter SI.ElectricPotential v_eq “equilibrium potential”;
parameter SI.Conductance g_max “maximum conductance”;
SI.Conductance g = open_ratio � g_max “ion conductance”;
Real open_ratio “ratio between 0 (fully closed) and 1 (fully open)”;

equation
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i = open_ratio � g_max � (v - v_eq);
end IonChannelElectric;
model SustainedInwardChannel “I_st”
extends IonChannelElectric(g_max = 0.1e-9, v_eq=-37.4e-3);
GateTS act(. . .);
GateAB inact(. . .);

equation
open_ratio = act.n � inact.n;

end SustainedInwardChannel;

Listing 5. ModelicaScriptingTools.jl (MoST.jl) script that loads the model file src/
InaMo/Examples/FullCell/AllCells.mo, performs simulations according to the

simulation parameters read from that file (see Listing 7), places the outputs in the folder out,

and performs regression tests if it finds reference data in the directory regRefData.
using ModelicaScriptingTools
using Test
withOMC(“out”, “src”) do omc
@testset “Example” begin
testmodel(omc, “InaMo.Examples.FullCell.AllCells”;

refDir=“regRefData”)
end

end

Listing 6. Markdown-formatted text file that is used to generate a HTML documentation of

InaMo including the HTML string from the model file itself, a list of all equations rendered as

MathML, a list of all functions in Modelica syntax, and a table with all variables and

parameters.
# InaMo
Documentation for InaMo.
‘‘‘@modelica
InaMo.Examples.FullCell.AllCells
‘‘‘

3.3 Availability of data files

3.3.1 Problem description. Inada et al. did originally upload their C++ code to the Bio-
physical Journal with the intent to make it available for download, which is to be commended.

However, some unknown issue—maybe an update of the publishing platform—seems to have

buried this information as there is currently no download link on the journal website. Only

after multiple attempts of contacting both the authors and the journal, we were able to obtain

the code from the production team of the journal. We asked them to add a download link to

the article page so that other researchers would have easier access to the files but received no

answer to our request. As mentioned above, information was missing from the article and

some errors in equations and parameters were ultimately only recoverable from the C++ code.

Without the code we might therefore not have been able to recreate the full cell models at all.

Earlier access to the model code could also have reduced the time that was spent fixing bugs in

the code.

Listing 7. Experiment annotation of the AllCells model, which contains full cell tests

for all three model types (AN, N, and NH cells). The parameters StartTime, StopTime,

Tolerance, and Interval are part of the Modelica language specification, the parameter

s for the solver selection is a vendor-specific annotation of OpenModelica and the varia-
bleFilter, which controls which variables occur in the output file, is a vendor-specific

annotation of MoST.jl.
model AllCells
FullCellCurrentPulses an(redeclare ANCell cell);
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FullCellSpon n(redeclare NCell cell);
FullCellCurrentPulses nh(redeclare NHCell cell);

annotation(
experiment(StartTime = 0, StopTime = 2.5, Tolerance = 1e-12,

Interval = 1e-4),
__OpenModelica_simulationFlags(s = “dassl”),
__MoST_experiment(variableFilter=“(an|n|nh)\\.cell\\.(v|ca\\.(sub|

cyto)\\.c\\.c)”)
);
end AllCells;

3.3.2 Solution: Services for long-term archival of code and data. We believe that while

the management of supplemental data is the responsibility of scientific journals, researchers

should not solely rely on this system. Journals and their archival systems are more focused on

text content than on data and—as this case shows—can fail to preserve this relevant informa-

tion or to make it accessible for future research.

With InaMo, we therefore used multiple fail-safe options. First, we publish our code on

GitHub, which has adopted a “pace layers” strategy [60] for archiving code in multiple redun-

dant databases with the extreme of the GitHub Arctic Code Vault that is designed to store

code for a thousand years [61]. Second, to make our code citable and more easily accessible for

research purposes, we also use Zenodo, which assigns document object identifiers (DOIs) to

archived code and data and stores it in the CERN Data Centre [62]. Although it does not

extend to the same time spans as the GitHub Archive Program, Zenodo might be the most

suitable solution for data uploads such as reference data for regression tests, as those are not

fully covered by GitHub’s program. With this setup, the availability of our data does not

depend on a single academic journal but is in the hands of multiple institutions that specialize

in keeping code and data available for future generations of researchers.

3.4 Non-executable code

3.4.1 Problem description. Even with both the C++ and CellML implementations of the

Inada model available, we could not obtain reference simulation results that we could have

used for debugging. The C++ code does not include any file with an executable main() func-

tion, but only function and variable definitions for the equations and variables of the model.

The CellML code is executable using OpenCOR, but only the N cell model does produce an

action potential with the settings given in the model file. As mentioned in Section 3.2, the N

cell model has significant errors in the parameter values of Cm and Est, which does not increase

our confidence that the model is in a state that allows it to be used as a reference.

This already means that the methods of Inada et al. are not reproducible. Without execut-

able code, there is no way to obtain simulation results in the same way as the authors did.

Additionally, this also limits the results reproducibility of the model as there is no reference

implementation or simulation data against which we could compare our reimplementation for

testing and debugging purposes. We could use the plots as data source, but this is more error-

prone as we will explain in the following subsection.

3.4.2 Solution: Continuous delivery. In software engineering, CI pipelines often also

include a distribution stage that compiles an artifact which can be distributed to end users if

and only if the testing stage did not produce any errors. This process is called continuous deliv-

ery (CD), and it can be used in mathematical modeling to ensure that the code that is submit-

ted to a journal or stored in an archive is indeed both complete and correct. GitHub already

automatically adds a ZIP archive including the whole repository content to each tagged version

of a repository, which can be enough for small projects. In our case, however, we need an
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additional step, since the ZIP archive generated by GitHub by default does not include the con-

tent of submodules, which we use to store the data files for the regression tests.

The additional work that is required to generate a distribution of a model, is performed by

a CI script. In our case, this involves a call to the zip tool on the command line and the use of

the predefined actions create-release and upload-release-asset as can be seen

in Listing 8.

CD also provides the opportunity to distribute models not only as source code but also in

dedicated exchange formats. Since version 1.4.3, InaMo releases contain an export of the main

model AllCells as Functional Mock-up Unit (FMU). The FMU format is used in the Mod-

elica ecosystem to increase the interoperability of models and to make models available across

tool and language barriers. This means that the release version of the AllCells model is not

only executable in OpenModelica, but also in any of the over 100 tools that support the Func-

tional Mock-up Interface (FMI) [63].

3.5 Missing reference plots and experiment protocols

In order to use unit tests, as suggested in Section 3.2, reference data or plots are required that

capture the behavior of a single part of the model and therefore provide target results, which

can be reproduced. The data supplement of [7] does contain reference plots for ICa,L, Ito, IK,r, If,
Ist, and INaCa as well as voltage and [Ca2+]i curves for the full cell models. However, reference

plots for IK,1, INa, Ip, and IACh as well as for the [Ca2+] handling are missing. As shown in Fig 1,

reference plots for IK,1, INa and Ip could be obtained from the sources that are cited in [7]. This

still leaves the [Ca2+] handling and IACh without reference.

As shown in Table 4, a complete and error-free experiment protocol was only available for

IK,1. All other experiments required some form of adjustments and in roughly half of the cases

no exact agreement with the original plots could be achieved. A common reason for this is that

current-voltage relationships of ion channels are usually determined with a test pulse protocol,

of which not all parameters were reported in the articles. In this protocol, the voltage is held at

a holding potential Vhold for a period Thold, after which it is immediately set to a pulse potential

Vpulse for a duration Tpulse followed by another holding period and so on.Vhold is gradually

increased after each pulse and then plotted against the maximum current obtained in the cycle

duration. Inada et al. give values for Vhold, Vpulse and Tpulse, but not for Thold. This is relevant,

because due to the high time constants of slow activation and inactivation gates, some currents

only arrive at a steady state after 20 seconds. If Thold is smaller than this time period, the cur-

rent during a cycle will also be affected by the previous cycle.

Listing 8. GitHub Actions script to automatically draft a GitHub release each time a new

tag is encountered in the repository. After downloading the source code with the checkout
action, the version number is saved in the RELEASE_VERSION variable, and a ZIP archive is

created with the zip tool. Then, the create-release action is used to create the release

draft on the GitHub website and the ZIP archive is attached to this draft with the upload-
release-asset action. This version uses the whole content of the file README.md as

body text for the release. The full script for InaMo version 1.4.3 parses only the recent changes

from the CHANGELOG.md file and also contains additional code to attach an Functional

Mock-up Unit (FMU) export of the model InaMo.Examples.FullCell.AllCells to

the release, which is not shown here.
on:
push:
tags:
- ‘v�’ # Push events to matching v�, i.e. v1.0, v20.15.10

jobs:

PLOS ONE Countering reproducibility issues in mathematical models with software engineering

PLOS ONE | https://doi.org/10.1371/journal.pone.0254749 July 19, 2021 19 / 36

https://doi.org/10.1371/journal.pone.0254749


release:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
with:
submodules: true

- run: echo “RELEASE_VERSION=${GITHUB_REF#refs/�/}”
>> $GITHUB_ENV
- run: |

zip -r inamo-${RELEASE_VERSION}.zip . -x \�.git/\� \�.git
- uses: actions/create-release@v1
id: create_release
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

with:
tag_name: ${{ github.ref }}
release_name: Release ${{ github.ref }}
body_path: README.md
draft: true

- uses: actions/upload-release-asset@v1
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

with:
upload_url: ${{ steps.create_release.outputs.upload_url }} #

reference previous output
asset_path: ./inamo-${{ env.RELEASE_VERSION }}.zip
asset_name: inamo-${{ env.RELEASE_VERSION }}.zip
asset_content_type: application/zip

In other cases, reported parameters had to be adjusted manually to obtain a good agreement

with the original plots. This includes simple oversights like wrong units, but also cases where it

seems that different values were used than those that were reported, as for S1 Fig in [7], where

Vhold is given as −40 mV, but we achieve much better results with a value of −70 mV. It also

seems that Inada et al. used the parameter settings of the NH cell model for plots of ICa,L and

Ito, even though the article states that parameters of the AN cell model were used. Another

example are the plots for INaCa by Matsuoka et al., where it is stated that a scaling parameter

was used for each of the individual plots, but the value of the scaling parameter is not given in

the article.

As a final issue, we could not obtain isolated reference plots for some of the components as

they were only used and reported in combination with other components: The only reference

that we had for Ip reports the sum of Ip and three background channels, which are different

from the background channel used in the Inada model [64]. Also, [Ca2+]i was only reported in

the context of the full cell model by Inada et al.
While our simulations are mostly in qualitative agreement with the reference plots, we

could not always achieve an exact match. We assume that this is due to further unreported

changes in parameter values. For example, for the current density time course of Ist in S5B Fig

we had to set the parameter gst to 0.27 nS instead of 0.1 nS as reported in [7]; the differences

for INaCa in S6A and S6B Figs vanish when the current densities are multiplied by a scaling fac-

tor 1.18, which can be achieved by adjusting kNaCa accordingly; and for Ito the current in S2E

Fig is slightly lower than in our model, which could be explained if Thold was too small to allow

a full recovery to the steady state in [7]. Finally, the differences in the full cell models might be

explained if IACh was actually used for simulations. There are only two instances of qualitative

differences for If in S4C Fig, and for Ist in S5C Fig. We have no good explanations for these
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differences, but it is unlikely that they are due to an error on our side, since they exist only in

the I-V-plots, but not in other plots using the same data or reference plots from other sources.

3.5.1 Solution 1: Run experiments in continuous integration. The hurdles to results

reproducibility posed by missing and erroneous information about reference plots and by

missing plots themselves can also be solved by employing automated testing. The test cases in

InaMo directly produce the simulation data required for a specific reference plot. The model

code contains the full experiment protocol including all relevant simulation settings such as

the solver and the step size. An example can be seen in Listing 7. The repository also contains a

plotting script that reads the simulation output produced by the test script and generates plots

for all examples. In consequence, reproduction of the methods of this article becomes possible

with a few simple steps: Researchers have to install OpenModelica, the Python distribution

Anaconda, and Julia with the single additional package ModelicaScriptingTools.

Then they can download our code from GitHub and type the following two commands in a

command prompt:
julia --project=“.” scripts/unittests.jl
python scripts/plot_validation.py

This should result in the creation of a directory called plots which contains a reproduc-

tion of all the reference plots listed in Table 4. Only IACh remains untested in InaMo, because

we do not have any reference for the equations used in the C++ code of Inada et al.
3.5.2 Solution 2: Use dummy components in unit tests. While we did not have a refer-

ence plot for the [Ca2+] handling, we still wanted to create a unit test of the component as it

was quite difficult to implement, and we wanted to isolate it from any feedback loops to facili-

tate bug fixing. In software engineering, it is a common issue that a piece of code that should

be tested depends on a fairly complex and not fully predictable environment, such as a data-

base or a web service. In these cases, dummy components are used, which provide the same

interface as the required service, but actually contain no logic whatsoever and only return the

results that are expected and needed for the unit test.

This technique can also be applied to mathematical modeling. For the unit test of the

[Ca2+] handling, we approximated the time course of the currents ICa,L, and INaCa throughout

an action potential in the full cell example very roughly with a sum of Gaussians. This leaves us

with current signals that have a physiologically plausible shape and value and that do not

depend on any other component. The resulting plot therefore shows the behavior of the [Ca2+]

handling component in isolation, allowing to examine the effect of changes to this component

in a controlled environment.

3.5.3 Solution 3: Publish simulation data used for regression tests. Since we only had

plots as a reference, we initially only checked the exactness of our experiment results by com-

paring the plotted values at prominent sample points like extrema or zero crossings. For the

full cell model, we invested the additional effort to reconstruct the simulation data from the

plots using the vector graphics editor Inkscape and a small Python script. We then later

extended this reconstruction procedure to all other reference plots. This allowed us to immedi-

ately assess whether a parameter change brought the simulation result closer to the original

data or introduced additional deviations. However, this process is both tedious and inexact. In

a first attempt, we underestimated the scale of the x-axis in the plot for the full cell model,

which was only given as a small ruler-like segment of 50 milliseconds width. Additionally, we

first assumed that the test pulse occurred exactly after 50 milliseconds for each cell type, but

later found out that the position differed by a few milliseconds between plots. These errors and

the reconstruction effort could have been eliminated, if the simulation data used for the origi-

nal plots was available for download.
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As mentioned above, we publish our simulation output for the regression tests, which

includes all data required to reconstruct our reference plots. We also make the reconstructed

simulation data from the plots in the original article available. Additionally, our plotting script

can be easily configured to produce plots from the reference data instead of or in addition to

the simulation output. Therefore, even if there should be some unforeseen issues with running

one of our scripts in the future, an exact reproduction of the simulation results will still be pos-

sible, because the reference data allows to reliably quantify the error in a reproduction attempt.

3.6 Semantics lost in the chain of references

3.6.1 Problem description. The last problem that we encountered in our reproduction of

the results of the Inada model was not so much concerned with correctness and completeness

but with the understandability of the model. In an attempt to reproduce simulation results, it

is unlikely that the goal is to reproduce the full code with the exact same structure as before.

This was also the case for us, as we wanted to include the model in a high-level model of the

human baroreflex [66, 67]. For this task, we also wanted to adhere to our MoDROGH guide-

lines [22]. This required us, among other changes, to bring the model into a modular structure

that follows the biological structure as much as possible. For the HH-type ion channel formu-

lations this was straightforward, although we sometimes struggled to understand the reasoning

behind the choice of fitting functions.

The INa formulation, however, follows the Goldman-Hodgkin-Katz (GHK) flux equation,

which—unless one is already familiar with this equation—only becomes apparent when read-

ing the reference by Lindblad et al. [65]. This posed a problem, because understanding this

equation was required for resolving an error in the article: The permeability PNa was given in

nl/s by Lindblad et al., which is not a unit for permeability and also has the wrong order of

magnitude since it should be pl/(s �m2). This error can only be found and fixed, if one under-

stands the semantics that PNa is supposed to be the permeability term used in the GHK flux

equation.

A similar but more severe problem occurred in the formulation for INaCa, where the main

set of equations that defines the current is the following:

x1 ¼ k34k41ðk23 þ k21Þ þ k21k32ðk43 þ k41Þ ð1Þ

x2 ¼ k43k32ðk14 þ k12Þ þ k41k12ðk34 þ k32Þ ð2Þ

x3 ¼ k43k14ðk23 þ k21Þ þ k12k23ðk43 þ k41Þ ð3Þ

x4 ¼ k34k23ðk14 þ k12Þ þ k21k14ðk34 þ k32Þ ð4Þ

INaCa ¼ kNaCaðk21x2 � k12x1Þ=ðx1 þ x2 þ x3 þ x4Þ; ð5Þ

Without further explanation it is nearly impossible to see that this is an analytic solution to

the diffusion equations between four states of the sodium potassium pump, of which only the

state transitions between state 1 and 2 are electrogenic. Inada et al. cite Kurata et al. as direct

source for INaCa, but to obtain an explanation of the rationale behind the equations, one has to

go one step further to an article by Matsuoka et al. [57]. This information was important for us

since it meant that we could not further modularize INaCa, because it would not have been pos-

sible to automatically extract the analytic solution from individual diffusion models.

The last and most important example of lost semantics was the [Ca2+] handling. Here, the

equations describe the transport of Ca2+ cations between four compartments. This is not
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apparent in [7], but only in [54], which contains a graphical representation of the model. How-

ever, Kurata et al. still do not couple this understandable graphical representation with the

actual equations. Instead of separating them into diffusion reactions, the ryanodine receptor

and the SERCA pump, they are only grouped by compartments. Additionally, the effects of all

ionic currents on the Ca2+ concentration are lumped together in the same equations, which

further complicates understanding. An illustration of this problem can be seen in Fig 3. Even

after disentangling the equations into small components, we were still confused by the volume

terms that were applied to the “flux” variables jrel, jup, jtr, and jCa,diff in seemingly arbitrary fash-

ion. An example can be seen in Fig 4. The reason behind this confusing use of volume terms is

that the original equations only use concentrations, but the transport has to conserve the

Fig 3. [Ca2+] handling in the Inada model. Left: One of the 15 differential equations that govern the intracellular calcium concentrations as presented in the original

article. This single equation mixes the following six physiological effects: the transport of calcium cations through the L-type calcium channels (a) and the sodium-

calcium exchanger (b), the release of calcium from the JSR into the subspace via ryanodine receptors (c), the diffusion from the subspace into the cytosol (d), and the

calcium buffer calmodulin in the subspace (e) and in the sarcolemma (f). Right: Graphical representation of the [Ca2+] handling in InaMo version 1.4.1. Each

component represents a single physiological effect or quantity with intuitive icons for concentrations (beaker), calcium buffers (stylized protein), diffusion reactions

(arrow from high to low concentration of circles), the ryanodine receptor (pore in lipid bilayer), and the SERCA pump (scissor-like structure in lipid bilayer). Effects

(c)–(f) of the left-hand side equation are represented by the four components connected to the beaker on the upper left (marked in red), while effects (a) and (b) are

handled by the external ion channel components when they are connected to the large calcium connector (blue circle) on the center left. These external connections

can be seen in Fig 6 (left).

https://doi.org/10.1371/journal.pone.0254749.g003

Fig 4. Comparison between general rule for inactive transport equations (left) and actual equations occurring in

the article by Inada et al. (right). The right-hand side is the result of substituting src = up and dst = rel in the left-

hand side and then simplifying due to min(Vup, Vrel) = Vrel. If only the right-hand side is given, it is not trivial to trace

back these steps to arrive at the general rule, which is required to understand the meaning of the equation. The name

“tr” does not immediately make it apparent what are the source (src) and destination (dst) concentrations affected by

jtr and since Vrel/Vrel cancels out in the second equation, the structure is also lost.

https://doi.org/10.1371/journal.pone.0254749.g004
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amount of substance between both sides. This introduces the need to convert from concentra-

tions to amounts of substance (by multiplying with a volume term) and then back to concen-

trations (by dividing by another volume term). Even with this background knowledge, which

is assumed by the articles about the [Ca2+] handling, it is not trivial to infer the general rule

from the equations in the article. This is due to simplifications, which obscure the common

equation structure, and the naming of the flux variables, which does not clearly indicate source

and destination of the corresponding transport effect.

3.6.2 Solution 1: Model design utilizing MoDROGH criteria. The software engineering

equivalent of these unclear, entangled and undocumented model semantics is termed “spa-

ghetti code”, which is code that is hard to maintain, because the program flow is hard to follow.

The solution to this problem is a combination of modularization, documentation and clear

design patterns for the code. As mentioned in Section 2.4, InaMo follows the guidelines associ-

ated for building models with a language that is modular, descriptive, human-readable, open,

graphical, and hybrid (MoDROGH), which can increase the understandability as well as the

methods and results reproducibility of a model [22].

The issue with non-transparent fitting functions is solved by defining a set of fitting func-

tions with understandable names and a common structure for gate components. As Fig 5

shows, this allows to understand the gate equations without having to untangle the structure of

the fitting functions in memory. For example, the most common fitting function genLogis-
tic can be quickly identified as a sigmoid function, whose parameter x0 defines the point of

maximum steepness, while y_min and y_max define the minimum and maximum value that

the function can assume. It also becomes apparent that almost all gates use HH-type equations

governed by a time constant and a steady state function.

Similarly, the GHK flux equation is implemented in a separate component that features

both a detailed documentation in HTML format and explicit unit definitions, including the

custom type PermeabilityFM that is used to document the unusual unit used for PNa. This

also fixes a minor issue mentioned in Section 3.1, as the documentation also explains the han-

dling of the avoidable discontinuity in the function.

As mentioned above, the equations for the sodium calcium exchanger unfortunately could

not be modularized to make more explicit that they are intended to model diffusion reactions

between four states. However, we added a documentation string to each variable explaining its

physiological interpretation. We also added the variables E1–E4 from Matsuoka et al., which

Fig 5. Equations for the fast inactivation gate of INa in the original article (left) and in InaMo (right). The equations on the left-

hand side constitute a typical description of an HH-type ion channel using a steady state h11 and a time constant th1
to define the

time course of the gating variable h1 via a differential equation. The equation for th1
was found by fitting a generalized logistic

function to experimental data. It has a declining sigmoid shape with an inflection point at 40 mV, a minimum of 0.35 ms, and a

maximum of 30.35 ms. This may be apparent for an expert modeler, who is familiar with similar models, but not to novices or

biologists without a deep mathematical background. The InaMo code on the right-hand side therefore aims to make this expert view

of the equations available to non-experts by capturing common equation structures in named and documented components.

GateTS defines a HH-type gating variable based on the two replaceable functions fsteady for the steady state and ftau for the

time constant. genLogistic is a fitting function, whose parameters are explained in its documentation: y_min is the minimum,

y_max is the maximum, x0 is the inflection point, and sx determines the steepness and direction (sx< 0 yields a declining

sigmoid shape).

https://doi.org/10.1371/journal.pone.0254749.g005
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represent the actual ratio of molecules in each of the four states and therefore facilitate the

interpretation of the behavior of the component.

Finally, we already showed the effect that modularization has on the [Ca2+] handling in Fig

3. By separating the model into modules that each only represent a single physiological effect,

these individual effects become more understandable. Readers can focus on understanding

one module at a time, grouping the equations and parameters in memory to form a concept

that can easily be recalled. With these concepts in mind, understanding the whole component

becomes possible by inspecting its graphical representation, which shows how the individual

effects are connected. This is facilitated by the fact that the graphical representation is neither a

separate biological drawing, nor an automatically generated graph, but rather an accurate

representation of the model defined with Modelica constructs similar to a circuit diagram. An

example showing the definition of the graphical representation in the Modelica code can be

seen in Fig 6. On the code and equation level, InaMo uses amounts of substance instead of

concentrations as interface. This leads to a more natural representation of active and inactive

transport components, which explicitly ensure conservation of mass. The diffusion reactions

and the ryanodine receptor use a common base class InactiveChemicalTransport,

which clearly explains the use of volume terms and presents the gradient-based transport equa-

tions in their general, more understandable form. Additionally, we change the naming of the

individual concentrations from [Ca2+]i, [Ca2+]up and [Ca2+]rel to [Ca2+]cyto, [Ca2+]nsr and

[Ca2+]jsr respectively, which allows us to also assign intuitive names to the transport

Fig 6. Graphical representation of the N cell model. Left: Diagram resulting from drag and drop composition of model components (InaMo version 1.4.1). Right:

Automatically generated embedding of graphical annotations in the model code showing the placement of the background channel (annotation(Placement
(. . .))), the connection line to the positive pin (annotation(Line(. . .))) and the definition of the gray rectangle in the background (annotation
(Diagram(. . .))).

https://doi.org/10.1371/journal.pone.0254749.g006
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components. For example, the module for the diffusion from the subspace to the cytosol is

called sub_cyto.

Apart from these individual examples, InaMo uses the general MoDROGH guidelines to

ensure that the model code reflects the physiological semantics as much as possible, making

them transparent for the user. For example, the whole model only uses two kinds of interfaces:

an electrical interface for ion currents and a chemical interface governing the changes in the

amount of ions in a compartment. Following the convention that outward currents are posi-

tive, each ionic current has a positive pin on the extracellular side and a negative pin on the

intracellular side. The electrical interface is also compatible to electrical components of the

Modelica standard library Modelica.Electrical, allowing standard electrical compo-

nents such as a ground or current source to be used in InaMo. Both kinds of interfaces can be

seen in Fig 6, where electrical connections are represented by blue squares, which are filled for

positive pins, and chemical connections are represented by blue circles. It can also be seen that

no component has more than three of these connections, which keeps the cognitive effort

required to understand them at a low level.

Listing 9. Interface for electrical connections between model components in the Modelica

standard library. The keyword flow establishes an acausal connection with the conservation

law that the sum of the i variables of all connected components must be zero.
connector PositivePin “Positive pin of an electrical component”
SI.ElectricPotential v “Potential at the pin” annotation(. . .);
flow SI.Current i “Current flowing into the pin” annotation (. . .);
annotation (. . .);

end PositivePin;

One important aspect of these interfaces is that they are acausal, which means that no prior

assumption is made which variables are defined by input signals and which will be observed as

the output of an experiment. For example, this means the same model code can be used for

voltage- and current-clamp experiments. Modelica achieves this by using connector variables

with the flow keyword and automatically generating conservation law equations representing

Kirchhoff’s current law for the electrical interfaces and the conservation of mass for the chemi-

cal interface. An example of such a connector definition can be seen in Listing 9. The most

important effect of this feature for the design of the model is that adding or removing ion cur-

rents is as easy as adding and removing the component and its connections in the graphical

representation, which automatically adds or removes the required term to the conservation

law equations.

These two physical connectors ensure that the model structure in the code follows the bio-

logical structure of the modeled system. The full cell is composed of models of the lipid bilayer,

ion channels, ionic pumps, and the [Ca2+] handling, which only exposes [Ca2+]sub as the con-

centration that is relevant for the ion currents. The ion channels, in turn, contain gate models

which are composed of basic HH-type gates with predefined or custom fitting functions. This

structure closely ties the equations to their semantic meaning and therefore facilitates

interpretation.

At the lowest hierarchical level, each variable and parameter in the model is annotated with

proper units following the SI and has both a human-readable name and a documentation

string explaining its physiological role. Models that are more involved additionally contain a

documentation text in HTML format with detailed information about the model structure.

This ensures that the model is understandable without further literature research.

3.6.3 Solution 2: Annotation of sources and rationale for parameter values. To spare

researchers that want to reproduce our model skimming through a large body of literature as

in Fig 1 and to make our parameter choices transparent, we annotated the experiments with a
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literature source or rationale for each parameter value. Currently, this is done within the

HTML documentation string of the models defining the experiments. However, Modelica also

allows using so-called vendor-specific annotations to add structured annotations with custom

content. This feature could be used to make these annotations not only human- but also

machine-readable and, for example, allow to automatically add this information to the table of

parameters generated by MoST.jl.

4 Discussion

4.1 Answer to RQ1

In research question RQ1, we asked which factors hindered the reproduction of the methods

and results of the Inada model. Despite the efforts of the authors to provide detailed reference

plots and publish their code, a considerable reverse engineering effort was required to build

our Modelica implementation InaMo. Fig 1 in S1 Text shows an estimation of the distribution

of the working time that went into InaMo. In total, the development took us an estimated 86

work days (i.e. four months). Small errors in published equations and parameter values

required the debugging (19 working days) of individual parts of the model. This debugging

was hindered by missing information about some model components and missing and incom-

plete reference code and experiment protocols. This in turn required further literature research

(33 working days) to recapture the model components and the semantics of their equations,

which revealed several issues with the understandability of the equations, which were struc-

tured for ease of implementation and not for ease of understanding. It is quite conceivable that

other researchers before us have encountered these issues and decided that the benefit of

including the Inada model in their research did not warrant the effort that would be required

to do so. This is especially unfortunate since it is a ground-breaking model with several inter-

esting properties, which deserves more attention.

4.2 Answer to RQ2

In our second research question RQ2, we wanted to know what can be done to overcome or to

avoid these reproducibility issues. With InaMo we have adopted a model engineering strategy,

that uses a suitable MoDROGH language to apply proved techniques from software engineer-

ing to the problem. These approaches broadly fall into three categories: First, we established an

automated testing pipeline using CI and CD techniques to guarantee completeness and meth-

ods reproducibility of the published version of the model. This also includes automated unit

consistency checks, performing the actual simulations used for plots in the article in the CI

pipeline, and publishing the simulation data both for the reproduction of results and to use

them in regression tests. Second, we paid special attention to the model design to increase the

understandability and reusability of the model code, using a MoDROGH language and build-

ing a component hierarchy with two simple interfaces and small independent components,

which only represent a single physiological effect or compartment, and which can be com-

bined via drag and drop in an easily interpretable graphical representation. Third, we provided

extensive documentation both within the model in the form of unit definitions, human-read-

able variable names, and embedded HTML documents and through external services for ver-

sion control and archival.

Both testing (11 working days) and refactoring and documentation (16 working days) took

considerable effort (see Fig 1 in S1 Text). However, we found that this additional effort was

well justified by the benefits gained during development, even if we do not consider the bene-

fits for other researchers who want to reproduce our methods or results. For debugging, it was

invaluable to have a CI pipeline performing regression tests for individual components,
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because we would immediately notice when a change accidentally introduced an error in other

models than the one that was currently under development. Utilizing the version control sys-

tem, we could quickly identify and roll back the changes that introduced bugs. As concrete

example, we added unit and regression tests for the individual components of the [Ca2+] han-

dling precisely because they helped us to ensure that our transformation of the model structure

from a concentration interface to an interface using amounts of substance did not change the

simulation output. Transforming the model into a modular structure that follows the biologi-

cal structure of the modeled system also helped us to notice some of the errors in the original

model, which we would otherwise have overlooked. Much like explaining a concept to some-

body else can reveal own misconceptions, making a model more understandable can reveal

potential error sources. Additionally, documenting the meaning of variables and parameters

as well as the source and rationale of parameter values meant that we only had to look up such

information once. This reduced the time required to get an overview over a part of the code

that we had to revisit a few weeks or months after it was written. We are positive that without

these measures, finding the last errors that prevented us from obtaining reasonable simulation

results with the full cell models would have taken considerably more time, if we had achieved a

working reproduction at all.

