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Since the beginning of psychotherapy research, scientists 
acknowledged the problem of which patients profit from 
a specific treatment more than others. As early as 1905, 
Freud discussed characteristics that qualified or disquali-
fied patients for psychoanalysis (Freud, 1905/2000). In 
his often cited article, Gordon Paul (1967) later pin-
pointed one of the central questions occupying psycho-
therapy researchers and practitioners: “What treatment, 
by whom, is most effective for this individual with that 
specific problem, and under which set of circumstances?” 
(p. 111). Because probably the most obvious character-
istic a patient presents in treatment is his or her set of 
symptoms, researchers first set out to match patients with 
treatments by developing psychotherapeutic interven-
tions that target a single mental disorder or a defined set 
of specified mental disorders (Norcross & Wampold, 
2011; Zilcha-Mano, 2019). Over the last decades, great 

progress has been made in this field; researchers have 
validated and refined psychotherapeutic interventions 
for a wide range of mental disorders (Lambert, 2013), 
mostly by using randomized controlled trials (RCTs) and 
analyzing average treatment effects (ATEs; Z. D. Cohen 
& DeRubeis, 2018). However, with the progress, limita-
tions of this approach also became apparent: On the one 
hand, for several mental disorders, such as depression 
(Barth et  al., 2013) and posttraumatic stress disorder 
(Watts et al., 2013), it has become evident that patients—
on average—benefit equally from multiple treatments 
(Wampold & Imel, 2015). On the other hand, the general 
effectiveness of psychotherapeutic treatments to date 
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Abstract
Estimating individual treatment effects (ITEs) is crucial to personalized psychotherapy. It depends on identifying all 
covariates that interact with treatment, a challenging task considering the many patient characteristics hypothesized 
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seems limited; 37% of patients still meet diagnostic cri-
teria after treatment in the case of depression (Cuijpers 
et  al., 2014). Although multiple treatments may be 
equally effective on average, patients differ substantially 
in how much they profit from a specific treatment 
(Kravitz et al., 2004; Schwartz et al., 2021; Simon & Perlis, 
2010). Many factors have been considered as sources of 
these interindividual differences of treatment effects 
(Cuijpers et al., 2016; Kessler et al., 2017), commonly 
referred to as heterogeneity of treatment effects (Kent 
et al., 2020; Kravitz et al., 2004).

Personalized (or precision) medicine acknowledges 
these limits and tries to further individualize treat-
ments by tailoring them to patients’ needs (Hamburg 
& Collins, 2010). Although there are many possibilities 
to adapt treatments to specific patient characteristics, 
an important first step within “tailor-made” psychother-
apy is to discover which treatment works best for an 
individual patient (Cuijpers et al., 2016). Therefore, it 
is not a patient’s diagnosis that stands at the center of 
psychotherapeutic efforts, but the patient as a whole. 
Different approaches have been developed to achieve 
this goal (for a comprehensive overview, see Z. D. 
Cohen & DeRubeis, 2018). They all share the attempt 
of moving beyond the average effectiveness of treat-
ments (a patient’s ATE) for specific diagnostic groups 
and try to estimate the effects of a treatment compared 
with another candidate treatment for single individuals 
(i.e., individual treatment effects [ITEs]). They also share 
a common challenge: finding the factors, mainly patient 
characteristics, that determine whether an individual 
profits more from one of several treatments. This chal-
lenge stands at the center of the present study, which 
evaluates strategies for the selection of factors (often 
called moderators or prescriptive factors) that influence 
whether a patient profits more from one treatment than 
another.

Individual and Conditional  
Treatment Effects

Consider the case of two available treatments, X = 0 
and X = 1, that can be selected to treat an individual 
patient, U = u. Speaking in terms of the stochastic 
theory of causal inference (Mayer, 2019; Steyer et al., 
2014), the outcome (Y) to be expected under both 
treatment conditions for this person would be E(Y|X = 
x, U = u).1 The ITE δ10(u) is then defined as the differ-
ence between the expected outcomes of the two treat-
ments for a single person (Mayer et al., 2019):

δ10 1 0u E Y X U u E Y X U u( ) = = =( ) − = =| , ( | , ).

If a greater value of outcome Y indicates greater 
treatment success, we would choose treatment X = 1  
for patient Joe in the case of δ10( Joe) > 0.

Unfortunately, for a single subject, we can estimate 
the expected outcome only under one treatment condi-
tion because the outcome of getting the second treat-
ment would be influenced by having already received 
the first treatment (Steyer, 2005).2 In causal inference 
literature, this problem is also referred to as the funda-
mental problem of causal inference (Holland, 1986). Con-
sequently, ITEs can usually not be estimated directly. 
However, because we assume that it is not the individu-
als themselves who influence the treatment effect but, 
rather, the characteristics an individual shares with other 
individuals, we can approach ITEs through analyzing the 
expected treatment outcome conditional on treatment 
condition and all covariates that explain variance in the 
outcome (Mayer et al., 2019). If we include all covariates 
that determine the variability of treatment effects, ITEs 
δ10(u) equal conditional treatment effects CE10(z) (Mayer 
et al., 2019), which are defined as follows:

CE | |10 1 0z E Y X Z z E Y X Z z( ) = = =( ) − = =( ), , .

Under the assumption of conditional unit-treatment 
homogeneity3 (Mayer, 2019), ITEs can thus be estimated 
from empirical data. More precisely, using this frame-
work, we can estimate the treatment effect for a single 
individual, δ10(u), by entering this individual’s values for 
all relevant covariates in CE10(z). To put it in nonstatisti-
cal terms, instead of analyzing the effect of one treatment 
compared with another treatment for an individual, we 
analyze this effect for, for example, unmarried males 
with high depression scores before the beginning of 
treatment. Again, if a greater value of outcome Y indi-
cates greater treatment success, we would select Treat-
ment X = 1 for this group of patients if CE10(z) > 0.

Various methods have been developed for estimating 
conditional treatment effects (for comprehensive over-
views, see Lipkovich et al., 2017; Powers et al., 2018), 
all of which face the challenges of (a) modeling the 
functional forms of E(Y|X = 1, Z) and E(Y|X = 0, Z), 
either separately or combined, and (b) identifying all 
relevant covariates. In this study, we focus on the latter 
challenge using methods based on linear regression, 
which although are less flexible, have the advantage of 
being easily interpreted. A well-known approach to 
ITEs is the personalized advantage index (PAI). First 
introduced by DeRubeis et al. (2014), it has become 
increasingly popular in psychotherapy research in 
recent years (e.g., Deisenhofer et  al., 2018; Huibers 
et al., 2015; Keefe et al., 2018; van Bronswijk, DeRubeis, 
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et al., 2021), which is why it is of special interest in this 
study. The approach starts by constructing a multiple 
regression model that includes treatment-covariate 
interactions. This model is fit to a data set from which 
a “focal” patient is excluded (to avoid overfitting) to 
then predict the outcome under both treatment condi-
tions by entering each condition and the patient’s 
covariate values into the model. An individual’s PAI is 
defined as the difference between the predicted out-
comes under both treatment conditions. This procedure 
from model fitting to subtracting the predicted out-
comes is repeated for each patient. Thus, the PAI 
reflects the predicted difference in outcome for a single 
patient. A PAI of zero implies no predicted difference 
in outcome between two treatments and therefore no 
advantage of one treatment over another for an indi-
vidual patient. In contrast, a PAI of greater than or 
smaller than zero implies a more favorable outcome 
under one treatment.

Covariate Selection in Practice

In theory, all covariates interacting with treatment need 
to be included in a model for conditional treatment 
effects to equal ITEs and for correctly modeling the 
heterogeneity of treatment effects. However, in practice, 
researchers work with limited sample sizes and have 
to estimate which covariates are relevant and which are 
not. Ideally, the process of selecting covariates, includ-
ing main effects and treatment-covariate interactions, 
is guided by subject-matter knowledge (Harrell, 2015). 
Because research on ITEs in psychotherapy is still in 
its early stages, many constructs come into consider-
ation that may influence how an individual could react 
to treatment (Lorenzo-Luaces & DeRubeis, 2018). 
Researchers have to deal with the problem of deciding 
on a subset of covariates among a relatively large num-
ber of candidate variables using a relatively small sam-
ple in most studies. This increases the risk of fitting the 
model to idiosyncratic characteristics of the sample and 
thereby overfitting (Babyak, 2004; James et al., 2013). 
If the same model is used to predict the outcome on 
the basis of new data, it will likely perform badly. 
Therefore, although including relevant variables into 
the final model is justified from a theoretical standpoint, 
it may deteriorate predictive performance on new sam-
ples in high-dimensional settings ( James et al., 2013). 
Including irrelevant variables, on the other hand, will 
always reduce accuracy of out-of-sample predictions. 
But with an increasing covariate-to-sample-size ratio, 
it becomes harder to determine which predictors are 
relevant and which are not. For models built with a 
high covariate-to-sample-size ratio, it is thus even more 

important to assess model performance in independent 
validation data.

