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1. Literature overview 
 

1.1. Overview on the male reproductive system 

 

1.1.1. Structure of the adult testis  

The male reproductive system consists of the two testes, a symmetric system of genital 

excurrent ducts, accessory sex glands, and the penis. The accessory sex glands include the 

seminal vesicles, the prostate and the bulbo-urethral glands. The testis is a complex organ 

that serves two crucial functions: 1) the synthesis of androgens - production of the male sex 

hormone (steroidogenesis) and 2) the production of sperms - the differentiation of the male 

gametes (spermatogenesis). Each differentiated adult testis is an oval structure housed in its 

separate compartment within the scrotum. Its fibromuscular connective tissue capsule, the 

tunica albuginea, is thickened at the mediastinum testis, from which septa are derived to 

subdivide the testis into approximately 250 small, incomplete compartments, the testis 

lobules. Each lobule houses one to four highly tortuous seminiferous tubules that function in 

the production of spermatozoa. The basal epithelium of the seminiferous tubule is formed by 

Sertoli cells and spermatogonia. The outside of the seminiferous tubules is surrounded by 

peritubular myoid cells also call peritubular cells which are residing in the basal membrane of 

the seminiferous tubules. The seminiferous tubules are surrounded by the connective tissue 

that contains in addition to neural, lymphatic and vascular elements, small groups of 

androgen-producing endocrine cells. These interstitial are called Leydig cells and produce 

the male sex hormone testosterone (T).  

 

1.1.2. Development of the testis 

The early undifferentiated gonad is characterized by onset of testis cord formation, which 

occurs at approximately 12.0 days post coitum (E12) in the mouse. The testis cords are 

derived from mesonephric cell migration from the yolk sac, and are composed of primordial 

germ cells, epithelialized pre-Sertoli cells, which are surrounded by a layer of peritubular 

cells and a smooth muscle cell lineage [1]. The Sry gene (Sex determining Region of the Y 

chromosome) [2, 3] expression occurs in pre-Sertoli cells between E10.5 and E12.5 in the 

cells of the XY gonad [4, 5]. A specific DNA-binding protein, called testis-determining factor 

(TDF), encoded by the SRY gene, and has been found to be directly responsible for 

testicular development and differentiation [6-8]. The pre-Sertoli cells that develop within the 

seminiferous cord also produce another important hormone, called Müllerian-inhibiting factor 

(MIF) or anti-Müllerian hormone (AMH), initiating the hormonal sex determination of the 

embryo [9, 10]. It is a large glycoprotein that inhibits cell division of the paramesonephric 
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(Müllerian) ducts, which in turn inhibits the development of the female reproductive organs. 

The AMH’s molecular structure is similar to that of transforming growth factor-beta (TGF-β) 

[11, 12]. In male development the mesonephric stroma cells are separating the seminiferous 

cords, give rise to Leydig (interstitial) cells that produce T to stimulate the development of the 

indefinite primordium into a testis [13, 14]. Development and differentiation of the testis occur 

as a result from the action of dihydrotestosterone (DHT), a product of the conversion of 

testosterone by the 5α-reductase, which takes place in Sertoli cells. The appearance of 

AMH, T and DHT in the developing male embryo determines its male hormonal sex [15]. In 

the prenatal state AMH gene activation has been shown to involve various regulators, such 

as steroidogenic factor 1 (SF-1) [16, 17], GATA binding protein 4 (GATA4) [18] and SOX-9 

[19], in conjunction with other putative Sertoli cell-specific factors. In postnatal period AMH 

production in Sertoli cells decreases and is closely related to an increase in GATA1 

expression [20]. In the prepubertal mouse, GATA1 expression appears with the first wave of 

spermatogenesis and levels of its expression in the adult depend on changes in the 

spermatogenic cycle [21].  

 

1.1.3. The interstitial cells – Leydig cells 

During normal testicular development in all mammals, the ontogenesis of Leydig cell function 

involves at least two successive populations [22, 23]. The first (fetal) Leydig cells differ from 

the adult population in morphology, physiology and regulation [24, 25], originate from 

mesenchyme-like fibroblasts and produce androsterone [26]. They are not desensitised by 

luteinizing hormone (LH) and do not require LH for differentiation [22, 27]. The second Leydig 

(adult) cell population begins to differentiate in mice four days after birth and produces small 

amounts of T and also metabolize most of this hormone [28, 29]. The capacity to secrete T is 

increased significantly in mature Leydig cells during puberty [30-32]. At the onset of puberty 

the pituitary gland releases LH and follicle-stimulating hormone (FSH) and Leydig cells 

acquire more organelle components necessary for steroid production and enhanced 

responsiveness to circulatory LH [33, 34]. Leydig cells lie near blood vessels reflecting their 

endocrine function. They were described as polygonal or fusiform cells with a surface  

covered by a variety of filopodia or microvill [35]. Their nucleus is often ovoid or round with 

eccentric position in the cell. The cytoplasm of Leydig cell is densely packed with organelles, 

such as smooth endoplasmic reticulum (sER) that can appear in variety of configurations: 

randomly oriented tubular, cisternal, tubule sheets, fenestrated cisternae and swirls. 

Mitochondria occupy a substantial portion of the Leydig cell cytoplasm and posses the 

morphological features of steroid secreting cells (tubulovesicular structure). Peroxisomes, 

surrounding the lipid droplets of Leydig cell were observed for the first time by the 

cytochemical localization of the activity of their marker enzyme catalase [36]. The density of 
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peroxisomes in Leydig cell was described to correlate with the amount of T production [37]. 

The gradual increase in organelle volumes reflects the gain of steroidogenic enzyme activity 

from Leydig cells [38]. Lipid droplets of Leydig cells have attracted considerable attention 

because it has generally been assumed that they are the source of precursors for androgen 

biosynthesis. Some species have abundant lipids in Leydig cells including the mouse [35].  

 

1.1.3.1. Leydig cells - Target for hormones and mediator of hormone effects 

Cell-cell interactions characterize one of the testicular functions. The mammalian testis is 

under the overall control of pituitary hormones, the gonadotropins as luteinizing hormone 

(LH) and follicle stimulating hormone (FSH). The utilization of endocrine gonadotropin signals 

to achieve a normal testicular function involves in addition complex local paracrine 

interactions between a) Sertoli cells and germ cells, b) Sertoli cells and peritubular cells, c) 

Sertoli cells and Leydig cells, as well as d) local control of the testicular vasculature [39-41]. 

The paracrine interactions serve two purposes: (1) to coordinate the function of the three 

testicular compartments (seminiferous tubule, interstitium and vasculature) and (2) to control 

the complex sequence of events that constitutes the spermatogenic cycle [42-44]. The 

normal testicular function is dependent upon a functional pineal gland and the hypothalamic–

pituitary–testicular (HPT) axis. The pineal gland secretes melatonin that acts on the 

hypothalamus to regulate the gonadotropin-releasing hormone (GnRH) output (see Fig.1). 

LH is secreted in pulses into the peripheral circulation by the pituitary gland in response to 

GnRH from the hypothalamus. T and its aromatized product estradiol, then feed back to the 

hypothalamus and pituitary gland to suppress transiently LH and thus T production. In 

response to reduced testosterone, GnRH and LH are again produced. Subsequently, the 

testicular hormones, inhibin, estrogen and T are pulsatile secreted back into the blood and 

act as classic feedback regulators of hypothalamic and pituitary output [43, 45-49]. A large 

number of studies have shown that LH is the chief regulator of adult Leydig cells and is also 

involved in Leydig cells development. Functionally, mature Leydig cells posses a higher LH 

receptor number and increased levels of androgen biosynthetic enzymes than immature 

Leydig cells [50].  

 

1.1.3.2. Growth factors – regulation of Leydig cells  

Leydig cell differentiation, proliferation, endocrine function, and regulation are modulated by 

various local factors such as cytokines and growth factors [23, 51-53]. Transforming growth 

factors (TGFs) and interleukin 1 regulate the proliferative activity of immature Leydig cells 

[54, 55]. The age-dependent stimulation of steroidogenesis in this cell type showed that 

interleukin 1 isoforms stimulated T production [56]. Growth factors that control their functions 

also include TGF-β, which plays an important role in signal transduction for cell–cell 



Literature overview 

7 / 169 

interaction in testis, particularly as a potent inhibitor of Leydig cell functions [23, 52, 54]. 

Insulin-like growths factors I and II (IGF-I and IGF-II) are expressed differentially in fetal and 

adult Leydig cell in rat testis and are probably involved in different processes of their 

differentiation [57]. Periods of high IGF-I expression seem to coincide with periods of high T 

production [58]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Hypothalamic-pituitary- testicular axis . Figure from [59]. LH and FSH are secreted by the pituitary 

gland. Receptors for LH and FSH are expressed in Leydig respectively Sertoli cells. LH stimulates Leydig cells to 

produce testosterone. FSH stimulates Sertoli cells to produce ABP, inhibin, DHT and estradiol. Those local 

products of the somatic cells of testis are representing the negative-feedback of the loops which are modulating of 

the gene expression in the pituitary gland. ABP binds to testosterone to stimulate spermatogenesis. 

 
In addition, there are reports in the literature about relaxin-like factor (RLF) as a major 

secretory product of this cell type in various mammalian species [60, 61]. RLF is used as a 

marker for Leydig cells differentiation or function, however, which aspect of differentiation or 

function is exactly marked by RLF is still unknown [62]. Vitamin A (retinol) and its principal 

biologically active derivative, retinoic acid, regulate Leydig cell and as well as Sertoli and 

germ cells function [63]. Leydig cells contain retinoic acid receptors (RAR) and retinoic X 

receptors (RXR) [64]. The knockout of the receptor RXRβ2, present in Leydig cells in addition 

to Sertoli cells, induces sterility [64, 65]. Furthermore, prostaglandins, particularly PGE2 and 

PGF2α, a group of bioactive substances derived from arachidonic acid by the action of the 
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cyclooxygenase (COX) isoenzymers type 1 and 2 (COX1 and COX2), have also been 

implicated in controlling Leydig cell development, production of proinflammatory cytokines 

such as interleukin 1 and 6 (IL1, IL6) by Leydig cells and Sertoli cells and for the 

autoregulation of spermatogenesis in the adult testis [66-69]. 

 

1.1.3.3. Production of steroid hormones in Leydig cells 

The primary testicular and most well-known androgen is T. Besides T, other androgens in 

testis include: dehydroepiandrosterone (DHEA), androstenedione (∆4-A), 

dihydrotestosterone (DHT) and andostanediol (∆5-A). Furthermore, T is secreted into the 

blood and also carried to Sertoli cells and bound by the androgen receptor (AR). In Sertoli 

cells, T is reduced to DHT which is the most potent male steroid hormone, with an activity 

that is 10 times higher that of T. In addition, FSH stimulates Sertoli cells to express AR, 

which transports T and DHT from Leydig cells to the site of spermatogenesis.  

Cholesterol provides the basic structure of all steroid hormones. The first chain of reactions 

in cholesterol biosynthesis from acetyl-CoA to the 3-hydroxy-3-methyl-glutaryl-coenzyme A 

reductase (HMG-CoA) can take place in the cytosol, mitochondria or peroxisomes [70]. Two 

acetyl-CoA are condensed to create acetoacetyl-CoA under the enzymatic reaction of an 

acetoacetyl-CoA thiolase, an enzyme that harbors a peroxisomal target signal 1 [71]. HMG-

CoA reductase, the rate limiting enzyme of the cholesterol biosynthetic pathway, catalyzes 

the conversion of HMG-CoA into mevalonate. A number of studies indicate that HMG-CoA 

reductase is located in two compartments the endoplasmic reticulum (ER) and the 

peroxisomes [72-75]. The further steps of cholesterol synthesis are located solely in 

peroxisomes, since the following four enzymes possess peroxisomal targeting signals. The 

enzymes located in peroxisome are phosphomevalonate kinase (PMvK), mevalonate 

diphosphate decarboxylase (MPD) and isopentenyl phosphase (IPP) isomeriase and 

farnesyldiphosphate synthase (FPP) [76]. FPP is utilized further by the ER for squalene 

synthesis resulting final product cholesterol [77].  

Leydig cells are responsible for the T production in the mammalian testis. Steroidogenic and 

trophic pathways depend upon stimulation of these cells by LH which binds to the LH-

receptor on their plasma membrane, thereby initiating a cascade of intracellular: a) activation 

of adenylate cyclase, b) increase of intracellular cAMP formation [78, 79], c) translocation of 

cholesterol into the mitochondria, d) association of cholesterol with the cytochrome P450 

side-chain cleavage enzyme (P450scc), e) production of pregnenolone from cholesterol into 

mitochondria, f) translocation of pregnenolone from mitochondria to the sER, and conversion 

of pregnenolone to T via a series of reactions in the sER and peroxisomes (Fig. 2) [80-82]. 
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Figure 2.  Summary of steroidogenesis in 
Leydig cells.  Cholesterol biosynthesis takes 
place in mitochondria, peroxisomes and the 
endoplasmic reticulum. LH on binding with 
the receptor (LH-R) induces the synthesis of 
cAMP from ATP. cAMP catalyzes the 
activation of protein kinase A (PK-A), that is 
indirectly required  for the transport of 
cytoplasmic cholesterol to mitochondria. 
StAR and PBR transfer cholesterol from the 
outer membrane to the inner mitochondrial 
membrane, where the P450scc enzyme 
resides. The N terminus of StAR is 
connected with the site of the mitochondrial 
import machinery at the outer mitochondrial 
membrane. The P450scc enzyme converts 
cholesterol into pregnenolone, which is 
ultimately transferred to the sER. In addition, 
peroxisomes house 17βHSD type 4 oxidizing 
5-androstene-3beta, 17β-diol to DHEA, and 
estradiol to esterone. DHT 
(dihydrotestosterone); reaction 1: 3β-
hydroxysteroid dehydrogenase; reaction 2: 
cytochrome P450 17α-hydroxylase; reaction 
3: family of 17β-hydroxysteroid 
dehydrogenase; reaction 4: cytochrome 
P450 aromatase; reaction 5: 5α-reductase.  
Modified from [34, 80, 83, 84]. 
 

 

 

 

Several protein candidates have been postulated to be involved in the first rate-limiting and 

acutely-regulated step of steroidogenesis: sterol carrier protein 2 (SCP-2), steroidogenesis 

activating polypeptide, peripheral benzotropine receptor protein (PBR) and steroidogenic 

acute regulator protein (StAR) [23, 85, 86]. Indeed, the regulation of the StAR gene is 

controlled by the nuclear receptor steroidogenic factor (SF-1), which plays also an important 

role in mediating the transcriptional regulation of several steroid hydroxylase genes [87, 88]. 

The StAR protein is a member of a family of 37 and 30-kDa mitochondrial phosphoproteins, 

is acutely synthesized in response to LH or cAMP and is required for the transport of 

cholesterol from the outer membrane to the inner mitochondrial membrane [86, 89]. The 

cholesterol is cleaved on its side chain by the cytochrome P450 side chain cleavage 

(P450scc) enzyme, which is the first enzyme in the steroidogenic pathway that is located on 

the matrix side of the inner mitochondrial membrane [86]. Once formed in the mitochondria, 

pregnenolone moves to the membranes of the sER, and it is converted to progesterone by 
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the action of the 3β hydroxysteroid dehydrogenases (3βHSD). Thereafter, progesterone is 

modified by 17α-hydroxylation to 17-hydroxyprogesterone and thereafter converted to 

androstenedione. Androstenedione is a weak androgen which is converted to T by 17-

ketosteroid reductase/17β-hydroxysteroid dehydrogenases. The synthesis from progesterone 

to T is named ∆4 pathway [90]. However, it is also well recognized that pregnenolone is 

transformed to 17α-hydroxypregnenolone followed by secretion of large amounts of an 

inactive steroid precursors named dehydroepiandrosterone (DHEA). Thereafter, DHEA is 

converted by the action of 17βHSD into androstenediol. This synthesis pathway is named ∆5. 

Further, androstenediol is converted to T by a 3βHSD enzyme. DHEA does not bind to the a 

AR [91], but exerts either estrogenic or androgenic action after its transformation into active 

androgens and/or estrogens in target cells [92]. The enzymes regulating sex steroid 

metabolism include steroid sulphatases, 3βHSD, 3αHSD, aromatase, 17βHSD and 5α-

reductase (see Fig. 2) [22, 34, 93-95]. The family of 17βHSDs includes over ten enzymes 

[95] and Leydig cells contain a high level of 17βHSD type 4 also known as D-bifunctional 

protein or D-multifunctionalprotein (MFP2), which is localized in the peroxisomal matrix [81]. 

This enzyme was reported to oxidize 5-androstene-3β, 17β-diol to DHEA, and estradiol to 

esterone [81, 96-98]. The last step of conversion of the T to the most potent endogenous 

androgen dihydrotestosterone (DTH) is mediated by 5α-reductase enzymes. Other 

steroidogenic enzymes present in Leydig cells are located in the sER (microsomal): 

cytochrome P450c17 (CYP17), cytochrome P450aromatase (P450arom)/(CYP19), which 

catalyzes the aromatization of T to estradiol [5]. It was described that P450arom is present 

as well in Sertoli cells and in elongated spermatids [99]. In the fetal male mouse, serum T 

levels are rising 3 to 4 days prior birth and remain high (0.5 ng/ml) until 8 days after birth. T 

concentrations progressively decrease to about 0.2 ng/ml during postnatal days 8 to 24. 

From days 30, T levels rise to stable adult levels (3-8 ng/ml) [100]. The intra testicular 

concentration of T, in the adult mouse is approximately 50 to 100-fold higher than the one 

found in serum. The high intra testicular T concentration, (70 ng/ml) is required for full 

spermatogenic capacity. Spermatogenesis is dramatically affected at a T level below 20 

ng/ml [101]. 

In the testis, only Leydig, peritubular and Sertoli cells express AR. No AR is expressed in 

germ cells of mature testis [102]. In adult testis, AR levels increase and decrease in a cyclic 

fashion, increasing during cell association stages II through VII of the spermatogenic cycle 

and then declining sharply during or immediately after stage VII to become barely detectable 

in stages IX – XII [103-105]. Studies using a tissue specific knock-out mouse of the AR gene 

demonstrated an alteration in the expression of several key steroidogenic enzymes in Leydig 

cells, suggesting that T is an autocrine factor regulating its own production. The AR knock-



Literature overview 

11 / 169 

out mouse also exhibited an arrest of spermatogenesis predominately at the round spermatid 

stage [106]. 

 

1.1.4. The testicular seminiferous tubule - structure and function 

1.1.4.1. The Peritubular myoid cells 

Peritubular myoid cells or peritubular cells (PTC) have been found in all mammalian species 

and their organization varies between species. In laboratory rodents, including rats, 

hamsters, and mice, only one layer of peritubular cells is located on the outside of the 

seminiferous tubules. On the other hand, several cellular layers exist in the lamina propria of 

the seminiferous tubule in humans and other animal species. The cells are joined by 

junctional complexes like epithelial cells. Peritubular cells contain abundant actin filaments 

which are distributed in the cells in a species-specific manner. In rodents, the filaments within 

peritubular cell are both longitudinal and circular and run along the long axis of the 

seminiferous tubule [107]. The arrangement of the actin filaments is affected by the 

disruption of spermatogenesis, such as in cryptorchidism. In the peritubular cells also other 

cytoskeletal proteins as myosin, desmin/vimentin and alpha-actin are found. Peritubular cells 

have been shown to be contractile, are involved in the transport of spermatozoa and the 

testicular fluid in the tubule. Several substances (prostaglandins, oxytocin, TGFβ, NO/cGMP) 

have been suggested to affect the contraction of this cell type [108, 109]. 

Recent in vitro studies have demonstrated that the cells secrete a number of substances, 

including extracellular matrix components (fibronectin, type I and IV collagens, 

proteoglycans) and growth factors (PModS, TGFβ, IGF-I, activin) [110]. PModS is a protein 

which modulates many of the metabolic activities of Sertoli cell along with peritubular cells, 

including androgen binding protein (ABP) and transferrin [111]. Furthermore, it has been 

reported that peritubular cells contain androgen receptors (AR) and are involved in retinol 

processing. Considering all this, it seems likely that peritubular cells not only provide 

structural integrity to the tubule but also take part in the regulation of spermatogenesis and 

other testicular functions [112].  

 

1.1.4.2. The Sertoli cell  

I. Structure 

The Sertoli Cell (SC) is known as a supporting or sustentacular cell and is unique in many 

respects [113]. These cells do not replicate after puberty [114] and their number determines 

the testicular size, germ cell numbers per testis and spermatozoa output [115]. Sertoli cells 

are columnar cells with extensive apical and lateral processes, surrounding the adjacent 

spermatogenic cells and occupying the space between them. These cells provide the 

structural organization of the seminiferous tubules since they extend through the full 



Literature overview 

12 / 169 

thickness of the germinal epithelium. Sertoli cells of adult mice show a characteristic nucleus 

with one large centrally located nucleolus, flanked by two chromocentres containing all the 

centromeric heterochromatin [116] [117]. The cytoplasm includes an extensive and 

continuous network of sER, polymorphous mitochondria, peroxisomes, an endosomal-

lysosomal apparatus and a cytoskeleton composed of intermediate filaments (vimentin), 

microfilaments (actin) and microtubules. The cytoplasm contains lipid inclusions and protein 

crystals. Characteristic complexes formed by flattened cisternae of the ER and bundles of 

actin filaments are located next to the plasma membrane of Sertoli cells, facing either 

adjacent neighbouring Sertoli cells or spermatic cells. Morphological and functional evidence 

indicate a change in number and size of the intracellular organelles during the cycle of the 

seminiferouse epithelium. Mitochondria in Sertoli cells are characterized by a peak in volume 

at stages XII – XIV in rat seminiferous tubules [118]. Lysosomes vary in number, size and 

electron density, at stages IX – I  are spherical in shape with a homogeneous granular 

content, and at stages II – VIII are heterogeneous with a greater electron density [119]. 

Frequently, in the cytoplasm small spherical lipid droplet, small dense bodies, and myelin 

figures are observed [120]. Also, a cyclic variation in volume density of both the smooth and 

rough ER, from stage IV – VIII have been described, suggesting that the synthetic and/or 

secretory roles of the Sertoli cells are cyclic in nature [121]. In contrast, the Golgi apparatus 

in this cell type does not undergo strong alterations throughout the cycle of the seminiferous 

epithelium [122]. 

 

II. Maintenance of the integrity of the seminiferous epithelium 

The Sertoli cells provide a specialized, protected environment for germ cell development 

within the seminiferous tubules of the testis. Adjacent Sertoli cells are connected to each 

other by occluding junctions, establishing the blood-testis barrier (BTB), which protects the 

developing germ cells, against autoimmune reactions [123, 124] by preventing the passage 

of molecules larger than 1,000 Da. The BTB divides the seminiferous epithelium into a basal 

and an adluminal compartments. Sertoli cells are attached to the basal lamina via 

hemidesmosomes, and bound to each other by desmosomes [125], gap junctions and tight 

junctions [124]. Sertoli cells are attached to germ cells via desmosome like-junctions, gap 

junctions, ectoplasmic specializations [126] and tubulobulbar complexes [123]. Germ cells at 

the early stage of spermatogenesis, such as spermatogonia, are localized at the basal 

compartment [127, 128]. As the spermatogenic differentiation proceeds those cells move to 

the adluminal compartment, where they continue their development into spermatozoa [129]. 

Once beyond the BTB germ cells are dependent on the supply of nutrients and growth 

factors from Sertoli cells [130]. 
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III. Functions of Sertoli cells 

Sertoli cells are involved in: (1) mechanical support and nutrition of germ cells, (2) paracrine 

regulation of male germ cell proliferation and differentiation by secretion of regulatory 

proteins, including peptide growth factors and hormones, (3) phagocytosis, (4) steroid 

hormone synthesis and metabolism. The functions of this cell type change dramatically 

according to the stage of the spermatogenic cycle, and there are many Sertoli cell products 

which are produced and/or secreted in a cyclic pattern [131]. 

 

A. Delivery of nutrients to germ cells and secretion of proteins 

As mentioned above the Sertoli cells are “nurse cells” and are providing nutrition and energy 

to the germ cells. As demonstrated in primary culture they predigest glucose to lactate for the 

use by germ cells. This process functions at the highest rate when it is stimulated by FSH 

[132]. In addition, Sertoli cells can also use glutamine or leucine as source of energy [133]. 

They are able to convert substantial amounts of glutamine to CO2 and ATP. It is well 

accepted that under standard culture conditions Sertoli cells require media with glutamine 

[134]. In addition, the testis is one of the few organs in the body that can produce myoinositol 

(member of vitamin B), which also has been shown to be a function of Sertoli cells by 

converting glucose to this product. This process is inducing a 50-fold higher concentration of 

myoinositol in the tubular fluid in comparison to the serum [135] [136]. 

Further, secretory products of Sertoli cells are bioprotective proteins which are secreted in 

high amounts. These include metal ion transport proteins, such as transferrin (for iron 

transport) and coeruloprotein (for copper transport). One of the first secreted glycoprotein of 

Sertoli cells identified was the ABP. Its biochemical function is to serve as a binding protein 

for the androgens as T and DHT. ABP displays a stage-specific expression pattern within the 

seminiferous epithelium and its secretion has often been regarded as an index of Sertoli cell 

function [137]. In addition, secreted glycoproteins such as sulphated glycoprotein 1 (SGP1) 

and sulphated glycoprotein 2 (SGP2) which are thought to bind lipids and to be involved in 

immunosuppression are present in the Sertoli cell cytoplasm. SGP-1 was first isolated from 

cultured Sertoli cells and is the precursor of four sphingolipid proteins which are activacting 

glycosphingolipids and glycoglycerolipids in order to be effectively degraded [138].  

Other important Sertoli cell products are the peptide hormones inhibin and activin. They are 

structurally related to the gonadal dimeric glycoproteins and appear to act back on the 

pituitary gland during development. Inhibin down-regulates the production of FSH, whereas 

activin is a potent releaser of FSH [139]. Both inhibin and activin can also influence 

steroidogenesis and are also produced by Leydig cells. In addition, α-inhibin acts as an 

intragonadal paracrine regulator, apparently functioning as a gonadal-specific tumor 

suppressor [140].  
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Steel factor (SF) or stem-cell factor is expressed on the Sertoli cell membrane [141]. SF is a 

ligand of the c-kit receptor tyrosine kinase present on the plasma membrane of the germ 

cells. c-Kit is absolutely necessary for meiotic development and is controlling male germ cell 

differentiation [142]. 

Sertoli cells secrete proteases and protease inhibitors which are important in tissue 

remodelling processes that occur during spermination. There are specific proteases, which 

consist of plasminogen activators (PA) of specific serine proteases, catalyzing the conversion 

of plasminogen to plasmin [143-145].  

Furthermore, Sertoli cells secrete vitamin binding proteins, mainly for vitamins D and A [146] 

[147], the last one being very important for spermatogenesis. Vitamin A deficient male rats 

are sterile as the result of germ cell loss with accumulation of debris in the lumen of the 

seminiferous tubules [148]. The mechanism of vitamin A action is mediated by nuclear 

retinoid receptors which include a family of retinoic acid receptors (RAR alpha, beta and 

gamma) and a family of the retinoid X receptors (RXR alpha, beta and gamma). The RARs 

and RXRs bind short DNA sequences on vitamin A-responsive genes, called retinoic acid 

response element (RARE), to modulate gene expression. The RXRs are heterodimerize with 

numerous other nuclear receptors, including RARs, peroxisome proliferator-activated 

receptors (PPARs) and liver oxysterol receptors (LXRs). The Sertoli cells express RXR alpha 

in low levels and RAR beta was found exclusively in this cell type [149]. Moreover, the 

heterodimers RXR beta/RAR alpha may control spermatogenesis [65, 150].  

 

B. Morphology of the lipid droplets in the cytoplasm of Sertoli cells  

Lipid droplets are easily observed in Sertoli cells and the amount of these droplets differs 

with the stages of the cycle of the seminiferous epithelium [151]. These lipid droplets contain 

triacylglycerols which can be converted to free fatty acids for oxidation and production of 

energy by Sertoli cells [152]. Especially, by fatty acids such as the 22-carbon polyene fatty 

acids, derive from cis-linoleic acid (n:6) or linoleic acid (n:3) that are synthesized and 

accumulate in the testis after sexual maturation [153, 154]. In addition, Sertoli cells have a 

higher ratio of esterified to unsterified cholesterol than germ cells [155]. The testicular 

phospholipids and neutral lipids contain long-chain fatty acid (C:18)-(C:22) (LCFA), very 

long-chain fatty acid (C:24)-(C:32) (VLCFA) and polyunsaturated fatty acids (PUFA). The 

lipid alterations observed in cryptorchidism suggest a possible role for Sertoli cells in the 

turnover and conservation of PUFA within the seminiferous tubules [156]. The formation of 

LCFA, VLCFA and PUFA in isolated rat seminiferous tubules suggests that a PUFA chain 

shortening mechanism occurs in the testis involving alpha- and beta-oxidation [157].  
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C. Growth factors – regulation of Sertoli cells  

Epithelial growth factor-α (EGF-alpha) and transforming growth factor-β (TGF-beta) are 

present in Sertoli cells to regulate germ cell proliferation and to promote or disrupt the blood-

testis-barrier assembly [158]. Sertoli cells appear to secrete fibroblast growth factor (FGF) 

and EGF in response to FSH, influencing aspects of cellular growth and differentiation of 

germ cells [159]. In addition to growth factors, the cytokine interleukin-1alpha (IL-1alpha) and 

interleukin-6 (IL-6) are produced by Sertoli cells [160, 161], suggesting their involvement in 

the paracrine regulation of spermatogenesis [162]. Furthermore, phagocytosis of residual 

bodies by Sertoli cells is stimulated by cytokine action on Sertoli cells [142].  

In addition, Sertoli cells secrete glycoproteins as well, which function as growth factors, such 

as the insulin-like growth factor I (IGF-I). IGF-1 stimulates DNA synthesis as well as 

increases transferrin and lactate production in immature Sertoli cells. 

 

D. Secretion of fluid into the tubular lumen 

Sertoli cells are well characterized as the responsible cell type for the secretion and 

modification of fluid, leading to the formation of the specialized luminal fluid 

microenvironment, which transports the spermatozoa into the epididymis [163]. For this 

purpose Sertoli cells also transport water from the interstitial space into the lumen, serving as 

the vehicle for moving spermatozoa from the testis to the epididymis. In addition to 

basolateral ion channels, aquaporins (water channels) are abundant in the testis, with some 

being localized in Sertoli cells [164, 165]. Interestingly, various members of the aquaporin 

gene family contain CRE motifs (CREB binding regions) and are under cAMP regulation, a 

second messenger that is activated upon FSH-R signalling [166].  

 

E. Phagocytosis of residual bodies 

In addition to its supporting role, Sertoli cells have the capacity to phagocytose apoptotic 

germ cells and lyse residual bodies which detach from the mature spermatids [167-170]. 

Residual bodies are surrounded by a plasma membrane rich in glycolipids and contain 

remnants of organelles and ribonucleoproteins that are degraded by Sertoli cells [171]. Such 

residual bodies contain large membrane-delimited vacuoles, multivesicular bodies, cluster of 

ribosomes, condensed mitochondria, lipid droplets [134] and shown by us also peroxisome-

like structures. Prior to the release of step 16 spermatids in the lumen of the seminiferous 

tubule, a globular mass of the surplus cytoplasm called residual body detaches from these 

cells. Sertoli cells internalize these residual bodies, forming a double-membraned 

phagosome. The phagosomes characteristically migrate from the apex to the base of the 

Sertoli cells. This migration takes place during stage IX of the cycle of the seminiferous 

epithelium in the mouse [119]. Thus, the temporal relation between phagocytosis of residual 
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bodies and the increase in the volume and number of the lipid droplets at stage VIII to XII of 

spermatogenesis, is an indication that these droplets may arise from the degradation of 

residual bodies [172].  

 

F. Sertoli cells - Target for hormones and mediator of hormone effects 

Sertoli cells are targets for FSH in the male. FSH is a heterodimeric glycoprotein hormone 

secreted by the anterior pituitary gland that is essential for mammalian fertility. The hormone 

binds to its receptor on the membrane of the Sertoli cells and is known to activate at least 5 

signaling pathways [173]. (1) The cAMP-PKA pathway – increasing cAMP concentration, 

leading to the release of the catalytic subunit of protein kinase A (PKA) from the repressor 

subunit, allowing the phosphorylation of numerous cellular proteins. One target of this 

pathway is a class of transcription factors that bind to cAMP response elements (CREs) 

[174]. (2) The MAP kinase pathway – which is limited to the period of Sertoli cell proliferation 

that occurs in the first 15 days after birth, being stimulated by FSH via this pathway. The FSH 

and ERK kinase-dependent induction of cyclin D1 and E2F, two promoters of entry into the 

cell-cycle, also suggests that mitogenic effects of FSH are at least partly mediated by the 

MAP kinase cascade during puberty [175]. (3) The calcium pathway – FSH (10-1000 ng/ml) 

causes an increase in intracellular Ca2+ within seconds of stimulation [176, 177]. One result 

of increased intracellular Ca2+ is the activation of calmodulin and CaM kinases that may 

affect the cytoskeletal structure of Sertoli cells and phosphorylation of transcription factors 

including CREB [178, 179]. (4) The phosphatidylinositol 3-kinase (PI3-K) pathway – the 

mechanism for PI3-K activation is mediated by FSH with increase in cAMP levels [180]. 

Dependent on PI3-K is the uptake of glucose that is converted to lactate for germ cell energy 

needs and transferrin secretion that is vital for maintenance of spermatogenesis [181]. (5) 

The phospholipase A2 (PLA2) pathway – FSH through the activation of the PLA2 leads to the 

release of arachidonic acid as second messenger and its subsequent metabolism to PGE2 

and other eicosanoids that function as intracellular and extracellular signals. As a result, the 

adenylate cyclase activity and androgen aromatization are stimulated in Sertoli cells and 

germ cells may be affected via their G-protein coupled eicosanoid receptors [182]. In 

addition, PGE2 and PGF2alpha are produced by mature spermatozoa and play a role in the 

acrosome reaction [183]. 

The androgen receptor (AR) is also induced by FSH, thus FSH regulates the androgen 

responsiveness of Sertoli cells [184-187].  

In contrast to FSH, it is well established that androgens are absolutely essential for the 

maintenance of spermatogenesis [188, 189]. Although DHT is crucial for the development of 

the male reproductive tract, T is the androgen in the testis that regulates spermatogenesis. T 

initiates pathways that contribute to the support of spermatogenesis as it activates the MAP 
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kinases in pubertal Sertoli cells and contributes to elevation of Ca2+ [190-192]. Although 

many genes can be regulated by androgens, only the gene encoding by the Pem 

transcriptionl factor is known to be induced by AR-DNA interactions in Sertoli cells [193]. 

 

G. Steroidogenesis and steroid metabolism in Sertoli cells 

The Sertoli cell has the typical morphological characteristics of steroid-produceing cells [194], 

with numerous mitochondria, smooth ER and cholesterol-containing lipid droplets in the 

cytoplasm [195] as well as peroxisomes (as shown in this thesis). Other enzymes found in 

Sertoli cells are cholesterol ester hydrolase, aldose reductase, branched-chain amino acid 

transferase and the enzymes of inositol biosynthesis which are temperature sensitive [196, 

197]. However, the main production of T is performed in Leydig cells that exhibit significant 

levels of cholesterol side-chain cleavage activity. Regulation of ABP by FSH and T has been 

demonstrated [198], although whether one or both are required for complete function 

remains to be resolved. In addition, Sertoli cell convert T to DHT, 5alpha-androstanediols, 

androsterone, and androstenedione. Furthermore, high levels of 3α-hydroxysteroid 

dehydrogenase activity in Sertoli cell preparations were confirmed by measuring the rates of 

formation of 5α-androstanediols from DHT [199, 200]. Observations during the past decade 

have led to the recognition of various testicular secretory products that modulate the FSH 

effect on the aromatase activity [154]. Furthermore, in Sertoli cells an EGF-like factor inhibits 

FSH stimulated aromatase activity while lactate production is stimulated [201]. 

Both Sertoli and Leydig cells are sites of estrogen (ER) biosynthesis in the testis. The 

support of the idea comes from isolation of biologically active estrogenic material from Sertoli 

cell tumors [202]. Two ER subtypes have been cloned, ERα and ERβ, and shown to be 

present in the hypothalamus, pituitary gland, testis and reproductive tract, suggesting the 

regulation of male reproduction by estrogen [203]. 

 

1.1.5. Spermatogenesis 

Spermatogenesis in mammals is a precise cyclic and time-controlled process with stage-

dependent gene expression, comprising extensive genomic and cellular remodelling from 

spermatogonia to haploid cells and the final release of spermatozoa [204]. 

Spermatogenesis starts by mitotic divisions inducing proliferation and differentiation of 

spermatogonia, meiotic divisions of spermatocytes (Fig.3). It is followed by the 

transformation of haploid round spermatids arising from the second meiotic division into 

spermatozoa, a process called spermiogenesis. Spermatogonia are diploid stem cells of 

spermatogenesis and can be divided in type A and type B. Meiosis starts with DNA synthesis 

of type B spermatogonia, which lose contact with the basal lamina (preleptotene). In the 

human, the prophase of the first meiotic division takes about 1-3 weeks and is divided into 
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several stages: the leptotene, zygotene, pachytene and diplotene.  By these meiotic divisions 

primary and afterwards secondary spermatocytes are generated (Fig.3). Secondary 

spermatocytes undergo the second meiotic division in which the chromatids are finally 

separated, leading to round spermatids with a haploid number of chromosomes and DNA 

content (Fig.3). Spermiogenesis, the transformation of conventional round spermatids into 

spermatozoa, which have the capacity for motility and fertilization of an egg, includes a 

complex sequence of events: (1) formation of the acrosome, (2) condensation of the nucleus, 

(3) development of the sperm tail, (4) reorganization of cellular organelles such as centrioles 

and mitochondria (5) reduction of the cytoplasma. A dramatic reorganization of the 

peroxisomal compartment during spermiogenesis is for the first time described in this 

dissertation. 

 

Figure 3. Spermatogenesis process. Figure according to Chase [59]. Spermatogonia undergo mitotic divisions 
forming the primary spermatocytes, diploid (2n) cells. Primary spermatocytes undergo first meiotic division giving 
rise to secondary spermatocytes, haploid (n) cells. They undergo the second meiotic divisions generating early 
spermatids. By several intracellular transformations, such as the condensation of the nucleus, the formation of the 
acrosome, development of the tail, late spermatids are developed. After their reorganization of the cellular 
organelles and reduction of the cytoplasm, mature spermatozoas are released into the seminiferous tubule. 
 

Organization and localization of the germ cells within the seminiferous tubules vary at 

particular phases of the development. Each step of the development of the seminiferous 

epithelium with its associated germ cells can be divided into stages that show defined 
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physiological characteristics and cell associations - stages I – XII in the mouse. Stage I: at 

the basal part of the seminiferous epithelium spermatocytes are located with a not yet 

condensed chromosomes body. The inner part of the seminiferous epithelium is defined by 

the occurrence of early round spermatids. Stages II-III: spermatids are showing an acrosome 

vesicle on their nuclear surface. Stages IV: the acrosomal vesical flattens on the nuclear 

surface of the spermatids. Stage V: the angle subtended by the acrosome extends from 40º 

to maximum 95º on the nuclear surface of round spermatids. Stage VI: elongated spermatids 

remain within the crypts of the Sertoli cells. Stage VII: elongated spermatids move to the 

luminal aspect of the seminiferous epithelium and the angle subtended by the acrosome is 

bigger then 120º. Stage VIII: the nuclei of the eight spermatids make contact with the plasma 

membrane and the caudal end of the nucleus is slightly tapered. Stage IX: the spermatid 

nucleus becomes deformed from its round or ovoid shape. Stage X: the hook shape of 

spermatid head is formed. Stage XI: further elongation of the spermatid head takes place 

and chromatin condensation starts. In the seminiferous epithelium, diplotene spermatocytes 

that not yet progressed to metaphase are present. Stage XII: presence of anaphase or 

telophase of meiosis I, secondary spermatocytes, or any of the phases of meiosis II. Stages 

VI, VII, VIII and XII are characterized by the presence of secondary spermatocytes. 

The process of spermatogenesis requires a continuous cross talk between germ cells and 

their somatic support, the Sertoli cells, which exert multiple functions critical for germinal 

differentiation [205]. 

 

1.2. Peroxisomes  

1.2.1. Nomenclature and morphology of peroxisomes 

Peroxisomes, glyoxysomes and glycosomes are microbodies, belonging to a single organelle 

family, often grouped under the generic name ‘peroxisome’, which are represented in 

virtually all eukaryotic cells. Peroxisomes were discovered by Rhodin [206] in a 

morphological study and were described as spherical oval organelles of 0.3-1.0 µm in 

diameter with a single limiting membrane and a finely granular matrix in the proximal 

convoluted tubular epithelium of the mouse kidney [206]. Due to the lack of a known function 

of this organelle, Rhodin named them “microbodies”. Rouiller and Bernard in 1956 identified 

a similar organelle, containing an additional crystalline core in parenchymal cells of rat liver, 

and suggested that the hepatic microbodies might be precursors of mitochondria. [207]. Only 

in 1960 De Duve and coworkers recognised “peroxisome” as a distinct organelle by 

establishing its biochemical characterization [208]. De Duve and Baudhuin observed that 

catalase, urate oxidase and D-amino acid oxidase were associated with particles different 

from lysosomes, microsomes or mitochondria. Therefore term “peroxisome” was introduced 
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by de Duve and Baudhuin, because these organelles contained both hydrogen peroxide 

producing (flavin-containing oxidases) and degrading (catalase) enzymes [208]. 

Peroxisomes were visualized with the cytochemical staining method, for the peroxidative 

reaction of catalase, using 3, 3’-diaminobenzidine (DAB) as a hydrogen donor [209]. By this 

method, peroxisomes have been identified in every tissue examined thus far with the 

exception of mature red blood cells and germ cells [210]. The presence of peroxisomes in all 

types of germ cells (except for spermatozoa) has been shown first in this thesis.   

