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Abstract

Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli
are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as
testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of
importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E.
coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling
pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT)
signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat
orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM
(IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-
hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-a cytokine release from PM and caused
differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-
inflammatory cytokines in PM (IL-1a, IL-1b, IL-6 downregulated) and TM (IL-1b, IL-6 upregulated). In addition, unlike PM, LPS-
treated TM were refractory to NFkB activation shown by the absence of degradation of IkBa and lack of pro-inflammatory
cytokine secretion (IL-6, TNF-a). Taken together, these results suggest a mechanism to the conundrum by which TM initiate
immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens
expressed on developing spermatogenic cells.
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Introduction

Testicular macrophages (TM) represent the largest population of

immune cells in the testis of mammals [1,2]. They play an important

role in the balance between defense against invading microorgan-

isms and ‘testicular immune privilege’ which serves to protect the

neo-antigens of the meiotic and haploid germ cells appearing during

puberty after establishment of self-tolerance. Although TM exhibit

many typical macrophage characteristics such as effective antigen

presentation, phagocytotic functions as well as expression of Fc

receptors and major histocompatibility complex (MHC) class II

receptor [1], they are more reminiscent of a type-2 macrophage

(M2) displaying diminished pro-inflammatory responses and

reduced capacity to induce T cell activation [1,3–6].

Male factor infertility is a common medical condition, affecting

1 in 20 men, with infections of the reproductive tract constituting

the second most prevalent etiology either as primary cause or co-

factor [7–10]. Bacterial infections of the testis are often derived

from ascending urinary tract infections and frequently manifest as

combined epididymo-orchitis caused predominantly by Escherichia

coli or other Enterobacteriaceae pathogens [10–13]. Uropathogenic E.

coli (UPEC) are known to be responsible for approximately 90% of

urinary tract infections [14] and are frequently found in genital

tract infections [15]. UPEC possess the ability to evade host

defenses by blocking activation of NFkB, the archetypical

transcription factor driving the expression of pro-inflammatory

cytokines [16,17]. Most of the genes encoding classical UPEC

virulence factors are located on pathogenicity islands (PAIs).

UPEC O6 strains 536 and CFT073 contain all major classes of

virulence-associated factors including alpha-hemolysin [18–20].

UPEC alpha-hemolysin (HlyA) is a secreted pore forming toxin

located on chromosomal PAIs. Integration of the toxin in the

plasma membrane of host cells induces a rapid rise of cytoplasmic

calcium levels through L-type calcium channels as well as from

gated internal stores [21], an observation that stimulated by other

agents is known to trigger downstream signaling cascades that lead
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to activation of important transcription factors including CREB,

NFkB and NFAT [22,23]. In a recent study, we showed that

UPEC actively suppress MyD88-dependent Toll-like receptor

signaling to prevent secretion of certain pro-inflammatory

cytokines by testicular somatic cells including TM, a mechanism

that facilitates pathogens survival and hence their detrimental

actions on male fertility [16]. Although there is a general

appreciation for the reduced capacity for pro-inflammatory gene

expression in TM, there is a gap in our understanding as to how

TM, on the one hand contribute to testicular pathogen recognition

and defense signaling during bacterial infection, and on the other

hand maintain immune privilege. Thus the objective of this study

was (i) to elucidate the molecular details vital in this process set in

comparison with another type of macrophage known to mount

classical responses to pathogens such as peritoneal macrophages

(PM) and (ii) to unravel UPEC virulence factors crucial in

suppression of a pro-inflammatory immune response directed

against the pathogen.

Materials and Methods

Animals
Adult male Wistar rats (249–270 g) were purchased from Harlan,

Borchen, Germany and kept at 22uC with 14 h light:10 h dark

schedule and fed with standard food pellets and water ad libitum.

Animals were sacrificed by isofluran inhalation. This study was

carried out in strict accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals of the German

law of animal welfare. The protocol was approved by the Committee

on the ethics of Animal Experiments of the Regierungspraesidium

Giessen, Giessen, Germany (permit number GI 20/23 –No. 16/

2009). All surgery was performed under Ketamine and Xylazine

anesthesia, and all efforts were made to minimize suffering.

Antibodies and proteins
Antibodies directed against IkBa (#4814), phospho p38

(#9211), p38 (#9212), phospho ERK1/2 (#9106), ERK1/2

(#9102), phospho JNK1/2 (#9251), JNK1/2 (#9252) and

phospho c-Jun (#3270) were all from Cell Signaling Technology.

Wnt5a antibody was from Santa Cruz Biotechnology (Sc-30224),

NFATC2 for Western blotting was from Abcam (Ab2722) and for

immunofluorescence from Santa Cruz (Sc-13034), and the mouse

monoclonal b-actin from Sigma (A5441). LPS (from E. coli

0127:B8) was purchased from Sigma. Recombinant IL-4 and IL-

13 proteins were bought from Peprotech (Hamburg, Germany).

HlyA was obtained from Prof. S. Bhakdi (Mainz University,

Germany). HlyA was preincubated with polymyxin B (50 mg/ml)

at 4uC for 30 min to remove any possible LPS contamination.

Cell isolation
Testicular macrophages (TM) and peritoneal macrophages

(PM) were isolated as described previously [16]. Purity of TM and

PM was estimated 80–90% by double immunofluorescence

staining using the rat macrophage specific antibodies directed

against ED1 (CD68) and ED2 (CD163, Serotec, Oxford, UK, 1:50

dilution. respectively).

Bacterial strains
UPEC strain CFT073 (NCBI: AE014075, NC_004431) char-

acterized by Welch, et al. [24], UPEC strain 536 (NCBI:

NC_008253, CP000247 ), Brzuszkiewicz, et al. [20]. Pathogenicity

islands deletion mutants isogenic to E. coli 536 were kindly

provided by U. Dobrindt, University of Würzburg, Germany

(Table 1). Non-pathogenic commensal E. coli (NPEC) strain 470, a

human colon isolate (microbial collection of the Institute of

Medical Microbiology, University of Giessen) and E. coli EPI300-

T1R (Epicentre Biotechnologies, Madison, Wisconsin) were used

as controls. UPEC CFT073 (c2389::Kan) and UPEC 536

(EPC_1915::Kan) deletion mutants were constructed by the

exchange of the TIR domain containing genes of each strain

with a Kanamycin selection cassette using the lambda red system

as described in Cirl, et al. [25]

Construction of fosmid libraries
Fosmid libraries of UPEC strains E. coli 536 and CFT073 were

constructed using the Copy Control Fosmid Library production

kit (Epicenter Biotechnologies, Madison, Wisconsin) following the

instructions of the manufacturer. Briefly, genomic DNA of each

strain were sheared into fragments of.120 kb using ultrasound

and end-repaired fragments were ligated into the pCC1FOS

vector. Ligation reactions were coincubated with MaxPlax

Lambda packaging extracts and used to transform EPI300-T1R

E. coli. Of each transformation 800 chloramphenicol resistant

colonies were picked leading to an approximately six-fold

coverage of the genome of E. coli 536 (4.94 Mb) and CFT073

(5.23 Mb), respectively. The resulting library clones were tested

for hemolytic activity on blood agar plates. The inserts of the

hemolysin positive library clones FOS 22 (CFT073) as well as

clones FOS 2 and FOS 9 (E. coli 536) were sequenced. The insert

in FOS 2 contained base pairs 396,6326 – 400,3202 of the E. coli

536 genome rendering it to the pathogenicity island (PAI) I and

the hlyA gene hly II. FOS 9 contains base pairs 475,7325 –

479,9016 of the same genome which belong to the PAI II

containing the second known hlyA gene of this strain hly II. FOS

22 spans base pairs 3400446–3433092 of the CFT073 genome

enclosing the hemolysin hlyA gene.