It also has to be noted that the effort required for the solutions presented in this article can

and already has been reduced for other researchers. During the development of InaMo, we cre-

ated the Julia library MoST.jl, which allows setting up tests with only three relevant lines of

code (see Listing 5) and provides more and better readable error messages than the OpenMo-

delica compiler when used with default settings. Setting up these tests on a CI service does not

require much more effort. In fact, if the same folder structure is used as in our project, it

would be possible to simply copy the GitHub Actions configuration script shown in Listing 1.

Furthermore, the systems biology community could choose to provide own CI/CD pipe-

lines using open source tools like Jenkins [68, 69] or services like NF-CORE [25] or FAIR-

DOMHub [70], which are already established in bioinformatics and systems biology. This

way, specific virtual machine images and/or pipelines for common modeling languages could

be provided, which already include all necessary tools for simulation and plotting. This would

further reduce both the size of the setup script and the execution time required.

4.3 Generalization and alternatives

While this work is only a case study of the Inada model, we believe that the issues that we

found here and the solutions that we presented can be highly relevant for mathematical model-

ing in systems biology in general. For example, the aforementioned reproducibility study of

models in the BioModels database found very similar errors and reproducibility hurdles in

half of the 455 examined models [27]. In summary, this study lists the following reproducibil-

ity issues: sign errors, missing terms in equations, typing errors in parameter values, unit

errors, missing or incorrect parameter values, missing or incorrect initial concentrations,

errors in equations, ambiguous or inconsistent variable names, and poor readability and lack-

ing documentation in the code. Our case study of the Inada model showcased concrete exam-

ples for each of these categories, which indicates that it at least can be representative for these

455 other models. If the issues are similar, it is reasonable to assume that the same or similar

solutions like the ones that we used here will also work for other models.

This is further backed by the fact that the software engineering techniques that we applied,

such as version control, CI and delivery, automated testing, modularization, and documenta-

tion, are not limited to any specific property of the Inada model. They can be, and in fact are,

applied to all kinds of software solutions. There are some adjustments required for
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mathematical modeling, such as the development of specialized testing libraries like MoST.jl.

However, there is no reason to believe that there is any area of mathematical modeling that

cannot benefit from these general techniques in some way.

We also think that the Inada model is a fitting example to represent reproducibility chal-

lenges in the development of multi-scale models, including a large number of equations, the

combination of different preexisting models, and the need to incorporate the model into a

larger multi-scale context. As mentioned in Section 1, the three groups that did reproduce the

results of Inada et al., did so in a multi-scale context, and this was also our original purpose.

The model is in itself a combination of multiple existing models for ionic currents and the

[Ca2+] handling by the sarcoplasmic reticulum. With its 116 equations, 79 parameters, and 27

initial values, which are only partly shared between the three different cell types, it is large

enough that it can no longer be handled well in a classic monolithic structure that only lists all

equations in a loosely grouped fashion. The Inada model therefore shows that even a well-

crafted and relevant model can be subject to reproducibility issues, simply because of its inher-

ent complexity.

Furthermore, our findings are not specific to the language Modelica. Integration for

scripting languages like Python or Julia also exist, for example, for SBML [71, 72] and CellML

[73]. This is sufficient to utilize the unit testing features of these languages and to build a sim-

ulation script that can be run in a CI pipeline. One remaining caveat is the need to download

and install all software necessary to run the script on the CI server, which rules out proprie-

tary solutions with expensive licenses such as MATLAB/Simscape. Regarding the model

design utilizing MoDROGH criteria, our previous work shows that multiple languages

exhibit MoDROGH criteria [22] and illustrates trade-offs between different choices. We did

use some Modelica features for our design that do not exist in other languages like SBML and

CellML. This includes the graphical composition of models, object-oriented programming

with multiple inheritance, acausal connections between electrical and chemical components,

the grouping of interface variables to connectors, and the annotation of the experiment setup

within the model file itself. It is also interesting to note that unlike CellML and SBML, which

are mainly designed as exchange formats, Modelica code focuses on human-readability over

machine-readability and is designed to be directly written by humans. This removes tool-spe-

cific barriers between model designer and model user and avoids clutter in version control

systems [22]. However, Modelica also has downsides: A CI/CD pipeline is only possible with

the open source compiler from OpenModelica, and not with the proprietary compiler for the

IDE Dymola, which is more widespread in industry and not fully compatible with OpenMo-

delica, although both implement the same language standard. Additionally, Modelica is a

general purpose modeling language, which lacks biology-specific features and language con-

structs like annotation of components with ontology terms, or the <kineticLaw> tag in

SBML.

As an important implication, Modelica and SBML or CellML tools are not interoperable.

This is important, because interoperability allows model users to reproduce results using the

tools that they are familiar with and thus to easily combine models. Modelica’s mechanism for

interoperability is the FMI that allows to create executable artifacts, so called FMU, from mod-

els, which can be reused even across different languages. On the downside, these FMUs are

mostly opaque boxes. They can contain source files in C and a list of variables and equations in

JavaScript Object Notation (JSON), but they are not suitable for results replication with modi-

fications that go beyond changing parameter settings. In contrast, SBML and CellML are

directly designed as exchange formats, which is why they are based on XML. Both FMI and

SBML report support by over 100 tools [63, 74], but crossing between the two ecosystems is

more difficult. SBML2Modelica allows to directly translate SBML models to Modelica [75],

PLOS ONE Countering reproducibility issues in mathematical models with software engineering

PLOS ONE | https://doi.org/10.1371/journal.pone.0254749 July 19, 2021 29 / 36

https://doi.org/10.1371/journal.pone.0254749


but we are not aware of any tool that operates in the opposite direction. The only tools used in

systems biology that also support FMI currently are MATLAB with the SimBiology and the

FMI toolbox, and custom Python code using appropriate libraries for both standards. As a first

remedy, FMI support could be added in SBML and CellML tools. Alternatively, the systems

biology community could, like Modelica, adopt the software engineering practice to distin-

guish between “source” and “distribution” formats for models. In this analogy, SBML and

CellML would be used as distribution formats, which are used to make models easily accessible

for simulations by other researchers, but models would additionally be published in a more

human-readable and version control-friendly source language like Antimony [40] or CellML

Text [53], which can directly be used for model development. In the case of this article, it

would be ideal to have a Modelica2SBML tool, that compiles from the source language Mode-

lica to the distribution language SBML. This is not possible in general, because Modelica sup-

ports more formalisms than SBML, but it might be possible for a subset of the language. As a

first compilation step, Modelica models are transformed into a “flat” model that collects all

variables, functions, events, and equations in a single file without any hierarchy or modular

structure. If the translation process is restricted to a subset of the Modelica language, a transla-

tion of a “flat” model to SBML code might be achievable. However, this would also mean that

the benefit of the modularity and understandability of Modelica models is largely lost in trans-

lation. It becomes clear that further research is needed to bridge this gap.

Regarding alternatives, GitHub Actions is not the only choice to implement a CI/CD

pipeline. The open source project Jenkins [68, 69] can be used to set up a server that is con-

trolled by a scientific institution, a journal, or a specific lab, alleviating privacy concerns

when working with patient data. Additionally, other major open source repository hosting

providers like BitBucket [76] and GitLab [77] also offer CI pipelines with varying amounts

of free computing time for open source projects. Finally, modeling-specific solutions could

be implemented in existing workflow environments like NF-CORE [25] or FAIRDOMHub

[70].

Our findings can also be seen in a more general light with respect to the FAIR Guiding

Principles for scientific data management and stewardship [78], since they contribute to mak-

ing the model code findable, accessible, interoperable, and reproducible (FAIR). InaMo is

findable in the Zenodo database [38], on GitHub (https://github.com/CSchoel/inamo), and in

the BioModels database (https://www.ebi.ac.uk/biomodels/MODEL2102090002). Zenodo

allows us to cite specific versions of the code with a unique DOI and GitHub provides a plat-

form for discussing issues and open questions regarding the implementation. BioModels,

Zenodo, and the GitHub Archive Program also contribute to making the code accessible for

future researchers. Interoperability is provided by the CI/CD pipeline, which ensures that the

code runs on other machines. Additionally, the main model is exported as executable artifact

using the FMI, which allows to incorporate it in other projects even across different modeling

languages. The modular design utilizing MoDROGH criteria and the additional documenta-

tion effort for InaMo do not only facilitate reproduction but also reuse, because the model

becomes more understandable and extensible. Additionally, each published version of the

model uses an open license (MIT license for Zenodo and GitHub, and Creative Commons

CC0 1.0 for BioModels). However, as mentioned before, Modelica does not directly support

the annotation of model parts with ontology terms. For full compliance with the FAIR Guiding

Principles, this has to be addressed either by using vendor-specific annotations and developing

tools that can read and write ontology data in Modelica models, or by implementing common

ontologies like the systems biology ontology (SBO) [79] as a type hierarchy in Modelica as out-

lined in [22].
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4.4 Limitations

There are some limitations to our approach regarding unit testing. First, unit tests are only

meaningful, if the “unit” in question can be used in a simulation that does not involve other

complex components. For example, for the [Ca2+] handling we had to create dummy compo-

nents to mimic the time course of ICa,L and INaCa during an action potential in order to obtain

a meaningful curve for [Ca2+]i. It is possible that other models may include components that

require so many connections to other parts of the model that creating a unit test requires a lot

of effort. However, it can be argued that such a component should then be investigated for pos-

sible design flaws, since the goal in a modular design is to minimize the interface of a

component.

Another problem can be the lack of reference data. Our current unit tests already can be

criticized, because they do not follow the usual pattern of a test that has a defined input and an

expected output. We only test that the simulations runs error-free and the output is only com-

pared to the output of a previous iteration with the help of regression tests. Tying this output

to the actual goal of approximating measured data from biological experiments is currently

still performed by a human who has to inspect and compare the resulting plots. For InaMo,

this was the only approach we could take, since most of the experimental data was only avail-

able as plots, and we would have to reconstruct the original data points by hand. We did this

for the simulation output of the models, but not for the experimental data, because the latter is

even harder to read from the plots. If the data were published and included in the repository, it

would also be possible to define a new kind of test in MoST.jl, which tests the agreement

between experimental data and simulation output by some metric such as the root-mean-

square error. However, this is of course only possible if such data is available and this may not

be the case at every level of detail, limiting the usefulness of unit testing.

Additionally, it has to be considered that test suites like ours can become computationally

demanding. We currently run the full simulations that we use to produce our result plots from

within the test suite, because it is convenient to only need one script and because this ensures

that the CI server reproduces our methods in every iteration. However, if we had included the

full one-dimensional model by Inada et al. with hundreds of cells, this would mean that our

test suite might not run in a few minutes but instead require hours. This prolongs the response

time unduly, which limits the usability for quickly testing and debugging small changes to the

models. One solution to this problem is to limit the length or size of the simulations in the test

suite and to add a second script that is used to produce the actual simulation result. However,

this then introduces a source for errors since the content of this new script cannot be tested

using CI. For example, in another model, we encountered an error related to the synchroniza-

tion between two event sources that only occurred after 170 seconds of simulated time.

Apart from the computational effort, the human effort in designing a model with MoD-

ROGH criteria can also be significant. Most modelers probably did not receive training in soft-

ware engineering and therefore first have to learn to apply design patterns. This is especially

difficult, because while guidelines can help, good software design ultimately arises from experi-

ence and experimentation. We argue that the benefits are worth the additional effort, but the

initial barrier may be high for many systems biologists.

Even if an understandable modular model structure is achieved during development, it is

still likely that the model has to be translated to a grouped list of equations for presentation in

a scientific article or even just to communicate some details to a researcher who is more famil-

iar with this representation. Even though OpenModelica does allow to inspect a flattened ver-

sion of arbitrarily complex models, this representation includes a lot of visual clutter due to

alias variables that are introduced by the hierarchical structure. It is therefore not trivial to
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translate this code into a human-readable list of equations. This task can be facilitated by

libraries producing automated documentation like MoST.jl, but this feature of MoST.jl is still

in an experimental stage. At the same time, we are not aware of any other approaches that pro-

vide similar facilities for flattening highly modular model structures in an equation-based for-

mat while retaining the grouping information from the modular design.

A similar argument can be made about documentation. In software engineering, there is lit-

tle doubt that documentation is valuable and even essential for understandable and maintain-

able code, yet it is often lacking, even in large, successful projects. This is because writing good

documentation requires a lot of time and does not generate its benefit at the time of writing,

but only at a later stage in the project. For systems biology in particular, we see the concern

that there is not much incentive to document code beyond ones own understanding. This

would be different, if academic journals did not only require the code to be available but also

had some requirements for understandability and documentation standards.

5 Conclusion

From our case study we can derive several suggestions for tackling reproducibility issues in

mathematical modeling in systems biology. Using a CI service, like GitHub Actions, in con-

junction with unit and regression tests that are as fine-grained as possible can guarantee meth-

ods reproducibility and the completeness of the published code and data. The more automated

tests can be performed within such a system, the better the chances for the model to be repro-

ducible and reusable in different ways. It might be worthwhile for the systems biology commu-

nity to consider implementing or using a CI service with predefined virtual machine images

for typical modeling workflows. These images could then be archived allowing not only the

long-term storage of the model code but also of the software that was used to simulate it. Jour-

nals like PLOS Computational Biology and the Physiome Journal, which already employ rigor-

ous testing of reproducibility standards by reviewers, might be able to host such a service to

provide authors with a standardized mechanism to facilitate reproducibility and to reduce the

burden placed on reviewers. Beyond methods reproducibility, results reproducibility cannot

be guaranteed by automated tests. They do increase the likelihood that a reproduction attempt

is successful, but it might still be complicated by missing documentation or poor understand-

ability of the code. Here, the MoDROGH guidelines or similar “style guides” for model code,

can help to make models approachable and reusable for other researchers. However, the only

thing that truly guarantees results reproducibility is and remains an actual validation study.

We therefore suggest that more of these studies should be performed and published and that

there should be some way to indicate that the results of a model have been successfully repro-

duced in model repositories. In general, we find the philosophy of model engineering, i.e. the

application of software engineering techniques to mathematical modeling, very promising. We

think that building models with more care to design and engineering aspects will both benefit

the scientific impact of a model and scientific progress in systems biology as a whole. In partic-

ular, we hope that InaMo, our understandable implementation of the Inada model with repro-

ducible methods and results, can kick-start some new projects on the electrophysiological

properties of the AV node.
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Abstract

Systems biology is a field that requires complex multi-
scale models of systems that are evolved rather than en-
gineered. No unifying theory exists for biology as it does
for engineering domains. Thus, models appear in very
diverse forms. Components can be genes, cells, organs
or even whole ecosystems. These components can in-
tuitively be represented as classes in an object-oriented
language, making systems biology a perfect application
for Modelica. However, we still only see very few mod-
els from this domain. In an attempt to change this, we
show that Modelica can exactly reproduce the simulation
results of a reference implementation of an established
biological model of the human baroreflex. Our imple-
mentation highlights the strengths of Modelica like the
event finding mechanism, which makes the model more
precise. We also show that biological systems pose in-
teresting challenges like signals with non-uniform delays
and the interaction of complex rhythms.
Keywords: systems biology, baroreflex, cardiovascular

system, heart rate variability

1 Introduction

Biological systems are complex, dynamic and packed
with feedback loops. Even small academic examples of
systems that exhibit these properties are very hard to un-
derstand and analyze for humans without proper tools
(Voit, 2013, pp. 8–10). Recent support comes in form of
mathematical models, forming the field of systems biol-
ogy. A strong mathematical foundation can help where
intuition fails and indeed there are now projects such
as the Virtual Liver Network (Holzhütter et al., 2012),
the Blue Brain Project (Markram, 2006) or the Physiome
Project (Hunter et al., 2002) that are on the way of build-
ing comprehensive multi-scale models for complete hu-
man organs.

In all of these projects, communication between mod-
els at different scales of time and space is a key chal-
lenge. Low-level models of biochemical reactions have
to be integrated into models on the cellular level which

then again need to be composed together to reach the
desired level of abstraction. This is made more diffi-
cult by the fact that there exists no unifying theory in
biology as it does in other domains such as electrical
engineering (Voit, 2013, pp. 413–415). It is often not
possible to build biological models as a bottom-up ap-
proach from the biochemical or genetic level, because
too much is still unknown. For example, even when
we narrow down the problem to these two lowest lev-
els we still only begin to understand the role of long
noncoding RNAs (Ponting et al., 2009) or glycoproteins
(Ranzinger and York, 2012) in the regulation of cellu-
lar processes. Instead, researchers such as Denis Noble
suggest a “middle-out” approach, that starts at the layer
of abstraction where most experimental data is available
(Noble, 2002).

There exist projects that aim to provide a common lan-
guage for biological modeling, the most prominent being
the Systems Biology Markup Language (SBML). SBML
is an XML-based description format for models featuring
the biochemical concept of different substances (called
species) and reactions that modify the quantity of these
substances. Support for the SBML is widespread in the
systems biology community, but two main factors limit
its usefulness for multi-scale modeling and the middle-
out approach. Firstly, SBML is a data format and not a
programming language. Mathematical formulas have to
be specified in MathML which is not a human-readable
format. Therefore, often multiple tools are needed for the
generation and simulation of SBML models. Secondly,
SBML is specifically designed for modeling biochemi-
cal processes which enforces a bottom-up approach and
makes it impossible to start the modeling process at a
higher level of abstraction. Other languages that are cur-
rently used in systems biology include numerical com-
puting environments like Matlab and Mathematica, and
general purpose programming languages like C. These
languages all have sufficient expressive power and flex-
ibility to start the modeling process at any layer of ab-
straction, but they also come with a lot of cognitive over-
head. Scientists interested in modeling biological sys-
tems, such as physicians or biologists, have to build their
equation systems and solve them by hand, or fit them
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into a specific structure for existing implementations of
the desired solver. As a result, the structure of the model
is fitted to the programming platform instead of the other
way around. It also makes the model harder to under-
stand and discuss both for language experts that are not
familiar with the modeled system and biologists that are
not familiar with the specific language constructs. Es-
pecially with large equation systems, one has to put a
lot of effort into structuring his code to preserve a clear
distinction between different components of the modeled
systems, let alone different abstraction layers of one and
the same component.

Modelica offers an elegant solution for these prob-
lems. As an object-oriented language it makes the en-
capsulation of subsystems into larger components intu-
itive and thus highly facilitates multi-scale modeling. At
the highest level, a Modelica model may present cells or
entire organs as components with a clear interface that
hides the details of the implementation at lower levels. If
desired, however, a user of the model always has the pos-
sibility to inspect a component and dig one level deeper
to look at the subsystems constituting the organ or cell.
In theory, this makes it possible to build arbitrarily deep
nested structures without overwhelming the model user
with too much detail at a single level. Additionally, the
declarative acausal nature of Modelica allows to write
most formulas verbatim in the same way as they may ap-
pear in the mathematical definition of the model. This
greatly reduces the cognitive overhead necessary to un-
derstand, maintain and extend an existing model.

Some projects already use Modelica for tasks related
to systems biology. The BioChem library allows to trans-
late SBML models to Modelica and vice versa offering a
starting point for system biologists interested in Model-
ica (Nilsson and Fritzson, 2005). Additionally the Phys-
iolibrary by Mateják et al. (2014) and the HumanLib by
Brunberg and Abel (2010) are both targeting the model-
ing of the human physiology. Yet, when we looked at
three recent systems biology textbooks, we did not find
any reference to Modelica (Voit, 2013; Klipp et al., 2011;
Kremling, 2012), although one of these books featured a
list of over 80 tools for modeling in systems biology, in-
cluding Matlab, Mathematica, SBML and a variety of
application-specific SBML tools (Klipp et al., 2011).

In our opinion not only system biologists can bene-
fit from Modelica, but also the field of systems biology
provides interesting challenges for Modelica modelers.
In contrast to most other application areas of Modelica,
biological systems are evolved rather than engineered.
Specifically, this means that there is usually a high level
of complicated communication between multiple parts
of the system and that these interactions are not always
straightforward. One major example is the the “central
dogma” of molecular biology. It states that every as-
pect of a living system can be explained starting from the
DNA which is translated to proteins. These proteins then
carry out some function in the system, but do not change

the genetic code. This is a natural assumption that would
seem intuitive to an engineer or computer scientist: A
source code defines programs regulating the behavior of
a system. However, the study of epigenetics shows that
there are many factors that can influence gene expression
and thus change the way in which the DNA-code is read
(Holliday, 2006). To make things more difficult, there is
no moment in the life of an organism where a cell is con-
structed from nothing but DNA. Even a single fertilised
egg cell still has not only inherited the DNA from its
parents but also all of the other biochemical substances
in this cell.

Therefore, when we build models of biological sys-
tems, we might encounter unusual connection patterns
between components. These new types of problems may
indicate areas, where Modelica still can be improved. As
an additional argument for the study of biological mod-
els, the field of systems biology spans a large area of in-
teresting and relevant topics, from the modeling of brain
activity to finding diagnosis criteria and treatments for
cardiac diseases, diabetes or cancer to the modeling of
whole ecosystems like oceans (Voit, 2013, pp. 399–415).
The potential of applying mathematical modeling to bio-
logical systems is vast, and with Modelica we can facili-
tate the generation of new insights.

With this paper we want to take a further step towards
bringing together Modelica modelers and systems biol-
ogists. We show that it is not only possible to convert
SBML models to Modelica with the BioChem library
or build physiological models from predefined compo-
nents with the Physiolibrary, but also to implement a
biological model in Modelica directly from the mathe-
matical description. As a proof of concept, we therefore
implemented an established model of the human barore-
flex by Seidel (1997) in Modelica and compared it with
the original implementation of Seidel written in C. An
introduction to the Seidel-Herzel model (SHM) will be
given in section 2. The two implementations of the SHM
– hereinafter called SHM-M for our Modelica version
and SHM-C for Seidels C implementation – will both
be described in section 3. To demonstrate that Modelica
is indeed flexible enough to precisely reflect the math-
ematical description of the model, we directly compare
the output of SHM-C and SHM-M in section 4 followed
by a discussion of the results in section 5. There we
also demonstrate that biological models like the SHM
fit nicely into the modeling paradigms of Modelica and
highlight some interesting challenges of the implemen-
tation process. Finally, a short conclusion can be found
in section 6.

2 The Seidel-Herzel model

The Seidel-Herzel model (SHM) is a model of the hu-
man baroreflex that was created by Henrik Seidel and
Hanspeter Herzel and first published in 1995 with the
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main purpose of analyzing heart rate variability (HRV)
(Ernst, 2014). There are two main reasons why we chose
this model as example for a typical biological system that
can be implemented in Modelica: Firstly, although the
cardiovascular system is well researched, heart diseases
are still the most common cause of death worldwide
(Naghavi et al., 2014). This means that models like the
SHM are still relevant and may even help towards finding
diagnostic criteria for heart-related diseases. The second
reason to choose the SHM over other models of the hu-
man heart was that it is rather compact but still covers the
effects of multiple organs. The doctorate thesis of Seidel
contains the most recent version of the model, which has
24 equations and 52 parameters (Seidel, 1997).

Although there is another publication by Seidel et

al. from 1998 (Seidel and Herzel, 1998), we used this
version because it features several improvements of the
model that were not present in the journal publication.
In the following, we will give a short introduction into
the components of the SHM and also explain its rele-
vance in literature. For a more detailed explanation of
the formulas, the reader is referred to Seidel’s doctorate
thesis (Seidel, 1997). This version of the SHM consid-
ers the physiological effects of the baroreceptors in the
blood vessels, the autonomic nervous system, the lung,
the sinus- and av-nodes, the heart itself and the Wind-
kessel arteries. It does not introduce different compart-
ments in the blood system but instead models the arterial
blood pressure as a single physical quantity.

2.1 Baroreceptors

Baroreceptors are the sensory neurons measuring the
pressure in a blood vessel. The basic neural firing fre-
quency of the baroreceptors νb in the SHM is calculated
with the following formula.

ν ′
b(t) = p− p

(0)
b + k

d p
b

d p

dt
(1)

This includes the effects that baroreceptors respond to
the static blood pressure level p as well as to an increase
or decrease in blood pressure and that they only respond

to blood pressure levels above a threshold p
(0)
b . The pa-

rameter k
d p
b is a scaling factor to adjust the relative influ-

ence of the blood pressure slope.
To account for the saturation effect of baroreceptors,

this value is passed through the saturation function

νb(t) = pc0
b

(

1+ tanh

(

ν ′
b(t)− pc0

b

pc0
b

))

(2)

pc0
b = pc

b − p
(0)
b (3)

where pc
b is a scaling parameter to adjust the maxi-

mum of the saturation function, which lies at 2pc0
b .

In a living organism, however, the signal of barore-
ceptors at different parts of the body reach the autonomic
nervous system (ANS) at different time instants. This ef-
fect is modeled in the SHM with a broadening function
that is additionally applied to the saturated baroreceptor
response.

ν̃b(t) =

∞
∫

−∞

g(t − τ) νb(τ) dτ (4)

g(t) =

{

0 for t ≤ 0
1
σ χ2

2+ η
σ

(

t
σ

)

for t > 0
(5)

In this equation χ2
n is the probability distribution func-

tion of the chi squared distribution and σ and η are scal-
ing parameters to adjust the broadening range.

2.2 Lung

The Lung influences the heart rate both through neural
signals and the mechanical pressure in the thorax. The
SHM assumes a constant breathing rate that is only mod-
ified by a noise term. The activity of respiratory neurons
νr(t) is given by

νr(t) =
1
2
(1− sin(2πφr(t))) (6)

φr(t) =
t − (tr,i −θr)

Tr,i
(7)

where tr,i is the beginning of the last inspiration phase
and θr is a phase shift parameter that determines the time
between the firing of respiratory neurons and the actual
mechanical movement of the lungs.

The mechanical respiratory influence fm(t) is defined
similarly by the following equation.

fm(t) =−sin(2πφr(t −θr)) (8)

Even during voluntarily controlled breathing, the
breathing rate of a human is always subject to fluctua-
tions. Seidel models these fluctuations by introducing a
noise term which is applied to the mean breathing rate T̄r

at each breathing cycle with an autoregressive function.

Tr,i = kTr T̄r + k
last,1
Tr

Tr,i−1 + k
last,2
Tr

Tr,i−2 +σTr ξ (9)

kTr = (1− k
last,1
Tr

− k
last,2
Tr

) (10)

In this formula, Tr,i is the breathing period at the ith
breathing cycle; k

last,1
Tr

and k
last,2
Tr

are parameters that de-
termine the influence of the last and second last breathing
period on the current period; and σTr is the amplitude of
the white noise ξ .
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2.3 Autonomic Nervous System

The autonomic nervous system (ANS) consists of the
sympathetic and the parasympathetic system. The
sympathetic system increases the heartbeat frequency
through the release of norepinephrine as neurotransmit-
ter (via synapses) and as Hormone (via the blood ves-
sels). The parasympathetic system has inhibitory influ-
ence on the heartbeat frequency through the release of
the neurotransmitter acetylcholine.

The formulas for the neural activity of the sympathetic
system νs and the parasympathetic system νp therefore
only differ by the sign with which the baroreceptor ac-
tivity enters the equation.

ν ′
s(t) = ν

(0)
s −

(

1+ kbr
s νr(t)

)

ν̃b(t)+ kr
sνr(t) (11)

ν ′
p(t) = ν

(0)
p +

(

1+ kbr
p νr(t)

)

ν̃b(t)+ kr
pνr(t) (12)

νs(t) = max(0,ν ′
s(t)) (13)

νp(t) = max(0,ν ′
p(t)) (14)

Both equations have a base firing rate ν
(0)
s/p

and scaling

parameters kr
s/p

for the respiratory influence and kbr
s/p

for
the correlation between the activity of the baroreceptors
and the respiratory neurons.

2.4 Substance Concentrations

The SHM models several concentrations of neurotrans-
mitters and hormones. The concentration of nore-
pinephrine at the sinus node (csNe) directly influences
the pacemaker phase together with the concentration of
acetylcholine (csAc) at the sinus node. Additionally, nore-
pinephrine can also act as a hormone. The ventricular
concentration cvNe in the heart itself increases the con-
tractility (force of the contraction). The concentration in
the Windkessel arteries cwNe increases the stiffness of the
vessel walls, resulting in a higher blood pressure during
the diastole.

The release of this concentration is triggered by one
neural signal and can be inhibited by another neural sig-
nal. For norepinephrine the excitatory signal comes from
the sympathetic system while the parasympathetic sys-
tem inhibits the release. For acetylcholine the parasym-
pathetic system is the excitatory part and there is no in-
hibition modeled. Both inhibitory and excitatory signals
only take effect after a delay θ x

c and are subject to satu-
ration. This leads us to the following equations

exx
c(t) = inx

c(t) = tanh(kx
c νx(t −θ x

c )) (15)

τsNe

dcsNe

dt
=−csNe(t)+ exs

sNe(t) (1− inp
sNe(t)) (16)

τvNe

dcvNe

dt
=−cvNe(t)+ exs

vNe(t) (1− inp
vNe(t)) (17)

τwNe

dcwNe

dt
=−cwNe(t)+ exs

wNe(t) (1− inp
wNe(t)) (18)

τsAc

dcsAc

dt
=−csAc(t)+ exp

sAc(t) (19)

where the τc and the kx
c are scaling parameters for the

overall slope of the concentrations cc(t) and the influence
of the inhibitory or excitatory signal.

2.5 Sinus Node

The sinus node is the main pacemaker of the heart. In
the SHM it is modeled with the pacemaker phase φ(t)
which generates a sinus signal when its value becomes
one and is then directly reset to zero. The rate of the
pacemaker phase increases with an increased concentra-
tion of norepinephrine and decreases with an increase
in acetylcholine. The latter is additionally modified by
a “phase-effectiveness curve” F(φ), because the effect
of the parasympathetic signal on the pacemaker changes
with the phase of the heart cycle. The resulting behavior
is given by the following formula

dφ

dt
=

1

T (0)

(

1+ ksNe
φ csNe(t)− ksAc

φ csAc(t)
F(φ(t))

F̄φ

)

(20)

F̄φ =

1
∫

0

F(φ)dφ (21)

F(φ) = φ 1.3(φ −0.45)
(1−φ)3

(1−0.8)3 +(1−φ)3 (22)

where T (0) is the duration of the heart cycle without
any input from the ANS and ksNe

φ and ksAc
φ are scaling pa-

rameters for the influence of the concentrations of nore-
pinephrine and acetylcholine.

The heart period of a human is always subject to ad-
ditional fluctuations that do not originate from breathing
or the signals of the ANS. These influences can be im-
plemented by replacing the parameter T (0) with a noisy

base period T
(0)

n , which varies with the heartbeat number
n similarly to the respiratory base period in Equation 9.

T
(0)

n = T̄ (0)+ klast
T (0)(T

(0)
n−1 − T̄ (0))+σ

T (0)ξ (23)

2.6 Contraction Model

Not every sinus signal generates a heartbeat and not ev-
ery heartbeat is triggered by a sinus signal. On the one
hand, if there is no sinus signal for a prolonged time pe-
riod, the atrioventricular node (AV node) will trigger a
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contraction by itself. This is represented by the param-
eter Tav so that a contraction is triggered if more than
Tav seconds have passed since the last contraction at time
tc,n. On the other hand, a sinus signal does not immedi-
ately correspond to the beginning of a contraction. There
is an atrioventricular concudtion delay Tavc,n that passes
from the firing of the sinus node (which is located at the
atrium) at time ts,n to the contraction of the ventricles. It
depends on the time that has passed since the last con-
traction at tc,n. Additionally, the sinus node has a refrac-
tory period Trefrac during which no new signal may be
generated. Combining these two effects, we receive the
following equation for atrioventricular conduction time.

