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1 INTRODUCTION

High-producing dairy cows undergo a negative energy balance and inflammation in the

transition period, which result in a physiological activation of peroxisome proliferator-

activated receptors (PPARs) and nuclear factor kappa B (NF-κB) (Schlegel et al., 2012;

Gessner et al., 2013). Many studies in non-ruminants have shown that PPARα regulates

carnitine homeostasis, which is an essential cofactor for fatty acid β-oxidation (van Vlies et al.,

2007; Eder and Ringseis, 2010). In addition, a limited number of studies have shown that NF-

κB influences carnitine uptake. The present dissertation focuses on the role of PPARs and

NF-κB in carnitine transport in cattle.

1.1 Biochemical function of carnitine

L-Carnitine (L-β-hydroxy-4-N-trimethylaminobutyric acid) is a water soluble metabolite with

a number of indispensable roles in intermediary metabolism. Its most prominent function is to

serve as an essential cofactor for mitochondrial fatty acid oxidation by transferring long-chain

fatty acids as acylcarnitine esters across the inner mitochondrial membrane (McGarry et al.,

1997). Long-chain fatty acids are trans-esterified to long-chain acylcarnitine catalyzed by

carnitine-palmitoyltransferase-1 (CPT-1) at the outer membrane of the mitochondria. The

long-chain acylcarnitine crosses the outer membrane and is transported over the inner

membrane of the mitochondria by carnitine-acylcarnitine translocase (CACT), which is a

specific carrier and is located in the inner membrane of the mitochondria. CPT-2 catalyzes the

trans-esterification of the long-chain acylcarnitine back into long-chain acyl-coenzyme A

(acyl-CoA) and releases carnitine. Long-chain acyl-CoA is an activated substrate inside the

matrix for β-oxidation. The intramitochondrial carnitine is able to react with acetyl-CoA,

which is the product of β-oxidation via carnitine-acetyltransterase, and form acetylcarnitine.

Again, acylcarnitine can leave the mitochondria via CACT, waiting for another round of

transport (Vaz and Wanders, 2002). Additional roles of carnitine include transfer of products

of peroxisomal β-oxidation to the mitochondria for oxidation in the citrate cycle, modulation

of the acyl-CoA/CoA ratio, as well as storage of energy in the form of acetylcarnitine (Vaz

and Wanders, 2002). When the substrate oxidation exceeds the energy demand, the acetyl and

acyl groups will be transported out of the mitochondria via carnitine-acetyltransterase and

CACT. High ratio of acetyl-CoA/CoA in the mitochondria inhibits the pyruvate

dehydrogenase complex, which is a key enzyme for the citric acid cycle. The carnitine shuttle

system is able to convert the accumulating acyl-CoA back to acylcarnitines and transport
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them out of mitochondria, therefore stimulates the pyruvate dehydrogenase complex activity

and increases the glucose oxidation (Ramsay and Zammit, 2004).

So far, two kinds of carnitine deficiency have been well defined, namely primary or

secondary carnitine deficiency syndromes. Primary carnitine deficiency is an autosomal

recessive disorder characterized by mutations of an organic cation/carnitine transporter,

leading to a decrease of intracellular carnitine concentration that impairs fatty acid oxidation

(Wang et al., 1999). Primary carnitine deficiency is not associated with another identifiable

systemic illness such as amino acid and glucose oxidation defects that might deplete carnitine

stores of the tissue (Pons and Darryl, 1995). Secondary carnitine deficiency manifests in a low

level of carnitine in plasma and associates with a large number of metabolic disorders. The

most characteristic cause of secondary carnitine deficiency is the failure of oxidation of acyl-

CoA intermediates in the mitochondria (Pons and Darryl, 1995).

1.2 Carnitine biosynthesis and transport

In mammals carnitine is derived from dietary sources as well as endogenous biosynthesis.

Carnitine biosynthesis involves a complex series of reactions. Lysine provides the carbon

backbone of carnitine. In protein peptide linkages it undergoes methylation of the ε-amino

group to yield N6-trimethyllysine (TML), which is released upon protein degradation. The

released TML further undergoes four enzymatic steps in the reaction to carnitine by the action

of TML dioxygenase, 3-hydroxy-N6-trimethyllysine aldolase, 4-N-

trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetainedioxygenase (BBD) (Strijbis

et al., 2010). In humans and rodents, the genes encoding TML dioxygenase and 4-N-

trimethylaminobutyraldehyde dehydrogenase have been reported to be widely expressed in

the tissues of skeletal muscle, heart and brain, but the highest activity is found in the liver and

kidney (Vaz and Wanders, 2002; Ringseis et al., 2009). However, BBD activity is found

predominantly in the liver of all mammals and also in the kidney in some species such as

humans, cats, hamsters, rabbits or Rhesus monkeys (Vaz and Wanders, 2002). The tissues

which lack BBD or have a very low activity of BBD are highly dependent on active carnitine

uptake from the blood. Delivery of carnitine and carnitine precursor butyrobetaine is carried

by novel organic cation transporters (OCTN). This transport system is involved in the

intestinal absorption and renal tubular reabsorption of carnitine. Taken together, carnitine

distribution and homeostasis is maintained by dietary intake, a modest rate of endogenous
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synthesis and efficient tubular reabsorption of carnitine by the kidney (Eder and Ringseis,

2010).

It has been reported that more than 95% of carnitine from the urine is filtered and reabsorbed

in the kidney (Tamai et al., 2000, Glube et al., 2007). OCTNs are responsible for delivery of

carnitine and carnitine precursor butyrobetaine from plasma into cells. OCTNs belong to the

solute carrier 22A family and localize on the apical membrane of cells. Three OCTN have

been identified so far, OCTN1, OCTN2 and OCTN3 (Tamai et al., 1997, 1998, 2000).

OCTN2 is the most pivotal carnitine transporter due to its wide expression in tissues and its

high binding affinity to carnitine (Koch et al., 2007; Luci et al., 2008). The structure of

OCTN2 is characterized by nine short loops and two large hydrophilic loops connecting

twelve transmembrane segments. The substrate-binding sites are composed of three subsites:

two subsites contain recognition pockets for carboxyl groups and ammonium ion of the

substrate, respectively, and one subsite is specific for the Na+ site (Pochini et al., 2013). Thus,

the structure of OCTN2 demonstrates that this transport system has well-defined substrate

specificity for carnitine and its derivatives, whose transport is dependent on Na+, but not Li+

or K+ (Tamai et al., 2001; Tamai et al., 1998).

1.3 The general characteristics and functions of PPARs

PPARs are ligand-activated transcription factors. They belong to the nuclear receptor

superfamily, which controls the transcription of sets of genes encoding proteins in metabolic

pathways and contributes to the complex fine-tuning of gene activity required for mammals to

adapt to changing conditions. The term PPAR originally came from the observation that a

group of agents such as WY-14,643 could increase peroxisome numbers in rodent liver tissue

(Issemann and Green, 1990). PPARs consist of three isoforms PPARα (NR1C1), PPARβ/δ

(NR1C2) and PPARγ (NR1C3). The modular structure of PPARs is similarly organized as

other nuclear receptors, with an N-terminal A/B domain, a DNA-binding domain, a hinge

region, a ligand-binding domain (LBD), and a C-terminal domain. There is a ligand-

independent transactivation domain at the extreme N-terminal region, which is a key

determinant of isotype-selective gene expression and function (Hummasti and Tontonoz,

2006). The DNA-binding domain is a highly conserved domain with two zinc fingers, which

are small protein structural motifs that coordinate with zinc ions to stabilize the fold. The

LBD, that contains the ligand-dependent activation function 2 (AF-2), is composed of 13 α-

helices and a small 4-stranded β-sheet. Due to the large pocket, comprising the binding site,
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various structural diverse, xenobiotic ligands are accepted by PPARs (Berger and Moller,

2002). PPARs regulate gene expression as heterodimers with retinoid-X-receptor, binding to a

specific DNA sequence called peroxisome proliferator response elements (PPRE) in the

promoter region of target genes. The consensus sequence of PPRE is a direct repeat of

AGGTCA, separated by a single nucleotide spacer in the regulatory region (Desvergne and

Wahli, 1999).

The tissue distribution of PPARs is broad, but isotype-characteristic, which at least partly

accounts for the variety of functions. PPARα is abundantly expressed in tissues, which have

high rates of fatty acid oxidation, such as liver, kidney, skeletal muscle, and myocardium

(Bocos et al., 1995; Fruchart, 2009; Speeckaert et al., 2014). PPARα acts as a key regulator of

energy homeostasis and lipid metabolism (Eder and Ringseis, 2010). PPARα target genes are

involved in fatty acid uptake, fatty acid transport, mitochondrial fatty acid oxidation,

gluconeogenesis and ketogenesis (Mandard et al., 2004; Cullingford, 2003). PPARβ/δ

distribution in mammals is ubiquitous. Activation of PPARβ/δ mediates fatty acid oxidation

in muscle and heart from rodents (Luquet et al., 2003; Cheng et al., 2003), and is involved in

the healing of skin wounds, inflammatory responses and general fundamental cellular

processes (Montagner et al., 2011; Contreras and Sordillo, 2011). PPARγ is abundant in all

adipose tissues, where it promotes adipogenesis, differentiation, maintenance and lipid storage

(Yu and Reddy, 2007). PPARγ is also associated with cellular energy homeostasis, glucose

homeostasis and anti-inflammation (Berger and Moller, 2002).

1.4 The role of PPARs in the transcriptional regulation of OCTN2 in different species

It is well established that PPARα activation leads to an up-regulation of OCTN2 in rodents.

The treatment of rats and its hepatoma cells with clofibrate, which is a synthetic PPARα

activator, causes a strong elevation of the transcription level of OCTN2 in liver and

hepatocytes (Luci et al., 2006). Subsequent studies with rats confirmed that PPARα activation

also increases the mRNA content of OCTN2 in the small intestine (Ringseis et al., 2007). The

transcriptional up-regulation of OCTN2 in liver and small intestine were associated with an

elevation of the carnitine concentration in rat liver and an improvement of the absorption rate

of carnitine in small intestine (Luci et al., 2006; Ringseis et al., 2008). The physiologic and

nutritive activation of PPARα such as energy deprivation and oxidized fat administration have

a similar effect on OCTN2 as clofibrate treatment (Luci et al., 2008; Koch et al., 2007).

Studies have clearly demonstrated that treatment with PPARα agonist WY-14,643 caused an
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up-regulation of OCTN2 in liver, kidney, skeletal muscle and small intestine of wild-type

mice, but not of PPARα-null mice (van Vlies et al., 2007; Koch et al., 2008). Furthermore, the

promoter region of rat and mouse OCTN2 both contain a functional PPRE, which is the direct

evidence that OCTN2 is a target gene of PPARα in rodents (Maeda et al., 2008; Wen et al.,

2009).

It is known that the findings in rodents cannot be directly applied to other species, because

numerous studies have observed that the expression and activation level of PPARα in mice

and rats are much higher and stronger than in other species like pigs and humans (Holden and

Tugwood, 1999; Eder and Ringseis, 2010). However, the treatment of pigs with clofibrate,

fasting or oxidized fat still induced an up-regulation of OCTN2 in tissues (Luci et al., 2007;

Luci et al., 2007; Ringseis et al., 2009). In humans, so far there is no direct evidence that the

activation of PPARα can regulate the transcriptional level of OCTN2. In contrast to the

numerous studies in rodents and pigs, only few studies are available in the literature

investigating the effect of PPARα activation on OCTN2 gene expression in ruminants. A

recent study showed that mRNA level of OCTN2 in the liver of dairy cows was dramatically

increased in the early lactation period, when PPARα activation may occur (Schlegel et al.,

2012). To our knowledge, there is only one publication investigating the role of PPARγ on

OCTN2 gene expression in the colon in human and mice (D’Argenio et al., 2010). In this

study, colon OCTN2 gene expression is up-regulated by PPARγ agonist thiazolidinediones

(TZD) and completely blocked by its antagonists (D’Argenio et al., 2010). There is no

investigation on the role of PPARβ/δ in OCTN2 gene regulation.

1.5 NF-κB pathway in inflammation

NF-κB is a ubiquitous and inducible nuclear transcriptional activator. The term NF-κB

derives from a DNA-binding protein that regulates the immunoglobulin kappa light-chain

gene expression in murine B lymphocytes (Sen and Baltimore, 1986). Subsequent studies

confirmed that NF-κB can be activated in most cell types in response to various stimuli, with

a major role in inflammation (Lawrence, 2009; Hoesel and Schmid, 2013).

Inflammation is the process of innate immunity responding to different stresses such as

physical, physiological and oxidative stress. Inflammation is associated with activation of the

canonical NF-κB signaling pathway. In the cytoplasm, NF-κB exists as both a homodimer and

a heterodimer of Rel-related proteins. The most common form of NF-κB is composed of RelA
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and p50 subunits associated with inhibitor of kappa B (IκB) in the inactive form (Sen and

Smale, 2010). On the one hand, when tissues are injured by infection, cytokines are rapidly

released from the resident tissue, such as tumor necrosis factor-α (TNFα) and interleukin-1

(IL-1) representing the common cytokines. The TNFα receptors (TNFRs) and IL-1 receptors

(IL-1R) on the surface of the membrane of cells can specifically bind these released TNFα

and IL-1. The lipopolysaccharides (LPS) from bacteria can be identified by the Toll-like

microbial pattern recognition receptors (TLRs), which belong to the IL-1R family. On the

other hand, endogenous ligands including heat shock protein 70 (Vabulas et al., 2002) and

nucleic acids (Barrat et al., 2005) may also trigger TLRs during tissue injury and certain

disease states, which may promote inflammation in the absence of infection (Karin et al.,

2006). TNFα, IL-1 and LPS use TNFRs signal transduction mechanisms to activate IκB

kinase (IKK). In short, upon ligand-dependent activation of TNFRs and IL-1R/TLRs, TNFR-

associated factors (TRAFs) are recruited to the intracellular domain of the TNFRs either via

direct interaction or via the adaptor proteins such as TNFR associated death domain protein

and IL-1 receptor-associated kinase. Instead of phosphorylase activities, TRAFs have

ubiquitin activities, which act as ubiquitin ligase in cooperation with the ubiquitin conjugating

enzyme 13 forming Lys 63-linked polyubiquitin chains, providing an activated TRAFs

platform for the assembly of other signaling molecules including cellular inhibitor of

apoptosis protein 1/2. The cellular inhibitor of apoptosis protein 1/2 can regulate the

polyubiquitination of target proteins such as receptor interacting protein 1 kinase.

