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Abstract 

Nitrate pollution of groundwater has been a well-known problem for decades, but today the debate about 

causes and possible solutions is very controversial. The EU Water Framework Directive has been 

implemented to restore the good status of water systems in Europe, which requires, among other things, 

a reduction of nitrate inputs to groundwater. In order to achieve this, harmonized and transparent 

approaches for evaluating the quality of groundwater bodies and clearly defined regulations for the 

implementation of mitigation measures need to be established. Important aspects to be taken into account 

when developing action plans are the estimation of nitrogen inputs to the subsurface, the spatial 

distribution of groundwater nitrate concentrations and the natural nitrate reduction capacity of the 

aquifer. For groundwater quality modelling on a country-wide scale, data-driven approaches, in 

particular machine learning techniques, have proven their worth. In this dissertation, an approach for the 

large-scale regionalisation of groundwater nitrate concentrations depending on spatial environmental 

parameters is developed. In a first step, several approaches for linking point information from monitoring 

sites with the spatial data from maps are investigated using the example of the federal state of Hesse, 

Germany. Four machine learning techniques based on different statistical model types are compared 

regarding their predictive performance. It can be shown that a 1,000 m circular buffer can describe the 

contribution area of a monitoring site in a simplified way and can be used for compiling the factors 

influencing the groundwater nitrate concentration. The random forest model outperforms classical 

multiple linear regression, simple classification and regression trees and boosted regression trees. In a 

second step, the approach will then be transferred to the entire federal republic of Germany. Based on 

the Water Framework Directive groundwater monitoring network, a random forest model is trained and 

the nitrate concentrations in groundwater is estimated for a 1 km x 1 km grid map. Good model predictive 

performance can be achieved with an R² of 0.52 where the redox conditions, the hydrogeological units 

and the percentage of arable land are identified as the most influential predictors for the estimation of 

groundwater nitrate concentration. By using quantile random forest for an uncertainty analysis, with a 

mean prediction interval of 53 mg NO3
-/l large uncertainties are determined. Finally, the third part of this 

dissertation focuses on the estimation of nitrate reduction in groundwater. The estimated spatial 

distribution of groundwater nitrate concentrations together with data on nitrogen surplus are used in a 

simplified conceptual approach to estimate the integrated nitrate reduction across the unsaturated zone 

and the groundwater body. The determined nitrate reduction rates are on average 57% and strongly vary 

from no reduction up to a degradation of 100% with predominantly high reduction rates in northern 

Germany and lower reduction rates in the central and southern part of Germany. Nitrate reduction 

capacity is highly dependent on hydrogeological conditions, with reduction rates in porous aquifers and 

under anaerobic conditions, being significantly higher than in fractured consolidated aquifers and under 

aerobic conditions. With the overall approach presented here, spatial predictions can be made based on 

freely available geodata, which makes it an important contribution to the large-scale assessment of 

groundwater quality and can be used in the planning of mitigation measures
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1 Extended Summary 

1.1 Introduction 

1.1.1 Nitrate pollution – a brief overview 

In the early twentieth century the solution to increase food production to handle the demand of the rapidly 

growing world's population, has already proven to be a major challenge to our water resources in the late 

twentieth century. The paradoxical reality that in order to meet our demand for food we are placing 

groundwater, as our most vital and valuable drinking water resource, under severe pressure, is mainly 

due to the intensive use of fertilizers in agriculture. With the development of the Haber-Bosch process, 

the industrial production of fertilizer was facilitated, leading to a dramatic increase in global agricultural 

production (Erisman et al., 2008). The interference in the nitrogen cycle has far-reaching negative 

environmental impacts such as water pollution and can also have serious consequences for human health 

(Erisman et al., 2013; van Grinsven et al., 2006; Vitousek et al., 1997). In the mid-1970s, water pollution 

became a public issue and a number of water-related directives were enacted, leading to the 

implementation of the EU Water Framework Directive 2000/60/EC (Kallis and Butler, 2001). The Water 

Framework Directive was introduced for an integrated protection with the objective of maintaining or 

restoring the ‘good status’ of water systems. As an integral part of the Water Framework Directive, the 

Nitrates Directive 91/676/EEC is an important instrument to protect water bodies against the agricultural 

pressures. In order to achieve the ambitious goals of the Water Framework Directive to meet the quality 

standards (WHO’s maximum contamination level: 50 mg NO3
-/l or 10 mg NO3-N/l in drinking water), 

effective mitigation measures are required to reduce nitrogen inputs to groundwater and surface water. 

 

1.1.2 Nitrate pollution – a complex hydro-biogeochemical issue  

For a better understanding of the problem, a closer look at the nitrogen (N) cycle is needed. With seven 

oxidation states, numerous possible conversion mechanisms and various environmental transport and 

storage processes the N cycle is the most complex of all major elements (Galloway et al., 2004). The 

atmosphere consists of about 78% of unreactive molecular nitrogen (N2) which in this form is not 

available to organisms. Dry and wet deposition of nitrogen oxides (NOx) produced by lightning and the 

transformation of molecular N into reactive N (Nr) by biological N fixation, result in large natural fluxes 

of Nr from the atmosphere into terrestrial and marine ecosystems (Fowler et al., 2013; Gruber and 

Galloway, 2008). Nr can be transformed either to inorganic reduced forms (e.g. ammonia (NH3) and 

ammonium (NH4
+)) or inorganic oxidized forms like NOx, nitric acid (HNO3), nitrous oxide (N2O), and 

nitrate (NO3
-), as well as organic compounds (e.g., urea, amines, proteins, and nucleic acids) (Galloway 
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et al., 2003). Nitrate is the result of the bacterial oxidation of ammonium called nitrification. Through 

denitrification nitrate is converted back to the unreactive form of gaseous N2 (respectively other gaseous 

forms NO and N2O) and is returned to the atmosphere (Rivett et al., 2008). Without extensive human 

interference in the natural N cycle through food and energy production, it would be balanced and no Nr 

would accumulate, however in the last decades, the anthropogenic Nr production was higher than those 

from all natural terrestrial systems (Ayres et al., 1994; Galloway et al., 2003, 2004).  

As a consequence of the intensive use of fertilizers in agricultural systems respectively the application 

of more nitrogen than the crop can use lead to a nitrogen surplus, which accumulates in the subsurface 

(Ascott et al., 2016, 2017; Goulding, 2000; Worrall et al., 2015). The nitrogen surplus reaches the 

groundwater as nitrate via the seepage water, mostly with very long travel times. The long residence 

times cause a considerable amount of nitrate being stored in the unsaturated zone and a time lag from its 

input on agricultural systems to the arrival into the groundwater body (Ascott et al., 2017). While in the 

unsaturated zone a conservative transport occurs without a considerable reduction of nitrate loads, natural 

nitrate degradation takes place in the groundwater body (Ascott et al., 2017; Rivett et al., 2007).  

Various processes, e.g. denitrification, assimilation, dissimilatory nitrate reduction to ammonium or 

anammox, cause nitrate reduction (Burgin and Hamilton, 2007; Francis et al., 2007; Knowles, 1982; 

Rivett et al., 2008). The predominant process is the denitrification, a chain of microbial reduction 

reactions to molecular nitrogen NO3
- 
→ NO2

- → NO → N2O → N2 which strongly depends on the 

biogeochemical conditions of the aquifer (Knowles, 1982; Rivett et al., 2008). Denitrification processes 

occur under anaerobic conditions in the presence of denitrifying bacteria and electron donors (Rivett et 

al., 2008; Seitzinger et al., 2006). In general, there are two different types of denitrification, heterotrophic 

and autotrophic, depending on the type of denitrifier (Rivett et al., 2008). In heterotrophic denitrification, 

the bacteria use organic carbon as electron donor (Jørgensen et al., 2004). In the autotrophic 

denitrification the bacteria obtain the electrons from the oxidation of inorganic compounds, e.g. iron 

sulphide (pyrite, FeS2) (Korom, 1992; Rivett et al., 2008). Both types of denitrification in groundwater 

bodies have been identified in several studies (Kludt et al., 2016; Schwientek et al., 2008; Wisotzky et 

al., 2018; Zhang et al., 2012). This clearly shows that the hydrogeological conditions of the aquifer, 

especially the prevailing redox conditions and the geochemical characteristics, can influence the intensity 

of nitrate pollution.  

 

1.1.3 Nitrate pollution – the current situation 

For the assessment of water and groundwater quality, nationwide monitoring programs, e.g. the Water 

Framework Directive groundwater monitoring network in Europe, are used to observe the occurrence 
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and distribution of groundwater pollution. All European Union Member States are obliged to submit the 

regular Evaluation Report on the implementation of the Nitrates Directive of the European Commission. 

According to the report for the period 2012-2015, approximately 13% of the groundwater monitoring 

stations of the monitoring network established under the Nitrates Directive exceed the threshold value 

of 50 mg NO3
-/l. Compared to the previous reporting period, this is a slight reduction of 1%, indicating 

that the mitigation measures are having only a very slow effect (EC, 2018). Furthermore, the report 

shows that the nitrate problem does not affect all European Member States equally. In Ireland, Finland 

and Sweden, for example, almost no groundwater monitoring stations exceed the threshold value of 50 

mg NO3
-/l, whereas Malta (71%), Germany (28%) and Spain (21%) show exceedances well above the 

average (EC, 2018). The current nitrate report for Germany for the period of 2016 to 2018 shows a slight 

improvement of the situation with only 26.7% of the analysed groundwater monitoring sites with more 

than 50 mg NO3
-/l (BMU and BMEL, 2020). 

The situation is similar in other major industrial nations. In a study of Burow et al. (2010) for example 

the groundwater nitrate concentrations measured in the period of 1991 to 2003 at the monitoring network 

of the U.S. Geological Survey National Water-Quality Assessment program were analysed. They found 

that the maximum contamination level was exceeded for 8% of the monitoring sites respectively for 20% 

of the monitoring sites in agricultural land-use setting. In a study for China by Gu et al. (2013) 28% of 

the investigated monitoring sites exceeded the WHO’s maximum contamination level and more than 

64% of those are located in agricultural regions. 

 

1.1.4 Mapping and Analysis on a large scale – the capability of machine 

learning techniques 

Monitoring networks cannot be designed to measure everywhere, and the density of monitoring networks 

can vary from region to region, limiting the availability of high-resolution groundwater quality data at 

the national level. However, the monitoring networks are designed in a way that they representatively 

cover the respective groundwater bodies, in order to evaluate their qualitative status. Regional and 

national groundwater-quality models that use detailed spatial data on environmental parameters and 

concentration of groundwater components can be used to complement the measured data to address data 

gaps and thus determine a detailed spatial distribution of the groundwater quality (Nolan and Hitt, 2006). 

Besides classical geostatistical regionalisation methods such as kriging-based methods (Dalla Libera et 

al., 2017; Stein, 1999; Wriedt et al., 2019) or numerical modelling (Kim et al., 2008; Nguyen and 

Dietrich, 2018; Wriedt and Rode, 2006), statistical methods are widely used, especially for the 
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consideration of large scale problems like groundwater pollution (Boy-Roura et al., 2013; Gu et al., 2013; 

Nolan et al., 2002, 2015; Nolan and Hitt, 2006). More recently, machine learning approaches have been 

used in groundwater pollution estimation.  

“Machine learning is a branch of artificial intelligence. Using computing, we design systems that can 

learn from data in a manner of being trained. The systems might learn and improve with experience, and 

with time, refine a model that can be used to predict outcomes of questions based on the previous 

learning.” (Bell, 2014). Machine learning techniques provide an effective method for the spatial 

regionalisation of dependent variables. A dependent variable e.g. groundwater concentration data can be 

predicted based on a data-driven statistical model by one or more independent or explanatory variables. 

By the use of nationwide data sets of spatial environmental predictors, it is possible to obtain spatial 

predictions of the model response variable (e.g. groundwater nitrate concentrations).   

As a very effective tool, the algorithm random forest (RF), developed by (Breiman, 2001), is increasingly 

applied in the field of water research (Tyralis et al., 2019). In recent studies RF was used to predict 

groundwater nitrate concentrations or redox conditions on large scales (Koch et al., 2019; Nolan et al., 

2014; Ouedraogo et al., 2019; Rodriguez-Galiano et al., 2018; Stahl et al., 2020; Tesoriero et al., 2017; 

Wheeler et al., 2015; Wilson et al., 2020). In some of the studies, RF outperformed other traditional 

statistical methods (Ouedraogo et al., 2019; Tesoriero et al., 2017; Wheeler et al., 2015). The applications 

of RF and other machine learning techniques in many studies show their potential for spatial prediction 

on large scales and thus the opportunities in supporting the development of national strategies for 

mitigation measures to reduce nitrate inputs to groundwater (DeSimone et al., 2020; Ransom et al., 2017; 

Tesoriero et al., 2017). 

In general groundwater quality modelling or the regionalisation of groundwater concentrations for areas 

where no measured values are available is associated with uncertainties (Grizzetti et al., 2015; Refsgaard 

et al., 2007). Especially when estimating parameters such as reactive nitrogen or nitrate, where complex 

hydro-biogeochemical processes are related to their occurrence and distribution, it is essential to consider 

the uncertainties. However, especially in large-scale studies on groundwater quality modelling, 

uncertainty analyses are not carried out regularly (Rahmati et al., 2019). Studies using machine learning 

techniques for estimating groundwater quality, which also addressed the uncertainties, have in some 

cases identified large uncertainties (Koch et al., 2019; Ransom et al., 2017). 

  



Extended Summary 

 

 

5 

1.1.5 Objectives of the Dissertation 

The aim of this dissertation is to spatially predict nitrate concentrations in groundwater throughout 

Germany using a nationwide harmonised approach. The idea is first to generate a comprehensive data 

set of point measured concentration data at specific monitoring sites together with spatially available 

environmental data sets. By applying machine learning, patterns in the large data set can be identified in 

order to estimate the spatial distribution of the groundwater nitrate concentration. In combination with 

nitrogen surplus data for the entire country, the groundwater nitrate concentrations can be used to 

determine nitrate reduction rates. Three objectives are defined in this context: 

1) Development of a nationwide harmonised approach for the estimation of groundwater 

nitrate concentration.  

To achieve the first objective, different methods for an appropriate allocation of the spatial data to the 

monitoring sites are first examined in order to analyse several machine learning techniques with regard 

to their performance and the relevance of the respective predictors in estimating groundwater nitrate 

concentration. The development of the approach is based on the example of the federal state of Hesse, 

Germany (Chapter 2). 

2) Estimating nitrate concentration in the groundwater throughout Germany. 

To accomplish the second objective, the approach developed in the first part, based on the example of 

the federal state of Hesse, is adapted for the application to entire Germany. As an additional important 

predictor, the redox conditions in groundwater are taken into account and an uncertainty analysis is 

carried out (Chapter 3). 

3) Determination of the nitrate reduction across the unsaturated zone and the groundwater 

body in Germany. 

A simplified conceptual approach is used to achieve the third objective; determining an integrated nitrate 

reduction rate on the basis of nitrogen input into the unsaturated zone and the previously determined 

nitrate concentrations in groundwater. Furthermore, the hydrogeological conditions are analysed with 

regard to the nitrate reduction (Chapter 4). 
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1.2 Machine learning techniques for the estimation of groundwater 

nitrate concentrations on a large scale 

Based on the federal state of Hesse in Germany (see Figure 1-1), an approach for the large scale 

prediction of groundwater nitrate concentrations is developed. The country provides a very 

heterogeneous landscape and thus represents very well several different characteristics of Germany. 

Different approaches for the allocation of the spatial environmental data to the respective monitoring 

sites are tested and a comparison of machine learning techniques based on different statistical model 

types is carried out to develop an optimal approach for predicting groundwater nitrate concentrations on 

a national scale:  

Knoll, L., Breuer, L., Bach, M., 2019. Large scale prediction of groundwater nitrate concentrations 

from spatial data using machine learning. Science of The Total Environment 668, 1317–1327.  

https://doi.org/10.1016/j.scitotenv.2019.03.045 

The general modelling process involves the three steps: database setup, data pre-processing and 

predictive modelling. In the first step all the information on groundwater quality data, provided as point 

data from monitoring sites is stored together with spatial environmental data in a geodatabase. In the pre-

processing step, the environmental conditions (available as spatial data or maps) in the catchment area 

of the monitoring sites are compiled and linked to the groundwater quality data. This is performed 

simplified by using buffers, which approximately represent the contributing area. The main part is the 

predictive modelling. In this step, a machine learning algorithm is trained based on the dependent 

variable (e.g. groundwater nitrate concentration) and a set of independent explanatory predictors 

(environmental spatial data). The trained model can be applied to predict the dependent variable (model 

response variable) based on the same set of predictors underlying the model training process. In this way, 

estimations can be made for locations where no measured values of the target variable are available. 

Figure 1-1 gives a short summary of the workflow in the predictive modelling approach. A detailed 

description of the methodology of the approach is given in Chapter 2. 
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Figure 1-1: Schematic workflow of the predictive modelling approach. 

 

The long-term time series of groundwater quality data and metadata of the groundwater monitoring 

service of the State of Hesse and further monitoring sites of the public water supply are collected. After 

applying a number of selection criteria, 1,890 monitoring sites can be used to perform a statistical 

modelling approach. The mean nitrate concentrations in the period 2010 to 2017 are used as a dependent 

variable (point data). As the explanatory independent variables, spatial environmental data (spatial data) 

are used such as land use, hydrogeology and soil conditions, which are available as maps throughout 

Germany. The spatial data has to be compiled for the contributing area of each monitoring site and thus 

linked to the point information. The predictive modelling is based on a grid map with a resolution of 
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1 km x 1 km. For each grid cell, the spatial environmental predictors also have to be compiled and linked 

to it. 

In the study five different buffer designs representing the contributing area respectively the potential 

catchment area of a monitoring site are investigated for four statistical models regarding their predictive 

performance. Three circular buffers with a radius of 500 m, 1,000 m and 1,500 m and two wedge buffers 

with 1,000 m radius and apertures of 45° and 90° oriented in groundwater flow direction are analysed. 

The four investigated statistical model types are: multiple linear regression (MLR), classification and 

regression trees (CART), random forest (RF) and boosted regression trees (BRT). The models based on 

the circular buffer with 1,000 m radius outperform the models based on the other buffer designs and thus 

indicate an adequately description of the contributing area. The models based on wedge buffers all show 

a lower predictive performance, but a contributing area design based on precisely determined 

groundwater flow conditions would certainly lead to an improvement of the performance (Kihumba et 

al., 2016; Mattern et al., 2009). However, when considering even larger-scale studies (Germany-wide), 

the availability of such information cannot be expected. Furthermore, Johnson and Belitz (2009) and 

Wheeler et al. (2015) have also found that simplified circular buffers e.g. with a radius of 1,000 m can 

represent the contributing area sufficiently well. 

The machine learning algorithms based on the four different statistical model types are compared in this 

study with respect to their performance in predicting groundwater nitrate concentrations. The evaluation 

of the model performance is based on the three objective functions: the coefficient of determination (R²), 

the mean absolute error (MAE) and the root mean squared error (RMSE). After training each model, 

using three times repeated 10-fold cross-validation, the RF model (based on the 1,000 m circular buffer) 

outperforms the other model types. The RF model shows the highest R² value of 0.55 and the lowest 

MAE (5.90 mg/l) and RMSE (9.19 mg/l) after cross-validation indicating a good predictive performance. 

The comparison of the measured nitrate concentrations of the independent test data set underlines these 

results with similar values for the objective functions. The other model types also result in good to 

reasonable predictive performances. Compared to other studies dealing with large scale estimation of 

groundwater nitrate concentration, the model performance is in a similar or even better range (Boy-Roura 

et al., 2013; Nolan et al., 2014, 2015; Ransom et al., 2017; Tedd et al., 2014). 

Within the best performing RF model, the hydrogeological units followed by the percentage of arable 

land and the nitrogen surplus are the most relevant predictors. A shift in the predictor ranking indicates 

that depending on the different model types, some predictors show a strong or less strong influence on 

nitrate prediction.  
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Looking at the predictions of the spatial distribution of nitrate concentrations in groundwater, all four 

models result in a similar pattern. High nitrate concentrations are predominantly found in the lowlands, 

which are intensively used for agricultural purposes. Overall, the threshold value of 50 mg NO3
-/l is 

exceeded for only 2% of the area of the federal state of Hesse. 

The application of machine learning algorithms such as random forest allows a high extraction of the 

explanatory potential by the predictors used. However, reliable and representative input data is required 

for the respective predictors as well as for the dependent response variable. The approach presented in 

this first part of the dissertation shows the scope of application for the large-scale regionalisation of 

groundwater nitrate concentrations, in particular by the use of uniform nationwide data sets.  