Tavc,n =

{

T
(0)

avc + kt
avce

−
(ts,n−tc,n)

τavc if ts,n − tc,n > Trefrac

∞ else
(24)

In this equation T
(0)

avc is the base value for the atrioven-
tricular conduction time, kt

avc is a scaling parameter for
the influence of the time that has passed since the last
contraction and τavc is a reference value for the atrioven-
tricular conduction time.

2.7 Heart

The final components of the SHM are the contraction of
the heart and the Windkessel arteries that are responsible
for the blood pressure increasing during the systole and
decreasing during the diastole. The switch between sys-
tole and diastole is modeled explicitly by a fixed systole
duration of τsys. During the systole from tc,n to tc,n + τsys

the blood pressure follows the equations

d p

dt
=

1
τsys

Sn

C
(1−φsys(t)) e1−φsys(t) (25)

φsys(t) =
t − tc,n

τsys
(26)

where C is a scaling constant for the contractility Sn.
The value of Sn is determined at the beginning of the
systole at tc,n as follows.

Sn = S(0)+
(

kvNe
S cvNe(tc,n)+ km

S fm(tc,n)
)

S(Tn−1)

(27)

S(Tn−1) =

(

1−

(

1−min

(

1,
tc,n − tc,n−1

T̂

))2
)

(28)

During the diastole, the equation for the blood pres-
sure switches to the following formula that accounts for
the effect of the Windkessel arteries. These arteries di-
rectly connected to the heart are elastic and act as a

dampening system. During the systole they “store” blood
by expanding the blood vessels. During the diastole they
contract back to their original state slowly releasing the
stored blood.

d p

dt
=

−

(

p− p
(0)
w

)

τw(t)
(29)

τw(t) = τ
(0)
w + kwNe

w cwNe(t) (30)

In this formula p
(0)
w is the minimum blood pressure

that is still present even if the Windkessel arteries are

fully relaxed and the heart does not pump, τ
(0)
w is a base

value for the time needed for the Windkessel arteries to
fully relax, and kwNe

w is a scaling factor for the influence
of the norepinephrine concentration in the arteries on this
relaxation time.

2.8 Physiological Relevance

The SHM is able to reproduce several characteristics of
complex heart rate dynamics. The first and most obvi-
ous effect are fluctuations of the heart rate with the fre-
quency of breathing cycles called respiratory sinus ar-
rhythmia (RSA). This behavior is not surprising as it
is directly built into the model with the definition of νr.
A more interesting observation is that the model also
exhibits fluctuations with a period of approximately 10
seconds, which also corresponds to a physiological phe-
nomenon called Mayer waves (Seidel and Herzel, 1995).
When investigating the reaction of the model to changes
in parameter values, Seidel and Herzel (1998) also found
bifurcations related to the sympathetic and parasympa-
thetic delays, the baroreceptor sensitivity and repetitive
vagal stimulation. The observed dynamical properties
were in good agreement with patients with baroreceptor
hypersensitivity and animal experiments. However, re-
sults by Duggento et al. (2012) show that these bifurca-
tions can actually be triggered by most parameters of the
model. They suggest that the model should be reparam-
eterized to make all modeled variables physiologically
plausible, and assume that this could lead to a “‘unifying
theory to account for slow oscillation’ in cardiovascular
variability”.

Kotani et al. (2002) extended the model by noise and
more detailed respiratory influences. They showed that
the model can explain the synchronization between the
heartbeat and the breathing frequency observed in hu-
mans (Kotani et al., 2002). In a later study they also
found that the (modified) SHM could produce statisti-
cally valid simulations of congestive heart failure and
primary autonomic failure – diseases that are known to
affect the parasympathetic and sympathetic neural activ-
ity (Kotani et al., 2005).

To sum up, we can say that the SHM is able to pro-
duce physiologically plausible simulations of character-
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istics of both healthy patients and several disease condi-
tions. Its potential may not have been fully exploited yet,
making our implementation a possible start for future in-
vestigations.

3 Implementations and Simulation

Setup

Thanks to Henrik Seidel we were able to use his origi-
nal implementation (SHM-C) as reference for our Mod-
elica implementation (SHM-M). It is written in C and
uses a self-implemented Runge-Kutta Method for solv-
ing the differential equations. The executable allows to
set starting values and parameters with a parameter file
and writes the simulation result to a CSV-file.

With our Modelica-version of the Seidel-Herzel-
model we wanted to reproduce the output of SHM-C
as closely as possible, while still retaining the object-
oriented implementation style of Modelica. We divided
the formulas of the SHM according to the physiologi-
cal parts they represent to obtain small Modelica compo-
nents.

On the highest level SHM-M consists
of the models Baroreceptors, Sinus-

Node, Heart, Lung, SympatheticSystem,
ParasympatheticSystem, HormoneRelease

and NeurotransmitterRelease as well as the
compartment models BloodSystem, Hormone-

Amount and NeurotransmitterAmount. These
models are the entry points for users of SHM-M.
Therefore, we kept them as simple as possible by
encapsulating the broadening and saturation of the
baroreceptors, the contraction model of the heart and
the phase effectiveness function into the separate classes
Broaden, TanhSaturation, Contraction,
and PhaseEffectiveness. Additionally, due to
the similarities in equation 11 and 12 and equations
16–19, the models SympatheticSystem and
ParasympatheticSystem share a common base
class ANSPart and the models HormoneRelease

and NeurotransmitterRelease are even
functionally equivalent to their base class
SubstanceRelease only providing different
icons. A diagram of the full model can be seen in Figure
1.

Most of the connections between models in the SHM-
M are implemented as a set of causal input-/output-
connectors. The neural signals and the mechanical res-
piratory influence as well as the boolean trigger output
of the sinus node all have a clear physiological direc-
tion. The substance concentrations and the blood flow,
however, are implemented using acausal connectors with
flow variables. Actually this is not a mathematical re-
quirement, because both the substance concentrations
and the blood pressure are defined by a single equation in
only one component that could also be implemented with

causal connectors. However, physiologically the release
and uptake of substances are separate processes and the
blood pressure is influenced by both the Windkessel ar-
teries and the heart itself. For a more realistic represen-
tation of these physiological properties, future versions
of the model should therefore also separate these effects
mathematically, which will be easier to implement using
flow variables in the connectors.

With this structure, the implementation could mostly
be achieved by just transferring the mathematical for-
mulas directly to Modelica notation. Where approxi-
mations of the mathematical definition were necessary –
namely the broadening of the baroreceptor response with
a Green’s function – the same numerical algorithm used
in SHM-C was implemented as a function in Modelica.

The only components where a straightforward
implementation was not possible are the sub-
models Contraction and Broaden. The model
Contraction captures the interplay of the sinus
signal, refractory period and AV node and thus features
rather complicated expressions in when-conditions
involving discrete variables. In the current stable
version of the OpenModelica compiler (Version 1.9.1)
these discrete equation systems are not supported.
We therefore had to implement the contraction signal
using continuous variables in the when-condition as the
following code snippet shows.

when s i n u s _ p h a s e < 1 e−10 and s i g n a l
and r e f r a c _ c o u n t d o w n <= 0 then

T_avc = T_avc0 +

k_ av _ t ∗ exp (−T_passed / t a u _ a v ) ;
c o n t r a c t i o n = s i n u s _ p h a s e > 1 or

av_phase > 1 ;
end when ;

This introduced several additional phase variables for the
atrioventricular conduction time, the refractory period
and the period of the AV node.

The major challenge regarding the model Broad is
the implementation of the convolution in Equation 4. We
found no better way to calculate this convolution than to
build an array with delay expressions of the baroreceptor
signal with the following loop:

f o r i in 1 : s i z e ( h i s t , 1 ) loop

h i s t [ i ] = d e l a y ( x , ( i−1 ) ∗ s t e p , ( i−1 ) ∗ s t e p ) ;
end f o r ;

This implementation works as desired for small broaden-
ing lengths, but becomes extremely slow for larger val-
ues.

As a final difference between SHM-M and SHM-C
we did not implement the noise model for the breathing
frequency and the heartbeat duration, because this noise
would only complicate the comparison of the two mod-
els. Instead, to obtain comparable data, noise was also
disabled in SHM-C through parameter settings.
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Figure 1. Diagram view of the SHM-M implementation show-
ing the components of the model.

The simulation of our model was performed us-
ing OpenModelica. The Runge-Kutta method imple-
mented in OpenModelica uses the same classical RK4-
Parameters that are also used in SHM-C. Therefore we
only had to use the same step size and the same set of
starting values and parameters for the simulation to ob-
tain directly comparable results.

We used the standard parameter set by Seidel and only
adjusted the manually defined starting values in SHM-C
to match the starting values of SHM-M that were calcu-
lated by OpenModelica. The resulting parameter config-
uration can be seen in Table 1. We then did a simulation
with both models for 1000 seconds with a step size of one
millisecond and recoded the important values in steps of
ten milliseconds as well as the duration and end time for
each heartbeat.

4 Results

The SHM was designed for the analysis of heart rate vari-
ability. Therefore, to compare different implementations
it is most important to look at the duration of heartbeats
and the blood pressure. A direct comparison of the time
series for these physical quantities can be seen in Fig-
ure 2. For the blood pressure both curves have no visual
differences until 5 seconds after the start of the simula-
tion, when SHM-M starts to run ahead slightly. At the
end of the simulation, the situation is similar: The only
difference between the curves seems to be a time shift.
For the heartbeat duration the differences are already no-
ticeable at the first heart beat, which is 3 milliseconds
longer in SHM-M than in SHM-C.

To better quantify these differences, we plotted the

Table 1. Parameter and initial values used for the comparison
of SHM-C and SHM-M.

Parameter Value Parameter Value

Baroreceptors Sinus node

p
(0)
b 60 T (0) 0.9

k
d p
b 0.06 ksNe

φ 0.6

p
(c)
b 120 ksAc

φ 0.2

σ 0.001 Contraction

η 0.01 T
(0)

avc 0.09

Lung kt
avc 0.78

θ
(0)
r 0.16 τavc 0.11

T̄r 4 Trefrac 0.22

k
last,1
Tr

0 Tav 1.7

k
last,2
Tr

0 Heart

σTr 0 τsys 0.125

ANS C 2

v
(0)
s 50 S(0) 110

kbr
s 0.38 kvNe

S 110

vr
s 30 km

S 0

v
(0)
p 10 p

(0)
w 0

kbr
p 0.38 τ

(0)
w 1.3

vr
p 30 krNe

w 0.8

Concentrations T̂ 1

ks
sNe 0.014 Initialization

θ s
sNe 2 p(0) 100

k
p
sNe 0.006 csNe(0) 0.12

θ
p
sNe 0.4 csAc(0) 0.5

τsNe 2 cvNe(0) 0.12

ks
vNe 0.014 crNe(0) 0.12

θ s
vNe 2 T0 1

k
p
vNe 0.006 tc,0 -1

θ
p
vNe 0.4 Tavc(0) 0.15

τvNe 4 S0 110

ks
rNe 0.014

θ s
rNe 3

k
p
rNe 0

θ
p
rNe 0.4

τrNe 4

k
p
sAc 0.005

θ
p
sAc 0.4

τsAc 0.05
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Figure 2. Comparison of time series of blood pressure p

and heartbeat duration Tn between SHM-C (blue) and SHM-M
(red) for a simulation time of 1000 seconds, showing seconds
0 to 5 and seconds 995 to 1000.

difference between heartbeat durations in SHM-M and
SHM-C against the standard deviation between heartbeat
durations in SHM-C. The result can be seen in Figure 3.
It turns out that the duration of the first 40 heartbeats
only differs by less than 10 milliseconds with a standard
deviation of 34 milliseconds. The plot also shows that
on average SHM-M produces heartbeat periods that are
3 milliseconds longer.
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Figure 3. Difference between RR-Intervals of SHM-M and
SHM-C relative to the standard deviation of RR-Intervals in
SHM-C. Values above zero represent RR-Intervals that are
longer in SHM-M compared to SHM-C.

While absolute differences can give an impression of
the size of possible calculation errors, for the SHM it is
much more interesting to look at the long-time behavior
of the model. Seidel used a plot of the spectral density of
RR-Intervals (i. e. heartbeat durations) as one of his main
arguments for the physiological plausibility of his model.
We therefore also compared SHM-C and SHM-M on the

frequency domain. The result can be seen in Figure 4.
The plot shows a clear peak identical in magnitude and
position at approximately 0.25 Hz, which corresponds
to the breathing frequency and can thus be thought to
represent respiratory sinus arrhythmia. We can also see
another less pronounced peak for both implementations
at approximately 0.1 Hz which Seidel attributes to Mayer
waves. However, in SHM-M the peak at 0.25 Hz is much
sharper than in SHM-C.

Figure 4. Top: Comparison of spectral density of RR-Intervals
in SHM-C (blue) and SHM-M (red) after a simulation for
1000 seconds with standard parameters. Bottom: Figure
from Seidel’s doctorate thesis comparing spectral density of
RR-Intervals of SHM with noise (red) and experimental data
(black) (Seidel, 1997).

5 Discussion

The comparison between both implementations SHM-M
and SHM-C shows that our proof of concept was suc-
cessful. At the beginning of the simulation, the blood
pressure stays almost the same. There are noticeable
differences in the heartbeat duration, but these are not
unexpected as the event finding mechanism of Model-
ica can determine the exact time at which an event oc-
curs more precisely compared to the simple check after
each Runge-Kutta step implemented in SHM-C. This is
also consistent with the sharper peak in the frequency
domain observed in Figure 4. Experimental data with
voluntarily controlled breathing actually shows a rather
smooth RSA-related peak in the frequency domain sim-
ilar to SHM-C. However, the reason for this is that the
subjects naturally cannot time their breathing to the ex-
act millisecond, introducing a noise to the breathing fre-
quency. This type of noise has been incorporated into
the model by Seidel and it can also be incorporated in
SHM-M. Our model therefore may allow a more precise
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analysis of the theoretical effects of RSA without sacri-
ficing realism.

Now that we have seen that SHM-M is able to repro-
duce the simulation results of SHM-C we can ask what
makes the new implementation (or biological models in
general) interesting from a Modelica perspective. First of
all, the notion of a system composed of multiple organs
fits nicely into the object-oriented paradigm and leads to
a natural and intuitive class structure. In fact, each sub-
section in the explanation of the SHM in section 2 cor-
responds exactly to a Modelica model in SHM-M. The
model structure directly reflects the structure of the real
world system and thus makes the model very explainable
and accessible for domain experts. Furthermore, encap-
sulation, inheritance and the reuse of objects instantiated
with different parameters could be applied to yield a hi-
erarchical structure that hides implementation complex-
ities and avoids code repetition. The idea of hierarchi-
cally structured taxonomies is deeply rooted in biology.
It therefore seems reasonable to expect that most biolog-
ical models can be implemented in such a clean and intu-
itive manner using Modelicas object-oriented approach.

Additionally, due to the tendency of biological sys-
tems to feature multiple complex rhythms, these mod-
els can showcase the strength of Modelica’s event find-
ing mechanism in comparison to a naive implementation
of the Runge-Kutta- or Euler-method or other tools that
mainly focus on continuous modeling.

These complex rhythms also turned out to be one of
the two major challenges that arose during the imple-
mentation of SHM-M. As already mentioned a straight-
forward implementation of the contraction model was
not possible in OpenModelica, because the nontrivial
conditions in the when-equations formed a discrete equa-
tion system. We did not test the model with other com-
pilers, so this may be only an issue with OpenModelica,
but nonetheless our biological model requires a feature
that seems not as crucial for most other application areas
of Modelica.

The second major implementation challenge was the
broadening function used for the baroreceptors. To as-
sess the performance issues with the implementation us-
ing direct delay equations, we recorded the time taken
for a simulation over 1000 seconds for both SHM-M and
SHM-C with broadening lengths ranging from 0.1 sec-
onds to 3 seconds. We found that simulation times of
SHM-M rise linearly from 75 seconds with a broaden-
ing length of 0.1 seconds to as much as one hour for
a broadening length of 3 seconds. In contrast, SHM-C
only shows an increase from 16.6 to 21.3 seconds re-
spectively. This results suggest that OpenModelica uses
a separate history buffer for each delay equation in the
loop. If this is the case, an increase of the broadening
length by only one simulation step would require the al-
location and management of an additional buffer of the
same size as the single history buffer used in SHM-C,
explaining the additional overhead. We are not aware of

a language construct that allows to indicate that the delay
equations in the loop may share the same buffer. Build-
ing the buffer manually in Modelica is also not possible,
because the language itself has no notion of discrete sim-
ulation steps. This performance issue is therefore hard to
fix as a Modelica programmer and would possibly be an
argument to include convolutions as a language element.

We can therefore conclude that the SHM, as a model
that exhibits the typical properties of biological models
in general, does not only fit nicely into the modeling style
of Modelica but also has some challenging aspects that
point to possible areas of improvement for OpenModel-
ica or Modelica in general. This suggests that biological
models could indeed become a new and interesting ap-
plication area for Modelica.

6 Conclusion

With our implementation of the SHM we demonstrated
as a proof of concept that Modelica is perfectly suited
for the implementation of biological systems in a natu-
ral representation. The language can directly reflect the
biological composition of the system instead of having
to fit the system into the language constructs. This is
shown by the fact that our Modelica version of the SHM
– which uses a lot of the features of Modelica such as
acausal declarations, encapsulation and component reuse
through instantiation and inheritance – can reproduce the
same behavior as the original reference implementation
in C. Moreover, it is in some parts even more precise
thanks to the event finding mechanisms of Modelica.

We also demonstrated that new challenges that are
not present in other domains may arise when we model
evolved rather than engineered systems. The interac-
tion of complex rhythms together with time-varying sig-
nal conduction delays lead to a contraction model that
could not be intuitively implemented with the current
version of the OpenModelica compiler. Additionally,
implementing the behavior that the baroreceptor signal
reaches the ANS through many different nervous con-
nections with varying delays required a convolution that
seems to be a performance bottleneck.

These are strong arguments both for biologists to
choose Modelica over a general purpose programming
language and for Modelica modelers to look for inter-
esting applications and models in the systems biology
domain. This paper laid the ground for the implemen-
tation of more biological models from the side of the
Modelica community, but to encourage interdisciplinary
research we also have to take the opposite perspective.
We need to investigate the benefits of Modelica more
closely in regard to the needs of systems biologists. A
first step could be to reparameterize the SHM as sug-
gested by Duggento et al. (2012) and to incorporate ad-
ditional components that can simulate vagal stimulation
and different disease conditions (which is possible but

Session 4C: Novel Modelica Applications and Libraries

DOI
10.3384/ecp15118367

Proceedings of the 11th International Modelica Conference
September 21-23, 2015, Versailles, France

375



cumbersome with the C implementation). We also plan
to extend the SHM to a multi-scale model, for example
by exchanging the heart model with a more detailed rep-
resentation modeling individual heart cells. Finally, it
would be interesting to embed the model into the Physi-
olibrary to provide a single point-of-entry for biologists
and physicians interested in physiological modeling with
Modelica. We believe that there is a lot of potential for
interesting projects involving biological models in Mod-
elica and we are looking forward to seeing more of them
in the future.
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Mo|E – A Communication Service Between Modelica Compilers
and Text Editors
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Abstract
The Modelica language is becoming increasingly popu-
lar among scientists and engineers as platform for mod-
elling physical or biological systems. Although Modelica
is maintained as non-proprietary language by the Mod-
elica Association, a considerable number of commercial
implementations and development environments is com-
plemented by a surprisingly small number of open source
tools.

In this paper, we present the communication service
Mo|E that connects any text editor as front-end with a
Modelica compiler as back-end. Based on the simple
HTTP communication protocol, editor plugins for a soft-
ware developer’s favourite text editor can be developed
easily, hence turning any editor into a lightweight Model-
ica development tool.

We also present a first implementation of a plugin for
the text editor Atom that exhibits features necessary for
efficient software development, such as display of com-
pile errors, code completion, go to declaration or view of
context-sensitive documentation. In addition, Modelica-
specific checking of the number of equations in a model is
supported.
Keywords: Modelica, open source, integrated development
environment, distributed systems, structured editor, EN-
SIME, OpenModelica, JModelica, MoTE

1 Introduction
Modelica is a powerful object-oriented programming lan-
guage that facilitates acausal description of physical sys-
tems. Although many commercial and open source tools
for developing or working with Modelica are available,
the OpenModelica suite (Fritzson et al., 2005) is the only
comprehensive set of tools for Modelica. OpenModelica
provides a standalone Modelica compiler, an Eclipse plugin
for developing Modelica inside of Eclipse (MDT), a graphi-
cal model editor for connecting components (OMEdit), and
a Modelica debugger. The primary tools for developing
Modelica are MDT and OMEdit. Both are full-fledged
integrated development environments (IDEs).

IDEs are well suited for working with big projects but
may have some disadvantages. They often are slow, diffi-
cult to use and and may be even scary for novice users. For
Modelica additional challenges arises from the differences

between Modelica compilers, such as JModelica or Open-
Modelica which silghtly differ in their understanding of
Modelica. In order to develop code compatible with differ-
ent compilers, the IDE should be able to compile models
using different compilers.

Today, when writing source code or any other type of
structured text, it is common to use a structured editor
which is aware of the document’s structure. Structured
editors are an essential part of most IDEs. Experienced de-
velopers usually prefer them to other – graphical – means
of input. A structure aware editor must be able to ana-
lyze the text given to it. Thus structure awareness means
awareness of the syntax and to some extend also of the
semantics of the texts it deals with. The structured editor
is deeply integrated with the IDE, rather than being just a
mere component.

In this paper we present Modelica | Editor (Mo|E), a de-
velopment environment for Modelica, centered on editing
and checking complex models, refraining form all issues of
model execution. A structured editor is its main component
and user interface.

A key concept of Mo|E is that the user may use a text
editor of her own choice, attach it to a service process that
provides syntactic and semantic analysis and transforms
the plain text editor to a structured editor.

Thus users may edit texts using the editor they are used
to and still benefit from automatic recompilation, code
completion, semantic highlighting, go to declaration, refac-
toring, and so on.

A central part of our solution is a server process that
mediates between the text editor and Modelica aware an-
alytical services. These services are provided by existing
Modelica compilers, and/or further existing or future tools
that may be plugged into this infrastructure (Figure 1). We
have enhanced one text editor to a Modelica editor, but
other text editors may be integrated with little effort. These
editors only have to provide a plugin that implements the
service API. This API provides a unique interface to differ-
ent Modelica compilers and eases the communication with
compilers and related tools, protecting users from complex
and differing command-line interfaces.

The design of Mo|E was inspired by the ENSIME project
(ENSIME Contrib., 2016) with its server process that me-
diates between text editors and Scala compilers.

Mo|E is an environment for developing Modelica models
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using editors that are enhanced to be Modelica aware. It
was realized as part of the first author’s bachelor’s thesis
(Justus, 2016).

  

Editor Mo|E
server

OpenModelica

JModelica

CORBA

Python-
script

HTTP
Mo|E-protocol

Figure 1. Survey of the communication between a text editor
with a Mo|E-plugin, the Mo|E server and OpenModelica or JMod-
elica.

1.1 Structure of the Paper
Section 2 describes which technologies and standards
where used to implement Mo|E. Section 3 describes the
protocol between client and service process, the communi-
cation with OpenModelica as well as with JModelica. Sec-
tion 4 presents the key features of Modelica | Editor (Mo|E)
and their use in the text editor Atom. Finally, section 5
gives a summary and a short outlook on future extensions.

1.2 Naming
The name Modelica | Editor (Mo|E) alludes to the use of the
pipe character (|) in UNIX-like operating systems, which
establishes a pipeline between two programs. Mo|E can be
seen as such a pipeline between the Modelica compiler and
a structured editor. In contexts where special characters
like the pipe may cause problems, we chose the alternative
spelling Modelica–Pipe–Editor (MoPE).

1.3 Goals
Our goals for Mo|E are:

• Provide an extendable client server application which
makes it possible to develop Modelica inside existing
text editors.

• Provide a client implementation for the text editor
Atom as reference for other clients.

• Highlight syntax and type errors, perhaps while typ-
ing, inside the text editor.

• Provide code completion for models, data types, and
variables.

• Provide jump to the source of a model. This is better
known as “go to declaration”.

• Provide a view of the documentation of a model.

1.4 Background and Related Work
OneModelica (Samlaus, 2015) is a an Eclipse-based IDE
for Modelica models tailored to the domain of fluid dynam-
ics. It was realized using tools and techniques of Model
Driven Software Development. It may be compared to our
approach in that it restricts itself to syntax and static seman-
tics of the language and refrains from simulation issues. It
differs considerably in its technological base, which in the
years since its development has lost a lot of its attraction
and support, not without reason as we think.

Mo|E is the first tool in a more ambitious project called
Modelica Tool Ensemble (MoTE). MoTE aims at the pro-
vision of a collection of small user-friendly standalone ap-
plications for developing and executing Modelica models,
i.e. a lightweight development environment for Modelica.

Modelica does not differ in principle from other lan-
guages when it comes to development environments. How-
ever, due to its complex static and dynamic semantics,
it poses special challenges, mainly for the support of in-
cremental development (see e.g. (Höger, Lorenzen, and
Pepper, 2010) or (Broman, Fritzson, and Furic, 2006)).

We are well aware of these problems. Thus, at least for
the time being, MoTE and Mo|E do not include a Modelica
compiler or tools incorporating compiler features much
beyond parsing. Instead we rely on mature compilers like
OpenModelica and JModelica.

2 Technologies
2.1 Scala and Akka
Scala (EPFL, 2016) is a hybrid programming language that
combines object orientation with functional programming.
Because the Scala compiler generates bytecode for the Java
Virtual Machine (JVM), it integrates with many available
Java libraries. In addition, resulting compiled programs
are platform independent. The service process of Mo|E is
implemented in Scala.

Akka is a library for concurrent and distributed systems,
based on the actor model that facilitates concurrency by
providing a high level of abstraction (Allen, 2013). We use
Akka as a provider of communication services, such as an
implementation of the HTTP-protocol and for structuring
the system according the actor model.

2.2 OMC and CORBA
OpenModelica provides the Advanced Interactive Open-
Modelica Compiler (OMC), a server that provides an API
to query loaded Modelica code (Asghar et al., 2011).

The Common Object Request Broker Architecture
(CORBA) is used by the OpenModelica compiler server
OMC as interface to other applications and other program-
ming languages.
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CORBA developed by the Object Management Group
(OMG) defines a standard for inter-process communication
modeled as interaction of distributed objects. Because
the public API of remote objects is defined in an Interface
Definition Language (IDL), processes may be implemented
in different programming languages (OMG, 2012).

2.3 Atom and the Electron Engine
Atom (GitHub, 2016a) is a text editor created by GitHub
in the style of Sublime Text (Sublime HQ Pty Ltd, 2016).
Basic design concepts of Atom include customization and
extensibility through plugins (called packages in the con-
text of Atom). Extending Atom is possible with JavaScript,
HTML and CSS by using the Electron Engine (GitHub,
2016c). This allows to rapidly develop extensions and to
implement communication protocols using AJAX requests.
Furthermore, Atom already includes a package for syntax
highlighting for Modelica (Chenouard et al., 2016), a sim-
ple API for completion suggestions (GitHub, 2016b) and a
plugin for clicking on text (Facebook, 2016), which is used
to implement go to declaration functionality.

We have created an Atom plugin as first reference im-
plementation of a Mo|E client.

3 Design
3.1 Mo|E – Editor Protocol
Clients are connected to the service process, by means of
Hypertext Transfer Protocol (HTTP)-based communica-
tion and JavaScript Object Notation (JSON) data represen-
tation. HTTP provides status codes, Uniform Resource
Identifiers (URIs) and content negotiation (Fielding and
Reschke, 2014). JSON is a compact text format, based on
the JavaScript Object Notation (Bray, 2014).

The communication flow follows several steps: Firstly,
the client connects to the service process using a connect
request that communicates the current project. In this
context a project is a directory containing Modelica source
files.

Secondly, after initialization the service process answers
with the respective project id. The unique project id identi-
fies the project in the client server communication.

Henceforth, the client uses this project id to request
further IDE functionality for this project from the service
process.

To finally finish a session, the client sends a disconnect
request that triggers the service process to delete all project-
related information and cached data.

The following sections describe each supported IDE
functionality in more detail.

3.1.1 Connecting to the server

As introduced in the preceding section, each client needs
to connect initially with the server. A connect request is
initiated through a POST request containing the respective
JSON object with the project description. The JSON object
contains the full path into the project directory and the

relative path to a directory that is used to store compiled
files:

POST /mope/connect

{
"path": <String>,
"outputDirectory": <String>

}

This project information is stored in the mope-
project.json file that is placed in the project direc-
tory.

If the request was successful, the server answers with
a project id. If not, the server answers with 400
BadRequest and a detailed error message.

3.1.2 Compiling Modelica source files & Modelica
script files

Compiling a Modelica source file is initiated through a
compile request. The request body contains the path to
the currently opened file. As a result of the request a model
is instantiated and type errors are retrieved:

POST /mope/project/0/compile

{ "path": <String> }

If the request was successful, the server answers with a
JSON array containing compiler errors:

{
"type": "Error" | "Warning", //type of

message
"file": <String>, //path to the file

which contains the error
"start": { //start of error

"line": <Number>,
"column": <Number>

},
"end": { //end of error

"line": <Number>,
"column": <Number>

},
"message": <String> //compiler error

}

Compiling a Modelica script file is initiated by sending
an analogous compileScript request:

POST /mope/project/0/compileScript

{ "path": <String> }

Although the request is called “compiling a Script file”,
the service process actually executes the script. This action
is intended for debugging purposes of smaller scripts and
not for scripts that simulate a model, since simulating a
model is time-consuming and may freeze or possibly even
kill the service process.

3.1.3 Checking a model
To check a model for its number of equations the client
sends a checkModel request with the model path. The
server calls the OpenModelica compiler to run check-
Model and answers with a string containing the results:
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POST /mope/project/0/checkModel

{ "path": <String> }

This functionality is only available, if the OpenModelica
compiler is used.

3.1.4 Go to declaration
To retrieve the declaration of a model, the client sends a
declaration request. This request contains the model/-
class name as query string1:

GET /mope/project/0/declaration?class=[
Modelname]

The server answers with a JSON object containing the
file path and line number of the declaration:

{
"path": <String>, //absolute path to the

file
"line": <Number> //line number

}

If the project id is unknown or the query string is missing,
the server will answer with a 404 NotFound error.

3.1.5 Go to documentation
A model documentation can be retrieved using a doc re-
quest with the model name encoded as query string:

GET /mope/project/0/doc?class=[Modelname]

The server embeds the documentation in a template and
returns a HTML document that can be viewed in a web
browser.

If the project id is unknown or the query string is missing,
the server answers with a 404 NotFound error.