The size and shape of peroxisomes vary from organ to organ. They are relatively large in the 

kidney and liver (0.3–1.0 µm diameter) and are smaller in the brain and muscle (0.1–0.25 

µm) where they were referred to as microperoxisomes [211]. Peroxisomes from animal liver 

often contain a crystalloid core, a nucleoid composed of urate oxidase [212] and xanthine 

oxidase [213]. Humans do not have peroxisome core in their liver cells, because of a 

mutation in the urate oxidase genes, occurring during the evolution at the level oh humanoids 

[214]. In the liver and kidney, peroxisomes are round or oval in shape, whereas in sebaceous 

and prepucial glands [215] and regenerating liver [216, 217], they are interconnected and 

organized into a peroxisomal reticulum. Peroxisomes can be differentiated from mitochondria 

by their single membrane, an electron dense core, a homogenous matrix and by the absence 

of cristae. They are differentiated from lysosomes by their homogeneous matrix and by 

histochemical staining for catalase, whereas the lysosomes are hetrogenous in content and 

stain for acid phosphatase [218]. The peroxisomal limiting membrane (6–8 nm) is permeable 

to small hydrophilic molecules. Enzymatic substrates of less than 800 daltons easily pass 

through non-specific pores. Two membrane proteins (22 and 28 kDa) have been identified 

and found to be associated with the formation of these non-specific pores [219]. 

 

1.2.2. Biogenesis of peroxisomes 

Numerous proteins of the peroxin family are required for proliferation and regular biogenesis 

of mammalian peroxisomes. The classical model of peroxisome biogenesis describes that 

new peroxisomes arise through a budding and fission process from pre-existing ones. In 

recent years this view has been challenged by a numbers of groups who believe that 

peroxisomes may also be generated de novo [220]. The regular biogenesis and inheritance 

of peroxisomes requires the function of more then 30 proteins – the peroxins (Fig.4). Peroxin 

proteins are encoded by PEX genes (in the mouse Pex) and were numbered according to 

their date of discovery [221]. Peroxisome proteins can be divided into functional groups, e. g. 

for membrane biogenesis (PEX3, PEX16, PEX19), for cytoplasmic transport and sorting 

(PEX5, PEX7 and PEX19), for docking (PEX13, PEX14, PEX17) and import (PEX10, 

PEX12) of proteins into the peroxisome as well as for budding and fission of the organelles 

(PEX11) or for organelle degradation (PEX4) [222].  
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1.2.2.1. Peroxisomal matrix protein import and its receptors 

Most peroxisomal proteins are synthesized on free ribosomes and are imported into the 

peroxisome without any further modification. Peroxisomal matrix proteins contain a 

peroxisomal targeting signal (PTS) either at their C-terminus (PTS1) with the consensus 

sequence (S/A/C)(K/H/R)(L/M) or at their N-terminus (PTS2) with the consensus sequence 

(R/K)(L/I/V)(X5)(H/Q)(L/A) that are recognized by specific cytoplasmic shuttling receptors 

(PEX5 for PTS1 and PEX7 for PTS2), which direct the proteins to the peroxisomes. These 

shuttling receptors, loaded with their cargo, bind to a docking complex at the peroxisomal 

membrane before the transported matrix proteins are imported in their folded conformation 

into the peroxisome [223]. 

 

1.2.2.2. Lipid transport through the peroxisomal membrane 

The peroxisomal membrane contains multiple organelle specific proteins involved in the 

transport of matrix proteins into the organelle [224] and others whose function is required for 

transport of small molecule substrates and products across the organelle membrane [225, 

226]. The peroxisomal ATP-binding cassette (ABCD), belong to the half adenosine-

triphosphate transporters category, D sub-family, which are suggested to play a role in fatty 

acid beta-oxidation. The basic structure that defines the members of this protein family is the 

combination of a conserved ATP-binding and transmembrane domains. Four ATP-binding 

cassette (ABC) transporters have been identified in mammalian peroxisomes: the 

adrenoleukodystrophy protein ALDP / ABCD1, the adrenoleukodystrophy-related protein 

ALDRP / ABCD2, the 70-kDa peroxisomal membrane protein PMP70 / ABCD3 and the 

PMP70-related protein P70R / ABCD4. Relative to ABCD1 the human proteins display 63%, 

36%, and 25% amino acid identity [227, 228], respectively and have the predicted structure 

of a half-transporter with one membrane spanning domain and one nucleotide binding fold. 

As most of the half-transporters identified to date function as dimers, it has been suggested 

that the peroxisomal ABCD transporters also need to assemble as homo- or heterodimers in 

order to form a functional unit [229, 230]. Hydrolysis of ATP is required to perform a directed 

transmembrane movement of their substrate. In order to be imported into peroxisomes, long-

chain fatty acids are esterified to CoA esters in the cytoplasmic side of the peroxisome 

membrane by chain-length specific acyl-CoA synthetases [231]. This modification makes the 

molecule more polarized, preventing it from passing through membranes. Although the exact 

functions and substrates of the mammalian peroxisomal ABCD-transporters have yet to be 

defined, the detrimental effects of a transporter deficiency is demonstrated by mutations in 

the ABCD1 gene, leading to the lipid storage disorder X-linked adrenoleukodystrophy (X-

ALD). 
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1.2.2.3. Peroxisomal functions 

Peroxisomes are involved in the metabolism of reactive oxygen species (ROS) and of many 

lipid derivatives and couple with their enzymes system ROS and lipid metabolism (e.g. acyle-

CoA oxidase 1-3) (see Fig.4; [232, 233]. They proliferate easily by interference with lipid 

metabolic pathways, e.g. after treatment with hypolipidemic drugs [234]. Peroxisomes house 

two pathways for ß-oxidation. They are generally involved in the biosynthesis of isoprenoids, 

such as retinoic acid derivatives and of important membrane lipids, such as cholesterol or 

plasmalogens - a group of ether lipids [235]. They are capable of metabolizing a range of 

bioactive lipids, such as leukotrienes and prostaglandins mediating inflammation or 

arachidonic acid and oxysterols which play a role in intracellular signalling. They are also 

involved in the synthesis of polyunsaturated fatty acids, which are implicated in signalling 

processes and apoptosis. In addition, peroxisomal β-oxidation takes part in the side-chain 

cleavage of cholesterol and could play a role in the conversion of gonadal steroids into 

inactive forms (Fig. 4). Thus, peroxisomal β-oxidation is essential for maintenance of the 

cellular homeostasis of lipids that are involved in the activation of many of ligand-activated 

nuclear receptors (PPARs, RXRs, and LXRs) [134, 236, 237]. 

 

1.2.2.4. Peroxisomal enzyme topology 

Many scientific publications showed that the enzymatic composition of peroxisomes varies 

among species and among organs in the same species [238]. In recent years more than 130 

proteins have been localized to peroxisomes [239]. The peroxisomal enzymes can be 

grouped as follows: (1) antioxidants (catalase, glutathione peroxidase 1 (GPX), 

peroxiredoxins 1, 5 (PRX1, PRX5) and superoxide dismutase 1 (SOD1) to degrade active 

oxygen species), (2) oxidases (acyl-CoA oxidases (ACOX1, ACOX2, ACOX3) urate, L-

pipecolic acid, polyamine, D-amino acid) for saturated, unsaturated, branchedchain fatty 

acids, arachidonic acid metabolites, L-dihydroxy acids and cholestanoic acid, (3) β-oxidation 

enzymes (multi-functional protein 1 and 2 (MFP1,2) and peroxisome 3-ketoacyl-CoA thiolase  

(THIOLASE) A and B / SCPx, (4) aminotransferases, (5) acyltransferases, (6) ether lipid 

syntheses enzymes (dihydroxyacetone phosphate (DHAPA) acyltransferase, alkyl-DHAP-

synthetase (DHAPS) and acyl-CoA reductase for the synthesis of plasmalogens [240] and 

(7) enzymes of cholesterol synthesis  (3-Hydroxy-3-methyl glutaryl-CoA (HMGCoA) 

reductase, isopentenyl-diphosphate isomerase 2 (IDI), farnesyl pyrophosphate synthetase 

(FPP) and mevalonate kinase (Mvk), and (8) other enzymes associated with the synthesis of 

dolichol and bile acids as well as acyl-CoA hydrolase [241]. Furthermore, also a form of 

inducible nitric oxide synthase (iNOS) has been described in peroxisomes of hepatocytes 

[242]. In addition, it has been shown than more then half of the peroxisomal enzymes which 
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have been identified are located in the matrix, such as the β-oxidation enzymes. Others are 

membrane-bound, the enzymes involved in the activation of long- and very-long-chain fatty 

acids and the enzymes that catalyze the initial reactions in ether glycerolipid synthesis as 

well as the enzymes that catalyze the terminal reactions in cholesterol and dolichol 

synthesis. A few enzymes are associated with crystalline matrical inclusions (urate oxidase, 

xanthin oxidase, α-hydroxy acid oxidase B). Many observations suggest that peroxisomes 

with different enzyme compositions may be responsible for specific function in different 

tissues or cell types. 

 

 

 
Figure 4: Model for a “general” peroxisome  

 

1.2.2.5. Peroxisomes and its syndromes 

There are two-group classifications of deficiencies based on organelle structure: (1) 

disorders of peroxisomal biogenesis (PBD) and (2) single-enzyme deficiencies with intact 

peroxisome structure.  

 

Deficiencies in peroxisome biogenesis 

Defective peroxisome biogenesis is associated with severe clinical manifestation, revealing 

the necessity and importance of regular peroxisomal metabolism for human health and 

survival. The diagnosis of a peroxisomal disease is made by the investigation of absent 

peroxisomal metabolic products, or the accumulation of “peroxisomal” intermediate, not 

oxidized derivatives due to deficient peroxisomal metabolism. The most severe peroxisomal 

biogenesis disorder is the cerbrohepatorenal syndrome of Zellweger (ZS) [243]. There are 
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other disorders included peroxisomal biogenesis disorder of ZS spectrum, exhibiting a less 

severe phenotype such as neonatal adrenoleukodystrophy (NALD) and infantile Refsum 

disease (IRD).   

Diseases of ZS group are an autosomal recessive disorders, caused by defective PEX genes 

whose protein products (peroxins; PEX / Pex…p) are normaly involved in the regulator 

biogenesis of these organelles. Patients with ZS, the severe progressive form have 

embryological malformations in the central nervous system and kidney, and develop 

degenerative pathological defects, including lives cirrhosis and a degeneration of the adrenal 

cortex, leading to adrenal insufficiency. Children with ZS suffer from general muscular 

hypotonia and die usually in the first year of life. In these patients, regular peroxisomes are 

absent in tissues, wherefore cholic and chenodeoxycholic acid, docosahexaenoic acid and 

ether lipids (plasmalogens) are not produced, very long-chain fatty acids as well as 

branched-chain fatty acids are accumulated. It has become clear that certain metabolic 

pathways in peroxisomes are essential for efficient substrate channelling and to protect the 

cells against toxic metabolites that are normally degraded in peroxisomes, e.g., reactive 

oxygen species (ROS) [244].  

 

Peroxisomal single-enzyme deficiencies 

Based on biochemical abnormalities a number of monogenic peroxisomal single-enzyme 

deficiencies have been described, presenting different severity in phenotype. Peroxisomes 

are present in the tissues of the patients, but lack one enzyme. This group includes, (1) X 

linked adrenoleukodystrophy (X-ALD) in which boys are affected, who develops normally for 

the first few years of life and thereafter rapidly deteriorates. There is also adult variant (2) 

adrenomyeloneuropathy (ANM). Other diseases include (3) pseudo-neonatal ALD or acyl-

CoA oxidase deficiency, (4) rhiztomelic chondrodysplasia punctata type 2 and 3, caused by 

mutations in DHAPS and DHAPAT genes, which encode the peroxisomal enzymes of the 

ether lipid syntheses pathway. Patients affected by these deficiencies show markedly 

lowered plasmalogen levels, which is in line with the notion that both enzymes play an 

indispensable role in ether-phospholipid biosynthesis [245]. 

 

Peroxisomal dysfunction and male fertility 

Metabolic pathways of peroxisomes are of vital importance for normal spermatogenesis and 

regular functions of the human testis. This is accentuated by the impaired spermatogenesis 

and infertility in adult patients with peroxisomal single enzyme deficiencies, such as X-linked 

adrenoleukodystrophy (X-ALD) or adrenomyeloneuropathy (AMN, a milder phenotype of X-

ALD) [246] [247]. Patients with X-ALD or AMN suffer from a defect of ABCD1 (formerly 

named “adrenoleukodystrophy protein” or ALDP), an ABC-transporter on the peroxisomal 
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membrane that is involved in the transport of very long-chain fatty acids (VLCFA) into the 

peroxisomal matrix [248]. Man with X-ALD exhibit an adreno-testiculo-leukomyelo-

neuropathic-complex of symptoms [249] with impairment of the testicular functions in 80% of 

these patients. Many of the patients exhibit elevated serum LH levels and show a 

significantly lower testosterone/LH ratio, indicating an impairment of Leydig cells (see Fig. 2). 

In addition, other ALD-patients with defects in spermatogenesis also showed elevated serum 

levels of FSH (Fig. 2; [250]). Histological analysis of testicular tissue from 7 juvenile and 6 

adult patients with X-ALD or AMN exhibited hypocellularity in the seminiferous tubules, a 

maturation arrest of spermatogenesis in distinct stages or a “Sertoli cells and 

Spermatogonia” only phenotype. Damage to Sertoli cells appeared to be the initial lesion of 

the seminiferous tubules. Germ cells showed vacuolization and necrosis, accompanied by 

slight tubular atrophy and thickening of the tunica propria [247]. In addition, Leydig cells were 

decreased in number and showed striations, suggestive for aggregates of VLCFA in the 

cytoplasm of these cells (Fig. 2; [247]). In ALD-patients, the decline of fertility can develop 

rapidly within only one year [251]. 

Similarly, patients with mild forms of peroxisomal biogenesis disorders (Zellweger spectrum 

patients), surviving to adolescence, show a complete degeneration of Leydig cells, resulting 

in hypocellular seminiferous tubules with spermatogenesis arrest and vacuolated Sertoli cells 

[252]. Severe forms of peroxisomal biogenesis disorders on the other hand lead to 

cryptorchidism [252], suggestive for an important function of peroxisomal metabolism also in 

the development of the testis and possibly the regulation of the androgen/estrogen balance 

or interference with androgen signalling [253][254]. 

Despite these deleterious effects of peroxisomal diseases on development, integrity and 

function of the adult testis, until the beginning of the experimented work of this thesis very 

little was known on peroxisomal metabolism in the testis. As indicated by the impaired 

spermatogenesis in peroxisomal diseases, however, normal function of peroxisomal 

metabolism is indispensable for male fertility. Thus, direct or indirect interference with 

peroxisomal metabolism might also play a role in the molecular pathogenesis of idiopathic 

infertility. 

 

1.2.3. Mouse models for peroxisome dysfunction show impaired spermatogenesis 

A number of mouse models have been generated to study the pathophysiology associated 

with peroxisome dysfunction in higher eukaryotes (for a review see [255]). Interestingly, 

several knockout mice with defects in single peroxisomal enzymes of anabolic and catabolic 

pathways of lipid metabolism were infertile, however, showed differences in the pattern of 

testicular pathologies and the level of spermatogenic arrest [256] [257] [258] [258].  
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Rodemer and colleagues described a mouse model disrupting plasmalogen synthesis by 

knockout of the gene encoding dihydroxyacetone-phosphate acyltransferase (GNPAT; 

formerly abbreviated DAPAT or DHAPAT). GNPAT is essential for one of the initial 

peroxisomal steps of plasmalogen synthesis. Adult GNPAT-deficient mice showed atrophic 

testes and an arrest of spermatogenesis. The germinal epithelium was disorganized 

exhibiting pachytene spermatocytes but a complete absence of elongated spermatids or 

spermatozoa [258]. 

Similarly, mice with defects in peroxisomal β-oxidation are infertile. According to reports in 

the literature, mice with a homozygous knockout of the acyl-CoA oxidase (ACOX1) gene 

showed reductions of the Leydig cell population and of spermatids, resulting in 

hypospermatogenesis [256]. However, the number and distribution of spermatogonia and 

spermatocytes was described as normal.  

Furthermore, the knockout of the MFP-2 gene (17β-OH-DSH), encoding a multifunctional 

protein that catalyzes the subsequent steps in peroxisomal ß-oxidation, also caused infertility 

in homozygous mice [259]. An early sign of the testicular pathologies in these mice was lipid 

accumulation within cells of the seminiferous tubules, which was described already in 

prepubertal MFP-2 knockout mice. At the age of five weeks, large lipid deposits were present 

in Sertoli cells and a maturation arrest of germ cells with reduction of elongated spermatids 

and subsequent disintegration of the germinal epithelium was observed. In the same article 

[259], shortly results on Sertoli cell-specific PEX5 knockout mice were reported. The 

phenotype in testes of these animals was similar to the one of MFP-2 deficient mice, 

suggesting that peroxisomal lipid metabolism of Sertoli cells is essential for regular 

spermatogenesis and integrity of the germinal epithelium. The testosterone levels in the 

serum of these animals was described as normal, however, there were no reports on the 

molecular pathogenesis of male infertility due to peroxisome deficiency.  

In this dissertation work, however, several reasons for the induction of metabolic toxicity and 

stress were found Sertoli-cell-specific Pex13 knockout mice (scsPex13KO). These results 

present the first evidence of causative relationship between defects in peroxisomal 

metabolism and the development of male infertility due to the interference with steroid and 

ROS metabolism, lipid toxicity and alterations of important signal transduction pathways. The 

scsPex13KO mouse generated and characterized during the experimental phase of this 

thesis periods is an excellent model system for male infertility due to peroxisome dysfunction. 
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2. Materials and Methods 
 

All details for buffers, media, and solutions are given in the comprehensive Table 8 at the 

end of the Materials and Method section. All details for reagents and suppliers are given in 

the Table 10 at the end of the Materials and Method sections. 

 

2.1. Human and animals tissue material used  

2.1.1. Human: Testis biopsies were obtained after written informed consent, immersion-fixed 

with Bouin-fixative and embedded in paraffin. All biopsies used were from the biopsy and 

tissue repository of the Hessian Center for Reproductive Medicine in Giessen, Germany. 

General approval for the repository biopsy collection has been granted by the ethics 

committee of the Medical Faculty of the Justus Liebig University Giessen. The three biopsies 

analyzed were from 35- and 39-year old men and were diagnosed as "normal 

spermatogenesis" based on histopathological analysis. 

 

2.1.2. Mice:  Male C57Bl/6J mice (Charles River Laboratories, Sulzfeld, Germany) at the age 

of 4-6 months and 14-day-old animals (for isolation of cells) were used for all experiments in 

order to characterized peroxisomes in testis. The animals were delivered two days prior to 

the experiments and housed under standard conditions with free access to standard 

laboratory food and water and a 12h dark-/light-cycle. Experiments with laboratory mice were 

approved by the Government Commission of Animal Care Germany. 

 

2.1.3. GFP-PTS1 transgenic mice:  A fusion protein of the green fluorescent protein (GFP) 

and the peroxisomal targeting signal 1 (PTS1) is frequently used for visualization of 

peroxisomes in living cells [260]. The transgenic mouse line used in our study has been 

generated in the laboratory of Prof. Zimmer (Dept. Neurobiology, University of Bonn, 

Germany) by injecting a GFP-PTS1 cDNA fragment under the control of the murine Rosa26 

promoter into the pronucleus of CD1 mouse zygotes. Further details on this transgenic 

mouse line will be published elsewhere (Lüers et al., in preparation). The animals used were 

housed in the animal facility in Marburg, and testis biopsies were brought to our laboratory 

for experimental purpose only. 

 

2.1.4. Necessary transgenic mouse lines for generation of Sertoli cell-specific Pex13 

knockout mice (scs Pex13KO) 

• Pex13loxP – transgenic mice 

The Pex13loxP transgenic mouse line in C57Bl/6J background was obtained from the group 

of Denis I. Crane [1] for collaboration projects (cooperation agreement with Prof. Baumgart-
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Vogt, Institute for Anatomy and Cell Biology II). The animals were delivered after the embryo 

transfers at the Transgenic Animal Facilities at the UKE Hamburg to the Central Animal 

Facility (Zentrales Tier Labor ZTL) of the Justus Liebig University, Giessen. Heterozygous 

animals of this line were crossed with C57Bl/6J (wild-type animals) and are now in the F12 

generation of backcrosses in the ZTL Giessen. In the transgenic animals, the exon 2 of the 

murine Pex13 gene is flanked by loxP sites (loxP: locus of crossing over of the P1 phage), 

which are 35bp sequences recognized by the enzyme Cre-recombinase (Cre: “catalyses 

recombination” in the P1 phage). 

• Amh-Cre  – transgenic mice 

The Amh-Cre transgenic animals in C57Bl/6J background were obtained from the central 

animal facility in Hamburg / Eppendorf after a user agreement with INSERM (Prof. Guillou) 

[10]. The heterozygous AMH-Cre animals were crossed with C57Bl/6J wildètype animals in 

the central animal facility of the Justus Liebig University, Giessen and are now in the F6 

generation of the backcrosses in the ZTL. These animals express the Cre-recombinase 

under the control of the anti-Müllerian hormone promoter (AMH-Cre), which drives the Cre 

expression only in Sertoli cells of the testis. 

 

2.2. Breeding strategy of generation scs Pex13KO mice using the Cre-loxP  system 

All experimental procedures using transgenic mice were performed in accordance with the 

guidelines of the German Government Commission of Animal Care and approved by the 

Regierungspräsidium Giessen (Allowance V54-19c 20/15c GI 20/23 to Prof. Baumgart-Vogt). 

The Sertoli cell-specific deletion of exon 2 of the animals Pex13 gene was achieved by 

crossing Pex13-floxed mice with AMH-Cre transgenic. The parental generation consisted of 

homozygous male (or female) Pex13loxP/loxP mice in C57Bl/6J background, which was crossed 

with corresponding female (or male) animals expressing Cre recombinase exclusively in 

Sertoli cells. Heterozygous female (or male) (scsPex13WT/∆ex2 / Amhcre+/-) from the F1 

generation were then backcrossed to homozygous male (or female) (scsPex13loxP/loxP) mice 

in order to generate F2 offspring with the following genotypes: scsPex13KO 

(scsPex13∆ex2/∆ex2/ Amhcre+/-), scsPex13HTZ (Pex13WT/∆ex2/ Amhcre+/-) and Pex13WT 

(Pex13WT/loxP) mice. Mice of this F2 generation were born with the expected Mendelian 

frequency and were grossly indistinguishable from their non-KO littermates, after birth. For 

the experiments F2 male mice were used. The numbers of the mice used for each 

experiment are given in the different figure legends.  
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Figure 6.  Strategy of mating to create tissue-specific scs Pex13KO mice.  Parental generation: Pex13 loxP/loxP 
(homozygous Pex13loxP mouse line) and Pex13WT/WT / Amhcre+/- (heterozygous Amhcre mouse line); First 
generation (F1 offsprings): heterozygous female (male) (scsPex13WT/∆ex2 / Amhcre+/-) backcrossed to 
homozygous male (female) (Pex13loxP/loxP); second generation (F2 offspring genotypes): scsPex13KO 
(scsPex13∆ex2/ ∆ex2 / AMHcre+/-), scsPex13HTZ (scsPex13WT/∆ex2 / AMHcre+/-) and scsPex13WT (Pex13WT/loxP) 
mice. 
 

2.3. Genotyping with the polymerase chain reaction (PCR)  

DNA for all genotyping experiments was prepared from mouse ear samples using a 

deproteinization procedure, salting out of the cellular proteins by dehydration and 

precipitation with a saturated NaCl solution. This procedure is an adapted method from Miller 

[261]. Over the samples 600 µl lysis buffer (50 mM Tris, 400 mM NaCl, 100 mM EDTA, 0.5% 

SDS) and 20 µl of protease K (15 mg/ml, Roche) solution were added. The samples were 

digested overnight at 55°C with shaking at 900 rpm (Thermomixer comfort, Eppendorf). After 

the completion of the digestion 167 µl saturated 6 M NaCl was added to each tube and 

shaken vigorously for 15 sec, followed by centrifugation at 3,000 g for 5 min. The precipitated 

protein pellet was left at the bottom of the tube and the supernatant containing the DNA was 

transferred to a new 1 ml Eppendorf tube. In each tube 700 µl of absolute ethanol were 

added (RT) and the tubes were centrifuged at 3000 g for 2 min. The supernatant was 

removed from each tube. The DNA pellet was washed by addition of 1 ml of 70% ethanol 
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(RT) and subsequent centrifugation for 5 min at 3,000 g (RT). Thereafter the 70% ethanol 

was removed and the tubes were placed with open lid in the Thermomixer at 65°C for 10 min 

for air drying. In each tube 20 µl of TE buffer (10 mM Tris-HCL, 0.2 mM Na2EDTA, pH 7.5) in 

was added and the DNA was allowed to dissolve 10 min at 37°C before quantification. 

The Cre-PCR conditions were as follows: first denaturation at 94°C for 3 min, followed by 34 

cycles [denaturation at 94°C for 30 s, annealing at  55°C for 45 s, elongation at 72°C for 1 

min], and final elongation at 72°C for 5 min. PCR p roducts were separated in a 1.5% agarose 

gel containing ethidium bromide for visualization (Sigma-Aldrich, Munich, Germany). For 

simultaneous detection of the Pex13loxP allele and the Pex13 WT allele, appropriate primers 

(Table 6) were applied, generating a 504bp Pex13floxed amplicon and a 490bp Pex13WT 

amplicon. PCR conditions were as follows: first denaturation at 94°C for 3 min, followed by 

29 cycles [denaturation at 94°C for 3 min, annealin g at 57°C for 45 s, elongation at 72°C for 

1 min], and final elongation at 72°C for 5 min. PCR  products were separated in a 2% agarose 

gel containing xuM (xmg/ml) ethidium bromide.  

 
Table 1. Reagents used to perform the genotyping PCR  
 

Reagent Cre-PCR  
Volume (in µl) 

Pex13loxP-PCR 
Volume (in µl) Final Concentration 

10X Buffer 2.5 2.5 1X 

10 mM dNTPs 0.5 0.5 200 µM 

5 U Taq 0.2 0.2 1 U 

10 µM primer 1 1.0 1.0 0.4 µM 

10 µM primer 2 1.0 1.0 0.4 µM 

DMSO 1.5  0.845 M 

Braun-H2O QS 25 µl QS 25 µl - 

DNA Varies Varies 200 ng 

Final Volume 25.0 25.0 - 

          QS, Quantum Satis, the amount which is needed to reach 

 

2.4. Laser micro-dissection of testes from 130 day-old mice scs Pex13KO, 

scs Pex13HTZ and scs Pex13WT  

Three 130 day-old mice of each animal genotype (scsPex13KO, scsPex13HTZ and 

scsPex13WT) were anesthetized as described (3.4.1.). The testes were embedded directly 

into a cryo-preservative solution (Optimal Cutting Temperature, OCT, Tissue-tek®) in 

freezing molds and placed in liquid nitrogen. The OCT-embedded tissue was stored at -80°C 

prior to use. Frozen section were cut at 10 µm thickness and placed on 1 mm PEN 

membrane slide (cat no. 415101-4401-000, P.A.L.M. Microlaser Technologies GmbH, 
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Bernried, Germany) for UV laser cutting. The slides were stained immediately with Mayer’s 

hematoxylin with the following procedure: 70% ethanol fixative for 3 sec, DEPC water for 5 

sec, Mayer’s hematoxylin for 15 sec, DEPC water for 5 sec, 70% ethanol for 5 sec, 95% 

ethanol for 10 sec, 2 times. The stained slides were air dried as quickly as possible. The 

testis sections were inspected with an Axio Observator microscope (Carl Zeiss) and 

microdissected with a P.A.L.M. laser-capture micro-dissection control unit using P.A.L.M 

RoboSoftware 4.0. (P.A.L.M. Microlaser Technologies GmbH, Bernried, Germany). 150 

cross-sections from epithelial seminiferous tubules were catapulted into the lid of a 500 µl 

LPC-Microfuge tube (cat no. 1440-0200, P.A.L.M. Microlaser Technologies GmbH) and 

resuspended in RLT buffer (cat no. 56304, QIAamp DNA Micro Kit 50, QIAGEN). One 

thousand cells were the starting material for DNA isolation for each mouse phenotype. The 

DNA was isolated with QIAamp DNA Micro Kit 50 (cat no. 56304, QIAGEN) and its 

concentration was measured with a NanoDrop instrument (ND-1000 Spectrophotometer, 

Technology, Inc. USA). Two hundred nanograms of DNA were used for the genotyping 

PCRs as described in section 3.2. In addition, for comparison the DNA was isolated from tail 

and liver with the QIAGEN DNA MicroKit. Two hundred nanograms DNA was used for the 

subsequent genotyping PCR. 

 

2.5. Morphological experiments 

2.5.1. Fixation and embedding of the tissue 

In the first set of experiments, wild type C57Bl/6J mice (Charles River) were anesthetized by 

intraperitoneal injection (100 mg/kg ketamine and 10mg/kg xylazine, sedastress) and 

perfused through the heart with 4% depolymerized paraformaldehyde (PFA) containing 2% 

sucrose in PIPES or PBS, pH 7.4. After fixation, testes were removed, the capsule was 

punctured at both poles and immersion-fixed in the same fixative overnight. The complete 

testes were embedded into paraffin (Paraplast®, Sigma, St. Louis, MO, USA), using a Leica 

TP 1020 automated vacuum tissue infiltration processor (1x 70%, 80%, and 90%, 3x 100% 

ethanol - each time for 90 min; 2x xylene, 2x paraffin - each time for 2 h). 

In the second set of experiments, scsPex13KO, scsPex13HTZ and scsPex13WT mice of 

postnatal days 15, 30, 60, 90 and 130 age were anesthetized in the same way as described 

above. After collection the blood directly from the heart, for lipid analyses, the testes were 

excised, fixed overnight in 4% (w/v) PFA containing 2% sucrose in PBS, pH 7.4 and 

processed for paraffin embedding exactly as described above. Paraffin blocks of testes were 

cut on a LEICA RM2135 rotation microtome into sections of 1-3 µm thickness. 
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2.5.2. Fixation and processing of testes for frozen sections 

For the first set of experiments, testes of GFP-PTS1-transgenic mice were fixed by perfusion 

of the animals in Marburg (Institute of Anatomy and Cell Biology, Georg H. Lüerss) and the 

fixed testis samples were transferred to Giessen on the same day. Corresponding C57Bl/6J 

wild type mice were fixed by perfusion via the heart with 4% (w/v) PFA in 0.15 M HEPES, pH 

7.4. The testes were excised, the capsule punctured at both poles with a needle and 

immersed in the same fixative overnight. Thereafter they were incubated in 25% sucrose for 

about 2 days, until they were completely penetrated and subsequently frozen and stored at -

80°C. Cryosections obtained on a LEICA microtome (C M3050) were either directly analyzed 

by CLSM to monitor the GFP fluorescence or subjected to immunofluorescence using the 

antibody against Pex14p without antigen retrieval and lower detergent concentrations in the 

incubation buffers. 

For the second set of experiments, testes of scsPex13KO, scsPex13HTZ and scsPex13WT 

of 130 day-old mice were excised, the capsules punctured, and fixed by immersion overnight 

in 4% PFA containing 2% sucrose in PBS, pH 7.4. Fixed testes were snap-frozen in liquid 

nitrogen and stored at -80°C. Cryosections of 10 µm, obtained on a LEICA microtome 

(CM3050), were subjected to Oil O Red staining. 

 

2.5.3 Fixation and processing of tissue for electron microscopy – Cytochemical 

localization of catalase activity with the alkaline DAB-method 

C57Bl/6J wild type mice and scsPex13KO, scsPex13HTZ and scsPex13WT mice (90 and 

130 day-old) were anaesthetized and perfused via the left ventricle with a mixture of 4% 

PFA, 0.05% glutaraldehyde (GA) in 0.01 M cacodylate buffer (pH 7.4) and 2% sucrose. After 

fixation, the testes were carefully removed, cut in slices with razor blades, post-fixed in 1% 

(GA) in cacodylate buffer (pH 7.4) for 15 min, and washed 3 x for 5 min with 0.1 M 

cacodylate buffer. For cytochemical localization of catalase, specimens were incubated for 

3 h at 45°C in the alkaline 3,3'-diaminobenzidine ( DAB) medium.[262] The DAB medium 

consisted of 0.2% DAB, 0.1% H2O2, 0.01 M Teorell-Stenhagen buffer, pH 10.5. Razor blade 

sections were stuck on agar-coated cover slips and incubated in a water bath shaker for 30 

min at 45°C in this solution without H 2O2, followed by 1, 2, or 3h DAB rection at 45°C. Afte r 

rinsing the sections with cacodylate buffer, post-fixation was done in 1-2% aqueous osmium 

tetroxide overnight. Samples were dehydrated in a series of graded ethanol (70%, 80%, 

90%, 100% 3x 15 min each step) and embedded in Epoxy resin. After cutting of 1 µm semi-

thin sections for the selection of the regions of interest, 80 nm-ultrathin sections were cut on 

a LEICA microtome (VT1000S) and inspected after contrasting with a LEO 906 electron 

microscope. 
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2.5.4. Immunoelectron microscopy 

Three control C57Bl/6J and three GFP-PTS1-transgenic mice were anesthetized, perfused 

and testes were fixed as described above. Fixed testes were cut into slices with a razor 

blade and embedded into LR White resin (medium grade) according to the protocol of 

Newman and colleagues [4]. LR White-filled gelatin capsules were polymerized at 50°C for 

three days. After cutting of 1 µm semithin sections, they were stained with methylene blue 

and analyzed to select the regions of interest (areas with defined stages of seminiferous 

tubules). After trimming of the blocks, ultrathin sections of 80 nm were cut, collected on 100 

mesh nickel grids and coated on the back side with a 1% formvar film. The grids were dried 

at 37°C overnight prior to immunostaining. The sect ions on the grids were incubated with 

blocking solution (1% BSA in TBST) for 30 min at RT. Incubation with the primary antibodies 

(anti-GFP 1:100 - 1:2000; anti-CAT 1: 500 - 1:10000 and anti-PEX13 1:500 – 1:5000) was 

performed on droplets overnight in TBST with 0.5% BSA at room temperature (RT) in a wet 

chamber. The sections were intensively washed on a series of TBS drops (10 drops each) 

and incubated with a protein A-gold solution (OD:0.45 1:75, 15 nm colloidal gold particles) for 

1 h at room temperature [263]. Negative controls were processed in parallel a) by addition of 

TBST-buffer instead of the first antibodies or b) by antigen preabsorption of the first antibody 

(catalase preabsorption of the anti-catalase antibody). The grids were rinsed on droplets of 

TBST and subsequently contrasted with uranyl acetate for 2 min and lead citrate for 45 

seconds. The sections were examined using a LEO 906 electron microscope. 

 

2.5.5. Immunohistochemistry (IHC)  

A three-step ABC-method with peroxidase detection was used for localization of peroxisomal 

catalase in mouse samples by IHC. For improved antigen retrieval and accessibility of 

epitopes, deparaffinized and rehydrated testis sections were subjected to digestion with 

trypsin for 10-15 min at 37°C, followed by microwaving in 10 mM citrate buffer at pH 6.0 for 3 

x 5 min at 900 W in a conventional household microwave oven [264]. Cuvettes were filled up 

to the same volume with water between each microwaving step. The endogeneous 

peroxidase was blocked with 3% H2O2 for 5 min at RT. Non-specific binding sites were 

blocked with 4% bovine serum albumin (BSA) and in TBS with 0.05% Tween 20% (pH 7.4) 

(TBST)  and avidin from an endogenous biotin blocking kit (Blocking kit, VECTOR, 

Burlingame USA). Subsequently, sections were incubated with primary antibodies for 

catalase (1:1,000) (Polysciences, Inc. Catalog no. 23728 Warrington, USA) in 1% BSA in 

TBST overnight at 4°C. In this solution, biotin (Blocking Kit, VECTOR, Burlingame U.S.A) 

was added to saturate the bound avidin. On the following day, the sections washed 3 x 5 min 

in TBST and incubated with the biotinylated goat anti-rabbit antibody (1:200) (Rabbit 

Extravidin Kit, Sigma, St. Louis, Missouri, USA) for 2 h. After washing 3 x 5 min with TBS, 
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sections were incubated with extravidin peroxidase (1:1,000) (Rabbit Extravidin Kit, Sigma, 

St. Louis, Missouri, USA) for 20 min. The antigen – anitibody complexes were visualized by 

peroxidase staining with NovaRed as substrate (VectorLab) for 5 min at RT. The nuclei were 

counter-stained with diluted 50% hematoxylin for 45 sec at RT. 

 

2.5.6. Immunofluorescence (IF) 

A two step IF-protocol was established for immunolabelling of paraffin sections. Sections 

were deparaffinized and rehydrated as follows: Xylene 3 x 10 min, absolute ethanol 2 x 

5 min, 96% ethanol, 80% ethanol, 70% ethanol, and aqua dest, each step for 1 x 5 min at 

RT. For improved retrieval of peroxisomal antigens and accessibility of epitopes, 

deparaffinized and rehydrated testis sections were subjected to digestion with trypsin (in 

TBS) for 15 min at 37°C, followed by microwave trea tment for 15 min at 900 W in 10 mM 

citrate buffer at pH 6.0 (modified according to [264]). Nonspecific binding sites were blocked 

with 4% TBSA for 2 h at RT and the sections were incubated with primary antibodies in 1% 

BSA in TBST overnight at 4°C. On the following day,  the sections were incubated after 3 x 5 

min washing with TBST, with fluorochrome-conjugated secondary antibodies (diluted in 1% 

BSA TBS). For a complete summary of all antibodies, suppliers and functions of antigens 

see Table 5. Since individual, specific pre-immune sera were not available for most 

antibodies, negative controls were processed in parallel a) by addition of TBST-buffer instead 

of the first antibodies or b) by antigen pre-absorption of the first antibody (3.4.7). Nuclei were 

visualized with 1 µM TOTO-3 iodide for 30 min at RT (Molecular Probes/Invitrogen, Carlsbad, 

USA). Thereafter, samples were inspected with a LEICA fluorescence microscope and the 

best preparations were used for confocal laser scanning microscopy (CLSM) with a LEICA 

TCS SP2. Table 6 summarizes the antibodies used in this study. Images were processed 

with Adobe Photoshop CS. Figures were mounted in 300 pixels/inch resolution into figure 

plates and the text inserted in additional layers. Figure plates of the thesis were printed with 

a Lexmark HPColor Laser Jet2605dn printer on 90 g/m2 paper (HP). 

 

2.5.7. Analysis of the specificity of catalase antiserum by antigen competition 

The polyclonal antiserum against catalase (Polysciences Inc., City, Country, dilution range 

1:100 – 1:1000) was pre-incubated with bovine liver catalase at a final concentration of 6.45 

mg/ml (Sigma) for 1h at RT, centrifuged at 13.000 x g for 15 min at 4°C (Eppendorff 

centrifuge) and the depleted supernatant was used for immunostaining experiments. Paraffin 

sections were incubated overnight in parallel a) with supernatant from the catalase-

preabsorption procedure or b) with the regular antiserum against catalase. After 3 x 5 min 

washing, the sections were incubated with AlexaFluor488-conjugated secondary anti-rabbit 
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antibodies (dilution 1:200) for 1h followed by washing in TBST and counter-staining for the 

nuclei with DAPI. 

 

2.5.8. Hematoxylin and eosin (H&E) staining 

Paraffin sections (5 µm thick) of testes from 15-, 30-, 60-, 90- and 130 day-old mice 

scsPex13KO, scsPex13HTZ and Pex13WT were stained with hematoxylin and eosin. 

Sections were deparaffinized and rehydrated as follows: Xylene 3 x 10 min, absolute ethanol 

2 x 5 min, 96% ethanol, 80% ethanol, 70% ethanol, and aqua dest, each step for 1 x 5 min. 

The sections were stained for 7 min in 10% Mayer's Hematoxilin. After washing 10 min under 

the tap water for revealing the nuclei, the cytoplasm was stained for 5 min in 1% Eosin 

containing 0.2% glacial acetic acid. The slides were shortly washed with tap water and 

dehydrated short in 1 x 70%, 1 x 80%, 2 x 96%, 3 x in absolute alcohol, each step for 2 min, 

followed by 3 x 10 min in Xylene. The sections were examined with a LEICA CMRD 

microscope equipped with a LEICA CD 480 camera. 

 

2.5.9. Oil Red O staining  

Frozen sections of 130 day-old scsPex13KO, scsPex13HTZ and scsPex13WT mice were 

stained with Oil Red O (ORO) in order to detect lipids. ORO staining was performed 

according to a standard protocol (www.ihcworld.com) using 0.5% ORO stock solution in 

isopropanol. The 0.3% ORO working solution had to be freshly prepared from the stock with 

bi-distilled water. Cryosections (10-15 µm) were cut with a LEICA microtome (CM 3050) and 

air dried for 30 min, followed by fixation with ice cold 10% formalin for 5 min. Thereafter, the 

sections were rinsed in 3 changes of distilled water and rinsed with 60% isopropanol to avoid 

carrying of water into the Oil Red O solution. The section were stained with the freshly 

prepared ORO working solution for 15 min at RT and rinsed ones with 60% isopropanol. 

Nuclei were lightly counter-stained with Mayer’s haematoxylin (5 dips for 5 sec) and rinsed 

thereafter with distilled water. The stained sections were mounted in glycerol gelatine 

medium (GG1 Sigma-Aldrich) and inspected with a LEICA DMRD microscope equipped with 

a LEICA CD480 camera. 

 

2.5.10 TUNEL assay  

Cell death was detected with a TUNEL assay on paraffin-sections from P90 and P130 

scsPex13KO and scsPex13HTZ testes by using the Apoptosis in situ detection kit (Chemicon 

International, S7165). Sections were deparaffinized and rehydrated as follows: Xylene 3 x 10 

min, absolute ethanol 2 x 5 min, 96% ethanol, 80% ethanol, 70% ethanol, and aqua dest, 

each step for 1 x 5 min. The rehydrated testis sections were subjected to digestion with 

trypsin for 15 min at 37°C, followed by microwave t reatment for 3 x 5 min at 900 W in 10 mM 
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citrate buffer at pH 6.0. The sections were washed in 2 changes of PBS for 2 min each. For 

positive controls, the sections were incubated for 10 min at RT with 1 unit of DNase I 

(Amplification grade, Invitrogen). The excess PBS was aspirated around the section and the 

equilibration buffer from the kit was immediately applied for 10 sec. After the buffer was 

removed, the terminal deoxynucleotidyl transferase enzyme (TdT), diluted 3:10 with reaction 

buffer, was applied onto the sections followed by an incubation for 1h in a humidified 

chamber at 37°C. The sections were transferred to c oplin jars, containing the stop buffer 

from the kit for 10 min at RT and were thereafter washed 3 x 1 min in PBS. Finally, the anti-

digoxigenin conjugate (rhodamine-conjugated) was applied to the sections for 30 min at RT 

in the dark. After 4 x 2 min washes with PBS, sections were counterstained with TOTO-3 

iodide (Molecular Probes/Invitrogen, Carlsbad, USA) for 20 min at RT and embedded with 

Mowiol 4-88/n-propylgallate. The sections were inspected with a LEICA DMRD fluorescence 

microscope and pictures of region of interest were taken with a LEICA TCSSP2 CLSM (63x 

objective). 