 

1.3 Groundwater nitrate concentration throughout Germany 

The approach presented above is adapted, further developed, and applied to estimate the groundwater 

nitrate concentrations for the entire federal republic of Germany (see Figure 1-2). A data set of 

groundwater quality data covering the whole of Germany is compiled and the grid map is extended to 

cover the entire country. The main modification is (i) the assessment of redox conditions and their 

integration as additional predictor. Furthermore, (ii) the estimations are subjected to an uncertainty 

analysis:  

Knoll, L., Breuer, L., Bach, M., 2020. Nation-wide estimation of groundwater redox conditions and 

nitrate concentrations through machine learning. Environ. Res. Lett. 15, 064004.  

https://doi.org/10.1088/1748-9326/ab7d5c 

The federal republic of Germany consists of 16 states and is located in Central Europe. The country 

covers an area of around 360,000 km² and has a diverse landscape (see Figure 1-2). From the coastal 

areas at the North and Baltic Sea, the country extends over the North German Plain and the Central 

German Uplands to the Alps at the southern border. About 50% of the area is used for agricultural 

purposes. The analyses performed in this dissertation are based on the grid map of Germany with a 

resolution of 1 km x 1 km (BKG, 2018). The federal state of Hesse, with its heterogeneous landscape of 

low mountain ranges and depressions (see Figure 1-2), provides a good representation of the different 

landscape characteristics of Germany. However, with the Germany-wide approach involving the North 

German Plain a large landscape element is added, which is not covered by the model set up for Hesse. 

Thus, for the Germany-wide approach an adaptation is necessary. For instance, groundwater redox 

conditions, which differ strongly between the North German Plain and the remaining part of the country, 

need to be implemented.  
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Since the assessment of uncertainties in environmental modelling like groundwater quality modelling is 

essential, an uncertainty analysis is added as a fourth step in the large-scale application of the approach 

for Germany. In the uncertainty analysis, the machine learning algorithm quantile random forest is used 

to derive prediction intervals of the estimates. These intervals can be used to verify the reliability of the 

estimates, as they describe the range in which the true value can be expected with a certain probability. 

A detailed description of the methodology of the approach is given in Chapter 3. 

 

 

Figure 1-2: Map of Germany with the federal state Hesse (left) and a north to south profile line with 

elevations and the hydrogeological regions (right). 
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Within the scope of the Germany-wide study, the monitoring sites of the Water Framework Directive 

groundwater monitoring network are used as the basis of predictive modelling. These represent a 

monitoring network designed according to uniform criteria with clearly defined requirements for a 

representative evaluation of the upper groundwater bodies. After applying specific selection criteria, the 

mean nitrate concentration in the period 2009 to 2018 of 5,414 groundwater monitoring sites is used as 

a dependent variable. Furthermore, the concentration data of oxygen and iron are used to describe the 

redox conditions prevailing in the groundwater. For the explanatory environmental spatial predictors, 

approximately the same data is used as for the example of Hesse, as these maps are already available 

throughout Germany. The pre-processing is done analogously to the procedure of the state of Hesse, 

however, the spatial predictors, which have to be linked to the monitoring sites as well as to the grid 

cells, are only compiled via the circular buffer with a radius of 1,000 m, since this contribution area 

provides the best prediction results in the first part. 

With the previously presented predictive modelling approach (see Figure 1-1), it is also possible to 

predict groundwater oxygen and iron concentrations. For both RF models, for oxygen and for iron, the 

hydrogeological units prove to be the most relevant predictor, which is in line with the conclusions of 

Tesoriero et al. (2015, 2017). With the oxygen and iron groundwater concentrations, the redox conditions 

in the groundwater body are described and it can be shown that they have a considerable influence on 

groundwater nitrate concentrations. Four redox classes from aerobic, intermediate, anaerobic to strongly 

anaerobic are defined. Hence, these are added as predictors for the estimation of groundwater nitrate 

concentrations. Based on the predicted spatial distribution of oxygen and iron concentrations in 

groundwater, the redox classes are derived for the entire grid map and then used to estimate the spatial 

distribution of nitrate concentrations. Besides the hydrogeological units and the percentage of arable 

land, the redox conditions prove to be the most influential predictor in the nitrate RF model, which is in 

line with Ransom et al. (2017). 

The predictive performance of the nitrate RF model for Germany is also evaluated after cross-validation 

resulting in good performance measures (R²=0.52, MAE=12.71 mg/l and RMSE= 20.12 mg/l). The 

results show, that the nitrate RF model tends to underestimate high to extreme concentrations of >100 mg 

NO3
-/l. Even if the model performance for the nationwide approach for Germany is somewhat lower than 

that for the model region of federal state of Hesse, it is still in a good range, particularly in view of the 

much larger scale. In addition, the Water Framework Directive groundwater monitoring network used 

for Germany has a considerably lower density of monitoring sites than the network used in the approach 

for the state of Hesse. Compared to other studies dealing with large scale prediction of nitrate 

concentration in groundwater the performance of the nitrate RF model is in a similar range (Nolan et al., 

2015; Ransom et al., 2017; Wheeler et al., 2015).  
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Even if the model performance is within a good range, very high uncertainties respectively high 

prediction intervals are found in some areas by the uncertainty analysis (mean prediction interval of 53 

mg/l). Particularly in nitrate polluted areas, the uncertainties are very high, which corresponds to the 

tendency of the nitrate RF model to underestimate high concentration ranges. It has also been found that 

with a denser monitoring network using additional monitoring sites operated by several federal states 

(around 13,000 groundwater monitoring sites), the uncertainties can be reduced and the model 

performance is increased. The use of additional monitoring sites in combination with the Water 

Framework Directive groundwater monitoring network, however, needs to ensure that the requirements 

for the representativeness of the monitoring network are met. Since these additional monitoring sites are 

not part of the WFD monitoring program. Therefore, it is not ensured that they meet the requirements of 

the WFD and hence they are not further considered in this dissertation. 

Looking at the spatial distribution it can be shown that the redox conditions are clearly divided into the 

anaerobic North German Plain and the tendency of aerobic to intermediate conditions in the southern 

and Central German Uplands. This is similarly stated in a study of Kunkel et al. (2004) or Hannappel et 

al. (2018). The nitrate concentrations show a somewhat more heterogeneous distribution. On the one 

hand, regions with strongly anaerobic or nitrate-reducing conditions show no nitrate pollution, on the 

other hand, intensively agriculturally used regions clearly show high nitrate concentrations compared to 

forested mountainous regions with low nitrate concentrations. According to the estimations based on the 

nitrate RF model, around 10% of the regionalized groundwater nitrate concentration exceed the limit 

value of 50 mg NO3
-/l. 
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1.4 Nitrate reduction throughout Germany 

The previously determined distribution of nitrate concentrations in groundwater is used in a third step 

together with data on nitrogen input into the subsurface to quantify an integrated nitrate reduction rate 

across the unsaturated zone and the groundwater body:  

Knoll, L., Häußermann, U., Breuer, L., Bach, M., 2020. Spatial Distribution of Integrated Nitrate 

Reduction across the Unsaturated Zone and the Groundwater Body in Germany. Water 12, 2456. 

https://doi.org/10.3390/w12092456 

For Germany, it can be assumed that under the soil-climatic conditions typical for the country, the 

nitrogen supplied in various reactive forms is displaced with seepage water only in the form of nitrate 

nitrogen (NO3-N). To quantify the NO3-N load transported via the unsaturated zone into the groundwater 

body, the N input into the unsaturated zone, which is considered as area-weighted and land use specific 

hydrospheric N surplus, is calculated by multiplying with the ratio of groundwater recharge rate and 

seepage water rate. This ratio averages around 0.5 and shows that only about half of the seepage water 

reaches the groundwater body, the remaining amount enters the surface water via interflow or tile 

drainage systems. For the unsaturated zone a conservative transport with only a small decrease in the 

NO3-N loads can be expected (Ascott et al., 2017; Rivett et al., 2007). It has also been found that the 

ratio of the groundwater recharge rate to the seepage water rate in consolidated aquifers is much lower 

than in unconsolidated porous aquifers. This fact is usually based on morphological aspects, which 

favour higher interflow rates in consolidated units. 

The mean NO3-N input load to the unsaturated zone is calculated with around 36 kg N ha-1 a-1 of which 

consequently only around half of the load (17 kg N ha-1 a-1) enters the groundwater body. The spatial 

distribution shows the intensively agriculturally used areas in the north, north-west and south-east of 

Germany and as well as some lowland regions with high NO3-N loads up to 40 kg N ha-1 a-1. The overall 

NO3-N input into the unsaturated zone and into the groundwater body amounts to 1,196 kt N a-1 and 

580 kt N a-1, respectively. According to the calculations, the NO3-N loads in the groundwater body with 

236 kt N a-1 are substantially lower than the NO3-N input loads. Consequently, the difference of 

344 kt N a-1 can be attributed to nitrate reduction. The mean nitrate reduction rate respectively the 

reduction of NO3-N loads is calculated with around 57%. The spatial distribution shows a clear north-

south division with high reduction rates up to 100% in the north and very low reduction rates up to no 

reduction in central and southern part of Germany.  

For specific hydrogeological features, considerable differences in the reduction rates have been analysed. 

It can be found that the nitrate reduction in porous aquifers is significantly higher than in fractured, 
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consolidated aquifers and groundwater bodies with anaerobic conditions tend to have significantly higher 

nitrate reduction rates than those with aerobic conditions. 

The parsimonious conceptual approach presented here provides the possibility of estimating an 

integrated nitrate reduction rate in the unsaturated zone and in the groundwater body without the 

simulation of complex biogeochemical processes. In comparison to the results of this approach, Hirt et 

al. (2012), for example, calculated the same reduction rates for the Weser catchment with a more complex 

coupled model chain. It should be considered that the input data for the conceptual data-driven approach 

are partly subject to high uncertainties, so that this also applies to the determined reduction rates. 

However, the use of such a parsimonious conceptual approach is advantageous because knowledge about 

nitrogen turnover processes, especially in groundwater, is relatively limited and process-based models 

can fail due to a lack of knowledge. Due to the different types of input data, the different degree of 

uncertainty and the assumptions made, it is difficult to perform a precise uncertainty analysis. Another 

aspect that should be taken into account when evaluating reduction rates is that reduction capacity is not 

inexhaustible and, depending on local conditions and the degree of nitrate pollution, may decrease over 

time or reach capacity limits (Bergmann et al., 2013; Kludt et al., 2016; Wilde et al., 2017). 

 

1.5 Conclusion and Outlook 

The Water Framework Directive and the EU Nitrates Directive (91/676/EEC) require mitigation 

measures to achieve good chemical status. The first priority is therefore the identification of groundwater 

bodies with high nitrate pollution. In Germany, information from various sources on the share of 

groundwater above the limit value of 50 mg NO3
-/l varies between 10.4% and 49.4% which makes it 

difficult to argue for the implementation of measures (Bach et al., 2020b). This illustrates the 

requirements for a technically well-founded regionalisation method based on a representative data base. 

In view of the federal system in Germany, it is even more important to implement uniform monitoring 

programs and to specify clearly defined requirements for the monitoring networks. 

With the application of machine learning respectively the random forest algorithm for the regionalisation 

of groundwater components like nitrate concentrations, new territory is entered, at least for Germany. In 

the international field, similar approaches have already been applied and accepted more widely, while in 

Germany, classical geostatistical regionalisation methods have been applied so far. The major advantage 

of machine learning methods compared to classical regionalisation methods is the possibility to use a 

variety of influencing parameters to predict a depending variable. However, this requires reliable and 

representative data sets of the relevant predictors and dependent response variables.  
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Within this dissertation, it is possible to carry out a first Germany-wide estimation of nitrate 

concentration in groundwater using machine learning. A random forest algorithm outperforms other 

statistical model types in predicting groundwater nitrate concentrations. The algorithm is trained by 

means of the Water Framework Directives groundwater monitoring network which is used for a 

representative assessment of the qualitative status of the German aquifers. Spatial data available 

throughout the country can be used as explanatory variables. Among these predictors, the redox 

conditions, followed by the hydrogeological units and the percentage of arable land are the most relevant 

for the prediction of nitrate concentrations in groundwater. 

The spatial distribution of groundwater nitrate concentrations resulting from the use of the predictive 

modelling approach applied in this dissertation indicates that the limit value of 50 mg NO3
-/l is exceeded 

for around 10% of the area of Germany. This is not in line with the 27% of the aquifers identified by the 

Water Framework Directive as not meeting the good chemical status due to nitrate (UBA, 2017a). The 

classification of the chemical status according to Water Framework Directive is based on the 

precautionary principle according to GrwV (2010). According to this, the entire aquifer is classified as 

'poor status' if only one monitoring site or a defined proportion within the groundwater body exceeds the 

corresponding threshold. In contrast, the approach taken here allows a more differentiated evaluation 

based on regionalized groundwater nitrate concentrations. Recent discussions in this context with regard 

to internal differentiation show even more the importance of a reliable spatial regionalisation on a higher 

resolution. Therefore, the findings of this dissertation can contribute to planning of the implementation 

of mitigation measures.  

Not only the spatial distribution of nitrate concentrations in groundwater but also the distribution of the 

natural degradation capacity of aquifers is of vital importance in the development of strategies for action 

plans. In this dissertation, with the help of the predicted spatial distribution of the nitrate concentrations 

in groundwater and additional data on nitrogen input into the unsaturated zone, a simple conceptual 

approach is developed to enable the estimation of the spatial distribution of integrated nitrate reduction 

rates across the unsaturated zone and the groundwater body. It has been shown that the reduction rates 

strongly vary from no reduction up to 100% and that the hydrogeological conditions of the aquifer also 

have a clear influence on the nitrate reduction rates.  

These results are already used in other studies dealing with nitrogen pollution. In Geupel et al. 

(submitted) an impact-based integrated national target for nitrogen is developed for Germany as part of 

the DESTINO project of the German Environment Agency (Bach et al., 2020a; Heldstab et al., 2020). 

This target value is used to derive a quantitative estimate of the annual permissible nitrogen loss rates to 

the environment in Germany as a target for political action. The integrated target value considers six 
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environmental sectors, each with its own quality targets. One of these sectors is groundwater, for which 

the necessary reduction of the N input is determined on the basis of groundwater nitrate concentrations 

>50 mg NO3
-/l, in order to comply with this limit value. For this purpose, the Germany-wide regionalized 

nitrate concentrations in groundwater bodies are considered. 

In (Ebeling et al., 2020) riverine nutrient dynamics in 787 German catchments are investigated. A 

random forest model is applied to predict riverine nutrient concentrations and concentration-discharge 

ratios based on a variety of catchment characteristics. Using the map of the spatially distributed 

groundwater nitrate concentration together with calculated potential nitrate concentrations in seepage 

water (a ratio of N surplus (Häußermann et al., 2019) and the seepage water rate (BGR, 2003a)), the 

vertical concentration heterogeneity is calculated as one of the predictors. It has been found that natural 

attenuation reduces nitrate concentrations in the catchment and cause heterogeneity that controls the 

export dynamics into the surface waters. Furthermore, it can be identified that the vertical concentration 

heterogeneity predominantly influences the export dynamics. 

In the conceptual river basin management system MoRE - Modelling of Regionalized Emissions (Fuchs 

et al., 2017a) nationwide nutrient emissions into surface waters are simulated. With the possibility of a 

pathway-specific quantification of emissions and river loads, MoRE is used as the reporting tool for the 

Federal Republic of Germany. The MoRE model originates mainly from the conceptual nutrient emission 

model MONERIS - MOdelling of Nutrient Emissions in RIver Systems (Venohr et al., 2011) and has 

largely adopted the simplified approaches for the representation of the inputs via the transport path: 

unsaturated zone → groundwater → surface water. Therein the N reduction is considered in a simplified 

way via an exponential function depending on the seepage water rate and hydrogeological conditions. 

The functions are based on nitrate concentrations from the 1990s in seepage water and groundwater of 

217 groundwater monitoring sites (Venohr et al., 2011). With the nitrate reduction rates determined in 

this dissertation, a more comprehensive data base is now available based on nationwide and actual 

datasets. These nitrate reduction rates will be used to adapt the representation of the transport path across 

the unsaturated zone and groundwater in the model instrument MoRE (Knoll et al., under review). 

This dissertation shows both the possibilities and the limitations of the application of machine learning 

techniques in the field of groundwater quality modelling respectively the large-scale regionalisation of 

groundwater components. The results presented here show the great potential of machine learning 

techniques, however, this work also shows the uncertainty of such large-scale data-driven approaches. 

The need for comprehensive uniform approaches to assess the qualitative status of water bodies 

underlines the need for research in this area. 
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2 Large scale prediction of groundwater nitrate 

concentrations from spatial data using machine learning  

 

This chapter is published in the journal Science of The Total Environment 668, pages 1317–1327, 2019. 

https://doi.org/10.1016/j.scitotenv.2019.03.045 
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[1] Institute for Landscape Ecology and Resources Management, Research Centre for Biosystems, Land 

Use and Nutrition (iFZ), Justus Liebig University Giessen, Germany 

* Correspondence to: Lukas Knoll (Lukas.Knoll@umwelt.uni-giessen.de)  

 

Abstract 

Reducing nitrogen inputs, in particular nitrate, to groundwater is becoming increasingly important to 

fulfil requirements of the European Water Framework Directive. When developing management plans 

for mitigation measures at larger scales, complex hydro-biogeochemical models reach their limits due to 

data availability and spatial discretization. To circumvent this problem, the spatial distribution of nitrate 

concentration in groundwater is estimated using a parsimonious GIS-based statistical approach. Point 

nitrate concentrations and spatial environmental data as predictors are used to train statistical models. In 

order to compile the spatial predictors with the respective monitoring sites, different designs of 

contributing areas (buffer zones) and their effects on the performance of different statistical models are 

investigated. Multiple Linear Regression (MLR), Classification and Regression Trees (CART), Random 

Forest (RF) and Boosted Regression Trees (BRT) are compared in terms of the predictive performance 

of each model according to various objective functions. We determine the most influential spatial 

predictors used in the respective models. After training the models with a subset of the data, we then 

predict the spatial nitrate distribution in groundwater for the entire federal state of Hesse, Germany on a 

1 x 1 km grid by only the spatial environmental data. The Random Forest model outperforms the other 

models (R²=0.54), relying on hydrogeological units, the percentage of arable land and the nitrogen 

balance as the three most influencing predictors based on a 1,000 m circular contributing area. The use 

of exclusively spatial available predictors is a big step forward in the prediction of nitrate in groundwater 

on regional scale.  
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2.1 Introduction 

The protection of water resources is one of the biggest challenges of current environmental research. 

High nitrate concentrations deteriorate surface water and groundwater quality and pose a serious risk to 

human’s health and the environment (WHO, 2017). In recent decades, the enhanced application of 

nitrogen (N) fertilizer and subsequently high diffuse nitrate losses from agricultural land are the main 

reasons for the poor state of water resources in Europe (EEA, 1999). Thus, improving water quality, in 

particular by reducing nitrate inputs, is an essential element of the EU Water Framework Directive 

2000/60/EC (WFD) as well as the EU Nitrates Directive 91/676/EEC.  

Nitrate concentrations in groundwater and surface waters depend on numerous factors such as land use, 

agricultural fertilizer application practice, hydrological and hydrogeological conditions, soil properties 

and weather conditions. A variety of model approaches have been developed in recent decades, to 

simulate the N input, turnover and transport in the hydrosphere in various temporal and spatial scales, 

and to develop improved management plans. The existing models range from simple empirical-

conceptual approaches to complex process-based models (Bouraoui and Grizzetti, 2014; Breuer et al., 

2008; Cherry et al., 2008; Wellen et al., 2015). Most of these models are limited in terms of considering 

spatially distributed groundwater flow and have limitations in reproducing spatial distributions of 

groundwater nitrate concentrations. Some studies provide approaches for a better representation of the 

groundwater component (Kim et al., 2008; Nguyen and Dietrich, 2018), which are however impractical 

on large scale.  

For the development of river basin management plans required by the WFD, mainly conceptual models 

at national and regional scale are used (Grizzetti et al., 2008; Velthof et al., 2009). In Germany, the 

conceptual models MONERIS (Behrendt et al., 2000; Behrendt and Opitz, 1999; Venohr et al., 2011) 

and MoRE (Fuchs et al., 2017a, 2017b) are commonly used as the WFD reporting and management 

planning tools (Fuchs et al., 2010; Hirt et al., 2012). Both models estimate the potential nitrate 

concentration in leachate from the N surplus on agricultural land (i.e. the excess of N inputs over outputs 

on an agricultural field) and the seepage water rate for administrative units. The grid-based model chain 

GROWA-DENUZ-WEKU consists of a nutrient balance model, a water balance model (GROWA), a 

reactive nitrate transport model in soil (DENUZ) and reactive nitrate transport model in groundwater 

(WEKU) to predict nitrogen inputs into groundwater and surface water on high resolution (Kunkel et al., 

2004, 2017, Kunkel and Wendland, 1997, 2002). 

