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Introduction 

 

1. Structure, function and impairment of the rat testis 

1.1. The testis: spermatogenesis and steroidogenesis 

 

The testis has two main functions the production of germ cells (spermatogenesis) and the 

synthesis of sex hormones (steroidogenesis).  

Mammalian spermatogenesis is a complex process initiated by mitotic proliferation of 

spermatogonia that are located on the basal lamina. Defined spermatogonial daughter cells 

then enter the first meiotic division resulting as primary spermatocytes that become 

secondary spermatocytes after completion of the first meiotic division. Haploid round 

spermatids result after secondary spermatocytes, which divide in the second meiotic 

division. Round spermatids are transformed into elongated spermatids [1-3]. During 

spermatogenesis the maturating cells move from the periphery of the tubule to the luminal 

part. After reaching the luminal part the elongated spermatids are finally released from the 

Sertoli cells (SC) and are termed spermatozoa. These cells are transported to and leave the 

testis via the rete testis (Fig. 1).    

Endocrine regulation of spermatogenesis and steroidogenesis occur by the hypothalamus 

and the anterior pituitary gland under the control of the central nervous system. 

Gonadotropin releasing hormone (GnRH), secreted by the hypothalamus, stimulates the 

release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the 

anterior pituitary gland [4, 5]. They are distributed by the vascular system (blood vessels). 

LH stimulates cell development, secretion of testosterone in Leydig cells and can influence 

cell morphology [6-8]. Due to the absence of testosterone receptors on germ cells, 

spermatogenesis is not direct influenced by androgens. Indirectly, spermatogenesis is 

regulated by binding of testosterone and FSH to SC [9]. As part of a negative feedback loop 

to the hypothalamus testosterone and inhibin, which is secreted by SC, regulate the 

production of GnRH, LH and FSH [4, 6, 7]. Additionally, testosterone directly regulates 

proliferation and differentiation of peritubular cells via nuclear androgen receptors [10, 11]. 
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1.2. Anatomy of the rat testis and adjacent structures 

 

Mammalian testes are located outside of the peritoneal cavity within the scrotum. The 

scrotum covers the fascia underneath, which consists of 3 almost indistinguishable parts: 

(1) external spermatic fascia, (2) cremaster muscle (external circular and internal 

longitudinal) and (3) internal spermatic fascia. The fascia is connected to the abdominal 

wall. In contrast to humans, in rats the connection between scrotal sac and peritoneum is 

still wide enough to withdraw the testis into the peritoneal cavity in situations of danger. 

Longitudinally the testis is connected to the epididymis. The head and tail of the epididymis 

are linked to the anterior and caudal pole of the testis by the inferior and superior ligament 

(IL, SL). The testicular artery and pampiniform plexus reach the testis via the spermatic 

cord on the same side as the epididymis. The vas deferens originates from the tail of the 

epididymis and joins the spermatic cord.  

The testicular parenchyma is surrounded by two layers, tunica albuginea and tunica 

vaginalis. These layers are grown together as one and is called testicular capsule. Testis, 

epididymis and vas deferens are connected to each other by thin layers of connective meso-

structures. According to Zhu et al. [12] they are termed mesoepididymis, which is situated 

between the testis and the epididymis, and mesodeferens, which is situated between the 

epididymis and the vas deferens. The testis and the epididymis are kept in position within 

the scrotum by another meso, which connects the vas deferens to the fascia.  

 

1.3. The testicular parenchyma 

 

In rodent species (rats and mice) the testicular parenchyma can be subdivided into 

seminiferous tubules and the interstitial space, the latter containing blood vessels and free 

intertubular connective tissue. In rodents the seminiferous tubules are, in contrast to 

humans, not separated by septa [13, 14]. As described above the testis has two main 

functions spermatogenesis, which takes place within the seminiferous tubules and 

steroidogenesis, which occurs by the Leydig cells in the interstitial space [15].  

 

 

 

 



   Introduction 

 

3 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Spermatogenesis 

Maturating germ cells move from the basal lamina towards the lumen of the seminiferous tubule. 

During this journey germ cells undergo mitosis and two steps of meiosis. Haploid immature sperms 

leave the testis via the rete testis and are transported to the epididymis. From tutorvista.com.    

 

 

1.3.1. The tubular compartment  

 

The main cell types within seminiferous tubules are germ cells and Sertoli cells. Germ cells 

start to proliferate and mature with the beginning of the puberty.  Different germ cell stages, 

embedded between the adjacent SC, are present within individual tubules (Fig. 2). SCs 

support the germ cells with essential nutrients, growth factors and are responsible for 

physical support and structure of the germ cells [17]. Each tubule is surrounded by 

peritubular cells (PTC) that morphologically separate germ cells and SCs from the 

interstitial space.  

 

Sertoli cells provide the structural framework of the seminiferous epithelium. They are 

attached to the basal lamina and extend towards the tubular lumen. SCs have a columnar 

shape with several multiform processes [18]. In the juvenile testis they proliferate but loose 

this ability when the first meiotic germ cells appear. Germ cells and SC are connected to 

each other via adherence junctions, desmosomes and gap junctions [15, 19-21] (Fig. 2). 

Neighbouring SCs are forming highly specialized tight junctions (zonula occludens) near 

the basal lamina (Fig.2), which are capable of restricting the passage of hydrophilic 

molecules [22, 23]. This so called blood-testis barrier [23] separates the tubule in two 

compartments: the basal region and the adluminal region. In this way, spermatogonia and 

early meiotic cells in the basal region are separated from spermatocytes and spermatids in 

the adluminal region. Therefore, a large majority of the developing germ cells are 
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effectively isolated from the immune system. To make sure that the developing germ cells 

can move through the junctional complex the barrier is opened and closed in a coordinated 

fashion [24].  

Peritubular cells originate from mesenchymal tissue and have a polygonal shape [25]. At 

least one layer of these cells as seen in rodents [26] is surrounding the seminiferous tubules 

(Fig. 1 & 2), but there are species specific variations. In humans five to seven layers were 

found [27]. Both, rat and human PTC express marker proteins such as F-actin and myosin, 

which are typical for smooth muscle cells [26, 28, 29]. PTCs contain contractile elements 

and mediate the transport of the still non-motile spermatozoa within the tubules [29, 30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Blood-testis barrier   

Germ cells are embedded between the adjacent SC, which are attached to the basal lamina and 

extend towards the tubular lumen. Germ cells and SC are connected to each other via adherence 

junctions, desmosomes and gap junctions. Neighbouring SCs are forming highly specialized tight 

junctions (zonula occludens) near the basal lamina: the blood-testis-barrier. From [16]. 

 

 

1.3.2. The interstitial compartment 

 

The interstitial space surrounds the seminiferous tubules and contains blood vessels 

(arterioles, capillaries and lymphatic vessels), Leydig cells, fibroblasts and immune cells 

(monocytes, lymphocytes, macrophages, dendritic cells, mast cells). Excluding blood 

vessels, 80% of the cells within the interstitial space are testosterone-producing Leydig 
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cells. The human interstitial compartment also contains nerve fibres which are absent in rat 

testicular parenchyma [12]. The arterioles, capillaries and venules of the testis completely 

permeate the interstitial tissue.  

 

A variety of immune cells are found within the interstitial space in rat testis with 

macrophages as the largest cohort. Testicular macrophages (TM) are recruited into the 

testis by chemokines. They originate from CD68 positive monocytes [31]. Reaching their 

target tissue the monocytes transform into resident macrophages. During this process the 

cells loose the CD68 marker and start to express CD163, albeit for a certain time both 

markers are co-expressed. In rats these markers can be detected by specific antibodies 

named ED1 (CD68) and ED2 (CD163) [31-34]. The majority of the testicular macrophages 

express CD163. About 50% of these CD163 positive cells are either CD68 positive or 

negative. Around 15-20% of the total number of TM expresses only CD68. This indicates 

the existence of several macrophage subpopulations in different developmental stages 

within the rat testis [31]. TMs play an important role in inflammatory processes by 

secreting different cytokines. A comparable lower secretion of IL-1 and TNF-α 

differentiates TM from macrophages within other tissues [3, 31, 35].  

 

1.4. Immunology of the testis 

1.4.1. Immune privilege of the testis 

 

A key element of immune privileged organs such as eye, brain or placenta [36], is the 

tolerance to xenografts placed within these organs. This tolerance was also demonstrated 

for the testis by Head et al. in 1983 [37]. The need for immune privilege within the testis 

results from the embryonic development of a male mammalian. To prevent immune 

responses against auto-antigens, the immune system has to distinguish between self- and 

foreign-antigens. Progenitor cells and spermatogonia are ignored by the immune system, 

because they existed during establishment of self-tolerance in the perinatal period. Cells 

appearing with and after the first meiotic division carry neo-antigens, which would spark an 

attack of the immune system. For a long time the protection of developing germ cells was 

supposed to be based only on the blood-testis-barrier, but since a few years the involvement 

of TM seem to be relevant too [31]. In the testis, resident macrophages, mast cells and 

lymphocytes show a suppressed immune response on inflammatory stimuli such as a 
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reduced secretion of pro-inflammatory cytokines by resident testicular macrophages. It 

seemed that these cells have an immune-regulatory and anti-inflammatory character, 

whereas fresh immigrated cells have pro-inflammatory character [31, 38].  

 

1.4.2. Male infertility 

 

Infertility affects one in ten couples, in nearly 50% of the cases the cause can be attributed 

to a factor in the male. In men, infertility can be caused for example by physical trauma, 

infections disease (bacteria, virus) cancer or genetic disorders. In men about 12-13%, in 

some studies even more, of all diagnosed infertility is related to an immunological reason 

[39-42]. 

Symptomatic and non-symptomatic inflammation of the testis (orchitis) as a result to 

reproductive tract infections, systemic infection and autoimmune disease such as anti-sperm 

antibodies lead to the disruption of testicular androgen production and spermatogenesis [38, 

43, 44]. Autoimmune orchitis is characterised by auto-antibodies and immune cells 

targeting germ cells including spermatozoa and sperm [31, 38, 45]. Acute or chronic animal 

models are used for investigations of orchitis. These models mimic the immunological 

factors which result in male infertility. However, despite the significant progress that has 

been made in the identification of local, genetic, and immunological factors, the pathology 

of experimental autoimmune orchitis (EAO) is still not understood [46, 47]. 

 

1.4.3. Cytokines and chemokines in the testis  

 

Pro- and anti-inflammatory mediators and the cells secreting them play a crucial role in 

inflammatory processes. These mediators are produced mainly by immune cells. In contrast 

to other organs, “inflammatory” mediators are constitutively expressed in the testis also 

during non-inflammatory conditions. Pro-inflammatory cytokines (TNF-α, IL-1, IL-6) 

effect spermatogenic cell differentiation and steroidogenesis, whereas anti-inflammatory 

cytokines (activin) influence the testicular development. Activin stimulates spermatogonial 

development in vitro and regulates the differentiation of the primary spermatocytes [38, 

48]. Beside immune cells Leydig cells, SC and PTC also express cytokines such as IL-1  

IL-6 and TGF-ß.  
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The influence of the nervous system on inflammatory processes was shown in several 

studies [49, 50]. Cytokines such as TNF- α, HMGB1 or IL-1ß play an important role within 

this interaction [51-54]. In addition to cytokines the nervous system communicates with the 

immune system by ACh, the main neurotransmitter of the vagus nerve [55]. Vagus nerve 

stimulation and ACh are known to activate the α7 nAChR. This activation inhibits the 

expression and release of TNF-α or HMGB1 in immune cells such as macrophages [56, 

57].  

 

1.5. Experimental autoimmune orchitis: a model of inflammatory infertility in rodents 

 

Most EAO studies are performed in rodents (mouse [58, 59] and rat [60-62]) and have been 

induced by active immunisation with spermatic antigens, adoptive T-cell transfer or 

neonatal thymectomy [46]. In this study, EAO was induced by active immunisation with 

testicular homogenates. Inducing of EAO in a test animal results in an acute and later on 

chronic inflammation provoked by the activation of immune cells, which are release pro- or 

anti-inflammatory cytokines [63]. With the progression of the disease histopathological 

alterations in the testis occur such as infiltration of lymphocytes and macrophages into the 

interstitium, autoantibody production, different degrees of germ cells degeneration, 

granuloma formation, necrosis [64], and the complete absence of spermatogenesis [60, 61, 

65]. The numbers of Leydig cells are considerably lower in EAO testis [65, 66], which 

results in decreased serum androgen levels. Furthermore, an increased number of CD68 and 

CD163 positive macrophages were reported at early and late time points in orchitis [61]. 

 

2. Innervation of the testis 

2.1. The nervous system and sensory neurons 

 

The mammalian nervous system consists of two parts: the central nervous system (CNS) 

and peripheral nervous system (PNS). The CNS includes the brain and spinal cord, whereas 

all neuronal structures outside the CNS belong to the PNS. According to the innervating 

structures the PNS is subdivided into the somatic and visceral nervous system. The visceral 

nervous system is also called autonomic nervous system (ANS) and has two interacting 

partners the sympathetic and parasympathetic pathways.    
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The vertebral column is made of a species-specific amount of vertebrae, which are 

subdivided into four parts: cervical, thoracic, lumbar and sacral. Both rat and human have 

12 thoracic vertebrae but differ in the number of the lumbar vertebrae (rats have six but 

human only five). The same segmentation is used for further characterisations of both 

spinal cord and dorsal root ganglia (DRGs) (Fig. 3A).   

The cell-bodies of motoneurons are located in the spinal cord and information is 

transmitted from the CNS into the PNS. Sensory neurons collect information in the 

periphery and transmit these to the CNS. The cell-bodies are located in the DRGs (Fig. 3B). 

 

2.2. Sensory neurons are divided in subpopulations 

 

Sensory neurons are pseudo-unipolar neurons, which have a bifurcated axon with a 

peripheral and central branch (Fig. 3B). The peripheral branch terminates in specific 

receptors in skin, muscles or other tissues, whereas the central process enters the spinal 

cord and results either in the activation of local reflex circuits or in the uptake of 

information into the brain. Sensory neurons identify changes in the environment, which 

could be harmful for the organism. Their receptors, which are ubiquitous found, recognise 

pain, touch or temperature differences.  

Four types of axons can be distinguished for sensory neurons: Aα, Aβ, Aδ and C. Nerve 

fibres consisting type-A-axons are myelinated in a decreasing intensity from Aα to Aδ, 

whereas type-C-nerve fibres (short: C-fibres) are not myelinated. The increasing 

myelinisation of the nerve fibres results in increasing speed of the transported signals. 

Nociceptive neurons, one subpopulation of sensory neurons, mediate pain. These neurons 

have thin myelinated (Aδ) or unmyelinated (C) axons (Fig. 3B).   
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Fig. 3: Localisation of sensory neurons and segmentation of the vertebrate. 

The segmentation of the human vertebrate and consequently of spinal cord and DRGs is shown in 

(A). The four sections (cervical, thoracic, lumbar and sacral) are inscribed within the drawing. 

Location and characterisation of sensory neurons is shown in (B). Primary afferent neurons have 

their cell bodies in DRG and transmit sensory information from the peripheral tissues to the spinal 

cord. Myelinated Aα and Aβ sensory fibres are involved in detecting non-noxious sensations, 

including light, touch, vibration and proprioceptive stimuli. In contrast, unmyelinated C and thinly-

myelinated Aδ fibres are known as nociceptors and detect noxious chemicals, thermal and 

mechanical stimuli. 

 

 

2.3. Neuronal markers 

 

Different populations of neurons can be distinguished by several marker-molecules. 

Markers used in this study are described briefly below.  

The protein-gene-product-9.5 (PGP-9.5) is a pan-neuronal marker for afferent and 

efferent nerve fibres [67-70], but also labels cells of neuro-endocrine origin and non-

neuronal cells such as porcine spermatogonia [68, 71]. 

The calcitonin-gene-related-peptide (CGRP) is a neuropeptide widely expressed in the 

CNS and also in the PNS. It is used as a marker for nociceptive neurons.   

The neurofilament 200 (Nf200) belongs to one of five classes of a family called 

intermediate filaments (IF) which have all a diameter of 8-10 nm. Neurofilaments are found 

predominantly in neuronal myelinated cells and nerve fibres and are distinguished by their 

molecular weight (68, 160 and 200 kDa) [72].  
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Peripherin another intermediate filament protein, was found initially in sensory neurons of 

the PNS, but subsequently observed in some sensory and other neurons of the CNS, 

neuroendocrine tumours and in insulin-producing cells of the pancreas. Peripherin labels 

thin myelinated and un-myelinated nerve fibres. 

Vesicular glutamate transporter 1 (VGluT1) is one of three transporters expressed from 

sensory neurons, which is essential for the uptake of the neurotransmitter glutamate into 

small synaptic vesicles prior to its exocytotic release into the synapse. Beside VGluT2, 

VGluT1 is currently one of the best markers for glutamatergic nerve terminals and 

glutamatergic synapses. 

Isolectin B4 (IB4) or lectins in general are sugar-binding proteins, which occur 

ubiquitously in nature and have the ability to agglutinate animal cells and/or precipitate 

complex carbohydrates. IB4 also binds to a subpopulation of primary sensory afferent 

neurons in rat DRGs, which were identified as unmyelinated neurons of small diameter. 

The majority of these neurons supply nociception. 

The transient receptor potential vanilloid receptor subtype 1 (TRPV1, VR1) is 

belonging to the transient receptor potential (TRP) superfamily, whose members are 

sensors for temperature. TRPV1 projects to sensory nociceptive neurons, which are 

sensitive to capsaicin [73]. The heat sensor TRPV1 was found to be activated at > 43°C. 

Beside heat and capsaicin TRPV1 can be activated by protons.  

 

2.4. Innervation of the testis 

 

The rat genitofemoral nerve (GFn), arising from lumbar spinal nerves 1 and 2 [74-77], 

divides into a genital and femoral branch [77, 78]. Both branches split again in several 

ramifications. Cremaster muscle [77] and scrotal skin [74, 77, 79-81] are innervated from 

both femoral and genital branch whereas the spermatic cord and tunica vaginalis [82, 83] 

are innervated just by the genital branch of the GFn. Dissection of GFn results in 

temperature dependent decrease of testicular weight and degenerative changes of the 

seminiferous tubules in rats kept at 4°C [84]. A major consequence of spinal cord injury in 

human male patients is infertility caused by poor semen quality [85, 86]. Defective 

temperature regulation and impaired ejaculation were postulated to be the underlying 

reason by Brindley and Mallidis [87, 88]. Defective temperature regulation is supported by 

the finding of temperature receptors TRPV1 and TRPM8 in human and rat testis [89].   
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Testicular innervation in rats occurs by the superior and inferior spermatic nerve (SSN and 

ISN). The SSN runs alongside the testicular artery and reaches the capsule via SL, whereas 

the ISN accompanies the vas deferens, penetrates the epididymis and reaches the capsule 

via IL [12]. PGP9.5 and CPON (C-flanking peptide of neuropeptide Y) positive nerve 

fibres were found in the mesorchial ligaments (IL and SL), which are the source of a nerve-

network innervating the capsule and the mesoepididymis [12]. Furthermore, AChE, CGRP 

and NPY-containing fibres have been found in the rat capsule [90, 91]. In some mammalian 

species, autonomic nerves are associated with testicular parenchyma and capsule [27, 92]. 

No nerve fibres are detectable in rat testicular parenchyma [91], whereas the human 

testicular parenchyma is innervated [92]. Sensory afferent terminals are generally described 

as “free nerve endings”. Their possible function was studied in a variety of tissues such as 

rodent testis [93, 94] and rat testicular capsule by Silverman and Kruger [93].   

CGRP, VIP and SP positive nerve fibres innervating the human and guinea-pig vas 

deferens have been described without information of their neuronal supply [95, 96]. 

Kolbeck & Steers demonstrated by tracing-experiments the vas deferens-innervation in rats 

originating from ipsi-lateral DRG L1, L2, L6 and S1 [97]. Nerve fibres labelled positive for 

Nf200 were observed in the vas deferens of bull [98] and in the testis of bull, donkey and 

camel [99-101].    

 

3. The cholinergic system  

3.1. Acetylcholine 

 

Acetylcholine (ACh), a well-known chemical neurotransmitter in both ANS and CNS, was 

first described by Loewi in 1921 [102]. In evolution ACh was present long time before the 

design of the nervous system. Uni- and multicellular organism such as bacteria, protozoa, 

fungi and plants produce ACh [103, 104]. In organism with a nervous system, ACh is not 

limited to it, but also present in non-neuronal tissue. For functional action ACh has to bind 

to specific receptors: the nicotinic acetylcholine receptor (nAChR) and the muscarinic 

acetylcholine receptor (MR).   
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3.2. Non-neuronal cholinergic system 

 

The presence of a cholinergic system in mammalian non-neuronal tissue was first described 

for human placenta by Morris in 1966 [105]. Since then, ACh and AChRs were found in 

many other tissues as well as in single cells of different species (see also chap. 3.4.). Until 

now the complete functionality of the non-neuronal cholinergic system is not fully 

discovered, although some functions could be illustrated. Non-neuronal cells use ACh for 

inter-cell communications and regulate cellular functions by ACh-binding in an autocrine 

and paracrine manner [106, 107]. ACh is known to alter the morphology of cells [108], to 

stimulate the proliferation of lymphocytes [109, 110] and to control the cytoskeleton and 

cell-cell contacts [111, 112].  

Beside these functions the cholinergic system seems to be involved in cancer and 

inflammatory processes, too. Increased cell proliferation after stimulation of nAChRs was 

demonstrated in cancer and non-cancer tissue such as mesothelioma [113] and human colon 

adenocarcinoma cell line (HT29) [114]. The up- (α5, α7, α9, β2, β4, ChAT) and down- (α4, 

AChE, M2R) regulation of ACh-related molecules was shown in non-small-cell lung cancer 

(NSCLC) [115, 116]. Subsequently ACh-related molecules were analysed in NSCLC-

patients, who were smokers or non-smoker. In smokers increased mRNA expression level 

of α6 and β3 were observed [115]. The following alterations were shown in tissues and cell 

lines: (1) nicotine stimulation of SCLC results in cell proliferation, which can be blocked 

by α-Bungarotoxin (α-Bgt, Bungarus multicinctus) [117]; (2) treatment with nicotine 

stimulates and pre-treatment with mecamylamine blocks the VEGF-mediated angiogenesis 

in endothelial cells [118]; (3) nicotine significantly suppresses apoptosis in NSCLC 

mediated by nAChR α3 and the PI3-K/AKT pathways [119] and (4) the pro-apoptotic 

molecule Bad gets phosphorylated and therefore inactivated after nicotine treatment on 

human lung cancer cells [120].   

Cytokines are essential molecules released by immune cells, which regulate inflammatory 

processes by acting as pro- or anti-inflammatory mediators. Nicotine or ACh are able to 

modulate the production of cytokines by binding to AChR [56, 57, 121]. Additionally, it 

was shown that nicotine and ACh enhance the phagocytic potential of macrophages [122]. 

The finding that electrical vagus nerve stimulation results in ameliorated disease in animal 

models of inflammatory conditions such as colitis [123] or peritonitis [124, 125] suggests a 

strong connection between the immune system and cholinergic nervous system.  
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3.3. Synthesis, release, degradation and recycling of acetylcholine in neuronal and 

non-neuronal tissue 

 

3.3.1. Synthesis of acetylcholine 

 

ACh is synthesised by choline acetyltransferase (ChAT, EC 2.3.1.6) from acetyl-CoA and 

choline within the cell. Acetyl-CoA is generated in mitochondria. It is produced during 

carbohydrate, protein and lipid catabolism in aerobic organism [253]. In non-neuronal cells 

ACh can be synthesised in two different ways via ChAT or via carnitine acetyltransferase 

(CarAT, EC 2.3.1.7) (Fig. 4). CarAT is an important part of the lipid metabolism and is 

present in the mitochondria. Both enzymes are nearly ubiquitously expressed. However, in 

mice and human urothelium, CarAT, but no ChAT was detected [126], whereas in rat 

urothelial cells the mRNA for both enzymes, ChAT and CarAT, has been demonstrated 

[127]. Furthermore, ChAT mRNA and ChAT protein were detected in human epithelial 

cells [128, 129], human immune cells [130-132], human placenta [133] and mouse 

embryonic stem cells [134]. 

 

3.3.2. Storage and release of acetylcholine 

 

After its generation, ACh is translocated into small synaptic vesicles via the vesicular 

acetylcholine transporter (VAChT) (Fig. 4). This transporter is a 12 transmembrane-domain 

protein, which is acting as an H
+
/ACh exchanger. The vesicles are stored in the cell until a 

trigger is activating them. In neurons this trigger is the depolarisation of the nerve terminal 

which leads to exocytotic release of ACh. The vesicle-fusion with the presynaptic 

membrane is a calcium-dependent process. The extracellular ACh moves through the 

synaptic cleft and binds to their receptor on the postsynaptic cell.  

In non-neuronal tissue VAChT could be detected for example in pulmonary arterial 

endothelial cells [135, 136], in parts of the rat placenta [137] and in secretory cells of 

airway surface epithelium [138] but the expression of VAChT is not ubiquitous in non-

neuronal tissue. This implies that ACh is not stored in vesicles in all cells but is released 

direct from the cytoplasm. There is evidence for alternative release mechanism via organic 

cation transporters (OCTs) (Fig. 4).  
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Fig. 4: Recycling pathway of acetylcholine (ACh) synthesis, release, action and breakdown at 

a cholinergic nerve terminal.  

AChE = acetylcholinesterase, BChE = butyrylcholinesterase, ChT1 = high-affinity choline 

transporter-1, ChAT = choline acetyltransferase, M = muscarinic receptor, G-protein coupled,  

N = nicotinic receptor, ligand-gated ion channel, VAChT = vesicular ACh transporter,  

OCTs = organic cation transporter. Modified after Kummer et al. [139]. 

 

 

OCTs are expressed on the surface of a wide range of cells. All OCTs transport small 

hydrophilic substances in a sodium-dependent manner. The three subtypes OCT1, 2 and 3 

seem to be differentially expressed in cells or tissues. OCT subtypes could be detected in 

rat bronchial epithelium (OCT1/2) [140], in human placenta (OCT1/3) [141], in rat and 

mouse placenta (OCT3) [142, 143] and in rat kidney (OCT2) [144].  

 

3.3.3. Degradation and recycling of acetylcholine 

 

The action of ACh is terminated by butyrylcholinesterase (BChE) or ACh-esterase (AChE). 

These enzymes exist in a soluble form or bound to the membrane and are able to cleave 

ACh into choline and acetate (Fig. 4). Cholinergic neurons synthesise esterases by 

themselves to ensure equilibrium of released and degraded ACh. AChE is present in both 

neuronal and non-neuronal cells [145]. After degradation of ACh, choline is taken up from 

the extracellular space into the cell by a sodium-dependent high-affinity choline transporter 

(ChT1). The existence of ChT1 in non-neuronal tissue could be demonstrated for example 
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in rat and human epithelial and vascular smooth muscle cells [127, 146]. In addition to its 

role as a precursor for ACh choline is an essential molecule within plasma membrane 

lipids, e.g. in the form of phosphatidylcholine. For the ACh-synthesis, the uptake of choline 

via ChT1 is the rate limiting step (Fig. 4). Therefore choline uptake is crucial for every cell. 

Beside ChT1 and the OCTs the choline transporter-like (CTL) proteins of the CTL family 

are established choline transporters [147], which could be an alternative way of importing 

choline into the cell in the absence of ChT1.  

 

3.4. Acetylcholine receptors 

 

Acetylcholine receptors are two structurally diverse classes of membrane-bound proteins, 

the ionotropic nicotinic AChR and the metabotropic muscarinic AChR. The receptors are 

named after their selective agonists: (1) nicotine, which is an alkaloid of the tobacco plant 

and (2) muscarine, which is an alkaloid of fly agaric (Amanita muscaria) [148] (Fig. 5). 

Both receptor classes differ in structure, function and their underlying signalling system 

[149]. For one example, nAChR are fast acting receptors, whereas activation of MRs leads 

to latency in response.  

.  

 

 

 

 

 

 

 

 

 

Fig. 5: Nicotine and muscarine. 

Nicotine (C10H14N2) is an alkaloid found in the nightshade family of plants (Solanaceae) such as 

tobacco. Muscarine (C9H20NO2
+) is a natural product found in certain mushrooms and was first 

isolated from Amanita muscaria in 1869.   
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3.4.1. Structure and functionality of nicotinic acetylcholine receptors 

 

AChR can be distinguished in muscle-type, which is situated at skeletal-muscle 

neuromuscular junctions, and neuronal-type, which is situated in the nervous system. The 

muscle-type nAChR exist as embryonal- and adult- heteropentameric isoform. The muscle-

type contains 5 subunits: α1, β1, γ, δ and ε with fixed compositions: (1) [(α1)2β1γδ] in 

embryonic tissue and non-innervated muscles and (2) [(α1)2β1δε] in adult muscles [152] 

(Fig. 6A).  

The neuronal-type nAChR exist as homo- and heteropentamers. The neuronal-types, which 

are present in neuronal and non-neuronal tissues, consist of 12 subunits α2-α10 and β2-β4. 

With the exception of α8, all α-subunits and β2- β4 have been described in mammals 

[153-155]. nAChR subunit α8 is only expressed in chicken/avian species [156]. Most of the 

nAChR subunits form heteropentamers. Only α7, α8 and α9 are able to homopentamer-

formation (Fig. 6A). The subunits show a homology in the amino acid sequence with app. 

30-40% identity of amino acid residues mainly in hydrophobic regions [150, 151]. nAChR 

α-subunits can be subdivided due to their sensitivity to snake α-toxins such as  

α-bungarotoxin. α-Bgt-sensitive subunits are α7- α10 [154, 157-159] and the nAChR at the 

motoric endplate [160]. α-Bgt-non-sensitive subunits are α2-α6 and β2-β4 [153, 161-163]. 

Table 1 & 2 show the known possible combinations of nAChR oligomers subdivided in  

α-Bgt-sensitive and α-Bgt non-sensitive subunits. 

 

Tab. 1: α-Bgt-sensitive receptors. 

 

receptor composition 

 

reference(s) 

 

 

α7   

α7β2    

α7β3    

α3α7β    

α3α5α7β  

α5α7β    

α9    

α9α10   

  

 

[164, 165]  

[166]  

[167]  

[168]  

[168]  

[169]  

[159, 170] 

[159, 170] 

 

Receptor composition of nAChR-subunits α7, α9, α10 in vertebrate. Modified after Lips and Gotti 

[138, 171]. 
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Tab. 2: α-Bgt non-sensitive receptors.  