3.1.6 Code completion
For code completion the client sends a completion re-
quest with a JSON object that describes the position of the
cursor as file (name of current file), line and column number
(position of the cursor) and word (part of the expression to
be completed):

POST /mope/project/0/completion

{
"file": <String>, //absolute path to the

file
"position": { //position inside the file
"line": <Number>,
"column": <Number>,

},
"word": <String>

}

The server responds by sending an JSON array of possi-
ble completions for the expression:

{
//type of completion; 1 of the listed

strings

1A query string is a component of a URI, that starts with a ? (Berners-
Lee, Fielding, and Masinter, 2005).

"kind": "Type" | "Variable" | "Function"
| "Keyword" | "Package" | "Model" | "
Class" | "Property",

"name": <String>, //the completion
//OPTIONAL: list containing names of

parameters if kind=function
"parameters": [

<String>,
<String>,
...

],
//OPTIONAL: the class comment describing

the name attribute
"classComment": <String>,
//OPTIONAL: the type of name
"type": <String>

}

kind defines the type of the completion (such as package,
class, function, variable, etc.). name is the suggestion for
the subexpression.

The optional return values for parameters, classCom-
ment and type report the list of argument names if the
suggestion is a function, the documentation string if the
the suggestion is a class and the data type of the expression
(usually the data type of a variable), respectively.

If the given project id is unknown, the server answers
with 404 NotFound.

3.1.7 Display data type of a variable
To retrieve data type and documentation string of a variable,
the client sends a typeOf request with a body identical
to the body of the completion request. If the request
was successful, the server answers with a JSON object
containing the name, type, and documentation string of the
variable. Otherwise the server answers with 404 Not-
Found:

POST /mope/project/0/typeOf

{
"name": <String>, //name of property
"type": <String>, //type of property
//OPTIONAL: property comment
"comment": <String>

}

3.1.8 Disconnecting from the server
A session is terminated by a disconnect request, which
initiates the shutdown sequence for this project on the
server:

POST /mope/project/0/disconnect

The server returns 204 NoContent if the project id is
known or 404 NotFound elsewise.

3.1.9 Stopping the server
The client can stop the whole service process by sending
a stopServer request. The server answer is 202 Ac-
cepted.

POST /mope/stop-server
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3.2 Communication with OpenModelica
The modeling and development environment OpenModel-
ica (OSMC, 2016) consists of a Modelica compiler (omc),
a graphical connection editor (OMEdit), an Eclipse plugin
(MDT) and a Modelica debugger (Fritzson et al., 2005). As
described in Chapter 2.2 the compiler enables querying for
model information via its CORBA interface that provides
several types of information:

• list of all models/classes by sending getClass-
Names,

• source file of a model by sending getSourceFile,

• documentation annotation of a model by sending
getDocumentationAnnotation,

• result of a model check for equations by sending
checkModel,

• documentation string of a model by sending get-
ClassComment,

• arguments of a function by sending getParame-
terNames,

• specialization of a class by sending getClassRe-
striction.

An additional difficulty arises from the fact that Open-
Modelica uses Modelica expressions as arguments for its
CORBA interface. As a result, the functions listed above
are not implemented explicitely in the CORBA interface.
Instead, OpenModelica only provides a single method in its
CORBA interface, namely sendExpression and sends
Modelica source code strings and API function calls as ar-
guments. Therefore, we create the function calls as strings
and interpolate them into the function argument, as shown
in Listing 1.

Listing 1. API function call through OpenModelica’s CORBA
interface.

val omc:OmcCommunication = ...
val fileName = "/tmp/model.mo"
val errors:String =omc.sendExpression(s"""

parseFile("$fileName")""")

3.3 Communication with JModelica
JModelica (Modelon AB, 2016) is a Modelica compiler
developed by Modelon AB (Åkesson et al., 2010). To allow
dynamic adjustments during execution, JModelica offers a
Python interface which enables code modification at run
time. In addition it enables compilation of Modelica code.
We are using this Python interface for compilation of the
models by delivering the Modelica source files to a custom
Python script, which calls the JModelica compiler, parses
JModelica’s output and encodes the output into JSON. The
resulting JSON is printed to stdout which is afterwards
parsed by the service process and finally decoded as Scala

Command Description
Mope: Disconnect Disconnect Atom from

the service process

Mope: Compile Project Compile the project

Mope: Run Script Execute the Modelica
script

Mope: Check Model Check the model for its
number of equations

Mope: Show Type Display the data type of
the variable below the
cursor

Mope: Open Documentation Open the documentation
of the type below the
cursor

Mope: Open Server Log Open the log file of the
service process

Mope: Open Server Config Open the configuration
file of the service process

Mope: Stop Server Stop the server

Table 1. List of commands implemented in the Atom plugin.

objects. The communication scheme is depicted in Fig-
ure 2.

Unfortunately JModelica does not offer access to the
parsed model or its abstract syntax tree. That is the reason
why code completion is restricted to local variables and
go to documentation is not yet supported in the presented
Mo|E Atom plugin.

Figure 2. Diagram of the communication between a text editor
(client) and JModelica.

4 Features
4.1 Client commands
Table 1 gives a full list of the commands available in the
Atom plugin.

4.2 Compiler Feedback
Modelica | Editor (Mo|E) provides instant compiler feed-
back for syntax errors and type errors. Background compi-
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lation is automatically triggered when a file is saved and the
errors are highlighted in the editor with a red indicator at
the left side of the editor tab. Error messages are displayed
at the bottom of the tab (Figure 3). Alternatively automatic
compilation can be disabled and triggered manually.

As Mo|E supports JModelica and OpenModelica it is
possible to use either JModelica or OpenModelica or both
compilers for one project.

Figure 3. Compile errors are retrieved form the back-end (Open-
Modelica or JModelica) by the Mo|E server and highlighted in
the source code by the editor plugin.

4.3 Code Completion

Modelica | Editor (Mo|E) features enhanced code com-
pletion on keystrokes or by pressing Ctrl + Space.
Suggestions include classes, models, functions, model pa-
rameters and variables, keywords, built-in types as well as
local variables. The suggestions contain a type indicator,
documentation string and a link to the model’s documenta-
tion (Figure 4). The type indicator displays the type of the
suggestion (package, model, function or variable).

Figure 4. Code completion allows for selecting classes, mod-
els, functions, model parameters, variables, keywords or built-in
types from a list of suggestions retrieved by the Mo|E server.

4.4 Go to Declaration

Mo|E provides go to declaration by clicking on the mod-
el/class name while holding down Ctrl. The source file
of the model/class is opened in a separate tab. Go to decla-
ration is mostly used for discovering source code or when
editing multiple models that are linked to each other.

4.5 Documentation View

Mo|E embeds the queried documentation of a model in
a predefined template and provides the documentation as
HTML document. The implementation in the Atom plugin
opens the requested documentation in the default browser.
Furthermore it is possible to browse the model’s child
components using the links in the subcomponents section
of the documentation (Figure 5).

Figure 5. Example of a documentation display generated as
HTML page by Mo|E by embedding the retrieved documentation
string with a template page.

4.6 Type & Documentation String Display

Mo|E provides a command for displaying the type and
documentation string of the variable at the cursor position.
Type and documentation are displayed at the bottom of the
editor tab (Figure 6).
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Figure 6. Data type and documentation string are displayed in
the editor window by the Atom plugin.

4.7 Execution of Modelica Scripts

If the OpenModelica compiler is used, Mo|E allows manu-
ally triggered execution of Modelica scripts and displays
error messages in the editor.

Figure 7. Compile errors of Modelica scripts are displayed in
the editor window by the Atom plugin.

4.8 Model Check

Mo|E supports checking of a model for the number of
equations (Figure 8), if the OpenModelica compiler is used.

Figure 8. Result of a model check, performed by the OpenMod-
elica back-end, is displayed as pop-up in the editor window by
the Atom plugin.

5 Conclusions
This paper presented a extendable client/server applica-
tion for developing Modelica in enhanced text editors like
Atom. It shows how a service process is used to sim-
plify communication with multiple Modelica Compilers
and provide IDE features to various text editors through
a simple interface. Text editors have to implement a
small number of basic HTTP calls, which should be a
minimal effort. A minimal setup with compilation and
code completion would only require four HTTP calls. In-
stallation instructions for Mo|E can be found at https:
//github.com/THM-MoTE/mope-server.

Mo|E is a base for further extensions. E.g. we intend to
implement plugins for different editors, such as Sublime
Text (Sublime HQ Pty Ltd, 2016), Visual Studio Code
(Microsoft Corporation, 2016) or vim (Moolenaar, 2016).
Including Visual Studio Code should not be a problem
because it uses TypeScript for its plugins, which is a super-
set of Atom’s JavaScript.

Mo|E is part of a larger ensemble of tools called MoTE
(Schölzel et al., 2016). MoTE will also include a vec-
tor graphic editor called Modelica Vector Graphics Edi-
tor (MoVE) (Justus et al., 2017) and a diagram editor called
Modelica Diagram Editor (MoDE) (Hoppe et al., n.d.). To-
gether with Mo|E these tools provide alternative user inter-
faces for the interaction with existing Modelica compilers,
which allow a simpler interaction than full-fledged IDEs
like OpenModelica.

The projects are open source and hosted on GitHub:
https://github.com/thm-mote/
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MoVE – A Standalone Modelica Vector Graphics Editor
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Abstract
Modelica models can have a graphical icon defined as a
bitmap or vector graphics. Vector graphics have several
benefits, the most obvious being free scaling of images
from icon to poster size. With OpenModelica there already
exists one open source tool that can be used for editing
these vector graphics icon annotations, but it does not reach
the usability comfort of professional vector graphics editing
tools.

In this paper we present the Modelica Vector graph-
ics Editor (MoVE), a standalone open source editor for
Modelica’s vector graphics syntax that provides many con-
venience features inspired by the vector graphics editor
Inkscape. These features include grouping, snap to grid,
move to foreground/background, rotation handles, and
drawing perfect circles and squares as well as horizontal
and vertical lines when holding Shift.

We hope that MoVE, as a part of the Modelica Tool
Ensemble (MoTE), can enrich the open source ecosystem
of Modelica by simplifying the creation of more elaborate
vector graphics icons for Modelica models.
Keywords: JavaFX, vector graphics, open source, SVG,
Inkscape, MVC, MoTE, OpenModelica

1 Introduction
Modelica is a language for modeling complex physical
systems that also incorporates a graphical representation of
model components into the language itself. These graphical
representations come in the form of annotation statements
that can either contain a link to a bitmap image or define
an image using a vector graphics syntax (Modelica Assoc.,
2012). Vector graphics have the advantage that they are
freely scalable. This is interesting in any context where
a model might not only be displayed as a small icon on a
screen but also has to be presented to a larger audience on
a slide or a poster.

Unfortunately, creating vector graphic icons for Model-
ica models is not as easy as it could be. Standard vector
graphics tools such as Inkscape (Inkscape, 2016) provide a
rich set of features for precise and fast interaction, such as
grouping, rotation handles, sending elements to the front
or back, snap to grid, or drawing straight horizontal lines
and perfect circles when holding a modifier key. It would
be ideal, if we could use such a tool and save the resulting
image in Modelica notation. However, the Modelica an-
noations are not compatible with vector graphics formats

such as Scalable Vector Graphics (SVG) (Dahlström et al.,
2011), since there are both features in SVG that have no
equivalent in the Modelica syntax and vice versa.

There are many commercial tools for Modelica but
OpenModelica is the only open source choice for graphical
editing of Modelica models (Fritzson et al., 2005). This
graphical editor of OpenModelica is called OpenModelica
Connection Editor (OMEdit) (Asghar et al., 2011). It has
all features that are required to create vector graphic an-
notations, but does not provide the same level of user-
friendliness as Inkscape or related tools. For example,
non-standard rotation angles, fill patterns and line patterns
can only be changed via a properties dialog that has to
be opened separately for each component; the order of
Elements cannot be changed (although respective entries
exist in the context menu); drawing of straight horizontal
lines and perfect circles is not supported; and when we
began this project, OpenModelica did not even support
undo-redo operations for graphical manipulations. Further-
more OMEdit generates the icon annotation as one big line
of code. This is especially uncomfortable when the source
code is managed through a version control system.

In this Paper we therefore present the Modelica Vector
graphics Editor (MoVE), a new standalone open source
Modelica vector graphic editor with a streamlined interface
similar to Inkscape. In the following, we will first give a
bit more detail of the context in which MoVE was created.
In section two, we will then present an overview of the
technologies used to create the editor followed by a discus-
sion of the major design aspects in section three. Section
three presents the major features of MoVE and section four
explains current limitations leading to the conclusion in
section six.

1.1 Background and Related Work
Modelica Tool Ensemble

MoVE is part of the Modelica Tool Ensemble (MoTE) (Jus-
tus, Hoppe, and Schölzel, 2017). MoTE aims to provide
small user-friendly standalone appliations for editing and
simulating Modelica models. With this toolset we follow
the Unix philosophy to “make each program do one thing
well” (McIlroy, Pinson, and Tague, 1978). Separating the
different tasks needed for editing and simulating Model-
ica models leads to smaller applications that are easier to
maintain than a full-featured development environment like
OpenModelica. Additionally, users may choose to use the
tools that they like and substitute the tools they do not like
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with other alternatives, leading to a more flexible ecosystem
that can accommodate different user needs. MoVE only
touches the main annotation statement of a model. To edit
other parts of the model, one can, for example, use the text
editor Atom (GitHub, 2016) which can provide type check-
ing, auto-completion and error highlighting when coupled
with Modelica | Editor (Mo|E), another tool in the MoTE
family. Instead one could also chose to use OMEdit or
the Eclipse plugin Modelica Development Tooling (MDT)
(Pop et al., 2006).

Inkscape

The main source of inspiration for MoVE was the afore-
mentioned vector graphics editor Inkscape (Inkscape,
2016). Inkscape is an open source application that can be
used to create professional and complicated vector graphic
images. It supports a rich set of features including align-
ment of elements or individual nodes, combination and
cutting of multiple paths, drawing with Bezier curves,
bold and italic text, importing shapes from a PDF-file, and
many many more. Features that are not already included
can be made available with a language-independent script-
ing API. These features are presented to the user mainly
through toolbars and hotkeys that make the interaction
fast and seamless. The native format of Inkscape is SVG
(Dahlström et al., 2011), which is an XML-based format
that can easily be interpreted by other tools.

MoVE does not nearly provide as many features as
Inkscape, but it tries to follow the same principles for us-
ability and precision.

2 Technologies
This chapter is a short overview over the technologies that
are used for implementing MoVE. Basically MoVE is writ-
ten in the programming language Scala using the graphical
user interface toolkit JavaFX.

2.1 Scala
Scala is a programming language for the Java Virtual Ma-
chine (JVM). This means that it is platform-independent
and that it is possible to use any Java library. Especially the
library JavaFX is useful for creating a modern Graphical
User Interfaces (GUIs). Scala merges object orientation
with functional programming, which allows to write code
faster and more flexible than in plain Java. It also brings
its own set of libraries such as a parser combinator library
(EPFL and Typesafe, Inc., 2016) that proved very useful
for this project.

2.2 JavaFX
JavaFX is a GUI toolkit for the Java programming lan-
guage. Because it is written for Java it runs on the JVM
and is also usable from Scala. JavaFX is the latest toolkit
for GUIs running on the JVM and incorporates many ideas
of modern GUI design. JavaFX provides a special format
for describing the structure of a UI. This format is called
FXML and based on XML. To develop GUIs using the

FXML format, Oracle provides a graphical editor for build-
ing the user interface by dragging and dropping interface
components, namely the SceneBuilder. This makes GUI
design much faster and leads to a clean separation of the
layout and the actual code.

3 Design
3.1 Parser
To load existing Modelica models we have created a simple
parser for Modelica source code. This parser is built using
the scala-parser-combinators library (EPFL and Typesafe,
Inc., 2016). This library allows combination of simple
parsers to create more complex ones. An external parser
generator is not necessary. MoVE ignores everything in
the source file, except the icon annotations of all models
defined in the file. This makes the parser (and MoVE)
mostly independent of future language modifications, thus
MoVE should work with future versions of Modelica. If the
icon annotations are modified, the parser has to be modified.
This should be a small effort. Additionally this assures that
MoVE interacts nicely with version control systems. Since
we only parse annotations, we can guarantee that we will
not change any other part of the model.

During the parsing process, the parser generates a
MoVE-specific abstract syntax tree. This tree is then trans-
formed into shapes, that are derived from the standard
JavaFX shapes. Finally this shapes are displayed in the
user interface.

3.2 Model–View–Controller
JavaFX is built around the Model-View-Controller (MVC)
software design pattern (Reenskaug, 1979). MVC splits
the application in three parts. The first part is the model1,
which represents the business data. The model updates the
view if someone changes the model. The second part is
the view, which displays the data and listens on updates to
the model. The third part is the controller, which connects
a model with the respective view. The controller is also
responsible for user interactions and transforms them into
commands for the model or the view. The typical MVC
workflow is depicted in Figure 1.

Because JavaFX already provides views, which contain
the data representation for shapes, MoVE is designed with
controllers and views. There are no explicit models. They
are hidden inside of the JavaFX shapes.

3.3 JavaFX Elements
To display Modelica’s graphical primitives (Modelica As-
soc., 2012), we have created a small set of JavaFX elements.
These elements are all derived from the standard JavaFX
shape elements and add additional properties and behav-
ior such as fill and stroke patterns. The JavaFX shapes

1Here, in section 3.2, the word ”model“ refers to source code of a
software project that is structured with the MVC-Pattern and not to a
Modelica model.
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Figure 1. The Model-View-Controller (MVC) software design
pattern splits an application into three parts in order to increase
maintainability and extensibility (Frey, 2016).

provides the basic properties for rectangles, ellipses, lines,
paths, polygons, and images.

Furthermore, for abstracting the common behavior of
the shapes, they are all derived from a specific trait, which
provides the common behavior. For example, all shapes
that behave like a rectangle are derived from the trait Rect-
angleLike. A similar trait is defined for shapes that behave
like a path.

3.4 UI Overview

Figure 2. The user interface of MoVE is built with the JavaFX-
framework and consists of three main toolbars: tool selection
(left), tool properties (top) and zoom and size indicator (bottom).

The user interface contains 3 toolbars for interacting
with MoVE (Figure 2).

The top toolbar contains controls for specifying the color
of selected or newly drawn shapes. Going left to right this
toolbar starts with a selector for the stroke size, followed

by the color pickers for the fill color and stroke color. The
color pickers are followed by a selector for the LinePattern
and FillPattern. For these last two elements, all patterns
defined in chapter 18.6 from (Modelica Assoc., 2012) can
be selected.

The left toolbar contains the tools for selecting and mov-
ing as well as drawing the icon primitives. Going top to
bottom it starts with the arrow, which is used for selecting
and moving shapes. The arrow is followed by the tools for
drawing lines, paths, rectangles, polygons and ellipses, and
for inserting images, and text.

The bottom toolbar currently only contains two items:
an indicator for the size of the draw pane and buttons for
controlling the zoom. The magnifying glass with the minus
zooms out and the magnifying glass with the plus zooms
in.

4 Features
4.1 Code Generation
MoVE provides two code generators for the icon annota-
tion. The first generates the annotation as one big line and
writes it into the model. This is similar to OMEdit. The
second code generator generates pretty-printed code with
line breaks and indentations, which is more readable than
a big line (Listing 1). This style is also better supported
by version control systems as they can recognize which
lines or properties have changed instead of reporting only
a change of the whole annotation.

Listing 1. MoVE generates a well formatted icon annotation
with line breaks and indentation.

model Test
annotation(
Icon (

coordinateSystem(
extent = {{0,0},{200,125}}

),
graphics = {

Rectangle(
origin = {34,96},
lineColor = {0,0,0},
fillColor = {128,186,36},
lineThickness = 4.0,
pattern = LinePattern.Solid,
fillPattern = FillPattern.Solid,
extent = {{-14,8}, {14,-8}}

),
Ellipse(

origin = {75,91},
lineColor = {0,0,0},
fillColor = {128,186,36},
lineThickness = 4.0,
pattern = LinePattern.Solid,
fillPattern = FillPattern.Solid,
extent = {{-13,10}, {13,-10}},
endAngle = 360

)
})

);
end Test;
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4.2 Grouping
MoVE supports grouping of multiple shapes through Edit
→ Group or by pressing Ctrl+G. Moving a shape which
is part of a group moves all shapes that are part of this
group (Figure 3). Ungrouping is also supported through
Edit → Ungroup or by pressing Ctrl+Shift+G. Note that
the groups are only used in MoVE and are discarded when
the model is saved, because this is not supported by the
icon annotation syntax of Modelica.

Figure 3. MoVE allows to group shapes together in the user
interface, so that they can be easily moved together. These groups
are lost when the annotation is saved.

4.3 Stacked Shapes
MoVE allows to move shapes into the background using
ContextMenu → In Background and to move shapes into
the foreground using ContextMenu → In Foreground (Fig-
ure 4). This allows easy modifying of the order of stacked
shapes.

Furthermore, MoVE also handles shapes with the fill
pattern FillPattern.None in an intuitive way. Shapes that
are behind the transparent filling can still be selected. The
transparent shape itself is only selected when the user clicks
on the visible border.

4.4 Export as Images
MoVE enables exporting of Modelica icons either as PNG
or as SVG (Figure 5). SVG is especially interesting because
SVG images can be further modified in Inkscape. This is
useful if the user likes to create a poster which contains a
graphic from a Modelica model.

4.5 Rotation
After a double click on a shape, four red anchors appear at
the corners of the shape (Figure 6). Moving the anchors
rotates the shape around its center. This is more intuitive
than rotating a shape by defining a specific degree value
through a separate property dialog.

Figure 4. The context menu for a shape contains controls for
rotation and stacking order.

Figure 5. SVG image exported from MoVE displayed in Google
Chrome.

Additionally to rotation by moving the anchors, it is
possible to rotate an element using the context menu:

• ContextMenu → Rotate 90° clockwise

• ContextMenu → Rotate 90° counter clockwise

• ContextMenu → Rotate 45° clockwise

• ContextMenu → Rotate 45° counter clockwise

4.6 Snap to Grid
MoVE operates on a customizable grid. The size of the grid
can be modified to fit the needs of the user. Via the menu
entry View → Enable snapping or by pressing Ctrl+A the
snap to grid function can be toggled. If activated, elements
will snap to the precise location of the grid lines when they
are moved close to such a line. This allows for a precise
alignment of individual elements.
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Figure 6. Arbitrary rotations can be realized in MoVE by rota-
tion handles (red dots).

4.7 Config Files
MoVE uses simple text files as configuration files that
are placed inside of ~/.move. Application settings are
placed in the file ~/.move/move.conf and keyboard
shortcuts are read from ~/.move/shortcuts.conf.
Both files can be customized with any text editor.

4.8 Additional features
When holding down Shift while drawing a shape, it is pos-
sible to create straight horizontal or vertical lines, perfect
squares, and perfect circles (Figure 7).

Figure 7. When holding Shift, MoVE will create perfect squares
and circles and straight horizontal or vertical lines.

MoVE supports undo and redo using Edit → Undo / Edit
→ Redo or through the shortcuts Ctrl+Z and Ctrl+Shift+Z.
It is also possible to copy, paste and duplicate selected
shapes. Holding down Shift and selecting a shape selects
multiple shapes.

5 Limitations
5.1 Annotations
MoVE supports every icon annotation except properties
which are defined using a if-clause or a DynamicS-
elect statement, because the result of both statements is
a dynamic value, which is only defined at runtime. These
dynamic definitions do not fit into the scope of an editor
for static vector graphic images. If MoVE finds properties,
which are defined using this two statements, it warns the
user that this properties will be overwritten by a static value
after a save call (see Figure 8).

Figure 8. A Warning is displayed when opening a Model whose
icon annotation contains DynamicSelect and if-clause
elements in MoVE.

5.2 Line Scaling
The Modelica language specification does not define the
meaning of the thickness property of a line (Modelica
Assoc., 2012). The most intuitive definition would be to
assume that the thickness of a line is given in units of the
coordinate system of the icon. Both Dymola and OMEdit,
however, define the line thickness in terms of the coordinate
system of the users screen, so that lines scale automatically
when zoomed. At the moment, MoVE does not follow this
behavior, because it is unintuitive and cannot be reproduced
when the image is exported to SVG or Portable Network
Graphics (PNG).

5.3 Placing Connectors
MoVE currently does not support placing connectors in the
icon, because this would require parsing and altering con-
nector definitions in the model. Loading and saving models
with MoVE does not affect existing connector placements.
MoVE is only a graphical editor for the main annotation
statement of Modelica models and leaves the rest of the
code untouched. Connector placement would add another
layer of complexity to the tool that goes beyond its intended
scope.
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We are currently working on another tool in the MoTE
family named Modelica Diagram Editor (MoDE), which
will be used for the graphical composition of Modelica
models and could also be used handle the connector place-
ment (Hoppe, 2016).

5.4 Inherited Annotations
Modelica allows inheritance of icon annotations. The in-
herited annotations are currently not displayed in MoVE.
This feature was postponed to future versions, because it
would require parsing of several files and inspection of
inheritance hierarchies.

6 Conclusions
In this paper we presented a new graphical editor for Mod-
elica icon annotations. In contrast to other open source
alternatives, the user interface of MoVE is specifically de-
signed to make editing and creating vector graphic icons
for Modelica models as easy and fast as creating a vector
graphic image with tools such as Inkscape. MoVE builds
on the modern platform-independent framework JavaFX.
It has many convenience features such as grouping, snap
to grid, move to foreground/background, rotation handles,
and drawing perfect circles and squares as well as horizon-
tal and vertical lines when holding Shift. It is also designed
to work well with version control systems so that changes
to individual elements can be captured. Except for dynamic
elements, it supports every part of the icon definition in the
Modelica language specification.

There are many possibilities for future improvement
which can be drawn from the feature set of Inkscape such
as component and node alignment or the combination and
cutting of multiple paths. Ideally, these features could be
brought to MoVE by a (partial) import of SVG graphics.
This would allow to create icons in Inkscape and convert
them into Modelica code so that they are used directly in
Modelica models. For this, one would need to define a
subset of SVG that is translatable to Modelica and some-
how restrict the user in Inkscape to only use this subset.
Futhermore, if MoVE should be able to place and display
connectors of the model, the parser needs to be extended
and additional parts of the model have to be altered.

We hope that this tool can enrich the open source ecosys-
tem of Modelica and will enable more elaborate vector
graphic icons for Modelica libraries. MoVE is part of a
larger ensemble of tools called MoTE, which also features
an integration of Modelica compiler features into a struc-
tured text editor.

The projects are open source and hosted on GitHub:
https://github.com/thm-mote/
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1 Supplementary Note: Accuracy of the modular model with
respect to original

1.1 Result: The modular model behaves similar to the original version
Although the modular version of the conduction model presented in Section 2.3 covers the same
physiological effects as the original version, the implementation differs not only in structure but
also in the mathematical representation. The original model used the elapsed time since the last
contraction as a reference for the refractory period and the pacemaker effect of the atrioventricular
node (AV node) instead of the elapsed time since the last sinus signal was received. This means that
the duration of the refractory period needs to be adjusted. In the old model, the performed check
was whether t− (tsinus +Tdelay) < Trefrac where t is the current time stamp, tsinus is the time stamp
of the last sinus signal, Tdelay is the duration of the delay and Trefrac is the refractory period. Since
the check is now whether t − tsinus < T ′

refrac one can deduce that if the same behavior is desired,
T ′

refrac should equal Trefrac + Tdelay, that is Trefrac must be increased by the average delay duration.
The pacemaker component does not have to be changed at all, because, although the pacemaker
signal is delayed, the pacemaker clock is also started earlier. Effectively the delay duration is added
and then subtracted from the resulting time stamp of the next contraction.

Supplementary Figure 2 shows a comparison of the resulting interbeat intervals (i.e. the time
passed between two contractions) for both models with input of varying frequency. For the most
part both versions behave identically. Only when the sinus cycle length drops below the refractory
period one can see a difference in the plots. In these areas the interbeat intervals of the modular
model fluctuate with a higher amplitude and lower frequency compared to the original Seidel-Herzel
model (SHM).

1.2 Discussion
The simulation of the modular model shows a similar but not identical behavior with respect to
the original version. Increased amplitude and lower frequency of fluctuations during very fast sinus
rhythms are explained by the use of the average delay duration to adjust the refractory period of
the AV node in the modular model. In the original model the delay duration Tdelay varies over time.
As shown in Section 1.1, this variable also plays a role in the check for the refractory period, making
the effective duration of the refractory period itself time-dependent. It is not clear if this behavior
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is intentional in the SHM or if it is a side effect of other design choices. If this behavior is desired,
it can be emulated in the modular version by making the variable d_refrac in the component
RefractoryGate time dependent much like the duration in ConductionDelay. Physiologically the
refractory period indeed changes when the sinus frequency is increased, but the effect is a decrease
instead of an increase as in the monolithic model [1]. It can therefore be said that the modular
design both helps to identify plausibility issues and can be more easily adapted to the biological
reality.

2 Supplementary Note: Extension of the cardiac conduction
system with a trigger for PVC

2.1 Result: The new model structure facilitates the extension with a
trigger for premature ventricular contractions

To show that the modular structure and the use of a Modular, Descriptive, human-Readable, Open,
Graphical, and Hybrid (MoDROGH) language facilitate reuse and extension we added a trigger for
premature ventricular contractions (PVCs) to the model. When we tried to do add this extension
to the monolithic model, we struggled to identify which equations would have to change and where
exactly the effect of a PVC should be incorporated. In the modular model, it is now possible to
separately address the effect of a PVC on each individual component.

PVCs arise if some part of the ventricular tissue generates a signal without stimulation from the
AV node. This can happen in a healthy individual, but the heart rate response to such an ectopic
beat can be used as a risk indicator during pathological conditions [2].

An ectopic beat in the ventricles leads to a stimulation of the AV node that travels back upwards
to the sinoatrial node (SA node) either cancelling out an oncoming downward signal or (in rare
cases) resetting the clock of the SA node. Therefore, the correct way to model a PVC would be to
include components that are bidirectional.

To keep it simple, the unidirectional components are used and it is assumed that a PVC will
always reset the pacemaker and refractory time of the AV node but never reach the SA node. We
modeled this by extending the components RefractoryGate and ConductionDelay with a “reset”
input similar to the one that already exists for the Pacemaker component.

With these changes, there could still be two beats arbitrarily close to each other when a PVC
is triggered right after a normal beat. Therefore, we also modeled the refractory behavior of the
ventricles themselves. The only change needed for this was the addition of a second instance of
the already existing RefractoryGate component that receives input from the PVC trigger and
the delay component (combined with a logical OR). The output of this additional component was
used to ensure that the reset of the AV node would only happen if the PVC actually did trigger a
contraction. This was achieved by an additional logical AND gate with input from the PVC signal
and the contraction output. A graphical representation of the resulting model can be seen in Figure
2 in the main article.

2.2 Result: The PVC extension shows plausible results
The behavior of the resulting model is shown in Supplementary Figure 3. For a normal sinus
rhythm of 75 bpm the model behaves as expected. When a PVC happens while a beat is delayed,
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it replaces the normal beat, leading to one interbeat interval that is shorter than normal followed
by one interval that is larger than normal by the same magnitude. The same behavior can be
observed for a PVC happening directly before a sinus signal is issued. A PVC that follows a normal
beat within the ventricular refractory period is completely ignored and a PVC right between two
normal beats leads to two interbeat intervals that are shorter than normal since all three beats (two
normal, one ectopic) lead to a contraction.