 
2.6. Primary culture of somatic testicular cells 

Ten adult mice and fifteen 14-day-old mice in C57Bl/6J background were sacrificed by 

cervical dislocation and the testes excised aseptically and processed for the isolation of 

different somatic cell types. 

 

2.6.1. Isolation and culture of Leydig cells 

 Isolation of Leydig cells was performed according to the method of Schumacher and 

colleges [265] with some modifications. All following procedures were carried out under 

sterile conditions. The tunica albuginea was carefully removed from the testis and 

seminiferous tubules and interstitial cells were dispersed by treating the decapsulated testis 

with collagenase A (1 mg/ml), hyaluronidase (1 mg/ml), and DNAse (20 µg/ml) in Dulbecco`s 

Modified Eagle Medium/Ham`s F-12 (DMEM/F12; 1:1, v/v) with 10 mM HEPES (pH 7.4) at 

34°C for 20 min in a shaking water bath. Seminifero us tubules were removed by 

sedimentation on ice for 2 min. The crude interstitial cells were collected by centrifugation at 

1,000 x g for 5 min and resuspended in 6 ml DMEM/F12, supplemented with 2.2 µg/l sodium 

bicarbonate, 500 ng/ml insulin, 12 mg/l gentamicin and 1 mg/ml BSA. Two ml of the 

resuspended cells were loaded onto a five-layer discontinuous Percoll gradient (21, 26, 34, 

40 and 60%) in isotonic Eagle’s salt buffer containing 0.07% serum albumin and centrifuged 

at 800 x g for 30 min at 20°C. Highly purified Leyd ig cells were found in the third band of the 

Percoll gradient. The isolated Leydig cells were washed twice with serum-free medium 

DMEM/F12 with 10 mM HEPES (pH 7.4) and centrifuged at 100 x g for 8 min at RT. They 

were plated at a density of 1 x 105 /cm2 in 12-well dishes in DMEM/F12 with 15% (v/v) horse 
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serum and supplemented with 2.2 µg/l sodium bicarbonate, 500 ng/ml insulin, 12 mg/l 

gentamicin, and 1 mg/ml BSA. The cells were cultivated at 34°C in a humidified atmosphere 

of 5% CO2 and 95% air. After 24 hours, Leydig cells were cultured in supplemented but 

serum-free DMEM/F12 for additional 3 days. The purity of the resulting Leydig cells 

preparation was determined by indirect immunofluorescence with an antibody against the 

mitochondrial cytochrome P450, cholesterol side-chain cleavage enzyme (CYP450scc), a 

marker specific for this cells type. 90-95% of the cells were cytochrome P450 positive, 

indicating a high enrichment and differentiation of Leydig cells within the preparation. These 

cells were taken for experiments after 3 days of culture. Leydig cells have been collected 

from three distinct sets of experiments. 

 

2.6.2. Isolation and culture of peritubular myoid and Sertoli cells 

Sertoli cells and peritubular cells from 15 mice of 14-day-old C57Bl/6J mice were isolated by 

a slightly modified protocol of Monssees and colleagues [266]. Decapsulated  testes were 

minced into small fragments and incubated at 34°C f or 15 min with collagenase A (1 mg/ml) 

in DMEM/12 with L-glutamine plus 15 mM HEPES and DNAse (20 µg/ml). Subsequently, the 

cells were dispersed by incubation with (2 mg/ml) collagenase A, hyaluronidase (2 mg/ml), 

and DNAse (20 µg/ml) in DMEM/F12 with L-glutamine plus 15 mM HEPES at 34°C for 30 

min. Enzymatic digestions were stopped by brief treatment with soybean trypsin inhibitor 

(400 µg/ml) in DMEM/F12, supplemented with 2 mg/ml BSA. The cell suspension was 

centrifuged for 45 sec at 50 x g. The supernatant, enriched with peritubular cells, was 

decanted. The cells from the supernatant were washed with RPMI 1640 medium and 

centrifuged at 50 x g for 10 min. Peritubular cells were resuspended and cultured in RPMI 

1640 medium supplemented with 10% (v/v) fetal calf serum (FCS), 1000 IU/l penicillin and 50 

mg/l streptomycin at 34°C in a humidified atmosphere of 5% CO2 and 95% air. After splitting 

the cells 4 times, they were seeded at a density of 2 x 104 cells per ml onto either collagen- 

or poly-L-lysin-coated Petri dishes. The identity of these cells as peritubular cells was based 

on phase-contrast morphology and indirect immunofluorescence staining using anti-α-

smooth muscle actin as specific cell marker. The purity of peritubular cell preparation was 

higher than 95%. 

To separate the Sertoli cells and germ cells from each other the pellet with seminiferous 

tubules (see above) was further digested with (2 mg/ml) collagenase A, (2 mg/ml) 

hyaluronidase and (20µg/ml) DNAse in DMEM/F12 for 20 min at 34°C. Cell clusters were 

gently dispersed by homogenization using a potter. The cell suspension was filtered through 

a sterile (70 µm pore size) nylon mesh (BD Falcon, Bedford, USA). Cells were seeded at a 

density of 1.5-2 x 107 onto 100 mm2 in matrigel covered culture dishes. They were cultured in 

DMEM/F12 GlutaMAX supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 
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streptomycin, 10 ng/ml epidermal growth factor, 5 µg/ml human transferrin, 2 µg/ml insulin, 

10 nM testosterone, 100 ng/ml follicle-stimulating hormone and 3 ng/ml cytosine arabinoside 

and incubated at 34°C in a humidified atmosphere of  5% CO2 and 95% air. After 3 days of 

culture the Sertoli cell monolayer was subjected to hypotonic shock to remove germ cells and 

increase the purity of the Sertoli cell preparation by incubation with 20 mM Tris-HCl (pH 7.5) 

for 5 min at RT [267]. The hypotonic solution was replaced with medium (without cytosine 

arabinoside). The medium was exchanged every day and the Sertoli cells were used for 

experiments after additional 3 days in culture. The identity of these cells as Sertoli cells was 

based on immunostaining for vimentin as specific cell marker. The purity of the cultures was 

higher than 95%. Sertoli cells and peritubular cells were collected from three distinct sets of 

experiments. 

 

2.7. Subcellular fractionation by differential centrifugation for the isolation of enriched 

organelle fractions  

2.7.1. Isolation of enriched peroxisomal fractions from primary cultures of Leydig-, 

peritubular myoid- and Sertoli cells 

Distinct cell preparations (18 x 106 Sertoli cells, 12 x106 Leydig cells, 1 x107 peritubular 

myoid cells) were homogenized in homogenization medium (HM: 150 µl 5 mM MOPS, 

pH 7.4, 250 mM sucrose, 1 mM EDTA, 0.1 % (v/v) ethanol, 0.2 mM dithiothreitol, 1 mM 6-

aminocapronic acid), supplemented with protease inhibitors (10% protease inhibitor mix M, 

Serva, Heidelberg, Germany) with a single stroke (2 min, 1,000 rpm) using a Potter-Elvehjem 

homogenizer (Potter-S, B. Braun, Melsungen, Germany). The homogenate was centrifuged 

at 1,900 x g for 10 min. The resulting supernatant (S1a) was kept on ice and the pellet was 

resuspended in 100 µl HM and recentrifuged at 1,900 x g, resulting in the supernatant (S1b) 

and a pellet (P1) with large mitochondria and nuclei. The combined supernatants S1 (S1a 

and S1b) were further subjected to centrifugation at 50,000 x g for 20 min to yield the 

enriched peroxisomal fraction (pellet) and the supernatant S2a. The enriched peroxisomal 

pellet was resuspended in 100 µl HM and recentrifuged again at 50,000 x g for 20 min, 

yielding the enriched peroxisomal fraction (P2) and the supernatant S2b. The supernatants 

S2a and S2b were combined (S2). Fractions S1, P1, S2, and P2 were analyzed by Western 

blotting. The enriched peroxisomal fraction is a mixed organelle fraction (= light mitochondrial 

fraction “LM”, also known as D-fraction), containing a high amount of peroxisomes as well as 

mitochondria, lysosomes and a lower amount of microsomal vesicles [268]. 
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2.7.2. Isolation of enriched organelle fractions of interstitial, pertubular and tubular 

cells of the testes of 130 day-old scs Pex13KO, scs Pex13HTZ and scs Pex13WT mice 

A pool of four testes was used from each phenotype to isolate interstitial cells (containing 

mainly Leydig cells, few macrophages, and few endothelial and smooth muscle cells), 

peritubular and tubular cells (containing Sertoli cells and germ cells) from 130 day-old 

scsPex13KO, scsPex13HTZ and scsPex13WT mice. Decapsulated testes were minced into 

small fragments and processed by a first collagenase A and hyaluronidase digestion step as 

described above (3.6.1). The seminiferous tubules were removed by sedimentation for 2 min. 

The supernatant was subsequently centrifuged for 5 min at 1,000 x g to obtain the interstitial 

cells (= crude Leydig cells fraction). The interstitial cell pellet was gently dispersed in PBS for 

washing and re-centrifuged for 5 min at 1,000 x g. 

Subsequently, the first tubular cell sediment was dispersed in a second digestion as 

described in chapter 3.7.2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Subcellular fractionation and isolation of peroxisomes from primary cultures of Leydig, 
peritubular and Sertoli cells . The culture cells of the testis were homogenized in homogenization medium and 
the subcellular fractionation was done as shown in the diagram which is a modification after A.Völkl and HD 
Fahimi [268]. 
 

Thereafter, the cell suspension was centrifuged for 45 s at 500 x g yielding a pellet with 

seminiferous tubules. The supernatant containing peritubular cells was collected, centrifuged 

for 5 min at 1,000 x g, washed with PBS and re-centrifuged for 5 min at 1,000. The pellet with 

seminiferous tubules was gently dispersed by homogenization using a potter. The cell 

suspension was centrifuged for 5 min at 1,000 x g and the pellet was washed with PBS. 
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Pellet 1Supernatant 1a
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Supernatant 1b P1: Large mitochondria and nucleiS1:
Post-mitochondrial 

Supernatant

50000 × g

Supernatant 2a

50000 × g

Supernatant 2b P2: Enriched peroxisomal fractionS2:
Final 

Supernatant 

Pellet 2a: crude peroxisomal fraction



Materials and Methods 

40 / 169 

For the isolation of enriched organelle fractions, all cell preparations were homogenized in 

HM for 5 min according to the protocol described in chapter 3.8.1. In contrast to the 

procedure described in Fig. 6 (chapter 3.7.1.), one additional 300 x g centrifugation step for 

10 min was introduced to the protocol to remove cell clumps. Thereafter, the protocol was 

followed as indicated in Fig.6. Since the subcellular fractionation protocol yielded pellets with 

different sizes for distinct cell preparations from scsPex13WT and HTZ in comparison to 

scsPex13KO mice, the resulting organelle pellets were resuspended in appropriate amount 

of HM according to the size of the pellets (see Table 2). 

 

Table 2. Volume of the homogenization medium (HM) added to cell preparation. 

Cell preparation scsPex13 WT scs Pex13HTZ scs Pex13KO 

Interstitial cells 200 µl 200 µl 150 µl 

Tubular cells 300 µl 300 µl 100 µl 

 

The fractions obtained from each centrifugation step and the amounts of HM that were added 

on each pellet are summarized in Table 3 and 4. Pellet 1 (P1) which contains the cell debris 

is not indicated in the table 3 and 4. The general fractionation procedure was the same as 

described in 2.7.2. yielding the supernatant S1 with all mixed organelles, the pellet P2 with 

heavy mitochondria and nuclei, the supernatant S2 with small organelles, the pellet P3 with 

enriched peroxisomes and light mitochondria and the final supernatant S3 with microsomes 

and the cytosolic proteins.  

 

 

Table 3. Buffer volumes for subcellular fractionation of the testis of 130 day-old 

scs Pex13WT and scs Pex13HTZ mice 

Centrifugatio

n 

300 x g, 10 

min (2 times) 
1,900 x g, 10 min (2 times) 50,000 x g , 20 min (2 times) 

Cellular 

Fractions 

Supernatant 

with all 

organelles 

large 

mitochondria 

and nuclei 

post-

mitochondrial 

supernatant 

enriched 

peroxisomes 

final 

supernatant 

Interstitial 

cells 

S1 

225 µl 

P2 

in 160 µl HB 

S2 

130 µl 

P3 

in 150 µl HB 

S3 

75 µl 

Tubular 

cells 

S1 

400 µl 

P2 

in 300 µl HB 

S2 

275 µl 

P3 

in 300 µl HB 

S3 

250 µl 
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Table 4. Buffer volumes for subcellular fraction of the testes of 130 day-old 

scs Pex13KO mice 

 

Centrifugation 
300 x g, 10 

min (2 times) 
1,900 x g, 10 min (2 times) 50,000 x g , 20 min (2 times) 

Cellular 

Fractions 

Supernatant 

with all 

organelles 

large 

mitochondria 

and nuclei 

post-

mitochmdrial 

supernatant 

enriched 

peroxisomes 

final 

supernatant 

Intertitial cells 
S1 

180 µl 

P2 

in 120 µl HB 

S2 

130 µl 

P3 

in 100 µl HB 

S3 

80 µl 

Tubular cells 
S1 

120 µl 

P2 

in 100 µl HB 

S2 

80 µl 

P3 

in 100 µl HB 

S3 

75 µl 

 

Protein concentrations for all subcellular fractions were determined according to Bradford 

[269] using BSA as standard. 

 

2.8. Western blot analyses and relative quantification of protein bands 

Protein samples derived from cell cultures (10 µg)  and from testicular interstitial and tubular 

cell preparations (25 µg) were separated on 12% SDS-polyacrylamide gels and transferred 

onto PVDF membranes (cat no:162-0218, BioRad, München, Germany) by electrotransfer 

with a Biorad blotter. Nonspecific protein binding-sites were blocked with Tris-buffered saline 

(TBS) containing 10% nonfat milk powder and 0.05% Tween-20 (blocking buffer). The blots 

were incubated for 2 h at RT with primary antibodies and after intensive washing for 1h at RT 

with alkaline phosphatase-conjugated secondary antibodies. The concentrations of the 

antibodies used for the Western blot analysis are given in Table 6. Alkaline phosphatase 

activity was detected using the Immun-StarTM AP (#170-5018) substrate from BioRad and 

exposure of the blots to Kodak Biomax MR films. Bands on films were quantified with the Gel 

Doc 2000 system from BioRad. The WB-membranes were stripped and reprobed several 

times with different antibodies as described in table 8. All Western blot analyses were 

performed three times with different membranes and therefore represent data from three 

individual experiments. 

 

2.9. RNA isolation and expression analysis by semi-quantitative RT-PCR 

Total RNA was prepared from juvenile and adult Leydig-, adult peritubular myoid- and 

juvenile Sertoli cells, from WT animals and also from preparations of adult interstitial 

peritubular and tubular cells derived from the scsPex13 transgenic mice using the RNeasy kit 

(cat. No 74104 Qiagen, Hilden, Germany). First-strand cDNA was synthesized from 3.5 µg 

total RNA with oligo(dT)12-18 primers using the Superscript II reverse transcriptase (# 
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18064-022, Invitrogen, Karlsruhe, Germany). The polymerase chain reaction (PCR) was set 

up in a final volume of 50 µl using 2 µl cDNA. All primers were tested and PCR conditions 

optimized with gradient PCRs on a BioRad iCycler prior to parallel analysis of cDNA samples 

from distinct testicular cells. Primer sequences are summarized in table 9. Bands on gels 

were quantified with the BioRad Gel Doc 2000 system. All RT-PCR experiments were 

performed three times and therefore represent data from three individual RNA isolation 

experiments. 

 
2.10. Blood collection 

All mice with different Pex13 genotypes were anesthetized by intraperitoneal injection using 

a cocktail of 100 mg/kg ketamine and 10 mg/kg xylazine, and 2 mg/kg acepromazine 

(Sedastress®). Blood was collected from 130 day-old scsPex13KO, scsPex13HTZ and 

scsPex13WT mice by direct cardiac puncture. For this purpose a 22-gauge needle, fitted 

onto a 1 ml-syringe, was inserted from the center of the thorax towards the animal’s chin, 5-

10 mm deep, and held at 25-30°C away from the chest . When blood appeared in the syringe, 

the plunger was gently pulled back in order to obtain the maximum amount of blood (1 ml). 

Blood samples were immediately transferred to 2 ml anti-coagulating EDTA/KE tubes 

(Sarstedt Ag. & Co., Nürecht, Germany). The samples were centrifuged for 10 min at 

13,000 x g and the plasma was stored at -80°C until  the hormonal measurements were 

performed. 

 

2.11. Testis homogenates for steroids measurements 

Dissected testis from scsPex13WT and scsPex13HTZ mice (10 to 11 mg) and scsPex13KO 

mice (2 to 4 mg) were collected and stored at –80°C  prior to all homogenization and 

extraction procedures. For extraction, the two testes of the same animal were thawed and 

added to a glass tube containing 3 ml of PBS. The tissues were homogenized for 40 sec 

using a politrone homogenizer (T25basic IKA LABORTECHNIK) in a ice bath. All 

homogenates were subjected to diethyl ether extraction for 3 times. For this purpose 3 ml of 

diethyl ether was added in each tube. The tubes were vigorously mixed for 15 min, at 15°C, 

on a multi-tube shaker (Certomat IS, B Braun Biotech International) at 1,300 rpm, followed by 

centrifugation at 800 x g for 10 minutes at 4°C. Af ter each extraction with the diethyl ether the 

top organic layer was collected and transferred in new glass tubes and stored at -20°C until 

they were subsequently measured with gas-liquid chromatography in collaboration with Dr. 

M. Hartmann and Prof. Dr. SA. Wudy, Department of Pediatrics, Pedriatic Endocrinology, 

University Hospital of Giessen and Marburg, Germany. 
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2.12. Testis homogenate for very long chain fatty acid (VLCFA) and plasmalogen 

measurements 

VLCFA and plasmalogens were determined according to a modified protocol of Moser and 

Moser [270] by gas chromatography-mass spectrometry (GC-MS) in collaboration with Dr. 

Okun, Children Hospital, University of Heidelberg, Germany. 

In brief, the testes were transferred into 10 ml glass tubes, suspended in 500 µl of sodium 

chloride (0.9% NaCl), and then homogenized with an ultraturax. Five ml of 

chloroform/methanol (CHCl3/MeOH: 2/1, v/v) were added, gently mixed, incubated for 15 

min, and mixed from time to time. The samples were centrifuged and the lower phase 

containing total lipids was transferred in a 25 ml reaction vessel. The remaining cell pellet 

was resuspended in 3 ml of CHCl3/MeOH, mixed, and centrifuged. The lower phase was 

taken and pooled with the first fraction. The vessel was adapted to a rotating evaporator and 

the extracted and dried lipids (VLCFA and plasmalogens) were derivatised (methylisation) 

with 2 ml of methanolic HCl (3 M) at 80 °C. After 1  h, the reaction was stopped by cooling 

down to room temperature. 2 ml of potassium carbonate solution (14 % w/v) and 2 ml of 

hexan were added and the mixture was shaken for 20 min. The hexan phase was transferred 

in a gas-chromatography vial and 500 µl of hexan were added prior to GC-MS analysis. For 

the GC-MS analysis the quadrupole mass spectrometer MSD 5972A (Agilent, Santa Rosa, 

California, USA) was run in the selective ion-monitoring mode. Gas chromatography 

separation was achieved on a capillary column (DB-5MS, 30 m x 0.25 mm; film thickness: 

0.25; J&W Scientific, Folsom, California, USA) using helium as a carrier gas. A volume of 1 µl 

of the derivatized sample was injected in splitless mode. 

 

2.13. Fertility test for different scs Pex13 mouse genotypes 

Three 90 day-old and 130 day-old males with scsPex13KO and scsPex13HTZ genotype 

were individually housed for 10 days with wild-type fertile C57Bl/6J female mice (Charles 

River). The female mice were then separated from the males and allowed to rest for 

additional 11 days since 19-21 days is the average gestation period in mouse. Males were 

considered to be fertile, when the female mice delivered pups.  

 

2.14. Pex13 silencing by RNA interference technology (RNAi) in primary Sertoli cell 

cultures 

An RNAi approach was used to assess the effect of a Pex13 gene knockdown in murine 

primary Sertoli cell cultures. A small interfering RNA for the mouse Pex13 gene (siRNA 

ID#:176738) was synthesized and purified by Ambion (Austin, TX). The sequence of the 

silencing pre-designed siRNA targeted the exon 2 of the Pex13 gene (NM_023651: exon 2, 

species: mouse) was used. One scrambled siRNA (scr-siRNA) that had no significant 
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sequence homology to mouse, rat or human gene sequences was used as a negative 

control. Primary Sertoli cells were isolated from 20 mice (15-day-old C57Bl/6J) according to 

the protocol described above (chapter 3.6.2). The cells were plated at a density of 350,000 

per well in 12 well-plates. After 3 days of culture the Sertoli cell monolayer was subjected to 

hypotonic shock for 5 sec and replaced with DMEM/F12 GlutaMAX supplemented with 2 mM 

L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 10 ng/ml epidermal growth factor, 5 

µg/ml human transferrin, 2 µg/ml insulin, 10 nM testosterone, 100 ng/ml follicle-stimulating 

hormone (without cytosine arabinoside) and kept in culture for 1 more day prior to siRNA 

treatment. The effect of different concentrations of Pex13 siRNA (15, 30 or 50 nM) and 

different compositions of the transfection reagent (1.5, 3, or 5 µl) on the Pex13 mRNA 

expression and the PEX13 protein at distinct post-transfection time-points (12, 24, 48, and 

72, 96 hours) were assessed using an array of techniques such as RT-PCR, Western blot 

and immunofluorescence. After several experiments the optimal conditions for the number of 

cells, the dilution of the siRNA and the amount of Lipofectamin RNAiMAX were found and 

are presented in Table 5. The siRNA knockdown had to be done with two consecutive 

transfections. Prior to the first transfection, the medium was replaced with Opti-MEM medium 

for 30 min and afterwards the cells were transfected for 24 h with Pex13-siRNA and control 

scr-siRNA using Lipofectamin RNAiMAX (Invitrogen). In a second control group only Opti-

MEM medium was added to the cell cultures. The medium of the first transfection was 

replaced with normal Sertoli cell medium without antibiotic for 24 h. Thereafter, the second 

transfection was done with a longer incubation period of 72 h. Cultures with a second 

transfection at 48 h were supplied thereafter also with normal medium for Sertoli cells without 

antibiotic. After the siRNA transfection the cells were subjected to Western-blot, RT-RCR, 

and immunofluorescence analyses and ROS-measurements. These experiments were done 

three times under the same conditions. 

 

Table 5. Optimal conditions for the transfection of primary Sertoli cells culture 

 12 well-plate 

 Pex13-siRNA scr-siRAN Opti-MEM 

Lipofectamin  
15nM in 100µl OPTI-MEM 15nM in 100µl OPTI-MEM 400µl 

Density (cell/well)  
350 000 350 000 350 000 

RNAiMAX  
1,5µl in 100µl OPTI-MEM 1,5µl in 100µl OPTI-MEM - 

Volume per well 
400 µl 400 µl 400 µl 
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2.15. ROS-detection by staining with dihydroethidium 

The oxidizable fluorescent probe dihydroethidium was used to evaluate intracellular ROS 

levels. Sertoli cells transfected with Pex13-siRNA, scr-siRNA or cells incubated solely with 

OPTI-MEM were used for this experiment. After transfection of cells and growth for different 

time points, 10 µmol of dihydroethidium (D-23107, Invitrogen) was added to 2 ml normal 

Sertoli cell medium, and incubated at 34°C for 30 m in. Thereafter, the cells were washed two 

times with PBS and fixed with 4% PFA for 20 min at RT. Nuclei were counterstained with 

1 µM TOTO-3 iodide for 20 min at RT. Images were taken with aLEICA TCS SP2 confocal 

laser scanning microscope (CLSM) and the average values of fluorescence intensity were 

measures from 450 cells using the LEICA software program of the CLSM. This experiment 

was performed two times under similar conditions. 

 

Table 6. Primers sequences for genomic PCR of scs Pex13 mouse line 

Gene Forward/reverse primers Product length 
(in bp) 

Ann. temp. (in 
°C) 

Cre For CCTGGAAAATGCTTCTGTCCG 
Rev GCAGGCGCAGGAGCTGGTGC 

520 55 

PEX13loxP For ATGGCTCCCAAGTTAGTTCTG 
Rev TCTGTTTCCCTCCCACCTC 

490 WT allele 

517 loxP allele 
57 

PEX13∆∆∆∆2 For TGGCTCCCAAGTTAGTTCTGTC 
Rev CCTCTCTATTTGTTGCTTACCCC 

385 57 

 

Table 7. Primary and secondary antibodies used in this dissertation 

Host Primary Antibodies Con Supplier Function of Antigen 

mouse 

Human ABC-transporter D1 
adrenoleukodystrophy protein,  
(ABCD1/ALDP), 
monoclonal antibody  
against a fusion protein aa 279-
482 of ABCD1 

IF 1:500 
WB 1:200 

Chemicon International, 
Temecula, 92590 CA, 
USA 
Cat. no. MAB2164 

-ABC-transporter for 
VLCFA (very long-chain 
fatty acids 
-defective in X-linked ALD 
-marker for the 
peroxisomal membrane 

sheep 

Human ABC-transporter D3 
70kDa Peroxisomal membrane 
protein (ABCD3 / PMP70) 
polyclonal antibody 

IF 1:1,000 

Gift from Steve Gould, 
Dept. Biol. Chem., Johns 
Hopkins Univ., Baltimore, 
MD, USA 

-ABC-transporter for lipid 
derivatives 
-generally used as marker 
protein for  the 
peroxisomal membrane 

rabbit 

Rat ABC-transporter D3 
70kDa Peroxisomal membrane 
protein (ABCD3 / PMP70) 
polyclonal antibody 

WB 1:100 
Gift from Alfred Völkl, 
Dept. Anat. Cell Biol. II, 
Univ. Heidelberg 

See above. 

rabbit 
Rat Acyl-CoA oxidase 1 
(ACOX1) 
polyclonal antibody 

IF 1:1,000 
WB 1:5,000 

Gift from Alfred Völkl, 
Dept. Anat. Cell Biol.II, 
Univ. Heidelberg 

- first enzyme of 
peroxisomal 
β-oxdation pathway 1 
-antibody labeling all 
subunits A, B, C 

mouse Mouse α-smooth muscle actin 
monoclonal antibody 

IF 1:1.000 
Sigma, Saint Louis, 
MO 63103, USA 
Cat. no: A2547 

-cytoskeletal protein 
present in peritubular cells 
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rabbit Human Catalase (CAT), 
polyclonal antibody 

 
IHC 1:1,000 
IF 1:1,000 
EM 1:500 

Polysciences, Inc. 
Warrington, PA 18976,  
USA 
Cat. no. 23728 

-generally used as marker 
protein for the peroxisomal 
matrix 
-degradation of H2O2 

rabbit Mouse Catalse Catalase (CAT), 
polyclonal antibody 

IF 1:2,000 
WB 1:10,000 

Gift from Denis I. Crane, 
Biomol. Biomed. Sci., 
Griffith Univ., Nathan, 
Brisbane, Qld 4111, 
Australia 

See above. 

rabbit 
Mouse Cyclooxygenase 2 
(COX2), 
polyclonal antibody 

WB 1:400 

Alexis Biochemicals, 
Enzo Life Sciences 
GmbH, 79539, Germany 
Cat. no: 2107121 

-generally used as marker 
protein for inflammation 

rabbit 

 Mouse Cytochrome P450 side 
chain cleavage enzyme 
(CP450scc) 
polyclonal antibody 

IF 1:1,000 
WB 1:5,000 

Chemicon International, 
Temecula, 92590 CA, 
USA 
Cat. no. AB1244 

-generally used as marker 
protein for Leydig cells 
-enzyme controlling 
steroidogenesis, 
responsible for the 
conversion of cholesterol 
to pregnenolone 

mouse 

Mouse Green fluorescent protein 
(GFP) (from jellyfish Aequorea 
victoria) 
monoclonal antibody 

EM 1:800 
IF 1:1,000 
 

Santa Cruz 
Biotechnology Inc., 
Heidelberg 69115, 
Germany 
Cat. no: sc-9996 

- used as a tag for in vivo 
fluorescence 
- in our study coupled to “-
SKL”, a peroxisomal 
targeting signal, to target 
GFP into peroxisomes 

rabbit 
Mouse Heme oxygenase 1 
(HO-1) 
polyclonal antibody 

WB 1:200 
Assay Designs, 
Stressgen, MI 5777, USA 
Cat. no: SPA-895 

-a heat shock/stress 
response protein, can be 
increased by heme and 
stimuli that induce cellular 
stress 

mouse 
Human  Lysosome-associated 
membrane protein 2 (LAMP2), 
monoclonal antibody 

IF 1:100 

Research Diagnostics 
Inc., Flanders, 
NJ 07836 , USA 
Cat.. no: RDI-CD107b-
H4B4 

- lysosomal integral 
membrane protein 
generally used as marker 
protein for lysosomes and 
autophagic vacuoles 

mouse 

Mouse Oxidation  
Phosphorylation Complex III 
(OxPhosIII), 
monoclonal antibody 

IF 1:2,000 
WB 1:500 

Molecular 
Probes/Invitrogen, 
Carlsbad, CA 92008, 
USA 
Cat. no: A11143 

-complex 3 of the 
mitochondrial respiratory 
chain 

mouse 

 
Mouse Peroxin 5 (Pex5p) 
polyclonal antibody 
 

WB 1:100 

DB Biosciences, 
69129 Heidelberg, 
Germany 
Cat. no: P10420-050 

-cytoplasmic import 
receptor for peroxisomal 
matrix proteins (both PTS1 
And PTS2) 

rabbit 
Mouse Peroxin 13 (Pex13p), 
polyclonal antibody 
 

EM 1:500 
IF 1:1,000 
WB 1:5,000 

Gift from Denis I. Crane 
(address see above) 

-peroxisomal biogenesis 
protein 13 
-integral peroxisomal 
membrane protein; 
involved in docking 
complex for matrix protein 
import 

rabbit Mouse Peroxin 14 (Pex14p), 
polyclonal antibody 

IF 1:2,000 
WB 1:30,000 

Gift from Denis I. Crane 
(address see above) 

-peroxisomal biogenesis 
protein 14 
-function is similar to the 
one of Pex13p (see 
above) 

mouse 
Mouse Peroxisome proliferator-
actgivated receptors γ (PPARγ) 
monoclonal antibody 

WB 1:200 

Santa Cruz 
Biotechnology Inc., 
Heidelberg 69115, 
Germany 
Cat. no: sc-7273 

-nuclear hormone receptor 
that can be activated by 
fatty acids and ecosanoids 

rabbit 
Mouse Star domain-containing 
Protein1 (StARD1) 
polyclonal antibody 

IF 1:25 
WB 1:100 

Protein Tech Group, Inc., 
Chicago, IL 60612, USA 
Cat. no: 12225-1-AP 

-shuttle of cholesterol from 
outer to inner membrane 
of mitochondria 
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goat 

 
Mouse Superoxide dismutase 
1(SOD1) 
polyclonal antibody 
 

WB 1:7,000 

Abcam, 332 Cambridge 
Science Park, CG4 0WN, 
UK 
Cat. no: ab62800 

-hemodimeric enzyme 
containing one Cu and Zn 
ion per subunit 

rabbit 
Mouse Superoxide dismutase 2 
(SOD2) 
polyclonal antibody 

IF 1:1,000 
WB 1:5,000 

Abcam, 332 Cambridge 
Science Park, CG4 0WN, 
UK 
Cat. no: ab13533 

-tetra meric antioxidant 
enzyme involved in 
degradation of superoxide 
radical anion 

rabbit Mouse Thiolase A/B, 
polyclonal antibody 

IF 1:1,000 
WB 1:5,000 

Gift from P. Van 
Veldhoven (Leuven, 
Belgium) 

- third enzyme of 
peroxisomal 
β-oxdation pathway 1 
-intermediate filament 
protein 

goat Mouse Vimentin, 
polyclonal antibody 

IF 1,300 
Sigma, St Louis, 
MO 63103, USA 
Cat. no: A2547 

-generally used as marker 
for Sertoli cells 

mouse Mouse Vimentin, 
polyclonal antibody 

IF 1:300 
WB 1:200 

Sigma, St Louis, 
MO 63103, USA 
Cat. no: A2547 

See above. 

Host  Secondary Antibodies  Supplier 

donkey anti-Goat-IgG FITC 
 IF 1:200 

Jackson Immuno Research Laboratories Inc., Dianova, 
Hamburg, Germany 
Cat. no: 705-095-147 

donkey anti-Mouse-IgG TexasRed, Kit IF 1:200 
IF 1:300 

VECTOR, Burlingame, CA 94010 USA 
Cat. no: Ti-2000 

donkey anti-Rabbit-IgG AlexaFluor488 IF 1:300 
Molecular Probes/ Invitrogen, Carlsbad, CA 92008, 
USA 
Cat. no: A21206 

donkey anti-Sheep-IgG Rhodamine 
Red-X IF 1:200 

Jackson Immuno Research Laboratories  Inc., Dianova, 
Hamburg 20354, Germany 
Cat. no: 713-295-147 

goat anti-Rabbit IgG 
alkaline phosphatase conjugate 

IHC 1:500 
WB 1:20,000 

Molecular Probes/ Invitrogen, Carlsbad, CA 92008, 
USA 
Cat. no: A0545 

goat anti-Mouse IgG 
alkaline phosphatase conjugate WB 1:20,000 

Molecular Probes/ Invitrogen, Carlsbad, CA 92008, 
USA 
Cat. no: A3562 

goat anti-Goat IgG 
alkaline phosphatase conjugate WB 1:20,000 

Molecular Probes/ Invitrogen, Carlsbad, CA 92008, 
USA 
Cat. no: A8438 

    
 Counterstaining of nuclei  Supplier 
 Hoechst 1:500   

 TOTO-3 nucleic acid staining 
1:1,000 IF 1:1,000 Molecular Probes / Invitrogen, Carlsbad, CA, USA 

Cat. no:T-3604 
    
 Secondary detection system   
Staphyl
ococcus 
aureus 

Protein A  EM1:50 Self made according to [271] 

 

Table 8. Solutions, Media and Reagents 

Solutions for Molecular Biology 

2% agarose gel, 50ml 1g of agarose , 50ml of 1x TAE, 1µl of ethidium bromide (10mg/ml) 

Cell lysis buffer 50 mM Tris, 400 mM NaCl, 100 mM EDTA, 0.5% SDS 

Formaldehyde gel 1x for RNA 100 ml 10x RNA Transfer buffer 10x, formaldehyde, 880 ml ddH2O2 

Loading dye (10 ml) 
16 µl saturated aqueous Bromophenol Blue, 80 µl 500 mM EDTA, pH 8.0, 720 µl 

37% formalin stock solution, 4 ml 10X gel buffer fill up to 10 ml ddH2O 
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NaCl saturated 6 M NaCl 

RNA Transfer buffer 10x 200 nM MOPS, 50 mM sodium acetate, 10 mM EDTA, pH 7.0 

TE buffer 10 mM Tris-HCL, 0.2 mM EDTA, pH 7.5 

Transfer buffer 10x (TAE) 40 mM Tris, 2 M glycin, 1% SDS 

Solutions for Microscopy 

3-3’-diamino benzidine DAB 0.2% DAB, 0.01 M TS buffer, 0.15% H2O2, pH 10.5 

Additional fixation for  

electron microscopy of wet 

sections 

 

1% glutaraldehyde in cacodylate buffer (pH 7.4) for 15 min 

Anti-fading agent (2.5%) 2.5 g N-propyl-gallate, 50 ml glycerol, 50 ml PBS 

Buffer for diluting of antibody 1% TBST (50 mM Tris, 150 mM NaCl, 0.05% Tween 20, pH 7.4) 

Citrate buffer 
Buffer A: 1 mM C6H8O7 H2O; Buffer B: 50 mM C6H5Na3O7 2H2O 

Citrate buffer: 0.15 mM buffer A, 8.5 mM buffer B, pH 6.0 

Epon / Epoxy resin Agar 812 
24 g epoxy resin, 16g DDSA, 10 g MNA , stir 30 min, add drop by drop 1.5 g 

BBMA, stir 30 min 

Fixation solution 

(testes for paraffin embedding) 

4% depolymerized paraformaldehyde, containing 2% sucrose in PIPES or PBS, 

pH 7.4 

Fixation solution 

(testes for frozen sections) 
4% (w/v) paraformaldehyde in 0.15 M HEPES, pH 7.4 

Fixation solution 

(electron microscopy) 

4% depolymerized paraformaldehyde, 0.05% glutaraldehyde in 0.01 M 

cacodylate buffer (pH 7.4) and 2% sucrose 

H2O2 (3%) 30% H2O2 10 ml, ddH2O 90 ml 

Hematoxylin and eosin staining 
Xylene, absolute ethanol, 96% ethanol, 80% ethanol, 70% ethanol, and aqua 

dest., 10% Mayer’s Hematoxylin, 1% acetic acid Eosin 

IF blocking solution 
4% bovine serum albumin (BSA) in Tris-buffered saline containing 0.05% Tween 

20 (TBST) 

IHC blocking solution 
4% BSA , 0.05% TBST (pH 7.4) and extravidin from blocking kit (Avidin/Biotin 

Blocking kit, VECTOR) 

Lead citrate (Reynold’s) 
0.19 mM lead nitrate, 0.22 mM sodium citrate, shake 30 min, ddH2O up to 25 ml, 

pH 10.0 

Mounting medium 3 parts Mowiol 488, 1 part anti-fading agent 

Mowiol 488 solution 
16.7% Mowiol 488, 80 ml 1x PBS, stir overnight; add 40 ml glycerol stir again 

overnight; centrifuge at 15,000 g for 1h, store supernatant at -20ºC 

Na-Cacodylate buffer 0.1 M sodium cacodylate, pH 7.4 

Nuclear counter-staining 

(Oil red O staining) 
alumn haematoxylin (5 short dips) 

Oil red O stock solution 0.5 % Oil red O stock solution in 100% isopropanol 

Oil red O working solution 0.3% Oil red O stock solution (30 ml stock and 20 ml distilled water) 

Osmium post fixation for electron 

microscopy 
1-2 % aqueous osmium tetroxide 

PBS 10x 1.5 M NaCl, 131 mM K2HPO4, 50 mM KH2PO4, pH 7.4 

PIPES buffer 0.1M PIPES, pH 7.4 

TBS 10x 0.5 M Tris, 1.5 M NaCl, fill up to 1l ddH2O2, pH 7.4 

Theorell-Stenhagen buffer (TS) 50 mM H3PO4, 75 mM boric acid, 35 mM citric acid, 345 mM NaOH, pH 10.5 
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Trypsin (0.01%) 0.01g trypsin in 1x TBS buffer 

Uranyl acetate 1% uranyl acetate in ddH2O2; prior use centrifuge 15 min 

Cell Culture Media 

Interstitial cell medium 
DMEM/F12, supplemented with 2.2 µg/l sodium bicarbonate, 500 ng/ml insulin, 

12 mg/l gentamicin and 1 mg/ml BSA 

Leydig cell culture medium 
DMEM/F12, supplemented with 15% (v/v) horse serum, 2.2 µg/l sodium 

bicarbonate, 500 ng/ml insulin, 12 mg/l gentamicin, and 1 mg/ml BSA 

Leydig cell washing solution serum-free DMEM/F12 medium with 10 mM HEPES (pH 7.4) 

Percoll gradient 
Percoll solution (21, 26, 34, 40 and 60%) in isotonic Eagle’s salt buffer containing 

0.07% serum albumin 

Peritubula cell culture medium 
RPMI 1640, supplemented with 10% (v/v) fetal calf serum (FCS), 1000 IU/l 

penicillin and 50 mg/l streptomycin 

Sertoli cells culture medium 

DMEM/F12, supplemented with 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin, 10 ng/ml epidermal growth factor, 5 µg/ml human transferrin, 2 

µg/ml insulin, 10 nM testosterone, 100 ng/ml follicle-stimulating hormone and 3 

ng/ml cytosine arabinoside 

Solution for hypotonic shock 20 mM Tris-HCl (pH 7.5) 

Stop of enzymatic digestions 
soybean trypsin inhibitor (400 µg/ml) in DMEM/F12, supplemented with 2 mg/ml 

BSA 

Testis enzymatic digestion for 

isolation of primary cells 

collagenase A (1 mg/ml), hyaluronidase (1 mg/ml), and DNase (20 µg/ml) in 

DMEM/F12, supplemented with 10 mM HEPES (pH 7.4) 

Washing medium for peritubular 

cells 
RPMI 1640 medium 

Solutions for Biochemistry 

10% blocking buffer 10 g fat free milk powder in 100 ml TBS 

10x Electrophoresis buffer 250 mM Tris, 2 M glycin, 1% SDS 

10x Sample buffer 

3.55 ml ddH2O, 1.25 ml 0.5 M Tris-HCl, pH 6.8, add 2.5 ml 50% glycerol, 2 ml 

10% SDS, a tip of 0.05% Bromophenol Blue; prior to use add 50 µl β-

mercaptoethanol 

10x TBS 0.1 M Tris, 0.15 M NaCl in 1l ddH2O, pH 8.0 

12% resolving gel 

for 2 SDS-PAGE gels 
30% acrylamide 4 ml, 5 ml buffer A, 1 ml ddH2O, 65 µl 10% APS, 7.5 µl TEMED 

1x TBST 0.1 M Tris, 0.15 M NaCl, 0.05% Tween 20, pH 8.0 

20x transfer buffer 
Bis-Tris-HCL buffer pH 6.4 polyacrylamide gel, NuPAGE transfer buffer 

(Invitrogen) 