 

receptor 

composition 

reference(s)  receptor 

composition 

reference(s) 

 

α2β2  

α2β4  

α3β2  

α3β3 

α3β4  

α4β2  

α4β4  

α6β2   

α6β3 

α6β4  

α2α4β2 

α2α5β2 

α2α6β2 

α3α4β2 

α3α4β4  

α3α5β2 

  

 

[172, 173]  

[172, 173]  

[173, 174]  

[175] 

[173, 174]  

[176-178]  

[173]  

[179]  

[175] 

[180]  

[181]  

[182]  

[183]  

[184] 

[184] 

[174]  

 

 

α3α5β4 

α3α6β2  

α3α6β4 

α3β3β4  

α4α5β2 

α4β2β3 

α5α6β2 

α6β2β3 

α6β3β4  

α3α5β2β4  

α3α6β3β4  

α4α5α6β2  

α4β2β3β4  

α4α6β2β3  

 

 

[174]  

[185]  

[180, 185]  

[186] 

[176, 187]  

[188] 

[185]  

[189]  

[185, 190]  

[191] 

[190]  

[192]  

[186]  

[183] 

 

Receptor composition of nAChR-subunits α2-α6, β2-β4 in vertebrate. Modified after Lips and Gotti 

[138, 171]. 

 

 

nAChR are responsible for the cholinergic neurotransmission within the CNS. They 

mediate the excitatory postsynaptic potential on postsynaptic cells [193] and are able to 

regulate the release of neurotransmitter on presynaptic cells [194, 195].  

The subunit composition of nAChR influences their functions such as (1) ligand- specificity 

and ligand-affinity, (2) permeability for cations and (3) and pharmacology [196, 197]. The 

binding of a ligand to a nAChR leads to conformational changes in the receptor structure. 

This process is reversible. Antagonists are able to block the permeability for ions by 

binding to the nAChR. The blocking of the nAChR can be reversible (methyllycaconitin, 

mecamylamine) or irreversible (α-Bgt). The permeability for cations (Ca
2+

, Na
+
, K

+
 and 

Mg
2+

) is dependent on the subunit composition of the nAChR (Fig. 6A) [198, 199]. α-Bgt-

sensitive nAChR show high permeability for Ca
2+

 and Mg
2+

 but lower permeability for Na
+
 

and K
+
 ([156, 165]. Homopentamers and nAChR containing α7-subunit show a distinct 

high permeability for Ca
2+

 [200]. α-Bgt non-sensitive nAChR show high permeability for 

Na
+
 but lower permeability for Ca

2+
 [187].  
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The receptor activation leads to a Ca
2+

-current, which changes the membrane potential and 

activates or mediates intracellular signalling pathways such as transmitter-release [194] and 

gene expression [201].  

Na
+
-influx depolarises the cell membrane and activates voltage-dependent Ca

2+
-channels 

with a following Ca
2+

-influx [200, 202]. The release of Ca
2+

 from intracellular Ca
2+

-depots 

is also possible. The consequence of this mechanisms is a prolonged intracellular  

Ca
2+

-signalling [200, 203-205]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Muscarinic and nicotinic ACh receptors 

The vertebrate nAChR subunits, the pentameric structure of the subunits and resulting permeability 

for ion channels are shown in (A). The MR subtypes subdivided regarding their preference for 

specific GPCR α-subunits and their resulting intracellular signalling pathway are shown in (B).   
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3.4.2. Structure and functionality of muscarinic acetylcholine receptors 

 

The first evidence for the existence of MR was reported in an investigation with respect to 

heart-function by Riker and Wesco in 1951 [206]. Today, five receptor subtypes, encoded 

by intron-less genes (m1-m5), are known from several species including human, mouse and 

rat [206-208]. The MR exhibit a high sequence homology across species and form 

heptahelical G-protein-coupled receptors (GPCR). More than 100 members are known 

belonging to the GPCRs [209]. All these receptors share a common structure with:  

(1) seven transmembrane-domains connected to each other by intra- and extracellular loops, 

(2) an extracellular ligand binding site, (3) an intracellular C- and extracellular N-terminus 

and (4) the ability to couple to a cytoplasmic heterotrimeric G-protein [206, 210].  

 

MRs are widely expressed in neuronal and non-neuronal cells. Individual subtypes are 

predominantly expressed in specific tissues like M2R in the myocardium [211] and, 

together with M3R, in smooth muscle cells [212]. The presence of M3R within the CNS is 

markedly lower than other MR subtypes [213-215]. M4R and M5R are predominantly 

expressed by dopaminergic neurons [213, 216, 217]. The presences of MR-subtypes could 

be demonstrated in non-neuronal tissue such as human macrophages [218] or mouse 

trachea [219, 220]. Receptor activation is known to mediate proliferation and differentiation 

in embryonic cells, DRGs and Schwann cells [221]. 

 

MRs are coupled to G-proteins which consist of three subunits α, β and γ (Fig. 6B). The 20 

known α-subunits are subdivided into four families Gαs, Gαi/o, Gαq/11, and Gα12/13 

[222].  

The G-protein, which is associated with the cell membrane, is not couple to the MR in the 

absence of an agonist. The binding of a ligand results in a conformational change of the 

receptor, which allows interaction with a G-protein. After the receptor and the G-protein are 

coupled to each other, GDP is replaced by GTP and the α-subunit leaves the αβγ-complex. 

The β and γ subunits stay together [223]. G-proteins regulate intracellular functions via 

effector molecules such as ion channel activity, transporters, gene transcription or secretion. 

These down-stream intracellular functions are defined by the α-subunit-family-member 

located within the G-protein-complex and its interaction with the receptor- and effector-

molecule (Fig. 6B).  
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Muscarinic receptor subtypes M2 and M4 preferentially couple to Gαi/o and subtypes  

M1, M3 and M5 to Gαq/11 [224]. For a long time, it seemed to be that the βγ-complex is not 

active, but there is evidence for its activating function of phospholipase C (PLC) and the 

opening of ion channels [225].    

Gαq activates the plasma-membrane-bound enzyme phospholipase C-β (PLC-β). This 

enzyme transforms phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] into inositol-1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG). IP3, a soluble molecule, diffuses to the 

endoplasmic reticulum (ER) and binds to IP3-gated Ca
2+

-release channels. After opening 

these channels the Ca
2+

 stored in the ER is liberated into the cytosol. DAG activates protein 

kinase C (PKC), which translocate from the cytosol to the plasma membrane. PKC 

activates its targets in a cell dependent manner [223, 226]. The transmembrane protein 

adenylate cyclase (AC) is inhibited by binding to a Gαi-subunit and activated by binding to 

a Gαs-subunit. The binding of ACh to M2R or M4R activates Gαi, which then competes 

with Gαs for the α-subunit binding-site within the αβγ-complex. This results in a decreasing 

cAMP formation, which leads to a reduced activity of the cyclic-AMP-dependent protein 

kinase (PKA) [223, 224, 226]. Additionally, the binding of ACh to M2R or M4R mediates a 

prolonged opening of potassium channels or non-selective cation channels [224].  

 

3.5. Cholinergic system within the testis 

 

Up to now, the knowledge about the presence and function of the cholinergic system within 

the testis is far from complete. There is evidence of its presence but neither a cell specific 

localisation nor its function is established. Bacetti et al. found nAChR-like molecules in 

post-acrosomal and mid-piece region of rabbit, ram and human sperm [227]. nAChRs 

containing the α7-subunit are involved in acrosome reaction in humans [228, 229], whereas 

the absence of subunit α7 results in impaired sperm motility in mice [230]. Additionally, 

nAChR subunits α3, α5, α9 and β4 were found in human sperm [231] and treatment with 

ACh causes an increase of intracellular calcium in human sperm [232]. AChE-R, which is a 

stress-induced AChE-splice variant (AChE-R), is up-regulated in the testis of mice and 

humans and dependent on its binding partners. AChE-R can mediate apoptosis or elevates 

sperm motility within the testis [233]. 

Studies focusing more detailed in cell populations demonstrated a decreased testosterone 

secretion of Leydig cells after ACh and nicotine application [234], the presence of M1R to 
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M5R in SC [235], and predicted the activation of Sertoli cell proliferation by muscarinic 

AChR [236]. Muscarinic AChR subtypes found in rat epididymis [237] are influenced by 

the testosterone level [238]. Orchidectomy decreased the level of m2 transcript, but 

increased the level of m3 transcript in rats. These effects on m2 and m3 transcripts were 

prevented by testosterone replacement to castrated rats [238].   

 

4. Aim of this study 

 

Male infertility can be caused by physical trauma, infections disease, cancer or genetic 

disorders but can also be related to immunological reasons or smoking [39-42]. In the male, 

nicotine as major component of cigarette smoke showed impairment of spermatogenesis 

and steroidogenesis [239-241]. The disruption of testicular androgen production and 

spermatogenesis can also be caused by inflammation of the testis (orchitis) as a result of 

infection and autoimmune reactions to testicular and sperm antigens [38, 43, 63]. 

Interestingly, an involvement of nAChR in counterbalancing inflammatory effects was 

documented recently [49, 54, 55]. Recently, the presence of ACh was determined in 

testicular homogenates [414]. The absence of nerve fibres in the testicular parenchyma of 

rats [12], indicates a non-neuronal source for ACh. 

The present study aimed to determine nAChR-subunits and MR-subtypes as putative 

targets for ACh in testicular parenchyma and -capsule. Subsequently, molecules related to 

the ACh-system should be investigated for isolated TM, PTC and SC. Changes in [Ca
2+

]i 

after stimulation with agonists could determine a neuronal-like function of AChR. 

Moreover, changes in expression levels should be monitored in a model of experimental 

autoimmune orchitis to reveal a possible involvement of ACh in counterbalancing testicular 

inflammation. 
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Materials and Methods 

 

5. Animals and tissues  

5.1. Animals 

 

Male Wistar Furth rats and male C57/BL6 mice, both 8-12 weeks old, were used for 

organ collections and subsequent in vitro experiments. Male Wistar Kyoto rats  

(10 weeks old) were used for the in vivo experiment. The animals were kept in a 12 h 

light, 12 h dark cycle at 22°C. They had free access to food pellets and water. For the 

experiments at Flinders University Adelaide, Australia, the rats and mice were 

purchased from the animal house of the Flinders Medical Centre (FMC), Adelaide. 

For the experiments, which were conducted at the Justus-Liebig-University Giessen, 

Germany, the rats were purchased from Harlan Winkelmann (Borchen, Germany, in 

vitro experiments) or Charles River Laboratories (Sulzfeld/Kisslegg, Germany, in 

vivo experiments). The animal experiments were approved by the local animal welfare 

committees (Giessen: Regierungspraesidium; Adelaide: project 645/07, Animal 

welfare committee 19.12.2007). For in vitro experiments both rats and mice were 

killed with an overdose of isoflurane (1-chloro-2,2,2-trifluoroethly difluoromethyl) 

and tissue samples were collected. 

 

5.2. Tissue culture 

5.2.1. Isolation of testicular macrophages  

 

Testicular macrophages (TM) were isolated from two testes without any enzymatic 

treatment. The testes were decapsulated in 10 ml pre-warmed endotoxin-free 

DMEM:F12 medium (PAA Laboratories, Coelbe, Germany).
 

The seminiferous 

tubules were gently separated using straight
 
Semken forceps and the volume was 

adjusted to 50 ml. After gently stirring for 3 to 4 times the tubule fragments
 
were 

allowed to settle for 5 min before the supernatant was centrifuged at 300 g for 10 min 

at room temperature. The interstitial cell pellet was resuspended in 5 ml DMEM:F12. 

The cell suspension was plated as required in a 60 mm cell culture dish, a  

6-well-multidish or on glass coverslips in a 24-well-multidish and incubated at 32°C 

and 5% CO2. The differentiation between TM and the remaining interstitial cells 
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occurred by the fast adherence of the TM to plastic or glass surfaces. Contaminating 

cells were removed by washing. After the first 30 min cells, which were not attached 

to the surface, were removed by rotating the plate and changing the medium 2 to 3 

times. 30 min later TMs were washed by gently pipetting directly on the surface of the 

dish until loosely attached cells detached.   

 

5.2.2. Isolation of peritubular cells and Sertoli cells 

 

Peritubular- and Sertoli cells were isolated from 18-19 days old male Wistar rats 

(Charles River). Testes were removed, disinfected in 1% iodine-ethanol once and 

rinsed three times in PBS-G (without Ca
2+

 and Mg
2+

, with 1000 U/ml penicillin and 

1000 U/ml streptomycin all from PAA and 750 mg D-glucose [Merck, Darmstadt, 

Germany]). After decapsulation, the tissue was minced in PBS-G and the testes 

fragments were trypsinised (2.5 mg/ml trypsin [Boehringer, Mannheim, Germany] 

and 20 μg/ml DNase I [Boehringer] in PBS-G) for 10-15 min at 32°C and 140 rpm. 

The enzymatic reaction was stopped with 5 mg/ml trypsin-inhibitor (Boehringer) in 

PBS-G and tubule fragments were allowed to settle for 10 min. The pellet was 

resuspended in 10 ml of 2.5 mg/ml trypsin-inhibitor in PBS-G, and incubated for  

5 min. Afterwards the tubules were washed eight to ten times with 25 ml PBS-G with 

intermittent settling for 8 min. Subsequently, the fragmented tubules were incubated 

with 1 mg/ml collagenase (Boehringer), 1 mg/ml hyaluronidase (Boehringer) and  

20 µg/ml DNase I in PBS-G for 10-15 min at 32°C in a shaking water bath (120 rpm). 

After adding 20 ml of PBS-G the tubule fragments were allowed to settle for about  

10 min.  

The supernatant containing the PTC, was removed carefully, supplemented with  

20 ml RPMI-A (with 12.5 ml L-glutamine, 1000 U/ml penicillin, 10% FCS and  

100 µg/ml streptomycin; all PAA) and centrifuged at 300 g for 10 min at room 

temperature. The PTC pellet was resuspended within 30 ml RPMI-A, the cells were 

seeded in 75 cm
2
-culture flasks (5 ml/flask) and incubated at 37°C with 5% CO2. 

After three passages (day 3, 5 and 7 after isolation) by briefly trypsinising (0.05% 

trypsin and 0.02% EDTA [Merck] for 3 min) and splitting (1:2) the cells were seeded 

on glass coverslips in a 24-well multidishe or in a 6-well-multidishe with a density of 
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5x10
5
/well during the last splitting. Before experimental usage at day 9 PTC were 

incubated 24 h with RPMI without FCS.   

For the isolation of SC, the remaining seminiferous tubule fragments were washed 

five to six times in PBS-G before incubating in 20 ml of 1 mg/ml hyaluronidase and 

10 mg/ml DNase I in PBS-G for 10-15 min at 32°C and 120 rpm. After the tubules 

were digested in small fragments they were rinsed five times in PBS-G, resuspended 

in RPMI-B (without FCS) and passed through an 18G needle for better separation. SC 

were cultured in RPMI-B at a density of about 4 x 10
6
/well in 6-well multi-dish and 

5x10
5
/well on glass coverslips in a 24-well multidish. After 3 days, the contaminating 

germ cells were lysed by hypotonic shock treatment in 20 mM Tris-HCl (pH 7.4) for 

15-30 s and washed away using PBS-G. Sertoli cells were allowed to recover 3 more 

days before experimental setup. 

 

6. Molecular biology  

6.1. RNA isolation  

 

Rat and mouse testes were taken and vas deferens, blood vessels and the epididymis 

were removed. The testis was decapsulated and 30 mg of the rat testicular 

parenchyma and the whole testicular capsule was shock frozen in liquid nitrogen. Due 

to the limited amount of material per mouse, the complete parenchyma of one testis 

and one or both testicular capsules were used for the isolation of total RNA. In 

addition, control samples (liver, heart, spinal cord, dorsal root ganglia) were collected. 

The tissues were stored at -80°C until further use. Primary isolated cells were washed 

twice with PBS, lysed in RLT lysis buffer (Qiagen; Doncaster, Australia and Hilden, 

Germany) and frozen at -80°C.  

Total RNA was isolated with the RNeasy Mini or Micro Kit (Qiagen) depending on 

the amount of tissue or cells. 350 to 600 µl lysis buffer (RLT, including 1%  

β-mercaptoethanol) were added to the frozen tissue and then homogenized with a 

tissue lyser (Qiagen) using RNA-free 2 mm iron balls for 3 to 6 min at 30 Hz. 

Afterwards the homogenate was centrifuged for 5 min at 13 000 g and the supernatant 

was collected. The cell culture samples were homogenized passing the cell lysate  

5 times through a 26G or 27G needle. The lysate was not centrifuged. The following 
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precipitation of the nucleic acids, loading on the column and the wash steps with 

RW1 and RPE buffer occurred according to the manufacture‟s manual.    

For on column DNA removal 10 µl DNase A (27.27 U) and 70 µl RDD DNA digest-

buffer (Qiagen) were mixed and added to the column for 15-25 min at room 

temperature. The RNA was eluted with 15 to 50 µl of RNase-free water depending on 

the expected amount of RNA. The concentration of the total RNA was measured 

using a spectrophotometer (Nanodrop, peqlab, Erlangen, Germany) and RNA was 

stored at -80°C.       

 

6.2. Examination of RNA quality  

 

The quality of total RNA especially contaminations with genomic DNA were 

analysed by standard PCR or performance of positive and negative RT-PCR.  

For samples with a high amount of RNA such as TP, TC or PTC, reverse transcription 

(RT) was performed as a positive and negative RT (-RT in absence of RT-

transcriptase). The +RT (cDNA) and the –RT samples were checked using standard 

PCR and primer for a reference or housekeeping gene (HKG) such as β-actin. The 

PCR was performed with 25 cycles for +RT and with 50 cycles for –RT. For samples 

with a low amount of RNA, such as primary cell culture of TM, RNA was examined 

using standard PCR with 50 cycles and primer for a HKG to detect possible DNA 

contaminations Samples with no DNA contamination were transcribed into cDNA 

and the relative quality was checked using standard PCR with primer for a HKG and 

25 cycles.  

The PCR products were mixed with 1x DNA-sample buffer and separated by 

electrophoresis using the Wide Mini-Sub®Cell-System and the PowerPac 200 power-

supply (Bio-Rad: Munich, Germany; Gladesvill, Australia) with a 1.8% agarose gel 

(Invitrogen, Eugene, USA). The agarose was dissolved in TAE containing 

ethidiumbromid (0,00001%). 10 µl TriDye 100 bp DNA ladder (New England Bio 

Labs, Genesearch PTY. LTD, Arundel, AUS) or 100 bp DNA leader (Promega, 

Heidelberg, Germany) were used as a marker. The GeneGenius Bio Imaging System 

(Syngene, In Vitro Technologies, Noble Park, Australia) and Intas (Goettingen, 

Germany) were used to visualise the DNA. 
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TAE (Tris acetate EDTA buffer) 

 50x   1x  

Tris base 242 g  4.84 g 
adjust to 1000 ml 

and pH 8.0 
0.5 M EDTA 100 ml 2 ml 

glacial acetic acid 57.1 ml 1.142 ml 

 

10x DNA-sample buffer  

   

100% glycerol 30%  (v/v) 

xylen-cyanol FF 0.25%  (w/v) 

orange G   0.25%  (w/v) 

 

 

6.3. Reverse transcription  

 

Reverse transcription is a process which enables some RNA-viruses to integrate their 

RNA-genome into the host DNA-genome by transcription of RNA into DNA. The 

iScript cDNA synthesis Kit (Bio-Rad) uses the RNase H+ reverse transcriptase from 

Moloney Murine Leukemia Virus (M-MLV). 1 µg RNA was mixed with 4 µl RT-

reaction buffer containing premixed RNase-inhibitor to prevent indiscriminate 

degradation of RNA template, oligo (dT), random primer to ensure complete and 

unbiased RNA sequence representation and 1 µl reverse transcriptase. The 20 µl 

reaction was incubated for 5 min at 25°C and 30 min at 42°C. The transcriptase was 

then heat inactivated for 5 min at 85°C. The cDNA was stored at -20°C.   

 

6.4. Polymerase chain reaction  

6.4.1. Primer design 

 

For analysing the mRNA expression level within the target tissue primer directed 

against rat or mouse specific mRNA sequences were designed. Information regarding 

the mRNA sequences for the genes has been obtained from Pubmed 

(http://www.ncbi.nlm.nih.gov/ pubmed/). Each sequence was aligned with the rat or 

mouse genome to determine intron-spanning sites within the mRNA of interest.  

 

 

 

http://www.ncbi.nlm.nih.gov/%20pubmed/
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Tab. 3: Rat primer sequences for MR.  

 

target  sequence (5’ → 3’) 
length (bp) 

localisation 

accession 

number 

     

rM1_204 fw AGCAGCAGCTCAGAGAGGTC 204 

(712-915) 

NM_ 

080773 rev GGGCATCTTGATCACCACTT 

rM1_110 fw TCCCTGTCACGGTCATGTGTA 110 

(595-705) 

NM_ 

080773 rev ACCACCTTTGCCTGGTGTCT 

rM2_193 fw CGAGTCTGGTGCAAGGAAGA 193 

(698-890) 
AB017655 

rev CTCATATTGGAGGCCACAGC 

rM2_192 fw TGCCTCCGTTATGAATCTCC 192 

(324-515) 
AB017655 

rev TCCACAGTCCTCACCCCTAC 

rM3_140 fw TACGGTCGCTGTCACTTCTG 140 

(959-1098) 

NM_ 

012527 rev TCATCGGAGGAAGCAGAGTT 

rM3_287 fw AGGTTTGCTCTCAAGACCAG 287 

(1433-1719) 

NM_ 

012527 rev CACAAGAGGAGCGTCTTGAA 

rM4_163 fw GACGGTGCCTGATAACCAGT 163 

(1005-1167) 

XM_ 

345403 rev CTCAGGTCGATGCTTGTGAA 

rM4_166 fw TCGATCGTTACTTCTGCGTCA 166 

(854-1019) 

XM_ 

345403 rev TTATCAGGCACCGTCCTCTTG 

rM5_118 fw CCACCACTGACCCTGTCTTT 118 

(1914-2031) 

NM_ 

017362 rev CTGTTTTCAGTCCGGGTGTT 

rM5_180 fw GACAGAGAAGCGAACCAAGGA 180 

(1626-1806) 

NM_ 

017362 rev GAGGTGCTTCTACGGGAGGAT 

 

Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→ 3` order. First 

column: r = rat, M1-5 = MR-subtype, number = length of expected PCR-product. 

 

 

 

Tab. 4: Rat primer sequences for pro-inflammatory molecules.  

 

target  sequence (5’ → 3’) length (bp) 
accession 

number 

     

MCP-1  

(CCL2) 

 Qiagen: QT00183253 

117 

NM_ 

031530   

IL-6 

 Qiagen: QT00182896 

128 

NM_ 

012589   

TNF-α 

fw GCCTCTTCTCATTCCTGCTC 

101 AJ002278 rev CCCATTTGGGAACTTCTCCT 

 

Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→ 3` order.  

 

 

 

 



Material & Methods 

 

28 

 

Tab. 5: Rat primer sequences for nAChR.  

 

target  sequence (5’ → 3’) 
length (bp) 

localisation 

accession 

number 

     

α1_285 fw AACTTCATGGAGAGCGGAGA 285 

(626-910) 

NM_ 

024485 rev CAGCTCCACAATGACGAGAA 

α2_216 fw GGAGCAGATGGAGAGGACAG 216 

(874-1089) 

NM_ 

133420 rev AGCACAGTGAGGCAGGAGAT 

α3_208 fw GCCAACCTCACAAGAAGCTC 208 

(1231-1438) 

NM_ 

052805 rev CCAGGATGAAAACCCAGAGA 

α4_137 fw GGACCCTGGTGACTACGAGA 137 

(315-452) 

NM_ 

024354 rev CATAGAACAGGTGGGCCTTG 

α5_112 fw CACGTCGTGAAAGAGAACGA 112 

(1270-1381) 

NM_ 

017078 rev TCCCAATGATTGACACCAGA 

α6_286 fw ACAGCTCTTCCACACGCTCT 286 

(283-568) 

NM_ 

057184 rev GAAGTCACCGACGGCATTAT 

α6_139 fw GCTCTTCGCCCACTACAACC 139 

(298-436) 

NM_ 

057184 rev CAGCCACAGATTGGTCTCCA 

α7_286 fw GGCTCTGCTGGTATTCTTGC 286 

(741-1026) 

NM_ 

012832 rev AAACCATGCACACCAGTTCA 

α9_142 fw CGTGGGATCGAGACCAGTAT 142 

(278-419) 
AY 574257 

rev TCATATCGCAGCACCACATT 

α9_242 fw CGTGGGATCGAGACCAGTAT 242 

(365-606) 

NM_ 

022930 rev AAAGGTCAGGTTGCACTGCT 

α10_317 fw CTGCTGACTCTGGGGAGAAG 317 

(845-1161) 

NM_ 

022639 rev GGCTGACTCTAGTGGCTTGG 

α10_107 fw GTGCCACTCATCGGAAAGTA 107 

(946-1052) 

NM_ 

022639 rev TGTGCATTAGGGCCACAGTA 

α10_168 fw TCTGACCTCACAACCCACAA 168 

(1561-1728) 

NM_ 

022639 rev TCCTGTCTCAGCCTCCATGT 

β1_206 fw CATCGAGTCTCTCCGTGTCA 206 

(361-566) 

NM_ 

012528 rev TGCAATTCTGCCAGTCAAAG 

β2_142 fw AAGCCTGAGGACTTCGACAA 142 

(468-609) 

NM_ 

019297 rev TGCCATCATAGGAGACCACA 

β3_196 fw CACTCTGCGCTTGAAAGGAA 196 

(135-330) 

NM_ 

133597 rev GCGGACCCATTTCTGGTAAC 

β4_371 fw CTCCTGAACAAAACCCGGTA 371 

(97-467) 

NM_ 

052806 rev ACCTCAATCTTGCAGGCACT 

 
Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→ 3` order. All primer 

sequences except α2_216 and α10_168 are intron-spanning. First column: α and β = nAChR 

subunits, number = length of expected PCR-product. 

 

 

Subsequently, primers were automatically designed using the Pubmed primer- Basic 

Local Alignment Search Tool (BLAST) programme (http://www.ncbi.nlm.nih.gov/ 

tools/primer-blast/index.cgi? LINK_LOC= BlastHome Ad) with the following 

parameters: melting temperature 60°C, primer length 20 bp and PCR product length  

http://www.ncbi.nlm.nih.gov/%20tools/primer-blast/index.cgi?%20LINK_LOC=%20BlastHome%20Ad
http://www.ncbi.nlm.nih.gov/%20tools/primer-blast/index.cgi?%20LINK_LOC=%20BlastHome%20Ad
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100-300 bp (Tab. 3, 5-7). If possible, intron-spanning primers were constructed to 

prevent false positive amplification results from DNA contamination within the RNA. 

DNA-contaminations would result in a bigger amplification product compared to the 

expected amplicon. Primers were ordered by Sigma (Sigma-Aldrich, Castle Hill, 

Australia) and Eurofins (MWG Operon, Ebersberg, Germany). In some cases, several 

alternative primer-pairs were used for the same target such as rM1_204 and rM1_110 

(Tab. 3). The length of the expected PCR-product is part of the primer-name. 

Different primer-variants can be distinguished by the number (primer-length) within 

the primer-name.   

 

 

Tab. 6: Rat primer sequences for ChAT, transporter and HKG.  

 

target  sequence (5’ → 3’) 
length (bp) 

localisation 

accession 

number 

     

rChAT_272 

fw TGAACGCCTGCCTCCATTCGGC

CTGCTGA 272 

(1017-1289) 

XM-

224626 rev GTGCCATCTCGGCCCACCACG

AACTGCA 

rVAChT_149 
fw GCCACATCGTTCACTCTCTTG 149 

(1319-1467) 
X80395 

rev CGGTTCATCAAGCAACACATC 

rOCT2_226 
fw GCCTCCTGATCCTGGCTG 226 

(780-1005) 
X98334 

rev GGTGTCAGGTTCTGAAGAGAG 

rOCT2_162 
fw ATCACGCCTTTCCTCGTCTA 162 

(1475-1636) 
X98334 

rev CTGCATATTCTCGGCATCCT 

rCHT_189 
fw ATGGCTCTACCAGCCATTTG 189 

(1073-1261) 
AB030947 

rev GGACATGACAGCAGCAGAAA 

rCHT_150 
fw CAAGACCAAGGAGGAAGCAG 150 

(1152-1302) 
AB030947 

rev GCAAACATGGAACTTGTCGA 

RPL19 
fw CATGGAGCACATCCACAAAC 216 

(442-657) 

NM-

031103 rev CCATAGCCTGGCCACTATGT 

18S 
fw CCGCAGCTAGGAATAATGGA 245 

(735-981) 
M11188 

rev AGTCGGCATCGTTTATGGTC 

β-actin 

 

fw ATGGTGGGTATGGGTCAGAA 232  

(210-442) 

NM- 

031144 rev GGGTCATCTTTTCACGGTTG 

 
Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→3` order. All primer 

sequences except VAChT are intron-spanning. First column: r = rat, number = length of 

expected PCR-product. 
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Tab. 7: Mouse primer sequences for mAChR, ChAT and transporters.  

 

target  sequence (5’ → 3’) 
length (bp) 

localisation 

accession 

number 

     

msHPRT fw GCCCCAAAATGGTTAAGGTT 208 

(607-814) 

NM_ 

013556.2 rev TTGCGCTCATCTTAGGCTTT 

msM1 fw GCGTTTAGGCAGGAAGTCAG 227 

(1842-2069) 

NM_ 

007698.2 rev AGGGCCTACCTGGATGAGTT 

msM2 fw CGGCTTTCTATCTGCCTGTC 169 

(578-747) 

NM_ 

203491.1 rev GGCATGTTGTTGTTGTTTGG 

msM3 fw ACAGTCGCTGTCTCCGAACT 181 

(415-595) 

NM_ 

033269.2 rev TCCACAGTCCACTGAGCAAG 

msM4 fw TCCTCACCTGGACACCCTAC 154 

(1229-1382) 

NM_ 

007699.1 rev TTGAAAGTGGCATTGCAGAG 

msM5 fw TCAGCCATCAAATGACCAAA 180 

(1264-1444) 

NM_ 

205783.1 rev AGTAACCCAAGTGCCACAGG 

msCHT fw TTTCAGCTGCTGTCATGTCC 247 

(1045-1292) 

NM_ 

021815.2 rev AGCAGCTGTGGGAAGATGAT 

msChAT fw AGGGCAGCCTCTCTGTATGA 181 

(801-983) 

NM_ 

009891.1 rev GAGACGGCGGAAATTAATGA 

msVAChT fw TTGATCGCATGAGCTACGAC 246 

(437-683) 

NM_ 

021712.2 rev CCACTAGGCTTCCAAAGCTG 

msOCT2 fw AAATGGTCTGCCTGGTCAAC 172 

(1435-1606) 

NM_ 

013667.1 rev AGGCCAACCACAGCAAATAC 

 

Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→3` order. Sequences 

for MR subtypes and VAChT are intron-less. First column: ms = mouse, M1-5 = MR-

subtype, number = length of expected PCR-product. 