Table 1. Genotype of UPEC strain 536 and deletion mutants.

Strain Genotyp

E. coli 536 Wildtyp, Fim+, Sfa+, Pap+, Pix+, Hly I+, HlyII+, serum resistant, motile, Yersiniabactin+, Colibactin-

E. coli 536-114 (DPAI I) PAI I2, Fim+, Sfa+, Pap+, HlyII+, serum resistant, motile, Yersiniabactin+, Colibactin-

E. coli 536-225 (DPAI II) PAI II2, Fim2, Sfa+, Pap2, Pix+ HlyI+, serum sensitive, non motile, Yersiniabactin+, Colibactin2

E. coli 536 (DPAI III) PAI III2, Fim+, Sfa2, Pap+, Pix+, Hly I+, HlyII+, serum resistant, motile, Yersiniabactin+, Colibactin2

E. coli 536DHPI (DPAI IV) PAI IV2, Fim+, Sfa+, Pap+, Pix+ HlyII+, serum resistant, motile, Yersiniabactin2, Colibactin2

E. coli 536 (DPAI V) PAI V2, Fim+, Sfa+, Pap+, Pix2 HlyII+, serum resistant, motile, Yersiniabactin+, Colibactin2

doi:10.1371/journal.pone.0028452.t001
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Propagation of bacteria and infection of cells
Bacterial strains were propagated over night on blood agar

plates (Oxoid, Wesel, Germany). Fosmid carrying clones were

propagated in LB medium, 20 mg/ml cloramphenicol. Fresh

cultures were inoculated in LB medium and grown to early

exponential phase (OD600 = 0.5–1.0) at 37uC in a shaking

incubator. The concentration of viable bacteria was calculated

using standard growth curves. Bacteria (26109) were centrifuged

at 4,500 x g for 8 min at room temperature. The pellet was

washed once at room temperature with PBS and taken up in 10 ml

DMEM or RPMI 1640 medium (Invitrogen, Darmstadt, Ger-

many). Serial dilutions in the same medium were performed and

100 ml were used to infect cells in one well of a 6-well cell culture

plate (Sarstedt AG, Nuembrecht, Germany). For the recordings of

intracellular calcium concentration ([Ca2+]i), bacteria were washed

and resuspended in HEPES buffer (pH 7.4).

Measurement of intracellular calcium concentrations
Recordings of intracellular calcium concentration ([Ca2+]i) were

performed as described previously [26]. Measurements were

performed in HEPES buffer containing 5.6 mM KCl, 141 mM

NaCl, 1 mM MgCl2, 2.2 mM CaCl2, 11 mM D-glucose, 10 mM

HEPES. Cells were loaded for 30 min with 3.3 mM Fura-2 AM

(Invitrogen) and washed 3610 min. Fluorescence images were

taken with a slow scan CCD camera system with fast

monochromator (TILL Photonics, Gräfelfing, Germany) coupled

to an inverted microscope with a 20 x water immersion objective

(Olympus, Hamburg, Germany). Fura-2 AM was excited at 340

and 380 nm wavelengths (l), and fluorescence was collected at

l.420 nm. Cells were exposed to bacteria (UPEC CFT073,

UPEC 536, NPEC 470 and UPEC 536 HDM diluted in HEPES

buffer. Baseline recordings were performed with HEPES buffer

only. Each cell was independently tracked and the fluorescence

intensity ratio of 340/380 nm was recorded. Ratio values were

normalized to 100% at the beginning of recording. Curves were

plotted from recordings collected from cells isolated from three

different animals for each experimental setup.

Microarray Target Labeling and Hybridization
Testicular macrophages (TM, 3 groups) 1A: Control (not

infected); 1B: TM + UPEC CFT073 30 Min; 1C: TM + UPEC

CFT073 60 Min. Each sample was prepared in duplicate ( = 2

independent biological replicates per sample, total 6 samples).

Peritoneal macrophages (PM, 3 groups) 2A: Control (not infected);

2B: PM + UPEC CFT073 30 Min; 2C: PM + UPEC CFT073

60 Min. Each sample was prepared in duplicate ( = 2 independent

biological replicates per sample, total 6 samples).

Sample preparation was performed using the MessageAmp II

Kit (Ambion, Applied Biosystems) following the manufacturer’s

original protocol. Briefly, 1 mg total RNA were used in cDNA

synthesis reactions with a poly-A binding primer containing the

T7-polymerase promoter. Resulting cDNA was transcribed into

cRNA in one round amplification in the presence of 11-Bio-UTP.

Double stranded cDNA and biotin labeled cRNA were purified

using the mini columns included in the kit. The eluted cRNA was

quantified with a NanoDrop spectrophotometer (NanoDrop

Technologies, Rockland DE, USA) and quality was assessed using

the Agilent 2100 Bioanalyzer (Agilent Technologies). Portions of

20 mg cRNA were subjected to fragmentation in the presence of

Mg2+. Subsequently, 10 mg fragmented cRNA (target) was loaded

onto CodeLink Rat Whole Genome Microarray glass slides

containing 35.129 probe sets (Applied Microarrays, Tempe AZ,

USA) and hybridized for 18 h in a Minitron shaker incubator

(Infors AG, Bottmingen, Germany) at 37uC/300 rpm. Washing

and dyeing with Cy-5 coupled streptavidin followed the original

protocol for CodeLink arrays (Applied Microarrays). Arrays were

scanned using a GenePix 4000 B scanner and GenePix Pro 4.0

Software (Axon Instruments, Arlington, USA). Each RNA sample

was hybridized onto two microarrays ( = 2 technical replicates). A

total of 24 microarrays (4 per group) were subjected to data

analyses.

Microarray Data Analysis
Details of the microarray data analysis are described in Method

S1. Complete data are available at the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/, accession

number GSE24780). This study adhered to the MIAME standards

[27].