Although most researchers seem to be aware of the 
role that sample size plays in the ability to identify 
relevant covariates, other factors are mostly neglected. 
Among these are the signal-to-noise ratio (SNR),
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Because a larger residual variance leads to an increase 
in standard errors of parameter estimates, a lower SNR 
makes it harder to identify relevant covariates. Moreover, 
correlations, or more precisely, linear relationships (i.e., 
multicollinearity), between predictors lead to difficulties 
in estimating regression coefficients because different 
values for these coefficients will lead to only slight dif-
ferences in the residual sum of squares. As a result, 
coefficient standard errors will increase, their confi-
dence intervals will be broad, and hypothesis tests on 
coefficients will have low power (Fox & Fox, 2016). 
Because of the uncertainty in estimating coefficients, 
small changes in the data can lead to large changes in 
estimates. SNR and multicollinearity seem especially 
important to consider in psychotherapy research such 
that we expect (a) a rather limited explanatory power 
of our models and (b) covariates (e.g., symptoms of 
anxiety and depression) to be related to each other.

Current Study

To date, there is no consensus on best practices in vari-
able selection concerning when to use which selection 
strategy. Therefore, the aim of the current study is to 
extend findings on state-of-the-art covariate-selection 
strategies by examining their performance with respect 
to estimating ITEs in psychotherapy research. We com-
pare methods that have been used in trials on ITEs or 
that seem promising for this endeavor: domain back-
ward stepwise regression (BSR; BSR-DOM), BSR using 
Bayesian information criterion (BSR-BIC), BSR using 
cross-validation (BSR-CV), forward stepwise regression 
(FSR) using cross-validation (FSR-CV), least absolute 
shrinkage and selection operator (LASSO), and group-
LASSO interaction network (glinternet).



4	 Wester et al.

To this end, we conducted a Monte Carlo simulation 
that mimicked studies from psychotherapy research in 
factors influencing the behavior of covariate-selection 
strategies. These factors include sample size, SNR, cor-
relational structure among covariates, the number of 
covariates, and the structure of effects (i.e., hierarchy; 
see below). We evaluated the performance of each 
covariate-selection strategy regarding the accuracy of out-
of-sample predictions, the identification of treatment-
covariate interactions, and the estimation of ITEs. Thereby, 
we hope to give researchers some guidance in their 
choice of a covariate-selection strategy in the context of 
psychotherapy research, especially when it comes to 
estimating ITEs, and raise awareness for the factors that 
need to be considered when making that choice.

Given the artificiality of the data-generating process, 
results from simulation studies may be difficult to trans-
late to empirical settings. Therefore, we exemplify the 
ramifications of selecting a covariate-selection strategy 
on estimating ITEs in a real-world empirical example 
for which data have been made openly accessible 
(Huibers et al., 2015). We reanalyzed data from an RCT 
analyzing ITEs of cognitive therapy (CT) and interper-
sonal therapy (IPT) and interpreted our results in light 
of the findings of our simulation study.

Method

Covariate-selection strategies

Stepwise selection.  Stepwise selection exists in varying 
forms that follow approaches based on either null 
hypothesis testing (NHT) or information theory (IT; 
Hastie et  al., 2009; Mundry, 2011). Forward stepwise 
selection starts with an empty model containing only an 
intercept. Approaches following NHT at each step of the 
algorithm add the variable that improves model fit the 
most and stop when model fit does not improve signifi-
cantly anymore (Mundry & Nunn, 2009). IT-based proce-
dures also add the variable that improves model fit the 
most but build k models that are subsequently compared 
with each other using a criterion such as Akaike informa-
tion criterion (AIC) or BIC ( James et al., 2013). Backward 
stepwise selection works in the opposite direction: These 
procedures start with a full model (including all vari-
ables), sequentially drop the variable whose exclusion 
leads to the smallest (nonsignificant) decrease in model 
fit, and either stop when this drop in model fit becomes 
significant (NHT approach) or the null model is reached 
to eventually compare all models by some IT-based crite-
ria (IT approach). Combinations of both forward and 
backward selection are used as well ( James et al., 2013; 
Miller, 2002).

Stepwise-selection methods have been the subject 
of extensive criticism. Most importantly, they are a 
prime example of multiple testing (Harrell, 2015; Mun-
dry & Nunn, 2009; Smith, 2018; Whittingham et  al., 
2006). Simulation studies have shown that models built 
with stepwise-selection procedures tend to include 
many irrelevant variables and exclude relevant variables 
(Derksen & Keselmann, 1992). Because of overfitting, 
solutions derived by stepwise procedures tend to be 
unstable, which means slight changes in the data result 
in large changes of model parameters (Mundry, 2011). 
An advantage of using AIC or BIC over “traditional” 
NHT approaches is that it is equal to using less restric-
tive p values (Harrell, 2015) and thereby suffers less 
likely from the exclusion of relevant covariates. Despite 
these deficiencies, stepwise-selection procedures or 
modifications thereof are still used within psychology. 
We chose to examine BSR-BIC in this study to compare 
it with the special form of BSR described next.

Domain stepwise selection.  Fournier et al. (2009) pre-
sented a modification of classical BSR procedures devel-
oped especially for identifying prescriptive factors that 
was also used by Huibers et al. (2015): The authors 
grouped all candidate variables into domains, probably 
according to some criteria of substantial similarity. Within 
each domain, the algorithm starts with a full model that 
contains main effects of treatment, domain variables, 
and interactions between both. Variables are succes-
sively removed from this model with a decreasing α 
level, whereas the treatment main effect, the effect of 
baseline outcome, and any main effects corresponding 
to significant interactions are carried along irrespective 
of p values. We term this approach BSR-DOM in this 
study. The algorithm includes the following steps within 
each domain:

1.	 Build full-regression model, keep variables sig-
nificant at a threshold of α = .2, build a new 
model with remaining variables.

2.	 Keep variables significant at a threshold of α = 
.1, build a new model with remaining variables.

3.	 Keep variables significant at a threshold of α = .05.

After those steps are taken within each domain, the 
remaining variables from each domain are combined 
into a single model.

Theoretically, the deficiencies of standard stepwise-
regression procedures described above pertain to this 
modification at a somewhat lesser degree. Fournier et al. 
(2009) also conducted multiple tests on a single data 
set, which increases the likelihood of finding spurious 
effects, as acknowledged by the authors. However, the 
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starting α level of .2 follows recommendations of 
increasing the α level because the benefit of finding 
relevant variables is supposed to outweigh the cost of 
including irrelevant variables (Babyak, 2004).

Stepwise selection using k-fold cross-validation.  
Another modification of stepwise selection is based on 
cross-validation. Using cross-validation, researchers parti-
tion the data into training and test sets. The models to be 
evaluated are fit on the training data, predictions are then 
made for the remaining observations in the test set, and 
all models are compared through their test error (typi-
cally estimated by mean squared error [MSE]; James et al., 
2013). More precisely, the sample is split into k groups. 
For each model, the test MSE for group k is computed 
with the model being fit to the rest of the sample (i.e., 
not including observations from group k). This is repeated 
k times. The test MSE is averaged, and the model is 
selected that has the smallest estimated test MSE ( James 
et al., 2013). In cases in which the number of groups k is 
smaller than the sample, the procedure is called k-fold 
cross-validation.

K-fold cross-validation is combined with stepwise 
selection by conducting forward (or backward) selec-
tion within each training set, which means repeatedly 
adding (or removing) the variable that best improves 
(or least worsens) model fit for this training set until 
the full (or empty) model is reached. For each of the k 
models, the test MSE is computed on the holdout test 
set. After this is done for all k folds, test MSE for each 
model is averaged over all k iterations. The size m of 
the model with the smallest average test MSE is selected. 
Then, stepwise selection is conducted on the whole 
data set up to size m, and this model of size m, fitted 
on the whole data set, is selected as the final model. 
As a result of the last step, performing stepwise selec-
tion on the whole data set, more accurate coefficient 
estimates are obtained.

Stepwise selection with cross-validation is not in 
widespread use, probably because NHT- and IT-based 
approaches were developed earlier and most standard 
statistical software offers some form of NHT- and  
IT-based stepwise selection. In contrast, researchers  
may have to program stepwise selection with cross-
validation themselves because it is not implemented in 
many statistical packages. However, this procedure has 
the important advantage of avoiding many of the prob-
lems described above. Most importantly, it prevents 
from overfitting by applying a direct estimate of test 
MSE ( James et al., 2013) and does not rely on as many 
assumptions as information theory criteria, which 
makes it applicable to a lot of frameworks (Arlot & 
Celisse, 2010). Hastie et al. (2017) found that stepwise 
selection with cross-validation is a serious contender 

for other advanced machine-learning approaches, such 
as LASSO, regarding prediction accuracy, especially in 
high SNR scenarios. We included both FSR-CV and 
BSR-CV.