Ubiquitinated receptor interacting protein 1 not only directly binds to IKKγ, but also helps

TRAFs to recruit transforming growth factor-β-activated kinase complex, which can

phosphorylate IKKβ, promoting IKK complex activation (Napetschnig and Wu, 2013; Zheng

et al., 2011; Hoesel and Schmid, 2013). Subsequently, IKK leads to phosphorylation of IκB,

and the activated IκB releases NF-κB allowing free NF-κB to translocate into the nucleus.

Then, NF-κB binds to its consensus sequence, and initiates the transcription of target genes,

which are mainly encoding pro-inflammatory cytokines and chemokines (Lawrence, 2009).

Besides the canonical NF-κB pathway, an alternative NF-κB pathway is activated by different

classes of receptors including lymphotoxin β-receptor, CD40, B-cell activating factor, and

receptor activator of NF-κB. They lead to activation of the NF-κB inducing kinase, which

phosphorylates and activates IKKα. IKKα induces the activation of the RelB/p52 heterodimer,

which is another form of NF-κB. The alternative NF-κB pathway is characterized by its
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activation process, which is independent of both IKKβ and IKKγ (Malinin et al., 1997; Ghosh

and Karin, 2002).

It is worth noting that NF-κB activation can have both pro- and anti-inflammatory roles. NF-

κB can directly regulate the expression or activity of anti-inflammatory cytokines such as IL-

10 (Tomczak et al., 2006) and induce leukocyte apoptosis during the resolution of

inflammation, which is an essential mechanism that prevents prolonged inflammation

(Lawrence et al., 2001). Furthermore, IKKβ exhibits anti-inflammatory ability in sepsis

(Greten et al., 2007). Specific deletion of IKKβ in the model of streptococcal pneumonia

results in the inhibition of neutrophil recruitment and bacterial clearance (Fong et al., 2008;

Gordon and Taylor, 2005).

1.6 The occurrence of inflammation affects lipid metabolism in cattle

Activation of NF-κB is a typical phenomenon in dairy cows undergoing transition period

(Gessner et al., 2013). Transition period is from 3 weeks before to 3 weeks after parturition

(Drackley, 1999). This period has great importance for its association with lipid metabolic

alteration and inflammation, which strongly affect the performance and health of dairy cows

(Bertoni et al., 2008; Esposito et al., 2014). The energy demand in early lactation dramatically

increases for the milk production, whereas the dry matter intake of dairy cows decreases as

calving approaches. The high requirement of energy and insufficient food intake, that causes a

negative energy balance, results in a massive mobilization of non-esterified fatty acids (NEFA)

from adipose tissue. NEFA are transported and taken up into liver and other tissues for

compensating the energy requirement (Bell, 1980; Drackley, 1999). One characteristic of

NEFA is that they are well-established endogenous activators of PPARs (Xu et al., 1999;

Bionaz et al., 2012; Kadegowda et al., 2009). Another characteristic of NEFA is that they

have pro-inflammatory effects on the resident macrophages and act as ligands for TLR, which

in turn leads to NF-κB activation (Lee et al., 2004; Lee et al., 2006). Besides endogenous

ligands, infection caused by bacteria and virus in dairy cows also contributes to systemical

activation of NF-κB (Ingvartsen and Moyes, 2013). Bradford and colleagues (2009)

administered TNFα daily by the subcutaneous infection for 7 days in lactating dairy cows,

which caused promotion of hepatic triglycerides (TG) accumulation and increase in the

transcript abundance of genes involved in NEFA uptake. Carnitine has a major role in lipid

metabolism that helps NEFA to enter the mitochondria for β-oxidation, which can decrease

the accumulation of fatty acids in liver. Carnitine transporter OCTN2 is responsible for
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maintaining carnitine homeostasis. Therefore, it is very interesting to investigate the response

of OCTN2 and carnitine uptake to the activation of NF-κB.
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2 AIMS AND HYPOTHESES

The overall aim of this thesis was to investigate the effect of PPARs (PPARα and PPARβ/δ)

and NF-κB activation on carnitine transporter OCTN2 and OCTN2-mediate carnitine uptake

in a commercially available bovine cell line, the Madin-Darby bovine kidney (MDBK) cell

line. This cell line has recently shown to be a suitable model to study PPARα-dependent

effects in bovine tissues (Bionaz et al. 2008).

In order to activate PPARα, PPARβ/δ and NF-κB respectively in bovine kidney cells, we

chose WY-14,643, GW0742 and TNFα as inducers. WY-14,643 is an abbreviation of [4-

Chloro-6-(2,3-xylidino)-2-pyrimidinylthio] acetic acid, which is a synthetic hypolipidemic

drug (Willson and Wahli, 1997). WY-14,643 stimulates activation of PPARα via a traditional

mechanism and a novel bipartite mechanism. The conventional mechanism is that WY-14,643

performs polar and hydrophobic contacts with the protein residues in LBD of PPARα, and

forms a well recognized hydrogen-bonding network with several residues including Y464,

which is located on the inner surface of the AF-2 helix, that is crucial for maintaining the

protein active conformation and regulating the recruitment of coactivators (Xu et al., 1999;

Berger and Moller, 2002). The novel bipartite mechanism has been recently indentified and

besides the first WY-14,643 binding in LBD, as mentioned above, a second WY-14,643 binds

to a secondary site called Ω-loop in LBD, which is now well ordered instead of poorly

structured as usually. This second WY-14,643 is mainly stabilized by the non-polar

interaction with residues contacting the fused heterocyclic rings and by salt bridges between

the carboxylic group of the WY-14,643 and the Ω-loop (Bernardes et al., 2013). The

interaction of WY-14,643 in the second site promotes a more subtle stabilization of AF-2,

which is required for full PPARα activation. GW0742 is the name of [4-[[[2-[3-fluoro-4-

(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methyl phenoxy]-acetic acid,

which is a synthetic small molecule agonist for PPARβ/δ (Sznaidman et al., 2003). GW0742

uses hydrophilic head group (the carboxylic group) and hydrophobic tail (the thiazole and the

fluorine substituted phenyl ring) interacting with residues in LBD, which are responsible for

activation of AF-2. The residues Val312 and Ile 328 in LBD are essential for PPARβ/δ

selective GW0742 binding (Batista et al., 2012). TNFα belongs to cytokines, which are cell

signaling molecules and are able to change many physiological systems for the wide

expression of receptors in nearly all cell types. TNFα has been demonstrated to activate NF-

κB via TNFR-TRAF-IKK pathway as mentioned in the introduction of the dissertation.
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2.1 Study 1

Zhou X, Wen G, Ringseis R, Eder K (2014) Short communication: the pharmacological

peroxisome proliferator-activated receptor α agonist WY-14,643 increases expression of

novel organic cation transporter 2 and carnitine uptake in bovine kidney cells. Journal of

Dairy Science. 97: 345-9. (Reproduction with permission of the publisher)

2.1.1 General aim: Studies in rodents demonstrated that PPARα is an important

transcriptional regulator of the gene encoding carnitine transporter OCTN2. In contrast, it has

not been known whether PPARα regulates OCTN2. In addition, the role of PPARα for

carnitine transport in cattle is unclear, even though PPARα activation physiologically occurs

in the liver of high-producing cows during early lactation. To address this issue, the aim of the

present study was to investigate whether PPARα agonist WY-14,643 influences the

transcription and protein levels of OCTN2 and carnitine uptake in the presence and absence of

PPARα antagonist GW6471 in bovine kidney cells.

2.1.2 Specific hypothesis:

The following two hypotheses were tested in the present study:

(i) WY-14,643 increases the gene expression of OCTN2 in MDBK cells and co-treatment

of MDBK cells with WY-14,643 and the PPARα antagonist GW6471 blocks the WY-

14,643-induced increase of mRNA and protein levels of OCTN2.

(ii) WY-14,643 specifically stimulates Na+-dependent carnitine uptake in MDBK cells,

and WY-14,643-stimulated increase of L-carnitine uptake is blocked by treatment of

cells with a PPARα antagonist GW6471.

2.2 Study 2

Zhou X, Ringseis R, Wen G, Eder K (2014) Carnitine transporter OCTN2 and carnitine

uptake in bovine kidney cells are regulated by peroxisome proliferator-activated receptor β/δ.

Acta Veterinaria Scandinavica. 56: 21.

2.2.1 General aim: PPARα has been shown to be a transcriptional regulator of the gene

encoding the carnitine transporter OCTN2 in bovine kidney cells (study 1). It is currently

unknown whether PPARβ/δ, another PPAR subtype, which has partially overlapping

functions as PPARα and is known to share a large set of common target genes with PPARα,
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also regulates OCTN2 and carnitine transport in cattle. To address this issue, the aim of the

present study was to investigate whether PPARβ/δ agonist GW0742 influences the

transcription and protein levels of OCTN2 and carnitine uptake in the presence and absence of

PPARβ/δ antagonist GSK3787 in bovine kidney cells.

2.2.2 Specific hypothesis:

The following two hypotheses were tested in the present study:

(i) GW0742 increases the gene expression of OCTN2 in MDBK cells and co-treatment of

MDBK cells with GW0742 and the PPARβ/δ antagonist GSK3787 blocks the

GW0742-induced increase of mRNA and protein levels of OCTN2.

(ii) GW0742 specifically stimulates Na+-dependent carnitine uptake in MDBK cells and

GW0742-stimulated increase of L-carnitine uptake is blocked by treatment of cells

with a PPARβ/δ antagonist GSK3787.

2.3 Study 3

(unpublished data) Zhou X, Ringseis R, Wen G, Eder K (2014) The nuclear factor kappa B

inducer TNFα increases expression of novel organic cation transporter 2 and carnitine uptake

in bovine kidney cells

2.3.1 General aim: Our previous researches have shown that OCTN2 and carnitine uptake

are regulated by PPARs in bovine kidney cells (study 1 and 2). It is well-documented that

inflammation is involved in infections and metabolic disease in dairy cows in early lactation

(Bllou, 2012; Bradford et al., 2010; Bobe et al., 2004). Fujiya et al., (2011) have reported that

OCTN2 level and carnitine uptake in human colonic epithelial cells are increased by

proinflammatory cytokines TNFα. However, it is unclear whether inflammation is able to

alter OCTN2 and carnitine uptake in bovine kidney cells. To address this issue, the aim of the

present study was to investigate, whether TNFα can induce NF-κB activation and affect the

gene expression of OCTN2 and carnitine uptake in the presence and absence of NF-κB

inhibitor BAY 11-7085 in bovine kidney cells.

2.3.2 Specific hypothesis:

The following three hypotheses were tested in the present study:
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(i) The optimized concentration of TNFα increases the transcription level of IL-6 and IL-

1B, which are well-known NF-κB target genes. The optimized concentration of TNFα

stimulates NF-κB transactivation in MDBK cells.

(ii) TNFα increases the gene expression of OCTN2 in MDBK cells, and co-treatment of

MDBK cells with TNFα and the NF-κB inhibitor BAY 11-7085 blocks the TNFα-

induced increase of mRNA and protein levels of OCTN2.

(iii) TNFα stimulates carnitine uptake in MDBK cells, and TNFα-stimulated increase of L-

carnitine uptake is blocked by treatment of cells with a NF-κB inhibitor BAY 11-7085.
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3 ORIGINAL WORKS



345

J. Dairy Sci.  97 :345–349
http://dx.doi.org/  10.3168/jds.2013-7161  
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  ABSTRACT 

  Recent studies in rodents demonstrated that peroxi-
some proliferator-activated receptor α (PPARα), a 
central regulator of energy homeostasis, is an impor-
tant transcriptional regulator of the gene encoding the 
carnitine transporter novel organic cation transporter 
2 (OCTN2). Less is known with regard to the regula-
tion of OCTN2 by PPARα and its role for carnitine 
transport in cattle, even though PPARα activation 
physiologically occurs in the liver of high-producing 
cows during early lactation. To explore the role of 
PPARα for OCTN2 expression and carnitine transport 
in cattle, we studied the effect of the PPARα activa-
tor WY-14,643 on the expression of OCTN2 in the 
presence and absence of PPARα antagonists and on 
OCTN2-mediated carnitine transport in the Madin-
Darby bovine kidney (MDBK) cell line. The results 
show that WY-14,643 increases mRNA and protein 
levels of OCTN2, whereas co-treatment of MDBK cells 
with WY-14,643 and the PPARα antagonist GW6471 
blocks the WY-14,643-induced increase in mRNA and 
protein levels of OCTN2 in bovine cells. In addition, 
treatment of MDBK cells with WY-14,643 stimulates 
specifically Na+-dependent carnitine uptake in MDBK 
cells, which is likely the consequence of the increased 
carnitine transport capacity of cells due to the elevated 
expression of OCTN2. In conclusion, our results indi-
cate that OCTN2 expression and carnitine transport in 
cattle, as in rodents, are regulated by PPARα. 
  Key words:    bovine kidney cells ,  novel organic cation 
transporter 2 ,  peroxisome proliferator-activated recep-
tor α 

  Short Communication 

l-Carnitine is an essential compound with several 
indispensable roles in intermediary metabolism. Its 
most prominent function is to serve as an essential co-
factor for mitochondrial FA oxidation by transferring 
long-chain FA as acylcarnitine esters across the inner 
mitochondrial membrane (McGarry and Brown, 1997). 
Carnitine in the body is derived from endogenous syn-
thesis, which occurs mainly in the liver, and from the 
intestinal absorption of carnitine from the diet. Tissues 
that cannot provide carnitine via endogenous synthesis, 
such as skeletal muscle or myocardium, are dependent 
on carnitine uptake from the circulation, which oc-
curs against a high concentration gradient. This ac-
tive carnitine transport across the plasma membrane 
is mediated by the novel organic cation transporters 
(OCTN), which belong to the solute carrier 22A fam-
ily (Lahjouji et al., 2001). The OCTN2 isoform, which 
is sodium dependent and high affinity, is considered 
the physiologically most important one due to its wide 
tissue expression (Tamai et al., 1998). The OCTN2-
mediated carnitine transport is also responsible for the 
tubular reabsorption of carnitine in the kidney and is, 
therefore, fundamental for maintaining normal carni-
tine levels in serum (Lahjouji et al., 2004). 