To test the behavior of the AV node in the presence of ectopic beats, the experiment was repeated
without any sinus signal. Here, the behavior is the same for PVCs while an AV signal is delayed,
during the ventricular refractory period and directly before an AV signal. A PVC right between
two normal beats does not result in two reduced interbeat intervals but in one reduced and one
increased interval. This is due to the reset of the pacemaker clock that will issue the next signal
after the pacemaker period has passed. This signal has to travel through the delay component,
which increases the interval duration.

2.3 Discussion
The PVC model also behaves as expected. In the simulation with a sinus frequency of 75 bpm, the
stimulations very close to a sinus signal effectively replace that signal, leading to a short coupling
interval and a long compensatory pause. Stimulations during the refractory period are correctly
ignored and a stimulation between two sinus signals is just treated as an additional contraction
leading to a series of two subsequent interbeat intervals that are shorter than the sinus cycle length.
The third interbeat interval is also a little shorter than normal, because, although the cycle length
has not changed, the sinus signal immediately after the PVC has an increased delay duration shifting
it closer to its successor. In the simulation without a sinus signal, the only qualitative difference
can be observed in the case of an additional signal in between two AV node signals. The first
interbeat interval is reduced, but the second interval is actually increased. Physiologically this can
be explained by the signal of the PVC traveling upwards stimulating the AV node in the same way
a signal from the sinus node would do. The next contraction can therefore only happen after the
normal AV cycle length and the delay duration has passed.

2.4 Methods: PVC model code
For the PVC model, we will now only discuss the changes required for the existing components.
The full code can be found in Supplementary Listing 1–27.

In the RefractoryGate, the condition when outp simply has to be replaced with when outp
or reset. For ConductionDelay the process is a little more complicated since oncoming signals
have to be canceled. This is achieved by temporarily setting t_next to a very large value (larger
than the total simulation time). The equations section changes as follows:

delay_passed = time > t_next or t_next > 1e99;
outp = edge(delay_passed);
when pre(reset) or (inp and pre(delay_passed)) then

d_outp_inp = time - pre(t_last);
end when;
when pre(reset) then

t_next = 1e100;
elsewhen inp and pre(delay_passed) then

t_next = time + d_delay;
end when;
when outp or reset then

t_last = time;
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end when;

The resulting extended model ModularConductionX looks as follows:
model ModularConductionX

extends UnidirectionalConductionComponent(outp.fixed=true);
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGateX refrac_av(T_refrac=0.364)

"refractory component for AV node" annotation(...);
Pacemaker pace_av(T=1.7)

"pacemaker effect of AV node" annotation(...);
AVConductionDelayX delay_sa_v

"delay between SA node and ventricles" annotation(...);
RefractoryGate refrac_v(T_refrac=0.2)

"refractory component for ventricles" annotation(...);
InstantInput pvc(fixed=true)

"trigger signal for a PVC" annotation(...);
discrete SI.Period d_interbeat(start=1, fixed=true)

"duration of last heart cycle";
discrete SI.Time cont_last(start=0, fixed=true)

"time of last contraction";f
Modelica.Blocks.Logical.Or vcont

"groups inputs for refrac_v" annotation(...);
Modelica.Blocks.Logical.Or rpace

"groups reset signals of pace_av" annotation(...);
Modelica.Blocks.Logical.And pvc_upward

"true if we have PVC that travels upward" annotation(...);
equation

connect(inp, pace_av.inp) annotation(...);
connect(pace_av.outp, refrac_av.inp) annotation(...);
connect(refrac_av.outp, delay_sa_v.inp) annotation(...);
connect(delay_sa_v.outp, vcont.u1) annotation(...);
connect(refrac_av.outp, rpace.u2) annotation(...);
connect(vcont.y, refrac_v.inp) annotation(...);
connect(refrac_v.outp, outp) annotation(...);
connect(outp, pvc_upward.u1) annotation(...);
connect(pvc, pvc_upward.u2) annotation(...);
connect(pvc_upward.y, refrac_av.reset) annotation(...);
connect(pvc_upward.y, delay_sa_v.reset) annotation(...);
connect(pvc_upward.y, rpace.u1) annotation(...);
connect(rpace.y, pace_av.reset) annotation(...);
connect(pvc, vcont.u2) annotation(...);
when outp then

d_interbeat = time - pre(cont_last);
cont_last = time;

end when;
end ModularConductionX;

2.5 Methods: PVC experiment setup
The simulation experiment for the PVC model is also defined as a Modelica class. Here the variable
d_interbeat was plotted once with with_sinus = true and once with with_sinus = false:

model PVCExample
import SI = Modelica.SIunits;

discrete SI.Time sig_last(start=0, fixed=true)
"time where last SA/AV signal was received";

Integer count_sig(start=0, fixed=true) "counts SA/AV signals";
parameter Boolean with_sinus = true

"if true, a sinus signal is applied, otherwise only the AV node is active";
parameter SI.Period normal_interval = if with_sinus

then 0.8 else con.pace_av.period "normal cycle duration without PVC";
SI.Duration t_since_sig = time - pre(sig_last)

"time since last signal from SA/AV node";
Boolean pvc_a = pre(count_sig)==5 and t_since_sig > con.delay_sa_v.d_avc0/2
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"timer for PVC a): while 6th beat is delayed";
Boolean pvc_b = pre(count_sig)==12 and t_since_sig > con.refrac_av.d_refrac/2

"timer for PVC b): after 12th beat within refractory period";
Boolean pvc_c = pre(count_sig)==19 and t_since_sig > normal_interval / 2

"timer for PVC c): between 19th and 20th beat (after refractory period)";
Boolean pvc_d = pre(count_sig)==26 and

t_since_sig > normal_interval - con.delay_sa_v.d_avc0 / 2
"timer for PVC d): just before the 27th beat was signalled";

Boolean trigger(start=false, fixed=true) = pvc_a or pvc_b or pvc_c or pvc_d
"pvc trigger signal";

equation
con.pvc = edge(trigger);
if with_sinus then

con.inp = sample(0, normal_interval) "undisturbed normal sinus rhythm";
else

con.inp = false "no sinus, only AV node";
end if;
when con.refrac_av.outp then

count_sig = pre(count_sig) + 1;
sig_last = time;

end when;
annotation(

experiment(
StartTime = 0, StopTime = 55,
Tolerance = 1e-6, Interval = 0.002

),
__OpenModelica_simulationFlags(lv = "LOG_STATS", s = "dassl")

);
end PVCExample;
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Supplementary Figures

c

c

AVN VS

Supplementary Figure 1: Diagram of the monolithic model of the cardiac conduction system in the
SHM. Sinus signals (S) are only propagated if enough time has passed since the last ventricular
contraction (V). Propagated signals are delayed by a duration that also depends on the amount of
time that has passed since the last ventricular contraction. The delay does result in a signal but in
a scheduled time stamp that indicates the next time when a ventricular contraction could happen.
This time stamp is compared to the time stamp produced by the pacemaker effect (a constant
offset added to the time of the last ventricular contraction). The smaller time stamp wins the race
condition (running stick figures symbol) and will trigger the next contraction while the larger time
stamp is ignored.
This diagram illustrates why we had to change the model structure for our modular version. If
we translated the monolithic version one-to-one into modules, we would have ended up with this
quite convoluted diagram that does not separate the individual physiological effects very well. This
would have had negative effects on the explanatory power and physiological soundness of the result.
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Supplementary Figure 2: Comparison of the interbeat intervals of the original conduction model
(orange) and the modular version (blue). The plot was obtained with an artificial sinus signal that
switches its cycle duration every ten seconds according to the following schedule: 1 s, 3 s, 0.05 s, 0.8
s, 0.2 s, 1.8 s. This schedule was chosen to cover a large range with different cycle durations that
are a) below the refractory period of the AV node (0.2 s, 0.05 s), b) above the refractory period,
but below the pacemaker period of the AV node (0.8 s, 1 s), or c) above the pacemaker period (3
s, 1.8 s). The schedule is not in any particular order so that both reactions to a sudden increase
and a sudden decrease in sinus frequency can be observed. Only the cycle durations of 0.05 s and
0.2 s produce qualitative differences. This plot was generated with shm-conduction version v1.1.1
[3] using OpenModelica v1.17.0-dev.344+gc8233fa62a.
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Supplementary Figure 3: Interbeat intervals of the modular model with PVCs with a) a normal
sinus rhythm of 75 bpm and b) without sinus signal. Part c) shows the location of the ectopic beats
in the normal cycle duration. PVCs are triggered with different prematurity: Pa while a signal
is delayed, Pb within the ventricular refractory period, Pc just between two beats, Pd just before
a beat would be triggered by the SA or AV node. This plot was generated with shm-conduction
version v1.1.1 [3] using OpenModelica v1.17.0-dev.344+gc8233fa62a.
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3 Supplementary Tables

Python Julia

M
AT

LA
B

1

SB
M

L

C
el

lM
L

py
SB

Py
SC

eS

Si
m

uP
y

Py
D

ST
oo

l

A
nt

im
on

y

M
od

el
ic

a

M
od

ia

D
iff

Eq
.jl

modular 3 (3) 3 (3) 5 (3) 5 3 3 3 5
instantiation / import 3 3 3 (3) 5 3 5 3 3 3 5
object orientation 3 5 5 5 5 5 5 5 3 3 5
multiple inheritance (3) 5 5 5 5 5 5 5 3 3 5
interface definition 3 (3) 3 (3) 5 3 5 3 3 3 5
grouping of interface variables 3 (3) 5 5 5 5 5 5 3 3 5
overwrite variables on import 5 (3) 5 5 5 5 5 3 3 3 5
overwrite equations on import 5 (3) 5 5 5 5 5 3 (3) (3) 5
delete variables on import 5 (3) 5 5 5 5 5 3 5 5 5
delete equations on import 5 (3) 5 5 5 5 5 3 5 5 5

declarative 3 3 3 (3) (3) (3) (3) 3 3 3 (3)
mathematical semantics 3 3 3 3 3 3 3 3 3 3 3
implicit ODE/DAE 3 3 (3) 5 5 5 5 5 3 3 (3)
unit definition 3 3 3 5 3 5 5 3 3 3 3
enforced unit definition (3) 5 3 5 5 5 5 5 5 5 5
ontology support 5 3 3 (3) 5 5 5 5 (3) (3) 5

readable 5 (3) (3) (3) (3) (3) (3) (3) 3 3 (3)
model files focus on human-readability 5 2 (3) (3) 3 3 (3) (3) 3 3 3 3
format designed to be written by humans 5 2 5 5 3 3 3 3 3 3 3 3
labels for variables 3 3 3 5 5 5 5 5 3 3 5
labels for models 3 3 3 5 5 5 5 5 3 3 5
labels for equations 5 3 3 5 5 5 5 5 3 3 5
rich text documentation (3) 3 3 5 5 5 5 5 3 3 5

open 5 3 3 3 3 3 3 3 (3) 3 3
open-source language specification 5 3 3 3 3 3 3 3 3 3 3
open-source compiler 5 3 3 3 3 3 3 3 (3) 3 3
open-source tools and editors 5 3 3 3 3 3 3 3 (3) 3 3
platform independent 5 3 3 3 3 3 3 3 3 3 3

graphical 3 3 (3) 5 5 5 5 5 3 5 5
image annotation 3 3 3 5 5 5 5 5 3 5 5
vector graphics annotation 5 3 5 5 5 5 5 5 3 5 5
annotations tied to model structure 3 3 5 5 5 5 5 5 3 5 5
drag and drop composition 3 (3) 5 5 5 5 5 5 3 5 5

hybrid 3 (3) (3) 5 (3) (3) 3 (3) 3 3 3
ordinary differential equations (ODE) 3 3 3 (3) 3 3 3 3 3 3 3
differential/algebraic equations (DAE) 3 (3) (3) 5 (3) 5 3 5 3 3 3
reinitialization due to discrete events 3 3 3 5 3 3 3 3 3 3 3
explicit declaration of discrete variables 3 5 5 5 5 5 5 5 3 3 5
other formalisms (Petri nets, FSA, ...) 3 5 5 5 5 5 5 5 3 (3) 5
cross-language import/export (FMI) (3) 5 5 5 5 5 5 5 3 (3) 5

1 using the Simulink environment and the Simscape language
2 while Simscape is human-readable, Simulink uses a proprietary binary file format

Supplementary Table 1: Evaluation of language candidates with respects to the desirable characteristics established
in this paper broken up into individual features. A check mark in parentheses means the language has the respective
feature in principle, but not to its full extent or with noticeable drawbacks. This table is an extended version of
Table 1 in the main article.
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Supplementary Listings: Full code for monolithic and modu-
lar conduction models
The code snippets showcased in this paper where simplified for the convenience of the reader. This
section of the supplement contains the full code that can also be obtained from GitHub 1. The online
version is the preferred source since it may contain fixes and updates applied after the publication
of this paper. However, GitHub may not always be there in the future and therefore we provide
this version to be archived along with the paper. Please note that most of the additional lines of
code are introduced due to the graphical annotations.

Package structure
Modelica organizes code in packages. These packages can be defined within a single file or, as in
this case, in a folder structure where each folder contains a file called package.mo that contains the
package metadata. This project contains the following packages:

Supplementary Listing 1: SHMConduction/package.mo
package SHMConduction "modular and monolithic models of the human cardiac conduction system based on

the PhD thesis of H. Seidel"
annotation(Documentation(info="<html>

<p>Contains a modular version of the cardiac conduction system in the
Seidel-Herzel-model (SHM).</p>

<p>The SHM is a macro-level model of the human baroreflex that was
originally written by Henrik Seidel in his PhD thesis in the language C
<a href=\"#ref1\">[1]</a>.
One part of this model is the cardiac conduction system that transfers
signals from the sinus node to the ventricles where they trigger a
ventricular contraction and thus the switch from diastole to systole.
The cardiac conduction system is mainly controlled by the AV node that
propagates sinus signals to the ventricles. </p>

<p>The cardiac conduction submodel incorporates the following physiological
effects.</p>

<ul>
<li><b>Refractory effect</b>: The atrioventricular (AV) node that reveives
signals from the sinus node has a refractory period during which no
excitation of the AV node can take place.</li>
<li><b>Pacemaker effect</b>: If the sinus node does not send any signals
for a prolonged time period, the AV node sends a signal on its own.</li>
<li><b>Delay effect</b>: Signals traveling through the AV node are delayed.
The duration of the delay depends on the time that has passed since the
last signal has left the AV node.</li>

</ul>

<p>This package contains a monolithic version of the original model of the
cardiac conduction system that was translated to Modelica, a modular version
with small structural differences and an extension of this modular version
that features a trigger for premature ventricular contractions (PVCs).</p>

<p>The structural differences between the monolithic and modular versions
are the following:</p>

<table>
<tr>

<th>Monolithic version</th><th>Modular version</th>
</tr>

1https://github.com/CSchoel/shm-conduction
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<tr>
<td>Refractory time starts right after the contraction </td>
<td>Refractory time starts right after sinus signal</td>

</tr>
<tr>

<td>Pacemaker timer is reset after contraction </td>
<td>Pacemaker timer is reset when sinus signal is received and AV node
is not refractory </td>

</tr>
<tr>

<td>Compares scheduled time stamps for next contraction that would be
triggered by a delayed sinus signal or an intrinsic AV signal</td>
<td>Every connection between components carries an actual signal;
no scheduled time stamps are required</td>

</tr>
</table>

<p>The Modelica version of the SHM model is described in detail in
<a href=\"#ref2\">[2]</a>.
The modular versions will be published in an upcoming paper
<a href=\"#ref3\">[2]</a>.</p>

<p><a name=\"ref1\">[1]</a> H. Seidel, &ldquo;Nonlinear dynamics of physiological
rhythms,&rdquo; PhD thesis, Technische Universität Berlin, Berlin, Germany, 1997.
</p>

<p><a name=\"ref2\">[2]</a> C. Schölzel, A. Goesmann, G. Ernst, and A. Dominik,
&ldquo;Modeling biology in Modelica: The human baroreflex,&rdquo; in Proceedings of the
11th International Modelica Conference, Versailles, France, 2015, pp.–
367376.</p>

<p><a name=\"ref3\">[3]</a> C. Schölzel, V. Blesius, G. Ernst and
A. Dominik, &ldquo;Required characteristics for modeling languages in systems
biology: A software engineering perspective,&rdquo; unpublished. </p>

</html>"));
end SHMConduction;

Supplementary Listing 2: SHMConduction/Components/package.mo
within SHMConduction;
package Components "contains individual modules"

type InstantSignal = Boolean(quantity="sum of Kronecker deltas")
"signal that is only true for exact time instants (i.e. that behaves as a sum of Kronecker

deltas)";
annotation(Documentation(info="<html>

<p>Contains component models used in the examples. </p>
</html>"));
end Components;

Supplementary Listing 3: SHMConduction/Components/Connectors/package.mo
within SHMConduction.Components;
package Connectors "connector classes used as interfaces between components"
annotation(Documentation(info="<html>

<p>Contains connector classes that define the interface between
components. </p>

</html>"));
end Connectors;

Supplementary Listing 4: SHMConduction/Components/PVC/package.mo
within SHMConduction.Components;
package PVC "extended variants of components that allow to simulate premature ventricular

contractions"
annotation(Documentation(info="<html>

<p>Contains modified and additional models for simulating premature
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ventricular contractions (PVCs).</p>
</html>"));
end PVC;

Supplementary Listing 5: SHMConduction/Examples/package.mo
within SHMConduction;
package Examples "contains complete examples that are ready for simulation"
annotation(Documentation(info="<html>

<p>Contains complete example models that can be simulated. </p>
</html>"));
end Examples;

Supplementary Listing 6: SHMConduction/Icons/package.mo
within SHMConduction;
package Icons "base models that contain no logic but only icon definitions"
annotation(Documentation(info="<html>

<p>Contains empty classes with annotations that can be extended to use
the respective icons in a model without cluttering the code.</p>

</html>"));
end Icons;

Monolithic model

Supplementary Listing 7: SHMConduction/Components/MonolithicConduction.mo
within SHMConduction.Components;
model MonolithicConduction "cardiac conduction system of the human heart adapted from the doctorate

thesis of H. Seidel"
import SI = Modelica.SIunits;
input InstantSignal inp(start=false, fixed=true) "the sinus signal";
output InstantSignal outp(start=false, fixed=true) "true when a contraction is triggered";
parameter SI.Duration d_refrac = 0.22 "refractory period that has to pass until a signal from the

sinus node can take effect again";
parameter SI.Period av_period = 1.7 "av-node cycle duration";
parameter SI.Duration k_avc_t = 0.78 "sensitivity of the atrioventricular conduction time to the

time passed since the last ventricular conduction";
parameter SI.Duration d_avc0 = 0.09 "base value for atrioventricular conduction time";
parameter SI.Duration tau_avc = 0.11 "reference time for atrioventricular conduction time"; //TODO

find better description
parameter SI.Period initial_d_sinus_sinus = 1 "initial value for d_sinus_sinus";
parameter SI.Period initial_d_interbeat = 1 "initial value for d_interbeat";
parameter SI.Time initial_cont_last = 0 "initial value for last ventricular contraction time";
parameter SI.Duration initial_d_delay = 0.15 "initial value for atrioventricular conduction time";
output Boolean av_contraction "true when the av-node triggers a contraction";
output Boolean sinus_contraction "true when the sinus node triggers a contraction";
output Boolean refrac_passed(start=false, fixed=true) "true when the refractory period has passed"

;
discrete output SI.Period d_sinus_sinus "time between the last two sinus signals that did trigger

a contraction";
discrete output SI.Period d_interbeat "time between the last two contractions";

protected
discrete SI.Time cont_last "time of last contraction";
discrete SI.Duration d_delay "atrioventricular conduction time (delay for sinus signal to trigger

contraction)";
SI.Duration since_cont "helper variable; time passed since last contraction";
Boolean signal_received(start=false, fixed=true) "true, if a sinus signal has already been

received since the last contraction";
discrete SI.Time sinus_last "time of last received sinus signal";
Boolean contraction_event(start=false, fixed=true);

initial equation
cont_last = initial_cont_last;
sinus_last = 0;
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d_sinus_sinus = initial_d_sinus_sinus;
d_interbeat = initial_d_interbeat;
d_delay = initial_d_delay;

equation
signal_received = sinus_last > cont_last;
refrac_passed = since_cont > d_refrac;
contraction_event = (av_contraction or sinus_contraction) and refrac_passed "contraction can come

from av-node or sinus node";
outp = edge(contraction_event);
av_contraction = since_cont > av_period "av-node contracts when av_period has passed since last

contraction";
sinus_contraction = signal_received and time > sinus_last + d_delay "sinus node contracts when

d_delay has passed since last sinus signal";
since_cont = time - cont_last;
//sinus signal is recognized if refractory period has passed and there is no other sinus signal

already in effect
when inp and pre(refrac_passed) and not pre(signal_received) then

d_delay = d_avc0 + k_avc_t * exp(-since_cont / tau_avc) "schedules next sinus_contraction";
sinus_last = time "record timestamp of recognized sinus signal";
d_sinus_sinus = time - pre(sinus_last);

end when;
when pre(outp) then

cont_last = time "record timestamp of contraction";
d_interbeat = time - pre(cont_last);

end when;
annotation(Documentation(info = "<html>
<p>Models the contraction of the heart as described in Seidel's thesis.</p>
<p>The model takes into account the following effects:</p>
<ul>

<li>There is a refractory period of duration <b>d_refrac</b> after a contraction during which
signals of the sinus node are ignored.

<li>If no sinus-induced contraction occurs for a prolonged time span (namely <b>av_period </b>)
the av-node initiates a contraction by itself.

<li>When a sinus signal is received, the upper heart contracts pumping the blood from the atrium
into the ventricles. The systole does only

begin with the second contraction of the heart. The time period between these two events is
called the &quot;atrioventricular conduction time&quot;.

</ul>
<p><i>Note: The formulas in this model differ from the formulas found in the c-implementation by

Seidel because OpenModelica is currently
not capable of handling discrete equation systems. Therefore it was necessary to introduce the

continuous phases <b>av_phase</b>,
<b>sinus_phase </b> and <b>refrac_countdown </b>, as well as the continuous variable condition <b>

signal_received_cont </b>.</i></p>
</html>"));
end MonolithicConduction;

Modular model

Supplementary Listing 8: SHMConduction/Components/Connectors/InstantInput.mo
within SHMConduction.Components.Connectors;
connector InstantInput = input InstantSignal "input with Kronecker delta behavior"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,100},
lineThickness= 5,
pattern= LinePattern.None,
points= {{194.32, -100}, {200, -200}, {0, -200}, {108.45, -100}, {0, 0}, {200, 0}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0
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)
}

)
)

;

Supplementary Listing 9: SHMConduction/Components/Connectors/InstantOutput.mo
within SHMConduction.Components.Connectors;
connector InstantOutput = output InstantSignal "output with Kronecker delta behavior"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,100},
lineThickness= 5,
pattern= LinePattern.None,
points= {{200, -100}, {91.55, 0}, {0, 0}, {0, -200}, {91.55, -200}, {200, -100}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

)
}

)
)

;

Supplementary Listing 10: SHMConduction/Components/UnidirectionalConductionComponent.mo
within SHMConduction.Components;
partial model UnidirectionalConductionComponent "basic interface class with single input and output"

import SHMConduction.Components.Connectors.{InstantInput, InstantOutput};
InstantInput inp "input connector" annotation(

Placement(
visible = true,
transformation(

origin = {-100, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

),
iconTransformation(

origin = {-108, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
InstantOutput outp "output connector" annotation(

Placement(
visible = true,
transformation(

origin = {102, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

),
iconTransformation(

origin = {108, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}
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),
graphics= {

Ellipse(
origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
fillPattern= FillPattern.None,
extent= {{2,-2},{198,-198}},
rotation= 0.0

)
}

)
);

end UnidirectionalConductionComponent;

Supplementary Listing 11: SHMConduction/Components/Resettable.mo
within SHMConduction.Components;
partial model Resettable "base class for all components that need a reset input"

import SHMConduction.Components.Connectors.InstantInput;
InstantInput reset "signal that resets internal variables" annotation(

Placement(
visible = true,
transformation(

origin = {-2, -98},
extent = {{-10, -10}, {10, 10}}, rotation = 0

),
iconTransformation(

origin = {0, -108},
extent = {{-10, -10}, {10, 10}}, rotation = 90

)
)

);
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Line(
origin= {-100,100},
pattern= LinePattern.Solid,
thickness= 1.5,
arrowSize= 5,
points= {{82.25, -192.58}, {114.50, -192.58}, {114.50, -180.64}, {81.84, -180.64}},
arrow= {Arrow.None, Arrow.Open},
rotation= 0

)
}

)
);

end Resettable;

Supplementary Listing 12: SHMConduction/Components/Pacemaker.mo
within SHMConduction.Components;
model Pacemaker "pacemaker that can elicit spontaneous signals and transmit incoming signals"

extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Metronome;
extends SHMConduction.Icons.Constant;
extends Resettable(reset.fixed=true); // resets internal clock
import SI = Modelica.SIunits;
parameter SI.Period period = 1 "pacemaker period";

protected
discrete SI.Time t_next(start=period, fixed=true)

"scheduled time of next spontaneous beat";
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InstantSignal spontaneous_signal = time > pre(t_next)
"signal generated spontaneously by this pacemaker";

equation
outp = inp or spontaneous_signal;
when spontaneous_signal or pre(reset) then

t_next = time + period;
end when;

end Pacemaker;

Supplementary Listing 13: SHMConduction/Components/RefractoryGate.mo
within SHMConduction.Components;
model RefractoryGate "refractory gate that can block or transmit signals"

extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
extends SHMConduction.Icons.Constant;
import SI = Modelica.SIunits;
parameter SI.Time t_first = 0 "time of first signal";
parameter SI.Duration d_refrac = 1 "duration of refractory period";
Boolean refrac_passed = time - pre(t_last) > d_refrac "true if component is ready to receive a

signal";
protected

discrete SI.Time t_last(start=t_first, fixed=true) "time of last output";
equation

outp = inp and refrac_passed;
when outp then

t_last = time;
end when;

end RefractoryGate;

Supplementary Listing 14: SHMConduction/Components/ConductionDelay.mo
within SHMConduction.Components;
partial model ConductionDelay "cardiac conduction delay that depends on previous cycle duration"

extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Hourglass;
import SI = Modelica.SIunits;
discrete SI.Duration d_delay "delay duration";
Boolean delay_passed(start=false, fixed=true) = time > t_next "if false, there is still a signal

currently put on hold";
protected

discrete SI.Duration d_outp_inp(start=0, fixed=true) "time between last output and following
signal";

discrete SI.Time t_last(start=0, fixed=true) "time of last output";
discrete SI.Time t_next(start=-1, fixed=true) "scheduled time of next output";

equation
outp = edge(delay_passed);
when inp and pre(delay_passed) then

d_outp_inp = time - pre(t_last);
t_next = time + d_delay;

end when;
when outp then

t_last = time;
end when;

end ConductionDelay;

Supplementary Listing 15: SHMConduction/Components/AVConductionDelay.mo
within SHMConduction.Components;
model AVConductionDelay "conduction delay between SA node and ventricles"

extends ConductionDelay;
import SI = Modelica.SIunits;
parameter SI.Duration k_avc_t = 0.78 "maximum increase in delay duration";
parameter SI.Duration d_avc0 = 0.09 "minimal delay duration";
parameter SI.Duration tau_avc = 0.11 "reference time for delay duration";
parameter SI.Duration initial_d_avc = 0.15 "initial value for delay duration";
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initial equation
d_delay = initial_d_avc;

equation
when inp and pre(delay_passed) then

d_delay = d_avc0 + k_avc_t * exp(-d_outp_inp/tau_avc);
end when;
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Text(
origin = {-55, 1},
extent = {{-21, 19}, {27, -23}},
textString = "AVN"

)
}

)
);

end AVConductionDelay;

Supplementary Listing 16: SHMConduction/Components/ModularConduction.mo
within SHMConduction.Components;
model ModularConduction "modular version of the model of the cardiac conduction system by H. Seidel"

extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGate refrac_av(d_refrac=0.364) "refractory component for AV node" annotation(

Placement(
visible = true,
transformation(

origin = {6, 5.77316e-15},
extent = {{-20, -20}, {20, 20}}, rotation = 0

)
)

);
Pacemaker pace_av(period=1.7) "pacemaker effect of AV node" annotation(

Placement(
visible = true,
transformation(

origin = {-52, 3.77476e-15},
extent = {{-20, -20}, {20, 20}}, rotation = 0

)
)

);
AVConductionDelay delay_sa_v "total delay between SA node and ventricles" annotation(

Placement(
visible = true,
transformation(

origin = {62, 3.55271e-15},
extent = {{-20, -20}, {20, 20}}, rotation = 0

)
)

);
discrete SI.Duration d_interbeat(start=1, fixed=true) "duration of last heart cycle (interbeat

interval)";
discrete SI.Time cont_last(start=0, fixed=true) "time of last contraction";

equation
connect(inp, pace_av.inp) annotation(

Line(thickness = 1, points = {{-74, 0}, {-96, 0}, {-96, 0}, {-100, 0}})
);
connect(pace_av.outp, refrac_av.inp) annotation(

Line(thickness = 1, points = {{-30, 0}, {-16, 0}, {-16, 0}, {-16, 0}})
);
connect(refrac_av.outp, pace_av.reset) annotation(
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Line(thickness = 1, points = {{28, 0}, {34, 0}, {34, -44}, {-52, -44}, {-52, -22}, {-52, -22}})
);
connect(refrac_av.outp, delay_sa_v.inp) annotation(

Line(thickness = 1, points = {{28, 0}, {42, 0}, {42, 0}, {40, 0}})
);
connect(delay_sa_v.outp, outp) annotation(

Line(thickness = 1, points = {{84, 0}, {102, 0}, {102, 0}, {102, 0}})
);
when outp then

d_interbeat = time - pre(cont_last);
cont_last = time;

end when;
annotation(

Icon(
graphics = {

Line(
origin = {-75, 5},
points = {{-17, -5}, {17, 5}},
arrow = {Arrow.None, Arrow.Open},
thickness = 1,
arrowSize = 5

),
Line(

origin = {75, -20},
points = {{-19, -18}, {19, 18}},
arrow = {Arrow.None, Arrow.Open},
thickness = 1,
arrowSize = 5

)
}

)
);

end ModularConduction;

PVC extension

Supplementary Listing 17: SHMConduction/Components/PVC/ConductionDelayX.mo
within SHMConduction.Components.PVC;
partial model ConductionDelayX "resettable variant of ConductionDelay (resetting cancels delayed

signals)"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Hourglass;
extends Resettable(reset.fixed=true); // cancels a signal that is currently on hold
import SI = Modelica.SIunits;
discrete SI.Duration d_delay "delay duration";
Boolean delay_passed(start=false, fixed=true) = time > t_next or t_next > 1e99 "if false, there is

still a signal currently put on hold";
protected

discrete SI.Duration d_outp_inp(start=0, fixed=true) "time between last output and following
signal";

discrete SI.Time t_last(start=0, fixed=true) "time of last output";
discrete SI.Time t_next(start=-1, fixed=true) "scheduled time of next output";

equation
outp = edge(delay_passed);
when pre(reset) or (inp and pre(delay_passed)) then

d_outp_inp = time - pre(t_last);
end when;
when pre(reset) then

t_next = 1e100;
elsewhen inp and pre(delay_passed) then

t_next = time + d_delay;
end when;
when outp or reset then

t_last = time;
end when;

end ConductionDelayX;
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Supplementary Listing 18: SHMConduction/Components/PVC/AVConductionDelayX.mo
within SHMConduction.Components.PVC;
model AVConductionDelayX "resettable variant of AVConductionDelay (resetting cancels delayed signals