Maps with a high spatial resolution of the actual state of nitrate concentrations in groundwater have so 

far only been used sparsely for WFD action planning. Geostatistical approaches such as kriging-based 

methods are widely used to interpolate point measurements (Dalla Libera et al., 2017; Hu et al., 2005; 
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Nas and Berktay, 2010; Wriedt et al., 2019). These techniques are point-based (i.e. depending on 

measured data) and consider the spatial covariance of the measurements. Some approaches consider 

additional information of environmental data to improve the spatial prediction (Bárdossy et al., 2003; 

Pebesma and de Kwaadsteniet, 1997). Other approaches like DRASTIC (Aller et al., 1985) 

systematically evaluate the groundwater vulnerability related to the hydrogeological setting (Babiker et 

al., 2005; Nixdorf et al., 2017; Ouedraogo et al., 2016; Panagopoulos et al., 2006). Nolan et al. (2002) 

and Nolan and Hitt (2006) create a groundwater vulnerability map derived from groundwater monitoring 

data linked with hydrogeological and land use characteristics.  

In view of the data requirement, model complexity and runtime, a number of straightforward statistical 

models e.g. Multiple Linear Regression (MLR) are alternatively used to estimate nitrate pollution in 

groundwater at large scales (Boy-Roura et al., 2013; Liu et al., 2005; Mattern et al., 2009; Mfumu 

Kihumba et al., 2016; Ouedraogo and Vanclooster, 2016; Tedd et al., 2014; Wick et al., 2012). Mfumu 

Kihumba et al. (2016) and Mattern et al. (2009) compared MLR with the decision tree methodology 

Classification and Regression Tree (CART) for modelling nitrate pollution pressure. Machine learning 

techniques are of particular interest, as they can deal with complex data sets, a large number of predictor 

variables, and all scales of measures, including nominal scale. Ouedraogo et al. (2019) used Random 

Forest (RF) to model groundwater nitrate concentration at the African continent scale. Nolan et al. (2014, 

2015) and Ransom et al. (2017) created a map of nitrate concentration in groundwater of the Central 

Valley, California using RF and Boosted Regression Trees (BRT). Wheeler et al. (2015) used CART and 

RF for predicting nitrate concentration in wells in Iowa. Tesoriero et al. (2017) and Rodriguez-Galiano 

et al. (2014, 2018) developed probability maps concerning nitrate contamination with RF in a region of 

Wisconsin and southern Spain. However, most of these studies use very comprehensive and regionally 

limited data sets. 

The use of exclusively state-wide accessible spatial predictors and machine learning techniques is a 

promising way forward to estimating nitrate concentration in groundwater with high spatial resolution 

on a large scale. For the allocation of the spatial predictors to the respective monitoring sites, different 

designs of contributing areas (circular buffer and wedge buffer) and their effects on the predictive 

performance of different statistical models are investigated in the present study. The performance of four 

statistical models MLR, CART, RF and BRT to spatially depict the nitrate concentration in groundwater 

is compared by taking the example of Hesse, Germany. Furthermore, the most relevant hydrogeological 

and land use parameters are identified, which serve as predictors for the estimation of nitrate 

concentration. Last, MLR, CART, RF and BRT are used to establish 1 x 1 km grid maps of groundwater 

nitrate concentration for Hesse.  
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2.2 Materials and Methods 

2.2.1 Study area 

The study area covers the state of Hesse (Germany) with 21,115 km² (Figure S 2-1). The landscape of 

Hesse shows a relatively heterogeneous morphology with lowlands and low mountain ranges. Lowest 

elevations of around 70 m above sea level (NN) can be found in the Middle Rhine Valley and highest 

elevation up to 950 m NN in the eastern mountain ranges. The mean (2010 – 2017) annual air temperature 

is 9.2° C and the mean annual precipitation is 635 mm/a (DWD, 2018). 

 

2.2.2 Basic modelling approach 

The basic modelling approach consists of three main steps, a data pre-processing, a statistical model 

framework with different statistical models and a grid prediction (Figure 2-1). Pre-processing and 

statistical modelling is performed in a coupled environment of a Geographic Information System 

(ArcGIS v. 10.4) and a statistical computing software (R v. 3.4.1).  

The nitrate concentration is available as point data and represents the response variable for the statistical 

models. The independent predictors consist of spatial geodata in the form of maps, which need to be 

linked to the point data. This is done by means of contributing area, which represent the potential 

catchment area of the respective monitoring sites. Based on the independent predictors, nitrate 

concentrations are finally calculated using the statistical models. On the basis of the statistical models, 

predictions can now be made. In the present study, the predictions rely on 1 x 1 km grid maps of the 

spatial predictors. 

 

2.2.3 Data pre-processing 

Point data 

The Hessian Agency for Nature Conservation, Environment and Geology (HLNUG) maintains the 

groundwater database GruWaH to record groundwater quality throughout the state of Hesse. The 

GruWaH combines data from two monitoring networks, the groundwater monitoring service of the state 

of Hesse and the data from public water supply companies according to the water supply regulation 

(HLNUG, 2018).  
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Figure 2-1: Workflow of the GIS-based statistical modelling approach, consisting of the three steps: 

data pre-processing, statistical model framework and prediction. 

 

The groundwater monitoring service of the state of Hesse is a state-wide network operated through the 

HLNUG to map the groundwater quality of the various hydrogeological units of Hesse. Furthermore, the 

monitoring sites close spatial gaps between the monitoring sites of the public water supply companies 

(see below). The network comprises about 400 monitoring sites (86% groundwater monitoring stations 

and 14% springs). Sampling and analysis of the state groundwater monitoring sites is carried out by the 

State Laboratory of Hesse (Wiesbaden) according to DIN 38402-13. 

Public water supply companies are obliged to measure raw water quality four times a year. The 

monitoring network consists of 2,630 wells and 1,670 springs. Sampling and the analysis is carried out 

by larger water supply companies in their own laboratories, smaller companies commission certified 

laboratories with the analysis. The groundwater samples are generally analysed in certified laboratories. 

The nitrate concentration is determined in accordance with the DIN EN ISO 10304-1:2009-07. Results 
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are compiled at the HLNUG, subjected to a plausibility check in advance, and entered into the GruWaH 

database.  

The extensive GruWaH database provides time series of groundwater quality measurements dating back 

to the 1950s and the corresponding meta data of the particular monitoring sites. The sampling frequency 

varies from one-time to seasonal. The well depths varies from shallow to deep (>100 m) in different 

aquifer types. For the estimation of shallow groundwater nitrate concentrations using statistical models, 

a pre-selection of the relevant monitoring sites on which the models are based is required. We chose 

several criteria for data selection (Table S 2-1). After applying these criteria to the data set, 1,890 

monitoring sites representing the recent mean nitrate concentration of shallow groundwater remained 

(Figure S 2-1). Descriptive statistics of the remaining nitrate concentrations can be found in Table S 2-2. 

Spatial data 

In previous studies related to the estimation of nitrate concentration in groundwater it was found that 

aquifer and soil properties, land use and N fertilizer are the most important predictors (Boy-Roura et al., 

2013; Nolan et al., 2014; Ouedraogo and Vanclooster, 2016; Tedd et al., 2014; Wick et al., 2012). Since 

the approach of the present study should be applicable at the national level, an essential criterion for the 

selection of spatial predictors is their national availability in Germany. Hence, spatial predictors such as 

topography likely relevant on the small scale have not been considered for this analysis, also in the light 

of the coarse resolution (1 x 1 km) of the grid map. The Federal Institute for Geosciences and Natural 

Resources (BGR) and the Federal Agency for Cartography and Geodesy (BKG) provide a number of 

spatial thematic data (maps) on land use, hydrogeological and hydrological features as well as soil 

properties for Germany, which are used as predictors or independent variables (Table 2-1). These data 

are described in detail in Text S 2-1 of the Supporting Information. 

Maps of the seepage water rate (BGR, 2003a) and groundwater recharge rate (BGR, 2003b) are provided 

by the BGR, the calculation is described in (Jankiewicz et al., 2005). The seepage water rate is calculated 

with the empirical TUB-BGR method and represents a land use differentiated balance between 

precipitation minus actual evapotranspiration and surface runoff. The mean annual groundwater recharge 

rate (BGR, 2003b) is based on a multi-stage regression method (Neumann, 2005). In a first step of this 

method, the baseflow index (BFI = base runoff / total runoff) is determined as the dependent variable 

according to slope, water network density, land cover, field capacity, groundwater distance and the 

proportion of direct runoff. Based on the results, two different model variants for low runoff and high 

runoff regions are developed. For low runoff regions the groundwater recharge rates correspond to the 

product of the BFI and the total runoff according to the water balance model BAGLUVA (Glugla et al., 

2003). For high runoff regions, a second regression model estimates the groundwater recharge rate based 
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on the BFI calculated in the first step, the BAGLUVA total runoff and the groundwater distance as 

additional parameters. 

The potential nitrate concentrations in seepage water and groundwater recharge are determined by a 

simple land use differentiated division of the N surplus (Bach et al., 2016) and the respective water 

quantities.  

 

Table 2-1: Summary of the spatial environmental predictor variables. 

Predictor variable Units Variable 

name 

Variable 

type 

Data source 

Land use 

Urban Land % urban_land numerical LBM-DE2012 (BKG, 2016) 

 Arable Land % arable_land numerical 

Grassland % grassland numerical 

Forest % forest numerical 

Special crops % special_crops numerical 

N-surplus on 

agricultural land 

(mean 2011-2013) 

kg ha-1y-1 N_surplus numerical Bach et al. (2016) 

Hydrogeology & Hydrology 

Hydrogeological 

units (9 variables) 
(-) hyd_unit categorical HYRAUM (BGR & SGD, 2015) 

Seepage water rate mm/a SWR numerical SWR1000_250 (BGR, 2003a) 

Groundwater 

recharge rate 
mm/a GWRR numerical HAD55_gwn1000_v1_raster (BGR, 

2003b) 

Nitrate concentration 

in seepage water 
mg/l SWR_conc numerical Calculated from seepage water rate 

and N-surplus 

Nitrate concentration 

in groundwater 

recharge 

mg/l GWR_conc numerical Calculated from groundwater 

recharge rate and N-surplus 

Soil conditions 

Soil groups  

(9 variables) 
(-) soil_unit categorical BGL5000 (BGR, 2005) 

Field capacity (0-1 m 

soil depth) 
mm FC numerical FK10dm1000_250(BGR, 2015) 

Humus content in top 

soil (0 -10 cm for 

grassland and forest; 

0 - 30 cm for arable 

land) 

% HUMUS numerical HUMUS1000 OB(BGR, 2007) 
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Data pre-processing 

On large scale, there is often only poor information on groundwater flow conditions, so that simplified 

methods have to be applied to determine potential catchment areas of, e.g. monitoring sites. Johnson and 

Belitz (2009) showed that a circular buffer can adequately represent the contributing area of a monitoring 

site where no detailed groundwater flow conditions are known. However, other studies indicate that 

contributing areas based on hydrogeological considerations and simplified hydrogeological flow models 

are superior and improve the predictive performance of statistical models (Mattern et al., 2009; Mfumu 

Kihumba et al., 2016). Therefore, we investigate the effect of five different buffer designs on the 

predictive performance of each statistical models. Each buffer design represents the contributing area of 

a given monitoring site. Three circular buffers with different radii (1,500 m, 1,000 m and 500 m) around 

the monitoring sites assume a homogenous influence of the surrounding area on the monitoring site 

(Figure 2-2). Furthermore, two wedge buffers with apertures of 45° and 90° oriented in groundwater 

flow direction consider a directed effect of the dominating flow condition (Figure 2-2). The groundwater 

flow direction is derived from a state-wide modelling of the groundwater surface for Hesse (Herrmann, 

2010; Wendland et al., 2011). The spatial data is derived for each buffer design for all monitoring sites.  

For subsequently prediction of groundwater nitrate concentration, we create a 1 x 1 km grid for the state 

of Hesse (21,754 grid cells) and perform the corresponding join processes with all predictors. The grid 

maps of all spatial predictors can be found in Figure S 2-2 to Figure S 2-5. 

 

Figure 2-2: Five different buffer designs for the allocation of spatial data to the groundwater monitoring 

sites.  
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2.2.4 Statistical model framework  

For the comparison of different statistical methods, we evaluate four statistical and machine learning 

methods for the spatial prediction of nitrate concentrations in groundwater: Multiple Linear Regression 

(MLR), Classification and Regression Tree (CART), Random Forest (RF), and Boosted Regression 

Trees (BRT). We use the R package ‘caret’ v. 6.0-78 (Kuhn, 2018) to train, compare and test the 

different statistical models. The model selection during the tuning process for CART, RF and BRT is 

made according to the lowest root mean squared error (RMSE). The individual models are described 

below, an overview of the methods and tuning parameters used can be found in Table S 2-3. 

Multiple Linear Regression (MLR) 

The MLR approach is an extension of a linear regression and uses multiple explanatory variables. We 

use nitrate concentration as dependent (or response) variable and all spatial variables (Table 2-1) as 

independent (or explanatory) variables. To optimize prediction performance of MLR and making the 

model interpretable it is necessary to identify the relevant explanatory variables to include in the model, 

which is also known as “subset selection” (Hastie et al., 2009). For this, we follow the stepwise forward 

variable selection according to the lowest Akaike information criterion (AIC) which is implemented in 

the ‘caret’ package.  

Classification and Regression Tree (CART) 

The methodology of Classification and Regression Tree (CART) (Breiman, 1984) is a flexible and 

nonparametric tool for data analysis. It is commonly used for modelling and exploring of complex 

datasets with either numeric or categorical predictor variables that can interact with each other and 

indicate nonlinear relationships (De’ath and Fabricius, 2000). CART uses recursive partitioning by split 

rules for single predictors, which creates homogeneous groups of the response variables (De’ath and 

Fabricius, 2000; Kuhn and Johnson, 2013). The tree structure of the methodology starts with the root 

node, which represents the entire data set. Each split creates two branches with nonterminal nodes, which 

end up in the terminal node or “leaves” giving a unique prediction for the response variable (Breiman, 

1984; De’ath and Fabricius, 2000). With this approach, very large trees can arise with a tendency of 

over-fitting the data. Therefore, Breiman (1984) used a cost-complexity tuning method to prune the tree 

to smaller depth with the smallest error rate (Table S 2-3). The CART results allow a good interpretation 

of the dataset and provide a way to identify relevant predictors. Due to the simplicity of the methodology, 

the predictive performance is relatively low compared to other modelling techniques (De’ath, 2007; 

Kuhn and Johnson, 2013). Another disadvantage is the instability of a single tree that can occur with 

small changes in the data set affecting the split series (Hastie et al., 2009). 
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Random Forest (RF) 

To overcome the disadvantage of CART, Breiman (2001) developed the ensemble method Random 

Forest (RF). The RF method uses the CART algorithm but in a way, that many trees are created. For 

each tree, a bootstrap or so-called out-of-bag (OOB) sample of randomly selected predictors is used. 

This technique is also known as bagging (bootstrap aggregation) (Breiman, 1996). The predictions of all 

trees of the “forest” are averaged to get an ensemble model prediction (Kuhn and Johnson, 2013). In the 

model training process, the number of trees and the number of predictors used at each split can be varied 

(Table S 2-3). This machine learning algorithm improves the model’s predictive performance by variance 

reduction and results in a more robust prediction. RF allows to quantify the impact of the predictors used 

in the ensemble. To do so, the differences of the predictive performances of non-permuted or permuted 

samples for each predictor of the OOB-samples are analysed (Breiman, 2001). The variable importance 

is measured in the mean increase in prediction performance. 

Boosted Regression Trees (BRT) 

Boosted Regression Trees (BRT) is another ensemble method, which strives to improve the model's 

predictive performance. BRT is also based on the CART algorithm but additionally uses boosting 

algorithms, firstly developed by Freund and Schapire (Freund and Schapire, 1996). BRT differs mainly 

in its stage-wise forward process from RF. After an initial tree is fitted, further trees are adapted to the 

residuals of the preceding tree. Each iteration aims to minimize a loss function, a measure to represent a 

decrease in predictive performance. For the resulting BRT model (Table S 2-3), all trees are combined 

linearly (Elith et al., 2008; Hastie et al., 2009). We use stochastic gradient boosting, where at each 

iteration only a random subsample, similar to the bagging technique in RF, is used for fitting the new 

tree. This allows reducing the variance of the final model (Friedman, 2002).  

Model training and evaluation of performance 

The data set is divided into a training (80%, n=1,514) and a test data set (20%, n=376) for testing the 

model’s performances (Figure 2-3, Table S 2-2). The use of stratified random sampling, ensures that the 

distributions of the training and test data are approximately the same (Kuhn and Johnson, 2013). During 

model training three times repeated 10-fold cross-validation resampling technique is used for estimating 

model performance. In the ‘caret’ packages, the resampling technique can be defined consistently for all 

models. Training of the individual model parameters of the different models can then take place under 

the same basic conditions. At the end of the model training, we evaluate the model performance with the 

independent test data set to estimate the accuracy of the final prediction of the grid map.  
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Figure 2-3: Histogram of nitrate concentration in groundwater (mean 2010 – 2017) in mg/l for training 

and test data set. 

 

Because all models use a different way for assessing the variable importance, a normalized measure is 

used to compare the results of the four models. The relative variable importance measures are therefore 

scaled from 0 to 100, where the most relevant predictor is set to 100 (Kuhn, 2018). 

In order to compare the different statistical models, a consistent way to evaluate the model performance 

is required. We calculate the objective functions mean absolute error (MAE) and the root mean squared 

error (RMSE) to express the average model prediction error in the unit of nitrate concentration. 

Furthermore, the commonly applied coefficient of determination R² is used, which is a measure for 

correlation and indicates the covariance in the model prediction. 

 

2.2.5 Prediction  

After all spatial predictors have been linked to the 1 x 1 km grid map of Hesse, a set of predictors identical 

to that used for model development is available for each grid cell. With the trained and tested models, a 

groundwater nitrate concentration can now be estimated according to the predictor values for each grid 

cell.  
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2.3 Results and Discussion 

2.3.1 Model performance 

The resulting predictive performance is measured by MAE, RMSE and R² of the particular statistical 

models. Each model type is trained based on the respective data sets resulting from the different 

contributing areas. The results for the mean model performances after training 30 models using three 

times repeated 10-fold cross-validation are presented in Figure 2-4. All model types based on the 1,000 

m circular buffer zone show the highest R², and except for CART, also the lowest RMSEs. CART shows 

the lowest RMSE based on the 500 m circular buffer zone. Furthermore, the MLR model shows the 

lowest MAE based on the 1,000 m circular buffer. For CART, RF and BRT the MAE based on the 1,500 

m circular buffer slightly outperforms those considering the 1,000 m circular buffer. The results of the 

predictive performance based on the wedge buffers consistently show poorer goodness of fit values. 

Overall and in agreement with Wheeler et al. (2015), we find that the 1,000 m circular contributing area 

leads to the most favourable predictive performances. This indicates, that a circular buffer can adequately 

describe the contributing area of a monitoring site if no process-based information on the actual 

catchment area is available (Johnson and Belitz, 2009). A precise determination of the actual contributing 

area of each monitoring site, derived for example by a process-based representation of the groundwater 

flow conditions, would nevertheless be desirable, since in other studies this has led to an improvement 

of the predictive performance (Mattern et al., 2009; Mfumu Kihumba et al., 2016). In view of the 

application of our approach to the national scale of Germany, however, such information is likely not 

available in the near future. 

The presentation of the following modelling results are based on the 1,000 m circular buffer zone (Figure 

2-5 and Table S 2-4). The RF model performs best with the highest mean R² value of 0.55 and the lowest 

MAE (5.90) and RMSE (9.19). The overall best model achieves an R2 of even 0.67. BRT is only slightly 

worse with an R² of 0.51, whereas CART and MLR show lower predictive performances with an R² of 

0.42 and 0.39, respectively. This tendency of similar performance of RF and BRT, clearly outperforming 

CART and MLR is obvious for all objective functions we estimate. The predictive performance of the 

observed nitrate concentration versus the predicted nitrate concentration is plotted for each model in 

Figure 2-6 and summarized in Table S 2-4. The predictive performance values for the training data set 

show significantly better results than for the test data for all models. The values for the test data are in a 

similar range than the results of the cross-validation measurements. The difference in the predictive 

performance measures for training (RF: R² = 0.94) and test data set (RF: R² = 0.54) indicate that particular 

statistical ensemble methods such as RF and BRT but also CART tend to an overfitting of the data, which 

result in optimistic model performances. The predictive performance measured by cross-validation or by 

the test data set represents more realistic predictive performance values. With RF as the best performing 
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model, we can achieve a R² value of 0.54, which indicates a strong correlation of the observed and 

predicted nitrate concentration in groundwater. Also the BRT, CART and MLR with R² values in the 

test data set of 0.53, 0.41 and 0.35 show good to reasonable results for the spatial nitrate prediction based 

on large-scale spatial input data as predictor variables. 

 

 

Figure 2-4: Comparison of the mean predictive performance MAE (Mean Absolute Error), RMSE (Root 

Mean Squared Error), R² (coefficient of determination) resulting from the 3 times repeated 10-fold cross-

validation for MLR (Multiple Linear Regression), CART (Classification and Regression Tree), RF 

(Random Forest) and BRT (Boosted Regression Trees) based on the different contributing areas (circular 

buffer b1,500, b1,000, b500 and wedge buffer w45, w90), respectively. 