 

 

6.4.2. Standard PCR  

 

With the PCR technique it is possible to amplify small amounts of DNA until its 

visualisation. The PCR is an endpoint analysis, which means the product is measured 

during the plateau phase. At this point differences in mRNA levels are not 

proportional and cannot be compared between samples. 

For the PCR reaction a 25 µl volume was used with 1 µl cDNA, 1x reaction buffer, 

1.5 mM MgCl2, 0.2 mM dNTP, 0.2 µM primer (each: forward and reverse) and  

Taq-DNA polymerase (Adelaide: 0,625 units HotStar Taq
R
 plus DNA-polymerase; 

Giessen: 0,625 units GoTaq DNA-polymerase) For the experiments in Adelaide the 

reagents were purchase from Qiagen and in Giessen from Promega. The iCycler 

(Adelaide, Bio-Rad) and the PTC-200 (Giessen, Peqlab) were used with the cycling 
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steps described below. The PCR-products were separated via gel electrophoresis in a 

1.8% agarose gel. 

 

step    time   temperature  

  

initial denaturation       5 min   94°C 

denaturation                   30 s   94°C 

annealing                      30 s   60°C                           25-50 x  

elongation                      30 s   72°C 

final elongation   7 min   72°C 

cooling        ∞    4°C 

 

 

6.4.3. Quantitative real-time PCR 

 

Real-time PCR is a technique to collect data throughout the PCR amplification 

process. Therefore, it is possible to combine the amplification and detection of the 

PCR product in a single step. After each cycle the amount of DNA is measured and 

will be displayed as an amplification curve.   

In theory the amount of product should double in each cycle of PCR, which results in 

an exponential increase during the amplification process. In reality the first few cycles 

remain at background level and an increase of fluorescence is not detectable (linear 

ground phase). Then, the amplification curve is entering the early exponential phase 

and afterwards the log-linear or exponential phase (Fig.7). The last phase is called 

non-exponential or plateau phase and occur due to limitation of reaction components.  

 

An important point within the real-time PCR is the threshold cycle or CT. Here the 

fluorescence is rising over the background level. If template is available in a high 

amount it needs only few cycles and generates an early or low CT number. Low 

concentrations of template result in a late or high CT number. Quantitative real-time 

PCR allows accurate and precise quantification of product during the exponential 

phase. In this phase the amplification rate is similar between samples regardless of the 

amount of target cDNA. The visualisation is possible with fluorescence dyes. Here, 

SYBR Green I was used, which is a DNA binding dye. An increasing amount of 

double stranded PCR product results in an increase of fluorescence. After the last 

cycle the PCR reaction gets heated up, which results in the dissociation of all double-
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stranded PCR products. The decreasing fluorescence intensity can be displayed as a 

melting curve with melt peaks at a specific temperature. This can be used to clarify 

the purification of the real-time PCR product. 

 

Fig. 7: Real-time PCR flow chart. 

The PCR amplification curve charts 

the accumulation of fluorescent 

emission at each reaction cycle. The 

curve can be divided into different 

phases:  the ground phase below the 

threshold, the exponential phase and 

the plateau phase. Threshold cycle 

(CT) and amplification efficiency 

can be calculated from the data 

gathered from these phases. Rn is 

the intensity of fluorescent emission 

of the reporter dye divided by the 

intensity of fluorescent emission of 

the passive dye (a reference dye  

incorporated into the PCR master mix to control for differences in master mix volume). ΔRn 

is calculated as the difference in Rn values of a sample and either no template control or 

background, and thus represents the magnitude of signal generated during PCR. Taken from 

www.ionchannels.org. 

 

The volume per PCR reaction was 25 µl containing 1 µl cDNA, 0.2 µM primer (mix 

of fw and rev), 9 µl water and 14 µl iQ SYBR Green Supermix (Bio-Rad). Each 

sample was prepared at least in duplicates and analysed with the real-time rotary 

analyser Rotor-Gene 3000 (Corbett Life Science, Mortlake, Australia) or iQ
TM

5 

Cycler (Giessen, Bio-Rad) with the parameter described underneath. The data were 

analysed with the Rotor-Gene 6 software (Corbett Life Science) or iCycler Software 

(Bio-Rad).  

 

 step    time  temperature 

 

initial denaturation        8.5 min  95°C 

denaturation                     20 s   95°C 

annealing                      20 s   60°C                               50 x  

elongation                      20 s   72°C 

final elongation   10 min   72°C 

melting* 

cooling        ∞           4°C   

 

*After the final elongation the PCR products were melted. The first step was 72°C for 

45 sec. Then the temperature was increased about 1°C and each temperature was kept 

for 5 s until reaching 95°C 
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Fig. 8: Melt curves of real-time PCR products. 

The PCR product produced by real-time RT-PCR is heated up to dissociate the double-

stranded DNA. The melt curve informs about the specificity of the product. In the left panel 

all triplicates have the same melt temperature, whereas in right panel one of two duplicates 

showed an additional peak at the incorrect melting. Images were taken from an own 

experiment.     

 

 

Primer optimisation and verifying the real-time PCR results   

 

For reproducible results the real-time PCR primer needed to work with a comparable 

PCR efficiency (optimum 100% ± 20%). Therefore every primer was optimised using 

a positive control in different dilutions (neat, 1:10 and 1:100). The primers were 

added always in the same concentration.  

To avoid false positive data real-time PCR result for every target and every sample 

were checked. Samples which showed a melting curve with more than one peak or a 

peak at an incorrect position have been excluded (Fig. 8). In addition all PCR 

products were separated via electrophoresis in a 1.8% agarose gel and samples which 

revealed a band at an incorrect size or a double band were excluded. The other 

samples were used for further analysis.   

 

6.5. In situ hybridisation  

 

In situ hybridisation is used for localising and detecting specific nucleic acid 

sequences (DNA or RNA) in morphologically preserved chromosomes, cells or tissue 

sections by hybridising a labelled complementary-nucleotide-strand (probe) to the 

sequence of interest. The detection of nucleic acid sequences within cells and tissue 

instead of proteins is the major difference between immunohistochemistry and in situ 

hybridisation (ISH).  
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The technique was originally developed independently by Pardue et al. [242] and 

John et al. [243] using radioisotope-labelled probes and autoradiography for detection. 

Although, radioactive-labelled probes are more sensitive than non-radioactive-

labelled probes most users prefer non-radioactive ISH originally described by Langer 

et al. [244]. There are two types of non-radioactive hybridisation methods: direct 

(fluorochromes) and indirect (digoxigenin, biotin). In this study digoxigenin (DIG), a 

steroid isolated from digitalis plants (Digitalis purpurea and Digitalis lanata), was 

used for probe-labelling (Fig. 9).  

 

6.5.1. Preparation of the probe 

 

In situ hybridisation probes were prepared with the DIG RNA-Labelling Kit (SP6/T7) 

from Roche (Dee Why, Australia). The supplied NTP-mix contains the nucleotide 

uridintriphosphat (UTPs), which are coupled to DIG. These DIG-UTPs are 

incorporated into nucleic acid probes with a defined density by DNA and/or RNA 

polymerases. The necessary primers have been designed as described in 6.4.1  

(Tab. 5 & 6). Furthermore, sequences were added to the mRNA-specific primer, 

which enables the binding of either the T7 or the SP6 RNA-polymerase (Tab. 8). 

These sequences are important for the generation of sense and antisense specific 

probes. The T7 labelled probes are binding to the mRNA, therefore it represents the 

antisense-probe. Sp6 labelled probes are the sense-probes which is the control and 

important for the specificity of T7 (Fig. 9).   

 

Firstly, 75 µl PCR product was amplified using the specific in situ primer. 10 µl of the 

PCR product were analysed via gel electrophoresis to confirm a successful 

amplification. The remaining 65 µl were purified using the GFX
TM

 PCR DNA and 

Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) according to the 

manufacture‟s instructions. The eluted purified PCR product (50 µl) was precipitated 

with 1/10 volume sodium acetate (3 mM) and 1 volume 100% ethanol. The solution 

was incubated at -20°C for 30 min, centrifuged (13 000 g, 20 min and 4°C), washed 

with 70% ethanol and air dried in an RNase-free environment. The resulting pellet 

was resuspended in 11 µl RNase-free water and used for preparation of DIG-labelled 

RNA probes. 
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Fig. 9: In situ hybridisation probe design and binding within tissue. 

Left panel: ISH probes were amplified using T7 and Sp6 RNA polymerase and DIG-labelled 

UTPs. Right panel: the DIG-labelled ISH-probes were detected with AP-labelled anti-DIG 

antibody and visualised with colorimetric AP substrates (NBT and BCIP). AP = alkaline 

phosphatase.  

 

 

Tab. 8: Rat primer sequences for in situ hybridisation.  

 

T7 binding site TAATACGACTCACTATAGGG 

SP6 binding site ATTTAGGTGACACTATAGAA 

 

situ_ChAT (312 bp) 

 

fw: TAATACGACTCACTATAGGGTGAACGCCTGCCTCCATTCGGCCTG

CTGA 

rev: ATTTAGGTGACACTATAGAAGTGCCATCTCGGCCCACCACGAAC

TGCA 

 

situ_alpha7 (326 bp) 

 

fw: TAATACGACTCACTATAGGGGGCTCTGCTGGTATTCTTGC 

rev: ATTTAGGTGACACTATAGAAAAACCATGCACACCAGTTCA 

 

 

Sequences for forward (fw.) and reverse (rev.) primers are given in 5`→3` order. The T7 and 

SP6 binding sites are in bold. 
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5.5 µl of the PCR-product was mixed with 2 µl 10x DIG RNA labelling-mix, 8.5 µl 

RNase-free water, 2 µl 10x reaction buffer and either 100 U T7 or 40 U Sp6 RNA-

polymerase (2 µl). The reaction was incubated 2 h at 37°C. By adding 2 µl EDTA 

(0.2 M, pH 8.0) the reaction was stopped. The probe was then precipitated adding 2.5 

µl LiCl (4 M) and 75 µl pre-chilled 100% ethanol. After 30 min incubation at -80°C 

the mix was centrifuged (13 000 g, 20 min, 4°C), washed with 70% ethanol and air 

dried in an RNase-free environment. The pellet was resuspended in 50 µl RNase-free 

water. Aliquots of the probes were stored at -80°C. 

The reactivity of the amplified probes was compared to a DIG-labelled control RNA 

sample (100 ng/µl, Roche) supplied by the company using a dot blot system. RNA 

sample and probes were diluted in DEPC water 1:10, 1:100 and 1:1000 at room 

temperature. 1 µl of the dilutions and a neat sample were added to a nitrocellulose 

membrane and cross-linked with UV light for 10 min. The membrane was washed in 

1x washing buffer (Roche) for 2 min and blocked with 1x blocking buffer (Roche) 

dissolved in maleic acid buffer (0.1 M Maleic acid, 0.15 M NaCl, with NaOH to pH 

7.5) for 30 min with gentle shacking. The high-affinity anti-DIG antibody  

(Fab-fragments) diluted 1:5000 in 1x blocking buffer was added to the membrane for 

30 min, followed by an incubation with 1x washing buffer for 2 x 15 min and with 1x 

detection buffer (Roche) for 2 min. The anti-DIG antibody is conjugated to alkaline 

phosphatase (AP), which can be visualised with colorimetric AP substrates (NBT and 

BCIP). The detection occurred with NBT/BCIP solution (1:200, Roche) diluted in 1x 

detection buffer in darkness without shaking for not more than 1h. The reaction was 

stopped by incubating the membrane in DEPC water for 5 min and the dot intensity of 

the probes was compared to the DIG-labelled control RNA samples.         

 

6.5.2. In situ hybridisation on frozen tissue sections  

 

In isopentane cryo-protected and shock frozen rat DRG and testis were cut in 12 to  

14 µm sections and transferred to polyethyleneimine (PEI)-coated slides (0.1%). The 

sections were incubated as described below. All steps were performed at room 

temperature. The probes were diluted in preheated hybridisation buffer and again 

preheated to 80°C. After the probes were cooled down for 5 min they were applied to 
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the sections. The sections were incubated overnight at 65°C in a humid chamber 

containing 5x saline-sodium citrate (SSC) buffer.  

 

step time components of the solutions 

   

fixation with PFA 10 min 4% paraformaldehyde in sterile  

1x PBS  

wash with 1x PBS 3x 3 min  

proteinase K 

digestion 

7 min 2 µg/ml proteinase K in 50 mM 

Tris, 5 mM EDTA  

fixation with 4% 

PFA 

5 min  

wash with 1x PBS 3x 3 min  

acetylation 10 min 29.6 ml water,  

0.4 ml triethanolamine,  

53.4 µl concentrated HCl,  

76.3 µl acetic anhydride 

wash with 1x PBS 3x 3 min  

pre-hybridisation 

with hybridisation 

buffer,  preheated to 

72°C 

2 h in a humid 

chamber containing 

5x SSC 

4x SSC, 50% deionised 

formamide,  

1x Denhardt‟s reagents,  

10% dextran sulphate,  

100 µg/ml yeast tRNA,  

250 µg/ml Hering sperm DNA,  

100 µg/ml yeast total RNA  

(stored at -20°C) 

 

hybridisation with 

sense, anti-sense or 

buffer at 65°C 

overnight in a humid 

chamber containing  

5x SSC  

preheated (80°C)  

hybridisation buffer 

 

 

 
Note: Reagents for acetylation-buffer must be mixed in order of appearance with 

continuously stirring in the fume hood.  

 

 

To avoid mixing the probes on the sections they were removed using preheated 72°C 

5x SSC buffer. The wash conditions have been optimised for the probes which were 

used for this protocol. These can be different for every probe.    
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step time components of the solutions 

   

wash with 5x SSC 

 

 

20-30 min, RT  

gently shaking 

 

wash with  

1x or 0.2x SSC 

1 h at 65°C  

wash with  

1x or 0.2x SSC 

5 min, RT  

 

wash with  

levamisole buffer 

5 min, RT 100 mM Tris pH 7.5,  

150 mM NaCl,  

1 mM levamisole  

blocking buffer 1 h, RT 5 ml 10x blocking solution,  

5 ml 10x maleic acid,  

40 ml DEPC water 

detection overnight, RT, 

darkness 

anti-DIG AP-Fab-fragments 

(1:5000) in blocking-buffer 

 

 

To remove the unused antibody, the sections were washed with wash buffer (100 mM 

Tris pH 7.5, 150 mM NaCl) 3x for 5 min each. Afterwards they were incubated with 

1x detection buffer (100 mM Tris-HCl, 100 mM NaCl pH 9.5) for 10 min. The  

anti-DIG antibody was detected with NBT/BCIP diluted 1:500 in detection buffer. 

The sections were placed in the dark and checked after 1, 2, 4 h and overnight. The 

reaction was stopped by incubating the sections in DEPC water for 10 min. Finally, 

the slides were covered with buffered glycerol, cover-slipped and sealed with nail 

polish. Visualisation occurred with Olympus bright field microscope (Olympus, 

Hamburg, Germany) and the manufacture‟s software. 

 

PBS (phosphate buffered saline) 

NaCl 8.5 g 
adjust to 1000 ml 

and pH ~7.1 
Na2HPO4 1.07 g 

NaH2PO4 1x H2O 0.39 g 

 

Buffered glycerol pH 8.6 

1.5 M Na2CO3 and 1.5 M NaHCO3 are mixed 

until the solution has pH 8.6. One volume 

carbonate buffer is mixed with one volume 100% 

glycerol. 
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7. Immunohistochemistry  

 

Immunohistochemistry (IHC) is used for identifying cellular or tissue antigens by 

antigen-antibody-interactions. Epitopes are mostly peptides, but could also be 

carbohydrate moieties. The antibody-binding is highly specific, which enables even 

the differentiation of labelled compartments within the cells. The detection of antigens 

is possible via a direct- or indirect-labelling method. Direct-conjugated primary 

antibodies (for exp. fluorophore) can be used for a fast detection with less unspecific 

binding but have a reduced intensity and therefore weaker signals (Fig. 10A). To 

increase the signal the indirect-labelling method was established. A non-conjugated 

primary antibody binds to its epitope. One or more labelled secondary antibodies can 

bind to the primary antibody and therefore amplify the signal (Fig. 10B). Both, 

primary and secondary antibodies can be bound to a fluorophore, biotin or an enzyme 

(Fig. 10). Immunoreactivity (IR) can be visualised by light (enzyme, biotin) or 

fluorescence (biotin, fluorophore) microscopy.            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Immunohistochemistry (direct and indirect method) 

Primary antibodies bind to specific antigens (1), which are either direct-conjugated (2.) or 

non-conjugated (3.). Conjugated secondary antibodies (4.) bind to non-conjugated primary 

antibodies (3.). Antibodies can be conjugated to enzymes (AP, HRP), fluorophores (FITC, 

Cy3) or biotin. Biotin binds specific to avidin or streptavidin, which are conjugated either to 

an enzyme or a fluorophore.  
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7.1. Tissue immersion fixation and xylene-processing for whole mounts and 

sections   

 

For IHC experiments the male reproductive organs and DRG were either fixed with 

Zamboni‟s fixative [245] (390 ml 0.2 M Na2HPO4, 110 ml 0.2 M NaH2PO4, 25 ml 

16% paraformaldehyde, 15 ml saturated picric acid, 10 ml  distilled Water) or cryo-

protected with isopentane and shock frozen in liquid nitrogen. Dependent on the size, 

the tissue was incubated in Zamboni‟s fixative at 4°C for one to three days. To 

remove the fixative from the tissue it was incubated at room temperature (RT) in 10x 

tissue-volume with the solutions described below:  

 

wash-step time 

  

80% ethanol 3x 20 min, RT 

90% ethanol 30 min, RT 

100% ethanol 2x 30 min, RT 

xylene 2x 30 min, RT 

100% ethanol 2x 30 min, RT 

80% ethanol 30 min, RT 

50% ethanol 30 min, RT 

distilled water 30 min, RT 

1x PBS 30 min, RT 

 

The tissue was stored in PBS/azide (0.1%) at 4°C. For whole mount experiments the 

tissue could be used without further blocking of unspecific binding sites. For cryo-

sectioning the tissue was cryo-protected in 18% sucrose at 4°C for one or two days. 

Before freezing the tissue was embedded in tissue Tek®OCT compound (Sakura 

Finetek Europe B.V., Zoeterwoude, The Netherlands) and stored at -20 or -80°C until 

further use.          
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7.2. Single and multiple labelling immunohistochemistry  

 

Frozen tissue samples were used for cryo-sectioning. The cryostat had a temperature 

of -18 to -22°C and the knife had an angle of five degree. 12 to 16 µm thick sections 

were mounted on 0.1% PEI-coated glass slides (Adelaide) or superfrost glass slides 

(Giessen). The sections were dried for 30 min to 1 h at room temperature and either 

used immediately or stored at -20°C. Sections of pre-fixed tissue could be used 

directly. Sections of unfixed tissue had to be fixed before further use. Unfixed 

sections were incubated immediately after defrosting with ice cold methanol, acetone 

or isopropanol for 10 to 15 min at -20°C and air dried until all fixative was 

evaporated. Afterwards the slides could be processed like explained further down. 

Sections of fixed tissue were air dried for 10 min after thawing and washed with  

1x PBS for 10 min. For both fixation methods the slides where incubated with 0.05% 

Tween®20 for 20 min, which increases the permeability of the tissues for a better 

antibody penetration. This step and all following were performed at room 

temperature. The slides were washed 3x with 1x PBS for 10 min each. To block 

unspecific binding sites the sections were incubated with 0.1% BSA (Roth, Karlsruhe, 

Germany) and 10% normal donkey serum (NDS, Dako, Hamburg, Germany) or  

10% normal horse serum (NHS, PAA) diluted in 1x PBS/azide for 1 h. The primary 

antibodies were applied to the slides without further wash steps in 1x PBS/azide with 

double NaCl concentration and incubated overnight in a humid chamber (Tab. 9). To 

remove the primary antibodies the slides were washed 3 times with 1x PBS for  

10 min each and secondary antibodies diluted in 1x PBS/azide were added to the 

slides (Tab. 9). After 2 h incubation in a humid chamber the slides were washed  

3x with 1x PBS for 10 min each. For visualising the DNA the sections were incubated 

with Hoechst or DAPI diluted in 1x PBS after the first wash step, followed by 3 wash 

steps with 1x PBS for 10 min each. To exclude a cross-reaction between the 

specimens and the secondary antibodies they were tested by omission of primary 

antibodies on control sections. Finally the slides were covered with buffered glycerol, 

a cover slip and sealed with nail polish. Visualisation occurred with Olympus BX50, 

Olympus AX70, Confocal Laser Scanning Microscope, TCS SP2 (Leica) or Leica 

LSM (Wetzlar, Germany) and the manufacture‟s software. 
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Tab. 9: Primary and secondary antibody or antisera. 

 

 

primary 

antibody 

host supplier 
dilution 

section 

dilution 

w/m 

         

CGRP goat Arnel 1:1000 1:500 

CGRP rabbit Peninsula 1:2000  

ChAT  sheep Chemicon 1:2000   

ChT1 rabbit Chemicon 1:100   

ED1 (CD68) mouse Serotec 1:100  

ED2 (CD163) mouse Serotec 1:100    

IB4-Alexa488   Mol. Probes 1:400 1:200 

IB4-biotin   Sigma 1:100   

NF200 mouse Sigma 1:2000 1:1000 

Peripherin mouse Chemicon 1:500 1:50 

PGP9.5 rabbit Neuromics 1:500 1:500 

αSMA-FITC   Sigma 1:800 1:500  

TRPV1 guinea pig Neuromics 1:1000 1:500 

VAChT goat Chemicon 1:800   

VGluT1 rabbit Syn. Systems 1:4000 1:1000 

     

 

 

secondary antibody 

& reagents 

host conjugate supplier dilution 

      

anti-rabbit-Ig 

anti-rabbit-Ig 

dky 

dky 

FITC 

FITC 

Jackson  

Chemicon 

1:100 

1:100 

anti-mouse-Ig dky FITC Jackson 1:50 

anti-rabbit-Ig 

anti-rabbit-Ig 

dky 

dky 

cy3 

cy3  

Jackson 

Chemicon 

1:100 

1:2000 

anti-sheep/goat-Ig dky cy3 Jackson 1:100 

anti-mouse-Ig  

anti-mouse-Ig 

dky 

gt 

cy3 

cy3 

Jackson 

Dianova 

1:100 

1:1000 

anti-guinea pig-Ig dky cy3 Jackson 1:100 

anti-sheep/goat-Ig dky cy5 Jackson 1:50 

anti-mouse-Ig 

anti-mouse-Ig 

dky 

gt 

cy5 

cy5 

Jackson 

Dianova 

1:50 

1:400 

Streptavidin  AMCA Vectorlabs 1:100 

Hoechst    Mol. Probes 1:2000 

DAPI    Sigma 1:1000 
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Supplier: Arnel Products (N.Y., USA), Peninsula Lab. (San Carlos, USA), Chemicon 

(Millipore, Schwalbach/Ts Germany), Serotec (Düsseldorf, Germany), Mol. Probes 

(Molecular Probes, Invitrogen) Neuromics (Edina, USA), Syn. Systems (Synaptic Systems, 

Göttingen), Jackson (Jackson ImmunoResearch Lab, West Grove, USA), Dianova (Hamburg, 

Germany), Sigma (Sigma-Aldrich, Munich, Germany). Vectorlabs (Peterborough, UK) 

Abbreviations: dky = donkey, gt = goat.   

 

 

7.3. Pre-absorption of antisera 

 

The specificity of ChAT and VAChT antisera were analysed by pre-absorption 

experiments. For this purpose the antisera were mixed with their complementary 

peptides. The antibodies within the sera bound to the peptide, therefore no free 

antibodies were left for binding to the analysing tissue. 100 ng/µl of the specific 

ChAT-peptide were pre-incubated with the ChAT antiserum for 6 h at room 

temperature and the mixture was applied to a cryo-section afterwards. VAChT 

antiserum (1:1600) was mixed with 80 ng/µl VAChT-peptide and incubated overnight 

at room temperature. The following procedure was done as described for IHC in the 

chapter 7.2.   

 

7.4. Whole mount 

 

Tissue samples, which have been stored in 1x PBS/azide, were used for whole mount 

experiments. The tissue was cut in small pieces (2-3 mm
2
) and if necessary multiple 

layers were separated as far as possible without tissue damage using forceps. The 

samples were placed in agglutination tiles (Southern Biological, Nunawading, 

Australia) for further incubation steps and covered with 1x PBS until all samples were 

ready for the first antibodies. Without any blocking step the samples were covered 

with 10 to 15 µl primary-antibody-mix diluted in 1x PBS/azide and incubated for 48 h 

in a humid chamber. To remove excess primary antibodies the tissue was washed 3x 

with 1x PBS for 10 min each and the secondary-antibody-mix diluted in  

1x PBS/azide was applied to the samples. After 24 h incubation in a humid chamber 

the tissue was washed 3x with 1x PBS for 15 min each. For better penetration 50 µl 

buffered glycerol was applied to the samples and incubated 6 to 12 h in a humid 

chamber. In the end the tissue (or separated tissue layers) was prepared on uncoated 

slides with fresh buffered glycerol, covered with a cover slip and sealed with nail 
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polish. Visualisation occurred with Olympus BX50 or Olympus AX70 and the 

manufacture‟s software. 

 

8. In vitro and in vivo experiments 

8.1. Measurement of intracellular calcium concentrations  

 

The intracellular calcium concentration can be measured by different fluorescent dyes 

such as Fura-2 or Fluo-3. Here Fura-2AM (fura 2 acetoxymethyl ester, Mol. Probes) 

was used, which gets modified after entering the cell and is therefore unable to leave 

the cell again. Fura-2 binds to free intracellular Ca
2+

 and forms a chelate-complex. 

The fluorescence intensity of Fura-2 is depending on the amount of free calcium. This 

emission maximum of 510 nm can be reached by stimulation with light of 340 nm, if 

the calcium is bound, or with light of 380 nm, if the calcium is free. The amount of 

free intracellular calcium can be analysed by calculating the ratio 340/380 nm. 

Peritubular cells and SC have been cultured as described in chapter 5.2.2 and were 

ready to use after the incubation time mentioned before. Testicular macrophages 

needed to be incubated after the final washing step for another 2-3 h. All cells were 

seeded on glass coverslips. In advance, the coverslips were washed with acetone, 

rinsed twice with 100% ethanol, air dried and sterilised. After settlement, the cells 

were washed 2x with HEPES-buffer, loaded with 3.3 µM Fura-2 AM for 30 min to  

1 h at 32°C or 37°C and washed again 3x 10 min in HEPES-buffer to remove unused 

Fura-2. The coverslips with the dye-loaded cells were placed in a measuring chamber 

(culture dish, Delta T-system, Bioptech Inc., Butler, USA) with 1 ml HEPES-buffer at 

a constant temperature of 32°C (TM, SC) or 37°C (PTC). All used solutions were pre-

warmed. Nicotine and ACh have been prepared fresh as a stock solution (10 mM) for 

each experiment. ATP (100 mM) and muscarine (10 mM) could be stored as aliquots 

at -20°C. During the experiments nicotine and ATP were used with 100 µM and 

muscarine and ACh with 10 µM. The dilutions were made in HEPES.  

The basic experiment continued 400 s (Fig. 11). Three applications were made at  

t = 40 s (HEPES), t = 160 s (HEPES, ACh, nicotine or muscarine) and at t = 280 s 

(ATP). Following this general set-up modified experiments including an inhibitor 

were conducted. For one set up the buffer was changed continuously using a Gilson-

minipuls 2-pump (Gilson, Limburg-Offheim, Germany). 
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Fig. 11: Flow chart for calcium-imaging experiments.  

In the course of the experiment the cells got stimulated at three time points: with HEPES at  

t = 40 s, with HEPES, ACh, nicotine or muscarine at t = 160 s and with ATP at t = 280 s.  

 

 

Every two seconds fluorescence images were taken with a slow-scan charged-coupled 

device camera system with a fast monochromator (camera IMGO, TiLL Photonics, 

Gräfeling, Germany). The monochromator was coupled to an inverted microscope 

(Olympus BX50WI) with a 20x water immersion objective. The cells were excited 

with 340 nm and 380 nm wavelengths (λ) and fluorescence emission intensities were 

collected with λ > 420 nm (Fig. 12). The images (200 images in 400 s) were analysed 

with the TiLLVision software (TiLL Photonics). Each cell was labelled individually 

and the fluorescence intensity ratio of 340nm/380nm was calculated. The threshold 

was set to < 5% change in [Ca
2+

]i. Viability of the cells was observed by trypan blue 

and dead cells were excluded from the analysis.  

Signal intensity of t = 0 s was set as 100%, so the baseline was usually at 100%. The 

course of the experiment was plotted into a diagram (mean, SEM) using Microsoft 

office Excel 2003.   

 

HEPES-buffer  5.6 mM KCl, 136.4 mM NaCl, 1 mM MgCl2, 2.2 mM CaCl2,  

11 mM D-glucose and 10 mM Hepes 

 

ATP    adenosine 5′-triphosphate di(tris) salt dihydrate  

Sigma 

 

nicotine  nicotine hydrogen tartrate, Sigma 

 

muscarine  muscarine 

 

ACh   acetylcholine chloride, Sigma  

 

atropine  atropine sulfate, Sigma 
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Fig. 12: Fluorescence intensity after excitation with λ = 380 nm. 

PTC (A & B) and SC (C & D) were exposed to ATP. Excitation with monochrome light at  

λ = 380 nm is shown before (A & C) and after (B & D) ATP application. Fluorescence 

intensity of the cells decreases for all PTC and SC. The arrow labels a germ cell within the 

SC, which does not respond to ATP.   

