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Preface VII

Preface

Statistical distributions can be grouped into families or systems. Such groupings are de-
scribed in JOHNSON/KOTZ/KEMP (1992, Chapter 2), JOHNSON/KOTZ/BALAKRISHNAN

(1994, Chapter 12) or PATEL(KAPADIA/OWEN (1976, Chapter 4). The most popular
families are those of PEARSON, JOHNSON and BURR, the exponential, the stable and the
infinitely divisible distributions or those with a monotone likelihood ratio or with a mono-
tone failure rate. All these categories have attracted the attention of statisticians and they
are fully discussed in the statistical literature. But there is one family, the location–scale
family, which hitherto has not been discussed in greater detail. To my knowledge this book
is the first comprehensive monograph on one–dimensional continuous location–scale dis-
tributions and it is organized as follows.

Chapter 1 goes into the details of location–scale distributions and gives their properties
along with a short list of those distributions which are genuinely location–scale and which
— after a suitable transformation of its variable — become member of this class. We
will only consider the ln–transformation. Location–scale distributions easily lend them-
selves to an assessment by graphical methods. On a suitably chosen probability paper the
cumulative distribution function of the universe gives a straight line and the cumulative
distribution of a sample only deviates by chance from a straight line. Thus we can realize
an informal goodness–of–fit test. When we fit the straight line free–hand or by eye we may
read off the location and scale parameters as percentiles. Another and objective method
is to find the straight line on probability paper by a least–squares technique. Then, the
estimates of the location and scale parameters will be the parameters of that straight line.

Because probability plotting heavily relies on ordered observations Chapter 2 gives — as
a prerequisite — a detailed representation of the theory of order statistics. Probability
plotting is a graphical assessment of statistical distributions. To see how this kind of
graphics fits into the framework of statistical graphics we have written Chapter 3.

A first core chapter is Chapter 4. It presents the theory and the methods of linear estimating
the location and scale parameters. The methods to be implemented depend on the type
of sample, i.e. grouped or non–grouped, censored or uncensored, the type of censoring
and also whether the moments of the order statistics are easily calculable or are readily
available in tabulated form or not. In the latter case we will give various approximations
to the optimal method of general least–squares.

Applications of the exact or approximate linear estimation procedures to a great number of
location–scale distributions will be presented in Chapter 5, which is central to this book.
For each of 35 distributions we give a warrant of arrest enumerating the characteristics,
the underlying stochastic model and the fields of application together with the pertinent
probability paper and the estimators of the location parameter and the scale parameter.
Distributions which have to be transformed to location–scale type sometimes have a third
parameter which has to be pre–estimated before applying probability plotting and the lin-
ear estimation procedure. We will show how to estimate this third parameter.



VIII Preface

The calculations and graphics of Chapter 5 have been done using MATLAB,1 Version 7.4
(R2007a). The accompanying CD contains the MATLAB script M–file LEPP and all the
function–files to be used by the reader when he wants to do inference on location–scale
distributions. Hints how to handle the menu–driven program LEPP and how to organize
the data input will be given in Chapter 6 as well as in the comments in the files on the CD.

Dr. HORST RINNE, Professor Emeritus of Statistics and Econometrics

Department of Economics and Management Science

Justus–Liebig–University, Giessen, Germany

1 MATLAB©R is a registered trade–mark of ‘The MathWorks, Inc.’
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1 The family of location–scale
distributions

Statistical distributions can be grouped into families or systems such that all members of
a family

• share the same properties and/or
• are constructed according to the same principles and/or
• possess the same structure.

For example, we have the PEARSON system, the JOHNSON system and the BURR system,
the exponential family, the family of stable distributions and especially the location–scale
family. The latter family is a good candidate for applying graphical procedures and linear
estimation when the variate is continuous.

1.1 Properties of location–scale distributions
A random variable X is said to belong to the location–scale family when its cumulative
distribution (= CDF)

FX(x | a, b) := Pr(X ≤ x | a, b) (1.1a)

is a function only of (x− a)/b:

FX(x | a, b) = F

(
x− a

b

)
; a ∈ R, b > 0; (1.1b)

where F (·) is a distribution having no other parameters. Different F (·)’s correspond to dif-
ferent members of the family. The two–dimensional parameter (a, b) is called a location–
scale parameter, a being the location parameter and b being the scale parameter. For fixed
b = 1 we have a subfamily which is a location family with parameter a, and for fixed
a = 0 we have a scale family with parameter b. The variable

Y :=
X − a

b
(1.1c)

is called the reduced variable,1 y being a realization of Y . The reduced variable Y has
a = 0 and b = 1, and we will write the reduced CDF as

FY (y) := F

(
x− a

b

)
. (1.1d)

1 Some authors call it the standardized variable. We will refrain from using this name because, con-
ventionally, a standardized variable is defined as Z =

[
X − E(X)

]/√
Var(X) and thus has mean

E(Z) = 0 and variance Var(Z) = 1. The normal distribution, which is a member of the location–
scale family, is the only distribution with E(X) = a and Var(X) = b2. So, in this case, reducing and
standardizing are the same.



2 1 The family of location–scale distributions

If the distribution of X is absolutely continuous with the density function (= DF)

fX(x | a, b) =
dFX(x | a, b)

dx
(1.2a)

then (a, b) is a location scale–parameter for the distribution of X if (and only if)

fX(x | a, b) =
1

b
fY

(
x− a

b

)
(1.2b)

for some density fY (·), called reduced DF.

The location parameter a ∈ R is responsible for the distribution’s position on the ab-
scissa. An enlargement (reduction) of a causes a movement of the distribution to the right
(left). The location parameter is either a measure of central tendency of a distribution,
e.g.:

• a is the mean, median and mode for a symmetric and unimodal distribution as for
example with the normal distribution having DF

fX(x | a, b) =
1

b
√

2π
exp

{
−(x− a)2

2 b2

}
, x ∈ R, a ∈ R, b > 0. (1.3)

• a is the median and mode for a symmetric distribution as for example with the
CAUCHY distribution having DF

fX(x | a, b) =

{
π b

[
1 +

(
x− a

b

)2
]}−1

, x ∈ R, a ∈ R, b > 0. (1.4)

• a is the mode for an asymmetric and unimodal distribution as for example with the
extreme value distribution of type I for the maximum having DF

fX(x | a, b)=
1

b
exp

{
−x−a

b
− exp

(
−x−a

b

)}
, x ∈ R, a ∈ R, b > 0. (1.5)

or it is the threshold parameter of a distribution, e.g.

• a is the lower threshold of the exponential distribution having DF

fX(x | a, b) =
1

b
exp

(
−x− a

b

)
, x ≥ a, a ∈ R, b > 0. (1.6)

• a is the upper threshold of the reflected exponential distribution having DF

fX(x | a, b) =
1

b
exp

(
−a− x

b

)
, x ≤ a, a ∈ R, b > 0. (1.7)

The parameter b, b > 0, is the scale parameter. It is responsible for the dispersion or
variation of the variate X . Increasing (decreasing) b results in an enlargement (reduction)
of the spread and a corresponding reduction (enlargement) of the density. b may be
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• the standard deviation of X as for example with the normal distribution,

• the length of the support2 of X as for example with the uniform distribution
having DF

fX(x | a, b) =
1

b
, a ≤ x ≤ a+ b, a ∈ R, b > 0, (1.8)

• the length of a central (1 − α)–interval3 for X as for example with the extreme
value distribution of type I for the maximum, see (1.5),

b ≈ x0.667169 − x0.332831, α ≈ 0.334338. (1.9)

All distributions in a given family have the same shape, i.e. the same skewness and the
same kurtosis. When the reduced variable Y has mean µY = E(Y ) and standard deviation
σY =

√
Var(Y ) then, in the general case, the mean of X is

E(X) = a+ b µY , (1.10a)

and the standard deviation of X is √
Var(X) = b σY . (1.10b)

For µY = 0 and σY = 1 we have the goal expectation a and the goal standard deviation
b, but this is not necessarily the case. It is possible, for example, that µY and σY may not
exist, as in the case of the CAUCHY distribution.

We have a lot of functions and parameters describing and measuring certain features of
a variate. When we know such a function or parameter for the reduced variate Y , the
corresponding function and parameter for the general variable X = a + b Y follow in an
easy way as is depicted in Tab. 1/1.

Table 1/1: Relations between functions and parameters of the reduced and the general
variates of a continuous location–scale distribution

Name Definition for Y Relation for X = a+ b Y

density function (DF) fY (y) :=
dFY (y)

d y
fX(x) =

1
b
fY

(
x− a

b

)
cumulative distribu-
tion function (CDF)

FY (y) :=
y∫

−∞
fY (u) du FX(x) = FY

(
x− a

b

)
reliability function
(CCDF)

RY (y) := 1− FY (y) RX(x) = 1−RY

(
x− a

b

)
hazard function (HF) hY (y) :=

fY (y)
RY (y)

hX(x) =
1
b
hY

(
x− a

b

)
2 For some symmetric location–scale distributions it is more convenient to have a parametrization which

results in a length of 2 b or a multiple of 2 b.
3 Such an interval excludes the α/2 smallest and the α/2 largest realizations of X , where α < 1.
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Name Definition for Y Relation for X = a+ b Y

cumulative hazard
function (CHF)

HY (y) :=
y∫

−∞
hY (u) du HX(x) = HY

(
x− a

b

)
percentile,
generally: 0≤P ≤1

yP := F−1
Y (P ) xP = a+ b yP

percentile distance,
0≤P1<P2≤1

PDY (P2 − P1) := yP2 − yP1 PDX(P2−P1)=b PDY (P2−P1)

mode yM such that fY (yM ) = maxy fY (y) xM = a+ b yM

crude moments
generating function

MY (t) := E
(
et Y
)

MX(t) = exp(a t)MY (b t)

crude moments,
r ∈ N0

µ′r(Y ) := E
(
Y r
)

=
drMY (t)

d tr

∣∣∣∣
t=0

µ′r(X) =
r∑

j=0

(
r
j

)
µ′r−j(Y ) br−j aj

mean µY := µ′1(Y ) := E(Y ) µX := µ′1(X) = a+ b µY

central moments
generating function

ZY (t) := E
[
et (Y−µY )

]
ZX(t) = ZY (b t)

central moments µr(Y ) :=E
[
(Y−µY )r

]
=

drZY (t)
d tr

∣∣∣∣
t=0

µr(X) = br µr(Y )

variance σ2
Y := Var(Y ) := E

[
(Y − µY )2

]
σ2

X := Var(X) = b2 σ2
Y

standard deviation σY :=
√

Var(Y ) σX = b σY

index of skewness α3(Y ) :=
µ3(Y )[
µ2(Y )

]3/2
α3(X) = α3(Y )

index of kurtosis α4(Y ) :=
µ4(Y )[
µ2(Y )

]2 α4(X) = α4(Y )

cumulants
generating function

KY (t) := lnMY (t) KX(t) = a t+KY (b t)

cumulants κr(Y ) :=
dKY (t)

dtr

∣∣∣∣
t=0

κ1(X) = a+ b κ1(Y )

κr(X) = br κr(Y ), r = 2, 3, . . .

characteristic
function

CY (t) := E
(
ei t Y

)
, i :=

√
−1 CX(t) = exp (i t a)CY (b t)

entropy† I(Y ) := −E
{

ld
[
fY (y)

]}
I(X) = ld(b) + I(Y )

LAPLACE transform LY (t) := E
(
e−t Y

)
LX(t) = exp (−a t)LY (b t)

† ld(.) is the binary logarithm (logarithm with base 2). Some authors give the entropy in terms of the natural
logarithm. Binary and natural logarithms are related as ld(x) = ln(x)

/
ln 2 ≈ 1.4427 ln(x).
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1.2 Genuine location–scale distributions —
A short listing4

In this section we list — in alphabetic order — those continuous distributions which are
directly of location–scale type. There also exist distributions which — after suitable trans-
formation — are of location–scale type. They will be presented in Sect. 1.3. The following
listing only gives the DF of the non–reduced variate X . A complete description of each
distribution including all the parameters and functions of Tab. 1/1 will be given in Chap-
ter 5 where we present the accompanying probability paper together with some auxiliary
functions which are useful for the linear estimation procedure of the location–scale pa-
rameter.

Arc–sine distribution

f(x|a, b) =
1

π
√
b2 − (x− a)2

=
1

b π

√
1−

(
x− a

b

)2
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0. (1.11a)

The name of this distribution is given by the fact that its CDF can be expressed — among
others — by the arc–sine function arcsin(x) = sin−1(x):

F (x | a, b) =
1

2
+

arcsin

(
x− a

b

)
π

. (1.11b)

Beta distribution (Special cases)

The beta distribution in its general form has DF

f(x | a, b, c, d) =

(
x− a

b

)c−1(
1− x− a

b

)d−1

bB(c, d)

=
(x− a)c−1(a+ b− x)d−1

bc+d−1B(c, d)




a ≤ x ≤ a+ b,

a ∈ R, b > 0,

c > 0, d > 0,

 (1.12a)

with the complete beta function

B(c, d) :=

1∫
0

uc−1 (1− u)d−1 du =
Γ(c) Γ(d)

Γ(c+ d)
, (1.12b)

4 Suggested reading for this and the following section: JOHNSON/KOTZ/BALAKRISHNAN (1994,
1995), PATEL/KAPADIA/OWEN (1976).
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is not of location–scale type because it depends on two extra parameters c and d which are
responsible for the shape of the DF. When these parameters are given special values we
will arrive at a location–scale distribution, e.g.

• c = d = 1 gives the uniform distribution or rectangular distribution, see (1.33).

• c = 1, d = 2 gives the positively skew right–angled triangular distribution, see
(1.32c).

• c = 2, d = 1 gives the negatively skew right–angled triangular distribution, see
(1.32d).

• c = d = 0.5 gives an U–shaped distribution, see (5.52a).

• c = 1 and d = 3, 4, . . . gives a power–function distribution of order d − 1.

• d = 1 and c = 3, 4, . . . gives a power–function distribution of order c − 1, see
(1.27a).

CAUCHY distribution

The CAUCHY distribution has DF

f(x | a, b) =

{
π b

[
1 +

(
x− a

b

)2
]}−1

, x ∈ R, a ∈ R, b > 0. (1.13)

Chi–distribution (Special cases)

The χ–distribution with DF

f(x|a, b, ν)=
1

b 2(ν/2)−1Γ(ν/2)

(
x−a
b

)ν−1

exp

{
−1

2

(
x−a
b

)2
}x ∈ R, a ∈ R,

b > 0, ν ∈ N,

 (1.14)

is not of location–scale type, but for given ν it is. We get

• the half–normal distribution for ν = 1, see (1.20),

• the RAYLEIGH distribution for ν = 2, see (1.28),

• the MAXWELL–BOLTZMANN distribution for ν = 3, see (1.24).

Cosine distribution

The cosine distribution has DF

f(x | a, b) =
1

2 b
cos

(
x− a

b

)
, a− b

π

2
≤ x ≤ a+ b

π

2
, a ∈ R, b > 0. (1.15a)
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Because cosu = sin
(
1 +

π

2

)
we can write the cosine distribution as sine distribution:

f(x | a, b) =
1

2 b
sin

(
π

2
+
x− a

b

)
, a− b

π

2
≤ x ≤ a+ b

π

2
. (1.15b)

Exponential distribution

The DF of this very popular distribution is given by

f(x | a, b) =
1

b
exp

(
−x− a

b

)
, x ≥ a, a ∈ R, b > 0. (1.16)

Extreme value distributions

Extreme value distributions are the limiting distributions of either the largest or the small-
est value in a sample of size n for n→∞. We have three types for each of the two cases
(largest or smallest observation). Only the type–I distributions, which are of GUMBEL–
type (EMIL JULIUS GUMBEL, 1891 – 1966) are of location–scale type:

• Extreme value distribution of type I for the maximum

f(x | a, b) =
1

b
exp

{
−x− a

b
− exp

(
−x− a

b

)}
, x ∈ R, a ∈ R, b > 0. (1.17a)

This is often called the extreme value distribution by some authors.

• Extreme value distribution of type I for the minimum

f(x | a, b) =
1

b
exp

{
x− a

b
− exp

(
x− a

b

)}
, x ∈ R, a ∈ R, b > 0. (1.17b)

The type–II and the type–III extreme value distributions can be transformed to type–I
distributions, see Sect. 1.3.

Half–CAUCHY distribution

This distribution results when the CAUCHY distribution (1.13) is folded around its location
parameter a so that the left–hand part for x < a is added to the right–hand part (x > a).

f(x | a, b) = 2

{
π b

[
1 +

(
x− a

b

)]}−1

, x ≥ a, a ∈ R, b > 0. (1.18)

Half–logistic distribution

The half–logistic distribution results from the logistic distribution (1.23) in the same way
as the half–CAUCHY distribution is derived from the CAUCHY distribution:

f(x | a, b) =

2 exp

(
−x− a

b

)
b

[
1 + exp

(
−x− a

b

)]2 , x ≥ a, a ∈ R, b > 0. (1.19)
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Half–normal distribution

The half–normal distribution results from normal distribution (1.25) like the half–
CAUCHY distribution from the CAUCHY distribution as

f(x | a, b) =
1

b

√
2

π
exp

{
−1

2

(
x− a

b

)2
}
, x ≥ a, a ∈ R, b > 0. (1.20)

Hyperbolic secant distribution

The DF is

f(x | a, b) =
1

b π
sech

(
x− a

b

)
, x ∈ R, a ∈ R, b > 0. (1.21)

LAPLACE distribution

This distribution is a bilateral or two–tailed exponential distribution with DF

f(x | a, b) =
1

2 b
exp

{
−
∣∣∣∣x− a

b

∣∣∣∣}, x ∈ R, a ∈ R, b > 0. (1.22)

Logistic distribution

This distribution can be written in different ways, see Sect. 5.2.9, one being

f(x | a, b) =

exp

(
x− a

b

)
b

[
1 + exp

(
x− a

b

)]2 , x ∈ R, a ∈ R, b > 0. (1.23)

MAXWELL–BOLTZMANN distribution

This distribution is a special case of the χ–distribution with ν = 3:

f(x | a, b) =
1

b

√
2

π

(
x− a

b

)2

exp

{
−1

2

(
x− a

b

)2
}
, x ≥ a, a ∈ R, b > 0. (1.24)

Normal distribution

This well–known distribution has DF5

f(x | a, b) =
1

b
√

2π
exp

{
−1

2

(
x− a

b

)2
}
, x ∈ R, a ∈ R, b > 0. (1.25)

5 We remark the a = µ(X) = E(X) and b2 = σ2
X = Var(X).
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Parabolic distributions of order 2

We have two types, one has an U–form with DF

f(x | a, b) =
3

2 b

(
x− a

b

)2

, a− b ≤ x ≤ a+ b, a ∈ R, b > 0, (1.26a)

the other one has an inverted U–form with DF

f(x | a, b) =
3

4 b

[
1−

(
x− a

b

)2
]
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0. (1.26b)

Power–function distribution (Special cases)

The power–function distribution with DF

f(x | a, b, c) =
c

b

(
x− a

b

)c−1

, a ≤ x ≤ a+ b, a ∈ R, b > 0, c > 0, (1.27a)

and CDF

F (x | a, b, c) =

(
x− a

b

)c

(1.27b)

is not of location–scale type. We can transform (1.27a,b) to a location–scale DF by con-
sidering

X̃ = ln(X − a)

to arrive at the reflected exponential distribution, see (1.7) and (1.29). We also have a
location–scale distribution when c is known, e.g.:

• c = 1 gives an uniform distribution or rectangular distribution.

• c = 2 gives a right–angled negatively skew triangular distribution.

• c = 3 gives a parabolic distribution of order 2, but with a support of length b.

RAYLEIGH distribution

This distribution is a special case of the WEIBULL distribution, see (1.45a), with shape
parameter c = 2:

f(x | a, b) =
1

b

(
x− a

b

)
exp

{
−1

2

(
x− a

b

)2
}

x ≥ a, a ∈ R, b > 0. (1.28)

Reflected exponential distribution

When the exponential distribution is reflected around x = a we get the DF

f(x | a, b) =
1

b

(
−a− x

b

)
, x ≤ a, a ∈ R, b > 0. (1.29)
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Semi–elliptical distribution

The graph of the DF

f(x | a, b) =
1

b π

√
1−

(
x− a

b

)2

, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (1.30)

is a semi–ellipse centered at (a, 0). For b =
√

2
/
π ≈ 0.7979 we will have a semi–circle.

TEISSIER distribution

The DF of this distribution, named after the French biologist G. TEISSIER and published
in 1934, is given by

f(x|a, b)=
1

b

{
exp

(
x−a
b

)
−1

}
exp

{
1+

x−a
b
−exp

(
x−a
b

)}
, x ≥ a, a ∈ R, b > 0 (1.31)

Triangular Distributions

We have several types of triangular distributions:

• a symmetric version with DF

f(x | a, b) =


x− a+ b

b2
, a− b ≤ x ≤ a,

a+ b− x

b2
, a ≤ x ≤ a+ b,

, a ∈ R, b > 0, (1.32a)

or equivalently written as

f(x | a, b) =
b− |x− a|

b2
, a− b ≤ x ≤ a+ b, (1.32b)

• a right–angled and positively skew version with DF

f(x | a, b) =
2

b

(
a+ b− x

b

)
, a ≤ x ≤ a+ b, a ∈ R, b > 0, (1.32c)

• a right–angled and negatively skew version with DF

f(x | a, b) =
2

b

(
x− a+ b

b

)
, a− b ≤ x ≤ a, a ∈ R, b > 0, (1.32d)

• asymmetric versions which have — besides a and b — a third parameter indicating
the mode, thus they are not of location–scale type.
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Uniform or rectangular distribution

This rather simple, but very important distribution — see Sect. 2.2.2 — has DF

f(x | a, b) =
1

b
, a ≤ x ≤ a+ b, a ∈ R, b > 0. (1.33)

U–shaped and inverted U–shaped distributions

All parabolic distributions of order k = 2m, m ∈ N, have an U–shape and are of
location–scale type when m is known. The DF is

f(x | a, b,m) =
2m+ 1

2 b

(
x− a

b

)2 m

, a− b ≤ x ≤ a+ b, a ∈ R, b > 0. (1.34)

We arrive at a distribution whose graph has an inverted U–shape with DF

f(x | a, b) =
2m+ 1

4mb

[
1−

(
x− a

b

)2 m
]
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0. (1.35)

We will only study the case m = 1 which gives the parabolic distributions of order 2, see
(1.26a,b).

V–shaped distribution

A symmetric V–shaped DF is given by

f(x | a, b) =


a− x

b2
, a− b ≤ x ≤ a,

x− a

b2
, a ≤ x ≤ a+ b

, a ∈ R, b > 0, (1.36a)

or equivalently written as

f(x | a, b) =
|x− a|
b2

, a− b ≤ x ≤ a+ b. (1.36b)

1.3 Distributions transformable to location–scale type
We start by giving the rules governing the transformation of a variateX to another random
variable X̃ .

Theorem: Let X be continuously distributed with DF fX(x), CDF FX(x), mean µX =
E(X), variance σ2

X = Var(X) and percentiles xP , 0 ≤ P ≤ 1, and let x̃ = g(x) be a
transforming function which is a one–to–one mapping over the entire range of X and thus
is monotonic so that x = g−1(x̃) exists. Furthermore g(x) has to be differentiable twice.
Then

X̃ = g(X)
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has the DF

fX̃(x̃) = fX

[
g−1(x̃)

] ∣∣∣∣dg−1(x̃)

dx̃

∣∣∣∣ , (1.37a)

the CDF

FX̃(x̃) =

 FX

[
g−1(x̃)

]
for g′(x) > 0

1− FX

[
g−1(x̃)

]
for g′(x) < 0

 , (1.37b)

the percentiles

x̃P =

 g(xP ) for g′(x) > 0

g(x1−P ) for g′(x) < 0

 , (1.37c)

the approximative mean

µX̃ = E(X̃) ≈ g(µX) +
σ2

X

2
g′′(µX), (1.37d)

and the approximative variance

σ2
X̃

= Var(X̃) ≈ σ2
X

[
g′(µX)

]2
. (1.37e)

(1.37e) should be used only when σX

/
µX � 1. �

We will concentrate on the most popular transformation, the ln–transformation, for ren-
dering a non–location–scale distribution to a location–scale distribution. In this case, when
the original variable X has a location parameter a 6= 0, we either have to know its value,
what rarely is the case, or we have to estimate it before forming ln(x− a) or ln(a− x). In
Sect. 5.3.1 we will give several estimators of a.

Extreme value distributions of type II and type III

• The extreme value distribution of type II for the maximum, sometimes referred to
as FRÉCHET–type distribution has DF

f(x | a, b, c) =
c

b

(
x−a
b

)−c−1

exp

{
−
(
x−a
b

)−c
} x ≥ a, a ∈ R,

b > 0, c > 0,

 (1.38a)

and CDF

F (x | a, b, c) =


0 for x < a,

exp

{
−
(
x− a

b

)−c
}

for x ≥ a.

 (1.38b)

Forming
x̃ = g(x) = ln(x− a) (1.39a)
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we first have
x = g−1(x̃, ) = exp(x̃) + a (1.39b)

and
dg−1(x̃)

dx̃
= exp(x̃). (1.39c)

The CDF of X̃ easily follows from (1.37b) with (1.38b) as

F (x̃ | b, c) = exp

{
−
(

exp(x̃)

b

)−c
}
, x̃ = ln(x− a) ∈ R. (1.40a)

Using the identity
b ≡ exp(ln b),

(1.40a) first can be written as

F (x̃ | b̃, c̃) = exp

{
−
[

exp(x̃)

exp(ln b)

]−c
}

= exp
{
−
[
exp(x̃− ln b)

]−c}
= exp

{
− exp[−c (x̃− ln b)]

}
. (1.40b)

Introducing the transformed location–scale parameter (ã, b̃), where

ã = ln b, (1.40c)

b̃ =
1

c
, (1.40d)

(1.40b) results in

F (x̃ | ã, b̃) = exp

{
− exp

(
− x̃− ã

b̃

)}
, x̃ ∈ R, ã ∈ R, b̃ > 0, (1.40e)

which is recognized as the CDF of the extreme value distribution of type I for the
maximum. The DF belonging to (1.40e) can be found either by differentiating
(1.40e) with respect to x̃ or by applying (1.37a) together with (1.39b,c). The result
is

f(x̃ | ã, b̃) =
1

b̃
exp

{
− x̃− ã

b̃
− exp

(
− x̃− ã

b̃

)}
. (1.40f)

Thus, whenX is of maximum type II, ln(X−a) is of maximum type I with location–
scale parameter (ã, b̃) = (ln b, 1

/
c). The transformations of the other extreme value

distributions follow along the same line.
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• The extreme value distribution of type III for the maximum, sometimes referred
to as WEIBULL–type distribution, has DF

f(x | a, b, c)=
c

b

(
a−x
b

)c−1

exp

{
−
(
a−x
b

)c}
, x ≤ a, a ∈ R, b > 0, c > 0 (1.41a)

and CDF

F (x | a, b, c) =

 exp

{
−
(
a− x

b

)c}
for x ≤ a,

1 for x > a.

 (1.41b)

The transformed variable
X̃ = − ln(a−X) (1.42a)

has the type I distribution for the maximum (1.40e,f) with scale parameter b̃ =
1
/
c, whereas the new location parameter is

ã = − ln b. (1.42b)

• The extreme value distribution of type II for the minimum, the FRÉCHET distri-
bution, has DF

f(x | a, b, c)=
c

b

(
a−x
b

)−c−1

exp

{
−
(
a−x
b

)−c
}
, x ≤ a, a ∈ R, b > 0, c > 0 (1.43a)

and CDF

F (x | a, b, c) =


1− exp

{
−
(
a− x

b

)−c
}

for x ≤ a,

1 for x > a.

 (1.43b)

Introducing once more
X̃ = − ln(a−X) (1.44a)

transforms this distribution to the extreme value distribution of type I for the mini-
mum, see (1.17b), with DF

f(x̃ | ã, b̃) =
1

b̃
exp

{
x̃− ã

b̃
− exp

(
x̃− ã

b̃

)}
, x̃ ∈ R, ã ∈ R, b̃ > 0, (1.44b)

and CDF

F (x̃ | ã, b̃) = 1− exp

{
− exp

(
x̃− ã

b̃

)}
, (1.44c)

where b̃ = 1
/
c and ã = − ln b.



1.3 Distributions transformable to location–scale type 15

• The extreme value distribution of type III for the minimum, the WEIBULL distri-
bution,6 has DF

f(x | a, b, c)=
c

b

(
x−a
b

)c−1

exp

{
−
(
x−a
b

)c}
, x ≥ a, a ∈ R, b > 0, c > 0 (1.45a)

and CDF

F (x | a, b, c) =


0 for x < a,

1− exp

{
−
(
x− a

b

)c}
for x ≥ a.

 (1.45b)

With
X̃ = ln(X − a)

we find the extreme value distribution of type I for the minimum, see (1.44b,c),
where b̃ = 1

/
c but ã = ln b. The extreme value of type I for the minimum is often

referred to as Log–WEIBULL distribution. Comparing (1.45a) with (1.38a) we
may also call the extreme value distribution of type II for the maximum an inverse
WEIBULL distribution. Comparing (1.45a) with (1.41a) we see that the extreme
value distribution of type III for the maximum may be called reflected WEIBULL
distribution.

Tab. 1/2 summarizes the transformation procedures just described in a concise manner.

Table 1/2: Transformation of extreme value distributions

Original Transformed Transformed Transformed
distribution variable distribution parameters

maximum of type II x̃ = ln(x− a) maximum of type I ã = ln b

(1.38a,b) (1.40e,f) b̃ = 1
/
c

maximum of type III x̃ = − ln(a− x) maximum of type I ã = − ln b

(1.41a,b) (1.40e,f) b̃ = 1
/
c

minimum of type II x̃ = − ln(a− x) minimum of type I ã = − ln b

(1.43a,b) (1.44b,c) b̃ = 1
/
c

minimum of Type III x̃ = ln(x− a) minimum of type I ã = ln b

(1.45a,b) (1.44b,c) ã = 1
/
c

Lognormal distribution

If there is a real number a such that

X̃ = ln(X − a) (1.46a)
6 For more details of this distribution see RINNE (2009).
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is normally distributed, the distribution of X is said to be lognormal. The DF of X is

f(x | a, ã, b̃) =
1

(x− a) b̃
√

2π
exp

{
−1

2

(
ln(x− a)− ã

b̃

)2
}x ≥ a, a ∈ R,

ã ∈ R, b̃ > 0.

 (1.46b)

The graph of (1.46b) is positively skew. The distribution of X̃ is normal with DF

f(x̃ | ã, b̃) =
1

b̃
√

2π
exp

{
−1

2

(
x̃− ã

b̃

)2
} x̃ ∈ R,

ã ∈ R, b̃ > 0.

 (1.46c)

The meaning of the three parameters in (1.46b) is as follows:

• a is the location parameter of X and gives a lower threshold.7

• ã = E[ln(X − a)] is the location parameter of the transformed variate.

• b̃ =
√

Var[ln(X − a)] is the scale parameter of X̃ .

In Sections 5.3.3.1 and 5.3.3.2 we will show that the variance of X is dependent on ã and
b̃ and that the shape, i.e. the skewness and the kurtosis, of X is only dependent on b̃.

PARETO distribution

The PARETO distribution (of the first kind) has a negatively skew DF:

f(x | a, b, c) =
c

b

(
x− a

b

)−c−1

, x ≥ a+ b, a ∈ R, b > 0, c > 0, (1.47a)

and CDF

F (x | a, b, c) = 1−
(
x− a

b

)−c

. (1.47b)

Introducing
X̃ = ln(X − a)

leads to

f(x̃ | ã, b̃) =
1

b̃
exp

(
− x̃− ã

b̃

)
, x̃ ≥ ã, ã ∈ R, b̃ > 0, (1.48a)

F (x̃ | ã, b̃) = 1− exp

(
− x̃− ã

b̃

)
(1.48b)

with
ã = ln b, b̃ = 1

/
c. (1.48c)

So X̃ has an exponential distribution.
7 The term ‘lognormal’ can also be applied to the distribution of X if ln(a−X) is normally distributed.

In this case a is an upper threshold and X has zero probability of exceeding a.
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Power–function distribution

The power–function distribution with DF

f(x | a, b, c) =
c

b

(
x− a

b

)c−1

, a ≤ x ≤ a+ b, a ∈ R, b > 0, c > 0, (1.49a)

and CDF

F (x | a, b, c) =

(
x− a

b

)c

(1.49b)

by introducing
X̃ = ln(X − a)

transforms to

f(x̃ | ã, b̃) =
1

b̃
exp

(
x̃− ã

b̃

)
, x̃ ≤ ã, ã ∈ R, b̃ > 0, (1.50a)

F (x̃ | ã, b̃) = exp

(
x̃− ã

b̃

)
(1.50b)

with parameters
ã = ln b, b̃ = 1

/
c. (1.50c)

(1.50a) is recognized as the reflected exponential distribution. Because the PARETO

and the power–function distributions are related by a reciprocal transformation of their
variables, the logarithms of these variables differ by sign and their distributions are related
by a reflection.



2 Order statistics1

Order statistics and their functions play an important role in probability plotting and linear
estimation of location–scale distributions. Plotting positions, see Sect. 3.3.2, and regres-
sors as well as the elements of the variance–covariance matrix in the general least–squares
(GLS) approach, see Sect. 4.2.1, are moments of the reduced order statistics. In most sam-
pling situations the observations have to be ordered after the sampling, but in life–testing,
when failed items are not replaced, order statistics will arise in a natural way.

2.1 Distributional concepts
Let X1, X2, . . . , Xn be independently identically distributed (iid) with CDF F (x). The
variables Xi being arranged in ascending order and written as

X1:n ≤ X2:n ≤ . . . ≤ Xn:n

are called order statistics. The CDF of Xr:n is given by

Fr:n(x) = Pr
(
Xr:n ≤ x

)
= Pr(at least r of the Xi are less than or equal to x)

=
n∑

i=r

(
n

i

)[
F (x)

]i [
1− F (x)

]n−i
, (2.1a)

since the term in the summand is the binomial probability that exactly i of X1, . . . , Xn are
less than or equal to x. Fr:n(x) can be written as the incomplete beta function ratio or
beta distribution function:

Fr:n(x) =

F (x)∫
0

ur−1 (1− u)n−r du

B(r, n− r + 1)
. (2.1b)

Because the parameters r and n of the complete beta function are integers we have

B(r, n− r + 1) =
(r − 1)! (n− r)!

n!
. (2.1c)

(2.1a,b) hold whether X is discrete or continuous. In the following text we will always
assume that X is absolutely continuous with DF f(x). Then differentiation of (2.1b) and

1 Suggested reading for this chapter: ARNOLD/BALAKRISHNAN/NAGARAJA (1992), BALAKRIS-
NAN/COHEN (1991), BALAKRISHNAN/RAO (1998a,b), DAVID (1981), GALAMBOS (1978),
SARHAN/GREENBERG (1962).
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regarding (2.1c) gives the DF of Xr:n:

fr:n(x) =
n!

(r − 1)! (n− r)!

[
F (x)

]r−1 [
1− F (x)

]n−r
f(x). (2.1d)

Two values of r are of special interest:

• r = 1 − X1:n is the sample minimum with DF and CDF

f1:n(x) = n f(x)
[
1− F (x)

]n−1
, (2.2a)

F1:n(x) =
n∑

i=1

(
n

i

)[
F (x)

]i [
1− F (x)

]n−i
= 1−

[
1− F (x)

]n
. (2.2b)

• r = n − Xn:n is the sample maximum with DF and CDF

fn:n(x) = n f(x)
[
F (x)

]n−1
, (2.3a)

Fn:n(x) =
[
F (x)

]n
. (2.3b)

There are only a few variates whose order statistics’ DF can be given in a simple and handy
form. The most important example is the reduced uniform variate, denoted as U in the
following text, with DF and CDF

f(u) = 1, 0 ≤ u ≤ 1, (2.4a)
F (u) = u. (2.4b)

Upon inserting (2.4a,b) into (2.1a) and (2.1d) we find for Ur:n, 1 ≤ r ≤ n:

Fr:n(u) =
n∑

i=r

(
n

i

)
ui (1− u)n−i

=
n!

(r − 1)! (n− r)!

u∫
0

tr−1 (1− t)n−r dt, 0 ≤ u ≤ 1, (2.4c)

and

fr:n(u) =
n!

(r − 1)! (n− r)!
ur−1 (1− u)n−r. (2.4d)

Thus, Ur:n has a reduced beta distribution.

Another example is the reduced power–function distribution with DF and CDF

f(y) = c yc−1, 0 ≤ y ≤ 1, (2.5a)

F (y) = yc. (2.5b)
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With (2.5a,b) the CDF and DF of Yr:n, 1 ≤ r ≤ n, follow from (2.1a,d) as

Fr:n(y) =
n∑

i=r

(
n

i

)(
yc
)i (

1− yc
)n−i

=
n!

(r − 1)! (n− r)!

yc∫
0

tr−1 (1− t)n−r dt, 0 ≤ y ≤ 1, (2.5c)

fn:r(y) =
n!

(r − 1)! (n− r)!
c yr c−1

(
1− yc

)n−r
. (2.5d)

The joint DF of Xr:n and Xs:n, 1 ≤ r < s ≤ n, is

fr,s:n(x, y) =
n!

(r − 1)! (s− r − 1)! (n− s)!

[
F (x)

]r−1 [
F (y)− F (x)

]s−r−1 ×

[
1− F (y)

]n−s
f(x) f(y), x < y. (2.6a)

Even if X1, . . . , Xn are independent, their order statistics are not independent random
variables. The joint CDF of Xr:n and Xs:n may be obtained by integration of (2.6a) as
well as by a direct argument valid also in the discrete case.

• For x < y we have:

Fr,s:n(x, y) = Pr(at least r Xi ≤ x and at least s Xi ≤ y)

=
n∑

j=s

j∑
k=r

Pr(exactly k Xi ≤ x and exactly j Xi ≤ y)

=
n∑

j=s

j∑
k=r

n!

k! (j − k)! (n− j)!

[
F (x)

]k [
F (y)− F (x)

]j−k ×

[
1− F (y)

]n−j
, x < y. (2.6b)

• For x ≥ y the inequality Xs:n ≤ y implies Xr:n ≤ x, so that

Fr,s:n(x, y) = Fs:n(y), x ≥ y. (2.6c)

By using the identity

n∑
j=s

j∑
k=r

n!

k! (j − k)! (n− j)!
pk

1

(
p2 − p1

)j−k (
1− p2

)n−j

=
n!

(r−1)!(s−r−1)!(n−s)!

p1∫
0

p2∫
t1

tr−1
1

(
t2−t1

)s−r−1(
1−t2

)n−s dt2 dt1, 0 < p1 < p2 < 1,



2.2 Moments of order statistics 21

we can write the joint CDF of Xr:n and Xs:n in (2.6b ) equivalently as

Fr,s:n(x, y) =
n!

(r − 1)! (s− r − 1)!(n− s)!

F (x)∫
0

F (y)∫
t1

tr−1
1

(
t2 − t1

)s−r−1 ×

(
1− t2

)n−s dt2 dt1, 0 < x < y <∞, (2.7)

which is the CDF of the reduced bivariate beta distribution. The joint DF of Xr:n and
Xs:n may be derived from (2.7) by differentiating with respect to both x and y.

Let U1, U2, . . . , Un be a sample of the reduced uniform distribution andX1, X2, . . . , Xn

be a random sample from a population with CDF F (x). Furthermore, let U1:n ≤ U2:n ≤
. . . ≤ Un:n and X1:n ≤ X2:n ≤ . . . ≤ Xn:n be the corresponding order statistics.

Specifically, when F (x) is continuous the probability integral transformation U =
F (X) produces a reduced uniform distribution. Thus, when F (x) is continuous we have

F (Xr:n)
d
= Ur:n, r = 1, 2, . . . , n. (2.8a)

where d
= reads as “has the same distribution as”. Furthermore, with the inverse CDF

F−1(·), it is easy to verify that

F−1(Ur)
d
= Xr, r = 1, 2, . . . , n (2.8b)

for an arbitrary F (·). Since F−1(·) is also order preserving, it immediately follows that

F−1(Ur:n)
d
= Xr:n, r = 1, 2, . . . , n. (2.8c)

We will apply the distributional relation (2.8c) in Sect. 2.2.2 in order to develop some
series approximations for the moments of reduced order statistics Yr:n in terms of moments
of the uniform order statistics Ur:n.

2.2 Moments of order statistics
For probability plotting and linear estimation we will need the first and second moments
of the reduced order statistics.

2.2.1 Definitions and basic formulas
We will denote the crude single moments of the reduced order statistics, E(Y k

r:n), by
α

(k)
r:n, 1 ≤ r ≤ n. They follow with

f(y) := fY (y) and F (y) := FY (y)

as

α(k)
r:n := E(Y k

r:n) =

∞∫
−∞

yk fr:n(y) dy

=
n!

(r − 1)! (n− r)!

∞∫
−∞

yk [F (y)]r−1 [1− F (y)]n−r f(y) dy. (2.9a)
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The most import case of (2.9a) is the mean, shortly denoted by αr:n:

αr:n := E(Yr:n) = n

(
n− 1

r − 1

) ∞∫
−∞

y [F (y)]r−1 [1− F (y)]n−r dF (y). (2.9b)

Since 0 ≤ F (y) ≤ 1, it follows that

|αr:n| ≤ n

(
n− 1

r − 1

) ∞∫
−∞

|y| dF (y), (2.9c)

showing that αr:n exists provided E(Y ) exists, although the converse is not necessarily
true.

We mention that for the general variate X = a+ b Y the crude single moments of Xr:n are
given by

µ(k)
r:n := E(Xk

r:n) =
k∑

j=0

(
k

j

)
α(k−j)

r:n bk−j aj,

especially
µr:n := E(Xr:n) = a+ b αr:n.

An alternative formula for αr:n may be obtained by integration by parts in

αr:n =

∞∫
−∞

y dFr:n(y).

To this end, note that for any CDF F (y) the existence of E(Y ) implies

lim
y→−∞

y F (y) = 0 and lim
x→∞

y [1− F (y)] = 0,

so that we have

E(Y ) =

∞∫
−∞

y dF (y)

=

0∫
−∞

y dF (y)−
∞∫

0

y d[1− F (y)]

=

∞∫
0

[1− F (y)] dy −
0∫

−∞

F (y) dy. (2.10a)

This general formula gives αr:n = E(Yr:n) if F (y) is replaced by Fr:n(y) :

αr:n =

∞∫
0

[
1− Fr:n(y)

]
dy −

0∫
−∞

Fr:n(y) dy. (2.10b)
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We may also write

αr:n =

∞∫
0

[
1− Fr:n(y)− Fr:n(−y)

]
dy, (2.10c)

and when f(y) is symmetric about y = 0 we have

αr:n =

∞∫
0

[
Fn−r+1(y)− Fr:n(y)

]
dy. (2.10d)

Crude product moments of reduced order statistics may be defined similarly:

α(k,`)
r,s:n := E

(
Y k

r:n Y
`
s:n

)
=

n!

(r − 1)! (s− r − 1)! (n− s)!

∫∫
−∞<t<v<∞

tk v`
[
F (t)

]r−1 [
F (v)− F (t)

]s−r−1 ×

[
1− F (v)

]n−s
f(t) f(v) dt dv. (2.11a)

The most important case of(2.11a) has k = ` = 1 and leads to the covariance of Yr:n and
Ys:n:

Cov
(
Yr:n, Ys:n

)
= E

(
Yr:n Ys:n

)
− E

(
Yr:n

)
E
(
Ys:n

)
= αr,s:n − αr:n αs:n. (2.11b)

We introduce the notation
βr,s:n := Cov(Yr:n, Ys:n). (2.12a)

A special case of (2.12a) for r = s is the variance of Yr:n:

βr,r:n = Var(Yr:n)

= α(2)
r:n −

(
αr:n

)2
. (2.12b)

We collect all the variances and covariances for a given sample size in the so–called
variance–covariance matrix B:

B :=
(
βr,s:n

)
; r, s = 1, . . . , n. (2.12c)

which is a symmetric matrix:

B = B′ or βr,s:n = βs,r:n ∀ r, s. (2.12d)

For the general order statistics we have

σr,s:n = b2 βr,s:n

Σ =
(
σr,s:n

)
= b2 B.
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Generally, the moments of order statistics cannot be given in a handy and closed form.
They have either to be evaluated by numeric integration of (2.9a) and (2.11a) in combina-
tion with some recurrence relation or to be approximated by expanding Yr:n = F−1(Ur:n)
in a TAYLOR series around the point E(Ur:n). Furthermore, when the distribution of Y is
symmetric around zero we may save time in computing the moments of order statistics
making use of the following relations which are based on the distributional equivalences

Yr:n
d
= (−Yn−r+1:n), 1 ≤ r ≤ n,

(Yr:n, Ys:n)
d
=

(
(−Yn−s+1:n), (−Yn−r+1:n)

)
, 1 ≤ r ≤ s ≤ n,

resulting in:

α
(k)
n−r+1:n = (−1)k α(k)

r:n, 1 ≤ r ≤ n, k ≥ 1, (2.13a)

αn−s+1,n−r+1:n = αr,s:n, 1 ≤ r ≤ s ≤ n, (2.13b)

βn−s+1,n−r+1:n:n = αn−s+1,n−r+1:n − αn−s+1:n αn−r+1:n

= αr,s:n − αr:n αs:n

= βr,s:n, 1 ≤ r ≤ s ≤ n. (2.13c)

Figure 2/1: Structure of the variance–covariance matrix of order statistics from a distri-
bution symmetric around zero

A special case of (2.13a) occurs when n is odd, n = 2 `+ 1, ` ∈ N:

α`+1:2 `+1 = −α`+1:2 `+1 = 0,

i.e. the mean of the sample median is equal to zero. (2.13a) means that we have to evaluate
[n+1

2
] means instead of n, where [z] is the integer part of z. Looking at (2.13c) we have —

besides βr,s:n = βs,r:n — a second symmetry in the variance–covariance matrix of order
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statistics, see Fig. 2/1. The greater upper triangle ABD results from a reflection of the
smaller triangle ABC at the line BC. We only have to evaluate the elements in the upper
triangle ABC. Thus, instead of evaluating (n+1)

/
2 elements βr,s:n (r = 1, . . . , n; s ≥ r)

we only have to evaluate n (n + 2)
/
4 elements for n = 2 ` and (n + 1)2

/
4 elements for

n = 2 `+ 1.

Closed form expressions for moments of order statistics exist — among others — for the
following distributions:

1. Reduced uniform distribution: f(u) = 1, 0 ≤ u ≤ 1

E
(
Uk

r:n

)
=

n!

(n+ k)!

(r + k − 1)!

(r − 1)!
(2.14a)

αr:n =
r

n+ 1
=: pr (2.14b)

βr,r:n =
r (n− r + 1)

(n+ 1)2 (n+ 2)
=

pr qr
n+ 2

, qr := 1− pr (2.14c)

E
(
Ur:n Us:n

)
=

r (s+ 1)

(n+ 1) (n+ 2)
, 1 ≤ 1 < r < s ≤ n (2.14d)

βr,s:n =
r (n− s+ 1)

(n+ 1)2 (n+ 2)
=

pr qs
n+ 2

, qs := 1− ps (2.14e)

2. Reduced power–function distribution: f(y) = c yc−1, 0 ≤ y ≤ 1

E
(
Y k

r:n

)
=

Γ(n+ 1)

Γ(n+ 1 + k
/
c)

Γ(r + k
/
c)

Γ(r)
=

n!

(r − 1)!

Γ(r + k
/
c)

Γ(n+ 1 + k
/
c)

(2.15a)

αr:n =
n!

(r − 1)!

Γ(r + 1
/
c)

Γ(n+ 1 + 1
/
c)

(2.15b)

βr,r:n =
n!

(r − 1)!

{
Γ(r + 2

/
c)

Γ(n+ 1 + 2
/
c)
− n!

(r − 1)!

Γ2(r + 1 + 1
/
c)

Γ2(n+ 1 + 1
/
c)

}
(2.15c)

E(Yr:n Ys:n) =
n!

(r − 1)!

Γ(r + 1
/
c) Γ(s+ 2

/
c)

Γ(s+ 1
/
c) Γ(n+ 1 + 2

/
c)
, 1 ≤ r < s ≤ n (2.15d)

βr,s:n =
n!

(r − 1)!

{
Γ(s+ 2

/
c) Γ(r + 1

/
c)

Γ(s+ 1
/
c) Γ(n+ 1 + 2

/
c)
−

n!

(s− 1)!