  Recent studies in mice and rats convincingly demon-
strated that peroxisome proliferator-activated receptor 
α (PPARα; encoded by PPARA), which is well known 
to act as a central regulator of lipid metabolism and 
energy homeostasis (Desvergne and Wahli, 1999), is an 
important transcriptional regulator of genes encoding 
OCTN2 and enzymes involved in carnitine biosynthesis 
(Ringseis et al., 2012). Gene transcription by PPARα 
is initiated when ligands, such as FA that are liberated 
from adipose tissue during energy deprivation and taken 
up into tissues during this state, or exogenous ligands 
such as fibrates (WY-14,643), bind to the ligand-bind-
ing domain of this transcription factor. In contrast to 
rodents, less is known with regard to the regulation of 
OCTN2 by PPARα and its role for carnitine transport 
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in cattle. In cattle, PPARα activation physiologically 
occurs in the liver during early lactation because the 
negative energy balance associated with early lactation 
leads to the release of FA from adipose tissues, which 
are taken up into the liver and bind to and activate 
PPARα (Loor et al., 2005; Loor, 2010). Interestingly, 
we have found recently that OCTN2 and also genes 
involved in carnitine synthesis in the liver are upregu-
lated and hepatic carnitine concentration is increased 
during early lactation in dairy cows (Schlegel et al., 
2012), providing at least weak evidence that PPARα 
also regulates carnitine homeostasis in cattle. However, 
more convincing evidence is necessary to clearly estab-
lish a role for PPARα as a regulator of OCTN2 and 
carnitine transport in cattle, especially because it is well 
documented that the response to PPARα activators is 
different between rodents and other species (Richert 
et al., 1996). To provide this evidence, we studied the 
effect of a high-affinity ligand of PPARα (WY-14,643) 
on the expression of OCTN2 in the presence and ab-
sence of PPARα antagonists and on OCTN2-mediated 
carnitine transport in a commercially available bovine 
cell line, the Madin-Darby bovine kidney (MDBK) 
cell line. This cell line was recently demonstrated to be 
a suitable model to study PPARα-dependent effects in 
bovine tissues (Bionaz et al., 2008).

The MDBK cells, obtained from Cell Lines Service 
GmbH (Eppelheim, Germany), were cultivated in Hy-
Clone Minimum Essential Medium/Earle’s Balanced 
Salt Solution (MEM/EBSS) medium supplemented 
with 10% fetal bovine serum and 0.05 mg/mL gentami-
cin (all from Invitrogen GmbH, Karlsruhe, Germany) 
at 37°C in a humidified atmosphere of 95% air and 
5% CO2. For experiments, cells were seeded out into 
6-well plates at a density of 2.0 × 105 cells (for qPCR 
and Western blotting experiment) or 24-well plates at 
a density of 7 × 104 cells (for l-carnitine uptake stud-
ies) in HyClone MEM/EBSS complete medium. After 
reaching 80% confluence, MDBK cells were treated with 
150 μM WY-14,643 [dissolved in dimethyl sulfoxide 
(DMSO); both from Sigma-Aldrich Chemie GmbH, 
Steinheim, Germany] as a selective PPARα agonist in 
MEM/EBSS medium without fetal bovine serum but 5 
mg/L of bovine insulin (Sigma-Aldrich Chemie GmbH) 
for 24 h. Cells treated with vehicle alone (DMSO) 
were used as control. Incubation media of control cells 
contained the same vehicle concentration of 0.1% (vol/
vol). For experiments using a PPARα inhibitor, cells 
were co-treated with a 10 μM concentration of the 
PPARα-selective antagonist GW6471 (Sigma-Aldrich 
Chemie GmbH). At the end of incubation, media was 
discarded, and cell layer was washed once with PBS. 
Afterward, plates including the attached cells were im-

mediately stored at −80°C. All incubations were run in 
triplicate and each experiment was repeated 3 times.

For quantitative PCR (qPCR), total RNA was iso-
lated, concentration and purity of isolated RNA were 
determined, and cDNA was synthesized as described 
recently in detail (Keller et al., 2012). Further details 
on RNA isolation and cDNA synthesis are provided in 
Supplemental Materials and Methods (available online 
at http://dx.doi.org/10.3168/jds.2013-7161). Quantita-
tive PCR and normalization by geNorm normalization 
factor were also carried out as described recently in 
detail (Keller et al., 2012), with the exception that 
bovine gene-specific primer pairs were used according 
to Schlegel et al. (2012). Primer characteristics and 
qPCR performance are reported in Supplemental Table 
S1 (available online at http://dx.doi.org/10.3168/
jds.2013-7161). The normalization factor was calculated 
as the geometric mean of expression data of the 3 most 
stable out of 5 tested potential reference genes. Means 
and standard deviations were calculated from normal-
ized expression data for samples of the same treatment 
group. The mean of the vehicle control group was set to 
1 and means and standard deviations of the WY-14,643 
were scaled proportionally.

For immunoblot analysis, cells were lysed with radio-
immunoprecipitation assay (RIPA) lysis buffer [50 mM 
Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton 
X-100, 0.1% SDS, and 1% sodium deoxycholate] contain-
ing protease inhibitors (Sigma-Aldrich Chemie GmbH). 
Further details on immunoblot analysis are provided in 
Supplemental Materials and Methods (available online 
at http://dx.doi.org/10.3168/jds.2013-7161).

For carnitine uptake experiments, MDBK cells were 
washed 2 times with 1.5 mL of Hanks’ balanced salts 
solution (HBSS; Biochrom AG, Berlin, Germany) with 
5 mM HEPES (pH 7.4; Sigma-Aldrich Chemie GmbH) 
after reaching confluence, and then incubated at 37°C 
with a buffer containing a 10 nM concentration of 
methyl-l-[3H]-carnitine (2.96 GBq/mmol; American 
Radiolabeled Chemicals Inc., St. Louis, MO) for 30 min. 
The buffer contained either 0, 25, or 125 mM NaCl and 
4.8 mM KCl, 5.6 mM d-glucose, 1.2 mM CaCl2, 1.2 mM 
KH2PO4, 1.2 mM MgSO4, and 5 mM HEPES to study 
the Na+ dependence of carnitine uptake according to 
Glube et al. (2007). Following incubation, the medium 
was aspirated and cells were washed 2 times with ice-
cold buffered HBSS and thereafter dissolved with 0.5 
mL of 1 M NaOH for 1 h with shaking at room temper-
ature. Radioactivity in cell lysates was determined by 
scintillation counting (PerkinElmer Liquid Scintillation 
Analyzer Tri-Carb 2900TR; PerkinElmer LAS GmbH, 
Rodgau, Germany) and was related to protein content 
of cell lysates as determined by the bicinchoninic acid 
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protein assay with BSA as standard. Carnitine uptake 
is expressed as the amount of l-[3H]-carnitine taken up 
per milligram of cell protein within 30 min. Statistical 
evaluation of treatment effects was carried out by one-
way ANOVA and Duncan’s multiple range test.

To first investigate whether PPARα in MDBK cells 
is activated, we studied the effect of 24-h treatment of 
150 μM WY-14,643 on the mRNA level of the known 
bovine PPARα target gene CPT1A in MDBK cells: We 
found that WY-14,643 treatment caused a pronounce 
increase in the mRNA level of CPT1A in MDBK cells 
compared with vehicle control treatment (WY-14,643: 
17.3 ± 0.3; DMSO: 1.00 ± 0; P < 0.05). To next study 
whether activation of PPARα by WY-14,643 causes 
induction of OCTN2 in MDBK cells, we investigated 

the effect of WY-14,643 on relative mRNA and protein 
levels of OCTN2 in MDBK cells. As shown in Figure 
1A and B, both relative mRNA and protein levels of 
OCTN2 were markedly greater in MDBK cells treated 
with WY-14,643 than in cells treated with vehicle alone 
for 24 h (P < 0.05). To further explore whether the 
upregulation of OCTN2 by WY-14,643 in MDBK cells 
is dependent on PPARα, we studied the effect of WY-
14,643 on the expression of OCTN2 in MDBK cells that 
were co-treated with the PPARα antagonist GW6471 
(10 μM) for 24 h. Co-treatment of MDBK cells with 
WY-14,643 and GW6471 caused a reduction in the rel-
ative mRNA level of OCTN2 compared with treatment 
with vehicle alone (Figure 1C). The relative protein 
level of OCTN2 did not differ between MDBK cells 

Figure 1. Effect of treatments with a 150 μM concentration of WY-14,643 [a high-affinity ligand of peroxisome proliferator-activated recep-
tor α (PPARα); Sigma-Aldrich Chemie GmbH, Steinheim, Germany] for 24 h in the absence (A and B) and presence (C and D) of PPARα-
selective antagonist GW6471 (10 μM; Sigma-Aldrich Chemie GmbH) on relative mRNA (A and C) and protein levels (B and D) of organic 
cation transporter 2 (OCTN2) in Madin-Darby bovine kidney (MDBK) cells. In panels A and C, bars represent means ± SD of 3 independent 
experiments and are expressed as fold of dimethyl sulfoxide (DMSO)-treated control cells. In panels B and D, bars represent data from densito-
metric analysis and are means ± SD of 3 independent experiments. Immunoblots specific to OCTN2 and β-actin as internal control are shown 
for 1 independent experiment; immunoblots for the other experiments revealed similar results. Data represent means ± SD of 3 independent 
experiments and are expressed as fold of DMSO-treated control cells. *Different from DMSO-treated control (P < 0.05).
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co-treated with WY-14,643 and GW6471 and control 
cells (Figure 1 D). To investigate whether the upregu-
lation of OCTN2 by WY-14,643 has an influence on 
Na+-dependent carnitine uptake, which is characteristic 
for OCTN2-mediated carnitine uptake, we studied the 
uptake of methyl-l-[3H]-carnitine into MDBK monolay-
ers at different Na+ concentrations in the incubation 
buffer. At 0 mM NaCl, l-carnitine uptake into MDBK 
cells was approximately 0.01 pmol/mg of protein per 
30 min, representing non-OCTN2 dependent carnitine 
transport into MDBK cells. l-Carnitine uptake did 
not further increase in the presence of 25 mM NaCl, 
indicating that the Na+ concentration was insufficient 
for facilitating Na+-dependent OCTN2-mediated car-
nitine transport. At both NaCl concentrations (0 and 
25 mM), WY-14,643 failed to increase l-carnitine 
uptake into MDBK cells, suggesting that WY-14,643 
does not stimulate non-OCTN2-dependent carnitine 
transport. At 125 mM NaCl, the uptake of l-carnitine 
into MDBK cells increased in cells treated with vehicle 
alone to about 0.02 pmol/mg of protein per 30 min 
and additionally increased in cells treated with 150 μM 
WY-14,643 to about 0.045 pmol/mg of protein per 30 
min (P < 0.05; Figure 2A). These results indicate the 
presence of a Na+-dependent transport system for l-
carnitine, which applies to OCTN2, in MDBK cells and 
that the WY-14,643-induced l-carnitine uptake is likely 
mediated by OCTN2. To finally confirm the PPARα 
dependence of the WY-14,643-stimulated increase in 
l-carnitine uptake, we studied the effect of either WY-
14,643 alone or WY-14,643 together with the PPARα 
antagonist GW6471 (10 μM) on l-carnitine uptake. 
As shown in Figure 2B, the effect of WY-14,643 on 
l-carnitine uptake was completely blocked by GW6471, 
confirming that the effect of WY-14,643 on l-carnitine 
uptake is mediated by PPARα.