)"
extends ConductionDelayX;
import SI = Modelica.SIunits;
parameter SI.Duration k_avc_t = 0.78 "maximum increase in delay duration";
parameter SI.Duration d_avc0 = 0.09 "minimal delay duration";
parameter SI.Duration tau_avc = 0.11 "reference time for delay duration";
parameter SI.Duration initial_d_avc = 0.15 "initial value for delay duration";

initial equation
d_delay = initial_d_avc;

equation
when inp and pre(delay_passed) then

d_delay = d_avc0 + k_avc_t * exp(-d_outp_inp/tau_avc);
end when;
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Text(
origin = {-55, 1},
extent = {{-21, 19}, {27, -23}},
textString = "AVN"

)
}

)
);

end AVConductionDelayX;

Supplementary Listing 19: SHMConduction/Components/PVC/RefractoryGateX.mo
within SHMConduction.Components.PVC;
model RefractoryGateX "resettable variant of RefractoryGate"

extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
extends SHMConduction.Icons.Constant;
extends Resettable; // resets internal clock
import SI = Modelica.SIunits;
parameter SI.Time t_first = 0 "time of first signal";
parameter SI.Duration d_refrac = 1 "refractory period";
Boolean refrac_passed = time - pre(t_last) > d_refrac "true if component is ready to receive a

signal";
protected

discrete SI.Time t_last(start=t_first, fixed=true) "time of last output";
equation

outp = inp and refrac_passed;
when outp or reset then

t_last = time;
end when;

end RefractoryGateX;

Supplementary Listing 20: SHMConduction/Components/PVC/ModularConductionX.mo
within SHMConduction.Components.PVC;
model ModularConductionX "cardiac conduction system with trigger for PVCs"

extends UnidirectionalConductionComponent(outp.fixed=true);
// outp is used in a when equation, so we need an initial value
extends SHMConduction.Icons.Heart;
import SHMConduction.Components.Connectors.InstantInput;
import SI = Modelica.SIunits;
RefractoryGateX refrac_av(d_refrac=0.364) "refractory component for AV node" annotation(

Placement(
visible = true,
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transformation(
origin = {-20, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
Pacemaker pace_av(period=1.7) "pacemaker effect of AV node" annotation(

Placement(
visible = true,
transformation(

origin = {-60, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
AVConductionDelayX delay_sa_v "total delay between SA node and ventricles" annotation(

Placement(
visible = true,
transformation(

origin = {20, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
RefractoryGate refrac_v(d_refrac=0.2) "refractory component for ventricles" annotation(

Placement(
visible = true,
transformation(

origin = {60, 0},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
discrete SI.Period d_interbeat(start=1, fixed=true) "duration of last heart cycle";
discrete SI.Time cont_last(start=0, fixed=true) "time of last contraction";
InstantInput pvc(fixed=true) "trigger signal for a PVC" annotation(

Placement(
visible = true,
transformation(

origin = {76, -76},
extent = {{-10, -10}, {10, 10}}, rotation = 135

),
iconTransformation(

origin = {76, -76},
extent = {{-10, -10}, {10, 10}}, rotation = 135

)
)

);
Modelica.Blocks.Logical.Or vcont "groups inputs for refrac_v" annotation(

Placement(
visible = true,
transformation(

origin = {42, -36},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
Modelica.Blocks.Logical.Or rpace "groups reset signals of pace_av" annotation(

Placement(
visible = true,
transformation(

origin = {-60, -38},
extent = {{-10, -10}, {10, 10}}, rotation = 0

)
)

);
Modelica.Blocks.Logical.And pvc_upward "true if we have PVC that travels upward" annotation(

Placement(
visible = true,
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transformation(
origin = {20, -72},
extent = {{10, -10}, {-10, 10}}, rotation = 0

)
)

);
equation

connect(inp, pace_av.inp) annotation(
Line(points = {{-100, 0}, {-72, 0}, {-72, 0}, {-70, 0}})

);
connect(pace_av.outp, refrac_av.inp) annotation(

Line(points = {{-50, 0}, {-30, 0}, {-30, 0}, {-30, 0}})
);
connect(refrac_av.outp, delay_sa_v.inp) annotation(

Line(points = {{-10, 0}, {10, 0}, {10, 0}, {10, 0}})
);
connect(delay_sa_v.outp, vcont.u1) annotation(

Line(points = {{30, 0}, {34, 0}, {34, -22}, {16, -22}, {16, -36}, {30, -36}, {30, -36}})
);
connect(refrac_av.outp, rpace.u2) annotation(

Line(points = {{-10, 0}, {-6, 0}, {-6, -58}, {-78, -58}, {-78, -46}, {-72, -46}, {-72, -46}})
);
connect(vcont.y, refrac_v.inp) annotation(

Line(points = {{54, -36}, {60, -36}, {60, -12}, {42, -12}, {42, 0}, {50, 0}, {50, 0}}, color =
{255, 0, 255})

);
connect(refrac_v.outp, outp) annotation(

Line(points = {{70, 0}, {98, 0}, {98, 0}, {102, 0}})
);
connect(outp, pvc_upward.u1) annotation(

Line(points = {{102, 0}, {84, 0}, {84, -54}, {50, -54}, {50, -72}, {32, -72}, {32, -72}})
);
connect(pvc, pvc_upward.u2) annotation(

Line(points = {{76, -76}, {50, -76}, {50, -80}, {32, -80}, {32, -80}})
);
connect(pvc_upward.y, refrac_av.reset) annotation(

Line(points = {{10, -72}, {-20, -72}, {-20, -10}, {-20, -10}}, color = {255, 0, 255})
);
connect(pvc_upward.y, delay_sa_v.reset) annotation(

Line(points = {{10, -72}, {2, -72}, {2, -18}, {20, -18}, {20, -10}, {20, -10}}, color = {255, 0,
255})

);
connect(pvc_upward.y, rpace.u1) annotation(

Line(points = {{10, -72}, {-84, -72}, {-84, -38}, {-72, -38}, {-72, -38}}, color = {255, 0,
255})

);
connect(rpace.y, pace_av.reset) annotation(

Line(points = {{-48, -38}, {-44, -38}, {-44, -16}, {-60, -16}, {-60, -10}, {-60, -10}}, color =
{255, 0, 255})

);
connect(pvc, vcont.u2) annotation(

Line(points = {{76, -76}, {70, -76}, {70, -50}, {16, -50}, {16, -44}, {30, -44}})
);
when outp then

d_interbeat = time - pre(cont_last);
cont_last = time;

end when;
annotation(

Icon(
graphics = {

Line(
origin = {-75, 5},
points = {{-17, -5}, {17, 5}},
arrow = {Arrow.None, Arrow.Open},
thickness = 1,
arrowSize = 5

),
Line(

origin = {75, -20},
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points = {{-19, -18}, {19, 18}},
arrow = {Arrow.None, Arrow.Open},
thickness = 1,
arrowSize = 5

),
Line(

origin = {60, -64},
points = {{6, 0}, {-6, 0}},
arrow = {Arrow.None, Arrow.Open},
thickness = 1,
arrowSize = 5

)
}

)
);

end ModularConductionX;

Simulation examples

Supplementary Listing 21: SHMConduction/Examples/ModularExample.mo
within SHMConduction.Examples;
// TODO: add ontolgy links with annotation(__Ontology(foo="bar"))
model ModularExample "experiment to compare Conduction and ModularConduction"

SHMConduction.Components.ModularConduction modC "modular contraction model";
SHMConduction.Components.MonolithicConduction monC "original monolithic contraction model";

equation
modC.inp = monC.inp;
if time < 5 then

monC.inp = sample(0,1);
elseif time < 15 then

monC.inp = sample(0,3);
elseif time < 20 then

// during Afib, atrial impulses occur at up to 600/min => with distance 0.1s
// source: https://my.clevelandclinic.org/health/diseases/16765-atrial-fibrillation-afib
monC.inp = sample(0,0.05);

elseif time < 30 then
monC.inp = sample(0,0.8);

elseif time < 40 then
monC.inp = sample(0,0.2);

else
monC.inp = sample(0,1.8);

end if;
annotation(

experiment(StartTime = 0, StopTime = 50, Tolerance = 1e-6, Interval = 0.002),
__OpenModelica_simulationFlags(lv = "LOG_STATS", s = "dassl")

);
end ModularExample;

Supplementary Listing 22: SHMConduction/Examples/PVCExample.mo
within SHMConduction.Examples;
model PVCExample "experiment to test response of ModularConductionX to PVCs"

SHMConduction.Components.PVC.ModularConductionX con;
import SI = Modelica.SIunits;
discrete SI.Time sig_last(start=0, fixed=true) "time where last SA/AV signal was received";
Integer count_sig(start=0, fixed=true) "counts SA/AV signals";
parameter Boolean with_sinus = true "if true, a sinus signal is applied, otherwise only the AV

node is active";
parameter SI.Period normal_interval = if with_sinus then 0.8 else con.pace_av.period "normal cycle

duration without PVC";
SI.Duration t_since_sig = time - pre(sig_last) "time since last signal from SA/AV node";
Boolean pvc_a = pre(count_sig) == 5 and t_since_sig > con.delay_sa_v.d_avc0 / 2

"timer for PVC a): while 6th beat is delayed";
Boolean pvc_b = pre(count_sig) == 12 and t_since_sig > con.refrac_av.d_refrac / 2

"timer for PVC b): after 12th beat within refractory period";
Boolean pvc_c = pre(count_sig) == 19 and t_since_sig > normal_interval / 2

23



"timer for PVC c): between 19th and 20th beat (after refractory period)";
Boolean pvc_d = pre(count_sig) == 26 and

t_since_sig > normal_interval - con.delay_sa_v.d_avc0 / 2
"timer for PVC d): just before the 27th beat was signalled";

Boolean trigger(start=false, fixed=true) = pvc_a or pvc_b or pvc_c or pvc_d "pvc trigger signal";
equation

con.pvc = edge(trigger);
if with_sinus then

con.inp = sample(0, normal_interval) "undisturbed normal sinus rhythm";
else

con.inp = false "no sinus, only AV node";
end if;
when con.refrac_av.outp then

count_sig = pre(count_sig) + 1;
sig_last = time;

end when;
annotation(

experiment(StartTime = 0, StopTime = 55, Tolerance = 1e-6, Interval = 0.002),
__OpenModelica_simulationFlags(lv = "LOG_STATS", s = "dassl")

);
end PVCExample;

Icons

Supplementary Listing 23: SHMConduction/Icons/Constant.mo
within SHMConduction.Icons;
model Constant "small box with a C in upper right corner"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,100},
lineThickness= 0.56,
pattern= LinePattern.None,
points= {{163.21, -24.39}, {163.21, -2.15}, {196.78, -2.15}, {196.78, -36.36},

{174.62, -36.36}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

),
Text(

origin = {81, 84},
lineColor = {255, 255, 255},
extent = {{-11, 22}, {11, -22}},
textString = "c"

)
}

)
);

end Constant;

Supplementary Listing 24: SHMConduction/Icons/Gate.mo
within SHMConduction.Icons;
model Gate "gate icon for refractory period"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

24



Rectangle(
origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{42.33,-42.01},{55.18,-160.69}},
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
points= {{69.55, -41.25}, {49.33, -57.13}, {49.33, -153.89}, {89.79, -142.17}, {89.79,

-35.96}},
fillPattern= FillPattern.None,
rotation= 0

),
Rectangle(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{145.47,-42.01},{158.32,-160.69}},
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
points= {{131.10, -41.25}, {151.33, -57.13}, {151.33, -153.89}, {110.86, -142.17},

{110.86, -35.96}},
fillPattern= FillPattern.None,
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
points= {{90.34, -77}, {94.87, -75.65}, {94.87, -93.03}, {89.96, -94.54}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{69.55, -41.25}, {69.55, -148.03}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{79.67, -37.80}, {79.67, -144.02}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{59.56, -48.82}, {59.56, -150.20}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
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rotation= 0,
points= {{49.33, -62.89}, {89.79, -50.86}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{89.79, -132.65}, {49.33, -145.21}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{131.10, -41.25}, {131.10, -148.03}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{120.98, -37.80}, {120.98, -144.02}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{141.10, -48.82}, {141.10, -150.20}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{151.33, -62.89}, {110.86, -50.86}},
thickness= 2

),
Line(

origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{110.86, -132.65}, {151.33, -145.21}},
thickness= 2

)
}

)
);

end Gate;

Supplementary Listing 25: SHMConduction/Icons/Heart.mo
within SHMConduction.Icons;
model Heart "heart icon for full model of cardiac conduction system"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{63.36, -149.76}, {77.13, -163.94}, {94.56, -172.20}, {114.76, -177.40}, {132.19,

-179.84}, {143.62, -175.56}, {149.94, -164.14}, {152.69, -148.64}, {150.65,
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-132.02}, {145.04, -114.89}, {138.62, -102.65}, {130.15, -100.71}, {119.96, -96.02},
{106.90, -89.39}, {90.08, -90.72}, {77.53, -96.02}, {69.07, -106.52}, {60.71,
-121.62}, {56.94, -135.18}, {63.36, -149.76}},

fillPattern= FillPattern.Solid,
fillColor= {192,192,192},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{55.91, -142.11}, {52.04, -135.48}, {48.37, -122.43}, {46.94, -107.03}, {48.37,

-93.26}, {51.53, -83.37}, {56.63, -78.07}, {63.76, -77.35}, {68.35, -78.48}, {68.46,
-82.56}, {69.27, -86.63}, {77.33, -87.76}, {84.67, -89.49}, {83.04, -93.67}, {76.21,
-102.75}, {67.64, -115.70}, {61.42, -127.32}, {58.87, -135.38}, {58.05, -140.89},
{55.91, -142.11}},

fillPattern= FillPattern.Solid,
fillColor= {219,219,219},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{117.61, -84.91}, {115.67, -87.76}, {114.04, -92.09}, {115.85, -94.90}, {120.77,

-97.35}, {126.28, -101.94}, {133.42, -101.83}, {138.25, -102.31}, {138.35, -97.63},
{135.76, -94.19}, {133.58, -87.53}, {129.38, -82.02}, {122.20, -82.25}, {117.61,
-84.91}},

fillPattern= FillPattern.Solid,
fillColor= {191,191,191},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{106.70, -59.41}, {111.59, -64.72}, {116.08, -65.23}, {128.42, -63.90}, {144.23,

-65.53}, {155.81, -67.21}, {158.98, -68.69}, {160.48, -72.87}, {160.38, -79.81},
{158.10, -84.09}, {149.94, -84.09}, {135.56, -81.34}, {123.32, -81.44}, {116.80,
-86.33}, {114.97, -93.31}, {110.58, -91.53}, {102.42, -90.72}, {93.34, -91.64},
{92.01, -89.19}, {94.77, -82.15}, {96.50, -75.93}, {95.48, -68.49}, {98.44, -59.82},
{106.70, -59.41}},

fillPattern= FillPattern.Solid,
fillColor= {231,231,231},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{92.72, -84.60}, {95.48, -71.86}, {98.33, -62.68}, {103.33, -58.80}, {108.84,

-58.50}, {112.30, -61.45}, {113.53, -65.43}, {119.54, -65.12}, {131.27, -64.51},
{134.77, -64.90}, {137.26, -65.02}, {136.54, -61.49}, {135.86, -56.66}, {133.01,
-46.46}, {129.33, -39.32}, {129.23, -35.86}, {134.23, -31.17}, {140.35, -26.17},
{141.88, -22.80}, {139.74, -20.36}, {137.59, -19.34}, {131.99, -23.01}, {125.36,
-29.43}, {125.66, -29.03}, {129.13, -24.13}, {131.37, -20.87}, {132.09, -18.42},
{130.56, -16.18}, {128.01, -14.75}, {125.66, -15.16}, {121.07, -19.85}, {114.96,
-25.56}, {109.65, -27.60}, {104.45, -26.99}, {100.68, -25.15}, {98.44, -21.58},
{96.60, -15.87}, {94.87, -10.67}, {93.95, -8.12}, {93.03, -7.92}, {90.58, -8.99},
{87.12, -10.72}, {85.89, -14.54}, {86.91, -20.15}, {87.47, -24.84}, {87.57, -28.92},
{84.26, -36.78}, {78.14, -48.50}, {73.55, -59.82}, {70.39, -72.06}, {68.35, -81.85},
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{67.43, -86.34}, {75.08, -88.17}, {83.55, -89.29}, {82.57, -93.21}, {85.06, -94.36},
{89.26, -92.25}, {92.72, -84.60}},

fillPattern= FillPattern.Solid,
fillColor= {176,176,176},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{135.53, -93.01}, {139.82, -92.83}, {144.10, -92.60}, {144.39, -91.39}, {144.39,

-88.38}, {144.10, -85.78}, {143.63, -84.79}, {142.36, -84.33}, {138.83, -84.33},
{136.57, -84.04}, {137.21, -83.58}, {140.45, -83}, {140.10, -82.01}, {133.74,
-81.15}, {125.68, -81.06}, {121.31, -81.82}, {124.45, -82.51}, {128.65, -83.26},
{130.96, -84.79}, {132.58, -87.34}, {133.62, -89.83}, {134.55, -91.97}, {135.53,
-93.01}},

fillPattern= FillPattern.Solid,
fillColor= {161,161,161},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Polygon(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.Solid,
points= {{55.58, -75.66}, {56.49, -72.12}, {57.65, -65.18}, {59.04, -53.43}, {60.14,

-43.07}, {60.83, -36.25}, {61.76, -29.94}, {62.86, -24.04}, {63.96, -17.85}, {64.71,
-13.97}, {66.27, -12.87}, {68.99, -12.35}, {71.89, -12.64}, {74.32, -13.62}, {75.30,
-14.43}, {75.65, -19.76}, {76.05, -26.93}, {76.63, -29.48}, {79.23, -28.49}, {83.63,
-25.54}, {87.10, -23.57}, {89.75, -22.53}, {91.93, -23.74}, {93.64, -26.82}, {94.22,
-29.71}, {93.53, -32.02}, {87.16, -36.65}, {80.22, -42.38}, {78.66, -46.20}, {76.40,
-53.26}, {72.93, -63.27}, {70.56, -72.47}, {69.28, -78.60}, {62.11, -79.41}, {55.20,
-79.63}},

fillPattern= FillPattern.Solid,
fillColor= {225,225,225},
lineColor= {0,0,0},
rotation= 0,
smooth=Smooth.Bezier

),
Ellipse(

origin= {-100,100},
lineThickness= 0.53,
extent= {{45.36,-82.07},{55.94,-92.65}},
pattern= LinePattern.Solid,
fillPattern= FillPattern.Solid,
fillColor= {17,89,255},
lineColor= {17,89,255},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 0.53,
extent= {{69.17,-98.32},{79.75,-108.91}},
pattern= LinePattern.Solid,
fillPattern= FillPattern.Solid,
fillColor= {17,89,255},
lineColor= {17,89,255},
rotation= 0

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{50.65, -87.74}, {53.67, -99.08}, {59.72, -105.88}, {68.04, -107.02}, {74.84,

-105.13}},
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rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{52.16, -84.72}, {63.88, -85.85}, {73.33, -91.14}, {74.84, -100.59}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{53.29, -88.87}, {65.39, -94.54}, {74.08, -102.48}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{74.84, -103.99}, {77.49, -123.65}, {68.41, -140.28}, {68.04, -146.33}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{76.35, -102.10}, {95.25, -117.22}, {110.37, -117.98}, {112.75, -115.78},

{120.20, -108.91}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{74.84, -104.37}, {86.93, -124.78}, {90.71, -162.96}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{76.35, -101.73}, {97.14, -109.29}, {102.43, -105.13}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{75.60, -103.99}, {85.23, -113.44}, {94.87, -122.89}, {104.51, -132.34}, {112.64,

-141.04}, {116.04, -143.21}, {117.55, -140.47}, {120.57, -135.08}, {130.02,
-128.94}},

rotation= 0,
smooth=Smooth.Bezier

),
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Line(
origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{104.51, -132.34}, {108.57, -136.69}, {111.88, -154.26}, {109.61, -165.23}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{105.44, -117.73}, {110.37, -117.98}, {116.41, -119.12}, {121.71, -119.87}, {127,

-120.62}, {133.05, -116.85}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{88.56, -141.19}, {88.82, -143.87}, {81.26, -154.64}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{117.55, -140.47}, {119.06, -137.78}, {136.45, -145.19}, {147.03, -141.79}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{112.64, -141.04}, {116.04, -143.21}, {122.28, -150.67}, {126.34, -155.30},

{130.40, -159.93}, {128.13, -173.92}},
rotation= 0,
smooth=Smooth.Bezier

),
Line(

origin= {-100,100},
color= {17,89,255},
pattern= LinePattern.Solid,
thickness= 1,
points= {{124.31, -152.99}, {126.34, -155.30}, {137.21, -156.15}, {143.63, -152.75}},
rotation= 0,
smooth=Smooth.Bezier

),
Ellipse(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {107,107,107},
extent= {{152.88,-69.07},{159.03,-82.90}},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 0.53,
pattern= LinePattern.None,
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fillPattern= FillPattern.Solid,
fillColor= {107,107,107},
extent= {{72.89,-54.28},{76.36,-62.10}},
rotation= 20.90

)
}

)
);

end Heart;

Supplementary Listing 26: SHMConduction/Icons/Hourglass.mo
within SHMConduction.Icons;
model Hourglass "hourglass icon for delay"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
points= {{60.25, -28.44}, {139.75, -28.44}, {60.25, -171.56}, {139.75, -171.56}},
fillPattern= FillPattern.None,
lineColor= {0,0,0},
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
points= {{78.80, -61.84}, {121.20, -61.84}, {100, -100}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
points= {{60.25, -171.56}, {100, -155.65}, {139.75, -171.56}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{98.41,-112.72},{101.59,-115.90}},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{98.41,-123.85},{101.59,-127.03}},
rotation= 0

),
Ellipse(

origin= {-100,100},
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lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{98.41,-134.98},{101.59,-138.16}},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{98.41,-146.11},{101.59,-149.29}},
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 2,
extent= {{2.05,-2.05},{197.95,-197.95}},
pattern= LinePattern.Solid,
fillPattern= FillPattern.None,
lineColor= {0,0,0},
rotation= 0

),
Ellipse(

origin= {-107,112.51},
lineThickness= 2,
extent= {{130.21,-88.38},{178.47,-136.64}},
pattern= LinePattern.Solid,
fillPattern= FillPattern.None,
lineColor= {0,0,0},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 2,
points= {{153.25, -104.27}, {153.25, -116.19}, {168.83, -116.19}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{154.34, -130.60}, {154.34, -136.64}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{154.34, -88.38}, {154.34, -94.42}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{130.21, -112.51}, {136.25, -112.51}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},

32



pattern= LinePattern.Solid,
thickness= 1,
points= {{172.42, -112.51}, {178.47, -112.51}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{166.40, -91.61}, {164.39, -95.09}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{175.23, -100.44}, {171.76, -102.45}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{175.23, -124.57}, {171.76, -122.57}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{166.40, -133.41}, {164.39, -129.93}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{142.27, -133.41}, {144.28, -129.93}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{133.44, -124.57}, {136.92, -122.57}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{133.44, -100.44}, {136.92, -102.45}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 1,
points= {{142.27, -91.61}, {144.28, -95.09}},
rotation= -0

),
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Ellipse(
origin= {-107,112.51},
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{153.49,-87.53},{155.18,-89.23}},
rotation= -0

),
Ellipse(

origin= {-107,112.51},
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{153.49,-87.53},{155.18,-89.23}},
rotation= -0

),
Line(

origin= {-107,112.51},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 2,
points= {{154.34, -88.38}, {154.34, -82.29}},
rotation= -0

),
Rectangle(

origin= {-107,112.51},
lineThickness= 2.12,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
extent= {{148.50,-80.83},{160.18,-83.75}},
rotation= -0

)
}

)
);

end Hourglass;

Supplementary Listing 27: SHMConduction/Icons/Metronome.mo
within SHMConduction.Icons;
model Metronome "metronome icon for pacemaker"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Line(
origin= {-100,100},
pattern= LinePattern.Solid,
rotation= 0,
points= {{98.41, -140.61}, {160.53, -33.61}},
thickness= 2

),
Polygon(

origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
points= {{82.31, -34.98}, {115.02, -34.98}, {147.73, -152.74}, {49.60, -152.74}},
fillPattern= FillPattern.None,
rotation= 0

),
Ellipse(

origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.Solid,
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endAngle= 179.999997341,
fillPattern= FillPattern.Solid,
fillColor= {255,255,255},
extent= {{74.88,-117.33},{122.44,-164.88}},
startAngle= 0.0,
rotation= 0

),
Polygon(

origin= {-100,100},
lineThickness= 2,
pattern= LinePattern.None,
points= {{143.95, -55.42}, {149.79, -58.93}, {159.31, -49.78}, {147.56, -42.71}},
fillPattern= FillPattern.Solid,
fillColor= {0,0,0},
rotation= 0

)
}

)
);

end Metronome;
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Data Supplement
An understandable, extensible and reusable implementation of the Hodgkin-Huxley
equations using Modelica

Christopher Schölzel, Valeria Blesius, Gernot Ernst, and Andreas Dominik
Thursday 17th September, 2020

RATIONALE FOR PUBLISHING CODE AS PDF
This data supplement contains the full model code. This code is also available on GitHub1, which is the
preferred source since it may contain fixes and updates applied after the publication of this paper. However,
GitHub may not always be there in the future and therefore we provide this version to be archived along
with the paper.

PACKAGE STRUCTURE
Modelica organizes code in packages. These packages can be defined within a single file or, in a folder
structure where each folder contains a file called package.mo that contains the package metadata. This
project uses a mix of both styles: Since the components themselves are very small, they are grouped in
the single file HHModelica/Components/package.mo. Full models and Icons, however, are created
in their own separate files.

PACKAGE METADATA
Listing 1: HHmodelica/package.mo
package HHmodelica "Modelica implementations of the Hogdkin-Huxley model"
end HHmodelica;

Listing 2: HHmodelica/CompleteModels/package.mo
within HHmodelica;
package CompleteModels
end CompleteModels;

Listing 3: HHmodelica/Icons/package.mo
within HHmodelica;
package Icons "contains icon classes that are used to inherit annotations"
end Icons;

COMPONENTS
Listing 4: HHmodelica/Components/package.mo
within HHmodelica;
package Components "components for the two-pin modular version of the

Hodgkin-Huxley model"
connector TemperatureInput = input Real(unit="degC") "membrane

temperature"
annotation(

Icon(
coordinateSystem(
preserveAspectRatio=true,
extent={{-100,-100},{100,100}}

),
graphics={
Ellipse(

extent={{-100,100},{100,-100}},

1 https://github.com/CSchoel/hh-modelica
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lineColor={255,0,0},
fillColor={255,255,255},
fillPattern=FillPattern.Solid

)
}

)
);

connector TemperatureOutput = output Real(unit="degC") "membrane
temperature"

annotation(
Icon(

coordinateSystem(
preserveAspectRatio=true,
extent={{-100,-100},{100,100}}

),
graphics={

Ellipse(
extent={{-100,100},{100,-100}},
lineColor={255,0,0},
fillColor={255,0,0},
fillPattern=FillPattern.Solid

)
}

)
);

connector ElectricalPin "electrical connector for membrane currents"
flow Real i(unit="uA/cm2") "ionic current through membrane";
Real v(unit="mV") "membrane potential (as displacement from resting

potential)";
end ElectricalPin;

connector PositivePin "electrical pin with filled square icon for visual
distinction"

extends ElectricalPin;
annotation(
Icon(

coordinateSystem(
preserveAspectRatio=true,
extent={{-100,-100},{100,100}}

),
graphics={

Rectangle(
extent={{-100,100},{100,-100}},
lineColor={0,0,255},
fillColor={0,0,255},
fillPattern=FillPattern.Solid

)
}

)
);

end PositivePin;

connector NegativePin "electrical pin with open square icon for visual
distinction"

extends ElectricalPin;
annotation(
Icon(

coordinateSystem(
preserveAspectRatio=true,
extent={{-100,-100},{100,100}}

),
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graphics={
Rectangle(
extent={{-100,100},{100,-100}},
lineColor={0,0,255},
fillColor={255,255,255},
fillPattern=FillPattern.Solid

)
}

)
);

end NegativePin;

partial model TwoPinComponent "component with two directly connected
electrical pins"

PositivePin p "positive extracellular pin" annotation (Placement(
transformation(extent={{-10, 90},{10, 110}})));

NegativePin n "negative intracellular pin" annotation (Placement(
transformation(extent={{-10, -90},{10, -110}})));

Real v(unit="mV") "voltage as potential difference between positive
and negative pin";

Real i(unit="uA/cm2") "outward current flowing through component from
negative to positive pin";

equation
i = p.i;
0 = p.i + n.i;
v = p.v - n.v;
annotation(

Documentation(info="
<html>
<p>This is a base model for components with two electrical pins

which
are directly connected. It establishes the connection and

defines a
voltage between the positive and negative pin, but does not

specify
the current-voltage relationship.</p>
<p>This base component establishes the convention that positive
currents are outward currents and negative currents are inward
currents.</p>

</html>
")

);
end TwoPinComponent;

function expFit "exponential function with scaling parameters for x and
y axis"

input Real x "input value";
input Real sx "scaling factor for x axis (fitting parameter)";
input Real sy "scaling factor for y axis (fitting parameter)";
output Real y "result";

algorithm
y := sy * exp(sx * x);

end expFit;

function goldmanFit "fitting function related to Goldmans formula for
the movement of a charged particle in a constant electrical field"

input Real x "membrane potential (as displacement from resting
potential)";

input Real x0 "offset for x (fitting parameter)";
input Real sx "scaling factor for x (fitting parameter)";
input Real sy "scaling factor for y (fitting parameter)";
output Real y "rate of change of the gating variable at given V=x";
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protected
Real x_adj "adjusted x with offset and scaling factor";

algorithm
x_adj := sx * (x - x0);
if abs(x - x0) < 1e-6 then
y := sy; // using L’Hôpital to find limit for x_adj->0

else
y := sy * x_adj / (exp(x_adj) - 1);

end if;
annotation(
Documentation(info="

<html>
<p>Hodgkin and Huxley state that this formula was (in part) used
because it &quot;bears a close resemblance to the equation

derived
by Goldman (1943) for the movements of a charged particle in a

constant
field&quot;.</p>
<p>We suppose that this statement refers to equation 11 of

Goldman
(1943), which is also called the Goldman-Hodgkin-Katz flux

equation:</p>
<blockquote>

j_i = u_i * F / a * dV * (n’_i * exp(-z_i * beta * dV - n0_i))
/ exp(-z_i * beta * dV)

</blockquote>
<p>Factoring out n0_i from the denominator, substituting
n’_i/n0_i = exp(V_0 * beta * z_i) and grouping and renaming
variables, the GHK flux equation can be written as</p>
<blockquote>

y := sy * sx * x * (exp((x - x0) * sx) - 1) / (exp(x * sx) -
1)