ELISA
TM and PM were treated with 10 mg/ml LPS, 20 ng/ml HlyA,

100 ng/ml IL-4, 100 ng/ml IL-13 and with bacteria (for details of

bacterial strains see Table 1). Cell supernatants were collected at

indicated time points in respective figures and assayed for TNF-a
(e-bioscience, Frankfurt, Germany) and IL-6 (DuoSet, R&D

Systems, Wiesbaden, Germany) by ELISA following the manu-

facturer’s instructions.

Western blot
After treatment cells were lysed on ice for 30 min in RIPA

buffer (50 mM Tris-HCl (pH 8), 150 mM NaCl, 1% Igepal CA-

630 (v/v), 0.5% sodium deoxycholate, 0.1% SDS, 1 mM sodium

orthovanadate, sodium fluoride 10 mM, 1 mM DTT and protease

inhibitor mixture (Sigma-Aldrich)). Lysates were cleared by

centrifugation (16,000 x g for 15 min at 4uC) and the protein

concentration was determined by Bradford protein assay (Bio-

Rad). Subsequently, 20-40 mg of protein were separated on 7–10%

sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) and

blotted onto nitrocellulose membrane (Hybond-ECL (0.2 mm);

GE Healthcare, Freiburg, Germany). Membranes were blocked

with 5% nonfat dry milk for 1 h in TBS (20 mM Tris-HCl,

pH 7.6, 150 mM NaCl) containing 0.1% Tween 20 (v/v) (TBS/

Tween) and subsequently incubated with antibodies against

NFATC2, wnt5a, p38, phospho-p38, ERK1/2, phospho-ERK1/

2, JNK, phospho-JNK, phosphor-c-JUN and IkBa in 5% nonfat

milk overnight at 4uC. Bands were visualized using ECL (GE

Healthcare). Membranes were stripped and reprobed with an anti-

actin antibody as loading control.

In vivo orchitis model
Bacterial orchitis was elicited as described previously [16].

Seven days post UPEC infection testicular macrophages were

isolated and stained using antibodies raised against NFATC2 and

the macrophage markers ED1+ and ED2+.

Immunofluorescence
TM and PM were treated with UPEC CFT073 (m.o.i. 20) and

HlyA for 30 min, washed 3 times with phosphate buffer saline

(PBS, pH 7.4) and then fixed with icecold 4% formaldehyde in

PBS for 30 min at room temperature. After permeabilisation with

0.2% Triton X-100, unspecific protein binding was blocked by

incubation for 1 h in PBS containing 5% normal goat serum and

5% BSA. Rabbit polyclonal anti-mouse NFATC2 antibody diluted

1:50 in PBS containing 0.05% Tween 20 was added overnight at

4uC followed by incubation with Cy3-labeled secondary antibody

for 1 h. Cell nuclei were counterstained with Cy5-labeled To-

PRO-3 (Molecular Probes) and finally analyzed using a TCS SP2

UPEC Induce Different Response in Macrophages

PLoS ONE | www.plosone.org 3 December 2011 | Volume 6 | Issue 12 | e28452



confocal scanning microscope (Leica Microsystems, Wetzlar,

Germany). For ED1 and ED2 staining in UPEC infected testis,

cryosections (10 mm) were cut and fixed in 4% paraformalde-

hyde for 20 min. Unspecific protein binding was blocked as

described above and samples were incubated with both primary

antibodies (mouse anti-rat CD68 (ED1) and CD163 (ED2) 1:50;

Serotec, Oxford, UK) at 4uC overnight followed by decoration

with anti-mouse FITC-conjugated secondary antibody diluted in

PBS for 1 h at RT in the dark. The slides were mounted with

Vectashield Mounting Medium containing DAPI (Vector,

Burlingame, USA).

TUNEL assay
TUNEL assay was performed by using ApopTagH Fluorescein

In Situ Apoptosis Detection Kit (Millipore, CA, USA) following

the manufacture’s instructions. Percentage of TUNEL-positive

TM and PM was determined at 400-fold magnification.

Real time RT-PCR
Total RNA was isolated from UPEC CFT073 and HlyA treated

TM and PM by using the RNeasy mini kit (Qiagen, Hilden,

Germany). Contaminating DNA was removed by addition of 1 U

DNase I (Invitrogen) per mg of total RNA and reverse transcription

was performed for 1 h at 42uC in a 40 ml reaction using 200 U of

moloney murine leukemia virus reverse transcriptase (Promega,

Mannheim, Germany). Quantitative RT-PCR (qRT-PCR) was

performed in an iCycler RT-PCR system (Bio-Rad, Munich,

Germany) using the iQTM SYBRH Green PCR kit (Bio-Rad,

Munich, Germany). The PCR amplification condition for each

primer set includes initial denaturation for one cycle (95uC for

8 min), 45 cycles of denaturation (95uC for 20 s), annealing (Table

2) and extension (72uC for 30 s). IL-3, IL-4, IL-10 and IL-13

primers were purchased from Qiagen (Hilden, Germany) and

PCR amplification conditions were followed according to the

manufacturer’s recommendations. The relative quantification of

PCR products was determined by the comparative Ct method.

The target gene expression was normalized by the non-regulated

reference gene (b2 M) in UPEC treated samples and with b-actin

in HlyA treated samples. Data were presented as relative

expression (RE): RE = 2DCtUPEC-DCt Ctrl, DCt = Cttarget gene-

Ctb2 M/b-actin.

Radioimmunoassay
Testosterone levels in testicular homogenates were measured

after extraction of the samples with toluene by radioimmunoassay

(RIA) as previously described [28]. The intra- and interassay

coefficients of variation were 7.8% and 9%, respectively. The

lower limit of detection was 0.1 ng/ml.

Statistical analysis
Levels of mRNA or cytokine concentrations under different

culture conditions were correlated to control cultures (normalized

to 100%) and are represented as mean 6 standard deviation (SD).

Significance levels for ELISA were determined using Tukey-

Kramer multiple comparisons test and Mann-Whitney U test for

qRT-PCR data. For the statistical analysis of [Ca2+]i measure-

ments, area under the curve was calculated by summing up values

obtained for each cell. Non-parametric rank based Kruskal-Wallis

test was used to compare multiple groups and if significant

differences were detected, it was followed by Mann-Whitney test to

compare between two experimental groups. Differences in

numbers of cells reacting to increasing concentrations of HlyA

were measured by Fischer’s exact test. Tests were performed using

SPSS software (SPSS software, Munich, Germany). P#0.05 was

considered significant and P#0.01 as highly significant.

Results

UPEC and UPEC pathogenic island deletion mutants do
not induce pro-inflammatory cytokine secretion

Our previous data using peritoneal macrophages (PM) and other

studies have demonstrated the ability of UPEC to suppress pro-

inflammatory cytokine secretion in host cells [14,16,25]. TM showed

no basal TNFa protein secretion or after challenge with LPS, NPEC

and UPEC 536 (HDM) after 5 h (data not shown). TM are known to

secrete pro-inflammatory cytokines after longer periods of LPS

Table 2. Sequences of forward (FP) and reverse primers (RP).

