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Zusammenfassung 
 
Ziel dieses Dissertationsprojektes war es, hämodynamische und elektrophysiologische 

Korrelate der perzeptuellen Bindung modalitätsübergreifender auditorisch-visueller 

Stimuli im menschlichen Gehirn zu identifizieren. Wie multisensorische 

Konvergenzareale und die zeitliche Korrelation von Arealen an der Bindung beteiligt 

sind, ist eine aktuelle Frage der Forschung zur Multisensorik. Im Fokus des Interesses 

dieser Arbeit stand daher der Zusammenhang zwischen diesen Korrelaten in der 

funktionellen Magnetresonanztomographie (fMRT) und dem gleichzeitig erhobenen 

Elektroenzephalogramm (EEG). Neben den separaten Analysen beider Signale wurde in 

einer kombinierten Analyse das fMRT-Signal vom gleichzeitig erhobenen EEG geleitet, 

d.h. das fMRT-Signal wurde durch das quantifizierte EEG-Signal parametrisch 

moduliert. 

 Die perzeptuelle Ebene der modalitätsübergreifenden Bindung auditorisch-visueller 

Stimuli wurde mit Hilfe des Bauchredner-Effekts erfasst. Aufgabe der Probanden war 

es, die zeitliche Kongruenz sowie die Raumposition auditorischer Stimuli anzugeben, 

während sie visuelle und auditorische Stimuli geringer Komplexität beobachteten. Die 

Stimuli erschienen und verschwanden entweder zu einander synchron oder asynchron. 

Beim Bauchredner-Effekt ruft die synchrone Darbietung räumlich abweichender 

auditorisch-visueller Stimuli eine Verschiebung der Lokalisierung des subjektiven 

Ursprungs des auditorischen Stimulus in Richtung des visuellen Stimulus hervor. 

Modalitätsübergreifenden Bindung wurde ins Experiment eingeführt durch zeitlich 

kongruente auditorisch-visuelle Stimuli, die den Bauchredner-Effekt hervor riefen. 

Zeitlich inkongruente auditorische und visuelle Stimuli, die keine Verschiebung der 

Lokalisierung hervorriefen, dienten als bimodale Kontrolle. 



  

 In einem Netzwerk multisensorischer Konvergenzareale wurde mit modalitäts-

übergreifender Bindung korrelierende hämodynamische Aktivierung gefunden in der 

Insula, dem Sulcus parieto-okzipitalis (POS) und dem Sulcus temporalis superior (STS). 

An parietalen Elektroden wurde eine elektrophysiologisches Korrelat 

modalitätsübergreifender Bindung ermittelt, in Form von Änderungen in der neuronalen 

Synchronisation im Theta- und Alpha-Band. Die Zeit-Frequenz-Darstellungen zeigten 

unterschiedliche Synchronisations-muster für die kongruente und die inkongruente 

Stimulation. Die perzeptuelle Bindung modalitätsübergreifender auditorisch-visueller 

Stimuli spiegelte sich also in der hämodynamischen und der elektrophysiologischen 

Hirnaktivität wider. 

 Auf Ebene der einzelnen Durchgänge wurde das quantifizierte EEG-Korrelat 

genutzt, um das hämodynamische Signal in zur Vorhersage des Verlaufs des  

hämodynamischen Signals eingesetzt. Durch die Modulierung des hämodynamischen 

Signals konnte der Zusammenhang zwischen den betrachteten kortikalen Arealen und 

der EEG-Dynamik im Netzwerk der modalitätsübergreifenden Bindung aufgeklärt 

werden. Dieser Zusammenhang ist von besonderem Interesse im Kontext der beiden 

Hypothesen zur modalitätsübergreifenden Bindung; einmal entsteht die Bindung in 

hierarchisch aufgebauten Konvergenzarealen, als zweite Hypothese entsteht die 

Bindung über die zeitliche Korrelation zwischen Arealen. Als wichtigstes Ergebnis der 

EEG-geleiteten fMRT-Analyse zeigte sich ein klar abgegrenztes Gebiet als verbunden 

mit der erhöhten Synchronisation während der perzeptuellen Bindung 

modalitätsübergreifender auditorisch-visueller Stimuli. Bezieht man diese Aktivierung 

im STS auf die in der Literatur postulierten Projektionen von und zu unisenorischen 

Arealen, dann können die beiden Hypothesen der modalitätsübergreifenden Bindung 

zusammengeführt werden für die auditorisch-visuelle Bindung. Der im STS gefundene 



  

Zusammenhang weist darauf hin, dass der STS als modulierendes Konvergenzareal der 

auditorisch-visuellen Bindung fungiert. 



 

 

Abstract 
 
This thesis aimed to find hemodynamic and electrophysiological correlates of the 

perceptual binding of crossmodal audiovisual stimuli in the human brain. How the 

multisensory convergence areas and the temporal correlation (synchronization) of areas 

are involved in binding is currently a major discussion in multisensory research. 

Therefore, the question of central interest in the present work was the relationship 

between the correlates in the functional magnet resonance imaging (fMRI) and the 

simultaneously acquired electroencephalogram (EEG). Additionally to the separated 

analyses of both signals in a further analysis fMRI was examined guided by the EEG, 

i.e. the fMRI signal was parametrically modulated by the quantified EEG signal. 

 The perceptual binding of crossmodal audiovisual stimuli was addressed in a 

paradigm using the ventriloquism-effect. Participants were asked to report the temporal 

congruency and location of auditory stimuli when observing both visual and auditory 

stimuli of low complexity that were switched on/off either synchronously or 

asynchronously. In synchronously presented spatially disparate audiovisual stimuli the 

ventriloquism-effect is indicated by a localization shift of the subjective origin of the 

auditory stimulus toward the visual stimulus. Crossmodal binding was introduced with 

temporally congruent audiovisual stimuli eliciting the ventriloquism-effect, whereas 

temporally incongruent audiovisual stimuli without a localization shift were the bimodal 

control. 

 In a network of multisensory convergence areas hemodynamic activity correlating 

with crossmodal binding was found in the insula, the parieto-occipital sulcus (POS), and 

the superior temporal sulcus (STS). At parietal electrodes an electrophysiological 

correlate of crossmodal binding was identified in neural synchronization changes of 



 

theta and alpha band activity. The time-frequency representations showed different 

patterns of synchronization for the congruent and the incongruent stimulation. The 

perceptual binding of crossmodal audiovisual stimuli was reflected in hemodynamic 

and in electrophysiological brain activity. 

 On a single trial basis, the quantified EEG correlate was used to predict the 

hemodynamic signal in the EEG-guided fMRI analysis. This modulation of the 

hemodynamic signal gave information about the association of cortical areas and EEG-

dynamic within the framework of crossmodal binding. The association is of special 

interest in the context of the two hypotheses of binding, binding by hierarchically 

organized convergence areas and binding by temporal correlation. As the main result of 

the EEG-guided fMRI analysis a very distinct area associated with increased 

synchronization was related to the perceptual binding of crossmodal audiovisual stimuli. 

When this activation in the STS is related to projections from or to unisensory areas as 

discussed in the literature, the two hypotheses of crossmodal binding could be combined 

for audiovisual binding. The association revealed in the STS provides evidence for the 

STS to serve as the modulating convergence area of audiovisual binding. 
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Chapter 1 

General Introduction 

 

The fast and comprehensive detection and interpretation of events in the outside world 

is of obvious benefit to any advanced organism. The human senses have evolved to 

specialized systems, each one sensitive to small inputs in its own domain while capable 

of processing complex information as well. The various senses cover a broad range of 

possible sources of information. However, the senses do not function as fully separated 

modules although they have mostly been examined as independent in perception 

research. The ability to combine their information gives enormous advantages; the 

integration of several sensory inputs increases speed as well as accuracy of detection 

and provides additional information of the external event. Therefore, structuring sensory 

information from multiple modalities into one coherent representation of the 

environment in perception is one of the most important functions of the brain. This 

structuring of internal representations of external objects or events is called binding. 

This thesis is concerned with the binding of audiovisual stimuli. The perception of 

bound audiovisual events is examined in hemodynamic and electrophysiological 

signals. A question of central interest is the relationship between these simultaneously 

acquired signals revealed by a combined analysis of functional magnet resonance 

imaging (fMRI) guided by the electroencephalogram (EEG). The following chapter 

provides an introduction to the experimental studies. First, the characteristics and 

distinctions of binding are illustrated in the context of multisensory integration. Next, 

the approach of applying multisensory perceptual effects to examine the perceptual 

level of binding is introduced briefly, and a summary of the established knowledge on 
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the areas and dynamical aspects of brain activity involved in crossmodal binding is 

given. Finally, an overview of methodological aspects of combining fMRI and EEG 

along with several considerations of the experimental design leads to the outline of the 

addressed research questions. 

Binding 

 The question behind the binding process is how separated units of information 

related to an object or an event processed by the multitude of human senses are 

integrated into one coherent and conscious representation in perception. In philosophy 

the idea that a form of synthesis is constantly necessary to structure representations in 

perception can be traced back to the Critique of pure reason by Immanuel Kant (Kant & 

Guyer, 1998; Revonsuo and Newman, 1999). In the neuroscientific field, discussions 

were initiated in the context of correlating neural activity (von der Malsburg, 1981), but 

also in the context of so-called convergence zones in which the “fragments” of 

perception are brought to a coherent experience (Damasio, 1989), and in the context of 

the feature integration theory of attention by Treisman (1996). 

 Different types of binding can be distinguished regarding the characteristics that 

have to be ‘bound’. The categorization by Treisman (1996) illustrates the fundamental 

range of the problem: ‘Property binding’ relates to the properties (or features) as shape 

or color of an object. In ‘part binding’ the parts of an object are separated from the 

background and the unity has to be preserved in spite of partial occlusion. ‘Range 

binding’ assures that small variations in a dimension do not reduce the unity, e.g., 

different shades of a color define one surface. The surface-defining properties are bound 

with those defining the shape of an object (e.g. orientation, curvature, and closure) in 
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‘hierarchical binding’. The properties of an object influence the interpretation of each 

other in a ‘conditional binding’, e.g. the direction of motion depends on depth 

information. These five types of binding have to be stabilized over time by ‘temporal 

binding’– a precondition of movement perception –and object features are bound to 

space by ‘location binding’. 

 The following thesis distinguishes between two conceptions of binding as proposed 

by Revonsuo (1999). The distinction focuses on the perceptual quality of the result 

rather than on the elements to be bound. Revonsuo (1999) distinguishes “stimulus-

related binding” which includes all processes necessary to represent stimulus entity, 

from “consciousness-related binding” which addresses the unifying merging in 

perception. The first conception approaches the problem of how features of an object or 

event are assembled correctly in the multitude of events constantly perceived. The types 

of binding categorized by Treisman (1996) describe the necessary binding processes for 

this conception. The second conception approaches the problem of how the features of 

an object or event are integrated into one unity in conscious perception or experience in 

terms of Damasio (1989). Thus, the decisive difference between both questions is on the 

phenomenal level which is comprehended only in the second conception, the 

consciousness-related binding. 

 Consciousness-related binding is possible even in the absence of a unified external 

stimulus and thus can constitute an illusory or hallucinatory unity in consciousness 

(Revonsuo 1999). Also, experiments in which ambiguous stimuli are being perceived in 

alternating variants, while these variants do not include physical alternations, 

demonstrate that physical features do not determine perception absolutely. Treisman 

(1996) argues the strongest evidence that neural correlates reflect the binding process is 
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given, when they coincide with perceived changes in ambiguous figures or with an 

attention capture. Capture and illusion effects can be found when more than one 

modality is involved in binding and a crossmodal interaction of modalities is necessary. 

With perceptual effects the level of consciousness-related binding is accessible in 

multisensory integration. Multisensory integration comprises all the mechanisms by 

which multimodal stimuli are converged (Stein & Stanford, 2008). At the level of single 

cells, multisensory integration results in an enhancement or depression of the neural 

response compared to the most effective component stimuli (Stein & Stanford, 2008). 

While the term “crossmodal” is equally used (Stein & Stanford, 2008) as “bi-“, “tri-“ or 

“multimodal” (Calvert, 2001) referring to the number of modalities, the crossing of 

modalities implies that the information of one sense might be changed when it is 

merged into one coherent representation of an event. The crossmodal percept can vary 

qualitatively, i.e. the spatial, temporal, or semantic information is different from the 

information of the single senses involved, as will be explained later. Therefore, on the 

behavioral level perceptual illusions can serve as indicators for crossmodal interaction.  

 The widening of the binding question to multiple modalities is also obvious in 

another way. Initially, the binding problem was studied in neuroscience in the field of 

feature integration in visual object recognition (e.g., Singer 1999). The discovery of the 

dorsal and ventral pathway of visual processing (Mishkin & Ungerleider, 1982) raised 

the question of how information of both streams is reunited. What information is 

processed along the pathways is conceptualized differently. Whereas Mishkin and 

Ungerleider (1982) coined the terms “where-pathway” and “what-pathway”, attributing 

the localizing or spatial aspects of object recognition to the dorsal stream and the feature 

processing to the ventral stream, Goodale and Milner (1992) focus on the function of 
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the pathways. In their concept, the role of the dorsal stream is one of action control 

while the ventral stream processes object recognition. For both concepts, the integration 

of object features perceived in multiple senses is an obvious extension of the binding 

question. In the meantime, ventral and dorsal pathways are known for the auditory, 

somatosensory, and visual modality (Schroeder & Foxe, 2002).  

Perceptual effects 

 Recently, crossmodal perception effects have been used to investigate crossmodal 

integration. One approach is to compare spatially or temporally congruent and 

incongruent stimulation conditions, other studies compare the occurrence and the 

absence of an illusion during physically identical trials (for a review, see Senkowski, 

Schneider, Foxe & Engel, 2008). An explanation for crossmodal effects is provided 

with the model of Maximum Likelihood Estimation by Ernst and Banks (2002). The 

interaction of modalities during crossmodal effects depends on the precision of the 

sensory information. The precision of stimuli in different modalities is estimated 

constantly for each modality, and each modality's contribution to the percept is 

weighted. For example, in the ventriloquism effect (e.g., Howard & Templeton, 1966), a 

stimulus from one modality that offers better spatial information dominates the 

localization of a bimodal stimulus which has weaker spatial resolution in the second 

modality. The model of Maximum Likelihood Estimation states that this effect is 

reversed if the relation of the spatial precision of stimuli is reversed. This has been 

demonstrated by Alais and Burr (2004). When visual stimuli were blurred, the visual 

stimuli were mislocalized by an auditory capture. In both versions of the capture effect 

the integration of sensory information leads to a percept shifted in space without the 



Chapter 1 ◦ General Introduction  

 

 

16 

stimuli being perceived as conflicting or separate. Also, the spatial information of one 

modality is not totally neglected. Therefore the ventriloquism effect does not 

demonstrate a total dominance of one modality, but an interaction between modalities 

during the merging of a percept. In this thesis, events of crossmodal binding were 

characterized by the occurrence of a ventriloquism effect which served as an indicator 

on the behavioral level. Using this indicator, brain activation during crossmodal binding 

was examined in brain areas known to be involved in multisensory integration. 

Areas of multisensory integration 

 Multisensory integrating neurons were first detected in the superior colliculus (Stein 

& Meredith, 1993). Since then, a multitude of different brain areas have been found to 

show multisensory processing (for a review, see Calvert & Thesen, 2004; Stein & 

Stanford, 2008). A reason for the heterogeneity of results is the variance of 

experimental approaches. Important factors are the modalities involved, the manipulated 

experimental parameter (spatial, temporal or semantic content), and the paradigm used 

(passive stimulation, speeded responses, attention tasks, matching tasks, or percept-

related illusion tasks). The scope of these factors may lead to the question “Is neocortex 

essentially multisensory?” as one review is titled (Ghazanfar & Schroeder, 2006). 

Another reason for the heterogeneous results may be the use of different analytic 

approaches to identify brain areas involved in multisensory processes (Calvert, 2001; 

Calvert & Thesen, 2004; Laurienti, Perrault, Stanford, Wallace & Stein, 2005). Recent 

studies provide evidence that multisensory information is also processed in sensor-

specific and primary sensory areas which for a long time have been assumed to be 

purely unisensory  (for a review, see Amedi, von Kriegstein, van Atteveldt, Beauchamp 
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& Naumer, 2005; Ghazanfar & Schroeder, 2006; Driver & Noesselt, 2008). In addition, 

multisensory processing has been found in frontal as well as subcortical areas other than 

the superior colliculus (Senkowski et al., 2008). However, the exact function is still 

unclear, even for the “classical” set of heteromodal cortical integration areas (fig. 1) 

which were implicated by a number of neuroimaging studies. 

 The superior temporal sulcus (STS) is activated during the integration of audiovisual 

speech presumably based on the detection of shared phonetic features (Callan, Callan, 

Kroos & Vatikiotis-Bateson, 2001; Calvert, Campbell & Brammer, 2000; Macaluso, 

George, Dolan, Spence & Driver, 2004;Raji, Uutela & Hari, 2001), by spatially 

nonpredictive auditory precues (McDonald, Teder-Sälejärvi, Di Russo & Hillyard, 

2003), during auditory and visual object processing, as well as visual speech processing 

(Amedi et al., 2005). High resolution fMRI has identified areas in the STS sensitive to 

videos and sounds of tools (e.g., a hammer hammering). The STS may therefore have 

an integrative function in object identification (Beauchamp, Argall, Bodurka, Duyn & 

Martin, 2004) less restricted than attributed by Calvert et al. (2000) for the STS and 

speech processing. The superior colliculus (SC) and the insula/claustrum are activated 

by simultaneous onsets of stimuli across different modalities (Bushara, Grafman & 

Hallett, 2001; Calvert, Hansen, Iversen & Brammer, 2001). The insula/claustrum are 

also involved in the transfer and binding of unimodal information and visuo-tactile form 

integration (Amedi et al., 2005). Parts of the inferior and superior parietal lobes, the 

intraparietal sulcus (IPS), and the parieto-occipital sulcus (POS) are involved in the 

detection of multisensory stimuli that correspond in spatial location or visuo-motor 

aspects (Bremmer et al., 2001; Bushara et al., 2001; Callan et al., 2001; Calvert et al., 

2001; Fort, Defpuech, Pernier & Giard, 2002; Molholm et al., 2002; Macaluso et al., 
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2004). In visual-tactile object-recognition, the IPS is considered to be involved in object 

shape analysis and recognition (Amedi et al., 2005). The inferior parietal lobe is 

activated by synchronous auditory and visual speech stimuli at different locations 

(Macaluso et al., 2004). 