The main finding of the present study is that the 
PPARα ligand WY-14,643 increases mRNA and pro-
tein levels of OCTN2 in the bovine kidney cell line 
MDBK, whereas co-treatment of MDBK cells with 
WY-14,643 and the PPARα antagonist GW6471 blocks 
the WY-14,643-induced increase in mRNA and protein 
levels of OCTN2 in MDBK cells. A further important 
finding is that treatment of MDBK cells with the 
PPARα agonist stimulates specifically Na+-dependent 
carnitine uptake in MDBK cells, which is likely a conse-
quence of the increased carnitine transport capacity of 
cells due to the elevated expression of OCTN2. In ad-
dition, our data show that the WY-14,643-stimulated 
increase in l-carnitine uptake is completely blocked by 
treatment of cells MDBK with a PPARα antagonist. 
These findings indicate that OCTN2 expression and 
carnitine transport in cattle, as in rodents, are regu-
lated by PPARα. The observed PPARα dependence of 

OCTN2 expression provides a plausible explanation for 
the recent finding that OCTN2 in the liver is strongly 
upregulated during early lactation in high-producing 

Figure 2. Effect of treatment with a 150 μM concentration of 
WY-14,643 [a high-affinity ligand of peroxisome proliferator-activat-
ed receptor α (PPARα); Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany] on uptake of l-[3H]-carnitine (10 nM; specific radioactivity 
2.96 GBq/mmol; American Radiolabeled Chemicals Inc., St. Louis, 
MO) by Madin-Darby bovine kidney (MDBK) cells. (A) Uptake of l-
[3H]-carnitine by MDBK cells treated for 24 h with either WY-14,643 
or dimethyl sulfoxide (DMSO; control) at different Na+ concentra-
tions (0, 25, and 125 mM NaCl) was studied over 30 min. (B) Uptake 
of l-[3H]-carnitine by MDBK cells treated for 24 h with WY-14,643, 
WY-14,643 together with PPARα-selective antagonist GW6471 (10 
mM; Sigma-Aldrich Chemie GmbH), or DMSO (control) at 125 mM 
NaCl was studied over 30 min. Data represent means ± SD of 3 in-
dependent experiments, each performed in triplicate. *Different from 
DMSO-treated control (P < 0.05). Data with different letters (a–c) 
differ (P < 0.05).
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dairy cows (Schlegel et al., 2012). During early lacta-
tion, PPARα activation occurs physiologically due to 
the excessive flow of FA from adipose tissue to the liver 
where they bind to and activate PPARα (Loor et al., 
2005; Loor, 2010). Thus, our observation in MDBK cells 
suggests that the bovine gene encoding OCTN2 is a 
target of PPARα. At least for the mouse gene encoding 
OCTN2, a functional binding site for PPARα, called 
peroxisome proliferator response element (PPRE), 
was identified in the first intron (Wen et al., 2010). 
This PPRE is responsible for direct transcriptional 
activation of the mouse OCTN2 gene by PPARα. Al-
though direct proof for the existence of a functional 
PPRE in the bovine OCTN2 gene is missing, we have 
shown recently by sequence alignment that the func-
tional PPRE identified in the mouse OCTN2 gene is 
completely identical (100%) to a putative PPRE in the 
bovine OCTN2 gene. This indicates that regulation of 
OCTN2 by PPARα between mouse and cattle is highly 
conserved and supports the assumption that the bovine 
OTCN2 gene is a PPARα target gene.

In conclusion, the present study shows that expres-
sion of the carnitine transporter OCTN2 and OCTN2-
mediated carnitine uptake are regulated by PPARα in 
bovine kidney cells. This suggests that the bovine gene 
encoding OCTN2, similar to the mouse OCTN2 gene, 
is a target of PPARα. Future studies have to demon-
strate the existence of a functional PPRE in the bovine 
OCTN2 gene.
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Carnitine transporter OCTN2 and carnitine uptake
in bovine kidney cells is regulated by peroxisome
proliferator-activated receptor β/δ
Xiaodan Zhou, Robert Ringseis, Gaiping Wen and Klaus Eder*

Abstract

Background: Peroxisome proliferator-activated receptor α (PPARα), a central regulator of fatty acid catabolism, has
recently been shown to be a transcriptional regulator of the gene encoding the carnitine transporter novel organic
cation transporter 2 (OCTN2) in cattle. Whether PPARβ/δ, another PPAR subtype, which has partially overlapping
functions as PPARα and is known to share a large set of common target genes with PPARα, also regulates OCTN2
and carnitine transport in cattle is currently unknown. To close this gap of knowledge, we studied the effect of
the PPARβ/δ activator GW0742 on mRNA and protein levels of OCTN2 and carnitine uptake in the presence and
absence of the PPARβ/δ antagonist GSK3787 in the bovine Madin-Darby bovine kidney (MDBK) cell line.

Findings: Treatment of MDBK cells with GW0742 caused a strong increase in the mRNA level of the known bovine
PPARβ/δ target gene CPT1A in MDBK cells indicating activation of PPARβ/δ. The mRNA and protein level of OCTN2
was clearly elevated in MDBK cells treated with GW0742, but the stimulatory effect of GW0742 on mRNA and
protein level of OCTN2 was completely blocked by GSK3787. In addition, GW0742 increased Na+-dependent
carnitine uptake, which is mediated by OCTN2, into MDBK cells, whereas treatment of cells with the PPARβ/δ
antagonist completely abolished the stimulatory effect of GW0742 on carnitine uptake.

Conclusions: The present study shows for the first time that gene expression of the carnitine transporter OCTN2
and carnitine transport are regulated by PPARβ/δ in bovine cells. These novel findings extend the knowledge about
the molecular regulation of the OCTN2 gene and carnitine transport in cattle and indicate that regulation of OCTN2
gene expression and carnitine transport is not restricted to the PPARα subtype.

Keywords: Bovine kidney cell, Novel organic cation transporter 2, Peroxisome proliferator-activated receptor β/δ

Findings
The peroxisome proliferator-activated receptors (PPARs)
are ligand-activated transcription factors which play im-
portant roles in many metabolic and regulatory pathways
through regulating the expression of a large set of target
genes [1]. The ligands of PPARs include fatty acids and
fatty acid derivatives and are therefore designated as
transcriptional sensors of fatty acids [2]. In addition, syn-
thetic compounds like the fibrate class of lipid lowering
drugs or the insulin-sensitizing thiazolidinediones are
well documented ligands of PPARs. From the PPARs,
three different subtypes exist which have isotype-specific

but also partially overlapping functions. For instance, both,
the PPARα and the PPARβ/δ subtype are central regulators
of fatty acid catabolism since both subtypes control the ex-
pression of genes encoding proteins involved in cellular
fatty acid uptake, intracellular fatty acid transport, mito-
chondrial fatty acid uptake, and mitochondrial and
peroxisomal fatty acid oxidation [1,3,4]. Recent studies con-
vincingly demonstrated that PPARα is also a key regulator
of genes involved in carnitine transport like novel organic
cation transporter 2 (OCTN2) and carnitine synthesis like
γ-butyrobetain dioxygenase (BBD) in many species includ-
ing dairy cattle [5-8]. Activation of PPARα in dairy cattle
occurs physiologically during early lactation due to ex-
tensive mobilization and release of fatty acids from adipose
tissues which are taken up into the liver and non-hepatic
tissues and bind to and activate PPARα [9,10]. The above

* Correspondence: klaus.eder@ernaehrung.uni-giessen.de
Institute of Animal Nutrition and Nutritional Physiology,
Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany

© 2014 Zhou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Zhou et al. Acta Veterinaria Scandinavica 2014, 56:21
http://www.actavetscand.com/content/56/1/21



mentioned PPARα dependence of OCTN2 and BBD ex-
pression provides a plausible explanation for the recent
finding that OCTN2 and BBD in the liver are strongly up-
regulated during early lactation in high-producing dairy
cows [11]. However, whether PPARβ/δ also regulates genes
involved in carnitine homeostasis in cattle is currently un-
known. PPARα and PPARβ/δ share a large set of common
target genes involved in fatty acid catabolism. In addition,
carnitine transport and synthesis are intrinsically linked to
fatty acid catabolism, because fatty acid transport into the
mitochondrial matrix is carnitine-dependent [12]. Thus, we
hypothesized that PPARβ/δ also regulates genes involved in
carnitine homeostasis in cattle. To verify our hypothesis we
studied the effect of the PPARβ/δ activator GW0742 on
mRNA and protein levels of OCTN2 and carnitine trans-
port in a bovine kidney cell line. Using this cell line we have
very recently shown that OCTN2 gene expression and car-
nitine transport are stimulated by a PPARα agonist [13].
However, kidney cells are also of relevance to study the ef-
fect of PPARβ/δ agonists in this regard because PPARβ/δ is
known to be highly expressed in the kidney and OCTN2-
mediated carnitine transport represents the transport
mechanism for tubular reabsorption of carnitine in the kid-
ney and is therefore fundamental for maintaining normal
carnitine levels in serum [14]. We did not consider the ef-
fect of GW0742 on genes involved in carnitine synthesis in
this cell line, because the kidney, unlike the liver, is not cap-
able of synthesizing carnitine due to the lack of BBD.
Madin-Darby bovine kidney (MDBK) cells obtained

from Cell Lines Service (Eppelheim, Germany) were cul-
tivated in HyClone Minimum Essential Media/Earle’s
Balanced Salt Solution (MEM/EBSS) medium supple-
mented with 10% FBS and 0.05 mg/mL gentamicin (all
from Invitrogen, Karlsruhe, Germany) at 37°C in a hu-
midified atmosphere of 95% air and 5% CO2 [13]. After
reaching 80% confluence, MDBK cells were treated with
1 μM of the PPARβ/δ selective agonist GW0742 (Sigma-
Aldrich, Steinheim, Germany) [dissolved in dimethylsulf-
oxide (DMSO); both from Sigma-Aldrich, Steinheim,
Germany] in MEM/EBSS medium without FBS but
5 mg/L bovine insulin (Sigma-Aldrich, Steinheim,
Germany) for 24 h. The incubation concentration of
GW0742 was chosen based on published literature [15],
in which treatment with 1 μM resulted in strong activa-
tion of PPARβ/δ. The incubation time was selected
based on results from initial time course experiments
(4 h, 24 h) demonstrating that the effect of GW0742 was
stronger at 24 h (Figure 1A). Cells treated with vehicle
alone (DMSO) were used as control. Incubation media
of control cells contained the same vehicle concentration
of 0.1% (v/v). For experiments using a PPARβ/δ inhibi-
tor, cells were co-treated with 10 μM of the PPARβ/δ se-
lective antagonist GSK3787 (Sigma-Aldrich) for 24 h.
The incubation time and incubation concentration of

GSK3787 was chosen also based on results from initial
titration and time course experiments (concentration: 1
and 10 μM; time: 4 h, 24 h) demonstrating that inhib-
ition of the agonist effect by GSK3787 was strongest at
10 μM and 24 h (Figure 1B). Following incubation,
media was aspirated, the cell layer was washed once with
phosphate-buffered saline, and plates including the at-
tached cells were immediately stored at −80°C. All incu-
bations were run in triplicate and each experiment was
repeated three times. The mRNA levels of genes of
interest (reference and target genes) in MDBK cells were
determined by means of qPCR. Prior to qPCR, RNA
from cells was isolated by adding TrizolTM reagent
(Invitrogen, Karlsruhe, Germany) directly into the wells,
and pipetting the lysed cells up and down 2–3 times.
cDNA was synthesized in less than a week after RNA ex-
traction from 1.2 μg of total RNA using 100 pmol dT18
primer (Eurofins MWG Operon, Ebersberg, Germany),
1.25 μL 10 mmol/L dNTP mix (GeneCraft, Lüdinghau-
sen, Germany), 5 μL buffer (Fermentas, St. Leon-Rot,
Deutschland), and 60 units M-MuLV Reverse Tran-
scriptase (MBI Fermentas, St. Leon-Rot, Germany) at
42°C for 60 min, and a final inactivating step at 70°C for
10 min in a Thermal Cycler. qPCR was performed using
2 μL cDNA combined with 18 μL of a mixture com-
posed of 10 μL KAPA SYBR FAST qPCR Universal Mas-
termix (Peqlab, Erlangen, Germany), 0.4 μL each of
10 μM forward and reverse primers and 7.2 μL DNase/
RNase free water in 0.1 mL tubes (Ltf Labortechnik,
Wasserburg, Germany). Ct-values of target genes and
reference genes were obtained using Rotorgene Software
5.0 (Corbett Research). For determination of relative ex-
pression levels relative quantities were calculated using
GeNorm normalization factor according to Vandesom-
pele et al. [16]. The normalization factor was calculated
as the geometric mean of expression data of the three
most stable (ACTB, ATP5B, SDHA) out of five tested po-
tential reference genes (ACTB, ATP5B, PPIA, RPS9,
SDHA). Primer characteristics and qPCR performance
data for the reference genes and target genes have been
published recently [9]. Means and SD were calculated
from normalized expression data for samples of the
same treatment group. The mean of the vehicle (DMSO)
control group was set to 1 and mean and SD of the
GW0742 and GW0742 + GSK3787 groups were scaled
proportionally. For immunoblot analysis, MDBK cells
were lysed with RIPA lysis buffer (50 mM Tris, pH 7.5;
150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%
SDS, 1% sodium deoxycholate) containing protease in-
hibitors (Sigma-Aldrich). Following determination of
protein concentration of the cell lysates, 25 μg protein
from the cell lysates were separated on a 10% SDS-
PAGE, and proteins were transferred to a nitrocellulose
membrane. Subsequently, membranes were blocked
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overnight at 4°C in blocking solution (5% non-fat dried
milk powder), and then incubated with antibodies
against OCTN2 (polyclonal anti-OCTN2 antibody; dilu-
tion 1:500; Abcam, Cambridge, UK) and β-actin (mono-
clonal anti-β-actin; dilution 1:500, Abcam, Cambridge,
UK) overnight at 4°C and for 2 h at RT, respectively. Fol-
lowing a washing step, the membranes were incubated
with a horseradish peroxidase conjugated secondary
monoclonal anti-mouse-IgG antibody (1:5000, Jackson
Immuno Research, Suffolk, UK) for 1 h at room
temperature. Finally, the blots were developed by using
the AmershamTM ECL Plus Western Blotting Detection
System (GE Healthcare, Munich, Germany) and detected
by a chemiluminescence imager (Syngene, Cambridge,
UK). The signal intensities of specific bands were quanti-
fied using GeneTools software (Syngene, Cambridge, UK).
Carnitine uptake experiments in MDBK cells using
methyl-L-[3H]-carnitine (80 mCi/mmol; American Radi-
olabeled Chemicals, St. Louis, USA) were performed as
described recently in detail [13]. To study the Na+ de-
pendence of carnitine uptake, the incubation buffer con-
tained either 0, 25 or 125 mM NaCl and 4.8 mM KCl,
5.6 mM D-glucose, 1.2 mM CaCl2, 1.2 mM KH2PO4,
1.2 mM MgSO4, and 5 mM HEPES. Radioactivity in cell
lysates determined by scintillation counting (Perkin Elmer
Liquid Scintillation Analyzer Tri-Carb 2900TR, Rodgau,
Germany) was related to protein content of cell lysates as
determined by the bicinchoninic acid protein assay with
BSA as standard. Carnitine uptake is expressed as the
amount of L-[3H]-carnitine taken up per mg cell protein
within 30 min. Statistical evaluation of treatment effects
was carried out by one-way ANOVA and Duncan’s mul-
tiple range test.
In the first step, we investigated whether treatment of