LASSO.  LASSO (Tibshirani, 1996) is part of a variety of 
shrinkage methods. In linear regression, these methods 
add a “penalty” to the ordinary least squares (OLS) esti-
mator that shrinks the estimated coefficients toward zero. 
For LASSO, this penalty is

λ β jj

p

=∑ 1
,

in which βj denotes the regression coefficients and λ 
controls the effect of the penalty (Hastie et al., 2015): λ = 
0 will nullify this penalty and lead to OLS estimates of 
the coefficients. However, if λ is large enough, the pen-
alty will not only shrink estimates toward zero but also 
lead to estimates being set to zero so that LASSO offers 
a method for automated variable selection. Despite 
underestimating model parameters, LASSO leads to 
models with good prediction accuracy (e.g., models 
without overfitting) because of the bias-variance trade-
off (Hastie et al., 2015): Although the penalty introduces 
bias for λ = 0, it also leads to a decrease in variance 
that can lead to a higher prediction accuracy than OLS 
models. Researchers thus have to find the right λ that 
delivers the best bias-variance trade-off that results in 
a low test MSE (i.e., prediction accuracy; James et al., 
2013). The λ that yields the model with the highest 
prediction accuracy is usually chosen by estimating the 
test MSE via cross-validation.

LASSO has become a quite popular method because 
it combines good prediction accuracy with automated 
variable selection. As mentioned above, the (possibly) 
favorable bias-variance trade-off of LASSO can lead to 
a higher prediction accuracy than other models ( James 
et al., 2013). The advantages of LASSO go hand in hand 
with the drawback of producing larger models than FSR 
(Helwig, 2017), which means LASSO tends to include 
many irrelevant variables not related to the outcome. 
Although other methods may tend to find the exact 
model more often, LASSO produces a model that 
includes all relevant variables many times (Tibshirani, 
1996). But as Su et al. (2016) showed, even when the 
SNR ratio is quite high, LASSO does include many false 
positives, which is why they came to the conclusion 
that LASSO is a “variable screener rather than a model 
selector” (p. 3). As Hastie et al. (2017) put it, LASSO is 
less “aggressive” than FSR, and this behavior can be 
favorable, but not necessarily. One important aspect  
to be considered in psychotherapy research is the 
behavior of selection strategies under strong correlation 
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of predictors. Confronted with two correlated variables, 
LASSO tends to set one to zero, which can result in 
worse model performance than other selection methods 
(Helwig, 2017).

Glinternet.  Interactions pose a special challenge to 
covariate selection because they confront researchers with 
the question of hierarchy (also called heredity or margin-
ality; Bien et al., 2013): Should main effects of correspond-
ing interactions be included in the final model? The 
common answer to this question is yes because excluding 
main effects would imply that the effect of one predictor is 
visible only if the other predictor is nonzero. In this con-
text, “strong hierarchy” describes methods that include all 
main effects pertaining to interactions, and “weak hierar-
chy” refers to methods that do not necessarily include all 
main effects pertaining to interactions.

Glinternet (Lim & Hastie, 2015) meets the demands 
of models containing interactions by making use of 
group-LASSO (Yuan & Lin, 2006). Group-LASSO is a 
variant of LASSO that can be applied to models with 
grouped variables (e.g., categorical variables that are 
split into several dummy-coded variables). Group-
LASSO works similarly to LASSO, but by applying the 
shrinkage factor, it sets whole groups of coefficient 
estimates to nonzero or zero (so that not only single 
levels of categorical variables have an effect/no effect 
but also all levels).

This grouping of variables applies to interaction 
models with hierarchy constraints as well because the 
inclusion of interaction effects should always be accom-
panied with including main effects so that main and 
interaction effects can be grouped. However, glinternet 
can include main effects in the final model without 
including corresponding interaction effects. Glinternet 
may also find interaction effects whose associated main 
effects are zero in the true model. In this case, these 
main effects are included in the final model.

Simulation results that have evaluated performance 
of glinternet are scarce. Mostly, studies introducing 
other methods for identification of interactions have 
used glinternet as a benchmark procedure (Bhatnagar 
et al., 2020; Gosik et al., 2018; Guinot et al., 2020; Haris 
et al., 2016; Page et al., 2020; Tibshirani & Friedman, 
2018; Wu et al., 2018). Thus, these studies did not sys-
tematically evaluate glinternet.

Simulation design

Generating the data for this simulation study, we varied 
five factors that we assumed to influence the perfor-
mance of covariate-selection strategies: sample size, SNR, 
multicollinearity, number of covariates, and hierarchy. 

We aimed at a strong resemblance in these factors with 
typical trials in psychotherapy research in which hetero-
geneity of treatment effects was studied. To this end, we 
carried out a small unsystematic literature review, which 
is described in more detail in the Supplemental Material 
available online. Concerning the correlation structure of 
covariates, a characteristic of many studies is a “cluster-
ing” of covariates into domains. For example, Huibers 
et al. (2015) included several measurements of psycho-
logical distress and general functioning, which were 
positively correlated within domains and negatively cor-
related across domains. Therefore, we mimicked this 
grouping of variables.

On the basis of the literature research, we varied the 
following factors:

1.	 (total) sample size (N): 75, 150, 600;
2.	 SNR: 0.43, 1 (equaling R2 of .3 and R2 of .5, 

respectively);
3.	 Correlation structure:

a. � No correlation among covariates (relevant 
and irrelevant);

b. � Correlations of ρ = .5 within two domains of 
relevant variables and correlations of ρ = –.3 
between relevant variables of two different 
domains;

4.	 Number of irrelevant covariates: 15, 30, 60;
5.	 Structure of effects (hierarchy):

a. � Strong hierarchy: 12 relevant variables have 
a main effect, six of which also have an 
interaction effect with treatment;

b. � Weak hierarchy: six relevant variables have 
a main effect and an interaction effect with 
treatment; six variables have an interaction 
effect only with treatment.

According to the fifth design factor (hierarchy), the 
true models underlying the simulated data were:

5.a: E Y X Z Z Z Z

Z X Z X Z X

| ,( ) = + +…+

+ + +…+

β β β

γ γ γ
1 1 2 2 12 12

1 1 2 2 6 6

5.b: E Y X Z Z Z Z Z X

Z X Z X

| ,

,

( ) = + +…+ +

+ +…+

β β β γ

γ γ
1 1 2 2 6 6 1 1

2 2 12 12

with β β1 12=… =  = 0.5 and γ1 12= …= γ  = 1, to ensure 
that main and interaction effects were of the same size. 
For a more detailed description of the simulation setup, 
see the Supplemental Material. By combining all factor 
levels, we obtained 72 conditions, for each of which 
1,000 data sets were generated. These data sets were 
analyzed using the six covariate-selection strategies 
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described above. All covariate-selection strategies 
included all possible treatment-covariate interactions 
as candidate variables (in addition to main effects) but 
no other interactions. Only BSR-DOM and glinternet 
met hierarchy constraints and included main effects 
pertaining to included interaction effects. All selection 
strategies that used cross-validation for model selection 
(BSR-CV, FSR-CV, LASSO, glinternet) were implemented 
with 10-fold cross-validation, as recommended by 
James et al. (2013). The simulation study was pro-
grammed in the R software environment (Version 3.6.3; 
R Core Team, 2020) with package SimDesign (Version 
2.0.1; Chalmers, 2020), which offers an environment for 
simulation studies that is easy to use. Other packages 
used for this study include the leaps package (Version 
3.1; Lumley, 2020), the glmnet package (Version 4.0; 
Friedman et al., 2010), and the glinternet package (Ver-
sion 1.0.10; Lim & Hastie, 2019). The reproducible script 
for this simulation study and the simulation results are 
available at OSF (https://osf.io/u24en).

Evaluation criteria

We evaluated the performance of covariate-selection 
strategies with respect to three questions: (a) Which 
strategy leads to the most accurate out-of-sample predic-
tions? (b) Which strategy identifies the most true interac-
tion effects and includes the least interaction effects not 
existing in the population? And (c) Which covariate-
selection strategy serves best for estimating ITEs?

To answer the question of which covariate-selection 
strategy leads to the most accurate out-of-sample predic-
tions, an additional test sample of 500 was simulated for 
each data set. Using the models built by all covariate-
selection strategies, we predicted the outcome in this test 
sample. Subsequently, we computed the test MSE on this 
sample as a common measure of prediction accuracy 
(Hastie et al., 2009). A lower test MSE indicates a smaller 
overall difference between predicted and actual out-
comes. To translate this into our application area, a lower 
test MSE achieved with one covariate-selection strategy 
compared with another would mean that we would be 
better at predicting the treatment outcome for a single 
patient using this strategy.

To evaluate how reliable covariate-selection strate-
gies identify treatment-covariate interactions, the pro-
portion of true and false interaction effects included in 
the final model was computed. These criteria are abbre-
viated as TPRIA (true positive rate of interactions) and 
FPRIA (false positive rate of interactions), respectively:

TPR
number of included true interactions

number of true iIA =
nnteractions

FPR
number of included false interactions

number of falseIA =
  interactions

.

TPRIA and FPRIA are computed instead of the abso-
lute number of true/false positives because the number 
of true treatment-covariate interactions varies with the 
fifth design factor (hierarchy) and the number of false 
treatment-covariate interactions varies with the fourth 
design factor (number of irrelevant covariates).