 

 

8.2. Retrograde tracing with Cholera toxin-B    

 

Neuronal tracing means the application of a tracer to either peripheral endings of 

nerve fibres for retrograde transport to the cell body situated in a ganglion or into the 

ganglion or brain for anterograde transport to peripheral endings. The identification of 

the projecting neurons from the CNS to the peripheral tissue is the aim in both cases. 

Possible tracers are horseradish peroxidase (HRP), DiI or Cholera toxin-B (Ctx-B). In 

contrast to DiI or HRP, which are passively taken up by neurons, Ctx is actively taken 

up and transported by the neuron. Cholera toxin is secreted by the bacterium Vibrio 

cholerae and is composed of two subunits: A and B. The five non-toxic B subunits 

form a pentamere and are required for the binding to the cell. The A subunit is the 

enzymatic active subunit that must eventually dissociate to fulfil its function. The 

binding of the B subunits results in the internalisation of the entire Ctx-A1B5 complex. 

This characteristic is used for Ctx-tracer. The tracer used in this study is Alexa555 

conjugated Ctx-B, which is prepared from recombinant Ctx subunit B (Mol Probes). 
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Male Wistar Furth (FMC) rats 180 g of weight were used in the experiments. The 

surgery was performed unilateral at the left testis of each rat. The rats were 

anaesthetised i.p. with a combination of 12 mg/kg xylazine hydrochloride, 80 mg/kg 

ketamine hydrochloride and 50 μg/kg atropine. In addition they received 50 µg/kg 

buprenorphine i.m. against post-surgery pain. After they were under deep anaesthesia 

the scrotum was shaved with an electric shaver and disinfected with 70% ethanol.  

A 2 cm cut through scrotum, fascia externa and fascia interna was made using a 

scissor and the skin was fixed with a haemostat. Each rat was traced with two dyes.  

In the first experiment 70 nl Ctx-B-Alexa555 (0.5 µg/µl) were applied on the 

meso between the epididymis and the vas deferens using a Hamilton syringe. 50 nl of 

the second tracer, Ctx-B-biotin (0.5 µg/µl), were injected in the following tissues:  

(1) into the testis parenchyma, (2) between the vas deferens and the surrounding 

adventitia and (3) into the epididymis. In the second experiment 50 nl Ctx-B-biotin 

(0.5 µg/µl) were injected into the testis parenchyma and 20 µl Ctx-B-Alexa555  

(0.5 µg/µl) were again applied on the meso between the epididymis and the vas 

deferens. Here three rats were treated with the same conditions. After the surgery the 

wound was sutured with 5.0 black silk and cleaned with iodine solution. The animals 

were placed in individual cages and illuminated with a heating lamp until they woke 

up.  

After 6 days the animals were deeply anesthetized with isoflurane and perfused with 

Zamboni‟s fixative. At first the blood was removed by injecting 200 ml pre-heated 

medium into the heart. Then the medium was replaced by 200 ml Zamboni‟s fixative 

and the animal was incubated 20 min at room temperature. All DRGs from thoracic 

12 to sacral 1 from both sides, contra- and ipsi-lateral, were isolated and incubated in 

fixative for another 24 h. The samples were washed three to four times with PBS until 

the yellow colour disappeared. After incubation in 18% sucrose for 24 h the samples 

were embedded in tissue tec© and slowly frozen in -20°C. The samples were cut, 

whereas every section was collected, and used for multi-labelling IHC.     
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8.3. Induction of experimental autoimmune orchitis  

 

Male inbred Wistar Kyoto rats (Charles River) were actively immunised with 

syngeneic testicular homogenate (TH) as previously described by Doncel et al. (1989) 

[60].  

Briefly, 10 rats (180–220 g body weight) were anesthetized by i.p. administration of 

100 mg/kg ketamine (Ketavet; Pharmacia, Erlangen, Germany) and 10 mg/kg 

Xylazine (Rompun; Bayer Vital, Leverkusen, Germany). The rats were immunised 

with a mixture of 0.4 ml syngeneic TH and 0.4 ml complete Freund‟s adjuvant 

(Sigma) which was injected subcutaneously into the hind paws and at various sites at 

the back. Injection sites at the footpads were sealed using Histoacryl
R
 tissue glue 

(Braun, Tuttlingen, Germany). These injections were repeated twice at 14 d intervals. 

In addition an injection of inactivated Bordetella pertussis (Bp) bacteria (DSMZ, 

Braunschweig, Germany) was applied to the rats. The first two immunisations were 

followed by an intravenous injection (in the tail vein) of 10
10

 Bp bacteria dispersed in 

0.5 ml isotonic saline. The third immunisation with TH was followed by 

intraperitoneal injection of 5×10
9
 bacteria applied in 0.5 ml isotonic saline. Control 

animals (n = 7) received complete Freund‟s adjuvant and Bp, but no testis 

homogenate, following the same scheme.  

Fifty days after the first immunisation, the three animal groups; EAO, adjuvant 

control and untreated control (n = 5-9); were killed by a lethal dose of isoflurane. 

Testes were removed, weighed and decapsulated. 30 mg of TP from each rat were 

snap-frozen in liquid nitrogen and stored until needed at -80°C.  

 

Experimental procedures were approved by the local authority (Regierungspraesidium 

Giessen) and conformed to the Code of Practice for the Care and Use of Animals for 

Experimental Purposes. 
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9. The cholinergic system of rat testicular parenchyma and testicular capsule 

under non-inflammatory conditions 

 

The testicular parenchyma shows no innervation although there is evidence for the 

presence of ACh within the testis (Prof. Klein, Frankfurt, Germany, unpublished). To 

prove if the rat testis is a source for ACh or if testicular cells express ACh-receptors 

themselves mRNA isolated from the testis was analysed using real-time PCR. 

Testicular parenchyma and testicular capsule were separated and used for RNA 

extraction. The mRNA was reverse transcribed into cDNA. In a first approach, three 

samples from each tissue were analysed via real-time PCR for nAChR subunits  

α1-α7, α9, α10, β1- β4, ChAT, OCT2 and VAChT. Dependent on the presence of the 

targets at least two more samples were analysed for complete statistical analysis. In 

case of similar results in TC and TP the number of analysed experiments was three.  

 

9.1. Relative mRNA expression analysis of nicotinic AChR-subunits  

 

In contrast to the parenchyma, which contained the mRNAs for 11 out of 13 nAChR 

subunits including mRNAs for so-called “muscle specific” α1 and β1 subunits  

(Tab. 10), the capsule expressed all α- and β- nAChR subunits (Tab. 10). In TP, 

mRNA for nAChR subunit β4 could not be detected. The α6 subunit was not 

detectable in 3/5 samples and in two samples the expression was very low. Both 

receptor subunits, α6 and β4, were present in TC (Tab. 10, Fig. 13). In parenchyma, 

the rank order of the mRNA expression levels was nAChR α-subunits α4 > α7 > α5 > 

α9, whereas in the capsule the order was α4 > α7 > α5 > α2 (Fig. 13A & B).  

For the subunits α2, α3, α4, α6 and α9 a significant difference in the expression level 

could be observed between the parenchyma and the capsule. The relative expression 

of α2 and α6 was significantly (P = 0.008, Tab. 10) higher in the capsule compared to 

the parenchyma whereas the subunits α3, α4 and α9 were significantly lower 

expressed (Tab. 10). The relative expression levels for nAChR subunits β1-β3 were 

similar in parenchyma and capsule. In the capsule, the β4 subunit showed a lower 

expression level than β1-β3 and as mentioned before β4 was absent within the 

parenchyma (Fig.13C & D).  
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Fig. 13: mRNA expression level of nAChR subunits in TP and TC.  

Three to five animals (n) were analysed for mRNA expression of nAChR. Exact values are 

shown in Tab. 10. Data are plotted as Box plots with nAChR α- subunits shown for TC (A) 

and TP (B); and β-subunits shown for TC (C) and TP (D). For primer with more than one 

primer-set the following variants were used: α2_216, α6_286, α9_242, α10_317 (Tab. 5). The 

asterisk at α6 (B) indicates the absence of mRNA in 3/5 replicates whilst the other 2 replicates 

revealed very low expression levels. The asterisk in D indicates the absence of detectable 

mRNA for β4. The circles represent outlier. The ΔCT values were subtracted from 50 showing 

higher values with higher expression.  

 

 

Tab. 10: Comparison of relative mRNA expression levels of nAChR subunits in TP and 

TC 

 

target 
samples 

n 

TP 

mean ± SD 

TC 

mean ± SD 

P-values 

TP vs. TC 

 

α1 3 30.1 ± 0.17 31.0 ± 1.23 n.s. 

α2 5 29.2 ± 0.54 31.7 ± 0.55 0.008 

α3 5 28.9 ± 0.92 27.2 ± 0.58 0.016 

α4 5 39.8 ± 0.19 38.1 ± 0.70 0.008 

α5 3 33.5 ± 0.42 32.2 ± 1.50 n.s. 

α6 5 8.7 ± 11.94 30.3 ± 0.78 0.008 

α7 3 34.6 ± 0.55 34.5 ± 1.10 n.s. 

α9 5 32.9 ± 0.39 30.9 ± 0.73 0.008 

α10 3 29.0 ± 0.94 28.3 ± 0.52 n.s. 
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target 
samples 

n 

TP 

mean ± SD 

TC 

mean ± SD 

P-values 

TP vs. TC 

 

β1 3 34.8 ± 0.40 34.0 ± 0.64 n.s. 

β2 3 35.8 ± 0.68 34.6 ± 1.50 n.s. 

β3 3 33.9 ± 0.19 34.0 ± 0.28 n.s. 

β4 5      0.0 ± 0.00 29.4 ± 0.44 0.008 

 

 
Relative mRNA expression level of three to five samples collected from individual animals 

(n) were analysed using qRT-PCR. Data expressed as 50-ΔCT values (columns three and four) 

were evaluated using Mann-Whitney-test. Column 5 shows the P-values for individual 

targets. TP = testicular parenchyma, TC = testicular capsule, n.s. = not significant.    

 

 

9.2. Relative mRNA expression analysis of muscarinic AChR-subtypes  

 

To determine the existence of MR-subtypes within the testis, relative mRNA 

expression levels were analysed in TP and TC. All five MR-subtypes, M1R to M5R 

were expressed in TP and TC (Fig. 14, Tab. 11). The expression pattern differed 

between TP and TC. Whereas in parenchyma M4R and M3R showed the highest 

expression levels, mRNAs for M2R and M4R were the most abundant in the capsule. 

M1R-M3R were significantly lower expressed in TP compared to TC whereas M4R 

was significantly higher expressed (Fig. 14). The M5R was expressed similar in TP 

and TC. Exact numbers and P-values are shown in Tab. 11. 

 

Tab. 11: Expression of MR subtypes in TP and TC.  

 

target 
samples 

n 

TP 

mean ± SD 

TC 

mean ± SD 

P-values 

TP vs. TC 

 

M1R 5 30.48 ± 0.87 32.56 ± 0.38 0.008 

M2R 5 29.31 ± 0.76 40.49 ± 0.46 0.008 

M3R 5 33.42 ± 0.29 34.00 ± 0.40 0.016 

M4R 5 38.52 ± 0.22 37.01 ± 0.36 0.008 

M5R 5 32.45 ± 0.33 31.69 ± 0.56 n.s. 

 

The relative mRNA expression levels of five samples collected from individual animals (n) 

were investigated via qRT-PCR. The resulting data (columns three and four) expressed as  

50-ΔCT were analysed via Mann-Whitney-test (see P-values in column 5). TP = testicular 

parenchyma, TC = testicular capsule, n.s. = not significant.    
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Fig. 14: mRNA expression level of MR subtypes in rat TP and TC.  

Data are plotted as Box plot with n = 5. For primer with more than one primer-set the 

following variants were used: M1_204, M2_193, M3_140, M4_163, M5_118 (Tab. 3). The 

circle represents outlier. The ΔCT values were subtracted from 50 showing higher values with 

higher expression. Significances were analysed by Mann-Whitney-test and are shown in  

Tab. 11. 

 

 

9.3. Relative mRNA expression analysis of ChAT, ChT1, OCT2 and VAChT in 

rat testicular parenchyma 

 

All four molecules were expressed in TP and TC and the rank order of the relative 

mRNA expression levels was ChAT > ChT1 > OCT2 > VAChT for both tissues.   

Comparison of relative expression levels of TP and TC showed significantly higher 

ChT1 mRNA expression in TP (Tab. 12, Fig. 15). 
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Tab. 12: Expression of ChAT, ChT1, OCT2 and VAChT in TP and TC.  

 

target 
samples 

n 

TP 

mean ± SD 

TC 

mean ± SD 

P-values 

TP vs. TC 

 

ChAT 5 37.17 ± 0.81 35.97 ± 0.86 n.s. 

ChT1 7 35.03 ± 0.30 32.79 ± 0.46 0.001 

OCT2 3 31.77 ± 0.28 31.89 ± 1.56 n.s. 

VAChT 3 27.72 ± 0.81 28.59 ± 1.98 n.s. 

 

 
Relative mRNA expression levels of three to seven samples collected from individual animals 

(n) were investigated via qRT-PCR. The resulting data expressed as 50-ΔCT (columns three 

and four) were analysed via Mann-Whitney-test. Column 5 shows P-values for individual 

targets.  TP = testicular parenchyma, TC = testicular capsule. n.s. = not significant.    

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 15: mRNA expression level of OCT2, VAChT, ChAT and ChT1 in rat TP and TC. 

Data for choline acetyltransferase (ChAT), high-affinity choline transporter (ChT1), vesicular 

ACh transporter (VAChT) and organic cation transporter 2 (OCT2) are shown as 50-ΔCT as 

Box plot. For primer with more than one primer-set the following variants were used: 

ChT1_189, OCT2_226 (Tab. 6.).  Data were analysed by Mann-Whitney-test and P-values 

are shown as asterisk within the plot.  

 

 

 

 

 



Results 

 

54 

 

9.4. Relative mRNA expression of mAChR, ChAT, ChT1, VAChT and OCT2 in 

mouse testicular parenchyma and -capsule  

 

Additionally to rat samples, mouse samples were analysed for mRNA expression 

level of muscarinic ACh-receptors, the synthesizing enzyme and the transporters. All 

five MR-subtypes, M1R-M5R, are expressed in TC and TP of mice (Fig. 16). In the 

parenchyma, the M4R-subtype showed the highest and M3R-subtype the lowest 

expression level whereas within the capsule a similar mRNA expression level was 

observed for M4R and M3R subtypes. M1R, M2R and M5R were expressed similarly in 

parenchyma and capsule. A significant difference in the expression level could be 

observed for M1R, M3R and M5R between the TC and TP (Tab. 13).  

The relative mRNA expression profiles for ChAT, ChT1, VAChT and OCT2 were 

also determined in murine tissue. All four molecules were expressed in TP and TC. 

The relative mRNA expression levels of ChAT and OCT2 were similarly in TP and 

TC. In contrast to the rats VAChT showed the highest mRNA expression level of 

these four molecules and ChT1 was absent in three out of five analysed TC-samples 

(Fig. 17, Tab. 13). 

 

Tab. 13: Expression of MR subtypes and ACh-related molecules in mouse TP and TC.  

 

target 
samples 

n 

TP 

mean ± SD 

TC 

mean ± SD 

P-values 

TP vs. TC 

 

M1R 5 42.40 ± 0.80 40.94 ± 0.90 0.032 

M2R 5 41.56 ± 0.63 40.91 ± 0,58 n.s. 

M3R 5 38.35 ± 1.17 43.70 ± 0.43 0.008 

M4R 5 45.59 ± 1.07 44.46 ± 1.17 n.s. 

M5R 5 42.68 ± 0.98 41.13 ± 0.82 0.032 

 

ChAT 6 & 7 38.02 ± 0.81 37.41 ± 1.17 n.s. 

ChT1 2 & 5 36.25 ± 0.81 34.97 ± 0.06 n.s. 

OCT2 5 38.74 ± 1.11 38.09 ± 1.10 n.s. 

VAChT 5 45.21 ± 1.11 43.13 ± 1.03 0.032 

 

 

The relative mRNA expression level of two to seven samples (n) collected from individual 

animals was investigated via qRT-PCR. The resulting data expressed as 50-ΔCT (columns 

three and four) were analysed via Mann-Whitney-test. Column 5 shows the P-values for 

individual targets. TP = testicular parenchyma, TC = testicular capsule, n.s. = not significant.   
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Fig. 16: mRNA expression level of MR subtypes in mouse TP and TC. 

Data are plotted as Box plot with n = 5. Used primers are described in Tab. 7. The ΔCT values 

were subtracted from 50 showing higher values with higher expression. Significances were 

analysed by Mann-Whitney-test and are indicated by asterisk (Tab. 13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 17: mRNA expression level of OCT2, VAChT, ChAT and ChT1 in mouse TP and 

TC. 

Data for choline acetyltransferase (ChAT), high-affinity choline transporter (ChT1), vesicular 

ACh transporter (VAChT) and organic cation transporter 2 (OCT2) are plotted as Box plot 

50-ΔCT (n = number of experiments). The circles represent outlier. Significances were 

analysed by Mann-Whitney-test and are indicated by asterisk (Tab. 13) 
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9.5. Immunohistochemical detection of ChAT, ChT1 and VAChT in rat testis 

 

Immunoreactivity for ChAT-, ChT1- and VAChT-proteins were detected in testicular 

parenchyma. The labelling was present mainly within the seminiferous tubules.  

 

9.5.1. Immunoreactivity for ChAT in testicular parenchyma 

 

ChAT-IR could be found in primary and secondary spermatocytes as well in 

spermatids (Fig. 18A, B & D). In addition, ChAT-IR was present in blood vessels 

(Fig. 18D arrow) and individual cells at the base of the tubules which might represent 

spermatogonia (Fig. 18 C arrow). The specificity of the antibody was verified by pre-

absorption, which abolished immunolabelling in spermatocytes (Fig. 19B & D 

arrows) and reduced it in spermatids (Fig. 19B & D arrowheads).  

 

9.5.2. Immunoreactivity for ChT1 in testicular parenchyma 

 

In addition to ChAT, ChT1-IR was present in spermatocytes of seminiferous tubules 

(Fig. 18B, 20E & F). Furthermore it could be observed that the localisation of ChT1-

IR varied in tubules in a stage dependent manner (Fig. 20D & E). In tubules of a later 

stage with more mature spermatids, the ChT1-IR was weaker and more diffuse than in 

tubules in an earlier stage of spermatogenesis (Fig. 20A & B). In addition, individual 

cells at the base of the seminiferous epithelium that likely represent spermatogonia 

were labelled positive for CHT1 (Fig. 20C arrow). 

 

9.5.3. Immunoreactivity for VAChT in testicular parenchyma 

 

Immunoreactivity for the VAChT protein could be detected in cells within the basal 

layer of the seminiferous epithelium as seen for ChT1 and ChAT. In comparison to 

ChT1 and ChAT the VAChT-IR was more intense and visualised the presence of 

branches passing the surrounding layer of PTC (Fig. 21D, arrow). The morphology of 

the VAChT-immunoreactive cells was similar indicating spermatogonia or a 

spermatogonial subpopulation as their numbers were low Fig. 21), but could not be 

observed in every tubule within one section of the rat testis. VAChT-IR was present 
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in blood vessels too (Fig. 21A arrow). Except the obvious labelling of these cells, the 

VAChT labelling was weak within the tubules; therefore no specific cell type could 

be identified. Specificity of VAChT-antiserum was determined by a pre-absorption 

experiment with VAChT peptide on rat heart sections. No nerve fibres positive for 

VAChT were observed after incubation with a mixture of VAChT-antiserum and 

VAChT-peptide, whereas VAChT-positive fibres were visible in the sections 

incubated with VAChT-antiserum alone (Fig. 22B & D, arrows). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18: Multiple labelling immunohistochemistry for ChAT.  

Cryo-sections of fresh frozen testis were fixed with methanol and labelled with sheep-anti-

ChAT antiserum (red) and FITC-conjugated α-SMA antibody (green). Scale bars:  

A = 100 µm, B & D = 75 µm, C = 20 µm. Arrows indicate spermatocytes (B), cells in the 

basal layer (C) and a blood vessel (D).  
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Fig. 19: Validation of ChAT antiserum.  

Cryo-sections of fresh frozen testis were fixed with methanol and incubated with sheep-anti-

ChAT antibody (A & C) or with a pre-incubated ChAT-peptide (40 µg/µl) – ChAT-

antiserum-mix (B & D). Arrows = spermatocytes, arrowheads = spermatids. Scale bars:  

A & B = 100 µm, C & D = 25 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Multiple labelling immunohistochemistry for ChT1. 

Cryo-sections of fresh frozen testis were fixed with methanol and labelled with rabbit-anti-

ChT1 antiserum (red), FITC-conjugated α-SMA antibody (green) and Hoechst (cyan). Arrow 

(C) indicating a ChT1 positive cell in the basal layer. Scale bars A, B, D & E = 75 µm,  

F = 100 µm, C = 20 µm.  
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Fig. 21: VAChT multiple labelling immunohistochemistry.  

Cryo-sections of fresh frozen testis were fixed with methanol and labelled with goat-anti-

VAChT antiserum (red) and FITC-conjugated α-SMA antibody (green). Scale bars:  

A = 250 µm, B = 75 µm, C = 50 µm, E = 25 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22: Validation of the VAChT antiserum.  

Cryo-sections of fresh frozen testis were fixed with methanol and incubated with goat-anti-

VAChT antiserum (B & D) or with a pre-incubated VAChT-peptide (80 µg/µl) – VAChT-

antiserum-mix (A & C). Scale bars: A-D = 100 µm.  
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9.6. In situ hybridisation for the α7 nAChR-subunit and ChAT in rat testis 

 

Since subunit-specific nAChR and subtype-specific MR antisera were not available 

[246, 247], it was not possible to further analyse the expression at the level of receptor 

proteins. Therefore, the localisation of the α7-nAChR subunit and in addition the ACh 

synthesising enzyme ChAT were analysed by ISH. 

  

9.6.1. Optimisation of in situ hybridisation probes using spinal cord as control 

tissue 

 

In situ hybridisation probes were generated via DIG RNA-Labelling Kit and PCR. 

ChAT and α7 specific ISH primers were used for standard PCR to prove their tissue 

specificity (Fig. 23). ChAT and α7 standard PCR primers were used as primer specific 

controls. RPL-19 served as a reference gene and positive control for the analysed 

tissue: testicular parenchyma. Both primer worked nicely in standard PCR and could 

be used for further experiments. The higher bp values of the ISH primers are related 

to the additional sequence for T7 and SP6 binding sites.  

 

 

      Fig. 23: Control PCR with ISH  

      primer pairs. 

      Primers for ISH were used in standard  

      PCR to check the specificity (lane 1:  

      ChAT; lane 3: α7). Standard primer for  

      ChAT, α7 (lane 2 and 4) and RPL-19  

      (lane 5) served as controls.   

 

 

Because of the unknown localisation of α7- and ChAT-mRNA within the testis, 

sequence specific probes were checked for their localisation on rat spinal cord 

sections. The protocol was used as described in 6.5.2 with the recommended 

hybridisation temperature of 72°C. The results using this temperature were not 

satisfying (Fig. 24A-C). The hybridisation temperature for the α7- and ChAT-probes 

had to be optimised and was finally set to 65°C, which lead to the detection of α7 and 

ChAT in cells of the control tissue spinal cord using antisense but not sense probes 

(Fig. 24D-F). After successful ISH in the positive control spinal cord, the probes 

could be used for mRNA detection in rat testis. 
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Fig. 24: ChAT mRNA detection in rat spinal cord via ISH. 

ISH was performed with ChAT sense (B & E) and antisense (C & F) or in absence of 

DIG labelled probes (control, A & D) at 72°C (A-C) or 65°C (D-F). Scale bars:  

A-C = 75 µm and D-F = 100 µm.  

 

 

9.6.2. Localisation of mRNA expression for the α7 nAChR-subunit and ChAT in 

rat testis  

 

ChAT mRNA could be detected mainly in primary spermatocytes and weaker in 

round spermatids (Fig. 25B-D, G & H). The expression was similar in different 

populations of seminiferous tubules of the same sample (Fig. 25 B). 

In addition, the mRNA for α7-subunit was identified in seminiferous tubules  

(Fig. 15). In contrast to ChAT, the mRNA for α7 was not equally present in all 

tubules of one analysed section indicating stage specificity (Fig. 26C & D). Mostly 

round spermatids were strongly positive for α7 mRNA, with weaker labelling in 

primary spermatocytes and no visible staining in spermatogonia. Nevertheless in 

some tubules α7 mRNA seems to be present in primary spermatocytes and 

spermatogonia (Fig. 26).   
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Fig. 25: ChAT mRNA detection at rat testis via ISH. 

Testis cryo-sections were incubated with anti-sense probe (B-D, G & H), sense probe (E & F) 

or with no DIG labelled probes (control, A). Scale bars: A, C, F & G = 50 µm;  

D & H = 20 µm and B & E = 200 µm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26: α7 mRNA detection at rat testis via ISH. 

Testis cryo-sections were incubated with anti-sense probe (B-D, G & H), sense probe (E & F) 

or with no DIG labelled probes (control, A). Scale bars: A, C, F & G = 50 µm;  

D & H = 20 µm and B & E = 200 µm. 
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10. Testicular somatic cells: peritubular cells, Sertoli cells and testicular 

macrophages  

 

10.1. Immunohistochemical characterisation of isolated and cultured testicular 

somatic cells  

 

To test the purity of isolated primary testicular somatic cells, they were cultured on 

coverslips and the presence of characteristic marker proteins was determined using 

immunohistochemistry (Fig. 27).  

Testicular macrophages were characterised by immunolabelling with ED1 (CD68) 

and ED2 (CD163) antibodies, which recognise migrated monocytes and resident 

macrophages. Nuclei were stained with DAPI. The ratio of ED1/ED2 positive cells 

and DAPI positive cells showed an 80% enrichment (80.4% ± 3.57%, n = 5) of 

isolated primary TM cultures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 27: Cell-type specific labelling of PTC, SC and TM. 

Isolated testicular cells can be stained specifically. PTC are labelled with FITC-conjugated  

α-SMA (A, C & F), SC are visualised with mouse-anti-rat-vimentin (B) and mouse-anti-rat-

ED1/ED2 (red) was used for detection of TM (A, D & E). DAPI is shown in blue. Scale bars: 

B & D = 100 µm, A & C = 50 µm, F = 25 µm, E = 14.4 µm. 
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Isolated PTC were allowed to passage three times, a process which destroys virtually 

all contaminants in parallel to expansion of PTC by proliferation. PTC were defined 

by the positive staining for α-SMA and DAPI. The purity of PTCs was around 98% 

(97.6% ± 0.99%, n = 4). Sertoli cells were isolated and incubated for 6 days. The SCs 

were labelled with vimentin and DAPI and the purity was determined to be 90% 

(89.5% ± 1.86%, n = 4). 

 

10.2. The cholinergic system in testicular somatic cells  

 

Beside various germ cell types, expression of ChAT-, ChT1-, VAChT-, OCT2-, 

nAChR α4- and α7-mRNAs has been analysed for PTC and SC as part of the thesis of 

Iris Eckhardt. In this study relative mRNA expression levels for the same molecules 

were analysed in TM, whilst SC and PTC were used as intraassay controls.  

PTC, SC and TM were isolated as described previously, total RNA was isolated and 

reverse transcribed into cDNA (6.1.- 6.3.). The relative expression of mRNAs was 

analysed for the remaining nAChR-subunits and MR-subtypes via standard RT-PCR.  

 

nAChR β-subunits. All analysed PTC samples contained mRNA for β1, β2 and β3. 

Four out of five preparations also contained β4 mRNA (Tab. 14A). In SC one out of 

four samples showed no PCR product that corresponded to β3. All other SC samples 

showed positive results for β1 to β4 (Tab. 14A). The mRNA expression pattern for 

TM showed a variable detection of β-subunits. Only subunit β3 was expressed in all 

analysed primary cultured TM (Tab. 14A). One, two or three out of six samples 

showed a positive result for β4, β1 and β2 (Tab. 14A). 

nAChR α-subunits. Overall, the expression for nAChR α-subunits analysed in PTC, 

SC and TM samples was heterogeneous in comparison to the β-subunits. In PTC 

samples mRNA was detected in 4/5 cases for α5 and α6. Even less mRNA was 

observed for α2, α9 and α10 with two, three and two out of five samples. α3 mRNA 

was not detectable in PTC (Tab. 14B). As seen for PTC, SCs do not express nAChR- 

subunit α3 and additionally no α6. Several samples showed a PCR product for the 

subunit α2 (2/4), α9 (3/4) and α10 (4/5). Only mRNA for subunit α5 was expressed in 

all analysed samples (Tab. 14B). In TMs α5, α6, α9 and α10 were observed in 4/6 and 

5/7 samples. A lower number of samples did show mRNA expression for subunits  
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α2 (4/7) and α3 (2/6). PCR products corresponding to the mRNA for the nAChR-

subunits α4 and α7 could be detected in all analysed samples (Tab. 14B).  

 

Tab. 14: Standard PCR for nAChR-subunits in PTC, SC and TM 

 

 

 

positive detected samples in 

cell populations 

 

A nAChR PTC SC TM 

 β1 5/5 4/4 2/6 

 β2 5/5 4/4 3/6 

 β3 5/5 3/4 6/6 

 β4 4/5 4/4 1/6 

B  

 α2 2/5 2/4 4/7 

 α3 0/5 0/4 2/6 

 α4 pos. neg. 4/4 

 α5 4/5 4/4 4/6 

 α6 4/5 0/4 4/6 

 α7 pos. pos. 4/4 

 α9 3/5 3/5 5/7 

 α10 2/5 4/5 5/7 

 

 
Three to seven independent samples of PTC, SC and TM were analysed for mRNA 

expression of nAChR-subunits α (B) and β (A) by standard PCR. For primer with more than 

one primer-set the following variants were used: α2_114, α6_139, α9_242, α10_168 (Tab. 5). 

Results are shown as positive detected samples out of all samples. Positive and negative 

results for α4 and α7 for PTC and SC are taken from a previous doctoral thesis (Tab. 14B).  