Γ(s+ 1
/
c) Γ(r + 1

/
c)

Γ2(n+ 1 + 1
/
c)

}
(2.15e)
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3. Reduced exponential distribution: f(y) = e−y, y ≥ 0

E
(
Y k

r:n

)
=

r∑
i=1

k!

n− i+ 1
(2.16a)

αr:n =
r∑

i=1

1

n− i+ 1
=

n∑
i=n−r+1

1

i
(2.16b)

βr,r:n = βr,s:n =
r∑

i=1

1

(n− i+ 1)2
=

n∑
i=n−r+1

1

i2
(2.16c)

2.2.2 Identities, recurrence relations and approximations
For the computation of moments of order statistics and for checking the results we need
some identities and recurrence relations. By using the basic identity(

n∑
i=1

Xk
i:n

)`

≡

(
n∑

i=1

Xk
i

)`

(2.17a)

several identities for single and product moments of order statistics can be established
which primarily serve the purpose of checking. By choosing ` = 1 and taking expecta-
tions on both sides, we get the identity

n∑
i=1

µ
(k)
i:n = nE

(
Xk
)

= nµ
(k)
1:1. (2.17b)

Similarly, by taking k = 1 and ` = 2 we obtain

n∑
i=1

X2
i:n + 2

n−1∑
i=1

n∑
j=i+1

Xi:nXj:n =
n∑

i=1

X2
i + 2

n−1∑
i=1

n∑
j=i+1

XiXj. (2.17c)

Now taking expectations on both sides leads to

n∑
i=1

µ
(2)
i:n + 2

n−1∑
i=1

n∑
j=i+1

µi,j:n = nE
(
X2
)

+ n (n− 1)
[
E(X)

]2 (2.17d)

which, when used together with (2.17b), yields an identity for product moments of order
statistics

n−1∑
i=1

n∑
j=i+1

µi,j:n =

(
n

2

)[
E(X)

]2
=

(
n

2

)
µ2

1:1 =

(
n

2

)
µ1,2:2. (2.17e)

Furthermore, from
n∑

i=1

n∑
j=1

µi,j:n = nµ
(2)
1:1 + n (n− 1)µ2

1:1 (2.18a)
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and (2.17b) we get

n∑
i=1

n∑
j=1

σi,j:n =
n∑

i=1

n∑
j=1

µi,j:n −

(
n∑

i=1

µi:n

)(
n∑

j=1

µj:n

)

= n
{
µ

(2)
1:1 − µ2

1:1

}
= nVar(X)

= nσ1,1:n. (2.18b)

Starting from (2.17a), one can establish the triangle rule leading to a recurrence relation
for single moments of order statistics:2

r µ
(k)
r+1:n + (n− r)µ(k)

r:n = nµ
(k)
r:n−1. (2.19a)

This triangle rule shows that it is enough to evaluate the k-th moment of a single order
statistic in a sample of size n, if these moments in samples of size less than n are already
available. The k-th moment of the remaining n − 1 moments can then be determined by
repeated use of of (2.19a). For this purpose we could, for example, start with either µ(k)

1:n

or µ(k)
n:n. It is, therefore, desirable to reformulate (2.19a) so that µ(k)

r:n is purely expressed
in terms of the k-th moment of the smallest or the largest order statistics from samples of
size up to n. The resulting recurrence relations are:

µ(k)
r:n =

n∑
i=n−r+1

(−1)i−n+r−1

(
n

i

)(
i− 1

n− r

)
µ

(k)
1:i , 2 ≤ r ≤ n; k = 1, 2, . . . (2.19b)

µ(k)
r:n =

n∑
i=r

(−1)i−r

(
n

i

)(
i− 1

r − 1

)
µ

(k)
i:i , 1 ≤ r ≤ n− 1, k = 1, 2, . . . (2.19c)

A warning has to be issued here. If any of the recurrence formulas (2.19a-c) is used in
the computation of the moments of order statistics then the identity (2.17b) should not be
employed to check these computations because this identity will be automatically satisfied
if any of these recurrence relations is used.

A recurrence relation for the product moments of order statistics similar to (2.19a) is
given by

(r−1)µ(k,`)
r,s:n+(s−r)µ(k,`)

r−1,s:n+(n−s+1)µ
(k,`)
r−1,s−1:n = nµ

(k,`)
r−1,s−1:n, 2 ≤ r < s ≤ n. (2.20a)

(2.20a) shows that it is enough to evaluate the (k, `)-th moment of n − 1 suitably chosen
pairs of order statistics, if these moments in samples of size less than n are already avail-
able. For example, the knowledge of {µ(k,`)

1,s:n for 2 ≤ s ≤ n} or {µ(k,`)
r,n:n for 1 ≤ r ≤ n− 1}

2 More recurrence relations may be found in ARNOLD/BALAKRISHNAN (1989).



28 2 Order statistics

or {µk,`
r,r+1:n for 1 ≤ r ≤ n− 1} will suffice. The (k, `)-th moment of the remaining

(
n−1

2

)
pairs of order statistics can then be determined by repeated use of (2.20a). Hence, it is de-
sirable to express the product moment of pairs of order statistics just given from samples
of size up to n. One of the resulting recurrence relations is

µ
(k,`)
r,s:n =

s−1∑
i=s−r

n∑
j=n−s+i+1

(−1)j+n−r−s+1

(
i− 1

r − 1

)(
j − i− 1

n− s

)(
n

j

)
µ

(k,`)
i,i+1:j,

1 ≤ r < s ≤ n and k, ` = 1, 2, . . .

(2.20b)

The following recurrence relation for covariances of order statistics is similar to (2.19a):

(r − 1)σr,s:n + (s− r)σr−1,s:n + (n− s+ 1)σr−1,s−1:n =

n
{
σr−1,s−1:n−1 + (µr−1:n−1 − µr−1:n) (µs−1:n−1 − µs:n)

}
, 2 ≤ r < s ≤ n.

(2.21)

ARNOLD/BALAKRISHNAN (1989) have given the maximum number of single and product
moments to be evaluated for the computation of all means, variances, and covariances of
order statistics in a sample of size n when these quantities are available in samples of sizes
up to n− 1 and when systematic usage of the recurrence relations is done:

We have to evaluate at most two single moments and (n − 2)
/
2 product mo-

ments if n is even, and at most two single moments and (n − 1)
/
2 product

moments if n is odd.

These maximum numbers can be decreased further for samples from a symmetric distri-
bution.

It is possible to give approximations for moments of reduced order statistics based on
the following two distributional equivalences:

Yr:n
d
= F−1(Ur:n) and (Yr:n, Ys:n)

d
=
(
F−1(Ur:n), F−1(Us:n)

)
,

where Ur:n is an order statistic from a reduced uniform distribution, see (2.14a-e). Upon
expanding F−1(Ur:n) in a TAYLOR series around the point E(Ur:n) = r

/
(n+ 1) =: pr we

get a series expansion for Yr:n as

Yr:n = F−1(pr) + F−1(1)(pr) (Ur:n − pr) +
1

2
F−1(2)(pr) (Ur:n − pr)

2 +

1

6
F−1(3)(pr) (Ur:n − pr)

3 +
1

24
F−1(4)(pr) (Ur:n − pr)

4 + . . . ,

 (2.22)

where F−1(1)(pr), F
−1(2)(pr), . . . are the successive derivatives of F−1(u) evaluated at

pr. Now by taking expectations on both sides of (2.22) and using the expressions of the
moments of reduced uniform order statistics given in (2.14a-e) [however, written in inverse
powers of n+ 2 by DAVID (1981, p. 80) for computational ease and algebraic simplicity],
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we find the approximate formula for the mean of Yr:n:

αr:n ≈ F−1(pr) +
pr qr

2 (n+ 2)
F−1(2)(pr) +

pr qr
(n+ 2)2

[
1

3
(qr − pr)F

−1(3)(pr) +
1

8
pr qr F

−1(4)(pr)

]
+

pr qr
(n+ 2)3

[
−1

3
(qr−pr)F

−1(3)(pr) +
1

4
{(qr−pr)

2−pr qr}F−1(4)(pr) +

1

6
pr qr (qr − pr)F

−1(5)(pr) +
1

48
p2

r q
2
r F

−1(6)(pr)

]
,



(2.23)

where qr = 1− pr = (n− r + 1)
/
(n+ 1).

An approximate formula for the variance of Yr:n is derived by taking expectation on
both sides of the series expansion for Y 2

r:n, obtained from (2.22) and then subtracting from
it the approximation of α2

r:n obtained from (2.23).

βr,r:n ≈
pr qr

(n+ 2)

[
F−1(1)(pr)

]2
+

pr qr
(n+ 2)2

〈
2 (qr − pr)F

−1(1)(pr)F
−1(2)(pr) +

pr qr

{
F−1(1)(pr)F

−1(3)(pr) +
1

2

[
F−1(2)(pr)

]2}〉
+

pr qr
(n+ 2)3

〈
− 2 (qr − pr)F

−1(1)(pr)F
−1(2)(pr) +

[
(qr − pr)

2 − pr qr

]{
2F−1(1)(pr)F

−1(3)(pr) +
3

2

[
F−1(2)(pr)

]2}
+

pr qr (qr − pr)

{
5

3
F−1(1)(pr)F

−1(4)(pr) + 3F−1(2)(pr)F
−1(3)(pr)

}
+

1

4
p2

r q
2
r

{
F−1(1)(pr)F

−1(5)(pr)+2F−1(2)(pr)F
−1(4)(pr)+

5

3

[
F−1(3)(pr)

]2}〉



(2.24)

By taking expectation on both sides of the series expansion for (Yr:n Ys:n) obtained from
(2.22) and than subtracting from it the approximations for αr:n and αs:n obtained from
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(2.23) we find an approximate formula for the covariance of Yr:n and Ys:n.

βr,s:n ≈
pr qs
n+ 2

F−1(1)(pr)F
−1(1)(ps) +

prqs
(n+ 2)2

〈
(qr − pr)F

−1(2)(pr)F
−1(1)(ps) + (qs − ps)F

−1(1)(pr)F
−1(2)(ps) +

1

2

{
prqrF

−1(3)(pr)F
−1(1)(ps)+psqsF

−1(1)(pr)F
−1(3)(ps)+prqsF

−1(2)(pr)F
−1(2)(ps)

}〉
+

prqs
(n+ 2)3

〈
− (qr − pr)F

−1(2)(pr)F
−1(1)(ps)− (qs − ps)F

−1(1)(pr)F
−1(2)(ps) +

[
(qr−pr)

2−prqr

]
F−1(3)(pr)F

−1(1)(ps)+
[
(qs−ps)

2−psqs

]
F−1(1)(pr)F

−1(3)(ps) +

1.5
[
(qr−pr)(qs−ps) + 0.5 psqr − 2 prqs

]
F−1(2)(pr)F

−1(2)(ps) +

5

6

[
prqr(qr − pr)F

−1(4)(pr)F
−1(1)(ps) + psqs(qs − ps)F

−1(1)(pr)F
−1(4)(ps)

]
+[

prqs(qr − pr) +
1

2
prqr(qs − ps)

]
F−1(3)(pr)F

−1(2)(ps) +[
prqs(qs − ps) +

1

2
psqs(qr − pr)

]
F−1(2)(pr)F

−1(3)(ps) +

1

8

[
p2

rq
2
rF

−1(5)(pr)F
−1(1)(ps) + p2

sq
2
sF

−1(1)(pr)F
−1(5)(ps)

]
+

1

4

[
p2

rqrqsF
−1(4)(pr)F

−1(2)(ps) + prpsq
2
sF

−1(2)(pr)F
−1(4)(ps)

]
+

1

12

[
2p2

rq
2
s + 3prpsqrqs

]
F−1(3)(pr)F

−1(3)(ps)

〉


(2.25)

It is possible to shorten the formulas above by discontinuing after the term where the
denominator of the multiplier reads (n + 2)2, but at the price of a smaller precision. As
DAVID (1981, p. 81) notes, the convergence of the series expansions may be slow or even
non–existent if r

/
n is too close to 0 or to 1.

The evaluation of the derivatives of F−1(u) is rather straightforward when the inverse CDF
is available explicitly. For example, for the arc–sine distribution with

F (y) =
1

2
+

arcsin(y)

π
, −1 < y < 1, and F−1(u) = sin

[
π (u− 0.5)

]
, 0 < u < 1,
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we obtain:
F−1(1)(u) = π cos

[
π (u− 0.5)

]
,

F−1(2)(u) = −π2 sin
[
π (u− 0.5)

]
,

F−1(3)(u) = −π3 cos
[
π (u− 0.5)

]
,

F−1(4)(u) = π4 sin
[
π (u− 0.5)

]
,

F−1(5)(u) = π5 cos
[
π (u− 0.5)

]
,

F−1(6)(u) = −π6 sin
[
π (u− 0.5)

]
.

When the F−1(u) does not exist in explicit form we can base the forming of its successive
derivatives on the fact that

F−1(1)(u) =
dF−1(u)

du
=

dy
du

=
1

du
/

dy
=

1

f(y)
=

1

f
[
F−1(u)

] , (2.26)

which is nothing but the reciprocal of the DF of the population evaluated at F−1(u).
Higher–order derivatives of F−1(u) may be obtained by successive differentiating the ex-
pression of F−1(1)(u) in (2.26).

The most popular distribution having no explicit formula for either its CDF nor its inverse
CDF is the normal distribution. In this case we first have

df(y)

dy
= −y f(y)

and finally obtain

F−1(1)(u) =
1

f
[
F−1(u)

] ,
F−1(2)(u) =

F−1(u){
f
[
F−1(u)

]}2 ,

F−1(3)(u) =
1 + 2

{
F−1(u)

}2{
f
[
F−1(u)

]}3 ,

F−1(4)(u) =
F−1(u)

{
7 + 6

[
F−1(u)

]2}{
f
[
F−1(u)

]}4 ,

F−1(5)(u) =
7 + 46

[
F−1(u)

]2
+ 24

[
F−1(u)

]4{
f
[
F−1(u)

]}5 ,

F−1(6)(u) =
F−1(u)

{
127 + 326

[
F−1(u)

]2
+ 120

[
F−1(u)

]4}{
f
[
F−1(u)

]}6
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Example 2/1: Exact and approximate moments of reduced exponential order statistics

Assuming an exponential population, the following Tab. 2/1 shows for a sample of size n = 6 the
exact means, variances and covariances according to (2.16a–c) and their approximations computed
with the long and the short version of the series expansions (2.23) through (2.25). From the CDF of
the reduced exponential distribution, F (x) = 1− exp(x) we first have the inverse CDF F−1(u) =
− ln(1− u), 0 ≤ u < 1. The first six derivatives of F−1(u), needed for the approximations, are:

F−1(1) = (1− u)−1, F−1(2) = (1− u)−2,

F−1(3) = 2 (1− u)−3, F−1(4) = 6 (1− u)−4,

F−1(5) = 24 (1− u)−5, F−1(6) = 120 (1− u)−6.

Table 2/1: Exact and approximate means, variances and covariances of reduced exponential
order statistics when n = 6

Parameter Exact value Short approximation Long approximation

α1:6 0.16 0.166340 0.166620

α2:6 0.36 0.365847 0.366554

α3:6 0.616 0.615035 0.616440

α4:6 0.95 0.946835 0.949584

α5:6 1.45 1.443193 1.449296

α6:6 2.45 2.430285 2.451770

β1,1:6, . . . β1,6:6 0.027 0.026259 0.027481

β2,2:6, . . . , β2,6:6 0.06 0.063750 0.066974

β3,3:6, . . . , β3,6:6 0.13027 0.121582 0.128494

β4,4:6, . . . , β4,6:6 0.24138 0.2 0.237317

β5,5:6, β5,6:6 0.49138 0.439453 0.479940

β6,6:6 1.49138 1.218750 1.435547

As to expected the approximations based on the longer formulas are closer to the exact values than
those based on the shorter formulas.

2.3 Functions of order statistics
We will study some linear functions of order statistics and start with two special sums of
two order statistics. The median in a sample of even size n = 2m is defined as˜̃

X :=
Xm:2 m +Xm+1:2 m

2
. (2.27a)
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Its DF f ˜̃
X

(·) may be derived from the joint DF of two order statistics (2.6a) by setting
n = 2m, r = m and s = m+ 1 and by using standard transformation methods. The sum
T := Xm:2 m +Xm+1:2 m has DF

fT (t) =
(2m)!

2 (m− 1)!

+∞∫
−∞

{
F (v)

[
1− F (t− v)

]}m−1
f(v) f(t− v) dv, (2.27b)

so ˜̃X = T/2 has DF

f ˜̃
X

(x)=2 fT (2x) =
(2m)!

(m− 1)!

∞∫
−∞

{
F (v)

[
1−F (2x−v)

]}m−1
f(v) f(2x−v) dv. (2.27c)

The CDF of ˜̃X is given by

F ˜̃
X

(x) =
2

B(m,m)

x∫
−∞

[
F (v)

]m−1
{[

1−F (v)
]m−[1−F (2x−v)

]m}
f(v) dv. (2.27d)

Another measure of central tendency in a sample — besides the median — is the mid–
range:

M :=
X1:n +Xn:n

2
(2.28a)

with DF

fM(w) = 2n (n− 1)

y∫
−∞

[
F (2w − v)− F (v)

]n−2
f(v) f(2w − v) dv (2.28b)

and CDF

FM(w) = n

y∫
−∞

[
F (2w − v)− F (v)

]n−1
f(v) dv. (2.28c)

The difference of two arbitrary order statistics

Wrs := Xs:n −Xr:n, 1 ≤ r < s ≤ n, (2.29a)

has DF

fWrs(w) =
n!

(r − 1)! (s− r − 1)! (n− s)!

∞∫
−∞

[
F (v)

]r−1 [
F (w + v)− F (v)

]s−r−1 ×

[
1− F (w + v)

]n−s
f(v) f(w + v) dv. (2.29b)
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A special case of (2.29a) is the range W :

W := Xn:n −X1:n (2.30a)

with DF and CDF

fW (w) = n (n− 1)

∞∫
−∞

[
F (w + v)− F (v)

]n−2
f(v) f(w + v) dv, (2.30b)

FW (w) = n

∞∫
−∞

[
F (w + v)− F (v)

]n−1
f(v) dv (2.30c)

and mean and variance

E(W ) = E
(
Xn:n

)
− E

(
X1:n

)
(2.30d)

Var(W ) = Var
(
Xn:n

)
− 2 Cov

(
X1:n, Xn:n

)
+ Var

(
X1:n

)
. (2.30e)

We now proceed to more general linear functions of order statistics:

Ln =
n∑

i=1

ainXi:n.

A major use of such functions arises in the estimation of location and scale parameters a
and b for a location–scale distribution with a DF of the form

fX(x | a, b) =
1

b
fY

(
x− a

b

)
, a ∈ R, b > 0,

where fY (·) is parameter–free. Denoting the reduced variate by

Y :=
X − a

b

and the moments of its order statistics by

αr:n := E
(
Yr:n

)
(2.31a)

βr,s:n := Cov
(
Yr:n, Ys:n

)
; r, s = 1, 2, . . . , n; (2.31b)

it follows that
Yr:n =

Xr:n − a

b

so that

E
(
Xr:n

)
= a+ b αr:n, (2.31c)

Cov
(
Xr:n, Xs:n

)
= b2 βr,s:n. (2.31d)
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Thus E
(
Xr:n

)
is linear in the parameters a and b with known coefficients, and

Cov
(
Xr:n, Xs:n

)
is known apart from b2. Therefore, the GAUSS–MARKOV least–squares

theorem may be applied, in a slightly generalized form since the variance–covariance
matrix is not diagonal. This gives the best linear unbiased estimators (BLUEs)

â =
n∑

i=1

ainXi:n, (2.31e)

b̂ =
n∑

i=1

binXi:n, (2.31f)

where the coefficients ain and bin, which are functions of the αr:n and βr,s:n, can be eval-
uated once and for all, depending on the DF fY (.) of the reduced variate. This technique
will be applied in Chapter 4.



3 Statistical graphics1

An old Chinese truth says that a picture tells you more than thousand words. Statisti-
cians, too, have made out the meaning of the slightly modified wisdom that a figure is
able to convey more than a lot of numbers. One arrives at this conclusion when skim-
ming statistical journals and monographs. Furthermore, computer science has supported
the graphical approach in statistics by offering specialized and relatively inexpensive hard-
ware and flexible software capable to even graphically display large and high-dimensional
datasets. Today graphs are a vital part of statistical data analysis and a vital part of com-
munication in science and technology, business, education and the mass media. Graphical
methods, nowadays, play an important role in all aspects of statistical investigation, from
the beginning exploratory plots, through various stages of analysis, to the final communi-
cation and display of results. Many persons consider graphical displays as the single most
effective, robust statistical tool. Not only are graphical procedures helpful, but in many
cases essential. TUKEY (1977) claims that “the greatest value of a picture is when it forces
us to notice what we never expected to see”.

3.1 Some historical remarks
Despite the venerable tradition of quantitative graphics for data analysis as sketched in
this section and the revival of interest in statistical graphics in the last decades, a com-
prehensive and up–to–date description of this subject is still missing. There remains only
a single monographic history of the subject: FUNKHOUSER (1938), now over 70 years
old. A newer, but only brief history of quantitative graphics in statistics is given by BE-
NIGER/ROBYN (1978). With the exception of a modest revival of interest in quantitative
graphics among historians of early statistics, e.g. ROYSTON (1956) and TILLING (1975),
visual forms have passed virtually unnoticed by historians and sociologists of knowledge
and science.

Quantitative graphics have been central to the development of science, and statistical
graphics, beginning with simple tables and plots, date from the earliest attempts to analyze
empirical data. Many of the most familiar forms and techniques were well–established at
least 200 years ago. At the turn of the 19th century, to use a convenient benchmark, a
statistician might have resorted to the following graphical tools:

• bivariate plots of data points, used since the 17th century as witnessed by a paper
of EDMUND HALLEY (1686) giving a graphical analysis of barometric pressure as
a function of altitude. HALLEY’s presentation rests upon the rectangular coordinate
system which had been introduced in mathematics by RENÉ DESCARTES (1637)

1 Suggested reading for this chapter: CLEVELAND (1993, 1994), TUFTE (1992, 2001).
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after having been in use by old Egyptian surveyors three to four thousand years
before;

• line graphs of time series data and curve fitting together with interpolation of
empirical data points by J.H. LAMBERT (1760);

• the notion of measurement error as deviation from a rectangular graphed line, see
J.H. LAMBERT (1765);

• graphical analysis of periodic variation, see J.H. LAMBERT (1779);

• statistical mapping by A.W.F. CROME (1782), who also introduced superimposed
squares to compare areas and populations of European states;2

• bar charts, pie charts circle graphs by W. PLAYFAIR (1788, 1801).3

From the nineteenth century we mention the following inventions or new ideas in statistical
graphics:

• the ogive or cumulative frequency curve, suggested by J.B.J. FOURIER (1821) to
present the 1817 population of Paris by age grouping;

• the histogram by the French statistician A.M. GUERRY (1833) showing crime by
age groupings;

• logarithmic grid by L. LALANNE (1843);4

• the semi–logarithmic grid by W.S. JEVONS (1863) to show the percentage changes
in the prices of commodities;

• the stereogram by G. ZEUNER (1869) to depict demographic trends as surfaces in
a three–coordinates system;5

• the age pyramid as a bilateral histogram or frequency polygon by F.A. WALKER

(1874) to show results of the 1870 U.S. Census;

2 A.W.F. CROME (1753 – 1833) held a chair in the Faculty of Economics at the University of Giessen,
the first faculty of this kind, at least in Germany. Another famous statistican at the author’s University
of Giessen is E.L.E. LASPEYRES (1834 – 1913) who — in 1871 – suggested a formula for the price
index which later on was given his name and which is used world–wide to measure inflation.

3 There was a dispute between CROME and PLAYFAIR about the priority of comparing the size of
statistical data by the area of geometric objects (squares, circles).

4 This French engineer studied in detail the idea of linearizing plots by non–linear transformation of
scales, what he called “anamorphisme”, and so in particular introduced the log–log plot. He also
suggested polar coordinates.

5 This was a theoretical surface using axonometric projection to represent the history of various cohorts.
About ten years later L. PEROZZO (1880) produced a colored relief drawing of ZEUNER’s theoretical
surface, based on actual data from the Swedish censuses of 1750 – 1875.
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• probability paper suggested by F. GALTON (1899) and ruled so that the normal
probability curve appeared as a straight line.6 GALTON may be regarded as the one
who laid the foundation–stone for one of this book’s topic, the other one being the
least–squares principle, tracing back to GAUSS and LEGENDRE.

The most recent history of graphical methods in the twentieth century is difficult to com-
ment upon. We only mention the following highlights:

• the LORENZ curve of M.O. LORENZ (1905) to facilitate the study of concentration;

• the graphical innovations for exploratory data analysis, mainly due to J.W.
TUKEY (1977) as, for example, the stem–and–leaf display, graphical lists, box–
and–whisker display, hanging and suspended rootograms;

• the different approaches to graphically present multivariate data7 like the circular
glyphs with rays, see E. ANDERSON (1957), the ANDREWS’ waves, see D.F. AN-
DREWS (1972), to generate plots of multivariate date by a form of FOURIER series
or the CHERNOFF faces, see H. CHERNOFF (1973), to represent multivariate data
by cartoons of human faces.

The new approaches and innovations exploit modern technology, and most have little prac-
tical value except when executed by computer. In the future, innovations in statistical
graphics are likely to follow developments in computer graphics’ hardware and software,
and might be expected to include solutions to problems generated or made tractable by the
computer and associated technologies. BENIGER/ROBYN (1978) listed seven problems
which in the intervening time have been solved.

3.2 The role of graphical methods in statistics
The first part of this section discusses the relative merits of graphical versus numerical
techniques. Then we turn to the dangers associated with the use of graphs and their ability
to manipulate the observer of statistical graphs. In this context we will also comment upon
graphical perception, i.e. the visual decoding of information encoded in graphs. Finally,
in Sect. 3.2.3, we give an overview and a taxonomy of statistical graphs based on their
uses. There we also show how the topic of this book — probability plotting and linear
estimation — fits in the statistical graphics’ building.

3.2.1 Graphical versus numerical techniques
Plots and graphs of a wide variety are used in the statistic literature for descriptive and
inferential purposes. Visual representations have impact and they provide insight and un-
derstanding not readily found by other means. Formal numerical techniques are too often

6 His so–called log–square paper was to be improved by MARTIN/LEAVENS (1931). Subsequently var-
ious special graph papers for probability plotting, including TUKEY’s extremely ingenious binomial
paper, became readily available commercially, see MOSTELLER/TUKEY (1949).

7 The monograph of WANG (1978) is devoted to the graphical presentation of multivariate data.



3.2 The role of graphical methods in statistics 39

designed to yield specific answers to rigidly defined questions. Graphical techniques are
less formal and confining. They aid in understanding the numerous relationships reflected
in the data. They help reveal departures from the assumed models and statistical distribu-
tions as is best demonstrated in ANSCOMBE (1973).8 They help reveal the existence of
peculiar looking observations or subsets of the data. Graphical data displays often uncover
features of the data that were totally unanticipated prior to the analysis. It is difficult to
obtain similar information from numerical procedures.

There is need in statistical data analysis for both numerical and graphical techniques. This
text is a step in this direction by first assessing the validity of a chosen distribution by
displaying the sample data in a graph paper special to that distribution and computing the
distribution parameters in case of a linear fit to the data points. The numerical techniques
serve as a yardstick against which one can evaluate the degree of evidence contained in the
graphical display. Without such yardsticks it is quite easy to arrive at spurious conclusions.

Put another way — as TUKEY (1977) states — the relationship between graphical and
numerical techniques is analogous to the relationship between a police detective and a
judge. The graphical techniques are the counterpart of the detective looking for any clues
to help uncover the mysteries of the data. The formal, numerical inference tools of classi-
cal statistics are the counterpart of the judge who weighs the degree of evidence contained
in the clues to determine how much credence to put into them.

Once insights to a feature of the data have first been obtained from graphical procedures,
one can then use a standard numerical procedure for a check on the conclusions obtained
from the graphical analysis, for their increased precision and for their ‘objectivity’. The
graphical analyses suggest which numerical procedures to use and which of their assump-
tions are and are not satisfied. The results of these procedures in turn suggest new displays
to prepare. Thus, graphical and numerical techniques are not contrary, but they comple-
ment each other and should be used iteratively as will be done in Chapter 5.

3.2.2 Manipulation with graphs and graphical perception
Graphical perception as defined by CLEVELAND/MCGILL (1984) is the visual decoding
of information encoded on graphs. These authors — in a first attempt – identify ten ele-
mentary perceptual tasks that are carried out when people extract quantitative information
from graphs:

• position on a common scale,

• position on non–aligned scales,

• length,

8 ANSCOMBE constructed four data sets, each consisting of eleven (x, y)–pairs. Each of the four
datasets yields the same standard output from a typical OLS regression program for an assumed linear
relationship between x and y. But when the datasets are graphed they show very different shapes:
a linear relationship, a curved relationship, a strict linear relationship with one outlier and varying
y–values at one and the same x–value together with one differing (x, y)–point.
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• direction,

• angle,

• area,

• volume,

• curvature,

• shading,

• color saturation.

These items are not completely distinct tasks. For example, judging angle and direction
are clearly related. A circle has an area associated with it, but it also has a length, and a
person shown circles might well judge diameters or circumferences rather than areas.

Knowing what features of a graph are most attractive for the observer the designer may
manipulate the graph. So, e.g. in designing ANDREWS’ waves one can assign important
characteristics to the high–frequency components of the trigonometric polynomial thus
playing them down. The same thing is possible with CHERNOFF faces where one may
hide important characteristics by assigning them to inconspicuous features of a face like
the position of the pupil or the length and height of the eyebrow. Another very popular
trick to manipulate graphs of time series consists in stretching the ordinate and compress-
ing the abscissa (= time axis) to arrive at a steep course or doing the opposite to give the
impression of a slow and smooth development. These actions are often combined with cut-
ting of the ordinate without indication. The literature is full of examples showing graphs
that intentionally or unintentionally manipulate the observer or that are badly designed,
see for example KRÄMER (1994), LUKIESCH (1965), MONMONIER (1991), TOLANSKY

(1964), TUFTE (1992, 2001) or the classical book on statistical lies of HUFF (1954).

On the other side there are a lot of papers and books containing good advice for the design
of quantitative graphs like RIEDWYL (1987) or SCHMID/SCHMID (1979). Still, graph
design for data analysis and presentation is largely unscientific, and there is a major need
for a theory of graphical methods, although it is not at all clear what form such a theory
should take. Of course, theory is not to be taken as meaning mathematical theory! What
are required are ideas that will bring together in a coherent way things that previously
appeared unrelated and which also provide a basis for dealing systematically with new
situations.

Good graphs should be simple, self–explanatory and not deceiving. COX (1978) offers the
following guidelines for the clarity of graphs:

1. The axes should be clearly labeled with the names of the variables and the units of
measurement.

2. Scale breaks should be used for false origins.
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3. Comparison of related diagrams should be made easy, for example by using identical
scales of measurement and placing diagrams side by side.

4. Scales should be arranged so that approximately linear relations are plotted at
roughly 45◦ to the x–axis.

5. Legends should make diagrams as nearly self–explanatory, i.e. independent of the
text, as is feasible.

6. Interpretation should not be prejudiced by the technique of presentation.

3.2.3 Graphical displays in statistics
Graphical approaches in statistics mainly serve four purposes.

1. Data exploration in the sense of finding a suitable model
1.1. For data condensation we have, e.g.

– the histogram,
– the dot–array diagram,
– the stem–and–leaf diagram,
– the frequency polygon,
– the ogive or
– the box–and–whiskers plot.

1.2. For showing relationships
– among two variables we may use

• the scatter plot,
• the sequence plot,
• the autocorrelation plot or
• the cross–correlation plot and

– among three or more variables we have
• the labeled scatter plot,
• the draftsman plot,
• the casement plot,
• glyphs and metroglyphs,
• the weather–vane plot,
• profile plots,
• the biplot,
• face plots,
• ANDREWS’ waves,
• cluster trees,
• similarity and preference maps,
• multidimensional scaling displays.
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2. Data analysis in the sense of estimation and validation of a model

2.1. Distribution assessment by means of

– the QQ–plot,
– the PP–plot,
– the probability plot on probability paper,
– the hazard plot,
– the TTT–plot,
– the hanging histogram,
– the rootogram or
– the POISSONNESS plot, see D.A. HOAGLIN (1980).

2.2 Model adequacy and assumption verification by

– average versus standard deviation plot,
– residual plots,
– partial–residual plots,
– component–plus–residual plot.

2.3. Decision making based on

– control charts,
– cusum charts,
– the YOUDEN plot
– the half–normal plot,
– the ridge trace.

3. Communication and data presentation as an appealing alternative to tables

3.1. Quantitative graphics like

– bar charts,
– pie charts,
– pictograms,
– the contour plot,
– the stereogram or
– the color map.

3.2. Summary of statistical analysis like

– means plots,
– the notched box plot,
– the interaction plot,
– the confidence plot.

4. Tools in statistical work like

– power curves and OC–curves,
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– sample–size curves,

– confidence limits,

– nomographs to quickly read the values of complicated mathematical–statistical
functions,

– the binomial paper of MOSTELLER/TUKEY.

We remark that there are graphs that serve more than one of the four purposes mentioned
above.

3.3 Distribution assessment by graphs
In this section we present graphs which play a dominant role in the inference of univariate
and continuous distributions. We will distinguish five types:

• the quantile plot or QQ–plot,

• the percent plot or PP–plot,

• the probability plot on specially designed probability paper,

• the hazard plot and

• the TTT–plot.

The first four technique have a common basis, i.e. they all start with the CDF of a random
variable. This CDF has to be a parametric function, more precisely, it should be a member
of the location–scale family, see Chapter 1. The TTT–plot mainly is a technique in non–
parametric statistics giving less information than hazard plotting and probability plotting.

3.3.1 PP–plots and QQ–plots

Both types of plots are apt to compare

• two theoretical CDFs,

• two empirical CDFs and

• an empirical CDF to a theoretical CDF.

They do not help in estimating the parameters of the distribution, but they are the basis
for probability plotting and hazard plotting which lead to estimates of the distribution
parameters. Let FX(x) and FY (y) be the CDFs of variates X and Y , respectively, see
Fig. 3/1. From this display we may deduce two types of graphs, the QQ–plot or quantile
plot and the PP–plot or percent plot.
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Figure 3/1: Explanation of the QQ–plot and the PP–plot

For each value P on the ordinate axis displaying the CDF there are at most two values on
the abscissa axis displaying the realizations of the variates, called quantiles:

xP := QX(P ) and yP := QY (P ).

Conversely, for each value Q on the abscissa axis there are at most two values on the
ordinate axis indicating the probability of each variate to show a realization up to Q:

Pr(X ≤ Q) = FX(Q) = PX(Q) and Pr(Y ≤ Q) = FY (Q) = PY (Q).

A PP–plot, as is shown in Fig. 3/2, is a display where FY (Q) = PY (Q) is plotted against
FX(Q) = PX(Q) for Q varying, Q ∈ R. The PP–plot is less important than the QQ–
plot, see below. If X and Y were identically distributed, their CDFs will coincide in
Fig. 3/1 and the resulting PP–plot will be a 45◦–line running from

(
PX(Q), PY (Q)

)
] =

(0, 0) to
(
PX(Q), PY (Q)

)
= (1, 1). Variations from this line would indicate that the two

distributions are not identical. Contrary to the QQ–plot the PP–plot will not be linear if
one of the two variates is a linear transform of the other one, see Fig. 3/2 where X and Y
are both normally distributed, X ∼ NO(0, 1) and Y ∼ NO(−1, 2).9 Y is — compared to
X — shifted to the left and thus will have a high probability when that of X is still high
and this effect is not compensated for by the smaller variance of X .

Despite the missing clear sensitivity of a PP–plot against a linear transformation of the
variates it is of some importance. The PP–plot possesses a high discriminatory power in
the region of high density because in that region the CDF, i.e. the value of P , is a more

9 X ∼ NO(µ, σ) reads: ’X is normally distributed with parameters a = µ and b = σ‘.
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rapidly changing function of Q than in the region of low density, see Fig. 3/3, showing
the normal and CAUCHY densities in the left–hand part and the corresponding PP–plot
in the right–hand part. Both distributions are centered at x = 0 and the scale parameter
b of the CAUCHY distribution has been chosen so that both distributions have the same
variation as measured by the length of a two–sided central 68.29%–interval. Furthermore,
the idea of the PP–plot is — contrary to that of a QQ–plot — transferable to a multivariate
distribution.

Figure 3/2: PP–plot comparing two normal distributions: X∼NO(0, 1), Y ∼NO(−1, 2)

Figure 3/3: Normal and CAUCHY densities and the corresponding PP–plot
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A QQ–plot is a display where yP is plotted against xP with P varying, generally:
0 ≤ P ≤ 1. For identically distributed variates X and Y the CDFs in Fig. 3/1 would
coincide and we will get xP = yP ∀ P ∈ [0, 1] and the QQ–plot is a 45◦–line running in
the direction of the origin of the coordinate axes. If x is a positive linear transform of Y ,
i.e. X = a+ b Y, b > 0, then the QQ–plot will be straight line, which easily shown:

FX(x) = FY

(
x− a

b

)
, b > 0, =⇒ yP =

xP − a

b
or xP = a+ b yP .

This property of linear invariance renders the QQ–plot especially useful in statistical anal-
ysis, because linearity is a form of course which is easily perceived by the human eye, as
well as deviations from this course. There is a special case where QQ–plot and PP–plot
are identical: X and Y both are uniformly distributed in [0, 1]. This will happen when the
two variates are probability integral transforms.

If one of the two distributions to be compared by a QQ–plot possesses very long tails with
rather small DF–values, then the QQ–plot will emphasize this distributional difference
whereas the difference in the “middle” region of the two distributions, where the density
is relatively high, will be blurred somewhat. The reason for this kind of sensitivity of
a QQ–plot is that a quantile changes rapidly with P where the density is low, and only
changes slowly with P where the density is high. A greater concentration in the tails of
one of the distributions as compared to the other one will cause the curve in the QQ–plot
to deviate considerably from a straight line in the regions corresponding to P < 0.05 and
P > 0.95, say, see the graphs on the right–hand side in Fig. 3/4.

It is also possible to use a QQ–plot for the comparison of two empirical CDFs, see the
two graphs at the bottom of Fig. 3/4. When both samples are of equal size n, the empirical
QQ–plot simply consists of plotting yi:n over xi:n for i = 1, 2, . . . , n. For samples of
different sizes the procedure is as follows.

1. Let n1 be the size of the smaller sample with observations xν , ν = 1, 2, . . . , n1 and
n2 be the size of the greater sample with observations yκ, κ = 1, 2, . . . , n2.

2. The order of the empirical quantiles is chosen in such a way that the ordered x-
observations are equal to the natural quantiles, i.e.

xpν = xν:n1 ; pν = ν/n1; ν = 1, 2, . . . , n1. (3.1a)

3. The y–quantile to be plotted over xν:n1 is an interpolated value:

ypν = yκ:n2 + (n2 pν − κ) (yκ+1:n2 − yκ:n2) (3.1b)

with
κ < npν ≤ κ+ 1. (3.1c)

To compare an empirical CDF

Fn(x) =


0 for x < x1:n

i
/
n for xi:n ≤ x < xi+1:n, 1 ≤ i ≤ n− 1,

1 for x ≥ xn:n
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on the abscissa axis to a theoretical CDF FY (y) on the ordinate axis, we have to plot the
Y –quantile of order P = i

/
n against xi:n. The resulting graph is a scatter–plot consisting

of n pairs
(
xi:n, yi/n

)
or n− 1 pairs when yn/n = ∞ and the support of X is unlimited to

the right.

Figure 3/4: Theoretical and empirical QQ–plots

3.3.2 Probability paper and plotting positions
The two axes of a QQ–plot have a natural (= linear) scale. The most frequently used
probability papers or probability grids result into a QQ–plot too, but

• on probability paper we compare empirical quantiles of a sample to the theoretical
quantiles of a universe,

• the axes of a probability paper, especially the probability–labeled axis, are generally
non–linear and distorted in such a way that the data points will scatter around a
straight line when the sample has been drawn from the given universe.
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Probability paper is predominant in the location–scale family of distributions where it is
easily implemented and has a lot advantages. We will first give the theoretical background
and show how to construct a probability paper. A special problem in application is the
choice of the plotting position, i.e. the ordinate value, belonging to an ordered observa-
tion xi:n.

A probability paper for a location–scale distribution is constructed by taking the vertical
axis (ordinate) of a rectangular system of coordinates to lay off the quantiles of the reduced
variable Y ,10

yP = F−1
Y (P ), generally: 0 ≤ P ≤ 1, (3.2)

but the labeling of this axis is according to the corresponding probability P = F−1
Y (yP )

or 100P%. This procedure gives a scaling with respect to P which — in general — is
non–linear, an exception being the uniform distribution over [0, 1]. Despite this probability
labeling, which is chosen for reasons of an easier application and a better interpretation
and understanding, the basis of this axis is a theoretical quantile function. For the expo-
nential probability paper in Fig. 3/5 this quantile function is given by yP = − ln(1 − P ).
Sometimes a second vertical axis is given with the quantile labeling, see Fig. 3/5, which
will help to read off estimates of the parameters a and b. There are cases where the inverse
F−1

Y (P ) cannot be given in closed, analytical form but has to be determined numerically,
the normal distribution being the most prominent example of this case.

The second, horizontal axis of the system of coordinates is for the display of X , either in
linear scaling or non–linear according to X̃ = g(X) when a transformation to location–
scale type has been made. The quantiles of the distribution of X or of g(X) will lie on a
straight line

xP = a+ b yP or x̃P = ã+ b̃ ỹP . (3.3)

The upper part Fig. 3/5 shows an exponential probability paper and — in the lower part —
a PARETO probability paper. Both papers have the same scaling of the ordinate axis
whereas their abscissa axes are different, because when X is PARETO distributed, then
ln(X − a) is exponentially distributed, see (1.47a) – (1.48c).

In application to sample data the ordered sample values or their transforms— both re-
garded as empirical quantiles — are laid off on the horizontal axis and their corresponding
ordinate values, called plotting positions, on the vertical axis. Please observe the follow-
ing items when looking at a probability paper:

• The estimation of the parameters a and b or ã and b̃ is done by minimizing the
sum of squared horizontal distances, see Chapter 4, i.e. the plotting position is
the explaining variable (regressor) and the empirical quantile is the variable to be
explained (regressand). Thus, the estimated slope of the straight line is the tangent of
the angle between the straight line and the ordinate axis and the estimated parameter
a or ã is given by the intersection of the straight line and a horizontal line running
through yP = 0 or ỹP = 0.

10 The quantiles of some reduced variables bear special names: probit for the normal distribution, logit
for the logistic distribution and rankit for the uniform distribution.
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• Log–transformed data are conventionally displayed with the log–axis scaled accord-
ing to the common or decimal logarithm, see the lower graph in Fig. 3/5, whereas
the transformation of the variate is done using the natural logarithm. Thus, when
reading off estimates from the estimated straight line with a log10–scaled abscissa
one has to pay regard to the modulusM10 = 1

/
ln 10 ≈ 0.43429448, i.e. one ln–unit

is equivalent to 0.43429448 log10–units.

Figure 3/5: Exponential and PARETO probability papers

Let xi:n; i = 1, . . . , n; be the ordered observations of a sample from a location–scale
distribution. The corresponding reduced observations would be

yi:n = (xi:n − a)/b, (3.4a)

provided a and b are known. In the latter case we could even compute the corresponding
P–value on the probability–labeled ordinate

Pi = FY

(
xi:n − a

b

)
(3.4b)
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to be plotted over xi:n. All these points would lie on a straight line. As a and b are unknown
we have to ask how to estimate yi:n or equivalently Pi. These estimates are called plotting
positions. We have to bear in mind two aims:11

1. achieving linearity when the distribution of X has been chosen correctly,

2. efficient estimation of the parameters a and b.

As two equivalent quantities can be laid off on the ordinate of a probability paper the
search for a plotting position can either start at yP or at P = FY (yP ). The various plot-
ting conventions are based wholly on the sample size n and on the nature of FY (·). The
numerical values xi:n of the observations will not play a part. The conventions will indi-
cate appropriate values P̂i on the P–scale or values ŷi:n on the axis for the reduced variate
corresponding to the P̂i. As in formulas (3.4a,b) the P̂i may then be expressed in terms of
the ŷi:n:

P̂i = FY (ŷi:n) (3.5a)

or conversely
ŷi:n = F−1

Y (P̂i). (3.5b)

We first present the so–called “direct” method, see KIMBALL (1960, p. 549), since the
rationale involved is based directly on the order number i of xi:n.

1. A naı̈ve estimator — but simultaneously the maximum likelihood estimator
(MLE) — of FX(x)=FY

(
[x− a]/b

)
= FY (y) is the stair–case function

P̂ = F̂X(x) =


0 for x < x1:n,
i

n
for xi:n ≤ x < xi+1:n, i = 1, 2, . . . , n− 1,

1 for x ≥ xn:n,

leading to the plotting position

P̂i =
i

n
. (3.6a)

A drawback of this proposal is that for all distributions with unlimited range to the
right P = 1 is not found on the probability scale so that the largest sample value
xn:n cannot be displayed.

2. For this reason WEIBULL (1939) has proposed

P̂i =
i

n+ 1
. (3.6b)

Another rationale for the choice of this WEIBULL position will be given below.

11 Plotting positions are — among others — discussed by: BARNETT (1975, 1976), BLOM (1958),
HARTER (1984), KIMBALL (1960) and LOONEY/GULLEDGE (1985).
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3. The midpoint position is

P̂i =
i− 0.5

n
, (3.6c)

motivated by the fact that at xi:n the stair–case moves upwards from (i−1)/n to i/n.
Thus one believes that xi:n is a quantile of order Pi somewhere between (i − 1)/n
and i/n, and the average of these two is the estimator (3.6c).

4. BLOM (1958) has proposed

P̂i =
i− 0.375

n+ 0.25
. (3.6d)

The BLOM position guarantees optimality of the linear fit on normal probability
paper. Sometimes this plotting position is used for other than normal distributions.

There are plotting positions which rest on the theory of order statistics, see Chapter 2. A
first approach along this line departs from the random portion Πi of sample values less
than Xi:n and tries to estimate Pi. A second approach — discussed further down — tries
to estimate yi:n and departs from the distribution of Yi:n. The random portion Πi is defined
as

Πi = Pr(X ≤ Xi:n) = FY

(
Xi:n − a

b

)
(3.7a)

and has the following CDF:

FΠi
(p) = Pr

(
Πi ≤ p

)
=

n∑
j=i

(
n

j

)
pj (1− p)n−j. (3.7b)

The binomial formula (3.7b) results from the fact that we have n independent observations
Xi each of them having a probability p to fall underneath the quantile xp = F−1

X (p). Then
Xi:n will be smaller than F−1

X (p), if i or more sample values will turn out to be smaller
than F−1

X (p). (3.7b) is identical to the CDF of the beta distribution with parameters i and
n− i+ 1, the DF being

fΠi
(p) =

n!

(i− 1)! (n− i)!
pi−1 (1− p)n−i, 0 ≤ p ≤ 1. (3.7c)

Taking the mean, the median or the mode of Πi gives the following three plotting positions:

• P̂i = E(Πi) =
i

n+ 1
− mean plotting position, (3.7d)

which is equal to (3.6b).

• P̂i such that FΠi

(
P̂i

)
= 0.5

This median plotting position cannot be given in closed form, but JOHNSON (1964)
suggested the following approximation

P̂i ≈
i− 0.3

n+ 0.4
. (3.7e)
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• P̂i =
i− 1

n− 1
− mode plotting position. (3.7f)

(3.7f) turns into P̂1 = 0 for i = 1 and into P̂n = 1 for i = n, and because most of the
probability papers do not include the ordinate values P = 0 and P = 1, the mode plotting
position is rarely used.

All plotting positions presented above are estimates of Pi = FX(X ≤ xi:n) and all of them
do not depend on the sampled distribution. Plotting positions on the scale of the reduced
variable Y = (X − a)/b depend on the distribution of the ordered variates Yi:n, which on
their turn depend on the sampled distribution, see (2.1a-d). The plotting position ŷi:n is
chosen as one of the functional parameters of Yi:n, either the mean, see (2.9a)

ŷi:n = E(Yi:n) =: αi:n (3.8a)

or the median
ŷi:n = ˜̃yi:n (3.8b)

or the mode
ŷi:n = y∗i:n. (3.8c)

Nearly all of these plotting positions cannot be given in closed form and have to be com-
puted numerically, see Chapter 5.

Tab. 3/1 summarizes all the plotting positions discussed above. With respect to the choice
we can finally state that in most applications it does not matter much how Pi or yi:n are
estimated. One will only notice marked differences when the sample size is small. But
even these differences are blurred when the straight line is fitted to the data points free–
hand.

Table 3/1: Plotting positions

Name Quantile axis’ value ŷi:n Probability axis’ value P̂i

Naı̈ve estimator ŷi:n = F−1
Y (i/n) P̂i = i/n

Midpoint position ŷi:n = F−1
Y [(i− 0.5)/n] P̂i = (i− 0.5)/n

BLOM position ŷi:n = F−1
Y [(i− 0.375)/(n+ 0.25)] P̂i = (i− 0.375)/(n+ 0.25)

Mean position
– with respect to Πi ŷi:n = F−1

Y [i/(n+ 1)] P̂i = i/(n+ 1)

– with respect to Yi:n ŷi:n = αi:n P̂i = FY (αi:n)

Median position
– with respect to Πi ŷi:n = F−1

Y [(i− 0.3)/(n+ 0.4)] P̂i = (i− 0.3)/(n+ 0.4)

– with respect to Ui:n ŷi:n = ˜̃yi:n P̂i = FY (˜̃yi:n)

Mode position
– with respect to Πi ŷi:n = F−1

Y [(i− 1)/(n− 1)] P̂i = (i− 1)/(n− 1)

– with respect to Yi:n ŷi:n = y∗i:n P̂i = FY (y∗i:n)
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Probability papers12 are often combined with a numerical analysis as in Chapter 5 because
plots serve many purposes, which no single numerical method can. We conclude this
section on probability plotting by first listing its advantages and then its limitations.