 

Figure 1. Convergence areas involved in audiovisual multisensory integration. 

For details of area definition see methods section in chapter 2. 

Dynamical brain activity 

 In their pioneering work on single-cell activity of neurons in the superior colliculus 

of the cat, Stein and Meredith (1993) assumed a hierarchical order of areas where 

sensory signals from different modalities are transferred in overlapping spatial maps in 

subcortical regions and merged in higher convergence areas. Senkowski, Schneider, 

Foxe, and Engel (2008) name three problems such a pure convergence model cannot 

solve. First, multisensory interactions are found in primary cortices, so that at least 

feedback connections would have to exist. Second, the convergence stream would have 

Superior Colliculus 

Parieto-occipital sulcus 

Intraparietal sulcus 

Superior temporal sulcus 

Insula 
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to be fast and flexible to enable rapid recombination of crossmodal stimuli into novel 

percepts. Third, a feedforward convergence model would lose the low-level information 

in the stream of processing towards a non-compositional high-level representation, but 

low-level information can remain accessible (Senkowski, Schneider, Foxe & Engel, 

2008). As a solution, dynamical aspects of brain activity were suggested to play a role 

in multisensory integration (Singer, 1998; for a review see Senkowski, Schneider, Foxe 

& Engel, 2008). 

 The so-called temporal correlation hypothesis states that the synchronization of 

distributed neural signals in networks of brain areas is a key mechanism for the 

assignment of information and multisensory integration (Singer & Gray, 1995; Singer, 

1999; Driver & Spence, 2000; Engel et al., 2001; Bauer, 2008; Driver & Noesselt, 2008; 

Senkowski, Schneider, Foxe & Engel, 2008). Concurrent activity in areas not adjacent 

or close to one another is observed by oscillatory responses in the EEG (Milner, 1974; 

von der Malsburg, 1981). The various frequency bands of such synchronized 

oscillations have been related to a variety of cognitive and sensorimotor processes. Most 

studies on multisensory integration have focused on synchronization in the gamma band 

(for a review, see Senkowski, Schneider, Foxe & Engel, 2008). Synchronization of cell 

assemblies in the gamma frequency range was found during feature integration in the 

visual cortex of the cat (Gray, König, Engel & Singer, 1989; Singer & Gray, 1995). 

This coherent electrophysiological mass activity may reflect unimodal binding; 

similarly synchronized EEG of unisensory areas has been proposed to reflect the 

mechanism of crossmodal integration (for a discussion, see Engel & Singer, 2001). 

However, coherence in gamma band frequencies is linked to a variety of processes. 

Gamma band synchrony was found not only in visual but also in auditory, 
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somatosensory, and olfactory processing, during many different tasks as feature 

integration, surface segregation, binocular rivalry, visual motion, attentional processing, 

sensorimotor integration, movement preparation, and memory encoding, delay and 

retrieval (for a review, see Senkowski, Schneider, Foxe & Engel, 2008).  Similar to 

the effects on gamma synchronization, changes in lower frequencies in response to 

multisensory processing are known. Stimulation in two modalities evokes a power 

increase in the theta frequency band (Basar, 1999; Basar, Basar-Eroglu, Karakas & 

Schürmann, 2001). The bimodal gain was only reflected in the theta band, even though 

alpha band responses to stimulation in either single modality were recorded (Schürmann 

and Basar, 1999). Analyses of the event-related (de-)synchronization processes 

(ERD/ERS; Pfurtscheller & Aranibar, 1979; Pfurtscheller & Lopes da Silva, 1999) are 

more time sensitive. ERD/ERS can be described by amplitude changes in relation to a 

reference interval. Event-related band power changes have been found in response to 

stimulation and during task processing. An increase in event-related theta power is 

proposed to reflect the binding of a memory element with temporal information, e.g., 

object “x” appeared after object “y” (Klimesch, 1999). The event-related increase in 

theta has been found during the successful encoding and retrieval of episodic memory, 

while processing of semantic information in working memory is not related to changes 

in theta (Klimesch, 2006). Klimesch (2006) concludes that the increase in event-related 

theta power is a correlate of the creation of this ‘episodic code’, the association of the 

time information relative to the situational context, i.e., the sequence of events. The 

theta band responses have been found to be concurrent with gamma band responses in 

human EEG; phase coupling between (frontal) theta and gamma has been reported 

during memory maintenance in a memory task (Schack, Vath, Petsche, Geissler & 
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Moller, 2002). The authors attributed this to a functional linkage between a prefrontal 

network operating in gamma oscillations and a cortico-limbic network operating in theta 

oscillations. Exactly which intra-area or inter-area processes are observable in which 

frequency band is far from clear. All the more, the hypothesis of crossmodal binding by 

hierarchically organized dedicated areas and the hypothesis of temporal correlation as 

the driving mechanism of binding can be combined by introducing sets of transmodal 

nodes (Mesulam, 1998). These nodes are proposed to act as epicenters for convergence 

across areas; neural synchronization in these transmodal nodes could affect 

synchronization of other areas.  

Combined fMRI and EEG 

 One approach to investigate the relationship of brain areas and neuronal dynamics is 

combining the high spatial resolution of functional magnetic resonance imaging (fMRI) 

with the high temporal resolution of electroencephalography (EEG; for a review, see 

Menon & Crottaz-Herbette, 2005). The relation between neuronal activity and the 

cerebral blood flow is labeled neurovascular coupling. A linear correlation between the 

stimulus-driven local field potential (LFP) activity– the presynaptic or input activation –

and the hemodynamic response was found by Logothetis, Pauls, Augath, Trinath and 

Oeltermann (2001) in anesthetized monkeys, validating the assumptions of 

neurovascular coupling. A stronger correlation was shown for the BOLD-signal and 

LFPs than between multi-unit or single-neuron activity– the postsynaptic or output 

activation –and the BOLD-response (Logothetis & Pfeuffer, 2004). Since EEG reflects 

spatially summed and volume-conducted LFPs, a combined EEG and fMRI analysis 

allows a high temporal and spatial resolution of a neuronal process. However, it may 
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not be registered when subthreshold membrane potentials of neurons are altered without 

eliciting spikes by feedback and modulatory processes (Logothetis & Wandell, 2004). 

 The spatial scale of scalp-recorded EEG is several centimeters compared to about 

3mm in fMRI or even 0.5mm at very high field strengths for human imaging; in animal 

studies 0.25mm were achieved with small surface coils in a tradeoff between resolution 

and volume coverage (Menon & Crottaz-Herbette, 2005; Logothetis, 2008). Moreover, 

the scalp recorded EEG is not only damped by the skull, the recorded sum signal can be 

influenced by sites distal from the electrodes. While technically the temporal resolution 

of fMRI can also reach 40ms per slice, the time to acquire a volume covering the whole 

brain is 1 to 3 s due to artifacts and physiological factors (Logothetis, 2008). In EEG, 

the temporal resolution is 1 ms, signal fluctuations (EEG-components) are identified in 

terms of 100ms (Menon & Crottaz-Herbette, 2005). The combination of EEG and fMRI 

gains explanatory power, especially when inter-trial variance is not eliminated by 

averaging. Combining nonsimultaneous fMRI and EEG acquisition spares the elaborate 

correction of the MR-scanner artifact in the EEG signal and also, the signal-to-noise-

ratio is better for data obtained outside the scanner (Allen, Josephs, & Turner, 2000; 

Mandelkow, Halder, Boesiger, & Brandeis, 2006). However, attentional, motivational, 

as well as learning effects (familiarity with task) can differ between the two sessions 

and only brain response which is time locked to the stimulus or response can be 

examined in nonsimultaneous combination (Menon & Crottaz-Herbette, 2005). Also, 

arousal levels which may differ during fMRI due to the environment inside a scanner 

affect brain activation during cognitive tasks (Matsuda et al., 2002). Acquiring fMRI 

and EEG data simultaneously in the scanner assures that both data signals reflect the 

same neuronal processes in as far as the task is performed with the same ability, 
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strategy, and arousal (Menon & Crottaz-Herbette, 2005). The individual and inter-trial 

variance in crossmodal binding of audiovisual events with a ventriloquism effect hold 

valuable information, so that the single trial analysis of  fMRI and EEG signals is highly 

advantageous. 

Experimental design 

 The present projects addressed the consciousness-related aspects of multisensory 

integration, i.e. the crossmodal binding resulting in a unified percept. Therefore the 

paradigm was required to include a form of indicator for perceptual binding, in order to 

distinguish successful integration of multisensory stimuli from failed stimulus 

manipulation. Furthermore the paradigm had to be adapted to the constraints examined 

by both signals. Considering these premises, the audiovisual events were arranged in 

mini-blocks of eight seconds, providing enough time of stimulation for the BOLD-

signal to accumulate sufficiently, cover a higher number of stimuli in the EEG, and still 

verify the manipulation with the behavioral responses. Blocking audiovisual events is 

advantageous for increasing the signal-to-noise ratio in fMRI; however, it prevents the 

parsing of specific component processes. On the other hand a slow event-related 

design– characterized by intertrial-intervals long enough for the BOLD-signal to 

subside back to baseline –would have prolonged the duration of the experiment very 

unfavorably unless only very few trials had been recorded. To obtain reliable 

components in EEG typically 30–100 stimuli trials are needed (Menon & Crottaz-

Herbette, 2005). In a fast event-related design with inter-trial-intervals of a few seconds, 

recording the behavioral indicator (the subjects responses) would be disproportionately 

time consuming and interfering with the BOLD-response induced by the stimulation.  
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Thesis outline 

 This thesis included the conduction of three projects to investigate brain activity 

during crossmodal binding. Following the concept of consciousness-related binding, the 

perceptual level of audiovisual integration was focused with the help of the audiovisual 

ventriloquism effect.  In the first project, based on the known candidate areas of 

multisensory integration, integration, hemodynamic responses to crossmodal binding 

were examined in a defined set of regions using fMRI. A hemodynamic correlate was 

found in temporal and parietal areas.  In the second project, brain dynamics were 

transformed to time-frequency representations in order to analyze low-frequency 

patterns during binding. An electrophysiological correlate in the theta and alpha band 

range of time-frequency representations of the electroencephalogram was established.  

 The most innovative contribution to the understanding of neural correlates of 

crossmodal binding are the results of the combined analysis of the activation 

localization and the dynamical data in the third project. The relationship of both 

simultaneously measured correlates was revealed in a combination of fMRI and EEG. A 

distinctive activation in the right superior temporal sulcus was revealed when the 

hemodynamic response was parametrically modulated by the quantified single trial 

energy weighted with the time-frequency pattern of binding. 

 In chapters 2 to 4 the projects are presented as independent manuscripts intended for 

publication in scientific journals. Some redundancy is accepted to allow for the 

intelligibility as separated parts. The closing chapter 5 provides a review of the findings 

from all three projects. 
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Chapter 2 

Utilizing the Ventriloquism Effect to Investigate 

Audiovisual Binding  

 

Audio-visual binding - as subset of crossmodal integration - describes the combination 

of information across both these senses to the subjective unified perception of a bound 

object. We investigated audio-visual binding by using the ventriloquism effect 

(localization of a sound is biased towards and by a simultaneous visual stimulus) to act 

as an indicator for perceived binding. Simple visual and auditory stimuli were presented 

synchronously or asynchronously. fMRI was recorded during task performance (n = 19 

subjects) in order to reveal activation in areas discussed to be involved in multisensory 

processing in the literature. 

 Contrasting trials with reported ventriloquism effect vs. the no-binding condition 

revealed activation in the right insula, superior temporal sulcus and parieto-occipital 

sulcus. Implementing the ventriloquism effect allows us to relate these activations to 

consciousness-related processes, which probably are different from stimulus-driven 

multisensory integration in subcortical areas. 
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Introduction 

 Many perceptual events are not restricted to a single modality but constructed from 

information of two or more senses, which is experienced as a coherent and unified 

percept. Multisensory input can increase the detectability of external stimuli, 

disambiguate their discrimination, speed up responsiveness and facilitate memory 

retrieval processes (Stein & Meredith, 1993). New information can emerge by input 

integration, as is the case with the the perception of taste, which results from a 

combination of gustatory and olfactory input (O’Hare, 1991). Moreover, taste can be 

influenced by auditory cues (Zampini & Spence, 2004). 

 Hemodynamic and electromagnetic studies show that multisensory integration 

mechanisms are distributed across distinct neuronal networks (reviews Calvert, 2001; 

Calvert & Thesen, 2004; Amedi et al., 2005; Beauchamp, 2005). Several specific 

networks have been proposed to be specifically involved in different aspects of 

information processing, e.g. for coincidence in time, or correspondence in space or 

content (Calvert & Thesen, 2004). Recent studies provide evidence that such 

information also is processed in primary sensory areas, which for a long time have been 

assumed to be purely unisensory (Amedi et al., 2005). The brain forms subjective 

unified perceptions of multisensory objects from unisensory cortical representations. 

Unisensory cortical representations are distributed over the cortex, and object features 

are generated from unimodal sensory information along different pathways. The 

integration of object features usually is referred to as 'crossmodal binding' within 

multisensory integration research (Revonsuo, 1999). When focusing on the percept of 

binding, it is necessary to distinguish between stimulus- and consciousness-related 
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binding. Stimulus-related binding includes all processes necessary to represent stimulus 

entity– conscious as well as unconscious ones. Consciousness-related binding occurs 

when a unified perception is reported in the absence of a unified external stimulus and 

thus constitutes an illusory or hallucinatory unity in consciousness (Revonsuo, 1999). 

Tasks of consciousness-related binding offer the opportunity to investigate the correlate 

of the ‘binding-percept’, if a perceptual check of conditions can be used. Evidence of 

the occurrence of consciousness-related binding can be provided by perceptual illusory 

effects which depend on the manipulation of perceived stimulus features. Such an 

illusion is the ventriloquism effect (Howard & Templeton, 1966). It describes the 

mislocation of an auditory stimulus towards a simultaneous visual stimulus. For 

example, an eponymous ventriloquist synchronizes the movements of a puppet’s head 

and mouth with his own speech while avoiding movements of his own head or lips. This 

effect was suggested to result from ‘visual capture’ of the speech information of the 

dominant visual sense. Recently, Alias and Burr (2004) offered support for an 

alternative explanation, ascribing the effect to the higher spatial resolution of the visual 

information as suggested by Ernst & Banks (2002). Presenting blurred visual stimuli, 

which were difficult to locate, simultaneously with sounds that could be better located, 

they showed a converse effect: The blurred visual stimuli were mislocalized towards the 

clear auditory ones. Deblurring of the visual stimuli shifted back localization towards 

the visual stimuli, indicating ‘visual capture’. 

 This and previous evidence suggests that the ventriloquism effect does not depend 

on the direction of deliberate visual attention (Bertelson, Vroomen, deGelder & Driver, 

2000) or automatic visual attention (Vroomen, Bertelson & deGelder, 2001). In EEG 

the ventriloquism effect evokes a mismatch negativity closely resembling the mismatch 
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negativity evoked by an actual sound shift, indicating that the perceived and the actual 

sound shift are comparable (Stekelenburg, Vroomen & de Gelder, 2004). 

Psychophysical results also show that the ventriloquism effect is an audio-visual 

perceptual effect (Bertelson & Aschersleben, 1998). In conclusion, the ventriloquism 

effect can be defined as a shift of localization which results from an integration process 

that involves binding. Thus, the ventriloquism effect can be implemented as a 

perceptual check when investigating the percept of consciousness-related binding. 

 The neuronal correlate of consciousness-related binding is not identified so far. A 

set of regions has been found to be involved in multisensory integration processes. The 

superior colliculus and the insula/claustrum are activated by simultaneous onsets of 

stimuli across different modalities (Bushara et al., 2001; Calvert, et al., 2001). However, 

the insula/claustrum was also suggested to be involved in the transfer and binding of 

unimodal information, and visuo-tactile form integration (Amedi et al., 2005). Parts of 

the inferior and superior parietal lobes, the intraparietal sulcus (IPS) and the parieto-

occipital sulcus (POS) are involved in the detection of multisensory stimuli that 

correspond in spatial location or visuo-motor aspects (Bushara et al., 2001; Callan et al. 

2001; Calvert et al,. 2001; Fort et al., 2002; Molholm et al., 2002; Macaluso et al., 

2004). In visual-tactile object-recognition, the IPS is considered to be involved in object 

shape analysis and recognition (Amedi et al., 2005). In a study investigating audio-

visual speech with PET, activation was found in the right inferior parietal lobe evoked 

by synchronous auditory and visual speech stimuli at different locations, i.e. the 

condition of a ventriloquism effect (Macaluso et al., 2004). Activations in the superior 

temporal sulcus (STS) were observed during the integration of audio-visual speech, 

presumably based on the detection of shared phonetic features (Callan et al., 2001; 
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Calvert et al., 2000; Macaluso et al., 2004; Raji et al., 2001). STS is also suggested to be 

involved in dynamic aspects of visual object processing, visual speech processing and 

auditory object processing (Amedi et al., 2005). Performing EEG source localization 

with inverse dipole modelling, ERPs in STS were found to be modulated by spatially 

nonpredictive auditory precues (McDonald et al., 2003). Areas in the STS sensitive to 

videos and sounds of tools (for example a hammer hammering) have been identified by 

high-resolution fMRI; the STS therefore may have a more general integrative function 

in object identification (Beauchamp et al., 2004).  