 

 

mAChR subtypes. In PTC, mRNAs for M2R, M3R and M4R were detected in all 

analysed preparations (n = 4), whereas M1R and M5R were present in 3/4 samples 

(Tab. 15). A similar result was observed for SC. mRNAs for MR subtypes 1, 2, 4 and 

5 were detected in all preparations, whereas M3R was present in 2/4 cultures (Tab. 

15). In TM the mRNA expression for MR was again more heterogeneous. Only M1R 

was present in all analysed samples, whereas M2R was detectable in 3/6 and M4R in 

4/6 samples. mRNA for M3R and M5R could be amplified in 2 of 6 samples (Tab. 15).  

 

ChAT, VAChT, OCT2 and ChT1. In a previous doctoral thesis, the presences of the 

ACh-synthesising enzyme and several related transporters was analysed for PTC and 

SC using standard PCR (thesis Iris Eckardt in Schirmer et al., 414). In this study TM 

were analysed for the same molecules. ChT1 and ChAT mRNA was detected in all 
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analysed samples. mRNA for OCT2 was present in only 1/4 samples, whereas no 

PCR product corresponding to VAChT was observed (Tab. 16). 

 

Tab. 15: Standard PCR for MR subtypes in PTC, SC and TM. 

 

 

positive detected samples 

in cell populations 

 

mAChR PTC SC TM 

 

M1R 3/4 4/4 6/6 

M2R 4/4 4/4 3/6 

M3R 4/4 2/4 2/6 

M4R 4/4 4/4 4/6 

M5R 3/4 4/4 3/6 

 

 

mRNA expression profiles for MR subtypes were analysed for PTC, SC and TM in four to six 

independent samples for by standard PCR. For primer with more than one primer-set the 

following variants were used: M1_110, M2_192, M3_287, M4_166, M5_180 (Tab. 3). 

Results are shown as positive detected samples out of all samples.  

 

 
Tab. 16: Standard PCR for ChAT, ChT1, VAChT and OCT2 in TM. 

 

 

positive detected samples in 

cell populations 

 

 PTC SC TM 

 

ChAT pos. pos. 4/4 

VAChT neg. neg. 0/4 

ChT1 pos. pos. 4/4 

OCT2 neg. neg. 1/4 

 

 

Four independent samples of TM were analysed for mRNA expression for ChAT, ChT1, 

VAChT and OCT2 by standard PCR. For primer with more than one primer-set the following 

variants were used: OCT2_162 and ChT1_150 (Tab. 6). Results are shown as positive 

detected samples out of all samples. Positive and negative results for PTC and SC are taken 

from a previous doctoral thesis. 
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10.3. Cell specific functional analysis of ACh receptors using calcium-imaging 

experiments 

 

PTC, SC and TM express mRNAs for several nAChR-subunits and MR-subtypes. 

Due to the fact that currently no antibodies are available for nAChR-subunits or MR-

subtypes, it was impossible to detect AChR-proteins within cells or tissues. Besides 

analysis of the mRNA expression pattern, the presence of the AChRs was confirmed 

by functional assays such as calcium-imaging.      

 

10.3.1. Peritubular cells showed muscarine-induced increase in [Ca
2+

]i  

 

PTCs were treated in individual experiments with ACh, nicotine and muscarine. It has 

to be mentioned that unstimulated PTC often showed oscillatory effects (Fig. 28). If 

this was the case almost all cells on one coverslip showed this oscillation 

synchronically and with the same amplitude. This oscillation was up to ± 5% of the 

baseline. Therefore the positive response of cells, which was set to an at least 5% 

increase in [Ca
2+

]i, had to be quantified for every cover-slip individually. To avoid 

false positive results a „positive reaction‟ of a cell was committed to 5-10% over 

baseline depending on the oscillation amplitude. 

 

Fig. 28: PTCs show an oscillatory 

effect. 

Each image (A-E) illustrates the 

mean of 60-80 analysed cells from 

one cover-slip. The oscillatory effect 

was not uniform for every cover-

slip. Sometime the application of 

fluid (t = 40 s, dotted) induced 

changes in the amplitude (C & E) 

but not in all cases (B & D). The 

amplitude could increase (A), 

decrease (C) or disappear (E). The 

observation for a positive reaction 

on a drug was sometimes difficult to 

distinguish (B, addition of ACh at  

t = 160 s, dashed) and had to be 

analysed carefully. The Fura-2 ratio 

340/380 nm is presented as 

percentage (%) over time (s). 
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The endogenous MR and nAChR agonist ACh, was added to the PTC with a 

concentration of 10 µM at t = 160 s. Immediately after the application an increase in 

[Ca
2+

]i response of 47% (± 47% SD, n = 95 cells in n = 3 exp) over baseline could be 

observed (Fig. 29 black line; P-value in Fig. 33). About 10 s after reaching the peak 

the [Ca
2+

]i slowly decreased, but did not return to the baseline level  

(+ 24% ± 22% SD) before ATP was added. Most cells (156/168) responded to ATP 

with an increase of about 70% over pre-ATP-level. In total 168 cells were analysed. 

56.55% showed a positive reaction for ACh. 12.68% of ACh-responsive cells did not 

respond to the following ATP application. The remaining 87.32% were responsive to 

both ACh and ATP (Fig. 31). No increase in [Ca
2+

]i response was observed for the 

control group treated with HEPES instead of ACh (Fig. 29).   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29: ACh induces a [Ca
2+

]i in PTC.  

PTCs were treated three times during the experiment: at t = 40 s with HEPES, t = 160 s with 

ACh (10 µM) and t = 280 s with ATP (100 µM). The experimental group (n = 3) is shown in 

black. The control group (n = 3; grey) was treated at t = 40 s and t = 160 s with HEPES and at 

t = 280 s with ATP. The Fura-2 ratio 340/380 nm is presented as percentage (%) over time 

(s). 

 

 

Muscarine, which activates all five MR subtypes, was applied to PTC with a 

concentration of 10 µM. Overall the cells were reacting similarly as previously seen 

during the ACh-treatment. After applying muscarine, the cells responded with an 

increase [Ca
2+

]i of 61% (± 48.7% SD, n = 112 cells in n = 3 exp) over baseline  

(Fig. 30A black line; P-value in Fig. 33). The following decrease was slightly faster 
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compared to ACh-application without returning to baseline values  

(+ 15% ± 18% SD). 49.56% of the analysed 226 cells responded to muscarine. The 

vast majority of these cells (84.82%) responded to muscarine and ATP. Only 15.18% 

of the cells showed a reaction to muscarine, but did not respond to the following ATP 

application (Fig. 30B & 31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: Muscarine induces a [Ca
2+

]i in PTC.  

PTCs were treated three times during the experiment: at t = 40 s with HEPES, t = 160 s with 

muscarine (10 µM) and t = 280 s with ATP (100 µM). (A) The experimental group (n = 3) is 

shown in black. The control group (n = 3; grey) was treated at t = 40 s and t = 160 s with 

HEPES and at t = 280 s with ATP. (B) The different sub-populations of the PTC were 

separated dependent on the responsiveness to muscarine. Muscarine negative cells  

(n = 114, ○), muscarine positive cells (n = 112, ▲) cells. Muscarine responsive and ATP non-

responsive cells (n = 17, ■). The Fura-2 ratio 340/380 nm is presented as percentage (%) over 

time (s).   

 



Results 

 

70 

 

The shape of the curves after ATP-treatment to the cells was almost identical for both 

substances ACh and muscarine. The control cells (n = 160, n = 3 exp.), which were 

treated only with vehicle and ATP, did not show any reaction on the vehicle but all 

cells responded to ATP. The intensity of the response was similar to that for ACh and 

muscarine (Fig. 29 & 30A). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31: Distribution of muscarine, ACh and ATP responsiveness of PTC. 

Application of ACh (left panel) and muscarine (right panel) and subsequent treatment with 

ATP resulted in three PTC subpopulations: non-responding to ACh/muscarine but responding 

to ATP (black), responding to ACh/muscarine and ATP (dark grey) and responding to 

ACh/muscarine but non-responding to ATP (light grey). Amount of cells is indicated in 

numbers and percentage. 

 

 

Nicotine, an ACh-agonist which binds specifically to nAChR, was added to the PTC 

with a concentration of 100 µM. None of 197 cells responded to nicotine whereas all 

cells responded to ATP. The intensity of the ATP-response reached 120% over 

baseline (Fig. 32).    
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Fig. 32: Nicotine has no influence on the [Ca
2+

]i in PTC.  

PTCs were treated three times during the experiment: at t = 40 s with HEPES, t = 160 s with 

nicotine (100 µM) and t = 280 s with ATP (100 µM). The experimental group (n = 3) is 

shown in black. The control group (n = 3; grey) was treated with HEPES at t = 40 s and  

t = 160 s and once with ATP (t = 280 s). The Fura-2 ratio 340/380 nm is presented as 

percentage (%) over time (s). 

 

 

 

 

Fig. 33: P-values after agonist 

application in PTC-populations. 

HEPES (H), nicotine (N), muscarine 

(M) or ACh (A) were applied to 

PTC at t = 160 s. Box plots show the 

distribution of the cells at time-point 

t = 162 s. Below the boxes are 

mentioned the amount of analysed 

cells (n), the mean (m), the standard 

deviation (SD) and the P-values. 

Significance was calculated using 

Kruskal-Wallis test followed by 

Mann-Whitney test. P-value for 

HEPES vs. nicotine was not 

significant.  
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10.3.2. Blockade of muscarine-induced receptor activation in PTC  

 

To confirm the MR-dependent response of PTC to ACh and muscarine, the cells were 

pre-treated with 10 µM atropine (Fig. 34-36). In both cases the calcium influx in 

response to muscarine and ACh was blocked. For both, muscarine and ACh, two 

experimental set-ups were used (Fig. 34).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 34: Flow chart for inhibition experiment with PTC.  

PTCs were incubated with atropine in two different experimental set-ups.  

(A) Cells were treated with HEPES or atropine (10 µM) at t = 40 s; with ACh (10 µM), 

muscarine (10 µM) or HEPES (control) at t = 460 s and with ATP (100 µM) at t = 580 s. 

Atropine was incubated 5 min ( ⁄⁄ ).   

(B) Muscarine or ACh were applied to PTCs at t = 40 s and additionally removed by a 3 min 

wash step ( ⁄⁄ ). Cells were treated with HEPES or atropine (10 µM) at t = 340 s and incubated 

5 min ( ⁄⁄ ).  At t = 640 s ACh (10 µM) or muscarine (10 µM) were added. The application of 

ATP (100 µM) was at time point t = 760 s.   

 

 

In the first set of experiments it was shown that atropine blocked the ACh- and 

muscarine-induced calcium-influx in all analysed cells (nACh = 66, nMus = 75)  

(Fig. 34A). Control cells, treated with HEPES and ACh or muscarine showed an 

increase in calcium-influx (n = 1, Fig. 35 A/B, grey line), whereas the cells pre-

incubated with atropine did not respond to ACh or muscarine (Fig. 35 A/B, black 

line). The small peaks in both control curves (Fig. 35, grey line) are caused by 

oscillation and are no direct effect of ACh or muscarine.  
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Fig. 35: ACh or muscarine induced calcium-influx can be blocked by atropine.  

Experimental set-up was performed as described in Fig. 34A with n = 1 for each set-up. The 

grey lines represent the control groups, whereas the black lines show the atropine treated 

groups. PTC treated with muscarine are plotted in (A) and cells treated with ACh are shown 

in (B). The Fura-2 ratio 340/380 nm is presented as percentage (%) over time (s).     

 

 

In the second experiment (n = 1), two cell populations were treated with ACh, which 

responded with an increase in Ca
2+

 ions as described previously (Fig. 29, 34B). ACh 

was removed by a 3 min wash step with HEPES buffer. Before an additional 

application of ACh, one population was pre-incubated with atropine and the other one 

with HEPES for 5 min each. In absence of the MR antagonist (Fig. 36A, grey line), 

the cells responded to ACh with an increase in [Ca
2+

]i, which was not present in the 

cell population pre-incubated with atropine (Fig. 36A, black line). With the same 

experimental set-up, cells were stimulated with muscarine instead of ACh (Fig. 36B). 
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The response of PTC to muscarine was similar as the response to ACh. A previously 

muscarine-induced calcium-influx was blocked with atropine (Fig. 36B).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 36: Muscarine and ACh induced calcium-influx can be blocked by atropine.  

Experimental set-up was performed as described in Fig. 34B with n = 1 for each set-up. The 

grey lines represent the control groups, whereas the black lines show the atropine treated 

groups. PTC treated with muscarine are plotted in (A) and cells treated with ACh are shown 

in (B).The Fura-2 ratio 340/380 nm is presented as percentage (%) over time (s).    

 

 

10.3.3. Testicular macrophages showed no direct response to AChR stimulation  

 

In five individual experiments TM were tested on their response for ACh, nicotine 

and muscarine. HEPES was used as control. TM showed no oscillations, therefore 

cells have been classified as positively responding if they showed at least 5% increase 

in [Ca
2+

]i over baseline.   
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The treatment of TM with 100 µM nicotine, 10 µM muscarine or 10 µM ACh resulted 

in the same response as seen for the non-stimulated control group (Fig. 37). 

Subsequent applications of ATP showed a response in all cells within all four groups. 

Overall the shape of the curves was similar. The steep increase was followed by a 

slower decrease. In detail, it could be observed that ATP-dependent Ca
2+

-response 

differed dependent on the previous ACh-receptor stimulation.     

 

A high Ca
2+

 increase in response on ATP was observed in the HEPES pre-treated 

control group. The fast increase up to about 80% over baseline was slowed down and 

followed by a “round peak” and a gradually decrease (Fig. 37). This “round peak” 

was almost like a plateau phase with increased Ca
2+

 levels for about 12 s and 96%  

(± 61.8% SD) over baseline.   

Cells pre-incubated with nicotine and muscarine showed an almost identical shape of 

their curves after adding ATP (Fig. B & C, black line). A sharp peak with 99%  

(± 62.1% SDnic & ± 75.5% SDmus) over baseline was reached 4 s after the application 

of ATP, but the following decrease was constant and faster compared to the control 

group. At the end of the experiment the cells, treated with nicotine or muscarine had a 

significant (20%) lower Fura-2 340/380 nm ratio compared to control cells.  

Cells treated with ACh showed the lowest response to ATP within the 4 analysed 

groups. After the first increase at app. 81% (± 54.9% SD) over baseline there was a 

short transient decrease followed by a second increase and plateau phase 15 to 20 s 

later, which reached app. 85% (± 49.7% SD) over baseline. Subsequently, a slow and 

steady decrease of the curve was joining the nicotine and muscarine curves on the 

same level (Fig 37A, black line).   
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Fig. 37: ACh or -agonists have no direct effect on TM. 

Control group (HEPES; n = 5) is shown in grey (A-C). The experimental groups (n = 5) are 

shown in black: ACh (A), muscarine (B) or nicotine (C). Cells were treated three times during 

the experiment: at t = 40 s with HEPES; t = 160 s with ACh (10 µM), muscarine (10 µM) 

nicotine (100 µM) or HEPES and t = 280 s with ATP (100 µM). The Fura-2 ratio 340/380 nm 

is presented as percentage (%) over time (s). Significance was tested for t = 280 s (Tab.17).  
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Tab. 17: Statistical analysis for calcium-imaging experiments on TM. 

 

 

time-point [s] 

P-values (Mann-Whitney-test) 

 

Hep-Nic Hep-Mus Hep-ACh 

 

278 n.s. n.s. n.s. 

282 0.001 0.000 n.s. 

286 n.s. n.s. 0.000 

296 n.s. 0.006 0.001 

336 0.000 0.000 0.048 

396 0.000 0.001 0.026 

 
Significance was calculated using Kruskal-Wallis test followed by Mann-Whitney test for one 

time-point before (t = 278 s) and three time points after application of ATP (t = 282, 286 and 

296 s). Two more samples were taken to investigate the course of the curves and their 

significant character at t = 336 s and 396 s. ATP was applied at t = 280 s. P-values are 

presented in numbers; n.s. = not significant.   
 

 

10.3.4. Sertoli cells showed no direct response to AChR stimulation  

 

SCs were tested on their response for ACh, nicotine and muscarine in three to five 

individual experiments. HEPES was working as control. Cells have been classified as 

positive if they did show an at least 5% increase in [Ca
2+

]i over baseline after 

substance/drug application. 

 

Similar to the results with TMs, the application of 100 µM nicotine, 10 µM muscarine 

or 10 µM ACh resulted in no direct response compared to the control group (Fig. 38,  

t = 160 s). Subsequent applications of ATP increased [Ca
2+

]i levels within all four 

groups and consequently proved the cell viability. The trend of the curves after ATP 

was added differed group dependently in intensity and progress.  

The cells pre-incubated with HEPES showed a fast Ca
2+

 influx with a maximum 

intensity of 136% (± 44.3% SD) over baseline. The subsequent fast decrease of the 

curve changed into a plateau phase with 87% (± 44% SD) over baseline (Fig. 38, grey 

line).   
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Fig. 38: SC treatment with nicotine, muscarine or ACh. 

SCs were treated three times during the experiment: at t = 40 s with HEPES; at t = 160 s with  

ACh (10 µM), nicotine (100 µM), muscarine (10 µM) or HEPES and at t = 280 s with ATP 

(100 µM). Control group (HEPES, n = 3 or 5) is shown in grey and experimental groups 

treated with ACh (A) (n = 3), nicotine (B) (n = 5) or muscarine (C) (n = 3) are shown in 

black. The Fura-2 ratio 340/380 nm is presented as percentage (%) over time (s).  
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Cell populations pre-incubated with nicotine and ACh resulted in ATP induced fast 

Ca
2+

 influx and a following plateau. Although both curves joined the same plateau 

phase as seen for the control group, the initial shape of the curves straight after ATP 

application varied from each other in their intensity.  

 

While pre-incubation with ACh resulted in a calcium-influx peak of 106%  

(± 30.6% SD) over baseline, cells pre-incubated with nicotine reached a peak, which 

had the tendency to be 16% higher (122%, ± 68.2% SD) (Fig. 38A & B, Fig. 39  

for P-values).  

The observations for cell pre-incubated with muscarine deviated most from the others. 

A steep increase in the calcium-influx curve was observed after ATP application. The 

peak reached 186% (± 102% SD) over baseline followed by a fast transient decrease 

app. 25 s later with app. 150% over baseline. Another 35 s later a second increase 

followed by a plateau phase with 180% (± 84.9% SD) over baseline was observed 

(Fig. 38C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 39: P-values after ATP application between SC-populations. 

Box plots (t = 282 and t = 382) showing the changed Ca2+-influx after ATP application to SC 

pre-treated with nicotine, ACh, muscarine or HEPES. Significance was calculated using 

Mann-Whitney-test 2 s after ATP application and 100 s afterwards to determine long-time 

changes. P-values are presented in numbers. Black dots represent outliers.  
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10.3.5. AChR blockade modulates the ATP-induced calcium response in Sertoli 

cells  

 

It has been reported that immune cells show alternated responsiveness to ATP after 

treatment with a nicotinic antagonist [248]. According to these data, three 

experiments have been designed with SC. Cells were treated either with a nicotine-

inhibitor (methyllycaconitine (MLA), dihydro-β-erythroidine (DHβE) or 

mecamylamine (Meca)) or HEPES (t = 40 s) and with nicotine or HEPES (t = 480 s) 

prior ATP application (Fig. 40). [Ca
2+

]i was recorded as Fura-2 fluorescence intensity 

ratio of 340/380 nm excitation.  

 

 

 

 

 
 

 

Fig. 40: Flow chart for inhibition experiment on SC.  

SCs were incubated with nicotinic antagonist methyllycaconitine (MLA), mecamylamine 

(Meca) or dihydro-β-erythroidine (DHβE) and incubated for 5 min ( ⁄⁄ ). Cells were treated 

with an inhibitor or HEPES at t = 40 s; with nicotine (100 µM) or HEPES at t = 460 s and 

with ATP (100 µM) at t = 580 s.  

 

 

Responsiveness to ATP was significant reduced when SCs were pre-treated with 

nicotine compared to the control (Fig. 41, black and grey lines). Cell groups pre-

incubated with mecamylamine or DHßE and either nicotine of HEPES before ATP 

application showed a significant increased response compared to the corresponding 

control group without application of Meca or DHßE (Fig. 41A & C).  

SC incubated with MLA and HEPES show a significant decreased Ca
2+

-response 

compared to the control group whereas there is no difference between the 

MLA/nicotine treated group compared to the HEPES/nicotine control group (Fig. 

41B). P-values are shown in Tab. 18. 
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Fig. 41: nAChR-inhibitor influence ATP reaction in SCs.  

SCs were treated three times during the experiment: at t = 40 s with HEPES or a nAChR-

inhibitor (MLA, Meca, DHßE), at t = 460 s with nicotine (100 µM) and at t = 580 s with ATP 

(100 µM). The control groups are shown in grey (HEPES & HEPES) and black (HEPES & 

nicotine).  Experimental groups (n = 1-3) are shown in (A) Meca & HEPES (red) and Meca & 

nicotine (blue); in (B) MLA & HEPES (purple) and MLA & nicotine (cyan) and in (C) DHßE 

& HEPES (orange) and DHßE & nicotine (green). Significances were tested for t = 578, 582 

and 590 s and are described in Tab. 18. The Fura-2 ratio 340/380 nm is presented as 

percentage (%) over time (s). 
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Tab. 18: P-value for experiments with nicotinic inhibitors on SC. 

 

P-values 

(Mann-Whitney-test) 

 

n 

time-point [s] 

 

578 582 590 

     

Hep vs. Nic 3 n.s. 0.000 n.s. 

Meca-Hep vs. Hep 3 n.s. 0.014 0.013 

Meca-Nic vs. Nic 3 n.s. 0.000 0.006 

MLA-Hep vs. Hep 2 n.s. 0.000 0.000 

MLA-Nic vs. Nic 1 n.s. n.s. n.s. 

DHßE-Hep vs. Hep 3 n.s. 0.046 0.000 

DHßE-Nic vs. Nic 3 n.s. 0.000 0.000 

 
Significance was calculated using Mann-Whitney-test for one time-point before (t = 578 s) 

and two after application of ATP (t = 582 and 590 s). ATP was applied at t = 580 s. P-values 

are presented in numbers; n.s = not significant.   

 

 

11. The cholinergic system in an inflammatory model (EAO) 

 

As shown before, AChR and molecules needed for ACh synthesis could be detected 

in testicular parenchyma of non-inflamed testis. Several studies showed an influence 

of the ACh system in inflammatory processes [56, 125, 249, 250]. Here, the 

expression levels of AChR and related molecules were analysed under inflammatory 

conditions (experimental autoimmune orchitis). mRNA expression levels of animals 

treated with testis homogenate were compared to adjuvant and non-treated animals. 

The gene expression levels were analysed via real-time RT-PCR.     

 

11.1. Relative mRNA expression analysis of inflammation markers MCP-1, IL-6 

and TNF-α in orchitis  

 

Pro-inflammatory cytokines are up-regulated in inflammatory processes and can be 

used as inflammation-markers. Here tumour necrosis factor-α (TNF-α), monocyte 

chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) were analysed in TP of each 

group of animals: untreated, Freund`s adjuvant and orchitis. For all three markers a 

significant increase in mRNA expression levels was observed within the TP between 

orchitis-group and adjuvant-group, whereas there was no difference between the 

untreated- and adjuvant-group (Fig. 42). MCP-1 and IL-6 showed a great variation 
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between individual samples within the orchitis group, which was not the case for 

TNF-α. Nevertheless all values for mRNA expression of orchitis-group were higher 

compared to the adjuvant group (Tab. 19).  

   

Tab. 19: Statistical analysis for MCP-1, TNF-α and IL-6.  

 

target 
untreated 

mean ± SD 

adjuvant 

mean ± SD 

orchitis 

mean ± SD 

P-value 

U vs. A 

P-value 

A vs. O 

 

MCP-1 1.00 ± 0.50 0.67 ± 0.19 99.22 ± 82.81 n.s. 0.003 

TNF- α 1.00 ± 0.54 1.81 ± 0.85 19.60 ± 8.48 n.s. 0.003 

IL-6 1.00 ± 0.40 1.48 ± 0.10 74.80 ± 141.80 n.s. 0.003 

 

 

Relative expression levels [2-(ΔCT)/MWuntr.2
-(ΔCT)] and standard deviation for untreated (U), 

adjuvant (A) and orchitis (O) groups are shown in column two-four. The data were analysed 

by a Kruskal-Wallis-test followed by a Mann-Whitney-test and P-values are shown in 

numbers; n.s. = not significant (columns five and six). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 42: The mRNA expression level of MCP-1, TNF-α and IL-6 in orchitis induced 

animals.  

Data for monocyte chemotactic protein-1 (MCP-1), tumour necrosis factor-α (TNF-α) and 

interleukin-6 (IL-6) are plotted as Box plot. Samples of orchitis animals (n = 7) were 

compared to the adjuvant (n = 5) and untreated (n = 3) group. Used primers are described in 

Tab. 4. Relative expression was calculated by [2-(ΔCT)/MWuntr.2
-(ΔCT)] and analysed by Kruskal-

Wallis-test followed by Mann-Whitney-test (Tab. 19). Asterisk = outlier.   
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11.2. Relative mRNA expression analysis of nicotinic AChR-subunits in orchitis 

 

Relative mRNA expression levels for nAChR-subunits α3-α7 and α10 were analysed. 

A significantly lower expression was seen for the subunits α3, α4, α5, α7 and α10 in 

orchitis tissue compared to adjuvant tissue and for the subunits α4, α5 and α7 in 

orchitis samples compared to untreated samples. There were no significant differences 

between untreated, adjuvant and orchitis group for the α6 mRNA expression level. 

The mRNA for nAChR-subunit α6 could not be detected in all samples. Adjuvant and 

untreated groups showed similar mRNA expression levels for α3-α6, but α7 and α10 

subunit mRNA were significantly different expressed (Fig. 43A, Tab. 20). 

The nAChR subunits β1 and β4 showed no differences in mRNA expression level 

between the three analysed groups. Significant down-regulation in the mRNA 

expression level was observed for β2 and β3 between adjuvant and orchitis groups. In 

the case of the β3 subunit this significance could be seen as well between the 

untreated and orchitis group. For both targets β2 and β3, samples in the untreated and 

adjuvant group were expressed equally (Fig. 43B, Tab. 20).   

 

 
Tab. 20: Statistical analysis for nAChR-subunits α and β. 

 

target 
untreated 

mean ± SD 

adjuvant 

mean ± SD 

orchitis 

mean ± SD 

P-value 

U vs. A 

P-value 

U vs. O 

P-value 

A vs. O 

 

α3 1.00 ± 1.04 1.63 ± 0.98 0.40 ± 0.64 n.s. n.s. 0.033 

α4 1.00 ± 0.67 0.64 ± 0.09 0.18 ± 0.23 n.s. 0.014 0.009 

α5 1.00 ± 0.64 1.19 ± 0.46 0.27 ± 0.35 n.s. 0.028 0.004 

α6 1.00 ± 0.97 0.04 ± 0.03 0.02 ± 0.02 n.s. n.s. n.s. 

α7 1.00 ± 0.41 1.57 ± 0.44 0.38 ± 0.55 0.047 0.028 0.009 

α10 1.00 ± 0.49 3.28 ± 0.45 1.55 ± 1.33 0.009 n.s. 0.045 

 

β1 1.00 ± 0.32 1.14 ± 0.18 0.79 ± 0.41 n.s. n.s. n.s. 

β2 1.00 ± 0.33 2.03 ± 1.09 0.79 ± 0.53 n.s. n.s. 0.019 

β3 1.00 ± 0.31 1.23 ± 0.34 0.32 ± 0.32 n.s. 0.012 0.006 

β4 1.00 ± 2.24 0.00 ± 0.00 0.08 ± 0.23 n.s. n.s. n.s. 

 

 
Relative expression [2-(ΔCT)/MWuntr.2

-(ΔCT)] and standard deviation (SD) for untreated (U), 

adjuvant (A) and orchitis (O) groups are shown in column two to four. The data were 

analysed by Kruskal-Wallis-test followed by Mann-Whitney-test (columns five to seven).  

P-values are shown in numbers; n.s. = not significant. Sample size: untreated and adjuvant  

n = 5; orchitis n = 6-9.  
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Fig. 43: mRNA expression level of nAChR α- and β-subunits in orchitis induced testis.  

Data for nAChR-subunits α (A) and β (B) are plotted as Box plots. Samples for orchitis group 

(n = 6-9) were compared to adjuvant (n = 5) and untreated (n = 5) samples. Relative 

expression was calculated [2-(ΔCT)/MWuntr.2
-(ΔCT)] and analysed by Kruskal-Wallis-test 

followed by Mann-Whitney-test (Tab. 7). For primer with more than one primer-set the 

following variants were used: α6_139, α10_107 (Tab. 5). U = untreated, A = adjuvant,  

O = orchitis, asterisk = outlier. # = P-value ≤ 0.05, ## = P-value ≤ 0.01.   
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11.3. Relative mRNA expression analysis of muscarinic AChR subtypes in 

orchitis  

 

mRNAs for M1R-M5R subtypes were expressed in all three analysed groups: 

untreated, adjuvant and orchitis. The expression levels for M1R-M3R mRNAs were 

similar in the analysed groups, whereas the mRNA expression levels for M4R and 

M5R subtypes were significantly lower in the orchitis group compared to adjuvant and 

untreated groups (Tab. 21, Fig. 44). Adjuvant and untreated groups showed similar 

mRNA expression levels for M5R but significant differences for M4R mRNA 

expression (Tab. 21, Fig. 44).   

 

 

Tab. 21: Statistical analysis of MR-subtype expression. 

 

target 
untreated 

mean ± SD 

adjuvant 

mean ± SD 

orchitis 

mean ± SD 

P-value 

U vs. A 

P-value 

U vs. O 

P-value 

A vs. O 

 

M1R 1.00 ± 0.90 0.73 ± 041 0.73 ± 0.65 n.s. n.s. n.s. 

M2R 1.00 ± 1.66 0.14 ± 0.19 0.08 ± 0.10 n.s. n.s. n.s. 

M3R 1.00 ± 0.68 0.64 ± 0.62 0.54 ± 0.19 n.s. n.s. n.s. 