1. It is fast and simple to use. In contrast, numerical methods may be tedious to
compute and may require analytic know–how or an expensive statistical consul-
tant. Moreover, the added accuracy of numerical methods over plots often does not
warrant the effort.

2. It presents data in an easily understandable form. This helps one to draw conclusions
from data and also to present data to others. The method is easily understood, even
by laymen.

3. It provides simple estimates for a distribution: its parameters, the so–called per-
centile estimates, its percentiles, its percentages below or above a given realization.
When the paper is supplemented by auxiliary scales one can even read the hazard
function, the cumulative hazard function, the mean and the standard deviation.

4. It helps to assess how well a given theoretical distribution fits the data. Sometimes
it is even possible to identify and to estimate a mixture of two or at most three
distributions.

5. It applies to both complete and censored data. Graphical extrapolation into the cen-
sored region is easily done.

6. It helps to spot unusual data. The peculiar appearance of a data plot or certain plotted
points may reveal bad data or yield important insight when the cause is determined.

7. It lets one assess the assumptions of analytic methods which will be applied to the
data in a later stage.

Some limitations of a data plot in comparison to analytic methods are the following:

1. It is not objective. Two people using the same plot may obtain somewhat different
estimates. But they usually come to the same conclusion.

2. It does not provide confidence intervals or a statistical hypothesis test with given
error–probabilities. However, a plot is often conclusive and leaves little need for
such analytic results.

Usually a thorough statistical analysis combines graphical and analytical methods.

12 For a short remark on the history of probability plotting see BARNETT (1975).
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3.3.3 Hazard plot
The plotting of multiply and randomly censored data13 on probability paper causes some
problems, and the plotting positions are not easy to compute, see Sect. 4.3.2. Plotting
positions in these cases are comfortably determined as shown by NELSON (1972) when
hazard paper is used. We will first demonstrate how to construct a hazard paper with
emphasis on the maximum extreme value distribution of type I and then shortly comment
on the choice of the plotting position for this kind of paper.

We still analyze location–scale distributions where FX(x) = FY (y) for y = (x − a)/b.
The cumulative hazard function (= CHF), see Table 1/1, is given by

HX(x) = − ln[1− FX(x)] = − ln[1− FY (y)] = HY (y), y =
x− a

b
. (3.9a)

Let Λ, Λ > 0, be a value of the CHF, then

yΛ = H−1
Y (Λ) (3.9b)

and consequently
xΛ = a+ b yΛ. (3.9c)

yΛ and xΛ may be called hazard quantile, h–quantile for short. A hazard paper for a
location–scale distribution is constructed by taking the vertical axis of a rectangular system
of coordinates to lay off yΛ, but the labeling of this axis is according to the corresponding
CHF–value Λ. This procedure gives a scaling with respect to Λ which — in general — is
non–linear, an exception being the exponential distribution.

The probability grid and the hazard grid for one and the same distribution are related to
one another because

Λ = − ln(1− P ) (3.9d)

or
P = 1− exp(−Λ), (3.9e)

where P is a given value of the CDF. Thus, a probability grid may be used for hazard
plotting when the P–scaling of the ordinate is supplemented by a Λ–scaling. Conversely,
a hazard paper may be used for probability plotting.

The reduced extreme value distribution of type I for the maximum has

FY (y) = exp{− exp(−y)},

so that the CHF–function is

HY (y) = − ln[1− FY (y)]

= − ln[1− exp{− exp(−y)}] (3.10a)

13 See Section 4.1 for an explication of these types of sampling.
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and
yΛ = − ln{− ln[1− exp(−Λ)]}, Λ > 0, (3.10b)

and finally
xΛ = a− b ln{− ln[1− exp(−Λ)]}. (3.10c)

Figure 3/6: Hazard paper for the maximum extreme value distribution of type I

The cumulative hazard value Λi for the i–th ordered observation xi:n has to be estimated.
For each uncensored observation the hazard function h(x | a, b) is estimated by the hazard
value

ĥ(xi:n | a, b) =
1

n− i+ 1
(3.11a)

where n − i + 1 is the number of sampled items that have not been censored up to xi:n.
n− i+ 1 is nothing but the reverse rank

ri := n− i+ 1 (3.11b)

which results when all observations — censored as well as uncensored — would be or-
dered in descending order. The hazard plotting position is estimated by

Λ̂i = ĤX(xi:n) =
i∑

j=1

1

rj

(3.11c)

and the summation is only over those reverse ranks belonging to uncensored observations.
NELSON (1972) proved the unbiasedness of (3.11c) when the data are type–II multiply
censored.
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3.3.4 TTT–plot
The TTT–plot is a graph which mainly serves to discriminate between different types of
aging, i.e. between constant, decreasing or increasing hazard functions. Thus, this kind
of plot is applicable to life–time distributions where the variate only takes non–negative
realizations. We will first present TTT–plots for uncensored life tests, make some remarks
on the censored–data case and close by listing the advantages and limitations.

Let 0 = X0:n ≤ X1:n ≤ . . . ≤ Xn:n denote an ordered sample from a life–time distribution
F (x) with survival function R(x) = 1− F (x). The total time on test (TTT) statistics

TTTi =
i∑

j=1

(n− j + 1) (Xj:n −Xj−1:n); i = 1, 2, . . . , n; (3.12a)

have been introduced by EPSTEIN/SOBEL (1953) in connection with the inference of the
exponential distribution. For a graphical illustration of TTTi see Fig. 3/7. The sample
mean may be expressed as

X =
1

n
TTTn. (3.12b)

The normalized quantity

TTT ∗i =
TTTi

TTTn

=
TTTi

nx
, 0 ≤ TTT ∗i ≤ 1, (3.12c)

is called scaled total time on test. By plotting and connecting the points (i/n, TTT ∗i );
i = 0, 1, . . . , n; where TTT0 = 0, by straight line segments we obtain a curve called the
TTT–plot, see Fig. 3/7. This plotting technique was first suggested by BARLOW/CAMPO

(1975) and shows what portion of the total time on test has been accumulated by the
portion i/n of items failing first. The TTT–plot has some resemblance to the LORENZ–
curve, the difference being that the latter is always strictly convex and lies beneath the
45◦–line.

To see what is revealed by a TTT–plot we look at the exponential distribution with F (x) =
1− exp(−x/b), x ≥ 0. The theoretical counterpart of (3.12a) for this distribution is

G−1
F (P ) :=

F−1(P )∫
0

exp(−x/b) dx

=

−b ln(1−P )∫
0

exp(−x/b) dx

= b P. (3.13a)

This is called the TTT–transform of FX(x). The scale invariant transform being the
theoretical counterpart of (3.12c) is

G−1
F (P )

µ
=
b P

b
= P, 0 ≤ P ≤ 1, (3.13b)
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and the TTT–plot will be the 45◦–line starting at the origin. BARLOW/CAMPO (1975)
have shown that the theoretical TTT–plot will be

• concave and lying above the 45◦–line when F (x) has an increasing hazard function
(= IHF),

• convex and lying below the 45◦–line when F (x) has a decreasing hazard function
(= DHF).

An empirical TTT–plot which

• takes its course randomly around the 45◦–line indicates a sample from an exponen-
tial distribution,

• is nearly concave (convex) and is mainly above (below) the 45◦–line indicates a
sample from an IHF (DHF) distribution.

BARLOW/CAMPO (1975) formulated a test of H0 : “F (x) is an exponential distribution”
against H1: “F (x) is IHF (DHF)”. If the TTT–plot is completely above (below) the 45◦–
lineH0 is rejected in favor of IHF (DHF), the level of significance being α = 1/n. Fig. 3/7
shows three empirical TTT–plots of samples from different WEIBULL distributions, where
the hazard functon is given by

h(x) =
c

b

(
x− a

b

)c−1

, x ≥ a.

h(x) is increasing for c > 1, decreasing for c < 1 and constant for c = 1.

Figure 3/7: TTT–plots for several WEIBULL samples of size n = 20



58 3 Statistical graphics

With respect to censored life tests the scaled total time on test is defined as

•
TTT ∗i =

TTTi

TTT (T )
(3.14a)

for type–I singly censoring at T and plotted against i/k; i = 1, 2, . . . , k; and k
failures within (0, T ],

•
TTT ∗i =

TTTi

TTT (xr:n)
(3.14b)

for type–II singly censoring at the r–th failure and plotted against i/r; i =
1, 2, . . . , r.

The plots generated in this way will generally lie above those of an uncensored sample of
equal size. For the TTT–plot when the sample is multiply censored see BERGMAN/KLEFSJÖ

(1984) and WESTBERG/KLEFSJÖ (1994).

Compared to plots on probability paper or on hazard paper the TTT–plot has several ad-
vantages:

1. The TTT–plot is well motivated in theory as well as in practice.

2. The TTT–plot is scale invariant.

3. The TTT–plot does not need a special system of coordinates, it is simply displayed
in the linearly scaled unit square.

4. Several distributions — even from different families — can be compared.

5. Its interpretation is plain.

The limitations are:

1. It is only possible to give a rough classification into IHF, DHF or exponential or
neither of them.

2. Parameter estimation is impossible as is the reading of percentages or of quantiles.



4 Linear estimation —
Theory and methods

When we have great confidence that a sample comes from a special genuine location–scale
distribution or a special transformed to location–scale distribution and this confidence is
further supported by a nearly linearly ordered set of points in the matching probability
paper we want to estimate the location–scale parameter (a, b). Statistical theory has de-
veloped a number of approaches to parameter estimation, e.g. the maximum likelihood
method, the method of moments or the method of percentiles. The approach that fits best
to the use of probability paper and to the modeling of order statistics from location–scale
populations is the method of least–squares that — in principle — linearly combines the
data to parameter estimates. The special version of the least–squares method which will
or has to be applied for estimating (a, b) depends

• on the type of sampling data at hand and

• on what is known about the moments of order statistics needed in the estimation
procedure.

We will first comment upon the commonly used types of sampling (Sect. 4.1). The avail-
ability of either exact or approximate moments of order statistics has influenced the struc-
ture of Sect. 4.2. The methods presented in Sect. 4.3 do not use exact or approximate
moments of order statistics as regressors and plotting positions but use regressors which
are deduced from the estimated CDF. This will be the case for great sample sizes so that
either the observations are grouped and not known individually by their values or because
the evaluation of the order statistics’ moments is tedious and difficult. Another reason for
relying on the estimated CDF is a special sampling plan, e.g. multiple and random censor-
ing, resulting in a sequence of data that consists in a mixture of complete and incomplete
observations. In Sect. 4.4 we comment on the goodness–of–fit.

4.1 Types of sampling data
In course of time both, statistical theory and practice have developed a great variety of
sampling plans each implying a data–type of its own. The most common types of sam-
pling data are depicted in Fig. 4/1. These types are admitted as input to the MATLAB
program LEPP performing linear estimation and probability plottting for a great num-
ber of location–scale distributions, presented in Chapter 5. In Chapter 6, where LEPP is
sketched, we will describe how the data–input has to be arranged. In this section we will
comment upon the data–types of Fig. 4/1.

Grouped data will arise when the sample size n is large enough to set up classes without
loosing too much information. There are several rules of thumb telling how the number k
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of classes should be linked to the sample size n:

k ≈
√
n for 30 < n ≤ 400,

k ≈ 5 log n for 30 < n ≤ 400,

k ≈ 1 + 3.3 log n for 30 < n ≤ 400,

k = 20 for n > 400.

Let j (j = 1, . . . , k) be the class number. Then we define:

xu
j − the upper class limit

x`
j − the lower class limit,

and have

x`
j < xu

j ∀ j,

xu
j < xu

j+1, j = 1, . . . , k − 1,

xu
j = x`

j+1, j = 1, . . . , k − 1.

Figure 4/1: Types of sampling data

According to the right–hand continuity of the CDF the classes are open to the left, i.e.
observation xi (i = 1, . . . , n) falls into class j when x`

j < xi ≤ xu
j . The class frequency is
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denoted by nj with

n =
k∑

j=1

nj.

The class widths xu
j − x`

j may be equal (= equidistant grouping) or not, depending on the
concentration of the observations along the x–axis. Often, the first class has x`

1 = −∞
and the last class has xu

k = ∞. In the latter case the point xu
k together with its plotting

position cannot be depicted on probability paper. Generally, plotting positions for grouped
data are given by cumulated relative frequencies and the regressors by the corresponding
percentiles of a reduced distribution.

Non–grouped data may be censored or not. A sample is said to be censored when, either
by chance or by design, the value of the variate under investigation is unobserved for some
of the items. The data–input to LEPP for the censored as well as for the non–censored
case has to consists of the ordered observations together with their corresponding ranks,
see Sect. 6.2.

Censoring is most popular with life testing1 or for those situations where the variate under
consideration is some duration like a mission time or the time of sojourn in a given state.
The purpose of censoring in these cases is to come to an early end of the sampling process.
Therefore, the following argumentation is mostly done in terms of failure and failure time.
But censoring may occur for other types of variates, too, e.g. when the resolution of a
measuring device is not high enough to record smaller values or when the exact value
of items greater than a given limit are of no interest and only their frequency is what
matters. Thus, censoring generally means that observations beyond a given threshold are
only known by their numbers but not by their values.

Censoring may be at random or not. For example, in a medical trial patients may enter
the study in a more or less random fashion, according to their time of diagnosis. Some of
the patients are lost to follow–up because they move or they die of an illness other than that
under investigation or the study is terminated at some prearranged date. Censoring times,
that is the length of a patients’s time under study, are random. A very simple random
censoring process that is often realistic is one in which each individual is assumed to have a
lifetime X and a censoring time C, with X and C being independent continuous variates.
C may be the time of a competing risk. Let (Xi, Ci); i = 1, 2, . . . , n; be independent and
define

Ti = min(Xi, Ci) and δi =

 0 if Xi ≤ Ci,

1 if Xi > Ci.

The data from observations on n individuals consist of the pairs (ti, δi), where δi is an
indicator telling whether the observation ti is censored (δi = 1) or not (δi = 0). For
randomly censored data the plotting positions are derived from a CDF which is estimated
by the KAPLAN–MEIER approach, see Sect. 4.3.2.

1 See RINNE (2009) for more details on how to do life testing and on the parameters which constitute a
life testing plan.
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Non–random censoring means that the censoring time is planned in one way or the other.
In type–I censoring or time censoring, testing is suspended when a pre–established and
fixed testing time has been reached, i.e. the censoring time is directly specified. In this case
the numbers of failing items inside and outside the censored interval are random variables
and the ranks of the uncensored items are random numbers. With type–II censoring or
failure censoring we indirectly set the censoring time by specifying a certain failure num-
ber where either the censoring starts and/or ends. In this case the ranks of the uncensored
items are non–random whereas the the censoring time is given by a random order statistic.

Single censoring means that we only have one censoring limit either on the side of small
values, called censoring from below (= on the left), or on the side of high values, called
censoring from above (= on the right). With censoring on the left (on the right) the
smallest (highest) values are only known by their frequencies. Double censoring (= cen-
soring on both sides) is characterized by an upper and lower threshold so that only items
within these limits are known by their values and those outside are only known by their
frequencies. For single and double censoring we can arrange the uncensored items in as-
cending order and number them by an uninterrupted sequence of natural numbers. Thus,
for single and double censoring the plotting positions are identical to the regressors and
will be the exact or approximate means of order statistics.

In many practical situations, the initial censoring results only in withdrawal of a portion of
the survivors. Those which remain on test continue under observation until ultimate fail-
ure or until a subsequent stage of censoring is performed. For sufficiently large samples,
censoring may be progressive through several stages, thus leading to a multiply (progres-
sively) censored test or (hypercensored test). There are several reasons for multiple
censoring:

1. Certain specimens must be withdrawn from a life test prior to failure for use as test
objects in related experimentation or to be inspected more thoroughly.

2. In other instances progressively censored samples result from a compromise be-
tween the need for more rapid testing and the desire to include at least some extreme
life spans in the sample data.

3. When test facilities are limited and when prolonged tests are expensive, the early
censoring of a substantial number of sample specimens frees facilities for other tests
while specimens, which are allowed to continue on test until subsequent failure,
permit observation of extreme sample values.

Multiple censoring results in an ordered series of data which is a mixture of uncensored
and censored observations. Thus, we cannot dispose of an uninterrupted sequence of ranks
for the uncensored items. We have to estimate a CDF in the same way as is the case of
randomly censored data, i.e. by the KAPLAN–MEIER approach.

Resuming what has been said above we have three types of input data to the program
LEPP described in Section 6.2:

1. ordered observations coming from an uncensored sample or from either a singly or
doubly censored sample, each observation accompanied by its rank,
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2. observations coming from either a randomly or a multiply censored sample, each
observation bearing an indicator telling whether the observation is censored or not,

3. grouped data consisting of the pairs (xu
j , nj); j = 1, . . . , k; i.e. the upper class limit

and the class frequency.

4.2 Estimators based on moments of order statistics
The order statistics of the general and the reduced versions of any location–scale distribu-
tion are linked by

Xr:n = a+ b Yr:n, r ∈ {1, . . . , n}. (4.1a)

The moments of Yr:n only depend on n and r and on the form of the reduced density fY (y),
but not on a and b. Let

E(Yr:n) =: αr:n, Cov(Yr:n, Ys:n) =: βr,s:n; r, s ∈ {1, . . . , n}; (4.1b)

then

µr:n = E(Xr:n) = a+ b αr:n (4.1c)

σr,s:n = Cov(Xr:n, Xs:n) = b2 βr,s:n, (4.1d)

where αr:n and βr,s:n can be evaluated once and for all, see the hints to published tables
for some location–scale distributions in Sect. 5.2. E(Xr:n) is linear in the parameters a
and b with known coefficients αr:n and Cov(Xr:n, Xs:n) is known apart from b2. Reverting
to (4.1a), giving an equation for the variates, we can establish the following regression
model:

Xr:n = a+ b αr:n + εr, (4.2a)

where εr is a variate expressing the difference between Xr:n and its mean µr:n = E(Xr:n).
Thus,

E(εr) = 0, r ∈ {1, . . . , n}, (4.2b)

Cov(εr, εs) = Cov(Xr:n, Xs:n); r, s ∈ {1, . . . , n}. (4.2c)

We collect the variances and covariances of the order statistics in a matrix, called
variance–covariance matrix, which — for the vector y′ = (Y1:n, . . . , Yn:n) of the re-
duced order statistics — reads

Var(y) := B :=
(
βr,s:n

)
(4.3a)

and
Var(x) := b2 B (4.3b)

for the vector x′ = (X1:n, . . . , Xn:n). The matrix B is square of size n × n, symmetric
and positive semidefinite, because the variance of a linear combination of x, say

w = x′ q, (4.4a)

q 6= o a real vector of weights, has variance

Var(x′ q) = b2 q′ B q ≥ 0. (4.4b)
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4.2.1 GLS estimators
The parameters a and b may be estimated by the method of least–squares, but the regres-
sion model (4.2a) does not fulfill all those conditions that are necessary for assuring the
simple OLS estimation approach2 to give BLU estimators,3 i.e. estimators with minimum
variance within the class of unbiased linear estimators. For OLS to be optimal in the sense
of BLU the variance–covariance matrix of the regressands should be — up to a certain
scalar — an identity matrix, meaning that the regressands have to be of equal variance (=
homoscedastic) and uncorrelated. This will not be the case with the variance–covariance
matrices of order statistics as is seen in the variance–covariance matrix B and correlation
matrix R of reduced order statistics in a sample of size n = 6 from three distribution
having different shapes: the uniform distribution with equal density, the normal distri-
bution (symmetric and thin tails) and the exponential distribution (positively skew). We
have only reproduced the upper triangle of these symmetric matrices and also omitted the
leading zeros.

Uniform distribution, n = 6

B =



.0153 .0128 .0102 .0077 .0051 .0026
.0255 .0204 .0153 .0102 .0021

.0306 .0230 .0153 .0027
.0306 .0204 .0102

.0255 .0128
.0153


, R =



1 .6455 .4714 .3536 .2582 .1667
1 .7303 .5477 .4000 .2582

1 .7500 .5477 .3536
1 .7303 .4714

1 .6455
1


Normal distribution, n = 6

B =



.4159 .2085 .1394 .1024 .0774 .0563
.2796 .1890 .1397 .1059 .0774

.2462 .1833 .1397 .1024
.2462 .1890 .1394

.2796 .2085
.4159


, R =



1 .6114 .4357 .3203 .2269 .1355
1 .7203 .5323 .3789 .2269

1 .7444 .5323 .3203
1 .7203 .4357

1 .6114
1


Exponential distribution, n = 6

B =



.0278 .0278 .0278 .0278 .0278 .0278
.0667 .0667 .0667 .0667 .0667

.1303 .1303 .1303 .1303
.2424 .2414 .2414

.4914 .4914
1.4914


, R =



1 .6402 .4618 .3392 .2379 .1365
1 .7213 .5299 .3714 .2132

1 .7364 .5148 .2965
1 .7009 .4023

1 .5704
1


2 OLS – ordinary least–squares
3 BLU – best linear unbiased
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When we take a closer look at the variance–covariance matrix of the order statistics we
see two characteristics:

• heteroscedasticity, i.e. differing variances on the diagonal and

• autocorrelation, i.e. non–zero off–diagonal elements.

The autocorrelation pattern, which will be visible in the correlation matrix4

R = diag(B)−1/2 B diag(B)−1/2

shows

• positive correlation coefficients meaning that when an order statistic Xr:n has a
realization above (below) its mean µr:n the realization of the following order statistic
Xr+1:n will deviate from its mean µr+1:n in the same direction with high probability,
thus leading to a wave–like pattern of the scatter plot around a straight line on the
probability paper,

• a strength of correlation that declines with growing distance between the orders r
and s.

To assure the validity of the GAUSS–MARKOV theorem5 AITKEN (1935) proposed a
modification of OLS method when the variance–covariance matrix of the regressands —
up to a scalar — is not the identity matrix. This GLS method (general least–squares) was
first applied to the estimation of the location–scale parameter (a, b) by LLOYD (1952) lead-
ing to the so–called LLOYD’s estimator. We will present this estimator for an arbitrary
location–scale distribution in Sect. 4.2.1.1 before turning to a symmetric parent distribu-
tion (Sect. 4.2.1.2), in both cases assuming an uncensored sample. Finally (Sect. 4.2.1.3),
we comment upon how to proceed with censored samples.

4.2.1.1 GLS for a general location–scale distribution

For reasons of compact notation we introduce the following vectors and matrices:

x :=


X1:n

X2:n

...

Xn:n

, 1 :=


1

1
...

1

, α :=


α1:n

α2:n

...

αn:n

, ε :=


ε1

ε2

...

εn

, θ :=

a
b

, A :=
(
1 α

)
. (4.5a)

4 diag(B) is the diagonal matrix with the diagonal elements of B and zeros otherwise.
5 This theorem states that least–squares estimators are unbiased and best (= having minimum variance)

in the class of linear estimators. However, there is no assurance that estimators in other classes, such as
maximum likelihood estimators, may not be more efficient. We will not discuss questions of efficiency
in this text but refer the reader to other textbooks.
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The regression model (4.2a), pertaining to the sample, now reads

x = A θ + ε (4.5b)

with variance–covariance matrix

Var(x) = b2 B. (4.5c)

Under GLS we have to minimize the following generalized variance with respect to θ:

Q = (x−A θ)′ Ω (x−A θ) where Ω = B−1, (4.6a)

yielding the GLS estimator6 of θ

θ̂ =
(
A′ Ω A

)−1
A′ Ω x. (4.6b)

θ̂ is a linear combination of x and according to (4.4b) the variance–covariance matrix
of θ̂ is given by

Var
(
θ̂
)

=
(
A′ Ω A

)−1
A′ Ω

(
b2 B

)
Ω A

(
A′ Ω A

)−1

= b2
(
A′ Ω A

)−1
. (4.6c)

Because B is symmetric its inverse Ω is symmetric, too. From the definitions in (4.5a) the
matrix A′ Ω A follows as

D := A′ Ω A =

 1′

α′

Ω
(
1 α

)
=

 1′ Ω 1 1′ Ω α

α′ Ω 1 α′ Ω α

, (4.7)

all the elements of this (2 × 2)–matrix being scalar. The two elements â and b̂ of θ̂ in
(4.6b) are explicitly given when reverting to the familiar representation of the inverse of
the (2× 2)–matrix D using its determinant

∆ = det D

by

θ̂ =

 â

b̂

 =
1

∆

 α′ Ω α −α′ Ω 1

−1′ Ω α 1′ Ω 1

 1′ Ω

α′ Ω

x

=
1

∆

 α′ Ω α 1′ Ω−α′ Ω 1α′ Ω

−1′ Ω α 1′ Ω + 1′ Ω 1 α′ Ω

x (4.8a)

6 When B is the identity matrix I , we have Ω = B−1 = I and (4.6b) turns into the familiar OLS
estimator.
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or

â = −α′ H x (4.8b)

b̂ = 1′ H x, (4.8c)

where H is the skew–symmetric matrix7

H =
Ω
(
1 α′ − α 1′)Ω

∆
. (4.8d)

The row vector
a′ := −α′ H (4.8e)

contains the weights which linearly combine the order statistics of x into the estimator
â = a′ x. Likewise

b′ := 1′ H (4.8f)

is another row vector of weights combining the elements of x into the estimator b̂ = b′ x.
The weights in a and b only depend on the known moments αr:n and βr,s:n of the reduced
order statistics and they can be evaluated and tabulated once and for all what has been
done by several authors for selected distributions, see Sect. 5.2. The sums of the weights
are:

−α′ H 1 = 1 and 1′ H 1 = 0.

We further notice that 1′

α′

(−H ′ α, H ′ 1
)

=

 −1′ H α 1′ H ′ 1

−α′ H ′ α α′ H ′ 1

 =

 1 0

0 1


and  −α′ H

1′ H

(1, α
)

=

 −α′ H 1 −α′ H α

1′ H 1 1′ H α

 =

 1 0

0 1

.
The elements of the variance–covariance matrix in (4.6c) can also be written in more detail
as

Var
(
â
)

= b2
α′ Ω α

∆
, (4.9a)

Var
(
b̂
)

= b2
1′ Ω 1

∆
(4.9b)

Cov
(
â, b̂
)

= −b2 1′ Ω α

∆
. (4.9c)

7 A square matrix C is said to be skew–symmetric if C′ = −C.
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As is the rule with regression estimating a straight line the estimators of the two parameters
will be negatively correlated. Applying the estimator b̂ to (4.9a–c) gives the estimated
variances and covariance.

Excursus: Proving the BLU property of GLS estimators

The linearity of the estimators â and b̂ is evident by looking at (4.8b,c) and (4.8e,f). To prove the
unbiasedness of θ̂ given by (4.6b) we substitute x by A θ + ε, see (4.5b), and get

θ̂ = (A′ Ω a)−1 A′ Ω (A θ + ε)

= (A′ Ω A)−1 (A′ Ω A)︸ ︷︷ ︸
= I

θ + (A′ Ω A)−1 A′ Ω ε

= θ + (A′ Ω A)−1 A′ Ω︸ ︷︷ ︸
= K

ε.

Now, upon forming expectation we find

E
(
θ̂
)

= θ + K E(ε),

and as ε is the vector of deviations between the Xr:n and their means µr:n with E(Xr:n − µr:n) =
0 ∀ r, we have E(ε) = E(x− µ) = o, µ′ := (µ1:n, . . . , µn:n). Thus, the unbiasedness of θ̂ has
been proven.

To prove the minimum variance property we assume that

θ̃ = Cx (4.10a)

is some other linear estimator of θ, C being a (2 × n)–matrix of non–random weights. We
have to show that Var

(
θ̃
)
− Var

(
θ̂
)

is a positive semidefinite matrix, meaning among others
that Var

(
ã
)
≥ Var

(
â
)

and Var
(
b̃
)
≥ Var

(
b̂
)
. Upon taking expectation in (4.10a) we have

E
(
θ̃
)

= E
[
C(A θ + ε)

]
= CA θ + C E(ε), (4.10b)

so θ̃ will be unbiased iff
CA = I and E(ε) = o. (4.10c)

The variance–covariance matrix of θ̃ can be found by replacing the GLS weighing vector
(A′ Ω A)−1 A′ Ω in (4.6c) with C. The result is

Var
(
θ̃
)

= b2 C Ω−1 C′, (4.11a)

remember Ω−1 = B. Now let

L = C − (A′ Ω A)−1 A′ Ω (4.11b)

so
L x = θ̃ − θ̂. (4.11c)



4.2 Estimators based on moments of order statistics 69

Then,

Var
(
θ̃
)

= b2
{[

L + (A′ Ω A)−1 A′ Ω
]
B
[
L + (A′ Ω A)−1 A′ Ω

]′}
. (4.11d)

We know that
CA = I = L A + (A′ Ω A)−1 A′ Ω A,

so L A must be equal to O. Therefore, after some matrix manipulation, we find:

Var
(
θ̃
)

= b2
(
A′ Ω A

)−1 + b2 L B L′

= Var
(
θ̂
)

+ b2 L B L′. (4.11e)

A quadratic form of L B L′ is q′ L B L′ q = z′ B z, q being a real vector with two elements.
Because B is positive semidefinite we have

z′ B z ≥ 0.

Thus, Var
(
θ̃
)

is the variance–covariance matrix of the GLS estimator plus a non–negative def-
inite matrix. Therefore, every quadratic form in Var

(
θ̃
)

is larger or equal than the correspond-
ing quadratic form in Var

(
θ̂
)
. Especially for z′ = (1, 0) we find Var( ã ) ≥ Var( â ) and for

z′ = (0, 1) we have Var( b̃ ) ≥ Var( b̂ ).

Example 4/1: GLS estimating (a, b) for an exponential distribution ( uncensored sample)

The following n = 10 observations resulted from a Monte Carlo simulation ofX ∼ EX(10, 100):

x′ = (25, 26, 40, 40, 81, 89, 130, 149, 232, 330)

For n = 10 we have the vector of reduced means:

α′ = (0.1000, 0.2111, 0.3361, 0.4790, 0.6456, 0.8456, 1.0956, 1.4290, 1.9290, 2.9290),

and the elements of the upper triangle of B are:

β1,1:10 = β1,2:10 = . . . = β1,10:10 = 0.0100,
β2,2:10 = β2,3:10 = . . . = β2,10:10 = 0.0223,
β3,3:10 = β3,4:10 = . . . = β3,10:10 = 0.0380,
β4,4:10 = β4,5:10 = . . . = β4,10:10 = 0.0584,
β5,5:10 = β5,6:10 = . . . = β5,10:10 = 0.0862,
β6,6:10 = β6,7:10 = . . . = β6,10:10 = 0.1262,
β7,7:10 = β7,8:10 = . . . = β7,10:10 = 0.1887,

β8,8:10 = β8,9:10 = β8,10:10 = 0.2998,
β9,9:10 = β9,10:10 = 0.5498,

β10,10:10 = 1.5498.

Ω, the inverse of B, is a banded matrix:
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Ω =



181 −81 0 0 0 0 0 0 0 0
−81 145 −64 0 0 0 0 0 0 0

0 −64 113 −49 0 0 0 0 0 0
0 0 −49 85 −36 0 0 0 0 0
0 0 0 −36 61 −25 0 0 0 0
0 0 0 0 −25 41 −16 0 0 0
0 0 0 0 0 −16 25 −9 0 0
0 0 0 0 0 0 −9 13 −4 0
0 0 0 0 0 0 0 −4 5 −1
0 0 0 0 0 0 0 0 −1 1



.

The estimated parameters according to (4.6b) are

â = 15.0889 and b̂ = 99.1111,

and the estimated variance–covariance according to (4.6c) is

V̂ar
(
â, b̂
)

= 1000

 0.1091 −0.1091

−0.1091 1.0914

 .

The weighting vectors according to (4.8a,b) read:

a′ = (1.1, −0.01, −0.01, −0.01, −0.01, −0.01, −0.01, −0.01, −0.01, −0.01 ),
b′ = (−1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 ).

The following graph shows the data together with the estimated regression line on exponential
probability paper.

Figure 4/2: Probability plot and estimated regression line (uncensored sample of size n = 10
from an exponential distribution)
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4.2.1.2 GLS for a symmetric location–scale distribution

A great number of location–scale distributions are symmetric. In these cases some sim-
plification of the GLS formulas (4.6) through (4.9) is possible. First, the distribution of
x′ = (X1:n, X2:n, . . . , Xn:n) is the same as that of (−Xn:n,−Xn−1:n, . . . ,−X1:n). Let

−Xn:n

−Xn−1:n

...

−X1:n

 = −J


X1:n

X2:n

...

Xn:n

 = −J x (4.12a)

where

J =


0 · · · 1

· · ·
· · ·
· · ·
1 · · · 0

 (4.12b)

is a symmetric permutation matrix with the following properties:

J = J ′ = J−1, J ′ 1 = 1, (4.12c)

J2 k = I, J2 k+1 = J ; k = 1, 2, . . . ; (4.12d)

I being an identity matrix. Since
x

d
= −J x, (4.13a)

i.e. both vectors are equivalent in distribution, we have

E(x) = −J E(x) (4.13b)

Var(x) = Var(J x) = J Var(x) J . (4.13c)

For the reduced order statistics y with E(y) = α and Var(y) = B the formulas (4.13b,c)
turn into

α = −J α (4.13d)

B = J B J . (4.13e)

For Ω = B−1 we notice that

Ω = J−1B−1J−1 = J Ω J (4.13f)

because of (4.12c). It follows that

1′ Ω α = 1′ (J Ω J) (−J α)

= −(1′ J)ΩJ2 α

= −1′ Ω α. (4.14a)
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Thus, the scalars 1′ Ω α and −1′ Ω α must be zero as is also the case with their trans-
poses α′ Ω 1 and −α′ Ω 1. Looking at (4.9c) we recognize that â and b̂ are uncorrelated.
Furthermore, (4.7) simplifies to a diagonal matrix:

D =

 1′ Ω 1 0

0 α′ Ω α

 (4.14b)

with determinant

∆ = det D = (1′ Ω 1) (α′ Ω α), (4.14c)

and the GLS estimators resulting from (4.8a) are

â =
(α′ Ω α) (1′ Ω) x

(1′ Ω 1) (α′ Ω α)
=

1′ Ω x

1′ Ω 1
, (4.15a)

b̂ =
(1′ Ω 1) (α′ Ω) x

(1′ Ω 1) (α′ Ω α)
=

α′ Ω x

α′ Ω α
(4.15b)

with variances

Var
(
â
)

= b2
α′ Ω α

(1′ Ω 1) (α′ Ω α)
=

b2

1′ Ω 1
, (4.15c)

Var
(
b̂
)

= b2
1′ Ω 1

(1′ Ω 1) (α′ Ω α)
=

b2

α′ Ω α
. (4.15d)

We note that â reduces to the sample mean Xn if

1′ Ω = 1′,

or equivalently B 1 = 1, i.e. if all the rows (or columns) of the variance–covariance matrix
add to unity, which holds for the normal distribution.

Example 4/2: GLS estimating (a, b) for a normal distribution (uncensored sample)

The following n = 6 observations resulted from a Monte Carlo simulation of X ∼ NO(10, 50) :

x′ = (−57, −32, 5, 25, 46, 91).

B can be taken from Sect. 4.1 and the vector α is

α′ = (−1.2672, −0.6418, −0.2016, 0.2016, 0.6418, 1.2672).
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We first have, only giving the upper triangle of the symmetric matrix:

Ω = B−1 =



3.8401 −2.8967 0.0332 0.0146 0.0065 0.0023

9.6197 −5.7823 0.0355 0.0173 0.0065

13.5676 −6.8686 0.0355 0.0146

13.5676 −5.7823 0.0332

9.6197 −2.8967

3.8401


.

The estimated parameters result as

â = µ̂ = 13.0000 and b̂ = σ̂ = 58.6656

with estimated variance-covariance matrix

V̂ar
(
â, b̂
)

=

 573.6084 0

0 363.7904

 .

The weighting vectors read

a′ = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6),

b′ = (−0.3175, −0.1386, −0.0432, 0.0432, 0.1386, 0.3175).

The following graph depicts the data together with the estimated regression line on normal proba-
bility paper.

Figure 4/3: Probability plot and estimated regression line (uncensored sample of size n = 6
from a normal distribution)
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4.2.1.3 GLS and censored samples

The discussion so far has concentrated on data consisting of the full set of order statistics.
If the data to be used consist of a fixed subset of order statistics the general formulas (4.6)
through (4.9) continue to hold. We have to cancel those αr:n in the vector α as regressors
for which the ordered observations do not exist. Likewise, we have to skip the rows and
columns of B belonging to these observations. The BLU property is preserved, but the
efficiency of the estimators will decrease, see Example 4/3. Such a fixed subset of order
statistics may arise in different ways.

1. We have a type–II censored sample. In this case the numbers of the ordered obser-
vations run from

• `+ 1 through n for censoring from below (= on the left) and the first ` (` ≥ 1)
observations are not known by their values,

• 1 through n−u for censoring from above (= on the right) and the last u (u ≥ 1)
observations are not known by their values,

• `+1 through n−u for double censoring (= censoring on both sides) and `+u
observation are not known by their values.

2. The estimation procedure is based on selected order statistics. The selection may be
done either arbitrarily or consciously and optimally.8

The formulas for the symmetric case in Sect. 4.2.1.2 hold whenever (4.13a) is satisfied.
This occurs, for example, when we have a type–II censored sample from a symmetric
population where censoring is symmetric.

Example 4/3: Variance–covariance matrix of exponential parameter estimators under dif-
ferent modes of type–II censoring (n = 10)

We want to demonstrate how different modes of type–II censoring affect the variance–covariance
matrix of â and b̂ for a sample of size n = 10 from an exponential distribution. We have chosen
the unscaled variance–covariance matrix, i.e. we have dropped the factor b2 in (4.6c). So, Tab. 4/1
displays Var( â )

/
b2, Var( b̂ )

/
b2 and Cov( â, b̂ )

/
b2. ` = 0 (u = 0) means no censoring from

below (from above). With single censoring we skip at most 50% of the observations, and with
double censoring at most 60% (` = u = 3).

8 We will not pursue this approach her. The earliest work in statistical inference using selected order
statistics was done by MOSTELLER (1946). The approach was developed as a compromise between
lack of efficiency and quickness and ease of computation. But it was found that in many situations
the n–th observation Xn:n must be used. Thus, the experimental time itself — the time until Xn:n

is available to be measured — will not necessarily be shortened. The reader who is interested in this
topic is referred to the survey article by ALI/UMBACH (1998).
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Table 4/1: Elements of the unscaled variance–covariance matrix
(
A′ Ω A

)−1 for different
modes of type–II censoring (exponential distribution, n = 10)

censoring Elements of
(
A′ Ω A

)−1

` u Var( â )
/
b2 Var( b̂ )

/
b2 Cov( â, b̂ )

/
b2

0 0 0.0111 0.1111 −0.0111
0 1 0.0113 0.1250 −0.0125
0 2 0.0114 0.1429 −0.0143
0 3 0.0117 0.1667 −0.0167
0 4 0.0120 0.2000 −0.0200
0 5 0.0125 0.2500 −0.0250
1 0 0.0279 0.1250 −0.0264
2 0 0.0541 0.1429 −0.0480
3 0 0.0966 0.1667 −0.0798
4 0 0.1695 0.2000 −0.1291
5 0 0.3049 0.2500 −0.2114
1 1 0.0287 0.1429 −0.0302
2 2 0.0606 0.2000 −0.0672
3 3 0.1348 0.3333 −0.1597

For the exponential distribution we notice that an increasing censoring level (`+u) leads to higher
variances of both parameter estimators. The effect of left and right censoring on Var( b̂ )

/
b2 is the

same, but left censoring has a much greater effect on Var( â )
/
b2 than right censoring. A censoring

amount of 50% leads to a variance of b̂ which is 225% of the variance in the uncensored case
(` = u = 0).

If the data to be used do not consist of a fixed subset of order statistics the general for-
mulas of Sections 4.2.1.1 and 4.2.1.2 do not hold anymore, i.e. the estimator are neither
unbiased nor best. We do not have a fixed subset when type–I censoring is practised.
With this censoring mode the numbers of censored items are random. Let x` be the left–
hand censoring time, then the number of failing items before and up to x` is a binomially
distributed variable L:

Pr(L = `) =

(
n

`

)
P `

` (1− P`)
n−`; ` = 0, 1, . . . , n; (4.16a)

where
P` = Pr(X ≤ x`). (4.16b)

Likewise, the number U of items failing beyond the right–hand censoring time xu is bino-
mially distributed:

Pr(U = u) =

(
n

u

)
P u

u (1− Pu)
n−u; u = 0, 1, . . . , n; (4.17a)

where
Pu = Pr(X > xu). (4.17b)
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With double censoring the numbers L and U failing outside the interval (x`, xu] have a
multinomial distribution:

Pr(L = `, U = u, R = r) =
n!

`! u! r!
P `

` P
u
u P

r
r (4.18)

with

R = n− L− U

r = n− `− u

 − number of uncensored items,

Pr = 1− P` − Pu − probability of realizing an uncensored item,
0 ≤ `, u, r ≤ n, but `+ u+ r = n.

4.2.2 Approximations to GLS

GLS requires the evaluation of the mean vector α and the variance–covariance matrix B
of the reduced order statistics. This will be a tedious task for most location–scale distri-
butions. So, various approaches to reduce this burden have been suggested. In this section
we will adhere to α, but look at possibilities to simplify B. The resulting estimators will
still be unbiased,9 but their variances will increase, i.e. the efficiency will lessen.

4.2.2.1 B approximated by a diagonal matrix

The evaluation of the covariances βr,s:n, r > s, of the reduced order statistics is cum-
bersome, either by evaluating the double integrals or by applying a recurrence formula or
even by using the approximation in (2.25). The variances βr,r:n are much easier to eval-
uate and, therefore, a first approximation to the original variance–covariance matrix B is
to do without the covariances, i.e. the covariances will be set equal to zero, and to use the
diagonal matrix

Bd =


β1,1:n · · · 0

... . . . ...

0 · · · βn,n:n

 . (4.19a)

Its inverse is rather simple:

Ωd = B−1
d =


β−1

1,1:n · · · 0
... . . . ...

0 · · · β−1
n,n:n

 . (4.19b)

9 Unbiasedness is preserved as long as we apply the regressor matrix A of (4.5a).
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Then, the approximate GLS estimators follow from (4.6b) by changing Ωd against Ω:

θ̂d =

(
âd

b̂d

)
=
(
A′ Ωd A

)−1
A′ Ωd x. (4.20a)

The differences between these estimators and the proper GLS estimators of (4.6b) are
given by, see (4.11c):

θ̂d − θ̂ = Ld x (4.20b)

with
Ld =

(
A′ Ωd A

)−1
A′ Ωd −

(
A′ Ω A

)−1
A′ Ω. (4.20c)

The amounts and the signs of the differences depend on the parent distribution.

The special and simple structure of Ωd allows an explicit formulation of the weights com-
bining the data x into the estimators. Using the abbreviations

β◦i := β−1
i,i:n, αi := αi:n,

D of (4.7) turns into10

Dd =
(
A′ Ωd A

)
=

 ∑
β◦i

∑
αi β

◦
i∑

αi β
◦
i

∑
α2

i β
◦
i

 (4.21a)

with determinant

∆d = det Dd =
∑

β◦i
∑

α2
i β

◦
i −

(∑
αi β

◦
i

)2

. (4.21b)

The skew–symmetric matrix H of (4.8d) now reads11

Hd =
Ωd

(
1 α−α 1′)Ωd

∆d

=
1

∆d



0 β◦2β
◦
1(α2−α1) β◦3β

◦
1(α3−α1) · · · β◦nβ

◦
1(αn−α1)

β◦1β
◦
2(α1−α2) 0 β◦3β

◦
2(α3−α2) · · · β◦1β

◦
2(αn−α2)

β◦1β
◦
3(α1−α3) β◦2β3(α2−α3) 0 · · · β◦nβ

◦
3(αn−α3)

...
...

... . . . ...

β◦1β
◦
n(α1−αn) β◦2β

◦
n(α2− αn) β◦3β

◦
n(α3−αn) · · · 0


. (4.21c)

10 Summation is over those indices which belong to uncensored observations.
11 Rows and columns belonging to censored observations have to be omitted.
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The weighting vectors in (4.8e,f) follow as12

a′d = −α′ Hd

= − 1

∆d

(
β◦1
∑

αiβ
◦
i (α1−αi), β

◦
2

∑
αiβ

◦
i (α2−αi), . . . , β

◦
n

∑
αiβ

◦
i (αn−αi)

)
, (4.21d)

b′d = 1′ Hd

=
1

∆d

(
β◦1
∑

β◦i (α1−αi), β
◦
2

∑
β◦i (α2−αi), . . . , β

◦
n

∑
β◦i (αn−αi)

)
. (4.21e)

We now turn to the variance–covariance matrix of θ̂d. Starting with (4.6c) and substi-
tuting Ω by Ωd the resulting variance–covariance matrix, called approximate variance–
covariance matrix,

Vard
(
θ̂d

)
= b2

(
A′ Ωd A

)−1 (4.22)

will not be the true and correct variance–covariance matrix but nothing but a crude approx-
imation, based on the B–substitute. The true variance–covariance matrix of θ̂d can be
found on different ways.

1. From (4.11e) we have

Var
(
θ̂d

)
= Var

(
θ̂
)

+ b2 Ld B L′
d, (4.23)

with Ld given in (4.20c).

2. Starting from (4.20a) and replacing x by A′ θ + ε we first have

θ̂d =
(
A′ Ωd A

)−1
A′ Ωd

(
A θ + ε

)
=

(
A′ Ωd A

)−1
A′ Ωd A︸ ︷︷ ︸

= I

θ +
(
A′ Ωd A

)−1
A′ Ωd ε

= θ +
(
A′ Ωd A

)−1
A′ Ωd ε. (4.24a)

The variance–covariance matrix of θ̂d is

Var
(
θ̂d

)
= E

[(
θ̂d − θ

)(
θ̂d − θ

)′ ]
. (4.24b)

Inserting (4.24a) into (4.24b) gives

Var
(
θ̂d

)
= E

[{(
A′ Ωd A

)−1
A′ Ωd ε

}{
ε′ Ωd A

(
A′ Ωd ε

)−1}]
=

(
A′ Ωd A

)−1
A′ Ωd E(ε′ ε)︸ ︷︷ ︸

= b2 B

Ωd A (A′ Ωd A)−1

= b2
(
A′ Ωd A

)−1
A′ Ωd B Ωd A (A′ Ωd A)−1. (4.24c)

12 Weights belonging to censored observations have to be omitted.
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3. The elements of Var
(
θd

)
can be given explicitly by using the weights ad,i and bd,i

in the vectors a′d and b′d of (4.21d,e):13

Var
(
âd

)
= b2

∑
i

∑
j

ad,i ad,j βi,j:n, (4.25a)

Var
(
b̂d
)

= b2
∑

i

∑
j

bd,i bd,j βi,j:n, (4.25b)

Cov
(
âd, b̂d

)
= b2

∑
i

∑
j

ad,i bd,j βi,j:n. (4.25c)

The difference matrix between the true variance–covariance matrix Var
(
θ̂d

)
and its ap-

proximation (4.22) is

Var( θ̂d

)
− Vard

(
θ̂d

)
= b2

(
A′ ΩdA

)−1{
A′ Ωd B Ωd A

(
A′ Ωd A

)−1 − I
}

(4.26)

and depends on the parent distribution via α and B, thus no general statement can be
made. We see in the following example that we will commit severe errors in applying
Vard

(
θ̂d

)
to estimate the variance of the simplified estimators.

Example 4/4: Comparisons of GLS and GLS with diagonal variance–covariance matrix (ex-
ponential, uniform and normal distributions, n = 10)

We first look at the exponential distribution and take the data x of Example 4/1. The estimates
result as

âd = 9.7580, b̂d = 100.9885,

whereas the proper GLS estimates read

â = 15.0889, b̂ = 99.1111.

The approximate variance–covariance matrix (4.22) is

Vard
(
θ̂d

)
= b2

 0.0082 −0.0119

−0.0119 0.0399

 ,

whereas the correct variance–covariance matrix, using (4.23), reads

Var
(
θ̂d

)
= b2

 0.0111 −0.0111

−0.0111 0.1111

+ b2

 0.0030 −0.0009

−0.0009 0.0047


= b2

 0.0141 −0.0120

−0.0120 0.1158

 .

13 Summation is over the indices of uncensored observations.
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The relative efficiencies are

Var
(
â
)

Var
(
âd

) =
0.0111
0.0141

= 0.7896,
Var
(
b̂
)

Var
(
b̂d
) =

0.1111
0.1158

= 0.9596.

The loss of efficiency for b is small (≈ 4%) compared with the loss for a (≈ 21%).

For the uniform distribution we find

• the GLS variance–covariance matrix

Var
(
θ̂
)

= b2

 0.0084 −0.0093

−0.0093 0.0185

 ,

• the approximate variance–covariance matrix according to (4.22)

Vard
(
θ̂d

)
= b2

 0.0047 −0.0068

−0.0068 0.0136

 ,

• the correct variance–covariance matrix according to (4.23)

Var
(
θ̂d

)
= b2

 0.0084 −0.0093

−0.0093 0.0185

+ b2

 0.0035 −0.0020

−0.0020 0.0041


= b2

 0.0119 −0.0113

−0.0113 0.0226

 ,

• the relative efficiencies

Var
(
â
)

Var
(
âd

) =
0.0084
0.0119

= 0.7081,
Var
(
b̂
)

Var
(
b̂d
) =

0.0185
0.0226

= 0.8188.