 A reason for the heterogeneity of results may be the use of different analytic 

approaches to identify brain areas involved in multisensory processes (Calvert, 2001; 

Calvert & Thesen, 2004; Laurienti et al., 2005). We consider the comparison of a 

congruent (synchronous) with an incongruent (asynchronous) condition to be adequate 

for analyzing multisensory integration. By manipulating the correspondence of stimuli 

(e.g. temporal synchrony or spatial coincidence), conditions of different crossmodal 

congruency can be investigated. While both conditions of a congruency task are 

bimodal, activation-differences in response to congruent and incongruent stimuli can 

clearly be ascribed to crossmodal interaction. Occurrence of the ventriloquism effect 

functions as a filter in this comparison to address consciousness-related binding. 

 The aim of this study was to investigate the functional significance of cortical areas 

previously associated with audio-visual multisensory processing for crossmodal 

consciousness-related binding. Consciousness-related binding was recognized by the 

occurrence of the ventriloquism effect in an audio-visual task. Two visual stimuli were 

presented, one of which was presented synchronously with an auditory stimulus. A 

localization shift of the auditory stimulus towards the synchronously presented visual 
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stimulus (ventriloquism effect) was interpreted as indicating consciousness-related 

binding to an audio-visual object. In contrast, the absence of a ventriloquism effect after 

presentation of an asynchronous visual-auditory stimulus combination was supposed to 

indicate unbound object-features. Thus this study investigated brain activation specific 

to the percept of a “bound” object in contrast to unbound stimuli. Hemodynamic brain 

activation was measured with functional magnetic resonance imaging (fMRI) in order to 

identify brain regions involved in consciousness-related processing of bound audio-

visual stimuli. Of trials consisting of synchronously presented stimuli, those with 

occurrence of a ventriloquism effect were selected for comparison with a second 

bimodal audio-visual condition, consisting of asynchronously presented stimuli. The 

comparison of congruent versus incongruent permitted the attribution of activation 

differences to integration processes without applying the criterion of super-additive 

strength of hemodynamic responses as - for example - in a conjunction bimodal versus 

unimodal contrast. 

 In conclusion, this study identifies activation patterns during consciousness-related 

binding and thus helps to elucidate the role of neuronal multisensory integration 

processes for perceptual binding. 

Methods 

Participants 

 Twenty-five participants were recruited for the study, nineteen were included in the 

analysis (12 female, age= 20.25 – 34.83; mean=26.19; S.D.=5.021). Five subjects had to 

be excluded due to lacking the ventriloquism effect, one for technical reasons.  

All participants were naive as to the purpose of the experiment. None of them had a 

history of or a current neurological or psychiatric illness, all reported normal or 
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corrected-to-normal vision (MR-suitable glasses) as well as normal hearing. All 

participants provided written informed consent. 

Visual stimulation 

 Visual Stimuli consisted of pictures showing two vertically aligned grey discs (RGB 

200,200,200). The diameter of each disc was 240 pixels. A fixation cross (length 50 

pixel, RGB 200, 200, 200,) was placed in the center between both discs. Each disc was 

presented at three different rates, 6 times in 8 seconds, 8 times in 8 seconds, and 10 

times in 8 seconds (0.75 Hz, 1.0 Hz and 1.5 Hz). Discs were erased after 200ms leaving 

the screen black with the exception of the fixation cross. The duration of each trial was 

8 seconds. Depending on the experimental condition, discs on both sides appeared 

simultaneously or with an onset asynchrony (360ms, 200ms and 120ms). 

 Visual stimuli were displayed on a back-projection screen (1280 x 1024 pixels) 

behind the scanner. Subjects could watch the screen with the help of a dual-mirror, 

which was mounted to the head coil. The angle of vision was approximately 11° vertical 

and 18° horizontal (each disc occupying 4°). 

Auditory stimulation 

 Auditory stimuli were sinusoidal tones with a frequency of 440 Hz. The duration of 

each tone was 120 ms. The tones were presented at the same rates as the visual stimuli 

(0.75, 1.00, 1.25 Hz). In each trial, the frequency of tone presentation matched the 

presentation of one, both or none of the discs. If the presentation of the tone and a disc 

were matched, the tone started with an onset-asynchrony of 40ms and was also ended 

40ms before the disc disappeared in order to secure a dominance of the visual stimulus 

in terms of the ventriloquism effect by higher spatial information (Ernst & Banks 2002, 
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Alais & Burr, 2004). All the auditory stimulation was transmitted in mono mode on 

stereo headphones resulting in perception of the tone as being spatially centered. 

 The auditory stimuli were transmitted to the subjects’ ears using MR-compatible 

electrodynamic high quality sound stereo headphones. In these headphones the 

permanent magnet is removed and is substituted by the static B0-field of the MR-

scanner. This technique enables the use of electrodynamic headphones instead of using 

low fidelity standard air headphones. A disadvantage of such a system is that the gain 

level of the channels depends on the location of the earphone in the scanner. We 

mounted the headphones to the head fixation clamps, which in turn are part of the 

patient table. This configuration assured both a fixed placement in the MR-scanner and 

a good fit of the headphones to the subject's head. Stereo-balance and gain were 

calibrated for each subject during a series of test-tones. The balance of the headphones 

was individually adjusted, until the participants judged the sound as originating from the 

central point. An fMRI-sequence was run during these adjustments to match all the 

conditions during the subsequent task. 

Task 

Table 1 

Combinations of visual and auditory stimulation 

Visual stimulation 

Timing 

Auditory stimulation 

Position 

Disc on the left side - tone Disc on the right side - tone  

synchronously asynchronously central 

asynchronously synchronously central 

asynchronously asynchronously central 
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Figure 1. Examplary timecourse for repetition frequency of 1Hz and screens of 

the experiment. The durations of stimuli are quoted in ms. Stimulation is given 

for 8 seconds in all trials, followed by two ratings for 4 seconds each. (A) 

Experimental condition, auditory stimuli onset is 40ms after visual stimuli onset, 

(B) control condition; vis = visual stimuli, aud = auditory stimuli, Fix = fixation 

screen. 

 
 In table 1 the three combinations of visual and auditory stimulation used in this 

study are listed. The first and second combination refer to synchronous presentation of 

one of the disc-stimuli left or right of the fixation-mark and the tone-stimulus, the 

second disc-stimulus is presented asynchronously, and appears without a tone 

respectively (trials of interest, experimental control). These configurations form the 

experimental condition, during which the occurrence  of the ventriloquism effect signals 

binding induced by synchrony of the audio-visual stimulation. In the third combination 

both disc-stimuli are delayed with regard to the tone-onsets. This configuration is the 
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control condition, which represents audio-visual perception without integration of the 

modalities.   

 Each trial consisted of one disc-tone-combination which was presented for 8 

seconds. After this period a line of four boxes appeared on the screen. The subject's task 

was to check one of the boxes by moving a cursor with two buttons to the box 

indicating which of the visual stimuli has been presented synchronously to the auditory 

stimulus and confirming the choice with a third button. The answer boxes not chosen 

were dimmed out to show that the response was locked. Possible responses were 'left', 

'none', 'both', 'right'. Responses had to be given during a fixed interval of 4 seconds 

duration. Subsequently, this scale was erased and another scale appeared on the screen, 

on which subjects were asked to indicate where the tone had originated. For this 

purpose the scale consisted of 5 unlabeled boxes. Again, the response interval was 4 

seconds. All responses were performed with the index finger of the right hand. Subjects 

were instructed not to report their expectation but to concentrate on perception. During 

the following inter-trial-interval only the fixation cross remained visible. The time 

between two trials was 21+/- 1.5 seconds; stimulus onsets were jittered in relation to the 

BOLD-measurement. 

 Every experimental run consisted of 48 trials. Twenty four trials belonged to the 

experimental condition (synchronous), the remaining 24 trials belonged to the control 

condition (asynchronous). The presentation order was pseudorandomized. Stimulus 

presentation and response acquisition was controlled by 'Presentation'-software (Version 

0.76, Neurobehavioral Systems, Albany). Prior to the fMRI-session, subjects practiced 

up to 10 sample trials of the task to become familiar with the keypad and to ensure that 

the instructions were understood correctly.  
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FMRI acquisition 

fMRI was measured using a 1.5 Tesla Siemens Symphony whole body scanner with 

Quantum-gradients. Functional images were obtained using a single shot T2*-weighted 

gradient-echo planar imaging (EPI) sequence. Thirty slices were acquired in descending 

fashion to cover all parts of the brain. Slice thickness was 4 mm with 1 mm gaps. Other 

MR-scanning parameters were: repetition time TR = 3000 ms, echo time TE = 59 ms, 

flip angle = 90°, field of view FOV = 192x192mm, voxel size = 3x3x5 mm, in-plane 

image resolution was 64 x 64 voxels. 

 An anatomical MRI was acquired using a T1-weighted, three-dimensional MPR 

sequence. This whole brain 3D-image was used for control of the normalizing 

procedure and for the purpose of documentation.  

Behavioral Data analysis 

To calculate if a ventriloquism effect had occurred, only trials in which synchrony 

between visual and auditory stimuli was reported correctly, were retained (i.e., 

participants chose the correct visual stimulus that was synchronous to the sound in the 

experimental condition, or chose 'none' in the control condition). This was done, 

because we wanted to exclude effects of ‘temporal ventriloquism’ (shift of perceived 

time by spatial identical stimuli; Spence & Squire, 2003; King, 2005). A ventriloquism 

effect was considered if participants chose one of the two boxes for the sound-

localization question in the same direction (left or right) as the synchronous visual 

stimulus. Thus for a trial of the control condition to be correctly answered in terms of 

the study, the central sound-position had to be reported. If a response was not given, the 

trial was considered to be ‘incorrect’. 
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 Effects and interactions of condition and repetition frequency were analyzed with a 

(2x3) ANOVA for the correct answers of each question (“synchrony of stimuli” and 

“localization of sound”). The ratings of sound localization  were used for kappa 

coefficient calculation. In this study, Kappa represents the agreement between a fictive 

'ideal rater', who only gives correct responses, and the subject's responses. The ideal 

rater always indicates the sound to be localized on the same side as the synchronous 

visual stimulus. In the control condition, the ideal rater always checks the central box to 

indicate central sound localization. Both response alternatives indicating left sound 

localization were pooled into one left response, both right alternatives were pooled 

respectively. The ratings of each subject were compared to the ideal rater's responses, 

resulting in a 3 (ideal rater's ratings: left, center right) x 3 (subject's ratings: left, center, 

right) matrix of ratings. 

 Kappa estimates the agreement between two raters, adjusted for the amount of 

agreement that could be expected due to chance alone (Cohen, 1960). Kappa is less than 

or equal to 1, where 1 implies perfect agreement.  

FMRI analysis 

 FMRI data were analyzed using SPM2 (Wellcome Institute of Neurology at 

University College London, UK. http://www.fil.ion.ucl.ac.uk/spm). The first five 

images of each EPI-recording session were discarded to account for the time needed for 

the magnetic field to achieve a steady state. The EPI-data were preprocessed including 

movement correction and correction of field image distortion, normalization into the 

MNI-reference space and smoothing (FWHM = 8 mm).  

 At the 1st level, a general linear model was applied to the data of each subject. 

Regressors and contrasts were labeled as ‘correct’ in synchronous stimuli, when 
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synchrony and a localization shift in the direction of the visual stimulus synchronously 

presented to the auditory one were reported. In asynchronous trials, ‘correct’ indicated 

asynchrony and localization of the tone in the center was reported. ‘Incorrect’ labels 

synchronous stimuli, reported as asynchrony without a localization shift or a shift in the 

wrong direction. Regressors were 'asynchronous stimuli, correct', ‘synchronous stimuli 

at the left, correct’, ‘synchronous stimuli at the right, correct’, ‘asynchronous stimuli, 

incorrect’, ‘synchronous stimuli at the left, incorrect’, ‘synchronous stimuli at the right, 

incorrect’, ‘response’, ‘rest’,  'asynchronous stimuli, response missing’, ‘synchronous 

stimuli at the left, response missing’ and ‘synchronous stimuli at the right, response 

missing’. 

 The movement parameters computed during the realignment procedure were 

included in the models. Trials with synchronously presented stimuli (left and right side) 

were termed ‘experimental’; trials of asynchronously presented stimuli were labeled 

‘control’. Contrasts of interest were ‘correct experimental vs. correct control’, 

‘experimental vs. control’, ‘incorrect experimental vs. correct control’, ‘correct 

experimental vs. incorrect experimental’ and ‘correct control vs. incorrect control’. 

These contrasts of interest were used for group analyses. Statistical parametric maps 

were computed using the kappa coefficients of participants as simple regressor. For all 

voxels one-sample t-tests were calculated and corrected for familywise error (Friston, 

Frith, Liddle & Frackowiak, 1991; Worsley, Evans, Marrett, & Neelin, 1992).  

 Results were computed based on region of interest (ROI) analyses, limiting the 

correction for multiple testing to a-priori specified regions of the brain. Regions were 

selected for ROI-analysis, which have been proposed to be involved in multisensory 

integration processes in previous studies (review Calvert &Thesen, 2004, Amedi et al. 
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2005). The ROI included in the current study were bilateral insula, superior temporal 

sulcus (STS) – without the temporal pole – superior colliculi (SC), intraparietal sulcus 

(IPS) and parieto occipital sulcus (POS).  

 Masks for these regions were created using the MARINA-tool (“MAsks for Region 

of INterest Analysis”, by Walter et al., 2002). This program allows the creation and 

editing of masks in Analyze format based on the anatomical parcellation of the brain 

published by Tzourio-Mazoyer et al. (2002).  It provides predefined masks based on the 

coordinates of brain structures from the SPM toolbox AAL (automated anatomical 

labeling; Tzourio-Mazoyer et al., 2002). Voxelsize is 2x2x2 mm. To create a ROI-mask 

for a gyrus, masks of adjacent areas were loaded; voxels belonging to the mask had a 

value of one. The first one was loaded and smoothed (FWHM=5mm), the mask was 

thresholded and voxels belonging to the mask with a probability <.15 were deleted. The 

same was done for the adjacent area. Using another threshold (>.95) the intersecting 

part was selected and the outer parts removed manually. The resulting mask was filled 

with ones, smoothed (FWHM=5mm) and voxels belonging to the mask with a 

probability <.25 were deleted. This was done for left and right hemispherical masks of 

IPS, STS and POS separately to account for hemispherical differences in size and shape. 

The masks of left and right insula were taken directly from the AAL-set. The mask for 

the superior colliculi was adapted from Nielsen and Hansen (2002). Alignment of the 

masks was checked by visual inspection and by projection on a MNI-template using 

MRIcro V.1.39 (Rorden & Brett, 2000). 
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Results 

Behavioral Responses 

 Synchrony of stimuli was recognized correctly by participants on average in 

22.05/24 trials (92%) in the experimental condition (min=18; max=24; S.D. = 1.72). In 

the control condition the mean number of correctly identified asynchronous trials was 

22.84/24 trials (95%; min=17; max=24; S.D.=1.71). The 2x3 (conditions x repetition 

frequencies) ANOVA resulted in no main effect of repetition frequency or condition, 

but an interaction “frequency * condition” (F[2, 36]=4,154; p=0,024; Mauchly-test for 

sphericity p = .468). Stimuli presented with a frequency of 0.75Hz were answered 

correctly 7.05/8 trials (88%) in the experimental condition (min=4; max=8; S.D.=1.08) 

and 7.84/8 (98%) in the control condition (min=6; max=8; S.D.=0.50); the difference 

was significant (p=0.001). Stimuli presented with a frequency of 1.00Hz were processed 

correctly in 7.42/8 trials (93%) in the experimental condition (min=6; max=8; S.D.=.69) 

and 7.47/8 (93%) in the control condition (min=5 ; max=8 ; S.D.=.84 ). Stimuli 

presented with a frequency of 1.25Hz were answered correctly 7.58/8 trials (95%) in the 

experimental condition (min=6; max=8; S.D.=.69) and 7.53/8 (94%) in the control 

condition (min=4 ; max=8 ; S.D.=1.02 ). Overall, 434 trials of the control condition and 

419 trials of the experimental condition were correct.  

 Sound was localized correctly (tone localized in direction of left/right visual 

stimulus) in the experimental condition in 17.11/24 trials (71%; min=12; max=22; 

S.D.=2.87). In the control condition 12.68/24 trials (53%) were answered correctly 

(tone localized in center) in mean (min: 3; max: 23; S.D.: 4.80). In the ANOVA (2 

conditions x 3 repetition frequencies) the main effect of condition showed significance 
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(F[1,18]=17,56; p=0,001). The main effect of repetition frequency and the interaction 

“frequency * condition” did not reach a level of significance. 

 Both questions were answered correctly in 16/24 trials in the experimental condition 

(67%, min=11; max=21; S.D.=2.87), and in 11.79/24 trials in the control condition 

(49%, min=3; max=22; S.D.=4.70).  In the ANOVA (2 conditions x 3 repetition 

frequencies) the main effect of condition showed significance in this analysis, too 

(F[1,18]=14,89; p=0,001). The main effect of repetition frequency and the interaction 

“frequency * condition” did not reach a level of significance. 

FMRI-Data ROI-Analyses 

 Regions of interest analyses were conducted for the insula, STS, SC, IPS and POS. 

The analysis of the contrast ‘correct experimental vs. correct control’ showed 

activations in the right insula, superior temporal sulcus and parieto-occipital sulcus. No 

activation was found in the superior colliculi and intraparietal sulci.  

 Contrasting ‘experimental vs. control’ showed activation only in the ROI-mask of 

the left superior temporal sulcus. Contrasting ‘incorrect experimental vs. correct 

control’ did not reveal activation in any ROI. Contrasting ‘correct experimental vs. 

incorrect experimental’ showed activation in bilateral parieto-occipital sulcus. 