Considering the precision of estimated ITEs, we first 
had to estimate ITEs using covariate-selection strate-
gies. This was achieved by simply using the models 
built with these strategies to estimate the outcome 
under both treatment conditions for each simulated 
observation (from the sample used to build the models) 
and then computing the difference between both pre-
dicted treatment outcomes as an estimate for δ(u). 
Because we used simulated data, the true ITEs are 
known. As a measure for precision of that estimate, we 
chose root-mean-square error (RMSE) of true and esti-
mated ITEs:

RMSE( ˆ ˆ( )) ( ( ) ( )) .δ u
N

u u= −
1 2δ δ

This measure can be thought of as the average devia-
tion between true and estimated ITEs. To put the abso-
lute size of the RMSE( ( ))δ̂ u  into context, one can 
consider the distribution of true ITEs. In our simulation, 
true ITEs were normally distributed with s(d(u)), 
depending on hierarchy and multicollinearity: For 
strong hierarchy and no multicollinearity, s(d(u)) = 
2.45; for weak hierarchy and no multicollinearity,  
s(d(u)) = 3.46; for strong hierarchy and multicollinear-
ity, s(d(u)) = 3.6; and for weak hierarchy and no mul-
ticollinearity, s(d(u)) = 3.8. For example, in scenarios with 
weak hierarchy and no multicollinearity, RMSE( ( ))δ̂ u  = 
1 would imply that, on average, estimated ITEs differ 
0.29 SD from true ITEs.

In addition, the relative bias of the variance of esti-
mated ITEs was computed. The variance of ITEs, Var 
(d(u)), is a measure of the heterogeneity of treatment 
effects and indicates how much individuals differ in 
their response to treatment. Large differences in this 
responsiveness (i.e., high Var(d(u))) would imply that 
patients could profit a great deal from allocation to their 
optimal treatment, whereas small differences (i.e., small 
Var(d(u))) would imply only small gains as a result of 
this allocation. Therefore, although precisely estimating 
ITEs is important for correctly allocating individuals to 
their optimal treatment, overestimating or underestimat-
ing Var(d(u)) could lead to erroneous conclusions 

https://osf.io/u24en
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about the practical relevance of personalizing treatment 
allocations.

Data analysis

Five full factorial analyses of variance (ANOVAs) were 
conducted to test for main and interaction effects of all 
factors on all evaluation criteria (selection strategy, SNR, 
sample size, correlation, number of irrelevant covari-
ates, hierarchy). ANOVAs were modeled to include all 
higher order interaction effects (up to the six-way inter-
action of all factors), but the focus of interpretation 
laid on main effects and interactions with covariate-
selection strategy. For every ANOVA, assumptions of 
normality and homogeneity of variance were checked 
by inspecting “residuals versus fitted values” plots and 
Q-Q plots (Fox & Fox, 2016). For each evaluation cri-
teria, all main effects and interaction effects with covari-
ate-selection strategy were statistically significant at the 
.05 significance level (for detailed results, see Tables 
S1 to S5 in the Supplemental Material). However, 
because of the large sample size, “significance” of 
results should not be overinterpreted ( J. Cohen, 1994). 
Instead, the focus in interpreting results lies on the 
effect size η2 (Table 1) and a visual inspection of effects. 
Only effects with η2 ≥ .001 and up to three-way 

interactions with covariate-selection strategy are 
reported in the text. In addition, the median for each 
evaluation criterion in each condition was computed 
and compared between covariate-selection strategies.

Results

Analysis of extreme values

An analysis of extreme values showed that a lot of 
extreme values occurred for BSR-BIC when the sample 
size was small (N = 75). These values were in some 
cases so extreme (more than a thousand times higher 
than the median) that the decision was made to exclude 
this covariate-selection strategy from the ANOVAs. 
Because results for larger sample sizes were compa-
rable with other methods, BSR-BIC was included in 
plots. For all other conditions and covariate-selection 
strategies, no other extreme values occurred (except 
for a single iteration with BSR-DOM that was excluded).

Accuracy of out-of-sample predictions

Several main effects and interactions with covariate-
selection strategy showed effect sizes of η2 ≥ .001: SNR 
yielded a large effect, η2 = .608; correlation yielded  

Table 1.  Effect Sizes (η2) for Main Effects and Interactions With Covariate-Selection Strategy

Factor

Evaluation criteria

Prediction 
accuracy TPRIA FPRIA

Estimated 
ITE

Bias of 
variance

Method .011 .081 .264 .036 .165
N .119 .539 .056 .588 .027
SNR .608 .049 .009 .086 < .001
Multicollinearity .141 .018 .004 .014 .002
Irrel cov .003 .013 .061 .011 .011
Hierarchy < .001 .013 < .001 .042 .008
Method × Sample Size .006 .021 .050 .014 .040
Method × SNR .001 .001 .011 .002 .013
Method × Multicollinearity .001 .005 .009 .003 .002
Method × Irrel Cov .001 .004 .030 .001 .020
Method × Hierarchy < .001 .002 .001 < .001 .002
Method × N × SNR .001 .006 .002 .003 .004
Method × N × Irrel Cov .001 .002 .005 .001 .010
Method × N × Multicollinearity < .001 .001 .004 .001 .001
Method × N × Hierarchy < .001 .001 .001 .001 .001
Method × Multicollinearity × Hierarchy < .001 .001 < .001 .001 < .001
Method × SNR × Irrel Cov < .001 < .001 .001 .001 .001
R2 .922 .813 .542 .827 .322

Note: Selected effect sizes for five full-factorial analyses of variance. Evaluation criteria = dependent variable; TPRIA = 
true positive rate of interaction; FPRIA = false positive rate of interactions; ITE = individual treatment effect; method = 
covariate-selection strategy; N = sample size; SNR = signal-to-noise ratio; irrel cov = number of irrelevant covariates; 
estimated ITE = RMSE( )ˆ( )δ u ; bias of variance = bias of Var(d(u)).Var�
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η2 = .141 sample size yielded η2 = .119; covariate-
selection strategy yielded η2 = .011; and number of 
irrelevant covariates yielded η2 = .003. Furthermore, the 
interaction of selection strategy with sample size 
yielded η2 = .006, the interaction of selection strategy 
with SNR yielded η2 = .001, the interaction of selection 
strategy with number of irrelevant covariates yielded 
η2 = .001, and the interaction of selection strategy with 
correlation yielded η2 = .001. In addition, the three-way 
interactions of covariate-selection strategy, sample size, 
and SNR and covariate-selection strategy, sample size, 
and number of irrelevant covariates both yielded η2 = 
.001. Overall, the model accounted for 92.2% of vari-
ance in the dependent variable (R2 = .922; Table 1).

A visual inspection of direction and size of effects 
revealed that a lower SNR, a lower sample size, a higher 
number of irrelevant covariates, and correlation among 
predictors led to visible worse out-of-sample predic-
tions for all covariate-selection strategies. Furthermore, 
reflecting the interactions of covariate-selection strategy 
with sample size and with SNR, we found that differ-
ences between strategies diminished as sample size and 
SNR increased (for details, see Figs. S1–S5 in the Sup-
plemental Material).

To more precisely answer the question of which 
covariate-selection strategy leads to the most accurate 
out-of-sample predictions, median test MSE was com-
puted in all design cells and compared among covariate-
selection strategies (see Table 2). LASSO had the lowest 
median test MSE in 55.6% of conditions, most of which 
were characterized by a sample size of 75 or 150. Glin-
ternet had lowest test MSE in 27.8% of conditions, all of 

which were characterized by strong hierarchy. FSR-CV, 
BSR-CV, and BSR-BIC had the lowest test MSE in 5.6%, 
5.6%, and 4.2% of conditions, respectively, all of which 
were characterized by a sample size of 600 and a high 
SNR. BSR-DOM had the lowest test MSE in one condi-
tion, characterized by a sample size of 600, a low SNR, 
no correlation, and 15 irrelevant covariates. However, 
reflecting the small effect size of covariate-selection 
strategy, we found that differences between strategies 
in out-of-sample prediction accuracy were rather small 
in some conditions, especially in high sample sizes.

Identification of interactions  
with treatment

TPRIA.  The main effect of sample size yielded the largest 
effect size (η2 = .539), followed by covariate-selection strat-
egy (η2 = .081), SNR (η2 = .049), correlation among predic-
tors (η2 = .018), number of irrelevant covariates (η2 = .013), 
and hierarchy (η2 = .013). Of all interaction effects with 
covariate-selection strategy, the interaction with sample 
size showed the largest effect (η2 = .021), followed by cor-
relation (η2 = .005), number of irrelevant covariates (η2 = 
.004), hierarchy (η2 = .002), and SNR (η2 = .001). Further-
more, five three-way interactions with covariate-selection 
strategy exhibited an effect of η2 = .001: sample size and 
SNR (η2 = .006), sample size and number of irrelevant 
covariates (η2 = .002), sample size and correlation (η2 = 
.001), (η2 001= . ), sample size and hierarchy (η2 = .001), 
and correlation and hierarchy (η2 = .001). Overall, the 
model accounted for 81.3% of variance in the dependent 
variable (R2 = .813; Table 1).