</blockquote>
<p>with sx = -z_i * beta, x = dV, x0 = V_0, and
sy = n0_i * u_i * F / a * 1 / sx.</p>
<p>With this notation, the similarity becomes apparent, as

omitting
the denominator (exp((x - x0) * sx) - 1) and using x-x0 instead

of
x in the rest of the formula gives exactly the goldmanFit used

by
Hodgkin and Huxley.</p>

</html>
")

);
end goldmanFit;

function logisticFit "logistic function with sigmoidal shape"
input Real x "input value";
input Real x0 "x-value of sigmoid midpoint (fitting parameter)";
input Real sx "growth rate/steepness (fitting parameter)";
input Real y_max "maximum value";
output Real y "result";

protected
Real x_adj "adjusted x with offset and scaling factor";

algorithm
x_adj := sx * (x - x0);
y := y_max / (exp(-x_adj) + 1);

end logisticFit;

model Gate "gating molecule with an open conformation and a closed
conformation"
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replaceable function fopen = expFit(sx=1, sy=1) "rate of transfer from
closed to open conformation";

replaceable function fclose = expFit(sx=1, sy=1) "rate of transfer
from open to closed conformation";

Real n(start=fopen(0)/(fopen(0) + fclose(0)), fixed=true) "ratio of
molecules in open conformation";

input Real v(unit="mV") "membrane potential (as displacement from
resting potential)";

TemperatureInput temp "membrane temperature";
protected

Real phi = 3ˆ((temp-6.3)/10) "temperature-dependent factor for rate of
transfer calculated with Q10 = 3";

equation
der(n) = phi * (fopen(v) * (1 - n) - fclose(v) * n);

end Gate;

partial model IonChannel "ionic current through the membrane"
extends TwoPinComponent;
extends HHmodelica.Icons.IonChannel;
Real g(unit="mmho/cm2") "ion conductance, needs to be defined in

subclasses";
parameter Real v_eq(unit="mV") "equilibrium potential (as displacement

from resting potential)";
parameter Real g_max(unit="mmho/cm2") "maximum conductance";

equation
i = g * (v - v_eq);

end IonChannel;

partial model GatedIonChannel "ion channel that has voltage-dependent
gates"

extends IonChannel;
TemperatureInput temp "membrane temperature to determine reaction

coefficient"
annotation (Placement(transformation(extent={{-40, 48},{-60, 68}})))

;
end GatedIonChannel;

model PotassiumChannel "channel selective for K+ cations"
extends GatedIonChannel(g_max=36, v_eq=12);
extends HHmodelica.Icons.Activatable;
Gate gate_act(

redeclare function fopen= goldmanFit(x0=-10, sy=100, sx=0.1),
redeclare function fclose= expFit(sx=1/80, sy=125),
v=v, temp=temp

) "activation gate";
equation

g = g_max * gate_act.n ˆ 4;
end PotassiumChannel;

model SodiumChannel "channel selective for Na+ cations"
extends GatedIonChannel(g_max=120, v_eq=-115);
extends HHmodelica.Icons.Activatable;
extends HHmodelica.Icons.Inactivatable;
Gate gate_act(

redeclare function fopen= goldmanFit(x0=-25, sy=1000, sx=0.1),
redeclare function fclose= expFit(sx=1/18, sy=4000),
v=v, temp=temp

) "activation gate";
Gate gate_inact(

redeclare function fopen= expFit(sx=1/20, sy=70),
redeclare function fclose= logisticFit(x0=-30, sx=-0.1, y_max=1000),
v=v, temp=temp
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) "inactivation gate";
equation
g = g_max * gate_act.n ˆ 3 * gate_inact.n;

end SodiumChannel;

model LeakChannel "constant leakage current of ions through membrane"
extends IonChannel(g_max=0.3, v_eq=-10.613);
extends HHmodelica.Icons.OpenChannel;

equation
g = g_max;

end LeakChannel;

model LipidBilayer "lipid bilayer separating external and internal
potential (i.e. acting as a capacitor)"

extends TwoPinComponent;
extends HHmodelica.Icons.LipidBilayer;
TemperatureOutput temp = temp_m annotation (Placement(transformation(

extent={{40, 48},{60, 68}})));
parameter Real temp_m(unit="degC") = 6.3 "constant membrane

temperature";
parameter Real c(unit="uF/cm2") = 1 "membrane capacitance";
parameter Real v_init(unit="mV") = -90 "short initial stimulation";

initial equation
v = v_init;

equation
der(v) = 1000 * i / c "multiply with 1000 to get mV/s instead of v/s";

end LipidBilayer;

model ConstantCurrent "applies current to positive pin regardless of
voltage"

extends TwoPinComponent;
parameter Real i_const(unit="uA/cm2") "current applied to positive pin

";
equation

i = i_const;
end ConstantCurrent;

model Ground "sets voltage to zero, acting as a reference for measuring
potential"

PositivePin p;
equation

p.v = 0;
end Ground;

model Membrane "full membrane model that can be used in current clamp
experiments"

extends HHmodelica.Icons.LipidBilayer;
PositivePin p "positive extracellular pin" annotation (Placement(

transformation(extent={{-10, 90},{10, 110}})));
NegativePin n "negative intracellular pin" annotation (Placement(

transformation(extent={{-10, -90},{10, -110}})));
PotassiumChannel c_pot;
SodiumChannel c_sod;
LeakChannel c_leak;
LipidBilayer l2 "lipid bilayer as capacitor";

equation
connect(c_pot.p, l2.p);
connect(c_pot.n, l2.n);
connect(c_sod.p, l2.p);
connect(c_sod.n, l2.n);
connect(c_leak.p, l2.p);
connect(c_leak.n, l2.n);
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connect(p, l2.p);
connect(n, l2.n);
connect(c_pot.temp, l2.temp);
connect(c_sod.temp, l2.temp);

end Membrane;

model CurrentClamp "current clamp that applies constant current to the
membrane"

extends HHmodelica.Icons.CurrentClamp;
PositivePin p "extracellular electrode" annotation (Placement(

transformation(extent={{-10, 90},{10, 110}})));
NegativePin n "intracellular electrode(s)" annotation (Placement(

transformation(extent={{-10, -90},{10, -110}})));
parameter Real i_const(unit="uA/cm2") = 40 "current applied to

membrane";
ConstantCurrent cur(i_const=i_const) "external current applied to

membrane";
Ground g "reference electrode";
Real v(unit="mV") = -n.v "measured membrane potential";

equation
connect(p, cur.p);
connect(n, cur.n);
connect(g.p, p);

end CurrentClamp;

end Components;

COMPLETE MODELS
Listing 5: HHmodelica/CompleteModels/HHmono.mo
within HHmodelica.CompleteModels;
partial model PotentialAdapter "base class that converts membrane

potential to current standards"
parameter Real e_r(unit="mV") = -75 "resting potential";
Real v_m(unit="mV") = e_r - v "absolute membrane potential (v_in - v_out

)";
Real v(unit="mV") "membrane potential as displacement from resting

potential (out - in)";
annotation(

experiment(StartTime = 0, StopTime = 30, Tolerance = 1e-6, Interval =
0.01),

__OpenModelica_simulationFlags(s = "dassl"),
__MoST_experiment(variableFilter="v_m|v|gK|gNa|n|m|h"),
Documentation(info="

<html>
<p>The variable e_r in this adapter can be used to plot the

absolute
membrane potential as difference between the potential on the

inside
and the potential on the outside of the cell.
This conforms with current standards, but not to the original

equations
by Hodgkin and Huxley, which define V as the displacement from the
resting potential with opposite sign.</p>
<p>For this conversion, a value for the resting potential e_r must

be
assumed, which is not given in the original article. We use e_r =

-75 mV,
because this is the value that is used by the BioModels

implementation of
the Hodgkin-Huxley model and corresponds to the resting potential
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measured for the squid giant axon <i>in vivo</i>
(cf. Moore and Cole, 1960, https://doi.org/10.1085/jgp.43.5.961)

.</p>
</html>

")
);

end PotentialAdapter;

Listing 6: HHmodelica/CompleteModels/HHmono.mo
within HHmodelica.CompleteModels;
model HHmono "monolithic version of the Hodgkin-Huxley model"

extends PotentialAdapter;
parameter Real e_r(unit="mV") = -75 "resting potential";
Real v_m(unit="mV") = e_r - v "absolute membrane potential (v_in - v_out

)";
parameter Real Cm(unit = "uF/cm2") = 1;
parameter Real gbarNa(unit = "mmho/cm2") = 120 "max sodium conductance

";
parameter Real gbarK(unit = "mmho/cm2") = 36 "max potassium

conductance";
parameter Real gbar0(unit = "mmho/cm2") = 0.3;
parameter Real VNa(unit = "mV") = -115;
parameter Real VK(unit = "mV") = 12;
parameter Real Vl(unit = "mV") = -10.613;
parameter Real Temp = 6.3 ;
parameter Real phi = 3ˆ((Temp-6.3)/10);
parameter Real Vdepolar(unit = "mV") = -90;
parameter Real Vnorm(unit = "mV") = 1 "for non-dimensionalizing v in

function expressions, i.e. exp(v/Vnorm) replaces exp(v).";
parameter Real msecm1(unit = "1/msec") = 1 "for adding units to alpha

and beta variables";
parameter Real alphan0 (unit="1/msec") = 0.1/(exp(1)-1) "always use v=0

to calculate i.c.";
parameter Real betan0 (unit="1/msec") = 0.125;
parameter Real alpham0 (unit="1/msec") = 2.5/(exp(2.5)-1);
parameter Real betam0 (unit="1/msec") = 4;
parameter Real alphah0 (unit="1/msec") = 0.07;
parameter Real betah0 (unit="1/msec") = 1/(exp(3)+1);

parameter Real minusI(unit = "nA/cm2") = 40;
input Real Vclamp(unit = "mV");

parameter Real clamp_0no_1yes = 0;

//Variables for all the algebraic equations
Real INa(unit = "nA/cm2") "Ionic currents";
Real IK(unit = "nA/cm2") "Ionic currents";
Real Il(unit = "nA/cm2") "Ionic currents";
Real alphan(unit = "1/msec") "rate constant of particles from out to in

";
Real betan(unit = "1/msec") "rate constant from in to out";
Real alpham(unit = "1/msec") "rate constant of activating molecules

from out to in";
Real betam(unit = "1/msec") "rate constant of activating molecules

from in to out";
Real alphah(unit = "1/msec") "rate constant of inactivating molecules

from out to in";
Real betah(unit = "1/msec") "rate constant of inactivating molecules

from in to out";
Real gNa(unit = "mmho/cm2") "Sodium conductance";
Real gK(unit = "mmho/cm2") "potassium conductance";
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Real Iion(unit = "nA/cm2");

//State variables for all the ODEs
Real VV(unit="mV");
Real v(unit="mV") "displacement of the membrane potential from its

resting value (depolarization negative)";
Real n "proportion of the particles in a certain position";
Real m "proportion of activating molecules on the inside";
Real h "proportion of inactivating molecules on the outside";

protected
Real ninf;
Real minf;
Real hinf;
Real taun(unit="msec");
Real taum(unit="msec");
Real tauh(unit="msec");

initial equation
VV = if clamp_0no_1yes == 0 then Vdepolar else Vclamp;

n = alphan0/(alphan0+betan0);
m = alpham0/(alpham0+betam0);
h = alphah0/(alphah0+betah0);

equation
//if v/Vnorm == -10 then
// alphan = 0.1;
//else
alphan = 0.01 * (v / Vnorm + 10) / (exp((v / Vnorm + 10) / 10) - 1);
//end if;
betan = msecm1 * (0.125 * exp(v / Vnorm / 80));
//if v/Vnorm == -25 then
// alpham = 1;
//else
alpham = 0.1 * (v / Vnorm + 25) / (exp((v / Vnorm + 25) / 10) - 1);
//end if;
betam = msecm1 * (4 * exp(v / Vnorm / 18));
alphah = msecm1*(0.07*exp((v/Vnorm)/20));
betah = msecm1*(1/(exp(( v/Vnorm+30)/10)+1));
minf = alpham/(alpham+betam);
ninf = alphan/(alphan+betan);
hinf = alphah/(alphah+betah);
taun =1/(alphan+betan);
tauh =1/(alphah+betah);
taum =1/(alpham+betam);
gNa = gbarNa * mˆ3 * h;
gK = gbarK * nˆ4;
INa = gNa * (v-VNa);
IK = gK * (v-VK);
Il = gbar0 * (v-Vl);
Iion = INa + IK + Il;
if (clamp_0no_1yes == 0) then

der(VV) = (-minusI-INa-IK-Il)/Cm;
v = VV;

else
der(VV) = 0;
v = Vclamp;

end if;
der(n) = phi*(alphan*(1-n)-betan*n);
der(m) = phi*(alpham*(1-m)-betam*m);
der(h) = phi*(alphah*(1-h)-betah*h);
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annotation(
experiment(StartTime = 0, StopTime = 30, Tolerance = 1e-6, Interval =

0.01),
__OpenModelica_simulationFlags(s = "dassl"),
__MoST_experiment(variableFilter="v_m|v|gK|gNa|n|m|h")

);
end HHmono;

Listing 7: HHmodelica/CompleteModels/HHmodular.mo
within HHmodelica.CompleteModels;
model HHmodular "’flat’ version of the modular model (no membrane

container)"
extends PotentialAdapter(v = l2.v);
HHmodelica.Components.PotassiumChannel c_pot annotation(

Placement(visible = true, transformation(origin = {-33, 3}, extent =
{{-17, -17}, {17, 17}}, rotation = 0)));

HHmodelica.Components.SodiumChannel c_sod annotation(
Placement(visible = true, transformation(origin = {1,3}, extent =

{{-17, -17}, {17, 17}}, rotation = 0)));
HHmodelica.Components.LeakChannel c_leak annotation(

Placement(visible = true, transformation(origin = {35, 3}, extent =
{{-17, -17}, {17, 17}}, rotation = 0)));

HHmodelica.Components.LipidBilayer l2 annotation(
Placement(visible = true, transformation(origin = {-67, 3}, extent =

{{-17, -17}, {17, 17}}, rotation = 0)));
HHmodelica.Components.CurrentClamp clamp annotation(

Placement(visible = true, transformation(origin = {69, 3}, extent =
{{-17, -17}, {17, 17}}, rotation = 0)));

equation
connect(l2.p, c_pot.p) annotation(

Line(points = {{-66, 20}, {-66, 40}, {-33, 40}, {-33, 20}}, color =
{0, 0, 255}));

connect(c_pot.p, c_sod.p) annotation(
Line(points = {{-33, 20}, {-32, 20}, {-32, 40}, {0, 40}, {0, 20}, {2,

20}}, color = {0, 0, 255}));
connect(c_sod.p, c_leak.p) annotation(

Line(points = {{2, 20}, {2, 20}, {2, 40}, {34, 40}, {34, 20}, {36,
20}}, color = {0, 0, 255}));

connect(c_leak.p, clamp.p) annotation(
Line(points = {{36, 20}, {36, 20}, {36, 40}, {68, 40}, {68, 20}, {70,

20}}, color = {0, 0, 255}));
connect(clamp.n, c_leak.n) annotation(

Line(points = {{70, -14}, {68, -14}, {68, -40}, {36, -40}, {36, -14},
{36, -14}}, color = {0, 0, 255}));

connect(c_leak.n, c_sod.n) annotation(
Line(points = {{36, -14}, {34, -14}, {34, -40}, {2, -40}, {2, -14},

{2, -14}}, color = {0, 0, 255}));
connect(c_sod.n, c_pot.n) annotation(

Line(points = {{2, -14}, {0, -14}, {0, -40}, {-32, -40}, {-32, -14},
{-33, -14}}, color = {0, 0, 255}));

connect(c_pot.n, l2.n) annotation(
Line(points = {{-33, -14}, {-33, -40}, {-66, -40}, {-66, -14}}, color

= {0, 0, 255}));
connect(l2.temp, c_pot.temp) annotation(

Line(points = {{-58, 12}, {-58, 16}, {-42, 16}, {-42, 13}}, color =
{255, 0, 0}));

connect(c_pot.temp, c_sod.temp) annotation(
Line(points = {{-42, 13}, {-40, 13}, {-40, 16}, {-8, 16}, {-8, 12}},

color = {255, 0, 0}));
annotation(
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experiment(StartTime = 0, StopTime = 0.03, Tolerance = 1e-6, Interval =
1e-05),

__OpenModelica_simulationFlags(s = "dassl"),
__MoST_experiment(variableFilter="v_m|clamp\\.(v|i)|c_pot\\.(g|gate_act

\\.n)|c_sod\\.(g|gate_act\\.n|gate_inact\\.n)")
);
end HHmodular;

Listing 8: HHmodelica/CompleteModels/HHmodHier.mo
within HHmodelica.CompleteModels;
model HHmodHier

extends PotentialAdapter(v = m.l2.v);
import HHmodelica.Components.Membrane;
import HHmodelica.Components.CurrentClamp;
Membrane m;
// i = 40 => recurring depolarizations
// i = 0 => v returns to 0
CurrentClamp c(i_const=40);

equation
connect(m.p, c.p);
connect(m.n, c.n);

annotation(
experiment(StartTime = 0, StopTime = 0.03, Tolerance = 1e-6, Interval =

1e-05),
__OpenModelica_simulationFlags(s = "dassl"),
__MoST_experiment(variableFilter="c\\.(v|i)|m\\.c_pot\\.(g|gate_act\\.n)

|m\\.c_sod\\.(g|gate_act\\.n|gate_inact\\.n)")
);
end HHmodHier;

ICONS
Listing 9: HHmodelica/Icons/LipidBilayer.mo
within HHmodelica.Icons;
model LipidBilayer "lipid bilayer with red circles on outside and black

lines on inside"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Rectangle(
origin= {-100,2145.04},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {230,230,230},
extent= {{0.17,-2098.02},{200,-2245.04}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.86, -2181.04}, {198.41, -2166.55}, {196.24,

-2148.38}},
rotation= -0
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),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.41, -2181.04}, {184.86, -2166.55}, {187.89,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{185.50,-2179.95},{198.35,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.86, -2109.77}, {198.41, -2124.27}, {196.24,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.41, -2109.77}, {184.86, -2124.27}, {187.89,

-2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.57, -2181.04}, {15.12, -2166.55}, {12.95, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.12, -2181.04}, {1.58, -2166.55}, {4.60, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.21,-2179.95},{15.06,-2192.80}},
rotation= -0

),
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Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.57, -2109.77}, {15.12, -2124.27}, {12.95, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.12, -2109.77}, {1.58, -2124.27}, {4.60, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100, -2045.04}, {100, -2098.03}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.85, -2181.04}, {30.39, -2166.55}, {28.23, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{21.39, -2181.04}, {16.85, -2166.55}, {19.88, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.48,-2179.95},{30.33,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.85, -2109.77}, {30.39, -2124.27}, {28.23, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
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points= {{21.39, -2109.77}, {16.85, -2124.27}, {19.88, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.12, -2181.04}, {45.67, -2166.55}, {43.50, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{36.67, -2181.04}, {32.12, -2166.55}, {35.15, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.76,-2179.95},{45.60,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.12, -2109.77}, {45.67, -2124.27}, {43.50, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{36.67, -2109.77}, {32.12, -2124.27}, {35.15, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.40, -2181.04}, {60.94, -2166.55}, {58.78, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.94, -2181.04}, {47.40, -2166.55}, {50.43, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
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lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.03,-2179.95},{60.88,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.40, -2109.77}, {60.94, -2124.27}, {58.78, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.94, -2109.77}, {47.40, -2124.27}, {50.43, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{71.67, -2181.04}, {76.21, -2166.55}, {74.05, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{67.21, -2181.04}, {62.67, -2166.55}, {65.70, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{63.30,-2179.95},{76.15,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{71.67, -2109.77}, {76.21, -2124.27}, {74.05, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{67.21, -2109.77}, {62.67, -2124.27}, {65.70, -2142.87}},
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rotation= -0
),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{86.95, -2181.04}, {91.49, -2166.55}, {89.32, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{82.49, -2181.04}, {77.95, -2166.55}, {80.97, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{78.58,-2179.95},{91.43,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{86.95, -2109.77}, {91.49, -2124.27}, {89.32, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{82.49, -2109.77}, {77.95, -2124.27}, {80.97, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{102.22, -2181.04}, {106.76, -2166.55}, {104.60,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{97.76, -2181.04}, {93.22, -2166.55}, {96.25, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
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lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{93.85,-2179.95},{106.70,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{102.22, -2109.77}, {106.76, -2124.27}, {104.60,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{97.76, -2109.77}, {93.22, -2124.27}, {96.25, -2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{117.49, -2181.04}, {122.04, -2166.55}, {119.87,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{113.04, -2181.04}, {108.49, -2166.55}, {111.52,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{109.13,-2179.95},{121.98,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{117.49, -2109.77}, {122.04, -2124.27}, {119.87,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
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color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{113.04, -2109.77}, {108.49, -2124.27}, {111.52,

-2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{132.77, -2181.04}, {137.31, -2166.55}, {135.15,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{128.31, -2181.04}, {123.77, -2166.55}, {126.80,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{124.40,-2179.95},{137.25,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{132.77, -2109.77}, {137.31, -2124.27}, {135.15,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{128.31, -2109.77}, {123.77, -2124.27}, {126.80,

-2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.04, -2181.04}, {152.58, -2166.55}, {150.42,

-2148.38}},
rotation= -0

),
Line(
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origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{143.59, -2181.04}, {139.04, -2166.55}, {142.07,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.68,-2179.95},{152.52,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.04, -2109.77}, {152.58, -2124.27}, {150.42,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{143.59, -2109.77}, {139.04, -2124.27}, {142.07,

-2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.32, -2181.04}, {167.86, -2166.55}, {165.69,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.86, -2181.04}, {154.32, -2166.55}, {157.35,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{154.95,-2179.95},{167.80,-2192.80}},
rotation= -0

),
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Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.32, -2109.77}, {167.86, -2124.27}, {165.69,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.86, -2109.77}, {154.32, -2124.27}, {157.35,

-2142.87}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.59, -2181.04}, {183.13, -2166.55}, {180.97,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.13, -2181.04}, {169.59, -2166.55}, {172.62,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.22,-2179.95},{183.07,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.59, -2109.77}, {183.13, -2124.27}, {180.97,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.13, -2109.77}, {169.59, -2124.27}, {172.62,

-2142.87}},
rotation= -0
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),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{185.50,-2098.02},{198.35,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.21,-2098.02},{15.06,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.48,-2098.02},{30.33,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.76,-2098.02},{45.60,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.03,-2098.02},{60.88,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{63.30,-2098.02},{76.15,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{78.58,-2098.02},{91.43,-2110.86}},
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rotation= -0
),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{93.85,-2098.02},{106.70,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{109.13,-2098.02},{121.98,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{124.40,-2098.02},{137.25,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.68,-2098.02},{152.52,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{154.95,-2098.02},{167.80,-2110.86}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.22,-2098.02},{183.07,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100, -2245.04}, {100, -2192.79}},
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rotation= -0
)

}
)

);
end LipidBilayer;

Listing 10: HHmodelica/Icons/OpenChannel.mo
within HHmodelica.Icons;
model OpenChannel "pore that is open on both sides"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{62.67, -2098.02}, {62.67, -2192.80}, {76.96, -2192.80},

{82.99, -2186.78}, {82.99, -2145.04}, {82.99, -2115.02},
{82.99, -2098.02}},

fillPattern= FillPattern.Solid,
fillColor= {124,154,239},
lineColor= {0,0,0},
rotation= -0

),
Polygon(

origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{137.43, -2098.02}, {137.43, -2192.80}, {123.13,

-2192.80}, {117.11, -2186.78}, {117.11, -2145.04}, {117.11,
-2115.02}, {117.11, -2098.02}},

fillPattern= FillPattern.Solid,
fillColor= {124,154,239},
lineColor= {0,0,0},
rotation= -0

)
}

)
);
end OpenChannel;

Listing 11: HHmodelica/Icons/Activatable.mo
within HHmodelica.Icons;
model Activatable "pore that is open on the inside and closed on the

outside"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,2145.04},
lineThickness= 0.25,
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pattern= LinePattern.Solid,
points= {{62.67, -2098.02}, {62.67, -2192.80}, {76.96, -2192.80},

{82.99, -2186.78}, {82.99, -2145.04}, {100.05, -2115.02},
{100.05, -2098.02}},

fillPattern= FillPattern.Solid,
fillColor= {124,154,239},
lineColor= {0,0,0},
rotation= -0

),
Polygon(

origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{137.43, -2098.02}, {137.43, -2192.80}, {123.13,

-2192.80}, {117.11, -2186.78}, {117.11, -2145.04}, {100.05,
-2115.02}, {100.05, -2098.02}},

fillPattern= FillPattern.Solid,
fillColor= {124,154,239},
lineColor= {0,0,0},
rotation= -0

)
}

)
);
end Activatable;

Listing 12: HHmodelica/Icons/Inactivatable.mo
within HHmodelica.Icons;
model Inactivatable "hinged lid for ion channel"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Polygon(
origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{62.67, -2192.80}, {58.84, -2188.42}, {2.55, -2237.69},

{6.38, -2242.07}, {17.17, -2232.62}, {25.67, -2233.19}, {51.34,
-2210.71}, {51.91, -2202.22}},

fillPattern= FillPattern.Solid,
fillColor= {180,181,183},
lineColor= {0,0,0},
rotation= -0

)
}

)
);
end Inactivatable;

Listing 13: HHmodelica/Icons/IonChannel.mo
within HHmodelica.Icons;
model IonChannel "base model for ion channel with gap in lipid bilayer"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
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extent= {{-100,-100},{100,100}}
),
graphics= {

Rectangle(
origin= {-100,2145.04},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {230,230,230},
extent= {{0.22,-2098.02},{200.05,-2245.04}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.91, -2181.04}, {198.45, -2166.55}, {196.29,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.46, -2181.04}, {184.91, -2166.55}, {187.94,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{185.55,-2179.95},{198.39,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.91, -2109.77}, {198.45, -2124.27}, {196.29,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.46, -2109.77}, {184.91, -2124.27}, {187.94,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
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fillColor= {219,0,0},
extent= {{185.55,-2098.02},{198.39,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.62, -2181.04}, {15.17, -2166.55}, {13, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.17, -2181.04}, {1.62, -2166.55}, {4.65, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.26,-2179.95},{15.10,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.62, -2109.77}, {15.17, -2124.27}, {13, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.17, -2109.77}, {1.62, -2124.27}, {4.65, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.26,-2098.02},{15.10,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100.05, -2045.04}, {100.05, -2098.03}},
rotation= -0

),
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Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.90, -2181.04}, {30.44, -2166.55}, {28.28, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{21.44, -2181.04}, {16.90, -2166.55}, {19.93, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.53,-2179.95},{30.38,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.90, -2109.77}, {30.44, -2124.27}, {28.28, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{21.44, -2109.77}, {16.90, -2124.27}, {19.93, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.53,-2098.02},{30.38,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.17, -2181.04}, {45.71, -2166.55}, {43.55, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
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thickness= 0.25,
points= {{36.71, -2181.04}, {32.17, -2166.55}, {35.20, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.80,-2179.95},{45.65,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.17, -2109.77}, {45.71, -2124.27}, {43.55, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{36.71, -2109.77}, {32.17, -2124.27}, {35.20, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.80,-2098.02},{45.65,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.45, -2181.04}, {60.99, -2166.55}, {58.82, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.99, -2181.04}, {47.45, -2166.55}, {50.47, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.08,-2179.95},{60.93,-2192.80}},
rotation= -0
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),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.45, -2109.77}, {60.99, -2124.27}, {58.82, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.99, -2109.77}, {47.45, -2124.27}, {50.47, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.08,-2098.02},{60.93,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.09, -2181.04}, {152.63, -2166.55}, {150.47,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{143.63, -2181.04}, {139.09, -2166.55}, {142.12,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.72,-2179.95},{152.57,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.09, -2109.77}, {152.63, -2124.27}, {150.47,

-2142.44}},
rotation= -0

),
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Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{143.63, -2109.77}, {139.09, -2124.27}, {142.12,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.72,-2098.02},{152.57,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.36, -2181.04}, {167.91, -2166.55}, {165.74,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.91, -2181.04}, {154.36, -2166.55}, {157.39,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{155,-2179.95},{167.85,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.36, -2109.77}, {167.91, -2124.27}, {165.74,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.91, -2109.77}, {154.36, -2124.27}, {157.39,

-2142.87}},
rotation= -0
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),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{155,-2098.02},{167.85,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.64, -2181.04}, {183.18, -2166.55}, {181.02,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.18, -2181.04}, {169.64, -2166.55}, {172.67,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.27,-2179.95},{183.12,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.64, -2109.77}, {183.18, -2124.27}, {181.02,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.18, -2109.77}, {169.64, -2124.27}, {172.67,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.27,-2098.02},{183.12,-2110.86}},
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rotation= -0
),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100.05, -2245.04}, {100.05, -2192.79}},
rotation= -0

)
}

)
);
end IonChannel;

Listing 14: HHmodelica/Icons/CurrentClamp.mo
within HHmodelica.Icons;
model CurrentClamp "two electrodes sticking through lipid bilayer"
annotation(

Icon(
coordinateSystem(

preserveAspectRatio= false,
extent= {{-100,-100},{100,100}}

),
graphics= {

Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{132.77, -2181.04}, {137.31, -2166.55}, {135.15,

-2148.38}},
rotation= -0

),
Rectangle(

origin= {-100,2145.04},
lineThickness= 1,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {230,230,230},
extent= {{0.17,-2098.02},{200,-2245.04}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.86, -2181.04}, {198.41, -2166.55}, {196.24,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.41, -2181.04}, {184.86, -2166.55}, {187.89,

-2147.95}},
rotation= -0

),
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Ellipse(
origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{185.50,-2179.95},{198.35,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.57, -2181.04}, {15.12, -2166.55}, {12.95, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.12, -2181.04}, {1.58, -2166.55}, {4.60, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.21,-2179.95},{15.06,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100, -2045.04}, {100, -2098.03}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.85, -2181.04}, {30.39, -2166.55}, {28.23, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{21.39, -2181.04}, {16.85, -2166.55}, {19.88, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
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fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.48,-2179.95},{30.33,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.12, -2181.04}, {45.67, -2166.55}, {43.50, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{36.67, -2181.04}, {32.12, -2166.55}, {35.15, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.76,-2179.95},{45.60,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.40, -2181.04}, {60.94, -2166.55}, {58.78, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.94, -2181.04}, {47.40, -2166.55}, {50.43, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.03,-2179.95},{60.88,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{71.67, -2181.04}, {76.21, -2166.55}, {74.05, -2148.38}},
rotation= -0
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),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{67.21, -2181.04}, {62.67, -2166.55}, {65.70, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{63.30,-2179.95},{76.15,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{86.95, -2181.04}, {91.49, -2166.55}, {89.32, -2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{82.49, -2181.04}, {77.95, -2166.55}, {80.97, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{78.58,-2179.95},{91.43,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{102.22, -2181.04}, {106.76, -2166.55}, {104.60,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{97.76, -2181.04}, {93.22, -2166.55}, {96.25, -2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
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lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{93.85,-2179.95},{106.70,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{117.49, -2181.04}, {122.04, -2166.55}, {119.87,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{113.04, -2181.04}, {108.49, -2166.55}, {111.52,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{109.13,-2179.95},{121.98,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{128.31, -2181.04}, {123.77, -2166.55}, {126.80,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{124.40,-2179.95},{137.25,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.04, -2181.04}, {152.58, -2166.55}, {150.42,