 

In comparison with other studies (Boy-Roura et al., 2013; Nolan et al., 2014, 2015; Ransom et al., 2017; 

Tedd et al., 2014) we achieve a model performance of a similar or even better range. This is particular 

noteworthy, as we only use state-wide accessible mapped spatial predictors. Some of the aforementioned 

studies also considered point information like groundwater well depths, further hydrochemical 

measurements or previous model estimates of groundwater flow dynamics or “redox” conditions as an 

additional predictor.  
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Figure 2-5: Comparison of predictive performance MAE (Mean Absolute Error), RMSE (Root Mean 

Squared Error), R² (coefficient of determination) of the 30 models resulting from the 3 times repeated 

10-fold cross-validation for MLR (Multiple Linear Regression), CART (Classification and Regression 

Tree), RF (Random Forest) and BRT (Boosted Regression Trees), based on the 1,000 m circular buffer 

zone, respectively. 

 

 

Figure 2-6: Predicted vs. observed nitrate concentration for test and training data for the models MLR 

(Multiple Linear Regression), CART (Classification and Regression Trees), RF (Random Forest) and 

BRT (Boosted Regression Tree) based on the 1,000 m circular buffer zone.  
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2.3.2 Variable importance 

The spatial predictors from Table 2-1 are included in all four statistical models. The relative importance 

of the predictors are calculated for the respective models based on the 1,000 m circular buffer zone 

(Figure 2-7). For CART, the hydrogeological units, soil groups and groundwater recharge rate are the 

three most important predictors. The ranking for RF indicates that the hydrogeological units, the 

percentage of arable land and the N surplus are the three most influential predictors. For BRT and MLR 

also the percentage of arable land and the concentration in seepage water show the largest impact on 

nitrate prediction. The variety in the parameter rankings indicate that depending on the used statistical 

model type different predictors have stronger or less strong influence on nitrate prediction. 

 

 

Figure 2-7: Predictors and their relative importance (in %) for prediction of nitrate concentration in 

groundwater in Hesse by the models MLR (Multiple Linear Regression), CART (Classification and 

Regression Tree), RF (Random Forest) and BRT (Boosted Regression Trees) based on the 1,000 m 

circular buffer zone. 
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The importance of specific predictors such as the hydrogeological conditions, soil types, land use or N 

surplus on nitrate prediction has also been found in other studies (Boy-Roura et al., 2013; Nolan et al., 

2014; Ouedraogo and Vanclooster, 2016; Tedd et al., 2014; Wick et al., 2012). Frequently, the 

availability of spatial predictors is limited or differs from region to region, which may also result in a 

shift in parameter rankings. However, determining the most important predictor variables should also 

consider the general model performances and not only the ranking within each model. 

 

2.3.3 Spatial prediction of groundwater nitrate concentrations 

We predict the spatial distribution of nitrate concentrations in groundwater with all four models for Hesse 

(Figure 2-8). In general, all four models show similar patterns for the spatial nitrate distribution that only 

differ locally from each other. Areas with predominant agricultural land use like in the lowlands clearly 

show elevated nitrate concentrations. The spatial nitrate distribution mapped with the CART model show 

a less disperse pattern due to the constrained number of predicted nitrate concentrations resulting from 

one single decision tree. The proportion of the area in Hesse with nitrate concentrations exceeding the 

threshold of 50 mg/l nitrate (and the critical value of 37.5 mg/l nitrate) is 2.0% (8.3%), 2.4% (9.8%) 

3.7% (11.4%) and 2.8% (10.3%) for the models RF, BRT, CART, and MLR, respectively. With regard 

to the impact of agricultural land use on nitrate concentrations, we have furthermore analysed only grid 

cells with more than 50% arable land. For this subset, the models RF, BRT, CART and MLR predict an 

exceedance of the threshold of 50 mg/l nitrate (and the critical value of 37.5 mg/l nitrate) on 8.0% 

(39.3%), 8.1% (34.5%), 11.6% (38.6%), and 13.1% (49.4%) of the area, respectively.  
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Figure 2-8: Predicted groundwater nitrate concentrations in Hesse with the models MLR (Multiple 

Linear Regression), CART (Classification and Regression Trees), RF (Random Forest) and BRT 

(Boosted Regression Tree) on a 1 x 1 km grid-map. 
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2.4 Conclusion 

The GIS-based statistical approach allows the estimation of shallow groundwater nitrate concentration 

derived only from spatially mapped environmental parameters. The use of decision tree statistical models 

(CART, RF, BRT) enables the integration of numerical as well as categorical variables into one 

prediction approach. The models are trained with a point data set of groundwater nitrate concentrations 

with exclusively spatial environmental predictors. The models based on data sets of predictor variables 

derived by a circular buffer with 1,000 m radius leads to the highest predictive performance and thus 

best represents the contributing area around the nitrate concentration monitoring site.  

All four model types result in reasonable to good predictions for the spatial distribution of nitrate 

concentration in groundwater. However, the RF model achieved the highest predictive performance with 

an RMSE of 7.74, MAE of 5.30 and R² of 0.54 for the test data set. For the RF model we identify the 

hydrogeological units, the percentage of arable land and the N surplus on agricultural used area as the 

most relevant predictors for estimating the spatial distribution of nitrate concentration in groundwater. 

Moreover, hydrological parameters and the occurrence of other land use types affect the prediction. 

The determination of the actual contributing area of the monitoring sites through a process-based 

representation of the groundwater flow conditions could probably improve the predictive performance 

of the models. However, the inclusion of locally specific groundwater flow conditions is challenging on 

even larger scales due a lack of information. Furthermore, the present study does not take into account 

the hydrochemical environmental conditions in the groundwater body, which in any case influences 

redox-sensitive parameter such as nitrate. This information is often only available as point information 

on small scale.  

The use of exclusively spatial available predictors as in our approach makes prediction of nitrate in 

groundwater on state level independently of further point data, which is a notable big advantage 

regarding the model’s transferability and applicability in other regions where detailed point 

measurements are often not at hand.  
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Supporting Information 

Study Area 

 

Figure S 2-1: Topographical map of Hesse, Germany (data source: © GeoBasis-DE / BKG, 2017); 

localization of 1,890 groundwater monitoring sites. 
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Data pre-processing 

Point data 

Table S 2-1: Criteria for data selection. 

Criteria for data selection Statement of reasons 

Monitoring site: 

- welldepth < 100 m 

 

 

- deep aquifers commonly integrate nitrate 

input from much greater area than covered 

by the 1 km radius buffer used for 

determination of predictor values 

Measurements: 

- mean nitrate concentration from the period 

2010 to 2017 

- at least two measurements per site 

- mean nitrate concentration > 0.5 mg/l 

 

 

 

- if mean nitrate concentration exceeds 10 

mg/l the coefficient of variation in the time 

series must be < 1 

 

- restrict the time series to a near-term period 

of time (current decade) 

- ensures repeated sampling  

- different laboratories with various limits of 

detection (LoD) for nitrate; highest LoD is 

choosen for harmonisation of data used for 

statistical analysis 

- exclude highly variable nitrate concentration 

time series with potential outliers and 

measurement errors 

 

Table S 2-2: Summary statistics of nitrate concentrations in groundwater for training and test data set. 

 Training data 

nitrate concentration 

[mg/l] 

Test data 

nitrate concentration 

[mg/l 

Count 1,514 376 

Minimum 0.52 0.61 

1st Quantile 6.22 6.23 

Median 10.55 10.62 

Mean 14.90 14.23 

3rd Quantile 19.34 19.36 

Maximum 144.71 66.66 

Standard Deviation 13.74 11.39 

 



Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning 

 

 

37 

Spatial predictors  

Text S 2-1:  

Land use and management 

The land use map consists of 36 classes (BKG, 2016), which we aggregate to six dominant land use 

classes: forest (45%), arable land (24%), grassland (20%), urban land (10%), special crops 

(predominantly winegrowing) (0.3%) and water (0.7%). The agricultural land is mainly located in the 

low plains of the Upper Rhine Valley and the Lower Main Valley. The mountain ranges are 

predominately covered by forests. Densely populated areas are concentrated in the Rhine-Main 

Metropolitan Region around Frankfurt a. M. while the winegrowing areas occur in the south western 

parts of Hesse. Furthermore, we consider spatial information of the N surplus on utilized agricultural 

area (UAA) for administrative districts in Hesse from 2011 to 2013 (Bach et al., 2016). The average N 

surplus amounts to 57.6 kg N ha-1 UAA a-1.  

Hydrogeology and soils 

In Hesse, nine different hydrogeological units can be found (Figure S 2-3) (BGR & SGD, 2015). We 

used the hydrogeological units as categorical predictor variables. Equivalent to the main landscape units, 

there are predominately fractured aquifers with medium to very low hydraulic conductivities in the 

mountainous parts of Hesse and pore aquifers with high hydraulic conductivities in the lowlands.  

The amount of seepage water in Hesse ranges from nearly zero mm/a in the floodplains of the Upper 

Rhine Valley up to 960 mm/a in some parts of the Vogelsberg (BGR, 2003a). The groundwater recharge 

rate shows a very similar pattern with lowest values of nearly zero mm/a in some parts of the Upper 

Rhine Valley and up to 340 mm/a in the Vogelsberg (BGR, 2003b). The higher values for the seepage 

water than the groundwater result from losses through interflow, which is much higher in the fractured 

mountainous areas than in the lowlands. Based on the N surplus data we use calculated nitrate 

concentrations (in mg/l) of the seepage water (SWR_conc) and the groundwater recharge (GWR_conc).  

There are nine main soil groups in Hesse (BGR, 2005), which are classified according the soil substrate, 

water conditions, relief and climatic conditions. We use these as categorical predictors. Furthermore, we 

use information on field capacity of up to 1 m soil depth, with values of up to 500 mm in some alluvial 

zones or even 750 mm in some fens (BGR, 2015). Lower values of the field capacity of around 100 mm 

to 200 mm are predominately found in mountainous areas. We further use the top soil’s humus content 

(%) as an indicator for possible nitrate degradation in soils (BGR, 2007). In the lowlands of Hesse the 

top soil humus content ranges from 0 to 3 %, in the mountainous areas from 3 to 6 %. Only in small 

areas of alluvial zones, in fens or areas with brown earth, which occur in the Odenwald or the Rhenish 

Massive, higher levels of 6 to 8 % occur. 
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Figure S 2-2: Spatial predictors for 1 x 1 km grid map of Hesse; land use: percentage of urban land, 

grassland, forest and special crops. 
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Figure S 2-3: Spatial predictors for 1 x 1 km grid map of Hesse; land use: percentage of arable land and 

N surplus on agricultural land; hydrogeology: hydrogeological units. 
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Figure S 2-4: Spatial predictors for 1 x 1 km grid map of Hesse; hydrogeology & hydrology: seepage 

water rate, groundwater recharge rate, nitrate concentration in seepage water and nitrate concentration 

in groundwater recharge. 
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Figure S 2-5: Spatial predictors for 1 x 1 km grid map of Hesse; soil conditions: field capacity, humus 

content in top soil, soil groups. 
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Model training 

Table S 2-3: Methods and tuning parameters of the models MLR, CART, RF and BRT used in the ‘caret’ 

package. 

Model Method Tuning parameter 

Variable Description Value/Range 

MLR lmStepAIC - - - 

CART rpart cp complexitiy Parameter 0.005-0.05 

RF rf mtry 

ntree 

randomly selected predictors 

number of trees 

3-10 

1000 

BRT gbm n.trees 

interaction.depths 

shrinkage 

n.minobsinnode 

number of boosting iterations 

max. tree depth 

shrinkage (learning rate) 

min. terminal node size 

50 - 1000 

6-10 

0.01-0.05 

10 

 

Model performance 

Table S 2-4: Predictive performance values MAE (Mean Absolute Error), RMSE (Root Mean Squared 

Error), R² (coefficient of determination) for model training and testing for the models MLR (Multiple 

Linear Regression), CART (Classification and Regression Tree), RF (Random Forest) and BRT 

(Boosted Regression Trees) based on the 1000 m circular buffer zone. 

Model 3 x repeated 10-fold Cross-

validation 

Training data set Test data set 

MAE RMSE R² MAE RMSE R² MAE RMSE R² 

MLR 7.08 10.67 0.39 6.92 10.43 0.42 6.62 9.23 0.35 

CART 6.96 10.58 0.42 6.31 9.24 0.55 6.28 8.93 0.41 

RF 5.90 9.19 0.55 2.45 3.96 0.94 5.30 7.74 0.54 

BRT 6.20 9.61 0.51 3.45 4.80 0.89 5.44 7.87 0.53 
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3 Nation-wide estimation of groundwater redox conditions 

and nitrate concentrations through machine learning 

 

This chapter is published in the journal Environmental Research Letters 15 (064004), 2020. 
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* Correspondence to: Lukas Knoll (Lukas.Knoll@umwelt.uni-giessen.de)  

 

Abstract 

The protection of water resources and development of mitigation strategies require large-scale 

information on water pollution such as nitrate. Machine learning techniques like random forest (RF) have 

proven their worth for estimating groundwater quality based on spatial environmental predictors. We 

investigate the potential of RF and quantile random forest (QRF) to estimate redox conditions and nitrate 

concentration in groundwater (1 km x 1 km resolution) using the European Water Framework Directive 

groundwater monitoring network as well as spatial environmental information available throughout 

Germany. The RF model for nitrate achieves a good predictive performance with an R2 of 0.52. Dominant 

predictors are the redox conditions in the groundwater body, hydrogeological units and the percentage 

of arable land. An uncertainty assessment using QRF shows rather large uncertainties with a mean 

prediction interval (MPI) of 53.0 mg/l. This study represents the first nation-wide data-driven assessment 

of the spatial distribution of groundwater nitrate concentrations for Germany. 
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3.1 Introduction 

The increasing use of groundwater as the world's most important drinking water resource underlines the 

importance of protecting it from pollution (Foster and Chilton, 2003). In Germany and many other 

countries, the quality of groundwater is affected by elevated nitrate (NO3) concentrations attributed 

predominantly to diffuse nitrogen losses in agricultural systems (EEA, 2018; Galloway et al., 2008). 

Nitrate pollution of water systems has far-reaching environmental consequences and poses a serious risk 

to human health (Erisman et al., 2013; Reis et al., 2016; van Grinsven et al., 2006). The EU Water 

Framework Directive 2000/60/EC (WFD) was introduced for integrated water protection, aimed at 

maintaining or restoring the ‘good status’ of groundwater bodies. With regard to nitrate pollution, this 

requires measures to reduce nitrogen inputs to meet the WFD quality standard of <50 mg/l NO3. 

The EU Member States are obliged to submit a regular inventory of the groundwater status. The latest 

report shows that 25% of groundwater bodies in the EU have a poor chemical status, 18% primarily due 

to nitrate pollution (EEA, 2018). The responsible authorities need to develop interdisciplinary, 

integrative and holistic river basin management plans for the implementation of the WFD, which requires 

comprehensive mapping of the pollution of water systems and identification of areas under significant 

pressure (Kallis and Butler, 2001; Voulvoulis et al., 2017).  

Estimating the nitrate concentration in groundwater depends on several factors and processes. Land use 

patterns and the amount of the nitrogen surplus on agricultural land provide indications of input sources. 

In addition, the hydrogeological and biogeochemical conditions of the aquifer determine the occurrence 

of nitrate in the water body. Complex natural attenuation processes occur during the vertical 

displacement of nitrate in the unsaturated zone and the lateral transport in the aquifer in the direction of 

groundwater flow (Rivett et al., 2008). Denitrification, as the most significant process of nitrate removal 

in the groundwater body, depends strongly on the prevailing redox conditions (Korom, 1992; Rivett et 

al., 2008). Denitrification occurs under anaerobic conditions if denitrifying bacteria and electron donors 

are present (Rivett et al., 2008). Such anaerobic conditions are characterised by an oxygen (O2) 

concentration of ≤1-2 mg/l and iron (Fe) concentration of ≥0.1-0.2 mg/l (Kunkel et al., 2004, 2017; 

McMahon and Chapelle, 2008; Rivett et al., 2008). Several studies dealt with the large-scale estimation 

of redox conditions in groundwater (Close et al., 2016; Koch et al., 2019; Rosecrans et al., 2017; 

Tesoriero et al., 2015, 2017) and Ransom et al. (2017) identified it as one of the most important 

parameters for the estimation of nitrate concentrations.  

Data-driven statistical approaches have proven their worth in simulating large-scale groundwater quality. 

Nationwide groundwater nitrate concentration maps were developed with regression models for China 

(Gu et al., 2013) and for the United States (Nolan et al., 2002; Nolan and Hitt, 2006). Machine learning 
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(ML) techniques are receiving more and more attention in the field of water research. Khalil et al. (2005) 

showed the strong predictive capabilities in groundwater contamination modelling of different 

algorithms, e.g. artificial neural networks or support vector machines. As another effective tool, random 

forest (RF) developed by Breiman (2001) is frequently applied in water resources issues (Tyralis et al., 

2019). RF is a very powerful tool for modelling and evaluating large complex data sets with nonlinear 

relationships between both numerical and categorical explanatory variables. It is further characterised by 

its robustness and increased predictive performance (Tyralis et al., 2019). Comparisons of different 

machine learning techniques in terms of prediction performance have shown that tree-based models such 

as RF outperform others (Knoll et al., 2019; Wang et al., 2016). Such tree-based ML techniques have 

already been used in several studies on large-scale prediction of groundwater nitrate concentrations 

(Knoll et al., 2019; Nolan et al., 2014, 2015; Ouedraogo et al., 2019; Ransom et al., 2017; Rodriguez-

Galiano et al., 2014, 2018; Tesoriero et al., 2017; Wheeler et al., 2015). In terms of the estimation of 

groundwater redox conditions, Close et al. (2016) and Wilson et al. (2018) performed linear discriminant 

analyses. Whereas, other studies also made use of ML for predicting groundwater redox conditions or 

the redox interface (Friedel et al., 2020; Koch et al., 2019; Rosecrans et al., 2017; Tesoriero et al., 2015; 

Wilson et al., 2020). 

Due to the complex processes influencing groundwater quality, estimations are accompanied by 

uncertainties that need to be quantified (Grizzetti et al., 2015; Refsgaard et al., 2007). As one of the few, 

Rahmati et al. (2019) investigated the uncertainties in machine learning approaches for estimating 

groundwater nitrate concentrations and showed that it is important to consider both the performance and 

the uncertainty for model evaluation. Ransom et al. (2017) used bootstrapping for a boosted regression 

tree model and Koch et al. (2019) extended RF with geostatistics to assess uncertainties. By modifying 

RF to quantile random forest (QRF), Meinshausen (2006) provided a method to consider a full 

conditional distribution for the predictions instead of the mean only. This enables not only the additional 

output of median predictions, but also to estimate uncertainties by determining prediction intervals. Even 

though this method is not yet common in water research, it has already been used in digital soil mapping 

(Szatmári and Pásztor, 2019; Vaysse and Lagacherie, 2017). 

Here, we provide for the first time a data-driven estimation of groundwater nitrate concentrations for the 

federal state of Germany, which is characterized by a large share of agricultural land use of around 50% 

of its area (360,000 km2). The objectives of our study are to develop a RF model combined with QRF 

to: 1) characterise the spatial distribution of redox conditions in groundwater, 2) estimate groundwater 

nitrate concentrations considering the redox conditions, and 3) determine prediction intervals as an 

uncertainty assessment.  



Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning 

 

 

46 

3.2 Materials and Methods 

The general modelling process involves four steps, i.e., setting up a database, data pre-processing, 

predictive modelling and uncertainty analysis with RF combined with QRF (Figure 3-1). The predictive 

modelling as well as the uncertainty analysis is performed with R (v. 3.4.1). All spatial data are processed 

in the Geographical Information System ArcGIS (v. 10.4).  

 

 

Figure 3-1: Scheme of the four-stage modelling process: set up of a database, data pre-processing, 

predictive modelling and uncertainty analysis. RF = Random Forest, QRF = Quantile Random Forest, 

RMSE = root mean squared error, R² = coefficient of determination, MAE = mean absolute error, 

PI = prediction interval, MPI = mean prediction interval, PICP = prediction interval coverage probability. 



Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning 

 

 

47 

3.2.1 Database 

According to WFD, the chemical status of groundwater is evaluated based on a representative monitoring 

network on which the EU Member States are required to report regularly. The WFD monitoring includes 

a surveillance network for the long-term and overall description of the groundwater status and an 

additional operational network. The monitoring sites selected in the WFD monitoring network represent 

the qualitative status of the respective groundwater body (EC, 2003). As the implementation of the WFD 

in Germany is the responsibility of the federal states, the design of the monitoring networks varies, which 

is reflected in particular in the numbers and distribution of the individual monitoring sites. In this study, 

we use a consolidated data set of groundwater concentration measurements of all WFD monitoring 

networks of the federal states (hereafter referred as WFD data set), which was provided by the 

responsible federal authorities. We considered a number of preconditions for the selection of the 

monitoring sites out of the WFD data set:  

- Metadata and information on the sampling depth need to be available.  

- Monitoring sites with a depth >100 m are excluded to avoid deep aquifers.  

- Recent observation period (mean of 2009-2018).  