Table 2.  Performance of Different Covariate-Selection Strategies Across Conditions

Evaluation criterion

Method

BSR-DOM BSR-BIC BSR-CV FSR-CV LASSO Glinternet

Prediction accuracy 1.4% 4.2% 5.6% 5.6% 55.6% 27.8%
Highest median TPRIA  
  Ignoring ties 18.1% 22.2% 15.3% 19.4% 87.5% 41.7
  Sole first place — 11.1% 1.4% — 40.3% —
Median(FPRIA) = 0a 0% 37.5% 76.4% 70.8% 0% 16.7%
Precision of estimated ITE 0% 4.2% 8.3% 5.6% 72.2% 9.7%
Bias of variance 40.3% 34.7% 4.2% 20.8% 0% 0%

Note: For each evaluation criteria, median within each condition was computed. Percentages pertain to the proportion 
of conditions in which selection strategies outperformed others. For example, for prediction accuracy, BSR-BIC had the 
lowest median test mean standard error among all strategies in 2.1% of all 48 conditions. BSR-DOM = domain backward 
stepwise regression; BSR-BIC = backward stepwise regression using Bayesian information criterion; BSR-CV = backward 
stepwise regression using cross-validation; FSR-CV = forward stepwise regression using cross-validation; LASSO = least 
absolute shrinkage and selection operator; glinternet = group-LASSO interaction network; TPRIA = true positive rate of 
treatment-covariate interactions; FPRIA = false positive rate of treatment-covariate interactions; ITE = individual treatment 
effect; estimated ITE = RMSE( )ˆ( )δ u ; bias of variance = bias of Var(d(u)).
aBecause there were too many ties for lowest median FPRIA, this row depicts the percentage of conditions for which 
median FPRIA was zero for each condition.

Var�
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Visual inspection (see Figs. S6–S10 in the Supple-
mental Material) of all two-way interactions with covariate- 
selection strategy indicated that a lower SNR, a lower 
sample size, correlation among predictors, higher num-
ber of irrelevant covariates, and weak hierarchy were 
associated with a lower TPRIA. Figure 1 visualizes the 
effect of SNR and sample size on TPRIA, depending on 
covariate-selection strategy. The relative performance 
pertaining to TPRIA of covariate-selection strategies 
changes with SNR and sample size: For example, for a 
low SNR and sample size of 75, BSR-DOM outperforms 
glinternet, whereas glinternet performs better than BSR-
DOM in conditions with high SNR and a sample size 
of 150. A special mention should be made of the wide 
distributions of some covariate-selection strategies in 
some conditions. For example, for a high SNR and large 
sample size, with BSR-DOM, researchers would be able 
to identify all interaction effects in 50% of cases simu-
lated in this study, but in 25% of cases, the TPRIA is less 
than .75.

In 40.3% of conditions, LASSO had the highest 
median TPRIA, most of which were characterized by a 
sample size of 150 (see Table 2). In 11.1% of conditions, 
BSR–BIC had the highest TPRIA, all of which were char-
acterized by a sample size of 75. In 1.4% of conditions, 
BSR–CV had the highest TPRIA. In 20.8% of conditions, 
LASSO and glinternet both had the highest median 

TPRIA, most of which were characterized by a strong 
hierarchy. In 2.8% of conditions, LASSO and BSR–DOM 
had the highest median TPRIA (in which sample size 
was 75). In 1.4% of conditions, LASSO and BSR-CV had 
the highest median TPRIA. There were more than two 
selection strategies tied at first place for TPRIA in 22.2% 
of conditions, most of which were characterized by a 
sample size of 600.

FPRIA.  The main effect of covariate-selection strategy 
yielded the largest effect size (η2 = .264), followed by the 
number of irrelevant covariates (η2 = .061), sample size 
(η2 = .056), SNR (η2 = .009), and correlation (η2 = .004). 
Furthermore, all interactions with covariate-selection 
strategy had noteworthy effect sizes: The interaction of 
covariate-selection strategy with sample size yielded η2 = 
.050, the interaction of covariate-selection strategy with 
the number of irrelevant covariates yielded η2 = .030, the 
interaction of covariate-selection strategy with correlation 
among predictors yielded η2 = .009, the interaction of 
covariate-selection strategy with SNR yielded η2 = .011, 
and the interaction of covariate-selection strategy with 
hierarchy yielded η2 = .001. In addition, five three-way 
interactions with covariate-selection strategy exhibited an 
effect of η2 ≥ .001, sample size and SNR (η2 = .002),, 
sample size and number of irrelevant covariates (η2 = 
.005), sample size and correlation (η2 = .004), sample size 
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Fig. 1.  Effect of covariate-selection strategy, sample size, and signal-to-noise ratio (SNR) on the true 
positive rate of interactions (TPRIA). The boxes represent the interquartile range (IQR), and the horizon-
tal lines in the boxes represent the median. The whiskers represent values that fall outside the IQR but 
within 1.5× the IQR. BSR-DOM = domain backward stepwise regression (original analysis strategy from 
Huibers et al., 2015); BSR-CV = backward stepwise regression using cross-validation; FSR-CV = forward 
stepwise regression using cross-validation; LASSO = least absolute shrinkage and selection operator; 
glinternet = group-LASSO interaction network; BSR-BIC = backward stepwise regression using Bayesian 
information criterion.
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and hierarchy (η2 = .001), and SNR and number of irrel-
evant covariates (η2 = .001). Overall, the model accounted 
for 54.2% of variance in the dependent variable (R2 = 
.542; Table 1).

A visual inspection of direction and size of effects 
revealed that the effects of all factors differed consider-
ably in dependence of covariate-selection strategy (see 
Figs. S11–S15 in the Supplemental Material). The lower 
part of Figure 2 shows the effect of sample size and SNR 
on FPRIA, depending on covariate-selection strategy. For 
LASSO and glinternet, FPRIA rises with a growing sample 
size and an increasing SNR. For BSR-DOM, the number 
stays constant. For BSR-CV and FSR-CV, FPRIA increases 
slightly with the sample size but not the SNR.

To answer the question of which strategy was associ-
ated with the smallest/highest FPRIA, we took a closer 
look at median FPRIA of all strategies in each condition 
(see Table 2). BSR-CV and FSR-CV clearly had the low-
est FPRIA across conditions; median FPRIA was 0 in 
76.4% and 70.8% of all conditions, respectively. BSR-BIC 
had a median FPRIA of 0 in 37.5% of all conditions, most 
of which were characterized either by a sample size of 
75 and a large number of irrelevant variables or by a 
sample size of 600 and a low number of irrelevant 
variables. Glinternet also had a median FPRIA of 0 in 
16.7% of conditions, all of which were characterized 
by a sample size of 75. But as Figure 2 shows, median 

FPRIA of glinternet could rise considerably above that 
of BSR-DOM, FSR-CV, and BSR-CV in larger sample 
sizes. LASSO had the highest median FPRIA in 75% of 
conditions, BSR-DOM had the highest median FPRIA in 
5.6% of conditions, and BSR-BIC had the highest median 
FPRIA in 10% of conditions.

Estimation of ITEs

Precision of estimated ITEs.  The main effect of sample 
size yielded the largest effect size (η2 = .588), followed by 
SNR (η2 = .086), hierarchy (η2 = .042), covariate-selection 
strategy (η2 = .036), correlation among predictors (η2 = 
.014), and number of irrelevant covariates (η2 = .011). The 
interaction of covariate-selection strategy with sample size 
yielded η2 = .014, the interaction of covariate-selection 
strategy with correlation yielded η2 = .003, the interaction 
of covariate-selection strategy with SNR yielded η2 = .002, 
and the interaction of covariate-selection strategy with 
number of irrelevant covariates yielded η2 = .001. Further-
more, six three-way interactions with covariate-selection 
strategy exhibited an effect of η2 ≥ .001: sample size and 
SNR (η2 = .003), sample size and correlation (η2 = .001), 
sample size and number of irrelevant covariates (η2 = 
.001), sample size and hierarchy (η2 = .001), SNR and 
number of irrelevant covariates (η2 = .001), and correlation 
and hierarchy (η2 = .001). Overall, the model accounted 
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Fig. 2.  Effect of covariate-selection strategy, sample size, and signal-to-noise ratio (SNR) on the 
false positive rate of interactions (FPRIA). The boxes represent the interquartile range (IQR), and the 
horizontal lines in the boxes represent the median. The whiskers represent values that fall outside 
the IQR but within 1.5× the IQR. BSR-DOM = domain backward stepwise regression (original analysis 
strategy from Huibers et al., 2015); BSR-CV = backward stepwise regression using cross-validation; 
FSR-CV = forward stepwise regression using cross-validation; LASSO = least absolute shrinkage and 
selection operator; glinternet = group-LASSO interaction network; BSR-BIC = backward stepwise 
regression using Bayesian information criterion.
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for 82.7% of variance in the dependent variable (R2 = .827; 
Table 1).