Gene Primer sequence Annealing Temperature Accession No. Amplicon Size (bp)

IL-1a
FP 59-CCGGGTGGTGGTGTCAGCAA-39

RP:59-GCTGTGAGGTGCTGATCTGGGT-39
61.8uC NM_017019 148

IL-1b
FP:59-TGCCTCGTGCTGTCTGACCCA-39

RP:59-AGGCCCAAGGCCACAGGGAT-39
61.8uC NM_031512 137

TNF-a
FP:59-GCCTCTTCTCATTCCTGCTC-39

RP:59-CCCATTTGGGAACTTCTCCT-39
59.6uC NM_012675 101

IL-6
FP:59-TCCTACCCCAACTTCCAATGCTC-39

RP:59-TTGGATGGTCTTGGTCCTTAGCC-39
59.6uC NM_012589 79

IL-3 Qiagen Catalog No. QT01081535 55uC NM_031513 106

IL-4 Qiagen Catalog No. QT01590316 55uC NM_201270 111

IL-10 Qiagen Catalog No. QT00177618 55uC NM_012854 69

IL-13 Qiagen Catalog No. QT00184842 55uC NM_053828 125

Wnt5a Qiagen Catalog No. QT00191030 55uC NM_022631 91

b-actin
FP:59-ATGGTGGGTATGGGTCAGAA-39

RP:59-GGGTCATCTTTTCACGGTTG-39
60.0uC NM_031144 232

b2 microglobulin
FP 5’-CCGTGATCTTTCTGGTGCTT-39

RP 59-AAGTTGGGCTTCCCATTCTC-39
60.0uC NM_012512 109

doi:10.1371/journal.pone.0028452.t003
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Figure 1. UPEC do not induce cytokine secretion in PM. PM were infected with UPEC CFT073, UPEC 536, pathogenic island mutants of UPEC
536 (DPAI I-V) as well as a TIR domain deletion mutant of UPEC CFT073 (UPEC CFT073 DTIR) and UPEC 536 (UPEC 536 DTIR) for 5 h (MOI = 0.1).
Incubation with wild type UPEC strains (CFT073, 536) and their mutants did not cause secretion of (A) TNF-a or (B) IL-6 from cultured PM. As positive
control PM were treated with 10 mg/ml LPS to induce IL-6 and TNF-a secretion. ND = not detectable. Significance levels for ELISA were determined
using Tukey-Kramer multiple comparison test and p#0.05 was considered significant.
doi:10.1371/journal.pone.0028452.g001

Figure 2. Hierarchical clustering of significantly regulated genes in PM and TM clearly distinguished between PM and TM
pretreatment, 30 min and 60 min after infection with UPEC CFT073. (A) Blue indicates downregulation and red upregulation of genes. A
time-dependent pattern of gene regulation can be observed within the macrophage populations. The picture clearly demonstrates how different PM
and TM respond on the gene expression level upon infection with the same UPEC strain. (B) Venn diagram of significantly regulated genes in
PM and TM. A total of 1710 genes (PM) and 400 genes (TM) were significantly regulated (FDR,0.05) at both time points 30 and 60 min. Both PM
and TM showed an overlap of 125 genes with PM having 1585 unique genes and TM 275 unique genes.
doi:10.1371/journal.pone.0028452.g002
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challenge [1,3–6], but bacterial multiplication did not allow

incubation times more than a few hours. Thus to determine which

virulence factor of UPEC is responsible for inhibition of pro-

inflammatory cytokine production, isolated rat PM were incubated

with a set of isogenic deletion mutants lacking various PAIs and

combinations thereof (Table 1). Infection with wild type UPEC

CFT073 and 536 as well all five PAI deletion mutants failed to induce

IL-6 or TNF-a secretion and even suppressed the production of IL-6

below basal levels. In contrast, LPS alone induced a strong cytokine

secretion (Figure 1). Challenge of PM with the TIR deletion mutant

of UPEC strain CFT073 (c2398::kan) and 536 (ECP_1915::kan) had

no effect on TNF-a production and resulted in suppression of basal

IL-6 secretion (Figure 1).

Differential gene expression in testicular and peritoneal
macrophages after UPEC infection

As TM respond to UPEC infection with noticeable changes in

mRNA expression after short periods of time [16], whole genome

gene expression profiling of PM and TM was performed before and

after infection with UPEC CFT073 to analyze both the molecular

mechanisms responsible for the compromised pro-inflammatory

function of TM and guide to unravel UPEC virulence factors with

the ability to manipulate immune responses in both macrophage

populations. PM responded with a much larger number of

differentially regulated genes than TM (PM: 1710 genes, TM:

400 genes; total of both times points 30 min and 60 min, Table

S1A-C). Only a small number of genes (n = 125) showed similar

regulation in both macrophage populations (Figure 2, Table S1C).

Hence, after infection with UPEC PM mobilized 5.3% of the

genome, while TM mobilized only 1.2% of the genome (gene list

available under the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/, accession number GSE24-

780)). Hierarchical clustering of the significantly regulated genes

showed two clusters clearly differentiating between PM and TM

(Figure 2). Gene ontology of the differentially regulated genes

showed in PM early and sustained downregulation of genes involved

in immune response (30 and 60 min) and delayed upregulation of

genes involved in calcium homeostasis and anti-inflammation

Table 3. Overrepresented biological categories of significantly regulated genes in PM and TM using DAVID.

PM 30 min UPEC

Categories FC down No of genes p-value Categories FC Up No of genes p-value

Regeneration 76 0.0030 Development 54 0.0086

Development 101 0.0081 Secretion 38 0.0328

Immune response 72 0.0101 Transport 8 0.0434

Taxis 15 0.0102

Metabolism 24 0.0273

Immune cell activation 87 0.0488

PM 60 min UPEC

Categories FC down No of genes p-value Categories FC Up No of genes p-value

Response 173 1.1874E-16 Ca2+ ion homeostasis 52 0.0040

Activation of immune response 121 1.4083E-09 Signal transduction 149 0.0063

Response to stimuli 236 6.2956E-09 Cell-cell signaling 74 0.0191

Response to immunogenic stimulus 62 2.9268E-08 IL-4 type immunity 20 0.0413

Taxis 62 1.313E-07 MAP Kinase regulation 34 0.0470

TM 30 min UPEC

Categories down No of genes p-value Categories FC Up No of genes p-value

Immune response 28 0.0013 Ca2+ homeostasis 8 0.0036

Regeneration 18 0.0034 Inflammatory response 44 0.0075

Endocytosis 12 0.0156 Transcriptional regulation 44 0.0129

Development 44 0.0302

TM 60 min UPEC

Categories down No of genes p-value Categories Up No of genes p-value

Development 56 0.0001 Locomotion 10 4.08E-06

Regeneration 34 0.0005 Defense response 13 5.90E-06

Ion hemostasis 37 0.0009 Regulation of gene expression 15 1.73E-05

Response to organic substance 20 0.0065 Regulatory process 45 7.30E-05

Regulation of transcription 25 9.80E-05

Significantly regulated genes (FDR,0.05) were first assigned to gene ontology and then to functional biological categories. A p-value for the likelihood of the
enrichment of biological processes was calculated using the Gene Ontology (GO) public database for the following experimental groups: PM after treatment with UPEC
for 30 min or 60 min; TM after treatment with UPEC for 30 min or 60 min.
doi:10.1371/journal.pone.0028452.t003
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(60 min) (Table 3, Table S2A, S2B). On the other hand, the