- Monitoring sites with strong variations in the annual means are excluded (standard error of the 

mean (SEM) in the time series is >1 mg/l for O2 and Fe and >10 mg/l for NO3) to provide a 

representative concentration with robust means for the sampling period. 

- Outliers in the O2, Fe and NO3 concentrations (>99% percentile) are removed from the data set.  

Information on data acquisition and preparation is further described in Text S 3-1 of the Supporting 

Information. The groundwater quality data is statistically summarised in Table S 3-1and Figure S 3-1, 

the spatial distribution of the monitoring sites is mapped in Figure S 3-2. 

The groundwater concentration measurements (point data) for NO3 (n=5,414), O2 (n=5,837) and Fe 

(n=5,628) are used as the dependent variables. The redox condition classification is derived from O2 and 

Fe concentrations and is taken into account in the nitrate model as predictor. To simulate groundwater 

nitrate concentrations, a set of 21 relevant spatial environmental predictors available throughout 

Germany is pre-selected according to expert knowledge, including 7 predictors on land use and 

management, 12 predictors on hydrogeology and hydrochemistry, and 2 predictors on soil conditions 

(Table S 3-2). A description of the data and information on data preparation can be found in Text S 3-2 

and Figure S 3-3 to Figure S 3-6. 
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3.2.2 Pre-processing 

Characterisation of redox conditions 

The characterisation of the redox conditions is based on a four-point classification scheme according to 

LAWA (2018). O2 concentration is the predominant determinant for the occurrence of denitrification, 

with concentrations <2 mg/l indicating anaerobic conditions and the occurrence of denitrification (Rivett 

et al., 2008). In this case, two points are assigned to the monitoring site. In the range of 2-5 mg/l O2, 

there is only an average probability for the occurrence of denitrification, and one point is assigned. At 

O2 concentrations >5 mg/l there are strong aerobic conditions, the probability of denitrification is low 

and no points are assigned to the monitoring site. Since denitrification preferably occurs under the 

presence of Fe concentrations ≥0.2 mg/l (Kunkel et al., 2004, 2017), we added an extra point. This results 

in four redox classes: (3) strongly anaerobic, (2) anaerobic, (1) intermediate and (0) aerobic (Table S 

3-3). 

Buffer analysis 

The point data (O2, Fe and NO3 concentrations) are linked with the spatial predictors by means of 

contributing areas. The contributing area represents the potential catchment area of a monitoring site 

where the measured groundwater quality can be influenced by environmental factors. Since information 

on large-scale groundwater flow conditions is limited, we used a simplified procedure to determine 

contributing areas for each monitoring site, i.e., a circular buffer of 1000 m radius results in best model 

performances (Knoll et al., 2019). The spatial predictors are compiled within this buffer zone and are 

linked to the monitoring site. The spatial predictors are assigned to the individual cells of the grid map 

for Germany (358,171 grid cells) in the same way. The data pre-processing is further described in Text 

S 3-3. 

Feature selection 

First, a correlation matrix was used to test for strong correlations (pearson correlation coefficient r>0.75) 

between the numerical predictors. This was the case for the leachate rate and the groundwater recharge 

rate, whereupon we removed the leachate rate from the data set. With the Boruta R package (Kursa and 

Rudnicki, 2010), an all-relevant feature selection algorithm, a final set of relevant predictors was 

selected, where rock type of the aquifer was removed as well (Table S 3-2). Predictor importance plots 

derived from the Boruta method can be found in Figure S 3-7. After feature selection, 11 predictors 

remain for the O2 data set, 6 for the Fe data set, and 19 for the NO3 data set. 
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3.2.3 Predictive modelling 

For RF model training and evaluation, the data is first split into a training (80%) and test (20%) data set. 

In order to ensure an approximately equal distribution of the response variable in both data sets, stratified 

random sampling is applied (Kuhn and Johnson, 2013). For spatial prediction, the final model is trained 

with all data due to the relatively low density of monitoring sites. Details about the RF modelling 

approach is given in Text S 3-4. While RF considers only the conditional mean of a response prediction, 

QRF keeps all observations in this node and assesses the conditional distribution (Meinshausen, 2006). 

This continuous distribution function describes the range and variation of the response variable around 

the predicted mean and thus median values or an estimate for the uncertainty of the prediction can be 

obtained. We use the R package ‘caret’ v. 6.0-82 (Kuhn, 2018) for predictive modelling, in which the R 

package ‘randomForest’ (Liaw and Wiener, 2002) (method=‘rf’) and ‘quantregForest’ (Meinshausen, 

2017) (method=‘qrf’) is implemented. In ‘caret’, we define the number of trees in the model 

(ntree=1000) and three times repeated 10-fold cross-validation (method=‘repeatedcv’, number=10, 

repeats=3) as resampling method in the model training function.  

The evaluation of the model performance is based on three objective functions: the root mean squared 

error (RMSE), coefficient of determination (R2) and mean absolute error (MAE). RMSE and MAE give 

an expression for the average model prediction error in the unit of the model response, where R² is a 

common measure indicating the variance in the prediction. We determine model performance for the 

training data set and validate it with the independent test data set. Because RF trees grow to a maximum 

size, it likely overfits the data in each tree, which results in essentially low prediction errors on the 

training data. Using cross-validation in the model training process avoids overfitting. Therefore the 

performance for the finally used model based on all data is determined through cross-validation. The 

relative predictor importance for each model is evaluated during the model training process by cross-

validation based on the training data set with a normalised measure for importance from 0-100%, where 

the most important predictor is set to 100% (Kuhn, 2018).  

After model training and setup of the grid map data set (1 km x 1 km) for Germany, the models are used 

to estimate the groundwater concentrations for each grid cell according to the assigned predictors. Before 

applying the model for NO3 to the grid, the redox conditions must be determined for each grid cell 

according to the classification scheme based on the predicted O2 and Fe concentrations (Table S 3-3).  
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3.2.4 Uncertainty analysis 

To evaluate the reliability of the estimates, a prediction interval (PI) can be derived to determine the 

model uncertainty. The p-quantile of a distribution corresponds to the value not exceeded by the values 

of the response variable with a probability p. Based on the p-quantiles, the PI is defined as the range 

between the lower (PLlower) and upper prediction limit (PLupper). A 90%-PI indicates a range from the 

5%-quantile to the 95%-quantile (
(1−𝑝)

2
 to 

(1+𝑝)

2
), in which the true value is expected with a high 

probability (p=0.9). The mean prediction interval (MPI) and the prediction interval coverage probability 

(PICP) are suggested as statistical measures to evaluate the uncertainty of QRF (Rahmati et al., 2019; 

Shrestha and Solomatine, 2006). The MPI expresses the average width of all PIs, with lower values 

indicating lower uncertainties (Eq. [3-1]). With the PICP as a validation measure of the model 

uncertainty, the proportion of observed values (yi) within the estimated PI is calculated for a given 

confidence level p (Eq. [3-2]) (Dogulu et al., 2015). Ideally, PICP corresponds approximately to the 

confidence interval p, otherwise the uncertainty is overestimated (PICP>p) or underestimated (PICP<p). 

𝑀𝑃𝐼 =
1

𝑛
 ∑(𝑃𝐿𝑖

𝑢𝑝𝑝𝑒𝑟
− 𝑃𝐿𝑖

𝑙𝑜𝑤𝑒𝑟)

𝑛

𝑖=1

 
[3-1] 

𝑃𝐼𝐶𝑃 =  
1

𝑛
 ∑ 𝐶, 𝑤ℎ𝑒𝑟𝑒 𝐶 = {

 1, 𝑃𝐿𝑖
𝑙𝑜𝑤𝑒𝑟 < 𝑦𝑖 < 𝑃𝐿𝑖

𝑢𝑝𝑝𝑒𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑛

𝑖=1

 
[3-2] 

 

3.3 Results  

3.3.1 Spatial distribution of groundwater redox conditions  

In the pre-processing step, four classes characterising the prevailing redox conditions were determined 

based on the measured O2 and Fe concentrations. Figure 3-2 shows a distinct influence of redox 

conditions on groundwater nitrate concentrations with a significant decrease with increasing anaerobic 

conditions. However, very high nitrate concentrations can still be seen in the anaerobic classes (2) and 

(3), despite potentially favourable conditions for denitrification. In these cases, either the denitrification 

potential is exceeded or the denitrification capacity is exhausted due to depleted electron donors (Green 

et al., 2008; Liao et al., 2012; Wilde et al., 2017).  
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Figure 3-2: Boxplots of measured NO3 concentration for four classes of redox conditions based on the 

WFD data set.  

 

In order to map the redox conditions, the spatial distribution of O2 and Fe groundwater concentrations 

must first be estimated. RF models for both parameters are trained with the pre-selected predictors. The 

importance of the predictors used in the RF model for O2 (RFO2) and Fe (RFFe) are ranked and depicted 

in Figure 3-3. For the RFO2 model, the hydrogeological units and the groundwater recharge rate are most 

relevant. In the RFFe model, the hydrogeological units dominate followed by field capacity. Tesoriero et 

al. (2015, 2017) also concluded that geology and parameters related to groundwater travel times, 

including groundwater recharge rate, are significant predictors for estimating aerobic conditions.  

 

Figure 3-3: Importance ranking scaled from 0-100% of the six most important predictors for RFO2, RFFe, 

and RFNO3 models based on the WFD training data. hyd_unit = hydrogeological units, GWR = 

groundwater recharge rate, L_KF = hydraulic conductivity, FC = field capacity, RTGW = groundwater 

residence time, HUMUS = humus content, Redox = redox conditions, arable_land = percentage of arable 

land, SWR_conc = potential nitrate concentration in seepage water, Nsurp_cm = calculated mean 

nitrogen surplus, forest = percentage of forest. 
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The results of the predictive performances of the RF models are summarised in Table 3-1. The RFO2 

model shows a very good predictive performance for the training data set. The RFO2 model based on all 

data after cross-validation still achieves a good predictive performance (RMSE = 2.49 mg/l, R² = 0.53, 

MAE = 1.86 mg/l) similar to that of the test data set. The RFFe model also shows very good predictive 

performance for the training data set. However, for the independent test data, the RFFe model only has a 

reasonable predictive performance as has the RFFe model based on all data after cross-validation (RMSE 

= 3.00 mg/l, R² = 0.26, MAE = 1.66 mg/l). Similar studies, e.g. Tesoriero et al. (2017) and Rosecrans et 

al. (2017) can hardly be compared with our results, as they predict the probabilities of exceeding certain 

thresholds. Predictions versus observations for groundwater O2 and Fe concentrations of the test data are 

shown in Figure 3-4. Despite its lower predictive performance compared to oxygen, iron provides an 

important additional contribution to the classification of the redox conditions.  

The predicted grid maps of the groundwater concentrations of the redox parameters O2 and Fe can be 

found in Figure S 3-8 and Figure S 3-9. For each map, the QRF model is used to determine the upper 

and the lower prediction limit (PLupper = 95%-quantile, PLlower = 5%-quantile) to derive the PI (Figure S 

3-8 and Figure S 3-9). Density plots of the predicted redox parameters can be found in Figure S 3-11. 

The MPI of 7.4 mg/l for the RFO2 model and 6.0 mg/l for the RFFe model indicate a very high uncertainty 

in the model prediction. The PICP values of 0.89 for RFO2 and 0.90 for RFFe correspond to p (0.90), thus 

indicating that the uncertainties of the predictions are correctly assessed with QRF.  

 

Table 3-1: Evaluation of model performance for the RFO2, RFFe and RFNO3 models based on test data, 

training data and all data of the WFD data set. 

Model Test data Training data All data 

cross-validation (10-fold 3 times 

repeated) 

RMSE 

[mg/l] 

R² MAE 

[mg/l] 

RMSE 

[mg/l] 

R² MAE 

[mg/l] 

RMSE (±sd) 

[mg/l] 

R² (±sd)  MAE (±sd) 

[mg/l] 

RFO2 2.50 0.53 1.87 1.32 0.89 0.97 2.49±0.09 0.53±0.03 1.86±0.06 

RFFe 3.09 0.24 1.65 1.62 0.84 0.88 3.00±0.25 0.26±0.05 1.66±0.11 

RFNO3 20.90 0.51 12.97 8.66 0.93 5.39 20.12±0.97 0.52±0.04 12.71±0.51 
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Figure 3-4: Predicted vs. observed groundwater concentrations for the RFO2 (a), RFFe (b) and RFNO3 (c) 

model based on test data of the WFD data set. The blue lines show the regression lines between the 

observations and the predictions along with their 95% confidence intervals. 

 

According to the classification scheme in Table S 3-3, the spatial distribution of the redox condition is 

determined with the estimated O2 and Fe concentrations in groundwater. Due to the low model 

performance of the RFFe model and its rather large uncertainties this could lead to misclassifications, 

especially in line with the low Fe concentration threshold for anaerobic conditions. As Fe concentrations 

show a strongly right skewed distribution, we use the median in favour of the average to describe the 

expected response. The resulting map of the derived redox conditions is shown in Figure 3-5. In the 

northern part of Germany as well as in some lowlands in the central and southern part predominantly 

strongly anaerobic to intermediate redox conditions occur. The southern part of Germany is dominated 

by intermediate to mostly aerobic redox conditions. This distribution indicates a higher denitrification 

potential in the unconsolidated aquifers of the North German Plain and local lowlands than in the 

consolidated units of central and southern Germany.  
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Figure 3-5: Spatial distribution of four redox classes for a 1 km x 1 km grid map of Germany derived 

from predicted oxygen and iron concentration in the period 2009-2018 based on the WFD data set 

(federal state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - attribution - version 2.0 

(www.govdata.de/dl-de/by-2-0)). 

 

3.3.2 Spatial distribution of groundwater nitrate concentration 

The RF model training for the NO3 model (RFNO3) is based on a more comprehensive set of predictors 

compared to RFO2 and RFFe (Table S 3-2). In addition to available spatial predictors, information on 

redox conditions derived from monitoring data of O2 and Fe concentration (Figure 3-5) is used. The 

variable importance of the predictors used in the RFNO3 model is ranked in Figure 3-3. The redox 

condition is by far the most relevant predictor, followed by the hydrogeological units and the percentage 

of arable land. The high relevance of the hydrogeological units and the percentage of arable land has also 

been found in Knoll et al. (2019). Ransom et al. (2017) used the redox parameters manganese and oxygen 

for nitrate prediction, which in that case turned out to be the most relevant predictors. Contrary to our 

expectations, the groundwater residence time within the RFNO3 model is less relevant. Ransom et al. 
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(2017) added the groundwater age as a predictor and significantly improved the predictive performance 

of their groundwater nitrate model. However, the rather coarse resolution of groundwater age might be 

the reason for the low impact in our study. 

The RFNO3 model results in a good predictive performance for the training data set (Table 3-1). For the 

independent test data set, the model still provides good predictive performance as well as for the model 

based on all data after cross-validation (RMSE = 20.12 mg/l, R² = 0.52, MAE = 12.71 mg/l). Predictions 

versus observations for groundwater nitrate concentrations of the test data are shown in Figure 3-4. The 

RFNO3 model tends to underestimate high concentrations (>50 mg/l) and has problems in the prediction 

of extreme values >100 mg/l. However, the performance of the model can be regarded as good, especially 

with respect to the large scale of the application and the relatively low density of monitoring sites. Other 

studies on large-scale prediction of groundwater nitrate concentrations result in comparable model 

performances (Knoll et al., 2019; Nolan et al., 2015; Ransom et al., 2017; Wheeler et al., 2015). The 

predicted grid map of the NO3 concentration in groundwater is shown in Figure 3-6, a corresponding 

density plot can be found in Figure S 3-11. As shown before, results of the RFFe and the RFO2 models 

contain partly large uncertainties. This could lead to misclassifications of the redox classes used for the 

NO3 prediction. Since the redox condition is the most relevant predictor, we analysed its spatial 

sensitivity. In short, we added a random error of 5 to 30% to all classes in Figure 3-5, see details in Text 

S 3-5 and Figure S 3-12. The mean predicted NO3 concentration varies more with an increase in 

misclassification. But even an assumed misclassification as large as 30% does not lead to a general 

questioning of our results. The predicted mean NO3 concentration across Germany of 22.7 mg/l ranges 

within 21.0 to 24.9 mg/l under this assumption. 

The QRF model is also used to determine the upper and the lower prediction limits for the RFNO3 model. 

The derived 90%-PI is shown in Figure 3-6. Based on the test data, the MPI of 53.0 mg/l for the RFNO3 

model indicates a very high uncertainty in the model prediction. The PICP values for the RFNO3 model 

of 0.91 corresponds to p (0.90), indicating correctly assessed prediction uncertainties with QRF. Other 

studies on prediction of groundwater nitrate concentration determined uncertainties in a similar range 

(Rahmati et al., 2019; Ransom et al., 2017). Koch et al. (2019) pointed out that the uncertainty can be 

significantly reduced with a more comprehensive data set. In line with this, we also tested a data set with 

additional monitoring sites (n=13,038 for NO3) operated by several federal states in Germany, which 

resulted in a reduced, but still high uncertainty (MPI = 41.9 mg/l). Anyway, as these sites are not part of 

the WFD monitoring program, they were not further considered in this study. 
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Figure 3-6: Spatial prediction (1 km x 1 km) of the mean groundwater nitrate (NO3) concentration in 

the period 2009-2018 for Germany and the 90% prediction interval (PI) based on the WFD data set 

(federal state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - attribution - version 2.0 

(www.govdata.de/dl-de/by-2-0)). 

 

3.4 Discussion 

The high relevance of the redox conditions in the estimation of nitrate concentrations underlines the 

importance of a precise estimation of the hydrogeochemical conditions in the aquifers. Since 

hydrogeological units (Figure S 3-4) provide a decisive predictor for the estimation of the redox 

parameters, it is obvious that they are also of high relevance for the estimation of groundwater nitrate 

concentrations. Nevertheless, the anthropogenic impact on nitrate loads can only be represented properly 

if the inputs of nitrogen to the groundwater are correct. Thus, knowledge about percentage of agricultural 

land, the nitrogen surplus and the seepage rate are essential. Although natural turnover processes in the 

groundwater body are the most important determinant with regard to the groundwater pollution, the 

starting point for mitigation measures is to reduce the input, especially with regard to a finite reduction 

potential in the groundwater body. 
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It is apparent that the redox conditions are roughly divided into two regions (Figure 3-5). In the North 

German Plain and in some lowlands, anaerobic to strongly anaerobic conditions and thus preferably 

denitrifying conditions predominate. Conversely, aerobic to intermediate redox conditions tend to 

dominate in the southern and central German mountain regions. Similar findings are described in Kunkel 

et al. (2004) who conclude that aquifers with reduced nitrate degrading capacity occur in the North 

German Plain, while non-nitrate-degrading conditions prevail in aquifers of consolidated units. 

Hannappel et al. (2018) also found that the denitrification potential in quaternary and tertiary 

unconsolidated rocks is clearly higher than in the consolidated units.  

The north-eastern part of Germany shows predominantly unpolluted areas in glacially formed Late 

Pleistocene units. These largely confined aquifers are characterised by low flow velocities, long 

groundwater residence times and strongly anaerobic conditions due to thick covering till layers and are 

therefore well protected against contamination (Merz et al., 2009; Wendland et al., 2008). Merz et al. 

(2009) also describe aerobic areas in groundwater recharge regions with high NO3 concentrations, which 

only in places are identified by the predictions of the RFNO3 model. However, predictions are 

accompanied by rather high uncertainties, so that higher concentrations are at least within the confidence 

limits of the model. In the north-western part of Germany, high NO3 concentrations occur in the Geest 

regions formed in the Middle Pleistocene, whereas in the lowlands the groundwater is almost nitrate-

free, which is in line with Wriedt et al. (2019). The redox conditions tend to be less anaerobic to 

intermediate in the Geest areas in contrast to the lowlands where strong anaerobic conditions prevail, 

which was also reported by Eschenbach et al. (2018). Conversely, lowlands with sand and gravel deposits 

in the middle and southern part of Germany often show nitrate-polluted groundwater, due to a lack of 

cover layer, weakly anaerobic to intermediate redox conditions and intensive agricultural land use 

(Grimm-Strele et al., 2008; Knoll et al., 2019; Kuhr et al., 2013; Wendland et al., 2008). For the pore 

aquifers of the northern Alpine foothills, the RFNO3 model predicts large areas of nitrate-polluted 

groundwater, despite generally well-developed cover layers and the associated high protective function 

of the aquifers in this region. The tendency to overestimate groundwater nitrate concentration in this 

region can be due to the very low density of monitoring sites. The uncertainties in this area are also high. 

In the consolidated units of central and southern Germany, fractured and karst aquifers are generally 

more vulnerable to contamination and predominantly indicate higher groundwater nitrate concentrations, 

which is also in line with a lower nitrate reduction potential due to aerobic to intermediate redox 

conditions (Hannappel et al., 2018). In these consolidated regions, the high nitrate concentrations in the 

groundwater correspond to areas with high nitrogen surpluses caused by intensively agriculturally used 

depressions. Only the mountain regions with extensive forest cover usually show no groundwater nitrate 
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pollution. Based on the described approach, about 10% of the area of Germany exceed the threshold of 

50 mg/l NO3. 