The loss of efficiency is of moderate size.

For a sample of size n = 10 from a normal distribution using the tabulated values14

α6:10 = 0.122668, α7:10 = 0.375265, α8:10 = 0.656059, α9:10 = 1.001357, α10:10 = 1.538753,

14 Missing values may be found by the symmetry relations:

αr:n = −αn−r:n

βr,s:n = βn−s+1,n−r+1:n.

Source for αr:10 : TEICHROEW (1956)
Source for βr,s:10: SARHAN/GREENBERG (1956).
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β1,1:10 = 0.344344, β2,2:10 = 0.214524, β3,5:10 = 0.107745,

β1,2:10 = 0.171263, β2,3:10 = 0.146623, β3,6:10 = 0.089225,

β1,3:10 = 0.116259, β2,4:10 = 0.111702, β3,7:10 = 0.074918,

β1,4:10 = 0.088249, β2,5:10 = 0.089743, β3,8:10 = 0.063033,

β1,5:10 = 0.070741, β2,6:10 = 0.074200, β4,4:10 = 0.157939,

β1,6:10 = 0.058399, β2,7:10 = 0.062228, β4,5:10 = 0.127509,

β1,7:10 = 0.048921, β2,8:10 = 0.052307, β4,6:10 = 0.105786,

β1,8:10 = 0.041084, β2,9:10 = 0.043371, β4,7:10 = 0.088946,

β1,9:10 = 0.034041, β3,3:10 = 0.175003, β5,5:10 = 0.151054,

β1,10:10 = 0.026699, β3,4:10 = 0.133802, β5,6:10 = 0.125599.

We find

• the GLS variance–covariance matrix

Var
(
θ̂
)

= b2

 0.1000 0.0000

0.0000 0.0576

 ,

• the approximate variance–covariance matrix according to (4.22)

Vard
(
θ̂d

)
= b2

 0.0191 0.0000

0.0000 0.0333

 ,

• the correct variance–covariance matrix according to (4.23)

Var
(
θ̂d

)
= b2

 0.1000 0.0000

0.0000 0.0576

+ b2

 0.0016 0.0000

0.0000 0.0023


= b2

 0.1016 0.0000

0.0000 0.0599

 ,

• the relative efficiencies

Var
(
â
)

Var
(
âd

) =
0.1000
0.1016

= 0.9840,
Var
(
b̂
)

Var
(
b̂d
) =

0.0576
0.0599

= 0.9609.

Both losses of efficiency are rather small.
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4.2.2.2 B approximated by an identity matrix

A more radical approximation than that of the preceding section consists of substituting
B by an identity or unity matrix I of proper dimension, so we might expect a greater loss
of efficiency:

B ≈ I. (4.27a)

I is of order n for an uncensored sample and of order n − ` − u for a censored sample.
This approach goes back to GUPTA (1952) and is known as GUPTA’s simplified linear
estimator. Instead of the GLS method we now use the OLS method and the estimators
and their approximate variance–covariance matrix are given by

θ̂I =

(
âI

b̂I

)
=
(
A′ A)−1 A′ x (4.27b)

VarI
(
θ̂I

)
= b2

(
A′ A

)−1
. (4.27c)

The formulas of the preceding section hold here with Ωd replaced by I and β◦i by 1.
Because I and 1 are the neutral elements of multiplication we can simply omit Ωd and β◦i
in the formulas of Sect. 4.2.2.1 to arrive at the formulas valid for the OLS method. The
elements of DI = A′ A are:15

1′ I 1 = n∗ with

 n∗ = n for an uncensored sample,

n∗ = n− `− u for a censored sample,

 (4.28a)

1′ I α = α′ I 1 =
∑

αi (4.28b)

α′ Iα =
∑

α2
i . (4.28c)

The determinant of DI is15

∆I = det DI = n∗
∑

α2
i −

(∑
αi

)2 (4.29a)

and the skew–symmetric matrix H in (4.8d) turns into

HI =
1 α′ − α 1′

∆I

=
1

∆I



0 α2 − α1 α3 − α1 · · · αn − α1

α1 − α2 0 α3 − α2 · · · αn − α2

α1 − α3 α2 − α3 0 · · · αn − α3

...
...

... . . . ...

α1 − αn α2 − αn α3 − αn · · · 0


. (4.29b)

15 We only have to sum those αi belonging to uncensored observations.
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The weighting vectors in (4.8e,f) follow as16

a′I = −α′ HI = − 1

∆I

(∑
αi(α1−αi),

∑
αi(α2−αi), . . . ,

∑
αi(αn−αi)

)
, (4.29c)

b′I = 1′ HI =
1

∆I

(∑
(α1−αi),

∑
(α2−αi), . . . ,

∑
(αn−αi)

)
. (4.29d)

The difference between the GLS estimators (4.6b) and the simplified estimators (4.27b) is

θ̂I − θ̂ = LI x (4.30a)

with
LI = (A′ A)−1 A′ − (A′ Ω A)−1 A′ Ω. (4.30b)

The correct variance–covariance matrix of θ̂I is

Var
(
θ̂I

)
= Var( θ̂

)
+ b2 LI B L′

I (4.31a)

or from (4.24c) with Ωd substituted by I

Var
(
θ̂I

)
= b2(A′ A)−1 A′ B A (A′ A)−1, (4.31b)

and its elements are explicitly given by16

Var( âI) = b2
∑

i

∑
j

aI,i aI,j βi,j:n, (4.32a)

Var( b̂I) = b2
∑

i

∑
j

bI,i bI,j βi,j:n, (4.32b)

Cov( âI , b̂I) = b2
∑

i

∑
j

aI,i bI,j βi,j:n, (4.32c)

the weights aI,i, bI,i coming from (4.29c,d). The difference between the correct variance–
covariance matrix (4.31a) and the approximate variance–covariance matrix (4.27c) is

Var
(
θ̂I

)
− VarI

(
θ̂I) = b2(A′ A)−1

{
A′ B A (A′ A)−1 − I

}
. (4.33)

The difference depends on the parent distribution and no general statement is possible.

Example 4/5: Comparison of GLS and OLS estimators for exponential, normal and uniform
distributions (n = 10)

We first look at the exponential distribution and — with the data x of Example 4/1 — find the
following OLS estimates

âI = 1.6876, b̂I = 112.5124,

whereas the proper GLS estimates read

â = 15.0889, b̂ = 99.1111.

We further have
16 Summation is over the indices of uncensored observations.
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• the approximate variance–covariance matrix of (4.27c)

VarI
(
θ̂I

)
= b2

 0.2414 −0.1414

−0.01414 0.1414

 ,

• the correct variance–covariance matrix (4.31a)

Var
(
θ̂I

)
= b2

 0.0698 −0.0698

−0.0698 0.1698

 ,

• the GLS variance–covariance matrix

Var
(
θ̂
)

= b2

 0.0111 −0.0111

−0.0111 0.1111

 ,

• the relative efficiencies

Var
(
â
)

Var
(
âI

) =
0.0111
0.0698

= 0.1591,
Var
(
b̂
)

Var
(
b̂I
) =

0.1111
0.1698

= 0.6542.

We observe heavy losses of efficiency.

For the uniform distribution we find

• the GLS variance–covariance matrix

Var
(
θ̂
)

= b2

 0.0084 −0.0093

−0.0093 0.0185

 ,

• the approximate variance–covariance matrix according to (4.27c)

VarI
(
θ̂I

)
= b2

 0.4667 −0.7333

−0.7333 1.4667

 ,

• the correct variance–covariance matrix according to (4.31a)

Var
(
θ̂I

)
= b2

 0.0156 −0.0144

−0.0144 0.0289

 ,

• the relative efficiencies

Var
(
â
)

Var
(
âI

) =
0.0084
0.0156

= 0.5411,
Var
(
b̂
)

Var
(
b̂I
) =

0.0185
0.0289

= 0.6410.

The efficiencies decrease considerably.
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For the normal distribution we have

• the GLS variance–covariance matrix

Var
(
θ̂
)

= b2

 0.1000 0.0000

0.0000 0.0576

 ,

• the approximate variance–covariance matrix according to (4.27c)

VarI
(
θ̂I

)
= b2

 0.1000 0.0000

0.0000 0.1264

 ,

• the correct variance–covariance matrix according to (4.31a)

Var
(
θ̂I

)
= b2

 0.100008 0.0000

0.0000 0.057648

 ,

• the relative efficiencies

Var
(
â
)

Var
(
âI

) =
0.1000

0.100008
≈ 1,

Var
(
b̂
)

Var
(
b̂I
) =

0.0576
0.057648

= 0.9989.

The efficiencies are approximately the same for GLS and OLS. This result holds for other
sample sizes, too.

4.2.2.3 BLOM’s estimator

Another approach of simplifying the variance–covariance matrix B of the reduced order
statistics Yr:n consists in replacing B by the asymptotic variance–covariance matrix, as has
been proposed by BLOM (1958, 1962). The resulting estimator is called unbiased nearly
best linear. If exact unbiasedness is given up, one may also approximate asymptotically
to the expectations αr:n and obtain nearly unbiased, nearly best linear estimator, see
Sect. 4.2.3.

The elements of B are replaced by the first term in the series approximations (2.24) and
(2.25). Let

ypr = F−1(pr) (4.34a)

denote the reduced percentile of order

pr =
r

n+ 1
. (4.34b)
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Then, the first derivative of this percentile

y′pr
=

dypr

dpr

= F−1(1)(pr), (4.34c)

which is part of the first term in (2.24) and (2.25), can be substituted by the reciprocal of
f(ypr), because

y′pr
=

1

dpr

/
dypr

=
1

f(ypr)
, (4.34d)

f(ypr) being the reduced density evaluated at ypr . Thus, for large n we have the following
elements of the upper triangle of the asymptotic variance–covariance matrix BB:

βrs =
pr qs

(n+ 2) f(ypr) f(yps)
, r ≤ s, (4.35)

where qs = 1− ps. BB is a symmetric matrix. BLOM’s estimator follows as

θ̂B =
(
A′ B

−1
B A

)−1
A′ B

−1
B x (4.36a)

with the approximate variance–covariance matrix

VarB
(
θ̂B

)
= b2

(
A′ B

−1
B A

)−1
. (4.36b)

The true and correct variance–covariance matrix of BLOM’s estimator is

Var
(
θ̂B

)
= Var

(
θ̂
)

+ LB B L′
B (4.36c)

where

LB =
(
A′ B

−1
B A

)−1
A′ B

−1
B −

(
A′ B

−1
A
)−1

A′ B
−1
. (4.36d)

We will see in Example 4/6 that with n → ∞ VarB
(
θ̂B

)
approaches Var

(
θ̂B

)
which

in turn approaches the GLS variance–covariance matrix Var
(
θ̂
)
. For a censored sample

the rows and columns of BB and the elements of α in A corresponding to the censored
observations have to be omitted.

The matrix BB is a (n × n) non–singular symmetric matrix with a special pattern. Its
elements are of the form

βrs =
1

n+ 2
cr ds, r ≤ s, (4.37a)

where

cr =
pr

f(ypr)
, ds =

qs
f(yps)

. (4.37b)
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The inverse of BB is a banded matrix with the (r, s)–th element (r ≤ s) given by

βrs =



c2 {c1 (c2 d1 − c1 d2)}−1 for r = s = 1,

cr+1 dr−1 − cr−1 dr+1

(cr dr−1 − cr−1 dr) (cr+1 dr − cr dr+1)
for r = s = 2 to n−1,

dn−1 {dn (cn (cn dn−1 − cn−1 dn)}−1 for r = s = n

−(cr+1 dr − cr dr+1)
−1 for s = r + 1 and r = 1 to n−1,

0 for s > r + 1.


(4.37c)

BLOM (1958, 1962) has exploited this feature of BB to obtain solutions for θ̂B and
VarB

(
θ̂B

)
, equivalent to (4.36a,b), that avoid the inversion of the (n × n) matrix BB

and only requires the inversion of a (2 × 2) matrix. Nowadays, inversion of large–order
matrices is no problem. For those readers interested in the BLOM procedure we give the
results without any proofs.17

Excursus: BLOM’s unbiased nearly best linear estimator in explicit form

We introduce the following variables:

fr := f(ypr); r = 1, . . . , n and f0 = fn+1 = 0; (4.38a)

αr := αr:n; r = 1, . . . , n and α0 = αn+1 = 0; (4.38b)

C1r := fr − fr−1; r = 0, . . . , n; (4.38c)

C2r := αr fr − αr+1 fr+1; r = 0, . . . , n; (4.38d)

D := (dij); i, j = 1, 2; (4.38e)

dij :=
n∑

`=0

Ci`Cj`; i, j = 1, 2; (4.38f)

D−1 := (d ij); i, j = 1, 2; (4.38g)

wir := fr

[
d i1 (C1r − C1,r−1) + d i2 (C2r − C2,r−1)

]
; i = 1, 2; r = 1, . . . , n; (4.38h)

âB :=
n∑

r=1

w1r Xr:n; (4.38i)

17 Details of this procedure and the derivation of the formulas can be found in DAVID (1981, p. 133–135)
or BALAKRISHNAN/COHEN (1991, p. 100–104).
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b̂B :=
n∑

r=1

w2r Xr:n; (4.38j)

VarB
(
θ̂B

)
:=

b2

(n+ 1) (n+ 2)

 d11 d12

d12 d22

 . (4.38k)

For censored samples the variables C1r and C2r have special values for the indices belonging to
censored observations, ` being the left–hand censoring number and n − u being the right–hand
censoring number:

C1r =


− 1
`+ 1

f`+1 , 0 ≤ r ≤ `,

fr − fr+1 , `+ 1 ≤ r ≤ n− u− 1,

1
u+ 1

fn−u , n− u ≤ r ≤ n;


(4.38l)

C2r =


− 1
`+ 1

α`+1 f`+1, 0 ≤ r ≤ `,

αr fr − αr+1 fr+1, `+ 1 ≤ r ≤ n− u− 1,

1
u+ 1

αn−u fn−u, n− u ≤ r ≤ n.


(4.38m)

Example 4/6: BLOM’s unbiased nearly best linear estimator for the exponential distribution
(n = 10, 20, 50, 100)

For a sample of size n = 10 we use the data x of Example 4/1 and find the BLOM’s estimates

âB = 14.8808, b̂B = 101.1293,

whereas the GLS estimates are

â = 15.0889, b̂ = 99.1111.

The variance matrices are:

VarB
(
θ̂B

)
= b2

 0.009108 −0.007749

−0.007749 0.077493

 ,

Var
(
θ̂B

)
= b2

 0.011158 −0.011576

−0.011576 0.115760

 ,

Var
(
θ̂
)

= b2

 0.01 −0.01

−0.01 0.1

 .
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For samples of sizes n = 20, 50, 100 we only give the variance matrices to demonstrate the
process of convergence.

n = 20

VarB
(
θ̂B

)
= b2

 0.002379 −0.002117

−0.002117 0.042334



Var
(
θ̂B

)
= b2

 0.002636 −0.002723

−0.002723 0.054463



Var
(
θ̂
)

= b2

 0.002632 −0.002632

−0.002632 0.052632


n = 50

VarB
(
θ̂B

)
= b2

 0.000392 −0.000367

−0.000367 0.018339



Var
(
θ̂B

)
= b2

 0.000408 −0.000417

−0.000417 0.020408



Var
(
θ̂
)

= b2

 0.000408 −0.000408

−0.000408 0.020408


n = 100

VarB
(
θ̂B

)
= b2

 0.000099 −0.000095

−0.000095 0.009505



Var
(
θ̂B

)
= b2

 0.000101 −0.000102

−0.000102 0.010227



Var
(
θ̂
)

= b2

 0.00010 −0.00010

−0.00010 0.01


We observe that

• the estimated variances VarB
(
âB

)
and VarB

(
b̂B
)

of BLOM’s estimators are smaller than
the GLS variances Var

(
â
)

and Var
(
b̂
)
, but the differences diminish as n gets larger,

• the true variances Var
(
âB

)
and Var

(
b̂B
)

are very similar to the GLS variances and for
n ≥ 50 are nearly equal to them.
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4.2.2.4 DOWNTON’s estimator

The following approach, which is due to DOWNTON (1966a,b), is only applicable when the
sample is not censored. For the latter reason we only give a short introduction and present
the main idea of this method.18 DOWNTON and several other authors had observed that
— especially for the Log–WEIBULL distribution — the efficiencies of linear estimators
for the location–scale parameter are not particularly sensitive to changes in the values of
the weights combining the ordered observations. Thus, he suggested that efficient esti-
mators might be found, where the coefficients or weights are chosen for convenience and
mathematical tractability, rather than because they conform to some optimizing process.
DOWNTON (1966a) demonstrated that these estimators are quite highly efficient for the
normal and the extreme value distributions. DOWNTON proposed so–called linear esti-
mators with polynomial coefficients of the form

âD,p =

p∑
k=0

(k + 1)ϑk

n∑
i=1

(i− 1)(k)

n(k+1)
Xi:n, (4.39a)

b̂D,p =

p∑
k=0

(k + 1)λk

n∑
i=1

(i− 1)(k)

n(k+1)
Xi:n, (4.39b)

where `(r) (r, ` being integers) denotes the r–th factorial power of `, i.e.

`(r) =
`!

(`− r)!
= ` (`− 1) . . . (`− r + 1). (4.40a)

We further have, see DOWNTON (1966a), the identities

n∑
i=1

(i− 1)(k) =
n(k+1)

k + 1
, (4.40b)

and with E
[
(Xi:n − a)

/
b
]

= αi:n,

n∑
i=1

(i− 1)(k) αi:n =
n(k+1)

k + 1
αk+1:k+1. (4.40c)

Thus, taking expectation of (4.39a,b) we get

E
(
âD,p

)
= a

p∑
k=0

ϑk + b
n∑

i=1

ϑk αk+1:k+1, (4.41a)

E
(
b̂D,p

)
= a

p∑
k=0

λk + b

n∑
i=1

λk αk+1:k+1. (4.41b)

18 DOWNTON’s method has not been implemented in the program LEPP of Chapter 6.
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The polynomial coefficients ϑk and λk (k = 0, . . . , p) have to be determined such that the
estimators are unbiased and best (in least–squares sense). Introducing the vectors

ϑ = (ϑ0, ϑ1, . . . , ϑp)
′, (4.42a)

λ = (λ0, λ1, . . . , λp)
′, (4.42b)

α� = (α1:1, α2:2, . . . , αp+1:p+1)
′, (4.42c)

and 1 for the column vector of (p+1) ones, unbiasedness is given, see Sect. 4.2.1.1, when ϑ

λ

(1 α�) =

 1 0

0 1

 (4.43a)

and when

Var
(
θ̂D,p

)
= b2

 ϑ

λ

 Ω� (ϑ λ
)
, θ̂D,p =

(
âD,p b̂D,p

)′
, (4.43b)

is a minimum. Ω� is the variance–covariance matrix of the random variables

Wk = (k + 1)
n∑

i=1

(i− 1)(k)

n(k+1)
Yi:n, Yi:n =

Xi:n − a

b
. (4.43c)

This minimum variance–covariance matrix reads

Var
(
θ̂D,p

)
= b2

 1′

α�′

(Ω�)−1 (
1 α�)−1

. (4.43d)

The procedure is rather simple for p = 1 (polynomial of degree 1), which gives an esti-
mator consisting simply of two terms having constant and linear coefficients, respectively,
for the two parameters a, b. In this case minimization is not necessary, as only two coeffi-
cients are required for each estimator and these are determined by the two conditions due
to unbiasedness, see (4.43a). The solutions are

ϑ0 = − α2:2

α1:1 − α2:2

, ϑ1 =
α1:1

α1:1 − α2:2

, (4.44a)

λ0 = − 1

α2:2 − α1:1

, λ1 =
1

α2:2 − α1:1

. (4.44b)

4.2.3 Approximations to GLS with approximated moments of order
statistics

In (2.23) through (2.25) we have presented the series approximation of αr:n, βr,r:n and
βr,s:n, r < s. These approximated moments may be used as substitutes in the estimation
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approaches of Sections 4.2.1 and 4.2.2 when the exact moments are difficult to evaluate or
tabulated values are not available. We will denote the approximated moments as

α∗r:n, β∗r,s:n, r ≤ s,

and the corresponding vector, matrix and inverse matrix as

α∗, B∗, Ω∗ := (B∗)−1.

α∗r:n and β∗r,s:n will be different from the correct values αr:n = E(Yr:n) and βr,s:n =

E
[
(Yr:n − αr:n) (Ys:n − αs:n)

]
. Thus, we will commit a systematic (= non–random) er-

ror with respect to GLS when using the approximated moments. These differences or
biases will carry over to the estimator of θ = (a, b)′ and its total error has to be evaluated
by the MSE matrix incorporating the systematic error and the random error of sampling.

Applying α∗r:n and β∗r,s:n to the GLS method of Sect. 4.2.1.1 we have

θ̂∗ =
(
A∗′ Ω∗ A∗)−1

A∗′ Ω∗ x (4.45)

with
A∗ =

(
1 α∗).

In order to find the bias of θ̂∗ we first substitute x by its definition (4.5a) and then take
expectation. According to (4.10b) with

C =
(
A∗′ Ω∗ A∗)−1

A∗′ Ω∗ (4.46a)

and observing that E(ε) = o we arrive at

E
(
θ̂∗
)

= CA θ. (4.46b)

Thus, the bias of θ̂∗ is
δ = E

(
θ̂∗
)
− θ =

(
CA− I

)
θ. (4.46c)

The difference between θ̂∗ and its mean E
(
θ̂∗
)

is

θ̂∗ − E
(
θ̂∗
)

= C x−CA θ

= C
(
A θ + ε−A θ

)
= C ε. (4.47a)

So, the variance–covariance matrix of θ̂∗ is

Var
(
θ̂∗
)

= E
{[

θ̂∗ − E
(
θ̂∗
)] [

θ̂∗ − E
(
θ̂∗
)]′}

= E
{
(C ε) (C ε)′

}
= E

{
C ε ε′ C′}

= C E(ε ε′)︸ ︷︷ ︸
= b2 B

C ′

= b2 CB C ′. (4.47b)
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Var
(
θ̂∗
)

only incorporates the random fluctuation of θ̂∗ around its mean E
(
θ̂∗
)

but not
the systematic errors due to the approximations. The total squared–error matrix of θ̂∗, the
MSE–matrix of θ̂∗, is

MSE
(
θ̂∗
)

= E
{(

θ̂∗ − θ
) (

θ̂∗ − θ
)′}

= E
{([

θ̂∗ − E
(
θ̂∗
)]

+
[

E
(
θ̂∗
)
− θ︸ ︷︷ ︸

= δ

])([
θ̂∗ − E

(
θ̂∗
)]

+
[

E
(
θ̂∗
)
− θ︸ ︷︷ ︸

= δ

])′}

= E
{[

θ̂∗ − E
(
θ̂∗
)] [

θ̂∗ − E
(
θ̂∗
)]′}

︸ ︷︷ ︸
= Var

(
θ̂∗
) + δ δ′

= b2 CBC ′ + δ δ′. (4.47c)

Excursus: Best linear invariant estimators

In the context of biased estimation we shortly mention the BLIE approach (best linear invariant
estimator) of MANN (1969). The resulting estimators are biased, but invariant under location and
scale transformations and have minimum mean–squared error among the class of linear estimators.
This minimum MSE is sometimes smaller than the variance of a BLUE. The BLIEs are obtained
from the BLUEs â, b̂ as

âBLIE = â− C

1 +B
b̂, b̂BLIE =

b̂

1 +B

with the following MSEs:

MSE
(
âBLIE

)
= b2

(
A− C2

1 +B

)
, MSE

(
b̂BLIE

)
= b2

B

1 +B
,

and expected cross–product of the estimation errors

E
[(
âBLIE − a

) (
b̂BLIE − b

)]
= b2

C

1 +B
,

where
A = b2 Var

(
â
)
, B = b2 Var

(
b̂
)
, C = b2 Cov

(
â, b̂
)
.

Example 4/7: Bias and MSE of θ̂∗ in a sample from an exponential and a normal distribution
(n = 10)

The series approximations (2.23) through (2.25) for the moments of the reduced exponential dis-
tribution are

α∗ = (0.0100, 0.2111, 0.3361, 0.4789, 0.6456, 0.8456, 1.0955, 1.4288, 1.9289, 2.9332)′
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and — only giving the upper triangle of the variance–covariance matrix:

B∗ =



0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

0.0223 0.0223 0.0223 0.0223 0.0223 0.0233 0.0233 0.0233 0.0233

0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378 0.0378

0.0581 0.0581 0.0581 0.0581 0.0581 0.0581 0.0581

0.0858 0.0858 0.0858 0.0858 0.0858 0.0858

0.1255 0.1255 0.1255 0.1255 0.1255

0.1875 0.1875 0.1875 0.1875

0.2974 0.2974 0.2974

0.5433 0.5433

1.5230



.

The true values are in Example 4/1. With the data x of Example 4/1 we find the approximated GLS
estimates according to (4.45) as

θ̂∗ =
(
â∗

b̂∗

)
=
(

15.0844
99.1610

)
.

These estimates are very close to the true GLS estimates

θ̂ =
(
â

b̂

)
=
(

15.0889
99.1111

)
.

We have generated the observations with θ = (10, 100)′, so we can evaluate the bias according to
(4.46c):

δ =
(

0.0048
−0.0430

)
.

The variance–covariance matrix (4.47b) is

Var
(
θ̂∗
)

= b2

 0.0111 −0.0111

−0.0111 0.1110


which — because δ is very small — turns out to be practically equal to the MSE–matrix (4.47c).
The variance–covariance matrix of the true GLS estimates is

Var
(
θ̂
)

= b2

 0.0111 −0.0111

−0.0111 0.1111

 .

For a sample of size n = 10 from a normal distribution19 and using the short versions of the

19 Missing values may be found by the symmetry relations:
αr:n = −αn−r:n

βr,s:n = βn−s+1,n−r+1:n.
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approximating formulas, which turned out to be more accurate than the long versions,20 we find:

α∗6:10 = 0.1226, α∗7:10 = 0.3755, α∗8:10 = 0.6556, α∗9:10 = 1.0006, α∗10:10 = 1.5393,

β∗1,1:10 = 0.3322, β∗2,2:10 = 0.2097, β∗3,5:10 = 0.1063,

β∗1,2:10 = 0.1680, β∗2,3:10 = 0.1442, β∗3,6:10 = 0.0881,

β∗1,3:10 = 0.1148, β∗2,4:10 = 0.1102, β∗3,7:10 = 0.0740,

β∗1,4:10 = 0.0874, β∗2,5:10 = 0.0886, β∗3,8:10 = 0.0624,

β∗1,5:10 = 0.0704, β∗2,6:10 = 0.0734, β∗4,4:10 = 0.1555,

β∗1,6:10 = 0.0580, β∗2,7:10 = 0.0616, β∗4,5:10 = 0.1257,

β∗1,7:10 = 0.0486, β∗2,8:10 = 0.0518, β∗4,6:10 = 0.1044,

β∗1,8:10 = 0.0409, β∗2,9:10 = 0.0431, β∗4,7:10 = 0.0878,

β∗1,9:10 = 0.0339, β∗3,3:10 = 0.1719, β∗5,5:10 = 0.1488,

β∗1,10:10 = 0.0267, β∗3,4:10 = 0.1318, β∗5,6:10 = 0.1238.

Let the true parameters be a = 0, b = 1. Then the vector of biases is

δ = 10−4

(
0.0000
0.5671

)
,

i.e. the a–estimator will be unbiased and the b–estimator is positively biased by only 0.005671%.
The variance–covariance matrix of θ̂∗ is

Var
(
θ̂∗
)

=

 0.1000 0.0000

0.0000 0.0576


and the MSE–matrix is practically the same and nearly identical to the GLS variance–covariance
matrix Var

(
θ̂
)
.

We may also apply the series approximated moments to the GLS approaches where B has
been substituted by

1. the diagonal matrix Bd,

2. the identity matrix I ,

3. the asymptotic variance–covariance matrix BB.

20 For the definition of the short version see text following formula (2.25).
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In the first case (Bd =⇒ B) we have — besides the means — to substitute the variances
βr,r:n in Bd by their series approximations β∗r,r:n. The approximated matrix is denoted as
B∗

d and its inverse as Ω∗
d. The results are:

θ̂∗d = Cd x, (4.48a)

Cd =
(
A∗′ Ω∗

d A∗)−1
A∗′ Ω∗

d, (4.48b)

E
(
θ̂∗d
)

= Cd A θ, (4.48c)

δd = E
(
θ̂∗d
)
− θ =

(
Cd A− I

)
θ, (4.48d)

Var
(
θ̂∗d
)

= b2 Cd B C ′
d, (4.48e)

MSE
(
θ̂∗d
)

= Var
(
θ̂∗d
)

+ δd δ′d. (4.48f)

In the second case (I =⇒ B) we only have to substitute the means by their series
approximates. The results are:

θ̂∗I = CI x, (4.49a)

CI =
(
A∗′ A∗)−1

A∗′, (4.49b)

E
(
θ̂∗I
)

= CI A θ, (4.49c)

δI = E
(
θ̂∗I
)
− θ =

(
CIA− I

)
θ, (4.49d)

Var
(
θ̂∗I
)

= b2 CI B C ′
I , (4.49e)

MSE
(
θ̂∗I
)

= Var
(
θ̂∗I
)

+ δI δ′I . (4.49f)

In third case (BB =⇒ B) we have BLOM’s nearly unbiased, nearly best linear esti-
mator. The results are:

θ̂∗B = CB x, (4.50a)

CB =
(
A∗′ B−1

B A∗)−1
A∗′ B−1

B , (4.50b)

E
(
θ̂∗B
)

= CB A θ, (4.50c)

δB = E
(
θ̂∗B
)
− θ =

(
CB A− I

)
θ, (4.50d)

Var
(
θ̂∗B
)

= b2 CB B C ′
B, (4.50e)

MSE
(
θ̂∗B
)

= Var
(
θ̂∗B
)

+ δB δ′B. (4.50f)
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4.3 Estimators based on empirical percentiles
Sometimes there are situations where the data are such that we have to base the plotting
positions on an estimate of the CDF and take regressors deduced from this CDF. These
regressors are the empirical percentiles. In Sect. 4.3.1 we show how to proceed with
grouped data and in Sect. 4.3.2 we describe how to treat data sets consisting of a mixture
of complete and censored data arising from progressively censored samples or randomly
censored samples.

4.3.1 Grouped data

When the sample size is great the data naturally come in grouped form. As has been
described in Sect. 4.1 we now dispose of upper class limits xu

j (j = 1, . . . , k) and cumu-
lated frequencies

nu
j =

j∑
i=1

ni; j = 1, . . . , k; (4.51)

ni being the class frequency. For plotting the data on probability paper we have to resort to
plotting positions that use an estimator P̂j of the CDF Pj = F (xu

j ). From Tab. 3/1 we may
choose among the following estimators to be plotted on the probability–labeled ordinate
against xu

j on the abscissa:

• the nı̈ve estimator

P̂j =
nu

j

n
, (4.52a)

• the midpoint position

P̂j =
nu

j − 0.5

n
, (4.52b)

• the BLOM position21

P̂j =
nu

j − 0.375

n+ 0.25
, (4.52c)

• theWEIBULL position or mean plotting position

P̂j =
nu

j

n+ 1
, (4.52d)

21 BLOM (1958) suggested that a good approximation to the mean αi:n of the reduced order statistic Yi:n

is
α̂i:n = F−1

Y (πi)

where

πi =
i− αi

n− αi − βi + 1
.

BLOM used 3/8 for both these constants and arrived at (4.52c).
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• the median plotting position

P̂j =
nu

j − 0.3

n+ 0.4
, (4.52e)

• the mode plotting position

P̂j =
nu

j − 1

n− 1
. (4.52f)

The regressor to be used in the least–squares estimator’s formula will be the estimated
reduced percentile of order P̂j of the relevant location–scale distribution:

α̂j = F−1
Y

(
P̂j

)
(4.53a)

and the regression equation now reads

xu
j = a+ b α̂j + ηj; j = 1, . . . , k; (4.53b)

where ηj is an error variable incorporating sampling errors as well as non–random er-
rors due to approximating the means of the order statistics. The asymptotic variance–
covariance matrix of the model (4.53b), according to MOSTELLER (1946), is

Var
(
xu
)

= b2 B̂; xu = (xu
1 , . . . , x

u
k)
′; (4.53c)

where the elements β̂j` of B̂ read

β̂j` =
P̂j

(
1− P̂`

)
n fY

(
α̂j

)
fY

(
α̂`

) ; 1 ≤ j ≤ ` ≤ k. (4.53d)

fY

(
α̂j

)
is the reduced DF evaluated at α̂j . When the last class is open to the right, i.e.

xu
k = ∞, we have to do without this class.22

The approximate GLS estimator of θ = (a, b)′, based on the empirical percentiles result-
ing from the estimated CDF, is ̂̂

θ = Ĉ xu (4.54a)

with

Ĉ =
(
Â
′
B̂

−1
Â
)−1

Â
′
B̂

−1
, (4.54b)

Â = (1 α̂), α̂ = (α̂1, . . . , α̂k)
′, (4.54c)

xu = (xu
1 , x

u
2 , . . . , x

u
k). (4.54d)

22 The reader should compare this asymptotic variance–covariance matrix of the empirical quantiles with
the asymptotic variance–covariance matrix BB of BLOM’s estimator and notice the similarity as well
as the difference.
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The estimator ̂̂θ will be biased and not best. We may estimate its variance–covariance
matrix based on the asymptotic variance–covariance matrix of (4.53c) as

̂
Var
( ̂̂
θ
)

= b̂2
(
Â
′
B̂

−1
Â
)−1

. (4.54e)

We have to decide what estimator P̂j to be used. The plotting positions in (4.52a) and
(4.52f) have to be excluded because for most distributions the last observation point
(xu

k , 1) cannot be depicted on most probability papers, even if xu
k is finite. CHER-

NOFF/LIEBERMAN (1954) have shown in the normal distribution case that the choice of
the frequently recommended WEIBULL position leads to much poorer estimates of σ = b,
as measured by mean squared error, than those obtained with the midpoint position. The
program LEPP asks the reader to make his choice among the positions (4.52b) through
(4.52e).

Excursus: The idea behind the procedure for grouped data

The procedure proposed for treating grouped data rests upon the asymptotic theory for constructing
estimators of θ based on a few selected order statistics. This approach is as follows: A k–tuple
(P1, P2, . . . , Pk) with 0 < P1 < P2 < . . . < Pk < 1 is specified.23 In a random sample of
size n the order statistics Xnj :n are chosen, where nj = [nPj ] + 1 ([m] indicating the greatest
integer contained in m). The regressor values in vector α are αj = F−1

Y (Pj). Asymptotically, the
random vector x = (Xn1:n, . . . , Xnk:n)′ has a k–variate normal distribution with mean vector
µ = a1 + bα and variance–covariance matrix Var(x) = b2B where the elements of B are
βj` = Pj (1− P`)

/[
n fY (αj) fY (α`)

]
.

The procedure proposed to deal with grouped data differs from the theory above in so far as the
upper class limits xu

j — taken as substitutes for Xnj :n — are fix and the k–tuple (P̂1, . . . , P̂k)
— taken as a substitute for (P1, . . . , Pk) — is random. Thus, the procedure used is nothing but a
crude approximation.

Example 4/8: Estimating with grouped data from an exponential distribution

n = 50 exponentially distributed random numbers have been generated with a = 10 and b = 100
and grouped into k = 7 classes with the following result:

xu
j 30 70 120 200 300 500 ∞

nu
j 13 25 34 42 46 49 50

23 The problem of optimally choosing the k–tuple is treated in the fundamental work of OGAWA (1951,
1962). An up–to–date presentation of this topic is to be found in BALAKRISHNAN/COHEN (1991,
Chapter 7).
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The intermediate results of estimation — omitting the last class with xu
k = ∞ — are:

j 1 2 3 4 5 6

P̂j 0.2549 0.4902 0.6667 0.8235 0.9020 0.9608

α̂j 0.2942 0.6737 1.0986 1.7346 2.3224 3.2387

fY (α̂j) 0.7451 0.5098 0.3333 0.1756 0.0980 0.0392

B̂ — only showing the upper triangle of this symmetric matrix – reads

B̂ =



0.0068 0.0068 0.0068 0.0068 0.0068 0.0068
0.0192 0.0192 0.0192 0.0192 0.0192

0.0400 0.0400 0.0400 0.0400
0.0933 0.0933 0.0933

0.1840 0.1840
0.4900


The estimated parameters are ( ̂̂â̂

b

)
=
(
−7.9964
129.1343

)

with estimated variance–covariance matrix

̂
Var
( ̂̂
θ
)

=

 155.9987 −142.4077

−142.4077 483.9857

 .

Fig. 4/4 shows the data together with the estimated regression line. For an explanation of the
apparently bad fit of the regression line see Example 5/1. The fit in the upper x–region does not
seem to be good due to the great variance of the last ranking observation, but when we refer to the
asymptotic normal distribution of the estimators and set up two–sided 95%–confidence intervals
for both parameters we have

−7.9964− 1.96
√

155.9987 ≤ a ≤ −7.9964 + 1.96
√

155.9987
−32.4767 ≤ a ≤ 16.4839

129.1343− 1.96
√

483.9857 ≤ b ≤ 129.1343 + 1.96
√

483.9857
86.0149 ≤ b ≤ 172.2537.

The true parameter values a = 10 and b = 100 of the sample generating distribution are within
these intervals.
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Figure 4/4: Probability plot and estimated regression line — n = 50, grouped, from an expo-
nential distribution

4.3.2 Randomly and multiply censored data
When the data come from a sample which has been randomly or multiply censored the
sorted sequence of observations (sorted in ascending order) will be a series where censored
and uncensored observations follow one another in a non–systematic pattern. Each item
in such a series will bear two entries:

1. a real number showing a measured value ti:n (i = 1, . . . , n) that may be either the
value of some censoring variable C or the value of the variable X under study,

2. a binary indicator ϑi telling whether ti:n is censored or not:

ϑi =

 0, if ti:n is uncensored,

1, if ti:n is censored.

The estimation process and the probability plotting explicitly make use of the uncensored
observations only, but the censored observations, which bear some information, will be
allowed for implicitly. The non–parametric approach, which is applied here to estimate
RX(x), the complementary CDF (= reliability or survival function) of X , is the product–
limit estimator of KAPLAN/MEIER (1958). Once we have found the estimate of RX(x)
probability plotting and linear estimation are executed along the lines of the preceding
section.

In the following description of the KAPLAN–MEIER approach we will call X a lifetime.
Corresponding to each xi, i.e. an uncensored observation ti:n, is ni the number at risk
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just prior to time xi and di the number of failures at xi. The KAPLAN–MEIER estimator is
the non–parametric maximum–likelihood estimator of RX(x). It is a product of the form

R̂X(x) =
∏
xi≤x

ni − di

ni

. (4.55a)

When there is no censoring, ni is the number of survivors just prior to time xi. With
censoring, ni is the number of survivors less the number of losses (censored cases). It is
only these surviving cases that are still being observed (have not been censored) and that
are at risk of an (observed) failure. An alternate definition iŝ̂

RX(xi) =
∏
xi<x

ni − di

ni

. (4.55b)

The two definitions differ only with respect to the observed event times. The definition in
(4.55b) is left–continuous whereas that in (4.55a) is right–continuous. Note that

RX(x) = Pr(X > x) = 1− Pr(X ≤ x) = 1− FX(x).

Consequently, the right–continuous definition R̂X(x) in (4.55a) may be preferred in order
to make the estimator compatible with the right–continuous estimator of FX(x). The
KAPLAN–MEIER approach rests upon the intuitive idea called redistribution–to–the–
right. The algorithm starts with an empirical distribution that puts mass 1

/
n at each

observation ti:n and then moves the mass of each censored observation by distributing it
equally to all observations to the right of it.

On probability paper we will plot

P̂i = F̂X(xi) = 1− R̂X(xi) (4.56a)

against xi. For the least–squares estimator we then take the regressor

α̂i = F−1
(
P̂i

)
, (4.56b)

which is the estimated reduced percentile of order P̂i of the relevant location–scale dis-
tribution and then proceed as has been described in Sect. 4.3.1 using formulas (4.53a)
through (4.54e) where the vector xu now consists of the uncensored observations xi.

Example 4/9: Randomly censored data from an exponential distribution

The following n = 20 observations which have been randomly censored come from an exponential
distribution with a = 10 and b = 100. The KAPLAN–MEIER estimates P̂i in the following table
have been found with the command ecdf of MATLAB. The estimates arê̂a = 8.8158 and ̂̂

b = 83.6105

and are in good accordance with the true parameter values a = 10 and b = 100. The estimated
variance of the estimates is

̂
Var
( ̂̂
θ
)

=

 23.6014 −28.9558

−28.9558 477.6240

 .
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i ti:20 δi xi P̂i α̂i

1 5.6796 1 − − −
2 10.2347 1 − − −
3 10.5301 1 − − −
4 13.8847 0 13.8847 0.0588 0.0606
5 15.8959 1 − − −
6 19.3599 0 19.3599 0.1216 0.1296
7 24.0076 0 24.0076 0.1843 0.2037
8 24.0764 0 24.0764 0.2471 0.2838
9 30.1745 0 30.1745 0.3098 0.3708

10 32.3058 0 30.3058 0.3727 0.4661
11 35.5008 0 35.5008 0.4353 0.5715
12 69.8091 0 69.8091 0.4980 0.6892
13 71.1588 1 − − −
14 71.4876 1 − − −
15 87.4029 1 − − −
16 101.6834 0 101.6834 0.5984 0.09124
17 104.7105 1 − − −
18 142.7466 1 − − −
19 144.7572 0 144.7572 0.7992 1.6055
20 203.1333 0 203.1333 1.0000 ∞

Fig. 4/5 displays the uncensored data xi of the sample together with the estimated regression line
on exponential probability paper.

Figure 4/5: Probability plot and estimated regression line — n = 20 randomly censored from an
exponential distribution
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4.4 Goodness–of–fit
After the data have been plotted on probability paper a decision must be made whether
these values tend to fall on a straight line and the chosen distribution could be the correct
model. Since the order statistics are not independent there could be runs of points above
and below a hypothetical straight line when the model is appropriate. Thus, tests of runs
cannot be used in the assessment. In addition the variance of the order statistics in the
unrestricted tails of the distribution is higher than in the central region or restricted tails.
Thus, greater deviations from linearity must be allowed for in these regions. Systematic
departures from linearity are the indicators of lack of fit and hence model rejection. Also
the smaller the sample size the greater the tolerance that must be allowed for departures
from a straight line.

Often an analytical test procedure — see below — is based in conjunction with the plot
so that an objective assessment can be made. In these cases the plot serves as a graphical
guide as to what the analytical procedure is telling and can indicate when the model is
rejected if the rejection was due to one or a few outlying observations and give some idea
of where the discrepancy in the data and the model occurred.

As LOCKHART/STEPHENS (1998) carry out there can be identified three main approaches
to measuring the fit. The first is simply to measure the correlation coefficient r(Xi:n, αi),
r(Xi:n, α

∗
i ) or r(Xi:n, α̂i) between the paired sets Xi:n and the chosen regressor. A second

method is to estimate the straight line using GLS to take into account the autocorrelation
and heteroscedasticity of order statistics, and then to base the test of fit on the sum of
squares of residuals. A closely related procedure is to fit a higher–order polynomial
regression, and then to test the hypothesis that the coefficients of the higher–order terms
are zero. A third technique is to estimate b from the regression using GLS, and to compare
this estimate with the estimate of scale given by the sample standard deviation for those
location–scale distributions where b is the standard deviation. The latter test statistic will
be a modification of the well–known W statistic of SHAPIRO/WILK (1965). All three
approaches mentioned above have been applied to the WEIBULL distribution by RINNE

(2009, pp. 667–674).

Testing with the correlation coefficient is no easy task in so far as the conventional theory
for this statistic assumes that the correlation coefficient applies to two random variables,
but here one of the variables — αi, α

∗
i or α̂i, respectively — are constants which are

functions of the order number i. For this reason LOCKHART/STEPHENS (1998) have
developed the distribution theory for such a type of correlation coefficient. The program
LEPP will give the correlation coefficient for the data in the probability plot, but no formal
test of significance of H0 : ρ(x, α) = 0 is executed because the critical points of the test
statistic are not easy to find and depend on the special location–scale distribution. Thus,
the correlation coefficient shown by LEPP has to be interpreted in the descriptive sense:
the nearer to one the better.



5 Probability plotting and linear
estimation — Applications

After enumerating in Sect. 5.1 what will be shown for each location–scale distribution we
present in Sect. 5.2 a great number of original distributions of this type and in Sect. 5.3
several distributions which after a log–transformation turn into this type.

5.1 What will be given for each distribution?
• The description of each distribution starts with its genesis, gives fields of application

and enumerates related distributions together with bibliographical notes. For more
details the reader is referred to the two volumes of JOHNSON/KOTZ/BALAKRISH-
NAN (1994, 1995) on continuous univariate distributions.

• Then we will specify the functions and parameters listed in Tab. 1/1 for the non–
reduced version of the distribution.1 Functions and parameters of the reduced ver-
sion easily follow by setting a and b to zero and to one, respectively. We will also say
by which percentiles and how to estimate the location and scale parameters which
may be read off using a line fitted to the data on the probability paper. When this
line has been estimated by one of the linear procedures of this book the read–off
parameter values will be identical to those of the linear estimation procedure up to
minor errors of reading off.

• We will give a chart displaying the DF fY (y), the CDF FY (y), the hazard function
hY (y) and the cumulated hazard function HY (y) for the reduced variate Y = (X −
a)
/
b.

• When there are closed form expressions for the DF, CDF and moments of the order
statistics, they will follow. We will also give hints to tables and special recurrence
relations and identities pertaining to these moments.

• We will give the percentile function F−1
Y (P ) and — when LEPP uses an approxi-

mation for the moments of order statistics — its first six derivatives.

• For the processing of grouped data as well as of multiply or progressively censored
data we will give the reduced DF at α̂j , i.e. fY (α̂j) where α̂j = F−1

Y (P̂j).

• We we will display the probability paper pertaining to that distribution together with
a Monte Carlo generated data set and the estimated regression line.

1 We only give the characteristic function and/or the crude moment generating function, because the
remaining generating functions simply depend on those two functions.
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• For grouped data and randomly or multiply censored data the linear estimation pro-
cedure implemented in LEPP is always based on (4.54a,e) and (4.56a,b). But when
the data input is a set of order statistics the linear estimation process in LEPP uses
different approaches depending on the respective distribution. We therefore indicate
which method of Sect. 4.2 has been used for that distribution.

5.2 The case of genuine location–scale distributions
This section describes 27 distributions which originally come in location–scale form. We
hope to not have omitted any important member of this family.

5.2.1 Arc–sine distribution — X ∼ AS(a, b)

The arc–sine distribution2 is a special case of the beta distribution (1.12a) having shape
parameters c = d = 0.5. A beta distribution with c + d = 1, but c 6= 0.5, is some-
times called a generalized arc–sine distribution. The name is derived from the fact that
the CDF (5.1b) is written in terms of the arc–sine function, the inverse of the sine func-
tion: arcsin(x) = sin−1(x). The arc–sine distribution describes the location, velocity and
related attributes at random time of a particle in simple harmonic motion. The arc–sine
distribution with parameter a = 0 and b > 0 having support [−b, b] gives the position at
random time3 of a particle engaged in simple harmonic motion with amplitude b > 0.

A random variable X is arc–sine distributed with parameters a ∈ R and b > 0, denoted
X ∼ AS(a, b), when its DF is given by

f(x|a, b) =
1

b π

√
1−

(
x− a

b

)2
, a− b < x < a+ b. (5.1a)

f(x|a, b) is symmetric around a and U–shaped. There is an antimode
(
= minimum of

f(x|a, b)
)

at x = a and f(x|a, b) → ∞ for x → a± b.

F (x|a, b) =

π + 2 arcsin

(
x− a

b

)
2π

=
1

2
+

arcsin

(
x− a

b

)
π

(5.1b)

R(x|a, b) =

π − 2 arcsin

(
x− a

b

)
2π

=
1

2
−

arcsin

(
x− a

b

)
π

(5.1c)

h(x|a, b) =
2

b π

√
1−

(
x− a

b

)2 [
π − 2 arcsin

(
x− a

b

)] (5.1d)

2 Suggested reading for this section: ARNOLD/GROENEVELD (1980), NORTON (1975, 1978, 1982),
SHANTARAM (1978, 1981), KEMPERMAN/SKIBINSKY (1982).

3 “Random time” means that the time of observation is independent of the initial angle, 0 ≤ θ0 ≤ 2π.
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The hazard function h(x) has a bathtub shape with a minimum at x ≈ a− 0.4421 b.

H(x|a, b) = ln(2π)− ln

[
π − 2 arcsin

(
x− a

b

)]
(5.1e)

Figure 5/1: Several functions for the reduced arc–sine distribution

F−1
X (P ) = xP = a+ b sin[π (P − 0.5)], 0 ≤ P ≤ 1 (5.1f)

a = x0.5 (5.1g)

b = x0.6 − x0.3 (5.1h)

CX(t) = exp(i t a)
∞∑

k=0

(−1)k

(
b t

2

)
2 k

/
(k!)2 (5.1i)

µ′r(Y ) = E
(
Y r
)

=


(
r

r/2

)/
2r for r = 2 k; k = 1, 2, . . .