MDBK cells with the PPARβ/δ agonist GW0742 (1 μM)
causes activation of PPARβ/δ. Activation of PPARβ/δ was

evidenced by strongly increased mRNA levels of the known
bovine PPARβ/δ target gene CPT1A in MDBK cells treated
with GW0742 (P < 0.05; Figure 2A). The mRNA level of
PPARβ/δ was slightly elevated by treatment with GW0742
(P < 0.05; Figure 2A). Next, we studied the effect of
GW0742 on the mRNA level of OCTN2 in MDBK cells. As
shown in Figure 2B, the mRNA level of OCTN2 was clearly
elevated in MDBK cells treated with GW0742 (P < 0.05) in-
dicating that bovine OCTN2 gene transcription is regulated
by PPARβ/δ. In addition, induction of the OCTN2 gene by
GW0742 in MDBK cells was also observed at the protein
level (P < 0.05; Figure 2C). To further confirm the PPARβ/δ
dependence of this effect, we studied the effect of GW0742
in the presence of GSK3787 (10 μM) on OCTN2 gene ex-
pression. GSK3787 is a newly identified PPARβ/δ antagon-
ist that can irreversibly attenuate the activity of PPARβ/δ by
forming a covalent bond with a cysteine residue in the lig-
and binding domain of PPARβ/δ [17]. As illustrated in
Figure 2D and E, the stimulatory effect of GW0742 on
mRNA and protein levels of OCTN2 in MDBK cells was
completely blocked by the PPARβ/δ antagonist indicating
that OCTN2 gene expression is regulated by PPARβ/δ in
bovine kidney cells. In a further step, we studied whether
up-regulation of OCTN2 by GW0742 leads to an increased
carnitine uptake. For this, we determined the uptake of
methyl-L-[3H]-carnitine into MDBK cells incubated with or
without GW0742 at different NaCl concentrations in the
incubation medium. As shown in Figure 2F, GW0742
increased carnitine uptake into MDBK cells at a NaCl
concentration of 125 mM in the incubation media (P <
0.05) but not at 0 and 25 mM NaCl. This indicated that
the PPARβ/δ agonist stimulates specifically the OCTN2-
mediated carnitine uptake which is known to be sodium-
dependent [18]. Finally, we provided clear evidence for the
PPARβ/δ dependence of the GW0742-induced increase of
carnitine uptake in showing that treatment of MDBK cells
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with the PPARβ/δ antagonist completely abolished
the stimulatory effect of GW0742 on carnitine up-
take (Figure 2G). In summary, these novel findings
extend the knowledge about the molecular regulation
of the OCTN2 gene and carnitine transport which
have been convincingly demonstrated to be regulated
by PPARα in cattle but also in several other species
[6]. The fact that OCTN2 gene expression and carnitine
transport are obviously regulated by both, PPARα and
PPARβ/δ, is not surprising given that these two PPAR
subtypes have partially overlapping functions. Namely,

both PPAR subtypes play important roles in the regula-
tion of mitochondrial fatty acid oxidation, which is
dependent on the presence of carnitine, and therefore
share a large set of common target genes involved in
fatty acid oxidation [15]. Thus, our recent observation
in high-producing dairy cows that OCTN2 is strongly
up-regulated in the liver during early lactation [9]
might be mediated by the activation of both PPAR sub-
types because the fatty acids released from adipose tis-
sue during this state are ligands and activators of both
PPAR subtypes.
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Conclusions
The present study shows for the first time that gene ex-
pression of the carnitine transporter OCTN2 and carni-
tine transport are regulated not only by PPARα but also
by PPARβ/δ in bovine cells.
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ABSTRACT

Recent studies in bovine kidney cells demonstrated that peroxisome proliferator-

activated receptor α (PPARα), a central regulator of energy homeostasis, is an important

transcriptional regulator of the gene encoding the carnitine transporter novel organic

cation transporter 2 (OCTN2). Less is known about the regulation of OCTN2 and

carnitine transport in cattle by pro-inflammatory cytokines TNFα, which is a nuclear

factor kappa B (NF-κB) inducer in non-ruminates. In order to explore the role of NF-κB

for OCTN2 expression and carnitine transport in cattle, we studied the effect TNFα on the

expression of OCTN2 in the presence and absence of NF-κB inhibitor and on OCTN2-

mediated carnitine transport in the bovine Madin-Darby bovine kidney (MDBK) cell line.

The results show that 5 ng/ml of TNFα increases mRNA and protein levels of OCTN2,

whereas co-treatment of MDBK cells with TNFα and the NF-κB inhibitor Bay 11-7085

blocks the TNFα-induced increase of mRNA and protein levels of OCTN2 in bovine cells.

In addition, treatment of MDBK cells with TNFα stimulates carnitine uptake in MDBK

cells which is likely the consequence of the increased carnitine transport capacity of cells

due to the elevated expression of OCTN2. In conclusion, our results indicate that OCTN2

expression and carnitine transport in cattle are regulated by NF-κB.

Keywords: bovine kidney cell, novel organic cation transporter 2, nuclear factor kappa B
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INTRODUCTION

Dairy cows suffer multitudes of disorders during the peripartum, particularly high rates

of mastitis, metritis, ketosis and fatty liver. It is well-documented that inflammation is

involved in these infections and metabolic diseases. Although the immune function is

suppressed by the negative energy balance, which resulting from the dramatically

increase of energy requirements and the depression of the feed intake, inflammatory

cytokines play a key role in the pathology of metabolic disorders in transition cows.

Cytokines are cell signaling molecules, which can change many physiological systems

for the wide expression of receptors in nearly all cell types. Tumor necrosis factor-α

(TNFα) is one of the cytokines that has been demonstrated to activate nuclear factor

kappa B (NF-κB) pathway via TNF receptor (TNFR) -TNF receptor-associated factor

(TRAF) - inhibitor of kappa B kinase (IKK) pathway. Besides the crucial roles in the

innate and adaptive immunity, cell proliferation and apoptotic processes, TNFα has the

ability to directly interfere with the lipid metabolism. In adipose tissues, TNFα stimulates

lipolysis via TNFR1 and involved the activation of mitogen-activated protein kinase

family. In liver, TNFα increases the hepatic level of citrate consequently activating

acetyl-CoA carboxylase, which is the rate limiting enzyme of free fatty acids synthesis.

OCTN2 is a member of the solute carrier 22A family, which is expressed in various

organs, including the kidney. It has been confirmed to transport carnitine in a Na+-

dependent manner, guaranteeing carnitine absorption and distribution within the body

(Tamai et al., 2000; Tamai et al., 2001). Carnitine is an essential cofactor for

mitochondrial fatty acid oxidation by transferring long-chain fatty acids as acylcarnitine

esters across the inner mitochondrial membrane (McGarry et al., 1997). The deficiency of
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OCTN2 has been associated with many diseases, including systemic primary carnitine

deficiency, Crohn’s disease and diabetes. It has been reported that PPARα is the main

regulator of OCTN2 (Eder and Ringseis, 2010). Our previous researches have shown that

OCTN2 and carnitine uptake are regulated by PPARs in bovine kidney cells. Fujiya et al.,

(2011) has reported OCTN2 expression and carnitine uptake in human colonic epithelial

cells are increased by proinflammatory cytokines TNFα. However, it is unclear whether

the inflammation is able to alter OCTN2 and carnitine uptake in bovine kidney cells. We

hypothesized TNFα could up-regulate OCTN2 expression and increase carnitine uptake

in bovine kidney cells.

MATERIALS AND METHODS

Cell Culture

Madin-Darby bovine kidney (MDBK) cells obtained from Cell Lines Service (Eppelheim,

Germany) were cultivated as described recently in detail. For experiments, cells were

seeded out into 6-well plates at a density of 2.0 × 105 cells (for qPCR and immunoblot

analysis experiments) or 24-well plates at a density of 7 × 104 cells (for L-carnitine

uptake studies) or 96-well plates at a density of 1.2 × 104 cells (for Transient transfection

and dual luciferase reporter gene assays) in HyClone MEM/EBSS complete medium.

After reaching 80% confluence, MDBK cells were treated with 1, 5, 10, 20 ng/mL of

TNFα (Sigma-Aldrich, Steinheim, Germany) [dissolved in dimethylsulfoxide (DMSO);

both from Sigma-Aldrich, Steinheim, Germany] in MEM/EBSS medium without FBS but

5 mg/L bovine insulin (Sigma-Aldrich, Steinheim, Germany) for 24 h. Cells treated with

vehicle alone (DMSO) were used as control. Incubation media of control cells contained

the same vehicle concentration of 0.1 % (v/v). For experiments using a NF-κB inhibitor,
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cells were co-treated with 1 µM of the BAY 11-7085(Merck, Bruchsal, Germany) in

combination with 5 ng/mL of TNFα for 24 h. Following incubation, media was aspirated,

the cell layer was washed once with phosphate-buffered saline (PBS), and plates

including the attached cells were immediately stored at -80°C. All incubations were run

in triplicate and each experiment was repeated three times.

RNA isolation, cDNA synthesis and qPCR analysis

Total RNA was isolated from MDBK cells after treatment using 500 µL

Trizolreagent (Invitrogen, Karlsruhe, Germany) according to the manufacturer’s

instructions. RNA from cells was extracted within 3 days after the experiment. Isolated

RNA was stored at -80°C until use. Concentrations and purity of isolated RNA were

determined using an Infinite 200M microplate reader and a NanoQuant Plate (both from

Tecan, Mannedorf, Switzerland). The A260/A280 ratios were 1.90±0.05 (mean±SD). The

integrity of RNA was assessed by 1% agarose gel electrophoresis. RNA was considered

to be suitable for use only if intact bands corresponding to 18S and 28S ribosomal RNA

subunits were visible. First-strand cDNA was synthesized from 1.2 µg of total RNA using

100 pmolof dT18 primer (Eurofins MWG Operon, Ebersberg, Germany), 1.25 µl of 10

mM dNTP mix (GeneCraft, Lüdinghausen, Germany), 5 µl of buffer (Fermentas, St.

Leon-Rot, Germany), and 60 unitsM-MuLV Reverse Transcriptase (MBI Fermentas, St.

Leon-Rot, Germany) at 42°C for 60 min and a subsequent inactivating step at 70°C for 10

min in Biometra Thermal Cycler (WhatmanBiometra®, Göttingen, Germany). Finally,

cDNA was preserved in aliquots at -20 °C. The mRNA levels of genes of interest

(reference and target genes) in MDBK cells were determined by means of qPCR using

gene-specific primer pairs as described in Table 1. For normalization of gene expression
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levels the GeNorm normalization factor according to Vandesompele et al (2002). ACTB,

ATP5B and RPS9 were calculated as the geometric mean of expression data of the three

most stable out of five tested potential reference genes. Means and SD were calculated

from normalized expression data for samples of the same treatment group. The mean of

the vehicle (DMSO) control group was set to 1 and mean and SD of the TNFα groups

were scaled proportionally.

Transient transfection and dual luciferase reporter gene assay

For transient transfections, MDBK cells were plated in 96 well plates at a density of

1.2 ×104. After plating for 15 h, according to the manufacture’s protocol, cells were

transiently transfected with 50 ng of NF-κB-Luc (Takara Bio Europe/Clontech, Saint-

Germain-en-Laye, Germany) for 8 h using FuGENE 6 transfection reagent (Roche

Diagnostics, Mannheim, Germany). NF-κB-Luc is a plasmid containing an NF-κB

response element in front of the firefly luciferase reporter gene. Cells were also co-

transfected with 5 ng of pGL4.74 Renilla luciferase (Promega, Mannheim, Germany),

which was considered as an internal control reporter vector to normalize the differences

in transfection efficiency. For measurement of NF-κB activation, the differentiated

MDBK cells were treated with or without 5 ng/mL of TNFα for 24 h. Then, cells were

washed with PBS and lysed with the passive lysis buffer (Promega). Normalized

luciferase activities were determined with the dual luciferase reporter assay system

(Promega) using a Mithras LB940 luminometer (Berthold Technologies, Bad Wildbad,

Germany). Normalized luciferase activities are expressed as fold of control cells, and

luciferase activity of control cells was set to 1.

Immunoblot analysis
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MDBK cells were harvested and lysed with RIPA lysis buffer (50 MmTris pH 7.5,

150 Mm NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 1% sodium deoxycholate)

containing protease inhibitor cocktail (Sigma-Aldrich, Steinheim, Germany). The

concentration of the total protein was determined using the bicinchoninic acid protein

assay kit according to the manufacturer’s instructions (Interchim, Montluçon, France)

with BSA as standard. 20 µg protein from the cell lysates were separated on a 10% SDS-

PAGE. Afterwards proteins were transferred to a nitrocellulose membrane (Pall

Corporation, Pensacola, FL, USA). Adding of equal amounts of protein in every line was

verified by Ponceau S (Carl Roth, Karlsruhe, Germany) staining. The membranes were

blocked overnight at 4°C in blocking solution (5% nonfat dried milk powder), and then

incubated with the antibodies against OCTN2 (polyclonal anti-OCTN2 antibody; dilution

1:500; Abcam, Cambridge, UK) and β-actin (monoclonal anti-β-actin; dilution 1:500,

Abcam, Cambridge, UK) overnight at 4°C and for 2 h at room temperature, respectively.

