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Abstract. Quantifying precipitation variability beyond the instrumental period is essential for putting current
and future fluctuations into long-term perspective and providing a test bed for evaluating climate simulations. For
south-eastern Asia such quantifications are scarce and millennium-long attempts are still missing. In this study
we take a pseudo-proxy approach to evaluate the potential for generating summer precipitation reconstructions
over south-eastern Asia during the past millennium. The ability of a series of novel Bayesian approaches to
generate reconstructions at either annual or decadal resolutions and under diverse scenarios of pseudo-proxy
records’ noise is analysed and compared to the classic analogue method.

We find that for all the algorithms and resolutions a high density of pseudo-proxy information is a neces-
sary but not sufficient condition for a successful reconstruction. Among the selected algorithms, the Bayesian
techniques perform generally better than the analogue method, the difference in abilities being highest over the
semi-arid areas and in the decadal-resolution framework. The superiority of the Bayesian schemes indicates that
directly modelling the space and time precipitation field variability is more appropriate than just relying on a pool
of observational-based analogues in which certain precipitation regimes might be absent. Using a pseudo-proxy
network with locations and noise levels similar to the ones found in the real world, we conclude that perform-
ing a millennium-long precipitation reconstruction over south-eastern Asia is feasible as the Bayesian schemes
provide skilful results over most of the target area.

1 Introduction

Earth’s climate varies in all spatial and temporal timescales,
as it is forced by either natural or anthropic factors. To un-
derstand the dynamics of such variability, the analysis of the
available instrumental information is an essential tool. How-
ever, the time coverage of the instrumental records is rather
short and, therefore, information from climate archives (nat-
ural and documentary) going back centuries is important to
put current and future changes into a long-term perspective
and to serve as a validation terrain for model simulations with

the ultimate goal of understanding the underlying physical
mechanisms.

South-eastern Asian societies and economies are heavily
dependent on the summer rainfall (monsoon-dominated) as a
freshwater resource; thus, it is important to investigate how
these precipitation patterns have varied in the past to provide
a useful guide for the climate response to future changes. Pre-
vious hydro climate field reconstructions (CFRs) over Asia
revealed a substantial mismatch between modelled and re-
constructed precipitation patterns (Shi et al., 2017) and the
spatial variability of large-scale droughts during the Little
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Ice Age (Cook et al., 2010; S. Feng et al., 2013). While
these studies covered the last 500–700 years, a gridded hy-
droclimate product going beyond Medieval times at a spatio-
temporal high resolution is still missing. Whether such a long
and highly resolved reconstruction is possible given data and
methodologies available nowadays is the subject of this pa-
per.

Reconstructing the temporal evolution of climatic vari-
ables in the space domain (CFR) based on the information
from a sparse network of proxies and partially overlapping
instrumental data is a complex mathematical problem. First
of all, the proxy data used for generating reconstructions dis-
play a set of characteristics that make their use challenging:
their distribution in space and time is heterogeneous with
fewer records further back in time; different proxy archives
have different temporal resolutions and possibly include dat-
ing uncertainties; proxy data might reflect different climate
variables (temperature, precipitation, sea-level changes, pH,
seawater temperature, water mass circulation, etc.), record-
ing climate conditions at different times of the year, and these
data contain non-climatic information (usually referred to as
non-climatic noise). Second, the overlap with instrumental
observations is commonly short, limiting opportunities for
statistical learning and further validation. Third, and in con-
trast to average climate reconstructions, CFRs require the
spatial scale-up of the available information, therefore im-
plying the need for strategic inferring of the missing values
in the target climate field, even in locations where no data
might be input. Finally, as the amount of paleoclimatic infor-
mation becomes smaller back in time, it is virtually impos-
sible to have an independent proxy data set to properly vali-
date the output reconstruction. A common approach to over-
come this shortcoming and have a proper validation stage is
to use a pseudo-reality. The process of using a global climate
model (GCM) simulation to assess the ability of a reconstruc-
tion technique is known as a pseudo-proxy experiment (PPE;
Smerdon, 2012; Mann and Rutherford, 2002). In a PPE, sim-
ulated data are modified to mimic real-world proxies and
instrumental observations (called pseudo-proxy and pseudo-
instrumental data sets), and the reconstruction algorithms are
applied. The reconstruction results are then compared with
the available simulated target field, giving an estimation of
the skill of the method in real-world applications.