Contrasting ‘correct control vs. incorrect control’ showed activation in bilateral insula 

and intraparietal sulcus. 
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Table 2 

Maxima of activations in ROI-masks of candidate areas (analysis at voxel-level). 

Included are first maxima in ROIs, mask size in voxel, T-values and 

corresponding p corrected for familywise error (FWE).  

 
 

 

 
contrast: 

 
‘correct experimental vs. 

correct control’ 
 ‘experimental vs. control’  

  mask size 
MNI-

coordinates 
   MNI-

coordinates 
  

 

Side Structure/mask (voxel) x y z T 
pFWE-

corrected 

 
x y z T 

pFWE-

corrected 
 

L IPS  478 -27 -60 45 3.28 0.322  -30 -75 48 2.97 0.444  
R IPS  458 36 -63 57 3.08 0.386  33 -57 57 3.79 0.151  
               
L POS  541 -6 -72 27 5.67 0.008  -9 -72 36 3.59 0.235  
R POS  586 3 -72 36 4.43 0.075  15 -54 3 2.68 0.634  

 
 

      
 

      

L STS  671 -48 -45 15 5.35 0.018  -48 -48 21 5.56 0.011  
R STS   866 51 -27 -9 4.83 0.061  48 -18 -12 3.41 0.423  
               
L Insula  786 -36 -21 24 2.63 0.755  -39 -21 21 3.47 0.351  
R Insula 732 36 -27 18 5.83 0.007  36 -21 18 3.93 0.187  
               

L/R SC 463 -3 -36 6 3.06 0.375  9 -21 -12 2.79 0.481  

               

 
contrast: 

 
‘correct experimental vs. 
incorrect experimental’ 

 ‘correct control vs. incorrect 
control’ 

 

  mask size 
MNI-

coordinates 
   MNI-

coordinates 
  

 

Side Structure/mask (voxel) x y z T 
pFWE-

corrected 

 
x y z T 

pFWE-

corrected 
 

L IPS  478 -24 -69 33 3.44 0.249  -48 -42 51 3.58 0.227  
R IPS  458 36 -78 42 3.13 0.344  30 -60 45 4.44 0.060  
               
L POS  541 -15 -48 12 4.47 0.063  -3 -84 42 3.25 0.372  
R POS  586 12 -63 12 4.38 0.075  12 -48 3 4.01 0.143  

 
 

      
 

      

L STS  671 -63 -45 3 2.72 0.666  -45 -6 -12 2.07 0.920  
R STS   866 51 -39 0 2.37 0.872  45 -51 21 4.18 0.166  
               
L Insula  786 -36 -3 -3 2.94 0.585  -36 21 -9 3.60 0.319  
R Insula 732 39 6 6 3.36 0.374  30 24 -12 5.82 0.008  
               

L/R SC 463 no suprathreshold voxels  -6 -27 0 3.79 0.155  

               

               
Abbrevations. L: left, R: right, IPS: intraparietal sulcus, POS: parieto-occipital sulcus, STS: 
superior temporal sulcus, SC: superior colliculi. 
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Figure 2. ROI-analyses; activation of contrast  ‘correct experimental vs. correct 

control’. Statistical parametric maps of ROI-masks are rendered onto a template 

single subject brain. Included are masks, in which a maximum with 

corresponding p<.1 corrected for familywise error has been found (see table 2). 

(A) right insula, (B) left POS, (C) right POS, (D) left STS, (E) right STS. Slices 

were chosen by x-coordinate of maxima. T-value of 1.74 is the threshold for 

uncorrected p<.05 at voxel-level. 

 

Figure 3. ROI-analyses; activation of contrast ‘experimental vs. control’. 

Statistical parametric maps of ROI-masks are rendered onto a template single 

subject brain. Included is the mask, in which a maximum with corresponding 

p<.1 corrected for familywise error has been found (see table 3). Left STS; slice 

was chosen by x-coordinate of maxima. T-value of 1.74 is the threshold for 

uncorrected p<.05 at voxel-level. 
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fMRI-Data whole head analysis 

 No significant activation at a corrected level was found, when contrasting ‘correct 

experimental vs. correct control’, as well contrasting ‘experimental vs. control’. 

Comparing both contrasts at an uncorrected level shows clearly differing activation 

patterns.   

Table 3 

Maxima of activations in fMRI-whole-head analysis of contrast  ‘correct 

experimental vs. correct control’, height threshold T=3.65; p<0.001 

(uncorrected); extent threshold k=9 voxels. No maximum reaches significance 

at a corrected level; included are first maxima in clusters. 

  MNI-coordinates   
Side Structure  x  y  z T  

R Rolandic operculum  39 -27 21 6.54  
L Parieto occipital sulcus -6 -72 27 6.67  
L Superior temporal sulcus -48 -45 15 5.35  
L Olfactory lobe -9 9 -15 5.26  
L Caudate -15 12 27 4.90  
R Superior temporal sulcus 51 -27 -9 4.83  
R Rolandic operculum  48 3 15 4.82  

 

 

 

Figure 4. Whole-head analysis; activation of contrast  ‘correct experimental vs. 

correct control’. T-value of 3.65 is threshold for uncorrected p<.001 at voxel-

level. Included are clusters with a minimal size of  k=9. 
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Table 4 

Maxima of activations in fMRI-whole-head analysis of contrast  ‘experimental 

vs. control’, height threshold T=3.65; p<0.001 (uncorrected); extent threshold 

k=9 voxels. No maximum reaches significance at a corrected level; included are 

first maxima in clusters. 

  MNI-coordinates   
Side Structure  x  y  z T  

L Cerebellum  -36 -69 -48 6.53  
L Cerebellum -45 -69 -48 4.66  
L Cerebellum -33 -60 -54 4.63  
R Parietal superior 33 -57 63 6.47  
L Caudate -15 12 27 6.07  
R Caudate 21 -30 21 5.91  
L Middle frontal gyrus -21 12 36 5.62  
L Inferior parietal gyrus -36 -36 36 5.25  
L Caudate -18 30 0 5.15  
L Cerebellum  -18 -81 -27 5.09  
L Cerebellum -27 -78 -21 4.37  
L Cerebellum -18 -87 -39 3.77  
R Thalamus 6 -6 21 4.49  
R Caudate 15 6 27 4.34  

 

 

 

 

Figure 5. Whole-head analysis; activation of ‘experimental vs. control’. T-value 

of 3.65 is threshold for uncorrected p<.001 at voxel-level. Included are clusters 

with a minimal size of  k=9. 
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Discussion 

We investigated audio-visual binding with fMRI by comparing brain activation evoked 

by synchronous presentations of audio-visual stimuli, where a ventriloquism effect 

indicated binding, with activation evoked by unbound asynchronously presented audio-

visual stimuli. Thus, we focused on multisensory integration areas associated with 

consciousness-related binding. The ventriloquism paradigm was included in the 

experimental design to discriminate trials with crossmodal consciousness-related 

binding from trials without binding of audio-visual stimuli. If the subjectively perceived  

spatial localization of a sound is shifted by a simultaneously presented visual stimulus, 

the perceptual interaction indicates the emergence of a bound audio-visual object. This 

study-design represents a consciousness-related approach, because the trials of interest 

were selected by the occurrence of a phenomenal effect instead of on the basis of 

physical characteristics of the stimuli. 

 Behavioral data show that both the experimental condition (synchronously presented 

stimuli) and the control condition (asynchronously presented stimuli) induced 

perceptual phenomena as intended by the study. For synchronously and asynchronously 

presented stimuli the hit rate was above 90%. Subjects rated synchrony or asynchrony 

above chance at all presentation rates, the lowest observed hit rate was 88%. As 

indicated by subjects’ responses, the ventriloquism effect was successfully induced in 

71% of the experimental trials; in the control condition, 52% of sounds were localized 

correctly. Thus, a sufficient number of correct experimental and correct control trials 

remained for the statistical evaluation. Especially for asynchronously presented stimuli, 

the hit rate of sound localization was below our expectations. It has to be taken into 

account that the noise caused by the MR-scanner during EPI-scanning may have 
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increased the difficulty of the localization task compared to a sound proof lab 

environment usually available for crossmodal experiments. However, the only 

disadvantage of selecting trials based on the occurrence of the ventriloquism effect is 

that some trials are lost for analysis. Subjects were not equally successful in locating the 

sound as required by the task. Because of this variability, the Kappa coefficient was 

included in the analysis of group effects. Subjects showing a high number of correct 

responses more likely have perceived auditory, visual or bound audio-visual objects as 

intended by the experimental logic. Thus, the statistical contrast-images of those 

subjects must contain a higher amount of effect-variance. Controlling for the subjects' 

success in perceiving the ventriloquism effect as indicated by Kappa in the analysis of 

hemodynamic activity improves the detection of activation associated with 

consciousness-related binding by reducing experimental noise. 

 Correlates of crossmodal consciousness-related binding were investigated by 

comparing hemodynamic activation associated with correct experimental trials and 

correct control trials. Hemodynamic activation was investigated in predefined regions of 

interest (ROI). For synchronous audio-visual stimulation, where an ventriloquism effect 

occurred,  activation was found in the upper part of the right insula, bilaterally in the 

upper part of the parieto-occipital sulcus (POS), the upper posterior part of the left 

superior temporal sulcus (STS) and the middle part of right STS. Activation in the left 

STS was also found, when experimental (synchronous) condition and control 

(asynchronous) condition were compared including all trials – without selecting trials 

with correct behavioral responses. The insula has been reported to be sensitive to 

congruency of stimulus onset between different modalities and unimodal binding 

processes. In this study, the insula responded to the bound synchronous stimuli, but no 
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activation was seen when the perceptual check data were discarded. This supports the 

view that the insula is involved in binding rather than responding to stimulus synchrony 

alone. The bilateral activation in the parieto-occipital sulcus (POS) may represent the 

spatial aspect of the task, if POS is processing spatial information of the audio and the 

visual modality. This is in correspondence with findings of mismatch negativity 

associated with both the ventriloquism effect and actual spatial sound shifts 

(Stekelenburg et al., 2004). Thus, illusionary ventriloquism effect and real sound 

displacement induce similar brain processes. The functional significance of POS and 

IPS was described to be associated with processing of spatial congruence (identity of 

location) of multisensory stimulation (Bushara et al., 2001; Fort et al., 2002; Molholm 

et al., 2002). However, we did not find activation in the IPS in our main analysis. With 

PET, activation was solely found in the right inferior parietal lobe, when visual and 

auditory speech stimuli were presented in opposite hemifields (Macaluso et al., 2004). 

Since IPS is not specific for speech, the IPS activation was expected in our study. The 

comparison of correct and incorrect control trials revealed activation in the insula and 

the IPS. Trials of the control condition were classified as incorrect, if audio-visual 

asynchrony was not recognized or if localization of the sound was not in accord with the 

sound source. Hence, this activation in the IPS may reflect sound localization processes.  

 In the middle part of the right STS activation was found, when the binding check at 

a phenomenal level via the ventriloquism effect was included in analysis. This is in 

correspondence with findings relating STS activation to object identification (e.g. 

Beauchamp et al., 2004). The activation in right STS was not seen in the analysis of 

conditions defined by physical characteristics. Without using a perceptual check for 

binding, Macaluso et al. (2004) found activation in left STS only, when synchronous 
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audiovisual speech was analyzed irrespective of the relative location of the stimuli. This 

provides evidence that the multisensory integration process in the STS is associated 

with the perception of a multisensory bound object. 

 The comparison of correct with incorrect experimental trials appears to indicate 

activation specific to the localization shift of the ventriloquism effect, because in correct 

and incorrect trials the stimuli consisted of identical physical characteristics. However, 

contrary to correct responses, no model explains the origin of incorrect responses. 

Confusion about sound localization or erroneous button pressing could be sources of 

incorrect responses. The number of experimental trials (29%) incorrectly responded to 

in localization was less than half as big as the number of correct experimental trials 

(71%). The lack of an appropriate model for incorrect responses is one reason why 

contrasting incorrect experimental trials with correct control trials did not show 

activation in ROIs. No activation was seen in the superior colliculi (SC) in any 

comparison. However, SC-activation was not necessarily expected, because the study 

focused on consciousness-related cortical processes. Both conditions implemented in 

the study were bimodal. Differences in activation between synchronous and 

asynchronous stimulation have been reported only in some neurons of SC (Stein & 

Meredith, 1993). SC could have been activated in both conditions, or the difference was 

too small to detect with fMRI. SC is small in size and is vulnerable to movement 

artefacts, which makes signal detection more difficult. 

 In previous studies, the areas selected for ROI-analyses have been thought to be 

involved in multisensory integration processes. The contrast of correct experimental 

trials versus correct control trials and the contrast of experimental versus control trials 

were the main comparisons in this study. Whole-head analyses of these two contrasts 
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were conducted to see if the regions of interest cover all task-relevant effects, or if 

different brain areas should be considered in further research. The whole-head analysis 

of correct experimental trials versus correct control trials at the level of uncorrected 

tests indicated the same regions, found to be significant in the ROI analysis with the 

exception of the caudate areas that were not subjected to a ROI analysis. The statistical 

parametric maps of the whole-head analysis of the comparison synchronous versus 

asynchronous (i.e. all trials of the experimental condition versus all of the control 

condition) does not correspond to the results of ROI-analyses. This indicates that an 

analysis aimed at isolating processes of consciousness-related binding benefits from 

utilizing the ventriloquism effect. Omitting the ventriloquism effect for analysis 

introduces hemodynamic activity into brain activation maps, the sources of which 

remain unclear in the context of the experiment. 

 Based on the results of this study, the major conclusion is that utilizing the 

ventriloquism effect as a perceptual indicator of consciousness-related binding reveals a 

pattern of areas involved in the processing of a bound percept. This consciousness-

related process probably is different from stimulus-related multisensory integration 

mechanisms, especially those in subcortical areas, e.g. the SC. The pattern of activation 

can not be seen if only physical characteristics of stimuli are used to define conditions. 

The psychological characteristic of 'Gestalt' is critical for investigating the perception of 

binding. Further work should concentrate on the investigation whether activation 

associated with audio-visual binding as described in the current study can also be 

identified with other combinations of modalities (e.g. tactile-visual processing) and thus 

be attributed to general characteristics of crossmodal consciousness-related binding. 
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Chapter 3 

Indicators of Audiovisual Binding in Low-Frequency 

EEG 

 

Crossmodal binding is the merging of feature information of different sensory streams 

into the unified representation of an object in perception. The present study investigated 

correlates of audiovisual binding in the electroencephalogram (EEG). Participants had 

to report the synchrony and location of auditory stimuli when observing both visual and 

auditory stimuli that were presented either synchronously or asynchronously. The 

ventriloquism effect was used as an indicator of audiovisual binding. This multisensory 

perception effect describes an auditory localization shift toward synchronously 

presented visual stimuli. It recently has been shown that the ventriloquism effect can be 

used to indicate the integration of crossmodal stimuli on a behavioral level. EEG 

recording was accompanied by simultaneous functional magnetic resonance imaging 

(fMRI). Results showed characteristic differences in EEG synchronization between 

synchronously and asynchronously presented stimuli. Quantified on a single-trial level 

these differences distinguished successfully between binding and no-binding trials. Our 

data suggest that crossmodal binding is associated with changes in the lower frequency 

EEG at parietal electrodes. 
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Introduction 

 One major question in neuroscience is how features of an event are integrated across 

modalities into one coherent representation in mind. Crossmodal binding can be 

considered as a subcategory of multisensory integration. Whereas multisensory 

integration comprises all processes by which crossmodal stimuli are converged (Stein & 

Stanford, 2008), binding specifically assigns the stimuli to a unified event (Revonsuo, 

1999). 

 Simultaneous stimulation in multiple modalities is associated with both 

electrophysiological and hemodynamic processes (see, for single-cell measurements, 

Stein & Meredith, 1993; for EEG in response to audiovisual stimulation, Basar, 1999; 

Basar et al., 2001; for fMRI in response to audiovisual stimulation, Bushara et al., 2001; 

Calvert et al., 2001). Hemodynamic correlates of binding have been found in different 

brain areas, depending on which senses were stimulated and which parameter was 

manipulated in the specific crossmodal task (i.e., spatial, temporal, or semantic content; 

see, for review, Calvert & Thesen, 2004; see, also, Teder-Salejarvi, Di Russo, 

McDonald, & Hillyard, 2005). Synchronization of cell assemblies in the gamma 

frequency range found during feature integration in the visual cortex of the cat (Gray et 

al., 1989; Singer & Gray, 1995) indicates that dynamic aspects of brain activity reflect 

the underlying mechanism of binding (Singer, 1998). Similar to changes of EEG 

dynamic within the visual cortex with unimodal binding, EEG coherence within brain 

areas and across brain areas as well as combinations of intra-area and inter-area 

coherence have proved to be associated with crossmodal binding (for a discussion, see 

Engel & Singer, 2001, for a review, see Senkowski et al., 2008). The frequency range of 

observed oscillations corresponds with the distance of areas involved in a task (von 
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Stein, Rappelsberger, Sarnthein, & Petsche, 1999; von Stein & Sarnthein, 2000). 

Sakowitz, Quirogaa, Schürmann, and Basar (2005) found multisensory-specific 

components in all frequency bands. The most pronounced component was an early-

appearing (< 100 ms) theta rhythm over fronto-centro-parietal sites. Increases in theta 

power have also been reported as being evoked by audiovisual stimulation (Basar, 1999; 

Basar et al., 2001). Noesselt et al. (2007) and Bonath et al. (2007) investigated the 

neural basis of the ventriloquism illusion with fMRI and source localization of 

separately measured ERP differences between audio-visual and unimodal stimulation. 

Dipolar sources were found in the auditory cortex of the planum temporale. Relatively 

greater activation was found in the auditory cortex contralateral to the subjectively 

shifted sound position in fMRI (Bonath et al., 2007). Analyzing effective connectivity 

of fMRI activations, effects of congruency (audiovisual temporal correspondence) were 

found in the contralateral STS and in primary visual and auditory areas (Noesselt et al., 

2007). 