Homogenization medium 

for cell cultures and tissue 

fractions 

150 µl 5 mM MOPS, pH 7.4, 250 mM sucrose, 1 mM EDTA, 0.1 % (v/v) ethanol, 

0.2 mM dithiothreitol, 1 mM 6-aminocapronic acid, supplemented with 10% 

protease inhibitors mix M 

Resolving gel buffer A 1.5 M Tris-HCl, pH 8.8, 0.4% SDS 

SDS-PAGE solution:  

Stacking gel buffer B 0.5 M Tris-HCl, pH 6.8, 0.4% SDS 

Stripping buffer (500ml) 62.5 mM Tris, 0.2% SDS, 500 ml ddH2O 
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Table 10. Reagents and Media Ingredients 
 

Reagent Catalogue Number Manufacturer 

10X PCR Buffer DM2211 Promega GmbH 

6-aminocapronic acid 8.00145 Merck 

3,3’ diaminobenzidine (DAB) D5637 Sigma 

ApopTag® Red In Situ Apoptosis Detection 

Kit 
S7165 Chemicon 

Blocking kit (avidin and biotin) SP-2001 VECTOR 

Bovine serum albumin (BSA) A21153 Sigma 

Sodium Cacodylate 42794 Fluka 

Cytosine arabinoside C-1768 Sigma 

Chloroform (CH3Cl) 25643 Sigma 

Collagen Type I C9791 Sigma 

Collagenase Type I C0130-1G Sigma 

DB Matrigel Matrix 354234 DB Biosciences 

Deoxyribonuclease I, Amplification Grade 18068-015 Invitrogen 

Diethyl ether 296082 Sigma-Aldrich 

Dihydroethidium D-23107 Molecular Probe 

Dimethyl Sulfoxide (DMSO) D2650 Sigma 

Dithiotreitol (DTT) D-9163 Sigma 

DEPex 18245 Serva, D-69115 Heidelberg 

DMEM/F12 11320-033 GIBCO 

DMEM/F12 GlutaMAX 31331 GIBCO 

Dulbecco`s Modified Eagle´s Medium/Ham`s 

F-12 
31095029 GIBCO 

DNase D25 Sigma 

Earle´s balanced salt solution 10x E7510 Sigma 

Earle´s balanced salt solution E2888 Sigma 

Ethylenediaminetetraacetic acid (EDTA) O3690 Fluka, BioChemik 

Epidermal growth factor (EGF) E-1257 Sigma 

Epoxy resin (AGAR 100kit) R1031 Plano GmbH 

Ethidium bromide E7637 Sigma-Aldrich 

Foetal calf serum A15-043 PAA 

Formalin A5472 Sigma 

Formvar 09818 Fluka – Biochemika 

Follicle-stimulating hormone (FSH) F-8174 Sigma 

Gentamycin G1397 Sigma 

Glutaraldehyde G7651 Sigma 

Glycerol GG1 Sigma-Aldrich 

Hexan 448176 Aldrich 

Horse serum B15-021 PAA 

Human transferrin T-1147 Sigma 

Hyaluronidase H3506 Sigma 
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Hydrogen peroxide (H2O2) 371492 Aldrich 

Isoflurane FDG9623 Baxter 

Immun-StarTM AP 170-5018 Biorad 

Insulin 16634 Sigma 

Isopropanol 59300 Sigma 

Isotonic Eagle’s salt buffer D6946 Sigma 

Kalium hexacyanoferrat(II)-thrihydrat 104984 Merck 

Ketamine 100 mg/ml 14505 Pharmacia GmbH 

Lead acetate 15326 Sigma 

Lipofectamin RNAiMAX 13778075 Invitrogen 

LR white resin R1281 Plano GmbH 

Matrigel 354234 DB Biosciences 

Mayer’s hematoxylin 109249 Merck 

Methanol 15716 Fluka 

Methanolic HCl (0.5N) 33354 Supelco 

MOPS M-8899 Sigma 

NovaRed SK-4800 VECTOR 

Oil O Red 75087 Fluka 

OPTI-MEM 31985-047 GIBCO 

Osmium tetroxide 75632 Sigma 

Paraffin (Paraplast®) 327204 Sigma 

Paraformaldehyde (PFA) 604380 Sigma-Aldrich 

Penicillin/Streptomycin 15140-122 Sigma 

Percoll P1644 Sigma 

PIPES, analytical grade 32981 Serva 

Poly-L-Lysine Hyrobromide P2636 Sigma 

Potassium carbonate P5833 Sigma-Aldrich 

Protease inhibitor mix M 39102 Serva 

Protease K P8044 Sigma 

PVDF membranes 162-0218 Biorad 

Rabbit Extravidin kit EXTRA3A Sigma 

RNeasy kit 74104 QIAGEN 

Rompun 2% KP03J4W BAYER 

RPMI 1640 E15-840 PAA 

dNTPs U1515 Promega GmbH 

Sedastress 6936 Medistar 

Sodium bicarbonate S5761 Sigma 

Sodium chloride (NaCl) S6191 Sigma 

Sodium dodecyl sulfate (SDS) L4390 Sigma 

Soybean trypsin inhibitor T9003 Sigma 

Sucrose 1.07687 Merck 

Taq polymerase M166B Promega GmbH 

Testosterone T-1500 Sigma 
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Tris 4855.2 Carl ROTH GmbH 

Tris-HCL 93363 Sigma 

Trypsin T1426 Sigma 

Tween 20 822184 Merck 

Uranyl acetate 73943 Fluka 

Xylene 97133 Carl ROTH GmbH 
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3. Aims of the study 

Prior to this dissertation, peroxisomes were thought to be restricted only to somatic cells in 

the testis. Indeed, at the very beginning, peroxisomes have been identified by Fawcett & 

Burgos (1960) only in Leydig cells by routine electrone microscopy or by cytoplasmical 

visualization of there activity of the marker protein catalase. Reddy and Svoboda (1972) 

showed peroxisomes in Leydig cells proliferate upon LH treatment, whereas LH-deprivation 

results in a significant decrease in the number of these organelles. In addition, an increase of 

free cholesterol was noted in peroxisomes and mitochondria after LH treatment. Therefore, 

Mendis-Handagama & Ariyaratne (2005) have speculated that testicular steroid synthesis 

could occur at least in part in peroxisomes. Only recently work, from Luers and colleagues 

(2006) has revealed that peroxisomes are present in addition also in basal cells of the 

seminiferous tubules, Sertoli cells and spermatogonia respectively. However, little 

information is available on these organelles concerning its distribution and enzyme 

composition in mouse and human testis. The role of peroxisomal function in the testis and its 

influence in male fertility is not yet understood. Therefore, the goal of this study was to gain 

more insights into the presence of peroxisomes in different spermatic cells and to identify the 

physiological role of these organelles in the testis. The major aims of this study were: 

 

PART I. Peroxisomes in different cell types of testis in human and mice 

• To visualize and characterize peroxisomes in different cell types of testis in the wild 

type mice 

• To identify germ cell peroxisomes in different steps of spermatogenesis, and 

characterize their alteration in distinct stages of the epithelial cycle of seminiferous 

tubules  

• To exhibit analogies or differences of peroxisome compartment between human and 

mouse testis 

• To characterize these organelles and the corresponding gene expression in primary 

cell cultures of distinct testicular somatic cells 

 

PART II. Consequences of peroxisome deficiency in Sertoli cells 

• To investigate the effects of peroxisomal dysfunction in the testis by generating a 

knock out of Pex13 gene specifically in Sertoli cell by using Cre-loxP recombination 

system 
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• To investigate the effects of peroxisomal dysfunction in Sertoli cells and to study 

spermatogenesis and male fertility in this context 

• To characterize the consequences and pathological alteration of structural integrity 

and the regulation of testis specific metabolism, hormone synthesis and signalling 

pathways 

• To mimic the Pex13 dysfunction in primary culture Sertoli cells by siRNA experiments 

and to compare its effects to the tissue alterations observed in Sertoli cell- specific 

Pex13 gene knocked out 
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4. Results 
 

Catalase (CAT) in general is the most abundant peroxisomal marker protein and has been 

frequently used for the detection of peroxisomes by immunohistochemistry (IHC) on paraffin 

sections or by cytochemical activity staining for this enzyme at the ultrastructural level in a 

variety of tissues [272]. However, the testis seems to be a big exception in this respect, since 

peroxisomes were only described in Leydig cells with this technique and seemed to be 

absent in germ cells. Even though, a highly sensitive peroxidise-based immunohistochemical 

technique (Avidin - Botin – complex: ABC) and optimal antigen retrieval was used [264], also 

in this dissertation, a punctuate staining pattern, indicating catalase positive peroxisomes 

could only be obtained in interstitial Leydig cells (Fig. 7). However, germ and Sertoli cells in 

seminiferous tubules were consistently labelled with a weak cytoplasmic staining in 

comparison to negative controls. Our group had already described that immunofluorescence 

techniques generally provide a more sensitive detection of peroxisomal antigens with precise 

subcellular location [264]. Therefore, this technique was adjusted to paraffin section of 

mouse and human testis tissue for the localization of a variety of peroxisomal antigens. In a 

series of preliminary experiments all necessary experimental conditions were elaborated to 

obtain optimal peroxisome localization in distinct testicular cell types. The ideal pre-treatment 

conditions found are described in detail in the Material and Methods chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Immunohistochemical detection of catalase in adult mouse testis.  (A) Overview of CAT staining in 
seminiferous tubules and interstitial cells. (B) Corresponding negative control without primary antibody. (C,D) 
Higher magnification views of CAT staining in interstitial cells, depicting the particulate localization of catalase in 
peroxisomes. (E) Corresponding high magnification without primary antibody. Bars represent 100µm in A and B 
and 20µm in C-E. 
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4.1. Peroxisomal proteins are heterogeneously distributed in distinct cell types of the 

mouse testis 

By using immunofluorescence for the localization of several peroxisomal marker proteins, 

peroxisomes could be detected in addition in other testis–specific somatic cells (Sertoli cells 

and peritubular cells) and in germ cells (spermatogonia, spermatocytes, round and elongated 

spermatids) in the seminiferous tubules of the adult mouse testis (Fig. 8). In agreement with 

the peroxidase-based IHC results, catalase immunoreactivity was also most intense in 

Leydig cells in immunofluorescence preparations. In addition, a punctuate peroxisomal 

staining pattern could also be observed in the basal compartment of the germinal epithelium 

and in peritubular myoid cells (Fig. 8A). Only with very high concentrations of the CAT 

antibody (1:100) and prolonged exposure times, leading to overexposure of Leydig cells in 

the images, a weak punctuate staining for CAT was also seen in spermatocytes and 

spermatids. 

A comparable distribution of immunoreactivity was observed for peroxisomal THIOLASE A 

with strong signal in Leydig cells and a fine punctuated staining of lower intensity in the 

germinal epithelium (Fig. 8B). However, in comparison to CAT, clear THIOLASE A 

immunoreactivity was present in a punctuate pattern also in suprabasal layers of the 

germinal epithelium. In contrast, the peroxisomal ABC transporter ABCD3, which is one of 

the most abundant integral membrane proteins of peroxisomes in hepatocytes, was 

expressed only in the periphery of seminiferous tubules, with highest abundance in Sertoli 

cells (Fig. 8C). 

In Leydig cells, ABCD3 was barely detectable. In contrast, ABCD1, a second ABC 

transporter in the peroxisomal membrane, was selectively enriched in Sertoli cells as shown 

by a ABCD1/vimentin double-immunofluorescence staining (Fig. 8D). In comparison to the 

above-mentioned metabolic enzymes and transporters, the peroxisomal biogenesis proteins 

PEX13 and PEX14 were detected in all cell types of murine testis, except mature 

spermatozoa (Fig. 8E, F).  However, the expression patterns of both proteins with respect to 

signal intensities were different in distinct cell types. PEX13 was most abundant in germ 

cells, with weaker staining of Sertoli-, peritublar myoid- and Leydig cells (Fig. 8E), whereas 

the staining for PEX14 was most prominent in the basal compartment of the germinal 

epithelium with significant labelling also of Leydig cells (Fig. 8F). In addition to individual 

small peroxisomes, large and strongly immunoreactive structures were observed with all 

antibodies against peroxisomal proteins at the luminal surface of the germinal epithelium in 

the region of late spermatids (Fig. 8E and Fig. 11). 
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Figure 8: Fluorescence detection of peroxisomal and mitochondrial proteins in adult mouse testis . 
Peroxisomal proteins: (A)  Catalase (inset shows Leydig cells at shorter exposure time). (B) Thiolase. (C) 
ABCD3. (D) ABCD1 (red). (E) PEX13. (F) PEX14. (G) GFP-PTS1 transgenic mouse. Mitochondrial protein:  (H) 
OxPhosIII: Complex III of the mitochondrial respiratory chain. (D) Shows a double immunofluorescence labeling 
for ABCD1 (red) and VIM (green). Nuclei in A and D were counterstained with TOTO-3 iodide (blue). Note the 
difference in cell type-specific labelling intensities with highest abundance of catalase and thiolase in Leydig cells. 
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ABCD3 and ABCD1 show highest abundance in Sertoli cells. Pex13p and Pex14p are present in all cells shown. 
Bars represent 40 µm. 
 

These results with antibodies against peroxisomal proteins were further substantiated by 

fluorescence analysis of cryosections of GFP-PTS1 transgenic mice, in which the green-

fluorescent protein (GFP) is targeted to the peroxisomal matrix via the C-terminal 

peroxisomal targeting signal 1 (“SKL”). This transgenic mouse strain exhibits high expression 

levels of the GFP-transgene in all germ cells, allowing straight forward detection of 

peroxisomes in frozen sections without further embedding and antibody labelling procedures. 

As depicted in Fig. 8G, import competent peroxisomes are present throughout the germinal 

epithelium. As an internal control for organelle distribution, we also detected mitochondria 

with an antibody against complex III of the respiratory chain (OxPhosIII, Fig. 8H). In 

comparison to peroxisomal enzymes, mitochondrial complex III was enriched in 

spermatocytes I and also abundant in the middle piece region of step 16 spermatids (see 

also Fig. 9B). 

 

4.2. Cell type-specific differences in abundance of peroxisomal proteins are conserved 

between mouse and man 

Indirect immunofluorescence preparations of paraffin sections of human testis with 

antibodies against different peroxisomal marker proteins showed a similar staining pattern as 

observed in adult mouse testis (Fig. 9). CAT (1:1.000 dilution) was mainly detected in Leydig 

cells (inset) and the basal region of the seminiferous tubules (labelling in Sertoli cells, Fig. 

9A,B). In contrast to CAT and similar to mouse samples, mitochondrial complex III was 

clearly detectable in spermatocytes I (Fig. 9B). The distribution pattern of Acyl-CoA oxidase I, 

the rate-limiting enzyme of the β-oxidation pathway I, was almost identical to that of CAT with 

strongest abundance in Sertoli cells (Fig. 9C). Similar to mouse preparations, peroxisomal 

THIOLASE A - the terminal enzyme of the β-oxidation pathway I, could be detected in 

addition to Sertoli cells also in suprabasal layers of the germinal epithelium in human testis 

(Fig. 9D). Furthermore, the peroxisomal biogenesis proteins PEX13 and PEX14 showed 

similar protein abundance patterns as in mouse testis with labelling of all cell types in 

different intensities (Fig. 9E, F, inset in G). Similar to murine testis ABC-transporters, D 

family, ABCD1 and ABCD3 (Fig. 9G, H) were selectively enriched in Sertoli cells. Double-IF 

with ABCD1 / VIM revealed an almost exclusive localization of ABCD1 in Sertoli cells (Fig. 

9H). Large aggregates, similar to those seen in mouse testis, were also present in human 

samples in late spermatids (see in Fig. 9F: PEX14, Fig. 9G: ABCD3 and inset Pex13p). 

These clusters were never positive for lysosomal proteins (LAMP2). Specific staining of 

lysosomes and of autophagic vacuoles using anti-LAMP2 was strongest in Sertoli cells in 
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addition to the labelling of the acrosomes in spermatids (Fig. 9F), and did not colocalize with 

peroxisomal marker proteins (PEX13, PEX14). 

In order to confirm the specificity of the antibodies used in the IF analyses on the mouse as 

well as on the human sections, negative controls without primary antibody were performed in 

all experiments in parallel, depicting the high quality of the secondary antibody-reaction in 

mouse (Fig. 10C,D) and human (Fig. 10E,F). In addition, the antigen specificity of the 

primary antibody was tested in immune competition experiments. For this purpose, the anti-

CAT antibody (1:100) was depleted with bovine CAT protein. After immune precipitation, the 

CAT antigenicity in the solution was completely depleted and no specific reaction product 

was detected anymore on the sections (Fig. 10B).  

 

4.3. Peroxisomes aggregate in clusters during spermatid maturation 

For analysis of alterations of the peroxisomal compartment during spermatogenesis or 

different steps in spermiogenesis, distinct stages of the seminiferous tubules must be 

compared. In mice, the process of spermatogenesis progresses along the longitudinal axis of 

the seminiferous tubules and the synchronization of the spermatogenic cycle allows for the 

classification of different tubule segments in twelve distinct stages [273], (for a review see 

[274]). Since PEX14 labelling was most sensitive for the identification of peroxisomes in all 

cell types of the seminiferous tubules, we have used IF preparations of paraffin sections with 

this marker for analysis of peroxisomal alterations during the spermatogenic cycle (Fig. 11A-

C) or a combination of fluorescence analysis of cryosections of GFP-PTS1 transgenic mice 

with PEX14 immunolabelling (Fig. 11D, E, G, H). During the course of spermiogenesis, 

peroxisomes could be clearly identified as single organelles in round and early elongating 

spermatids (step 1-13). In contrast, less numerous, large and intensely labelled peroxisomal 

structures appeared in late elongated spermatids (step 15 and 16). Colocalization of PEX14 

and GFP-PTS1 in the same particles verified the peroxisomal nature of these structures (Fig. 

11D, E). Similar structures were also labelled with CAT- and ABCD3-antibodies (Fig. 12A, 

B). Higher magnification images revealed aggregates and network-like structures positive for 

CAT and ABCD3. Similar peroxisomal aggregates were also found in PEX13 and PEX14 

preparations (Fig. 8E and 9F, G inset). Upon careful analysis of peroxisomal aggregates in 

spermatids of distinct stages of the seminiferous epithelium, a significant difference in the 

number and spatial localization of peroxisomal structures with respect to the nuclei was 

noted (Fig. 11D-F). During the progress of spermatid maturation, peroxisomes disappeared 

as individual organelles (stage II-III, Fig. 11A, D), decreased in number and aggregated to 

larger clusters (stage VI-VII, Fig. 11B, E; Fig. 12A, B). 
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Figure 9:  Immunofluorescence detection of organelle marker proteins in seminiferous tubules of human 
testis.  All preparations are counterstained with TOTO-3 (blue) for labelling of nuclei. (A) Catalase (inset Leydig 
cells). (B) Double-IF for peroxisomal catalase (green) and mitochondrial complex III (red). (C) ACOX1: acyl-CoA 
oxidase 1,(β-oxidation pathway I). (D) Peroxisomal Thiolase A: peroxisome 3-ketoacyl-CoA thiolase. (E) Pex14p. 
(F) Double-IF for PEX14 (green) and LAMP2 (red). (G) ABCD3 (red) and PEX13 (inset, green). (H) Double- IF for 
vimentin (green, Sertoli cells) and ABCD1 (red). Bars represent 40 µm. 
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Figure 10: Catalase-competition experiment and other negative controls for immunofluorescence 
preparations of paraffin sections of mouse and human testis.  (A) CAT-positive control with high antibody 
concentration (1:100). (B) Negative control with depletion of the anti-CAT antibody (1:100) with bovine CAT 
protein. Note that no reaction product is present despite the high primary antibody concentration in the 
competition experiment. (C–F) Negative controls without primary antibody, depicting the high quality of the 
secondary antibody-reaction in mouse (C, D) and human (E, F) seminiferous tubules of distinct stages. 
 

Furthermore, they were transported from central regions in the spermatid cytoplasm to a 

basal location beneath the nuclei of the mature spermatids of step 16 (stage VIII, Fig. 11F). 

In addition, large peroxisomal aggregates were also found in residual bodies (Fig. 11G, 

arrows). All results obtained by fluorescence microscopy were corroborated by ultrastructural 

analysis. The specificities of all antibodies were high on the ultrastructural level in 
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immunocytochemical preparations as shown by selective staining of peroxisomes for CAT or 

PEX13 in various testicular somatic cell types (Fig. 12I, M, N). In addition, immunoreactivity 

of CAT in small, elongated peroxisomes in spermatogonia was shown (Fig. 12L). 

Furthermore, a specific labelling for GFP and PEX13 on membrane-bound structures 

resembling peroxisomes was found in all stages of spermato- and spermiogenesis (except 

for mature spermatozoa). Only rarely, single non-specific gold particles were found in 

appropriate negative controls for all antibodies (data not shown).  

Peroxisomes in germ cells were often elongated, dump-bell shaped, and were similar or 

even smaller in diameter (50-100 nm) than segments of the endoplasmic reticulum. Similar to 

light microscopic results, their distribution and shape changed depending on the maturation 

of spermatids. In spermatid development up to step 13 (Fig. 12H, step 9) peroxisomes 

appeared as small individual structures. Individual peroxisomes in early stages of spermatid 

development were difficult to identify in post-embedding labelling experiments, since they are 

very small and were only rarely exposed on the surface of ultrathin sections in these cell 

types. To obtain a rough estimation about the probability for the presence of peroxisomes on 

the surface of these ultrathin preparations, we counted the peroxisome number in 100 round 

spermatids in a paraffin section stained for PEX14 using regular fluorescence microscopy 

(number of peroxisomes in 5 x 20 round spermatids of 5 distinct seminiferous tubules). In 

100 spermatid profiles 1,874 fluorescent particles were present (range of 15 to 23 

peroxisomes / spermatid profile). Thereafter, a thickness of 1.3 µm for this section was 

determined by a xzy-scan (vertical scan) with a CLSM (pinhole: airy 1, objective: 63 x, zoom: 

8). By mathematical extrapolation this would implicate for a DAB-stained ultrathin section of 

80 nm thickness a value of 0.92 to 1.42 peroxisomes/round spermatid profile and a minimum 

probability of 0.0115-0.0178 (= value for DAB sections divided by 80 nm section thickness) 

on the surface of post-embedding labelling preparations (= a single peroxisome on the 

section surface / 56-87 spermatids). These derived, nonempirical values help to explain the 

scarcity of peroxisomal profiles on the electron-microscopic images in comparison to the 

enumerated abundance in the paraffin-sectioned material. 

In contrast to early spermatids, in later stages of spermiogenesis (step 15-16 spermatids) 

aggregation of peroxisomal profiles was noted. These clusters were positively labelled with 

gold particles in immunocytochemical preparations stained for detection of catalase, PEX13 

or GFP (testis sections of transgenic animals) (Fig. 12E, F). Labelling was present on round 

or tubular profiles and also on double-membraned loop structures (Fig. 12G). Cytochemical 

detection of CAT activity on the ultrastructural level also revealed large clusters of CAT 

positive profiles in step 16 spermatids, including CAT-positive double-membraned loops (Fig. 

12C, D).  
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Figure 11: Localization of peroxisomal marker proteins in distinct stages of the seminiferous tubules of 
the mouse testis (A: stage II; B: stage VI-VII; C: stage XII).  (A-C) Immunofluorescence staining for Pex14p 
(green) and nuclear counterstaining with TOTO-3 (blue) in paraffin sections. (D-H) GFP-fluorescence in 
cryosection of testes of GFP-PTS1 transgenic mice. Pex14p immunoreactivity is shown in red in D, E, G, H. Note 
that GFP and Pex14p colocalize in all germ cells indicating that these structures are peroxisomes. (G)  Large 
peroxisomal structures in residual bodies (arrows).  Nuclei in frozen sections (D-H) are also counterstained with 
TOTO-3 (blue). Bars represent: A-C: 50 µm; D-H: 10 µm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Localization of peroxisomal marker proteins in peroxisomes in germ cells and somatic cell 
types of the mouse testis of control (A-D, H, I, K-N) and GFP-transgenic mice (E-G, J).  IF staining of paraffin 
sections for ABCD3 (A) and CAT (B). Insets in A and B are magnified views of large immunostained structures in 
late spermatids. (C, D). Electron micrographs of a late mouse spermatid (step 16) from a cytochemical 
preparation for catalase activity with DAB. D shows a higher magnification view of the cluster of DAB-stained 
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profiles from C. For better orientation, asterisks in C and D mark identical regions of the endoplasmic reticulum. 
(E-G). GFP immunoreactivity in a similar region of a GFP-PTS1 transgenic mouse. (C-G) Arrows mark clusters of 
peroxisomal profiles and arrowheads depict double-membraned loop structures. (H) Peroxisome (arrow) in a step 
9 spermatid labelled for PEX13. (J, K). Peroxisomes in late spermatids labeled for GFP (step 16) (J) and CAT 
(step 15) (K). (I) PEX13 immunoreactivity of a Leydig cell peroxisome (arrow). (L-N) CAT staining of peroxisomes 
in a spermatogonium (arrow in L), a peritubular- (M) and a Leydig cell (N) depicting the high specificity of the CAT 
antibody and of the protocol used for post-embedding protein A-gold labelling. BM – basement membrane, ER – 
endoplasmic reticulum, G – Golgi apparatus, L – lipid droplets, M –  mitochondria, N – nuclei , PTC – peritubular 
cell. Bars represent: A, B: 10 µm; C-N: 0.2 µm. 
 

4.4. The heterogeneity of peroxisomal enzymes is preserved in primary cell cultures 

and cytospin preparations of isolated Leydig, peritubular myoid- and Sertoli cells 

After isolation of primary Leydig-, peritubular myoid-, and Sertoli cells from 14-day-old (P14) 

mice and Leydig cells from adult mice, the purities of the cultures were determined by 

immunofluorescence stainings using antibodies against cell type-specific markers (Fig. 13). 

The Sertoli cells cultures were labelled with specific marker vimentin (Fig. 13A), α-smooth 

muscle actin (αSMA) was used for peritubular cells (Fig. 13C) and cytochrome P450scc for 

Leydig cells (Fig. 13E,G). More than 95% of Sertoli and peritubular cell cultures and more 

than 98% of juvenile and adult Leydig cell cultures were positive for cell type-specific 

markers. In addition, the specific testicular somatic cells in primary culture were 

immunolabelled with different antibodies against peroxisomal proteins. The results confirmed 

the presence of peroxisomes in all somatic cell types of the testis in culture and revealed 

similar individual differences as in tissue sections. The peroxisomal membrane transporter 

ABCD3 was strongly present in cultured Sertoli cells (Fig. 13B), whereas PEX13 was a better 

marker for peritubular cell cultures (Fig. 13D). Double immunostaining was used to 

distinguish between distinct subcellular organelle compartments. In juvenile Leydig cells, 

peroxisomes were positive for PEX14 and mitochondria for OxPhosIII (Fig. 13F). 

Peroxisomes in adult Leydig cells were stained best with an antibody against CAT (Fig. 13H).  

To confirm the morphological results obtained in situ and in isolated cell cultures by 

immunofluorescence, Western blot analysis was performed using distinct subcellular 

fractions obtained by differential centrifugation from homogenized cell preparations. The 

peroxins PEX13 and PEX14 were detected in adult Leydig cells and P14 Sertoli and 

peritubular myoid cells, whereas the protein levels of both peroxins were low in P14 Leydig 

cells (Fig. 14A). In accordance with the results obtained by immunofluorescence, ABCD1 

was mainly present in Sertoli cells (Fig. 14B). In contrast, high levels of catalase were 

present in adult Leydig- and peritubular myoid cells, whereas the abundance of this enzyme 

was low in Sertoli cells (Fig. 14A). CAT was barely detectable under these conditions in P14 

Leydig cells, however, a specific band of expected size could be observed after prolonged 

exposure times of films (Fig. 14B). 
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Figure 13: Primary cultures of distinct somatic cell types of the mouse testis.  (A – F) Cell cultures isolated 
from P14-testis. (A, C, E). Overviews of cell cultures labeled with cell-type specific markers, (A) vimentin for 
Sertoli cells, (C) α-smooth muscle actin (αSMA) for peritubular myoid cells, and (E) cytochrome P450scc for 
Leydig cells. (B, D, F) Higher magnification views of corresponding cells stained for different peroxisomal marker 
proteins, (B) ABCD3, (D) Pex13p, (F) PEX14 (G) Immunofluorescence for mitochondrial cytochrome P450scc of 
cytospin preparations of Leydig cells isolated from adult mouse testis. (H) CAT localization in the isolated adult 
Leydig cells. Bars represent in A, G,F,G 25µm in B, E, H 18µm and in D 21µm. 
 

Using semi-quantitative RT-PCR, the steady-state levels for the mRNAs encoding 

peroxisomal proteins were determined in isolated cell cultures. For calculations of differences 
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in mRNA expression levels, the RT-PCR band intensities of peroxisome-related genes were 

normalized for the band intensity of the 28S rrna of the same cDNA preparation (Fig. 15A). 

mRNAs for Abcd1 and Abcd3 (Fig. 15B) were present in high amounts in Sertoli and 

peritubular myoid cells (1.4-fold higher to the value of adult Leydig cells).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Western blot analysis of enriched organelle fractions isolated from somatic testicular cell 
types.  Ten micrograms of proteins have been loaded in 12.5% SDS gels in each lane and the same blots (A, B, 
C) were reprobed several times with specific antibodies for the indicated peroxisomal marker proteins. PEX13: 
peroxin 13; PEX14: peroxin 14; ABCD1: adrenoleukodystrophy protein; CAT – catalase, ACOX1 – acyl-CoA 
oxidase 1. 
 

In contrast, the expression of Abcd2 mRNA was strongest in Leydig cells, whereas 

expression levels of Abcd4 and the genes encoding the peroxins Pex13 and Pex14 were 

similar in all cell types (Fig. 15B,C). Catalase (Cat) mRNA levels were comparable in adult 

Leydig-, P14 Sertoli- and peritubular myoid cells. However, the expression level of Cat in P14 

Leydig cells was only about 20% of that of adult Leydig cells (Fig. 15D).  

Most mRNAs for peroxisomal β-oxidation enzymes (Acox1, Ehhadh, Thiolase A for the β-

oxidation pathway I and Hsd17β4, ScpX for the β-oxidation pathway II) were expressed at 

comparable levels in distinct cell types (Fig. 15D,E). However, the mRNA levels for acyl-CoA 

oxidase 2 (Acox2), the rate-limiting enzyme for cholesterol side-chain cleavage, was 

elevated about 4- and 6-fold in P14 Leydig- and P14 Sertoli cells, respectively, compared to 
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adult Leydig cells, whereas Acox2 expression in P14 peritubular myoid cells was decreased 

to 20% of that of adult Leydig cells (Fig. 15E). The mRNA for acyl-CoA oxidase 3 (Acox3), 

which is the rate-limiting enzyme for the β-oxidation of branched-chain fatty acids, was not 

altered. The expression of mRNAs of two enzymes involved in the biosynthesis of ether 

lipids, glyceronephosphate dihydroxyacetonephosphate acyltransferase (Gnpat / Dhapat) 

and of glyceronephosphate alkyl-dihydroxyacetone-phosphate synthase (Agps / Dhaps) was 

about 1.3-fold higher in P14- compared to adult Leydig cells (Fig. 15F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 15: Semiquantitative RT-PCR analysis on cDNAs 
prepared from total RNA of distinct somatic cell types of 
the mouse testis. (A)  28S rrna as internal control. (B) 
Peroxisomal ABC-transporters Abcd1-4. (C) Peroxisomal 
biogenesis genes Pex13, Pex14. (D) Enzymes of the β-
oxidation pathway 1, Acox1: acyl-CoA oxidase I, Ehhadh multi-
functional protein 1, Thiolase A: peroxisome 3-ketoacyl-CoA 
thiolase; Cat:  catalase. (E) Enzymes of the β-oxidation 
pathway 2, Acox2 and 3: acyl-CoA oxidase 2 and 3, Hsd17β4: 
multifunctional protein 2 and ScpX:  sterol carrier protein X. (F) 
Enzymes of ether lipid synthesis: Gnpat : glyceronephosphate 
O acyltransferase  and Agps: glyceronephosphate alkyl-
dihydroxyacetonephosphate synthase. 
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4.5. Knockout of peroxisomal function in Sertoli cells 

To understand the specific roles of peroxisomes in Sertoli cells of the testis, a tissue specific 

Pex13KO mouse line has been generated by the cre-loxP technology (Sertoli cell specific 

Pex13KO – scsPex13KO). The expected Mendelian breeding patterns, an apparently normal 

phenotype of the mice homozygous for the floxed Pex13 gene, and apparently normal 

phenotype of mice containing the Cre gene driven by the Amh promoter, were all indications 

for normal gene expression in the presence of loxP sites or Cre recombinase. Heterozygous 

animals - scsPex13HTZ, showing a deletion of the exone 2 of one Pex13 allele, were 

generated by crossing homozygous animals carrying the floxed exon 2 of the Pex13 allele 

[275] with transgenic mice in which the Cre recombinase was driven under Amh promoter 

control, that is expressed specifically in Sertoli cells during development [276]. In a second 

mating scsPex13KO pups were generated by back-crossing scsPex13HTZ animals with 

homozygous floxed Pex13 mice. The generated mice were genotyped by genomic PCR for 

the Pex13 and Cre genes, and the DNA was prepared from tail biopsies, to reveal their gene 

composition for scsPex13KO, scsPex13HTZ and scsPex13WT and the presence or absence 

of Cre gene. For the genotyping the PCR primers Pex13loxP-F1 (P1 in Fig. 17A) and 

Pex13loxP-R1 (P2 in Fig. 17A) were used, which produce a band at 490bp, representing the 

wild-type allele and a band of 540bp, which represents the floxed Pex13 allele with two loxP 

sites flanking exon 2 (Fig. 16A - C). New born pups with distinct genotypes (scsPex13KO, 

scsPex13HTZ, scsPex13WT) did not present any phenotypic difference. The animals with 

one floxed Pex13 allele in the non deleted state were phenotypically identical to WT animals, 

scsPex13WT (Pex13 WT/loxp) (Fig. 16A and Fig. 17B). The animals with one wild type Pex13 

allele, one deleted Pex13 allele and Amh-cre expressed were considered scsPex13HTZ, 

(scsPex13 WT/∆ex2/Amh-cre+/-) (Fig. 16B and Fig. 17B). The scsPex13KO animals were shown 

both deleted exone 2 of floxed Pex13 gene and Amh-cre expressed (scsPex13 ∆ex2/∆ex2 / 

Amh-cre+/-) (Fig. 16B and Fig. 17B). PCR analyses of genomic testis DNA confirmed the 

homozygous disruption of the Pex13 allele in this tissue, whereas other tissues analyzed 

such as liver or tail, never exhibited the band for identifying the exon 2 disruption of Pex13 

gene (Fig. 17B). Male progeny underwent excision of one or both alleles of the exon 2 of the 

Pex13 gene in Sertoli cells because of the specific Cre expression driven by the Amh 

promoter in this type of cells (Fig. 17B). The disruption of the Pex13 gene was demonstrated 

by PCR to confirm the Cre-mediated excision at loxP sites using primers immediately 5´ to 

the first loxP site in the front of exon 2 (P3 in Fig. 17A) and 3´of the second loxP site after the 

exon 2 (P4 in Fig. 17A). This reaction produces a 385bp product for the disrupted allele. The 

385bp amplicon was seen also in the scsPex13HTZ, however, with a lower intensity due to 

excision of only one Pex13 allele (Fig. 17B).  
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Figure 16:  Confirmation of the correct genotypes by PCR with primers for Pex13 flox/ WT allels and the 
Cre transgene using DNA, isolated from mouse tails of representative animals.  PCR genotyping shows (A, 
2) the WT bands for Pex13 floxed at 540bp and Pex13WT at 490bp and (A, 3) no band for Cre. These animals 
were further named scsPex13WT.  (B, 2) Animals were named scsPex13HTZ are exhibited the double bands for 
Pex13 floxed at 540bp and Pex13WT at 490bp and in addition (B, 3) the Cre band at 520bp indicating 
heterozygosity. (C, 2) Animals were named scsPex13KO, when they exhibited single band of Pex13 floxed at 
540bp indicating homozygosity and in addition, (A-C, 1) the Cre band at 520bp confirming the present of the Cre 
gene. 100-bp DNA ladder. 
 

In order to confirm the excision of Pex13 in the Sertoli cells, microdissected seminiferous 

tubules from 130day-old scsPex13KO, scsPex13HTZ and Pex13WT were used for DNA 

extraction. The same set of primers P1/P2, P3/P4 (Fig. 17A) was used. Due to the excision 

of Pex13∆exon2 solely in Sertoli cells the 385bp amplicon of the Pex13∆ allele was highly 

increased in microdissected seminiferous tubules of scsPex13KO compared to 

scsPex13HTZ animals. In scsPex13HTZ the 385bp amplicon of the Pex13∆ allele was 

present at lower intensity since the excision just took place on one allele (Fig. 18). 

 

 

Figure 17: Targeted disruption of the Pex13 gene . (A) Schematic representation of the floxed Pex13 allele. 
The positions of exons 2 to 4 (E2-E4) and the directions and positions of genotyping PCR primers P1 to P4 are 
indicated. (B) Genotyping by PCR screening of genomic DNA of different tissues (testis, liver, tail). The PCR 
confirming the presence of the Cre gene showed an amplicon of 520bp in the testis, liver and tail for 
scsPex13HTZ (+/-) and scsPex13KO (-/-), but no in scsPex13WT (+/+). The P1/P2 primer pair generated an 
amplicon of 490 bp for the Pex13WT (+/+) and 540 bp for the floxed Pex13 allele. The P3/P4 primer pair 
generated an amplicon of 385 bp for the Pex13∆ allele, following Cre mediated excision of the floxed exon 2.  
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Figure 18.  Confirmation of the Cre-mediated exon 2  of Pex13 excision via genotyping PCR of 
microdissected seminiferous tubules.  Frozen sections (10µm) of OCT-embedded testis tissue from 
scsPex13KO, scsPex13HTZ and scsPex13WT were shortly stained with H&E and cut out by P.A.L.M. laser-
capture microdissection. 1.050 cells for each genotype were used for DNA extraction and subsequent PCR 
reactions. The PCR confirmed the presence of the Cre gene showing an amplicon of 520bp for 
scsPex13HTZ (+/-) and scsPex13KO (-/-), but no for Pex13WT (+/+) animals. The floxed Pex13 allele 
(including the loxP sites) was represented by a 540 bp amplicon, the wild-type Pex13 allele with 490 bp 
amplicon. Cre-mediated excision of exon 2 of the Pex13 gene was represented by a 385 bp amplicon, which 
was only present in scsPex13HTZ and to under strong extent in scsPex13KO animals. 
 

4.6. Fertility of scs Pex13KO males  

Male scsPex13KO animals were tested for their fertility (90 and 130 day-old), by mating them 

with fertile wild type females up to 2 weeks. Mutant male mice of P90 were fertile as 

indicated by the pregnancies and delivery of pups by the female animals. However, the 

number of the offspring was of 3 or 4 pups per litter. The number of the pups was 

approximately reduced by half, since mating wild type female mice produced an average size 

of eight pups per litter. Wild type females that were mated with the P130 scsPex13KO male 

produced no offsprings, indicating that these males were completely sterile.  

 

4.7. Macroscopic differences between scs Pex13WT, scs Pex13HTZ and scs Pex13KO 

mice 

Even though new born pups showed no clear phenotypic differences between the distinct 

phenotypes, a clear distinction could be made at P130 post partum between wild type and 

mutant animals. The body weight of 130 day-old scsPex13KO mice was significantly reduced 

compared to the scsPex13WT and scsPex13HTZ animals (Fig. 19A). Male 130 day-old 

scsPex13HTZ and scsPex13KO mice showed no gross abnormalities of external genitalia. 

As noted during dissection, also, the testes of the scsPex13KO mice were located in the 

correct position when compared to WT and HTZ mice. Epididymis, deferent ductus, seminal 

vesicles and prostate glands appeared to be normal. In contrast, the testes of scsPex13KO 

mice were atrophic, with their size and total weight being drastically reduced compared with 

testes of scsPex13HTZ and WT littermates (Fig. 19B,C). Statistical analysis confirmed that 

the total testis weight was significantly reduced (P<0.001) to 1/3 of the wild type volume in 

130 day-old scsPex13KO compared to scsPex13HTZ and scsPex13WT controls. 
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4.8. Phenotypic differences of the testis and epididymis between scs Pex13WT, 

scs Pex13HTZ and scs Pex13KO mice at the microscopic level  

P130 male mice of the scsPex13WT and scsPex13HTZ genotype exhibited quantitative and 

qualitative normal spermatogenesis, with regular formation of the seminiferous epithelium, 

containing all generations of germ cells up to elongated spermatids (Fig. 20A,B,D,E). The 

histological examination of scsPex13KO mice revealed in 99% of seminiferous tubules a 

“Sertoli cell only” syndrome (SCO), with the presence of big intratubular vacuoles in the testis 

and azoospermia in the epididymis. In interstitial spaces Leydig cells were massively 

proliferated and macrophages showed signs of activation (Fig. 20C,F). 

 

Figure 19: Macroscopic differences between the genotypes of the scs Pex13 mouse line (A) Comparison of 

the body weight of 130 day-old scsPex13 mice. The body weight of P130 scsPex13KO mice was significantly 

reduced (P< 0.01). (B) Dissection of the urogenital tract (urinary bladder removed) of scsPex13WT (+/+), 

scsPex13HTZ (+/-) and scsPex13KO (-/-) mice at P130. (C) Note that, the size of the testes in scsPex13KO 

animals was significantly reduced (P< 0.001) compared to the one of scsPex13HTZ and scsPex13WT mice. k: 

kidney; u: ureter; SV: seminal vesicle, dd: deferens ductus, e: epididymis, t: testis. (* p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 

0.001). 

 

4.9. Analysis of semithin sections revealed pathological alterations in the testis of 130 

day-old scs Pex13KO animals  

Semithin cross-sections of the testis of P130 scsPex13KO mice revealed a 50% decrease in 

the average diameter of the seminiferous tubules and a disorganization of the multilayered 

epithelium. Regular germ cells were completely absent and giant phagosomes dominated in 

A 

C 

B A 

C 
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Sertoli cells, exhibiting phagocytosed cells in different apoptotic stages. In addition, abundant 

large lipid inclusions were identified within the Sertoli cells cytoplasm of scsPex13KO, which 

were not present in scsPex13HTZ and scsPex13WT mice. These globular lipid inclusions 

were sometimes surrounded by numerous smaller osmiophilic lipid droplets. The latter small 

lipid droplets were normal constituents of Sertoli cells also in the scsPex13HTZ and WT 

testis (Fig. 21B,C). 