The membranes were washed with TBS-T (50 mmol/L Tris, 150 mmol/L NaCl, pH 7.5,

0.2% Tween-20) and incubated with the horseradish peroxidase conjugated secondary

monoclonal anti-mouse-IgG antibody (1:5000, Jackson Immuno Research, Suffolk, UK)

for 1 h at room temperature. The blots were developed by using the AmershamTM ECL

Plus Western Blotting Detection System (GE Healthcare, Munich, Germany) and detected

by a chemiluminescence imager (Syngene, Cambridge, UK). The signal intensities of

specific bands were quantified using GeneTools software (Syngene, Cambridge, UK).

The fold increase in band intensity for the treatment group was calculated and normalized

against control.

Carnitine uptake
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Carnitine uptake experiments in MDBK cells using methyl-L-[3H]-carnitine (2.96

GBq/mmol; American Radiolabeled Chemicals, St. Louis, USA) were performed as

described recently in detail (Zhou et al., 2014). Cells were washed 2 times with 1.5 mL of

Hanks´ balanced salts solution buffer (HBSS, Biochrom AG, Germany) with 5 mM

HEPES (Sigma, Steinheim, Germany) and co-incubated with 10 nM [3H]-L-carnitine in a

37°C shaking water bath for 30 min. Afterwards, the medium was aspirated and the

MDBK cells were immediately washed 2 times with 1 mL of ice-cold buffered HBSS

before 0.5 mL of 1 M NaOH was added. The cells were incubated for 1 h at room

temperature with shaking (75 rpm/min). The total volumes of samples were then

collected, and 4 mL of Rotiszint Ecoplus scintillation fluid (Carl Roth GmbH, Germany)

was added for scintillation counting (Perkin Elmer Liquid Scintillation Analyzer Tri-Carb

2900TR, U.S.A). Radioactivity in cell lysates was related to protein content of cell lysates

as determined by the bicinchoninic acid protein assay with BSA as standard. Carnitine

uptake is expressed as the amount of L-[3H]-carnitine taken up per mg cell protein within

30 min.

Statistical Analysis

All data were analyzed by one-way analysis of variance (ANOVA) using the

Minitab Statistical Software (Rel. 13.0 State College, PA, USA). Effects were considered

significant when P<0.05. Data in the figures are presented as mean ± S.D.

RESULTS

Effects of the cytokine TNFα on NF-κB activation in bovine kidney cells

To determine if NF-κB in MDBK cells is activated, we studied the effect of the TNFα
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on the known bovine NF-κB target genes IL6 and IL1B expression in MDBK cells. We

found that TNFα increased IL6 and IL1B mRNA expression in a concentration-dependent

manner at 24 h (Figure 1A). Compared to the control, the mRNA levels of the IL6 and

IL1B were elevated about 10 fold by the treatment of 5 ng/ml of TNFα (P < 0.05; Fig.

1A). We further investigated the influence of the cytokine TNFα on NF-κB DNA-binding

activity. The transactivation of NF-κB was significantly increased by the treatment of

TNFα compared to the control in MDBK cells (P < 0.05; Fig. 1B). Our results show that

5 ng/ml of TNFα increased mRNA levels of NF-κB target genes and induced NF-κB

transactivation.

Effects of the cytokine TNFα on transcription and protein levels of OCTN2 in MDBK

cells

To study whether activation of NF-κB by TNFα causes induction of OCTN2, we

investigated the effect of TNFα on relative mRNA and protein levels of OCTN2 in

MDBK cells. As shown in Fig. 2 A and C, both, relative mRNA and protein levels of

OCTN2 were markedly greater in MDBK cells treated with 5 ng/ml TNFα than in cells

treated with vehicle alone for 24 h (P < 0.05). To further explore whether the up-

regulation of OCTN2 by TNFα in MDBK cells is dependent on NF-κB, we studied the

effect of TNFα on mRNA and protein levels of OCTN2 in the presence of the NF-κB

inhibitor BAY 11-7085. The stimulatory effect of TNFα on transcription and protein

levels of OCTN2 was completely abolished by BAY 11-7085 in MDBK cells (Fig. 2 B

and D). The stimulatory effect of TNFα on mRNA and protein levels of OCTN2 in

MDBK cells was completely blocked by the NF-κB inhibitor indicating that OCTN2

gene expression is regulated by NF-κB in bovine kidney cells.
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Effects of the cytokine TNFα on [3H] -L- carnitine uptake in MDBK cells

To investigate whether the up-regulation of OCTN2 by TNFα leads to an increased

carnitine uptake, which is characteristic for OCTN2-mediated, we studied the uptake of

methyl-L-[3H]-carnitine into MDBK monolayers in the HBSS incubation buffer.

Compared to the control, the carnitine uptake was increased in cells treated with 5 ng/ml

of TNFα to about 0.060 pmol/mg protein/30 min (P < 0.05, Fig. 3). To further confirm

the NF-κB dependence of the TNFα-stimulated increase of L-carnitine uptake, we studied

the effect of TNFα in the presence of the BAY 11-7085(1 µM) on L-carnitine uptake. As

shown in Fig. 3, the effect of TNFα on L-carnitine uptake was completely blocked by

BAY 11-7085 confirming that the effect of TNFα on L-carnitine uptake is mediated by

NF-κB. The results from uptake experiments indicate that the up-regulation of OCTN2 by

TNFα lead to an increase in carnitine uptake. Taken together, it is clear that bovine gene

encoding OCTN2 is a target of NF-κB regulating carnitine reabsorption in kidney cells.

In conclusion, the present study shows for the first time that gene expression of

OCTN2 and carnitine transport are both regulated by NF-κB inducer TNFα in bovine

kidney cells. These findings indicate that inflammation may contribute to enhance the

mitochondrial fatty acid oxidation.
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Table 1.Primer characteristics used for qPCR assay

Gene1 Forward primer (from 5´ to 3’)

Reverse primer (from 5’ to 3’)

PCR product size

(bp)

NCBI GenBank

accession no

Efficiency Mean CT

Reference genes

ACTB ACTTGCGCAGAAAACGAGAT

CACCTTCACCGTTCCAGTTT
120 AY141970 1.99 9.31

ATP5B GGACTCAGCCCTTCAGCGCC

GCCTGGTCTCCCTGCCTTGC
229 NM_175796.2 1.82 11.94

PPIA GGCAAATGCTGGCCCCAACACA

AGTACCACGTGCTTGCCATCCA
87 NM_178320.2 1.86 11.02

RPS9 GTGAGGTCTGGAGGGTCAAA

GGGCATTACCTTCGAACAGA
108 BC148016 1.89 14.18

SDHA GCAGAACCTGATGCTTTGTG

CGTAGGAGAGCGTGTGCTT
185 NM_174178 1.71 15.82

Target genes

IL1B GCTGCATCCAACACCTGGA

GGATGCTCCTCAGGTCATC
177 NM_174093.1 2.13 25.84

IL6 ACTCCCGCTTCACAAGCGCCTTC

AAGTAGTCTGCCTGGGGTGGTGTCA
134 NM_173923.2 1.98 20.69

OCTN2 CACAGTGGTCAGGAACATGG

AATGGTGTCTGGGAGTGGAG
181 BC105377 1.93 18.90
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1ACTB=β-actin; ATP5B=ATP synthase, H+ transporting, mitochondrial F1 complex, β polypeptide; IL1B=interleukin 1 beta; IL6=interleukin 6;

PPIA=peptidylprolylisomerase A; RPS9=ribosomal protein S9; SDHA=succinate dehydrogenase complex, subunit A; OCTN2=solute carrier family

22 (organic cation/carnitine transporter), member 5.
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Figure 1: The activation of nulear factor κB (NF-κB) is induced by TNFα in

MDBK cells. Effect of treatments with 0, 1, 5,10, 20 ng/ml of TNFα for 24 h on

mRNA levels of IL6 and IL1B (A). Effect of treatment with 5ng/ml of TNFα for 24 h

on NF-κB activation in MDBK cells (B). Bars represent means ± SD of three

independent experiments and are expressed as fold of DMSO-treated control cells.

*Different from DMSO-treated control, P < 0.05
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Figure 2: The carnitine transporter OCTN2 in MDBK cells is regulated by

NF-κB. Effect of treatment with 5ng/ml of TNFα for 24 h in the absence (A, C) and

presence (B, D) of NF-κB inhibitor Bay 11-7085 (1 µM) on relative mRNA (A, B)

and protein levels (C and D) of OCTN2. A and B, Bars represent means ± SD of three

independent experiments and are expressed as fold of DMSO-treated control cells. C

and D, Bars represent data from densitometric analysis and are means ± SD of three

independent experiments. Immunoblots specific to OCTN2 and β-Actin as internal

control are shown for one independent experiment; immunoblots for the other

experiments revealed similar results. Data represent means ± SD of three independent

experiments and are expressed as fold of DMSO-treated control cells. *Different from

DMSO-treated control, P < 0.05.
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Figure 3: The carnitine uptake in MDBK cells is regulated by NF-κB. Effect of

treatment with 5ng/ml of TNFα with or without Bay 11-7085 (1µM) on uptake of

L-[3H]-carnitine (10 nM, specific radioactivity 2.96 GBq/mmol). Data represent

means ± SD of three independent experiments each performed in triplicate. *Different

from DMSO-treated control, P < 0.05.
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4 DISCUSSION

The global aim of the present dissertation was to test the hypothesis that activation of nuclear

transcription factors PPARα, PPARβ/δ and NF-κB, respectively, in bovine kidney cells

enhances carnitine uptake by increasing transcription and protein levels of carnitine

transporter OCTN2.

It is well known that CPT-1 is a PPARα downstream gene in both ruminant and non-ruminant

animals (Desvergne et al., 2006; Bionaz et al., 2008). Our data in study 1 show that

expression of CPT-1 was strongly up-regulated in MDBK cells by treatment with PPARα

agonist (150 µM of WY-14,643) indicating PPARα activation. This result is consistent with a

number of studies (Bionaz et al., 2012; Thering et al., 2009; Bionaz et al., 2008), which have

also demonstrated that WY-14,643 is an efficient PPARα activator in MDBK cells. Study 1

shows that WY-14,643 leads to an up-regulation of mRNA and protein levels of OCTN2 in

bovine kidney cells. This result is in agreement with previous studies that the transcription of

OCTN2 is mediated by PPARα in non-ruminant cells and tissues including kidney, liver,

heart, and intestine (Eder and Ringseis, 2010). In rat hepatoma (Fao) cells, treatment with 50

µM of WY-14,643 increased the mRNA concentration of OCTN2 (Luci et al., 2006). In the

kidney of rats, the mRNA abundance of OCTN2 in the energy restriction group was 3.7-fold

higher than in the control group (Luci et al., 2008). In wild-type mice, expression of OCTN2

in the kidney was increased by WY-14,643, whereas it remained unchanged in PPARα-/- mice

(Koch et al., 2008). Although the regulation of carnitine homeostasis in ruminants has been

less investigated, one resent study from our group reported that during early lactation mRNA

abundances of PPARA and OCTN2 were increased 2.0-fold and 13-fold, respectively, in liver

biopsy samples of dairy cows (Schlegel et al., 2012). To further explore whether the up-

regulation of OCTN2 by WY-14,643 in MDBK cells is dependent on PPARα, we studied the

effect of WY-14,643 on the expression of OCTN2 in MDBK cells that were co-treated with

the PPARα antagonist GW6471. We first demonstrate that the antagonist GW6471

completely blocks the mRNA and protein expression of OCTN2, induced by PPARα agonist

in bovine kidney cells. GW6471 has been widely used as a PPARα antagonist, which blocks

the carboxy-terminal activation helix of PPARα by adopting the active position (Xu et al.,

2002). Our finding that OCTN2 is strongly up-regulated by PPARα agonist and inhibited by

PPARα antagonist in MDBK cells indicates that PPARα regulates the gene encoding OCTN2

in ruminant renal cells. The following study shows that the treatment of MDBK cells with
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WY-14,643 increased [3H]-L-carnitine uptake and the treatment with PPARα antagonist

completely blocks the effect induced by WY-14,643. This is very important evidence that

PPARα activation enhances carnitine reabsorption in bovine kidney cells. Consistent with our

results, it has been reported that another PPARα agonist, fenofibrate, can increase the uptake

of [3H]-L-carnitine in freshly isolated hepatocytes from rats (Maeda et al., 2008). Furthermore,

it has been widely confirmed that carnitine reabsorption in the kidney is mainly carried out via

OCTN2 (Tamaiet al., 2001; Glube et al., 2007). Thus our results from study 1 suggest that the

increased carnitine uptake in response to WY-14,643 is due to the up-regulation of OCTN2.

In study 1, we provide indirect evidence that OCTN2 is a PPARα target gene in bovine cells.

Earlier studies in our group have elucidated that a functional PPRE is located in the first

intron of mouse OCTN2 gene (Wen et al., 2012), indicated binding of PPARα/retinoid-X-

receptor heterodimer directly to PPRE and activating OCTN2 expression. Although we did

not further analyze the functional PPRE in the promoter/intron of OCTN2 in cattle, we found

that cattle have an identical sequence with mouse functional PPRE in intron 1 of OCTN2

(Ringseis et al., 2012). We speculate that bovine OCTN2 perhaps has a similar regulation

mechanism as the mouse OCTN2. However, this speculation has to be clarified in future

studies. In addition, the observed PPARα dependence of OCTN2 expression provides a

plausible explanation for the recent finding that OCTN2 in the liver is strongly up-regulated

during early lactation in high-producing dairy cows (Schlegel et al. 2012).