There are several ways to perform a CFR (see Luterbacher
and Zorita, 2018, for a review). The classical approach is
through a multivariate regression perspective: a statistical re-
lationship between proxy and instrumental data is inferred
from the overlapping (calibration) period and then, assum-
ing stationarity of this relationship, the missing instrumen-
tal values are predicted or reconstructed back through time.
Some of the most common techniques for climate reconstruc-
tions included in this category are regularised expectation–
maximisation (RegEM, Schneider, 2001), canonical correla-
tion analysis (CCA; Smerdon et al., 2010), Markov random
fields (Guillot et al., 2015) and the analogue method (Franke

et al., 2011). The performance of these methods strongly de-
pends on the length of the instrumental data. If the overlap-
ping period between proxy and instrumental data is short, in
comparison with the number of spatial locations considered,
the estimation of the covariance matrix is uncertain and the
matrix inversion process is numerically unstable, leading to
poor performance when presented with new data out of the
learning sample.

Another strategy to perform a CFR, more novel as it
has only recently been applied in paleoclimatology, is the
Bayesian approach (e.g. Tingley and Huybers, 2010, 2013;
Werner et al., 2013, 2018; Luterbacher et al., 2016; Zhang
et al., 2018). The Bayesian strategy is probabilistic, incorpo-
rates information about the climate–proxy connection as con-
straints on the reconstruction problem and has the benefit of
providing more comprehensive uncertainty estimates for the
derived reconstructions. Robust comparisons between estab-
lished methods and the emerging efforts (Werner et al., 2013;
Nilsen et al., 2018) underpin the benefits and justify further
application of the computationally more expensive method.
So far, most of the paleoclimatic applications of this method-
ology involve temperature reconstructions. Efforts to apply
this probabilistic framework to the more complex and highly
variable hydroclimate are only in the initial stages, but the ad-
vantages of the methodology over more classical approaches
are auspicious.

Gómez-Navarro et al. (2015) used a PPE approach to as-
sess the skill of several statistical techniques (classical re-
gression methods and Bayesian) in reconstructing the pre-
cipitation of the past 2 millennia over continental Europe.
The authors find that none of the schemes shows better per-
formance than the others and that precipitation reconstruc-
tions over Europe are only possible given a spatially dense
and uniformly distributed network of proxies, as the accu-
racy strongly deteriorates with distance to the proxy sites.

In this study we propose to evaluate, via PPE, the poten-
tial to generate a last-millennium summer precipitation re-
construction for south-eastern Asia. We use three CFR tech-
niques: Bayesian hierarchical modelling (BHM), BHM cou-
pled with clustering processes (with two different numbers of
clusters), and the analogue method. For each of the schemes
we perform two reconstructions: one at annual and one at
decadal resolution. In addition, the influence of the noise
level in pseudo-proxies on the final reconstruction is eval-
uated.

This is the first time that a BHM approach is applied to
the hydroclimate of Asia, and its coupling with clustering
techniques is a methodological advance, configuring an in-
novation in the field. The systematic evaluation of the skill
of these probabilistic methods, and the comparison with the
more classical and well-established analogue technique, is a
necessary step to learning about the precipitation variabil-
ity and the opportunities for or obstacles to generating long-
range informed guesses about it. The PPE exercise is a fun-
damental validation step, essential for selecting the most ap-
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propriate method to improve real-world reconstructions and,
finally, deriving a new and not previously attempted gridded
product of south-eastern Asia summer precipitation during
the last 1000 years. In this work only summer precipitation
is targeted as the pseudo-proxy network selected is based
on real-world indicators of summer hydroclimatic variations
(see Sect. 2.2).