 
Figure 20:  H&E staining of the testis and the Cauda epididymidis obtained from 130 day-old 

Pex13WT (+/+), scs Pex13HTZ (+/-) and scs Pex13KO (-/-) animals. (A) Regular complete 

spermatogenesis was observed in scsPex13WT, (B) scsPex13HTZ animals. In contrast, smaller tubules 

with “Sertoli cell only” syndrome and many vacuoles were present in (C) scsPex13KO in conjunction with 

proliferation of Leydig cells and the presence of many immune cells, indicated by arrowheads in the insert 

picture. Corresponding sections of the caudal epididymis revealed that spermatozoa could only be detected 

in (D) scsPex13WT, as well as (E) scsPex13HTZ, but not in (F) scsPex13KO animals. Bars represent in A-F 

100 µm. 

 

In controls and scsPex13HTZ mice (Fig. 21G,H), the lamina propria was composed of a 

single continuous layer of flat elongated peritubular cells, separated by a rather thin basal 

lamina from both seminiferous tubules and endothelium of lymphatic capillaries. A slight 

thickening of the lamina propria was observed surrounding the SCO seminiferous tubules of 

scsPex13KO animals (Fig. 21A-D). Proliferation of peritubular cells correlated with an 

increase in the thickness of the basement membranes of seminiferous tubules (Fig. 21D). In 

contrast to controls (Fig. 21F), the intertubular space in the scsPex13KO mice was occupied 

by proliferating Leydig cell clusters of all developmental stages (Fig. 21A,D,E). The cytoplasm 

of the Leydig cells in scsPex13KO animals showed an increased number of lipid droplets 

(Fig. 21A,D,E) in contrast to the Leydig cells of the scsPex13HTZ animals (Fig. 21F). 
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Figure 21:  Semithin sections of scs Pex13KO and scs Pex13HTZ testes from 130 day-old mice stained 

with Methylene blue.  (A – E) The disorganization of the seminiferous epithelium in scsPex13KO animals 

was accompanied by the presence of big phagosomes (pha) with apoptotic cells (indicated by big arrows) 

and inclusions of large lipid droplets (marked by arrowheads). The predominant cell types of the 

seminiferous epithelium were vacuolated Sertoli cells (marked by asterisks). (A – D) Proliferated peritubular 

cells leading to thickening of basement membranes (indicated by small arrows). (E) In addition, the 

interstitial space was filled with proliferated Leydig cells (p LCs), containing increased number of lipd droples 

and structures resembling VLCFA crystals (marked by lines). Around proliferating Leydig cells activated 

macrophags (m) were present. (F) Normal Leydig cells from scsPex13HTZ. (G,H) Seminiferous tubules of 

scsPex13HTZ mice contained an intact multilayered seminiferous epithelium, composed of Sertoli cells and 

all spermatogenic cell type, comparable to WT animals. Bars represent in A-H 50 µm. 

 

4.10. Electron microscopy confirms the severe pathological alteration in seminiferous 

tubules and reveals ultrastructural changes also in Leydig cells 

Detailed ultrastructural analysis of ultrathin sections of the testis of P90 and P130 

scsPEX13KO mice by transmission electron microscopy revealed severe pathological 

alterations of different cell types in the germinal epithelium and of Leydig cells.  

Ultrastructural alterations were observed in the seminiferouse epithelium already in 90 day-

old scsPex13KO animals. Whereas, peroxisomes were clearly identifiable by their catalase 

staining in Sertoli cells of scsPex13HTZ (Fig. 22A-E), these organelles were absent in any 

Sertoli cells of scsPex13KO animals (Fig. 22F-L), confirming the Pex13 gene KO in these 

cells. In contrast, peroxisomes were present in neighbouring peritubular cells and strongly 

stained for CAT of their matrix (Fig. 22F insert). Sertoli cells of control scsPex13HTZ animals 

revealed peroxiosmes often closely associated with cisternae of the sER and mitochondria 

(Fig. 22A,B,C,E) or were located on the surface of small lipid droplets (Fig. 22D). In P90 
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scsPex13KO testis the ultrastructure of epithelium of many seminiferous tubules revealed a 

disorganization, exhibiting vacuoles of different sizes in the Sertoli cells, most probably 

resulting form the loss of germ cells (Fig. 22F), whereas in other tubules large confluent 

empty spaces were already observed in the cytoplasm of Sertoli cells (Fig. 22J). Most germ 

cells still present in the seminiferous tubules showed a relatively normal appearance. In 

contrast, several alteration in the Sertoli cell cytoplasm were observed such as proliferation 

of pleomorphic mitochondria (Fig. 22F,G) as well as increased number of lipid droplets, 

lysosomes and phagosomes (Fig. 22G,H). In addition, lamellae of sER were closely 

associated with the large lipid droplets as well as with mitochondria (Fig. 22I). 

The morphology of the seminiferous epithelium and Sertoli cells of 130 day-old scsPex13KO 

was dramatically altered (Fig. 22K). The seminiferous epithelium was strongly disorganized, 

showing massive lipid accumulation in the Sertoli cell cytoplasm (Fig. 22K). Only residual 

parts of apoptotic germ cells were present in large phagosomes (Fig. 22L). No viable germ 

cells could anymore be identified. 

Leydig cells of P90 scsPex13HTZ mice, taken as the control group, showed  the typical 

morphological characteristics of this cell type, such as areas of the cytoplasm rich in 

anastomosing tubules of the sER, large mitochondria and lipid droplets surrounded by 

peroxisomes. DAB positive peroxisomes were proliferated in the cytoplasm of Leydig cells at 

P130 scsPex13KO mice (Fig. 23J,K). The tubular cristae in mitochondria were 

homogenously distributed in the organelles (Fig. 23A,B). Whorled sER was only seldom 

detected in Leydig cells of scsPex13HTZ (Fig. 23A,D). In the P90 scsPex13KO animals, 

Leydig cells contained an increased number of lipid droplets as well as giant whorl-like sER, 

some of which engulfed lipid droplets (Fig. 23E,F) and contained many peroxisomes 

between their lamellae (Fig. 23G,H). In Leydig cells of P130 scsPex13KO most mitochondria 

were larger and longer and exhibited proliferated and dense tubular cristae. (Fig. 23I,J,K). 

Some mitochondria showed a rearrangement of their cristae to the external surface and a 

rarefaction of cristae in internal matrix areas, leading to the empty spaces (Fig. 23F asterisk). 

Large groups of lysosomes with DAB-positive electron dense deposits were frequently 

observed in Leydig cells of P130 scsPex13KO animals (Fig. 23J). In these cells lipid crystals 

were present on the surface of lipid droplets (Fig. 23K). In the interstitial space besides the 

Leydig cells many macrophages were seen that exhibited an activated appearance with 

extending filopodia on their surface and large phagosomes in their cytoplasm (Fig. 23I). 
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Figure 22: Electron microscopy of Sertoli cells from P90 and P130 scs Pex13KO (-/-) and scs Pex13HTZ 
(+/ -) animals.  Sections were incubated for 3h in DAB medium for the detection of CAT activity in peroxisomes. 
(A,B)  Regular ultrastructure of basal part of Sertoli cell  from P90 HTZ animals, depicting peroxisomes (arrow 
heads), lipid droplets (Lip), lysosomes (Ly) and mitochondria (M) and peritubular cell (PTC). (C) High 
magnification of HTZ Sertoli cell with peroxisomes (arrow heads), sER (arrows), lysosomes (Ly) and mitochondria 
(M). (D) Peroxisomes (head arrows) of Sertoli cells are in close contact to lipid droplets (Lip). (E) High 
magnification showing the close association of peroxisomes (arrow heads) and sER (arrows) in a HTZ Sertoli cell. 
(F,G) Sertoli cell of P90 scsPex13KO animal with small vacuoles (V), proliferated mitochondria (M), cytoplasmic 
areas with sER and phagosomes (Pha) and neighboring lipid droplet (Lip).  GC: germ cell. The insert in picture (F) 
depicts a DAB positive peroxisome in PTC. (H) Higher magnification of a P90 Sertoli cell of scsPex13KO showing 
strong pleomorphism of the mitochondria population (M) and a big phagosome (Pha). (I) Sertoli cell of a P90 
scsPex13KO animal exhibiting a big lipid droplet (Lip) with mitochondria (M) on its surface. (J) Low magnification 
of a seminiferous tubule of a 90 day-old scsPex13KO animals depicting several vacuoles (V) in a Sertoli cell.  
Germ cell (GC) lost their contacts with the altered Sertoli cells. (K) Seminiferous tubule in a P130 scsPex13 testis 
revealing massive lipid accumulation (Lip) in a Sertoli cell. (L) KO Sertoli cell with a large phagosome, containing 
the residual structures of apoptotic spermatids still identifiable by the mitochondrial sheath around the axial 
filament. Bars represent in A, B: 1 µm, C-E:  0.5 µm, F-I: 0.5 µm, H-I: 1 µm, J-L: 1 µm.  
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Figure 23:  Electron microscopy of Leydig cells from P90 and P130 scs Pex13KO (-/-) and scs Pex13HTZ 
(+/ -) animals.  Sections were incubated for 3h in DAB medium for the detection of catalase in peroxisomes. 
Leydig cell (LC) ultrastructure of a 90 day-old HTZ animal (A,B,C,D)  showing the typical features of steroid 
producing cells with ER (arrow), lipid droplets (Lip), mitochondria with tubular cristae (M) and peroxisomes (arrow 
heads). (E, F) Leydig cells of 90 day-old scsPex13KO animals with giant whorl-like ER (arrow) engultiong the lipid 
droplets (Lip). (G, H) Leydig cells of 90 day scsPex13KO with peroxisomes (arrow heads) integrated into whorl 
lamellar of the ER (arrow). (I) Activated macrophage (MAC) with two big phagosomes (Pha). (J, K)  Leydig cells of 
a 130 day-old scsPex13KO showing mitochondria densely packed with tubular cristae in their matrix (M), many 
peroxisomes (arrow heads), lysosomes (Ly), as well as small lipid crystals (small lines) on lipid droplets (Lip). 
Bars represent: A-J: 1µ, H: 0.5 µm. 
 

4.11. Specification of the accumulation of peroxisome - metabolized lipids in the testis 

of scs Pex13KO animals 

To decipher the nature of the lipid accumulation in the testes from scsPex13KO mice, all 

distinct mouse genotypes were analyzed in parallel with different techniques for lipid 

identification. The presence of large lipid inclusions, as suggested by light- and electron 

microscopy, within the seminiferous epithelium of scsPex13KO animals was confirmed by Oil 

Red O using frozen sections from P130 scsPex13WT, scsPex13HTZ and scsPex13KO mice. 
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This type of staining was indicating mainly of neutral lipids such as triglycerides and 

cholesteryl esters. Small deposits of lipid material could already be clearly identified within 

the cytoplasm of late spermatids at stage VII and residual bodies at stage VIII of the 

spermatogenesis cycle of the seminiferouse epithelium in scsPex13WT and scsPex13HTZ 

animals. During stage IX – XI of the seminiferous epithelial cycle, the lipid droplets were 

found in the basal regions of the Sertoil cells, in these animals. These lipid droplets in Sertoli 

cells most probably resulted from heavy lipid load due to phagocytosis of cytoplasmic bodies 

with lipids droplets and storage of the lipids in the cytoplasm of these cells (Fig. 24A, B). 

Lipid droplets were also present in abundant number in cytoplasm of interstitial Leydig cells, 

which are involved in steroid synthesis, explaining the Oil Red O staining of scsPex13WT 

and scsPex13HTZ animals (Fig. 24A, B).  

In scsPex13KO mice the seminiferous tubules the regular spermatogenic cells were 

absented (SOS) and Sertoli cells were completely filled with lipids stained positively with Oil 

Red O (Fig. 24C). Interstitial spaces of these animals contained the proliferating Leydig cells 

which were much weaker stained for Oil Red O, indicating that Leydig cells were still 

functional. In contrast to scsPex13WT and HTZ animals, the lipid droplets in Leydig cells of 

scsPex13KO animals were smaller and less intensively stained with Oil Red O. 

 

4.12. Impaired peroxisomal αααα − − − − and ββββ − − − −oxidation induced accumulation of fatty acids 

primarily in Sertoli cells of scs Pex13KO animals 

In agreement with the histological findings of lipid distribution in the scsPex13KO animals, 

severe accumulation of “peroxisome-specific” lipid substrates was found in these animals.  

Peroxisomes are involved in the breakdown of fatty acids, like VLCFA (C22:0, C24:0, C26:0) 

and different branched-chain fatty acids such as pristanic acid (2-methyl branched chain 

C26:0 fatty acid) and phytanic acid (3-methyl precursor of pristanic acid). They are involved 

in the biosynthesis of plasmalogen, as well. These typical “peroxisomal” substrates were 

analyzed in the neutral lipid fraction from scsPex13KO, HTZ and WT testes of 130 day-old 

mice. 
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Figure 24: Lipid accumulation in P130 scs Pex13KO mice.  Frozen sections of testis from (A) scsPex13WT 
(+/+), (B) scsPex13HTZ (+/-), (C) scsPex13KO (-/-) mice were stained with Oil Red O. (A, B)  In control testis the 
neutral lipids in the seminiferous epithelium accumulated according to the stage of spermatogenesis. Leydig cells 
were also Oil Red O positive. (C) The testis from scsPex13KO exhibited massive accumulation of lipids within the 
seminiferous tubules. Proliferating Leydig cells were less intensively stained. Bars represent in A-C 50 µm. 
 

The concentration of VLCFA were significantly increased for hexacosanoic acid (C26:0) (p ≤ 

0.001) and for lignoceric acid (C24:0) (p ≤ 0.01) in scsPex13KO animals, showing a testis-

specific accumulation of VLCFA. Since fatty acids are degraded by peroxisomal β-oxidation 

the results suggest the disruption of this pathway due to the peroxisomal biogenesis defect in 

Sertoli cells of mutant animals (Fig. 25A). In addition, the pristanic and phytanic acid levels 

were significantly increased in scsPex13KO mouse testis (p ≤ 0.01) (Fig. 25B), suggesting 

that the Sertoli cell specific peroxisomal biogenesis defect also led to an α and β-oxidation 

defect of branched chain fatty acids. Furthermore, plasmalogen levels in the testis were 

detected as the dimethylacetal (DMA) derivative of C16:0 and C18:0 fatty acids. 

Unexpectedly, the ratio of C18:0-DMA / C18:0 was significantly increased (p≤0.05) in the 

testis of scsPex13KO mice (Fig. 25C), suggesting an overall compensation of plasmalogen 

synthesis in other cell types of the testis or a delivery via lipoproteins of the blood.  
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Figure 25: Levels of VLCFA, branched chain fatty acids, plasmalogens in neutral lipids.  Measurements in 
testes of 130 day-old scsPex13WT/HTZ/KO mice were performed by gas chromatography (n=3 for all genotypes). 
(A) The levels of C24:0 / C26:0 VLCFA were significantly increased in scsPex13KO. (B) The levels of branched 
chain fatty acids (pristanic and phytanic acid) were also significantly increased in scsPex13KO.  (C) 
Plasmalogens and their dimethylacetal derivatives (DMA) were measured and the ratio of C18:0-DMA / C18:0 
was slightly, but significantly increased in the testis of scsPex13KO. (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001) (N=3) 
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4.13. Sertoli cells, spermatogenesis and the testicular integrity are progressively 

affected during postnatal development of scs Pex13KO animals 

To evaluate and follow the pathological alterations in the testis, a comparative analysis of 

tissues sections from 15, 30, 60, 90 and 130 day-old mice of all genotypes was performed. 

The IF analyses were studied for each genotype of the scsPex13 mouse line, but for space 

reasons only the results of scsPex13HTZ and scsPex13KO are depicted. IF analyses were 

used in order to compare the localization, distribution and alterations of peroxisomal and 

testis-specific marker proteins. All incubations of testis sections from distinct genotypes for 

the localization of a specific antigen were done in parallel and all pictures were taken with the 

same CLSM settings to achieve comparable and standardized results.  

 

4.14. Normal feature of prepubertal spermatogenesis in scs Pex13KO 

Spermatogenesis is initiated only shortly after birth. In consequence, during the prepubertal 

period at 15 day-old, most seminiferous tubules contain only Sertoli cells, spermatogonia 

type A and B and primary spermatocytes. Some tubules also contain early spermatids, but 

later spermatids are still absent at this age [277]. The peroxisomal biogenesis proteins of the 

docking complex PEX13 and PEX14 were detected in all testicular cell types of P15 

scsPex13HTZ animals. Corresponding to the results of the adult animals, PEX13 was most 

abundant in germ cells, whereas the staining for this protein was weaker in all somatic cells 

(Fig. 26A). PEX14 was most abundant in the basal compartment of the germinal epithelium, 

exhibiting a weaker staining of prepubertal Leydig cells (Fig. 23C). In comparison to the 

results obtained for adult animals, the testis of P15 scsPex13KO animals presented a 

relatively “normal” appearing architecture. However, most of the seminiferous tubules were 

significantly smaller in diameter. The signal intensity for PEX13 was reduced in 

spermatogonia and primary spermatocytes from 15 day-old scsPex13KO mice. PEX13 was 

not detectable in Sertoli cells and only weakly expressed in peritubular cells (Fig. 26B). In 

scsPex13KO animals PEX14 was barely detectable in the basal compartment of the 

germinal epithelium including Sertoli cells, although the staining for this marker was 

increased in the germ cells, especially in primary spermatocytes (Fig. 26D). The peroxisomal 

ABCD3 transporter was highly abundant in the cytoplasm of Sertoli cells from scsPex13HTZ 

mice, while barely detectable in Leydig cells (Fig. 26E). In contrast, only few positive spots 

labeling for ABCD3 were noted in the cytoplasm of Sertoli cells from 15 day-old scsPex13KO 

animals (Fig. 26F). Interestingly, the expression of ABCD3 was increased in “normal” 

appearing Leydig cells in these animals. The mitochondrial proteins, complex III of the 

respiratory chain (OxPhosIII) and superoxide dismutase 2 (SOD2) were used to evaluate 

pathologic mitochondrial alterations induced by the absence of peroxisomes in Sertoli cells. 

The mitochondrial complex III was detected in somatic cells as well as in spermatogonia and 
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in primary spermatocytes in all genotypes (Fig, 26E,F). The enzyme SOD2, that efficiently 

catalyzes the dismutation of superoxide anions to H2O2, was found in a punctuate pattern in 

somatic cells and was present an abundance in germ cells (Fig. 26G). However, in P15 

scsPex13KO mice, SOD2 was increased in Sertoli cells (Fig. 26H). 

 

4.15. Vacuolization of the cytoplasm of Sertoli cells in juvenile scs Pex13KO  

At the onset of the juvenile period, the first wave of spermatogenesis occures and the first 

appearance of spermatozoa is observed at ~ 35 days of age [278, 279]. In 30 day-old mice 

the seminiferous epithelium showed elongating spermatids (step 11-13) in scsPex13HTZ as 

well as in scsPex13KO mice (Fig. 27A,B,D,E,G,H,K). This result demonstrates that the first 

wave of spermatogenesis is not affected in the scsPex13KO. However, at this time of 

development for the first time an area within the cross section of testis was observed 

presenting morphological modifications in the seminiferous epithelium. However, these 

alterations were just found in one of the three mutant testes examinated (Fig. 27C,F,L). 

Interestingly, pathological altered seminiferouse tubules were surrounded by hyperplasic 

Leydig cells (Fig. 27C,F,L). The cytoplasm of Sertoli cell from 30 day-old scsPex13KO mice 

was lacked for immunoreactvity for PEX13, confirming the complete absence of this protein 

due to Cre-mediated gene excision of exon 2 of the Pex13 gene (Fig. 27B). In contrast, the 

intensity and distribution of the PEX13 IF in the germ cells of seminiferous tubules of 

scsPex13KO mice (Fig. 27B) was comparable with that of scsPex13HTZ animals (Fig. 27A). 

In addition, the germ cells of scsPex13KO were immunopositive for PEX14 while the 

cytoplasm of Sertoli cells was negative for this marker (Fig. 27E), which is distinct from the 

PEX14 pattern in scsPex13HTZ sections (Fig. 27D). Indeed, also ABCD3 staining revealed 

only very few peroxisome membrane ghosts in these mutant Sertoli cells (Fig. 27H,I). 

ABCD3 – positive peroxisomal membrane ghost structures surrounded big vacuoles that 

were not present in scsPex13HTZ animals. The vacuoles most probably are big 

accumulation of lipids in the Sertoli cells cytoplasm, appearing as gaps or vacuoles due to 

the dehydratation procedure for paraffin embedding. In contrast to scsPex13HTZ animals, a 

strong ABCD3 immunoreaction was also found in Leydig cells (Fig. 27H,I). This finding 

suggested that already Sertoli cells in 30 day-old scsPex13KO animals presented metabolic 

problems and lipid accumulation due to the lack of peroxisomes. In addition, the 

immunoreactivity for mitochondrial SOD2 was increased in Sertoli cells of scsPex13KO mice 

compared with HTZ animals. In contrast, germ cells of scsPex13KO contained less SOD2 

protein. At this age the OxPhosIII staining in “normal appearing” seminiferous tubules of both 

phenotypes was comparable (Fig. 27D,E), however, in pathological altered areas a weaker 

staining in seminiferous tubules as well as in adjacent proliferated Leydig cells was noted 

(Fig. 27F). 
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Figure 26: Immunofluorescence detection of peroxisomal and mitochondrial proteins in the testis of 15 
day-old scs Pex13HTZ (+/-) and scs Pex13KO (-/-) animals. Testes were fixed with 4% PFA, paraffin embedded 
and 2µm sections were cut. (A-F) Peroxisomal proteins. (A) PEX13 in a control testis section. (B) The 
seminiferous tubules of scsPex13KO animals were smaller in diameter and the PEX13 staining was weaker. 

 



Results 

86 / 169 

(C,D) Double staining for PEX14 / OxPhosIII (peroxisomes/ mitochondria). (D) In scsPex13KO animals only a 
weak staining for PEX14 was noted in the cytoplasm of Sertoli cells. (E) Whereas the ABCD3 staining was clear 
visible in the basal part of seminiferous tubules of scsPex13HTZ animals. (F) The ABCD3 staining was reduced in 
some area in scsPex13KO animals. In contrast, in adjacent Leydig cells it was increased. (G) The section of 
scsPex13HTZ stained for mitochondrial protein SOD2 being presented in all germ cells. (H) The staining of SOD2 
n the germ cells was increased in scsPex13KO animals. In addition, Sertoli cells were weakly positive for SOD2. 
Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent in A-H 100 µm. Representative pictures 
obtained from 3 experiments. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 27: Immunofluorescence analysis of peroxisomal and mitochondrial proteins in paraffin section of 
the testis from 30 day old mouse. Testes were fixed with 4% PFA, paraffin embedded, 2 µm sections were cut 
and stained with specifically antibodies. (A) PEX13 distribution (green) in control testis section. (B) The 
seminiferous tubules of scsPex13KO revealed a normal diameter. However, vacuoles (arrowhead) were present 
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in some of the Sertoli cells. PEX13 staining distribution was similar as in the control section. (C) An area of the 
mutant testis showing four seminiferous tubules with large empty spaces and vacuoles in Sertoli cells. The 
pathological altered tubules are surrounded by proliferated Leydig cells.  (D-F) Double staining for PEX14 (green) 
/ OxPhosIII (red) (peroxisomes / mitochondria). (D) Sections of scsPex13HTZ animals depicting PEX14 
immunoreactivity. (E) scsPex13KO sections showed a weak PEX14 staining in the cytoplasm of Sertoli cells. (F) 
The disturbed region exhibited a weak staining for both markers compared to other regions of the same section. 
(G) ABCD3 staining in scsPex13HTZ testis. (H-I) In basal part of the seminiferous epithelium of scsPex13KO 
animals ABCD3 staining (green) was reduced to few dots engulfing large vacuoles in Sertoli cells. In contrast 
Leydig cells were strongly stained for ABCD3. (J) scsPex13HTZ testis section stained for the mitochondrial 
protein SOD2 (green) which was present in all germ cells, Sertoli and Leydig cells. (H) SOD2 showed a strong 
increase in Sertoli cells and the staining of germ cells as well as of Leydig cells was reduced. (L) SOD2 staining 
was prominent in strongly affected tubules. Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent 
in 100 µm. Representative pictures obtained from 3 experiments. 
 

 

4.16. Adult 60 day-old scs Pex13KO mice exhibit hyperplasia of interstitial cells  

Under normal conditions spermatogenic differentiation occurs in a highly organized and 

synchronized manner in 60 day-old adult mice. Seminiferous tubules of P60 mice show 

complete spermatogenesis with mitotic expansion of the spermatogonia, meiotic divisions of 

spermatocytes and spermiogenesis of the spermatids to form spermatozoa. This process 

occurs periodically along the tubules, known as the spermatogenic wave [274]. Also in P60 

testis of scsPex13 KO animals in most seminiferous tubules there were no visible differences 

concerning the spematogenetic process between the two genotypes studied. In the 

cytoplasm of Sertoli cells, however, lipid vacuoles with increased size compared to the ones 

from pubertal animals were found (Fig. 28B). A major histological modification was the 

overall hyperplasia of the interstitial Leydig cells in sections of the testis from 60 day-old 

scsPex13KO animals (Fig. 28B,D,H). Interestingly, some of the proliferated Leydig cells 

exhibited an increased staining for mitochondrial SOD2, while the seminiferous tubules 

showed a similar staining pattern as in the pubertal testis of scsPex13KO animals (Fig. 28H). 

Immunofluorescence preparations of paraffin sections from scsPex13KO showed a 

remarkable decreased of PEX13 staining in the seminiferous epithelium, in the cytoplasm of 

Sertoli cells as well as in spermatogonia and spermatocytes, respectively (Fig. 28B). The 

cytoplasm of Sertoli cells was only positively stained for mitochondrial OxPhosIII, whereas 

peroxisomal PEX14 was not detectable in double-immunofluorescence preparations in 

Sertoli cells of scsPex13KO animals (Fig. 28D). In all tubules a reduced amount of ABCD3 

was detected, revealing an unusual pattern since few small immuno-positive dots were 

located around the lipid vacuoles within the cytoplasm of Sertoli cells. The highest level of 

ABCD3 expression was observed in Leydig cells in the mutant testis (Fig. 28F).  
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Figure 28 : Immumofluorescence analyses of peroxisomal and mitochondrial proteins in paraffin sections 
of the testis from 60 day old mouse.  Testes were fixed with 4% PFA, paraffin embedded, 2µm sections were 
cut and stained with specifically antibodies. (A) PEX13 (green) in a testis section of scsPex13HTZ animals. (B) 
The Sertoli cells of scsPex13KO animals revealed large vacuoles (arrow head). PEX13 staining was absent in 
Sertoli cells and also reduced in spermatogonia and spermatocytes of the seminiferous epithelium. Leydig cells 
were proliferated. (C,D) Double staining for PEX14 (green) / OxPhosIII.(red) (peroxisomes / mitochondria) (C) 
scsPex13HTZ section. (D) scsPex13KO sections showed only a weak staining for PEX14 in Sertoli cells. (E) 
ABCD3 staining in scsPex13HTZ testis. (F) Whereas, ABCD3 staining (green) was strong reduced (minimized) in 
Sertoli cells of scsPex13KO testis sections, whereas this protein was strongly up-regulated in proliferated Leydic 
cells. (G) scsPex13HTZ testis section showing mitochondrial SOD2 staining (green) in all germ cells, Sertoli and 
Leydig cells. (H) In the testis of scsPex13KO animals the SOD2 expression was extremely induced in Sertoli 
cells, meanwhile the germ cells exhibited lower SOD2 contrary to germ cells of HTZ sections. Some of the 
proliferated Leydig cells also revealed an increased expression of the SOD2 protein. Nuclei were counterstained 
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with TOTO-3 iodide (blue). Bars represent in A-H: 100 µm. Representative pictures of obtained from 3 
experiments. 
 
 
4.17. 90 day-old scs Pex13KO mice display hypospermatogenesis 

Testis sections of 90 day-old mice were examined by immunofluorescence analyses to 

evaluate the further progress of the pathological alterations in the testis of scsPex13KO 

animals. Careful histological examination revealed a mixture of normal appearing 

seminiferous tubules and others with clear pathological modification in scsPex13KO mice. 

The diameter of the pathologically modified seminiferous tubules was smaller than the one of 

normal tubules from the same sample. The finding of only a few mature spermatids in some 

of the tubules points to a condition of hypospermatogenesis in 90 day-old scsPex13KO mice. 

In addition, there was a strong variability of different cell layers within the epithelium of the 

same seminiferous tubule, revealing areas with the complete set of germ cells up to 

spermatozoa (functioning spermatogenesis), adjacent to areas within the tubules lined only 

by Sertoli cells, indicating germ cell loss (Fig. 29B, E,F). 

Other tubules showed an almost complete loss of germ cells or a “Sertoli cell only” syndrome 

(Fig. 29H). In the majority of the Sertoli cells huge lipid-vacuoles surrounded by intermediate 

filaments were observed (as identified by vimentin staining, marker for Sertoli cells) (Fig. 

29B,C,E,F,H,I). Since the heterogeneous appearance of the seminiferous epithelium was 

associated with a completed spermatogenesis process, the degeneration of the seminiferous 

tubules seemed to be a progressive process in 90 day-old scsPex13KO mice (Fig. 

29B,C,E,F,H,I). In intertubular spaces, Leydig cell aggregates were visible in a similar 

manner as in sections from 60 day-old scsPex13KO mice (Fig. 28, 29).  

Staining for PEX13 and PEX14 proteins in P90 scsPex13KO animals showed a similar 

distribution pattern and intensity in the germ cells, whereas the Sertoli cell cytoplasm was 

completely immunonegative for PEX13 (Fig. 29B,C,E,F). Peroxisomal PEX14 could be 

detected with a cytoplasmic distribution in Sertoli cells (Fig. 29E,F right tubule). Furthermore, 

the peroxisomal lipid transporter ABCD3 could be hardly detected by imunofluorescence in 

the Sertoli cell cytoplasm in P90 scsPex13KO animals. In contrast, proliferating Leydig cell 

were intensely stained for ABCD3 (Fig. 29H,I).  

To provide further insight into the peroxisomal biogenesis defect and disruption of matrix 

protein import, the localization of different peroxisomal matrix enzymes, such as CAT and 

ACOX1, was investigated by immunofluorescence analysis on paraffin sections. In P90 

scsPex13KO testis CAT was highly abundant in proliferating Leydig cells as well as in 

peritubular cells (Fig. 30B,C). In contrast to HTZ control section, CAT was increased in 

intensity and also visible in a punctuate pattern in primary spermatocytes of scsPex13KO 

animals. In contrast, staining pattern was dramatically altered in Sertoli cells, exhibiting an 
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intracytoplasmic distribution. However, this enzyme revealed a visible distribution, in a 

punctuate pattern, in primary spermatocytes (Fig. 30B,C).  

The distribution for ACOX1 was changed as well in 90 day-old mutant testis, exhibiting a 

strong staining in the intraluminal compartment that was absent from the periphery of the 

seminiferous tubules. Leydig cells exhibited a strong signal for ACOX1 (Fig. 30E,F). In 

addition, SOD2, an antioxidant protein was strongly increased in the Sertoli cells, as shown 

by colocalization of SOD2 / VIM (Fig. 27H,I). Interestingly, SOD2 displayed a weak staining 

in the peripheral region of altered tubules and was also less abundant in the luminal 

compartment of relatively normal appearing seminiferous tubules of the scsPex13KO testis, 

compared to scsPex13HTZ testis (Fig. 27H). Many of hyperplasia Leydig cells SOD2 was 

detected in high level by IF analysis, while some of the Leydig cells were found to be almost 

completely negative for this protein (Fig. 30F). 

 

4.18. Pex13 gene deletion leads to “Sertoli cell only” syndrome in the testis of 130 

day-old mice  

Progressive accumulation of lipids and a compete loss of germ cell upset a “Sertoli cell only” 

syndrome (SCO) were observed in most seminiferous tubules in 130 day-old scsPex13KO 

mice (Fig. 31). The lipid vacuoles were much larger than the nucleus, and were surrounded 

by stabilizing vimentin intermediate filaments.  

Disruption of normal adhesion complexes between Sertoli cells and germ cells over time and 

germ cells death (as shown by TUNEL staining later) most probably contributed to the loss of 

spermatogenesis and male infertility. Markedly reduced tubule diameters, no germ cells and 

Sertoli cells filling the lumen of the seminiferous tubules were observed by a double-

immunofluorescence staining for PEX13 and VIM (Fig. 31B). The seminiferous tubules were 

surrounded by two layers of peritubular cells, whose nuclei appeared closely adjacent to 

each other (Fig. 31B,D,F,H). Leydig cells were strongly proliferated and were dominant in the 

testis of scsPex13KO mice, since at the same time as the tubule volume was markedly 

reduced (Fig. 31F,H). Leydig cells seemed to be metabolically disturbed, since an intense 

immunoreactivity for ABCD3 was observed within the interstitial cells of scsPex13KO testis 

(Fig. 31H). In Sertoli cells, ABCD3 could be identified in remaining peroxisomal membrane 

ghosts, located around huge lipid vacuoles. The staining intensity of ABCD3 in 130 day-old 

mutant mice, was similar to that observed in 90 day-old scsPex13KO animals (Fig. 30B,H,I 

and Fig. 31H). In contrast, the expression patterns of PEX13 and PEX14 toward signal 

intensity were different in Sertoli cell cytoplasm. PEX13 was completely absent verifying the 

knockout of the corresponding gene in Sertoli cells. 
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Figure 29: Immunofluorescence analyses of peroxisomal, mitochondrial and intermediate filamental 
proteins in paraffin sections of the testis from 90 day-old mice.  Testes were fixed with 4% PFA, paraffin 
embedded, 2µm sections were cut and double-staining for specifically antigens. (A) PEX13 (green) in HTZ control 
testis section. (B) In some areas of the scsPex13KO testis the basal epithelium of the seminiferous tubules was 
lined only by Sertoli cells stained for VIM (red) (C) A mixed population of differently altered seminiferous tubules was 
present with some of them exhibiting almost normal appearing spermatogenesis in scsPex13KO mice (D) PEX14 
(green) / VIM (red) in HTZ testis. (E,F) PEX14 staining (green) showed intracytoplasmic distribution in Sertoli cells. 
Germ cells from the mutant testis were positive for PEX14. Proliferated Leydig cells showed a strongly increased 
expression of PEX14. (G) ABCD3 staining in HTZ control testes. (H,I) ABCD3 expression was up-regulated in 
proliferated Leydig cells. The staining for ABCD3 was almost negative in Sertoli cells. Nuclei were counterstained 
with TOTO-3 iodide (blue). Bars represent A-I: 100 µm Representative pictures of obtained from 3 experiments. 
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Figure 30 : Immunofluorescence analyses of anti-oxidants peroxisomal, mitochondrial enzymes and 
intermediate filamental proteins in paraffin sections of the testis from 90 day-old mice  Testes were fixed 
with 4% PFA, paraffin embedded, 2µm sections were cut and double stained for specifically antigens. (A) Double 
staining for CAT (green) / VIM (red) in HTZ control testis section. (B) Seminiferous tubule of a scsPex13KO 
mouse with relatively normal spermatogenesis, revealing vacuolated Sertoli cells with intracytoplasmic of CAT 
distribution. (C) Many seminiferous tubules of scsPex13KO exhibit disturbed spermatogenesis and huge vacuoles 
in Sertoli cells cytoplasm (D) ACOX1 (green) / VIM (red) in HTZ control testis. (E,F) ACOX1 staining was 
cytoplasmic in Sertoli cells of scsPex13KO. Germ cells from the scsPex13KO animals showed a weak staining for 
ACOX1 in peroxisoms. Hyperplasia Leydig cells showed ACOX1 protein expression in the scsPex13KO testis. 
(G) Mitochondrial SOD2 staining in HTZ control testes. (H,I) SOD2 expression was strongly up-regulated in 
mitochondria of Sertoli cells of scsPex13KO animals. In some of proliferated Leydig cells the staining for SOD2 
appeared strong labeled. Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent A-I: 100 µm, C: 
50 µm. Representative pictures were obtained from 3 experiments. 
 

PEX14 showed a diffuse accumulation near lipid droplets in the cytoplasm with an additional 

punctuate staining of peroxisomal membrane ghosts (Fig. 31D,F). In a few tubules, PEX13 

and PEX14 were identified with a punctuate “peroxisome” staining pattern in some apoptotic 

germ cells or residual bodies (Fig. 31D,F). Proliferating Leydig cells showed only a weak IF 
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reaction for PEX13 (Fig. 31B,D). In the same type of cells, PEX14 was slightly increased in 

130 day-old scsPex13KO mice in comparison to scsPex13HTZ animals (Fig. 31F). ROS are 

the normal by-products of cellular metabolism and are usually decomposed by cellular 

defense mechanisms provided by antioxidant enzymes, such as peroxisomal CAT and 

mitochondrial SOD2, which were detected by IF reactions in testis of scsPex13 WT mice 

(Fig. 32A,D). In 130 day-old scsPex13KO testis, CAT exhibited a complete intracytoplasmic 

distribution in Sertoli cells, depicting the peroxisomal biogenesis defect (Fig. 32B,C). The 

intensity of the cytoplasmic CAT staining varied significantly between neighboring Sertoli 

cells within the same seminiferous tubule with some of the Sertoli cells exhibiting high 

cytoplasmic levels of this enzyme (Fig. 32B,C). Proliferating Leydig cells showed a high CAT 

expression in peroxisomes, revealed by the punctuate staining pattern in the IF preparations 

(Fig. 31B,C). Complex III of the mitochondrial respiratory chain was strongest expressed in 

primary spermatocytes and germ cells until step 16 spermatids as well as in Leydig cells of 

scsPEX13HTZ animals (Fig. 32A). In scsPex13KO testis, this protein had a weak expression 

and was encircled large lipid-vacuoles in many Sertoli cells (Fig. 32B,C). Some Sertoli cells 

exhibited positive mitochondria for complex III protein accumulated in large organelle 

aggregates, indicating a different distribution and proliferation of this organelle in this cell 

type. Interestingly, in Sertoli cells with high intracytoplasmic CAT expression only a weak 

signal for complex III was observed, indicating heterogeneous alteration of mitochondria in 

Sertoli cells of scsPex13KO testis. In Leydig cells of scsPex13HTZ testis, complex III was 

located in bright IF dots, representing mitochondria (Fig. 32A), while scsPex13KO Leydig 

cells were less intensely stained for this protein (Fig. 32B,C). In testis of scsPex13HTZ 

animals, Leydig cells were strongest stained for SOD2, followed by germ cells and low a 

expression in Sertoli cells. Similarly to the expression of complex III, SOD2 was 

heterogeneously distributed in mitochondria of Sertoli cells of scsPex13KO animals (Fig. 

32E,F). In contrast to scsPex13HTZ sections, the intensity of SOD2 labeling was strongly 

increased in scsPex13KO Sertoli cells, and surpassed the one of proliferating Leydig cells. 

High expression of SOD2 was found in Sertoli cell mitochondria around the lipid droplets 

(Fig. 32E,F). Among proliferating Leydig cells in scsPex13KO mice, SOD2 was strongly 

expressed in mitochondria of a few cells, whereas the rest of Leydig cells appeared almost 

negative (Fig. 32E,F). The ACOX1 enzyme, known to be responsible for the rate-limiting step 

of the peroxisomal β-oxidation pathway I, was highly expressed in the cytoplasm of Sertoli 

cells in scsPex13KO testis (Fig. 33B). In contrast to Sertoli cells, all proliferating Leydig cells 

of scsPex13KO animals were stained for ACOX1 in the same manner as in scsPex13HTZ 

mice (Fig. 33A,B). The last enzyme of the β-oxidation pathway I, THIOLASE A, could not be 

visualized in the cytoplasm of Sertoli cells of scsPex13KO mice, whereas the reaction for 

THIOLASE A localization was clearly positive in proliferating Leydig cells (Fig. 30 D). 
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Figure 31 : Immunofluorescence analyses of peroxisome proteins on paraffin sections of the P130 testis 
of scs Pex13HTZ and scs Pex13KO mice. Testes were fixed with 4% PFA, paraffin embedded, cut in 2µm 
sections stained for peroxisomal markers (green) and the Sertoli cell marker vimentin (red). (A) scsPex13HTZ 
control testis section with double staining for VIM (red) revealing a typical staining of intermediate filaments in the 
Sertoli cells cytoplasm and PEX13 showing the highest protein expression in germ cells. (B) scsPex13KO 
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seminiferous tubule with vacuolated Sertoli cells, depicting the absence of PEX13 protein; PEX13 (green) was 
present in low amount in proliferated Leydig cells (C,D) High magnification of a scsPex13HTZ and of the 
scsPex13KO testes sections. Few residual apoptotic germ cells (arrow) were still positive for PEX13, whereas the 
surrounding Sertoli cells were completely negative. (E) Double staining for PEX14 (green) and VIM (red) in HTZ 
testis. (F) PEX14 (green) was localized in large punctuate structures, most probably membrane ghosts of 
peroxisomes, surrounding large vacuoles. In addition, PEX14 showed a cytoplasmic staining in these areas. 
Proliferated Leydig cells exhibited a weak punctuate pattern staining for PEX14. (G) ABCD3 staining in HTZ 
control testis was characterized by basal distribution of the staining in seminiferous tubules (H) In scsPex13KO 
mice ABCB3 expression was strongly up-regulated in proliferated Leydig cells. Only few membrane ghost like 
structures were positive for ABCD3 in Sertoli cells. Nuclei were counterstained with TOTO-3 iodide (blue). Bars 
represent in A-H: 100 µm, C and D: 50 µm. Representative pictures of obtained from 3 experiments. 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32 : Immunofluorescence analyses of anti-oxidative peroxisomal and mitochondrial enzymes and 
compex III of the mitochondrial respiratory chain in paraffin sections of the testis of 130 day old mouse. 
Testes were fixed with 4% PFA, paraffin embedded, cut in 2µm sections and stained with specifically antibodies. 
(A) Double staining for CAT (green) and OxPhosIII (red) in scsPex13HTZ testis section. (B) Seminiferous tubule 
reduced in size from scsPEX13KO with vacuolated Sertoli cells. CAT revealed a cytoplasmic and heterogeneous 
distribution in Seroli cells. The staining intensity of complex III / OxPhosIII was weak in Sertoli cells and also in 
proliferated Leydig cells. (C) High magnification of seminiferous tubules and proliferated Leydig cells from 
scsPex13KO testis sections (D) Staining of SOD2 (green) in cells of scsPex13HTZ seminiferous tubules and 
interstitial cells. (E) SOD2 staining (green) was high in Sertoli cells as well as in some of the proliferated Leydig 
cells (arrow). (F) High magnification of proliferated Leydig cells showing highly expressed SOD2 in these cells 
types. Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent in A, B, D, E: 100 µm, C and in F: 50 
µm. Representative pictures of obtained from 3 experiments. 
 