In general, the uncertainties are large (MPI = 53.0 mg/l), especially in the regions where nitrate 

concentrations are high or where strong variations between very high and low concentrations exist. 

Ransom et al. (2017) also determined the highest uncertainties in the nitrate-polluted areas.  

A possible source for prediction errors and high uncertainties is linked to the available predictors. A 

more precise assessment of groundwater residence times could lead to better results and lower 

uncertainty. However, there is no nation-wide detailed database on the depth to the groundwater surface 

and flow conditions or the thickness of cover layers, which would be important indicators for residence 

times and the protective function of the aquifer. In addition, the integration of further predictors, such as 

a detailed description of the geochemical character of the aquifer or detailed information on input sources 

(that are currently not available on large scales) could improve the model performance. Uncertainties 

and prediction errors may also arise from the underlying dependent variable. Investigations of the spatial 

distribution of redox conditions in aquifers have shown a decrease in aerobic conditions with depth 

(Close et al., 2016; Rosecrans et al., 2017). Due to this hydrogeochemical zoning of aquifers, the 

concentrations of the groundwater samples strongly depend on the horizon in which the wells are 

screened and generally the NO3 concentrations decrease with increasing well depth (Ransom et al., 2017; 

Wheeler et al., 2015). Tesoriero et al. (2017) also showed a higher probability for high nitrate 

concentrations near the groundwater surface. Wriedt et al. (2019) reported a decrease in nitrate 

concentrations with depth, but they concluded that a vertical gradation of depth horizons cannot 

adequately describe the hydrogeochemical zoning of the aquifers. Long screened sections can also lead 

to mixing of groundwater from the aerobic and anaerobic zone during sampling. Adjacent measuring 

points, which supply samples from different horizons, thus lead to variations in the data set, likely 

causing high prediction uncertainties. 

Finally, it should be pointed out that the results of the regionalized groundwater nitrate concentration, 

and thus the identified areas with NO3 >50 mg/l (10%), presented in this study cannot be compared one-

to-one with studies focusing on other research questions. The classification of the chemical status of the 

groundwater in Germany according to the WFD showed that even 27.1 % of the groundwater bodies did 

not meet the WFD quality standard for nitrate (UBA, 2017a). It should be taken into account that the 

WFD-assessment is based on the precautionary principle, i.e. the results consider extreme concentrations 

which are potentially harmful. Accordingly a groundwater body (average size around 316 km²) is entirely 

classified as ‘poor status’ if even one of the monitoring sites or a defined proportion of the area within 

the groundwater body does not meet the quality standard (GrwV, 2010). Thus, a much higher proportion 
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of the area is designated as nitrate-polluted compared to our analysis, where the spatial assessment is 

based on a much higher resolution and mean values excluding outliers. In the authors' view, which 

methodology most adequately characterises groundwater quality (with regard to nitrate) depends on the 

scientific context and the research objective. 

 

3.5 Conclusion 

This study shows the potential of machine learning applications such as RF and QRF in the field of water 

research on a national scale. We presented the first Germany-wide assessment of groundwater redox 

conditions and nitrate concentrations with a resolution of 1 km x 1 km using a uniform data-driven 

approach based on spatial environmental predictors. In addition to a large influence of redox conditions, 

hydrogeological units and the percentage of arable land on nitrate estimation, high prediction 

uncertainties were determined. A more detailed and comprehensive database stratified according to well 

depths would likely enhance the prediction of NO3 concentrations in groundwater. Adaptations of 

national groundwater monitoring networks with extensive monitoring in different depth horizons would 

be a major step forward, not only for Germany. However, the results of this study can contribute to 

further research on nation-wide scales, e.g. the calculation of national nitrogen targets or quantifying 

nitrogen flows from groundwater into surface waters and for the identification of vulnerable regions in 

which detailed investigations regarding the implementation of mitigation measures are necessary.  
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Supporting Information 

Data Base 

Text S 3-1: 

The administration, maintenance and the quality management of the groundwater data is the 

responsibility of the respective 16 federal states of Germany. The data were requested and provided 

centrally via the LAWA-AG (German Working Group on water issues of the Federal States and the 

Federal Government – Committee for Groundwater and Water supply). In the first step, the data sets of 

the individual states are transferred into a uniform structure in a database. Monitoring sites with missing 

metadata are removed from the data set. While some states have already provided annual averages, for 

others they have to be calculated before calculating the average for the past decade 2009-2018. Outliers 

and time series are removed according to the criteria set out in the Chapter 3.2.  

Since the planning, design and implementation of monitoring is the responsibility of the federal states, 

the monitoring networks differ in their density and/or representativeness of the various land use types. 

For example, the density of monitoring sites per 1,000 km² varies (except for the federal city-states 

Bremen, Hamburg and Berlin) form 5.6 in Baden-Württemberg to 40.7 Rhineland-Palatinate. The mean 

density is 20.8 sites/1,000 km².  

The monitoring sites of the WFD data set refer to the hydrogeological conditions of the upper main 

groundwater body. We exclude monitoring sites with a depth >100 m to avoid an influence from deep 

aquifers. A further vertical zoning by depth classification of the measuring sites is not applied in view of 

the small number of measuring sites. We attempt following a parsimonious modelling approach in our 

nationwide assessment. However, this simplification leads to uncertainties because, for example, 

different depth horizons are taken into account. Ultimately, this leads to a more average estimate, with 

less extremes. This should be considered when interpreting our results. 
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Table S 3-1: Summary statistics of mean groundwater concentration (O2, Fe and NO3) [mg/l] of the 

period 2009-2018 for the WFD data set. 

Statistics O2 Fe NO3 

n 5,837 5,628 5,414 

min. 0.00 0.002 0.01 

1st quantile 0.27 0.010 0.63 

median 1.72 0.090 7.80 

mean 3.52 1.614 21.46 

3rd quantile 6.81 1.530 33.45 

max. 12.27 27.42 148.78 

 

 

Figure S 3-1: Density plots of mean groundwater concentrations of a) O2, b) Fe and c) NO3) of the period 

2009-2018 for the WFD data set. 
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Figure S 3-2: Localisation of selected groundwater monitoring sites of the WFD data set (blue) and sites 

used for the RFNO3 model (red) (coordinates of the monitoring sites were provided by the LAWA-AG 

(German Working Group on water issues of the Federal States and the Federal Government – Committee 

for Groundwater and Water supply); state borders: © GeoBasis-DE / BKG, 2017, Data license Germany 

- attribution - version 2.0 (www.govdata.de/dl-de/by-2-0)).   
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Table S 3-2: Spatial environmental predictor variables. 

Predictor variable Units Variable name Variable 

type 

Model use Data source 

Land use 

Urban Land % urban_land numerical RFNO3 LBM-DE2012 (BKG, 

2016) 

 
Arable Land % arable_land numerical 

Grassland % grassland numerical 

Forest % forest numerical 

Special crops % special_crops numerical 

Water % water numerical 

Hydrospheric  

N surplus  

(mean 2007-2016) 

kg ha-1a-1 Nsurp_cm numerical RFNO3 Häußermann et al. 

(2019), modified 

Hydrogeology & Hydrology 

Hydrogeological 

units (32 classes) 

(-) hyd_unit categorical RFO2, RFFe, 

RFNO3 

HYRAUM (BGR & 

SGD, 2015) 

Rocktype of aqifer 

(3 classes) 

(-) L_GA categorical RFO2 HÜK200 OGWL 

(BGR & SGD, 2016) 

Consolidation of 

aqifer (3 classes) 

(-) L_VF categorical RFO2, RFNO3 

Type of aquifer  

(4 classes) 

(-) L_HA categorical RFO2, RFNO3 

Geochemical rock 

type of aquifer  

(7 classes) 

(-) L_GC categorical RFO2, RFNO3 

Hydraulic 

conductivity  

(11 classes) 

(-) L_KF categorical RFO2, RFFe, 

RFNO3 

Aquifer character  

(3 classes) 

(-) L_CH categorical RFO2, RFNO3 

Seepage water rate mm/a SWR numerical - SWR1000_250 

(BGR, 2003a) 

Groundwater 

recharge rate 

mm/a GWR numerical RFO2, RFFe, 

RFNO3 

HAD55_gwn1000_v

1_raster (BGR, 

2003b) 

Nitrate concentration 

in seepage water 

mg/l SWR_conc numerical RFNO3 Calculated from 

seepage water rate 

and N-surplus 

Groundwater 

residence time 

a RTGW numerical  RFO2, RFFe, 

RFNO3 

Kunkel et al. (2007), 

cited after Fuchs et 

al. (2010) 

Redox conditions (4 

classes) 

(-) Redox categorical RFNO3 Calculated from 

spatial predictions of 

groundwater O2 and 

Fe concentrations 

Soil conditions 

Field capacity (0-1 m 

soil depth) 

mm FC numerical RFO2, RFFe, 

RFNO3 

FK10dm1000_250 

(BGR, 2015) 

Humus content in top 

soil (0 -10 cm for 

grassland and forest; 

0 - 30 cm for arable 

land) 

% HUMUS numerical RFO2, RFFe, 

RFNO3 

HUMUS1000 (BGR, 

2007) 
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Text S 3-2:  

Land use  

The land use map consists of 36 classes (BKG, 2016), which were aggregated to six dominant land use 

classes: forest (33%), arable land (32%), grassland (18%), urban land (8.5%), water (8%) and special 

crops (0.5%). The spatial distribution of the percentages of the two main types of land use, arable land 

and forest, is mapped in Figure S 3-3. Agricultural land is mainly located in the North German Plain and 

in Depressions and Lowlands in the central and southern parts of Germany. The mountain regions are 

predominantly forested.  

The mean hydrospheric nitrogen (N) soil surface budget surplus, reduced by ammonia losses during 

application of organic fertilisers on agricultural land in Germany in the period 2007 to 2017 is about 

55 kg N ha-1y-1 (district means: max. 119 kg ha-1y-1) (Häußermann et al., 2019). As a predictor for the 

groundwater nitrate estimation, we use an area-weighted land use specific calculation of the N surplus 

(Nsurp_cm) for each grid cell. In addition to the N surplus for arable land, forest is assigned 

10 kg N ha-1y-1, urban land with 15 kg N ha-1y-1, grassland with the N surplus of arable land multiplied 

by 0.43 and special crops with N surplus of arable land multiplied by 1.5 (Eq. [S 4-1]). The highest N 

surpluses are recorded in western Lower Saxony and south-eastern Bavaria. The spatial distribution of 

the calculated mean N-surplus is mapped in Figure S 3-6. 

𝑁𝑠𝑢𝑟𝑝𝑐𝑚 =  𝑁𝑠𝑢𝑟𝑝𝑎  𝑤𝑎  +  𝑁𝑠𝑢𝑟𝑝𝑢 𝑤𝑢  +  𝑁𝑠𝑢𝑟𝑝𝑔  𝑤𝑔  +  𝑁𝑠𝑢𝑟𝑝𝑓 𝑤𝑓  +  𝑁𝑠𝑢𝑟𝑝𝑠  𝑤𝑠 [S 4-1] 

𝑁𝑠𝑢𝑟𝑝𝑎 = N-surplus arable land [kg N ha-1 a-1] (Häußermann et al., 2019)  

𝑁𝑠𝑢𝑟𝑝𝑢  = N-surplus urban land = 15 [kg N ha-1 a-1] 

𝑁𝑠𝑢𝑟𝑝𝑔 = N-surplus grassland = 𝑁𝑠𝑢𝑟𝑝𝑎 * 0.43 

𝑁𝑠𝑢𝑟𝑝𝑓 = N-surplus forest = 10 [kg N ha-1 a-1] 

𝑁𝑠𝑢𝑟𝑝𝑠 = N-surplus special crops = 𝑁𝑠𝑢𝑟𝑝𝑎 * 1.5 

𝑤𝑎,𝑢,𝑔,𝑓,𝑠 = area weighting factor [-] 
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Figure S 3-3: Spatial distribution of percentages of main land use types arable land (left) and forest 

(right) based on BKG (2016); (state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - 

attribution - version 2.0 (www.govdata.de/dl-de/by-2-0)). 

 

Hydrogeology  

In Germany, 36 different hydrogeological units are delineated (Figure S 3-4) (BGR & SGD, 2015). We 

used the hydrogeological units as categorical predictor variables. Due to model limitations, the number 

of categories must be reduced to 32. Units 11 and 12, 65 and 66, 91 and 94 and 96 and 97 were therefore 

aggregated. The 36 units and their designations are shown in Figure S 3-4. A detailed description of the 

aquifers of the hydrogeological units is given by the six categorical features rock type, consolidation, 

aquifer type, geochemical rock type, hydraulic conductivity, and the character of the aquifer derived 

from the hydrogeological map (BGR & SGD, 2016).  

http://www.govdata.de/dl-de/by-2-0
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Figure S 3-4: Hydrogeological units for Germany (BGR & SGD, 2015). 

 

The groundwater recharge rate is shown in Figure S 3-5 and reaches from very low values (<50 mm/a) 

in the north-eastern part of Germany up to high values (>400 mm/a) especially in the mountainous 

regions (BGR, 2003b). The groundwater residence times were made available to us on the basis of sub 

catchment areas and are shown in Figure S 3-5. The groundwater residence times reaches from < 10 

years in the mountainous parts of central and southern Germany up to >200 years in the North German 

Plain and some lowlands (Fuchs et al., 2010; Kunkel et al., 2007). 
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Figure S 3-5: Spatial distribution of groundwater recharge rate (BGR, 2003b) (left) and groundwater 

residence times (Fuchs et al., 2010; Kunkel et al., 2007) (right); (state borders: © GeoBasis-DE / BKG, 

2017, Data license Germany - attribution - version 2.0 (www.govdata.de/dl-de/by-2-0)). 

 

Potential nitrate concentration in seepage water 

The amount of seepage water rate in Germany ranges from nearly zero mm/a in the floodplains in 

northeast Germany up to >1000 mm/a in high mountain ranges like the Black Forest and the Alps (BGR, 

2003a). The higher values for the seepage water than for the groundwater result from losses through 

interflow, which is much higher in the fractured mountainous areas than in the lowlands.  

Based on the calculated mean N surplus data we calculate the potential nitrate concentration (in mg/l) of 

the seepage water (SWR_conc): 

𝑆𝑊𝑅𝑐𝑜𝑛𝑐 =  
𝑁𝑠𝑢𝑟𝑝

𝑐𝑚
∗ 100

𝑆𝑊𝑅
∗ 4.43  [𝑚𝑔/𝑙] 

[S 4-2] 

The highest potential nitrate concentration in seepage water occur in regions of north-eastern Germany 

with high N surplus (Figure S 3-3) in combination with moderate to low seepage water rates. The spatial 

distribution of the calculated nitrate concentration of the seepage water is shown in Figure S 3-6. 

http://www.govdata.de/dl-de/by-2-0
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Figure S 3-6: Mean area-weighted and land use specific hydrospheric nitrogen surplus (2007 – 2016) 

based on Häußermann et al (2019) (left); calculated potential nitrate concentration in seepage water 

(right) based on Häußermann et al (2019) and (BGR, 2003a); (state borders: © GeoBasis-DE / BKG, 

2017, Data license Germany - attribution - version 2.0 (www.govdata.de/dl-de/by-2-0)). 

 

Soil conditions 

We use information on field capacity of up to 1 m soil depth, with values of up to 500 mm in some 

alluvial zones especially in the North German Plain (BGR, 2015). In the mountainous areas lower values 

around 100 mm to 200 mm predominately occur. As a possible indicator for nitrate degradation in soils, 

we use the percentage of humus content in the topsoil (BGR, 2007).  

  

http://www.govdata.de/dl-de/by-2-0
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Pre-processing 

Text S 3-3:  

The WFD data set is first transferred to a Geographical Information System ArcGIS (v. 10.4) into a point 

data set. The point data is linked to the spatial data (spatial predictors) described in Text S 3-2 by means 

of a buffer analysis. This is done using a circular buffer with a radius of 1000 m. With the tool 'spatial 

join' the means of numerical predictors are determined within the buffer. For categorical predictors the 

tool 'largest overlap' is used to assign the class with the dominant overlap. For the land use types, the 

percentages of the area within the buffer are calculated. These are also used as the area weighting factors 

to calculate the mean hydrospheric nitrogen (N) soil surface budget surplus. An analogous procedure of 

buffer analysis and spatial joining is used to link the spatial data with the grid map to which the 

predictions refer. We use the German Geo-Grid 1 km (‘DE_Grid_ETRS89-UTM32_1km’ © GeoBasis-

DE / BKG, 2018) for the spatial prediction. 

 

Table S 3-3: Classification point scheme for the characterisation of the redox conditions (acc. to LAWA 

(2018), modified). 

 
Oxygen (O2) thresholds 

<2 [mg/l] (2 Points) 2-5 [mg/l] (1 Point) >5 [mg/l] (0 Point) 

Iron (Fe) 

thresholds 

≥0.2 [mg/l] (1 Point) 
(3) strong 

anaerobic  
(2) anaerobic (1) intermediate 

<0.2 [mg/l] (0 Point) (2) anaerobic (1) intermediate (0) aerobic 
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a) 

 

b) 

 

c) 

 

Figure S 3-7: Boruta variable importance plots for a) O2, b) Fe and c) NO3. 
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Predictive modelling 

Text S 3-4:  

Random Forest (RF) 

The RF machine learning technique was developed by Breiman (2001) and is based on the classification 

and regression tree according to Breiman (1984). This nonparametric multivariate algorithm allows the 

modelling of nonlinear dependencies between both categorical and numerical parameters (De’ath and 

Fabricius, 2000). As an ensemble method, RF averages the results from many single decision trees and 

provides robust prediction with high performance (Kuhn and Johnson, 2013). In each decision tree, 

recursive partitioning is performed to split the data set of the response variable according to the predictors 

into homogeneous subsets described by the conditional mean (Hastie et al., 2009). Starting from the root 

node, the entire data set is divided into further non-terminal nodes until the tree has grown to a minimum 

number of observations per “leaf” or terminal node, respectively. At each node, the most important 

predictor for the further splitting of the data set is selected from the given predictors. RF contains two 

elements of randomness that increase variability among individual decision trees. First, the “bagging” 

technique is applied, where random bootstrap samples of the entire data set with replacement are created 

for each tree and then the predictions are aggregated by averaging over the full tree ensemble (Breiman, 

1996; Hastie et al., 2009). In addition, only a random subset of predictor variables is used at each splitting 

node. Both steps lead to less accurate predictions of an individual tree and the correlation between the 

trees is reduced, which in turn leads to an increase in predictive performance for the ensemble average 

(Breiman, 2001). While model training is based on the bootstrap sample, the evaluation of model 

performance is carried out on the so-called out-of-bag sample, which is about 36% of the entire data set 

(Liaw and Wiener, 2002).  

The RF model training requires two parameters: the number of trees in the ensemble (ntree) and the 

number of predictors that are randomly selected at each node (mtry). We set ntree to 1000 and tune the 

parameter mtry within a given range for each model with regard to the predictive performance (O2 and 

Fe model: mtry = 2-4 and NO3 model: mtry = 2-7). For O2, Fe and NO3 the model tuning gives best mtry 

values of 3, 2 and 7, respectively.  

With the RF algorithm, it is also possible to estimate the importance of the predictors used in the 

ensemble by estimating the difference in the predictive performance of permuted and non-permuted 

predictors in the out-of-bag samples.  
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Results 

 

Figure S 3-8: Spatial prediction of a) the mean and b) the median groundwater oxygen (O2) 

concentration in the period 2009-2018 based the WFD data set as well as c) the 90% prediction interval 

(PI); (state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - attribution - version 2.0 

(www.govdata.de/dl-de/by-2-0)). 

http://www.govdata.de/dl-de/by-2-0
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Figure S 3-9: Spatial prediction of a) the mean and b) the median groundwater iron (Fe) concentration 

in the period 2009-2018 based the WFD data set as well as c) the 90% prediction interval (PI); 

(state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - attribution - version 2.0 

(www.govdata.de/dl-de/by-2-0)). 

http://www.govdata.de/dl-de/by-2-0
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Figure S 3-10: Spatial prediction of a) the mean and b) the median groundwater nitrate (NO3) 

concentration in the period 2009-2018 based the WFD data set as well as c) the 90% prediction interval 

(PI); (state borders: © GeoBasis-DE / BKG, 2017, Data license Germany - attribution - version 2.0 

(www.govdata.de/dl-de/by-2-0)). 

http://www.govdata.de/dl-de/by-2-0
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Figure S 3-11: Density plots of predicted groundwater concentrations a) mean O2, b) median Fe and c) 

mean NO3 based on the WFD data set. 

 

Text S 3-5:  

The redox condition is the most relevant spatial predictor for nitrate concentrations in groundwater. In 

order to analyse the effect of potential misclassifications of the redox conditions, a spatial sensitivity 

analysis is conducted. For this, we randomly vary for 5, 10, 15, 20, 25 and 30 % of the grid cells with 

regard to their redox class. A potential misclassification is represented in the sensitivity analysis by 

randomly allocating a grid cell to the next lower (-1) or the next higher (+1) class. Limitations are set by 

thresholds for the lower [0] and upper class [3]. To determine the effects of this variation on nitrate 

prediction, the mean predicted nitrate concentration for all grid cells without variation of the redox 

classes is plotted together with mean predicted nitrate concentration with varied redox classes (+/-1). 