An expanding body of literature has established the importance of PPARα in the regulation of

carnitine homeostasis (Eder and Ringseis, 2010; Ringseis et al., 2012). However, a consensus

on the role of other PPAR isotypes (PPARβ/δ and PPARγ) in regulating genes involved in

carnitine uptake has not emerged. In study 2, we report that the transcription level of OCTN2

is markedly increased by the selective PPARβ/δ agonist GW0742. This finding indicates that

regulation of OCTN2 expression by PPAR in kidney cells in ruminants is not restricted to the

PPARα isotype. Given the fact that the mRNA of PPARβ/δ in cattle has lager abundance

compared to PPARα in MDBK cells, it is not surprising that OCTN2 is also regulated by

PPARβ/δ, because PPARβ/δ has partially overlapping functions as PPARα (Bionaz et al.,

2013; Ringseis et al., 2012). For example, it is well established that muscle-type CPT and

CACT are responsive to both PPARα and PPARβ/δ (Gilde et al., 2003; Gutgesell et al., 2009).

On the contrary, the lack of response of OCTN2 to TGZ (data not shown) is an argument

against the role for PPARγ in the regulation of carnitine homeostasis. D’Argenio et al. (2010)

have demonstrated that PPARγ modulates colonic OCTN2 gene expression in humans and
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mice. This could be partially explained by the fact that PPAR agonists exert distinct species-

specific and tissue-specific actions (Ringseis et al., 2012), but it probably reflects the lower

importance of PPARγ in bovine kidney cells, which primarily triggers the expression of genes

responsible for de novo fatty acid synthesis and TG synthesis in mammary epithelial cells

(Kadegowda, et al., 2009) and control of adipogenesis in adipose tissue (Rosen and

Spiegelman, 2000). To further investigate whether the up-regulation of OCTN2 by GW0742

in MDBK cells is dependent on PPARβ/δ, we studied the effect of GW0742 on the expression

of OCTN2 in MDBK cells that were co-treated with the PPARβ/δ antagonist GSK3787.

GSK3787 is a newly identified PPARβ/δ antagonist that can irreversibly attenuate the activity

of PPARβ/δ by forming a covalent bond with a cysteine residue in the LBD of PPARβ/δ

(Shearer et al., 2010; Palkar et al., 2010). In the presence of GSK3787, the increased mRNA

level of OCTN2 induced by GW0742 is eliminated. Taken together, our results suggest that

transcription of carnitine transporter OCTN2 in bovine kidney cells is regulated by PPARβ/δ.

In study 2, we determined OCTN2 relative protein concentration and [3H]-L-carnitine uptake

activity in MDBK cells with the treatment of PPARβ/δ agonist GW0742 in the presence or

absence of PPARβ/δ antagonist GSK3787. Similar to the results in study 1, it shows the

increase of OCTN2 protein level and [3H]-L-carnitine uptake activity induced by PPARβ/δ

agonist were totally abolished by its antagonist. These results provide indirect evidence

indicating OCTN2 is a potential PPARβ/δ target gene in ruminants. To our knowledge, this is

the first report that PPARβ/δ can regulate OCTN2 in mammalian cells.

The structural similarity in DNA binding domain between PPARs in cattle may explain that

the activation of PPARα and PPARβ/δ could lead to similar outcomes in genes involved in

fatty acid catabolism and carnitine transport. PPARα and PPARβ/δ have 59% similarity in

amino acid residues. More than 80% of conservation is in the DNA binding domain, but less

than 21% of conservation is in the A/B domain. The PPARα has 71% of conservation in the

LBD with PPARβ/δ (Bionaz et al., 2013). However, the ligand-binding pocket of PPARβ/δ is

narrower than those of PPARα and PPARγ. It inhibits the binding of PPARγ agonist TZD to

PPARβ/δ and strongly decreases the affinity of PPARβ/δ towards PPARα agonist, because the

bulky acid and alkyl groups on these compounds cannot be accommodated by the narrow

pocket (Zoete et al., 2007; Bugge and Mandrup, 2010). Whereas the exact molecular

mechanism underlying the activation of non-isoform selective target genes such as CPT1A

and OCTN2 by PPARs is unknown, two factors may contribute to it: (i) The A/B domain of

PPARs, which is responsible for the isotype specific transactivation, is dispensable to this
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group of target genes for its lacking of the recruitment and tethering of histone acetylase

complexes (Bugge and Mandrup, 2010).  Histone acetylase complexes are a class of enzymes

catalyzing the transfer of an acetyl group from acetyl-CoA to the lysine amino groups on the

N-terminal tails of histones. These enzyme complexes are involved in transcriptional

activation by neutralizing histone charge and forming acetyl-lysines on histone tails.

Neutralized histones can weaken histone-DNA and internucleosome contacts and reduce

chromatin compaction for the initiation of transcription. The acetyl-lysines on histone tails

may provide recognition sites for factors involved in either the activation or repression of

gene expression (Carrozza et al., 2003). (ii) PPARα and PPARβ share some coactivators. For

instance, murine double minute 2, an ubiquitin ligase, is identified as an interacting protein in

A/B domain of PPARs. Interestingly, this coactivator regulates PPARα and PPARβ/δ, but not

PPARγ transcriptional activity (Gopinathan et al., 2009). It is in agreement with the fact that

OCTN2 in bovine kidney cells is regulated by both PPARα and PPARβ/δ but has no effect in

response to PPARγ activation.

It is well documented that inflammation is associated with hypertriglyceridemia

(Sammalkorpi et al., 1988; Grunfeld et al., 1992; van Diepen et al., 2013). It has been

confirmed that pro-inflammatory cytokines or LPS induce the elevation of serum TG. It is

mainly caused by an increase of very low-density lipoprotein (VLDL), which is the

transporter of TG within the water-based solution of the bloodstream.  The increased VLDL

results from either increased VLDL production or decreased VLDL clearance. For instance,

pro-inflammatory cytokine TNFα can stimulate hepatic lipogenesis via increasing

intracellular concentration of citrate, an allosteric activator of acetyl-CoA carboxylase in

rodents, which is the rate-limiting enzyme of fatty acid synthesis and related to increased

VLDL production (Feingold and Grunfeld, 1987). It can also inhibit lipoprotein lipase activity

in cultured adipocytes (Patton et al., 1986) and decrease apoE mRNA in liver, which are

required for the clearance of VLDL (Hardardottir et al., 1997; Lanza-Jacoby et al., 1992).

Furthermore, pro-inflammatory cytokines can increase adipose tissue lipolysis, which

provides free fatty acids for enhanced hepatic TG synthesis (Khovidhunkit et al., 2004).

Massive infection such as sepsis decreases hepatic expression of both CPT-1 and CPT-2,

which are necessary for translocation of long-chain fatty acids via carnitine across the

mitochondrial membrane for β-oxidation (Barke et al., 1996). However, the concentration of

carnitine in plasma is increased in heart failure patients, who are characterized by modestly

elevating levels of pro-inflammatory cytokines such as TNFα (Vescovo et al., 2005). Na+-
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dependent carnitine uptake in human colonic epithelial cells is increased by treatment with

IFN-γ and TNFα in a time-dependent manner (Fujiya et al., 2011). In vivo, TNFα antibody

XT22 completely abolishes TNFα-induced carnitine uptake in both jejunum and ileum in

mice (Fujiya et al., 2011). These findings indicate that the occurrence of inflammatory

processes have a potential role in promoting fatty acid oxidation, which may relieve the

pathogenic pressure caused by TG-rich lipoproteins (Malloy and Kane, 2001).

In study 3, a model of the activation of NF-κB in bovine kidney cells was established. We

administered different concentration (from 1 to 20 ng/ml) of TNFα in the cell medium, and

investigated the gene expression of NF-κB known target genes. In addition, we detected the

influence of TNFα on NF-κB transactivation in MDBK cells, which were transiently

transfected with a NF-κB-responsive reporter plasmid. TNFα is a well-known pro-

inflammatory cytokine, which is secreted during the inflammation process in transition period

in dairy cows. Several studies have shown that incubation of cells with TNFα can stimulate

NF-κB activation (Gérardin et al., 2004; Schleser et al., 2006). Known target genes of NF-κB,

including IL-6 and IL-1B encode their respective interleukins, which are first found in

leukocytes and later have been confirmed to be produced by a wide variety of cells. Our

results show that 5 ng/ml of TNFα increased mRNA levels of IL-6 and IL-1B, and induced

NF-κB transactivation. These results are in agreement with previous studies in other cell types

(Ringseis et al., 2006; Gessner et al., 2011), indicating that bovine kidney cells are a suitable

model for the activation of NF-κB. We observed the effect of TNFα on relative mRNA and

protein levels of OCTN2 in MDBK cells, in order to next investigate, whether activation of

NF-κB by TNFα causes induction of OCTN2. Study 3 shows that relative mRNA and protein

levels of OCTN2 in MDBK cells treated with TNFα were markedly greater than in the control.

The result of OCTN2 protein expression is consistent with one earlier observation that TNFα

increased apical abundance of OCTN2 in human colonic epithelial cells (Fujiya et al., 2011).

However, the data from OCTN2 gene expression is not in agreement with previous studies

showing that mRNA level of OCTN2 is independent of TNFα (Maeda et al., 2007; Fujiya et

al., 2011). This might be due to the fact that OCTN2 was measured in the human fibroblast-

like synoviocyte cells and human colonic epithelial cells and not in bovine kidney cells. To

further explore whether the up-regulation of OCTN2 by TNFα in MDBK cells is dependent

on NF-κB, we studied the effect of TNFα on the expression of OCTN2 in MDBK cells that

were co-treated with the NF-κB inhibitor BAY 11-7085. BAY 11-7085 is widely used NF-κB

inhibitor that can selectively and irreversibly inhibit the phosphorylation of IκB, which
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consequentially blocks the activation of NF-κB (Pierce et al., 1997; Reli et al., 2004). The

stimulatory effect of TNFα on mRNA and protein levels of OCTN2 in MDBK cells was

completely blocked by the NF-κB inhibitor indicating that OCTN2 gene expression is

regulated by NF-κB in bovine kidney cells. The results from uptake experiments indicate that

the up-regulation of OCTN2 by TNFα leads to an increase in carnitine uptake. It is

noteworthy that we used a HBSS buffer instead of the 125 mM Na+ incubation medium,

which was used in study 1 and 2, due to the failure of detecting any difference between the

treatment and control groups in 125 mM of Na+ incubation buffer (data not shown). HBSS

buffer has a higher concentration of Na+, which is known as a driving force for OCTN2

mediated carnitine uptake (Tamai et al., 1998; Tamai et al., 2001; Glube et al., 2007). Taken

together, it shows that bovine gene encoding OCTN2 is a target of NF-κB regulating carnitine

reabsorption in kidney cells.

A variety of studies in non-ruminants have shown a negative cross-talk between PPARs and

NF-κB. Activated PPARs can inhibit the activity of NF-κB in vitro (Bosscher et al., 2006;

Staels et al., 1998; Eun et al., 2006). PPARα uses a direct protein-protein interaction

mediating the repression of NF-κB signaling. PPARα interacts with RelA mainly in LBD of

PPARα, because the truncated variant attenuates NF-κB repression. PPARα also interacts

weakly with RelA in the 12-317 region, where it contains a Rel homology domain mediating

DNA binding, dimerization and interaction with IκBα (Delerive et al., 1999). In addition, a

later study from the same research group demonstrated in human aortic smooth muscle cells,

that PPARα activators increase IκB transcription and protein levels, which keep NF-κB in an

inactive form in cytoplasm (Delerive et al., 2002). In detail, PPARα activation enhances the

occupancy of the NF-κB response element and recruits vitamin D3 receptor-interacting

proteins complexes onto the Sp1 site flanking the NF-κB site in the IκBα promoter. Besides

PPARα, PPARγ also has an inhibitory effect on NF-κB. A novel mechanism is that PPARγ

governs the distribution of RelA. PPARγ mediate the nuclear export of RelA, which may

cause a lower concentration of active NF-κB in the nucleus (Kelly et al., 2004). In mouse

macrophages another mechanism was indentified that PPARγ reduces the transcription of

inflammatory target genes via a small ubiqutin-like modification dependent pathway (Pascual

et al., 2005). Ligand dependent small ubiqutin-like modification occurs in LBD of PPARγ,

which makes PPARγ a target to nuclear receptor corepressor (NCoR) on the promoter region

of inflammatory genes. Normally NCoR is removed by ubiquitylation proteosome and in turn

activates gene transcription. However, the PPARγ-NCoR complex prevents the recruitment of
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the ubiquitylation proteasome machinery. Therefore, NCoR stays in the promoter and

represses the target gene.

The negative cross-talk between PPARs and NF-κB in ruminants is not as obvious as in non-

ruminants. Administration of PPARγ agonist TZD to cows during transition period did not

decrease, but surprisingly increase the concentration of plasma TNFα (Schoenberg et al.,

2011). In vitro, MDBK that was incubated with PPARα agonist WY-14643 has no effect on

NF-κB target genes, including IL-6, HP (haptogblobin) and SAA3 (serum amyloid A3)

(Bionaz et al., 2012). The exact relationship between PPARs and NF-κB in ruminants is

unknown. Whether carnitine homeostasis can be affected by the combination effect of PPAR

and NF-κB is not determined. Given the fact that during transition period both PPARs and

NF-κB are activated in dairy cows, this area warrants further investigation.