differentially regulated genes in TM showed an early but sustained

upregulation of genes involved in both pro- and anti-inflammation

and calcium homeostasis (Table 3, Table S2C, S2D). Interestingly,

the data analysis revealed a multitude of genes implicated in calcium

signaling pathways in both TM and PM highlighting the

involvement of intracellular Ca2+ rises during infection with UPEC

(Table S3). Therefore, we used the Ingenuity Pathways Analysis tool

(IngenuityH Systems) to identify genes/pathways centrally involved

in cellular calcium signaling. We identified NFAT as a key molecule

Figure 3. Ca2+ influx is dependent on presence of hemolysin genes in UPEC. UPEC strains CFT073 and 536 induced a Ca2+ influx in rat TM
(A, C) and PM (B, D). After recording the baseline ratio of Fura-2 AM fluorescence after excitation at 340 nm versus excitation at 380 nm for 1 min,
cells were treated with bacteria or vehicle as indicated by arrows. (A, B) PM and TM stimulated with UPEC CFT073 reveal a rapid and sustained
increase in [Ca2+]i, while cells treated with vehicle (HEPES) or NPEC 470 do not respond with Ca2+ mobilization. (C, D) UPEC 536 deficient for HlyA
(UPEC 536 HDM) were not effective in triggering a Ca2+ rise, whilst wildtype UPEC 536 elicited a rapid cytoplasmic Ca2+ influx in both PM and TM.
Numbers of measured cells are given in brackets. (E) Soluble factor(s) present in the supernatants induced a rise in [Ca2+]i. UPEC bacteria were added
as a positive control at the end of the experiment and caused further elevation of [Ca2+]i levels. Intracellular Ca2+ was monitored by the Fura-2
method. Areas under the curve were calculated by summing up values obtained for each cell. Non-parametric rank based Kruskal-Wallis test was used
to compare multiple groups and if significant differences were detected, it was followed by Mann-Whitney test to compare between two
experimental groups.
doi:10.1371/journal.pone.0028452.g003
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involved in calcium signaling as it is activated by Ca2+ via

calcineurin and promotes transcription of the aforementioned

inflammatory genes (Figure S1).

UPEC strongly activate calcium mobilization in
macrophages

To verify the effect of UPEC on calcium signaling, intracellular

Ca2+ levels ([Ca2+]I ) were recorded in PM and TM following

infection. While commensal non-pathogenic E. coli (NPEC) strain

NPEC 470 and vehicle control revealed no change on [Ca2+]i

treatment with UPEC CFT073 and 536 resulted in a rapid and

profound rise in [Ca2+]i (Figure 3). Similarly, supernatants of UPEC

cultures were also effective in generating elevated [Ca2+]I in TM

suggesting the involvement of a secreted bacterial component

(Figure 3). Applying increasing concentrations of purified UPEC

hemolysin A (HlyA), a UPEC secreted pore forming toxin that is

known to mediate rises of intracellular Ca2+ in target cells [21],

resulted in a rapid dose-dependent increase of [Ca2+]I in TM and

PM. However, at lower concentrations of HlyA (1 and 5 ng/ml) a

lower number of TM reacted than PM (Figure S3). Overall, PM

consistently demonstrated a stronger increase in [Ca2+]i compared

to TM (p,0.001, Figure S3A). Moderate concentrations of purified

HlyA (5 ng/ml) triggered well defined Ca2+ oscillations in TM

(Figure S4). Likewise, UPEC 536 carrying two hlyA genes induced a

stronger Ca2+ increase in both PM and TM than UPEC CFT073

which harbors only a single copy of the hlyA gene. Of note, deletion

of both hlyA genes in the UPEC 536 strain (hlyA double

mutant = UPEC 536 HDM) completely abolished the bacteria-

induced rise in Ca2+ both in TM and PM to a level comparable to

the wild type non-pathogenic NPEC 470 strain which does not

produce HlyA (p,0.001, Figure 3).

UPEC virulence factor HlyA suppresses pro-inflammatory
cytokine secretion

To investigate a role of HlyA in the suppression of pro-

inflammatory cytokine production, fosmid genomic libraries of

UPEC 536 and CFT073 in the non-pathogenic K12 E. coli strain

(EPI300-T1R) were generated and NPEC clones FOS 2, FOS 9

Figure 4. UPEC virulence factor hemolysin inhibits pro-inflammatory cytokine secretion. (A, C) PM were infected with NPEC mutants
expressing hemolysin (FOS 2, FOS 9 and FOS 22), UPEC 536 hemolysin double mutant and wild type NPEC EPI-T1R strain for 5 h with or without
concomitant LPS stimulation. (B, D) PM and TM were treated with 20 ng/ml hemolysin in the presence of LPS or without for 5 h. IL-6 and TNF-a
concentrations in culture supernatants were measured by sandwich ELISA. Values are means 6 SD of triplicates. MOI = 0.1. Tukey-Kramer multiple
comparisons test was used to analyze significance of data. Values with different letters superscript differ significantly (p,0.001) compared to NPEC
and HDM. ND = not detectable.
doi:10.1371/journal.pone.0028452.g004
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and FOS 22 ectopically expressing hemolysin were used for

infection experiments. Of note, LPS-stimulated macrophages that

were co-incubated with E. coli EPI300-T1R strains ectopically

expressing either of the two hlyA genes of UPEC536 (pFOS2,

pFOS9) or the single hlyA gene of strain CFT073 (pFOS22)

suppressed basal and LPS-induced IL-6 and TNF-a secretion from

PM. This is in contrast to incubation with LPS and NPEC

EPI300-T1R which triggered the release of substantial amounts of

IL-6 and TNF-a (Figure 4A, 4C). Deletion of both hlyA clusters in

UPEC 536 (HDM) reversed the suppression of TNF-a and IL-6

secretion to a level comparable to that of NPEC. Similarly to

NPEC expressing ectopically HlyA, purified HlyA also abolished

basal and LPS-stimulated TNF-a and IL-6 release in PM

(Figure 4B, 4D).