M4R 1.00 ± 0.33 1.63 ± 0.34 0.16 ± 0.32 0.028 0.028 0.004 

M5R 1.00 ± 0.30 0.75 ± 0.36 0.10 ± 0.05 n.s. 0.004 0.004 

 

 
Relative expression [2-(ΔCT)/MWuntr.2

-(ΔCT)] and standard deviation (SD) for untreated (U), 

adjuvant (A) and orchitis (O) groups are shown in column two to four. The data were 

analysed by Kruskal-Wallis-test followed by Mann-Whitney-test (columns five to seven) 

Significance is shown in numbers; n.s. = not significant. Sample size: untreated and adjuvant 

n = 5; orchitis n = 7-9.  
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Fig. 44: mRNA expression level of MR subtypes in orchitis induced animals.  

Data for MR-subtypes are plotted as Box plot. Samples of orchitis animals (n = 7-9) were 

compared to adjuvant (n = 5) and untreated (n = 5) groups. ΔCT values are shown as relative 

expression [2-(ΔCT)/MWuntr.2
-(ΔCT)]. Significances were analysed by Kruskal Wallis test 

followed by Mann-Whitney-test (Tab. 21). For primer with more than one primer-set the 

following variants were used: M1_110, M2_192, M3_287, M4_166, M5_180 (Tab. 3).  

U = untreated, A = adjuvant, O = orchitis, asterisk = outlier. ## = P-value ≤ 0.01.   

 

 

11.4. Relative mRNA expression analysis of ChAT, ChT1, OCT2 and VAChT in 

orchitis  

mRNA expression levels for VAChT were not significantly different between groups. 

Analysis for ChAT and ChT1 showed significant down-regulation for mRNA 

expression levels in both cases: orchitis group vs. adjuvant group and orchitis group 

vs. untreated group. Untreated and adjuvant groups showed an equal mRNA 

expression level  (Tab. 22, Fig 45). 

OCT2 mRNA expression was significant down-regulated in the orchitis group 

compared to adjuvant group whereas the mRNA expression level for the adjuvant 

group was significant up-regulated in comparison to the untreated group (Tab. 22, Fig 

45).    
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Tab. 22: Statistical analysis for ChAT, ChT1, OCT2 and VAChT. 

 

target 
untreated 

mean ± SD 

adjuvant 

mean ± SD 

orchitis 

mean ± SD 

P-value 

U vs. A 

P-value 

U vs. O 

P-value 

A vs. O 

 

ChAT 1.00 ± 0.61 1.00 ± 0.26 0.11 ± 0.20 n.s. 0.023 0.019 

ChT1 1.00 ± 0.61 1.37 ± 0.55 0.23 ± 0.49 n.s. 0.012 0.005 

OCT2 1.00 ± 0.93 2.18 ± 1.19 0.63 ± 0.60 0.016 n.s. 0.019 

VAChT 1.00 ± 0.92 0.32 ± 0.53 0.24 ± 0.34 n.s. n.s. n.s. 

 

 

Relative expression [2-(ΔCT)/MWuntr.2
-(ΔCT)] and standard deviation (SD) for untreated (U), 

adjuvant (A) and orchitis (O) groups are shown in column two to four. The data were 

analysed by Kruskal-Wallis-test followed by Mann-Whitney-test (columns five to seven)  

P-values are shown in numbers; n.s. = not significant. Sample size: untreated and adjuvant  

n = 5; orchitis n = 7-8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 45: mRNA expression level of ChAT, ChT1, OCT2 and VAChT in orchitis induced 

animals.  

Data for ChAT, ChT1, OCT2 and VAChT are plotted as Box plot. Samples of orchitis 

animals (n = 7-8) were compared to adjuvant (n = 5) and untreated (n = 5) groups. ΔCT values 

are shown as relative expression [2-(ΔCT)/MWuntr.2
-(ΔCT)]. Significances were analysed by 

Kruskal-Wallis-test followed by Mann-Whitney-test (Tab. 22). For primer with more than one 

primer-set the following variants were used: ChT1_150, OCT2_162 (Tab. 6). U = untreated, 

A = adjuvant, O = orchitis, asterisk = outlier. # = P-value ≤ 0.05, ## = P-value ≤ 0.01.   
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12. Sensory innervation of the rat testis 

 

12.1. Morphological observations of the rat testis 

 

The testis was examined and analysed for the presence of sensory nerve fibres. In 

brief, the scrotum was opened and the testis isolated. The fascia was cut and the testis 

was separated into the different tissue layers and adjacent organs (Fig. 46A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 46: Mesos of the rat testis. 

Microscopic longitudinal image (A) and horizontal models (B & C) of the rat testis showing 

the fascia (1), testicular parenchyma (2), testicular capsule (3), epididymis (4), vas deferens 

(5), mesoepididymis (6), mesodeferens I (7), mesofascia (8) and mesodeferens II (9). 

Horizontal model (B) from Zhu et al. [12].  

 

 

The majority of the investigated macroscopic structures were localised as previously 

described [12], except the morphology of the meso-structures. According to Zhu et al. 

there are three meso-structures which are the mesoepididymis (1) between testis and 

epididymis, the mesodeferens (2) between the epididymis and the vas deferens and an 

unnamed meso (3), which connects the vas deferens to the fascia [12]. Only one meso 

was found, which is located between the epididymis and the fascia with an additional 

substructure diverging to the vas deferens (Fig. 46B & C). This diverging substructure 
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had a clear visible separation-line. The names of the meso-structures were modified 

after Zhu et al. [12]. In this study the mesos are called mesoepididymis, mesodeferens 

I, which is the part from the epididymis to the separation line, mesodeferens II, which 

is the part from the separation line to the vas deferens and mesofascia, the meso that 

links the separation line to the fascia (Fig. 46C, no. 6-9). 

 

12.2. Neurochemical characterisation of testicular nerve fibres 

 

Compartments, which are described in Tab. 23, were subdivided or random samples 

were analysed according to the tissue-size. Markers for sensory nerve fibres (Nf200, 

peripherin) and subpopulations of nociceptive (peptidergic CGRP-containing) nerve 

fibres were used for the immunohistochemical analysis of neurochemical 

characteristics. PGP9.5 as a pan-neuronal marker was chosen for the visualisation of 

all existing nerve fibres.  

 

 
Tab. 23: Tissue samples used for whole mount multiple labelling IHC. 

 
tissue samples 

 

fascia 

(external spermatic fascia, 

internal spermatic fascia, 

cremaster muscle) 

random samples, n = 10 

vas deferens random samples, n = 4 

superior ligament (SL) whole SL divided in 3 parts 

inferior ligament (IL) whole SL divided in 3 parts 

testicular artery/vein random samples, n = 3 

mesodeferens I (md I) whole md, divided in 2 parts 

mesoepididymis (me) whole md, divided in 2 parts 

mesofascia (mf) whole md, divided in 4 parts 

mesodeferens II (md II) whole md, divided in 2 parts 

testicular capsule random samples, n = 18 

testicular parenchyma cryo-sections, random samples 

 

 

Analysed tissues were subdivided or random samples were taken from three different animals. 

Tissue samples were used for IHC and different neuronal markers were investigated as shown 

in Tab. 24. 
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Nerve fibres which were found within the tissue could be further subdivided into  

3 groups according to their location: (1) being wrapped around blood vessels,  

(2) running alongside blood vessels and (3) nerve fibres in non-vascular areas  

(Fig. 47A). The presence and frequency as well as the neurochemical characteristics 

of nerve fibres for each group were determined.  

Blood vessels could be found in all of the analysed structures although the density 

differed between distinct compartments. Unlike in other structures, blood vessels of 

the fascia and the TC were not always innervated and innervation was absent in TP. 

The nerve fibres, which innervated blood vessels, were positive for PGP9.5 only. In 

some cases nerve-fibre-endings could be found directly attached to blood vessels, as 

shown in Fig. 47B.  

Nerve fibres, that were running alongside to blood vessels and in non-vascular areas, 

showed similar neurochemical characteristics. Both fibre populations were positive 

for PGP9.5 and sensory and nociceptive markers (Tab. 24). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 47: Immunohistolochemistry of nerve fibres in structures adjacent to the testicular 

parenchyma. 

Nerve fibres were labelled with rabbit-anti PGP9.5. (A) Nerve fibres and fibre bundles were 

found wrapped around blood vessels (1), running alongside with blood vessels (2) and in non-

vascular areas (3). (B) A nerve fibre which innervates a blood vessel and ends in a branch-like 

structure is shown (4). Scale bar in A (100 µm) applies to both A & B.  
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12.2.1. Sensory nerve fibres (Nf200 & peripherin)  

 

First experiments finding sensory nerve fibres in the testis and adjacent structures 

were performed using the following combination of antisera PGP9.5 & Nf200 or 

PGP9.5 & peripherin. Tissue samples of vas deferens, fascia and testicular 

parenchyma were tested and results were obtained for labelling with PGP9.5 and 

Nf200 in vas deferens and fascia. Unfortunately, using the antiserum for peripherin 

resulted in labelling, which was weak and instable in appearance, therefore a clear 

positive or negative identification of nerve fibres was not possible (data not shown). 

For further examinations only Nf200 was used to identify myelinated sensory nerve 

fibres.  

 

The testicular parenchyma was not innervated (Fig. 48). Cryo-sections of TP 

labelled with PGP9.5 did not show any nerve fibre structures in non-vascular areas. 

Blood vessels which were accompanied by nerve fibres outside the TP did not show 

any innervation after entering the parenchyma.  

 

 

 
Fig. 48: PGP9.5 IHC on testicular 

parenchyma.  

A 14 µm cryo-section of testicular 

parenchyma was fixed in methanol 

and labelled with rabbit-anti PGP9.5 

(red), FITC-conjugated α-SMA 

(green) and the nuclear stain 

Hoechst (blue). Scale bar = 100 µm. 

 

 

 

12.2.2. Sensory nociceptive nerve fibres (Nf200 & CGRP)  

 

Nociceptive nerve fibres were analysed using the following combination of antisera 

PGP9.5 & Nf200 & CGRP. Table 24 gives an overview about the examined tissues, 

the amount of nerve fibres and their neurochemical characteristics. As mentioned 

before nerve fibres innervating blood vessel were PGP9.5-positive, Nf200-negative 

and CGRP-negative and are not listed in Tab. 24.    
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In the fascia a high density of blood vessels, nerve fibre bundles and nerve fibres was 

observed. Nerve fibres could be found which were positive for Nf200 alone, CGRP 

alone and Nf200 & CGRP respectively (Tab. 24, Fig. 50A-D). In the cremaster 

muscle, situated between the external and internal fascia, motoric end plates were 

detected which were negative for CGRP, but positive for PGP9.5 and Nf200  

(Fig. 49D).    

 

Tab. 24: Neurochemical characteristics of nerve fibres running alongside with blood 

vessels or in non-vascular tissue.  

 

tissue 

nerve fibres 

alongside to nerve fibres non-vascular tissue 

number 

of nerve 

fibres 

marker 

number 

of nerve 

fibres 

marker 

 

internal & 

external fascia 

and cremaster 

muscle 

+ 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

++ 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

vas deferens + 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

++ 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

testicular artery +++ PGP9.5   

superior ligament ++ 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

+++ Nf200-/CGRP- 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ anterior ligament ++ 

Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

++ 

testicular capsule + PGP9.5 ++ PGP9.5 

 

mesoepididymis ++ 
Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

+++ 
Nf200+/CGRP- 

Nf200-/CGRP+ 

CGRP+/Nf200+ 

mesodeferens I ++ +++ 

mesodeferens II ++ +++ 

mesofascia + + 

 

 
Frequency of nerve fibres were estimated and divided in four groups (absent = 0, rarely = +, 

often = ++, frequent = +++). Samples were incubated with an anti-sera mix of PGP9.5, Nf200 

and CGRP. All nerve fibres were positive for PGP9.5 and therefore it is not mentioned.     
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The vas deferens contains a thick smooth muscle layer which is surrounded by an 

adventitia of connective tissue. Within the adventitia, blood vessels, nerve fibre 

bundles and nerve fibres were frequently found, but only thin nerve fibres were 

observed travelling into the muscle layer. The nerve fibres were either positive for 

Nf200 alone, CGRP alone or Nf200 & CGRP (Tab. 24).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 49: Nerve endings labelled positive for 

PGP9.5. 

Whole mount preparations and immune-

histochemical detection of rabbit-anti PGP9.5 in 

different tissue samples showing (A) a high density 

of nerve fibres in the TC, (B) a flower-spray ending 

in the SL, (C & E) free nerve endings within the TC 

and (D) a motor end plate within the fascia 

(cremaster muscle). Scale bar: A, B & E = 100 µm 

and C & D = 25 µm.   
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The testicular artery, a described access route for nerve fibres to the testis [78, 390, 

391], is surrounded by several layers of adipose tissue, which made it difficult to 

prepare whole mount tissue samples or cryo-sections for IHC. The presence of nerve 

fibres and nerve fibre bundles was confirmed using PGP9.5 antiserum, but no further 

investigations were made with respect to characterisation.  

Mesodeferens I, mesodeferens II and mesoepididymis displayed a high density of 

nerve fibres, nerve fibre bundles and blood vessels. A low number of nerve fibres 

were found in the mesofascia. Nerve fibres located in meso-structures were positive 

for Nf200 alone, CGRP alone and Nf200 & CGRP (Tab. 24).  

The superior and inferior ligaments (SL, IL) are the connections between the 

testicular capsule and the epididymis. There are also supposed to be the entrance for 

nerve fibres into the parenchyma and the capsule [12]. Nerve fibres in both structures 

were positive for Nf200 alone or CGRP alone and Nf200 & CGRP. In contrast to 

other tissue-compartments there were a higher number of PGP9.5-positive, Nf200- 

and CGRP-negative nerve fibres in non-vascular areas (Tab. 24, Fig. 49B & 50E-H).   

Innervation of the capsule was found only in regions surrounding the connections of 

the SL and IL and close to the rete testis, whereas nerve fibres were absent in other 

capsule areas (in particular the region opposite the rete testis). All nerve fibres in 

these innervated regions displayed the same characteristics as described for IL and 

SL: Nf200 alone or CGRP alone and Nf200 & CGRP (Tab. 24). Additionally, free 

nerve endings were observed (Fig. 49A, C & E).  
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Fig. 50: Myelinated and unmyelinated nociceptive nerve fibres.  

Samples of tissue prepared as whole mount were incubated with an antisera mix to detect 

rabbit-anti PGP9.5 (green, A, E), mouse-anti Nf200 (red, B, F) and goat-anti CGRP (blue, C, 

G). Images D & H show the merge of the three markers. A-D = fascia, E-H = IL. Nerve fibres 

with different neurochemical characteristics are numbered as follows: (1) Nf200-/CGRP+,  

(2) Nf200+/CGRP- and (3) Nf200+/CGRP+. Scale bar in D applies to A-D and in H applies 

to E-H. Scale bars = 100 µm 
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12.2.3. Nerve fibres in meso-structures are positive for IB4, TRPV1 and VGluT1   

 

Less information is provided about the neuronal characteristics of meso-structures, 

although they demonstrate a dense innervation. Therefore investigations were focused 

on these tissues to further differentiate sensory nerve fibres. IB4, VGluT1 and TRPV1 

were used in combination with either Nf200 or CGRP, both of which served as 

controls for the experimental set-up. The tissue samples were incubated with the 

following antisera-mix: (1) IB4 & VGluT1 & Nf200, (2) TRPV1 & Nf200 and  

(3) IB4 & CGRP & VGluT1 (Fig. 51).  

Tissue samples of one animal were analysed for the meso-structures, thus the data 

here have to be considered as preliminary. Table 25 presents the combinations of 

neurochemical markers which were found in nerve fibres within the meso-structures. 

VGluT1 and TRPV1 were detectable in the majority of nerve fibres in all analysed 

meso-structures. IB4-staining was occasionally very weak and showed higher 

background staining. Therefore, a clear statement about the presence of IB4 is not 

always possible. Unclear results are indicated as IB4±.         

 

 
Tab. 25: IB4, TRPV1 and VGluT1 positive nerve fibres within meso-structures.  

 

tissue marker 

 

 

me N/A IB4+/CGRP+/VGluT1+ 

IB4± CGRP+/VGluT1- 
 

N/A 

md I IB4+/VGluT1+/Nf200- 

IB4+/VGluT1+/Nf200+ 

IB4-/CGRP+/VGluT1- 

IB4+/CGRP-/VGluT1+ 

IB4+/CGRP+/VGluT1+ 

 

TRPV1+/Nf200+ 
TRPV1+/Nf200± 

 

md II IB4±/VGluT1+/Nf200- 

IB4+/VGluT1+/Nf200+ 

 

IB4-/CGRP+/VGluT1- 

IB4+/CGRP-/VGluT1+ 

IB4+/CGRP+/VGluT1+ 

 

TRPV1+/Nf200+ 
 

mf IB4±//VGluT1+/Nf200- 

IB4±/VGluT1+/Nf200+ 

 

N/A TRPV1+/Nf200+ 
TRPV1+/Nf200± 

 

 
Meso-structures were prepared as whole mount and analysed for IR of rabbit-anti VGluT1, 

guinea pig-anti TRPV1 and IB4-Alexa488. Goat-anti CGRP and mouse-anti Nf200 served as 

controls. N/A = not analysed. Abbreviations: mf = mesofascia, me = mesoepididymis,  

md = mesodeferens (I & II). n = 1.  
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Fig. 51: IB4, VGluT1 and TRPV1 positive nerve fibres in meso-structures.   

Multiple labelling IHC of whole mounts: (1) VGluT1 & CGRP & IB4 (A, C, E), (2) VGluT1 

& Nf200 & IB4 (B, D, F) or (3) Nf200 & TRPV1 (G, H & I, J). Example shown here 

originate from mesodeferens I (A, C, E & I, J), mesoepididymis (G, H) and mesodeferens II 

(B, D, F). Nerve fibres with different neurochemical characteristics are marked with arrows. 

Scale bar in A (50 µm) applies to A-F, I & J. Scale bar in G (100 µm) applies to G & H.  
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12.3. Tracing from the mesodeferens I and II to the dorsal root ganglia  

 

The neurons within the DRG lumbar 1 (DRG L1) are responsible for innervating the 

testis [97, 405, 412]. Therefore, the main focus was on ipsi- and contra-lateral DRGs 

L1 for all rats. To identify the origin of nociceptive neurons, two tracers were applied. 

Cholera toxin-Biotin (CtxBT) was injected into the testis parenchyma and Cholera 

toxin-Alexa555 (Ctx555) was applied to the mesodeferens I & II. A differentiation 

between mesodeferens I and II was not possible because they are connected to each 

other as seen in Fig. 46C.  

In the first experimental part, every DRG section of L1 was checked for cells labelled 

positive for the tracer Ctx555. These sections were used for subsequent IHC 

experiments. All sections without and several sections with Ctx555 positive cells were 

incubated with FITC-conjugated Streptavidin to identify the CtxBT labelled cells.  

No cell labelled positive for CtxBT was found. Sections with cells labelled positive for 

Ctx555 were stained in addition with anti-sera for IB4, CGRP and Nf200. All analysed 

cells have been CGRP positive, Nf200 negative and IB4 negative. However 

fluorescence of Ctx555 positive labelled cells was fading in some cases and these cells 

could not be used for further analysis (Tab. 26).      

 
Tab. 26: Data of the first tracing experiment.  

 

animal 

no. 

location 

DRG 

 

Ctx555 

pos. 

cells 

 

neurochemical 

characteristics 

amount 

of cells 

 

analysed 

cell-

number 

      

1  0    

2  0    

3 
L1 ips 7 CGRP+/Nf200-/IB4- 4 4 

L1 con 0    

 
Amount of cells positive for Ctx555 of n = 3 animals are shown in columns 1-3. Cells 

identified as CGRP-positive but IB4 and Nf200 negative are shown in columns 4-6.  

 

In the second experiment Ctx555 was applied to mesodeferens I & II in three rats. One 

out of three animals died during surgery. From the remaining two rats the DRGs were 

isolated, processed and analysed starting again with DRG L1. Cells were incubated 

with antisera of the neuronal markers Nf200, CGRP and IB4. Three Ctx555 positive 
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cells were observed in the ipsi-lateral DRG L1 but none in the contra-lateral DRG L1 

of animal number one. These cells were all CGRP positive, Nf200 negative and IB4 

negative. The amount of Ctx555 positive cells in the ipsi-lateral DRG L1 of the second 

analysed rat was with 413 much higher. Beside this, 8 cells were discovered in the 

contra-lateral DRG L1.  

The filter equipment of available microscopes made it necessary to analyse specimens 

at two different fluorescence microscopes to cover the full spectrum of analysis. The 

tissue sections were evaluated in two blocks: (1) IB4 (AMCA), Ctx555 (Cy3), CGRP 

(FITC) and (2) Nf200 (Cy5), Ctx555 (Cy3), CGRP (FITC). The variation of analysed 

cells of the two groups compared to each other (1. n = 292 and 2. n = 351) and to the 

total amount of Ctx555 labelled cells (n = 413) was a result of the fading of 

fluorescence of Ctx555 (Tab. 27). In both analysed groups approximately 98% of the 

neurons were positive for CGRP. Around 80% were negative either for Nf200 or IB4. 

The remaining cells, 16-18%, were labelled positive for Nf200 or IB4 (Tab. 27). Less 

than 2% of the analysed DRG neurons were CGRP negative. Within this population 

cells were identified as NF200 positive, NF200 negative or IB4 negative (Tab. 27). 

Examples for Ctx555 positive labelled neurons with additional multiple IHC for IB4, 

CGRP and Nf200 are shown in Figure 52.  
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Tab. 27: Data of the second tracing experiment.  

 

animal 

no. 

location 

DRG 

 

Ctx555 

pos. 

cells 

 

neurochemical 

characteristics 

amount of cells 

in % 

analysed 

cell-number 

 

1 L1 ips 3 CGRP+/Nf200-/IB4- 100 3 

 

2 died during surgery 

 

3 

L1 con 8 CGRP+/Nf200+/IB4+ 16.66  

  CGRP+/Nf200-/IB4- 66.66  

  CGRP+/Nf200-/IB4+ 16.66 6 

 

L1 ips 413 

CGRP+ 

 98.58 98.97  

  Nf200+ 16.52   

  Nf200- 82.05  351 

  IB4+  18.15  

  IB4-  80.82 292 

       

  

CGRP- 

 1.4 1.03  

  Nf200+ 0.57   

  Nf200- 0.85  351 

  IB4+  0  

  IB4-  1.03 292 

 

 
Cholera toxin-Alexa555 positive cells were found in two out of two analysed rats in ipsi-lateral 

DRG L1 (L1 ips). Additionally, Ctx555 positive cells were detected in contra-lateral DRG L1 

(L1 con) for one rat (columns 1 & 2). Amount of Ctx555 positive cells and analysed cells are 

shown in numbers (no.) in columns 3 & 6. Amount of cells with specific neurochemical 

characteristics are shown in percentage (%) in columns 4 & 5.   
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Fig. 52: Retrograde tracing of cells projecting to mesoepididymis I and II.  

Dorsal root ganglion neurons of L1 labelled positive for Ctx555 (arrowheads in A 1-3) were 

multiple labelled with rabbit-anti CGRP (B), mouse-anti Nf200 (C) and IB4-Biotin (D). 

Images marked with the same number belong to the same cell. Neurochemical characteristics 

of the cells are in column (1) CGRP+/Nf200-/IB4+, (2) CGRP+/Nf200+/IB4- and  

(3) CGRP+/Nf200-/IB4-. Scale bar in A1 (25 µm) applies to all images.  
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Discussion 

 

13. The non-neuronal cholinergic system in rat testis  

 

The work reported here demonstrates that non-neuronal cells in the testicular 

parenchyma of rat testis have all the components necessary for cholinergic signalling. 

mRNAs were detected for the ACh synthesizing enzyme, transporters and ACh 

receptors in locations completely lacking any form of innervation as demonstrated by 

the absence of PGP9.5 labelling [12].  

Acetylcholine is well-known chemical neurotransmitter in the nervous system, but not 

limited to it. ACh binds to two structurally diverse families of membrane-bound 

proteins: (1) ACh-gated ion-channels comprised of different nicotinic receptor 

subunits (nAChR) and (2) G-protein coupled single-subunit transmembrane proteins – 

muscarinic acetylcholine receptor (MR) [206, 208, 251]. Both receptor classes are 

expressed pre- and postsynaptically and are distributed throughout the central and 

peripheral nervous systems [206]. After the first presumptions about a non-neuronal 

cholinergic system in mammalian cells by Morris in 1966 and Sastry & 

Sadavongvivad in 1979 [105, 252], it is now well established that ACh is produced by 

many types of cells in addition to neurons [139, 253, 254]. Within non-neuronal cells 

ACh influences cell proliferation, migration or apoptosis [218, 255] by paracrine or 

autocrine binding to the target cells. Such communications between cells within a 

multi-cellular organism are necessary to maintain all body-functions and to survive in 

their environment. 

 

13.1. ACh synthesizing enzyme and transporters are present in testicular 

parenchyma and capsule  

 

Previous studies suggested a non-neuronal cholinergic system in testis. ChAT mRNA 

and activity was present in human and rat spermatozoa and spermatocytes [256, 257], 

whilst the ACh degrading enzyme AChE was found in rat spermatozoa [258]. The 

overexpression of AChE in spermatozoa lead to enhanced sperm motility but also to 

increased germ cell apoptosis [233].   
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In this study a comprehensive analysis of the expression of the cholinergic signalling 

system within the testis was performed. Although innervation of mammalian testis 

such as cat or human was described [259, 260], no nerve fibres could be found in rat 

testicular parenchyma corroborating experiments from Zhu et al. [12]. In contrast, it 

was shown in this study that the testicular capsule surrounding the parenchyma is 

densely innervated at both poles and the position of the incoming pampiniform 

plexus. To exclude any contamination with e.g. autonomic neurons both tissues, TP 

and TC, were separated for mRNA expression analysis.  

 

Testicular parenchyma. ChAT is the main enzyme for synthesising ACh in neuronal 

and non-neuronal tissue. Both, mRNA and protein were found in TP of rat testis. 

Quantitative RT-PCR showed the high relative mRNA expression level for ChAT in 

comparison to ChT1, VAChT and OCT2. The localisation of ChAT-mRNA within 

the TP was investigated by ISH with sequence-specific probes, where it was detected 

mainly in primary spermatocytes. This finding was confirmed by ChAT-mRNA 

detection in isolated primary spermatocytes (thesis Iris Eckhardt, data in Schirmer et 

al., 414). At the post-trascriptional level, ChAT protein was found in primary and 

secondary spermatocytes, spermatids and endothelial cells of small interstitial arteries. 

A previous study revealed the presence of several splice variants of ChAT, which 

were found to lack enzymatic activity. Further investigations about their function 

were not done [261]. Thus, the presence of a truncated ChAT variant cannot be 

excluded for this study. Nevertheless, there is increasing evidence, that ACh is 

important in spermatogenesis and fertilisation events such as the acrosome reaction in 

human and mouse sperm [228, 229]. The high amount of ChAT mRNA and the 

detection of ChAT protein imply relevance within testicular function.   

 

ACh-synthesis through ChAT is impossible without uptake of choline [262], (see Fig. 

4). Immunoreactivity for the specific choline-uptake transporter, ChT1, was present 

in the same cell types that expressed ChAT. Following ChAT, ChT1 showed the 

second highest mRNA expression level compared to VAChT and OCT2. Protein 

detection of ChT1 for spermatocytes and spermatids corroborates findings that 

described mRNA expression in both isolated cell populations (thesis Iris Eckhardt, 

data in Schirmer et al., 414). This suggests that spermatozoa and spermatids are 
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capable of taking up choline and synthesizing ACh and might explain the dramatic 

effects of AChE overexpression in spermatids which results in increasing germ cell 

apoptosis [233].    

 

Synthesis is followed by the release of ACh. This occurs via two different pathways 

(a) the classical storage in vesicles by VAChT and secretion via exocytosis [135-137] 

or (b) the constant release via the class of organic cation transporters [140-142].  The 

relative mRNA expression level of VAChT was significant lower compared to ChAT, 

ChT1 and OCT2. This was reflected by the restricted appearance of VAChT in cells 

of the TP. Overall only a slight VAChT-IR was detectable within the testis, except a 

population of basal cells in the seminiferous epithelium, presumably spermatogonia, 

which showed a strong IR for VAChT. Similar cells were also positive for ChAT and 

ChT1, but only for cells positive for VAChT-protein processes were could observed 

that reached into or through the layer of PTC. The localisation of these cells with 

immunoreactivity for three proteins, VAChT, ChT1 and ChAT, in the basal germ cell 

layer leads to the assumption that these cells could be spermatogonia. However, 

mRNA could only be found for ChT1, but not for ChAT or VAChT in isolated 

spermatogonia (thesis Iris Echhardt, data in Schirmer et al., 414). This is making a 

clear-cut localisation difficult. Zhou et al. [263] described the differentiation and 

regulation of spermatogonia from spermatogonial stem cells to the first mitotic 

differentiation, wherein the cells pass through different developmental stages with 

developmental  specific markers. Thus spermatogonial subtypes may express only a 

selection of these molecules (ChAT, ChT1 or VAChT). This assumption is supported 

by the finding that VAChT-IR positive cells are not localised in every seminiferous 

tubule, and that cells within the same cross section of a tubule are in the same stage of 

maturation. In this study, similar observations were made for the α7 nAChR subunit, 

which was detected in primary spermatocytes and round spermatids by ISH (Fig. 25).    

 

As an alternative to the visuclar transport mediated by VAChT, ACh can also be 

released by OCT2 via an alternative non-vesicular route [262, 264]. The mRNA 

expression level for OCT2 was lower in comparison to ChAT and ChT1. In TP the 

rank order of the relative mRNA expression levels was ChAT > ChT1 > OCT2 > 

VAChT. The same rank order is reflected as well in the mRNA expression profile of 
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isolated testicular cell populations. While ChAT- and ChT1-mRNAs are expressed in 

germ cell (spermatogonia, spermatocytes and spermatids) and non-germ cell (PTC, 

SC and Leydig cell) populations, the mRNA-expression level for VAChT and OCT2 

showed only low or undetectable levels in non-germ cell populations and 

spermatogonia (thesis Iris Echhardt, data in Schirmer et al., 414). Taken together, 

these observations strongly support the possibility that the germinal epithelium has 

the capability to synthesise and release ACh. Resently, ACh was detected within TP, 

which supports the data in this study (Prof. Klein, data in Schirmer et al., 414). 