0 for r = 2 k + 1; k = 0, 1, . . .

 (5.1j)

µ′r(X) = E
[
(a+ b Y )r

]
=

r∑
j=0

(
r

j

)
br−j aj µ′r−j(Y ) (5.1k)
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µ′1(X) = E(X) = a (5.1l)

µ′2(X) = E(X2) =
b2

2
+ a2 (5.1m)

Var(X) =
b2

2
(5.1n)

α3 = 0 (5.1o)

α4 = 1.5 (5.1p)

I(X) = ld b+ ld(π/2) ≈ ld b+ 0.6515 (5.1q)

F−1
Y (P ) = yP = sin[π (P − 0.5)], 0 ≤ P ≤ 1 (5.1r)

fY (yP ) =
1

π
√

1− {sin[π (P − 0.5)]}2
(5.1s)

In LEPP linear estimation using order statistics is realized with BLOM’s unbiased, nearly
best linear estimator. The means of the reduced order statistics are evaluated by numerical
integration.

Example 5/1: OLS and GLS with a sample of size n = 10 from an arc–sine distribution

The following ten observations are order statistics in an uncensored sample of size n = 10 from an
arc–sine distribution having a = 1 and b = 2:

r 1 2 3 4 5 6 7 8 9 10

xr:10 −0.9400 −0.9311 −0.7712 −0.5045 0.6418 0.6905 1.2403 2.7080 2.9263 2.9999

The correlation coefficient of the data and the plotting positions (here: means of the reduced order
statistics) is r = 0.9762, indicating a good fit. Fig. 5/2 shows on the left–hand side the data
together with the OLS-estimated regression line on arc–sine probability paper. The estimates of
the parameters and their estimated variance matrix are â

b̂

 =

 0.8056

2.3476

 V̂ar
(
θ̂
)

=

 0.5611 0

0 1.3598

 .

The right–hand side of Fig. 5/2 shows the same data, but with the unbiased nearly best linear
BLOM–estimated regression line. The estimates of the parameters and their estimated variance
matrix are  â

b̂

 =

 1.0442

2.0738

 V̂ar
(
θ̂
)

=

 0.0102 0

0 0.0108

 .

The BLOM-estimates, being GLS-like, are closer to the true parameter values than the OLS–
estimates. Furthermore, OLS severely overestimates the variances. Looking at both pictures in
Fig. 5/2 the OLS-line gives the better eye–fit to the data.
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If we have had to draw an eye–fitted line to the data we surely would have come out with a line
similar to the OLS–line, because we intuitively give equal weights to the deviations. GLS takes
into account the fact of variance–heterogeneity of order statistics and weighs down those deviations
which belong to an order statistic with high variance. The GLS–approach consists in minimizing
the generalized variance

(x− â1− b̂α)′B−1(x− â1− b̂α),

i.e. the deviations (x − â1 − b̂α) are weighted with the inverse of the variance matrix. Thus, a
GLS–line normally is no good eye–fitted line.

Figure 5/2: Arc–sine probability paper with data and OLS–line (left) and GLS–line (right)

5.2.2 CAUCHY distribution — X ∼ CA(a, b)

The CAUCHY distribution, named after the French mathematician AUGUSTIN CAUCHY

(1789 –1857), is the distribution of the ratio of two independent normal variates, more
precisely: if Y1 ∼ NO(0, 1) and Y2 ∼ NO(0, 1), both independent, then Y = Y1

/
Y2 ∼

CA(0, 1). Of course, the reciprocal Y2

/
Y1 is CAUCHY distributed, too. However, it should

be noted that the common distribution of Y1 and Y2 need not be normal. Among physi-
cists this distribution is known as LORENTZ distribution (HENDRIK ANTOON LORENTZ,
1853 – 1928, Nobel Prize winner for physics in 1902) or BREIT–WIGNER function. In
physics it is of importance due to being the solution of the differential equation describing
forced resonance. It also describes the line–shape of spectral lines which are subject to
homogeneous broadening in which all atoms interact in the same way with the frequency
range contained in the line–shape. For more details on the genesis and applications of the
CAUCHY distribution the interested reader is referred to STIGLER (1974).
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The reduced CAUCHY distribution CA(0, 1) is identical to the central t–distribution with
one degree of freedom. The generalized CAUCHY distribution with DF

f(x|a, b, d,m) =
mΓ(d)

2 bΓ
(
m−1

)
Γ
(
d−m−1

) [1 +

∣∣∣∣x− a

b

∣∣∣∣m ]−d

;

x ∈ R; b, d,m > 0; d ≥ m−1;

 (5.2)

results into the simple CAUCHY distribution with DF (5.3a) for m = 2 and d = 1. For
m = 2, a = 0 we have the DF of

[
b (2 d−1)−0.5

]
times a central t–variable with 2 (d−1)

degrees of freedom.

Figure 5/3: Several functions for the reduced CAUCHY distribution

A variate X is CAUCHY distributed with parameters a ∈ R and b > 0, denoted CA(a, b),
when its DF is given by

f(x|a, b) =

{
π b

[
1 +

(
x− a

b

)2
]}−1

, x ∈ R. (5.3a)
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f(x|a, b) is symmetric around a and bell–shaped like the normal distribution, but it has
thicker tails than a normal distribution. That is why the CAUCHY distribution has no finite

moments of order r > 1, because
∞∫

−∞
xr f(x|a, b) dx does not converge on R.

F (x|a, b) =
1

2
+

1

π
arctan

(
x− a

b

)
(5.3b)

R(x|a, b) =
1

2
− 1

π
arctan

(
x− a

b

)
(5.3c)

h(x|a, b) =

{
b

[
1 +

(
x− a

b

)2
] [

π

2
− arctan

(
x− a

b

)]}−1

(5.3d)

The hazard rate has an inverted bath–tub shape with a maximum at x ≈ a+ 0.4290 b.

H(x|a, b) = ln(2π)− ln

[
π − 2 arctan

(
x− a

b

)]
(5.3e)

F−1
X (P ) = xP = a+ b tan

[
π (P − 0.5)

]
(5.3f)

a = x0.5 (5.3g)

b =
(
x0.75 − x0.25

)/
2 (5.3h)

xM = x0.5 = a (5.3i)

CX(t) = exp
(
i t a− |t| b

)
, i =

√
−1 (5.3j)

I(X) = ld b+ ld(4π) ≈ ld b+ 3.6515 (5.3k)

F−1
Y (P ) = yP = tan[π (P − 0.5)], 0 < P < 1 (5.3l)

fY (yP ) =
{
π
(
1 + tan2

[
π (P − 0.5)

])}−1 (5.3m)

F
−1(1)
Y (P ) = π sec2[π (P − 0.5)]

F
−1(2)
Y (P ) = 2π2 sec2[π (P − 0.5)] tan[π (P − 0.5)]

F
−1(3)
Y (P ) = −2π3 sec4[π (P − 0.5)]

{
cos[2π (P − 0.5)]− 2

}
F
−1(4)
Y (P ) = −2π4 sec5[π (P − 0.5)]

{
sin[3π (P − 0.5)]

− 11 sin[π (P − 0.5)]
}

F
−1(5)
Y (P ) = 2π5 sec6[π (P − 0.5)]

{
33− 26 cos[2π (P − 0.5)]

+ cos[4π (P − 0.5)]
}

F
−1(6)
Y (P ) = 2π6 sec7[π (P − 0.5)]

{
302 sin[π (P − 0.5)] + sin[5π (P − 0.5)]

+ 57 sin[3π (P − 0.5)]
}



(5.3n)
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Figure 5/4: CAUCHY probability paper with data and regression line

Since the reduced CAUCHY variate does not possess finite moments of order r > 1 the
expected values of Y1:n and Yn:n and the variances of Y1:n, Y2:n, Yn−1:n and Yn:n are infi-
nite. Explicit expressions involving infinite series have been given by VAUGHAN (1994).
BARNETT (1966) has computed the means, variances and covariances of reduced order
statistics for sample sizes n = 5(1)16(2)20 based on the following formulas which result
from the general formulas (2.9a) and (2.11a) after a transformation of the variable:

αr:n =
n!

πn (r − 1)! (n− r)!

π/2∫
−π/2

(π
2

+ v
)r−1 (π

2
− v
)n−r

tan v dv (5.3o)

αr,r:n =
n!

πn (r − 1)! (n− r)!

π/2∫
−π/2

(π
2

+ v
)r−1 (π

2
− v
)n−r

tan2 v dv (5.3p)

αr,s:n =
n!

πn (r − 1)! (s− r − 1)! (n− r)!

π/2∫
−π/2

w∫
−π/2

tan v tanw ×

(π
2

+ v
)r−1

(w − v)s−r−1
(π

2
− w

)n−s

dv dw, r < s. (5.3q)

(5.3o) can be transformed to

αr,r:n =
n

π

(
αr:n−1 − αr−1:n−1

)
− 1

so that the variance is

βr,r:n =
n

π

(
αr:n−1 − αr−1:n−1

)
− 1− α2

r:n. (5.3r)
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Computation of the means by (5.3o) causes no numerical difficulties as well as the com-
putation of the variances which are obtained from the means according to (5.3r). But there
are considerable difficulties in evaluating (5.3q), see BARNETT (1966) for resolving them.
In LEPP linear estimation with order statistics is realized as follows:

• for 7 ≤ n ≤ 20 LLOYD’s estimator with means computed according to (5.3o) and
tabulated variances and covariances taken from BARNETT (1966),

• for n > 20 LLOYD’s estimator with means computed according to (5.3o) and ap-
proximated variance–covariance matrix.

5.2.3 Cosine distributions
The cosine function y = cosx describes a wave with constant length of 2π and a height
of 2, measured from the bottom to the top. When we pick out that piece where y ≥ 0, i.e.
the interval −π/2 ≤ x ≤ π/2 — marked bold in Fig. 5/5 —, normalize the enclosed area
to unity and rename the variables, we arrive at the rather simple looking DF

f(y) =
1

2
cos y, −π/1 ≤ y ≤ π/2. (5.4)

This is the reduced form of the simple or ordinary cosine distribution. In class–room
teaching it often serves as an object of demonstrating the handling of continuous dis-
tributions. The ordinary cosine distribution is convex over [−π/2, π/2] and thus is no
good approximation to the bell–shaped normal distribution. We find a bell–shaped DF
of cosine–type when we modify (5.4) to the so–called raised cosine distribution. Its
reduced form reads

f(y) =
1

2

[
1 + cos(π y)

]
, −1 ≤ y ≤ 1. (5.5)

The sine function and the cosine function differ by a horizontal shift of π/2 — see
Fig. 5/5 — so that we can equally express (5.4) and (5.5) in terms of the sine function.

Figure 5/5: Cosine and sine functions
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5.2.3.1 Ordinary cosine distribution — X ∼ COO(a, b)

We list the following results for an ordinary cosine distribution.

f(x|a, b) =
1

2 b
cos

(
x− a

b

)
, a− b

π

2
≤ x ≤ a+ b

π

2
, a ∈ R, b > 0 (5.6a)

F (x|a, b) = 0.5

[
1 + sin

(
x− a

b

)]
(5.6b)

R(x|a, b) = 0.5

[
1− sin

(
x− a

b

)]
(5.6c)

h(x|a, b) =
1

b

[
sec

(
x− a

b

)
− tan

(
x− a

b

)] (5.6d)

H(x|a, b) = ln 2− 2 ln

[
cos

(
x− a

b

)
− sin

(
x− a

b

)]
(5.6e)

Figure 5/6: Several functions for the reduced ordinary cosine distribution
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F−1
X (P ) = xP = a+ b arcsin

[
2 (P − 0.5)

]
, 0 ≤ P ≤ 1 (5.6f)

a = x0.5 (5.6g)

b ≈ x0.7397 − x0.2603 (5.6h)

xM = x0.5 = a (5.6i)

MX(t) =
exp

(
a t− π b t

/
2
)[

1 + exp
(
π b t

)]
2
(
1 + b2 t2

) (5.6j)

CX(t) =
exp

[
i
(
a t− π b t

/
2
)][

1 + exp
(
i π b t

)]
2
(
1− b2 t2

) , i =
√
−1 (5.6k)

µ′r(Y ) =
πr+1

1 + r

{
2−r−2

[
1 + (−1)r

]
1F3(α; β; z)

}
(5.6l)

1F3(α; β; z) is a generalized hypergeometric function with α = 0.5 (1 + r),
β = (0.5, 1.5, 0.5 r), z = −π2

/
16, see ABRAMOWITZ/STEGUN (1965).

µ′1(X) = E(X) = a (5.6m)

µ′2(X) = a2 +
b2

4
(π2 − 8) (5.6n)

µ′3(X) = a3 + 0.75 a b2 (π2 − 8) (5.6o)

µ′4(X) = a4 + 1.5 a2 b2(π2 − 8) +
b4

16
(384− 48π2 + π4) (5.6p)

Figure 5/7: Ordinary cosine probability paper with data and regression line
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Var(X) =
b2 π2

4
− 2 b2 ≈ 0.4674 b2 (5.6q)

α3 = 0 (5.6r)

α4 ≈ 2.1938 (5.6s)

I(X) =
1 + ln b

ln 2
≈ 1.4427 (1 + ln b) (5.6t)

F−1
Y (P ) = yP = arcsin

[
2 (P − 0.5)

]
, 0 ≤ P ≤ 1 (5.6u)

fY (yP ) =
√
P (1− P ) (5.6v)

In LEPP linear estimation for order statistics input is realized with LLOYD’s estimator
using computed means and variance–covariance matrix.

5.2.3.2 Raised cosine distribution — X ∼ COR(a, b)

We give the following description and features for a raised cosine distribution.

f(x|a, b) =
1

2 b

[
1 + cos

(
π
x− a

b

)]
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (5.7a)

F (x|a, b) =
1

2

[
1 +

x− a

b
+

1

π
sin

(
π
x− a

b

)]
(5.7b)

R(x|a, b) =
1

2

[
1− x− a

b
− 1

π
sin

(
π
x− a

b

)]
(5.7c)

h(x|a, b) =

1 + cos

(
π
x− a

b

)
b

[
1− x− a

b
− 1

π
sin

(
π
x− a

b

)] (5.7d)

H(x|a, b) = ln(2π)− ln

[
π

(
x− a

b
− 1

)
+ sin

(
π
x− a

b

)]
(5.7e)

The percentiles cannot be given in explicit form. For the reduced variate the percentile yP

is the solution of
π
(
2P − 1

)
= π yP + sin(π yP ).

We have OLS–fitted the percentile function for the reduced distribution by a polynomial
of degree two, where the regressor is

t =
√
−2 lnP ,

and found

yP ≈ 0.820251− 0.806770 t+ 0.093247 t2, 0 < P ≤ 0.5. (5.7f)
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The absolute error of this approximation is less than 3 · 10−3. For P > 0.5 the symmetry
relation

y1−P = −yP , 0 < P ≤ 0.5,

holds.

Figure 5/8: Several functions for the reduced raised cosine distribution

F−1
X (P ) = xP = a+ b yP , 0 ≤ P ≤ 1 (5.7g)

a = x0.5 (5.7h)

b ≈ x0.9092 − x0.0908 (5.7i)

xM = x0.5 = a (5.7j)

MX(t) = exp(a t)
π2 sinh(b t)

b t (π2 + b2 t2)
(5.7k)

CX(t) = exp(i a t)
π2 sinh(b t)

b t (π2 − b2 t2)
, i =

√
−1 (5.7l)

µ′r(Y ) =
1

r + 1
+

1

1 + 2 r
1F2

(
r + 0.5; 0.5, r + 1.5;−π

2

4

)
(5.7m)

1F2(·) is a generalized hypergeometric function.
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µ′1(X) = E(X) = a (5.7n)

µ′2(X) = a2 + b2
π2 − 6

3π2
(5.7o)

µ′3(X) = a3 + a b3
(

1− 6

π2

)
(5.7p)

µ′4(X) = a4 +
2 a2 b2 (π2 − 6)

π2
+
b4 (120− 20π2 + π4)

5π4
(5.7q)

Var(X) = b2
(

1

3
− 6

π2

)
(5.7r)

α3 = 0 (5.7s)

α4 ≈ 2.4062 (5.7t)

I(X) ≈ 0.5573 + 1.4427 ln b (5.7u)

In LEPP linear estimation for order statistics input is realized with LLOYD’s estimator
using computed means and variance–covariance matrix.

Figure 5/9: Raised cosine probability paper with data and regression line

5.2.4 Exponential distribution — X ∼ EX(a, b)

The exponential distribution4 gives the probability for the distance between successive
events in a POISSON process. It is widely used as a lifetime distribution and as such it is

4 Suggested reading for this section: JOHNSON/KOTZ/BALAKRISHNAN (1994, Chapter 19), BALA-
KRISHNAN/RAO (1998b, Chapters 1 and 2).
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characterized by the property of no–aging, i.e. the future lifetime of an individual aged
x > 0 has the same distribution of a new–born individual. It is further characterized by
a constant hazard function, see (5.8d). The exponential distribution is related to a great
number of other distributions.

• It is a special case of the WEIBULL distribution, see Sect. 5.3.2.4, having shape
parameter c = 1.

• If Y = exp(−X) has an exponential distribution with a value of zero for the location
parameter then X has a extreme value distribution of type I for the maximum,
see Sect. 5.2.5.1.

• The double or bilateral exponential distribution, also known as LAPLACE distri-
bution, see Sect. 5.2.8, is a combination of the exponential and reflected exponential
distributions.

• The central χ2–distribution χ2(ν) with ν = 2 degrees of freedom is identical to
EX(0, 2).

• When U has a reduced uniform distribution, i.e. U ∼ UN(0, 1), then X =
− lnU ∼ χ2(2) = EX(0, 2).

• The exponential distribution with a = 0 is a special case of the gamma distribution
having shape parameter c = 1.

• The logarithm of a PARETO variable is exponentially distributed, see Sect. 5.3.4.

• When X has power–function distribution then V = − lnX has an exponential
distribution, see Sect. 5.3.5.

• When X is exponentially distributed then V = −X has a reflected exponential
distribution, see Sect. 5.2.14.

f(x|a, b) =
1

b
exp

(
−x− a

b

)
, x ≥ a, a ∈ R, b > 0 (5.8a)

F (x|a, b) = 1− exp

(
−x− a

b

)
(5.8b)

R(x|a, b) = exp

(
−x− a

b

)
(5.8c)

h(x|a, b) =
1

b
(5.8d)

H(x|a, b) =
x

b
(5.8e)

F−1
X (P ) = xP = a− b ln(1− P ), 0 ≤ P < 1 (5.8f)

x0.5 = a+ b ln 2 ≈ a+ 0.6931 b (5.8g)

x0.6321 ≈ a+ b − characteristic life (5.8h)
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Figure 5/10: Several functions for the reduced exponential distribution

a = x0 (5.8i)

b ≈ x0.6321 − x0 (5.8j)
xM = a with f(xM |a, b) = 1

/
b (5.8k)

MX(t) =
exp(a t)

1− b t
(5.8l)

CX(t) =
exp(i a t)

1− i b t
, i =

√
−1 (5.8m)

µ′r(X) = br exp(a
/
b) Γ(1 + r, a

/
b) (5.8n)

Γ(1 + r, a
/
b) =

∞∫
a/b

ur exp(−u) du− incomplete gamma function

µ′1(X) = E(X) = a+ b (5.8o)
µ′2(X) = (a+ b)2 + b2 (5.8p)
µ′3(X) = (a+ b)3 + b2 (3 a+ 5 b) (5.8q)
µ′4(X) = (a+ b)4 + b2 (6 a2 + 20 a b+ 23 b2) (5.8r)
µ′r(X

∗) = r! br = r b µ′r−1(X
∗), where X∗ = X − a (5.8s)
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µr(X) = br
r∑

j=0

(
r

j

)
(−1)j(r − j)! (5.9a)

µ2(X) = Var(X) = b2 (5.9b)
µ3(X) = 2 b3 (5.9c)
µ4(X) = 9 b4 (5.9d)

α3 = 2 (5.9e)
α4 = 9 (5.9f)

κ1(X) = a+ b (5.9g)
κr(X) = (r − 1)! br; r = 2, 3, . . . (5.9h)
I(X) = ld 2 + ld b ≈ 1.4427 (1 + ln b) (5.9i)

F−1
Y (P ) = yP = − ln(1− P ), 0 ≤ P < 1 (5.9j)
fY (yP ) = 1− P (5.9k)

The exponential distribution is one of the few distributions whose moments of order statis-
tics can be given in closed form, and in LEPP they are input to LLOYD’s estimator:

αr:n = E(Yr:n) =
r∑

j=1

1

n− j + 1
=

n∑
i=n−r+1

i−1, 1 ≤ r ≤ n (5.9l)

βr,r:n = Var(Yr:n) = βr,s:n = Cov(Yr:n, Ys:n) (5.9m)

=
r∑

j=1

1

(n− j + 1)2
=

n∑
i=n−r+1

i−2, 1 ≤ r < s ≤ n (5.9n)

Figure 5/11: Exponential probability paper with data and regression line
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5.2.5 Extreme value distributions of type I
An extreme value distribution5 is the distribution of either the smallest or the largest
observation in a sample for n → ∞. Thus, it is a limiting distribution. The discov-
ery of and the pioneering work on these types of distributions took place in the second
and third decades of the last century. The main contributors are mathematicians and
statisticians from England ( R.A. FISHER, L.H.C. TIPPETT), France (M. FRÉCHET),
Germany (L. VON BORTKIEWICZ, R. VON MISES, E.J. GUMBEL) and Russia ( B.V.
GNEDENKO). For more details of the genesis of extreme value distributions see JOHN-
SON/KOTZ/BALAKRISHNAN (1995, Chapter 22) and RINNE (2009, Chapter 1).

FISHER/TIPPETT (1928) were the first to prove that there only exist three types of limiting
extreme value distributions, each type having a maximum and a minimum variant.6 The
type depends on the behavior of the sampled distribution on the relevant side, i.e. on the
left–hand (right–hand) for the distribution of the minimum (maximum). The main results
are:

• Type I will come up if the sampled distribution is unlimited towards the relevant
side and is of exponential type on that side, meaning that the CDF of the sampled
distribution, is increasing towards unity with x → ∞ (decreasing towards zero
with x → −∞) at least as quickly as an exponential function. Prototypes are the
exponential, normal and the χ2–distributions.

• Type II will come up if the sampled distribution has a range which is unlimited
from below (for the minimum type) or unlimited from above (for the maximum
type), respectively, and if its CDF is of CAUCHY–type. This means, that for some
positive k and A:

lim
x→∞

xk
[
1− F (x)

]
= A in case of a maximum or

lim
x→−∞

(−x)k F (x) = A in case of a minimum.

The convergence of F (x) or
[
1 − F (x)

]
, respectively, is slower than exponential.

The prototype is the CAUCHY distribution itself.

• Type III will come up if the sampled distribution has a range which is bounded
from above (for the maximum type) or bounded from below (for the minimum type),
the bound being x0. Besides the CDF must behave like

β (x0 − x)α for some α, β > 0 as x→ x−0 (case of a maximum) and like

β (x− x0)
α for some α, β > 0 as x→ x+

0 (case of a minimum).

A prototype is the uniform distribution over some interval [A,B].

5 Suggested reading for this section: GALAMBOS (1978, 1998), GUMBEL (1958), JOHNSON/
KOTZ/BALAKRISHNAN (1995).

6 The order of enumerating the extreme value distributions goes back to these authors.
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We finally mention that type II distributions are said to be of FRÉCHET type. Type I
distributions which have been studied extensively and applied frequently by E.J. GUM-
BEL, 1891 – 1966, see GUMBEL (1958), are said to be of GUMBEL type, whereas type III
distributions are said to be of WEIBULL type.

The distributions of the asymptotically smallest and largest sample value are linked be-
cause of

min
i
Xi = −

{
max

i
(−Xi)

}
(5.10a)

as follows, where W is the maximum variable and X the minimum variable, respectively,
both being continuous:

Pr(X ≤ t) = Pr(W ≥ −t) = 1− Pr(W < t),

FX(t) = 1− FW (−t),

fX(t) = fW (−t).

 (5.10b)

Fig. 5/12 demonstrates this mirror–effect with the reduced versions of the type I distribu-
tions. Thus, it is sufficient to study only one of these versions. Furthermore, it has been
shown in Sect. 1.3 and Table 1/2 that the type II and type III distributions, which are not
of location–scale type but have a third parameter responsible for the shape, can be trans-
formed to a type I distribution which is of location–scale type. In principle, we thus can
trace back five of the distributions to a sixth one, e.g. to the type I maximum distribution.

Extreme value distributions play an important role in the natural sciences, especially in
material research (strength of material) and in the life–sciences (lifetime distribution).

Figure 5/12: Densities of the reduced extreme value distributions of type I for the maxi-
mum and minimum
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5.2.5.1 Maximum distribution (GUMBEL distribution) — X ∼ EMX1(a, b)

This type I extreme value distribution is also known as GUMBEL distribution, honoring
the main contributor to its development, or double exponential distribution due to the
mathematical structure of its DF and CDF, see (5.11a,b). Besides the relationships with
the other extreme value distributions this extreme value distribution is related to several
other distributions.

• When X ∼ EMX1(0, b) then V = exp(−X
/
b) ∼ EX(0, b).

• When Xi
iid∼ EMX1(a, b); i = 1, . . . , n; then W = max(X1, . . . , Xn) ∼

EMX1(a∗, b) where a∗ = a + lnn, i.e. the extreme value distribution of type I for
the maximum is reproductive with respect to the formation of sample maximum.

• When X1, X2
iid∼ EMX1(a, b) than W = X1 −X2 has a logistic distribution.

• When X ∼ EMX1(0, b) then W = b
{
1 − exp[− exp(−X)]

}1/c has a PARETO
distribution with parameters a = 0, b and c.

• When X has a power–function distribution with parameters a = 0, b and c then
Y = − ln[−c lnX] ∼ EMX1(0, 1).

• When Y ∼ EMX1(0, 1) then X = exp(−Y ) has a WEIBULL distribution.

We have the following results for the type I maximum distribution:

f(x|a, b) =
1

b
exp

{
−x− a

b
− exp

(
−x− a

b

)}
, a ∈ R, b > 0, x ∈ R (5.11a)

F (x|a, b) = exp

[
− exp

(
−x− a

b

)]
(5.11b)

R(x|a, b) = 1− exp

[
− exp

(
−x− a

b

)]
(5.11c)

h(x|a, b) =

exp

(
−x− a

b

)
b

{
exp

[
exp

(
−x− a

b

)]
− 1

} (5.11d)

H(x|a, b) = − ln

{
1− exp

[
− exp

(
−x− a

b

)]}
(5.11e)

F−1
X (P ) = xP = a− b ln(− lnP ), 0 < P < 1 (5.11f)
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Figure 5/13: Several functions of the reduced extreme value distribution of type I for the
maximum

x0.5 ≈ a+ 0.3665 b (5.11g)
a ≈ x0.3679 (5.11h)
b ≈ x0.3679 − x0.0660 (5.11i)

xM = a (5.11j)
MX(t) = exp(a t) Γ(1− b t), b |t| < 1 (5.11k)

µ′1(X) = E(X) = a+ b γ (5.11l)

γ ≈ 0.5772− EULER–MASCHERONI’s constant

µ2(X) = Var(X) = b2
π2

6
≈ 1.6449 b2 (5.11m)

α3 ≈ 1.1400 (5.11n)

α4 ≈ 5.4 (5.11o)

κr(X) = br (r − 1)!
∞∑

k=0

k−r, r ≥ 2 (5.11p)
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κ2(X) ≈ 1.6449 b2 (5.11q)

κ3(X) ≈ 2.4041 b3 (5.11r)

κ4(X) ≈ 6.4939 b4 (5.11s)

F−1
Y (P ) = yP = − ln(− lnP ), 0 ≤ P ≤ 1 (5.11t)

fY (yP ) = −P lnP (5.11u)

With respect to the moments of reduced order statistics we have from LIEBLEIN (1953):7

E
(
Y k

r:n

)
=

n!

(r−1)!(n−r)!

n−r∑
j=0

(−1)j

(
n− r

j

) ∞∫
−∞

uk exp
[
−u−(r+j) exp(−u)

]
du. (5.12a)

The integral in (5.12a)

gk(c) :=

∞∫
−∞

uk exp
[
− u− c exp(−u)

]
du (5.12b)

has the following solutions for k = 1 and k = 2:

g1(c) = −
[
Γ′(c)

c
− Γ(1)

c
ln c

]
,

=
1

c

(
γ + ln c

)
, (5.12c)

g2(c) =
1

c

[
π2

6
+ (γ + ln c)2

]
. (5.12d)

As a special case of (5.12a) for r = n (sample maximum) we have:

αn:n = E(Yn:n) = γ + lnn ≈ 0.57722 + lnn, (5.12e)

α(2)
n:n = E(Y 2

n:n) =
π2

6
+ (γ + lnn)2 ≈ 1.6449 + (0.5772 + lnn)2, (5.12f)

βn,n:n = Var(Yn:n) =
π2

6
≈ 1.6449. (5.12g)

It is to be mentioned that the variance of the last order statistic (5.12g) does not depend on
the sample size n and is always equal to π2

/
6. Because of (5.13a) the variance of the first

order statistic from a type I minimum distribution is independent of the sample size, too,
and also equal to π2

/
6.

7 Another approach to evaluate the means and variances of −Yr:n, i.e. of the minimum type I distribu-
tion, is given in WHITE (1969).
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The product moment E(Yr:n Ys:n) has the representation

E(Yr:n Ys:n) =
n!

(r−1)!(s−r−1)!(n−s)!
s−r−1∑
k=0

n−s∑̀
=0

(−1)k+

(̀
s−r−1

k

)(
n−s
`

)
× φ(r + k, s− r − k + `), r < s ≤ n.

 (5.12h)

LIEBLEIN’s φ–function is the following double integral:

φ(t, u)=

∞∫
−∞

y∫
−∞

x y exp
[
−x−t exp(−x)

]
exp
[
−y−u exp(−y)

]
dx dy; t, u > 0. (5.12i)

LIEBLEIN shows how to evaluate the φ–function based on SPENCE’s integral

L(1 + x) =

1+x∫
1

lnw

w − 1
dw =

∞∑
m=1

(−1)m+1

m2
.

There exist several tables providing means, variances and covariances of type I order statis-
tics. The most comprehensive set of tables seems to be that of BALAKRISHNAN/CHAN

(1992a) for n = 1(1)15(5) and from the same authors (1992b) a set of complete tables
for all sample sizes up to 30. Another set of tables for n = 2(1)20 has been compiled by
WHITE (1964). All three tables refer to the type I minimum distribution, but because of
(5.10a) they may be used for the maximum type I distribution as follows:

αr:n = −α̃n−r+1:n (5.13a)

βr,r:n = β̃n−r+1,n−r+1:n:n (5.13b)

βr,s:n = β̃n−s+1,n−r+1:n, r < s (5.13c)

where α̃·:n and β̃·,·:n denote the moments of the minimum variable.

When order statistics are the data input to LEPP, linear estimation is done as follows:

• for 3 ≤ n ≤ 10 by LLOYD’s estimator with computed means according to (5.12a)
and tabulated variance–covariance matrix,

• for n ≥ 10 by BLOM’s unbiased, nearly best linear estimator with means according
to (5.12a).
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Figure 5/14: Type I maximum extreme value probability paper with data and regression
line

5.2.5.2 Minimum distribution (Log–WEIBULL) — X ∼ EMN1(a, b)

The results for this distribution easily follow from those of the maximum distribution in
the preceding Section because for X ∼ EMX1(a, b) we have −X ∼ EMN1(a, b). The
results are:

f(x|a, b) =
1

b

{
exp

[
x− a

b
− exp

(
x− a

b

)]}
, a ∈ R, b > 0, x ∈ R (5.14a)

F (x|a, b) = 1− exp

[
− exp

(
x− a

b

)]
(5.14b)

R(x|a, b) = exp

[
− exp

(
x− a

b

)]
(5.14c)

h(x|a, b) =
1

b
exp

(
x− a

b

)
(5.14d)

H(x|a, b) = exp

(
x− a

b

)
(5.14e)

F−1
X (P ) = xP = a+ b ln[− ln(1− P )], 0 < P < 1 (5.14f)

x0.5 = a− 0.3665 b (5.14g)

a = x0.6321 (5.14h)

b = x0.9340 − x0.6321 (5.14i)
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xM = a (5.14j)
MX(t) = exp(a t) Γ(1 + b t) (5.14k)
µ′1(X) = E(X) = a− b γ ≈ a− 0.5772 b (5.14l)
µ2(X) = Var(X) = b2 π2

/
6 ≈ 1.6449 b2 (5.14m)

α3 ≈ −1.1396 (5.14n)
α4 = 5.4 (5.14o)

κr(X) = (−b)r (r − 1)!
r∑

k=0

k−r; r ≥ 2 (5.14p)

κ2(X) ≈ 1.6449 b2 (5.14q)
κ3(X) ≈ −2.4041 b3 (5.14r)
κ4(X) ≈ 6.4939 b4 (5.14s)
F−1

Y (P ) = yP = ln[− ln(1− P )], 0 < P < 1 (5.14t)
fY (yP ) = (P − 1) ln(1− P ) (5.14u)

Figure 5/15: Several functions for the reduced extreme value distribution of type I for the
minimum
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The moments of the reduced order statistics of the minimum distribution easily from those
of the maximum distribution, see (5.13a–c). Means, variances and covariances of reduced
type I minimum order statistics are tabulated in BALAKRISHNAN/CHAN (1992a,b) and
WHITE (1964). When order statistics are the data input to LEPP, linear estimation is done
as follows:

• for 3 ≤ n ≤ 10 by LLOYD’s estimator with computed means according to (5.12a)
and and (5.13a) tabulated variance–covariance matrix,

• for n ≥ 10 by BLOM’s unbiased, nearly best linear estimator with means according
to (5.12a) and (5.13a).

Figure 5/16: Type I minimum extreme value probability paper with data and regression
line

5.2.6 Half–distributions
The starting point for any half–distribution is a unimodal symmetric distribution of a con-
tinuous variate, i.e. we have a = E(X) = xM = x0.5. Then, a half–distribution is
obtained by folding the density f(x|a, b) about x = a to the right–hand side. Thus, the
density fX(a−∆|a, b), where x is ∆ units less than a, is added to the density fX(a+∆|a, b)
where x is ∆ units greater then a, ∆ ≥ 0, so that the density at x = a + ∆ is doubled.
Stated otherwise, we have found the distribution of the variate a + b |Y |, where Y is the
reduced variate. We may also call the half–distribution a special truncated distribution,
singly truncated from below at x = a. A half–distribution differs from a folded distribu-
tion, where the point of folding is x = 0. Both types coincide for x = a = 0, i.e. when
the parent distribution is non-shifted.

We will discuss three types of half–distributions, the CAUCHY, the logistic and the nor-
mal cases, but there are other half distributions known by another name. Looking at the
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LAPLACE distribution (Sect. 5.2.8) which is unimodal and symmetric, we find its half–
distribution as the exponential distribution (Sect. 5.2.4). Likewise, the symmetric trian-
gular distribution of Sect. 5.2.17.1 has a half–distribution which is the positively skew
and right–angled distribution of Sect. 5.2.17.3 and the parabolic U–shaped distribution of
Sect. 5.1.12.1 has the power–function distribution with c = 2 as its half–distribution.

We give the following hint to construct the probability paper for a half–distribution. On a
sheet of paper for the parent unimodal symmetric distribution delete the printed probability
scale P for the range of P less than 0.50. For the range of P greater than 0.50 replace the
value of P by the corresponding value P ∗ = 2P − 1. This description follows from the
fact that

P ∗ = FX∗(x|a, b) =
x∫
a

fX∗(v|a, b) dv

= 2
x∫
a

fX(v|a, b) dv

= 2
[
FX(x|a, b)︸ ︷︷ ︸

= P

− 0.5
]
,

where X denotes the parent variable and X∗ the half–distributed variable.

5.2.6.1 Half–CAUCHY distribution — X ∼ HC(a, b)

Starting with the DF (5.3a) of the common CAUCHY distribution we find for the half–
CAUCHY distribution:

f(x|a, b) = 2

{
π b

[
1 +

(
x− a

b

)2
]}−1

, x ≥ a, a ∈ R, b > 0 (5.15a)

F (x|a, b) =
2

π
arctan

(
x− a

b

)
(5.15b)

R(x|a, b) = 1− 2

π
arctan

(
x− a

b

)
(5.15c)

h(x|a, b) =
2

b

[
1−

(
x− a

b

)2
] [

π − 2 arctan

(
x− a

b

)] (5.15d)

H(x|a, b) = − ln

[
1− 2

π
arctan

(
x− a

b

)]
(5.15e)

F−1
X (P ) = xP = a+ b tan

(π
2
P
)
, 0 ≤ P < 1 (5.15f)

x0.5 = a+ b (5.15g)
a = x0 (5.15h)
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Figure 5/17: Several functions for the reduced half–CAUCHY distribution

b = x0.5 − x0 (5.15i)
xM = a (5.15j)

F−1
Y (P ) = yP = tan

(π
2
P
)
, 0 ≤ P < 1 (5.15k)

fY (yP ) = 2
{
π
[
1 + tan2

(π
2
P
)]}−1

(5.15l)

Moments of order k > 1 do not exist for the half–CAUCHY distribution because on [0,∞)

the integral
∞∫
a

2xk

{
π b

[
1 +

(
x− a

b

)2
]}−1

dx does not converge. The means of Y1:n

and Yn:n and the variances of Y1:n, Y2:n, Yn−1:n and Xn:n are infinite as is the case with
the common CAUCHY distribution. The means of Yr:n; r = 2, . . . , n − 1; may be found
by numerical integration. First the general formula (2.9b) gives

αr:n =
n!

(r−1)!(n−r)!

∞∫
0

2 y

π (1 + y2)

[
2

π
arctan y

]r−1 [
1− 2

π
arctan y

]n−r

dy (5.15m)
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and, finally, after the substitution v = arctan y with dy = (1 + y2) dv and some manipu-
lations we have

αr:n =
2r n!

πn (r − 1)! (n− r)!

π/2∫
0

vr−1(π − 2 v)n−r tan v dv. (5.15n)

When order statistics are the data input to LEPP, linear estimation is done by BLOM’s
unbiased, nearly best linear estimator, where the means are evaluated by (5.15n).

Figure 5/18: Half–CAUCHY probability paper with data and regression line

5.2.6.2 Half–logistic distribution — X ∼ HL(a, b)

We may write the DF, CDF and CCDF of the half–logistic distribution8 in different ways
as is the case with the common logistic distribution, see Sect. 5.2.9. The half–logistic
distribution has been suggested as a possible life–time model, having an increasing hazard
function, by BALAKRISHNAN (1985).

f(x|a, b) =

2 exp

(
x− a

b

)
b

[
1 + exp

(
x− a

b

)]2 , x ≥ a, a ∈ R, b > 0 (5.16a)

8 Suggested reading for this section: BALAKRISHNAN (1985), BALAKRISHNAN (1992), BALAKRISH-
NAN/PUTHENPURA (1986).
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=

2 exp

(
−x− a

b

)
b

[
1 + exp

(
−x− a

b

)]2 (5.16b)

=
1

2 b
sech2

(
x− a

2 b

)
(5.16c)

F (x|a, b) =

exp

(
x− a

b

)
− 1

exp

(
x− a

b
+ 1

) (5.16d)

=

1− exp

(
−x− a

b

)
1 + exp

(
−x− a

b

) (5.16e)

= tanh

(
x− a

2 b

)
(5.16f)

From (5.16a) and (5.16d) — or from (5.16b) and (5.16e) or from (5.16c) and (5.16f) —
we immediately observe the relations

f(x|a, b) = F (x|a, b)
[
1− F (x|a, b)

]
+ 0.5

[
1− F (x|a, b)

]2
, (5.16g)

f(x|a, b) =
[
1− F (x|a, b)

]
− 0.5

[
1− F (x|a, b)

]2
, (5.16h)

f(x|a, b) = 0.5
[
1− F 2(x|a, b)

]
(5.16i)

These relations serve to establish numerous recurrence relations satisfied by the single and
product moments of order statistics as given by (5.18a) through (5.19f).

R(x|a, b) =
2

exp

(
x− a

b
+ 1

) (5.16j)

=

2 exp

(
−x− a

b

)
1 + exp

(
−x− a

b

) (5.16k)

= 1− tanh

(
x− a

2 b

)
(5.16l)

h(x|a, b) =
1

b

[
1 + exp

(
−x− a

b

)] =

exp

(
x− a

b

)
b

[
1 + exp

(
x− a

b

)] (5.16m)
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Figure 5/19: Several functions for the reduced half–logistic distribution

H(x|a, b) = − ln

 2

1 + exp

(
x− a

b

)
 (5.16n)

F−1
X (P ) = xP = a+ b ln

(
1 + P

1− P

)
(5.16o)

x0.5 = a+ b ln 3 ≈ a+ 1.0986 b (5.16p)

a = x0 (5.16q)

b ≈ x0.4621 − x0 (5.16r)

xM = a (5.16s)

MX(t) = exp(a t)

{
b t

[
ψ

(
1− b t

2

)
− ψ

(
1− b t

2

)]
− 1

}
9 (5.16t)

CX(t) = exp(i a t)

{
i b t

[
ψ

(
1− i b t

2

)
− ψ

(
1− i b t

2

)]
+ 1

}
(5.16u)

9 ψ(z) is the digamma function: ψ(z) = d ln Γ(z)
/

dz = Γ′(z)
/
Γ(z).
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µ′1(X) = E(X) = a+ b ln 4 ≈ a+ 1.3863 b (5.17a)

µ2(X) = Var(X) = b2
[
π2

3
−
(
ln 4
)2] ≈ 1.3681 b2 (5.17b)

α3 =
9 ζ(3)[

π2

3
− (ln 4)2

]3/2
≈ 6.7610 10 (5.17c)

α4 =
7π4

/
15[

π2

3
− (ln 4)2

]2 ≈ 24.2884 (5.17d)

F−1
Y (P ) = yP = ln

(
1 + P

1− P

)
, 0 ≤ P < 1 (5.17e)

fY (yP ) =
1− P 2

2
(5.17f)

F
−1(0)
Y (P ) = ln

(
1 + P

1− P

)
F
−1(1)
Y (P ) = − 2

P 2 − 1

F
−1(2)
Y (P ) =

4P(
P 2 − 1

)2
F
−1(3)
Y (P ) = −

4
(
1 + 3P 2

)(
P 2 − 1

)3
F
−1(4)
Y (P ) =

48P
(
1 + P 2

)(
P 2 − 1

)4
F
−1(5)
Y (P ) = −

48
(
1 + 10P 2 + 5P 4

)(
P 2 − 1

)5
F
−1(6)
Y (P ) =

480P
(
3 + 10P 2 + 3P 4

)(
P 2 − 1

)



(5.17g)

Moments of order statistics for the reduced half–logistic distribution can be computed re-
cursively. The following sets of recursion formulas are taken from ARNOLD/BALAKRISH-
NAN/NAGARAJA (1992, p. 105). Single moments are given by

10 ζ(s) =
∞∑

k=1

k−s is RIEMANN’s zeta function.
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α
(m)
1:n+1 = 2

[
α

(m)
1:n −

m

n
α

(m−1)
1:n

]
, n ≥ 1, (5.18a)

α
(m)
2:n+1 =

(n+ 1)m

n
α

(m−1)
1:n − n− 1

2
α

(m)
1:n+1, n ≥ 1, (5.18b)

α
(m)
r:n+1 =

1

r

[
(n+ 1)m

n− r + 1
α(m−1)

r:n +
n+ 1

2
α

(m)
r−1:n −

n−2r+1

2
α

(m)
r:n+1

]
, 2 ≤ r ≤ n. (5.18c)

The starting values are

α1:1 = α
(1)
1:1 = E(Y ) = ln 4, (5.18d)

α
(2)
1:1 = E

(
Y 2
)

= π2
/
3. (5.18e)

Furthermore, observe that
α(0)

r:n = 1 for 1 ≤ r ≤ n. (5.18f)

For computing the product moments in the triangle above the main diagonal αr,s:n+1 =
E
(
Yr:n+1Ys:n+1

)
, 1 ≤ r ≤ n, r + 1 ≤ s ≤ n+ 1, for a sample of size n+ 1, we need the

following formulas:

αr,r+1:n+1 = α
(2)
r:n+1 +

2 (n+ 1)

n− r + 1

[
αr,r+1:n−α(2)

r:n −
1

n− r
αr:n

]
, (5.19a)

1 ≤ r ≤ n−1, r 6= 2,

α2,3:n+1 = α
(2)
3:n+1 + (n+ 1)

[
α2:n −

n

2
α

(2)
1:n−1

]
, n ≥ 2, (5.19b)

αr+1,r+2:n+1 = α
(2)
r+2:n+1+

n+ 1

r(r+1)

{
2αr+1:n + n

[
αr−1,r:n−1−α(2)

r:n−1

]}
, (5.19c)

2 ≤ r ≤ n− 1,

αr,s:n+1 = αr,s−1:n+1 +
2 (n+ 1)

n− s+ 2

[
αr,s:n − αr,s−1:n −

1

n− s+ 1
αr:n

]
, (5.19d)

1 ≤ r < s ≤ n, s− r ≥ 2,

α2,s+1:n+1 = α3,s+1:n+1 + (n+ 1)
[
αs:n −

n

2
α1,s−1:n−1

]
, 3 ≤ s ≤ n, (5.19e)

αr+1,s+1:n+1 = αr+2,s+1:n+1+
n+1

r(r+1)

{
2αs:n−n

[
αr,s−1:n−1−αr−1,s−1:n−1

]}
, (5.19f)

2 ≤ r < s ≤ n, s− r ≥ 2.

The starting value for the recursion is

α1,2:2 = α2
1,1 =

(
ln 4
)2
. (5.19g)
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These recursion formulas have to be used in suitable order to find all elements in the upper
triangle of the matrix. The element α1,n+1:n+1, n ≥ 2, is not given by any of the formulas
(5.19a–f) but has to be derived from the identity

n+1∑
r=1

n+1∑
s=r+1

αr,s:n+1 =

(
n+ 1

2

)
α2

1:1 =
(n+ 1)n

2

(
ln 4
)2

as

α1,n+1:n+1 =
(n+ 1)n

2

(
ln 4
)2 − [ n∑

s=2

α1,s:n+1 +
n+1∑
r=2

n+1∑
s=r+1

αr,s:n+1

]
. (5.19h)

Example 5/3: Application of the recursions for n = 5

We first have to evaluate (5.18a) for m = 1 leading to the following matrix of means αr:n = α
(1)
r:n:

n

r 1 2 3 4 5

1 1.3863 0.7726 0.5452 0.4237 0.3474

2 2.0000 1.2274 0.9096 0.7289

3 2.3863 1.5452 1.1807

4 2.6667 1.7887

5 2.8863

Then we execute (5.18a) for m = 2 using the preceding results and arrive at the following matrix
of second moments α(2)

r:n:

n

r 1 2 3 4 5

1 3.2899 1.0346 0.5239 0.3210 0.2183

2 5.5452 2.0558 1.1328 0.7318

3 7.2899 2.9788 1.7343

4 8.7269 3.8084

5 9.9565

The preceding two matrices in combination with (5.19a-f) lead to the following symmetric matrices
of product moments αr,s:n, where we only reproduce the upper parts:

n = 2 →

 0 1.9218

0

 , n = 3 →


0 0.8679 1.4772

0 3.4203

0

 ,
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n = 4 →


0 0.5114 0.7679 1.2324

0 1.6811 2.6762

0 4.66.19

0

 ,

n = 5 →



0 0.3413 0.4901 0.6943 1.0699

0 1.0432 1.4707 2.2581

0 2.4241 3.6971

0 5.7294

0


.

The variance–covariance matrices follow in the usual way. They read, only giving the upper trian-
gles:

n = 2 →

 0.4377 0.3766

1.5452

 , n = 3 →


0.2267 0.1988 0.1763

0.5493 0.1413

1.5955

 ,

n = 4 →


0.1415 0.1260 0.1132 0.1026

0.3054 0.2755 0.2505

0.5912 0.5414

1.6158

 ,

n = 5 →



0.0976 0.0880 0.0800 0.0731 0.0673

0.2005 0.1825 0.1672 0.1541

0.3403 0.3128 0.2892

0.6109 0.5683

1.6258


.

It is not to be recommended to apply the recursion formulas for greater sample sizes be-
cause the rounding errors cumulate and distort the results. In LEPP we have decided to
proceed as follows:

• For n > 35 we compute all moments by the short versions of the approximating
formulas (2.23) through (2.25) and use LLOYD’s GLS estimator.

• For 20 ≤ n ≤ 35 we use BLOM’s unbiased, nearly best linear estimator, where the
means are computed by the recursions (5.18a–c) which are not so sensitive to the
cumulation of rounding errors.
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• For n < 20 all the moments — means as well as the variance–covariance matrix —
are computed using the recursion formulas and inserted into LLOYD’s estimator.