Figure S 3-12 shows the results of this sensitivity analysis. The mean predicted NO3 concentration varies 

more with increasing percentage of misclassification of the redox conditions. For instance, a random 

misclassification error of 20% of all grid cells results in a variation of the predicted overall mean by 

approximately 2.5 mg/l. Even a misclassification as large as 30% would not lead to a general questioning 

of our results with a predicted mean NO3 concentration of 22.7 mg/l within a range of 21.0 to 24.9 mg/l. 
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Figure S 3-12: Sensitivity analysis of the effect of potentially misclassified redox classes on simulated 

mean NO3 concentration. (●) no variation of redox classes; (▽) redox classes (-1); (△) redox classes 

(+1). 
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Abstract 

Nitrate pollution in groundwater and mitigation strategies is currently a topic of controversial debate in 

Germany, and the demand for harmonised approaches for the implementation of regulations is 

increasing. Important factors that needs to be considered when planning mitigation measures are the 

nitrogen inputs into water bodies and the natural nitrate reduction capacity. The present study introduces 

a nationwide, harmonised and simplified approach for estimating nitrate reduction as an integral quantity 

across the unsaturated zone and the groundwater body. The nitrate reduction rates vary from 0% to 100%, 

and are on average 57%, with high values in the north of Germany and low values in the south. 

Hydrogeological characteristics are associated with the estimated nitrate reduction rates, whereby the 

influence of aquifer type and redox conditions are particularly relevant. The nitrate reduction rates are 

substantially higher in porous aquifers and under anaerobic conditions than in fractured, consolidated 

aquifers and under aerobic conditions. This contribution presents a harmonised conceptual approach to 

derive the nitrate reduction rate at a 1 x 1 km resolution. This information can be used when planning 

and designing mitigation measures to meet the groundwater nitrate limits.  
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4.1 Introduction 

Human interference in the natural nitrogen (N) cycle has serious environmental consequences. Reactive 

nitrogen is a macronutrient essential for plant growth, but it also has a negative impact on human health, 

is involved in global warming and negatively affects terrestrial and aquatic ecosystems (Erisman et al., 

2013). Therefore, there is an urgent need for sustainable integrated nitrogen management at all levels, 

from field site up to the global scale (Reis et al., 2016; Sutton et al., 2013). The pollution of water systems 

is seen as a major challenge by the European Commission. 25% of groundwater bodies in the EU have 

a poor chemical status, with 18% mainly affected by nitrate pollution (EEA, 2018). The EU Water 

Framework Directive 2000/60/EC (WFD) was implemented with the aim of maintaining or restoring the 

‘good status’ of water bodies. Key to achieving this goal are effective strategies to reduce N inputs into 

groundwater and surface water. According to Fuchs et al. (Fuchs et al., 2010), 80% of the N load in 

surface waters in Germany originates from anthropogenic sources, with agriculture as the largest factor. 

The agricultural sector accounts for nearly 90% of the nitrate leaching to water systems (Bach et al., 

2020a). Since the inputs largely result from diffuse N surpluses, initial measures are needed to reduce or 

optimise fertiliser management. 

The pollution of groundwater bodies with nitrate depends considerably on the properties of the 

subsurface. These properties have to be taken into account in order to be able to decide where and to 

what extent mitigation measures are required to achieve good water status. Seitzinger et al. (2006) states 

that about 46% of nitrogen newly fixed by technical ammonia synthesis is removed by biogeochemical 

turnover processes in terrestrial soils on a global scale. This corresponds to a similar removal rate of 40% 

estimated for Europe (Van Egmond et al., 2002). In a study for the German federal state of North Rhine-

Westphalia, an average denitrification rate of around 45% for the mobile N surplus in soils is deduced 

by Wendland et al. (2020) and Kuhr et al (2013) have determined a range for N load reduction from 20% 

up to 80%. Moreover, groundwater bodies can have a substantial capacity for nitrate reduction, but this 

can vary widely in space and between 0% to 100% of the N loads can be removed in aquifers (McAleer 

et al., 2017; Seitzinger et al., 2006). For Denmark mean reduction rates in the groundwater of 63% were 

stated (Højberg et al., 2017). For the federal states of Mecklenburg-Vorpommern and a catchment in the 

north of Saxony-Anhalt (both in Germany), it was reported that 80% of the N input load was removed 

in the aquifers (Kunkel et al., 2017; Wriedt and Rode, 2006). A mean reduction rate of the N loads of 

46% and maximum values above 80% in some marsh regions were modelled for the large river Weser 

catchment in Germany (Hirt et al., 2012). Nitrate reduction rates in the groundwater from 65%-83% were 

measured for different arable land systems in eastern China (Zhou et al., 2018). Højberg et al. (2017) 

reviewed studies on different scales (local to national) dealing with groundwater nitrate reduction in the 

Baltic Sea basin, concluding that the spatial variation can be significant in most countries. The studies 
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showed that information of the heterogeneous distribution of nitrate reduction in soils and aquifers based 

on harmonised approaches on high spatial resolution is needed to substantially improve the estimation 

of the fate of N loads in groundwater bodies on national scales.  

Nitrate reduction in groundwater is primarily governed by denitrification processes. Knowles (1982) 

describes denitrification as a microbial reduction process of N oxides to molecular nitrogen as end 

product (NO3
- → NO2

- → NO → N2O → N2). Denitrification depends on the prevailing biogeochemical 

aquifer conditions and only occurs under anaerobic conditions when electron donors are available (Rivett 

et al., 2008; Seitzinger et al., 2006). Further, the groundwater residence time influences denitrification 

(Seitzinger et al., 2006). In general, a distinction is made between heterotrophic and autotrophic 

denitrification, depending on the type of denitrifying bacteria (Durand et al., 2011; Rivett et al., 2008). 

In heterotrophic denitrification, the bacteria use organic carbon as an electron donor, whereas in 

autotrophic denitrification they obtain the electrons from the oxidation of inorganic species, e.g. iron 

sulphide (pyrite, FeS2) (Korom, 1992; Rivett et al., 2008). Both processes have been identified in several 

studies on nitrate degradation in groundwater (Kludt et al., 2016; Schwientek et al., 2008; Wisotzky et 

al., 2018; Zhang et al., 2012). Other studies have found that the nitrate concentration in groundwater 

strongly depends on the hydrogeological conditions and the prevailing redox conditions (Ransom et al., 

2017; Knoll et al., 2020). 

Due to the complexity of the environmental conditions that favour degradation processes and the 

difficulty of measuring these in the field, models are useful tools to estimate the magnitude of nitrate 

reduction at different scales (Boyer et al., 2006). Various studies have modelled and analysed 

denitrification on catchment scale (Durand et al., 2015; Green et al., 2016; Hirt et al., 2012; Oehler et 

al., 2009; Rivas et al., 2017; Whelan and Gandolfi, 2002). Wriedt and Rode (2006) successfully 

simulated nitrate transport and turnover processes in a small lowland catchment using a process based 

model which considers detailed geochemical reactions to describe denitrification. In studies on larger 

scales e.g. on a regional or national level, a simplified representation of nitrate reduction processes is 

needed due to limited data availability and the spatial resolution. Wendland et al. (2020) and Kunkel et 

al. (2017) coupled several models (GROWA-DENUZ-WEKU) to assess the denitrification in soils at a 

federal state level depending on soil type and residence time of percolation water according to a 

Michaelis-Menten kinetics, as well as the denitrification during groundwater transport assuming first 

order. Hirt et al. (2012) used the same approach and coupled their model chain with a nutrient emission 

model (MONERIS) for modelling the nitrogen loads into surface water on. In nationwide studies for 

Germany, simplified exponential functions depending on the seepage water rate and hydrogeological 

conditions were used to describe the reduction of N loads (Fuchs et al., 2017a; Venohr et al., 2011). 

These functions were derived by comparing the nitrate concentration in seepage water and groundwater 
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for different rock types (Venohr et al., 2011). The concentration data from 217 groundwater monitoring 

sites were taken into account and four hydrogeological rock types were distinguished. With regard to the 

large-scale problem and the heterogeneous landscapes in Germany, an improved approximation of the 

actual nitrate reduction rates could be achieved by a more comprehensive representation of the 

distribution of nitrate concentration in the groundwater and a stronger differentiation of the 

hydrogeological conditions. 

Through the implementation of the EU Nitrates Directive and the EU Water Framework Directive, EU 

Member States have undertaken to report regularly on the implementation of the guidelines, which 

requires nationwide harmonised assessment of the water quality status. National assessments of 

groundwater quality and of nitrate reduction, can contribute to further studies, such as national 

assessments of nutrient inputs into surface waters (Fuchs et al., 2017a). Due to the limitations of 

modelling complex nitrate reduction processes on a large scale (national level), this study combines 

nationwide data sets with a simplified conceptual approach to derive nitrate reduction rates from nitrogen 

inputs to groundwater. The aims of the present study are: 1) to determine the nitrate-nitrogen input loads 

to the unsaturated zone and in the groundwater, 2) to quantify the reduction rates describing the integrated 

nitrate reduction across the unsaturated zone and the groundwater body, and 3) to analyse the 

relationships between the hydrogeological conditions and the resulting reduction rates. 

 

4.2 Materials and Methods  

This study focuses on a regionalisation for Germany, with a spatial resolution of 1 x 1 km grid size 

(BKG, 2018), in total approximately 360,000 grid cells. All data used in the study are handled in the 

geographical information system ArcGIS (v. 10.4). All analyses of the present study concerning possible 

relationships between the nitrate reduction and the hydrogeological parameters are made using R (v. 

3.4.1). 

Figure 4-1 shows the simulated flow paths of water and nitrogen loads in our model. Nitrogen (N) is 

supplied to the soil in different reactive forms of N: as mineral nitrogen (nitrate, ammonium) and organic 

nitrogen. Under the typical soil and climate conditions in Germany, only nitrate nitrogen (NO3-N) in 

quantifiable quantities is displaced by the seepage water. The concentrations of ammonium and organic 

N in the soil solution are usually very low below the root zone. For simplification, it is therefore justified 

to assume NO3-N for the entire N load in the seepage water (NO3-N load). On the basis of the 

hydrospheric N surplus of different land uses (agricultural and urban areas as well as forests; 

N_surplusa,f,u), the potential NO3-N input load into the unsaturated zone (NO3-N_loadinput_uz) is derived 

from a previous study (Häußermann et al., 2019). This is transported through the unsaturated zone with 
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seepage water (Qsw), depending on the seepage water rate (BGR, 2003a). Due to interflow and tile drains 

(Qi,d), some of the seepage water and thus also some of the NO3-N load (NO3-N_loadi,d) does not reach 

the groundwater. The remaining share represents the given groundwater recharge (Qgw) (BGR, 2003b) 

and the estimated NO3-N input load transported across the unsaturated zone to the groundwater by Qgw 

(NO3-N_loadinput_gw). For the groundwater body, a groundwater nitrate concentration map (c(NO3)gw) is 

taken from a previous study (Knoll et al., 2020). Given the groundwater recharge Qgw, the NO3-N load 

in the groundwater (NO3-N_loadgw) can be calculated. In order to describe the reduction processes in the 

unsaturated zone and in the groundwater body, the integrated nitrate reduction respectively NO3-N load 

reduction rate (NO3-N_red) is defined as the ratio of NO3-N_loadgw and NO3-N_loadinput_uz. The 

parameters and calculations are further described in the following sections. 

 

Figure 4-1: Flow paths and nitrate nitrogen loads (NO3-N_loads) through the unsaturated zone and the 

groundwater body with: N_surplusa,f,u = hydrospheric N surplus for different land use types 

(a = agriculture [including arable land, grassland and special crops], f = forest, u = urban)) 

[kg N ha-1 a-1], Qsw = seepage water [mm a-1], Qgw = groundwater recharge [mm a-1], Qi,d = interflow, 

drainage [mm a-1], c(NO3)gw = NO3 concentration in groundwater [mg l-1], NO3-N_loadinput_uz = NO3-N 

input load unsaturated zone [kg N ha-1 a-1], ], NO3-N_loadinput_gw = NO3-N input load groundwater [kg 

N ha-1 a-1], NO3-N_loadgw = groundwater NO3-N load [kg N ha-1 a-1], NO3-N_red = nitrate reduction 

rate [%], calculated values in italic, blue arrows represents water fluxes and orange arrows represents 

NO3-N_loads. 
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4.2.1 Nitrogen input load 

The hydrospheric N surplus is defined as the N surface budget surplus reduced by the gaseous N losses 

during and after application of organic and mineral fertilizer. The hydrospheric N surplus describes the 

amount of nitrogen potentially translocated to the hydrosphere; it is used as a key indicator characterising 

possible water pollution with nitrate from agricultural systems. The annual N budgets and the 

hydrospheric N surplus for the utilised agricultural area (UAA) were calculated on the basis of 

administrative units (district regions) (Häußermann et al., 2019). The average hydrospheric N surplus in 

Germany in the period 2007 - 2016 is calculated as 56 kg N ha-1 a-1 UAA, ranging from 13 to 146 kg N 

ha-1 a-1 UAA for the districts. As these values refer only to the inputs from agricultural land (arable land, 

grassland and special crops) constant values for the N surplus have been assumed for the remaining areas. 

Forest and natural areas have been assigned with 5 kg N ha-1 a-1, urban land with 18 kg N ha-1 a-1; for 

special crops on agricultural land the N surplus is multiplied by the factor 1.5. The spatial distribution of 

the five land use types is given by the land cover model (BKG, 2016) and their area proportions were 

assigned to the grid cells. An area-weighted and land-use specific hydrospheric N surplus is calculated 

according to Knoll et al. (2020) and is considered to be equivalent to the NO3-N input load into the 

unsaturated zone (NO3-N_loadinput_uz): 

NO3-N_loadinput_uz = Nsurplusa wa + Nsurplusu wu + Nsurplusf wf + Nsurpluss ws [4-1] 

NO3-N_loadinput_uz = NO3-N input load into the unsaturated zone [kg N ha-1 a-1]  

Nsurplusa = hydrospheric N-surplus arable land [kg N ha-1 a-1] (Häußermann et al., 2019)  

Nsurplusu = N-surplus urban land = 18 [kg N ha-1 a-1] 

Nsurplusf = N-surplus forest = 5 [kg N ha-1 a-1] 

Nsurpluss = N-surplus special crops = Nsurplusa x 1.5 [kg N ha-1 a-1] 

wa,u,f,s = area weighting factor [-] with ∑wi = 1 

 

 

Much of the NO3-N load is transported with seepage water via interflow or drains (Qi,d) into surface 

waters (NO3-N_loadi,d), so that only the remaining load is transported across the unsaturated zone to the 

groundwater (NO3-N_loadinput_gw). For example, Kunkel et al. (2017) reported that for the federal state of 

Mecklenburg-Vorpommern around 35 % of the N load is transported via drainage systems into surface 

waters without any substantial nitrate reduction. The ratio of groundwater recharge Qgw (BGR, 2003b) 

and seepage water rate Qsw (BGR, 2003a) are used here as a proxy to estimate the interflow proportion 

and hence the NO3-N input load to the groundwater via the unsaturated zone:  

 

 



Spatial distribution of integrated nitrate reduction across the unsaturated zone and the groundwater body in Germany 

 

 

83 

NO3-N_loadinput_gw = (Qgw/Qsw) x NO3-N_loadinput_uz [4-2] 

NO3-N_loadinput_gw = NO3-N input load to the groundwater [kg N ha-1 a-1]  

NO3-N_loadinput_uz = NO3-N input load into the unsaturated zone [kg N ha-1 a-1] 

Qgw = mean annual groundwater recharge rate [mm a-1] (BGR, 2003b) 

Qsw = mean annual seepage water rate [mm a-1] (BGR, 2003a) 

 

 

Due to differences in the ways of estimation of seepage water (BGR, 2003a) and groundwater recharge 

rates (BGR, 2003b), it can happen that that lower seepage water rates than groundwater recharge rates 

occur, particularly in some lowland areas. In this case, the rates are considered equivalent (Qgw/Qsw = 1), 

since the groundwater recharge rate can only be as high as the seepage water rate. 

 

4.2.2 Groundwater nitrate nitrogen load  

In a study by Knoll et al. (2020), a 1 x 1 km grid map of groundwater nitrate concentrations in Germany 

was estimated using a data driven approach based on measured concentrations from the period 2009 to 

2018. Applying the ‘random forest’ machine learning technique, the groundwater nitrate concentration 

map was modelled using several spatial predictors such as land use, hydrogeology and redox conditions 

throughout Germany. These predictions are applied in this study, since they provide a good assumption 

for nationwide estimates of groundwater NO3-N loads. In order to calculate the groundwater loads, the 

groundwater recharge rate as an approximated value for the groundwater volume flow is used. Taking 

into account the conversion from nitrate to nitrate nitrogen per hectare, the groundwater NO3-N load is 

calculated as follows: 

NO3-N_loadgw = (cgw x Qgw) / 443 [4-3] 

NO3-N_loadgw = groundwater NO3-N load [kg N ha-1 a-1]  

cgw = groundwater nitrate concentration[mg NO3 l-1] (Knoll et al., 2020) 

Qgw = mean annual groundwater recharge rate [mm a-1] (BGR, 2003b) 

443 = unit conversion factor from nitrate to nitrate nitrogen per hectare  

(atomic weights: N=14, O=16) 

 

 

4.2.3 Nitrate reduction 

Considering the spatial resolution and the size of the study area, a straightforward approach is developed 

to estimate the integrated nitrate reduction across the unsaturated zone and the groundwater body. Such 

an approach is appropriate because data for the validation of reduction processes in the unsaturated zone 

are very limited. Since both, the initial value (NO3-N input load) and the resulting value (groundwater 
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NO3-N load) are available from previous studies (Häußermann et al., 2019; Knoll et al., 2020), all 

possible natural degradation processes are taken into account when determining the nitrate reduction. 

The integrated nitrate reduction respectively the reduction of NO3-N loads is quantified as the ratio of 

groundwater NO3-N load to the NO3-N input load to the groundwater:  

NO3-N_red = (1 – (NO3-N_loadgw/NO3-N_loadinput_gw)) x 100 [4-4] 

NO3-N_red = nitrate reduction [%]  

NO3-N_loadgw = groundwater NO3-N load [kg N ha-1 a-1]  

NO3-N_loadinput_gw = NO3-N input load to the groundwater [kg N ha-1 a-1]  

 

 

4.2.4 Hydrogeological conditions 

In the hydrogeological shape map of Germany (HUEK200; (BGR & SGD, 2016)) the hydrogeology of 

the upper aquifer is described by the attributes ‘aquifer type’, ‘consolidation’, ‘rock type’, ‘geochemical 

rock type’ and ‘conductivity’. These five attributes are linked to the grid cells by the ArcGIS add-in tool 

‘Spatial join – largest overlap’, which assigns the attributes with the dominant area that overlaps with 

the respective grid cell. As an additional hydrogeological parameter, the redox conditions are used as 

modelled by Knoll et al. (2020) with four redox classes, i.e. ‘strong anaerobic’, ‘anaerobic’, 

‘intermediate’ and ‘aerobic’, based on groundwater oxygen and iron concentrations (specific limits are 

shown in Table 4-1).  

 

4.3 Results 

To calculate the NO3-N input loads to the groundwater, the ratio of Qgw to Qsw is estimated (Figure 4-2). 

The seepage water rate is generally higher than the groundwater recharge rate and the difference between 

both is greater in consolidated aquifers compared to unconsolidated aquifers. Therefore, the ratio Qgw/Qsw 

for consolidated aquifers is also considerably lower than for unconsolidated aquifers. This can probably 

be attributed to the morphological aspects of the mountain regions and the associated higher depth to the 

groundwater table thus causing a greater susceptibility for interflow. Agriculturally used areas are often 

tile drained, which also leads to lower Qgw/Qsw values; however, this is generally the case in less 

mountainous areas and lowlands. The average seepage water rate for Germany is about 287 mm a-1
, 

(BGR, 2003a) the average groundwater recharge rate is 125 mm a-1 (BGR, 2003b). Therefore, 

considering the assumptions for Eq. [4-2] more than 50% of the seepage water reaches the surface waters 

via interflow or drainage. 
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Figure 4-2: (a) Combined regression and density plot of seepage water (BGR, 2003a) and 

groundwater recharge rate (BGR, 2003b), (b) boxplot of the ratio of groundwater recharge and 

seepage water rate grouped by consolidated and unconsolidated aquifers. 

 

The NO3-N input loads calculated according to Eq. [4-2] are shown in Figure 4-3a. The mean NO3-N 

input load into to unsaturated zone (N_loadinput_uz) is around 36 kg N ha-1 a-1. Considering the 

proportional reduction by interflow and drainage, the mean NO3-N_loadinput_gw is only about 

17 kg N ha-1 a-1. The intensively managed agricultural systems are apparent in the north, north-west and 

south-east Germany, as well as in some preferential regions mainly in lowlands (Figure 4-3a). The 

highest loads in these regions are greater than 40 kg N ha-1 a-1.  