 

 

 

 



Results 

96 / 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 33:  Immumofluorescence analyses of ββββ-oxidation enzyme on paraffin sections of testis of P130 
testis sections. Testes were fixed with 4% PFA, paraffin embedded, 2µm sections were cut. (A) ACOX1 (green) 
staining in HTZ control sections of the testis (B) Testis of scsPex13KO mice exhibited cytoplasmic ACOX1 
staining in Sertoli cells. Proliferated Leydig cells showed a slightly reduced ACOX1 staining intensity in 
comparison to ones in scsPex13HTZ animals. (C) Thiolase A (green) in the testis of scsPex13HTZ animals of 
scsPex13HTZ animals. Insert shows HTZ Leydig cells. (D) Seminiferous tubules of scsPex13KO were almost 
immunonegative for Thiolase A and some proliferated Leydig cells exhibited a slightly weak staining in 
scsPex13KO animals. Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent in A-D: 100 µm. 
Representative pictures of obtained from 3 experiments. 
 
 

4.19. Immunofluorescence detection of steroidogenic enzymes in the testis  

Sections of 130 day-old WT animals were used to establish the optimal conditions for 

antibody labeling of distinct enzymes involved in steroid synthesis, because staining of 

paraffin sections with these antibodies had not been performed and characterized in previous 

publications [134, 235]. With the optimal conditions, it was possible to label the 

scsPex13HTZ and KO sections for the steroidogenic acute regulatory protein, domain 

containing protein 1 (StARD1). In wild type animals some of interstitial Leydig cells were 

strong positive for StARD1 and contained big fluorescence dots labeled for StARD1 (Fig. 

34A, B, F). In addition, strong StARD1 labeling was noted in the internal layer of the 

seminiferous epithelium of stages VI to VII of spermatogenic cycle, indicating that spermatids 

of step 15 to 16 exhibited a high abundance of StARD1 in the mitochondrial sheath of the 

mid piece of their tail (Fig. 34A, B, F right tubule). In the same tubules (stages VI to VII), the 
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Sertoli cells exhibited only a low amount of StARD1 in a punctuate pattern, representing the 

mitochondrial distribution (Fig. 34A,B). In contrast to other stages, Sertoli cells of stage VIII 

tubules showed a clear StARD1 labeling in a punctuate pattern, suggesting a stronger 

abundance of this protein in the mitochondria (Fig. 34D,E). Furthermore, in stage VIII, in 

which the cytoplasm of step 16 spermatids is removed to form residual bodies, StARD1 was 

identified in these structure in a dual localization with a diffuse cytoplasmic staining in 

addition to big dots in small numbers (Fig. 34D,E). In the IF staining of step 16 spermatids 

from stage VIII, individual mitochondria could not be distinguished as separated dots 

anymore, corresponding to the strong compaction of the mitochondrial sheath, leaving only 

small space between adjacent organelles that were too small to be resolved by IF 

microscopy (Fig. 34D,F). StARD1 was identified also into the cytroplasm of the step 10 

spermatids of stage X tubules, however showing a punctuate staining pattern with weak 

fluorescence intensity (Fig. 34C,F left tubule). As mentioned above, in the Sertoli cells 

StARD1 staining was strongest in stage VIII tubules, whereas in stages IX to XII the labeling 

was much weaker (Fig. 34C and F left tubule) and in stages I to V tubules the StARD1 

protein could not be clearly visualized in a punctuate staining pattern in Sertoli cell 

mitochondria (Fig. 34F upper tubule). 

In 130 day-old scsPex13HTZ animals, StARD1 staining showed an identical pattern as in the 

testis sections of WT mouse (Fig. 35A,B). In testis sections from P130 scsPex13KO mice, 

StARD1 was detected in the cytoplasm of Sertoli cells (Fig. 35C,D). Furthermore, StARD1 

could be identifed with high intensity in large dots-like structure only in few Leydig cells, 

whereas all other proliferated Leydig cells exhibited lower staining intensities (Fig. 35C,D).  

The next steroidogenic enzyme studied was cytochrome P450 side chain cleavage enzyme  

(CYP450scc), a marker generally used for Leydig cells, which was identified solitarily in 

interstitial cells of scsPex13HTZ testis sections (Fig. 35E). In testis sections of scsPex13KO, 

the CYP450scc expression was up-regulated in all proliferating Leydig cells (Fig. 35F). In 

contrast to scsPex13HTZ animals, also the Sertoli cells from scsPex13KO tubules showed a 

weak mitochondrial staining for CYP450scc (Fig. 35F). 
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Figure 34:  Localization of StARD1 protein in germ cells and somatic cell types of wild-type mouse testis. 
Testes were fixed with 4% PFA, paraffin embedded, 2µm sections were stained for StARD1 in different areas and 
stages in the testis. (A) StARD1 (green) in stage VII of a seminiferous tubule presented step 16 spermatids. 
Some Leydig cells were strongly positive for StARD1 (arrow head) (B) Big StARD1 immunopositive dots along 
the tail of step 16spermatids. Leydig cell strongly positive for StARD1 (arrowhead) (C) Stage X seminiferous 
tubule with step 10 spermatids, exhibiting a punctuat staining pattern with weaker fluorescence intensity. (D) 
Stage VIII seminiferous tubule revealed StARD1 step 16 spermatides showing a strong cytoplasmic staining. 
Sertoli cells of stage VIII tubules were immunopositive for StARD1. (E) High magnification of the basal side of 
stage VIII germinal epithelium, revealing a punctuate staining pattern for StARD1 in the Sertoli cell cytoplasm. (F) 
Overview of the difference in StARD1 protein expression in seminiferous tubules of different stages (II-III, VI, XI). 
Some Leydig cells were strong positive for StARD1 (arrowheads). Nuclei were counterstained with TOTO-3 iodide 
(blue). Bars represent in A-F 100 µm, in B and E: 50 µm. Representative pictures obtained from 3 experiments. 
 

 

4.20. The in vivo apoptosis rate of spermatogenic cells was strongly increased in 90 

day-old scs Pex13KO mice 

Cells death was examined on testis sections of P90 and P130 of scsPex13HTZ and 

scsPex13KO mice by using a TUNEL assay (terminal dUTP nick end labelling) which detects 

DNA fragmentation resulting from activation of apoptotic signaling cascades and caspase 

cleavage. Treatment with DNase I was used as a positive control as shown in Fig. 36B,F,I. In 

scsPex13HTZ animals only few meiotic germ cells were TUNEL positive (Fig. 36C-G). In 

contrast, severe cell death of germ cells during different phases of meioses was noted in P90 

scsPex13KO animals. Hardly any Sertoli cell nuclei were TUNEL positive in the same area 

were most of the germ cells death occurred in P90 scsPex13KO animals (Fig. 36D). In P130 

mutant animals, some of Sertoli cell nuclei became TUNEL-positive, suggesting that a 

complete degeneration of seminiferous tubules will occur in these animals (Fig. 36J). Leydig 
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cells were not TUNEL-positive in P90 or P130scsPex13KO animals. This finding suggests 

that the severe cell death might take place at the around P90, leading to the Sertoli cell only 

syndrome of the P130 scsPex13KO animals and further testicular degradation later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 35:  Localization of steroidogenic proteins in testis sections of 130 day-old animals with distinct 
scs Pex13 genotypes. Testes were fixed with 4% PFA, paraffin embedded, 2µm sections were cut. (A, B) 
StARD1 protein (green) showed different expression patterns and distribution in various stages (VI, VII, VIII, IX, 
XII) of the seminiferous tubules in scsPex13HTZ animals, corresponding to WT staining pattern. Some Leydig 
cells were clearly positive for StARD1 (arrow head). (C, D) Many Sertoli cells of the scsPex13KO animals showed 
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a higher StARD1 expression in comparison to scsPex13HTZ control sections. Leydig cells were a 
heterogeneously stained for StARD1 (arrow head) in scsPex13KO animals. (E) CYP450scc protein (green), a 
marker for Leydig cells, was specifically expressed in Leydig cells in scsPex13HTZ sections. (F). In scsPex13KO 
animal, all proliferated Leydig cells were stronger positive for CYP450scc. Nuclei were counterstained with TOTO-
3 iodide (blue). Bars represent in A-F: 100 µm. Representative pictures of obtained from 3 experiments. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 36: TUNEL assay on paraffin sections of testis from 90 and 130 day old scs Pex13KO and 
scs Pex13HTZ. Testes were fixed with 4% PFA, paraffin embedded, 2µm sections were cut. In situ staining of 
DNA strand breaks by the TUNEL assay was detected. (A,E,H) Negative controls sections, without the TdT 
enzyme, depicting the high specificity of the detection reaction (anti-dioxigenin conjugate-rhodamine). (B,F,I) 
Positive control sections, treated with DNase for 10 min RT. (C) Testis section of P90 scsPex13HTZ showing very 
few apoptotic germ cells in stage VII of seminiferous tubules. (D) Testis section of P90 scsPex13KO exhibiting 
germ cells death during different phases of meioses. (G) scsPex13HTZ seminiferous tubules were showing very 
few apoptotic germ cells. (J) Sertoli cell only syndrome revealed by seminiferouse tubules of the 130 day-old 
scsPex13KO, presenting remaining DNA breaks fragment from the germ cells or some of Sertoli cells detected by 
the TUNEL assay. Nuclei were counterstained with TOTO-3 iodide (blue). Bars represent in A-I: 100 µm. 
Representative pictures obtained from 3 experiments. 
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4.21. Western Blots reveal the good quality of the tubular and interstitial cell 

preparation 

To confirm the morphological results obtained in situ, Western blot (WB) analyses were 

performed using distinct subcellular fractions from interstitial and tubular cell preparations. 

Distinct subcellular fractions (P2: heavy mitochondria containing also big peroxisomes, P3: 

light mitochondria and enriched peroxisomal fraction, S3: microsomes and cytosol) were 

obtained by differential centrifugation after homogenization of isolated enriched interstitial 

cells, peritubular and enriched tubular cells from testis of mice of different genotypes 

(scsPex13WT, scsPex13 HTZ and scsPex13KO animals). The isolated peritubular cells were 

not used for comparative WB analyses, since the cell pellet was too small to be subjected to 

differential centrifugation. 

 

4.21.1. Interstitial and tubular cells exhibit a decrease of peroxisomal biogenesis 

proteins in scs Pex13KO testis 

In scsPex13WT and scsPex13HTZ animals all peroxisomal biogenesis proteins were present 

in the pellet fractions, with highest intensity in P3, which corresponds to the highest 

enrichment of peroxisomes in the light mitochondrial fractions. Large peroxisome sediments 

were already at lower g – forces in the heavy mitochondrial fractions. The high quality of the 

isolation procedure is shown by the fact that almost no organelle breakage occurred and only 

very small peroxisomes are present in the microsomal / cytoplasmic fractions. In contrast to 

scsPex13WT and scsPex13HTZ animals, PEX13 was completely absent in tubular cells – 

mainly Sertoli cells of scsPex13KO animals, whereas it was clearly detectable in the 

interstitial cell preparation in the same animals (Fig. 37A). The absence of the PEX13 protein 

in the WB of the tubular fractions of mutant animals confirms the disruption of the Pex13 

gene in these mice. In addition, PEX14 was also strongly reduced in tubular cells of P130 

day-old scsPex13KO, which can be easily explained by the low number of membrane ghosts 

in scsPex13KO Sertoli cells (Fig. 37B).  

Interestingly, also the protein levels of these two peroxins were considerably decreased in 

the interstitial cell in subcellular fractions of scsPex13KO genotype compared with the 

subcellular fraction of the scsPex13WT and HTZ animals (Fig. 37A,B). Furthermore, PEX5 a 

peroxisomal biogenesis protein with cytoplasmic localization and attachment also on the 

outer surface of the peroxisomal membrane was strongly reduced in scsPex13KO animals. 

At similar protein concentrations, PEX5 was more abundant in tubular cells of scsPex13WT 

as well as scsPex13HTZ animals in comparison to interstitial cells of the same animals (Fig. 

37C). 
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Figure 37:  Western blot analyses of enriched subcellular fractions isolated from different testicular cell 
preparations. Twenty-five microgram of proteins were loaded in each lane on 12.5% SDS gels. The same blots 
were stripped and reprobed several times with specific antibodies. (A) PEX13 – peroxin 13 (B) PEX14 - peroxin 
14 (C) PEX5 – peroxin 5 (tubular cells – Sertoli cells along with germ cells; interstitial cells – enriched Leydig 
cells; P2: enriched heavy mitochondrial fraction; S3: microsomes and cytosolic fraction; P3: enriched peroxisome 
and light mitochondria fraction). 
 

 

4.21.2. Proteins of peroxisomal lipid transport and enzymes of ββββ-oxidation are altered 

in testicular fractions of scs Pex13KO  

The peroxisomal ABCD3 membrane transporter for lipid substrates was also drastically 

reduced in subcellular fractions of tubular cells from scsPex13KO animals, suggesting a 

removal of peroxisomal membrane ghosts in Sertoli cells (Fig 38A). In contrast this 

transporter was significantly induced in interstitial cells of the scsPex13KO animals 

corresponding to the strong induction in the morphological staining.  

Furthermore, the expression of acyl-CoA oxidase 1 (ACOX1), the first and rate-limiting 

enzyme of the fatty acid beta-oxidation pathway I in peroxisome, was studied. The 

immunoblot analysis revealed that a 50 kDa band (B-subunit of ACOX1) was present with a 

similar distribution pattern in subcellular fractions of both tubular and interstitial cell 

preparations from scsPex13WT and HTZ testes, but with higher expression in tubular cells. 

The amount of the cleaved 50 kDa form was reduced in the tubular cells of scsPex13KO 

animals. In contrast, this form was significantly induced in the enriched peroxisomal fraction 

(P3) of interstitial cells (Fig. 38B). Whereas most of ACOX1 protein seemed to be bound to 

filaments or the outer surface of membranes, it was mainly present in the P3 fractions of 

scsPex13KO tubular cells. A part of THIOLASE A, the third enzyme of the peroxisomal β-

oxidation pathway I, showed a shift into the cytosolic fraction, indicating the misstargetting of 

this enzyme in Sertoli cells of the tubular cells preparation from scsPex13KO animals. 

Surprisingly, a reduction of THIOLASE A protein level was observed in interstitial cells of 

scsPex13KO animals, while ACOX1 was induced in these preparations (Fig. 38B,C). 
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In addition to the alteration of the peroxisomal lipid transporters and the β-oxidation 

enzymes, the PPARγ protein was up-regulated in the cytosolic S3 fraction of tubular cells in 

scsPex13KO animals in comparison to Amh-cre positive scsPex13HTZ animals (Fig. 38D). 

Unfortunately, the PPARγ protein abundance in interstitial cells preparation was too low to be 

detected, when identical protein concentrations were used for WB analyses. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 38:  Western blot analysis of enriched subcellular fractions isolated from different testicular cell 
preparations. Twenty-five micrograms of proteins were loaded in each lane on 12.5% SDS gels. The same blots 
were stripped and reprobed several times with specific antibodies. (A) ABCD3 – peroxisomal membrane protein 
70, member D3 of the ATP binding cassette transporters). (B) ACOX1, Acyl-CoA oxidase 1, 51kDa  B subunit. 
(C) THIOLASE A (D) PPARγ - peroxisome proliferator activated receptor gamma (tubular cells – Sertoli cells 
along with germ cells; interstitial cells – enriched Leydig cells; P2: enriched heavy mitochondrial fraction 
containing large peroxisomes; S3: microsomes and cytosolic fraction; P3: light mitochondrial fraction and enriched 
peroxisome). 
 

 

4.21.3. Alteration of the protein levels involved in ROS metabolism and inflammation in 

subcellular fractions of cell preparations from distinct genotypes of scs Pex13 mice 

Peroxisomal CAT, the enzyme with highest capacity to degrade H2O2 was increased 

significantly in the cytosolic fraction (S3) from tubular cells of scsPex13KO mice in 

comparison to scsPex13WT and scsPex13HTZ mice, reflecting the peroxisome import 

deficiency due to Pex13 gene defect. This enzyme was drastically induced in interstitial cells 

and interestingly also a significant part of the enzyme was present in the S3 fraction of the 

interstitial cell preparation of scsPex13KO animals (Fig. 39A).  
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The reason for this phenomenon it is not clear, but could be explained a) by partial import 

deficiency in Leydig cells, reflected by the low PEX5, PEX13 and PEX14 protein levels in 

peroxisomal fractions or b) a higher fragility of the organelles during the isolation procedure 

in these cells type. 

The cytoplasmic distribution of CAT which was revealed by WB analysis (Fig. 39A) was in 

agreement with the IF results in Sertoli cells from testis sections from scsPex13KO mice (Fig. 

32B,C).  

Similarly, the mitochondrial SOD2, involved in the dismutation of the superoxide anions into 

H2O2 was increased in P3 and more strongly in the S3 fractions (cytosolic and microsomal 

fraction) most probably also due to broken mitochondria in the tubular cell preparation of the 

scsPex13KO mice. The SOD2 protein was also shifted, but to a lesser extent into the 

cytosolic fraction (S3) in the interstitial cell preparation of scsPex13KO animals (Fig. 39B). 

Since a clear mitochondrial staining pattern was achieved in IF preparation, the cytosolic 

increase of SOD2 indicates breakage of long fragile mitochondria during the isolation 

procedure Complex III of the mitochondrial inner-membrane, was dramatically decreased in 

the tubular cell preparation of scsPex13KO animals (Fig. 39C). A slight band was noted in 

the S3 fraction of this cell preparation, suggesting also the breakage of mitochondria in 

scsPex13KO animals. 

The heme oxygenase-1 (HO-1) is the rate-limiting enzyme of heme catabolism present in ER 

and has been assumed to be important in cellular response against oxidative stress, by 

producing CO as messenger molecule and for the resolution of inflammation. Immunoblotting 

revealed that the HO-1 protein expression was dramatically reduced in tubular cell 

preparation of scsPex13KO mice in comparison to scsPex13HTZ and WT mice. Only a slight 

reduction of the HO-1 protein level occurred in testicular interstitial cell fractions of the same 

genotype (Fig. 39D). 

Finally, the expression of another proinflammatory ER protein the cyclooxygenase 2 (COX-2) 

was studied. The Western blot analysis revealed a dramatic up-regulation of the COX2 

protein in P2, S3 and P3 fractions of testicular tubular cells of scsPex13KO mice. In contrast, 

no decrease of over all COX-2 level was observed in interstitial cells (Fig. 39E).  
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Figure 39:  Western blot analysis of enriched subcellular fractions isolated from different testicular cell 
preparations  Twenty-five micrograms of proteins were loaded in each lane on 12.5% SDS gels. The same blots 
were stripped and reprobed several times with specific antibodies.   (A) CAT- catalase  (B) SOD2 - superoxide 

dismutase 2 (C) OxPhosIII - complex III of the respiratory chain (oxidat Phosphorylation) (D) HO-1 - heme 
oxygenase 1 (E) COX2 – cyclooxygenase 2 (prostaglandin H synthase 2). (tubular cells - Sertoli cells along with 
germ cells; interstitial cells – enriched Leydig cells; P2: enriched heavy mitochondrial fraction containing large 
peroxisomes; S3: microsomes and cytosolic fraction; P3: light mitochondrial fraction  and enriched peroxisome ). 
 
 

4.21.4. Western Blot analysis of steroidogenic enzymes and the intermediate filaments 

marker - vimentin 

In scsPex13WT and scsPex13HTZ controls interstitial cell fractions StARD1 were visualized 

in P2 (weak) and P3 (strong) as a double band of 37 kDa and 32 kDa. In contrast in 

corresponding scsPex13KO fractions, only a single band for StARD1 immunoactivity was 

revealed in P3 at 37 kDa and most probably in P2 fraction at 32 kDa band. In tubular cell 

preparation, only very weak bands were visible (by using the same exposure time for the 

blots) mainly in P2, of WT and HTZ protein preparations (Fig. 40A). A strong increase of the 

32kDa band of StARD1 was noted in tubular cell fractions of scsPex13KO (strongest signal 

in P2), suggesting an upregulation of the StARD1 protein. There was a significant increase in 

the expression of StARD1 protein in large mitochondrial fraction of the tubular cells from the 

scsPex13KO animals (Fig. 40A). The low staining for StARD1 in mitochondria of mixed 

tubular cells of scsPex13WT and scsPex13HTZ animals might be explained by the fact that 

only a minority of elongated spermatids in the seminiferous tubules are positive for StARD1 
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protein. In accordance with the results obtained by IF, CYP450scc was mainly present in the 

interstitial cell fractions, depicting also the purity of the testicular cell preparation meaning 

that the interstitial cell pool contained really enriched Leydig cells and the one for tubular, 

peritubular, Sertoli and germ cells). In addition CYP450scc exhibited a clearly higher 

expression level in the subcellular fractions of interstitial cells of scsPex13KO (Fig. 40B). 

CYP450scc was barely detectable in tubular cells from WT and scsPex13HTZ mice, 

however, a weak but clear band in P2 of sccPex13KO mice could be observed at the 

expected 78 kDa, indicating an increase of CYP450scc enzyme also in Sertoli cells 

mitochondria (Fig. 40A). 

Western blot analysis was also carried out to determine the expression pattern of the VIM 

protein, which was enriched also in P2 of WT and scsPex13HZT tubular cell fractions of 

testis. In contrast, only a weak band was seen in the interstitial cell preparations of these 

genotypes. In distinct subcellular fractions from tubular cells of scsPex13KO, VIM was 

present in P2 as well as in P3 fractions, indicating a different arrangement of these filaments 

in the KO animals. In addition, VIM protein was increased in the interstitial cell preparation of 

scsPex13KO animals, suggesting the presence of more peritubular cells or macrophages 

and immune cells or fibroblast or endothelial cells in the interstitial cell preparation (Fig. 40C). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 40:  Western blot analysis for steroidogenic enzymes and vimentin of enriched subcellular 
fractions isolated from different testicular cell preparations. Twenty-five micrograms of proteins were loaded 
in each lane on 12.5% SDS gels. The same blots were stripped and reprobed several times with specific 
antibodies. (A) StARD1 - steroidogenic acute regulatory, domain containing protein 1. (B) CYP450scc – 
cytochrome P450 side chain cleavage enzyme. (C) VIM – intermediate filaments vimentin. (tubular cells - Sertoli 
cells along with germ cells; interstitial cells – enriched Leydig cells; P2: enriched heavy mitochondrial fraction 
containing large peroxisomes; S3: microsomes and cytosolic fraction; P3: light mitochondrial fraction  and 
enriched peroxisome). 
 

 



Results 

107 / 169 

4.22. Identification of affected genes by semi-quantitative RT- PCR in scs Pex13KO 

animals 

4.22.1. Peroxisomal genes are affected by the knockout of Pex13 gene in Sertoli cells  

The steady-state levels of mRNAs encoding peroxisomal proteins were determined by RT-

PCR in total RNA preparations of isolated tubular, peritubular and interstitial cells of testis of 

animals with distinct scsPex13 genotypes. Thereafter, the RT-PCR band intensities of 

peroxisome-related genes were normalized to the band intensity of 28S ribosomal RNA of 

the same cDNA preparation (Fig. 41A).  

The mRNA for Abcd1 was present in similar amounts in tubular, peritubular and interstitial 

cells of the mice of all three genotypes. In contrast, the mRNA for Abcd2 was strongest 

expressed in tubular cells and lower in peritubular cells and showed a very weak induction in 

both cells preparation in scsPex13KO mice. Abcd3 was also expressed at highest level in 

Sertoli cells, however, was not altered in tubular cells of scsPex13KO animals. Abcd3 

showed its strongest up-regulation in interstitial cells from scsPex13KO mice. In contrast to 

the widespread expression of Abcd1-3 mRNAs, Abcd4 was only expressed in tubular cells of 

WT and scsPex13HTZ animals, whereas it was not present in peritubular and interstitial cells 

in these animals. However, Abcd4 was strongly induced in interstitial cells of scsPex13KO 

animals. In addition, the level of Abcd4 mRNA was significantly increased in tubular cells of 

the scsPex13KO animals (Fig. 41B). 

The mRNA levels of enzymes involved in the peroxisomal β-oxidation pathway I (Acox1, 

Ehhadh, Thiolase A) and II (Acox2, Acox3, Mfp2 and ScpX) were investigated. Except for the 

mRNAs of Acox1, Acox2 and Thiolase A, the one for other β-oxidation enzyme were 

expressed at similar high levels in all cell preparations and were not significantly altered in 

scsPex13Ko animals. Acox1 showed a similar expression level in tubular and interstitial cells, 

but was less abundant in peritubular cells in testicular cell fractions of the scsPex13WT and 

HTZ animals. The Acox1 mRNA was induced in all cell types in scsPex13KO testis with 

highest upregulation in interstitial cells (Fig. 41D). The mRNA of Thiolase A was expressed 

also at slightly lower levels in peritubular cells in scsPex13WT animals and was up regulated 

in interstitial cells of scsPex13KO mice (Fig. 41D). The Acox2 mRNA levels were highest in 

tubular cells scsPex13WT and scsPex13HTZ, followed by peritubular cells and lowest in 

interstitial cells (Fig. 41C). In contrast to other genes, the mRNA for Acox2 was strongly 

down-regulated in tubular cells of scsPex13KO mice and to a lesser extent also in the 

interstitial cells, but it was up-regulated in peritubular cells of the scsPex13KO animals (Fig. 

41C). 

The mRNA expression of genes involved in the biosynthesis of ether lipids (Gnpat and Agps) 

were also altered differently. Whereas, Gnpat mRNA was present at similar levels in cellular 

fractions of all genotypes, the Agps mRNA was slightly elevated in tubular cells and stronger 
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upregulated in peritubular cells in scsPex13KO mice. The mRNA of Agps was not altered in 

interstitial cells of the scsPex13KO animals (Fig. 41E). 

Furthermore, the mRNA levels for sterol regulatory element binding factor 1 and 2 (Srebf1, 

Srebf2), involved in fatty acid and cholesterol metabolism were studied. The mRNA levels of 

Srebf1 and Srebf2 showed higher expression in tubular cells, followed by interstitial cells and 

the lowest expression was detected in peritubular cells of scsPex13WT and scsPex13HTZ 

animals. In scsPex13KO testis, the Srebf1 and Srebf2 mRNA levels were strongly up-

regulated in tubular cells, whereas the levels were only slightly up-regulated in interstitial and 

tubular cells (Fig. 41F). 

Finally, the genes associated with cholesterol biosynthetic pathway, such as isopentenyl-

diphosphate isomerase (Idi1), 3-hydroxy-3-methylglutaryl-Coenyme A reductase (Hmgcr) 

and 3-hydroxy-3-methylglutaryl-Coenyme A synthase 1 (Hmgcs1) were investigated. The 

corresponding proteins of Idi1, Hmgcr are Hmgcs1 are located in the peroxisome, ER and 

peroxisomes and the cytoplasm, respectively. The mRNA expression of all three genes 

revealed an equal distribution in all testicular cell fractions in the scsPex13WT and HTZ. The 

Idi1 and Hmgcr mRNA levels were slightly down-regulated in tubular cells, while in 

peritubular and interstitial cells their mRNA expression was increased in the scsPex13KO 

testis. In contrast, the Hmgcs1 mRNA showed a slight up-regulation in all testicular cell 

preparations of the scsPex13KO animals (Fig. 41G). 

 

4.22.2. Significant alterations of mRNA levels of most antioxidant enzymes in 

scs Pex13KO mice 

The mRNA levels of the major antioxidant enzymes catalase (Cat), glutathione peroxidase 1 

(Gpx1), glutatione S – transferase 1 (Gsta1), peroxiredoxins 1, 5 and 6 (Prdx1, 5, 6), and 

superoxide dismutases 1 to 3 (Sod1, 2, 3) as well as heme oxygenase I (Ho-1) were 

determined by semi-quantitative RT-PCR. The expression level of catalase was massively 

up-regulated in all testicular cell preparations of scsPex13KO animals (Fig. 42A). The mRNA 

levels of Prdx 1, 5 and 6 were differently affected. The amount of Prdx1 mRNA was 

increased in tubular and peritubular cell preparations of scsPex13KO animals, whereas no 

significant increase the Prdx1 mRNA level was observed in interstitial cells from KO animals 

(Fig. 42B). The mRNA levels of Prdx5 were not altered at all and those for Prdx6 were only 

slightly up-regulated in tubular cell preparations of KO animals (Fig. 42B). The Gpx1 mRNA 

levels were strongest increased in tubular, followed by interstitial cells and peritubular cells in 

scsPex13KO animals (Fig. 42D). 

The Gsta1 mRNA levels showed no major alterations between scsPex13HTZ and 

scsPex13KO in distinct cell preparations. The expression of the Ho-1 mRNA was significantly 
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up-regulated in peritubular and interstitial cell preparations in scsPex13KO mice, whereas it 

was only slightly changed in tubular cells in scsPex13KO cell preparation (Fig. 42E). 

In distinct testicular cell preparations the Sod1 mRNA levels were not significantly altered, 

while the Sod2 mRNA was increased in all cell preparations of scsPex13KO animals (Fig. 

42C). The mRNA encoding the extracellular Sod3 was expressed at high levels in tubular 

cells, followed by interstitial and peritubular cells in the testis of scsPex13WT and HTZ mice. 

The Sod3 mRNA levels were significantly increased in tubular cells and interstitial cells and 

hardly altered in scsPex13KO in comparison to scsPex13HTZ and WT animals (Fig. 42C). 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Semiquantitative RT-PCR analyses of genes encoding for the peroxisomal enzymes and Srebf1  
and 2 from the total RNA of distinct cell fractions from testis of the mice.  (A) 28S rrna: 28S ribosomal RNA  
as internal control. (B) Abcd1-4: peroxisomal ABC-transporters (C) mRNA of enzymes of the β-oxidation pathway 
2, Acox2 and 3: acyl-CoA oxidase 2 and 3, MFP2 / HSD17β4: multifunctional protein 2,  Scpx:  sterol carrier 
protein X  (D) mRNAs encoding enzymes of the β-oxidation pathway 1, ACOX1: acyl-CoA oxidase I, Mfp11: multi-
functional protein 1 / Hsd17β4, Thiolase A (E) mRNAs of enzymes of ether lipid synthesis, Gnpat glicerone 
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(dihydroxyacetone) phophate acyltransferase, Agps: alkyl-glicerone (dihydroxyacetone) phosphate synthase. (G) 
Idi1: isopentenyl-diphosphate isomerase, Hmgcr: 3-hydroxy-3-methylglutaryl-Coenyme A reductase, Hmgcs1: 3-
hydroxy-3-methylglutaryl-Coenyme A synthase 1 (+/+: scsPex13WT; +/-: scsPex13HTZ; -/-: scsPex13KO; tubular 
cells – Sertoli cells along with germ cells; peritubular cells – enriched myoid cells; interstitial cells – enriched 
Leydig cells). 
 

4.22.3. Increase in different pro-inflammatory genes in scs Pex13KO animals as 

detected by semi-quantitative RT- PCR 

Cytokines are polypeptide mediators that function as immune modulators and also have a 

wide range of other biological activities, such as regulation of differentiation in the testis and 

orchestration of immune-endocrine interactions in distinct cell types. 

In addition, cyclooxygenase 1 and 2 (Cox1, Cox2) and their pro-inflammatory products such 

as prostaglandin E2 (Pge2) are implicated in the inflammatory pathogenesis, being involved 

in the production of interleukins during inflammation. The cyclooxygenases are usually 

expressed at low undetectable levels in most tissues and cells, but are significantly abundant 

in inflammatory cells and other cell types after treatment with various stimuli such as 

lipopolysaccharide (LPS), cytokines, and chemicals [66, 280].  

Pro-inflammatory cytokines, interleukins 1α and 6 (Il1α and Il6), produced by Sertoli and 

germ cells, are known to regulate Sertoli cell secretory function and promote germ cell 

survival. Moreover, Il1α secreted by Sertoli [281], is known as mediator of inflammation 

stimulate Sertoli cell Trf (transferin) production, and  inhibits Leydig cell steroidogenesis. 

Interestingly, Cox1 and Cox2 mRNA levels were significantly induced in tubular, peritubular 

and interstitial cell preparations of testis in scsPex13KO animals (Fig. 42E). In contrast to 

Cox mRNA levels, the iNos mRNA was much less expressed in tubular cells than in 

peritubular or interstitial cells. In the scsPex13KO testis, the iNos mRNA levels were slightly 

increased in peritubular and interstitial cells, but hardly altered in tubular cells (Fig. 42E).  

The cytokines Il1α and Il6 were already expressed at high levels in tubular cells of 

scsPex13WT and scsPex13HTZ animals, but only at lower levels in peritubular and 

interstitial cells (Fig. 42E). The deletion of one Pex13 allele (HTZ phenotype) did not alter the 

expression of these cytokines (Fig. 42E). However, the Il1α mRNA level was remarkably 

increased in peritubular and interstitial cells and less pronounced in tubular cells of 

scsPex13KO mice (Fig. 42E). The mRNA levels for Il1 and Il6 were significantly up-regulated 

in all testicular cell preparations in scsPex13KO animals, indicating proinflammatory 

conditions in the testis of mutant animals with a defective Pex13 gene in Sertoli cells (Fig. 

42E). Interestingly, the induction of the cytokine mRNA was much more pronounced in 

comparison to wild type and scsPex13HTZ animals in peritubular and Leydig cells.  A similar 

pattern for mRNA expression of the tumor necrosis factor alpha (Tnfα) was observed, with 

highly basal expression levels in tubular cells of control and HTZ animals and a strong 

induction in all testicular cell preparations of scsPex13KO mice (Fig. 42E). The mRNA 
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encoding the macrophage migration inhibitory factor (Mif) also showed the highest basal 

expression level in tubular cells in scsPex13WT and HTZ animals. The Mif mRNA level was 

strongly induced in tubular cells, but less in peritubular and interstitial cells of scsPex13KO 

animals (Fig. 42E).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: Semiquantitative RT-PCR analysis of total RNA preparations of distinct testicular cell 
preparation of mice with distinct genotypes.  (A) 28Sr rna as internal control. (B-D) mRNAs encoding anti-
oxidant enzymes: (B) mRNAs encoding peroxisomal catalase (Cat); mRNA of peroxiredoxins 1, 5, 6 (PrdX1, 5, 6); 
(C) mRNAs encoding superoxide dismutases 1-3 (Sod1-3) (D) mRNAs encoding glutatione peroxidase1 (Gpx1); 
Glutatione S - transferase1 (Gsta1) and Heme oxygenase-1 (Ho-1) (E) mRNAs encoding pro-inflammatory genes: 
cyclooxygenase 1, 2 (Cox1, 2); tumor necrosis factor alpha (Tnfα); inducible nitric oxide synthase (iNos); 
cytokines: interleukin-1α (Il1α) and interleukin-6 (Il6); macrophage migration inhibitory factor (Mif). (+/+: 
scsPex13WT; +/-: scsPex13HTZ; -/-: scsPex13KO; tubular cells – Sertoli cells along with germ cells; peritubular 
cells – enriched myoid cells; interstitial cells – enriched Leydig cells). 
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4.22.4. Activation of Ppar  mRNA levels in scs Pex13KO mice 

The PPAR nuclear hormone receptor family constitutes of three distinct subtypes Pparα, 

Pparβ /Pparδ and Pparγ,  encoded by separate genes [282]. Their activation leads to altered 

expression of genes with roles in cell metabolism, cell growth and stress response (e.g. fatty 

acid oxidation is regulated by activation of Ppars [283]). These nuclear hormone receptors 

form heterodimers with Rxrβ, after ligand binding allowing the nuclear translocation and the 

activation of gene transcription. The expression of the Ppars and Rxrs was studied at the 

mRNA level in cell preparations of 130 day-old mice from all three genotypes. The three Ppar 

transcripts were present in all cell types under baseline conditions. Pparα showed the 

highest expression in interstitial cells, followed by tubular cells. The highest baseline level of 

Pparβ  mRNA was noted in tubular cells. Pparγ showed a similar baseline distribution as 

Pparα , however, with lower levels in all cell types, especially in peritubular cells.  In all cell 

types of scsPex13KO animals the mRNA levels of Pparα and Pparγ were significantly 

increased. Interestingly, Pparβ  mRNA, the PPAR family member that is thought to be 

constitutively expressed in most tissues showed the strongest up-regulation of all Ppars 

members. Pparβ was drastically upregulated in tubular cells of scsPex13KO animals, 

whereas it was weaker induced in interstitial cells and not at all in peritubular cells (Fig. 43).  

The mRNA levels of the receptors of Rxr family (α, β, γ) were not clearly altered. In 

scsPex13KO, Rxrα was inconsistently up- or down-regulated in comparison to scsPex13HTZ 

animals.  

 

 

 

 

 

 
 
 
 
Figure 43: Semiquantitative RT-PCR 
analysis on total RNA of distinct cell 
preparations of mice with different 
genotypes.  (A) 28S rrna as internal control; 
PPAR α, β, γ:  peroxisome proliferator-
activated receptors; (B) RXR α, β, γ:  retinoid 
X receptors. (+/+: scsPex13WT; +/-: 
scsPex13HTZ; -/-: scsPex13KO; tubular 
cells – Sertoli cells along with germ cells; 
peritubular cells – enriched myoid cells; 
interstitial cells – enriched Leydig cell) 
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4.22.5. Alteration of testicular steroidogenesis and Sertoli cell homeostasis in 

scs Pex13KO mice  

The process of spermatogenesis, steroidogenesis and the overall testicular functions are 

regulated by a complex interplay of the endocrine system (hypothalamus-pituitary-gonad 

axis) in which GnRH stimulates the secretion of the pituitary hormones, LH and FSH, which 

in turn act at the level of the testis on Leydig and Sertoli cells respectively. In addition to the 

endocrine control of testicular function, local testicular steroids, proteins and peptides called 

paracrine–autocrine factors coordinate the various functions of the different testicular cell 

types and/or modulate the testicular actions of pituitary gonadotropins according to local 

conditions and requirements. Furthermore, secretory functions of Sertoli cells are often 

modulated by the presence or absence of particular germ cell types [52, 284].  

Quantitative RT-PCR analysis of the FSH-receptor (Fsh-r), LH-receptor (Lh-r), mast/stem cell 

growth factor receptor (Kit) and 3β-Hsd using tubular, peritubular and interstitial cell 

preparation demonstrated the high quality of the cellular isolation procedure. The tubular 

cells specifically exhibited high levels of Fsh-r and Kit mRNA, while the interstitial cells 

showed abundant Lh-r and 3β-Hsd mRNA expression in scsPex13WT and HTZ mice. The 

peritubular cells were not labeled for Kit-ligand (Kitl), Lh-r or 3β-Hsd (Fig. 44A). 

In scsPex13KO mice, transferrin (Trf) which is a paracrine–autocrine regulator of testicular 

function was up-regulated in all cell preparations. The mRNA of another regulator, α-inhibin 

(Inha), was increased in the tubular cell preparation but was decreased in interstitial cells 

from the testis of the mutant mice. Furthermore, the level of sulphated glycoprotein 2 (Spg2) 

was studied revealing significant differences of basal mRNA levels in distinct cell 

preparations. In addition, the Sgp2 mRNA level was strongly induced in tubular and 

interstitial cell preparation of scsPex13KO animals, in contrast to peritubular cells in which it 

was not altered at all (Fig. 44B).  

Futhermore, important regulators of steroidogenesis, belonging to the transcription factors of 

Gata family were studied. The level of Gata1 mRNA was slightly increased in tubular cells 

and was not altered in peritubular and interstitial cells in scsPex13KO animals (Fig. 44B). 

The mRNA level for Gata4, was present in higher amounts in tubular cells and showed an 

increase in tubular cells of scsPex13KO animals. An up-regulation of Gata4 mRNA occurred 

also in interstitial cells of scsPex13KO animals in comparison to scsPex13HTZ animals, 

whereas in peritubular cells this mRNA showed the lowest basal expression level and was 

not altered in scsPex13KO animals. The transcription factor Gata4 can also regulate some 

promoters via a synergistic interaction with the nuclear receptor steroidogenic factor 1 (Sf1) 

[285]. The basal Sf1 mRNA levels were highest in tubular cells, followed by interstitial cells 

and peritubular cells in scsPex13WT and HTZ animals. The Sf1 mRNA levels were up-
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regulated in all testicular cells preparations of scsPex13KO mice compared to the WT and 

HTZ mice (Fig. 44B).  

Thereafter, the mRNA levels of several key enzymes involved in steroid metabolism were 

analyzed. The PCR reactions revealed a significant increase in Star and CYP450scc mRNA 

levels in testicular tubular, peritubular and interstitial cells of the scsPex13KO mice (Fig. 

44C). Whereas, the CYP450scc mRNA was induced at similar levels in all cell types, the Star 

mRNA was strongly up-regulated in tubular and peritubular cells, while its mRNA was only 

slightly elevated in interstitial cells. The CYP450c17 mRNA level was significantly increased 

in testicular tubular and peritubular cells fractions of the mutant animals and was hardly 

altered in interstitial cells (Fig. 44B). Furthermore, the CYP450arom mRNA was a 

significantly down-regulated in scsPex13KO testicular tubular cells compared to a slight 

increase in peritubular and no change in interstitial cell preparations (Fig. 44C). Although the 

3β-Hsd mRNA is a specific marker for Leydig cells (interstitial cell preparations) under control 

conditions, the expression level of 3β-Hsd mRNA was increased in all testicular cell 

preparation of the scsPex13KO mice. The induced bands of the 3β-Hsd mRNA were 

however much weaker in tubular and peritubular cells in comparison to the interstitial cell 

preparation of scsPex13KO mice (Fig. 44B). 

In addition, some of the genes exerting a crucial role in germ cell differentiation were studied. 