UPEC alpha-hemolysin activates NFAT signaling
pathways

Incubation with UPEC CFT073 or purified HlyA resulted in a

Ca2+/calmodulin and calcineurin dependent activation of

NFATC2 in TM and PM (Figure 5A). Calcineurin-dependent

dephosphorylation and subsequent mobility shift of the phosphor-

ylated form (ca. 135 kD) to the unphosphorylated form of

NFATC2 (ca. 120 kD) was visualized by Western blot analysis

and confirmed by using the calcineurin antagonist cyclosporin A

(Figure 5A). Dephosphorylation of NFATC2 leads to its

translocation to the nucleus. Indeed, following addition of UPEC

or purified HlyA for 30 min nuclear translocation of cytosolic

NFATC2 is observed in both TM and PM, a process that is

effectively inhibited by cyclosporin A (Figure 5B).

Figure 5. UPEC activates NFATC2 signaling pathway. (A, B) PM and TM were treated with UPEC CFT073 (MOI = 20) for 1 h. (A) TM and PM
were pretreated for 15 min with 2 mM cyclosporine A (CSA) or left unstimulated, followed by incubation with UPEC CFT073 or 40 ng/ml alpha-
hemolysin (H) for 30 min, respectively. For Western blot analysis 40 mg of protein were separated on a 7.5% SDS-PAGE and immunoblots were
probed using an anti-NFATC2 antibody (NFAT). (B) UPEC CFT073 and alpha-hemolysin (HlyA) induced calcineurin-dependent NFATC2 nuclear
translocation. TM and PM were pretreated with 2 mM of the calcineurin inhibitor CSA for 15 min or left unstimulated with subsequent challenge by
UPEC (MOI = 20) or 40 ng/ml HlyA for 30 min. In support of the data shown in (B), nuclear translocation of NFATC2 (red) after UPEC CFT073 and HlyA
treatment was observed in both TM and PM. Pretreatment of PM and TM with CSA blocked NFATC2 nuclear translocation. Nuclei were counterstained
with Cy5-conjugated TO-PRO-3.
doi:10.1371/journal.pone.0028452.g005
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UPEC activates transcription of anti-inflammatory
cytokine genes in TM and PM

As NFATC2 is a major regulator of immunoregulatory and

anti-inflammatory cytokines, expression of IL-3, IL-4, IL-10, and

IL-13 which are known to be regulated by NFATC2 was

examined by qRT-PCR (Figure 6A, 6B). Increased expression of

the anti-inflammatory cytokines IL-4 and IL-13 was observed in

both PM and TM after treatment with purified HlyA and UPEC

CFT073 (Figure 6). Interestingly, IL-3 mRNA levels were

undetectable in TM whilst expression increased approx. 300-fold

in PM. Moreover, increased IL-10 mRNA levels were found in

TM, whereas mRNA levels decreased (UPEC) or remained the

Figure 6. qRT-PCR analyses of anti-inflammatory cytokines (IL-3, IL-4, IL-10, IL-13, upper row) and pro-inflammatory cytokines (IL1-
a, IL1-b, IL-6, TNF-a, lower row) after challenge of TM and PM with UPEC CFT073 (MOI = 20) or hemolysin A (HlyA, 40 ng/ml) for 1 h.
Results were normalized using b-microglobulin and b-actin as endogenous controls and are shown as fold changes relative to uninfected controls.
HlyA was preincubated with polymyxin B (50 mg/ml) at 4uC for 30 min to remove any possible LPS contamination. Values are means 6 SD of
triplicates. Mann-Whitney U test was used to analyze data and p#0.05 was considered significant.
doi:10.1371/journal.pone.0028452.g006

UPEC Induce Different Response in Macrophages

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e28452



Figure 7. HlyA suppresses MAP kinase activation. (A) PM and (B) TM were treated with 10 mg/ml LPS and 40 ng/ml of alpha-hemolysin (HlyA)
for 30 min as indicated. For Western blot analysis 20 mg of protein were separated by 10% SDS-PAGE and immunoblots were probed with antibodies
specific for the phosphorylated forms of MAP kinases p38 (p-P38), JNK (p-JNK) and ERK 1/2 (p-ERK1/2), respectively. Changes in the total amount of
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same (HlyA) in treated PM (Figure 6A, 6B). Of note, expression of

pro-inflammatory cytokines showed a differential response in TM

and PM. In TM IL-1b, IL-6 and TNF-a mRNA levels are all

elevated, only TNF-a shows the same response in PM, while IL-

1a, IL-1b and IL-6 are downregulated by UPEC and HlyA

(Figure 6). The involvement of NFATC2 in elevated expression of

IL-4 and IL-13 following UPEC infection in TM and PM was

verified using the NFAT pathway inhibitor cyclosporine A, which

could suppress upregulated levels of these anti-inflammatory

cytokines (Figure S5).

HlyA induces differential response on MAP kinase
activation and apoptosis ratio in PM and TM

Based on our earlier observation of the effects of UPEC on MAP

kinases in TM and PM [16], we investigated the role of HlyA in this

process. Thus TM and PM were treated with purified HlyA for

30 min in the presence or absence of LPS. LPS induced

phosphorylation of MAP kinases in TM (p38, ERK1/2) and PM

(JNK, ERK1/2). Interestingly, purified HlyA strongly downregu-

lated total protein expression of MAP kinases in unstimulated PM

(JNK, ERK1/2) and in addition decreases phosphorylation in LPS-

treated PM (JNK, ERK1/2). In contrast to PM, HlyA activates

MAP kinases in TM (p38, ERK1/2) and showed no downregula-

tion of either total MAP kinase levels or phosphorylation (Figure 7A,

7B). As MAP kinases are upstream factors in AP-1 signaling, we

sought to determine whether HlyA also affects AP-1. In PM purified

HlyA clearly attenuates phospho-c-Jun levels (Figure 7C). In

contrast, in TM HlyA caused phosphorylation of c-Jun similar to

the MAP kinase activation (Figure 7C).

Based on the observation that UPEC suppresses NFkB signaling

pathway by stabilizing IkBa [17], we have examined the influence

of HlyA on the stability of IkBa. HlyA showed no influence on IkBa
levels in unstimulated and LPS challenged PM and TM (Figure 7E).

In contrast to PM, IkBa did not degrade in TM after treatment with

LPS (Figure 7E). The suppression of MAP kinases and AP-1

signaling pathways is known to induces apoptosis [29,30], a fact

verified in our study also for PM by using the JNK inhibitor

SP600125 (Figure S7). As seen by TUNEL assay incubation with

isolated HlyA for 1 h resulted in an increased ratio of apoptotic cells

in both macrophage populations with PM (almost 10%) being much

stronger affected than TM (,2%, Figure 7F).