Visualization of all two-way interactions with covariate- 
selection strategy (see Figs. S16–S20 in the Supplemental 
Material) showed that a smaller sample size, a lower 
SNR, correlation among predictors, a higher number of 
irrelevant covariates, and weak hierarchy led to an 
increase in RMSE( ( ))δ̂ u , which means that predictions 
of ITEs generally became less accurate. Figure 3 shows 
the effects of sample size and SNR on RMSE( ( ))δ̂ u  for 
each covariate-selection strategy. As sample size and 
SNR increased, differences between selection strategies 
decreased. In addition, depending on sample size and 
SNR, the covariate-selection strategy that led to the low-
est RMSE( ( ))δ̂ u  changed: For a low SNR, LASSO outper-
formed all other strategies for all sample sizes (averaged 
over all other factors), whereas for a high SNR, FSR-CV 
and BSR-CV had a minor advantage over LASSO.

LASSO led to the smallest median RMSE( ( ))δ̂ u  in 
72.2% of all conditions and performed especially well 
in small sample sizes (see Table 2). Glinternet had the 
smallest median RMSE( ( ))δ̂ u  in 9.7% of all conditions, 
all of which were characterized by strong hierarchy. 
BSR-CV (8.3%) and FSR-CV (5.6%) outperformed other 

strategies in some conditions with a sample size of 600 
and a high SNR. BSR-BIC had the smallest median 
RMSE( ( ))δ̂ u  in 4.2% of conditions, which were charac-
terized by a sample size of 600 and a low SNR.

Relative bias of estimated variance of ITEs.  Several 
main effects were of notable size: Covariate-selection 
strategy showed the largest effect (η2 = .165), sample size 
yielded η2 = .027, number of irrelevant covariates yielded 
η2 = .011, hierarchy yielded η2 = .008, and correlation 
among predictors yielded η2 = .002. All interactions with 
covariate-selection strategy exhibited effects of η2 ≥ .001: 
The interaction with sample size yielded η2 = .040, the 
interaction with the number of irrelevant covariates yielded 
η2 = .020, the interaction with SNR yielded η2 = .013, and 
the interactions with correlation and hierarchy both 
yielded η2 = .002. In addition, five three-way interactions 
with covariate-selection strategy exhibited an effect of η2 ≥ 
.001: sample size and number of irrelevant covariates (η2 = 
.010), sample size and SNR (η2 = .004), sample size and 
correlation (η2 = .001), sample size and hierarchy (η2 = 
.001), and SNR and number of irrelevant covariates (η2 = 
.001). Overall, the model accounted for 32.2% of variance 
in the dependent variable (R2 = .322; Table 1).
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Fig. 3.  Effect of covariate-selection strategy and signal-to-noise ratio (SNR) on precision of estimated individual treatment 
effects (ITEs). The boxes represent the interquartile range (IQR), and the horizontal lines in the boxes represent the median. 
The whiskers represent values that fall outside the IQR but within 1.5× the IQR, and the dots represent outliers (values 
outside the IQR and beyond 1.5× the IQR). BSR-DOM = domain backward stepwise regression (original analysis strategy 
from Huibers et al., 2015); BSR-CV = backward stepwise regression using cross-validation; FSR-CV = forward stepwise regres-
sion using cross-validation; LASSO = least absolute shrinkage and selection operator; glinternet = group-LASSO interaction 
network; BSR-BIC = backward stepwise regression using Bayesian information criterion.
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Visual inspection of these effects showed that using 
BSR-DOM, the variance of ITEs tended to be overesti-
mated, whereas using all other strategies resulted in 
underestimating variance of ITEs in many cases (see 
Figs. S21–S25 in the Supplemental Material). With an 
increasing sample size and increasing SNR, relative bias 
shrinks toward zero for all strategies. For FSR-CV and 
BSR-CV, the tendency to underestimate bias in low 
sample sizes reverts for a sample size of 600; median 
relative bias of Var(d(u)) was over zero in these cases.

Inspecting median absolute relative bias of Var(d(u)) 
in all conditions revealed that in 40.3% of all conditions, 
BSR-DOM had the lowest median absolute relative bias; 
in 34.7% of conditions, it was BSR-BIC; in 20.8% of con-
ditions, it was FSR-CV; and in 4.2% of conditions, it was 
BSR-CV (see Table 2). BSR-DOM performed especially 
well in smaller sample sizes, whereas BSR-BIC per-
formed well in medium to large sample sizes. The condi-
tions in which FSR-CV had the lowest median absolute 
relative bias were mostly characterized by a low SNR. 
But across simulation replications, the estimated variance 
of ITEs spread widely: For example, across all replica-
tions that were characterized by a sample size of 150 
and a low SNR, BSR-DOM led to an overestimation of 
Var( ( ))δ u  in more than 50% of replications, whereas for 
more than 25%, it was underestimated.

Analysis of Empirical Data From 
Huibers et al. (2015)

Background

Huibers et al. (2015) analyzed data from an RCT that 
investigated the effectiveness of CT and IPT for depres-
sion (Lemmens et al., 2015). In the trial, 182 depressed 
outpatients were randomly assigned to (a) CT (n = 76), 
(b) IPT (n = 75), or (c) a waiting-list control condition 
(n = 31; which is of no interest here). In both treatment 
conditions, patients received 12 to 20 individual ses-
sions of 45 min, according to their progress. Prior analy-
sis of the data showed that CT and IPT did not differ 
significantly in their average effectiveness (Lemmens 
et al., 2015).

The primary outcome measure of interest was the 
Beck Depression Inventory–II (BDI-II; Beck et  al., 
1996). Because of nonnormal distribution of residuals, 
the square root of BDI-II scores was used in all analy-
ses. Huibers et al. (2015) considered 61 variables in 
total as possible prognostic and prescriptive factors. 
These candidate variables were grouped into six 
domains: (a) depression, (b) demographics, (c) psycho-
logical distress, (d) general functioning, (e) psychologi-
cal processes, and (f) life and family history. For a full 
list of variables and their grouping, see Huibers et al. 
(2015). As a next step, BSR-DOM was conducted.

This selection strategy resulted in a final model with 
five main effects and six interaction effects. Main effects 
included in the model were gender, employment status, 
anxiety, the absence of a personality disorder, and qual-
ity of life. All these variables affected treatment out-
come irrespective of treatment condition. Somatic 
complaints, cognitive problems, paranoid symptoms, 
interpersonal self-sacrificing, attributional style focused 
on achievement goals, and the number of life events in 
the past year interacted with treatment condition, which 
predicted a differential response to CT and IPT. The 
main effects corresponding to these interaction effects 
were also included in the final model.

The PAI

The final model was used to predict the differences in 
outcome under both treatments by computing the PAI 
(DeRubeis et  al., 2014). For each patient, the final 
model was fit to the rest of the sample (i.e., not con-
taining the “focal” patient) to then be used to predict 
the patient’s outcome for both CT and IPT. Both predic-
tions were squared to convert them back to original 
BDI-II units. The PAI was then computed as the differ-
ence between predicted outcome under CT and pre-
dicted outcome under IPT.

On average, patients had an absolute PAI of 8.9, 
which means a difference of 8.9 in predicted BDI-II 
between optimal and nonoptimal treatment. Sixty-three 
percent of the sample had an absolute PAI greater than 
5, which is considered clinically significant (in units of 
BDI-II). So although CT and IPT were equally effective 
on average, matching patients with their optimal treat-
ment could have led to a clinically meaningful advan-
tage for more than half of the patients in this sample. 
Yet generalizability of these findings is questionable, 
mostly because of the small sample size. These limita-
tions were acknowledged by the authors, who under-
lined the necessity of replication studies.

Reanalysis of data

We started our reanalysis by building the full linear 
model as reported by Huibers et al. (2015). Estimated 
coefficients differed only slightly from estimates 
reported by the authors. This model was used to com-
pute the PAIs as described above. Some minor differ-
ences were observed: Mean and standard deviation of 
absolute PAIs were a little smaller in our analysis, and 
the percentage of absolute PAIs greater than 5 was only 
60% (compared with 63% in the original analysis).

Then, data were analyzed with the same covariate-
selection strategies that were used in the simulation 
study: BSR-BIC, BSR-CV, FSR-CV, LASSO, and glinternet. 
Selected covariates were inspected, and the resulting 

Var�

Var�
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models were used to estimate conditional treatment 
effects. For the four methods that applied cross-validation 
(BSR-CV, FSR-CV, LASSO, glinternet), a known problem 
arose: When applying these methods several times, dif-
ferent coefficients were selected. This instability is 
introduced by the random partitioning of the data set 
into several folds. With small samples, slight changes 
in the different folds that are used to train and test the 
models will lead to different models. Faced with the 
problem of reporting one of these “random” models, 
we used a slight alteration of k-fold cross-validation: 
repeated k-fold cross-validation (Kuhn & Johnson, 
2013). This procedure solves the problem of random 
data splits by repeating the process of partitioning the 
data set and conducting k-fold cross-validation, which 
increases stability of results (Arlot & Celisse, 2010; Kim, 
2009; Molinaro et al., 2005).