 An explanation for crossmodal effects is provided with the model of Maximum 

Likelihood Estimation of multisensory integration by Ernst and Banks (2002). The 

precision of stimuli in different modalities is estimated constantly for each modality, 

and each modality's contribution to the merged percept is weighted. For example when 

localization is relevant, a stimulus from one modality offering more precise spatial 

information dominates a less spatially precise stimulus from another modality. 

Therefore, presenting an auditory and a visual stimulus in proximity may result in a 

localization shift away from the auditory stimulus towards the visual stimulus, because 

the visual stimulus offers higher spatial precision. This phenomenon has been named 

the ventriloquism effect (Howard & Templeton, 1966). It serves as an indicator for the 

integration of crossmodal information in the present study. If spatial precision is 
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manipulated by blurring the visual stimulus, the ventriloquism effect can be reversed 

(Alais & Burr, 2004).  

 In the present study, we investigated neuronal correlates of crossmodal binding 

using simultaneously measured EEG and fMRI. Instead of defining 'binding trials' by 

stimulus configuration or experimental design, the ventriloquism effect was used as a 

behavioral indicator of crossmodal binding. The objective of this study was to identify a 

parameter in the EEG signal indicating audiovisual binding that could be validated by 

fMRI data for a better spatial localization. 

Methods 

Participants 

 EEG data were analyzed in 19 healthy participants (12 female; mean age = 26.19, 

SD = 5.0). All gave written informed consent for their participation before commencing 

the study. 

Stimulation 

 Visual stimuli were two vertically aligned gray discs, one at the left-most the other 

in the right most position on a black computer screen. There was also a gray fixation 

cross at the center of the screen. During each trial (duration = 8 s), the discs flashed for 

200 ms at one of three different rates: 6, 8, or 10 times in 8 s (equivalent to 0.75 Hz, 1.0 

Hz, and 1.25 Hz). In the "congruence" condition, the discs appeared in alternation on 

the left and on the right with an onset lag between the left and the right disc of 560, 400, 

or 320 milliseconds. In the "incongruity" condition, both discs appeared synchronously.  

 Auditory stimuli were sinusoidal tones (440 Hz, duration 120 ms) presented via 

headphones at the same rates as the visual stimuli. In the congruence condition, the tone 

always appeared simultaneously with one of the discs, i.e. on one side (left/right). Each 
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auditory stimulus began with an onset lag of 40 ms after the onset of that visual 

stimulus to which it was linked to. In the incongruity condition, the auditory stimuli 

were lagged to the visual stimuli on both sides (710, 640, or 540 ms). Stereo balance 

and gain were calibrated separately for each participant during presentation of a series 

of test sounds. 

Task 

 After the stimulation period, participants indicated which of the visual stimuli had 

been presented synchronously to the auditory stimuli: those on the left or those on the 

right side. Subjects indicated on a five-point scale to whether the sound came from far 

left, left, center, right or far right. Each response had to be confirmed with an extra 

button press within 4 seconds. Main effects and interaction effects on performance were 

analyzed with a 2 (condition) x 3 (repetition frequency) ANOVA. The fixation cross 

remained visible during all inter-trial intervals (duration 21 +/- 1.5 s). Every 

experimental run consisted of 24 'binding' and 24 'no-binding' trials in pseudo 

randomized order, totaling to 192 synchronous and 192 asynchronous audiovisual 

events. Stimulus presentation and response acquisition were controlled by Presentation 

software (Neurobehavioral Systems, Albany, CA). Participants performed up to 10 

practice trials prior to the experimental session. 

EEG-Data recording 

 EEG data were recorded from 29 sintered Ag/AgCl ring electrodes (10-20 system, 

plus FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10) mounted on an electrode 

cap (BrainCap, Falk-Minow Services, Germany) with an additional reference electrode 

between Fz and Cz. Input impedance was strictly kept below 5 kOhm. Two additional 

channels were used to record the electrocardiogram, a further channel was used for 

recording of the vertical electrooculogram. Signals were recorded with a BrainAmp-MR 
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32-channel amplifier (BrainProducts, Munich, Germany) using a sampling rate of 5 

kHz, filters were set to 0.016-250 Hz . Trigger signals for stimulation and responses 

were aquired along with EEG, ECG, and CEOG using BrainVision Recorder software 

(BrainProducts, Munich, Germany). All recordings were performed inside a 1.5 Tesla 

whole-body MR-scanner (Siemens Symphony) during functional EPI-scanning.  

EEG preprocessing and parameter extraction 

 MR-gradient artifacts and cardioballistic artifacts were corrected according to Allen 

et al.'s (2000; Allen, Polizzi, Krakow, Fish, & Lemieux, 1998) template methods with 

postcorrection downsampling to 250 Hz and low-pass filtering at 30 Hz. Eye-blink 

artifacts and eye-movement artifacts were controlled by visual inspection after 

performing an independent component analysis (infomax algorithm, in BrainVision 

Analyzer, Brainproducts, Munich, Germany). All EEG channels were re-referenced to 

their common average and sampled down further to 125 Hz. Digital passband filters 

between 3.5 Hz / 24 dB and 14.0 Hz / 24 dB were applied. Time-frequency 

representations of segmented epochs across frequencies were acquired in increments of 

0.125 Hz through continuous wavelet transformation (CWT) using the Morlet mother 

wavelet. In order to detect single-trial spectral changes, event-related 

synchronization/synchronization (ERD/ERS) was computed for each wavelet transform, 

with the 500 ms before stimulation onset being used as the reference phase. The 

ERD/ERS representations of two groups of electrodes were pooled by averaging. The 

first group consisted of electrodes P3, P7, CP1, and CP5; the second, P4, P8, CP2, and 

CP6. Accordingly to the acquisition time of one single EPI-volume EEG-segments 

covered the time span between 0 ms and 3000 ms. 

 For each condition, the grand average of the ERD/ERS spectrograms was computed 

to represent the "typical" activation. Only congruence trials in which the ventriloquism 
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effect occurred were included. In the incongruity condition, sounds had to be localized 

without a shift in order to be included in further analyses. The difference between 

'binding' and 'no-binding' grand averages are suggested to represent the effect of the 

crossmodal binding process resulting in coherent perception of that event. The 

spectrograms of the differences were smoothed over time using a Gaussian filter 

(FWHM = 1.248 s). The maximum was set to 1 for creation of a prototypical difference 

spectrogram.  

 In a next step, this difference spectrogram was used to quantify the binding-related 

EEG activity for each trial. For each group of electrodes, the single-trial ERD/ERS 

spectrograms were multiplied with the difference spectrogram. All amplitudes of the 

resulting spectrogram were summed up to the final parameter value. It should be noted 

that energy in single-trial spectrograms corresponding to negative values in the 

difference spectrogram lowered the overall sum. Therefore, a deviant activation pattern 

with high power in all frequencies did not result in a high parameter value. All trials 

were included regardless of the accuracy of reported answers. The mean difference for 

all binding and all incongruity trials was tested for statistical significance using a t-test. 

Alpha threshold was set at p < .05. 

Results 

Behavioral responses 

 Behavioral responses were analyzed on the level of means over all 19 participants. 

In the congruence condition, audiovisual stimuli were detected correctly as synchronous 

in 92% of trials (22.05 out of 24 trials, SD = 1.72). Stimuli were correctly reported to be 

asynchronous in the incongruity condition in 95% of trials (22.84 out of 24 trials; SD = 

1.71). The 2 (conditions) x 3 (repetition frequencies) ANOVA revealed no main effect, 

but a significant Frequency x Condition interaction, F(2, 36) = 4.15, p = .024, 
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Mauchly's test for sphericity p = .468). A statistically significant difference (p < .001) 

was found for stimuli presented with a frequency of 0.75Hz. When presented at this 

frequency, synchrony or asynchrony was detected correctly in 88% of trails (7.05 out of 

8 trials, SD = 1.08) in the congruence condition and in 98% of trials (7.84 out of 8, SD = 

0.50) in the incongruity condition.  

In the synchronous condition, sounds were localized without a shift in 29% of 

trials (6.89 out of 24 trials, SD = 2.87). In the asynchronous condition, 53% of sounds 

were correctly localized (12.68 out of 24 trials, SD = 4.80). The main effect of condition 

was significant, F(1, 18) = 17.56, p < .001). Neither an effect of repetition frequency 

nor an interaction effect was found. 

EEG analysis 

 The EEG signal associated with binding was parameterized for single-trials in three 

steps. The grand averages of time-frequency representation were the basis for the 

spectrograms of differences between ‘congruence’ and ‘incongruity’. The time-

frequency representations of the differences were applied to all single-trial spectrograms 

to extract the sum of power changes over time, which is the parameter.    

 For both groups of electrodes (left, right) and for all conditions, the grand averages 

of ERD/ERS there was evidence for increased synchronization in the theta band (see 

figure 1). In relation to the reference phase, the maximum gain of synchronization was 

0.579; the maximum of desynchronization, - 0.120.  
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Figure 1. Grand average time-frequency representations of synchronization 

change (ERD/ERS, 500 ms baseline or pre-stimulus interval) for the conditions 

‘congruence’ and ‘incongruity’, relating to the 500 ms pre-stimulus interval. 

Signals were pooled for two groups of electrodes; one left-hemisphere group at 

positions P3, P7, CP1, and CP5; one right-hemisphere group at positions P4, 

P8, CP2, and CP6. 

 
 After subtracting the grand average of the ‘incongruity’ condition from the 

‘congruence’ condition the differences were most pronounced between 4 and 7 Hz. 

They ranged from - 0.259 to 0.213 in the left-hemisphere (LH) electrodes and from - 

0.364 to 0.245 in the right-hemisphere (RH) electrodes before smoothing (figure 2).  
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Figure 2. Time-frequency representations of the differences in changes during 

crossmodal binding (‘congruence’ minus ‘incongruity’; max set to 1).  Highest 

difference corresponds to ~23% higher synchrony.  

 
 Parameter values were extracted by multiplying the spectrograms of single trials 

with the prototypical difference spectrograms, resulting in one single value for the LH 

group of electrodes and one value for the RH group of electrodes for each trial. Pairwise 

t tests comparing binding and no-binding resulted in statistically significant differences 

for both pools (LH group of electrodes P3, P7, CP1, CP5: M = 188.41, SD = 339.10, 

t[18] = 2.42, p = .026; RH group of electrodes P4, P8, CP2, CP6: M = 219.93, SD = 

192.29, t[18] = 4.99, p < .001. 
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Discussion 

The present study is designed to extract correlates of crossmodal binding from lower 

frequencies of the EEG recorded inside an MR scanner during EPI-scanning. The 

subjects were asked to localize simple audiovisual events, which were presented 

synchronously and asynchronously. The ventriloquism effect, a shift in the subjective 

localization of synchronous audiovisual stimuli, is used as a behavioral indicator of the 

binding process. Event-related changes in low-frequency EEG synchrony are expected 

to indicate crossmodal binding.  

 Grand-average EEG spectrograms are computed for frequencies of 3.5 to 14Hz with 

a wavelet-analysis. Activity is compared with those of the prestimulus phase because 

we are interested rather in changes in synchronization than in absolute values. Using 

this procedure, signal changes over time can be observed in a broad frequency range 

that is advantageous to spectral analysis. The prototypical pattern of binding is specified 

as the difference between the averaged spectrogram of the binding and no-binding trials. 

This pattern during crossmodal binding is similar for two groups of electrodes (LH and 

RH parietal positions), showing higher energy most prominently at about 4 and 7 Hz. 

Used as a filter, such a prototype pattern affords us to quantify single trials (not single 

events) in terms of total energy associated with binding. Thereby the process 

investigated can be searched for in any trial regardless of the condition or the behavioral 

response, e.g. the quantified energy can serve as a modulator in a combined fMRI-EEG-

analysis. Congruence trials show higher energy than incongruity trials in the EEG in the 

parietal and centroparietal electrodes.  

 In this study, the synchronously presented stimuli successfully induce the 

ventriloquism effect despite noise and interference in the headphones due to the 

magnetic field and HF-pulse switching of the MR scanner. With simultaneous recording 
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of EEG and fMRI, dynamic aspects of brain activity can be related to metabolically 

associated local signals. The simultaneous recording demands sophisticated techniques, 

because the artifacts induced by the magnetic field and especially the reading pulses of 

fMRI exceed the EEG signal by more than two orders of magnitude (Allen et al., 2000). 

Interleaved fMRI recording does not solve this problem conclusively and discards the 

important EEG information during image acquisition. In addition, the hemodynamic 

information during EEG recording is lost.  

 Most studies on multisensory integration have focused on synchronization in the 

gamma band (for a review, see Senkowski et al., 2008). A reliable extraction of gamma 

EEG from signals recorded during EPI scanning is not possible with current methods of 

MR-artifact correction (Mandelkow et al., 2006). However, von Stein and Sarnthein 

(2000) have distinguished inter area interactions in the theta and alpha band from 

integration processes of local signal propagation that are reflected in higher frequencies. 

Assuming that percept-related crossmodal binding is a spatially distributed process, the 

spectrogram pattern found in the present study is consistent with such a relation of 

oscillation frequency and length of connections; that is, the interaction between areas is 

also reflected in lower frequencies. Whereas it is suggested that gamma frequencies (30 

- 100 Hz) reflect intra-area binding processes, responses to multimodal stimulation are 

found in the theta band range (3.5 - 7.5 Hz) as well. In evoked audiovisual potentials, 

the most pronounced multisensory component has been found in the theta band (Mishra 

et al., 2007).  

 Analysis of fMRI data revealed that congruence trials relate to network activity 

including the insula, the superior temporal sulcus, and the parieto-occipital sulcus 

(Bischoff, Walter, Blecker, Morgen, Vaitl, & Sammer, 2007). In the current study, the 

crossmodal binding as indicated by lower frequencies in the EEG is very likely 
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generated by synchronized neuronal activity within such a network. The relation of the 

hemodynamic response of fMRI and single-neuron activity has been called "an area of 

open inquiry" (Stein & Stanford, 2008, p. 264), and this is also true for the relation 

between fMRI and EEG signals during multisensory integration. Future analyses should 

use the quantified EEG energy to compare the electrophysiological signal to the 

hemodynamic signal on a trial-by-trial basis. However, when doing this, it is crucial for 

the parameter to differentiate sufficiently between conditions. The quantification of 

single trials by parameter extraction shows that congruence trials evoke more energy in 

the prototypical pattern of binding than no-binding trials. This supports the notion that 

the correlate found here actually does reflect the specific processes, while taking into 

account that the energy sum is lowered by processes not matching the binding pattern. 

An overall increase in synchronization in one condition does not result in higher energy 

values. Therefore, the parameterized EEG can be interpreted as an estimator of the 

crossmodal binding process, and it may be used to guide EEG-constrained fMRI 

analyses.  

 The difference spectrogram and the quantified energy successfully identify a 

crossmodal binding correlate. For the prototype, trials in which binding is perceived are 

selected, the quantification is extended to incorrect trials as well. The changes in the 

theta band are related to the percept of a synchronous audiovisual event. This is in line 

with the proposed role of theta in the association of memory elements (Schürmann & 

Basar, 1999) and in the association of the time information relative to the situational 

context, i.e. the sequence of events (Klimesch, 1999). In conclusion, percept-related 

crossmodal binding involves low-frequency cortical network interactions, as indicated 

by enhanced theta synchronization in EEG spectrograms.  
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Chapter 4 

EEG-Guided fMRI-Analysis Reveals Involvement of 

Low-Frequency EEG and the Superior Temporal Sulcus 

in Audiovisual Binding 

 

The problem of crossmodal binding is how the feature information of different sensory 

streams is translated into the unified representation of an object in perception. The 

present study investigated correlates of audiovisual binding using an analysis of 

functional magnet resonance imaging (fMRI) guided by the electroencephalogram 

(EEG). EEG and fMRI were recorded simultaneously. This allowed the investigation of 

the relationship of classical multisensory integration areas and task related EEG. 

Binding conditions were introduced by synchronously presented audiovisual stimuli of 

low complexity. Participants were asked to report the temporal congruency and location 

of auditory stimuli while observing both visual and auditory stimuli that were switched 

on/off either synchronously or asynchronously. During temporally congruent stimulus 

presentation very frequently an auditory localization shift toward the synchronously 

presented visual stimuli results can be observed. This ventriloquism effect (VE) 

indicates the successful perceptual integration of the audio-visual event. Without this 

effect, it is not sure that crossmodal binding occurred in that act of perception.  

 In the EEG, time-frequency analysis of theta and alpha band activity at parietal 

electrodes was different for temporal congruency conditions. A weighted total energy 

measure of single trial EEG spectrograms was introduced as modulator in the EEG-

guided fMRI analysis of binding. Thus, binding related variations in EEG single trial 

energy measures showed correlation with hemodynamic changes in the right superior 

temporal sulcus for audiovisual binding. This activation is not solely allegeable by the 
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temporal congruency of stimuli or the ventriloquist illusion as equivalent analyses 

showed. Concluding, activation in the superior temporal sulcus and low-frequency 

neuronal synchronization are correlated during the perceptual binding of audio-visual 

events. 
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Introduction 

 In neuroscience the binding problem implies two questions. The first is how the 

features of an object or event are integrated correctly in the multitude of events 

continuously perceived. The second question is how the features of this object or event 

are translated into a coherent conscious perception. Initially, the binding problem was 

discussed in the field of feature integration in visual object recognition (for a review, 

see Singer, 1999). The discovery of the dorsal and ventral pathway of visual processing 

(Mishkin & Ungerleider, 1982) raised the question how information of both streams is 

reunited. Similarly, the binding problem can be extended to feature integration in 

multisensory or multimodal perception. The ventral ('what') and dorsal ('where') 

pathways are known for the auditory, somatosensory, and visual modality (Schroeder & 

Foxe, 2002). However, not much is known about how multisensory binding works on a 

perceptual level. The term “crossmodal” binding describes an interaction of involved 

modalities being more than simply to the number of modalities, i.e. “bi-“, “tri-“ or 

“multimodal” stimulation. Binding is related to the conscious representation of a 

coherent entity (Revonsuo, 1999). In contrast, multisensory integration describes all 

biological and mental convergent processing of multimodal stimuli, which does not 

necessarily involve conscious perception (Stein & Stanford, 2008). In most studies 

crossmodality is assumed with respect to congruent multimodal stimulation. However, 

it appears to be advantageous to verify crossmodal interaction and perceptual binding 

by the use of illusions and perceptual shift effects. According to the Maximum 

Likelihood Estimation model of multisensory integration (Ernst & Banks, 2002), the 

spatial precision of stimuli in different modalities is estimated constantly for each 

modality, and each modality's contribution to the percept is weighted accordingly. For 
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example, a stimulus from one modality that offers better spatial information dominates 

the localization of a bimodal stimulus, which has weaker spatial resolution in the second 

modality. The present study uses a crossmodal spatial effect, the ventriloquism effect. 