Figure 5/20: Half–logistic probability paper with data and regression line

5.2.6.3 Half–normal distribution — X ∼ HN(a, b)

The half–normal distribution11 is the distribution of X = a+ b |Z| where Z has a standard
normal distribution. The reduced form of the half–normal distribution is also known as
the χ–distribution with ν = 1 degree of freedom.12 We note the following functions and
characteristics of a half–normal distribution:

f(x|a, b) =
1

b

√
2

π
exp

[
−(x− a)2

2 b2

]
, x ≥ a, a ∈ R, b > 0 (5.20a)

F (x|a, b) = 2 Φ

(
x− a

b

)
− 1, 13 (5.20b)

11 Suggested reading for this section: BALAKRISHNAN/RAO (1998a, p. 172–175), BALAKRISH-
NAN/COHEN (1991, p. 660–62), JOHNSON/KOTZ/BALAKRISHNAN (1994, p. 421).

12 The DF of a χ(ν)– distribution reads

f(x|ν) =
xν−1 exp

(
− x2

/
2
)

2ν
/

2−1 Γ(ν
/
2)

.
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R(x|a, b) = 2

[
1− Φ

(
x− a

b

)]
(5.20c)

h(x|a, b) =
1

b
√

2π

exp

[
−(x− a)2

2 b2

]
1− Φ

(
x− a

b

) (5.20d)

H(x|a, b) = − ln

{
2

[
1− Φ

(
x− a

b

)]}
(5.20e)

F−1(P ) = xP = a+ bΦ−1

(
1 + P

2

)
, 0 < P < 1, 14 (5.20f)

x0.5 ≈ a+ 0.6745 b (5.20g)

a = x0 (5.20h)

b ≈ x0.6827 − a (5.20i)

xM = a (5.20j)

CX(t) = M

(
1

2
,
1

2
,−t

2

2

)
+

i t
√

2

Γ

(
1

2

)M

(
1,

3

2
,−t

2

2

)
15 (5.20k)

µ′r(Y ) = E(Y r) = 2r/2

Γ

(
1 + r

2

)
Γ

(
1

2

) , Y =
X − a

b
, (5.20l)

µ′1(Y ) = E(Y ) =

√
2

π
≈ 0.7979 (5.20m)

µ′2(Y ) = 1 (5.20n)

µ′3(Y ) = 2

√
2

π
≈ 1.5958 (5.20o)

µ′4(Y ) = 3 (5.20p)

13 Φ(z) =
z∫
0

1√
2π

exp(−v2
/
2) dv is the CDF of the standard normal variate. Φ(z) cannot be given in

closed form.
14 Φ−1(·), which cannot be given in closed form, is the percentile function of the standard normal distri-

bution.
15 M(a, b, z) is KUMMER’s function:

M(a, b, z) = 1 +
a z

b
+

(a)2 z2

(b)2 2!
+ . . .+

(a)n z
n

(b)n n!
+ . . .

where (a)n = a (a+ 1) . . . (a+ n− 1) and (a)0 = 1.
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Figure 5/21: Several functions for the reduced half–normal distribution

µ′1(X) = E(X) = a+ b

√
2

π
≈ a+ 0.7979 b (5.20q)

µ2(X) = Var(X) = b2
(

1− 2

π

)
≈ 0.3634 b2 (5.20r)

α3 =

√
2 (4− π)

(π − 2)3/2
≈ 0.9953 (5.20s)

α4 = 3 +
8 (π − 3)

(π − 2)2
≈ 3.8692 (5.20t)

F−1
Y (P ) = yP = Φ−1

(
1 + P

2

)
, 0 < P < 1 (5.20u)

fY (yP ) =

√
2

π
exp

(
−1

2
y2

P

)
(5.20v)
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For the half–normal distribution we have — as in the case of the common normal distri-
bution —

df(y)

dy
= −y f(y). (5.20w)

From (5.20w) we find the following derivatives of yP = F−1
P (P ):

F
−1(0)
Y (P ) = yP = Φ−1

(
1 + P

2

)
,

F
−1(1)
Y (P ) =

1

fY (yP )
,

F
−1(2)
Y (P ) =

yP[
fY (yP )

]2 ,
F
−1(3)
Y (P ) =

1− 2 y2
P[

fY (yP )
]3 ,

F
−1(4)
Y (P ) =

yP

[
7 + 6 y2

P

]2[
fY (yP )

]4 ,

F
−1(5)
Y (P ) =

7 + 46 y2
P + 24 y4

P[
fY (yP )

]5 ,

F
−1(6)
Y (P ) =

yP

(
127 + 326 y2

P + 120 y4
P

)[
fY (yP )

]6 .



(5.20x)

GOVINDARAJULU/EISENTSTAT (1965) have tabulated all means and covariances of re-
duced order statistics for n = 1(1)20(10)100. BALAKRISHNAN/COHEN (1991, p. 61)
give the following formulas for the product moments αr,s:n and covariances βr,s:n of re-
duced order statistics from a half–normal distribution:

n∑
s=1

αr,s:n = 1 + nα1:1 αr−1:n−1, 1 ≤ r ≤ n, (5.21a)

n∑
s=1

βr,s:n = 1− (n− r + 1)α11:1 (αr:n − αr−1:n), 1 ≤ r ≤ n, (5.21b)

where

α0:n = 0 for n ≥ 1,

α1:1 = E(Y ) =
√

2
/
π.

In LEPP linear estimation for order statistic input is realized with BLOM’s unbiased, nearly
best linear estimator where the means are approximated by the short version of (2.23).
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Figure 5/22: Half–normal probability paper with data and regression line

5.2.7 Hyperbolic secant distribution — X ∼ HS(a, b)

When we look at a reduced variate with a symmetric DF of type

f(y) =
c1

exp y + exp (−y)
, y ∈ R, (5.22a)

the condition ∞∫
−∞

f(y) dy = 1

requires c1 = 2
/
π. Furthermore, because the hyperbolic secant function is given by

sech y =
2

exp y + exp (−y)

we may equally write (5.22a) as

f(y) =
1

π
sech y (5.22b)

which is the reduced form DF of the hyperbolic secant distribution.16 For the general
hyperbolic secant distribution we have the following functions and characteristics:17

16 Suggested reading for this section: JOHNSON/KOTZ/BALAKRISHNAN (1995, Chapter 5), TALACKO
(1956).

17 When Y has the DF given by (5.22b) then exp(Y ) has a half–CAUCHY distribution.
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Figure 5/23: Several functions for the reduced hyperbolic secant distribution

f(x|a, b) =
1

b π
sech

(
x− a

b

)
, x ∈ R, a ∈ R, b > 0 (5.23a)

F (x|a, b) =
2

π
arctan

[
exp

(
x− a

b

)]
=

1

2
+

1

π
arctan

[
sinh

(
x− a

b

)]
(5.23b)

R(x|a, b) = 1− 2

π
arctan

[
exp

(
x− a

b

)]
=

1

2
− 1

π
arctan

[
sinh

(
x− a

b

)]
(5.23c)

h(x|a, b) =

sech
(
x− a

b

)
b

{
π − 2 arctan

[
exp

(
x− a

b

)]} 18 (5.23d)

=

sech
(
x− a

b

)
b

{
π

2
− arctan

[
sinh

(
x− a

b

)]} (5.23e)

18 We notice that h(x|0, 1) looks like a CDF, see Fig. 5/23.
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H(x|a, b) = − ln

{
1− 2

π
arctan

[
exp

(
x− a

b

)]}
(5.23f)

= − ln

{
1

2
− 1

π
arctan

[
sinh

(
x− a

b

)]}
(5.23g)

F−1
X (P ) = xP = a+ b ln

[
tan
(π

2
P
)]
, 0 < P < 1 (5.23h)

a = x0.5 (5.23i)

b ≈ x0.7759 − a (5.23j)

xM = a (5.23k)

CX(t) = exp(i t a) sech
(π

2
b t
)

(5.23l)

MX(t) = exp(t a) sec
(π

2
b t
)

(5.23m)

µ′2k+1(Y ) = 0; k = 0, 1, . . . ; Y = (X − a)
/
b (5.23n)

µ′2(Y ) =
π2

4
≈ 2.4674 (5.23o)

µ′4(Y ) = 5 (5.23p)

µ′1(X) = E(X) = a (5.23q)

µ2(X) = Var(X) =
π2

4
≈ 2.4674 (5.23r)

α3 = 0 (5.23s)

α4 = 5 (5.23t)

F−1
Y (P ) = yP = ln

[
tan
(π

2
P
)]
, 0 < P < 1 (5.23u)

fY (yP ) =
1

π
sin(π P ) (5.23v)

For a = 0 and b = 2
/
π the hyperbolic secant distribution shares many properties with

the standard normal distribution. It is symmetric with mean, median and mode all equal
to zero, with unit variance and a DF which is proportional to its characteristic function.
However, the hyperbolic secant distribution is leptokurtic, i.e. it has a more acute peak
near its mean and heavier tails compared with the standard normal distribution.
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F−1(0)(P ) = ln
[
tan
(π

2
P
)]

F−1(1)(P ) = π csc(π P )

F−1(2)(P ) = −π2 cot(π P ) csc(π P )

F−1(3)(P ) =
π3

2

[
3 + cos(2 π P )

]
csc3(π P )

F−1(4)(P ) = −π
4

4

[
23 cos(π P ) + cos(3π P )

]
csc4(π P )

F−1(5)(P ) =
π5

8

[
115 + 76 cos(2π P ) + cos(4π P )

]
csc5(π P )

F−1(6)(P ) = −π
6

16

[
1682 cos(π P )+237 cos(3 π P )+cos(5 π P )

]
csc6(πP )



(5.23w)

Linear estimation in LEPP for order statistics input is done by LLOYD’s estimator with
approximated means and variance–covariance matrix, see (2.23) – (2.25).

Figure 5/24: Hyperbolic secant probability paper with data and regression line

5.2.8 LAPLACE distribution — X ∼ LA(a, b)

This distribution19 is named after the French mathematician PIERRE SIMON DE LAPLACE

(1749 – 1827), who discovered it in 1774 as the distribution form for which the likelihood
function is maximized by setting the location parameter equal to the sampling median

19 Suggested reading for this section: JOHNSON/KOTZ/BALAKRISHNAN (1995, Chapter 24).
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when the sample size is an odd number. The LAPLACE distribution arises as the distribu-
tion of the difference of two independent and identically distributed exponential variates,
too. The distribution is also known as the first law of LAPLACE. Still other names of this
distribution are double, bilateral or two–tailed exponential distribution20 because it is
a combination of an exponential distribution (on the right–hand side of a) and a reflected
exponential distribution (on the left–hand side of a). Thus, the LAPLACE DF has a cusp at
a, see Fig. 5/25.

We list the following related distributions:

• When X ∼ LA(a, b) then

– Y =
|X − a|

b
∼ EX(0, 1),

– V = |X − a| ∼ EX(0, b).

• When X1, X2
iid∼ LA(a, b), then X = |X1|

/
|X2| is F–distributed with ν1 = ν2 = 2

degrees of freedom.

• When X1, X2
iid∼ EX(0, b), then X = X1 −X2 ∼ LA(0, b).

We have the following functions and characteristics of the general LAPLACE distribution:

f(x|a, b) =
1

2 b
exp

[
−|x− a|

b

]
; x ∈ R, a ∈ R, b > 0 (5.24a)

F (x|a, b) =
1

2

{
1 + sign(x− a)

[
1− exp

(
−|x− a|

b

)]}
(5.24b)

R(x|a, b) = 1− 1

2

{
1 + sign(x− a)

[
1− exp

(
−|x− a|

b

)]}
(5.24c)

h(x|a, b) =

exp

(
−|x− a|

b

)
b

〈
2−

{
1 + sign(x− a)

[
1− exp

(
−|x− a|

b

)]}〉 (5.24d)

H(x|a, b) = − ln

〈
1− 1

2

{
1 + sign(x− a)

[
1− exp

(
−|x− a|

b

)]}〉
(5.24e)

The hazard rate is increasing for x < a and constant (= 1
/
b) for x ≥ a.

20 The double exponential distribution must not be confused with the doubly exponential distribution
which is another name for the type I extreme value distributions which are exponentiated twice.
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Figure 5/25: Several functions for the reduced LAPLACE distribution

F−1
X (P ) = xP = a− b sign(P − 0.5) ln

[
1− 2 |P − 0.5|

]
, 0 < P < 1 (5.24f)

a = x0.5 (5.24g)

b ≈ x0.8161 − a (5.24h)

xM = a (5.24i)

MX(t) = exp(a t)
(
1− b2 t2

)−1 (5.24j)

CX(t) = exp(i a t)
(
1 + b2 t2

)−1 (5.24k)

µ′r(X) =
1

2

r∑
i=0

(
r

i

)
bi ar−i i!

[
1 + (−1)i

]
(5.24l)

µ′1(X) = E(X) = a (5.24m)

µr(X) =

 0 if r is odd

r! br if r is even

 (5.24n)
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µ2(X) = Var(X) = 2 b2 (5.24o)

α3 = 0 (5.24p)

α4 = 6 (5.24q)

κr(X) =

 0 if r is odd

2 br (r − 1)! if r is even

 (5.24r)

I(X) =
1 + ln(2 b)

ln 2
(5.24s)

F−1
Y (P ) =

 ln(2P ) for 0 < P ≤ 0, 5

− ln[2 (1− P )] for 0.5 ≤ P < 1

 (5.24t)

fY (yP ) =

 P for 0 < P ≤ 0.5

1− P for 0.5 ≤ P < 1

 (5.24u)

F
−1(r)
Y (P ) =


(−1)r−1 (r − 1)!

P r
for 0 < P ≤ 0.5

(r − 1)!

(1− P )r
for 0.5 ≤ P < 1

 , r = 1, 2, . . . (5.24v)

Excursus: GOVINDARAJULU’s idea of deriving moments of order statistics from a symmet-
ric distribution

The moments of order statistics from the LAPLACE distribution have been found by GOVINDARA-
JULU (1963) using a method that in fact applies to all symmetric distributions. Let Yr:n (r =
1, . . . , n) denote the order statistics in a sample from a distribution which is symmetric about zero
with FY (y). Let Vr:n (r = 1, . . . , n) denote the order statistics from the corresponding folded
distribution (folded at zero) with CDF FV (y) = 2FY (y) − 1, y ≥ 0. Then, GOVINDARAJULU

showed that we have the following relations:

α(k)
r:n =E

(
Y k

r:n

)
= 2−1

{
r−1∑
i=0

(
n

i

)
E
(
V k

r−i:n−i

)
+(−1)k

n∑
i=r

(
n

i

)
E
(
V k

i−r+1:i

)}
, 1 ≤ r ≤ n,

(5.25a)

αr,s:n =E
(
Yr:n Ys:n

)
= 2−n

{
r−1∑
i=0

(
n

i

)
E
(
Vr−i:n−i Vs−i:n−i

)
−

s−1∑
i=r

(
n

i

)
E
(
Vi−r+1:i Vs−i:n−i

)

+
n∑

i=s

(
n

i

)
E
(
Vi−s+1:i

)
E
(
Vi−r+1:i

)}
, 1 ≤ r < s ≤ n. (5.25b)
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(5.25a,b) are extremely helpful in the case of Y ∼ LA(0, 1) because the corresponding
folded distribution is the reduced exponential distribution whose moments of order statis-
tics can be given in closed form, see (5.9l–n). Thus we arrive at the following explicit
expressions of the moments of the LAPLACE order statistics:

αr:n = E
(
Yr:n

)
= 2−n

{
r−1∑
i=0

(
n

i

)
S1(r − i, n− i)

−
n∑

i=r

(
n

i

)
S1(i− r + 1, i)

}
, 1 ≤ r ≤ n, (5.26a)

α(2)
r:n = E

(
Y 2

r:n

)
= 2−n

{
r−1∑
i=0

(
n

i

)
S2(r − i, n− i)

+
n∑

i=r

(
n

i

)
S2(i− r + 1, i)

}
, 1 ≤ r ≤ n, (5.26b)

αr,s:n = 2−n

{
r−1∑
i=0

(
n

i

)
S3(r − i, s− i, n− i)

−
s−1∑
i=r

(
n

i

)
S1(i− r + 1, i)S1(s− i, n− i)

+
n∑

i=s

(
n

i

)
S3(i− s+ 1, i− r + 1, i)

}
, 1 ≤ r < s ≤ n, (5.26c)

where

S1(r, n) =
n∑

i=n−r+1

1

i
=

r∑
j=1

1

n− j + 1
(5.26d)

S2(r, n) =
n∑

i=n−r+1

1

i2
+ [S1(r, n)]2 =

r∑
j=1

1

(n− j + 1)2
+ [S1(r, n)]2 (5.26e)

S3(r, s, n) = S2(r, n) + S1(r, n)S1(s, n). (5.26f)

The elements of the variance–covariance matrix follow as

βr,r:n = α
(2)
r:n −

[
αr:n

]2
, 1 ≤ r ≤ n,

βr,s:n = E
(
Yr:n Ys:n

)
− αr:n αs:n, 1 ≤ r < s ≤ n.

 (5.26g)

Linear estimation in LEPP for order statistics input is done by LLOYD’s estimator with
means and variance-covariance matrix computed by (5.26a–g).
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Figure 5/26: LAPLACE probability paper with data and regression line

5.2.9 Logistic distribution — X ∼ LO(a, b)

The logistic distribution21 shares many properties with the normal distribution, both have
the same support R and are symmetric and bell–shaped. Contrary to the normal distribu-
tion the logistic distribution has explicit formulas for the CDF and the percentiles, thus, it
is a strong competitor to the normal distribution. But the logistic distribution has a greater
kurtosis (α4 = 4.2) compared with α4 = 3 of the normal distribution, i.e. it has a higher
peak at a and longer tails. As a consequence we note the following features:

• The normal DF has points of inflection at x = a± b, while those of the logistic DF
are at x = a±

√
3 ln[2 +

√
3 ] b
/
π ≈ a± 0.7261 b.

• The probabilities of X to be in the central 2σ–interval are 0.6827 for the normal
distribution and 0.7196 for the logistic distribution.

We mention the following related distributions:

• When Y1 ∼ EX(0, 1), then Y2 = − ln

[
exp(−Y1)

1 + exp(−Y1)

]
∼ LO(0, 1).

• When Y1, Y2
iid∼ EX(0, 1), then Y = − ln

(
Y1

/
Y2

)
∼ LO(0, 1).

• When Yi
iid∼ EMX1(0, 1); i = 1, . . . , n; then Y =

n∑
i=1

Yi

/
i ∼ LO(0, 1).

• When X1, X2
iid∼ EMX1(a, b), then X = X1 −X2 ∼ LO(0, b).

21 Suggested reading for this section: BALAKRISHNAN (1992), JOHNSON/KOTZ/BALAKRISHNAN
(1995, Chapter 23).
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• When Yi
iid∼ LO(0, 1); i = 1, . . . , n; then Y =

(
max

i
Yi − lnn

)
∼ EMX1(0, 1).

• When X ∼ PA(0, b, c), then Y = − ln

[(
X

b

)c

− 1

]
∼ LO(0, 1).

• When X ∼ PO(0, 1, c), then Y = − ln
(
Y −c − 1

)
∼ LO(0, 1).

Concerning applications of the logistic distribution the interested reader is referred to
BALKRISHNAN (1992).

The DF and CDF of the logistic distribution can be written in different ways and — as a
consequence — the CCDF, hazard function and cumulative hazard function, too.

f(x|a, b)



=

exp

(
x− a

b

)
b

[
1 + exp

(
x− a

b

)]2 , a ∈ R, b > 0, x ∈ R

=

exp

(
−x− a

b

)
b

[
1 + exp

(
−x− a

b

)]2
=

1

4 b
sech2

(
x− a

2 b

)



(5.27a)

F (x|a, b)



= 1−
[
1 + exp

(
x− a

b

)]−1

=

[
1 + exp

(
−x− a

b

)]−1

=
1

2

[
1 + tanh

(
x− a

b

)]


(5.27b)

The DF and CDF are related as

f(x|a, b) =
1

b
F (x|a, b)

[
1− F (x|a, b)

]
. (5.27c)

R(x|a, b)



=

[
1 + exp

(
x− a

b

)]−1

=

exp

(
−x− a

b

)
1 + exp

(
−x− a

b

)
=

1

2

[
1− tanh

(
x− a

b

)]


(5.27d)



154 5 Probability plotting and linear estimation — Applications

h(x|a, b) =
1

b

[
1 + exp

(
−x− a

b

)]−1

(5.27e)

The hazard function is proportional to the CDF.

H(x|a, b) = ln

[
1 + exp

(
x− a

b

)]
(5.27f)

Figure 5/27: Several functions for the reduced logistic distribution

F−1
X (P ) = xP = a+ b ln

(
P

1− P

)
, 0 < P < 1 22 (5.27g)

a = x0.5 (5.27h)

b ≈ x0.7311 − a (5.27i)

xM = a (5.27j)

22 The term ln[P
/
(1− P )] is called logit.
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MX(t)


= exp(a t)B(1− b t, 1 + b t) 23

= exp(a t) Γ(1− b t) Γ(1 + b t)

= exp(a t)π b t csc(π b t)

 (5.27k)

CX(t) = exp(i a t)π b i t csc(π b i t) (5.27l)

µ′1(X) = E(X) = a (5.27m)

µ2(X) = Var(X) = b2
π2

3
(5.27n)

α3 = 0 (5.27o)

α4 = 4.2 (5.27p)

κr(X) =

 0 if r is odd

6 br (2r − 1) Br
24 if r is even

 (5.27q)

I(X) =
1

ln 2

(
ln b+ 2

)
(5.27r)

F−1
Y (P ) = yP = ln

(
P

1− P

)
, 0 < P < 1 (5.27s)

fY (yP ) = P (1− P ) (5.27t)

F
−1(r)
Y (P ) = (r − 1)!

[
(−1)r−1 1

P r
+

1

(1− P )r

]
, r = 1, 2, . . . (5.27u)

With respect to the reduced order statistics we have the following results:

E
(
et Yr:n

)
=

Γ(r + t) Γ(n− r + 1− t)

Γ(r) Γ(n− r + 1)
, r ≤ r ≤ n, (5.28a)

αr:n = ψ(r)− ψ(n− r + 1), 25 (5.28b)

βr,r:n = ψ′(r) + ψ′(n− r + 1). 26 (5.28c)

The product moments αr,s:n = E(Yr:n Ys:n), 1 ≤ r < s ≤ n, have to be computed via the
following recursion formulas taken from BALAKRISHNAN/RAO (eds.) (1998a, 91–102):

23 B(·, ·) is the complete beta function.
24 Br is the r–th BERNOULLI number, see ABRAMOWITZ/STEGUN (1965, p. 804).
25 ψ(·) is the digamma function.
26 ψ′(·) is the trigamma function.
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αr,r+1:n+1 =
n+ 1

n−r+1

[
αr,r+r:n−

r

n+ 1
α

(2)
r+1:n+1−

1

n− r
αr:n

]
, 1 ≤ r ≤ n−1, (5.29a)

αn,n+1:n+1 =
n+ 1

n

[
1

n− 1
αn:n + αn−1,n:n −

1

n+ 1
α

(2)
n:n+1

]
, n ≥ 2 (5.29b)

αr,s:n+1 =αr,s−1:n+1+
n+ 1

n−s+2

[
αr,s:n−αr,s−1:n−

1

n−s+1
αr:n

]
, (5.29c)

1 ≤ r < s ≤ n, s− r ≥ 2,

αr+1,n+1:n+1 =αr+2,n+1:n+1+
n+1

r+1

[
1

r
αn:n+αr,n:n−αr−1,n:n

]
, 1 ≤ r ≤ n−2, (5.29d)

α1,n+1:n+1 =α1,n:n+1 −
1

n− 1

[
α2,n+1:n+1 − α2,n:n+1

]
+
n+ 1

n− 1
α1:n, n ≥ 3. (5.29e)

A special formula is needed for α1,3:3:

α1,3:3 = α1,2:3 − α
(2)
2:3 + 3α1:2. (5.29f)

The single moments of order one are directly given by (5.28b) and those of order two are
derived from (5.28c) using (5.28b) as

α(2)
r:n = βr,r:n − α2

r:n.

The starting value for the product moments’ recursion is

α1,2:3 = α2
1:1 = 0.

For n+ 1 = 3 we proceed as follows:

• α1,2:3 from (5.29a), then

• α2,3:3 from (5.29b) and finally

• α1,3:3 from (5.29f).

For n+ 1 = 4 we compute:

• α1,2:4 and α2,3:4 by (5.29a), then

• α3,4:4 by (5.29b), then

• α1,3:4 by (5.29c), then

• α2,4:4 by (5.29d) and finally

• α1,4:4 by (5.29e).



5.2 The case of genuine location–scale distributions 157

This process may be followed similarly to determine αr,s:n+1 for n + 1 = 5, 6, . . . . Un-
fortunately, we cannot restrict the computation by recursion to only a portion of the upper
triangle in the product matrix (αr,s:n) as given by (2.13b). The off–diagonal elements of
the variance–covariance matrix follow in the usual way: βr,s:n = αr,s:n − αr:n αs:n. To
prevent the results to be distorted by the cumulation of rounding errors in the course of
recursion we have decided in LEPP to only apply the recursion formulas up to sample size
35. For n > 35 the moments are computed by the approximating formulas (2.23) through
(2.25). Tables of covariances are given by SHAH(1966) for n ≤ 10 and by GUPTA et al.
(1967) for n ≤ n ≤ 25.

Figure 5/28: Logistic probability paper with data and regression line

5.2.10 MAXWELL–BOLTZMANN distribution — X ∼ MB(a, b)

This distribution, which is named after the Scottish theoretical physicist and mathemati-
cian JAMES CLERK MAXWELL (1831 – 1879) and the Austrian physicist LUDWIG ED-
UARD BOLTZMANN (1844 – 1906), has its main application in chemistry and physics
where it describes the distribution of speeds of molecules in thermal equilibrium. In statis-
tics the distribution can be thought of as the magnitude of a random three–dimensional
vector whose components Xi; i = 1, 2, 3; are independent and distributed as NO(0, b).
Then X =

√
X2

1 +X2
2 +X2

3 ∼ MB(0, b). Whereas in this case the sum X1 + X2 + X3

has a χ2–distribution with ν = 3 degrees of freedom, the variate X has a χ–distribution
with ν = 3 degrees of freedom.27 Thus, the results for the MAXWELL–BOLTZMANN

27 Other special cases of the χ–distribution are the half–normal distribution (ν = 1) and the
RAYLEIGH distribution (ν = 2).
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distribution follow from those of a χ–distribution.

f(x|a, b) =
1

b

√
2

π

(
x− a

b

)2

exp

[
−1

2

(
x− a

b

)2
]
, x ≥ a, a ∈ R, b > 0 (5.30a)

F (x|a, b) =
2√
π
γ

[
3

2

∣∣∣∣ 12
(
x− a

b

)2
]

(5.30b)

γ(z|u) =
u∫
0

e−t tz−1 dt is the incomplete gamma function. As the MAXWELL–BOLTZ-

MANN distribution is nothing but the χ3–distribution its CDF can be given in terms of the
CDF of a χ2

3 variate. Let Fχ2
3
(·) denote the CDF of χ2

3 then Fχ3(z) = Fχ2
3
(z2). This feature

is extremely useful because a routine for the χ2
ν–CDF is implemented in MATLAB as well

as in other statistical software packages. We can thus express (5.30b) as

F (x|a, b) = Fχ2
3

[(
x− a

b

)2
]
. (5.30c)

It is also possible to write the MAXWELL–BOLTZMANN CDF in terms of the error func-
tion

erf(z) =
2√
π

z∫
0

exp(−t2) dt

as

F (x|a, b) = erf
(
x− a

b
√

2

)
− x− a

b
exp

[
−1

2

(
x− a

b

)2
]√

2

π
. (5.30d)

Because the error function and the CDF Φ(z) of the standard normal distribution are
linked as

erf(z) = 2 Φ(z
√

2)− 1

we may even write the MAXWELL–BOLTZMANN CDF in terms of the normal CDF:

F (x|a, b) = 2 Φ

(
x− a

b

)
− x− a

b
exp

[
−1

2

(
x− a

b

)2
]√

2

π
− 1. (5.30e)

The other functions and characteristics of the MAXWELL–BOLTZMANN distribution are:

R(x|a, b) = 1− Fχ2
3

[(
x− a

b

)2
]

(5.30f)

h(x|a, b) =
f(x|a, b)
R(x|a, b)

(5.30g)

H(x|a, b) = − ln
[
R(x|a, b)

]
(5.30h)

The hazard function h(x|a, b) and the cumulative hazard function H(x|a, b) cannot be
given in closed form.
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Figure 5/29: Several functions for the reduced MAXWELL–BOLTZMANN distribution

The percentiles of the MAXWELL–BOLTZMANN distribution can be expressed by the χ2
3–

percentiles χ2
3(P ) as:28

F−1
X (P ) = xP = a+ b

√
χ2

3(P ) = a+ b χ3(P ), 0 ≤ P < 1. (5.30i)

a = x0 (5.30j)

b ≈ x0.1987 − a (5.30k)
xM = a+ b

√
2 ≈ a+ 1.4142 b (5.30l)

CX(t)=i exp(iat)

{
bt

√
2

π
−exp

(
−b

2t2

2

)
(b2t2−1)

[
sign(t) erfi

(
b|t|√

2

)
−i
]}

29 (5.30m)

28 The percentile function or the inverse CDF of χ2
ν is also implemented in MATLAB and other statistical

software.
29 erfi(z) = i erf(i z) is the imaginary error function.
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µ′r(Y ) = 21+r/2 Γ

(
3 + r

2

)/√
π; r = 1, 2, . . . (5.30n)

µ′1(Y ) = 2

√
2

π
≈ 1.5958 (5.30o)

µ′2(Y ) = 3 (5.30p)

µ′3(Y ) = 8

√
2

π
≈ 6.3831 (5.30q)

µ′4(Y ) = 15 (5.30r)

µ′1(X) = E(X) = a+ 2 b

√
2

π
≈ a+ 1.5958 b (5.30s)

µ2(X) = Var(X) = b2
3π − 8

π
≈ 0.4535 b2 (5.30t)

α3 =
2
√

2 (16− 5π)

(3π − 8)3/2
≈ 0.4857 (5.30u)

α4 =
15π2 + 16 π − 192

(3π − 8)2
≈ 3.1082 (5.30v)

F−1
Y (P ) = χ3(P ), 0 ≤ P < 1 (5.30w)

fY (yP ) =

√
2

π
χ2

3(P ) exp

[
−χ

2
3(P )

2

]
(5.30x)

In LEPP linear estimation for order statistics input is done by GLS with percentiles of the
empirical CDF as regressors and the asymptotic variance–covariance matrix (4.53c,d).

Figure 5/30: MAXWELL–BOLTZMANN probability paper with data and regression line
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5.2.11 Normal distribution — X ∼ NO(a, b)

The normal distribution30 — sometimes called GAUSS distribution — is the most popular
distribution in statistics where it plays a central role.

• Many distributions converge to a normal distribution for certain limit processes of
their parameters.

• A great number of sample statistics, the most import being the sum, the mean and
the portion, are exactly or approximately normally distributed.

• Distributions like the χ2–, the t– and the F–distributions, which are important in
statistical inference, are based on the the normal distribution.

The earliest published derivation of the normal distribution as an approximation to a bi-
nomial distribution, when n → ∞ and P held constant, is a pamphlet of 1733 written by
ABRAHAM DE MOIVRE (1667 – 1754). In the nineteenth century and the beginning of the
twentieth century the normal distribution was established on forms of central limit theo-
rems, e.g. by CARL FRIEDRICH GAUSS (1777 – 1855) as the resultant of a large number
of additive and independent errors when doing astronomical observations, and in a more
rigorous way by A.M. LJAPUNOV (1857 – 1918), P. LÉVY (1896 – 1971), W. FELLER

(1906 – 1970), J.W. LINDEBERG (1876 – 1932) and B.V. GNEDENKO (1912 – 1995).
Generally, a central limit theorem states conditions under which the distribution of the
standardized sum of random variables tends to the unit normal distribution NO(0, 1) as
the number variables in the sum increases.

Among the great number of distributions related to the normal we only mention the fol-
lowing ones:

• The normal distribution is reproductive with respect to summation, i.e. Xi
iid∼

NO(ai, bi); i = 1, 2, . . . , n; then X = c ±
n∑

i=1

diXi ∼ NO(a, b) with a = c ±
n∑

i=1

di ai and b2 =
n∑

i=1

d2
i b

2
i .

• Z1, Z2
iid∼ NO(0, 1), then

– X = Z1 Z2 is distributed with DF f(x) =
1

π

∞∫
0

(
1 + t2

)
cos(x t) dt,

– X = Z1

/
Z2 ∼ CA(0, 1).

• Xi
iid∼ NO(a, b); i = 1, 2, . . . , n; and independent, then

– X =
n∑

i=1

(
Xi − a

b

)2

∼ χ2
n,

30 There exist numerous monographs on this distribution. A good overview is JOHNSON/KOTZ/BALA-
KRISHNAN (1994, Chapter 13).
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– X =
n∑

i=1

(
Xi −X

b

)2

∼ χ2
n−1, where X =

1

n

n∑
i=1

Xi.

– Furthermore: χ2
ν → NO(ν, 2 ν) for ν →∞.

• Xi
iid∼ NO(a, b); i = 1, 2, . . . , n;, then

– X =
X − a

S

√
n ∼ tn−1 (t–distribution with n−1 degrees of freedom), where

S =

√
1

n− 1

n∑
i=1

(
Xi −X

)2.

– Furthermore: tν → NO(0, 1) for n→∞.

• Xi
iid∼ NO(aX , bX); i = 1, 2, . . . , n; Yj

iid∼ NO(aY , bY ); j = 1, 2, . . . ,m; both

series independent, then X =

1

n− 1

n∑
i=1

(
Xi −X

)2
1

m− 1

m∑
j=1

(
Yj − Y

)2 ∼ Fn−1,m−1.

(Fν1,ν2 is the F– or FISHER distribution with ν1, ν2 degrees of freedom.)

• X binomially distributed with parameters n and P , then Z =
X − nP√
nP (1− P )

approx∼

NO(0, 1) for n→∞.

• X POISSON distributed with parameter λ, then Z =
X − λ√

λ

approx∼ NO(0, 1) for

λ→∞.

• Relation to lognormal distributions

– X1 ∼ LNL(a, b, c), then V1 = ln(X1 − a) ∼ NO(b, c),

– X2 ∼ LNU(a, b, c), then V2 = ln(a−X2) ∼ NO(b, c).

– Furthermore, LNL(0, b, c) and LNU(0, b, c) → NO(b, c) for c→ 0.

Functions and characteristics of the normal distribution are as follows:

f(x|a, b) =
1

b
√

2π
exp

[
−(x− a)2

2 b2

]
; x ∈ R, a ∈ R, b > 0 (5.31a)

ϕ(z) =
1√
2π

exp

(
−z

2

2

)
− DF of the standardized normal distribution (5.31b)

ϕ(z) = ϕ(−z) (5.31c)

f(x|a, b) =
1

b
ϕ

(
x− a

b

)
(5.31d)

ϕ(z) = b f(a+ b z|a, b) (5.31e)



5.2 The case of genuine location–scale distributions 163

F (x|a, b) =

x∫
−∞

f(v|a, b) dv − no closed form possible (5.31f)

Φ(z) =

z∫
−∞

ϕ(t) dt− no closed form possible (5.31g)

Φ(z) = 1− Φ(−z) (5.31h)

F (x|a, b) = Φ

(
x− a

b

)
(5.31i)

Φ(z) = F (a+ b z|a, b) (5.31j)

R(x|a, b) = 1− Φ

(
x− a

b

)
(5.31k)

h(x|a, b) =
f(x|a, b)
R(x|a, b)

(5.31l)

H(x|a, b) = − ln
[
R(x|a, b)

]
(5.31m)

Figure 5/31: Several functions for the reduced (standardized) normal distribution
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xP = F−1
X (P ), 0 < P < 1, no closed form possible (5.31n)

zP = Φ−1(P ), 0 < P < 1, no closed form possible (5.31o)

xP = a+ b zP (5.31p)

zP = −z1−P
31 (5.31q)

a = x0.5 (5.31r)

b ≈ x0.8413 − a (5.31s)

xM = a (5.31t)

MX(t) = exp
[
a t+ b2 t2

/
2
]

(5.32a)

CX(t) = exp
[
i a t− b2 t2

/
2
]

(5.32b)

µ′1(X) = E(X) = a (5.32c)

µ′2(X) = a2 + b2 (5.32d)

µ′3(X) = 3 a2 b2 + a3 (5.32e)

µ′4(X) = 3 b4 + 6 a2 b2 + a4 (5.32f)

µr(X) =

 0 for r odd

br (r − 1) (r − 3) · . . . · 3 , 1 for r even

 (5.32g)

µ2(X) = Var(X) = b2 (5.32h)

µ4(X) = 3 b4 (5.32i)

µ6(X) = 15 b6 (5.32j)

α3 = 0 (5.32k)

α4 = 3 (5.32l)

κ1(X) = a (5.32m)

κ2(X) = b2 (5.32n)

κr(X) = 0 for r ≥ 3 (5.32o)

I(X) = ld
[
b
√

2π e
]

(5.32p)

Φ−1(P ) = zP , 0 < P < 1 (5.32q)

31 zP — sometimes 5 + zP to avoid negative values — is called probit.
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Φ−1(1)(P ) =
1

ϕ
[
Φ−1(P )

] ,
Φ−1(2)(P ) =

Φ−1(P ){
ϕ
[
Φ−1(P )

]}2 ,

Φ−1(3)(P ) =
1 + 2

{
Φ−1(P )

}2{
ϕ
[
Φ−1(P )

]}3 ,

Φ−1(4)(P ) =
Φ−1(P )

{
7 + 6

[
Φ−1(P )

]2}{
ϕ
[
Φ−1(P )

]}4 ,

Φ−1(5)(P ) =
7 + 46

[
Φ−1(P )

]2
+ 24

[
Φ−1(P )

]4{
ϕ
[
Φ−1(P )

]}5 ,

Φ−1(6)(P ) =
Φ−1(P )

{
127 + 326

[
Φ−1(P )

]2
+ 120

[
Φ−1(P )

]4}{
ϕ
[
Φ−1(P )

]}6



(5.32r)

For smaller sample sizes the single and product moments of normal order statistics can be
given in terms of some elementary functions.

n = 2

α2:2 = −α1:2 =
1√
π
≈ 0.5641

α1,2:2 = 0

 (5.33a)

n = 3

α3:3 = −α1:3 =
3

2
√
π
≈ 0.8463, α2:3 = 0,

α1,2:3 = α2,3:3 =

√
3

2π
≈ 0.2757, α1,3:3 = −

√
3

π
≈ −0.5513

 (5.33b)

n = 4

α4:4 = −α1:4 =
6

π
√
π

arctan(
√

2 ) ≈= 1.0294,

α3:4 = −α2:4 =
6√
π
− 18

π ,
√
π

arctan(
√

2 ) ≈ 0.2970,

α1,2:4 = α3,4:4 =

√
3

π
≈ 0.5513,

α1,3:4 = α2,4:4 = −
√

3

π
(2−

√
3 ) ≈ −0.1477,

α1,4:4 = − 3

π
≈ −0.9549, α2,3:4 =

√
3

π
(2−

√
3) ≈ 0.1477



(5.33c)
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n = 5

α5:5 =−α1:5 =
10√
π

(
3

2π
arctan(

√
2 )− 1

4

)
≈ 1.1630

α4:5 =−α2:5 =
30√
π

(
1

π
arctan(

√
2 )

)
− 40√

π

(
3

2π
arctan(

√
2 )− 1

4

)
≈ 0.4950

α3:5 =0


(5.33d)

The above results for single moments are due to BOSE/GUPTA (1959), but their method
fails for sample size six or more. The general approach for the derivation of product
moments’ expressions is due to GODWIN (1949). A more up–to–date presentation is to
be found in BALAKRISHNAN/COHEN (1991, Section 3.9). These authors also give a lot
of recursion formulas for single as well as for product moments. ROYSTON (1982) has
developed an algorithm for computing the expected values of normal order statistics for
sample sizes up to 1000. Among the numerous tables of moments of reduced normal order
statistics we mention:

• TEICHROEW (1956) — means and product moments for n ≤ 20,

• HARTER (1961) — means for n = 2(1)100(25)250(50)400,

• SARHAN/GREENBERG (1962) — variances and covariances for n ≤ 20,

• TIETJEN et. al. (1977) — variances and covariances for n ≤ 50.

Figure 5/32: Normal probability paper with data and regression line

Concerning normal probability plotting, especially the choice of plotting positions, we
mention BARNETT (1976) and BROWN/HETTMANSPERGER (1996). In LEPP linear esti-
mation for order statistics input is realized as follows:
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• 3 ≤ n ≤ 10 — LLOYD’s estimator with tabulated means and variance–covariance
matrix,

• n > 10 — LLOYD’s estimator with approximated means and variance–covariance
matrix, using the short versions of the approximating formulas (2.23) – (2.25).

5.2.12 Parabolic distributions of order 2
In this section we will present two types of distributions whose DF is a parabola, either
opened to the top (Sect. 5.2.12.1) or opened to the bottom (Sect. 5.2.12.2). The U–shaped
type of Sect. 5.2.12.1 leads to a power–function distribution when folded about the mean
E(X) = a.

5.2.12.1 U–shaped parabolic distribution — X ∼ PAU(a, b)

Generally, a parabola opened to the top is a power–function of even order: y = x2 k;
k = 1, 2, . . . ; and x ∈ R. To arrive at a parabola which is symmetric around
a ∈ R and has a scale parameter b > 0, we have to modify the power–function to

y =
2 k + 1

2 b

(
x− a

b

)2 k

. We will assume k to be known and to be equal to 1.32 This

distribution is a model for variates with nearly impossible realizations near the mean and
high probabilities for outlying realizations.

f(x|a, b) =
3

2 b

(
x− a

b

)2

, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (5.34a)

F (x|a, b) =
1

2

[(
x− a

b

)3

+ 1

]
(5.34b)

R(x|a, b) =
1

2

[
1−

(
x− a

b

)3
]

(5.34c)

h(x|a, b) =
3 (a− x)2

b3 + (a− x)3
(5.34d)

H(x|a, b) = ln 2− ln

[
1−

(
x− a

b

)3
]

(5.34e)

F−1
X (P ) = xP = a+ b sign(2P − 1)

(
2 |P − 0.5|

)1/3

, 0 ≤ P ≤ 1 (5.34f)

a = x0.5 (5.34g)

b = x1 − a (5.34h)

x = a is an anti–mode (5.34i)
32 The greater k the more the DF approaches to the perpendiculars drawn at the edges a±b of the support

and the more probability mass is moved towards the borders.
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Figure 5/33: Several functions for the reduced U–shaped parabolic distribution

µ′r(Y ) = µr(Y ) =
3
[
1 + (−1)r

]
2 (3 + r)

, Y =
X − a

b
(5.34j)

µ′1(X) = E(X) = a (5.34k)

µ2(X) = Var(X) = 0.6 b2 (5.34l)
α3 = 0 (5.34m)

α4 =
25

12
≈ 1.1905 (5.34n)

F−1
Y (P ) = yP = sign(2P − 1)

(
2 |P − 0.5|

)1/3

, 0 ≤ P ≤ 1 (5.34o)

fY (yP ) = 1.5
(
2 |P − 0.5|

)2/3

(5.34p)

The support of the U–shaped parabolic distribution is finite, so it is no problem to compute
the moments of the reduced order statistics by evaluating the integrals (2.9b) and (2.11a).
Thus, in LEPP LLOYD’s estimator with computed means and variance-covariance matrix
is used. For greater sample sizes the evaluation of the double integral for the product
moments can last some minutes even when regarding the symmetry of the distribution.
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Figure 5/34: U–shaped parabolic probability paper with data and regression line

5.2.12.2 Inverted U–shaped parabolic distribution — X ∼ PAI(a, b)

We will present results for an inverted U–shaped parabolic distribution where the order of
the parabola is equal to two.

f(x|a, b) =
3

4 b

[
1−

(
x− a

b

)2
]
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (5.35a)

F (x|a, b) =
1

2
+

1

4

[
3 (x− a)

b
−
(
x− a

b

)3
]

(5.35b)

R(x|a, b) =
1

2
− 1

4

[
3 (x− a)

b
−
(
x− a

b

)3
]

(5.35c)

h(x|a, b) =

3

[
1−

(
x− a

b

)2
]

b

[
2− 3 (x− a)

b
+

(
x− a

b

)3
] (5.35d)

H(x|a, b) = − ln
[
R(x|a, b)

]
(5.35e)

F−1
Y (P ) = yP

 is the admissible solution, i.e. − 1 ≤ yP ≤ 1, of

4 (P − 0.5) = 3 yP − y3
P , 0 ≤ P ≤ 1.

 (5.35f)
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Figure 5/35: Several functions for the reduced inverted U–shaped parabolic distribution

xP = a+ b yP (5.35g)
a = x0.5 (5.35h)
b = x1 − a (5.35i)

xM = a (5.35j)

µ′r(Y ) = µr(Y ) =
1.5
[
1 + (−1)r

]
(1 + r) (3 + r)

, Y = (X − a)
/
b (5.35k)

µ′1(X) = E(X) = a (5.35l)

µ2(X) = Var(X) = 0.2 b2 (5.35m)
α3 = 0 (5.35n)

α4 =
75

21
≈ 3.5714 (5.35o)

Moments of reduced order statistics can be determined by evaluating the integrals (2.9b)
and (2.11a). Thus, in LEPP LLOYD’s estimator with computed means and variance-
covariance matrix is used. For greater sample sizes the evaluation of the double integral
for the product moments can last some minutes even when regarding the symmetry of the
distribution.
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Figure 5/36: Inverted U–shaped parabolic probability paper with data and regression line

5.2.13 RAYLEIGH distribution — X ∼ RA(a, b)

This distribution is named after the British physicist JOHN WILLIAM STRUTT, 3rd BARON

RAYLEIGH (1842 – 1919), who discovered the element argon, which earned him the Nobel
Prize for Physics in 1904. He derived this distribution in the field of acoustics. Generally,
it is a model for distributions that involve wave propagation, radiation and related phenom-
ena. In meteorology it is a model for wind–speed. If a particle velocities in two orthogonal
directions are two independent normal variates with zero means and equal variances, then
the distance the particle travels per unit time is RAYLEIGH distributed, or stated more
formally:

X1, X2
iid∼ NO(0, b) ⇒ X =

√
X2

1 +X2
2 ∼ RA(0, b).

Thus, when X1 and X2 are regarded as the elements of a two–dimensional vector, the
length or magnitude X of this vector has a RAYLEIGH distribution. When X1 and X2

are the real and imaginary components, respectively, of a complex random variable, the
absolute value of this complex number is RAYLEIGH distributed.

The RAYLEIGH distribution is related to several other distribution, e.g.:

• It is a χ–distribution with ν = 2 degrees of freedom.

• It is a special WEIBULL distribution (see Sect. 5.3.24) with shape parameter c = 2.

• It also is a linear hazard rate distribution, see (5.36d).
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• It is a special case of STACY’s generalized gamma distribution with DF

f(x|a, b, c, d) =
c (x− a)c d−1

bc d Γ(d)
exp

{
−
(
x− a

b

)c}
, x ≥ a, a ∈ R, b, c, d > 0,

when c = 2 and d = 1.

• It is a special case of CREEDY–MARTIN’s generalized gamma distribution with
DF

f(x|θ1, θ2, θ3, θ4) = exp
{
θ1 lnx+ θ2 x+ θ3 x

2 + θ4 x
3 − η

}
, x > 0,

where η is a normalizing constant to be determined numerically. θ2 = θ4 = 0 gives
a RAYLEIGH distribution.

• The RICE distribution with DF

f(x|b, ν) =
x

b2
exp

{
−(x2 − ν2)

2 b2

}
I0

(x ν
b2

)
,

where I0(·) is the BESSEL function of the first kind with zero order, leads to the
RAYLEIGH distribution RA(0, b) when ν = 0.