-2148.38}},
rotation= -0

),
Line(
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origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{143.59, -2181.04}, {139.04, -2166.55}, {142.07,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.68,-2179.95},{152.52,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.32, -2181.04}, {167.86, -2166.55}, {165.69,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.86, -2181.04}, {154.32, -2166.55}, {157.35,

-2147.95}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{154.95,-2179.95},{167.80,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.59, -2181.04}, {183.13, -2166.55}, {180.97,

-2148.38}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.13, -2181.04}, {169.59, -2166.55}, {172.62,

-2147.95}},
rotation= -0

),
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Ellipse(
origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.22,-2179.95},{183.07,-2192.80}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{100, -2245.04}, {100, -2192.79}},
rotation= -0

),
Polygon(

origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{198.69, -2060.29}, {187.99, -2085.82}, {113.84,

-2218.63}, {154.72, -2071.87}, {165.42, -2046.35}},
fillPattern= FillPattern.Solid,
fillColor= {210,246,244},
lineColor= {0,0,0},
rotation= -0

),
Polygon(

origin= {-100,2145.04},
lineThickness= 0.25,
pattern= LinePattern.Solid,
points= {{1.31, -2060.29}, {12.01, -2085.82}, {86.16, -2218.63},

{45.28, -2071.87}, {34.58, -2046.35}},
fillPattern= FillPattern.Solid,
fillColor= {210,246,244},
lineColor= {0,0,0},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{193.86, -2109.77}, {198.41, -2124.27}, {196.24,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{189.41, -2109.77}, {184.86, -2124.27}, {187.89,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
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fillColor= {219,0,0},
extent= {{185.50,-2098.02},{198.35,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{10.57, -2109.77}, {15.12, -2124.27}, {12.95, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{6.12, -2109.77}, {1.58, -2124.27}, {4.60, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{2.21,-2098.02},{15.06,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{25.85, -2109.77}, {30.39, -2124.27}, {28.23, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{21.39, -2109.77}, {16.85, -2124.27}, {19.88, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{17.48,-2098.02},{30.33,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{41.12, -2109.77}, {45.67, -2124.27}, {43.50, -2142.44}},
rotation= -0

),
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Line(
origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{36.67, -2109.77}, {32.12, -2124.27}, {35.15, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{32.76,-2098.02},{45.60,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{56.40, -2109.77}, {60.94, -2124.27}, {58.78, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{51.94, -2109.77}, {47.40, -2124.27}, {50.43, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{48.03,-2098.02},{60.88,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{71.67, -2109.77}, {76.21, -2124.27}, {74.05, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{67.21, -2109.77}, {62.67, -2124.27}, {65.70, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
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fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{63.30,-2098.02},{76.15,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{86.95, -2109.77}, {91.49, -2124.27}, {89.32, -2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{82.49, -2109.77}, {77.95, -2124.27}, {80.97, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{78.58,-2098.02},{91.43,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{102.22, -2109.77}, {106.76, -2124.27}, {104.60,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{97.76, -2109.77}, {93.22, -2124.27}, {96.25, -2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{93.85,-2098.02},{106.70,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
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points= {{117.49, -2109.77}, {122.04, -2124.27}, {119.87,
-2142.44}},

rotation= -0
),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{113.04, -2109.77}, {108.49, -2124.27}, {111.52,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{109.13,-2098.02},{121.98,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{132.77, -2109.77}, {137.31, -2124.27}, {135.15,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{128.31, -2109.77}, {123.77, -2124.27}, {126.80,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{124.40,-2098.02},{137.25,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{148.04, -2109.77}, {152.58, -2124.27}, {150.42,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
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thickness= 0.25,
points= {{143.59, -2109.77}, {139.04, -2124.27}, {142.07,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{139.68,-2098.02},{152.52,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{163.32, -2109.77}, {167.86, -2124.27}, {165.69,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{158.86, -2109.77}, {154.32, -2124.27}, {157.35,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{154.95,-2098.02},{167.80,-2110.86}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{178.59, -2109.77}, {183.13, -2124.27}, {180.97,

-2142.44}},
rotation= -0

),
Line(

origin= {-100,2145.04},
color= {0,0,0},
pattern= LinePattern.Solid,
thickness= 0.25,
points= {{174.13, -2109.77}, {169.59, -2124.27}, {172.62,

-2142.87}},
rotation= -0

),
Ellipse(

origin= {-100,2145.04},
lineThickness= 0.86,
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pattern= LinePattern.None,
fillPattern= FillPattern.Solid,
fillColor= {219,0,0},
extent= {{170.22,-2098.02},{183.07,-2110.86}},
rotation= -0

)
}

)
);
end CurrentClamp;
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mathematical model of the atrioventricular node

Christopher Schölzel1,4* Valeria Blesius1,4 Gernot Ernst2, 3 Alexander Goesmann4

Andreas Dominik1

1 Technische Hochschule Mittelhessen – THM University of Applied Sciences, Giessen,
Germany
2 Vestre Viken Hospital Trust, Kongsberg, Norway
3 University of Oslo, Norway
4 Justus Liebig University Giessen, Germany

* christopher.schoelzel@mni.thm.de

1 Supplementary Figures
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Figure 1. Estimation of working time distribution for the development of the Modelica
version of the Inada model. Estimates were taken from time stamps of PDF comments
in the articles listed in Figure 1 and of commits in the version control system Git. In a
first step, we always assumed that a full day was spent on literature research or on the
code in the repository. To correct for overlap on days where we worked both on the
repository and added comments in the PDF documents, we scaled the whole dataset to
the amount of unique days spend for development (86).
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Figure 2. Steady states of gating variables in ICa,L. Solid lines: Simulation result of
LTypeCalciumSteady. Dashed lines: Reference data extracted from Figure S1A and
S1B in [1]. The plots are in perfect agreement. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 3. Time constants of gating variables in ICa,L. Solid lines: Simulation result of
LTypeCalciumSteady. Dashed lines: Reference data extracted from Figure S1C (fast
inactivation) and S1D (slow inactivation) in [1]. A reference plot for the activation gate
is not provided in [1]. The plots are in perfect agreement. This figure was created with
InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 4. Reference plots for current-voltage relationship of ICa,L obtained with a
voltage pulse protocol with a holding potential of -70 mV, a holding duration of 5 s, and
a pulse duration of 300 ms. Solid lines: Simulation result of LTypeCalciumIV. Dashed
lines: Reference data extracted from Figure S1E in [1]. The plots are in perfect
agreement. This figure was created with InaMo version 1.4.2, which is available under
the DOI 10.5281/zenodo.4533008.
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Figure 5. Time course of ICa,L when switching from holding potential of -40 mV to
prolonged stimulation at +10 mV. Solid line: Simulation result of LTypeCalciumStep.
Dashed line: Reference data extracted from Figure S1H in [1]. The plots are in perfect
agreement. Note, however, that while Inada et al. state that they used AN cells for plot
S1H, NH cells had to be used instead to reach this agreement. Additionally, it seems
that the x axis of Figure S1H is scaled differently than the measuring strip in the plot
suggests. To obtain a good fit, time stamps extracted from the figure have to be
multiplied by a scaling factor of 0.75. This figure was created with InaMo version 1.4.2,
which is available under the DOI 10.5281/zenodo.4533008.
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Figure 6. Steady states for activation and inactivation gates of Ito. Solid lines:
Simulation result of TransientOutwardSteady. Dashed lines: Reference data extracted
from Figures S2A and S2B in [1]. The plots are in perfect agreement. This figure was
created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 7. Time constants for gating variables in Ito. Solid lines: Simulation result of
TransientOutwardSteady. Dashed lines: Reference data extracted from Figures S2C and
S2D in [1]. A reference plot for activation is not provided in [1]. The fast inactivation is
in perfect agreement, but the slow inactivation shows a lower minimum value. It seems
that the minimum in Figure S2D is closer to 0.2 s than 0.1 s as given in [1] and the
C++ code. Since article and C++ code agree on the value 0.1 s, we assume that Figure
S2D was generated with an older version of the model. This figure was created with
InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 8. Time course of Ito after a stimulation to different voltages for 500 ms from a
holding potential of -80 mV that was kept for 20 s before the stimulation. Solid lines:
Simulation result of TransientOutwardIV. Dashed lines: Reference data extracted from
Figure S2E in [1]. While Inada et al. state that they used AN cells for plot S2E, NH
cells were used instead to reach a better agreement to the reference plot. The absolute
values for the current are larger for InaMo than for the reference. This may be due to
differences in the holding duration, which was not reported by Inada et al. . We chose a
holding duration 20 s for a full return to the steady state, since otherwise the previous
pulse would influence the following. The differences to the reference vanish when a
scaling factor of 0.75 is applied to the simulation results. This figure was created with
InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 9. Current-voltage relationship of Ito obtained with a voltage pulse protocol
with a holding potential of -80 mV, a holding duration of 20 s, and a pulse duration of
500 ms. Solid line: Simulation result of TransientOutwardIV. Dashed line: Reference
data extracted from Figure S2F in [1]. The plots are in perfect agreement. This figure
was created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 10. Steady state of the gating variables for IK,r. Solid lines: Simulation result
of RapidDelayedRectifierSteady. Dashed lines: Reference data extracted from Figure
S3A in [1]. The plots are in perfect agreement. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 11. Time constants of the gating variables for IK,r. Solid lines: Simulation
result of RapidDelayedRectifierSteady. Dashed lines: Reference data extracted from
Figure S3B in [1] (showing fast activation). Reference plots for activation are not
provided in [1]. The plots are in perfect agreement. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 12. Current-voltage relationship of IK,r obtained with a voltage pulse protocol
with a holding potential of -40 mV, a holding duration of 5 s, and a pulse duration of
500 ms. Solid lines: Simulation result of RapidDelayedRectifierIV. Dashed lines:
Reference data extracted from Figures S3C and S3D in [1]. Figure S3C shows the
current at the end of each stimulation pulse. Figure S3D shows the peak current
obtained after the voltage shifts back from the pulse voltage to the holding potential.
Data from Figure S3D is in perfect agreement with simulation results, but data from
Figure S3C is shifted by 5 mV towards higher voltages. This could be explained if Inada
et al. accidentally associated currents to the newly started pulse right after the current
was measured instead of the previous pulse. This figure was created with InaMo version
1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 13. Current time course of IK,r after 500 ms pulses with different voltages from
a holding potential of -40 mV which is held for 5 s. Solid lines: Simulation result of
RapidDelayedRectifierIV. Dashed lines: Reference data extracted from Figure S3E
in [1]. The plots are in perfect agreement. This figure was created with InaMo version
1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 14. Steady state of activation gating variable in If . Solid line: Simulation
result of HyperpolarizationActivatedSteady. Dashed line: Reference data extracted
from Figure S4A in [1]. The plots are in perfect agreement. This figure was created
with InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 15. Time constant for activation gating variable in If . Solid line: Simulation
result of HyperpolarizationActivatedSteady. Dashed line: Reference data extracted
from Figure S4B in [1]. The plots are in perfect agreement. This figure was created
with InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 16. Current-voltage relationship of If obtained with a voltage pulse protocol
with a holding potential of -50 mV, a holding duration of 20 s, and a pulse duration of 4
s. Solid line: Simulation result of HyperpolarizationActivatedIV. Dashed line:
Reference data extracted from Figure S4C in [1]. The plots diverge for pulse voltages
between -100 to -60 mV with higher current densities in the reference data. We have no
good explanation for this difference, especially considering that Figure 17, which covers
similar voltage ranges using the same data, shows a perfect agreement for If . This
figure was created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 17. Time course of If after 4 s of stimulation to different voltages from a
resting potential of -50 mV, which was held for 20 s. Solid lines: Simulation result of
HyperpolarizationActivatedIV. Dashed lines: Reference data extracted from Figure
S4D in [1]. The plots are in perfect agreement. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 18. Steady state of gating variables in Ist. Solid lines: Simulation result of
SustainedInwardSteady. Dashed lines: Reference data extracted from Figure S5A in [1].
A reference plot for inactivation is not provided in [1]. The plots are in perfect
agreement. This figure was created with InaMo version 1.4.2, which is available under
the DOI 10.5281/zenodo.4533008.
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Figure 19. Current density time course of Ist during a voltage pulse protocol with a
holding potential of -80 mV, a holding duration of 15 s, and a pulse duration of 500 ms.
Solid lines: Simulation result of SustainedInwardIV. Dashed lines: Reference data
extracted from Figure S5B in [1]. We had to change the parameter gst to 0.27 nS
instead of the default 0.1 nS reported in [1] in order to obtain a good fit to the reference
data. Evidence that this is not due to an error in our implementation is provided by the
good agreement between our results and those of [2] in Figures 29 and 30. This figure
was created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 20. Current-voltage relationship of Ist obtained with a voltage pulse protocol
with a holding potential of -80 mV, a holding duration of 15 s, and a pulse duration of
500 ms. Solid line: Simulation result of SustainedInwardIV. Dashed line: Reference
data extracted from Figure S5C in [1]. As in the previous figure, we had to use
gst = 0.27 nS to obtain a good agreement. Additionally, the behavior for positive pulse
voltages is different. We do not have a good explanation for this difference, but can only
point to the reference plot by Kurata2002 et al. , which shows a behavior that is more
similar to InaMo than to the plot by Inada et al. (see Figure 30). This figure was
created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 21. Current density time course of INaCa following a ramp-shaped input
voltage. Solid lines: Simulation result of SodiumCalciumExchangerRampInada.
Dashed lines: Reference data extracted from Figure S6A in [1]. The current density in
InaMo is slightly lower than in the reference. This can be explained by the fact that
Inada et al. do not state whether calcium concentrations were held constant for the
experiment and if so, which value was assumed for

[
Ca2+

]
sub

. Since they used Data
from Convery et al. [3], we assume that the calcium and sodium concentrations should
be similar to those used in this experiment ([Na+]i = 10 mM, [Na+]o = 140 mM,[
Ca2+

]
o
= 2.5 mM). However, Convery et al. do not give a value for

[
Ca2+

]
sub

and
both using all values from Table S15 of [1] and using all values from [3] does not
reproduce the absolute values observed in Figure S6. We therefore used a mix of
settings from both sources and manually changed

[
Ca2+

]
sub

until a good fit with the
reference was achieved. The remaining differences disappear when the current density is
multiplied with a scaling factor of 1.18. This figure was created with InaMo version
1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 22. Current-voltage relationship of INaCa obtained following a ramp-shaped
input voltage (see previous figure). Solid lines: Simulation result of
SodiumCalciumExchangerRampInada. Dashed lines: Reference data extracted from
Figure S6B in [1]. As in the previous figure, InaMo has slightly lower current densities,
which can be explained by missing information about the experiment setup of Inada et
al. . Like in the previous Figure, the remaining differences disappear when the current
density is multiplied with a scaling factor of 1.18. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 23. Time course of membrane voltage and
[
Ca2+

]
i
for the full cell models

obtained by spontaneous activation (N cell) or stimulation with a current pulse protocol
issuing pulses of -1.2 nA/-0.95 nA with a pulse duration of 1 ms after a holding period
of 300 ms with a holding potential of 0 nA (AN/NH cell). Solid lines: Simulation result
of AllCells. Dotted lines: Reference data extracted from Figure S7 in [1]. For AN and
NH cells the voltage plot shows a lower resting potential and a slightly narrower action
potential with respect to the reference. For N cells,

[
Ca2+

]
i
is significantly lower than

in the reference. This can be explained by differences discussed in other figures.
Additionally, the current pulse protocol is not given in [1]. We assume it is the same as
for Figure 1 of [1], but this still only gives the stimulation current in terms of a
multiplicative constant applied to an unspecified threshold current. We also changed
the holding duration to 300 ms instead of 350 ms as it yields a better agreement. This
figure was created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 24. Steady state of gating variables for INa. Solid lines: Simulation result of
SodiumChannelSteady. Dashed lines: Reference data extracted from Figure 2A in [4].
The plots are in perfect agreement. This figure was created with InaMo version 1.4.2,
which is available under the DOI 10.5281/zenodo.4533008.
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Figure 25. Current-voltage relationship of INa obtained with a voltage pulse protocol
with a holding potential of -90 mV, a holding duration of 2 s, and a pulse duration of 50
ms. Solid line: Simulation result of SodiumChannelIV. Dashed line: Reference data
extracted from Figure 2B in [4]. The plots are in perfect agreement. This figure was
created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 26. Time constants of gating variables for INa. Solid lines: Simulation result of
SodiumChannelSteady. Dashed lines: Reference data extracted from Figures 2C–2E
in [4]. The plots are in perfect agreement. This figure was created with InaMo version
1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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Figure 27. Current-voltage relationship of IK,1 obtained by a voltage clamp
experiment with linearly rising input voltage. Solid line: Simulation result of
InwardRectifierLin. Dashed line: Reference data extracted from Figure 8 in [4]. The
plots are in perfect agreement. This figure was created with InaMo version 1.4.2, which
is available under the DOI 10.5281/zenodo.4533008.
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Figure 28. Current-voltage relationship of INaCa obtained from a voltage clamp
experiment with a linearly rising input voltage, which uses parameter settings from
Kurata et al. [2]. Solid line: Simulation result of SodiumCalciumExchangerLinKurata.
Dashed line: Reference data extracted from Figure 17 (upper left) in [2]. The plots are
in perfect agreement. This figure was created with InaMo version 1.4.2, which is
available under the DOI 10.5281/zenodo.4533008.
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Figure 29. Current density time course of Ist due to a 500 ms stimulation to different
voltages after holding the voltage at -80 mV for 15 s. This experiment uses parameter
settings and steady state equation from Kurata et al. [2]. Solid line: Simulation result
of SustainedInwardIVKurata. Dashed line: Reference data extracted from Figure 4
(bottom left) in [2]. The plots are in perfect agreement. This figure was created with
InaMo version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.

July 8, 2021 18/26

http://doi.org/10.5281/zenodo.4533008
http://doi.org/10.5281/zenodo.4533008


80 60 40 20 0 20 40 60
pulse potential [mV]

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

cu
rre

nt
 d

en
sit

y 
[p

A/
pF

]

Figure 30. Current-voltage relationship of Ist obtained with a voltage pulse protocol
with a holding potential of -80 mV, a holding duration of 15 s, and a pulse duration of
500 ms. This experiment uses parameter settings and steady state equation from
Kurata et al. [2]. Solid line: Simulation result of SustainedInwardIV. Dashed line:
Reference data extracted from Figure 4 (bottom right) in [2]. The plots are in perfect
agreement. This figure was created with InaMo version 1.4.2, which is available under
the DOI 10.5281/zenodo.4533008.
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Figure 31. Time course of Ca2+ concentrations due to a dummy current for INaCa

and ICa,L, which roughly resemble the true currents during an action potential (dotted
lines in bottom plot). No reference plot is available for this experiment, but it allows to
examine the

[
Ca2+

]
handling in isolation from other components. This figure was

created with InaMo version 1.4.2, which is available under the DOI
10.5281/zenodo.4533008.
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Figure 32. Current-voltage relationship of INaCa obtained from a voltage clamp
experiment with linearly rising input voltage. Parts A and B show effect of variation in[
Ca2+

]
sub

and parts C and D show effect of variation in [Na+]i. Solid lines: Simulation
result of SodiumCalciumExchangerLinMatsuoka. Dashed lines: Reference data
extracted from Figure 19 in [5]. Absolute current values are not shown in Figure 19, but
can be found in Figures 15A (A), Figure 16B (B), and Figure 17 (C, D) in [5]. For part
A and B, the lines with 0 and 16 µM (A) and 0 and 64 µM (B) are closer to each other,
which does not agree with the reference, but does agree with the experimental data
(filled and open circles). We have no good explanation for this difference, since it only
occurs in two of the four experiment setups. The absolute values are not exact, since
Matsuoka et al. used a different scaling factor for each part but do not report its value.
We therefore choose the value of kNaCa freely to roughly reproduce the absolute values
in Figures 15–17 in [5]. This figure was created with InaMo version 1.4.2, which is
available under the DOI 10.5281/zenodo.4533008.
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Figure 33. Current-voltage relationship of Ip obtained from a voltage clamp
experiment with linearly rising input voltage. Solid line: Simulation result of
SodiumPotassiumPumpLin. Dashed line: Reference data extracted from Figure 12
in [6]. The reference cannot be reproduced exactly as Demir et al. only report the sum
of Ip and three different background currents. This figure was created with InaMo
version 1.4.2, which is available under the DOI 10.5281/zenodo.4533008.
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2 Supplementary Tables

Model Part Variable Unit Article C++ CellML
Membrane V V −7.003 · 10−2 −7.022 · 10−2 −7.155 · 10−2

INa m 1 1.227 · 10−2 1.246 · 10−2 1.048 · 10−2

INa h1 1 7.170 · 10−1 7.273 · 10−1 7.922 · 10−1

INa h2 1 6.162 · 10−1 6.378 · 10−1 7.883 · 10−1

ICa,L dL 1 4.069 · 10−5 3.952 · 10−5 3.229 · 10−5

ICa,L fL,fast 1 9.985 · 10−1 9.985 · 10−1 9.988 · 10−1

ICa,L fL,slow 1 9.875 · 10−1 9.911 · 10−1 9.988 · 10−1

Ito r 1 8.857 · 10−3 8.704 · 10−3 8.029 · 10−3

Ito qfast 1 8.734 · 10−1 8.847 · 10−1 9.955 · 10−1

Ito qslow 1 1.503 · 10−1 2.026 · 10−1 5.480 · 10−1

IK,r pa, fast 1 7.107 · 10−2 3.473 · 10−2 9.078 · 10−4

IK,r pa, slow 1 4.840 · 10−2 3.473 · 10−2 2.899 · 10−3

IK,r pi 1 9.866 · 10−1 9.868 · 10−1 9.879 · 10−1[
Ca2+

]
handling

[
Ca2+

]
i

mM 1.206 · 10−4 1.082 · 10−4 3.104 · 10−5[
Ca2+

]
handling

[
Ca2+

]
sub

mM 6.397 · 10−5 5.860 · 10−5 2.870 · 10−5[
Ca2+

]
handling

[
Ca2+

]
jsr

mM 4.273 · 10−1 4.002 · 10−1 5.575 · 10−1[
Ca2+

]
handling

[
Ca2+

]
nsr

mM 1.068 · 10+0 9.596 · 10−1 6.672 · 10−1[
Ca2+

]
handling fTC 1 2.359 · 10−2 2.120 · 10−2 6.156 · 10−3[

Ca2+
]
handling fTMC 1 3.667 · 10−1 3.395 · 10−1 1.122 · 10−1[

Ca2+
]
handling fTMM 1 5.594 · 10−1 5.834 · 10−1 7.843 · 10−1[

Ca2+
]
handling fCMi

1 4.845 · 10−2 4.366 · 10−2 1.290 · 10−2[
Ca2+

]
handling fCMs 1 2.626 · 10−2 2.410 · 10−2 1.192 · 10−2[

Ca2+
]
handling fCQ 1 3.379 · 10−1 3.235 · 10−1 4.007 · 10−1[

Ca2+
]
handling fCSL 1 3.936 · 10−5 3.085 · 10−5 8.911 · 10−6

Table 1. Initial values for AN cell model in article, C++-code, and CellML code.
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Model Part Variable Unit Article C++ CellML
Membrane V V −6.213 · 10−2 −6.213 · 10−2 −4.971 · 10−2

ICa,L dL 1 1.533 · 10−4 1.534 · 10−4 1.793 · 10−3

ICa,L fL,fast 1 6.861 · 10−1 6.809 · 10−1 9.756 · 10−1

ICa,L fL,slow 1 4.441 · 10−1 3.320 · 10−1 7.744 · 10−1

IK,r pa, fast 1 6.067 · 10−1 6.061 · 10−1 1.925 · 10−1

IK,r pa, slow 1 1.287 · 10−1 1.288 · 10−1 7.972 · 10−2

IK,r pi 1 9.775 · 10−1 9.775 · 10−1 9.490 · 10−1

If y 1 3.825 · 10−2 3.823 · 10−2 4.623 · 10−2

Ist qa 1 1.933 · 10−1 1.936 · 10−1 4.764 · 10−1

Ist qi 1 4.886 · 10−1 4.885 · 10−1 5.423 · 10−1[
Ca2+

]
handling

[
Ca2+

]
i

mM 3.623 · 10−4 3.633 · 10−4 1.850 · 10−4[
Ca2+

]
handling

[
Ca2+

]
sub

mM 2.294 · 10−4 2.300 · 10−4 1.603 · 10−4[
Ca2+

]
handling

[
Ca2+

]
jsr

mM 8.227 · 10−2 8.185 · 10−2 2.963 · 10−1[
Ca2+

]
handling

[
Ca2+

]
nsr

mM 1.146 · 10+0 1.146 · 10+0 1.111 · 10+0[
Ca2+

]
handling fTC 1 6.838 · 10−1 6.856 · 10−2 3.565 · 10−2[

Ca2+
]
handling fTMC 1 6.192 · 10−1 6.195 · 10−1 4.433 · 10−1[

Ca2+
]
handling fTMM 1 3.363 · 10−1 3.360 · 10−1 3.917 · 10−1[

Ca2+
]
handling fCMi 1 1.336 · 10−1 1.339 · 10−1 7.230 · 10−2[

Ca2+
]
handling fCMs

1 8.894 · 10−2 8.915 · 10−2 6.308 · 10−2[
Ca2+

]
handling fCQ 1 8.736 · 10−2 8.694 · 10−2 2.614 · 10−1[

Ca2+
]
handling fCSL 1 4.764 · 10−5 4.674 · 10−5 4.150 · 10−5

Table 2. Initial values for N cell model in article, C++ code, and CellML code.
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Model Part Variable Unit Article C++ CellML
Membrane V V −6.863 · 10−2 −6.867 · 10−2 −6.976 · 10−2

INa m 1 1.529 · 10−2 1.521 · 10−2 1.322 · 10−2

INa h1 1 6.438 · 10−1 6.463 · 10−1 7.066 · 10−1

INa h2 1 5.552 · 10−1 5.638 · 10−1 7.016 · 10−1

ICa,L dL 1 5.025 · 10−5 4.996 · 10−5 4.235 · 10−5

ICa,L fL,fast 1 9.981 · 10−1 9.981 · 10−1 9.984 · 10−1

ICa,L fL,slow 1 9.831 · 10−1 9.851 · 10−1 9.984 · 10−1

Ito r 1 9.581 · 10−3 9.559 · 10−3 8.948 · 10−3

Ito qfast 1 8.640 · 10−1 8.708 · 10−1 9.948 · 10−1

Ito qslow 1 1.297 · 10−1 1.343 · 10−1 4.274 · 10−1

IK,r pa, fast 1 9.949 · 10−2 9.333 · 10−2 1.418 · 10−3

IK,r pa, slow 1 7.024 · 10−2 6.769 · 10−2 5.398 · 10−3

IK,r pi 1 9.853 · 10−1 9.854 · 10−1 9.864 · 10−1[
Ca2+

]
handling

[
Ca2+

]
i

mM 1.386 · 10−4 1.340 · 10−4 3.733 · 10−5[
Ca2+

]
handling

[
Ca2+

]
sub

mM 7.314 · 10−5 7.122 · 10−5 3.273 · 10−5[
Ca2+

]
handling

[
Ca2+

]
jsr

mM 4.438 · 10−1 4.475 · 10−1 6.822 · 10−1[
Ca2+

]
handling

[
Ca2+

]
nsr

mM 1.187 · 10+0 1.163 · 10+0 8.187 · 10−1[
Ca2+

]
handling fTC 1 2.703 · 10−2 2.615 · 10−2 7.396 · 10−3[

Ca2+
]
handling fTMC 1 4.020 · 10−1 3.930 · 10−1 1.337 · 10−1[

Ca2+
]
handling fTMM 1 5.282 · 10−1 5.362 · 10−1 7.652 · 10−1[

Ca2+
]
handling fCMi 1 5.530 · 10−2 5.355 · 10−2 1.547 · 10−2[

Ca2+
]
handling fCMs

1 2.992 · 10−2 2.911 · 10−2 1.358 · 10−2[
Ca2+

]
handling fCQ 1 3.463 · 10−1 3.483 · 10−1 4.500 · 10−1[

Ca2+
]
handling fCSL 1 4.843 · 10−5 4.447 · 10−5 1.217 · 10−5

Table 3. Initial values for NH cell model in article, C++-code, and CellML code.

July 8, 2021 26/26


	Introduction
	Systems Biology
	Mathematical modeling of biological systems
	Multi-scale modeling
	Reproducibility of mathematical models
	Model engineering
	Modelica
	Cardiovascular modeling
	The Seidel-Herzel model as multi-scale modeling platform
	Research questions
	RQ1: What are the requirements for a modeling language in systems biology?
	RQ2: Does Modelica fulfill these requirements?
	RQ3: How does Modelica compare to other existing languages?
	RQ4: Can software engineering techniques in general address the challenges of systems biology?
	RQ5: What are the tools and language improvements required to increase the usability of Modelica for systems biologists?

	Document structure

	Results
	Journal articles
	Characteristics of modeling languages that facilitate model reuse
	An understandable, extensible, and reusable Hodgkin-Huxley model
	Countering reproducibility issues in mathematical models

	Conference papers
	Modeling biology in Modelica: The human baroreflex
	Mo|E — Communication between Modelica and text editors
	MoVE — A standalone Modelica vector graphics editor

	Other scientific work

	Discussion
	Requirements for modeling languages in systems biology (RQ1)
	Classical approaches fail for multi-scale models
	MoDROGH characteristics

	Modelica as modeling language for systems biology (RQ2)
	A very brief introduction to object-oriented modeling with Modelica
	Fulfillment of MoDROGH characteristics
	The Modelica ecosystem
	Existing biological projects in Modelica

	Comparing Modelica to other modeling languages (RQ3)
	MATLAB/Simulink+Simscape
	SBML and CellML
	Python-based solutions
	Julia-based solutions
	Support for DDE and SDE
	Summary

	Software engineering approaches for challenges in systems biology (RQ4)
	Object-oriented software design
	Documentation
	Version control
	Automated testing
	Virtualization and continuous integration
	Long-term archiving of code

	Required tools and language improvements for biological models (RQ5)
	Mo|E
	MoVE and MoNK
	MoST.jl
	Ontology support
	Modelica features in COMBINE languages


	Conclusion
	Implications at the personal level
	Implications at the institutional level
	Implications at the community level
	Open questions
	Partial differential equations
	Stochastic differential equations
	Parameter estimation
	Alternatives to classical object-oriented programming
	Support for multi-scale techniques in languages
	Language Server Protocol implementation for Modelica


	Data and code availability
	Acknowledgements
	Bibliography
	Publications
	Characteristics of modeling languages that facilitate model reuse
	An understandable, extensible, and reusable Hodgkin-Huxley model
	Countering reproducibility issues in mathematical models
	Modeling biology in Modelica: The human baroreflex
	Mo|E — Communication between Modelica and text editors
	MoVE — A standalone Modelica vector graphics editor

	Supplements
	Characteristics of modeling languages that facilitate model reuse
	An understandable, extensible, and reusable Hodgkin-Huxley model
	Countering reproducibility issues in mathematical models