The ventriloquism effect describes the mislocalization of an auditory stimulus towards a 

simultaneously presented visual stimulus (e.g., Howard & Templeton, 1966). 

Interestingly, if spatial precision of a visual stimulus is manipulated by blurring, the 

ventriloquism effect can be reversed (Alais & Burr, 2004). This finding strongly 

supports the model of Maximum Likelihood Estimation. The integration of sensory 

information leads to a percept shifted in space. Stimuli are not perceived as conflicting 

or separate, nor are the spatial information totally neglected in one modality. Therefore, 

the ventriloquism effect does not represent a absolute dominance based on one of the 

modalities, but rather an interaction while the percept is assembled. 

 Activity of brain during multisensory task performance found in neuroimaging 

studies depends on the modalities involved, the experimental parameter, the paradigm 

and the analytic approaches used (Calvert, 2001; Calvert & Thesen, 2004; Laurienti et 

al., 2005). Primary sensory areas have been assumed to be purely unisensory for a long 

time. However, recent studies show that multisensory information is processed in 

primary sensory areas as well (Amedi et al., 2005; Ghazanfar & Schroeder, 2006). The 

interaction of primary sensor areas with higher-level convergence areas are currently 

under discussion (Bauer, 2008; Senkowski et al., 2008). Although a number of 

heteromodal cortical integration areas were studied in several neuroimaging studies, 

their exact function for crossmodal integration (and binding) not yet clear. The superior 

temporal sulcus (STS) is involved in audiovisual integration of speech and in object 

identification (Calvert et al., 2000; Beauchamp et al., 2004; Amedi et al., 2005). The 

superior colliculus (SC) and the insula/claustrum are activated by simultaneous onsets 
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of stimuli across different modalities (Bushara et al., 2001; Calvert, et al., 2001). The 

intraparietal sulcus (IPS) and the parieto-occipital sulcus (POS) are involved in the 

detection of multisensory stimuli that correspond in spatial location or visuo-motor 

aspects (Bremmer et al., 2001; Bushara et al., 2001; Callan et al. 2001; Calvert et al,. 

2001; Fort et al., 2002; Molholm et al., 2002; Macaluso et al., 2004; Amedi et al., 

2005).  

 The main characteristic of multisensory integration on the neuronal level is a 

difference in the neuronal firing rate evoked by a bi- or multimodal stimulus-

combination in comparison to the most effective of these stimuli individually (Stein & 

Stanford, 2008). This difference may result in a significant multisensory enhancement 

or suppression. It has been proposed, that multisensory integration is related to 

dynamical aspects of brain activity beside the firing rate of neurons (Singer, 1998, for a 

review, see Senkowski et al., 2008). The temporal correlation hypothesis states that the 

synchronization of distributed neural signals in networks of brain areas is a key 

mechanism for the assignment of information and multisensory integration (Singer & 

Gray, 1995; for a review, see Senkowski et al., 2008). Concurrent activity in areas not 

adjacent or close to one another is observed as oscillatory responses in the EEG (Milner, 

1974; von der Malsburg, 1981). The various frequency bands of such synchronized 

oscillations were related to a variety of cognitive and sensorimotor processes; most 

studies on multisensory integration have focused on gamma band synchronization (for a 

review, see Senkowski et al., 2008). However, concurrent stimulation in two modalities 

also evokes a power increase in the theta frequency range (Basar, 1999; Basar et al., 

2001). Schürmann and Basar (1999) report theta responses to audiovisual stimuli 

predominantly over the association areas of the frontal midline and the temporo-parietal 

locations. Sakowitz et al. (2005) have found multisensory-specific components in all 
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frequency bands. The most pronounced one was early appearing theta synchronization 

in frontocentral and parietal sites.  

 The hypothesis of crossmodal integration by hierarchically organized dedicated 

areas and the hypothesis of crossmodal integration by temporal coupling of areas 

forming temporarily a functional network do not exclude each other. For instance, sets 

of transmodal nodes acting as epicenters for convergence across areas have been 

proposed already by Mesulam (1998). 

 In a previous study, we investigated hemodynamic activation associated with 

binding using the ventriloquism effect. Comparing binding with asynchronous 

audiovisual stimulation with region of interest (ROI) analyses we found higher 

activation in the right insula, and bilaterally in the STS and POS (Bischoff et al., 2007). 

Similarly, analyzing the differences in ERD/ERS between binding and asynchronous 

stimulation, we found higher energy for crossmodal binding most prominently in the 

theta band. (Bischoff et al., submitted). 

 In the present work we study the association between activated areas as indicated by 

fMRI and EEG-synchronization during crossmodal binding. EEG was measured 

simultaneously during fMRI (EPI-acquisition). Simultaneous measurement allowed for 

direct comparison of the results of both methods, because they were recorded at the 

same time during identical experimental conditions. Event-related changes in low-

frequency EEG synchrony (ERD/ERS) indicated crossmodal binding and were 

parameterized to be correlated with the fMRI. 

Methods 

Subjects 

 Twenty-five subjects were recruited for the study. Because of a complete absence of 

the ventriloquism effect, data of 5 subjects were excluded. Data of one subject was 
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excluded for technical reasons. Thus, data of 19 subjects remained for analysis (12 

female; mean age =26,2; S.D.=5,0).  

 All subjects were naive as to the purpose of the experiment. None of them had a 

history of or a current neurological or psychiatric illness. All reported normal or 

corrected-to-normal vision (MR-suitable glasses) as well as normal hearing. All subjects 

provided written informed consent for their participation. 

Visual stimuli 

 Visual stimuli were gray discs (RGB 200,200,200) which could appear on two 

vertically aligned positions on the edge of the projected screen (XGA, 1024*768). The 

background  was black with a gray fixation cross at the center. Each disc had a diameter 

of 240 pixels. During a trial (duration = 8 s), the discs flashed repeatedly at one of three 

different rates for each trial; 6 times in 8 seconds, 8 times in 8 seconds, and 10 times in 

8 seconds (0.75 Hz, 1.0 Hz, 1.25 Hz). For each time, the discs appeared for 200 ms. 

During the temporally congruent stimulation, the discs appeared alternating on the left 

and on the right with an onset lag between the left and the right disc (560, 400, or 320 

ms). During the temporally incongruent stimulation, they appeared simultaneously on 

both sides. The visual stimuli were displayed on a back projection screen behind the 

scanner. Via a dual-mirror, which was attached to the head-coil, subjects could watch 

the screen. The angle of vision was approximately 9° vertically and 12° horizontally. 

The projector was located outside the scanner room; a special lense afforded the 

projection through a waveguide. 

Auditory stimuli 

 Auditory stimuli were sinusoidal tones with a frequency of 440 Hz and a duration of 

120 ms. The tones were presented at the same rates as the visual stimuli (0.75, 1.00, 

1.25 Hz). During the presentation of temporally congruent stimuli, the auditory stimuli 
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were coupled with the visual stimuli on one side, e.g. the sounds always appeared 

simultaneously with the discs on the right side. The auditory stimuli started with an 

onset lag of 40 ms after the onset of the respective visual stimuli and ended 40ms before 

the visual stimuli did. During the presentation of temporally incongruent stimuli the 

visual stimuli were presented simultaneously, the auditory stimulus was given using a 

long onset lag (510, 440, 340 ms).  

 The auditory stimuli were presented using MR-compatible electrodynamic high 

quality sound stereo headphones. The permanent magnet in these headphones is 

substituted by the static B0-field of the MR-scanner. This allows the electrodynamic 

headphones to replace low fidelity standard air headphones. However a disadvantage is 

that the gain level of the channels of the electrodynamic headphones partly depends on 

the position of the earphone in the scanner. Therefore, the headphones were attached to 

the head fixation clamps which in turn are part of the patient table. This configuration 

assured both a fixed placement in the MR-scanner and a good fit of the headphones to 

the subject's head. For each subject, stereo-balance and gain were calibrated during 

presentation of a series of test sounds. The balance of the headphones was individually 

adjusted until the participants judged the sound as originating from the central point. To 

match the acoustic noise conditions in the subsequent task, these adjustments were 

made during an fMRI-sequence. 

Experimental task 

 During each trial, the stimuli were presented repeatedly for 8 seconds. In trials with 

temporally congruent audiovisual stimuli, the visual stimuli on one side were 

synchronously presented with the auditory stimuli. Note that the disc-stimuli were 

presented asynchronously with regard to each other. In trials with temporally 
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incongruent audiovisual stimuli, both disc-stimuli were presented synchronously with 

regard to each other but asynchronously to the auditory stimuli.  

 After the stimulation period, participants indicated which of the visual stimuli had 

been presented synchronously to the auditory stimuli: those on the left, none, those on 

both sides, or those on the right side. Subjects had to check one within a line of four 

boxes (by moving a cursor with two buttons) and confirm the choice pressing a third 

button. The answer boxes not chosen were dimmed out to show that the response was 

registered. The interval for this response was fixed to 4 seconds. Second, they used a 

five-point scale to indicate whether the sound had originated from far left, left, center, 

right or far right. Again, the response had to be confirmed with an extra button press 

within a 4-s interval. All responses were performed with the index finger of the right 

hand. During the time between two trials (21+/- 1.5 s) only the fixation cross remained 

visible. Onsets were jittered in relation to the BOLD-measurement stimulus. 

 Every experimental run consisted of 48 trials. The stimulation was congruent in 24 

trials (synchronous audiovisual stimuli) and incongruent (asynchronous audio and 

visual stimuli) in 24 trials, equaling 192 synchronous and 192 asynchronous stimuli 

pairs. The presentation order was pseudorandomized. Stimulus presentation and 

response acquisition were controlled by 'Presentation'-software (Neurobehavioral 

Systems, Albany). To become familiar with the keypad and to ensure that the 

instructions were understood correctly, subjects practiced up to 10 sample trials of the 

task prior to the session in the scanner.  

Trial categorization / conditions 

 The temporal congruency of two streams of audiovisual stimuli was manipulated. If 

the stimuli were temporally congruent some of a stream of visual stimuli appeared 

coincidently with a stream of auditory stimuli. When this stimulation elicited the 
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ventriloquism effect, the trials were coded with “cong-1” (temporal congruency with 

ventriloquism effect). If no  ventriloquism effect occurred or the congruency was not 

detected by the participant trials were coded “cong-0” (temporal congruency, without 

ventriloquism effect). If the stimuli were temporally incongruent no visual stimuli 

appeared coincidently with the auditory stimuli. Trials without localization shift were 

successful controls and coded “inc-0” (temporal incongruity control). When a 

mislocalization occurred during incongruent stimulation or the incongruity was not 

detected by the participant, the trial was coded “inc-1” (temporal incongruity, deviant). 

Behavioral Data analysis 

 Main effects and interaction effects of the audiovisual synchrony and the stimulation 

frequency on the number of correct responses on performance were analyzed with a 2 

(congruency) x 3 (repetition frequency) ANOVA. 

EEG-Data recording 

 EEG data was recorded from 29 sintered Ag/AgCl ring electrodes (10-20 system, 

plus FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, TP10 [frontocentral, centro-

parietal and temporo-parietal positions]). The scalp electrodes were attached using the 

BrainCap electrode-cap (Falk-Minow Services, Herrsching-Breitbrunn, Germany), 

which is part of the MR-compatible EEG-recording system BrainAmp-MR 

(BrainProducts, Munich, Germany). An electrode located between Fz and Cz was used 

as the reference electrode during recording. Electrode input impedance was kept below 

5 kOhm. Two channels of the 32-channel system were used for recording the 

electrocardiogram (ECG) to control for heartbeat artifacts in the EEG. One channel 

recorded vertical EOG. Signals were amplified with a BrainAmp-MR 32-channel 

amplifier. The sampling rate was 5 kHz; filters were set to 0.016-250 Hz. Trigger 

signals for stimulation, responses and onset of the gradient for the first slice-
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measurement of a volume accompanied the recording of EEG data with the BrainVision 

Recorder software (BrainProducts).  

 EEG measurement was performed continuously inside the MR-scanner during 

functional scanning. To prevent artifacts in the EEG due to pump-induced movements 

of the subjects, the helium pump of the MR scanner was switched off. Within the 

scanner-tube, head movements were restricted by a head clamp, attached to the head 

coil. The subjects lay in a supine position with their head on a vacuum cushion, which 

avoided small electrode movements inside the magnetic field. Thereby such movements 

could not cause additional artifacts by inducing electromotive forces. 

EEG preprocessing  

 MR-Gradient artifacts were corrected according to of Allen et al.’s template-method 

(Allen et al., 2000), with post correction downsampling to 250 Hz and low-pass filtering 

at 30 Hz. Cardioballistic artifact correction was carried out according to Allen et al. 

(1998). Both methods are implemented in BrainVision Analyzer software 

(BrainProducts). After correction of pulse artifacts, ECG channels were discarded. 

Eye-blink artifacts and eye-movement artifacts were controlled by visual inspection 

after performing an independent component analysis (infomax algorithm, in 

BrainVision Analyzer, Brainproducts, Munich, Germany). Exclusion of corresponding 

artifact components was based on visual inspection of each component’s scalp 

topography and spectral distribution as well as on visual comparison of each 

component’s time course with the time course of the EOG channel. Per subject three 

components were excluded. The VEOG channel was discarded afterwards and all 

channels were re-referenced to their common average. The re-referenced data were 

sampled down further to 125 Hz. Digital pass band filters between 3.5 Hz / 24 dB and 

14.0 Hz / 24 dB were applied.  
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 Time-frequency representations of segmented epochs across frequencies were 

acquired in increments of 0.125 Hz through continuous wavelet transformation (CWT) 

using the Morlet mother wavelet. In order to detect single-trial spectral changes, event-

related synchronization/synchronization (ERD/ERS) was computed for each wavelet 

transform, with the 500 ms before stimulation onset being used as the reference phase. 

The ERD/ERS representations of two groups of electrodes were pooled. The first group 

consisted of electrodes P3, P7, CP1, and CP5; the second, P4, P8, CP2, and CP6. 

Segments were cut off at 0 ms and 3000 ms equivalent to the time of one volume of the 

fMRI. Computations were performed with the signal-processing toolbox LetsWave 

software (http://www.md.ucl.ac.be/nefy/facecatlab/mouraux/letswave/).  

EEG analysis 

 The parameter extraction was performed with MATLAB software (The MathWorks, 

Inc.). The activation in each condition is represented by the grand average of the 

ERD/ERS spectrograms. The differences between these grand average time-frequency 

representations define the three contrasts of interest in the present study.  

The first contrast of interest was ‘cong-1 – inc-0’, representing the effect of the 

crossmodal binding process leading to the perception of one event. 

The second contrast was ‘cong-1 – cong-0’, representing the illusion or localization 

shift of the ventriloquism effect. 

The third contrast was ‘cong-0 + cong-1 – inc-0 + inc-1’, representing the effect of 

temporal congruency without regard of effects on the localization.  

 Analyses were conducterd separately for the electrodes, which were ipsilateral to the 

synchronous audiovisual stimuli, and the contralateral group of electrodes. Also 

congruent trials were separated into trials in which the visual stimuli presented in the 

left visual field were synchronous with the auditory stimuli – labeled with an additional 
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‘left’ (cong-0-left, comg-1-left), and trials with the synchronously presented visual 

stimuli in the right visual field – labeled with an additional ‘right’ (cong-0-right, comg-

1- right). 

 The time-frequency spectrograms were smoothed in time with a Gaussian filter 

(FWHM = 1.248 s) and the maximum set to 1 to create  prototypical difference 

spectrograms. The modulation-parameters for EEG-guided fMRI-analysis were 

calculated by multiplying single trial ERD/ERS with the time-frequency representations 

of the contrasts and summing up the energy (amplitudes over time) in the resulting 

spectrogram. For each single trial, the total amount of energy quantified the energy 

related to the processes defined by the difference spectrograms. For the three analyses 

this results in two sets of modulation-parameters, one set for the electrodes ipsilateral to 

the visual stimuli synchronous with the auditory stimuli and one set for the contralateral 

electrodes.  

FMRI acquisition 

 Functional MRI was measured with a 1.5 Tesla Siemens Symphony whole-body 

scanner with Quantum-gradients. Functional images were obtained using a single shot 

T2*-weighted gradient-echo planar imaging (EPI) sequence. Thirty slices were acquired 

in descending fashion to cover all parts of the brain. Slice thickness was 4 mm with 1 

mm gaps. Other MR-scanning parameters were: repetition time TR = 3000 ms, echo 

time TE = 59 ms, flip angle = 90°, field of view FOV = 192x192mm, voxel size = 

3x3x5 mm, in-plane image resolution was 64 x 64 voxels. For control of the 

normalizing procedure and for the purpose of documentation, an anatomical MRI was 

acquired using a T1-weighted, three-dimensional MPR sequence.   
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FMRI analysis 

 FMRI data were analyzed with SPM5 (Wellcome Institute of Neurology at 

University College London, UK. http://www.fil.ion.ucl.ac.uk/spm). The first five 

images of each functional recording session were discarded to account for the magnetic 

field saturation time. The preprocessing of the EPI-data included movement correction 

and correction of field image distortion, normalization into the MNI-reference space 

and smoothing (FWHM = 8 mm). At the first level, general linear models were applied 

to the data of each subject for each set of modulation-parameters of the three analyses.  