  

However, the question remains how non-germ cells release ACh. Testicular somatic 

cells (TM, SC and PTC) do express mRNA for ChAT and ChT1, but no mRNA was 

detectable for OCT2 or VAChT. Thus, other choline transporter may be involved in 

the ACh-release. In addition to OCTs, a proteolipid called “mediatophore” seems to 

be able to shuffle ACh across the cell membrane. The mammalian homologue of the 

mediatophore, is part of the vacuolar H
+
-ATPase (V-ATPase) found mostly in acidic 

organelles [265]. Originally the mediatophore was found in the plasma membrane of 

the electric organ of the electric ray torpedo marmorata [265]. Non-neuronal cells  

co-transfected with ChAT and the proteolipid gained the ability to release ACh [265, 

266]. Furthermore the V-ATPase was localised in human lung microvascular 

endothelial cells [267] and rabbit AM [268]. The mediatophore could be another 

alternative ACh release mechanism for the VAChT and OCT2 negative cell 

populations TM, PTC and SC.      

 

In summary, ChAT, ChT1, VAChT and OCT2 were detected on mRNA and protein 

level in the rat TP. Analysis of isolated cell populations showed cell specific 

differences in the mRNA expression with respect to germ cell stages vs. non-germ 

cell populations.  

 

Testicular capsule. The similar rank order for the relative mRNA expression as seen 

in the parenchyma was also observed for the capsule: ChAT > ChT1 > OCT2 > 

VAChT. However, significant difference in the mRNA expression level was observed 

for ChT1. Individual cells within the capsule could not be separated.  
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Cholinergic nerve fibres are present within the TC, which are positive for molecules 

of the cholinergic system. However the expression of mRNA should be originated 

from cells within the capsule, because protein synthesis in neurons, and, hence 

mRNA, is for most mRNAs confined to the perikaryon. From there the proteins are 

transported to their destination by axonal transport [126].  

    

13.2. Presence of nAChRs in testicular cells  

 

As previously discussed, cells within the rat testicular parenchyma contain all 

molecules necessary for the synthesis of non-neuronal ACh. To further investigate the 

non-neuronal cholinergic system the targets for ACh were analysed. Previous studies 

demonstrated mRNA expression of nAChR-subunit α3, α5, α7, α9 and β4 in human 

testis and demonstrated nAChR dependent influence on the acrosome reaction [231, 

269]. The absence of nAChR-subunit α7 in mouse sperm resulted in impaired sperm 

motility [230].  

 

13.2.1. Presence of nAChRs in testicular parenchyma and -capsule  

 

In this study mRNAs for eight α- and three β-subunits of nAChR were detected in 

testicular cells. In addition mRNAs for all mammalian α- and β-subunits were 

amplified in TC, including mRNAs for the supposedly “muscle specific” α1- and β1-

subunits. Recent work showed that these subunits are present in non-skeletal muscle 

tissues, such as mouse lymphocytes and thymus; human macrophages; the inner root 

sheath of the hair follicle, airway fibroblasts and keratinocytes [56, 197, 270-272]. 

Their functions remain to be determined. 

 

The mRNA expression levels for α6 and β4 have been very low or even undetectable 

within the parenchyma. However, mRNA for both subunits was measured in isolated 

cell populations. mRNA for α6 was detected in PTC and SC, whereas β4 is present in 

PTC and TM. Although two out of three analysed cell populations express either α6 

or β4, the low or undetectable mRNA expression of α6 and β4 within the 

parenchyma-cell-mix leads to the suggestions that both subunits might be expressed 

in: (1) some populations of cells and the expression was masked by the huge amount 
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of germ cells in the preparation or (2) isolated cell populations increase expression of 

α6 and β4. Both aspects mentioned here could explain the observations.  

All remaining receptor subunits are expressed within the parenchyma, which makes it 

hard to predict the possible pentameric-receptor-structures of the mature nAChRs (for 

known pentamer-combinations see Tab. 1 & 2).  

Whereas, there were almost no differences in mRNA expression levels between β1, 

β2 and β3 subunits, the expression-profile between the α-subunits was variable. 

nAChR subunits α4 and α7 showed the highest expression of all α-subunits within TP, 

potentially as part of the heteropentameric α4β2 nAChR, which constitutes the major 

nAChR subtypes in neuronal tissues like brain [273] and α7 homopentameric nAChR 

which has also been demonstrated in autonomic ganglia and brain [187, 274].  

The relative mRNA expression levels for subunits α1, α2 and α3 were comparable to 

each other, while the amount of mRNA for α5 was nearly the same level than α7. 

Both subunit, α5 and β3, need to be co-expressed with another α and β subunit to 

form functional channels [156, 162, 269]. Furthermore, nAChR-subunit α5 is usually 

co-assembled with α3, α4, β2, or β4 to form various nAChR subtypes such as α4α5β2 

or α3α5β4 [174, 275]. The absence of α5 in the pentamers α3α5β2 and α3α5β4 

decreased their Ca
2+ 

permeability and the rate of desensitisation [162, 276] and in 

chick sympathetic neurons, the deletion of α5 altered the sensitivity of native 

receptors to both agonist and antagonists [168]. These data indicate that both the α5 

and β3 subunits (known as auxiliary subunits) may have a role in controlling ion-

permeability and perhaps receptor-localisation [162]. 

Subunits α9 and α10 are expressed almost equally with a slightly higher expression 

level for α9. This finding is not surprising due to the facts that α9 is able to form 

functional homopentameric receptor and α10 only demonstrates activity when co-

expressed with α9 [159, 170, 277].     

 

Further analysis of the distribution of receptor-subunit-proteins was not possible due 

to the fact that available antisera are prone to unspecific binding [246, 278]. However, 

mRNA for the nAChR-subunit α7 was localised by ISH. The α7-mRNA within the 

seminiferous tubules was expressed mainly in round spermatids and primary 

spermatocytes. Although the highest concentration was observed in these cells, 

moderate staining could be found in earlier cell stages such as spermatogonia. 
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Another possible source for α7 mRNA may be Sertoli cells, which are located 

between the germ cells. These findings are supported by the detection of mRNA in 

both spermatogonia and SCs in a previous study (thesis Iris Eckhardt, data in 

Schirmer et al., 414).   

 

nAChRs belong to the gene superfamily of ligand-gated ion-channels, which are 

permeable for mono- and bivalent-ions such as calcium [279]. Subunits with a high 

permeability for Ca
2+

 are homopentamers consisting subunits α7, α8 or α9 [165, 280], 

while heteropentamers α3β4 and α4β2 have a lower Ca
2+ 

permeability [281, 282]. 

Within the testis, calcium is an important molecule in different cell types and a variety 

of processes. (1) In mammalia sperm, a calcium increase from the extracellular space 

initiates the acrosome exocytosis [283, 284] followed by a second release from 

intracellular stores, which completes this process [285, 286]. (2) Spermatozoa are 

exclusively transported in the luminal compartment of the male and female 

reproductive tract separated by epithelial cells from nerve endings that could release 

ACh. In human and mouse sperm, ACh triggered the acrosome reaction, which was 

blocked by nAChR antagonists such as α-bungarotoxin or MLA [228, 229]. This 

clearly indicates a function for ACh and ACh-receptors and supports the non-neuronal 

origin of ACh. (3) Beside capacitation, sperm motility is regulated by [Ca
2+

]i [287, 

288] and mouse sperm deficient for the α7 nAChR show impaired motility [230]. 

Similar functions for α7 can be suggested for rats. In contrast, in this study α7 mRNA 

was not detected in spermatozoa by ISH, likely to be based on the fact that 

spermatozoa contain little mRNA which in addition is compacted and not readily 

accessible by probes. (4) Spermatozoa maintain their calcium homeostasis through the 

regulation of several types of calcium channels [284, 289]. (5) Mammalian 

spermatogenesis is temperature sensitive. In rats the exposure of the testis to 

temperatures >37°C results in increased death of germ cells [290]. Herrera and 

colleges [291] showed a connections between temperatures and intracellular Ca
2+

 

homeostasis in rat pachytene spermatocytes and round spermatids. In neurons, 

nAChRs activation can play a relevant role in Ca
2+

 homeostasis [162].  

Within the testis parenchyma the nAChR-subunits α7 and α4 show the highest mRNA 

expression level and therefore their influence in calcium dependent processes is 

possible. Beside the known influence on sperm motility subunits α7 and α4 and their 
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corresponding receptors may be involved in acrosome reaction or the response to 

temperature. The participation of receptors containing other subunits with similar 

characteristics such as α9 or α5 can not be excluded. Both receptor subunits are able 

to increase the calcium permeability, if they are co-expression with other subunits.  

 

13.2.2. Presence of nAChRs in PTC, SC and TM   

 

The mRNA expression profiles for the analysed cell populations namely TM, PTC 

and SC are more inhomogeneous compared to the mRNA expression profile for the 

TP.  

 

Testicular macrophages demonstrated the highest variability in the relative mRNA 

expression of nAChR α-subunits. All or most samples expressed mRNA for α2, α4, 

α5, α6, α7, α9 and α10. The α3-subunit was absent in 4 of 6 samples. In contrast to 

PTC and SC only the mRNA for β3 was expressed in all TM-samples. mRNAs for β1, 

β2 and β4 were detectable only in 1 to 3 out of 6 samples. β3 is reported to be co-

expressed with α6 in the CNS [275], which form functional nAChR in the brain [185]. 

In fact, the genes for α6 and β3, CHRNA6 and CHRNB3, are located closely on 

chromosome 8 (8p11.21 and 8p11.2, respectively), and it is possible that they share a 

common regulatory mechanism. Considering these findings, disregarding β4 from the 

calculations and putting less emphasis on the low expressed α3 the nAChR-

compositions mainly contain subunits α2, α4, α5, α6, α7, α9, α10 and β3. Subunits α2, 

α4, α5, α6, β2 and β4 usually form hetero-pentamers with each other. Excluding α3, 

β2 and β4 from the calculation, as their expression was not found to be consistent, 

reduces the nAChR combinations to: α7, α5α7β, α9 and α9α10. Considering β2 and 

α3 the following AChR combinations can be included: α4β2, α3β2 ± α5, α4α5β2, 

α5α6β2, α6β2β3, α4α5α6β2 and α4α6β2β3. It was reported that α6 and β3 are co-

expressed [275], and that they are able to form functional α6β3 nAChR [115]. On the 

other hand  it was described that β3 can only form functional channels, when it is co-

expressed with both α and β subunits [156, 162]. Thus the nAChR combinations 

α6β3, α3β3 and α7β3 seem to be controversial. 
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An interesting observation is the presence of both, subunits α4 and α7, in TM. Until 

now, most studies reported the presence of α4 and the absence of α7 in macrophage 

subpopulations such as mouse alveolar macrophage (AM) cell line MH-S, AM of 

FVB mice, rat AM, macrophages from the gut and peritoneal macrophages [122, 308-

310]. However, Wang et al. [56] demonstrated the mRNA expression of α7 in human 

monocyte-derived macrophages. These previous data and the finding in this study 

might lead to the proposal of species-specific differences and even tissue specific 

differences within the same species for the nAChR-mRNA expression profile in 

macrophages [308]. Variations in the expression-level of other molecules such as 

cytokines (IL-1 and TNFα) or cell surface proteins (receptors, CD) have been 

described for macrophages in liver, lung and peritoneum [305, 306, 311]. TM and 

peritoneal macrophages (PM) feature differences in the mRNA expression level of 

TLRs [304]. Similar results could be observed for AM, PM and intestinal 

macrophages (IM). CD14, TLR4, MD2, iNOS, TNFa and iNOS displayed cell-

specific mRNA expression profils in absence or presence of LPS [302, 303]. 

Differentiation of adipose tissue macrophages (ATM) in adipose (F4/80
+
CD11c

+
) and 

normal mice (F4/80
+
CD11c

-
) results in modified subsequent gene expression of IL-6, 

iNOS and ApoE [307].  

Additionally, subunits α9 and α10 were found in rat AM, human lymphocytes and 

AM of FVB mice [277, 308, 310, 312], where they may compensate the function of 

the missing α7 subunit resulting from general pharmacological properties shared 

between α7, α9 and α10 nAChR subunits [308, 313].          

  

Analysed peritubular cell samples did not show any expression of α3 and α2, α9 and 

α10 could only be detected in 50% or less of the samples. Resulting from these 

findings, the main subunits in PTC, which could assemble to nAChR pentamers are 

α4, α5, α6 and α7 in combination with β2, β3 and β4. Possible combinations of 

nAChR are therefore: α4β2, α4β4, α6β2, α6β4, α4α5β2, α5α6β2, α6β2β3, α6β3β4, 

α4α5α6β2, α4β2β3β4, α4α6β2β3, α7β2β3, α7 and α5α7β. Several laboratories have 

described the presence of nAChR subunits mainly without reporting specific nAChR-

combinations [292]. The following combinations have been shown before: α4β2 and 

α4β4 in airway and bronchial epithelial cells [293] and α7 in human epithelial cells, 

vascular endothelial cells or HUVECS [54, 118]. As mentioned before nAChR-
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subunit α5 is usually co-assembled with α3, α4, β2, or β4 to form various nAChR 

subtypes [174, 275]. In PTC α3 is not detectable. Therefore, α5 most likely assembles 

to α4α5β2 ± α6. However, other combinations are also possible. 

 

In comparison to PTC and TM the lowest number of nAChR α-subunits was found in 

Sertoli cells. mRNA was not detectable for α3, α4, α6. For subunits α2 and α9 mRNA 

were found in 2/4 and 3/5 analysed samples. Subtracting the missing subunits from 

known receptor-compositions only a few nAChR are possible, which mainly contain 

the subunits α7, α9 and α10 in combination with α5 and β2-β4. Possible combinations 

of nAChR are therefore: α7, α7β2, α5α7β, α9 and α9α10. nAChR combinations 

described before are: α7 in airway- and bronchial epithelial cells or keratinocytes 

[294, 295], α7β2 in an in vitro experiment with Xenopus oocytes [166] and α9α10 in 

human lymphocytes [170, 296].  

The function of SC is the physical support of germ cells and the provision of essential 

nutrients and growth factors [297, 298]. Additionally, they form tight junctions  

(ZO-1, connexin) between each other, which restrict the passage of molecules (blood-

testis-barrier) [22, 23]. nAChR may be involved in function of the blood-testis barrier. 

Bovine brain microvascular endothelial cells demonstrate a characteristic expression 

pattern for the nAChR subunits α3, α5, α7, β2, β3 and the absence of α4 [299]. In 

addition they showed nicotine-dependent changes in the expression profile for the 

subunits α7 and β2. Stimulation of nAChR using nicotine altered the blood-brain 

barrier permeability and tight-junctional protein expression of the zona occludens 

protein, ZO-1 [300, 301]. Concluding these findings and the presence of nAChR-

subunits in SC might indicate an involvement of the ACh-system in the regulation of 

the blood-testis-barrier and Seroli cell-germ cell contacts. 

 

13.3. MRs are present within the testis   

 

13.3.1. Presence of MRs in testicular parenchyma and -capsule  

 

In this study the relative mRNA expression level was analysed in both: (1) the 

testicular parenchyma (TP), which mainly consists of germ cells, SC, PTC, Leydig 

cells and immune cells; and (2) the testicular capsule (TC), which contains mainly 
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fibroblasts, collagen fibres and contractile cells such as smooth muscle cells. The 

presence of all five MR-subtypes could be demonstrated in both tissues. The relative 

mRNA expression profiles in TP had a rank order of M4R > M3R > M5R > M1R > 

M2R and in TC the rank order was M2R > M4R > M3R > M1R > M5R. All MR 

subtypes except M5R were significantly different expressed between the two analysed 

tissues TP and TC. All five MR subtypes are G-protein-coupled transmembrane 

receptor proteins. Sequence homologies between the family members are reflected in 

similar functions [208]. The “odd-numbered” muscarinic receptors (M1R, M3R and 

M5R) typically couple via α-subunits to the Gq/11 family, whereas the “even-

numbered” members (M2R & M4R) couple via Gi and Go α-subunits.  

 

Within the capsule mRNA for the even numbered MR subtypes are expressed at 

higher levels while the odd-numbered MR subtypes are expressed at lower levels. 

Overall M2R was the main receptor subtype mRNA within TC. As mentioned before 

fibroblasts and smooth muscle cells are an essential part in the capsule. Both, 

fibroblasts and smooth muscle cells have been shown to express several MR subtypes 

with high mRNA levels rates for M2R [314-316]. Human lung fibroblasts express 

most MRs with dominance on M2R. The stimulation of MRs leads to increased 

proliferation of these cells [317]. Airway smooth muscles cells express mainly M2R 

and M3R subunits, the former being the predominant population [318, 319].  ACh-

binding to M2R and M3R modifies the expression of contractile proteins and induces 

an increased mitogenic effect as response to growth factors in airway smooth muscle 

cells  [319]. Within the group of odd-numbered MR, M3R shows the highest mRNA 

expression level in TC. This might indicate similar functions for MR subtypes within 

TC.  

   

In parenchyma the separation of the two groups, odd and even numbered MR, does 

not exist. Here, M4R shows the highest and M2R the lowest mRNA expression level. 

Comparable with TC, M3R had the highest mRNA expression level within the odd-

numbered MR. Based on the heterogeneity of the subtype expression within the tissue 

it is not possible to conclude a function. Except for the MR-subtype expression-

profile of Sertoli cells and sperm no other data have been presented for single cell 

populations within the TP. In 2001 Borges et al. described the presence of all five MR 
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subtypes in Sertoli cells of 30 days old rats and suggested a role in cell proliferation 

[236]. Muscarinic receptors were found mainly in the sperm head regions of several 

species including human sperm [227] or rabbit spermatozoa by binding-experiments 

using the muscarinic antagonist quinuclidinyl benzilate [320]. The localisation of MR 

in sperm heads may be correlated to a role in sperm-egg interaction [227]. 

 

13.3.2. Presence of MRs in PTC, SC and TM   

 

Additionally to the real-time RT-PCR for TP, standard RT-PCR was performed with 

isolated PTC, SC and TM. The mRNA expression level for MR-subtypes in SC 

showed corresponding result to these presented from Borger et al. [235]. All five MR 

subtypes were found in Sertoli cells. MRs are supposed to mediate proliferation and 

differentiation in embryonic cells, dorsal root ganglia and Schwann cells [221, 321]. 

Sertoli cells proliferate during prepubertal development, but stoped dividing when the 

the first meiotic germ cells appears. This process could be mediated by MRs.    

 

In contrast to SC and PTC, testicular macrophages showed variations in the mRNA 

expression level of MR-subtypes. Except M1R, which was always present, the 

presence of M2R-M5R varied. Variability of MR mRNAs was described between 

mesenteric-lymph-nodes containing monocytes, B- and T-cells of different 

individuals by Kawashima & Fujii [218]. They showed the constant expression for 

M4R and M5R mRNAs and variations for M1R to M3R. Macrophage populations in 

other species express mRNA for MR-subtypes too, such as mouse peritoneal 

macrophages (M1R-M5R) or human airways macrophages (M2R & M3R) [253, 341]. 

Therefore it may be suggested that the expression of MR-subtypes in macrophage 

subpopulations is dependend on the environment. Furthermore, Kawashima et al. 

[218] described variations in the mRNA expression of M1R, M2R and M3R in 

lymphocytes between human test subjects.  

 

Peritubular cellss are contractile cells, which can be characterized using smooth 

muscle-specific antibodies. PTCs isolated in this study expressed mRNA for all five 

MR. Siu and colleges described the presence of M3R in PTC [322].  
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Several organs and tissues contain smooth muscle cells, which have been analysed on 

the presence of MR-subtypes such as airway- or bronchial cells, detrusor cells in the 

bladder or vascular cells within blood vessels [318, 323-327]. Nevertheless functional 

studies are problematic due to the paucity of pharmacologically subtype-specific 

antagonists [206]. In canine saphenous veins the M1R-subtype is supposed to mediate 

cell contractions [328-330]. The contraction of the guinea-pig ileum and indeed of 

many other smooth muscle cell types is mediated by MR-subtypes. Contractions are 

supposed to be mediated by M3R [212], whereas M2R is most likely its antagonist 

[316, 331, 332]. Other studies indicated, that the M3-receptor meditates relaxation of 

vascular smooth muscle cells [225, 333, 334].  

Within the testis the presence of MR-subtypes was also found in correlation with 

contractile elements. mRNAs for MR-subtypes were detected in the vas deferens of 

dog, human, guinea pig and rat [335-339]. Known functions of the MR-subtypes 

depend on the species and tissue. In guinea-pig, the M3R potentiates P2X receptor-

mediated contractions [338], whereas the rabbit M1R inhibited the contractile 

response of the vas deferens [339]. Rat epididymis and efferent ductules contained 

mRNA for M1R, M2R and M3R with PTC positive just for M3R [237, 322].  

Overall, former data showed a co-expression of M2R and M3R in many types of 

smooth muscle cells such as in urinary bladder, vascular and airway tissue with the 

main focus on M2R [316, 340]. M2R and M3R are the main players for cell 

contraction. Similar functions can be suggested for PTC.  

 

13.4. Similarities of the cholinergic system in mouse and rat testes 

 

Molecules necessary to synthesize and release ACh and MR-subtypes were analysed 

for mouse testicular parenchyma and -capsule. Overall, mRNA expression for MR- 

subtypes in mouse showed a similar pattern as seen in rats, with the exceptions that 

subtypes showing the highest significant differences between TP and TC are M2R in 

rats and M3R in mice. A high amount of M4R-mRNA was found in both tissues in rat 

and mouse, implying a relevance of this subtype. Unfortunately, the function of the 

M4R in non-neuronal cells is largely unknown with one exception in keratinocytes, 

where M4R facilitated migration and wound reepithelialisation [342].  
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A different picture was observed for the mRNA expression profile of ChAT, VAChT, 

OCT2 and ChT1 in mice. While in rats ChAT and ChT1 were the predominant 

molecules, the relative expression values for VAChT and OCT2 were higher in mice. 

Currently, it is not possible to determine the location of these molecules in mice in 

detail. This question might be answered performing immunohistochemical 

experiments, analysis of isolated cell populations or the usage of knockout mice. 

Species specific differences (mouse vs. rat) were demonstrated by Lips et al. for the 

lung previously [126]. Both species were challenged with ovalbumin (OVA) and 

mRNA expression for ChT1, VAChT, OCT2 and ChAT was compared to control 

animals. In rats a time dependent down-regulation was observed after 24 h (ChAT & 

OCT2) and 48 h (ChT1, VAChT and OCT2), whereas ChAT, ChT1, VAChT and 

OCT2 were not detectable in the mouse lung after 24 h. These data indicate a similar 

tendency (mRNA down-regulation after OVA) in mice and rats, but there are slight 

differences between the targets and the intensity of the down-regulation [126].  

 

13.5. The function of the cholinergic system in EAO  

 

Within recent years the close relationship between CNS and the immune system was 

more and more established. The CNS is able to induce the rise of the serum 

corticosteroid concentration to prevent the development of lethal systemic 

inflammation [49, 50]. The excessive production of pro-inflammatory cytokines such 

as HMGB1, TNF-α or IL-1ß and their release into the circulation can be more harmful 

than the initial inflammation itself and might result in tissue injury, systemic 

inflammation, shock or death [51-54]. The neural inhibition of inflammation is 

supposed to be mediated by the vagus nerve, whose stimulation can control the 

production of pro-inflammatory cytokines in experimental models of systemic 

inflammation such as lethal endotoxemia [55-57], allergic lung inflammation [126, 

343] or sepsis [57, 344, 345]. The principle neurotransmitter of the vagus nerve is 

ACh, therefore this system was termed the “cholinergic anti-inflammatory pathway” 

[55]. In this study, the rodent in-vivo model of experimental autoimmune orchitis 

(EAO) was used to examine the response of the cholinergic system in testicular 

inflammation.  
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Local testicular inflammation induced massive changes in the mRNA expression 

profile for a number of nAChR subunits, ACh synthesis, storage molecules and MR. 

All mRNAs were down-regulated under inflammatory conditions. In comparison 

between adjuvant group and orchitis groups the following molecules showed 

significant reduced relative mRNA expression levels: nAChR subunits α3, α4, α5, α7, 

α10, β2 and β3; MR subtypes 4 and 5; ChAT, ChT1 and OCT2.  

In addition, there were significant difference between mRNAs of untreated and 

adjuvant groups for α10, M4R and OCT2. In these three cases treatment with 

complete Freund‟s adjuvant (CFA) lead to significant higher mRNA expression 

levels. The stimulation of the immune system by CFA is a known effect. Animals 

treated with CFA and testis homogenate demonstrated mRNA down-regulation 

compared to animals treated only with CFA. OCT2 and the α10 nAChR subunit did 

not show any mRNA down-regulation between untreated and orchitis group, an 

observation which could be made for M4R.  

 

Molecules involved in ACh synthesis, release, binding and up-take were up- and 

down-regulated under different inflammatory conditions. In a rat model of acute 

allergic-airway-disease, mRNA levels for ChAT, ChT1, VAChT and OCT2 were 

decreased in the group of allergen challenged animals. Interestingly changes in ChAT 

and OCT2 mRNA expression occurred within 24 h, whereas VAChT and ChT1 were 

significantly down-regulated after 48 h. At the second time-point ChAT started 

already to return to its normal level [126]. In superficial skin of patients with atopic 

dermatitis ACh levels were increased 14-fold in comparison to healthy skin [346], a 

later study described the parallel down-regulation of nAChR subunits α3, α7, α9 and 

α10 in the skin of patients suffering of atopic dermatitis and the up-regulation of 

subunits α3 and α5 in mast cells in these patients [347]. In this study the analysed 

targets, if changed at all, were down-regulated on mRNA level. Short term 

experiments exposing the transcriptional level in the acute phase have not yet 

performed. A transient up-regulation of the ACh-related molecules in the acute phase 

of EAO, which would be 24 to 48 h after the immunisation, cannot be excluded but at 

the final stage of orchitis “cholinergic” mRNAs seem to be down regulated.   
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Previous studies analysing the role of the “cholinergic anti-inflammatory pathway” 

mainly focused on the α7 nAChR subunit, which abrogates the endotoxin-mediated 

rise of pro-inflammatory cytokines by stimulating cells directly (ACh or nicotine) or 

indirectly (electric impulses) via the vagus nerve [55, 56, 344, 348, 349]. Experiments 

on single cell-populations were performed on macrophages of different tissues and 

species, but without analysing the entire mRNA expression profile for nAChR 

subunits [55, 56, 348]. As mentioned above, macrophage subpopulations express 

different expression profiles for nAChR subunits (13.2.) with characteristic variability 

for the subunits α4 and α7. Recently, one former statement, the α7-mediated TNF-α 

inhibition after ACh stimulation in peritoneal macrophages (PM), was challenged by 

the presence of α4 and the absence of α7 in PM [122]. Furthermore, Kelso et al. 

described an unexpected α-Btx-binding in α7
-/-

 knockout mice [350]. Resulting from 

these findings it is possible that receptor subunits that would include α7, α1 or α9 

compensate each other because they can all be a target for α-Btx [157, 351].  

In this study, several nAChR receptor subunits and MR subtypes are present in the 

healthy and inflamed rat testis, which makes an exact implementation of the main 

receptor subunit or subtype impossible. The main outcome of the “cholinergic anti-

inflammatory pathway” is, that the expression and release of pro-inflammatory 

molecules such as TNF-α are inhibited by the activation of nAChR such as α7  

[56, 57]. In this study, the ACh related molecules were mostly down regulated. Cells 

within the inflamed testis do not transcribe the same amount of mRNAs suggesting 

that ACh-synthesis is impaired compared to the healthy testis.  

This implies that ACh cannot function with the same intensity as usually and the 

expression of cytokines such as TNF-α or HMGB1 might not be suppressed as 

necessary. Unfortunately, previous studies, which analysed the function of α7 in the 

presence or absence of endotoxin, missed to determine the mRNA expression levels. 

This would lighten the question about the α7 mRNA level under normal and inflamed 

conditions.  

However, it has to be considered that the reduction in relative mRNA expression 

levels of molecules related to ACh-synthesis, -release and -binding may be related to 

the loss of germ cells. As the disease progresses a characteristic of EAO is the 

detachment and loss of developing germ cells, which finally results in the total 

impairment of spermatogenesis [60, 64]. Whilst germ cells are lost, mononuclear cells 
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infiltrate into the interstitial space largely increasing the percentage of inflammatory 

cells within the testis [64]. Therefore estimation about the regulation of the genes in 

individual cell populations is difficult. Nevertheless, the nAChR subunits α4 and α7 

are expressed predominantly in SC, TM, PTC, spermatogonia and Leydig cells, 

whereas ChAT, ChT1, VAChT and OCT2 are more present in pachytene 

spermatocytes and round spermatids (thesis Iris Eckhardt, data in Schirmer et al., 

414). Therefore, the absence of spermatids, which express ChT1, VAChT, OCT2 and 

ChAT, might be related to the lower expression of subunits in orchitis. The presence 

α4 and α7 in non-germ cells and early germ call stages leads to the suggestion that the 

low expression of α4 and α7 subunits is related rather to a down-regulation than to the 

loss of cells. 

 

13.6. Functional evidence for ACh receptors in testicular cells  

 

Calcium, an important messenger molecule within cells, has a concentration of app. 

100 nM in resting cells. Increasing calcium concentrations (500-1000 nM derived 

either from the external medium or from internal stores) lead to cell activation [352]. 

Calcium influx from external space is mediated by different types of receptors such as 

ligand-specific-nicotinic and muscarinic AChR.  

nAChRs are permeable for cations (Ca
2+

, Na
+
, K

+
 and Mg

2+
). The composition of the 

subunits determines the preference for the type of cation [198, 199]. nAChR 

containing subunit α7 (as homo- or heteropentamere), or α9 and α10 show high 

permeability for Ca
2+ 

[156, 165, 200]. MRs are G-protein coupled-proteins, which can 

be divided into two groups: (1) M1R, M3R and M5R are coupled to subunit Gαq, 

which activates PLC-β. The down-steam product of PCL-β, IP3, binds to intracellular 

calcium-stores and releases Ca
2+

 into the cytosol; (2) M2R and M4R activate Gαi, 

which results in a decreasing cAMP formation and a decreasing concentration of 

protein kinases A (PKA) [223, 224, 226]. PKs mediate gene transcription via the 

modulation of transcription factors such as cAMP response element-binding protein 

(CREB). 