The different covariate-selection strategies led to 
quite diverging results (see Table 3). In comparison 
with the original analysis, BSR-BIC, BSR-CV, FSR-CV, 
and glinternet led to smaller models, especially pertain-
ing to the inclusion of interaction effects. This matches 
results from the simulation study, in which stepwise-
regression procedures had a lower TPRIA and FPRIA in 
conditions with a sample size comparable with this 
study (see Figs. 1 and 2). Although glinternet did not 
have a lower median TPRIA and FPRIA in these condi-
tions, the distribution of TPRIA and FPRIA was very wide. 
LASSO, on the other hand, led to an only slightly bigger 
model in this example, although it showed a much 
higher median TPRIA and FPRIA in the simulation study. 
Again, this might be explained by the very large distri-
butions of TPRIA and FPRIA, which shows that LASSO 
might include only a small number of candidate vari-
ables in some cases.

In total, nine different treatment-covariate interac-
tions were included, taking all strategies together. There 

was some overlap between models concerning these 
interactions (see Table 4). Four treatment-covariate 
interactions were included in more than one model: 
attributional style–achievement (Attributional Style 
Questionnaire; Peterson et al., 1982; BSR-DOM, BSR-
BIC, LASSO), interpersonal problems–self-sacrificing 
(Inventory of Interpersonal Problems; Horowitz et al., 
1988; BSR-DOM, BSR-BIC, LASSO), number of life 
events in past year (BSR-DOM, BSR-BIC, LASSO, glin-
ternet), and cognitive problems (Brief Symptom Inven-
tory; Derogatis & Melisaratos, 1983; BSR-DOM, LASSO). 
By contrast, five treatment-covariate interactions were 
selected by only a single covariate-selection strategy. 
This highlights the uncertainty that is associated with 
interpreting results concerning prescriptive factors in 
this research setting (i.e., in a setting with a compara-
tively small sample size, many candidate variables, and 
correlations among these variables).

All alternative models led to smaller mean absolute 
conditional treatment effects than BSR-DOM. BSR-BIC, 
FSR-CV, and glinternet can be explained by the fewer 
interactions included. For LASSO and glinternet, the 
shrinkage of coefficient estimates should be the reason 
for the smaller mean compared with BSR-DOM.

Discussion

In this study, we aimed at comparing six covariate-
selection strategies in their utility for estimating ITEs in 
psychotherapy research. We conducted a Monte Carlo 
simulation that comprised 72 conditions mimicking 
typical settings of psychotherapy research. Those condi-
tions varied along several factors known or hypothe-
sized to influence the performance of covariate-selection 
strategies.

Across the 72 conditions studied here, shrinkage 
methods showed the best overall performance: LASSO 

Table 3.  Results From Reanalysis of Data From Huibers et al. (2015)

Strategy Main effects
Interactions 

with treatment

|CE(u)|

Mean (SD) ≥ 5 ≤ 2

BSR-DOM 11 6 8.62 (7.49) 60.15% 14.29%
BSR-BIC   2 2 6.81 (6.05) 48.12% 22.56%
BSR-CV   1 0 — — —
FSR-CV   1 1 6.21 (4.68) 53.38% 24.06%
LASSO 10 7 4.33 (3.28) 31.58% 26.32%
Glinternet   9 1 1.12 (0.78) 0% 90.23%

Note: BSR-CV, FSR-CV, LASSO, and glinternet were implemented using repeated k-fold 
cross-validation with 100 repetitions of 10-fold cross-validation. |CE(u)| = absolute value 
of conditional treatment effect; BSR-DOM = domain backward stepwise regression (original 
analysis strategy from Huibers et al., 2015); BSR-BIC = backward stepwise regression using 
Bayesian information criterion; BSR-CV = backward stepwise regression using cross-validation; 
FSR-CV = forward stepwise regression using cross-validation; LASSO = least absolute shrinkage 
and selection operator; glinternet = group-LASSO interaction network.
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and glinternet combined led to the most accurate out-
of-sample predictions, identified the most true treatment- 
covariate interactions, and estimated most precisely true 
ITEs in the largest number of conditions. But pertaining 
to the inclusion of false positive treatment-covariate 
interactions and estimating the variance of ITEs, other 
strategies performed better in most conditions. There-
fore, a first conclusion we draw from this study is that 
the best choice among the six covariate-selection strate-
gies depends on the aim of the analysis: If the goal is 
to estimate ITEs, LASSO and glinternet can be a good 
choice, but if researchers want to estimate the variance 
of ITEs, stepwise-regression procedures perform better. 
Although detecting prescriptive factors and estimating 
ITEs is of utmost importance for the practical imple-
mentation of personalized treatment selection, estimat-
ing the variance of ITEs is of interest to assess the 
overall benefit one might expect from such an imple-
mentation (with a higher variance indicating greater 
potential benefit).

In addition, even if researchers were solely interested 
in one of the selection criteria studied here, results of 
this study do not give reasons to generally recommend 
usage of one strategy when choosing from the five strat-
egies considered here. Especially sample size and SNR 
showed remarkable interactions with covariate-selection 
strategy for many evaluation criteria, but also, correla-
tion among predictors, the number of irrelevant covari-
ates, and (to some extent) hierarchy influenced the 
performance of covariate-selection strategies. Depend-
ing on the combination of these factors, different strate-
gies might lead to the most favorable results. BSR-BIC, 
for example, showed a detrimental performance in small 
sample sizes but was a serious competitor for larger 
sample sizes (N ≥ 150). Whereas in some conditions, 

differences to other selection strategies seem marginal, 
for others, choosing LASSO over another strategy would 
bear a clear advantage. For example, in the case of a 
sample size of 600, a low SNR, correlation among predic-
tors, 60 irrelevant covariates, and strong hierarchy, LASSO 
and glinternet identified all six treatment-covariate inter-
actions in more than 70% of all simulation iterations. In 
contrast, BSR-DOM identified all relevant moderators in 
only 2.1%, and FSR-CV and BSR-CV identified all modera-
tors in less than 1% of all iterations for this condition. 
However, in this condition, LASSO included at least 8.2 
irrelevant treatment-covariate interactions in 50% of all 
iterations, whereas BSR-DOM included at least 4.6, glin-
ternet included at least 3.6, and FSR-CV and BSR-CV 
included no false moderators in 50% of all iterations. This 
also illustrates why LASSO is classified as a variable 
screener. LASSO casts a wider net, so to speak, catching 
a lot of garbage but all fish as well. Although other meth-
ods might tend to catch only fish (finding the exact 
model) more often, LASSO produces a model that 
includes all relevant variables in many instances.

In particular, the present results are consistent with 
Hastie et al.’s (2017) findings that BSR and FSR using 
cross-validation can perform better than LASSO in con-
ditions characterized by a higher SNR. Whereas Hastie 
et al. mainly evaluated performance with respect to 
out-of-sample predictions, this study showed that the 
possible advantage of BSR-CV and FSR-CV in high SNR 
conditions also applies to estimating ITEs. Furthermore, 
an advantage of glinternet over other strategies, par-
ticularly LASSO, as another shrinkage method was 
observed in some conditions, which were characterized 
by a strong hierarchy. This shows that the additional 
restrictions introduced by glinternet can enhance out-
of-sample predictions and estimation of conditional 

Table 4.  Moderators of Treatment Effect Selected by Different Covariate-Selection Strategies

Moderator

Method

BSR-DOM BSR-BIC BSR-CV FSR-CV LASSO glinternet

Number of life events in past year X X X X
Achievement (ASQ) X X X  
Self-sacrificing (IIP) X X X  
Cognitive problems (BSI) X X  
Somatic complaints (BSI) X  
Paranoid symptoms (BSI) X  
Cold/distant (IIP) X  
Cognitive reactivity – acceptance (LEIDS) X  
Number of life events in life X  

Note: BSR-DOM = domain backward stepwise regression (original analysis strategy from Huibers et al., 2015); BSR-BIC = backward 
stepwise regression using Bayesian information criterion; BSR-CV = backward stepwise regression using cross-validation; FSR-CV = 
forward stepwise regression using cross-validation; LASSO = least absolute shrinkage and selection operator; glinternet = group-
LASSO interaction network; ASQ = Attributional Style Questionnaire (Peterson et al., 1982); IIP = Inventory of Interpersonal Problems 
(Horowitz et al., 1988); BSI = Brief Symptom Inventory (Derogatis & Melisaratos, 1983); LEIDS = Leiden Index of Depression Sensitivity 
(Van der Does, 2002).
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treatment effects when these constraints conform to 
properties of the problem setting. Weak hierarchy in 
the true model, on the other hand, does not seem to 
deteriorate performance of glinternet substantially.

Moving from a comparative to an absolute evaluation 
of covariate-selection strategies in this study, one 
should take into consideration the rather wide distribu-
tions of some evaluation criteria, specifically in smaller 
sample sizes. Concerning the identification of treatment- 
covariate interactions, LASSO, for example, had a 
median TPRIA of about .50 in conditions characterized 
by a sample size of 150 and a low SNR—the best result 
in comparison with other strategies. Yet the distribution 
ranged from 0 to 1 across these conditions so that in 
some replications of the simulation, none or all interac-
tion effects were identified. This underlines the require-
ments concerning the sample size that have to be met 
if researchers want to avoid a high degree of uncer-
tainty when analyzing heterogeneity of treatment 
effects. Similar to results from Luedtke et al. (2019), in 
our simulation, distributions for TPRIA became suffi-
ciently narrow for iterations with a sample size of 300 
in each treatment condition. These findings stand in 
contrast to sample sizes in RCTs on personalized treat-
ment selection and might explain the lack of consistent 
results pertaining to prescriptive factors (Lorenzo-
Luaces et al., 2021).