UPEC infection causes nuclear translocation of NFATC2 in
TM in vivo

Using an in vivo induced bacterial orchitis model, the total number

of TM (ED1+/ED2+) in orchitis is significantly increased seven days

post-UPEC infection compared to sham operated rats, a fact that

can be at least partly attributed to the recruitment of ED1+ ‘newly

arrived inflammatory’ macrophages which are found increased as

well (Figure 8A-C). Intratesticular testosterone concentrations were

found significantly lower in seven days post infection testes than in

PBS-treated control testes (Figure 8D). Furthermore, using

immunofluorescence ED1+/ED2+ TM isolated from PBS injected

testes showed a cytoplasmic localization of NFATC2, whereas

NFATC2 is found in the nucleus in TM obtained from UPEC

infected inflamed testis seven days post infection (Figure 8E).

Discussion

Inflammation of the testis as a complication of acute

epididymitis due to ascending, canalicular bacterial infections is

common and may occur in up to 60% of affected patients [7,10].

Chronic inflammatory conditions of the testes can persist even

after successful antibiotic therapy and can irreversibly alter sperm

number and quality [31]. It is therefore relevant to understand the

mechanisms by which immunocompetent cells such as the TM

recognize and respond to infectious agents and how bacterial

pathogens try to manipulate host defense in the testis.

Upon infection with UPEC, whole-genome based transcrip-

tional analysis of host cell responses revealed highly distinct sets of

regulated genes in TM and PM. Of note, a much narrower

response of TM was seen that mobilized only 1.2% of the total

genome in relation to PM (5.3%). Interestingly, gene ontology

documented a sustained upregulation of genes implicated in both

anti- and pro-inflammatory response in TM, which was not visible

in PM, a fact that could reflect the need for a more delicately

balanced and fine tuned immune response at the interface between

testicular immune privilege and anti-bacterial response. Strikingly,

in both macrophage populations genes involved in calcium

homeostasis and signaling were commonly regulated. Thus, gene

expression data suggest the involvement of a UPEC factor that

mediates changes in intracellular calcium levels. In this study, we

have shown that UPEC induced a rapid rise in [Ca2+]i which is

much more distinct in PM than in TM. Elevated intracellular Ca2+

levels in both TM and PM were found only after infection with

UPEC, whereas NPEC or UPEC mutants devoid of hlyA genes

elicited no response. This clearly pointed to an involvement of the

pore forming virulence factor HlyA in altering calcium levels, an

assumption confirmed by using purified HlyA in TM and PM.

An important signaling pathway in immune cells activated in

response to calcium involves NFAT [22,23,32]. Specifically,

NFAT activation requires sustained calcium levels as it was

observed also with macrophages challenged with UPEC and HlyA

in this study. Concomitantly, these treatments led to activation of

NFATC2 in both TM and PM as documented by dephosphor-

ylation and subsequent nuclear translocation of this transcription

factor. Importantly, using an in vivo UPEC infection model, TM

isolated from infected testes also revealed NFATC2 nuclear

translocation confirming the in vitro observations. Blocking the

Ca2+/calmodulin-dependent serine phosphatase calcineurin with

cyclosporin A prevented dephosphorylation and nuclear import of

NFATC2. To drive expression of IL-2, IL-3, IL-4, IL-5, IL-13,

GM-CSF, IFN-c and TNF-a a coordinated activation of NFAT

family members together with AP-1 transcription factors is

necessary [33]. Depending on whether or not both transcription

factors are concomitantly activated, transcriptional activity results

in the expression of two distinct gene sets, eliciting different

kinases following treatment and equal loading of samples were assessed by detecting total levels of p38, JNK, and ERK1/2. b-actin levels served as
general loading control. AP-1 signaling pathway activation in TM and PM was verified by assessing phospho-c-JUN (p-c-JUN) levels after treatment
with (C) UPEC CFT073 (MOI = 20) for 30 min. (D) HlyA treatment strongly reduces p-c-JUN levels in LPS stimulated and unstimulated PM, but not in
TM. (E) HlyA caused IkBa degradation in PM and TM. Cells were treated with LPS and/or HlyA for 30 min as indicated above and blots were probed
with an anti-IkBa antibody. (C-E) b-actin detection served as loading control. Membranes in A-D were stripped and reprobed to test for the
phosphorylated or unphosphorylated form or loading control, respectively. Antibodies against p-ERK and ERK were probed on split samples run on
parallel gels. (F) HlyA induces apoptosis in PM, but not in TM. TM and PM were incubated with HlyA (40 ng/ml) for 1 h and DNA fragmentation was
examined by the TUNEL assay as an index for apoptosis. HlyA was preincubated with polymyxin B (50 mg/ml) at 4uC for 30 min to remove any
possible LPS contamination.
doi:10.1371/journal.pone.0028452.g007
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Figure 8. Bacterial orchitis elicited by in vivo infection with UPEC CFT073. Infection resulted in an increased number of (A, B) ED1+ED2+
total testicular macrophages and (C) ED1+ ‘inflammatory’ macrophages. Immunolabeled macrophages were counted in whole cross-sections and
related to the number of cross-sectioned seminiferous tubules in the same section visualized by DAPI stain. (D) Testosterone concentrations were
measured by RIA in testicular homogenates of testis obtained from animals 7 days post UPEC infection into the vas deferens and PBS injected sham
operated rats (Ctrl). Testosterone concentrations are significantly lower in orchitis compared to sham-operated animals. (E) In TM isolated from testis
7 days post UPEC infection in the vas deferens, NFATC2 showed a nuclear localization. In contrast, NFATC2 is found in the cytoplasm of TM obtained
from testis of PBS injected sham operated rats (Ctrl). Nuclei are counterstained with DAPI (blue). Inserts show a higher magnification of a cell seen in
the respective overview. Macrophage quantification: values are means 6 SD of n = 2 (Ctrl), n = 4 (UPEC). Testosterone measurements: values are
means 6 SD of Ctrl (n = 8); UPEC (n = 10). Statistical analysis was performed using student t-test. * = p, 0.05, ** = p,0.01.
doi:10.1371/journal.pone.0028452.g008
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patterns of cellular response. In contrast to the cytokines

mentioned above, mutagenesis studies revealed that TNF-a and

IL-13 promoter activity is independent of cooperative recruitment

of AP-1 [34]. In our study, mRNA expression of pro-inflammatory

cytokines IL-1a, IL-1b and IL-6 in PM, all of which require AP-1

for activation, were downregulated, while increased expression of

IL-3, IL-4, IL-13 and TNF-a was observed. Thus our results using

the NFAT signaling pathway inhibitor cyclosporine provide

evidence that HlyA induced cytokine expression in PM is

dependent on NFATC2 and independent of coordinated

NFAT/AP-1 activity (Figure S5 and S6), whilst both NFAT and

AP-1 signaling is activated in TM indicating their involvement in

cytokine expression. A number of previous studies have demon-

strated that UPEC can actively subvert immune responses by

suppressing NFkB signaling [16,17,25], whilst a putative co-

repression of AP-1 signaling by UPEC has received no attention

yet. Our data indicate that AP-1 regulated transcription requires

the activation of MAP kinases upstream of AP-1. In TM, purified

HlyA activates MAP kinases and subsequent AP-1 dependent

transcription as shown by increased phosphorylation of p38 and

ERK1/2 kinases and synthesis of pro-inflammatory cytokines.