 Regressors in the general linear models were ‘congruent stimulation on the left’, 

‘synchronous congruent on the right’ and ‘incongruent stimulation’, ‘response phase’ 

and ‘fixation phase’. Parametric modulations were conducted for each analysis with the 

parameters described above. The movement parameters computed during the 

realignment procedure were included in the models. Contrasts of interest were the 

positive correlations with the modulators  

 T-tests were calculated voxel-wise to obtain statistical parametric maps. Results 

were computed based on region of interest (ROI) analyses, limiting the correction for 

multiple testing to a-priori specified regions of the brain. These ROI were bilateral 

insula, superior temporal sulcus (STS) – without the temporal pole – superior colliculi 

(SC), intraparietal sulcus (IPS) and parieto occipital sulcus (POS). Masks with voxelsize 

of 2x2x2 mm were created using the MARINA-tool (“MAsks for Region of INterest 

Analysis”, by Walter et al., 2002), which is based on the anatomical parcellation of the 

brain published by Tzourio-Mazoyer et al. (2002). 
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Results 

Behavioral Responses 

Table 1  
Responses of the participants, means and standard deviation 
 Detection of synchrony Ventriloquism effect Manipulation successfull 

cong-1 
cong 22.05 (1.72) 17.11(2.87) 16.00 (2.87) 

  
Detection of asynchrony 

 
Localization to center 

 
Manipulation successful 

inc-0 

inc 22.84 (1.71) 12.68 (4.80) 11.79 (4.70) 

cong = temporally congruent audiovisual stimulation; inc = temporally incongruent audiovisual 
stimulation; 24 trials total for each condition. Manipulation successful = Detection of 
audiovisual synchrony and localization shift for congruent stimuli (cong-1) or detection of 
asynchrony and no localization shift for incongruent stimuli (inc-0) respectively. 
 

 Behavioral responses were analyzed for all 19 participants. The 2x3 (congruency x 

repetition frequencies) ANOVA resulted in no main effect, but a statistically significant 

interaction ‘frequency * condition’ was found (F[2, 36] = 4.154; p = 0.024; Mauchly-

test for sphericity p=.468). Separated for repetition frequencies, the slowes frequency 

showed a difference for congruent and incongruent stimulation. Congruent stimuli 

presented with a frequency of 0.75Hz were answered correctly in 7.05 (S.D. = 1.08) 

trials (of total 8) and incongruent stimuli in 7.84 (S.D. = .0.50) trials, the difference was 

statistically significant (p = 0.001). Congruent stimuli presented with a frequency of 

1.00Hz were processed correctly in 7.42 (S.D. = 0.69) trials and incongruent stimuli in 

7.47 (S.D. = .84) trials. Stimuli presented with a frequency of 1.25Hz were answered 

correctly in 7.58 (S.D. = 0.69) trials and incongruent stimuli in 7.53 (S.D. = 1.02).  

 In the ANOVA of responds for sound-localization the main effect of condition 

showed statistical significance (F[1,18] = 17.56; p = 0.001). The main effect of 

repetition frequency and the interaction “frequency * condition” reached no level of 

significance. For the overall successful stimulus manipulation– both questions answered 

as intended –the ANOVA the showed a main effect of condition (F[1,18] = 14.89; p = 

0.001) but no effect of repetition frequency and the interaction. 
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EEG time-frequency representations 

Grand averages 

 

 

 

Figure  1. Time-frequency representations of event-related synchronization 

change (ERD/ERS) relating to the 500 ms pre-stimulus interval. The first two 

columns show data derived from the left hemispheric electrodes, the last two 

columns show data derived from the right hemispheric electrodes; cong-1 left = 

temporally congruent stimuli in the left visual field, congruency detected and 

ventriloquism effect elicited; cong-1 right = same as cong-1 left, but stimuli in 

the right visual field; cong-0 left = temporally congruent stimuli in the left visual 

field, congruency not detected or no ventriloquism effect elicited; cong-0 right = 

same as cong-1 left, but stimuli in the right visual field; inc-1 = temporally 

incongruent stimuli, incongruity detected and no localization shift; inc-0 = 

temporally incongruent stimuli, incongruity not detected or localization shift 

elicited. 
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Table 2 
Maxima and minima of proportionate synchronization change (ERD/ERS)  

left hemispheric electrodes right hemispheric electrodes  

Maximum Minimum Maximum Minimum 

cong-1 left 0.40 -0.07 0.43 -0.12 
cong-1 right 0.39 -0.10 0.43 -0.09 
inc-0 0.33 -0.06 0.34 -0.06 
cong-0 left 0.47 -0.20 0.44 -0.20 
cong-0 right 1.18 -0.11 0.74 -0.09 
inc-1 0.43 -0.09 0.40 -0.07 
1 = double of pre-stimulus baseline mean 

 

Spectrograms of contrasts 

 The bases for the parameter extraction from single trials for the EEG-guided fMRI-

analysis are the time-frequency representations of differences between the conditions, 

the three contrasts of interest.  

 

 

Figure 2. Time-frequency representations of the differences in synchronization 

(ERD/ERS) for the contrasts of interest (max set to 1). The first two columns 
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show data derived from the left hemispheric electrodes, the last two columns 

show data derived from the right hemispheric electrodes; binding = The 

difference between cong-1 and inc-0 reflected the difference in EEG-activation 

during audio-visual events in comparison to separated audio and visual events 

without localization shift, binding left = temporally congruent stimuli in the left 

visual field (cong-1 left – inc-0); localization shift = The difference between 

cong-1 and cong-0 reflected the effect of the illusion or localization shift of the 

ventriloquism effect; temporal congruency = The difference between all 

congruent stimuli (cong-1 and cong-0) and all incongruent stimuli (inc-0 and inc-

1) reflected the overall congruency effect of synchronous audiovisual 

stimulation.  

EEG-Guided fMRI group analyses 

Binding  

 Guiding the fMRI-analysis with a parametric modulation of the regressors by the 

difference of ‘cong-1 – inc-0’ shows a single cluster in the right superior temporal 

sulcus for electrodes ipsilateral to the visual field of congruent audiovisual stimuli 

(‘cong-1 left’ represented by spectrograms of left hemispheric electrodes, ‘cong-1 right’ 

represented by spectrograms of right hemispheric electrodes etc.). The cluster size is 58 

voxels, the maximum of activation in the ROI of the right hemispheric STS is at 45 -27 

0 (MNI coordinates), with a t-value of 6.83 and a pFWE-value of 0.001 (family-wise 

error corrected). For electrodes contralateral to the visual field of congruent audiovisual 

stimuli, binding is correlated with no statistically significant activations in the ROIs. No 

statistically significant negative correlations were found. 
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Figure 3. Effect of parametric BOLD modulation by binding (cong-1 – inc-0) at 

electrodes ipsilateral to the visual field of congruent audiovisual stimuli. 

Activation is projected on the standard MNI template (ICBM152). Slices are cut 

at the coordinates of the maximum (45 -27 0). Minimum t-value for illustration is 

set to 3.61, which equals the t-value for a uncorrected voxel-wise testing at 

p=0.001 whole-head, the maximum t-value is 6.83.   

Localization shift 

 The parametric modulation of fMRI regressors by the difference of ‘cong-1 – cong-

0’, showed activation in the right insula for electrodes ipsilateral to the visual field of 

congruent audiovisual stimuli. The cluster is 35 voxels in size, the maximum of 

activation is at 30 -21 15 (MNI coordinates), with a t-value of 6.44 and a pFWE-value of 

0.002 (family-wise error corrected). No statistically significant negative correlations 

were found. 

 

Figure 4. Effect of parametric BOLD modulation by the localization shift (cong-1 

– cong-0) at ipsilateral electrodes. Activation is projected on the standard MNI 
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template (ICBM152). Slices are cut at the coordinates of the maximum (30 -21 

15). Minimum t-value for illustration is set to 3.61, which equals the t-value for 

uncorrected voxel-wise testing at p=0.001 whole-head, the maximum t-value is 

set to 6.83.   

 For contralateral electrodes the modulation by ‘cong-1 – cong-0’ showed a positive 

correlation in the left IPS. The cluster is 54 voxels in size, the maximum of activation in 

the ROI of the right hemispheric STS is at -21 -66 39 (MNI coordinates), with a t-value 

of 4.88 and a pFWE-value of 0.029 (family-wise error corrected). No statistically 

significant negative correlations were found. 

 

Figure 5. Effect of parametric BOLD modulation by the localization shift (cong-1 

– cong-0) at contralateral electrodes. Activation is projected on the standard 

MNI template (ICBM152). Slices are cut at the coordinates of the maximum (-21 

-66 39). Minimum t-value for illustration is set to 3.61, which equals the t-value 

for uncorrected voxel-wise testing at p=0.001 whole-head, the maximum t-value 

is set to 6.83. 

Temporal congruency 

 The parametric modulation of fMRI regressors by the difference of congruent versus 

incongruent stimuli (cong-1 + cong-0 vs. inc-0 + inc-1), showed neither a positive nor a 

negative correlation in the ROI-analyses. 
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Discussion 

In the present study, we investigated the relationship between multisensory convergence 

areas and low-frequency neuronal synchronization in the perceptual binding of 

crossmodal audiovisual stimuli. EEG and fMRI were recorded simultaneously; both 

data sets represented the identical task performance. Whenever temporally congruent 

audiovisual stimulation was associated with the ventriloquism effect, which is a 

localization shift of the auditory stimuli toward the visual stimuli, trials were classified 

as representing crossmodal binding. With EEG, crossmodal binding was reflected by 

the difference between synchronization during those crossmodal binding trials and 

incongruent audiovisual stimulation without localization shift. On a single trial basis, 

the synchronization differences were quantified to predict BOLD changes in an EEG-

guided fMRI-analysis. The modulation of the BOLD-response by ERD/ERS gives 

information about the association of cortical areas and EEG-dynamic within the 

framework of crossmodal binding. As a result areas associated with increased 

synchronization are related to crossmodal binding. Both, the illusion of the 

ventriloquism effect and the difference between synchronous and asynchronous 

stimulation were analyzed in the same way. 

 Without indicating binding by the ventriloquism effect, one cannot determine 

whether sensory information was integrated across the modalities. When the 

ventriloquism effect occurred in a congruent trial, our criterion for crossmodal binding 

events was fulfilled. It may well be that congruent stimulation without the ventriloquism 

effect was also integrated, the adequate criterion to assure a clean ‘no binding’ 

condition is therefore given for incongruent trials without a localization shift (inc-0). 

The behavioral results show that the congruently presented stimuli successfully induced 

the ventriloquism effect despite noise and interference in the headphones due to the 
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magnetic field of the MR scanner. Approximately two thirds of congruent trials showed 

a localization shift as expected by the ventriloquism effect (cong-1), which is 

comparable with other studies with similar perceptual effects, e.g. the localizing task of 

Bonath et al. (2007) induced the ventriloquism effect in 72 percent of the trials.  

 Changes in the brain states during multisensory integration were reflected in the 

time-frequency representations. Equivalent to the fMRI analysis a correlate of 

crossmodal binding was derived from the EEG by contrasting cong-1 trials and inc-0 

trials. The difference of grand averages showed increases in synchronization most 

prominently in the theta band frequency range. The theta activity found for bimodal 

stimulation (Basar 1999; Basar et al., 2001) seems to be sensitive to the crossmodal 

integration. The pattern for crossmodal binding was similar for both hemispheres of 

electrodes and hemispheres of the visual field, in which congruent stimulation was 

presented. The localization shift of the ventriloquism effect showed a pattern of 

synchronization changes in similar frequencies as the binding contrast but with a 

different time course. The comparison was based on a relation of about 2:1 for trials in 

which manipulation worked as expected versus false or missing responses in the 

congruent condition. The synchronization gain during binding was similarly found in 

the pattern of temporal congruency, but it was more heterogeneous between the 

electrodes and sides of stimulation. This showed that the physical characteristics of the 

stimuli did not account for all changes in the brain states. 

 The EEG-guided fMRI-analysis revealed hemodynamic activity corresponding to 

the EEG-correlate of binding in the right STS. The other ROIs including the areas found 

activated in the unguided fMRI-analysis (Bischoff et al., 2007) showed no association 

to the neurophysiological activity during binding. Therefore the STS is specifically 

involved in the binding of crossmodal stimuli, arguing for its modulating role in inter-
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area synchronization when the present findings are related to the literature. 

Multisensory audiovisual integration areas proximate to unisensory audio and visually 

sensitive areas in the STS were found with fMRI (Beauchamp et al., 2004) and 

coherence in the gamma band range was related to the mediating function of the STS in 

synchronization of primary cortices (Calvert, 2001; Maier et al., 2008). The neural basis 

of the ventriloquism effect has been investigated by Noesselt et al. (2007) and Bonath et 

al. (2007), who used fMRI and source localization of separately measured ERP 

differences between audio-visual and unimodal stimulation at central and parietal 

electrodes. The combined analysis showed dipolar sources in the auditory cortex of the 

planum temporale as well as relatively greater activation in auditory cortex contralateral 

to the shifted sound position in fMRI (Bonath et al., 2007). Analyzing effective 

connectivity of fMRI activations, effects of temporal congruency (without regard to a 

behavioral indicator) were found in the STS and in primary visual and auditory areas 

(Noesselt et al., 2007). In a dipole modeling of short-latency ERP related to the sound-

induced flash illusion, EEG sources are located in the auditory cortex and the superior 

temporal gyrus; this EEG activity is concurrent with gamma activity over the occipital 

lobe (Mishra et al., 2007). Acoustic deviants in a row of audiovisual stimuli show 

increases in gamma activity in the STS, whereas illusionary deviants induced by the 

visual incongruity of a McGurk effect do not (Kaiser, Hertrich, Ackermann & 

Lutzenberger, 2006).  

 Gamma band coherence between the lateral auditory belt region and the superior 

temporal sulcus in monkeys is reported by Maier et al. (2008) for a special form of 

congruent audiovisual stimulation. They use looming and receding stimuli beside 

unimodal controls. The congruent looming stimulation elicits increased gamma-band 

coherence compared to the unimodal stimuli, to the incongruent stimuli and to the 
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receding stimuli (Maier et al., 2008). Changes of the coherence of the local field 

potentials (LFPs) activity are attributed by the authors to enhanced phase-locking by 

feedback projections from the STS to the auditory cortex. However, the differences 

between bimodal stimulations in terms of saliency and time course– in the congruent 

looming condition, both modalities were highly salient, inducing stronger neuronal 

responses –may effect the coherence (Bauer, 2008). The incongruity is not given from 

the point of onset but develops by the dynamical induced movement. The results of 

Maier, Chandrasekaran, and Ghazanfar (2008) therefore are addressing the perceptual 

level of binding and reveal a role of gamma coherence in crossmodal binding of moving 

events presumably mediated by the STS. Nevertheless their findings can not clearly be 

interpreted as binding by synchronization (Bauer, 2008). In the present study synchrony 

changes in the (human) STS were likewise investigated, but related those directly with a 

behavioral effect, recorded synchronization in lower frequencies and correlated the 

correlates of audiovisual congruency in EEG and fMRI. The main comparison in this 

study also contains conditions with differing physical properties, but complementary 

analyses of the multisensory illusion and the effect of stimulation synchrony afford us to 

relate the results to the perceptual level. 

 Our findings add to the involvements of the STS described in the literature the 

relationship of neurophysiological low-frequency activity and hemodynamic activity 

during crossmodal binding. The results found in this study can not be reduced to an 

effect of the synchrony of stimuli, since the parametric modulation by the temporal 

congruency resulted in no correlation at all. The cluster in the STS is only observed 

when filtering out the trials without the ventriloquism illusion.  

 The localization shift of the ventriloquism effect was correlated with the right insula 

and the left IPS. Assuming that trials without effect did not initialize the task as 
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intended, e.g. were to difficult to locate or the task was not performed throughout the 

whole time of stimulation. The insula is sensitive to simultaneous onsets of stimuli, 

therefore involved in synchrony detection (Bushara et al., 2001; Calvert, et al., 2001), 

whereas the IPS is involved in multisensory spatial location processing (Bremmer et al., 

2001; Bushara et al., 2001; Callan et al., 2001; Calvert et al., 2001; Fort et al., 2002; 

Molholm et al., 2002; Macaluso et al., 2004).  

 While convergence areas have been found by single-cell and neuroimaging studies 

and neuronal oscillation is discussed as an important mechanism of integration, the 

relation of both with the perceptual level of binding is seldom investigated. One reason 

for this is the focus on gamma band activities in multisensory integration research (for a 

review, see Senkowski et al., 2008). To our knowledge a reliable extraction of gamma 

EEG from signals recorded during EPI scanning is not possible with current methods of 

MR-artifact correction (Mandelkow et al., 2006, Gebhardt et al., 2008). We focused on 

the effects of audiovisual stimulation in the theta band like reported by Basar (1999).

 Separately recorded fMRI can be used for determining EEG dipoles to model the 

neural activity (Menon & Crottaz-Herbette, 2005). However this offers no information 

of the relationship of the signal courses. Furthermore the finding of a vascular response 

partially dissociating with any local neuronal activity (Sirotin & Das, 2009) challenge 

the assumed association of neuronal activity measured in local field potentials or EEG 

and the hemodynamic response measured in fMRI (Logothetis et al., 2001; Logothetis 

& Pfeuffer, 2004). In the present study the simultaneously combined measuring 

afforded an extremely important advantage for the interpretation of found activations. If 

both signals correlate, the process localized with fMRI can be attributed more 

unambiguously. Therefore the quantified EEG correlate of crossmodal binding was used 

to model the simultaneously measured BOLD-response in fMRI. This modulation of the 
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hemodynamic signal gave information about the association of cortical areas and EEG-

dynamic within the framework of crossmodal binding. As a result areas associated with 

increased synchronization were related to the perceptual binding of crossmodal 

audiovisual stimuli. 