In conclusion, the present dissertation shows that expression of the carnitine transporter

OCTN2 and OCTN2-mediated carnitine uptake are regulated by PPARα, PPARβ/δ and NF-

κB, respectively, in bovine kidney cells. This suggests that the bovine gene encoding OCTN2,

like the mouse OCTN2 gene, is a target of PPARα (study 1). The novel findings in study 2

extend the knowledge about the molecular regulation of the OCTN2 gene and carnitine

transport which have been convincingly demonstrated to be regulated by PPARα in cattle and

several other species. The fact that OCTN2 gene expression and carnitine transport are

obviously regulated by both, PPARα and PPARβ/δ, is not surprising given that these two

PPAR subtypes have partially overlapping functions. Namely, both PPAR subtypes play

important roles in the regulation of mitochondrial fatty acid oxidation, which is dependent on

the presence of carnitine, and therefore share a large set of common target genes involved in

fatty acid oxidation. The findings in study 3 show that the gene expression of OCTN2 and

carnitine transport are both regulated by NF-κB in bovine cells. These findings indicate that

inflammation may also contribute to enhance mitochondrial fatty acid oxidation. Therefore,

the recent observation from our lab in high-producing dairy cows that OCTN2 is strongly up-

regulated in the liver during early lactation (Schlegel et al., 2012) may be mediated by the

activation of both PPARs (PPARα and PPARβ/δ) and NF-κB, because the fatty acids released

from adipose tissue during this state are ligands and activators of both PPAR subtypes and

NF-κB.
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5 SUMMARY

L-Carnitine is a water soluble metabolite, serving as an essential cofactor for fatty acid β-

oxidation by transferring long-chain fatty acids as acylcarnitine esters across the inner

mitochondrial membrane. In the body, carnitine is derived from endogenous synthesis and

from the intestinal absorption from the dietary sources. Tissues which cannot provide

carnitine via endogenous synthesis, like skeletal muscle or myocardium, are dependent on

carnitine uptake from the circulation. Carnitine transport is mediated by OCTN2, which is

sodium-dependent and has a high-affinity to carnitine. OCTN2-mediated carnitine transport is

also responsible for the tubular reabsorption of carnitine in the kidney and is therefore

fundamental to maintaining normal carnitine levels in serum. Recent studies in rodents

convincingly demonstrated that PPARα, which is a well-known central regulator of lipid

metabolism and energy homeostasis, is an important transcriptional regulator of genes

encoding OCTN2. Gene transcription by PPARα is initiated when a ligand, like fatty acids

which are liberated from adipose tissue during energy deprivation and taken up into tissues

during this state, or exogenous ligands such as fibrates (WY-14,643) bind to the LBD of this

transcription factor. In contrast to rodents, little is known with regard to the regulation of

OCTN2 by PPARα and its isoforms PPARβ/δ and their roles for carnitine transport in cattle.

PPARβ/δ and PPARα have partially overlapping functions. For instance, they are central

regulators of fatty acid catabolism since both subtypes control the expression of genes

encoding proteins involved in cellular fatty acid uptake, intracellular fatty acid transport,

mitochondrial fatty acid uptake, and mitochondrial and peroxisomal fatty acid oxidation.

Although PPARs and NF-κB have a negative cross talk, in cattle both PPARs and NF-κB are

activated during transition period. It has been confirmed that OCTN2 expression and carnitine

uptake in human colonic epithelial cells are increased by NF-κB inducer TNFα. However, it is

unclear whether NF-κB is able to alter OCTN2 and carnitine uptake in bovine kidney cells.

Study 1 aimed to investigate the hypothesis that PPARα, as in rodents, regulates OCTN2

involving in carnitine uptake in cattle. MDBK cells were incubated 24 h with 150 μM of

PPARα agonist WY-14,643 in the absence and presence of 10 μM of PPARα antagonist

GW6471. WY-14,643 increased mRNA and protein levels of OCTN2, whereas co-treatment

of MDBK cells with WY-14,643 and GW6471 blocked the WY-14,643-induced increase of

mRNA and protein levels of OCTN2. The treatment of MDBK cells with WY-14,643

stimulated specifically Na+-dependent carnitine uptake in MDBK cells, which is likely the
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consequence of the increased carnitine transport capacity of cells due to the elevated

expression of OCTN2. In addition, WY-14,643-stimulated increase of carnitine uptake was

completely blocked by treatment of cells with GW6471.

Study 2 aimed to investigate the hypothesis that PPARβ/δ, like PPARα, also regulates bovine

OCTN2 involving in carnitine uptake. MDBK cells were incubated for 24 h with 1 μM of

PPARβ/δ agonist GW0742 in the absence and presence of 10 μM of PPARβ/δ antagonist

GSK3787. GW0742 increased mRNA and protein levels of OCTN2, whereas co-treatment of

MDBK cells with GW0742 and GSK3787 blocked the GW0742-induced increase of mRNA

and protein levels of OCTN2. The treatment of MDBK cells with GW0742 stimulated

specifically Na+-dependent carnitine uptake in MDBK cells. In addition, GW0742-stimulated

increase of carnitine uptake was completely blocked by treatment of cells with GSK3787.

Study 3 aimed to investigate the hypothesis that NF-κB has a similar function as PPARs in

regulating bovine OCTN2 and carnitine uptake. Dose-dependent test was performed to find

the optimized concentration of TNFα. 5ng/ml of TNFα increased the transcription level of IL-

6 and IL-1B, which are the well-known NF-κB target genes. 5 ng/ml of TNFα stimulated NF-

κB transactivation in MDBK cells. MDBK cells were incubated 24 h with 5 ng/ml NF-κB

activator TNFα in the absence and presence of 1 μM of NF-κB inhibitor BAY 11-7085. TNFα

increased mRNA and protein levels of OCTN2, whereas co-treatment of MDBK cells with

TNFα and BAY 11-7085 blocked the TNFα-induced increase of mRNA and protein levels of

OCTN2. The treatment of MDBK cells with TNFα stimulated carnitine uptake in MDBK

cells. In addition, TNFα-stimulated increase of carnitine uptake was completely blocked by

treatment of cells with BAY 11-7085.

In conclusion, the overall finding of this dissertation is that PPARα, PPARβ/δ and NF-κB

regulate OCTN2 and OCTN2-mediated carnitine uptake in bovine kidney cells. Therefore, it

may provide an explanation for the recent observation from our lab that the mRNA level of

OCTN2 and carnitine concentration are strongly up-regulated in the liver of high-producing

dairy cows during early lactation. The increased carnitine transport might relieve the

pathological pressure such as ketosis and fatty liver caused by negative energy balance and

inflammation in dairy cows.



Zusammenfassung

49

6 ZUSAMMENFASSUNG

L-Carnitin ist ein wasserlöslicher Metabolit, der als essenzieller Kofaktor bei der

β-Oxidation von Fettsäuren dient, indem er langkettige Fettsäuren als

Acylcarnitinester durch die innere mitochondriale Membran transferiert. Im Körper

stammt Carnitin aus der endogenen Synthese und der intestinalen Resorption aus

Nahrungsquellen. Gewebe, welche Carnitin nicht aus der endogenen Synthese

gewinnen können, wie Skelett- und Herzmuskel, sind von der Aufnahme und

Stoffverteilung im Körper abhängig. Der Carnitin-Transport wird durch den novel

organic cation transporter (OCTN2) vermittelt, welcher natriumabhängig ist und eine

hohe Affinität zu Carnitin aufweist. Der OCTN2-vermittelte Carnitintransport ist

ebenso für die tubuläre Reabsorption von Carnitin in den Nieren verantwortlich und

daher überaus bedeutsam, normale Carnitin-Spiegel im Serum aufrechtzuerhalten.

Kürzlich durchgeführte Studien an Nagetieren haben überzeugend demonstriert, dass

peroxisome proliferator-activated receptor α (PPARα), ein wesentlicher Regulator im

Fettstoffwechsel und der Energiehomöostase, ein wichtiger transkriptionaler

Regulator des OCTN2-Gens ist. Die Transkription wird durch PPARα initiiert, wenn

Liganden, wie Fettsäuren, die während Energiemangel aus dem Fettgewebe freigesetzt

und von anderen Geweben während dieses Zustands aufgenommen werden, oder

exogene Liganden, wie Fibrate (WY-14,643), an die Ligandenbindungsdomäne dieses

Transkriptionsfaktors binden. Im Gegensatz zu den Erkenntnissen bei Nagetieren, ist

wenig bezüglich der Regulation von OCTN2 durch PPARα und seinen Isoformen

PPARβ/δ und ihrer Rollen beim Carnitintransport von Rindern bekannt. PPARβ/δ und

PPARα haben zum Teil überlappende Funktionen. Sie sind beispielsweise wesentliche

Regulatoren im Fettsäurekatabolismus, da beide Subtypen die Expression von Genen

kontrollieren, die Proteine kodieren, welche an der zellulären Aufnahme von

Fettsäuren, dem intrazellulären Transport von Fettsäuren, der mitochondrialen

Aufnahme von Fettsäuren und der mitochondrialen und peroxisomalen

Fettsäureoxidation beteiligt sind. Obwohl die PPAR-Subtypen und nuclear factor

kappa B (NF-κB), ein Schlüsselregulator der Entzündung, einen „negativen
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Crosstalk“ aufweisen, werden während der Übergangszeit bei Rindern sowohl die

PPAR-Subtypen, als auch NF-κB aktiviert. Es wurde nachgewiesen, dass die

OCTN2-Expression und die Carnitin-Aufnahme in humanen Epithelzellen des

Dickdarms durch den NF-κB-Induzierer tumor necrosis factor-α (TNFα) gesteigert

werden. Jedoch ist unklar, ob NF-κB in der Lage ist, die OCTN2- und

Carnitinaufnahme in Nierenzellen von Rindern zu verändern.

Ziel der ersten Untersuchung war es, die Hypothese zu überprüfen, dass PPARα, wie

bei Nagetieren,  OCTN2 reguliert, welcher bei der Carnitinaufnahme bei Rindern

beteiligt ist. Madin-Darby bovine kidney (MDBK)-Zellen wurden für 24 Stunden mit

150 μM des PPARα-Agonisten WY-14,643 in Abwesenheit und Anwesenheit von 10

μM des PPARα-Antagonisten GW6471 inkubiert. WY-14,643 erhöhte die mRNA-

und Proteinspiegel von OCTN2, wohingegen die Behandlung der MDBK-Zellen mit

WY-14,643 und GW6471 die WY-14,643-induzierte Erhöhung von mRNA- und

Proteinspiegeln des OCTN2 hemmte. Die Behandlung von MDBK-Zellen mit

WY-14,643 stimulierte spezifisch die Na+-abhängige Aufnahme der Zellen von

Carnitin, was vermutlich die Folge der erhöhten Carnitintransportkapazität der Zellen

auf Grund der gesteigerten Expression von OCTN2 ist. Darüber hinaus wurde die

WY-14,643-stimulierte Erhöhung der Carnitinaufnahme durch die Behandlung der

Zellen mit GW6471 vollständig gehemmt.

Ziel der zweiten Untersuchung war es, die Hypothese zu überprüfen, dass PPARβ/δ,

wie PPARα,  den bovinen OCTN2 reguliert. MDBK-Zellen wurden für 24 Stunden

mit 1 μM des PPARβ/δ-Agonisten GW0742 in Abwesenheit und Anwesenheit von 10

μM des PPARβ/δ-Antagonisten GSK3787 inkubiert. GW0742 erhöhte die mRNA-

und Proteinspiegel des OCTN2, wohingegen die Behandlung der MDBK-Zellen mit

GW0742 und GSK3787 die GW0742-induzierte Erhöhung der mRNA- und

Proteinspiegel von OCTN2 hemmte. Die Behandlung von MDBK-Zellen mit

GW0742 stimulierte spezifisch die Na+-abhängige Aufnahme der Zellen von Carnitin.

Darüber hinaus wurde die GW0742-stimulierte Erhöhung der Carnitinaufnahme durch

die Behandlung der Zellen mit GSK3787 vollständig gehemmt.

Ziel der dritten Untersuchung war es, die Hypothese zu überprüfen, dass NF-κB eine
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ähnliche Funktion wie die PPARs bei der Regulation der bovinen OCTN2- und

Carnitinaufnahme haben. Es wurden dosisabhängige Tests durchgeführt, um eine

optimierte Konzentration von TNFα herauszufinden. 5 ng/ml TNFα erhöhten den

Transkriptspiegel von interleukin (IL)-6 und IL-1B, welche Zielgene von NF-κB sind.

5 ng/ml TNFα stimulierten die Transaktivierung von NF-κB in MDBK-Zellen.

MDBK-Zellen wurden für 24 Stunden mit 5 ng/ml NF-κB-Aktivator TNFα in

Abwesenheit und Anwesenheit von 1 μM des NF-κB-Inhibitors BAY 11-7085

inkubiert. TNFα erhöhte die mRNA- und Proteinspiegel des OCTN2, wohingegen die

Behandlung der MDBK-Zellen mit TNFα und BAY 11-7085 die TNFα-induzierte

Erhöhung der mRNA- und Proteinspiegel von OCTN2 hemmte. Die Behandlung von

MDBK-Zellen mit TNFα stimulierte die Carnitinaufnahme der Zellen. Darüber hinaus

wurde die TNFα-stimulierte Erhöhung der Carnitinaufnahme durch die Behandlung

der Zellen mit BAY 11-7085 vollständig gehemmt.

Zusammenfassend ist die Erkenntnis aus dieser Dissertation, dass PPARα, PPARβ/δ

und NF-κB die OCTN2- und OCTN2-vermittelte Carnitinaufnahme in Nierenzellen

von Rindern regulieren. Dies dürfte eine Erklärung für die kürzliche Beobachtung

liefern, derzufolge der mRNA-Spiegel von OCTN2 und die Carnitin-Konzentration in

der Leber von Hochleistungsmilchkühen während der frühen Laktation stark

hochreguliert werden. Der erhöhte Carnitintransport könnte die Belastung durch

Krankheiten, wie beispielsweise Ketose oder Fettleber vermindern, die bei

Milchkühen durch eine negative Energiebilanz und Entzündungen hervorgerufen

werden.
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