We give the following functions and characteristics of the general RAYLEIGH distribution:

f(x|a, b) =
x− a

b2
exp

[
−1

2

(
x− a

b

)2
]
, x ≥ a, a ∈ R, b > 0 (5.36a)

F (x|a, b) = 1− exp

[
−1

2

(
x− a

b

)2
]

33 (5.36b)

R(x|a, b) = exp

[
−1

2

(
x− a

b

)2
]

(5.36c)

h(x|a, b) =
x− a

b2
(5.36d)

H(x|a, b) =
(x− a)2

2 b2
(5.36e)

F−1
X (P ) = xP = a+ b

√
−2 ln(1− P ), 0 ≤ P < 1 (5.36f)

a = x0 (5.36g)

b ≈ x0.3935 − a (5.36h)

33 We notice that
f(x|a, b) =

x− a

b2
[
1− F (x|a, b)

]
which gives rise to several recurrence relations for single and product moments of order statistics, see
BALKRISHNAN/RAO (1998a, p. 199).
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Figure 5/37: Several functions for the reduced RAYLEIGH distribution

x0.5 = a+ b
√

ln 4 ≈ a+ 1.1774 b (5.36i)

xM = a+ b (5.36j)

MY (t) = 1 + t exp
(
t2
/
2
)√

π
/
2

[
erf
(

t√
2

)
+ 1

]
(5.36k)

CY (t) = 1− t exp
(
− t2

/
2
)√

π
/
2

[
erfi
(

t√
2

)
− i

]
(5.36l)

µ′r(Y ) = 2r/2Γ
(
1 +

r

2

)
, Y = (X − a)

/
b (5.36m)

µ′1(Y ) = E(Y ) =
√
π
/
2 ≈ 1.2533 (5.36n)

µ′2(Y ) = 2 (5.36o)

µ′3(Y ) = 3
√
π
/
2 ≈ 3.7599 (5.36p)

µ′4(Y ) = 8 (5.36q)

µ2(Y ) = Var(Y ) =
4− π

2
≈ 0.4292 (5.36r)
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µ3(Y ) = (π − 3)
√
π
/
2 ≈ 0.1775 (5.36s)

µ4(Y ) =
32− 3π2

4
≈ 0.5978 (5.36t)

µ′1(X) = E(X) = a+ b
√
π
/
2 ≈ a+ 1.2533 b (5.36u)

µ2(X) = Var(X) = b2
4− π

2
≈ 0.4292 b2 (5.36v)

α3 =
2 (π − 3)

√
π

(4− π)3/2
≈ 0.6311 (5.36w)

α4 =
32− 3π2

(4− π)2
≈ 3.2450 (5.36x)

f−1
Y (P ) = yP =

√
−2 ln(1− P ), 0 ≤ P < 1 (5.36y)

fY (yP ) = (1− P )
√
−2 ln(1− P ) (5.36z)

Because the WEIBULL distribution is reproductive with respect to forming the sample
minimum, the first order statistic in a sample of size n from a RAYLEIGH distribution,
which is a special WEIBULL distribution, is another RAYLEIGH distribution with DF

f1:n

(
x
∣∣∣a, b√

n

)
=
n

b2
(x− a) exp

[
−n

2

(
x− a

b

)2
]
. (5.37a)

Thus, we have the following single moments of the first reduced RAYLEIGH order statistic
Y1:n = (X1:n − a)

/
b:

α1:n = E(Y1:n) =

√
π

2n
, (5.37b)

α
(2)
1:n = E(Y 2

1:n) =
2

n
. (5.37c)

DYER/WHISENAND (1973, pp. 28, 29) give the following exact and explicit expressions
for the first two single moments and also the product moments of reduced RAYLEIGH order
statistics. In LEPP we use these formulas for n ≤ 25 to compute the input to LLOYD’s
estimator, whereas for n > 25 linear estimation is based on BLOM’s unbiased, nearly best
linear estimator.

αr:n =

√
π

2
n

(
n− 1

r − 1

) r−1∑
i=0

(−1)r−1−i

(
r − 1

i

)/
(n− i)3/2, (5.38a)

α(2)
r:n = 2n

(
n− 1

r − 1

) r−1∑
i=0

(−1)r−1−i

(
r − 1

i

)/
(n− i)2, (5.38b)
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αr,s:n =


n!

(r − 1)! (s−r−1)! (n−s)!
s−r−1∑

i=0

(
s−r−1

i

) r−1∑
j=0

(−1)i+j
(

r−1
j

)
× H(s− r − i+ j, n− s+ i+ 1)

, r < s, (5.38c)

where

H(a, b) =

π

2
− arctan

(√
b

a

)
+
√
a b

a− b

(a+ b)2

(a b)3/2
. (5.38d)

Figure 5/38: RAYLEIGH probability paper with data and regression line

5.2.14 Reflected exponential distribution — X ∼ RE(a, b)

We reflect the exponential distribution with DF f(x|a, b) = (1
/
b) exp

[
− (x − a)

/
b
]
,

x ≥ a, around x = a and arrive at f(x|a, b) = (1
/
b) exp

[
− (a − x)

/
b
]
, x ≤ a. By this

transformation the lower threshold of the exponential distribution has turned into an upper
threshold for the reflected exponential distribution. When we start from a power–function
distribution with DF f(x|a, b, c) = (c

/
b)
[
(x − a)

/
b
]c−1 and introduce X̃ = ln(X − a),

ã = ln b and b̃ = 1
/
c the distribution of X̃ is a reflected exponential distribution with DF

f(x̃|ã, b̃ ) = (1
/
b̃) exp

[
− (ã− x̃)

/
b̃
]
.

The functions and characteristics of the reflected exponential distribution easily follow
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from those of the exponential distribution.

f(x|a, b) =
1

b
exp

(
−a− x

b

)
=

1

b
exp

(
x− a

b

)
, x ≤ a, a ∈ R, b > 0 (5.39a)

F (x|a, b) = exp

(
x− a

b

)
(5.39b)

R(x|a, b) = 1− exp

(
x− a

b

)
(5.39c)

h(x|a, b) =
1

b

[
exp

(
a− x

b

)
− 1

] (5.39d)

H(x|a, b) = − ln

[
1− exp

(
x− a

b

)]
(5.39e)

F−1
X (P ) = xP = a+ b lnP, 0 < P ≤ 1 (5.39f)

Figure 5/39: Several functions for the reduced reflected exponential distribution
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Figure 5/40: Reflected exponential probability paper with data and regression line

x0.5 = a− b ln 2 ≈ a− 0.6931 b (5.39g)

a = x1 (5.39h)

b ≈ a− x0.3679 (5.39i)

xM = a with f(xM |a, b) = 1
/
b (5.39j)

MX(t) =
exp(a t)

1 + b t
(5.39k)

CX(t) =
exp(i a t)

1 + i b t
, i =

√
−1 (5.39l)

µ′r(X) = (−b)r exp
(
−a
b

)
Γ
(
1 + r,−a

b

)
) (5.39m)

µ′1(X) = E(X) = a− b (5.39n)

µ′2(X) = b2 + (a− b)2 (5.39o)

µ′3(X) = (a− b)3 + b2 (3 a− 5 b) (5.39p)

µ′4(X) = (a− b)4 + b2 (6 a2 − 20 a b+ 23 b2) (5.39q)

µ2(X) = Var(X) = b2 (5.39r)

µ3(X) = −2 b3 (5.39s)

µ4(X) = 9 b4 (5.39t)

α3 = −2 (5.39u)

α4 = 9 (5.39v)
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I(X) = ld 2 + ld b ≈ 1.442695 (1 + ln b) (5.39w)

F−1
Y (P ) = yP = lnP (5.39x)

fY (yP ) = P (5.39y)

F−1(r)(P ) = (−1)r−1 (r − 1)!

P r
, r = 1, 2, . . . (5.39z)

The moments of the reduced reflected exponential order statistics can be derived from
those of the exponential distribution. Let α̃r:n, β̃r,r:n and β̃r,s:n denote the moments of the
reduced exponential distribution as given by (5.9l–n) then those of the reduced reflected
exponential distribution follow from (5.13a–c). These computed moments are the input to
LLOYD’s estimator in LEPP.

5.2.15 Semi–elliptical distribution — X ∼ SE(a, b)

This distribution is known as WIGNER’s semicircle distribution, named after the
Hungarian–American physicist and mathematician EUGENE PAUL WIGNER (1902 –
1995), winner of the NOBEL prize in physics 1963. The distribution arises as the lim-
iting distribution of eigenvalues of many random symmetric matrices. The graph of the
density function is a semi–ellipse centered at x = a and a horizontal half–axis equal to b,

i.e. the support is [a − b, a + b]. For b =
√

2
/
π ≈ 0.7979 the graph of the density is a

semicircle, and for b <
√

2
/
π

(
b >

√
2
/
2

)
the semi–ellipse is compressed (stretched),

see Fig. 5/41.

f(x|a, b) =
2

b π

√
1−

(
x− a

b

)2

, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (5.40a)

F (x|a, b) =
1

2
+

1

π

x− a

b

√
1−

(
x− a

b

)2

+ arcsin

(
x− a

b

) (5.40b)

R(x|a, b) =
1

2
− 1

π

x− a

b

√
1−

(
x− a

b

)2

+ arcsin

(
x− a

b

) (5.40c)

h(x|a, b) =
f(x|a, b)
R(x|a, b)

(5.40d)

H(x|a, b) = − ln
[
R(x|a, b)

]
(5.40e)

F−1
Y (P ) = yP =

is the admissible solution, i.e. −1 ≤ yP ≤ 1, of

π(P−0.5)−yP

√
1−y2

P−arcsin(yP ) = 0, 0 ≤ P ≤ 1.34

 (5.40f)

34 The MATLAB root–finding procedure fzero returns NaN for P < 0.05 and for P > 0.95. Thus, in
these cases we linearly interpolate yP between y0 = −1 and y0.05 = −0.8054 and between y0.95 =
0.8054 and y1 = 1.
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Figure 5/41: Densities of semi–elliptical distributions

Figure 5/42: Several functions for the reduced semi–elliptical distribution
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xP = a+ b yP (5.40g)
a = x0.5 (5.40h)
b = x1 − a (5.40i)

xM = a (5.40j)

MX(t) = 2 exp(a t)
I1(b t)

b t
35 (5.40k)

CX(t) = 2 exp(i a t)
J1(b t)

b t
36 (5.40l)

µ′r(Y ) = E
(
Y r
)

=


0 for r odd(

1

2

)r

Cr/2 for r even37

 , Y = (X − a)
/
b (5.40m)

µ′1(X) = X = a (5.40n)

µ2(X) = Var(X) =
b2

4
(5.40o)

α3 = 0 (5.40p)
α4 = 1 (5.40q)

I(X) = b π − 1

2 ln 2
≈ 3.1416 b− 0.7213 (5.40r)

The moments of the order statistics can be computed by integration, which lasts some time
for large n. They are input to LLOYD’s estimator in LEPP.

Figure 5/43: Semi–elliptical probability paper with data and regression line

35 I1(·) is the modified BESSEL function, see ABRAMOWITZ/STEGUN (1972, p. 376).
36 J1(·) is the BESSEL function, see ABRAMOWITZ/STEGUN (1972, p. 360).
37 Cn =

(
2 n
n

)/
(n+ 1) is the CATALAN number.
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5.2.16 TEISSIER distribution — X ∼ TE(a, b)

In 1934 the French biologist GEORGES TEISSIER proposed this distribution as a life–time
distribution which is characterized by an exponentially declining mean residual life.38

The mean residual life is the expected time to be lived by an individual aged x:

µ(x) = E(X − x|X > x) =

∞∫
x

R(v) dv

R(x)
(5.41a)

where R(x) = Pr(X > x) is the survival function. µ(x) satisfies:

µ(x) ≥ 0,
dµ(x)

d
x ≥ −1,

∞∫
0

1

µ(x)
dx = ∞. (5.41b)

For X ∼ TE(a, b) we have

µ(x) = (a+ b) exp

(
−x− a

b

)
, (5.41c)

where a+ b = E(X) = E(X − a|X > a).

We give the following functions and characteristics:

f(x|a, b) =
1

b

[
exp

(
x−a
b

)
−1

]
exp

[
1+

x−a
b
−exp

(
x−a
b

)]
, (5.42a)

x ≥ a, a ∈ R, b > 0

F (x|a, b) = 1− exp

[
1 +

x− a

b
− exp

(
x− a

b

)]
(5.42b)

R(x|a, b) = exp

[
1 +

x− a

b
− exp

(
x− a

b

)]
(5.42c)

h(x|a, b) =
1

b

[
exp

(
x− a

b

)
− 1

]
(5.42d)

H(x|a, b) = exp

(
x− a

b

)
− x− a

b
− 1 (5.42e)

F−1
Y (P ) = yP =

 is the admissible solution, i.e. yP > 0, of

1 + yP − exp(yP )− log(1− P ) = 0, 0 ≤ P < 1.

 (5.42f)

38 Later on, this model has been discussed by LAURENT (1975). RINNE (1985) used the TEISSIER model
to estimate the life–time distribution, with life–time expressed in kilometers, for German motorcars
based on prices of used cars. These prices could be approximated sufficiently well by an exponentially
falling function of the kilometers traveled.
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Figure 5/44: Several functions for the reduced TEISSIER distribution

xP = a+ b yP (5.42g)
a = x0 (5.42h)
b ≈ x0.5124 − a (5.42i)

x0.5 ≈ a+ 0.9852 b (5.42j)
xM ≈ a+ 0.9624 b (5.42k)

µ′1(Y ) = E(Y ) = 1, Y = (X − a)
/
b (5.42l)

µ′2(Y ) ≈ 1.1927 (5.42m)
µ′3(Y ) ≈ 1.5958 (5.42n)
µ′4(Y ) ≈ 2.3227 (5.42o)
µ′1(X) = E(X) = a+ b (5.42p)
µ2(X) = Var(X) ≈ 0.1927 b2 (5.42q)

α3 ≈ 0.0177 (5.42r)
α4 ≈ 2.5781 (5.42s)

In LEPP linear estimation for order statistics input is realized by BLOM’s unbiased, nearly
best linear estimator with means evaluated by numerical integration.
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Figure 5/45: TEISSIER probability paper with data and regression line

5.2.17 Triangular distributions
In the following section we present results for three types of triangular distributions which
are of location–scale type and which are parameterized in such a way that the location
parameter a is equal to the mode:

• the symmetric version with DF

f(x|a, b) =
1

b

(
1− |x− a|

b

)
=
b− |x− a|

b2
, a− b ≤ x ≤ a+ b (5.43a)

or equivalently written as

f(x|a, b) =


x− (a− b)

b2
for a− b ≤ x ≤ a

a+ b− x

b2
for a ≤ x ≤ a+ b

 , (5.43b)

• the right–angled and positively skew version with DF

f(x|a, b) =
2

b

(
1− x− a

b

)
=

2

b2
(a+ b− x), a ≤ x ≤ a+ b, (5.43c)

• the right–angled and negatively skew version with DF

f(x|a, b) =
2

b

(
x− a

b
+ 1

)
=

2

b2
[x− (a− b)], a− b ≤ x ≤ a. (5.43d)
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These three triangular distributions are special cases of the general triangular distribu-
tion which — besides a and b — has a third parameter c, 0 < c < 1, which is responsible
for the skewness and the location of the mode39 on the abscissa:

f(x|a, b) =


x− (a− b)

2 c b2
for a− b ≤ x ≤ a− b (1− 2 c)

a+ b− x

2 (1− c) b2
for a− b (1− 2 c) ≤ x ≤ a+ b.

 (5.43e)

(5.43e) turns into the symmetric version (5.43a) for c = 0.5. With c→ 0 (5.43e) goes to a
right–angled and positively skew triangular distribution, but — contrary to (5.43c) — with
support [a− b, a+ b] and DF f(x|a, b) = (a+ b− x)

/
(2 b2). With c→ 1 (5.43e) goes to

a right–angled and negatively skew triangular distribution, but — contrary to (5.43d) —
with support [a− b, a+ b] and DF f(x|a, b) = (x− a+ b)

/
(2 b2).

Figure 5/46: Densities of several triangular distributions

5.2.17.1 Symmetric version — X ∼ TS(a, b)

The symmetric triangular distribution, sometimes called tine distribution or SIMPSON’s
distribution40 is the distribution of the sum of two independent and identically distributed
uniform variables (= convolution of two uniform distributions) , more precisely:

X1, X2
iid∼ UN(a, b) ⇒ X = X1 +X2 ∼ TS(2 a+ b, b).

39 This mode is xM = a− b (1− 2 c).
40 THOMAS SIMPSON (1710 – 1761) seems to be the first statistician who had suggested this distribution.
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We give the following functions and characteristics of the symmetric triangular distribu-
tion:

f(x|a, b) =
b− |x− a|

b2
, a− b ≤ x ≤ a+ b, a ∈ R, b > 0 (5.44a)

F (x|a, b) =


1

2

(
1 +

x− a

b

)2

, a− b ≤ x ≤ a

1− 1

2

(
1− x− a

b

)2

, a ≤ x ≤ a+ b

 (5.44b)

R(x|a, b) =


1− 1

2

(
1 +

x− a

b

)2

, a− b ≤ x ≤ a

1

2

(
1− x− a

b

)2

, a ≤ x ≤ a+ b

 (5.44c)

h(x|a, b) =


2 (x− a+ b)

2 b2 − (x− a+ b)2
, a− b ≤ x ≤ a

2

a+ b− x
, a ≤ x ≤ a+ b

 (5.44d)

H(x|a, b) =


− ln

[
1− 1

2

(
x− a+ b

b

)2
]
, a− b ≤ x ≤ a

ln 2− ln

[(
a+ b− x

b

)2
]
, a ≤ x ≤ a+ b

 (5.44e)

F−1
Y (P ) = yP =


√

2P − 1, 0 ≤ P ≤ 0.5

1−
√

2 (1− P ), 0.5 ≤ P ≤ 1

 , Y = (X − a)
/
b (5.44f)

xP = a+ b yP (5.44g)
a = x0.5 (5.44h)
b = x0.5 − x0 = x1 − x0.5 (5.44i)

xM = a (5.44j)

MX(t) = exp(a t)
2
[
cosh(b t)− 1

]
(b t)2

(5.44k)

= exp(a t)
exp(b t) + exp(−b t)− 2

(b t)2
(5.44l)

CX(t) = exp(i a t)
2
[
1− cosh(b t)

]
(b t)2

(5.44m)

= exp(i a t)

[
2− exp(−i b t)− exp(i b t)

(b t)2
(5.44n)

µ′r(Y ) =


0 for r odd

1 + (−1)r

(1 + r) (2 + r)
for r even

 (5.44o)
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Figure 5/47: Several functions for the reduced symmetric triangular distribution

µ′2(Y ) = 1
/
6 (5.44p)

µ′4(Y ) = 1
/
15 (5.44q)

µ′1(X) = E(X) = a (5.44r)

µ2(X) = Var)X) = b2
/
6 (5.44s)

α3 = 0 (5.44t)

α4 = 2.4 (5.44u)

I(X) = ld b+
1

ln 4
≈ 0.7213 + ld b (5.44v)

F−1
Y (P ) = yP =


√

2P − 1, 0 ≤ P ≤ 0.5

1−
√

2 (1− P ), 0.5 ≤ P ≤ 1

 (5.44w)

fY (yP ) =


√

2P , 0 ≤ P ≤ 0.5√
2 (1− P ), 0 ≤ P ≤ 1

 (5.44x)
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The moments of the reduced order statistics, which are computed by numerical integration,
are the input to LLOYD’s estimator in LEPP.

Figure 5/48: Symmetric triangular probability paper with data and regression line

5.2.17.2 Right–angled and negatively skew version — X ∼ TN(a, b)

When the symmetric triangular distribution is folded to the left about x = a we obtain
the negatively skew and right–angled triangular distribution with xM = a and support
[a−b, a], i.e. we have a left half–triangular distribution. We may also think of this distribu-
tion as a reflected right–angled and positively skew triangular distribution. The negatively
skew version is a special case of:

• the beta distribution (1.12a) for c = 2, d = 1 and a substituted with a− b,

• the power–function distribution (1.49a) for c = 2 and a substituted with a− b.

f(x|a, b) =
2

b

(
x−a
b

+ 1

)
=

2

b2
[
x−(a−b)

]
, a− b ≤ x ≤ a, a ∈ R, b > 0 (5.45a)

F (x|a, b) =

(
x− a+ b

b

)2

(5.45b)

R(x|a, b) = 1−
(
x− a+ b

b

)2

=
a− x

b

(
x− a

b
+ 2

)
(5.45c)

h(x|a, b) =
1

a− x
+

1

a− 2 b− x
(5.45d)

H(x|a, b) = 2 ln b− ln
[
(a− x) (x+ 2 b− a)

]
(5.45e)
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Figure 5/49: Several functions for the reduced right–angled and negatively skew
triangular distribution

F−1
X (P ) = xP = a+ b

(√
P − 1

)
, 0 ≤ P ≤ 1 (5.45f)

a = x1 (5.45g)

b = x1 − x0 (5.45h)

x0.5 ≈ a− 0.2929 b (5.45i)

xM = a (5.45j)

MX(t) =
2 exp(a t)

[
exp(−b t) + b t− 1

]
(b t)2

(5.45k)

CX(t) =
2 exp(i a t)

[
1− exp(−i b t)− i b t

]
(b t)2

(5.45l)

µ′r(Y ) =
2 (−1)r

(1 + r) (2 + r)
; r = 0, 1, 2 . . . ; Y = (X − a)

/
b (5.45m)
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µ′1(Y ) = E(Y ) = −1

3
(5.45n)

µ′2(Y ) =
1

6
(5.45o)

µ′3(Y ) = − 1

10
(5.45p)

µ′4(Y ) =
1

15
(5.45q)

µ′1(X) = E(X) = a− b

3
(5.45r)

µ2(X) = Var(X) =
b2

18
(5.45s)

α3 ≈ −0.5657 (5.45t)

α4 = 2.4 (5.45u)

I(X) = ld b+
1

ln 4
− 1 ≈ −0.2787 + ld b (5.45v)

F−1
Y (P ) = yP =

√
P − 1 (5.45w)

fY (yP ) = 2
√
P (5.45x)

The moments of the reduced order statistics, which are computed by numerical integration,
are the input to LLOYD’s estimator in LEPP.

Figure 5/50: Right–angled, negatively skew triangular probability paper with data
and regression line
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5.2.17.3 Right–angled and positively skew version — X ∼ TP (a, b)

This distribution is the right–half symmetric triangular distribution, i.e. the latter distri-
bution is folded to the right–hand side about x = a. We can also regard it as a reflected
right–angled and negatively skew triangular distribution. The positively skew version is a
special beta distribution with c = 1 and d = 2.

f(x|a, b) =
2

b

(
1− x− a

b

)
=

2

b2
(a+ b− x)

]
, a ≤ x ≤ a+ b, a ∈ R, b > 0 (5.46a)

F (x|a, b) = 1−
(
a+ b− x

b

)2

=
a− x

b

(
x− a

b
− 2

)
(5.46b)

R(x|a, b) =

(
a+ b− x

b

)2

(5.46c)

h(x|a, b) =
2

a+ b− x
(5.46d)

H(x|a, b) = 2
[
ln b− ln

[
(a+ b− x)

]
(5.46e)

Figure 5/51: Several functions for the reduced right–angled and positively skew
triangular distribution
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F−1
X (P ) = xP = a+ b

(
1−

√
1− P

)
, 0 ≤ P ≤ 1 (5.46f)

a = x0 (5.46g)

b = x1 − x0 (5.46h)

x0.5 ≈ a+ 0.2929 b (5.46i)

xM = a (5.46j)

MX(t) =
2 exp(a t)

[
exp(b t)− b t− 1

]
(b t)2

(5.46k)

CX(t) =
2 exp(i a t)

[
1− exp(i b t) + i b t

]
(b t)2

(5.46l)

µ′r(Y ) =
2

(1 + r) (2 + r)
; r = 0, 1, 2 . . . ; Y = (X − a)

/
b (5.46m)

µ′1(Y ) = E(Y ) =
1

3
(5.46n)

µ′2(Y ) =
1

6
(5.46o)

µ′3(Y ) =
1

10
(5.46p)

µ′4(Y ) =
1

15
(5.46q)

µ′1(X) = E(X) = a+
b

3
(5.46r)

µ2(X) = Var(X) =
b2

18
(5.46s)

α3 ≈ 0.5657 (5.46t)

α4 = 2.4 (5.46u)

I(X) = ld b+
1

ln 4
≈ 0.7213 + ld b (5.46v)

F−1
Y (P ) = yP = 1−

√
1− P (5.46w)

fY (yP ) = 2
√

1− P (5.46x)

The moments of the reduced order statistics, which are computed by numerical integration,
are the input to LLOYD’s estimator in LEPP.
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Figure 5/52: Right–angled, positively skew triangular probability paper with data
and regression line

5.2.18 Uniform or rectangular distribution — X ∼ UN(a, b)

The uniform distribution exits in different parameterizations. We will use

f(x|a, b) =
1

b
for a ≤ x ≤ x+ b. (5.47a)

Other notations are:

f(x|a, b∗) =
1

b∗ − a
for a ≤ x ≤ b∗, (5.47b)

f(x|a,∆) =
1

2 ∆
for a−∆ ≤ x ≤ a+ ∆. (5.47c)

When a continuous variate X with support [a, a + b] is assumed to have a probability of
falling into any sub–interval [a∗∗, a∗∗+ b∗∗] of [a, a+ b] and which is the same for all these
sub–intervals and proportional to the interval–length b∗∗, then the variate X has a uniform
distribution. Thus, the uniform distribution expresses the principle insufficient reason in
probability theory. It is a popular prior distribution in BAYESIAN statistics.

Uniform distributions are special cases of the beta distribution (1.12a), obtained by set-
ting c = d = 1. The uniform distribution (5.47c) with a = 0 and ∆ = 0.5 · 10−k is often
used to represent the distribution of roundoff errors in values tabulated to the nearest k
decimal places. A rectangular distribution also arises as a result of the probability inte-
gral transformation. If X is a continuous variate with CDF F (x), then U = F (X) is
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distributed according to the reduced uniform distribution of (5.47a) with DF f(u|0, 1) = 1
for 0 ≤ u ≤ 1. The distribution of the sum

X = X1 + . . .+Xn, Xi
iid∼ UN(0, b),

is the so–called IRWIN–HALL distribution with DF

f(x) =
1

bn (n− 1)!

k∑
j=0

(−1)j

(
n

j

)
(x−j b)n−1, k ≤ x

b
≤ k+1; 0 ≤ k ≤ n−1. (5.48a)

From (5.48a) we find — by dividing the sum X by the sample size n — the distribution
of the arithmetic mean T = X

/
n. For b = 1 in (5.48a) we then have the so–called

BATES distribution with DF

f(t) =
nn

(n− 1)!

[t n]∑
j=0

(−1)j

(
n

j

)(
t− j

n

)n−1

, 0 ≤ t ≤ 1. (5.48b)

When U ∼ UN(0, 1), then V = − lnU has a reduced exponential distribution, and
conversely, if V ∼ EX(0, 1), then U = exp(−V ) ∼ UN(0, 1). Furthermore, when
U ∼ UN(0, 1), then V = −2 lnU has a χ2–distribution with ν = 2 degrees of freedom.

We give the following functions and characteristics of the uniform distribution:

f(x|a, b) =
1

b
, a ≤ x ≤ a+ b; a ∈ R, b > 0 (5.49a)

F (x|a, b) =
x− a

b
(5.49b)

R(x|a, b) = 1− x− a

b
=

a+ b− x

b
(5.49c)

h(x|a, b) =
1

a+ b− x
(5.49d)

H(x|a, b) = ln b− ln(a+ b− x) (5.49e)

F−1
X (P ) = xP = a+ b P (5.49f)

x0.5 = a+ b
/
2 (5.49g)

a = x0 (5.49h)

b = x1 − x0 (5.49i)

xM − not defined (5.49j)

MX(t) = exp(a t)
exp(b t)− 1

b t
(5.49k)

CX(t) =
exp(i a t)

[
exp(i b t)− 1

]
i b t

(5.49l)
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Figure 5/53: Several functions for the reduced uniform or rectangular distribution

µ′r(U) =
1

1 + r
; r = 0, 1, 2, . . . ; U = (X − a)/b (5.49m)

µ′r(X) =
(a+ b)r+1 − ar+1

b (r + 1)
; r = 0, 1, 2, . . . (5.49n)

µ′1(X) = E(X) = a+ b
/
2 (5.49o)

µ′2(X) = a2 + a b+ b2
/
3 (5.49p)

µ′3(X) = a3 + 3 a2 b
/
2 + a b2 + b3

/
4 (5.49q)

µ′4(X) = a4 + 2 a3 b+ 2 a2 b2 + a b3 + b4
/
5 (5.49r)

µr(X) =


br

2r (1 + r)
for r even

0 for r even

 (5.49s)

µ2(X) = Var(X) = b2
/
12 (5.49t)

µ4(X) = b4
/
80 (5.49u)

α3 = 0 (5.49v)
α4 = 1.6 (5.49w)
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κr =

 0 for r odd

br Br

/
b for r even41

 (5.50a)

I(X) = ld b =
ln b

ln 2
(5.50b)

F−1
U (P ) = uP = P, 0 ≤ P ≤ 1 (5.50c)

fU(uP ) = 1 (5.50d)

For the reduced uniform variable we have fU(u) = 1, 0 ≤ u ≤ 1, and FU(u) = u,
0 ≤ u ≤ 1. Thus, the DF of the r–th reduced order statistics Yr:n is

fr:n(u) =
1

(r − 1)! (n− r)!
ur−1 (1− u)n−r, 0 ≤ u ≤ 1, (5.51a)

which is nothing but the DF of the reduced beta distribution with parameters c = r and
d = n− r + 1. So, the single raw moments easily follow as:

α(k)
r:n = E

(
Uk

r:n

)
=

1∫
0

uk fr:n(u) du

=
B(r + k, n− r + 1)

B(r, n− r + 1)

=
n!

(n+ k)!

(r + k − 1)!

(r − 1)!
; r = 1, . . . , n; k = 0, 1, 2, . . . ; (5.51b)

especially

αr:n = E(Ur:n) =
r

n+ 1
=: pr,

42 (5.51c)

α(2)
r:n = E(U2

r:n) =
r + 1

n+ 2

r

n+ 1
. (5.51d)

The variance of Ur:n follows as

βr,r:n = Var(Ur:n) =
pr (1− pr)

n+ 2
. (5.51e)

The joint DF of Ur:n and Us:n, 1 ≤ r < s ≤ n, according to (2.6a) is

fr,s:n(u, v) =
n!

(r − 1)! (s− r − 1)! (n− s)!
ur−1 (v − u)s−r−1 (1− v)n−s. (5.51f)

41 Br is a BERNOULLI number.
42 pr = r

/
(n+ 1) is equal to WEIBULL’s plotting position (3.6b).
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From (5.51f) we obtain the (kr, ks)–th product moment of (Ur:n, Us:n) as

α(kr,ks)
r,s:n = E

(
Ukr

r:n U
ks
s:n

)
=

1∫
0

v∫
0

ukr vks fr,s:n(u, v) du dv

=
n!

(r − 1)! (s− r − 1)! (n− s)!
B(r + kr, s− r)B(s+ kr + ks, n− s+ 1)

=
n!

(n+ kr + ks)!

(r + kr − 1)!

(r − 1)!

(s+ kr + ks − 1)!

(s+ kr − 1)!
(5.51g)

From (5.51g) we only need the special case kr = ks = 1:

αr,s:n = E
(
Ur:n Us:n

)
=

r (s+ 1)

(n+ 1) (n+ 2)
, (5.51h)

which is — in combination with E(Ur:n) = pr = r
/
(n + 1) and E(Us:n) = ps =

s
/
(n+ 1) — gives the covariance

βr,s:n =
r (s+ 1)

(n+ 1) (n+ 2)
− r

n+ 1

s

n+ 1

=
pr (1− ps)

n+ 2
, 1 ≤ r < s ≤ n. (5.51i)

We may combine the variance formula (5.51e) and the covariance formula (5.51i) into one
formula:

βr,s:n =
pr (1− ps)

n+ 2
, 1 ≤ r ≤ s ≤ n. (5.51j)

In LEPP we have used (5.51c) and (5.51j) together with LLOYD’s estimator.

Figure 5/54: Uniform or rectangular probability paper with data and regression line
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5.2.19 U–shaped beta distribution — X ∼ UB(a, b)

Due to its two shape parameters c and d the beta DF

f(x|a, b, c, d) =

(
x− a

b

)c−1(
1− x− a

b

)d−1

bB(c, d)
; a ≤ x ≤ a+ b; a ∈ R; b, c, d > 0;

can take a great variety of shapes:

• for c = d it is symmetric,

• for c > d (c < d) it is positively (negatively) skew,

• for c = 1 and/or d = 1 it is linear,

• for c 6= 1 and/or d 6= 1 it is curved,

• for c ≤ 1 and d > 1 (d ≤ 1 and c > 1) it has a mode at the left–hand (right–hand)
border of the support,

• for c > 1 and d > 1 it has a mode between a and a+ b,

• for 0 < c < 1 and 0 < d < 1 it is U–shaped with an antimode, see Fig. 5/55, and

– either symmetric for 0 < c = d < 1,
– or asymmetric for 0 < c 6= d < 1.

Figure 5/55: Density functions of several U–shaped reduced beta distributions
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We will discuss and present results for the symmetric U–shaped beta distribution with
c = d = 0.5, which is similar to the U–shaped parabolic distribution of Sect. 5.2.12.1. An
evident difference between these two U–shaped distributions is the height of the density
above the antimode which is zero for the parabolic case and greater than zero for the beta
case. The symmetric U–shaped beta density goes to a rectangular density for c = d → 1,
and for c = d→ 0 the central part of the density comes down to the abscissa whereas the
flanks become very steep.

The following results are special cases of the beta distribution, see JOHNSON/KOTZ/BALA-
KRISHNAN (1995, Chapter 25), when c = d = 0.5.

f(x|a, b) =

(
x− a

b

)−0.5(
1− x− a

b

)−0.5

bB(0.5, 0.5)

=
1

π
√

(x− a)(a+ b− x)
, a ≤ x ≤ a+ b, a ∈ R, b > 0 (5.52a)

F (x|a, b) =

2 arcsin

(√
x− a

b

)
π

(5.52b)

R(x|a, b) =

2 arccos

(√
x− a

b

)
π

(5.52c)

h(x|a, b) =
1

2 arccos

(√
x− a

b

)√
(x− a) (a+ b− x)

(5.52d)

H(x|a, b) = ln π − ln 2− ln

[
arccos

(
x− a

b

)]
(5.52e)

F−1
X (P ) = a+ b sin2

(
π P

2

)
, 0 ≤ P ≤ 1 (5.52f)

a = x0 (5.52g)

b = x1 − x0 (5.52h)

x0.5 = a+
b

2
(5.52i)

x = a+
b

2
is an antimode (5.52j)

MX(t) = exp

[(
a+

b

2

)
t

]
I0

(
b t

2

)
43 (5.52k)

43 I•(•) is the modified BESSEL function, see ABRAMOWITZ/STEGUN (1972, p. 376).
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Figure 5/56: Several functions for the reduced U–shaped beta distribution

µ′r(Y ) =
1 · 3 · . . . · (2 r − 1)

2r r!
; r = 1, 2, . . . ;Y = (X − a)

/
b (5.52l)

µ′1(Y ) = E(Y ) =
1

2
(5.52m)

µ′2(Y ) =
3

8
(5.52n)

µ′3(Y ) =
5

16
(5.52o)

µ′4(Y ) =
35

128
(5.52p)

µ′1(X) = E(X) = a+
b

2
(5.52q)

µ2(X) = Var(X) =
b2

18
(5.52r)
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α3 = 0 (5.52s)

α4 = 1.5 (5.52t)

I(X) ≈ ld b− 0.3485 (5.52u)

F−1
Y (P ) = yP = sin2

(
π P

2

)
, 0 ≤ P ≤ 1 (5.52v)

fY (yP ) =
1

π sin

(
π P

2

)√
1− sin2

(
π P

2

) (5.52w)

The moments of the reduced order statistics can be computed by numerical integration and
are the input to LLOYD’s estimator in LEPP.

Figure 5/57: U–shaped beta probability paper with data and regression line

5.2.20 V–shaped distribution — X ∼ VS(a, b)

This distribution with a density function, whose graph is given by the letter V, may be
regarded as a linear approximation to the U–shaped parabolic distribution of Sect. 5.2.12.1.
The functions and characteristics are:

f(x|a, b) =


a− x

b2
for a− b ≤ x ≤ a

x− a

b2
for a ≤ x ≤ a+ b

, a ∈ R, b > 0 (5.53a)
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F (x|a, b) =



1

2

[
1−

(
a− x

b

)2
]

for a− b ≤ x ≤ a

1

2

[
1 +

(
a− x

b

)2
]

for a ≤ x ≤ a+ b


(5.53b)

R(x|a, b) =



1

2

[
1 +

(
a− x

b

)2
]

for a− b ≤ x ≤ a

1

2

[
1−

(
a− x

b

)2
]

for a ≤ x ≤ a+ b


(5.53c)

h(x|a, b) =


2 (a− x)

b2 + (a− x)2
for a− b ≤ x ≤ a

2 (a− x)

(a− x)2 − b2
for a ≤ x ≤ a+ b

 (5.53d)

H(x|a, b) =


− ln

{
0.5

[
1 +

(
a− x

b

)2
]}

for a− b ≤ x ≤ a

− ln

{
0.5

[
1−

(
a− x

b

)2
]}

for a ≤ x ≤ a+ b


(5.53e)

F−1
X (P ) = xP =


a− b

√
1− 2P for 0 ≤ P ≤ 0.5

a+ b
√

2P − 1 for 0.5 ≤ P ≤ 1

 (5.53f)

a = x0.5 (5.53g)

b = x0.5 − x0 = x1 − x0.5 (5.53h)

x = a is an antimode (5.53i)

MX(t) =
exp(a t)

{
2 + exp(b t) [b t− 1]− exp(−b t) [b t+ 1]

}
(b t)2

(5.53j)

µ′r(Y ) =


0 for r odd

2

2 + r
for r even

 , Y = (X − a)
/
b (5.53k)

µ′r(X) =
2 ar+2 + (a+ b)r+1 (b+ r b− a)− (a− b)r+1 (b+ r b+ a)

b2 (1 + r) (2 + r)
(5.53l)
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Figure 5/58: Several functions for the reduced V–shaped distribution

µ′1(X) = E(X) = a (5.53m)

µ′2(X) = a2 +
b2

2
(5.53n)

µ2(X) = Var(X) =
b2

2
(5.53o)

α3 = 0 (5.53p)

α4 =
4

3
(5.53q)

I(X) = ld b+
1

2 ln 2
≈ 0.7213 + ld b (5.53r)

F−1
Y (P ) = yP =


−
√

1− 2P for 0 ≤ P ≤ 0.5

√
2P − 1 for 0.5 ≤ P ≤ 1

 (5.53s)

fY (yP ) =
√
|1− 2P | for 0 ≤ P ≤ 1 (5.53t)
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Moments of the reduced order statistics can be computed by numerical integration and are
the input to LLOYD’s estimator in LEPP.

Figure 5/59: V–shaped probability paper with data and regression line

5.3 The case of ln–transformable distributions
In Sect. 1.3 we have presented eight distributions which — after a ln–transformation of its
variable — will be of location–scale type. These distributions have three parameters, one
of them being a location or shift parameter in the role of either a lower threshold (This
is the case for the maximum type II and minimum type III extreme value distributions,
the lognormal, the PARETO and the power–function distributions.) or an upper threshold
(This is the case for the minimum type II and the maximum type III extreme value distri-
butions and also another form of the lognormal distribution.). The shift parameter a has
to be known or it has to be estimated when linear estimates of the remaining two suitably
transformed parameters based on the ln–transformed sample data have to be found.

5.3.1 Estimation of the shift parameter

The estimation of a shift parameter which is a threshold value or bound is particularly
inaccurate and sometimes difficult as might be seen when reading the monographs of the
distributions, which will be discussed further down. A very popular approach, which is of
maximum likelihood type, but biased, is to take â` = X1:n, the sample minimum when,
a is a lower threshold, or to take âu = Xn:n, the sample maximum, for a being an upper
bound. These estimators are always admissible, i.e. no observation is smaller (or greater)
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than the estimate, but these estimators do not fully take into account the complete sample
values and thus are insufficient.

We will present an approach which is based on all sample values44 and is working for all
bounded distributions whether bounded on only one side or on both sides. The approach
is due to COOKE (1979) and has a higher asymptotic efficiency than the popular bias–
corrected estimators âu = Xn:n +

(
Xn:n − Xn−1:n

)
for the upper bound or â` = X1:n −(

X2:n −X1:n

)
for the lower bound.

COOKE’s estimator is derived by expressing the expectation of the first (last) order statistic
in terms of an integral, the integrand being x1:n (xn:n) times its DF. Then one uses inte-
gration by parts, replaces E(X1:n)

[
E(Xn:n)

]
by X1:n

[
Xn:n

]
and finally replaces the dis-

tribution function by the sample or empirical distribution function and solves for â`

[
âu

]
.

The following excursus gives the details in case of an upper threshold.

Excursus: COOKE’s estimator for an upper threshold au

Let F (x) be the CDF of a random variable X which is assumed to be unbounded on the left.45 The
sample maximum Xn:n has CDF

Fn:n(x) =
[
F (x)

]n (5.54a)

and mean

µn:n = E(Xn:n) =

au∫
−∞

x dFn:n(x). (5.54b)

We integrate (5.54b) by parts

µn:n =
[
xFn:n(x)

]au

−∞
−

au∫
−∞

Fn:n(x)dx

= au −
au∫

−∞

Fn:n(x) dx, (5.54c)

and write

au = µn:n +

au∫
−∞

Fn:n(x) dx. (5.54d)

This suggests — observing (5.54a) — the estimator

âu = Xn:n +

xn:n∫
x1:n

[
F̂ (x)

]n dx (5.54e)

44 This procedure presupposes an uncensored sample with non–grouped data.
45 The estimator to be developed also holds for a left–bounded distribution with either a known or an

unknown bound.
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where F̂ (x) is the empirical CDF:

F̂ (x) =


0 for x < x1:n

i

n
for xi:n ≤ x < xi+1:n; i = 1, 2, . . . , n− 1

1 for x ≥ xn:n.

 (5.54f)

The integral in (5.54e) turns into
xn:n∫

x1:n

[
F̂ (x)

]n dx =
n−1∑
i=1

(
i

n

)n (
Xi+1:n −Xi:n

)
(5.54g)

which after some manipulation gives
xn:n∫

x1:n

[
F̂ (x)

]n dx = Xn:n −
n−1∑
i=0

[(
1− i

n

)n

−
(

1− i+ 1
n

)n]
Xn−i:n. (5.54h)

So, the suggested estimator (5.54e) is

âu = 2Xn:n −
n−1∑
i=0

[(
1− i

n

)n

−
(

1− i+ 1
n

)n]
Xn−i:n. (5.54i)

For large sample size n (5.54i) can be approximated by

âu = 2Xn:n −
(
1− e−1

) n−1∑
i=0

e−iXn−i:n. (5.54j)

For estimating a lower threshold a` we proceed in a similar way. Starting with

µ1:n = E(X1:n) =

∞∫
a`

x dF1:n(x), (5.55a)

where F1:n(x) =
[
1− F (x)

]n, we find after integration by parts:

µ1:n = a` +

∞∫
a`

[
1− F (x)

]n dx. (5.55b)

The resulting estimator is

â` = 2X1:n −
n∑

i=1

[(
1− i− 1

n

)n

−
(

1− i

n

)n]
Xi:n, (5.55c)

which — for large n — turns into

â` = 2X1:n − (e− 1)
n∑

i=1

e−iXi:n. (5.55d)
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COOKE’s estimators have been implemented in LEPP for uncensored and non–grouped
sample data, but the user is asked by the program whether he wants it to estimate the
threshold or he wants to input his own threshold value. For all other types of data input
the user has to provide a threshold value!

We remind the reader that the estimates of the the scale and shape parameters are very
sensitive with respect to the threshold. A good idea is to try several threshold values and
take that one which maximizes the coefficient of correlation between the transformed data
and the regressor.

Example 5/4: WEIBULL parameter estimation using different threshold values

The following 16 WEIBULL order statistics have been simulated with a = b = c = 2:

2.3745 2.4348 2.6393 2.9097 3.1388 3.2352 3.3864 3.5200

3.5360 3.6406 4.0390 4.1789 4.4086 4.5285 4.6338 5.4652

Using the ln-transformed order statistics, transformed with different values for a, and applying the
estimation procedure of Sect. 5.3.2.4 we find the following results:

a b̂ ĉ r
(
αr:n, x̃r:n

)
0 4.0054 4.5111 0.9732

0.5 3.4905 3.9034 0.9765

1 2.9695 3.2832 0.9805

1.5 2.4368 2.6388 0.9853

2 1.8740 1.9292 0.9888

2.1 1.7518 1.7658 0.9881

2.2 1.6209 1.5830 0.9854

2.3164 1.4389 1.3034 0.9731

2.35 1.3624 1.1707 0.9599

2.37 1.2723 1.0020 0.9269

â = 2.3164 is COOKE’s estimate. With a approaching its input value 2 from either below or above
the the correlation coefficient increases and the estimates of b and c come closer to their input
values.

5.3.2 Extreme value distributions of types II and III
The extreme value distributions of types II and III as well as the PARETO and power–
function distributions have — besides a and b — a third parameter c which is responsible
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for the shape. For known c we may design a special probability paper and then linearly
estimate the parameters a and b. We have decided to take a different approach in parameter
estimation for these distributions. This approach is based on the suitably transformed
sample data using either a known or a separately estimated location parameter a resulting
in a location–scale distribution, whose parameters ã = ln b — or ã = − ln b — and
b̃ = 1

/
c will be estimated along the lines of Section 5.2. The estimates may be solved

for estimates of the original parameters b and c. In LEPP we give the estimates of ã and b̃
as well as their re–transformations. The type II and III extreme value distribution can be
transformed to type I distributions as has been stated in Sect. 1.3 so that we can fall back
on the procedures of Sect. 5.2.5 to estimate the transformation of the parameters b and c.

5.3.2.1 Type II maximum or inverse WEIBULL distribution
— X ∼ EMX2(a, b, c)

This FRÉCHET–type distribution is the limiting distribution of the sample maximum when
the sample comes from a distribution that is unlimited from above and is of CAUCHY–
type, i.e. it has a fat tail on the right–hand side such that for some positive k and A we
have

lim
x→∞

xk
[
1− F (x)

]
= A.

A consequence will be that moments will not always exist for a type II maximum extreme
value distribution. In

f(x|a, b, c) =
c

b

(
x− a

b

)−c−1

exp

[
−
(
x− a

b

)−c
]
,

 x ≥ a, a ∈ R
b > 0, c > 0

 (5.56a)

the parameter a is a lower threshold, b is a scale parameter and c is responsible for the
shape.

F (x|a, b, c) = exp

[
−
(
x− a

b

)−c
]

(5.56b)

R(x|a, b, c) = 1− exp

[
−
(
x− a

b

)−c
]

(5.56c)

h(x|a, b, c) =

c

(
x− a

b

)−c

(x− a)

{
1− exp

[
−
(
x− a

b

)−c
]} (5.56d)

H(x|a, b, c) = − ln

{
1− exp

[
−
(
x− a

b

)−c
]}

(5.56e)

F−1
X (P ) = xP = a+ b

(
− 1
/

lnP
)1/c

, 0 ≤ P < 1 (5.56f)
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a = x0 (5.56g)
b ≈ x0.3679 − a (5.56h)

x0.5 ≈ a+ 1.44271/c b (5.56i)

xM = a+ b

(
c

1 + c

)1/c

(5.56j)

Figure 5/60: Several functions for the reduced type II maximum extreme value distribution

In order to write the formulas for the moments of the maximum and the minimum type II
extreme value distributions as concise as possible we introduce the abbreviation:

−Γr := Γ
(
1− r

c

)
.

µ′r(Y ) = −Γr, c > r; Y = (X − a)
/
b (5.56k)

µ′1(X) = E(X) = a+ b −Γ1, c > 1 (5.56l)
µ2(X) = Var(X) = b2

[
−Γ2 −− Γ2

1

]
, c > 2 (5.56m)

α3 =
−Γ3 − 3 −Γ2 −Γ1 + 2 −Γ1[

−Γ2 −− Γ2
1

]3/2
, c > 3 (5.56n)

α4 =
−Γ4 − 4 −Γ3 −Γ1 + 6 −Γ2 −Γ2

1 − 3 −Γ4
1[

−Γ2 −− Γ2
1

]2 , c > 4 (5.56o)

F−1
Y (P ) = yP =

(
− 1
/

lnP
)1/c

, 0 ≤ P < 1 (5.56p)

fY (yP ) = c P (− lnP ) (− lnP )1/c (5.56q)
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X̃ = ln(X−a) has a type I maximum extreme value distribution with parameters ã = ln b

and b̃ = 1
/
c. Thus, we apply the procedure of Sect. 5.2.5.1 to find linear estimates of ã

and b̃, which finally may be solved for estimates of b and c.

Figure 5/61: Type II maximum extreme value probability paper with data and regression
line

5.3.2.2 Type III maximum or reflected WEIBULL distribution
— X ∼ EMX3(a, b, c)

When the WEIBULL distribution with DF given by (1.45a), which is of minimum–type,
is reflected about x = a we arrive at the maximum type III distribution. This distribution
is the limiting distribution of the sample maximum when the sampled distribution has a
support bounded from above by xu and a CDF which behaves like β (xu − x)α for some
α, β > 0 as x → x−u . A prototype of such a distribution is the uniform distribution
over some interval [x`, xu]. A maximum type III distribution with c = 1 is a reflected
exponential distribution.

f(x|a, b, c) =
c

b

(
a− x

b

)c−1

exp

[
−
(
a− x

b

)c ]
,

 x ≤ a, a ∈ R
b > 0, c > 0

 (5.57a)

F (x|a, b, c) = exp

[
−
(
a− x

b

)c ]
(5.57b)

R(x|a, b, c) = 1− exp

[
−
(
a− x

b

)c ]
(5.57c)
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Figure 5/62: Several functions for the reduced type III maximum extreme value distribu-
tion

h(x|a, b, c) =

c

(
a− x

b

)c

(a− x)

{
exp

[(
a− x

b

)c ]
− 1

} (5.57d)

H(x|a, b, c) = − ln

{
1− exp

[
−
(
a− x

b

)c ]}
(5.57e)

F−1
X (P ) = xP = a− b

(
− lnP

)1/c
, 0 < P ≤ 1 (5.57f)

a = x1 (5.57g)

b ≈ a− x0.3679 (5.57h)

x0.5 ≈ a− 0.69311/c b (5.57i)

xM = a− b

(
c− 1

c

)1/c

, c ≥ 1 (5.57j)

In order to write the formulas for the moments of the maximum and the minimum type III
extreme value distributions as concise as possible we introduce the abbreviation

+Γr := Γ
(
1 +

r

c

)
.
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µ′r(Y ) = (−1)r
+Γr; r = 0, 1, 2, . . . ; Y = (X − a)/b (5.57k)

µ′1(X) = E(X) = a− b +Γ1 (5.57l)
µ2(X) = Var(X) = b2

[
+
Γ2 −+ Γ1

1

]
(5.57m)

α3 = −+Γ3 − 3 +Γ2 +Γ1 + 2 +Γ3
1[

+
Γ2 −+ Γ2

1

]3/2
(5.57n)

α4 =
+Γ4 − 4 +Γ3 +Γ1 + 6 +Γ2 +Γ2

1 − 3 +Γ4
1[

+
Γ2 −+ Γ2

1

]2 (5.57o)

F−1
Y (P ) = yP = −

(
− lnP

)1/c
, 0 < P ≤ 1 (5.57p)

fY (yP ) = c P (− lnP )
(
− 1
/

lnP
)1/c (5.57q)

Moments of the reduced order statistics can be traced back to those the type III minimum
or WEIBULL distribution. Let Y ∗

r:n, Y
∗
s:n be the transformed WEIBULL order statistics as

given in Sect. 5.3.2.4. Then the moments of the reduced maximum type III or reflected
WEIBULL order statistics Yr:n, Ys:n follow as:

E
(
Yr:n

)
= −E

(
Y ∗

n−r+1:n

)
Var
(
Yr:n

)
= Var

(
Y ∗

n−r+1:n

)
Cov

(
Yr:n, Ys:n

)
= Cov

(
Y ∗

n−s+1:n, Y
∗
n−r+1:n

)
These moments depend — among others — on the shape parameter c and thus are not
helpful in linear estimating. We remember that X̃ = − ln(a −X) has a type I maximum
distribution with parameters ã = − ln b and b̃ = 1

/
c. Thus, we apply the procedure of

Sect. 5.2.5.1 to linearly estimate ã and b̃. The estimates may be solved for estimates of b
and c.