  89 

Chapter 5 

General Discussion 

 

 In the present research, the neurofunctional mechanisms of crossmodal audiovisual 

binding in the human brain have been investigated. When crossmodal binding of 

congruent audiovisual stimuli occurred, the ventriloquism effect was used as an 

indicator for it. Incongruent audiovisual stimuli without localization shift served as a 

bimodal control. In a network of multisensory convergence areas, a hemodynamic 

correlate of crossmodal binding was found in the insula the parieto-occipital sulcus 

(POS) and the superior temporal sulcus (STS). An electrophysiological correlate in 

changes of neural synchronization was identified with time-frequency analyses of theta 

and alpha band activity at parietal electrodes. The time-frequency representations 

showed different patterns for binding and control conditions. On a single trial basis, the 

synchronization was weighted on the basis of these different patterns and quantified as 

total energy to predict BOLD modulations associated with binding in an EEG-guided 

fMRI-analysis. The main result revealed the STS to be associated with increased 

synchronization and hence related to audiovisual crossmodal binding. 

 The ventriloquism effect was successfully induced by synchronously presented 

audiovisual stimuli despite the noise of the MR scanner and the interference in the 

headphones caused by the magnetic field. The illusion occurred in two thirds of all 

experimental trials; the lowest rate in a subject was 46 percent. This effect rate is 

relatively robust compared to other studies with similar perceptual effects. In the 

localizing task of Bonath et al. (2007) the ventriloquism effect was induced in 72 

percent of all trials and control stimulation was successful in 69 percent on average. In 

the sound-induced illusory flash paradigm of Bhattacharya, Shams and Shimojo (2002), 
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a sound-induced illusory flash was perceived in three quarter of all trials, when stimuli 

were presented in the peripheral field of view. In the fovea, the effect occurred only 

infrequently (Bhattacharya et al., 2002). In the similar illusory double-flash design of 

Mishra et al. (2007) the illusory flash was perceived in around a third of all trials when 

an auditory stimulus precedes and follows a single flash. However, the range of the 

inter-individual rate varied between single-digit and over eighty percent. In the McGurk 

effect paradigm of Kaiser, Hertrich, Ackermann, Mathiak and Lutzenberger (2005), 

subjective changes from the standard syllable were reported by participants in 80 

percent of the physically different acoustic deviants and in 57 percent of the illusionary 

deviants induced by visual incongruity. Therefore, the rate of successful stimulus 

manipulation in the present projects was an adequate basis for analyzing differences of 

averaged signals. Furthermore in the combined analysis the weighted quantified EEG-

energy was correlated with the BOLD-response in all experimental trials. The fraction 

of successful experimental manipulations was only relevant for the weighting, but it did 

not affect power per se.  

 In the first project of this thesis brain activations by crossmodal binding were 

identified in a network of classical multisensory convergence areas. Audiovisual 

binding indicated by the ventriloquism effect activated the right insula, the bilateral 

POS and the STS. The insula showed no activation when temporally congruent 

stimulation was compared with incongruent stimulation. Therefore, the activation in the 

insula may result from the binding of parts respectively shape. This is in line with 

findings in visual-tactile form integration by Amedi et al. (2005). Also, the detection of 

temporal congruency of stimulus onsets is a possible explanation (Bushara et al., 2001; 

Calvert, et al., 2001). The activation found in the POS can be related to the localization 

during the ventriloquism effect as the detection of spatial congruency has been 
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attributed to the POS (Bushara et al., 2001; Callan et al. 2001; Calvert et al., 2001; Fort 

et al., 2002; Molholm et al., 2002). The activation found in the STS may reflect the 

audiovisual integration of object features in crossmodal binding as the STS is shown to 

be involved in object identification (e.g. Beauchamp et al., 2004). Audiovisual temporal 

correspondence increases effective connectivity in the STS and in primary visual and 

auditory areas (Noesselt et al., 2007), supporting a modulating role of the STS in 

audiovisual processing. For speech stimuli, activation in the STS is reported to be 

insensitive to the relative location of stimuli (Macaluso et al., 2004), suggesting that the 

spatial aspect of the task in the present projects does not contribute to the activation. 

This is supported by the finding that a localization task activates the IPS in a stronger 

fashion than an object recognition task whereas in the STS, the object recognition task 

elicits more activation than the localization task (Sesteri et al., 2006). The combined 

analysis in the third project shed further light on the roles of the areas that were found to 

be involved (see below). 

 In the second project, the cortical changes that occurred during multisensory 

integration are reflected in time-frequency representations in EEG. In the EEG, time-

frequency representations of crossmodal binding were created by contrasting congruent 

stimuli eliciting a ventriloquism effect (cong-1) and incongruent stimuli without 

localization shift (inc-0) equivalent to the fMRI analysis. The difference of grand 

averages most prominently showed synchronization increases in the theta band 

frequency range. Audiovisual crossmodal binding was reflected in power changes in the 

lower frequency range, suggesting that the theta activity found for bimodal stimulation 

is sensitive to crossmodal integration (Basar 1999; Basar et al., 2001). In order to test 

whether this pattern of averaged time-frequency representation is suitable to quantify 

the binding-related EEG activity, trial-by-trial energy was weighted with the averaged 
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time-frequency representation. The mean trial-by-trial energy of congruent stimulation 

was compared to the mean energy of incongruent stimulation. For both groups of 

electrodes (left and right hemispheric electrodes), the congruent stimulation showed 

higher energy when weighted with the averaged pattern, supporting the assumption that 

the synchronization pattern identified the binding-related power changes. 

 When the time-frequency representations of the difference between congruent 

stimuli eliciting a ventriloquism effect and incongruent stimuli without localization shift 

were analyzed separately for the visual field hemisphere in which the congruent stimuli 

were presented, a similar pattern was observed for both sides of congruent stimulation 

(left/right visual field) and both groups of electrodes. In similar frequencies but with 

different time course as this binding contrast (cong-1 – inc-0), the localization shift of 

the ventriloquism effect (cong-1 – cong-0) showed a specific pattern of changes in 

synchronization. The comparison of the localization shift was based on a relation of 

about 2:1 for trials in which manipulation occured versus false or missing responses in 

the congruent condition (cong-1 : cong-0). Unsuccessfully manipulated stimuli might 

have evoked unfavorable residual processes which distorted the time-frequency 

representation. As an example, the synchronization increase in the low theta range 

specific for inc-1 around the first second may reflect a distorting process whereas inc-0 

did not show this increase. The synchronization gain during binding was similarly found 

in the pattern of temporal congruency, but it was more heterogeneous between the 

electrodes and sides of stimulation. This suggests that the physical characteristics of the 

stimuli did not account for all changes in the brain states.   

 Whereas other studies focus on the illusion of the effect to investigate the perceptual 

level of integration, the present projects distinguish the binding process from bimodal 

stimulation without binding. The electrophysiological correlate of the sound-induced 
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illusory flash effect (i.e., the illusionary second flash which is perceived when one flash 

is accompanied by two rapid sounds; Shams, Kamitani & Shimojo, 2000), has been 

analyzed in time-frequency decompositions by Bhattacharya et al. (2002). The average 

gamma band responses in the event-related potentials (ERPs) recorded at occipital 

electrodes were higher in illusion trials than in trials without illusion (Bhattacharya et 

al., 2002). The authors point out that the flash illusion only occurs when the modulation 

of visual processing by auditory stimuli exceeds a 'perception threshold' for the 

registration of conscious awareness. In the conception of the present thesis the 

comparison of near-threshold stimulation is disadvantageous, because the absence of the 

illusion does not ascertain the absence of a crossmodal interaction.  

 With simultaneous recording of EEG and fMRI, dynamic aspects of brain activity 

can be related to metabolic local signals. The relationship of multisensory convergence 

areas and neuronal oscillation has (yet) seldom been investigated. One reason for this is 

the focus on gamma band activities in multisensory integration research (for a review, 

see Senkowski et al., 2008). The simultaneous recording demands sophisticated 

techniques because the artifacts induced by the magnetic field and especially the 

reading pulses of fMRI exceed the EEG signal by more than two orders of magnitude 

(Allen et al., 2000). A reliable extraction of gamma EEG from signals recorded during 

EPI scanning seems impossible with current methods of MR-artifact correction 

(Mandelkow et al., 2006; Gebhardt et al., 2008). Separately recorded fMRI can be used 

for determining EEG dipoles to model the neural activity (Menon & Crottaz-Herbette, 

2005). However, this provides no information on the relationship of the signal courses. 

Therefore, in the present thesis the quantified EEG correlate is used to model the 

simultaneously measured BOLD-response in fMRI. This modulation of the 

hemodynamic signal holds information on the association of cortical areas and EEG-
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dynamic within the framework of crossmodal binding. As a result, areas associated with 

increased synchronization are related to audiovisual binding. 

 The assumed association of neuronal activity measured in local field potentials or 

EEG and the hemodynamic response measured in fMRI has recently been challenged in 

a study by Sirotin and Das (2009). In the primary visual area of macaque monkeys, they 

recorded LFPs, multi-unit spike trains, blood volume and blood oxygenation during a 

brief extra-foveal visual stimulus. The high-frequency LFPs and multi-unit spike trains 

showed a clear correlation. Two components of the hemodynamic signal were found. 

Both were related to the task, but only one of the hemodynamic components could be 

predicted by neuronal signals. The second component showed no correlation with the 

LFP or multi-unit activity and occurred even in “blank” trials without a visual stimulus 

(Sirotin & Das, 2009). Tests with trials of different duration showed that the second 

component in the hemodynamic signal was trial-related and correlated with the arterial 

contraction-dilation cycle. The trial-related component did not occur when auditory 

stimuli were used instead of visual stimuli. The authors attributed this component to 

anticipatory processes. The finding of a vascular response which is (partially) 

dissociated from local neuronal activity raises concerns in the interpretation of the 

former. However, it also adds an extremely important advantage for simultaneously 

combined measuring. If both signals correlate, the activation localized with fMRI can 

be attributed more precisely. 

 The simultaneously combined analysis in the third project revealed hemodynamic 

activity corresponding to the EEG-correlate of binding in the right STS. This 

association clarifies the findings of the fMRI-analysis of the first project. The EEG-

correlate of the ventriloquism effect (illusion greater than no illusion) correlated with 

activity in the right insula and the left IPS. These results fit nicely into the roles 
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proposed to the areas. The absence of the illusion can either be attributed to a failure of 

processing stimulus synchrony or to a high level of difficulty in localization. The insula 

is sensitive to simultaneous onsets of stimuli (Bushara et al., 2001; Calvert, et al., 2001), 

whereas the IPS is involved in multisensory spatial location processing (Bremmer et al., 

2001; Bushara et al., 2001; Callan et al., 2001; Calvert et al., 2001; Fort et al., 2002; 

Molholm et al., 2002; Macaluso et al., 2004). The association with crossmodal binding 

found in this project cannot be reduced to an effect of the synchrony of stimuli as the 

parametric modulation through the temporal congruency resulted in no correlation at all. 

The cluster in the STS is only observed when the trials without ventriloquism illusion 

are filtered out. 

 The main finding of the EEG-guided fMRI analysis showed the STS to be 

specifically involved in perceptual binding of crossmodal stimuli. This finding strongly 

suggests the STS as an area of multisensory convergence and a mediator of neural 

synchronization. With fMRI multisensory integration areas in the STS have been found 

proximate to unisensory auditory and visual areas in the STS (Beauchamp et al., 2004), 

and coherence in the gamma band range has been related to the mediating function of 

the STS in synchronization of primary cortices (Calvert, 2001; Maier et al., 2008). The 

neural basis of the ventriloquism effect has been investigated by Bonath et al. (2007) 

and by Noesselt et al. (2007), who used fMRI and source localization of separately 

measured ERP differences between audio-visual and unimodal stimulation at central 

and parietal electrodes. The combined analysis shows dipolar sources in the auditory 

cortex of the planum temporale as well as relatively greater activation in auditory cortex 

contralateral to the shifted sound position in fMRI (Bonath et al., 2007). When effective 

connectivity of fMRI activations is analyzed using audiovisual stimuli, effects of 

audiovisual temporal congruency can be found in the STS and in primary sensory areas 
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(Noesselt et al., 2007). In a dipole modeling of short-latency ERP related to the sound-

induced flash illusion, EEG sources were located in the auditory cortex and the superior 

temporal gyrus. This EEG activity was concurrent with gamma activity over the 

occipital lobe (Mishra et al., 2007). These findings can be explained by a mediating role 

of the STS in  inter-area synchronization. 

 When the perceptual level of crossmodal binding is examined with illusions, 

findings are not always clear. Mishra et al. (2007) separated data of a sound-induced 

illusory flash design for participants who saw the illusory flash more frequently than 

other participants. They analyzed ERP, source localization, and wavelet analyses at 

central and occipital electrodes. In participants with high illusion rates they found 

higher amplitudes of an early modulation of visual cortex activity after the second 

sound. In addition, an illusion-related activity in the auditory cortex and the STS was 

found in a single trial analysis of short-latency ERP (Mishra et al., 2007).  

 Another crossmodal effect utilized to investigate perception is the McGurk effect 

(McGurk & MacDonald, 1976). Here, the simultaneous presentation of an auditory 

phoneme and the visual lip movements of a different phoneme are perceived as a third 

phoneme, e.g., auditory "ba" and a visual "ga" creates the percept "da". In a stream of 

repeating auditory phonemes, the ones which are accompanied by an incongruent lip 

movement are perceived as mismatching. With MEG, increases in gamma band activity 

have been found to be correlated with those subjective deviants (Kaiser et al., 2005). 

Comparing these perceptions of illusory acoustic to real acoustic changes, the illusory 

changes elicit fast gamma activity over the midline occipital cortex while real deviants 

were positively correlated with earlier lower gamma activity over the left superior 

temporal cortex and negatively with lower gamma activity over the occipital cortex 

(Kaiser et al., 2006). Hence, the McGurk effect does not seem to involve the 



Chapter 5 ◦ Genereal Discussion 

  

 

97 

convergence areas that have been found in the present projects. The correlation of real 

deviants and gamma activity over the superior temporal cortex could result from the 

disordered crossmodal binding. The illusionary deviant McGurk stimuli may pass 

through the binding processing in the convergence areas as the congruent audiovisual 

stimuli do, while the more difficult real deviants may require more processing or higher 

attention. 

 Gamma band coherence between the lateral auditory belt region and the superior 

temporal sulcus in monkeys is reported by Maier et al. (2008) for a special form of 

congruent audiovisual stimulation. They used looming and receding stimuli as well as 

unimodal controls. The congruent looming stimulation elicited increased gamma-band 

coherence compared to the unimodal stimuli, to the incongruent stimuli, and to the 

receding stimuli (Maier et al., 2008). Changes of the coherence of the local field 

potentials (LFPs) were independent of power changes and attributed to enhanced phase-

locking by feedback projections from the STS to the auditory cortex. The looming 

stimuli are similar to approaching signals, with a clear dynamic over the 1600ms of 

stimulation. They are considered to be ecologically more relevant and are perceived 

with greater saliency (Maier & Ghazanfar, 2007). However, differences between the 

bimodal stimulations may affect the coherence. In terms of saliency and time course, 

both modalities were highly salient in the congruent looming condition and induced 

stronger neuronal responses (Bauer, 2008). The incongruity is not given from the point 

of onset but develops dynamically. The results of Maier et al. (2008) therefore reveal a 

specific role of gamma coherence in crossmodal binding of moving events presumably 

mediated by the STS. Nevertheless their findings cannot explicitly be interpreted as 

binding by synchronization (Bauer, 2008). In the present thesis synchronization changes 

in the (human) STS were likewise investigated. However, by examining the association 
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of an EEG-correlate with an fMRI-correlate, the synchronization could be related to a 

behavioral effect. 

 The low-frequency EEG holds information about crossmodal binding. The 

examination of fMRI associated with high-frequency neuronal coherence could afford 

to compare this with the involvement of intra-area synchronization of neuronal 

assemblies, but is technically even more challenging. Also for the further exploration of 

the found association different modalities and different types of binding seem 

promising. If associations in convergence areas can be found for different combinations 

of modalities, they may indeed reflect a principle mechanism. In this thesis, the 

audiovisual location binding is influenced by the temporal binding inducing the 

ventriloquism effect. Reciprocally, location binding can induce a shift in temporal 

perception (e.g., sound-induced illusory flash, Shams et al., 2000). The involvement of 

the STS on the perceptual level should be observable for location binding as well as for 

conditional binding. For example, in a paradigm similar to the one used in this thesis a 

learned association of the vertical position of temporally congruent visual stimuli with 

the sound pitch should induce a ventriloquism effect whereas temporally congruent 

visual stimuli at vertical positions not associated with auditory stimuli should not be 

bound the same way. Likewise, effects of crossmodal binding may be examined without 

differences in temporal congruency when the first modality is disambiguated by the 

second modality and this interaction is compared with ambiguous bimodal stimulation. 

 Concluding, the perceptual binding of crossmodal audiovisual stimuli was reflected 

in hemodynamic and electrophysiological brain activity. The quantified EEG correlate 

was used for a parametric modulation of the simultaneously measured BOLD-response 

in fMRI. This modulation of the hemodynamic signal gave information about the 

association of cortical areas and EEG-dynamic within the framework of crossmodal 
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binding. The association is of special interest in the context of the two hypotheses of 

binding, binding by hierarchically organized convergence areas and binding by 

temporal correlation. As a result a very distinct area associated with increased 

synchronization was related to the perceptual binding. When this activation in the STS 

is related to projections from or to unisensory areas as discussed in the literature, the 

two hypotheses could be combined for audiovisual binding. The association revealed in 

the STS provides evidence for the STS to be the mediating convergence area of 

audiovisual binding. 
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