Moreover, the reanalysis of data from an empirical 
study on PAIs of CT and IPT (Huibers et al., 2015) high-
lighted the consequences of selecting a covariate-
selection strategy in a real-world setting. Looking at the 
percentage of absolute PAIs greater than 5 (a BDI dif-
ference deemed clinically significant), one would come 
to quite different conclusions about the impact of allo-
cating patients to their optimal treatment on the basis 
of different covariate-selection strategies. Using the 
original selection strategy (BSR-DOM), we would 
assume that more than half the patients would (in the 
clinical sense) significantly profit from allocation to their 
optimal treatment, whereas according to LASSO, we 
would assume that this is the case for less than a third 
of all patients. The same holds for the inclusion of 
treatment-covariate interactions: Both strategies dis-
agreed in five moderators that were included in the 
respective final models. Looking at Figures 1 and 3, one 
might assume that LASSO would serve better than BSR-
DOM as a variable screener for treatment-covariate 
interactions and for estimating ITEs in a scenario with 
this sample size. Median TPRIA and median RMSE( ( ))δ̂ u  
were also higher for LASSO than for BSR-DOM in the 
case of correlation among predictors and a larger num-
ber of candidate variables (as is the case in the data set). 
But because of the wide distributions, there is some 
level of uncertainty associated with this assumption.

Limitations and future directions

The first question that arises concerning the results from 
this study is whether they apply to the analysis of non-
synthetic data: How “realistic” is the simulation study, 
especially concerning data generation, and what can we 
conclude for the analysis of RCTs? We put a lot of effort 
into mimicking the challenges of psychotherapy 
research; however, our study cannot completely account 
for the complexity of empirical data (e.g., multivariate 
nonnormal distributions). For example, several variables 
in the data provided by Huibers et al. (2015) exhibited 
a considerable amount of skewness. In addition, in our 
simulation design, correlations among predictors per-
tained only to relevant predictors, whose true coeffi-
cients were not zero. Thereby, our simulation design 
fulfilled the “irrepresentable condition” for model selec-
tion consistency of LASSO, which potentially gives 
LASSO an advantage (Zhao & Yu, 2006). In contrast, it 
is possible that researchers will include two (or more) 
correlated variables in their investigation of which only 
one (or a larger subset) is truly associated with outcome. 
Only low-order interactions and linear relationships 
have been modeled in this study, thereby creating an 
optimal setting for the selection strategies investigated 
here. Our study gives an orientation when each strategy 
might be best applied and highlights the importance of 
investigating the effects of different factors (e.g., SNR) 
on the performance of covariate-selection strategies.

Furthermore, this study examined only two of several 
possible criteria to evaluate the consequences of choos-
ing a covariate-selection strategy on estimating ITEs. 
Foremost, this study looked at estimating ITEs (through 
conditional treatment effects) for the same sample that 
the model was built on. By this means, we followed 
the analysis strategy of existing empirical trials (e.g., 
Deisenhofer et al., 2018; Huibers et al., 2015). Future 
investigations may also examine the accuracy of out-
of-sample predictions of ITEs, an important factor for 
the practical implementation of results from a study on 
heterogeneous treatment effects (e.g., Lutz et al., 2019; 
Schwartz et al., 2021; van Bronswijk, Bruijniks, et al., 
2021). Likewise, we evaluated only the inclusion of true 
and false treatment-covariate interactions. However, in 
empirical trials, researchers usually do not solely look 
at whether effects are included but interpret effect sizes. 
Especially for shrinkage methods (i.e., LASSO, glinter-
net), it might be the case that included false treatment-
covariate interactions tend to be of negligible size.

Because the number of covariate-selection strategies 
that we investigated was limited, future studies may 
examine further methods in their utility for estimating 
ITEs. These include methods suited for more complex 
relationships among variables (e.g., random forests; 
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Breiman, 2001), methods explicitly developed to account 
for hierarchy constraints when identifying interactions, 
(e.g., Sail, Bhatnagar et al., 2020; VANISH, Radchenko & 
James, 2010; or Dirichlet process, forests, Du & Linero, 
2019), and other methods suited for n << p scenarios 
(e.g., as investigated by Ternès et al., 2017). Furthermore, 
in this study, model selection was based on outcome 
prediction accuracy. Rolling and Yang (2014) showed 
that model selection based on minimizing the expected 
prediction risk (indirectly through information criteria 
such as BIC or directly through cross-validation) does 
not necessarily lead to the model that best predicts con-
ditional treatment effects or reflects the heterogeneity of 
treatment effects (also see Powers et al., 2018). Several 
metrics for model selection in the context of predicting 
conditional treatment effects have been developed in 
recent years (Schuler et al., 2018). Future studies may 
evaluate their use in psychotherapy research.

Concerning the strategies using cross-validation, a 
major problem of 10-fold cross-validation became appar-
ent in the reanalysis of data from Huibers et al. (2015): 
10-fold cross-validation is susceptible to instability in 
small sample sizes. Randomly splitting the data into folds 
introduces additional variability, which means in the case 
of covariate selection, different covariates are included 
in the final model depending on how the data are split. 
This does not apply to “exhaustive” splitting schemes, 
such as leave-one-out cross-validation, because they do 
not include randomness in data partitioning. In summary, 
as with other rules-of-thumb, the question of which 
cross-validation approach to use is much more compli-
cated than general recommendations suggest. Especially 
for small sample sizes, we advise against using simple 
k-fold cross-validation. By using repeated 10-fold cross-
validation in the reanalysis of data from Huibers et al. 
(2015), we reduced the comparability with our simula-
tion analysis but used an approach that was more suit-
able to the problem setting at hand.

Our study mainly focused on identifying treatment-
covariate interactions and estimating ITEs. However, 
for the purpose of building a decision rule for allocating 
patients to their optimal treatment, it is important to 
evaluate the benefit of such an allocation (e.g., com-
pared with a random allocation). To this end, several 
estimators have been developed (Sies & Mechelen, 
2019) and call for evaluation within the frame of psy-
chotherapy research.

Conclusion

Analyzing ITEs is of utmost importance for the advance-
ment of personalized medicine, which enables the allo-
cation of patients to their optimal treatment. This is 

important not only from a patient’s point of view but 
also for the organization of cost-effective health-care 
systems by making optimal use of limited resources. 
Misestimating ITEs, on the other hand, can have nega-
tive ramifications by leading to allocating patients not 
to their best treatment option—and in the worst case, 
to a harmful treatment for particular patients.

On the basis of our simulation, we make the following 
recommendations for future studies on personalized 
treatment selection in psychotherapy: When estimating 
ITEs, researchers may consider covariate-selection strate-
gies from different method “families,” such as shrinkage 
methods or stepwise regression, because each method is 
best suited for specific problem settings. We recommend 
that these methods are evaluated regarding the factors 
investigated in this study. Some of these factors can be 
determined (e.g., the sample size), others need to be 
estimated (e.g., the covariance structure), and yet for 
others, researchers have to propose assumptions (e.g., 
the number of relevant treatment-covariate interactions). 
If the sample to be analyzed is rather small, researchers 
may try to conduct small simulation studies themselves 
that closely resemble their problem setting, thereby mak-
ing an informed choice on the covariate-selection strat-
egy. R-package SimDesign (Chalmers, 2020) provides a 
framework easy to use for simulation studies that does 
not require a strong background in programming. 
Researchers may use the script we published at OSF 
(https://osf.io/u24en) as a starting point. However, if the 
sample size is large enough, we recommend that research-
ers apply several methods and select the best one by 
using a two-step approach: First, the data are split into a 
train-test set and a holdout set. For each method, the best 
model is selected by making use of the train-test set (e.g., 
through [repeated] k-fold cross-validation). The perfor-
mance of the final models from each method is then 
compared by making predictions for the holdout set (for 
a practical application of this approach, see Webb et al., 
2020). In any case, researchers are encouraged to explain 
how they came to conclude that the covariate-selection 
strategy they finally selected was the best choice for the 
specific problem at hand.
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Notes

1. We use the stochastic expected outcomes notation that 
differs from the more frequently used potential outcomes 
notation (Rubin, 1974) in that it assumes an intraindividual 
distribution under each treatment condition and thereby puts 
forward a nondeterministic conceptualization of treatment 
outcomes.
2. In addition, because of the stochastic nature of the effect 
of X on Y, ideally, we would like to observe subjects several 
times under the same treatment to estimate the distribution of 
Y given X,U.
3. Conditional unit-treatment homogeneity: E(Y|X, Z, U) = 
E(Y|X, Z). All patients U = u have the same expected value of 
Y given treatment condition X = x and covariate values Z = z 
(Mayer, 2019; Steyer et al., 2000).
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