In the adult testis, Kit mRNA expression was observed in type A spermatogonia as well as in 

late primary spermatocytes, secondary spermatocytes and round spermatids. In contrast, 

somatic Sertoli cells that support the growth and differentiation of germ cells express kit 

ligand (Kitl) [286]. Expression of KIT mRNA was noted in tubular and peritubular cells of 

scsPex13WT and HTZ mice. In scsPex13KO animals, this mRNA was drastically reduced, 

revealing the absence of germ cells. Kit mRNA was not expressed in interstitial cells in all 

distinct genotypes. Examination of Kitl mRNA in scsPex13WT and HTZ testicular cell 

fractions indicated the purity of the cell fractions and confirmed the expression pattern of Kitl 

mRNA in the tubular cell fractions. In contrast to control mice, Kitl mRNA was detected in the 

interstitial cell preparation of scsPex13KO animals (Fig. 44B). 
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Figure 44: Semiquantitative RT-PCR analysis on mRNA of distinct testicular cell preparations of mice with 

different scs Pex13 genotypes.  (A) 28S rrna as internal control; Fsh-r: follicle stimulating hormone receptor, Lh-

r: luteinizing hormone receptor (B) Sertoli cell gene markers: Trf: transferrin; Inha: inhibin A; Sgp2: sulphated 

glycoprotein 2; GATA1, 4: transcription factors 1, 4; Kit: mast/stem cell growth factor receptor; Kitl: mast/stem cell 

growth factor receptor ligand. (C) Genes involved in steroidogenesis: Sf-1: steroidogenic factor 1; Star: 

steroidogenic acut regulator protein; P450scc: cytochrome P450 side cholesterol cleavage; P450c17: cytochrome 

P450c17; P450arom: cytochrome P450aromatas; 3β-Hsd: 3β hydroxysteroid dehydrogenases. (+/+: 

scsPex13WT; +/-: scsPEX13HTZ; -/-: scsPEX13KO; tubular cells – Sertoli cells along with germ cells; peritubular 

cells – enriched myoid cells; interstitial cells – enriched Leydig cells). 
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4.23. Measurements of the steroids reveal a strong accumulation of DHEA in the testis 

of scs Pex13KO animals 

The strong Leydig cell proliferation in the interstitial space of the testis of scsPex13KO 

animals, which developed gradually during postnatal development of the animals (from P30 

to P130), already suggested that alteration of steroid synthesis might occur in scsPex13KO 

animals. The T and androgen precursors levels were measured in serum and testis 

homogenates from 130 day-old mice and were compared between scsPex13KO, HTZ and 

WT animals. Interestingly, T levels in serum revealed no significant difference between 

distinct mouse genotypes. The T values served further as internal standards in order to 

calculate relative values of other steroid precursor concentrations. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 45: Steroid hormone quantification in sera of 130 day-old mice. WT: scsPex13WT, HTZ: scsPex13 
heterozygot mice, KO: scsPex13KO. (A) Testosterone (T) quantification in the testis homogenates. (B) 
Quantification of ∆4-A: androstenedione, DEAH: dehydroepiandrosterone, ∆5-A: androstanediol, 17OH-P: 17-
hydroxypregnenolone. Number of animals delaminated n=3.  
 

Furthermore, steroid measurements were performed also in testis homogenates for the 

quantification of 17OH-P, 17OH-Pre, DEHA, ∆5-AD, ∆4-A, T and DHT. Again, the T 

concentration showed no change in testis homogenates between distinct genotypes (Fig. 

46A). The T values served further as internal standards in order to calculate relative values 

of other steroid precursor concentrations. Among all steroid precursors which were 

quantified, DHEA showed a dramatic increase in concentration in testis homogenates of 

scsPex13KO. In addition, the final steroid of the ∆5 pathway, ∆5-AD was found at a 

significant low level in scsPex13KO testis homogenates. Levels of others steroid precursors 

such as 17OH-P, 17OH-Pre and ∆4-A were significant decreased in scsPex13KO testis 

homogenates. Finally, DHT levels were not altered in testis of scsPex13 animals (Fig. 46B). 
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Figure 46: Steroid quantification in testis homogenates.  WT: scsPex13WT, HTZ: scsPex13 heterozygote 
mice, KO: scsPex13KO. (A) Testosterone quantification in testis homogenates. (N.S no significant). (B) 
Quantification of ∆4-A: androstenedione, DHEA: dehydroepiandrosterone, ∆5-A: androstenediol, DHT: 
dyhydrotestosterone, 17OP: 17-hydroxypregnenolone, 17OH-Pre: 17-hydroxyprogesterone. Reaction 1: 3β-

A 
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hydroxysteroid dehydrogenase; Reaction 2: cytochrome P450 17α-hydroxylase; Reaction 3: family of 17β-
hydroxysteroid dehydrogenase; Reaction 4: cytochrome P450 aromatase; Reaction 5: 5α-reductase. Number of 
animals used n=3. (* p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.001). 
 

“Virtual” activities of steroidogenic enzymes were calculated according to the different 

metabolite amounts and conversion rates. These calculations suggested no alterations of the 

CYP450 17α-hydroxylase of ∆4 pathway, whereas in the ∆5 pathway with high DHEA levels, 

it appeared strongly increased. The 3β-HSD of ∆5 pathway, converting 17-OH-Pre to 17-OH-

P was increased in some animals, but the overall value was not significantly altered on a p ≤ 

0.05 basis. In contrast, the calculalated activity of the 3β-HSD of ∆4, converting DHEA to 4-A 

was significantly higher in scsPex13KO testis homogenates, resulting from an enhanced 

production of T by ∆4 pathway. Due to the strong up-regulation of the ∆4 pathway the 

quantity of T and DHT produced by the testis of scsPex13KO was in normal range, 

comparable to WT and HTZ animals. The calculated strong down-regulation of the 17β−HSD 

would be in complete agreement with a loss of the peroxisomal 17βHSD4 (dehydrogenase 

function of the multi-functional protein 2) in Sertoli cells due to the Pex13 knockout (Fig. 47). 

Figure 47: “Virtual calculated” activities of the steroidogenic enzymes. CYP450 17α hydroxylase / ∆5 
(cytochrome P450c17 / delta 5 pathway), CYP450 17α hydroxylase / ∆4 (cytochrome P450c17 / delta 4 
pathway), 3β-HSD (3β-hydroxysteroid dehydrogenase / delta 5 pathway), 3β-HSD (3β-hydroxysteroid 
dehydrogenase / delta 4 pathway), 17β-HSD (17β-hydroxysteroid dehydrogenase).  (* p ≤ 0.05, ** p ≤ 0.01, 
**** p ≤ 0.001). (N=3) 

 

4.24. Detection of reactive oxygen species (ROS) in primary Sertoli cell cultures 

4.24.1 Functional peroxisomes are required for ROS homeostasis in murine Sertoli cell 

primary culture 

Since the isolation of 98% pure and functional Sertoli cells is not possible from adult animals 

and only few Sertoli cells can be isolated from individual KO mice at postnatal day 15, we 

decided to use a Pex13 siRNA knockdown approach in Sertoli cells of WT animals in primary 
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cell culture. For this purpose 15 animals at P15 were used to isolate juvenile Sertoli cells. 

Even though those cells are not completely comparable to the mature highly differentiated 

Sertoli cells, the peroxisome compartment is already well established in primary cell cultures 

[134]. In addition, changes of peroxisomes markers in Sertoli cells were observed in 15 day-

old scsPex13KO testis, showing already that ABCD3 is very weakly labeled by IF. 

Establishment of the conditions for the Pex13 knockdown was done with two different Pex13 

small interfering RNAs (siRNAs) over a range of 24 -96 hours with one and two subsequent 

transfections of the siRNA. Such long times were necessary since the half life of 

peroxisomes was described as three days and effects on protein levels should therefore only 

be visible after this time period. The optimal conditions for siRNA transfection were as 

follows: Pex13 siRNA with two transfections (1st for 24 h, 2nd for 48h), harvesting the cells at 

72h for protein analysis.  

The juvenile Sertoli cells transfected with siRNAs specific for the Pex13 gene showed a 

significant reduction in the PEX13 protein levels after 4 days of transfection (knock-down of 

50% of the original value in the peroxisome enriched fraction P2 as shown by WB analyses) 

(Fig. 48D). Corresponding control groups without transfection (Opti-MEM) and with 

transfection of a non-sense scrambled siRNA (scr siRNA) revealed no effect on PEX13 

protein abundance (Fig. 48D). Also in IF preparations, the PEX13 were significantly down-

regulated, wherefore peroxisomes could hardly be detected anymore with the antibody 

against this protein in Pex13-siRNA transfected cells. In contrast, the organelles were clearly 

visible in both control preparations in a punctuated staining pattern in Sertoli cells (Fig. 48A-

B). In addition to PEX13, the level of PEX14, which forms the docking complex together with 

PEX13 on the peroxisomal membrane, was reduced by 50% in the enriched peroxisomal 

fraction (P2) after siRNA transfection. Interestingly, both proteins were identified at similar 

levels in the P1 fraction in comparison to scr-siRNA treatment, indicating the presence of 

larger and old peroxisomes in the enriched heavy mitochondrial fraction P1 and the decrease 

of smaller organelles in the (P2) fraction (Fig. 48D). In addition, the protein levels of both 

ABCD1 and ABCD3 transporters were reduced by half in the (P2) fraction containing 

enriched peroxisomes in Pex13 siRNA transfected cells compared to the control groups. Also 

peroxisomal matrix proteins were altered in a similar pattern. The peroxisomal β-oxidation 

enzyme ACOX1 was decreased by 50% in the (P2) fractions of Pex13 siRNA treated cells. 

Finally, a reduction in CAT protein levels of more than 50% was observed in the peroxisomal 

fraction (P2) of the Pex13 siRNA group (Fig.48 E). Interestingly, after the knock-down of 

Pex13, the CAT protein was observed also in the enriched heavy mitochondrial fraction P1 in 

a considerable amount. 
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Figure 48: Effects of a Pex13 gene knockdown on isolated Sertoli cells in primary culture. Cell cultures 
isolated from P15-testis, transfected twice (1st transfection for 24h, 2nd transfection for 48h) with Pex13-siRNA and 
scr-siRNA. The negative control cell culture was incubated with Opti-MEM medium only. Following the siRNA 
treatment the cells were fixed with 4%PFA, permeabilized and therafter used for IF analyses. (A-C) IF staining for 
PEX13 localization: (A) Sertoli cells incubated only with Opti-MEM. (B) Sertoli cells transfected with Pex13-
siRNA. (C) Sertoli cells transfected with scr-siRNA. (D-E) Western blots analyses with specific antibodies against 
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different peroxisomal proteins. (5µg in each lane) (D) Peroxisomal membrane proteins: PEX13– peroxin 13; 
PEX14 - peroxin 14; ABCD1 – peroxisomal adrenoleukodystrophy protein / (ATP-binding cassette transporters, 
sub family D, member 1) ABCD3 – 70 kDa peroxisomal membrane protein  / (ATP-binding cassette, sub family D, 
member 3). (E) ACOX1- Acyl-CoA oxidase 1, 51kDa indicates the B subunit; CAT - catalase. Bars represent  in A, 
C 21µm and B 25µm.  (P1: nuclear and enriched heavily mitochondrial fraction; S2: supernatant with microsomes 
and cytosolic proteins fraction; P2: enriched peroxisomal and light mitochondria fraction). 
 

 

4.24.2. Mitochondrial ROS production is increased in Sertoli cells with Pex13 

knockdown  

As shown by double-IF staining for mitochondrial SOD2 and VIM, Sertoli cells with a Pex13-

siRNA knockdown exhibited a massive increase in the staining of the mitochondrial 

compartment and a proliferation of these organelles, building an extensive mitochondrial 

network (Fig. 49). Cells transfected with scr-siRNA only exhibited a slightly elevated SOD2 

protein level, compared to control cells groups, but showed no mitochondrial proliferation. In 

the WB analyses a slight increase of the SOD2 protein was noted in Pex13-siRNA and scr-

siRNA treated cultures in P1 and P2 fractions, whereas a higher amount of SOD2 was noted 

in S2 in Pex13-knockdown cells, in comparison with scr-siRNA cells. This alterations suggest 

that the mitochondrial network, observed in the IF analysis, was fragmented into smaller 

pieces during homogenization and the SOD2 protein got released into the cytoplasmic 

fraction of Sertoli cells. This is supported by the fact that Complex III of mitochondrial 

respiratory chain is increased mainly in the (P2) fraction and that no broken membranes are 

found in (S2) of Pex13-siRNA treated cells (Fig. 49D). 

In the comparison to the mitochondrial SOD2, the cytoplasmic SOD1, of which a small 

portion is also confined under stress conditions to the peroxisomal matrix, was up-regulated 

at the protein level in the cytoplasmic fraction (S2) and slightly also in P1 of Pex13-siRNA 

treated primary Sertoli cells (Fig. 49D). The increase in SOD1 in the P1 fraction might 

indicate a shift of this protein into large peroxisomes, in a similar way as it was seen also for 

the peroxisomal CAT in cells with Pex13-siRNA knockdown (Fig. 49E). 
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Figure 49: Increased antioxidant enzymes and proliferated mitochondria in primary Sertoli cell cultures 
with  Pex13 gene knockdown. Cell cultures isolated from P15-testis. The cells were transfected for tow times 
with Pex13-siRNA and scr-siRNA. The control cell cultures were incubated only with Opti-MEM medium. 
Following the siRNA treatment the cells were fixed with 4%PFA, permeabilized and used for IF analyses. (A-C) 
Double immunoflorescence staining for SOD2 and VIM of Sertoli cell cultures: (A) Sertoli cells incubated only with 
Opti-MEM. (B) Sertoli cells transfected with Pex13-siRNA. (C) Sertoli cells transfected with scr-siRNA. (D) 
Western blot analyses (cells were lysed and equivalent amounts of protein (5µg) were loaded onto 12.5% gels, 
separated with SDS-PAGE and elecrotransferred to PVD membranes, which were processed for immunoblot 
analyses, stripped several times and reprobed for: SOD1 superoxide dismutase 1; SOD2 - Superoxide dismutase 2; 
OxPhosIII - oxidat. phosphorylation complex III. Bars represent in A, B 25 µm and in C 18 µm.  (P1: nuclear 
and enriched heavy mitochondrial fraction; S2: supernatant fraction with microsomes and cytosolic proteins; P2: 
enriched peroxisomal and light mitochondrial fraction). 
 

 

Since mitochondria were proliferating and antioxidant proteins were up-regulated, the overall 

cellular ROS production was quantified by using dihydroethidium (DHE) staining in primary 

Sertoli cells with Pex13-siRNA knockdown in comparison to Opti-mem and scr-siRNA treated 

cells. Compared to the Opti-MEM group of cells, the ROS activity in scr-siRNA was already 

increased (p<0.001) by 50%, suggesting intracellular stress by the siRNA transfection 

reagent. However, in comparison with the value of scr-siRNA treated cells, Pex13-siRNA 

knock-down of the peroxisomal compartment lead to a further 80% (p<0.001) increase in 

ROS suggesting that this increase was indeed exerted by the Pex13 knockdown (Fig. 50). 

The overall increase of ROS between Opti-MEM and scr-siRNA as well as between scr-

siRNA and Pex13-siRNA treated cells was clearly visible in fluorescence pictures of DHE-

stained cells (manly in perinuclear areas). 
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Figure 50: Measurement of ROS production by relative CLSM quantification of dihydroethidium stained 
Sertoli cells after different siRNA treatments.  Cell cultures isolated from P15-testis. The cells were transfected 
two times with Pex13-siRNA and scr-siRNA. The control cell cultures were incubated with Opti-MEM only. (A-C) 
Following the siRNA treatment the cells were stained with DHE for 30 min. The pictures shown were captured 
with Leica TCS2 CLSM and the quantification of the fluorescence intensity was done with the appropriated Leica 
CLSM software. (D) Quantification of ROS production. Bars represent  in A-C 25 µm. (* p ≤ 0.05, ** p ≤ 0.01, **** 
p ≤ 0.001). 
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5. Discussion 

 
The significance of peroxisomal metabolism for male fertility is accentuated by the 

impairment of spermatogenesis and severe testicular pathologies present in patients with 

peroxisomal dysfunction [251]. However, until the beginning of the experimental work of this 

thesis, only sparse information was available on this organelle and its physiological functions 

in the testis. Therefore, the protein composition of peroxisomes in distinct testicular somatic 

cell types was studied, as well as in germ cells, where peroxisomes were searched for, and 

there alteration during spermatogenesis and spermiogenesis was discovered. In addition, a 

new animal model for infertility due to the peroxisomal deficiency in Sertoli cells was 

generated with the Cre-loxP technology and the excision of the exon 2 of the peroxisomal 

biogenesis Pex13 gene. With the help of this model, the clear necessity of the regular 

peroxisomal metabolic pathways was observed for androgene precursor synthesis, Sertoli 

communication to other cell types as well as survival of germ cells in the seminiferous 

epithelium was identified. This study provides the essential evidence that peroxisomes in 

Sertoli cells are a prerequisite for normal male fertility. 

The first part of the discussion will concentrate on peroxisome distribution and enzyme 

composition as well as gene regulation in normal wild type animals. 

The second part of the discussion will focus on the pathological alterations excerted on 

various cell types in the testis as well as on metabolic, signaling and communication 

pathways due to Pex13 gene knockout and peroxisome deficiency in Sertoli cells.  

 

Part I. Peroxisomes in wild type mice and man 
 

5.1. Peroxisomes are present in all cell types of the testis  

In the testis, peroxisomes have been investigated by routine electron microscopy or by 

visualization of the marker protein catalase [36, 101, 287, 288]. Based on these studies 

peroxisomes of the testis were thought to be restricted to Leydig cells.  

Because catalase is the most abundant peroxisomal protein in many tissues it is commonly 

used as a marker to identify peroxisomes. Using this marker, peroxisomes of the testis had 

been identified in Leydig cells [36, 262, 288-290]. Only recently peroxisomes were 

discovered also in Sertoli cells and spermatogonia by use of an alternative marker protein 

(ABCD3) in combination with more sensitive methods [291-293]. Due to the fact that 

peroxisomes could not be visualized in germ cells in later stages of spermatogenesis with 

this marker, the significance of these organelles for normal spermatogenesis has been 

questioned. 

However, peroxisomes are present in all somatic cell types of the testis and all developing 

germ cells (except for mature spermatozoa) and they differ in their protein composition in a 
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cell type-specific fashion [134, 291, 293]. We have established that biogenesis proteins on 

the peroxisomal membrane, such as the peroxins 13 and 14 (PEX13 and PEX14), are 

excellent markers for the visualization of peroxisomes in the testis. Antibodies against PEX13 

also allowed the identification of peroxisomes at the ultrastructural level and indeed showed 

a specific labelling of the membrane in cross-sectioned profiles of peroxisomes in all 

testicular cell types. Even very small peroxisomes of spermatids with similar size to the 

endoplasmic reticulum could be labeled. In addition, clusters of peroxisomes were detected 

in late stages of spermiogenesis (step 16 spermatids) or in residual bodies.  

 

5.2. Peroxisomal enzyme content is heterogeneous, resulting in different metabolic 

functions of this organelle in distinct cell types of the testis  

Peroxisomes are versatile organelles and change their enzyme compositions according to 

the needs of specific cell types and organs (for a review, see [234]). At least in hepatocytes 

the abundance and the enzyme composition of this intracellular compartment is 

differentiation-dependent, a process that seems to be influenced by PPARα [294].  Similarly, 

in the present study, significant differences in the expression of mRNAs encoding 

peroxisomal ABC-transporters and enzymes or in protein composition of these organelles 

were observed in distinct cell types of the testis. These differences were conserved between 

mouse and man, suggestive of a complementary or alternative function of peroxisomal 

metabolism in different testicular cell types. Marked differences have been observed in the 

protein and/or mRNA distributions of the peroxisomal ABC-transporters (ABCD1-4), the acyl-

CoA oxidase 2 (ACOX2) of the β-oxidation pathway 2 and catalase (CAT). 

 

5.3. Calatase in Leydig cells as an antioxidative enzyme for the protection of steroid 

synthesis? 

In Leydig cells peroxisomes are often elongated as tubules and are sometimes hardly larger 

in diameter than dilated segments of the sER [36, 262]. As indicated also by our results, 

peroxisomes in Leydig cells contain the highest amount of catalase protein and are often 

interconnected with each other.  

A network-like distribution of these organelles was already proposed by Mendis-Handagama 

and colleagues [262]. Interestingly, peroxisomes in Leydig cells proliferate upon LH 

treatment, whereas LH-deprivation results in a significant decrease in the number of these 

organelles. In addition, an increase of free cholesterol was noted in peroxisomes and 

mitochondria after LH treatment. Moreover, Mendis-Handagama and Ariyaratne (2005) 

speculated that testicular steroid synthesis could occur at least in part in peroxisomes and 

also described the presence of SCP2 in peroxisomes [79].  
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For steroid synthesis the high abundance of catalase may be necessary and beneficial for 

Leydig cells, since catalase is an antioxidant enzyme with very high capacity to metabolize 

H2O2. Increased levels of intracellular H2O2 in Leydig cells have been shown to inhibit 

steroidogenesis via blockage of the mitochondrial cytochrome P450scc activity and StAR 

protein expression [295]. Since peroxisomes house a variety of other antioxidative enzyme 

systems [296], further studies are necessary to clarify their importance in the regulation of 

Leydig cell functions. 

 

5.4. Peroxisomal metabolism in cells of the seminiferous epithelium: Sertoli cell 

peroxisomes as protectors against lipid toxicity 

The mRNAs for Acox2 and the ABC-transporters Abcd1 and Abcd3 are highly expressed in 

isolated P14 Sertoli cells compared to other somatic cell types. In addition, Abcd2 is much 

more strongly expressed in tubular cells than in peritubular cells. Furthermore, the antibody 

against ABCD1 stained Sertoli cells exclusively, whereas the one for ABCD3 labelled the 

complete basal compartment of the seminiferous tubules. These results are in agreement 

with the observation that in patients with X-linked adrenoleukodystrophy, the first pathological 

alteration seems to occur in Sertoli cells as “vacuolation” before the spermatogenetic arrest 

develops and Leydig cells are also affected [249]. The results of this thesis show that within 

the seminiferous epithelium several enzymes of the β-oxidation pathways and lipid 

transporters are abundant in Sertoli cells. This is in accordance with the localization of 

PPARα, a nuclear receptor and the transcriptional regulator of genes for peroxisomal β-

oxidation pathway 1 enzymes in the seminiferous tubules, which also shows strong 

expression in Sertoli cells [297]. PPARα-mediated proliferation of peroxisomes could result in 

a rapid degradation of potential PPARα lipid ligands leading to the maintenance of a 

signaling-lipid homeostasis in the seminiferous epithelium by a feed-back mechanism. As 

mentioned above a precise control of the homeostasis of lipid derivatives in the seminiferous 

tubules seems to be essential for the survival of the seminiferous epithelium. Especially 

prostaglandins are potential regulators of spermatogenesis [298]. This is also of relevance to 

our results, since the β-oxidation enzymes of pathway 1 are able to degrade these 

eicosanoids (for a current review see [299]). Indeed this thesis shows that THIOLASE A is 

also present in germ cells in the seminiferous epithelium until late stages of spermiogenesis. 

With the presence of these enzymes germ cells might be able to regulate their intracellular 

levels of lipid signalling molecules.  
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5.5. Peroxisomes are present in germ cells and undergo significant alterations during 

spermiogenesis 

Using antibodies against PEX13 and PEX14 in mouse and human testis we could show the 

presence of peroxisomes in germ cells up to late stages of spermiogenesis (step 16 

spermatids). Co-labeling of GFP-fluorescence in peroxisomes of GFP-PTS1 transgenic mice 

with PEX14 in these organelles at the light-microscopical level indicates that the labelled 

peroxisomal membrane structures are indeed small, but import competent peroxisomes. 

Clear evidence for the peroxisomal nature of these particles was obtained by post-

embedding protein A-gold immunocytochemistry with anti-GFP, anti-PEX13- or anti-catalase 

antibodies. 

The presence of functional peroxisomes in maturing spermatids suggests that these 

organelles might be involved in the biosynthesis of plasmalogens (ether lipids) for protection 

of spermatids against reactive oxygen species. Azoospermia due to spermatogenic arrest at 

the level of spermatocytes in mice with a knockout of the Gnpat (DHAPAT) gene, encoding a 

peroxisomal enzyme of ether lipid synthesis, support this hypothesis [258]. In addition, 

peroxisomes in germ cells might cooperate with the endoplasmic reticulum in the synthesis 

of polyunsaturated fatty acids in larger quantities necessary for the integration into 

sphingomyelin that is essential for normal sperm function [300, 301]. Close spatial 

association between ER-segments and small, tubular peroxisomal profiles were frequently 

found in this thesis in maturing spermatids at the ultrastructural level, thus supporting this 

hypothesis.  

Futhermore, peroxisomes in the germinal epithelium might also be involved in the control of 

tubular polyamine abundance or D-aspartate levels in elongated spermatids, since 

polyamine oxidase and D-aspartate oxidase are peroxisomal enzymes [299, 302]. In this 

respect for the seminiferous epithelium it is of interest that distinct polyamine levels (e.g. 

spermidine) are suggested to play an important role in cell proliferation and apoptosis [303]. 

The immunoreactivity of CAT is clearly present in spermatogonia and Sertoli cells, but could 

only be detected with high concentrations of antibodies in spermatocytes or early spermatids 

in light-microscopical preparations. Catalase immunoreactivity was clearly present in late 

spermatids (step 14-16) where it is localized in network-like clusters. These clusters are 

consistently labelled with antibodies against peroxisomal proteins (PEX13, PEX14, ABCD3, 

CAT, THIOLASE) and contain the imported GFP in the peroxisomal matrix in GFP-PTS1 

transgenic animals. Peroxisomal profiles in these clusters are similar or often smaller in size 

than ER and frequently exhibit double-membraned loop structures. Clusters of small 

peroxisomes, peroxisomal tubular profiles with low catalase content and double-membraned 

loops are not new structures (for a review, see [304]). In contrast they are frequently found in 

tissues closely associated with lipid metabolism (such as lipid-synthesizing glands) [305, 
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306] in fetal tissues or in conditions associated with peroxisome proliferation (for a literature 

survey see discussion sections in [228, 307]). Serial section analysis revealed that double-

membraned loops represent terminal cup-shaped segments of the peroxisomal compartment 

that are sometimes devoided of CAT but are labelled for peroxisomal membrane proteins 

[228, 305].  

The results of this thesis show that only few, but aggregated peroxisomal clusters are 

present in residual bodies (Fig. 4G), most probably being phagocytosed and degraded by 

Sertoli cells. Selective staining of Sertoli cells for the lysosomal protein cathepsin D [293] and 

the autophagosomal protein LAMP2 in addition to labelling of the acrosome (Fig. 3F) 

supports this hypothesis. The genes involved in the regulation of the aggregation and 

clustering process of peroxisomes in late spermatids are unknown. However, it is known 

from studies with knockout animals that Pex11-proteins exert strong effects on peroxisomal 

abundance, size and structure. Indeed, absence of PEX11α/β leads to a decrease in 

peroxisomal number and an increase in the size of the particles and more interestingly 

overexpression of PEX11γ leads to strong reduction and clustering of almost all peroxisomes 

in an individual cell [308, 309]. In addition, Pex11γ mRNA is strongly expressed in the testis 

[308]. Future studies on PEX11 proteins in germ cells will reveal, whether PEX11γ is involved 

in the clustering process.  

 

5.6. The heterogeneity in peroxisomal enzyme content is conserved in mouse and man 

This thesis demonstrates that peroxisomes can be visualized by immunofluorescence also in 

Bouin-fixed, paraffin-embedded human tissue. The enzymatic heterogeneity of peroxisomes 

is conserved in mouse and man. The distribution pattern of peroxisomes in the human 

seminiferous epithelium is best recognized with PEX13 or PEX14 as well as with other 

marker enzymes. Comparable to the mouse the peroxisomal staining pattern is dependent 

on stages of the seminiferous epithelium with the peroxisomal compartment undergoing 

similar significant alterations during maturation of spermatids. Clusters of peroxisomal 

profiles also appear in late spermatids prior to segregation into residual bodies in human 

preparations. The cell type-specific conservation of peroxisomal metabolic pathways 

suggests that mouse models can indeed be used to investigate the molecular pathogenesis 

of peroxisome-related infertility. All described mouse models with knockout of genes involved 

in peroxisomal biogenesis exhibit almost identical phenotypes to those observed in 

corresponding patients (for a recent review, see [255]). Similar to human peroxisomal 

disorders, male knockout mice with single enzyme defects in peroxisomal lipid metabolism 

are infertile [228, 258, 259]. 
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Part II: Physiological role of peroxisome in testis 
 
5.7. Deficiency of peroxisomes in Sertoli cells and alterations of peroxisomal 

metabolic markers 

All reported mice with generalized inactivation of Pex genes involved in PTS1- dependent 

matrix protein import such as Pex5-, Pex2-, Pex13-knockouts were described to be excellent 

animals models for ZS, the most severe peroxisome biogenesis disorder. Some of the 

features of ZS observed in patients, like cryptorchidism and testicular defects, could not be 

investigated in Pex-KO animals since they need postnatal growth and developmental of the 

mice. However, postnatal studies have been impossible in Pex-KO animals because of the 

lethality of mice shortly after birth. In this context generating a conditional knockout of Pex13 

specifically in Sertoli cells proved to be an indispensable necessity for functional studies of 

peroxisomes with impact on cell-cell interactions during testicular development and 

spermatogenesis. The Pex13 gene deletion, leading to peroxisomal deficiency in Sertoli 

cells, was verified by a variety of methods in this thesis such as genomic PCR screening of 

the Pex13 gene in different organs as testis, liver, tail and particularly in the microdissected 

seminiferous tubules from different phenotypes of mice. In addition IF stainings and Western 

blot analyses confirmed the absence of the PEX13 protein in Sertoli cells of scsPex13KO 

animals. Futhermore, all of these methods confirmed the specificity of the Pex13 knockout in 

Sertoli cells. Cre-mediated deletion of both alleles of Pex13 gene in Sertoli cells showed 

profound effects on spermatogenesis as well as the biochemical and endocrinological 

alterations in animals older than three months. The expression of a single Pex13-allele in 

scsPex13HTZ male animals was found to be sufficient for proper testicular homeostasis.  

At the age of 130 days, the scsPex13KO mice exhibit a normal developed genital tract with 

descended testis in the scrotum, but testes volume and weight were significantly reduced in 

those mice. The cryptorchidism that appears in ZS patients in comparison to scsPex13KO 

mice can be explained by the Pex13 gene mutation solitary in Sertoli cells with the possibility 

that functional other testicular cells types are compensating more severe alterations of 

endocrinological parameters or intercellular communication pathways.  

Selective elimination of Pex13 gene in Sertoli cells resulted in lipid accumulation,  

vacuolation of these cells and proliferation of the Leydig cells, histological aspects that have 

been reported in a variety of other testicular disorders [310] and essential fatty acid 

deficiency [311]. Indeed, in ZS and X-ALD/AMN patients, all these aspects have been 

described [251]. In addition, proliferated Leydig cells in these patients are degenerated due 

to severe VLCFA and fatty acid crystal accumulation since peroxisomes are absent from 

these cells in ZS patients. In contrast, peroxisomes in Leydig cells of scsPex13KO mice 

protect against fatty degeneration and cell death, whereas strong accumulation of VLCFA 

(C24 and C26:0) occurs in Sertoli cells, leading to germ cell death. In addition, phytanic as 
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well as pristanic acids amounts were also increased, suggesting a metabolic defect in both 

α- and β-oxidation in Sertoli cells. This metabolic defect was indeed proven by the mis-

targeting of β-oxidation enzymes in the Sertoli cell cytoplasm (ACOX1) or degradation of the 

enzymes into the cytoplasm (THIOLASE) in IF preparations and Western blot analyses. 

Interestingly, in scsPex13KO mice the results of the VLCFA measurements are in complete 

agreement with the elevated concentrations of the VLCFA observed by Aversa and 

colleagues in X-ALD/AMN patients [251]. The lesions described in those patients consisted 

of degenerative changes of seminiferous tubules including hypocellularity and mild 

vacuolation of seminiferous tubules, maturation arrest and Sertoli cell abnormalities 

associated with infertility. In addition, in these patients interstitial cells were damaged and 

showed lamellar lipid profiles in Leydig cells and a reduction of the number of Leydig cell 

clusters. [247]. In one case report of adult-onset cerebral X-ALD a severe impairment of 

spermatogenesis was seen with rapid progression to azoospermia [251]. In contrast, the 

genetic inactivation of adrenoleukodystrophy gene (Aldp / Abcd1) in KO mice leads to the 

accumulation of VLCFA in nervous tissue, but these animals do not develop a testicular 

phenotype. Interestingly, in the testis of Pex7 KO mice a disorganisation of the seminiferous 

epithelium was described and the mice were infertile [312] and double KO mice for 

Pex7:Abcd1 showed a much more severe pathology with disorganized seminiferous 

epithelium, Leydig cell hyperplasia and VLCFA accumulation [313]. The types of VLCFA in 

the testis of 60 day-old Pex7:Abcd1 double KO mice were similar to the ones found in testis 

of 130 day-old scsPex13KO mice in this study. The testicular defects in Pex7:Abcd1 KO 

animals occur due to the generalized double knockout of the Pex7:Abcd1 genes in all cells of 

the testis and as well in other tissues. The pathological alterations in those animals also 

occur much earlier than in Pex7 KO testis [313]. Even though in scsPex13KO mice the 

severe alteration of the testis developed much later, the pathological modifications in the 

testis are similar to Pex7:Abcd1 KO mice suggesting that peroxisomal function specifically in 

Sertoli cells plays an important role in VLCFA metabolism, the degradation of other fatty 

acids, regulating the lipid homeostasis of the seminiferous epithelium and protecting against 

the fatty acid toxicity. As shown in this thesis, Sertoli cells lacking functional peroxisomes are 

indeed disturbed in PPAR regulation and influence intercellular communication leading to 

hyperplasia of the Leydig cells and influencing stereidogenesis (see later in the thesis). A 

recent study  suggested a crucial role of plasmalogens in normal spermatocyte development 

and in their protection from damage caused by VLCFA accumulation [313]. Interestingly, 

plasmalogen levels showed a slight increase in concentration in the total testis homogenate 

of scsPex13KO mice, suggesting that proliferated Leydig cells over-compensated 

plasmalogen deficiency in scsPex13KO animals. Only MALDiT-TOF imaging with the 

possibility of spatial resolution of lipid deficiencies or accumulations could clarify the exact 
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nature of the lipid alterations in the testis of scsPex13KO animals. However, until now only 

very limited knowledge is available on this technique for lipid detection and no good protocols 

are available for “lipid” imaging.  

Previous limited studies in mice with a Sertoli cell-specific knockout of Pex5, encoding the 

cytoplasmic receptor for the import of peroxisomal matrix proteins containing a PTS1, 

indicated an accumulation of lipids in Sertoli cells already develops at P10 and precedes the 

arrest of spermatogenesis [259]. Indeed, in scsPex13KO the apparition of lipid vacuoles 

occurred in the early pre-pubertal testis (P15) and it increased in size in the pubertal and 

early adult period before first signs of spermatogenic arrest were identified at P90 in 

scsPex13 animals. Accumulation of fatty acids in Sertoli cells is especially prominent in 

stages of the seminiferous epithelium in which the residual bodies are phagocytosed by 

these cells and in which peroxisomal β-oxidation is essential to degrade these lipids, since 

mitochondria are not capable of VLCFA activation and oxidation. Due to this fact Sertoli cells 

most probably are over-loaded with VLCFA in each cycle of the seminiferous epithelium, 

where spermatozoa are released and residual bodies are phagocytosed. Therefore, the 

discrete alterations in Sertoli cells in the P15 testis can easily be explained, since the first 

wave of sperm release occurs in the mouse testis at ~ 35 days of age. 

In scsPex13KO model the up-regulation of KITL mRNA in the interstitial cells fraction 

encoding a protein, known to be involved in Leydig cell proliferation, confirmed the 

hyperplasia of this type of cell [314]. Several studies showed that the occurrence of 

proliferated Leydig cells appeared to parallel the extent of loss of the Sertoli cells and also 

that of the thickening of the lamina propria with peritubular cells [315]. Hyperplasia of Leydig 

cells associated with germ cell depletion has also been reported in human and mouse 

infertilities. In particular, the Sertoli cell-only syndrome, a form of non-obstructive 

azoospermia, is the most serious male infertility, in which the patients have small testes with 

azoospermia caused by depletion of germ cells and frequently show Leydig cell hyperplasia 

[316-319]. Furthermore, it has been shown that Sertoli cells within tubules containing 

aberrant Leydig cells were always immature and no spermatogenesis occurred within their 

immediate vicinity in the adult testis [320]. Therefore, the Leydig cell hyperplasia observed in 

the scsPex13KO mouse is likely caused by a secondary effect of the mutation of the Pex13 

gene mediated in Sertoli cells by germ cell depletion rather than direct effect of the specific 

peroxisomal Pex13 gene mutation in Sertoli cells, influencing the homeostasis of Leydig 

cells, although the latter possibility cannot be excluded. 
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5.8. Alterations of peroxisomal proteins in Sertoli cells and inducible expression of the 

ABCD-transporters in Leydig cells of the scs Pex13KO 

Severe modification in the abundance and distribution of peroxisomal proteins were 

observed in scsPex13KO animals by using antibodies against various peroxisomal proteins 

for immunostaining or Western blot experiments. Interestingly, in addition to PEX13, PEX14, 

another protein of the docking complex and the cytoplasmic PTS1 receptor PEX5 were 

absent from the Sertoli cells suggesting that these proteins were degraded in Sertoli cells 

and that the PTS1 dependent import of matrix proteins was disturbed. This notion can be 

further supported by a strongly reduced PEX14 staining in IF preparations in Sertoli cells and 

by labeling of only few peroxisomal membrane ghosts around lipid droplets with antibodies 

against ABCD3. The mRNA of peroxisomal ABC half-transporters Abcd2, Abcd3 and Abcd4 

was altered upon the Pex13KO in Sertoli cells. Most prominent elevations of the mRNA were 

observed for Abcd4 and less strongly for Abcd2 in Sertoli cells. The Abcd3 mRNA level was 

slightly decreased in Sertoli cells. This notion can be further supported by a strongly reduced 

ABCD3 protein straining of preparations in Sertoli cells by labeling only few peroxisomal 

membrane ghosts around lipid droplets. A significant up-regulation of Abcd3 and Abcd4 was 

noted in proliferated Leydig cells in scsPex13KO mice. Interestingly, in wild type animals, 

Abcd3 was not highly expressed in interstitial cells – Leydig cells [134]. This is consistent 

with the strong staining of Leydig cells with the antibody against ABCD3 in testis sections of 

scsPex13KO animals. Remarkably, Abcd4 mRNA was dramatically up-regulated in Sertoli 

cells as well as in Leydig cells of scsPex13KO mice, whereas Abcd4 mRNA was not present 

in Leydig cells of scsPex13WT and scsPex13HTZ mice.  

As reported in the literature the expression of different ABCDs can vary depending on cell 

type, function and metabolic conditions of the cell [134]. In human tissues the Abcd4 mRNA 

is expressed at highest levels in the lung and testis, followed by the kidney [321]. However, 

no information is available regarding the physiological role of this peroxisomal half-

transporter. In addition, in a recent study the subcellular localization of ABCD4 in 

peroxisomes has been questioned and its localization was attributed to the ER. The 

hydrophobic properties of NH2-terminal regions were suggested to determine its subcellular 

localization [322], indicating that ABCD4 might not reside in peroxisomal membranes. 

However, further morphological studies with a good antibody against this protein are needed 

to clarify where the endogenous ABCD4 protein is indeed localized in ER. Over-expression 

of the proteins using recombinant DNA technology such as used also in the mentioned 

publication, sometimes results in mis-targeting of the expressed proteins to incorrect sub-

compartments, leading to misinterpretation of their correct localization. Over-expression has 

also been used to study the function of ABCD2 and ABCD3 that exhibit partial functional 

redundancy with ABCD1, compensating each other for VLCFA transport [321]. Others, 
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studies have showed that ABCD3 transports long-chain acyl-CoA (LCFA-CoA) across the 

peroxisomal membrane [323]. Many genes involved in lipid metabolism, including Abcd 

genes, are regulated by transcription factors like PPARs or by sterol regulatory element-

binding proteins (SREBPs) involved in metabolism of fatty acids and cholesterol [324]. 

Indeed, the pharmacological induction of the Abcd2 gene by fibrates through the activation of 

PPARα and SREBP2 has been demonstrated in rodent liver [325]. In contrast, in liver of 

male rodent it was shown recently that the mechanism of Abcd2 induction independently of 

PPARα [326]. The results from this thesis are in accordance with these publications where 

the Pparα  mRNA was strongly induced in all cell types of the testis, while ABCD2 is only 

minor affected in peritubular and Leydig cells. In distinction with Abcd3, a PPARα dependent 

gene was strongly up-regulated in all cell types in scsPex13KO animals. The accumulation of 

variety of “peroxisome-metabolized” fatty acid derivatives in Sertoli cells due to the Pex13 

knockout in combination with the increased apoptosis of germ cells seem to trigger the 

strong induction of the Abcd3 and Abcd4 genes in this cell type. The strong up-regulation of 

Abcd3 and Abcd4 transporters in Leydig cells most probably counteracts the VLCFA 

accumulation. 

In contrast to the situation in mice, it should be noted that the human Abcd3 gene lacks an 

apparent PPAR-responsive element (PPRE), suggesting that this gene must be regulated by 

additional mechanism [327]. This would allow hypothesizing that this might be indeed by a 

SREBP-mediated mechanism, which might at least partly also be responsible for the 

induction of the Abcd2, Abcd3 and Abcd4 and Acox1 genes in the testis of scsPex13KO 

mice. Interestingly, Srebps were mainly induced in Sertoli cells in scsPex13KO animals, 

whereas activated Ppars were more widely activated, also in peritubular and Leydig cells 

(except for Pparβ in peritubular cells). The role of the distinct PPAR family members in the 

testis is not yet understood. However, PPARα and PPARγ have been implicated in the 

regulation of fatty acids metabolism in other organ systems. 