Figure 5/63: Type III maximum extreme value probability paper with data and regression
line
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5.3.2.3 Type II minimum or FRÉCHET distribution — X ∼ EMN2(a, b, c)

The FRÉCHET distribution is the limiting distribution of the sample minimum when the
sampled distribution is unlimited from below and is of CAUCHY–type with a fat tail on the
left–hand side, i.e. for some positive k and A we have

lim
x→−∞

(−x)k F (x) = A.

We also arrive at the minimum type II extreme value distribution by reflecting the max-
imum type II distribution about x = a. Thus, all the functions and characteristics easily
follow from those of the maximum type II distribution, especially, moments will not al-
ways exist.

f(x|a, b, c) =
c

b

(
a− x

b

)−c−1

exp

[
−
(
a− x

b

)−c
]
,

 x ≤ a, a ∈ R

b > 0, c > 0

 (5.58a)

F (x|a, b, c) = 1− exp

[
−
(
a− x

b

)−c
]

(5.58b)

R(x|a, b, c) = exp

[
−
(
a− x

b

)−c
]

(5.58c)

Figure 5/64: Several functions for the reduced type II minimum extreme value distribution
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h(x|a, b, c) =
c

b

(
a− x

b

)−c−1

(5.58d)

H(x|a, b, c) =

(
a− x

b

)−c

(5.58e)

F−1
X (P ) = xP = a− b

[
− 1

ln(1− P )

]1/c

, 0 < P ≤ 1 (5.58f)

a = x1 (5.58g)

b ≈ a− x0.6321 (5.58h)

x0.5 ≈ a− 1.44271/c b (5.58i)

xM = a− b

(
c

1 + c

)1/c

(5.58j)

µ′r(Y ) = (−1)r
−Γr, c > r; Y = (X − a)

/
b (5.58k)

µ′1(X) = E(X) = a− b −Γ1, c > 1 (5.58l)

µ2(X) = Var(X) = b2
[
−Γ2 −− Γ2

1

]
, c > 2 (5.58m)

α3 = −−Γ3 − 3 −Γ2 −Γ1 + 2 −Γ3
1[

−Γ2 −− Γ2
1

]3/2
, c > 3 (5.58n)

α4 =
−Γ4 − 4 −Γ3 −Γ1 + 6 −Γ2 −Γ1 − 3 −Γ4

1[
−Γ2 −− Γ2

1

]2 , c > 4 (5.58o)

Figure 5/65: Type II minimum extreme value probability paper with data and regression
line
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F−1
Y (P ) = yP = −

[
− 1

ln(1− P )

]1/c

, 0 < P ≤ 1 (5.58p)

fY (yP ) = c (1− P )
[
− ln(1− P )

] [
(− ln(1− P )

]1/c (5.58q)

Introducing X̃ = − ln(X − a) we have a type I minimum extreme value distribution with
parameters ã = − ln b and b̃ = 1

/
c whose linear estimates can be found by the procedure

of Sect. 5.2.5.2.

5.3.2.4 Type III minimum or WEIBULL distribution — X ∼ EMN3(a, b, c)

In recent years the WEIBULL distribution has become one of the most popular distribu-
tions in statistics. The latest and most comprehensive documentation of all its aspects
— theory, applications, estimation and testing — is RINNE (2009). Other monographs on
this distribution are MURTHY/XIE/JIANG (2004) and DODSON (1994).

Depending on the value of its shape parameter c the WEIBULL density may look very
different:

• For 0 < c < 1 it is inversely J–shaped.

• For c = 1 we have the DF of an exponential distribution.

• For c < 3.6 it is positively skew.

• For c ≈ 3.6 it is approximately symmetric.

• For c > 3.5 it is negatively skew.

• For c→ 0 the DF concentrates at x = a.

• For c→∞ the DF concentrates at x = a+ b.

Also depending on c the WEIBULL distribution shows different types of aging as measured
by the hazard function (5.59d).

• For 0 < c < 1 the hazard rate is decreasing (negative aging).

• For c = 1 the hazard rate is constant (no aging).

• For c > 1 the hazard rate is increasing (positive aging).

The WEIBULL distribution is related to the following distributions:

• For c = 1 it is an exponential distribution.

• For c = 2 it as a RAYLEIGH distribution.
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• For c ≈ 3.6 it is approximately a normal distribution.

Furthermore, it is a special case of

• the polynomial hazard rate distribution,

• the χ–distribution,

• the three– and four–parameter gamma distributions.

Its role within the family of extreme value distributions has been discussed in Sect. 1.3.

f(x|a, b, c) =
c

b

(
a− x

b

)c−1

exp

[
−
(
x− a

b

)c ]
,

 x ≥ a, a ∈ R

b > 0, c > 0

 (5.59a)

F (x|a, b, c) = 1− exp

[
−
(
x− a

b

)c ]
(5.59b)

R(x|a, b, c) = exp

[
−
(
x− a

b

)c ]
(5.59c)

Figure 5/66: Several functions for the reduced type III minimum extreme value or
WEIBULL distribution
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h(x|a, b, c) =
c

b

(
x− a

b

)c−1

(5.59d)

H(x|a, b, c) =

(
x− a

b

)c

(5.59e)

F−1
X (P ) = xP = a+ b [− ln(1− P )]1/c , 0 ≤ P < 1 (5.59f)

a = x0 (5.59g)
b ≈ x0.6321 − a 46 (5.59h)

x0.5 ≈ a+ 0.69311/c b

xM = a+ b

(
c− 1

c

)1/c

, c ≥ 1 (5.59i)

µ′r(Y ) = +Γr, c > r, Y = (X − a)
/
b (5.59j)

µr(Y ) =
r∑

j=0

(
r

j

)
(−1)j

+Γj
1 +Γr−j (5.59k)

µ′1(X) = E(X) = a− b +Γ1 (5.59l)

µ2(X) = Var(X) = b2
[
+
Γ2 −+ Γ2

1

]
(5.59m)

α3 =
+Γ3 − 3 +Γ2 +Γ1 + 2 +Γ3

1[
+
Γ2 −+ Γ2

1

]3/2
(5.59n)

α4 =
+Γ4 − 4 +Γ3 +Γ1 + 6 +Γ2 +Γ2

1 − 3 +Γ4
1[

+
Γ2 −+ Γ2

1

]2 (5.59o)

Figure 5/67: Type III minimum extreme value or WEIBULL probability paper with data
and regression line

46 The percentile x0.6321 is called characteristic life.
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F−1
Y (P ) = yP =

[
− ln(1− P )

]1/c
, 0 ≤ P < 1 (5.59p)

fY (yP ) = c (1− P )
[
− ln(1− P )

] [
− 1

ln(1− P )

]1/c

(5.59q)

Due to LIEBLEIN (1955) there exist closed form expressions for the moments of reduced
WEIBULL order statistics, but they do not help in finding linear estimate as they depend
on c. Instead, we use the transformation X̃ = ln(X − a), which has a type I minimum
extreme value distribution with parameters ã = ln b and b̃ = 1

/
c, and estimate with the

procedure of Sect. 5.2.5.2.

The DF of the reduced WEIBULL order statistic Yr:n, 1 ≤ r ≤ n, is

fr:n(y) = r

(
n

r

)
c yc−1 exp

{
−y(n−r+1) c

}
[1− exp(−yc)]r−1 , (5.60a)

from where we obtain the k–th raw moment of Yr:n to be

E
(
Y k

r:n

)
= r

(
n

r

) ∞∫
0

yk c yc−1 exp
{
−y(n−r+1) c

} [
1− exp

(
− yc

)]r−1 dy

= r

(
n

r

) r−1∑
i=0

(−1)i

(
r − 1

i

) ∞∫
0

yk c yc−1 exp
{
− (n− r + i+ 1) yc

}
dy

= r

(
n

r

)
Γ

(
1 +

k

c

) r−1∑
i=0

(−1)i

(
r − 1

i

)
(n− r + i+ 1)1+(k/c)

. (5.60b)

(5.60b) is due to LIEBLEIN (1955).

The joint DF of Yr:n and Ys:n (1 ≤ r < s ≤ n) is

fr,s:n(u, v) =



n!

(r − 1)! (s− r − 1)! (n− s)!
c2 (u v)c−1 exp

{
− uc

}
×

exp
{
− (n− s+ 1) vc

}[
1− exp

{
− uc

}]r−1×

[
exp
{
− uc

}
− exp

{
− vc

}]s−r−1
, 0 < u < v <∞.


(5.61a)
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From (5.61a) we obtain the product moment of Yr:n and Ys:n as

E
(
Yr:n Ys:n) =

∞∫
0

v∫
0

u v fr,s:n(u, v) du dv

=
n! c2

(r−1)! (s−r−1)! (n−s)!

r−1∑
i=0

s−r−1∑
j=0

(−1)s−r−1−j+i ×

(
r−1

i

)(
s−r−1

j

) ∞∫
0

v∫
0

exp
{
− (i+ j + 1)uc

}
×

exp
{
− (n− r − j) vc } (u v)c du dv

=
n!

(r−1)! (s−r−1)! (n−s)!

r−1∑
i=0

s−r−1∑
j=0

(−1)s−r−1−j+i ×(
r−1

i

)(
s−r−1

j

)
φc(i+ j + 1, n− r − j). (5.61b)

This result is due to LIEBLEIN (1955) and φc(a, b) is LIEBLEIN’s φ–function defined by

φc(a, b) = c2
∞∫

0

y∫
0

exp
{
− a xc − b yc

}
x2 y2 dx dy. (5.62a)

Through a differential equation approach, LIEBLEIN has derived an explicit algebraic for-
mula for the φ–function:

φc(a, b) =

Γ2

(
1 +

1

c

)
(a b)1+(1/c)

Ia/(a+b)

(
1 +

1

c
, 1 +

1

c

)
for a ≥ b, (5.62b)

where Ip(c, d) is PEARSON’s incomplete beta function defined as

Ip(c, d) =
Γ(c+ d)

Γ(c) Γ(d)

p∫
0

tc−1 (1− t)d−1 dt, 0 < p ≤ 1.

When a < b, φc(a, b) may be computed from the identity

φc(a, b) + φc(b, a) =

Γ2

(
1 +

1

c

)
(a b)1+(1/c)

. (5.62c)

(5.61b) together with E
(
Yr:n

)
and E

(
Ys:n

)
lead to the covariance Cov

(
Yr:n, Ys:n

)
=

E
(
Yr:n Ys:n

)
− E

(
Yr:n

)
E
(
Ys:n

)
.

There exist a number of tables giving the means, variances and covariances of order statis-
tics from the reduced WEIBULL distribution:
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• WEIBULL (1959) used LIEBLEIN’s expression for E
(
Yr:n

)
to tabulate the means,

variances and covariances to five decimal places for n = 1(1)15, r = 1(1)n and c =
1/α with α = 0.1(0.1)0.6(0.2)1.0.

• WEIBULL (1967) presents means, variances and covariances of all order statistics
for n = 5(5)20 and c−1 = 0.1(0.1)1.0 to five decimal places.

• GOVINDARAJULU/JOSHI (1968), based on LIEBLEIN’s results, tabulated the
means, variances and covariances to five decimal places for n = 1(1)10 and for
c = 1.0(0.5)3.0(1.0)10.

• MCELHONE/LARSEN (1969) tabulated E
(
Yr:n

)
to six significant figures for n =

1(1)25 and c = 1(1)10, Var
(
Yr:n

)
and Cov

(
Yr:n, Ys:n

)
for c = 1(1)5 for the same

set of n–values.

• HARTER (1970) tabulated E
(
Yr:n

)
to five decimal places for n = 1(1)40, r = 1(1)n

and c = 0.5(0.5)4.0(1.0)8.0.

• BALAKRISHNAN/CHAN (1993) proposed tables for the means, variances and co-
variances of all order statistics for n up to 20 and c = 1/5, 1/4, 1/3, 1/2, 1.5(0.5)3,
4(2)10.

5.3.3 Lognormal distributions
We have two types of lognormal distributions:47

• one with a lower threshold, which is the most popular version, and

• the other one with an upper threshold, which is reflection of the first one about
x = a.

Whereas the normal distribution originates from an additive superimposition of a great
number of variates (central limit theorem), the lognormal distribution48 is the result of a
superimposition of a great number of variates which are proportional to one another, i.e.
the result is a product and not a sum as is the case with the normal distribution.

5.3.3.1 Lognormal distribution with lower threshold — X ∼ LNL(a, ã, b̃)

A variate X is said to be lognormal distributed with lower threshold when there is a real
number a such that X̃ = ln(X − a) is normally distributed. There exist several ways or

47 Suggested reading for this section: AITCHISON/BROWN (1957), CROW/SHIMIZU (1988) and JOHN-
SON/KOTZ/ BALAKRISHNAN (1994, Chapter 14).

48 Sometimes this distribution is called by the names of the pioneers of its development: GALTON,
KAPTEYN, GIBRAT or COBB–DOUGLAS. For logical reasons the distribution of X should really be
called antilognormal distribution, because it is not the distribution of a logarithm of a normal variate
but of an exponential, i.e. antilogarithm, function of such a variate.
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parameterizations to write the lognormal distribution. JOHNSON/KOTZ/BALAKRISHNAN

(1994, p. 207) define the distribution of X by49

Z = η + δ ln(X − a), a ∈ R, δ > 0, η ∈ R, (5.63a)

where Z is the standardized normal variate. Thus, the DF of X reads

f(x|a, η, δ) =
δ

(x− a)
√

2π
exp

{
−1

2

[
η + δ ln(x− a)

]2}
, x > a. (5.63b)

An alternative notation replaces η and δ by the mean ã and the standard deviation b̃ of
X̃ = ln(X − a):

ã = E
[
ln(X − a)

]
, (5.64a)

b̃2 = Var
[
ln(X − a)

]
. (5.64b)

The two sets of parameters (5.63a) and (5.64a,b) are linked as

ã = −η
δ

(5.65a)

b̃ =
1

δ
, (5.65b)

so that (5.63a) turns into

Z =
ln(X − a)− ã

b̃
, (5.66a)

and(5.63b) becomes

f
(
x|a, ã, b̃

)
=

1

(x− a) b̃
√

2π
exp

{
−
[
ln(x− a)− ã

]2
2 b̃2

}
, x > a. (5.66b)

a, the lower threshold of X , is the location parameter of X, ã is its scale parameter and b̃
is its shape parameter.50

BALAKRISHNAN/COHEN (1991, p. 278) suggest a third set of parameters:

β = exp(ã) (5.67a)

as the lognormal scale parameter and

ω = exp
(
b̃2
)

(5.67b)

as the lognormal shape parameter.
49 We have chosen another set of letters for the parameters.
50 For b̃ → 0 the DF f(x|a, ã, b̃) approaches the normal DF, and the greater b̃ the higher the degree of

positive skewness.
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The DF of X is positively skew, but X̃ = ln(X − a) has a normal distribution with DF

f
(
x̃|ã, b̃

)
=

1

b̃
√

2π
exp

{
−(x̃− ã)2

2 b̃2

}
. (5.68)

Thus, we can apply the procedure od Sect. 5.2.11 to X̃ and directly find estimates of the
lognormal parameters ã and b̃ without any need of re–transformation, provided a is known
or has been estimated.

We give the following functions and characteristics of X:

f
(
x|ã, b̃

)
=

1

b̃ (x− a)
√

2π
exp

{
−
[
ln(x− a)− ã

]2
2 b̃2

}
,

x > a, a ∈ R
ã ∈ R, b̃ > 0

 (5.69a)

f
(
x̃|ã, b̃

)
=

1

b̃ (x− a)
φ

[
ln(x− a)− ã

b̃

]
51 (5.69b)

F
(
x|a, ã, b̃

)
= Φ

[
ln(x− a)− ã

b̃

]
52 (5.69c)

Figure 5/68: Several functions for the reduced lognormal distribution with lower threshold

51 φ(·) is the DF of the standard normal distribution, see (5.31c).
52 Φ(·) is the CDF of the standard normal distribution, see (5.31g).
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R
(
x|a, ã, b̃

)
= 1− Φ

[
ln(x− a)− ã

b̃

]
= Φ

[
− ln(x− a)− ã

b̃

]
(5.69d)

h
(
x|a, ã, b̃

)
=

φ

[
ln(x− a)− ã

b̃

]
b̃ (x− a) Φ

[
− ln(x− a)− ã

b̃

] (5.69e)

H
(
x|a, ã, b̃

)
= − ln

{
Φ

[
− ln(x− a)− ã

b̃

]}
(5.69f)

F−1
X (P ) = xP = a+ exp

(
ã+ zP b̃

)
, 0 < P < 1 53 (5.69g)

x0.5 = a+ exp
(
ã
)

(5.69h)

ã ≈ 1

2

[
ln(x0.8413 − a) + ln(x0.1587 − a)

]
(5.69i)

b̃ ≈ 1

2

[
ln(x0.8413 − a)− ln(x0.1587 − a)

]
(5.69j)

xM = a+ exp
(
ã− b̃2

)
(5.69k)

E
[
(X − a)r

]
= E

{
exp

[
r (ã+ b̃ Z)

]}
= exp

(
r ã+

r2

2
b̃2
)

(5.69l)

µ′1(X) = E(X) = a+ exp

(
ã+

b̃2

2

)
= a+ β ω1/2 (5.69m)

µ2(X) = Var(X) = exp
(
2 ã+ b̃2

)[
exp

(̃
b2
)
− 1
]

= β2 ω (ω − 1) (5.69n)

µr(X) = E
{[
X − E(X)

]2}
= exp

(
r ã
)
ωr/2

r∑
j=0

(−1)j

(
r

j

)
ω(r−j) (r−j−1)/2 (5.69o)

µ3(X) = β3 ω3/2 (ω − 1)2 (ω + 2) (5.69p)

µ4(X) = β4 ω2 (ω − 1)2 (ω4 + 2ω3 + 3ω2 − 3) (5.69q)

α3 = (ω − 1)1/2 (ω + 2) (5.69r)

α4 = ω4 + 2ω3 + 3ω2 − 3 (5.69s)

The first four moments of Xr:n and all product moments E(Xr:nXs:n), r ≤ s, for the
reduced lognormal distribution, i.e. with a = ã = 0 and b̃ = 1, have been tabulated by
GUPTA/MCDONALD/GALARNEAU (1974) for sample sizes up to 20.

53 zP is the percentile of order P of the standard normal distribution, see (5.31o).
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Figure 5/69: Lognormal (lower threshold) probability paper with data and regression line

5.3.3.2 Lognormal distribution with upper threshold — X ∼ LNU(a, ã, b̃)

A variate X is said to be lognormal distributed with upper threshold when there is a
number a, a ∈ R, such that X̃ = ln(a − X) is normally distributed. The functions
and characteristics of this type of lognormal distribution easily follow from those of the
lower-threshold lognormal distribution because both distributions are related by a reflec-
tion about x = a. The parameters ã and b̃ of the upper–threshold lognormal distribution
are

ã = E
[
ln(a−X)

]
, (5.70a)

b̃ = Var
[
ln(a−X)

]
. (5.70b)

We further have:

f
(
x|ã, b̃

)
=

1

b̃ (a− x)
√

2π
exp

{
−
[
ln(a− x)− ã

]2
2 b̃2

}
,

x < a, a ∈ R
ã ∈ R, b̃ > 0

 (5.71a)

f
(
x̃|ã, b̃

)
=

1

b̃ (a− x)
φ

[
ln(a− x)− ã

b̃

]
(5.71b)

F
(
x|a, ã, b̃

)
= Φ

[
ln(a− x)− ã

b̃

]
(5.71c)

R
(
x|a, ã, b̃

)
= 1− Φ

[
ln(a− x)− ã

b̃

]
= Φ

[
− ln(a− x)− ã

b̃

]
(5.71d)
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Figure 5/70: Several functions for the reduced lognormal distribution with upper threshold

h
(
x|a, ã, b̃

)
=

φ

[
ln(a− x)− ã

b̃

]
b̃ (a− x) Φ

[
− ln(a− x)− ã

b̃

] (5.71e)

H
(
x|a, ã, b̃

)
= − ln

{
Φ

[
− ln(a− x)− ã

b̃

]}
(5.71f)

F−1
X (P ) = xP = a− exp

(
ã+ zP b̃

)
, 0 < P < 1 (5.71g)

x0.5 = a− exp
(
ã
)

(5.71h)

ã ≈ 1

2

[
ln(x0.8413 − a) + ln(x0.1587 − a)

]
(5.71i)

b̃ ≈ 1

2

[
ln(x0.8413 − a)− ln(x0.1587 − a)

]
(5.71j)

xM = a− exp
(
ã− b̃2

)
(5.71k)

µ′1(X) = E(X) = a− exp

(
ã+

b̃2

2

)
= a− β ω1/2 (5.71l)

µ2(X) = Var(X) = exp
(
2 ã+ b̃2

)[
exp

(
b̃2
)
− 1
]

= β2 ω (ω − 1) (5.71m)

µ3(X) = −β3 ω3/2 (ω − 1)2 (ω + 2) (5.71n)
µ4(X) = β4 ω2 (ω − 1)2 (ω4 + 2ω3 + 3ω2 − 3) (5.71o)

α3 = −(ω − 1)1/2 (ω + 2) (5.71p)
α4 = ω4 + 2ω3 + 3ω2 − 3 (5.71q)
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The estimates of ã and b̃ follow from the procedure for the normal distribution of
Sect. 5.2.11 with x̃ = ln(a− x) and a known or estimated.

Figure 5/71: Lognormal (upper threshold) probability paper with data and regression line

5.3.4 PARETO distribution — X ∼ PA(a, b, c)

This distribution54 has been proposed by the Swiss professor of economics VILFREDO

PARETO (1848 – 1923) as a model for the distribution of income in an economy and is
known as the PARETO distribution of the first kind.55 We will call it PARETO distribu-
tion for short and note its following related distributions:56

• The generalized PARETO distribution with CDF

F (x|α, β, c, d) = 1−
(
β + α

x+ α

)c

exp
[
− d (x− β)

]
, x ≥ β, d ∈ R,

results in the PARETO distribution PA(0, 1, c) for α = d = 0 and β = 1.

54 Suggested reading for this section: ARNOLD (1983), JOHNSON/KOTZ/BALAKRISHNAN (1994,
Chapter 14).

55 The PARETO distribution of the second kind, also known as LOMAX distribution, has CDF

F (x|α,K) = 1− Kα

(x+K)α
, x ≥ 0.

The PARETO distribution of the third kind has CDF

F (x|α, β,K) = 1− K exp(−β x)
(x+K)α

, x > 0.

56 The parameter c is known as PARETO’s constant.



226 5 Probability plotting and linear estimation — Applications

• X ∼ PA(a, b, c) ⇒ X̃ = ln(X − a) ∼ EX(ln b, 1
/
c) This relation will be used

for linear estimation of ã = ln b and b̃ = 1
/
c.

• X ∼ PA(0, 1, c) ⇒ X−1 ∼ PO(0, 1, c).

• X ∼ PA(0, b, c) ⇒ V = − ln

[(
X

b

)c

− 1

]
∼ LO(0, 1).

• Xi
iid∼ PA(0, b, c); i = 1, 2, . . . , n; ⇒ X = 2 b

n∑
i=1

ln

(
Xi

c

)
∼ χ2(2n)

• Y ∼ EMX1(0, 1) ⇒ X = b
{
1− exp

[
− exp(−X)

]}1/c ∼ PA(0, b, c)

We note the following functions and characteristics of the PARETO distribution:

f(x|a, b, c) =
c

b

(
x− a

b

)−c−1

=
c

b

(
b

x− a

)c+1

,

x ≥ a+ b, a ∈ R,

b > 0, c > 0

(5.72a)

F (x|a, b, c) = 1−
(
x− a

b

)−c

= 1−
(

b

x− a

)c

(5.72b)

R(x|a, b, c) =

(
x− a

b

)−c

=

(
b

x− a

)c

(5.72c)

h(x|a, b, c) =
c

b

(
x− a

b

)−1

=
c

b

(
b

x− a

)
(5.72d)

H(x|a, b, c) = c ln

(
x− a

b

)
(5.72e)

F−1
X (P ) = xP = a+ b (1− P )−1/c, 0 ≤ P < 1 (5.72f)

x0 = a+ b (5.72g)

x0.5 = a+ 21/c b (5.72h)

xM = a+ b (5.72i)

µ′r(X) =


r∑

i=0

(
r

i

)
c

c− (r − i)
br−i ai for c > r

not defined for c ≤ r

 (5.72j)

µ′1(X) = E(X) = a+ b
c

c− 1
, c > 1 (5.72k)

µ2(X) = Var(X) = b2
c

(c− 1)2 (c− 2)
, c > 2 (5.72l)



5.3 The case of ln–transformable distributions 227

Figure 5/72: Several functions for the reduced PARETO distribution

α3 = 2
c+ 1

c− 3

√
c− 2

c
, c > 3 (5.72m)

α4 =
3 (c− 2) (3 c2 + c+ 2

c (c− 3) (c− 4)
, c > 4 (5.72n)

We notice that
lim
c→∞

α3 = 2 and lim
c→∞

α4 = 9.

Moments of reduced PARETO order statistics Yr:n can be given in closed form, see
ARNOLD/BALAKRISHNAN/NAGARAJA (1992, p. 36).

α(k)
r:n = E

(
Y k

r:n

)
=

Γ(n+ 1) Γ

(
n+ 1− r − k

c

)
Γ(n+ 1− r) Γ

(
n+ 1− k

c

) for c >
k

n+ 1− r
(5.73a)

Especially we have

α
(k)
1:n =

n c

n c− k
for c >

k

n
. (5.73b)
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The following recurrence relation holds for 2 ≤ r ≤ n and k = 1, 2, . . .:

α(k)
r:n =

n c

n c− k
α

(k)
r−1:n−1, c >

k

n+ 1− r
. (5.73c)

Product moments for 1 ≤ r < s ≤ n and k = 1, 2, . . . are given by

α(kr,ks)
r,s:n =E

(
Y kr

r:n Y
ks
s:n

)
=

Γ(n+ 1)

Γ(n+ 1− s)

Γ

(
n+ 1− s− ks

c

)
Γ

(
n+ 1− r − ks

c

) Γ

(
n+ 1− r − kr + ks

c

)
Γ

(
n+ 1− kr + ks

c

)

for c > max

[
ks

n+ 1− s
,
kr + ks

n+ 1− r

]
, (5.74a)

and especially for 1 ≤ r ≤ n− 1 by

αr,r+1:n =
c (n− r)

(n− r) c− 1
α(2)

r:n for c >
2

n+ 1− r
. (5.74b)

and the recurrence relation for 1 ≤ r < s ≤ n and s− r > 2:

αr,s:n =
c (n+ 1− s)

c (n+ 1− s)− 1
αr,s−1:n. (5.74c)

MALIK (1966) has tabulated the means and covariances for n ≤ 8 and c = 2.5(0.5)5.0.
They have been further discussed by HUANG (1975) and KABE(1972). We find estimates
for b and c when a is known or estimated using X̃ = ln(X − a) which is exponentially
distributed with ã = ln b and b̃ = 1

/
c.

Figure 5/73: PARETO probability paper with data and regression line
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5.3.5 Power–function distribution — X ∼ PO(a, b, c)

Starting with the beta distribution

f(x|a, b, c, d) =

(
x− a

b

)c−1 (
1− x− a

b

)d−1

bB(c, d)

we arrive at the power–function distribution by setting d = 1. There are relationships of
the power–function distribution with several other distributions:

• X ∼ PO(a, b, c) ⇒ V = ln(X − a) ∼ RE(ln b, 1
/
c).

This relation is used for linear estimating ã = ln b and b̃ = 1
/
c.

• X ∼ PO(0, 1, c) ⇒ Y = − ln[−c lnX] ∼ EMX1(0, 1) .

• X ∼ PO(0, 1, c) ⇒ Y = − ln
(
X−c − 1

)
∼ LO(0, 1).

• X ∼ PO(0, 1, c) ⇒ X−1 ∼ PA(0, 1, c).

• X ∼ PO(a, b, 1) ⇒ X ∼ UN(a, b).

• X ∼ PO(0, 1, c) ⇒ V =
[
ln
(
Xc
)]1/d ∼ EMN3(0, 1, d).

• X1, X2
iid∼ PO(0, 1, c) ⇒ V = X1

/
X2 ∼ LA(0, 1).

• Xi
iid∼ PO(0, 1, c); i = 1, 2, . . . , n; ⇒ V =

n∑
i=1

lnXi ∼ Gamma(c, n).

We note the following functions and characteristics:

f(x|a, b, c) =
c

b

(
x− a

b

)c−1

,

 a ≤ x ≤ a+ b, a ∈ R

b > 0, c > 0

 (5.75a)

F (x|a, b, c) =

(
x− a

b

)c

(5.75b)

R(x|a, b, c) = 1−
(
x− a

b

)c

(5.75c)

h(x|a, b, c) =

c

1 +
1(

x− a

b

)c

− 1


a− x

(5.75d)

H(x|a, b, c) = − ln

[
1−

(
x− a

b

)c ]
(5.75e)

F−1
X (P ) = xP = a+ b P 1/c, 0 ≤ P ≤ 1 (5.75f)

a = x0 (5.75g)
b = x1 − x0 (5.75h)
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Figure 5/74: Several functions for the reduced power–function distribution

x0.5 = a+ 0.51/c b (5.75i)

xM =


a for 0 < c < 1

not defined for c = 1

a+ b for c > 1

 (5.75j)

µ′r(Y ) =
c

c+ r
, Y = (X − a)

/
b (5.75k)

µ′r(X) =
r∑

i=0

c

c+ r − i
br−i ai (5.75l)

µ′1(X) = E(X) = a+ b
c

c+ 1
(5.75m)

µ2(X) = Var(X) = b2
c

(c+ 1)2 (c+ 2)
(5.75n)

α3 =
2 (1− c)

c− 3

√
c+ 2

c
(5.75o)

α4 =
3 (c+ 2) (3 c2 − c+ 2)

c (c+ 3) (c+ 4)
(5.75p)
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Moments of the reduce power–function order statistics Yr:n can be given in closed form,
see (2.15a–e). BALAKRISHNAN/RAO (1998a, p. 191) give a set of recurrence relations to
compute all the product moments for all sample sizes.

Figure 5/75: Power–function probability paper with data and regression line



6 The program LEPP
Based on MATLAB we have designed the menu–driven program LEPP. It executes linear
estimation by different approaches and plots the data together with the fitted regression line
on probability paper for those 35 distributions, which have been presented in Chapter 5.
The reader will find this program together with all the supporting function–subprograms
in the folder ”LEPP-Program”. The folder ”LEPP-Data” contains Monte Carlo simulated
data sets, three sets for each distribution, for testing the program by the reader.

In Sect. 6.1 we say how LEPP is organized and what is going on in its three parts. Then,
in Sect. 6.2 we describe the input-format for the sample–data and of the moments–matrix
of reduced order statistics. The moments–matrix is not compulsory, but may be provided
by those users who have access to tabulated moments. Finally, in Sect. 6.3 we give hints
to how to use LEPP and to what will be the output of LEPP. The most important hints
for installing and running LEPP are also given in the read–me-file program.txt in
the folder ”LEPP-Read-Me”. The second read–me-file named data.txt in that folder
describes the data sets with the following items: sample size, censoring mode and values
of the parameters used in Monte Carlo simulation.

6.1 Structure of LEPP
The main program, which is called by typing LEPP, comes as a script M–file and has
about 1,000 lines of commands. These are organized in three parts:

1. checking the input and preparing the sample–data,

2. computing the regressor and the variance–covariance matrix, preparing the ordinate
axis of the probability paper and displaying a chart with several functions for the
chosen distribution,

3. processing the sample–data of part 1, the regressor and the variance–covariance
matrix of part 2, displaying the numerical results (estimates together with their
variance–covariance matrix, correlation of data and regressor) and information
about the method and data used and last but not least the probability paper with
the plot of the sample–data and the fitted regression line.

The purpose of the first part is to check whether the matrix data with the sample–data
and whether — in case tabulated moments of reduced order statistics should be used —
the matrix moments have been stored in the directory containing LEPP and its support-
ing function–subprograms and whether these matrices are such that the program will run
properly. The format of these matrices and their contents are described in Sect. 6.2. When
there is something out of order with the matrices LEPP prints an error–message on the
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screen and stops running. With respect to data–type 1 (ordered observations with corre-
sponding ranks) LEPP checks whether there are at least three differing observations and
whether their ranks are between 1 and the sample size n, which is part of the contents of
the matrix data and — in case moments is provided — this matrix matches data. Re-
garding data–type 2 (grouped data) LEPP looks if there are at least classes with non–zero
frequencies and if these frequencies sum to the sample size. Furthermore, when the last
(greatest) class limit is equal to ∞, this class is eliminated as it cannot be depicted on the
probability paper. For this data–type LEPP asks the user to make his choice among one of
the following plotting positions:

1. midpoint,

2. BLOM,

3. WEIBULL,

4. median.

Regarding data–type 3 (randomly or multiply censored data) LEPP checks the confor-
mity of the sample size and the number of input data and if there are enough uncensored
observations to ensure estimation. Finally, LEPP computes the KAPLAN–MEIER estimate
of the CDF with the MATLAB command ecdf.

The second part starts by asking the user for his choice of distribution. We have im-
plemented the switch environment of MATLAB to execute all the commands that are
specific to a distribution:

• preparation of the ordinate axis of the probability paper,

• chart with DF, CDF, HF and CHF of the reduced form of the chosen distribution,

• computing the regressor vector together with the variance–covariance to execute
linear estimation in part three.

The latter task is executed by a function–subprogram named ..-reg(.,.,.,.,.,.)
which may call a lot of other supporting function–subprograms. For data–types 2 and 3 we
always make use of the methods presented in Sections 4.3.1 and 4.3.2, but for data–type 1
the method is dependent on the distribution chosen and is one of the methods given in
Sect. 4.2. The result–screen of part three tells the user which method has been chosen.
With respect to data–type 1 a lot of other function–subprograms may be called for execut-
ing integration, forming derivatives, approximating moments and so on. Altogether, LEPP
is accompanied by about 160 function–subprograms.

Part three of LEPP takes the regressor vector and the variance–covariance matrix of part
two and the sample data of part one to compute the linear estimates of the location and
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scale parameters together with their variance–covariance matrix and the correlation be-
tween the sample date and the regressor values. These results along with some other in-
formation are displayed in the command window. Another output of part three is a figure
with the probability paper showing the data and the fitted regression line.

6.2 Input to LEPP
Before calling LEPP the user has to provide his sample–data in a matrix data which
has to be stored in the LEPP–directory. We distinguish between three types of matrices,
each named data, each having two rows and identified by one of the digits 1, 2, 3,
which is an entry in data. Also, when the sample–data of type 1 shall be processed with
tabulated moments of reduced order statistics, these moments have to be provided in a
matrix moments in the LEPP–directory.

The first row of data, when the sample–data are order statistics, has as its first entry the
data–type identifier 1 which is followed by the sample data, arranged in ascending order.
The second row starts with the sample size followed by the ranks of the order statistics in
the row above. The following example shows data for a doubly censored sample — two
observations censored on each side — of size n = 12, which has been taken from the
COO–data of the data files:

data :
1 0.8936 1.0100 . . . 2.9575 3.2921

12 3 4 . . . 9 10

In case the reader wants to use tabulated moments of reduced order statistics he has to
provide — besides data— the matrix moments. This matrix has in its first row the same
ranks as those in data, in its second row the means αr:n and in the following rows the
upper triangle of the variance–covariance matrix (βr,s:n), r ≤ s. The following example
first shows data for selected order statistics in a sample of size n = 8 and then the
corresponding matrix moments, both taken from the EMN1–data of the data files:

data :
1 −12.6597 −10.9792 1.0039 6.1577 6.3672

8 1 2 5 7 8

moments :

1 2 5 7 8

−2.6567 −1.5884 −0.2312 0.4528 0.9021

1.6449 0.6118 0.1626 0.0834 0.0543

0 0.6564 0.1736 0.0893 0.0583

0 0 0.2317 0.1210 0.0797

0 0 0 0.1835 0.1223

0 0 0 0 0.1936
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When the CAUCHY, the exponential or the uniform distributions are to be fitted to the data
moments is not allowed!

For data of type 2 the sample consists consists of grouped observations and the entries to
data are

• in the first row the identifier 2 followed by the upper class limits in ascending order,

• in the second row the sample size followed by the class frequencies. (LEPP checks
if these class frequencies sum to the sample size.)

The following example, taken from the COO–data of the data–file, has n = 80 observa-
tions grouped in 9 classes.

data :
2 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 5.0

80 3 8 9 9 15 16 11 6 3

For data of type 3 the sample is multiply or randomly censored and the entries to data
are

• in the first row the identifier 3 followed by the observations in ascending order,

• in the second row the sample size followed by the indicators 0 or 1, where 1 stands
for a censored observation. (LEPP checks if the number of observations is equal to
the sample size!)

The following example shows data for the n = 12 observations taken from the TE–data
of the data–file.

data :
3 0.1925 0.5939 0.5968 0.7013 0.7802 0.8122 0.8157 . . .

12 0 1 0 0 1 0 1 . . .

6.3 Directions for using LEPP
The user should create a directory, perhaps named LEPP, where to copy the program files
from the folder ”LEPP-Program”. He may also copy the data files from the folder ”LEPP-
Data” into this directory when he wants to run LEPP with one these data files. When using
data of his own the reader has to create his file data along the specifications given in the
preceding section. When he wants to try one of the data–sets of the data files, he should
open the desired MAT–file and rename one of the three matrices of this file as data.

The next step is to type LEPP to start the program. Then, the user follows the instructions
given by the program. The sequence of instructions depends on the type of data to be
processed. When the user chooses one of the ln–transformable distributions, he will be
asked by LEPP to enter the threshold for this distribution. When the data are of type 1 and
uncensored, the user can cause LEPP to estimate the threshold or he can enter a value of
his own. During a session, there will appear two figures on the screen, a chart with the
DF, CDF, HF and CHF of the chosen distribution and the probability paper with data and
the regression line. This figure has to be moved to see what is in the command window
behind the figure.
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Mathematical and statistical notations

1 vector of ones

∼ distributed as
approx∼ approximately distributed
asym∼ asymptotically distributed
iid∼ independently and identically distributed
d
= equality in distribution

:= equal by definition

≡ identical or equivalent

∀ for all

∝ proportional tô indicating an estimator or estimate

a location parameter

a vector of weights to produce â

ã location parameter, transformed (ã = ln b)

α vector of αr:n

α∗ vector of α∗r:n

α3 index of skewness

α4 index of kurtosis

αr:n mean of the r–th reduced order statistic Yr:n

α
(k)
r:n crude single moment of Y k

r:n

α
(k,`)
r,s:n crude product moment of Y k

r:n and Y `
s:n

αr,s:n crude product moment of Yr:n and Ys:n

α∗r:n TAYLOR approximation of αr:n

arcsin arc–sine function or inverse sine function

arctan arc–tangent function or inverse tangent function

ARE asymptotic relative efficiency

AS(a, b) arc–sine distribution

b scale parameter
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b vector of weights to produce b̂

b̃ scale parameter, transformed (̃b = 1/c)

B variance–covariance matrix of reduced order statistics

B∗ TAYLOR approximation of B

Br r–th BERNOULLI number

B(·, ·) complete beta function

βrs element of B−1

βr,r:n variance of Yr:n

βr,s:n covariance of Yr:n and Ys:n

β∗r,r:n TAYLOR approximation of βr,r:n

β∗r,s:n TAYLOR approximation of βr,s:n

BLIE best linear invariant estimator or estimate

BLUE best linear unbiased estimator or estimate

c shape parameter

Cn CATALAN number

C(t) characteristic function
(
C(t) = E(exp[i tX])

)
CA(a, b) CAUCHY distribution

CCDF complementary cumulative distribution (reliability or survival function)

CDF cumulative distribution function

CHF cumulative hazard function (cumulative hazard rate)

χ2(ν) χ2– distribution with ν degrees of freedom

χ(ν) χ– distribution with ν degrees of freedom

cos cosine function

COO(a, b) ordinary cosine distribution

COR(a, b) raised cosine distribution

Cov(·) covariance

csc cosecant function

d differential operator

δi censoring indicator; δi = 1 (0) – censored (uncensored) observation
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DF density function

DFR decreasing failure function (decreasing failure rate)

diag(M) diagonal matrix from square matrix M

ε random error variate with E(ε) = 0

ε random vector with E(ε) = o

E(·) expectation or mean

erf(·) error function

erfi(·) imaginary error function

EMN1(a, b) extreme value distribution of type I for the minimum

EMN2(a, b, c) extreme value distribution of type II for the minimum

EMN3(a, b, c) extreme value distribution of type III for the minimum

EMX1(a, b) extreme value distribution of type I for the maximum

EMX2(a, b, c) extreme value distribution of type II for the maximum

EMX3(a, b, c) extreme value distribution of type III for the maximum

EX(a, b) exponential distribution

f(·) general density function (DF)

fX(·) density function of X

fY (·) reduced density function

fr:n(·) DF of the r–th order statistic

fr,s:n(·) joint DF of the r–th and s–th order statistics

F (·) general cumulative distribution function (CDF)

FX(·) CDF of X

FY (·) reduced CDF

F−1(P ) percentile function

Fr:n(·) CDF of the r–th order statistic

Fr,s:n(·) joint DF of the r–th and s–th order statistics

pFq(a; b; z) generalized hypergeometric function

γ EULER–MASCHERONI’s constant

γ(·|·) incomplete gamma function (lower part)
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Γ(·|·) incomplete gamma function (upper part)

Γ(·) complete gamma function

GLS general least squares

h(·) hazard function (hazard rate)

H(·) cumulative hazard function (cumulative hazard rate)

HC(a, b) half–CAUCHY distribution

HF hazard function (hazard rate)

HL(a, b) half–logistic distribution

HN(a, b) half–normal distribution

HS(a, b) hyperbolic secant distribution

I identity or unity matrix

I(·) entropy

I0(·) BESSEL function

Ip(c, d) PEARSON’s incomplete beta function

IFR increasing failure function (increasing failure rate)

iid identically and independently distributed

K(t) cumulant generating function
(
K(t) = lnM(t)

)
κr(·) r–th cumulant

LA(a, b) LAPLACE distribution

LEPP MATLAB program for linear estimation and probability plotting

lim limit

LNL(a, b, c) lognormal distribution with lower threshold

LNU(a, b, c) lognormal distribution with upper threshold

LO(a, b) logistic distribution

L(t) LAPLACE transform
(
L(t) = E(exp−tX)

)
M(t) crude moment generating function

(
M(t) = E{exp(tX)}

)
M(·, ·, ·) KUMMER’s function

MB(a, b) MAXWELL–BOLTZMANN distribution

ML maximum likelihood
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MLE maximum likelihood estimator or estimate

MSE mean squared error

µ mean or expectation (µ := µ′1)

µr(·) r–th central moment (= moment about the mean)

µ′r(·) r–th crude moment (= moment about zero or uncorrected moment)

µr:n mean or expectation of Xr:n

µr,s:n crude product moment of Xr:n and Xs:n

µ
(k)
r:n crude moment of Xk

r:n

µ
(k,`)
r,s:n crude product moment of Xk

r:n and X`
s:n

nu
j cumulated frequencies up to and including class j

NO(a, b) normal distribution

o vector of zeros

0 matrix of zeros

OLS ordinary least squares

Ω inverse of B

Ω∗ inverse of B∗

PA(a, b, c) PARETO distribution

PAI(a, b) inverted U–shaped parabolic distribution of order 2

PAU(a, b) U–shaped parabolic distribution of order 2

PDX(P2 − P1) percentile distance of percentiles xP1 , xP2

PO(a, b, c) power–function distribution

ϕ(z) DF of the standard normal distribution

Φ(z) CDF of the standard normal distribution

plim probability limit

pr mean of Ur:n

(
pr = r/(n+ 1)

)
Pr(·) probability of

ψ(·) digamma function

ψ′(·) trigamma function

qr complement of pr (qr = 1− pr)
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R set of real numbers

R(·) complementary distribution function (reliability or survival function)

RA(a, b) RAYLEIGH distribution

RE(a, b) reflected exponential distribution

RMSE root mean squared error

RSS residual sum of squares

SE(a, b) semi–elliptical distribution

sech hyperbolic secant function

σ(·) standard deviation

σ2(·) variance

σr,r:n variance of Xr:n

σr,s:n covariance of Xr:n and Xs:n

Σ variance–covariance matrix of order statistics

sin sinus function

sinh hyperbolic sinus function

tanh hyperbolic tangent function

TE(a, b) TEISSIER distribution

θ location–scale parameter vector containing a and b

θ̃ vector containing ã and b̃

TN(a, b) triangular distribution, right–angled and negatively skew

TP (a, b) triangular distribution, right–angled and positively skew

TS(a, b) symmetric triangular distribution

TTT total time on test

u realization of U

U reduced uniform variate

UB(a, b) U–shaped beta distribution

UN(a, b) uniform or rectangular distribution

Var(·) variance for scalar argument or

variance–covariance matrix for vector argument
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VS(a, b) V–shaped distribution

x realization of X

X general location–scale distributed variate

xM mode of X

xP percentile of order P, 0 ≤ P ≤ 1

xu
j upper class limit of class j

x`
j lower class limit of class j

X sample mean of X

X̃ variate, ln–transformed to location–scale type

Xr:n r–th order statistic of X in a sample of size n

y realization of Y

Y reduced location–scale distributed variate
(
Y = (X − a)/b

)
z realization of Z

Z standardized variate
(
Z = (X − µX)/σX

)
ζ(s) RIEMANN’s zeta function

Z(t) central moment generating function
(
E
[
exp{t (X − µX)}

])
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BERGMAN, B. / KLEFSJÖ, B. (1984): The total time on test concept and its use in reliability
theory; Operations Research 31, 506–606

BLOM, G. (1958): Statistical Estimates and Transformed Beta Variables; Stockholm

BLOM, G. (1962): Nearly best linear estimates of location and scale parameters, in:
SARHAN/GREENBERG (eds.): Contributions to Order Statistics; Wiley, New York, 34–46

BOSE, R.C. / GUPTA, S.S. (1959): Moments of order statistics from a normal population;
Biometrika 46, 433–440

BROWN, B.M. / HETTMANSPERGER, T.P. (1996): Normal scores, normal plots, and tests for
normality; Journal of the American Statistical Association 91, 1668–1675

C-C-C-C-C

CHERNOFF, H. (1973): The use of faces to represent points in k–dimensional space graphically;
Journal of the American Statistical Association 70, 548–554

CHERNOFF, H. / LIEBERMAN, G.J. (1954): Use of normal probability paper; Journal of the
American Statistical Association 49, 778–785

CLEVELAND, W.S. (1993): Visualizing Data; Hobart Press, Summit, NJ



Bibliography 247

CLEVELAND, W.S. (1994): The Elements of Graphic Data; Hobart Press, Summit, NJ

CLEVELAND, W.S. / MCGILL, R. (1984): Graphical perception: Theory, experimentation, and
application to the development of graphical methods; Journal of the American Statistical Associa-
tion 79, 532–554

COOKE, P. (1979): Statistical inference for bounds of random variables; Biometrika 66, 367–374

COX, D.R. (1978): Some remarks on the role in statistics of graphical methods; Applied Statistics
27, 4–9

CROME, A.W.F. (1782): Producten–Karte von Europa; Dessau

CROW, E.L. / SHIMIZU, K. (eds., 1988): Lognormal Distributions; Marcel Dekker, New York

D-D-D-D-D

DAVID, H.A. (1981): Order Statistics, 2nd ed.; Wiley, New York etc.
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LAMBERT, J.H. (1760): Photometrie; Augustae Vindelicorum
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