In contrast, downregulation of IL-1a, IL-1b and IL-6 mRNA

expression in PM is thought to be related to a HlyA-dependent

specific impairment of AP-1 signaling as seen by strong

attenuation of total and phosphorylated MAP kinases as well as

p-c-Jun levels. Furthermore, in confirmation with previous reports

[29,30] our results indicate that suppression of host MAP kinase

signaling cascades by HlyA can lead to reduced viability and

ultimately cell death and apoptosis in PM as suggested by use of a

JNK inhibitor (Figure S7). Concomitant with a stimulation rather

than inhibition of MAP kinase signaling, HlyA does not cause

apoptosis in TM. In agreement, in our in vivo UPEC infection

model, TM numbers are elevated seven days post-infection

(Figure 8) and TM were almost exclusively negative using TUNEL

staining (data not shown). This suggests that HlyA can subvert the

outcome of an immune response in TM by modulating cytokine

expression rather than killing cells. It is likely that their

inflammatory products such as IL-1 and TNF-a are at least partly

responsible for the decreased intratesticular testosterone concen-

trations found in infected testis due to direct inhibitory effects on

androgen producing Leydig cells [1,35,36]. Alternatively/addi-

tionally TM are known producers of 25-hydroxycholestrol, an

oxysterol that can negatively impact luteinizing hormone stimu-

lated Leydig cell testosterone production [37]. Vice versa

testosterone suppresses production of 25-hydroxycholestrol in

TM pointing to an interesting control loop between TM and

Leydig cells involving two factors with established potent

inhibitory function on innate immune responses and likely

candidates in establishment testicular immune privilege [38–40].

A further layer of complexity is added as TM secreted 25-

hydroxycholestrol can be converted to testosterone in Leydig cells.

As TM isolates can be contaminated by Leydig cells (usually 5–

10%) an influence of both testosterone and oxysterols in the

observed HlyA effects on TM cannot be fully excluded. However,

under the experimental in vitro conditions used in this study the

effect could at best be minor as both mediators are negatively

regulating each other thus minimizing their impact on immune

responses.

In summation, although the immune response of TM compared

to PM is reduced by blockage of NFkB activation, cells maintain a

general responsiveness by activation of MAP kinase and AP-1

signaling pathways following LPS and HlyA stimulation. These

features enable TM to fulfill apparently paradox tasks, i.e.

protection against microbes, while at the same time maintaining

the immune privileged status of the testis to protect the developing

germ cells.

Supporting Information

Figure S1 Calcium signaling pathway. (A) Significantly

regulated genes in PM and TM were used to generate calcium

signaling pathways and identify genes within these pathways using

Ingenuity Pathways Analysis (IngenuityH Systems). Intracellular

calcium signaling is mediated in PM 60 min after UPEC infection

via calcineurin and nuclear translocation of NFAT which finally

leads to the expression of inflammatory cytokines. Rises in

intracellular calcium levels also activates protein kinase c (PKC)

which in turn activates kinases such as MAPK and JNK. Up

regulated genes are depicted in red. B) The picture demonstrates

how UPEC alpha hemolysin (HlyA) increases intracellular calcium

concentrations which then leads to translocation of NFAT after

dephosphorylation by calcineurin.

(TIF)

Figure S2 Area under curve analysis for [Ca2+]I data set
in Figure 3. Data were calculated by summing up values

obtained for each cell. Rise in [Ca2+]I is caused in (A, C) TM and

(B, D) PM by UPEC CFT073 and 536 strain, but not by NPEC

570 and UPEC 536 HDM which lack HlyA. A stronger Ca2+

influx in PM is clearly visible. Non-parametric rank based

Kruskal-Wallis test was used to compare multiple groups and if

significant differences were detected, it was followed by Mann-

Whitney test to compare between two experimental groups.

(TIF)

Figure S3 Effect of hemolysin challenge on Ca2+ influx
in TM and PM. (A) Cumulative dose-response curve. (B)
Number of cells reacting to increasing concentrations of hemolysin

A is shown. *** - P#0.001; differences in numbers of cells reacting

to increasing concentrations of HlyA were measured by Fischer’s

exact test.

(TIF)

Figure S4 Alpha-hemolysin caused intracellular Ca2+
oscillations in testicular macrophages (TM). Cells were

treated with purified alpha-hemolysin (5 ng/ml, as indicated by

arrows) and [Ca2+]i was monitored for 30 min using the Fura-2

method.

(TIF)

Figure S5 NFAT pathway inhibitor cyclosporine sup-
pressed UPEC induced NFATC2 dependent expression
of anti-inflammatory cytokine IL-4 and IL-13. TM and

PM were pretreated with 2 mM cyclosporine A (CSA) for 15 min

prior challenge with UPEC (MOI = 20) for 1 h. Expression levels

of IL-4 and IL-13 were analyzed using qRT-PCR. Results were

normalized using b-microglobulin as endogenous controls and are

shown as fold changes relative to uninfected controls. Values are

means 6 SD of triplicates. Mann-Whitney U test was used to

analyze data. Values with different letters superscript differ

significantly compared to control (Ctrl).

(TIF)

Figure S6 NFAT pathway inhibitor cyclosporine sup-
pressed UPEC induced NFATC2 dependent expression
of TNF-a in PM. PM were pretreated with 2 mM cyclosporine A

(CSA) for 15 min prior challenge with UPEC (MOI = 20) for 1 h.

Expression levels of TNF-a were analyzed using qRT-PCR.

Results were normalized using b-microglobulin as endogenous

controls and are shown as fold changes relative to uninfected

controls. Values are means 6 SD of triplicates. Mann-Whitney U
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test was used to analyze data. Values with different letters

superscript differ significantly compared to control (Ctrl).

(TIF)

Figure S7 The MAP kinase JNK inhibitor SP600125
induces cell death in PM. (A) PM were treated with JNK

inhibitor SP600125 at the indicated concentration for 24 h. Cell

viability was determined using the colorimetric MTT assay.

Results are presented as means 6 SD of triplicates. Mann-

Whitney U test was used to analyze data. Values with different

letters superscript differ significantly compared to control (Ctrl).

(B) PM were treated with 25 mM SP600125 JNK inhibitor for

24 h and DNA fragmentation was examined by the TUNEL

assay.

(TIF)

Table S1 Significantly regulated genes.
(XLS)

Table S2 Genes in overrepresented biological catego-
ries.
(XLS)

Table S3 Genes involved in calcium homeostasis (FDR
,0.05).

(XLS)

Method S1 Microarray Data Analysis.

(DOC)
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