In Figure 4-3b, the NO3-N loads in groundwater derived according to Eq. [4-3] are shown. It should be 

noted again, that these are NO3-N loads and not groundwater nitrate concentrations and therefore cannot 

be linked to the limit value of 50 mg NO3 l-1. It is already evident that the NO3-N_loadgw (mean 

6 kg N ha-1 a-1) is in most cases substantially lower than the NO3-N_loadinput_gw (mean 17 kg N ha-1 a-1). 

The spatial distribution of high NO3-N_loadgw is not spatially correlated with high NO3-N_loadinput_gw. 

 

 

 

 

 

(a) (b) 
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(a) (b) 

 

Figure 4-3: (a) Nitrate nitrogen input load to the groundwater (NO3-N_loadinput_gw), (b) Groundwater 

nitrate nitrogen load (NO3-N_loadgw), based on a 1 x 1 km grid map of Germany (federal 

state borders: © GeoBasis-DE / BKG, 2017). 

 

In summary for Germany, the annual NO3-N input into the unsaturated zone (NO3-N_loadinput_uz) amounts 

to 1,196 kt N a-1. The NO3-N_loadinput_gw accounts for 580 kt N a-1, of which 236 kt N a-1 are discharged 

from the groundwater (NO3-N_loadgw) into the surface waters. Thus the difference of 344 kt N a-1 is due 

to NO3-N load reduction (NO3-N_red) in the unsaturated zone and the groundwater body. Figure 4-3 

shows that the NO3-N loads in the groundwater body are substantially reduced compared to the NO3-N 

input loads. The reduction of NO3-N loads, is quantified based on Eq. [4-4], where the percentage of 

removed NO3-N load is calculated. The spatial distribution of the reduction rate [%] is shown in Figure 

4-4. There is a marked north-south contrast with high reduction rates of up to 100% in the North German 

Plain and low to zero reduction in central and southern Germany. In some regions, predominantly in 

mountainous areas but also for example in the Geest regions in northern Germany, reduction rates are at 

or below zero. Excluding the areas with no NO3-N reduction, the average reduction rate from NO3-N 

input across the unsaturated zone and the groundwater body is 57%. 
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Figure 4-4: Map of mean nitrate reduction (NO3-N_red) across the unsaturated zone and the 

groundwater based on a 1 x 1 km grid map of Germany (federal state borders: © GeoBasis-DE / BKG, 

2017). 

 

The nitrate reduction rates are further analysed regarding their dominant hydrogeological features. In 

Table 4-1, the mean values and the standard deviations for the NO3-N load reduction are summarised for 

the attributes ’aquifer types‘, ‘consolidation’, ‘rock type’, ‘geochemical rock type’, ‘conductivity’ and 

‘redox conditions’. The differences between the characteristics within the hydrogeological features were 

statistically analysed using a Post-Hoc-Test (TukeHSD) (see Table S 4-1 to Table S 4-6). It is obvious, 

that porous unconsolidated aquifers tend to have significantly higher reduction rates (>70%) than 

consolidated fractured and karstified aquifers with below average reduction rates (32.8 – 36.1%) (Figure 

4-5a). Since the porous aquifers predominantly have sedimentary origins, this difference in NO3-N load 

reduction is also apparent in the rock type, with significantly higher reduction rates being observed for 

sedimentary rocks than for metamorphic and magmatic rocks. Looking at the geochemical rock type, 

‘silicatic’ rocks tend to have a significantly higher NO3-N load reduction potential; ‘anthropogenic’ and 
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‘sulphatic/halitic’ rocks show the highest and the lowest reductions rates, respectively. However, both 

classes are rare, occurring with a share of <0.5%. No obvious trend can be deduced for ‘conductivity’. 

The highest mean NO3-N load reduction rates of 77.6% are found for high conductivities, as well as for 

the overlapping class medium to moderate with 73.9%. However, medium conductivities only show an 

NO3-N load reduction rate below the average with 42.6%, and for moderate conductivities even lower. 

The lowest mean NO3-N load reduction values (28.5%) occur for the class ‘very low’, but both the class 

‘very low’ and also ‘very high to high’ are rare, with a share of <0.2% of the overall area. With regard 

to redox conditions, there is a clear trend with increasing reduction rates from aerobic (32.9%) to strongly 

anaerobic aquifer conditions (95.8%) (Figure 4-5b). 

 
(a) (b) 

 

Figure 4-5: Boxplots of NO3-N load reduction rates [%] for (a) aquifer type and (b) redox conditions. 
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Table 4-1: Mean NO3-N load reduction rates and standard deviation for different hydrogeological 

attributes. 

Hydrogeology NO3-N load reduction [%] 

 mean standard deviation 

aquifer type1 

fractured 36.1 21.3 

fractured/karstified 32.9 21.7 

fractured/porous 32.8 18.9 

porous 72.5 28.4 

consolidation1 

consolidated 35.4 21.3 

unconsolidated 72.6 28.4 

rock type1 

magmatic 37.6 16.9 

metamorphic 36.1 17.8 

sedimentary 58.9 31.9 

geochemical rock type1 

anthropogenic 67.1 24.0 

sulphatic 37.9 23.5 

sulphatic/halitic 20.0 11.2 

carbonatic 35.1 20.2 

silicatic/carbonatic 42.6 23.2 

silicatic 64.6 32.1 

silicatic/organic 55.3 25.1 

conductivity1 

very high (>10-2 m s-1) 46.5 22.2 

high (10-2 – 10-3 m s-1) 77.6 27.1 

medium (10-3 – 10-4 m s-1) 42.6 27.1 

moderate (10-4 – 10-5 m s-1) 39.2 22.9 

low (10-5 – 10-7 m s-1) 40.3 23.3 

very low (10-7 – 10-9 m s-1) 28.5 14.7 

overlapping classes   

very high to high (>10-3 m s-1) 27.4 14.8 

medium to moderate (10-3 – 10-5 m s-1) 73.9 31.6 

low to very low (<10-5 m s-1) 37.4 21.0 

moderate to low (10-4 – 10-7 m s-1) 38.1 21.5 

variable  56.0 27.6 

redox conditions2 

aerobic 

(O2 >5 mg l-1 and Fe <0.2 mg l-1) 

32.9 

 

17.2 

 

intermediate 

(O2 >5 mg l-1 and Fe ≥0.2 mg l-1 or 

O2 2-5 mg l-1 and Fe <0.2 mg l-1) 

44.8 

 

 

22.7 

 

 

anaerobic 

(O2 2-5 mg l-1 and Fe ≥0.2 mg l-1 or 

O2 <2 mg l-1 and Fe <0.2 mg l-1) 

69.1 

 

 

16.6 

 

 

strongly anaerobic 

(O2 <2 mg l-1 and Fe ≥0.2 mg l-1) 

95.8 

 

5.7 

 
1 attribute classes derived from HUEK200 (BGR & SGD, 2016); 2 (Knoll et al., 2020). 
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4.4 Discussion 

To the best of our knowledge, this study provides for the first time a conceptual, parsimonious modelling 

approach for estimating the spatial distribution at a high resolution (1 km) of the integrated nitrate 

reduction in the unsaturated zone and within the groundwater body on a large scale, applied here for 

Germany. Previous studies on N fluxes in Germany have shown that a significant fraction of the N loads 

in surface waters originate from the groundwater. However, the order of magnitude of the N load 

reduction rates during the groundwater transfer is a major unknown (Fuchs et al., 2017b). Although the 

approach presented here is simplified, the results provide a valuable approximation for estimating the 

potential losses of N loads via the groundwater path. It is not possible to estimate the uncertainties 

involved in the approach due to the assumptions made. For the hydrospheric N surplus on agriculturally 

utilised areas, uncertainties of ± 10 kg N ha-1 a-1 are stated (Häußermann et al., 2019). Large uncertainties 

are also found for groundwater nitrate concentrations, with prediction intervals of 53 mg l-1 and a mean 

absolute error of 12.7 mg l-1 (Knoll et al., 2020). No uncertainty analyses are available for the estimates 

of the N surplus on non-agricultural areas, the seepage water rate, or groundwater recharge rate. It can 

be argued, that both input variables NO3-N_loadinput_gw and NO3-N_loadgw are technically well established 

and documented. They therefore provide the best available and state-of-the-art data sets for Germany. If 

it is accepted that the estimates of NO3-N_loadinput_gw and NO3-N_loadgw are reliable, it could be conclude 

that the results of Eq. [4-4] are also reliable within the scope of the overall uncertainties of the approach, 

which however cannot be determined quantitatively. In order to examine the reliability of the results, the 

N2/Ar-method could be applied. The N2/Ar ratio is used to calculate the concentration of excess-N2 in 

the groundwater, which can be used to derive the denitrification rate. Since corresponding nationwide 

measurement programs have not yet been established, a validation of the approach presented here can 

currently not be carried out with the N2/Ar-method, but offers great potential for further research. 

The conceptual approach for estimating the nitrate reduction along its transport paths from the source 

through the groundwater body includes many processes. Studies dealing with this topic (Hirt et al., 2012; 

Kunkel et al., 2017) usually distinguish between reduction in the unsaturated zone and the groundwater. 

However, for the unsaturated zone, a small decrease in nitrate concentration or a conservative transport 

can be assumed (Ascott et al., 2017; Rivett et al., 2007). The capability of validating the nitrate reduction 

in the unsaturated zone is limited to a very small number of measured nitrate concentrations in seepage 

water (Kreins et al., 2010). Since groundwater nitrate concentration data are available in a much higher 

density than measured values for nitrate concentration in the seepage water, Wendland et al. (2020) 

compared modelled nitrate concentrations in seepage water with observed nitrate concentrations in 

groundwater, and found good agreement. However, they note that in regions with increased 

denitrification capacity, measured groundwater concentrations are considerably lower than the simulated 
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seepage water concentrations. In the present study, it was done the other way round and the nitrate 

concentration in the groundwater was used as input data to derive the overall nitrate reduction. This 

approach provides a simple, uniform and robust method for the quantification of nitrate reduction, 

depending on existing nationwide data sets. 

The nitrate reduction for Germany in the present study ranges from 0% to 100%, which was also the case 

in the study by Seitzinger et al. (2006). Comparing the overall mean integrated nitrate reduction of 57% 

calculated for Germany with other studies indicates similar dimensions, however, throughout Germany 

there is a very heterogeneous spatial distribution of nitrate reduction. For example, looking at the federal 

state of Mecklenburg-Vorpommern with its widespread glacially formed Late Pleistocene units, a mean 

integrated nitrate reduction of around 89% was calculated, while Kunkel et al. (2017) estimated around 

40% of the N input being denitrified in the soil, and 85% of the N load transported via groundwater being 

removed within the aquifer. From this, one can infer an integrated reduction rate for the transport path 

from soil to the groundwater and within the groundwater body of around 74%, which is in a similar range 

to the reduction rates determined in the present study. For the Weser catchment, a mean NO3-N load 

reduction of about 46% was calculated, which is exactly the same as stated in Hirt et al. (2012). The 

Weser catchment covers typical hydrogeological characteristics occurring in Germany, from the Central 

German uplands to the North German Plain. According to Fuchs et al. (2017b), the mean N input between 

2006 to 2011 into surface waters in Germany via the groundwater path amounted to 283 kt N, which is 

in line with the 236 kt N estimated in this study. At this point, it has to be considered that these loads can 

be further reduced by the nitrate reduction capacity of the riparian zone when entering the surface waters. 

Hill (2019) reviewed research studies from recent decades dealing with nitrate removal in the riparian 

zone and found considerable variations in reduction capacity depending on hydrogeological properties. 

While Häußermann et al. (2019) report maximum values of the N surplus of up to 162 kg N ha-1 a-1 (mean 

77 kg N ha-1 a-1), the values of the area-weighted land-use specific hydrospheric N input loads are 

considerably lower. This reflects the impact on the NO3-N input loads of areas with less anthropogenic 

control, such as natural or forested land. For some 12% of the area of Germany no reduction was 

calculated, which is due to the straightforward nature of our approach. When the N inputs are 

underestimated or the groundwater loads are overestimated, a reduction of less than zero results. A closer 

look at the regions with ‘no reduction’ shows that this mainly concerns forested areas or natural 

vegetation, e.g. the Alps or the Black Forest. In any case these areas are not relevant with respect to 

anthropogenic water pollution.  

The spatial distribution of the nitrate reduction rates reflects very well the spatial hydrogeological 

structure in Germany. Rivas et al. (2017) concluded, that the factors ‘soil texture’, ‘drainage class’, 
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‘aquifer material’ and ‘rock types’ influence the groundwater denitrification potential. They found that 

well drained soils and rocks are unsuitable for denitrification processes. However, in contrast to Rivas et 

al. (2017), the conductivities in this study do not show a clear effect on nitrate reduction. The present 

study further shows that for Germany the parameters ‘aquifer type’, ‘consolidation’, and in particular 

‘redox conditions’ significantly affect the intensity of the nitrate reduction.  

Groundwater bodies with anaerobic conditions show a distinct influence on the nitrate reduction, which 

is to be expected since anaerobic conditions favour denitrification processes (Rivett et al., 2008). The 

unconsolidated porous aquifers occurring in the North German Plain are characterised by largely 

confined aquifers, low flow velocities, long groundwater residence times and, due to the thick covers of 

till layers, strongly anaerobic conditions (Knoll et al., 2020; Merz et al., 2009; Wendland et al., 2008). 

As a result, the North German Plain is dominated by high nitrate reduction rates. The Central German 

uplands are predominantly formed by fractured or karstified consolidated aquifer with mainly aerobic to 

intermediate redox conditions, that are unsuitable for denitrification processes and thus, lead to low 

reduction rates compared to the Quaternary deposits (Hannappel et al., 2018). The Alpine foreland in the 

south of Germany show a rather heterogeneous distribution of nitrate reduction. The southern part, 

mainly characterised by Late Pleistocene glacial deposits, has high reduction rates. Further north, 

Quaternary fluviatile gravel deposits with high conductivities and, in contrast to the pore aquifers in 

northern Germany, very low to no nitrate reduction occur, which however is in line with the findings for 

well drained rocks (Rivas et al., 2017). The Tertiary sedimentary deposits in the northern Alpine foreland 

have in places thick loess covers, which leads to again higher nitrate reduction rates in this area. 

The spatial distribution of the natural nitrate reduction have to be taken into account when discussing 

management strategies for groundwater bodies that do not meet the ‘good status’ according to the Water 

Framework Directive with respect to nitrate concentration. Mitigation measures are principally intended 

to reduce N surplus, mainly by restrictions on fertiliser use. In accordance with the German Groundwater 

Ordinance (GrwV, 2010), groundwater bodies are to be evaluated entirely according to the precautionary 

principle. In the context of the current revision of the Fertiliser Ordinance, the issue of internal 

differentiation of nitrate-sensitive areas require to make a 20% reduction of N fertilising is gaining more 

and more relevance. For planning and designing mitigation measures, information on the NO3-N input 

load, the groundwater nitrate concentrations or the groundwater NO3-N load, and the NO3-N load 

reduction quantified in the present study could be applied to determine the N fertilising reduction 

necessary to meet the groundwater nitrate limit (50 mg NO3 l-1).  

Looking at the potential nitrate reduction rates, finally one must also consider that denitrification 

processes are not inexhaustible (Kludt et al., 2016; Wilde et al., 2017). Water management experts in 
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Germany regularly draw attention to the lack of knowledge about the denitrification capacity in the 

unsaturated zone and in groundwater in the regions of Germany (Bergmann et al., 2013), and whether 

similar rates of subsurface nitrate reduction can be expected in the longer term (UBA, 2017b).  

 

4.5 Conclusions 

In the present study, a parsimonious modelling approach has been developed to estimate the nationwide 

nitrate reduction or NO3-N load reduction rates from existing data sets on N surplus calculations, water 

fluxes and estimates of groundwater nitrate concentrations. The method follows a simplified conceptual 

approach without the need to simulate complex biogeochemical processes. The nitrate reduction is 

considered as an integrated measure across the unsaturated zone and the groundwater body.  

Besides a clear spatial differentiation with high nitrate reduction rates in north Germany and low nitrate 

reduction rates in the south, it could also be shown that the hydrogeological characteristics have a 

substantial influence on the degree of reduction. The nitrate reduction quantified in the present study 

could be taken into account in the planning and design of mitigation measures. Particularly in the current 

debate on the designation of vulnerable areas, the demand for harmonised approaches is growing. 
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Supporting Information 

Table S 4-1: Post-Hoc-Test results aquifer type. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD [3]) 

 mean 
standard 

deviation 
p-value 

aquifer type1 
fractured fractured/ 

karstified 

fractured/ 

porous 

porous 

fractured 36.1 21.3     

fractured/karstified 32.9 21.7 0*    

fractured/porous 32.8 18.9 0* 0.9865067   

porous 72.5 28.4 0* 0* 0*  

*significant difference (p-value <0.05), 1 (BGR & SGD, 2016). 

 

Table S 4-2: Post-Hoc-Test results consolidation. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD [3]) 

 mean 
standard 

deviation 
p-value 

consolidation1 consolidated unconsolidated 

consolidated 35.4 21.3   

unconsolidated 72.6 28.4 0*  

*significant difference (p-value <0.05), 1 (BGR & SGD, 2016). 

 

Table S 4-3: Post-Hoc-Test results rock type. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD [3]) 

 mean 
standard 

deviation 
p-value 

rock type1 magmatic metamorphic sedimentary 

magmatic 37.6 16.9    

metamorphic 36.1 17.8 0.0007181*   

sedimentary 58.9 31.9 0* 0*  

*significant difference (p-value <0.05), 1 (BGR & SGD, 2016). 
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Table S 4-4: Post-Hoc-Test results geochemical rock type. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD [3]) 

 mean 
standard 

deviation 
p-value 

geochemical rock type1 a su s/h c s/c s s/o 

anthropogenic  

(a) 

67.1 24.0        

sulphatic  

(su) 

37.9 23.5 0*       

sulphatic/halitic (s/h) 

20.0 11.2 0* 0.000

0440* 

     

carbonatic  

(c) 

35.1 20.2 0* 0* 0.001

1193* 

    

silicatic/carbonatic 

(s/c) 

42.6 23.2 0* 0* 0* 0*    

silicatic 

(s) 

64.6 32.1 0.019

3857* 

0* 0* 0* 0*   

silicatic/organic 

(s/o) 

55.3 25.1 0* 0* 0* 0* 0* 0*  

*significant difference (p-value <0.05), 1 (BGR & SGD, 2016). 

 

Table S 4-5: Post-Hoc-Test results conductivity. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD [3]) 

 mean 
standard 

deviation p-value 

conductivity1 1 2 3 4 5 6 7 8 9 10 11 

very high (1) 

(>10-2 m s-1) 

46.5 22.2            

high (2) 

(10-2 – 10-3 m s-1) 

77.6 27.1 0*           

medium (3) 

(10-3 – 10-4 m s-1) 

42.6 27.1 0* 0*          

moderate (4) 

(10-4 – 10-5 m s-1) 

39.2 22.9 0* 0* 0*         

low (5) 

(10-5 – 10-7 m s-1) 

40.3 23.3 0* 0* 0* 0.001

4464* 

       

very low (6) 

(10-7 – 10-9 m s-1) 

28.5 14.7 0* 0* 0* 0* 0.011

1273 

      

very high to high (7)  

(>10-3 m s-1) 

27.4 14.8 0.000

0032* 

0* 0.000

7664* 

0.322

525 

 0.9999

999 

     

medium to moderate (8) 

(10-3 – 10-5 m s-1) 

73.9 31.6 0* 0* 0* 0* 0* 0* 0*     

low to very low (9) 

(<10-5 m s-1) 

37.4 21.0 0* 0* 0* 0* 0* 0* 0.144

9279 

    

moderate to low (10) 

(10-4 – 10-7 m s-1) 

38.1 21.5 0* 0* 0* 0* 0* 0* 0* 0* 0*   

variable (11) 

 

56.0 27.6 0* 0* 0* 0.000

0008* 

0* 0* 0.080

3958 

0* 0.002

1666* 

0*  

*significant difference (p-value <0.05), 1 (BGR & SGD, 2016). 
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Table S 4-6: Post-Hoc-Test results redox conditions. 

Hydrogeology NO3-N load 

reduction [%] 

Post-Hoc-Test (TukeyHSD (“TukeyHSD function | R 

Documentation,” n.d.)) 

 mean 
standard 

deviation 
p-value 

redox conditions2 

aerobic 

 

intermediate 

 

anaerobic 

 

strongly 

anaerobic 

aerobic 

 

32.9 

 

17.2 

 

    

intermediate 

 

44.8 

 

22.7 

 

0*    

anaerobic 

 

69.1 

 

16.6 

 

0* 0*   

strongly anaerobic 

 

95.8 

 

5.7 

 

0* 0* 0*  

* significant difference (p-value <0.05), 2 (Knoll et al., 2020). 
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