 

As mentioned before, TP and isolated testicular cell populations (PTC, SC and TM) 

do express mRNA for several nAChR subunits and MR-subtypes, but the detection of 
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related receptor proteins was not possible due to the absence of commercially 

available subunit- or subtype-specific antisera [246, 247]. However, receptor 

functionality can be analysed by live-cell essays such as calcium-imaging, where 

changes in intracellular Ca
2+

-concentrations are measured. To investigate the presence 

of functional nAChR receptors and MR-subtypes in individual testicular cells, 

calcium-imaging experiments were performed using PTC, SC and TM.  

 

All three cell types were used previously to measure intracellular calcium 

concentrations, but not with respect to ACh receptor activation. PTC treated with the 

proteinase-activated receptor-2 activating peptide (PAR2) showed an increase of 

intracellular Ca
2+

, which was blocked by the PAR2-reverse peptide [353]. SCs do 

express TRPV1 and the intracellular Ca
2+

 concentration rose after stimulation with 

capsaicin. This could be blocked by the capsaicin-antagonist ruthenium red [354]. 

Furthermore, extracellular ATP triggers both Ca
2+

 release from intracellular stores 

and Ca
2+

 influx from extracellular space [355]. In testicular macrophages melatonin 

elicits a rapid and sustained increase in [Ca
2+

]i in the presence of extracellular Ca
2+

 

[356]. 

 

13.6.1. PTCs express neuronal-like muscarinic receptors 

 

Stimulation with ACh, the endogenous agonist for both, nAChR and MR, resulted in 

a Ca
2+

-influx in PTC. Further investigations showed that MR, but not nAChR are 

responsible for the response to ACh and muscarine in PTC. Treatment of PTC with 

either muscarine or ACh resulted in a similar Ca
2+

-response in about 50% of the 

analysed cells (ACh: 56.6%; muscarine: 49.6%). A subpopulations of these cells 

(ACh: 12.7%; muscarine: 15.2%) could be characterised by a significantly higher 

response (30%) than the cell-average, but almost no response to the following ATP-

treatment. These ACh or muscarine- responses were absent in presence of the 

muscarinic receptor-antagonist atropine. The experiments demonstrate the presence of 

functional neuronal-like MRs in PTCs.  

 

The preference of the MR-subtypes to bind a specific GPCR α-subunit might lead to 

the constriction to M1R, M3R and M5R, which are able to initiate the release of Ca
2+
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from internal stores via PLCβ and IP3 [223, 224, 226]. To confirm this hypothesis 

PTC could be treated with muscarine in the absence of extracellular calcium, which 

should result in the same rapid spike as seen in this study for the muscarine-treatment 

in a calcium-containing environment. Nevertheless, the involvement of M2R or M4R 

cannot be excluded because of their indirect connection to calcium-channels. M2R can 

influence K
+
-channels which subsequently result in an increased intracellular Ca

2+
-

concentration (calcium-activated potassium channel). In contrast to PTC, acute 

activation of ACh receptors via acetylcholine, nicotine and muscarine did not result in 

changes in [Ca
2+

]i in SC or TM.  

  

Although mRNAs for all MR-subtypes were detected in PTC, the observation of 

muscarine-responding and non-responding cells leads to the suggestion of PTC 

subpopulations within the rat testis. Previous data support the existence of 

subpopulations within PTC. The layer of so-called "peritubular cells" is a 

heterogeneous cell-population surrounding the seminiferous tubules and consists of 

myoid cells covered by non-myoid cells such as fibroblasts or endothelial cells [25, 

357-360]. The ratio of the different cell populations in vitro is dependent on the 

preparation [359, 360] mostly done by enzymatic treatment including collagenase [25, 

359-361]. Beside a non-clear use of the terminology PTC or myoid PTC (mPTC), the 

ratio of PTC vs. mPTC in vivo is unknown.  

Isoactin is supposed to be a trustable differentiation marker between mPTC, PTC and 

cells within the tubules [362-364]. The staining intensity of reactive mPTCs in the 

same preparation varied considerably, which indicates a heterogeneity in degrees of 

spreading, in cell maturity or in subpopulations [362]. Further investigations showed 

that mPTC are partly positive for desmin [28, 362, 363], while another population 

reveals desmin negative [25, 359, 362]. Desmin positive mPTC are alkaline 

phosphatase (AP) positive [25, 359, 365, 366]. Unfortunately, there is no data 

available unifying a multiple-immunohistohemical-staining for desmin, isolectin and 

AP. In this study, the purity of mPTC-enriched cultures was determined to app. 98% 

by IHC with anti-α-SMA, achieved most probable by long time culture (9 days) and 

splitting of the cells. Tung & Fritz already mentioned an increased purity of mPTC if 

cultured 10 days in the presence of 10% FCS [362]. Detection of desmin-protein and 

AP were not performed in this study, but could help to determine PTC subpopulations 
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in addition to functional differentiation (responding and non-responding to 

muscarine). The presence of different populations of smooth muscle cells have been 

described in the pig and rat artery. The stimulation with substances such as PDGF or 

TGFβ2 influenced the differentiation into smooth muscle cell subpopulations in both 

species [367, 368].   

 

13.6.2. ATP-induced Ca
2+

-influx is influenced by ACh or -agonists  

 

Cells respond on ATP or KCl with an increase in intracellular Ca
2+

-concentration. 

This can be used to confirm the viability of cells. In this study ATP was utilized, 

which resulted in a Ca
2+

-influx in all cells of the three cell populations.  

 

This ATP-dependent increase of the Ca
2+

-concentration was reported previously for 

neuronal [369, 370] and non-neuronal cells such as alveolar macrophages [371], 

cochlear outer hair cells [372], Xenopus oocytes [370] or HEK-293 cells [369]. ATP 

is able to induce Ca
2+

-transients by binding to members of the receptor families P2X 

or P2Y [373]. ATP binds specifically to the transmitter-gated cation P2X channel-

subtypes and GPCR-P2Y-subtypes 1, 11, 12 and 13 [374-380]. The ATP-mediated 

Ca
2+

-response between PTC, SC and TM was different with respect to the response 

time. While there is a short rapid spike in PTC, the initial fast peak is followed by a 

long lasting plateau in SC. In TM the fast increase is followed by a slower decreasing 

Ca
2+

-concentration. 

 In rat SC it was previously reported that ATP is able to trigger the synthesis of PI3 

and the Ca
2+

-release from intracellular stores, but also a Ca
2+

-influx across the plasma 

membrane [355]. Foresta et al., focusing on the ATP-induced intracellular changes, 

demonstrated a sustained [Ca
2+

]i plateau following the initial fast [Ca
2+

]i transient 

[381]. This Ca
2+

-influx from the extracellular space was triggered by voltage-gated 

Ca
2+

-channels (VOCCs), which were activated by Na
+
-mediated membrane-

depolarisation. Both inhibition of VOCCs and reduction of extracellular Na
+
 reduced 

the plateau after the initial peak. These observations suggest more than one ATP-

mediated signalling pathway in SC.   

Both release mechanism, via P2X or P2Y seem to be possible for the observed slowly 

decreasing [Ca
2+

]i in TM, which could be the result of continuous influx of Ca
2+

 into 
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the cytoplasm. The sharper peak in PTC implies a Ca
2+

-influx from either internal 

stores or extracellular space. Cytoplasmic increase in Ca
2+

 can activate multiple 

downstream pathways. During this on-phase, Ca
2+

-binding proteins such as buffer 

(calbindin D-28, calnexin) or effectors (calmodulin) attach to Ca
2+

 and therefore 

influence the free Ca
2+

-concentration [382]. Various pumps and exchangers [383] 

remove Ca
2+

 from the cytoplasm, which starts the off-mechanism, until reaching the 

homeostatic level. Differences in the activity of pumps and exchangers might be 

another possible reason for the fast decreasing [Ca
2+

]i in PTC or the slowly decreasing 

[Ca
2+

]i in TM. Here further investigations are necessary to analyse the underlying 

signalling pathways.  

 

Although, SC and TM did not show any direct response on nicotine, muscarine or 

ACh an indirect receptor-dependent modulation could be observed for the following 

ATP treatment. The stimulation of SC or TM with both, nicotine and ACh, reduced 

the ATP-induced Ca
2+

-response. The time-course of the response to ATP was 

different in SC and TM. In TM the initial peaks in the ATP-induced Ca
2+

-response 

between the HEPES, ACh and nicotine treated groups were similar. Significant 

differences occurred over time in TM, whereas in SC the divergence between the 

ACh-, nicotine- and control-treated groups is significant during the initial spike and 

all three groups converged into the same long lasting plateau. Interestingly, muscarine 

did not reduce the ATP-induced Ca
2+

-response in SC as seen for TM, where the 

course of the curve was almost identical to the nicotine-treated group. In SC 

muscarine resulted in a significant increased ATP-induced Ca
2+

-response compared to 

the control group, with an additional second plateau-like peak over time (Fig. 38). 

This suggests the successive release of internal Ca
2+

 followed by entry of Ca
2+

 from 

extracellular space. It seems that the activation of MRs and nAChRs in SC has an 

opposite effect on the ATP-induced Ca
2+

-response (Fig. 38). In PTC ATP-triggered 

changes in [Ca
2+

]i dependent on ACh, nicotine or muscarine were not observed.  

 

Taking together, the ATP-induced Ca
2+

 -responses initiated by ACh, nicotine or 

muscarine stimulation seems to be mediated by different signalling pathways in SC, 

whereas there seems only one ACh-dependent response in TM. The ACh-dependent 

modulation of the ATP signalling was cell-type dependent since stimulation of MR 



Discussion 

124 

 

and nAChR did not influence the ATP-induced Ca
2+

 -responses in PTC.  

 

The findings observed in the experiments with PTC, SC and TM can be summarised 

in the following way: (1) PTC expressed functional MR subtypes, that mediated the 

rise in intracellular Ca
2+

 in response to ACh and muscarine; (2) SC and TM did not 

respond directly to muscarine; (3) nAChR expressed in PTC, SC and TM did not 

induce a depolarisation-dependent increase in Ca
2+

 and thus not act in a neuronal-like 

way. Similar results were reported for human lymphocytes, rat leukocytes and rat 

alveolar macrophages [248, 296, 384]. Patch clamp recordings and calcium-imaging 

experiments with cells stimulated with nicotine did not result in any change of the 

intracellular Ca
2+

-concentration, whereas the pre-treatment with nicotine reduced the 

Ca
2+

-concentration in the analysed cells [248, 296, 308]. However, (4) the influence 

of muscarine/nicotine/ACh on the ATP-induced Ca
2+

-response in SC and TM implies 

a connection or crosstalk between nAChRs and members of the ATP-receptor 

families P2X and/or P2Y.  

Evidence for close relationships between nAChRs and other molecules have been 

described already, such as: (a) the association of nAChR-subunits α3, α4 and α5 with 

PI3K [385]; (b) the assembly of nAChR-subunit α7 with β-arrestin [294] or (c) the 

connection of nAChR-subunit α7 with the T-cell receptor (CD3δ) to modulate the 

TCR/CD3 function [386].  

 

A connection or relationship between MR-subtypes and other receptors or molecules 

were not yet reported. Therefore this study indicates for the first time a crosstalk 

between MR and ATP-receptors but cannot be excluded as the present data 

demonstrate.  

13.6.3. Nicotinic antagonists modulate the ATP-induced Ca
2+

-influx in SC  

 

Nicotine or muscarine specific-antagonists usually abolish nicotine- or muscarine-

induced responses, but there are known unexpected or opposite examples such as  

(1) the inhibition of α9α10 nAChR by the muscarinic receptor-antagonist atropine in 

lymphocytes [296]; (2) the stimulation of nAChRs by nAChR-antagonists MLA and 

α-BTX in T-cells or AM [308, 386] or (3) the ATP-triggered rise in [Ca
2+

]i by MLA 
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in leucocytes [248]. Here, the influence of nicotinic-antagonists MLA, DHβE and 

mecamylamine (Meca) on the ATP-induced rise of [Ca
2+

]i was analysed in SC.  

 

The interpretation of the data achieved from this experiment is difficult, because of 

significant differences within all analysed groups. At neuronal-like nAChRs the non-

selective-nAChR-antagonist Meca blocks nicotine effectively. Conveying this 

information to this study and implying a connection between the nAChR and the 

P2X/Y receptor, the ATP-induced Ca
2+

-response should rise back to the same level 

for the Meca & nicotine treated group as seen for the HEPES group. But this is not the 

case in this study, caused probably by the missing neuronal-like behaviour of the 

nAChRs found in non-neuronal cells such as leukocytes, lymphocytes or 

macrophages [248, 296, 308]. A tendency which fits this theory was observed, 

although there was still a significant difference between the Meca & nicotine and 

HEPES group. The antagonist DHβE, which blocks α4β2, but also other nAChR  

α-subunits smaller than α7 shows a similar profile as seen for Meca. The treatment 

with Meca or DHβE alone or in combination with nicotine increased the ATP-induced 

Ca
2+

-response compared to the control group. nAChR-subunits α3, α4 and α6 could 

not be detected with standard RT-PCR, which makes α5 and α2 to the most promising 

candidate for the binding of DHβE.        

Only for the treatment with MLA, an inhibitor for subunits α7, α9 and α10 [387], 

divergent results were observed. Here, the pre-treatment with MLA and additional 

treatment with nicotine showed the same (P = 0.854) ATP-induced Ca
2+

-response as 

seen for the group treated with nicotine alone. Interestingly, cells incubated only with 

MLA diminished the ATP-induced Ca
2+

-response as seen for the cell group treated 

with nicotine alone. These findings indicate that both, nicotine and MLA are able to 

reduce the ATP-induced Ca
2+

-response and that the combination of both does not 

potentiate their actions.     

 

Previous studies reported the direct or indirect stimulation of MLA on different 

immune cells [248, 386]. Here, an opposite responds could be demonstrated, where 

MLA dampened the ATP-induced Ca
2+

-response. The presence of extracellular ATP 

is well recognised as “danger” or “host tissue damage” signal, which is mostly 

considered to be pro-inflammatory [388, 389]. The binding of nicotine or MLA to α7, 
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α9 and α10 reduces the ATP-induced Ca
2+

-response, which indicates an anti-

inflammatory reaction. These findings would support the anti-inflammatory influence 

of α7, which in case of stimulation by nicotine or ACh, inhibited the TNF-α 

production [249].  

 

14. Sensory innervation of testicular adjacent structures  

 

In mammals, efferent fibres innervate the testis using two main routes (1) via the 

superior spermatic nerve and testicular artery and (2) via the inferior spermatic nerve 

and vas deferens to the epididymis [12, 78, 390, 391]. Nerve fibres in mammalian 

testis are usually non-myelinated [392]. Nevertheless myelinated afferent fibres were 

found in the superior spermatic nerve of cats [393] and camels [101, 392]. 

Furthermore, myelinated and unmyelinated nerve fibres were found in dogs  

[394-397]. The detection of nociceptive nerve fibres within the testis and adjacent 

structures in rats was the main target of the experiments with special focus on CGRP 

containing fibres. Neuropeptides such as CGRP, substance P (SP) or somatostatin are 

released from central and peripheral terminals of nociceptive neurons [398-403]. In 

the spinal cord CGRP is believed to be associated with transmission and processing of 

noxious information, whereas in the periphery it seems to be responsible for 

neurogenic inflammation [404, 405]. Both known entering routes were analysed and 

nerve fibres were found in the fascia (internal & external fascia and cremaster 

muscle), vas deferens, superior- and inferior ligament (SL, IL) and the meso-

structures. Myelinated (Nf200+) and unmyelinated (Nf200-) CGRP containing fibres 

as well as myelinated CGRP negative fibres could be observed. Analysis of the 

testicular artery and pampiniform plexus was less successful resulting from 

preparation problems due to the enormous amount of adipose tissue around the blood 

vessel/plexus. However, the existence of nerve fibres travelling alongside the 

testicular artery was confirmed by PGP9.5 staining. Beside the testicular artery, the 

testicular capsule was examined with the pan-neuronal marker PGP9.5. Nevertheless, 

myelinated and unmyelinated nociceptive nerve fibres can be predicted as well in the 

capsule. SL and IL are supposed to be the entrance for nerve fibres into the capsule 

and therefore having the same neurochemical characteristics [12]. The density of 

nerve fibres within the capsule was not equally distributed. A dense innervation was 
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found at both poles of the testis with decreasing levels towards the equatorial region. 

A third “hot spot” was observed at the entrance of the pampiniform plexus with 

decreasing density in all directions (Fig. 53).  “Free nerve endings”, how the terminals 

of nociceptive nerve fibres were named [406], were observed in samples of SL and 

capsule (Fig. 49). Within the parenchyma no nerve fibres were detected, which 

confirmed the previously findings of Lundberg and Zhu [12, 67]. However, absence 

of nerve fibres in rat parenchyma might be an age dependent event as seen in pigs. 

Here, the density of testicular nerves changes from rich innervation in 3-5 weeks old 

piglets to absence of any intrinsic innervation in 2-3 years old adult boar [407]. 

Similar results were found for bulls & 25 weeks old calves and young & adult donkey 

[99, 100]. Rats used in this study have not been that old, but they already passed 

puberty.    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 53: Distribution of nerve fibres within the testicular capsule. 

A high nerve fibre density was observed at the entry sites of the testicular artery and the 

superior and inferior ligaments (ellipses). Nerve fibre density decreases from these places 

towards the “equatorial” region of the testis and the opposite site of the rete testis (triangle, 

arrow). 

 

 

14.1. Meso-structures show dense innervation of nociceptive nerve fibres  

 

Since no innervation is present in the testis of adult rats the reception and transmission 

of information to the CNS happens by the surrounding structures such as the TC. 
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Besides, the meso-structures are dense innervated. In contrast to former studies 

difference within the morphology of the meso-structures were observed.  

Zhu et al. described the bead-like arrangement of testis, epididymis and vas deferens, 

which are connected by meso-structures [12]. This could not be fully confirmed  

(Fig. 46B & C). The morphological differences might be caused by the usage of 

different rat strains. Zhu et al. used Sprague-Dawley rats for their studies, whereas 

Wistar rats were used in this study.  

Myelinated (Nf200+) and unmyelinated (Nf200-) CGRP containing fibres as well as 

myelinated CGRP negative fibres could be observed within the meso-structures. 

Other markers describing nociceptive neurons are molecules of the TRP-family, 

VGLuT1-3 or substance P. In this study, nerve fibres labelled positive for VGluT1 

and TRPV1 were detected in meso-structures. Glutamate is an important transmitter 

of nociceptive neurons stored in small synaptic vesicles [401-403]. Its uptake in these 

vesicles occurs actively by vesicular glutamate transporters. Furthermore, TRPV1 is 

found in sensory neurons with small diameter, which give rise to unmyelinated  

C-fibres [408, 409]. TRPV1 receptors are sensitive to heat, capsaicin and protons [73, 

408, 409]. mRNA was detected for TRPV1 (VR1) and TRPM8 (CMR1: cold and 

menthol sensitive receptor-1) in rat testis and prostate [89].  

 

14.2. Neurons of DRG L1 projecting to mesodeferens  

 

Data which were presented so far in mammals located DRG neurons in the lumbar (L) 

and sacral (S) region projecting to testicular structures. The rat scrotum is innervated 

by neurons of DRGs L5, L6 and S1 [410], whereas nerve fibres innervating the 

cremaster muscle in pigs originated from neurons in ipsi-lateral DRGs L2-L6 and  

S1-2 [411]. Innervation of rat vas deferens originates mainly from ipsi-lateral DRGs 

L1, L2, L6 & S1 and contra-lateral DRG L1 [97]. Similar findings were presented in 

dogs. Here CGRP positive nerve fibres within the SSN originate from DRGs L1 and 

L2 [405, 412]. 

In this study the meso-structures were brought into focus. These structures, which 

connect testis, epididymis, vas deferens and fascia to each other, show a dense 

innervation. For the tracing experiments the tissue between epididymis and vas 

deferens was chosen, which consists of two parts: mesodeferens I and II (Fig. 46C).  
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In two separate experiments, nerve fibres were identified, which projecting from ipsi-

lateral DRG L1 to the mesodeferens. The Ctx-labelled neurons within DRG L1 and 

the nerve fibres within the mesodeferens showed the same neurochemical 

characteristics. Although the examination of the multiple labelled DRG-neurons was 

done in two groups, cells with the combination CGRP+/Nf200-/IB4- seem to be the 

main subpopulation (app. 80%). Therefore, neurons should be peptidergic (CGRP) 

and their releasing nerve fibres should be thinly or unmyelinated (Aδ or C-fibres). 

Other subpopulations of neurons (both app. 17%) were peptidergic and myelinated 

(CGRP+/Nf200+) or unmyelinated (CGRP+/IB4+). Beside peptidergic nociceptive 

neurons (CGRP, substance P), there is another population of nociceptive neurons that 

lack any known peptides. These cells can be identified by binding to the lectin IB4. 

Although in mice IB4-containing neurons are completely distinct from those 

expressing CGRP or SP, some peptide-containing neurons are labelled by IB4 in rats 

[413]. This might explain the findings of cells positive for the peptide CGRP and 

additionally positive for IB4. Nerve fibre populations for both marker-combinations 

(CGRP+/IB4- and CGRP+/IB4+) were found in mesodeferens I & II, which supports 

these observations.       
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15. Summary 

 

The task of the mammalian testis is the production and controlled release of 

androgens and the development of germ cells. Impairment of these processes e.g. by 

trauma, inflammation or idiopathic reasons can result in sub- or infertility. Some of 

these insults can cause intense pain. Surprisingly, the innervation of the testis is not 

well characterised in spite of the presence of archetypical neurotransmitter such as 

acetylcholine (ACh). Of note, ACh has been shown to play an important role in many 

cellular processes including the male reproductive tract.  

Therefore, the aim of this project was to investigate if the presence of ACh is based 

on neuronal or non-neuronal origin and in case of the latter which cells would have 

the molecular components to synthesise and respond to ACh.  

 

Adjacent mesenteric tissue (meso) connecting testis, epididymis and vas deferens 

were isolated from Wistar Furth rats. Nerve fibres were detected using multiple 

labelling immunohistochemistry (IHC). Nf200-positive-labelled sensory nerve fibres 

within the meso-structures were identified positive for the known nociceptive markers 

CGRP, TRPV1, IB4 and VGluT1. Primary afferent innervation of the mesodeferens 

was examined using retrograde transport of Cholera toxin-B. Positive dorsal root 

ganglia neurons (DRG) were further analysed using IHC. Our data confirm the DRG 

lumbar 1 as major origin of nociceptive nerve fibres, which reach the testis via 

testicular artery or vas deferens. 

Due to the absence of nerve fibres within the rat testicular parenchyma (TP), a 

neuronal origin of ACh can be excluded. Thus, the presence of molecules related to 

the ACh-system were investigated within the TP and testicular capsule (TC) using 

qRT-PCR and subsequently for isolated testicular macrophages (TM), peritubular 

cells (PTC) and Sertoli cells (SC) using standard RT-PCR.  

The mRNA expression of ACh-receptors and molecules necessary for ACh 

synthesis (choline acetyltransferase, ChAT; high-affinity choline transporter-1, ChT1) 

and release (vesicular ACh transporter, VAChT; organic cation transporter, OCT2) 

were investigated in rat TP, TC and subsequently in TM, SC and PTC. Except for the 

absence of α6 and β4 in TP all analysed molecules of the ACh-system are present in 
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TC and TP. The presence of ChAT-, ChT1- and VAChT- mRNAs was supported by 

IHC. ChAT and α7 mRNAs were determined by in situ hybridisation.  

Most components of the cholinergic system were present in isolated testicular cells 

(TM, SC, PTC), but showed cell specific differences mainly in nAChR subunits. TM 

and SC were stimulated with nicotine and muscarine, which both did not reveal any 

change of the intracellular calcium concentration ([Ca
2+

]i). The MR-stimulation of 

PTC induced a rise in [Ca
2+

]i, whereas there was no response to nicotine. This 

metabotropic response in PTC as seen in neurons was blocked by the muscarinic-

antagonist atropine. However, nicotine and muscarine given 2 min prior to ATP 

significantly changed the agonist-induced rise of [Ca
2+

]i in SC and TM. These data 

demonstrate that TM and SC have nAChR and MR with functions distinct from the 

known neuronal-like ones.  

Based on the established role of the cholinergic anti-inflammatory pathway, the 

influence of the ACh-system was analysed in a chronic inflammatory model i.e. 

autoimmune orchitis. Samples from TP of 3 groups stimulated with saline buffer, 

Freund‟s adjuvant or testicular homogenate were analysed using qRT-PCR. The 

orchitis group showed a reduced mRNA expression profile for: α3- α5, α7, α10, β2, 

β3, M4R, M5R, ChAT, ChT1 and OCT2. No changes in the mRNA expression level 

were observed for α6, β1, β4, M1R-M3R and VAChT.     

 

Taken together, molecules necessary for synthesis, release, binding and uptake of 

ACh are present in rat testicular parenchyma and isolated testicular cells (TM, SC and 

PTC). Peritubular cells show neuronal-like activation via MR, whereas indirect 

influences on purinergic-receptor-signalling via signalling pathways distinct from the 

nervous system are demonstrated in TM and SC.  
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16. Zusammenfassung 

Die Hauptaufgaben des Säugerhodens sind Produktion und kontrollierte Abgabe von 

Hormonen sowie die Bildung von Keimzellen. Fehlfunktionen dieser Prozesse, wie 

z.B. Trauma, Entzündungen oder idiopathische Effekte, können zur teilweisen oder 

völligen Unfruchtbarkeit führen. Einige dieser Ursachen sind mit erheblichen 

Schmerzen verbunden. Überraschenderweise ist die Innervation des Hodens bezüglich 

der Anwesenheit von archetypischen Neurotransmittern wie Acetylcholin (ACh) nicht 

besonders gut charakterisiert. Die enorme Bedeutung von ACh für viele zelluläre 

Prozesse inkl. denen in den männlichen Reproduktionsorganen, wurde bereits gezeigt. 

Die vorliegende Studie hatte das Ziel festzustellen, inwieweit das vorhandene ACh im 

Hoden einen neuronalen oder nicht-neuronalen Ursprung hat. Im Falle eines nicht-

neuronalen Ursprungs sollten die Zellen identifiziert werden, welche Moleküle des 

ACh-Systems besitzen und auf ACh in funktioneller Weise reagieren.  

Das mesenteriale Gewebe (Meso-Strukturen), welches Hoden, Nebenhoden und 

Samenleiter miteinander verbindet, wurde aus Wistar Furth Ratten isoliert und die 

darin enthaltenen Nervenfasern immunohistochemisch nachgewiesen. Neben 

sensorischen Nervenfasern (Nf200 positiv) innerhalb der Meso-Strukturen konnten 

nozizeptive Nervenfaserpopulationen mittels CGRP, TRPV1, IB4 und VGluT1 

identifiziert werden. Primäre afferente Fasern wurden vom Mesodeferens zu den 

Spinalganglien mittels retrograden Transports von Cholera toxin-B verfolgt. Cholera 

toxin-positive Neuronen wurden immunohistochemisch weiter untersucht. 

Nozizeptive Nervenfasern, die den Hoden entweder über die testikuläre Arterie oder 

den Samenleiter innervieren, entspringen dem Spinalganglion lumbar 1.  

Da Nervenfasern im Hodenparenchym der Ratte fehlen, kann der neuronale Ursprung 

von ACh ausgeschlossen werden. Testikuläres Parenchym, die testikuläre Kapsel 

sowie TM, SC und PTC wurden auf das Vorhandensein von AChR und Moleküle die 

für ACh-Synthese (ChAT, ChT1) und Freisetzung (VAChT, OCT2) erforderlich sind 

mittels qRT-PCR untersucht. Mit Ausnahme von α6 und β4, die nicht in TP 

detektierbar waren, konnten alle weiteren molekularen Komponenten des ACh-

System in TP und TC nachgewiesen werden. Die vorhandenen ChAT-, ChT1- und 

VAChT-mRNAs wurden durch immunohistochemische Nachweise bestätigt. ChAT 
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und α7-mRNA wurden zusätzlich durch in situ Hybridisierung nachgewiesen. Die 

meisten molekularen Komponenten des ACh-System wurden von den isolierten 

testikulären Zellen (TM, SC, PTC) exprimiert. Besonders die nAChR-Untereinheiten 

zeigten zellspezifische Unterschiede.  

Die Stimulation mit Nikotin und Muskarin verursachte keine Veränderung der 

intrazellulären Calcium-Konzentration ([Ca
2+

]i) in testikuläre Makrophagen oder 

Sertoli Zellen. In PTC konnte ein klarer Anstieg der [Ca
2+

]i durch Muskarin induziert 

werden, während Nikotin in PTC keine Reaktion auslöste. Diese für Neuronen 

bekannte metabotrope Reaktion wurde durch den muskarinischen-Antagonisten 

Atropin blockiert. Trotz fehlender direkter Wirkung von Nikotin und Muskarin auf 

SC und TM konnte eine indirekte Beeinflussung der durch ATP induzierten 

intrazellulären Ca
2+

-Konzentration beobachtet werden. Diese Daten zeigen, dass TM 

und SC nAChR-Untereinheiten und MR-Subtypen besitzen, die sich in ihren 

Funktionen von den bekannten typischen neuronalen Funktionen unterscheiden.   

Basierend auf etablierten Aufgaben des cholinergen entzündungshemmenden 

Signalweges, wurde der Einfluss des ACh-Systems in einem in vivo - Entzündungs-

modell, der experimentellen Autoimmun-Orchitis, analysiert. 3 Gruppen von 

Versuchstieren wurden mit Kochsalzlösung, Freund„s Adjuvant oder 

hodenspezifischen Antigenen immunisiert. Proben vom TP wurden mittels qRT-PCR 

analysiert. Die Orchitis-Gruppe wies für folgende Moleküle eine reduzierte mRNA 

Expression auf: α3-5, α7, α10, β2, β3, M4R, M5R, ChAT, ChT1 und OCT2. Die 

mRNA Expression von α6, β1, β4, M1R-M3R und VAChT war unverändert.  

 

Zusammenfassend ist festzustellen, das Moleküle, die für die Synthese, Freisetzung, 

Bindung und Aufnahme von ACh notwendig sind, in Zellen des Rattenhodens 

exprimiert werden und es Unterschiede im mRNA-Expression Profil zwischen 

gesundem und entzündetem Gewebe gibt. Isolierte Hodenzellen (TM, SC und PTC) 

zeigen sowohl neuronal-ähnliche Aktivierung (PTC) mittels MR, als auch einen 

indirekten Einfluss auf purinerge Rezeptoren (TM, SC) über unbekannte Signalwege, 

die sich von denen im Nervensystem unterscheiden. 
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