Since the Pparα gene was induced in scsPex13Ko animals, the up-regulation in tubular cells 

of enzymes of the Pparα dependent β-oxidation pathway I, such as ACOX1 and THIOLASE, 

can be explained. THIOLASE protein was severely decreased in tubular cells, most probably 

due to its mis-targeting and degradation in the cytoplasm of Sertoli cells. In contrast, ACOX1 

and CAT are still present after mis-targeting in the cytoplasm. The cytoplasmic localization of 

enzymes in cells with peroxisome deficiency is a well-known phenomenon [328]. 

In contrast to the ACOX1 of the first β-oxidation pathway, the one for ACOX2, the enzyme 

regulating the flux in the second β-oxidation pathway involved in side-chain oxidation of 

cholesterol and branched-chain FA degradation, was down-regulated in both Sertoli and 

Leydig cells. Indeed, branched FA also accumulated in the testis of scsPex13KO mice. 

Interestingly, already single-enzyme deficiencies in the β-oxidation pathways lead to several 
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alterations of male fertility. In this respect, Acox1 KO mice showed a reduction in Leydig cell 

population, hypospermatogenesis, and infertility. However, no changes in Sertoli cells were 

reported [257]. In contrast, Mfp2 knockouts gradually developed a complete fatty 

degeneration of the seminiferous epithelium, whereas Leydig cell function was preserved 

[259]. This KO mouse demonstrates the importance of Mfp2 for the protection of the germinal 

epithelium in the tubuli of the testis. Interestingly, MFP2 enzyme is functioning in addition to 

FA degradation in the dehydrogenation of 17β-OH-steroids. A part of this enzyme was 

isolated and described as 17β-OH-HSD4, being involved in conversion of estradiol to estrone 

in Leydig cells [329]. A function of this enzyme in androgen synthesis has not been described 

until now. The results of this thesis, however, suggest that Mfp2 might be involved in ∆5 

androgen synthesis pathway since large amounts of DHEA accumulated in testis of 

scsPex13KO animals. This could be the first evidence that peroxisomes might be essential 

for the regulation of streroidogenesis in different somatic cell types of testis, since a massive 

up-regulation of the mRNA for steroidogenic transcription factors and enzyme occurred in 

absence of peroxisomes in Sertoli cells. Interestingly, the accumulating DHEA and DHEA 

sulphate are strong inducer of peroxisome proliferation, at least in liver [330], suggesting that 

peroxisomes abundance might control the level of this important androgen precursor in the 

testis and the flux through different androgen synthesis pathways. 

 

5.9. Functional significance of peroxisomes in steroidogenesis and alteration of 

related signaling pathways in scs Pex13KO mice 

The lipid accumulation in seminiferous tubules and in proliferating Leydig cells of 

scsPex13KO mice was associated with the up-regulation of FSH- and LH- receptors. Under 

normal condition FSH interaction with its receptor (FSH-R) in Sertoli cells induces an 

increase in cyclic AMP (cAMP) production [331], transferrin [332], α-inhibin [333] and calcium 

mobilization [334]. Indeed, our results show that in addition to the FSH-R up-regulation, all 

other autocrine and paracrine factors such as transferrin, α-inhibin and SGP-2 were 

increased in Sertoli cells of scsPex13KO mice. Former in vitro studies from the literature 

ruled out that a direct action of the gonadotrophic hormone on Leydig cells occurs and 

supported the presence of a Sertoli cell-secreted nonsteroid factor that would influence 

testicular androgen production. To date, more than 40 factors have been described, among 

them inhibin and transferrin, that modulate testicular functions through autocrine, intracrine 

and paracrine mechanisms [42]. Therefore, it can be hypothesized that the deficiency of 

peroxisomes in Sertoli cells leading to pathological alterations in seminiferous tubules, will 

also affect the homeostasis of autocrine, intracrine and paracrine mechanisms, exerting in 

turn effects on Leydig cells in the testis of the scsPex13KO mice.  
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It is well accepted that the regulation of the cAMP level is somatic cells of the testis is 

primary determined by hormones [335]. In addition, in the testis SF-1 is the transcription 

factor regulating a variety of cAMP-dependent target genes, including Cyp450arom and Star 

[336, 337]. Indeed, in somatic cells of scsPex13KO animals Sf-1 mRNA expression was 

drastically up-regulated in Sertoli cells as well as in Leydig cells, and slightly increased in 

peritubular cells. 

In addition, the Gata4 mRNA levels were induced in Sertoli and Leydig cells and Gata1 in 

Sertoli cells of the scsPex13KO testis. The GATA family of proteins is a group of transcription 

factors emerging as important regulators of steroidogenesis [338]. Within the gonads, 

GATA-4 plays a role in the steroidogenic function of somatic cells, including fetal / adult 

Leydig and Sertoli cells [339, 340]. Co-transfection experiments have shown that GATA-4, 

working alone or in concert with other transcriptional co-activators, can drive the expression 

of numerous genes involved in gonadal somatic cell function, including MIS [341, 342], α− 

and β−inhibin subunit genes [343], LH-R [344], StAR [345] P450c17 [346], 3βHSD [285] and 

DHEA–sulfotransferase (DHEA-S) [347]. In addition to their ability to directly stimulate the 

transcription of target steroidogenic promoters, GATA-4 can also regulate some of these 

promoters via a synergistic interaction with the nuclear receptor SF-1 [341, 342]. Both 

transcription factors GATA and SF-1 are up-regulated in the scsPex13KO testis and appear 

to exert critical regulatory functions on steroidogenic enzyme gene expression in 

scsPex13KO animals. The gene expression profiling studies indicated that increased SF-1 

influences the adrenal cortex to produce more steroids and selectively modulates the steroid 

secretion profile by maintaining DHEA-S secretion. SF-1 in conjugation with GATA-4 induces 

most mRNA levels for steroidogenic enzymes (Star, Cyp450scc and Cyp450c17, 3βHSD) in 

seminiferous tubules as well as in Leydig cells. The induction of the steroidogenic enzymes 

in Sertoli cells of P130 scsPex13KO mice is also reflected by the positive IF staining of 

mitochondria with an antibody against CYP450scc. The mechanism behind the strong 

induction of steroidogenic enzymes could indeed be explained by activation different 

transcription factors (SF-1, GATA-4) inducing transcription of steroidogenic enzyme gene 

(Star, Cyp450scc and Cyp450c17, 3βHSD) via the cAMP signalling pathway and via a 

SREBP2-mediated mechanism. Furthermore, the strong increase of non-steroidogenic 

factors from Sertoli cells of scsPex13KO animals, such as inhibin-α, transferrin, SPG2, KITL 

could stimulate steroidogenesis and proliferation of Leydig cells as well. Altered Sertoli cell - 

Leydig cell communication and up-regulation of gonadotropin receptors in both cell types 

(LH-R and FSH-R) might explain this phenomenon.  

In contrast to the mRNAs for all others steroidogenic enzymes, the one for Cyp450 

aromatase, the enzyme converting androgens to estrogens was decreased in seminferous 

tubules, suggesting that the steroid synthesis was mainly directed from T to DHT to 



Discussion 

136 / 169 

guarantee constant DHT-levels in scsPex13KO animals. These hypothesis is supported by 

the fact that all steroid precursors, except for DHEA, are decreased, whereas T and DHT 

levels are normal, indicating a high flux through the steroid synthesizing pathway in Sertoli 

cells in the direction to DHT, to keep up its the level in seminiferous tubules of scsPex13KO 

mice. Interestingly, both RXR- and PPARγ-selective suppress P450arom gene expression in 

the ovary [348] which would perfectly fit to the results obtained in this thesis, since PPARγ 

was strongly induced. Furthermore, Pparα and Pparβ mRNA were also up-regulated. 

Aromatase knockout (ArKO) mice cannot synthesize endogenous estrogens, wherefore 

circulating estradiol levels was at the limit of detection and male mice exhibited severe 

spermatogenesis defects [349, 350]. Another important reason responsible for the low 

Cyp450arom mRNA level is the absence of germ cell in seminiferous tubules of scsPex13KO 

testis, since Cyp450arom is expressed in germ cells of the mouse [336, 351]. Total body fat 

is also increased in 16 week-old mice in estrogen receptor α and/or β knockout mice [352]. 

Therefore, the question still remains whether in tubular cells of scsPex13KO mice the low 

Cyp450arom levels result from the PPAR increase or not, and whether altered estradiol 

concentrations would contribute to germ cell death in scsPex13KO animals. Unfortunately, 

estradiol levels could not be measured in scsPex13KO testis, due to sensitivity limitations.  

 

5.10. DHEA and estradiol conversion by peroxisome ββββ-oxidation 

Already one decade ago the molecular characterization of MFP2 was done using different 

antibodies against parts of the enzyme with distinct functions. Two groups cloned the cDNA 

of this protein, coming from two completely different directions: a) from isolation of a 17βHDS 

[97], characterizing the dehydrogenase part of the enzyme and b) from isolation of 

peroxisomal enzyme involved in β-oxidation, characterizing the hydratase part of the enzyme 

[353]. This enzyme also called D-bifunctional protein, working as the second enzyme in the 

β-oxidation pathway 2, on the D-form of fatty acid intermediates, oxidized by the acyl-CoA 

oxidase 2 [354-356]. However, MFP2 was shown to convert estradiol into estrone in human 

ovarian epithelial cells [357]. These studies proposed that the MFP2 /17βHSD4 peroxisome 

enzyme could play a role in the liver thereby modulating serum estradiol levels [358, 359]. In 

addition a former study on fish liver proposed a regulatory interplay between peroxisomes 

and catabolism of sexual steroids (T / estradiol) [360, 361]. Recently, it was shown that 

general MFP2 knockout mice exhibit normal T values in plasma of despite severe 

pathological alterations in the testis and development of the infertility [259]. Similarly in this 

thesis, normal T and DHT levels were found in the testis and in serum of scsPex13KO 

animals. However, we noted a strong accumulation of the androgen precursor DHEA, 

suggesting a block in the ∆5 pathway of T synthesis at the position of 17β-HSD. This high 

DHEA accumulation can only be explained by the mis-targeting of MFP2 to the cytoplasm 
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and complete disruption of the peroxisomal β-oxidation pathway 2. Indeed as mentioned 

above all other androgen precursors are decreased and the 3βHSD converting DHEA to 4-A 

is strongly increased, suggesting that a higher flux of androgen precursors was induced via 

the ∆4 pathway to keep T and DHT levels constant. This hypothesis is further supported by 

the fact that ∆4-AD (5α androstane 3α, 17β-diol) is reduced indicating degradation product of 

DHT was decreased. Interestingly a significant proliferation of peroxisomes and a severe 

induction of CYP450 IVa were described in the liver after treatment with DHEA in perivenos 

zone of rat liver lobules, an “estrogen-dependent” zone in the liver [330]. In addition, DHEA 

was recently also described as a PPARα activator and as a pro-hormone able to mediate 

induction of several genes like the expression of peroxisomal ABC transporters D family in 

human hepatoma cells [362]. In vitro and in vivo effects of DHEA showed that Abcd2 and 

Abcd3 but not Abcd4 genes were induced in primary culture of rat hepatocytes by DHEA-S. 

In addition, after 11-day treatments with DHEA, it was demonstrated that Abcd2 and Abcd3 

are inducible in the liver of male rodents but not in brain, testes and adrenals [362]. In 

addition, other studies suggested that the 17βHSD4 gene is stimulated by progesterone and 

ligands of PPARα and is down-regulated by phorbol esters. The same study  claimed that 

mutation of this enzyme was involved in Zellweger-like syndrome [329].  

Importantly, in laboratory animals such as rats, mice, guinea pigs and dogs, the secretion of 

sex steroids is done exclusively in the gonads. In man, androgen precursors DHEA and 

DHEA-S are excreted from the adrenal glands in addition to secreting sex steroids from the 

gonads [363, 364]. Unlike T and estradiol, DHEA is known as a weak androgen, and does 

not have a known classical intracellular steroid receptor [365, 366]. As mentioned above 

DHEA can bind to PPARα, and most recently, it was reported that in addition it can bind to 

the constitutive androstane receptor [367], to which other classical peroxisomal proliferators 

can also bind. DHEA is an intermediate in the production of both androgens and estrogens in 

the peripheral tissues [368]. Previously, it was shown that recombinant human FSH in males 

increases the production of T in Leydig cells through Sertoli cell-released non-steroid factors. 

The increase in the T/∆4 and T/DHEA ratios indicate that this factor would act by amplifying 

the LH response through the ∆5 pathway and the 17βHSD enzyme [369], which could be 

explained by the proliferation of peroxisomes that is indeed stimulated in Leydig cells by LH 

treatment [79].  

In the prostate, DHEA effects may be further influenced by endocrine-immune interactions. 

For example, the DHEA-sulfatase activity is present in macrophages, thus allowing for the 

conversion of DHEA-S to DHEA [370]. In this thesis, the mRNA expression of this enzyme 

was also checked, but no signal was obtained, though the sulfates mRNA was easily 

amplified out of liver RNA, suggesting that the enzyme is not or only in very low levels 

expressed in the testis. 
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Administration of DHEA has been reported to have beneficial effects on ageing, diabetes, 

and artherosclerosis [371, 372]. The mechanism by which DHEA exerts a possible 

antioxidant activity has not been elucidated, although this effect seems to have some 

biological significance because the peroxidation of microsomal lipids are clearly reduced as 

shown by the decrease in thiobarbituric acid-reactive substances [372]. This antioxidative 

and reduced lipid peroxidation could however be explained by an increased peroxisome 

proliferation, organelles that contain many antioxidative enzymes and β-oxidation chains for 

lipid degradation. In several studies antiapoptotic and antioxidant effects of DHEA have been 

reported in various organs [371, 373-375]. For instance, DHEA has a beneficial anti-

apoptotic effect in testicular torsion/detorsion injury in a rat model [376]. In addition, DHEA 

has been reported to change the fatty acid composition of mitochondrial membrane 

phospholipids in rats [377]. Moreover, DHEA and DHEA-S regulate apoptosis during 

neurogenesis in opposing ways via the Akt signalling pathway [378, 379] and the effects of 

DHEA on apoptosis appear to be determined by the cell type [379]. The protective effect of 

the DHEA was dose-dependent and apoptotic cells gradually decrease depending on the 

concentration in lymphocytes [380]. No cytotoxic effects inducing apoptotic mechanisms 

were observed in Leydig cells and TM4 Sertoli cells by treatment with amino-DHEA 

analogues. However, a necrotic effect was induced in TM4 Sertoli cells [368]. Apoptotic 

spermatogenic cells were always spermatogonia or spermatocytes and not Sertoli, Leydig 

cells or endothelial cells [381].  

Apoptotic cell death in scsPex13KO animals was highly pronounced in 90 day-old 

scsPex13KO animals, showing different types of germ cells positive after TUNEL assay. In 

the period between 90 to 130 days almost all germ cells died in scsPex13KO testis. At P130 

only the rests of germ cells within the seminiferous tubules exhibited a positive TUNEL 

reaction. This might indicate that accumulation of lipids and strongly elevated DHEA levels 

are induced continuously in form of a storage disease up to a certain level (>90 days), 

overstepping of which leads to significant and quick death of germ cells. 

In scsPex13KO animals macrophages were found in high number in the interstitial space. 

Interestingly, it is known that macrophages can induce 3βHSD promoting conversion of 

DHEA into T [382]. Indeed 3βhsd mRNA levels were up-regulated in scsPex13KO testis, 

most probably to by-pass the 17βHSD4 block in the ∆5 pathway, leading to the higher flux of 

intermediates into the ∆4 synthesis pathway. The protective effect of DHEA as an anti-

oxidant might have an influence until the age of 90 days in mice when the scsPex13KO are 

fertile. Afterwards, due to the high level, DHEA might contribute to cause the apoptosis of 

spermatogonia. 
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The steroid level changes observed in scsPex13 animals do not seem to be related to 

pituitary effects since FSH values in the serum are normal, as confirmed in this thesis by an 

ELISA assay (data not shown).  

 

5.11. Alterations in different subcellular compartments and ROS metabolism induced 

by peroxisome deficiency in scs Pex13KO testis  

The absence of functional peroxisomes in Sertoli cells induces significant alterations in other 

subcellular compartment, such as mitochondria, the ER, lysosomes and the cytoplasm. In 

Sertoli cells of scsPex13KO, mitochondria are proliferated and contain heterogeneous levels 

of mitochondrial complex III of the respiratory chain, increased level of the CYP450scc 

enzyme and dramatically up-regulated amounts of SOD2 protein, suggesting an increased 

ROS production. Severe alterations of mitochondria and high SOD2 levels were also 

described in cell types not involved in steroids synthesis such as hepatocytes, 

cardiomyocytes and granulocytes in Pex5 knockout mice [328, 383]. In addition, it was 

shown that mitochondrial alterations in hepatocytes are not induced by external serum 

factors, but rather are an internal cellular problem caused by absence of peroxisomes in 

these cells [384]. After reintroduction of the peroxisomes by alpha-fetoprotein gene promoter 

dependent expression of the Pex5 gene in hepatocytes, a mosaic pattern of the 

complementation of the peroxisomal biogenesis defect occurred in mice. In contrast, directly 

neighboring cells without peroxisome reconstitution by transgenic Pex5 expression showed 

severe mitochondrial defects and strong lipid accumulation. By this approach 40% 

hepatocytes were found showing normal (reconstituted PEX5) peroxisomes as well 

mithochondria [384].  

The mitochondrial alterations in Sertoli cells in scsPex13KO mice would also support the 

notion that oxidative stress is induced in this cell type of testis. This is in line with strongly 

reduced of the complex III mitochondrial respiratory chain that was found by IF and WB 

analyses in scsPex13KO mice. Interestingly, also a shift of SOD2 was noted in the 

cytoplasmic fractions by WB analysis, suggesting an increased mitochondrial fragility. In the 

literature was described that an over-expression of SOD2 is dependent on the increased or 

breakage of mitochondrial networks during fractionation procedure [385]. The group of 

antioxidant enzymes from various different subcellular compartments including SOD2, GPX1, 

PRDX1, 5 and 6 and CAT were increased in the testis of scsPex13KO animals. SOD2 

converts O2
-. into hydrogen peroxide (H2O2) that may produce the highly reactive hydroxyl 

radical (·OH) in the presence of reduced metal atoms unless H2O2 is removed by the action of 

GPX1 or CAT. In the testis SOD1 mRNA was expressed in all cell types but no difference 

was observed between scsPex13 mouse phenotypes. In contrast, the SOD2 protein in 

Sertoli cells was increased in mitochondria already in 30 day-old scsPex13KO and reached 
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its highest abundance in mitochondrial in the 130 day-old animals. However, SOD2 showed 

decreased immunostaining intensity in some of the proliferating Leydig cells of 130 day-old 

scsPex13KO mice suggesting a reduced activity in pre-aged Leydig cells. Compared with 

control fractions the subcellular fractions of both interstitial and tubular cells from 

scsPex13KO testis showed an enhanced mitochondrial fragility leading to the disruption 

release of large amounts of SOD2 into the cytosolic fraction during the homogenization 

procedure. SOD2 can be induced by its substrate and the superoxide anion itself [386], 

peroxynitrite [387] and also by pro-inflammatory mediators such as interleukins [388-390]. 

Since IL-1α and IL-6 mRNA, both pro-inflammatory cytokines, were up-regulated in all 

testicular cell fractions studied and SOD2 was induced in all testicular cells, it would indicate 

that the Sod2 gene is activated also by cytokines via NF-κB signaling, in addition to the 

leading ROS release stimulus. One of the most important cause of defective sperm 

maturation is the excessive ROS generation by the disruption of the antioxidant defense 

systems [391]. The antioxidant enzyme CAT, normally present in peroxisome, was mis-

targeted due the Pex13 knockout into the cytoplasm of Sertoli cells. This mis-targeting of 

CAT was visualized by both IF and WB analysis in scsPex13KO mice. The presence of CAT 

in all cellular fractions (enriched mixed organelle fraction) suggests that CAT is bound on the 

outside of the organelle membranes or on peroxisomal membrane ghost structures [392]. 

The SOD2 increase and presence of high CAT amounts in the cytoplasm of Sertoli cells in 

scsPex13KO animals led us to conclude that ROS production was increased and the major 

genes of anti-oxidant enzymes were activated in order to protect the cell and 

spermatogenesis against ROS toxicity.  

This notion was indeed substantiated by in vitro experiments by a knockdown of the Pex13 

gene in primary Sertoli cell cultures. In these experiments a reduction of more than 50% of 

PEX13 protein was observed, leading to already described consequences on enzyme 

expressions and gene alteration as in comparison to the in situ results in testis tissue of 

scsPex13KO mice. In addition, significant ROS production was observed in Pex13 

knockdown Sertoli cells, resulting in an enormous up-regulation of the Sod2 gene expression 

and increase in SOD2 protein abundance. Extensive mitochondrial networks were observed 

in these Sertoli cells in IF experiments.  

In addition to activation of genes of antioxidant enzymes, an increase in peroxisomal β-

oxidation gene activity was also obtained in primary Sertoli cells, suggesting strong lipid 

accumulation and PPAR induction in the Pex13-siRNA cell culture experiments. 
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5.12. Peroxisomal dysfunction in Sertoli cells leads to induction of constitutive and 

inducible cyclooxygenases, production of pro-inflammatory cytokines and local 

testicular inflammation 

Under normal conditions cytokines are involved in the development of Sertoli cells and are 

induced in the seminiferous tubules in later stages of spermatogenesis when the cytoplasm 

is shed from elongating spermatids as residual bodies (or cytopasts). These residual bodies 

are phagocytosed by the surrounding Sertoli cells. Ultra-thin sections of scsPex13KO testis 

revealed large phagosomes containing rests of apoptotic germ cells. The formation of 

phagosomes in Sertoli cells of 130 day-old mice, was also connected to the degradation of 

germ cells, which might suggest a permanent cytokine induction in the scsPex13KO testis. 

Indeed, the genes of pro-inflammatory cytokines IL1-α and IL6 are induced in all testicular 

somatic cell preparations of scsPex13KO mice. In addition, COX1 and COX2 are induced in 

the testis of 130 day-old scsPex13KO mice, genes of which could be stimulated in an 

autocrine manner via cytokine receptor signaling cascades. Interestingly, IL-1 does not seem 

to stimulate intracellular ROS formation in Sertoli cells [69]. IL-1α is predominantly secreted 

by Sertoli cells and stimulates Sertoli cell mitosis in vitro and modifies the production of 

lactate and transferrin in those cells and is modulating the steroidogenesis in Leydig cells 

[393]. Indeed an increased in transferrin mRNA expression was noted in all testicular somatic 

cell preparations (Sertoli, peritubular and Leydig cells) from 130 day-old scsPex13KO. These 

results are supported by in vivo experiments, in which Sertoli cells induced-IL-1α stimulates 

the production of transferrin in the mouse testis. In contrast to IL-1α which is mainly 

expressed in Sertoli cells, IL-6 is produced by most of testicular somatic cells: interstitial 

macrophages [394], Leydig cells [395], Sertoli cells [396, 397], peritubular and germ cells 

[398]. In addition, studies demonstrated the involvement of gonadotropins and testosterone 

in the regulation of IL-6 expression [398]. Furthermore, hCG induces adverse effects on 

germ cells which were attributed to transient testicular inflammation with high local levels of 

IL-1α, IL-6 and other cytokines [399]. Finally IL-1α modulats steroidogenesis in Leydig cells 

[393], inhibits LH-stimulated testosterone production, but can stimulate basal steroidogenesis 

under appropriate conditions [56]. 

Additionally to cytokines, the PPARs have been implicated in the regulation of inflammatory 

responses in cells with highly active lipid metabolism. PPARs are activated by a multitude of 

lipid derivatives, especially eicosanoids and prostaglandins and a variety of chemical 

compound, such as hypolipidemic drugs [400]. Interestingly, there is evidence suggesting 

that arachidonic acid and its oxygenated metabolites regulate physiological and pathological 

processes in reproduction [401]. In testes however, only few and controversial reports on the 

action of eicosanoids on spermatogenesis are available and in consequence of their possible 

role in spermatogenesis control are not yet well understood. One hypothesis suggests that 
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COX-2 could play a major role in the regulation of testicular activity in fertility disorders and 

aging. Previously it has been reported that COX-2 is not detected in human testicular 

biopsies without any evidence for morphological changes or abnormalities, whereas it is 

expressed in human testes with impaired spermatogenesis and male infertility [402]. COX-2 

is also induced in testicular cancer [403]. In adult Leydig cells COX-2 converts arachidonic 

acids to prostaglandins, particularly PGE2 and PGF2a that are directly implicated in the 

production of pro-inflammatory cytokines such as IL-1 and IL-6 and the auto-regulation of 

steroidogenesis. In MA-10 mouse Leydig cells COX-2 inhibition enhanced steroidogenesis 

and Star gene expression, whereas its over-expression lead to the opposite effect [404]. 

Interestingly the results of this thesis show that in scsPex13KO mice not only the inducible 

COX-2 isoform, but also the constitutive COX1 form was induced. The ubiquitous constitutive 

expression of COX-1 and inducible expression of COX-2 have led to the widely held belief 

that COX-1 produces homeostatic PGs, while PGs produced by COX-2 have primarily patho-

physiological nature [405]. The alterations of the COXs expressions in scsPex13KO could be 

exerted by different factors: 1) several cytokines (IL-1 and IL-6) are potent inducers or 2) 

increased ROS could stimulate the NFkB pathway and lead to COX induction, 3) their 

activities could be controlled differentially by regulating the amount of arachidonic acid and 

lipid peroxides available to the enzymes. Moreover, COX-2, but not COX-1 can use esterified 

fatty acids as alternative substrates [406]. In this respect the drastic accumulation of 

peroxisome metabolized fatty acids in scsPex13KO animals could also lead to COX-2 

induction. 

Most probably due to high levels of IL-1α and IL-6 secretion together with COX-1 and COX-2 

up-regulation, a local inflammation with invasion of lymphocytes and Leydig cell proliferation 

in interstitial space was noted in the testis of scsPex13KO animals. Indeed a highly elevated 

eicosanoid level in seminiferous tubules could result from the fact that due to the lack of 

peroxisomes in the Sertoli cells, prostaglandins and leukotrienes, which normally are 

oxidized via the L-specific β-oxidation pathway catalyzed by palmitoyl-CoA oxidase, 

multifunctional protein-1 and thiolase in peroxisomes [407, 408], are progressively 

accumulating in the scsPex13KO testis. 

The results indicate that the absence of functional peroxisomes from Sertoli cells on the one 

side leads to severe oxidative stress and on the other side to accumulation of prostaglandins 

which in turn induce pro-inflammatory cytokines and propagate inflammatory reactions in 

testicular somatic cells of scsPex13KO animals. 
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6. Summary 

Peroxisomes are ubiquitous cell organelles with heterogeneous enzyme composition and 

functions, depending on the metabolic needs of different cell types, tissues and organ systems. 

However, until the beginning of the experimental work of this thesis hardly any knowledge was 

available on the metabolic functions of these cell organelles in the testis, despite the well-known 

severe pathological alterations in this organ in patients suffering from peroxisomal diseases. Male 

children with Zellweger syndrome, the most severe form of a peroxisomal biogenesis disorder, 

exhibit cryptorchism and patients with X-linked adrenoleukodystrophy (X-ALD), a single enzyme 

defect of a peroxisomal ABC transporter for lipids, show an impairment of testicular functions in 

80% of the cases. 

Therefore, the main goals of this thesis were to characterize the peroxisomal distribution and 

enzyme composition in distinct cell types of normal mouse and human testis and to analyse the 

molecular consequences of peroxisome deficiency and its influence on male fertility. To get a 

complete overview on the peroxisomal compartment and its enzyme composition in the testis in 

normal mice and on the alterations in scsPex13 knockout mice, routine histological analyses with 

HE-stained material, Oil red O staining on frozen sections, TUNEL, immunofluorescence and 

immunohistochemistry with a variety antibodies against peroxisomal and cell marker proteins, 

electron microscopy, laser-assisted microdissection (LAMD), isolation of different testicular cell 

types and primary cell culture, cell and tissue homogenisation, subcellular fractionation and 

organelle isolation, Western blot analysis, lipid extraction, fatty acid and steroid (androgen) 

analyses by GC-MS, genomic DNA isolation, PCR genotyping, total RNA isolation, RT-PCR 

analyses and RNAi on primary Sertoli cells were used. 

The results of this thesis indicate that peroxisomes in distinct cell types of the testis exhibit 

specific enzyme composition and serve divers functions already under normal physiological 

conditions. Despite older reports from the literature on the exclusive presence of these organelles  

in Leydig cells, in this study peroxisomes were identified with new specific markers in all testicular 

cell types, including developing germ cells (except for mature spermatozoa). Peroxisomes alter 

their matrix protein composition, aggregate in clusters during spermiogenesis in late stages of 

elongated spermatids (step 14 to 16) and are transported into the cytoplasmic droplets and 

residual bodies, which are subsequently phagocytosed by Sertoli cells. The highest enrichment of 

peroxisomal lipid transporters (ABCD1 and ABCD3) as well as of ACOX2, the key regulatory 

enzyme of the β-oxidation pathway 2 for side-chain oxidation of cholesterol and medium levels of 

catalase were found in Sertoli cells, suggesting peroxisomes as protectors against lipid toxicity 

and oxidative stress to prevent germ cell apoptosis. Leydig cells were selectively enriched in 

catalase and ABCD2, indicating that peroxisomes are important also in this cell type for the 

protection of steroidogenesis against ROS and for lipid homeostasis. Comparative 

immunofluorescence analysis revealed that distribution, abundance and enyzme composition of 

peroxisomes were conserved between mouse and man. 



Summary 

146 / 169 

To study the molecular consequences of peroxisomal dysfunction on male fertility, a Sertoli cell-

specific knockout mouse was generated by AMH-cre-mediated excision of exon 2 of the Pex13 

gene, encoding a protein of the docking complex on the peroxisomal membrane involved in 

matrix protein import into the organelle. Due to the absence of PEX13 protein and deficient matrix 

protein import, all matrix proteins, such as catalase and thiolase, were mislocalized into the 

cytoplasm in Sertoli cells. Few peroxisomal membrane ghosts, positive for PEX14 were still 

present in this cell type surrounding large lipid droplets. Within 130 days of postnatal 

development, the scsPex13KO animals developed a complete Sertoli cell only syndrome. TUNEL 

preparations of paraffin sections revealed that germ cell apoptosis occurred between 90 and 130 

days of postnatal development. A strong increase of neutral lipids, such as triglycerides and 

cholesteryl esters was observed in Sertoli cells of the seminiferous tubules of P130 scsPex13KO 

animals. The accumulation of peroxisome-metabolised fatty acids (VLCFA, pristanic and phytanic 

acid) in frozen testis samples suggested the deficiency of peroxisomal α- and β-oxidation. Steroid 

measurements revealed normal testosterone levels, but a strong accumulation of 

dehydroepiandrosterone (DHEA) and a decrease of all other androgen precursors, suggesting a 

block of the ∆5 pathway in these animals. The expression of mRNAs for the FSH- and LH-

receptors was significantly increased and the ones for transcription factors (Sf1, Gata4) and 

enzymes for steroidogenesis (Star, Cyp450scc, Cyp450c17, 3β-Hds) were elevated in Sertoli 

cells as well as in Leydig cells of scsPex13KO mice. Specific Sertoli cell markers were also 

enhanced (Inhα, Trf, Sgp2). Strongly proliferated Leydig cells seemed to dramatically upregulate 

their peroxisomal compartment and exhibited a strong increase of peroxisomal ABCD-

transporters. Ultrastructural analysis of different subcellular compartments revealed mitochondria 

with rearrangement of their cristae and giant whorl-like structures of SER in Leydig cells. 

Mitochondria in Sertoli cells were proliferated and exhibited extremely high levels of SOD2. 

Strong ROS production and a similar increase in mitochondrial SOD2 were detected in primary 

Sertoli cells with a siRNA-mediated knockdown of the Pex13 gene. Peroxisomal dysfunction in 

Sertoli cells led to an induction of constitutive and inducible cyclooxygenases (COX1, COX2), 

production of pro-inflammatory cytokines (Il1α, Il6, Tnfα, Mif) and local testicular inflammation, 

showing infiltration of macrophages in the interstitial space of the testis in scsPex13KO animals. 

In conclusion, peroxisomes in Sertoli cells are essential organelles in the testis for male fertility 

which (1) regulate lipid homeostasis in the seminiferous tubules, (2) protect spermatogenesis 

against oxidative stress due to ROS increase, (3) are involved in androgen precursor synthesis 

and keep androgens in balance, and (4) protect against inflammation through the degradation of 

bioactive lipid mediators (e.g. arachidonic acid or eicosanoids). 

Since peroxisomal enzyme composition is similar between mice and humans, scsPex13 knockout 

mice provide an excellent model system to study human infertility due to peroxisomal deficiency. 

Future studies on tissue samples from infertile patients are needed to clarify in which extent 

peroxisomes are involved in the pathogenesis of idiopathic infertility. 
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7. Zusammenfassung 
 
Peroxisomen sind ubiquitäre Zellorganellen, die abhängig von metabolischen Anforderungen in 

unterschiedlichen Zelltypen, Geweben und Organsystemen eine heterogene 

Enzymzusammensetzung und unterschiedliche Funktionen aufweisen. Über die metabolische 

Funktion dieser Organellen im Hoden standen zu Beginn der experimentellen Arbeiten zu dieser 

Dissertation jedoch kaum Informationen in der Literatur zur Verfügung, obwohl ausgeprägte 

pathologische Veränderungen in diesem Organ bei Patienten mit peroxisomalen Krankheiten 

auftreten. So weisen Knaben mit Zellweger-Syndrom, der schwersten Form eines peroxisomalen 

Biogenesedefektes, Kryptorchismus auf und Patienten mit X-chromosomaler 

Adrenoleukodystrophie (X-ALD), einem Einzelgendefekt eines peroxisomalen ABC-Transporters 

für Lipide, zeigen in 80% der Fälle eine Beeinträchtigung der testikulären Funktion.  

Deshalb bestanden die Hauptziele dieser Dissertation darin, die Verteilung und 

Enzymzusammensetzung der Peroxisomen in verschiedenen Zelltypen des Hodens der Maus 

und des Menschen im Vergleich zu charakterisieren sowie die molekulare Pathogenese der 

durch Peroxisomendefizienz ausgelösten Veränderungen zu analysieren und deren Einfluss auf 

die männliche Fertilität nachzuweisen. Um einen Überblick über das peroxisomale Kompartiment 

im Hoden von Wildtyp-Mäusen und über die Veränderungen in Sertolli-Zell-spezifischen Pex13 

Knockout-Mäusen (scsPex13KO) zu erhalten, wurden folgende Methoden in dieser Dissertation 

etabliert und angewandt: Morphologische Analyse HE-gefärbter histologischer Präparate, 

Ölrot O-Färbung von Gefrierschnitten, TUNEL, Immunofluoreszenz und Immunohistochemie mit 

unterschiedlichen Antikörpern gegen peroxisomale und zelltypspezifische Markerproteine, 

Elektronenmikroskopie, lasergestützte Mikrodissektion, Isolierung und Kultivierung verschiedener 

primärer Zellen aus Hodengewebe, Western-Blot-Analysen, Lipidextraktion, Fettsäure- und 

Steroidanalysen mittels GC-MS, Isolierung genomischer DNA und PCR-Genotypisierung, 

Isolierung von Gesamt-RNA und RT-PCR Expressionsanalysen, RNAi-Knockdown des Pex13 

Gens in primären Sertolizellen, ROS-Nachweis an primären Sertoli-Zellen mittels DHE-

Fluoreszenz. 

Die Resultate dieser Dissertation zeigen eindeutig, dass Peroxisomen in den spezifischen 

Zelltypen des Hodens schon unter physiologischen Bedingungen unterschiedliche 

Enzymzusammensetzung besitzen und verschiedene Funktionen erfüllen. Im Gegensatz zu 

Literaturangaben über das Vorkommen der Peroxisomen ausschließlich in Leydig-Zellen wird in 

der vorliegenden Dissertation die Existenz dieser Zellorganellen in allen Zelltypen des Hodens, 

sogar in Keimzellen (mit Ausnahme gereifter Spermien), nachgewiesen. Peroxisomen ändern 

ihre Matrixproteinzusammensetzung und „clustern“ (bilden Gruppen) im Verlauf der 

Spermiogenese in späten Stadien elongierter Spermatiden (Stadium 14-16); sie werden in 

Residualkörper transportiert und durch anschließende Phagozytose in Sertolizellen abgebaut. Die 

höchste Anreicherung der peroxisomalen Lipidtransporter ABCD1 und ABCD3 sowie von ACOX-

2, des Schlüsselenzyms des 2. β-Oxidationswegs zur Seitenkettenoxidation von Cholesterin und 
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auch ein relativ hohes Katalasevorkommen wurden in Sertoli-Zellen nachgewiesen. Dies deutet 

darauf hin, dass Peroxisomen in Sertoli Zellen vor Lipidtoxizität und oxidativem Stress schützen. 

Leydig-Zellen dagegen waren besonders mit Katalase angereichert und enthielten auch hohe 

Mengen ABCD2. Dies lässt die Schlussfolgerung  zu, dass Peroxisomen in diesen Zellen die 

Steroidbiosynthese vor den toxischen Wirkungen von ROS schützen und die Lipidhomöostase 

regulieren. Vergleichende Immunofluoreszenzanalysen von murinen und humanen Proben 

erbrachten, dass sich Verteilung, Menge und Enzymzusammensetzung der Peroxisomen 

zwischen den beiden Spezies nicht grundsätzlich unterscheiden. 

Um die molekularen Konsequenzen peroxisomaler Dysfunktion auf die männliche Fertilität zu 

untersuchen, wurde eine Sertoli-Zell-spezifische Knockout-Maus durch AMH-cre vermittelte 

Exzision des Exons 2 des Pex13-Gens hergestellt. Das Pex13-Gen kodiert ein Protein des 

Docking-Komplexes der Peroxisomenmembran, das in den Matrixproteinimport eingeschaltet ist. 

Durch das Fehlen des PEX13-Proteins (PEX13p) blieben alle peroxisomalen Matrixproteine, wie 

z.B. Katalase und Thiolase, im Zytoplasma der Sertoli-Zellen fehllokalisiert. Einige wenige 

Pex14p-positive peroxisomale Membranreste („ghosts“)  waren um große Lipidtropfen herum 

detektierbar. Innerhalb von 130 Tagen in der postnatalen Entwicklung bildeten die scsPex13-

Knockout-Mäuse ein komplettes „Sertoli cell only“-Syndrom aus. In TUNEL-Präparationen von 

Paraffinschnitten konnte der Keimzellverlust durch Apoptose innerhalb des Zeitraums zwischen 

90 und 130 Tagen in der postnatalen Entwicklung nachgewiesen werden. ScsPex13 Knockout-

Mäuse (P130) wiesen einen starken Anstieg neutraler Fettsäuren und von Cholesterinestern in 

Sertoli-Zellen der Tubuli seminiferi auf. Der Nachweis der Akkumulation von 

peroxisomenspezifischen Fettsäuren (sehr langkettige Fettsäuren, Pristan- und Phytansäure) in 

Gefrierschnitten ließ weiterhin eine Defizienz von peroxisomaler α- und β-Oxidation vermuten, 

was durch die Fehllokalisation von ACOX1 und Thiolase erklärt werden konnte.  Steroidanalysen 

erbrachten normale Testosteronspiegel, jedoch eine starke Erhöhung von 

Dehydroepiandrosteron (DHEA) und die Verminderung aller anderen Androgenvorläufer, was 

durch eine Blockierung des ∆5-Stoffwechselweges auf Höhe der peroxisomalen 

17β-Hydroxysteroid-Dehydrogenase (multifunktionelles Protein 2 = MFP2) in diesen Tieren 

erklärbar ist. Eine signifikante Erhöhung der mRNA-Expression der FSH- und LH-Rezeptoren 

sowie der Transkriptionsfaktoren (Sf1, Gata4) und der Enzyme für die Steroidsynthese (Star, 

Cyp450scc, Cyp450c17, 3bHsd) wurde in Sertoli- und in Leydig-Zellen  festgestellt. Auch die 

mRNAs spezifischer Sertoli-Zell-Marker waren induziert (Inhα, Trf, Sgp2).  Die stark proliferierten 

Leydig-Zellen des Interstitiums wiesen eine Vermehrung des peroxisomalen Kompartiments auf 

und zeigten eine starke Erhöhung der Proteinmenge von peroxisomalen ABC-Transportern. Die 

ultrastrukturelle Analyse verschiedener subzellulärer Kompartimente in diesen Zellen erbrachte 

Mitochondrien mit veränderten Cristae und große schneckennudelartige („whorl-like“) Aggregate 

des glatten ERs. Mitochondrien in Sertoli-Zellen wurden vermehrt aufgefunden und enthielten 

hohen Mengen vonn SOD2. Eine starke Induktion der ROS-Produktion und eine Erhöhung der 
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SOD2 konnten experimentell auch durch siRNA-ausgelösten Knockdown des Pex13-Gens in 

primären Sertoli-Zellen ausgelöst werden. Weiterhin führte die peroxisomale Dysfunktion in 

Sertoli-Zellen zu einer Induktion der konstitutiven und induzierbaren Formen der 

Cyclooxygenasen (COX1, COX2), zu der vermehrten Produktion von proinflammatorischen 

Cytokinen (Il1a, Il6, Tnfα, Mif) und einer Hodenentzündung mit Makrophageninfiltration im 

Interstitium in scsPex13 Knockout-Mäusen.  

Zusammenfassend lässt sich feststellen, dass Peroxisomen in Sertoli-Zellen essentielle 

Zellorganellen zur Erhaltung der männlichen Fertilität darstellen, die 1) die Lipidhomöostase in 

Tubuli seminiferi regulieren, 2) die Spermatogenese gegen oxidativen Stress durch Erhöhung von 

ROS schützen, 3) in die Androgensynthese eingeschaltet sind und das Androgengleichgewicht 

regulieren und 4) vor Entzündungen des Hodens durch den Abbau von bioaktiven 

Lipidmediatoren (z.B.: Arachidonsäure und Eicosanoide) schützen.  

Da eine ähnliche Enzymzusammensetzung im Hoden der Maus und des Menschen 

nachgewiesen werden konnte, stellen die scsPex13 Knockout-Mäuse ein ideales Modellsystem 

zum Studium männlicher Infertilität durch peroxisomale Dysfunktion dar. Zukünftige Studien mit 

Gewebeproben von infertilen Patienten sind jedoch notwendig, um aufzuklären, welche Rolle der 

peroxisomale Stoffwechsel in der Pathogenese von idiopathischer Infertilität beim Mann spielt. 
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