The paper is organised as follows. In Sect. 2 we present
the data and methodology and describe in detail the three re-
construction techniques, as well as the skill scores used for
quality evaluation. Section 3 is devoted to the results and dis-
cussions: we evaluate the skill of each of the reconstruction
methods, at both annual and decadal resolution, and investi-
gate the role of the pseudo-proxy noise. Finally, in Sect. 4 we
present conclusions and a short outlook.

2 Data and methodology

2.1 Model

As a virtual reality setup for our study we use one full-
forcing simulation (run 001) of the Community Earth Sys-
tem Model (CESM) from the Last Millennium Ensemble
(LME) project (Otto-Bliesner et al., 2016). The simulation
is performed with a horizontal resolution of ∼ 2◦ (∼ 1◦) in
the atmosphere and land (ocean and ice) components. The
CESM is forced with reconstructions of the transient evolu-
tion of solar intensity, volcanic emissions, greenhouse gases,
aerosols, land use conditions and orbital parameters, all to-
gether, for the period 850–2005. The target variable to re-
construct is June–July–August (JJA) precipitation over conti-
nental south-eastern Asia, here defined as all continental grid
points in the domain Equator–50◦ N 72.5–127.5◦ E. Given
the model resolution, this implies that the reconstruction is
attempted over 366 grid points.

Figure 1 depicts the JJA mean precipitation in the run used
in this paper, considering only the last 100 years of simu-
lation (period 1906–2005). Historical simulations with the
CESM show a reasonable performance in reproducing sum-
mer precipitation over continental Asia: the simulated JJA
precipitation is generally in agreement with observations,
although a false rainfall centre over the eastern Qinghai–
Tibetan Plateau is generated in these simulations (Wang et
al., 2015).

2.2 Proxy data locations

For this study we select the locations of 47 real-world
precipitation-/drought-sensitive proxies in the target domain
that span the last millennium. The locations of tree ring,
speleothem, lake sediment and ice core sites as well as of
some documentary data are mainly derived from the net-
works used in Chen et al. (2015) and Ljungqvist et al. (2016)
(Table 1). The criteria for the selection of records were
millennium-long (with start date before 1000 CE), at least

Figure 1. Simulated mean JJA precipitation (millimetres per
month) during the instrumental period (years 1906–2005) over con-
tinental Asia. Black dots: pseudo-proxy network.

two values per century, terrestrial, published in the peer-
reviewed literature, and described as an indicator of local
variations in hydroclimate.

2.3 Design of the PPEs

For the design of the PPEs we build two data networks:
a pseudo-proxy one and a pseudo-instrumental one. The
pseudo-proxy network is based on the locations of the real-
world hydroclimate proxies listed in Table 1. As some of
these 47 records are in close proximity, this translates into
having 38 different model grid points (about 10 % of the to-
tal grid points in the study region). The selected locations are
not evenly distributed across south-eastern Asia: the highest
concentrations are found over eastern China and over the dry
lands in the north-west of the study region (Fig. 1). There
are neither pseudo-proxy sites southward of 20◦ N nor over
Mongolia and the Himalayas. To emulate real proxies, we
consider the modelled precipitation time series spanning the
complete period of the simulation (1156 years, either with
annual or decadal resolution) at each of the 38 selected sites
and contaminate them by the addition of noise. We select
four different levels of additive Gaussian white noise, corre-
sponding to null, low, medium, and high levels of noise. The
selected noise levels are such that the correlations between
the original and contaminated time series are 1, 0.7, 0.5, and
0.3, respectively. A correlation equal to 1 implies an idealised
situation of perfect proxies to study the representativeness
of our spatial sampling. A correlation of 0.7 represents an
optimistic situation, but is still realistic: for example, Shi et
al. (2014) find correlations of up to 0.7 with a tree-based re-
construction of the South Asian Summer Monsoon Index. A
correlation of 0.5 between the proxy series and precipitation
corresponds to a medium-level noise, and could be regarded
as the average situation with real proxies (examples for Asia:
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Table 1. List of the real-world proxy records used to select the locations of the pseudo-proxy network.

Site Longitude Latitude Archive Target season Reference

1 Anyemaqen Mountains 99.5 34.5 Tree Annual Gou et al. (2010)
2 Balkhash Basin 75 46.9 Pollen Annual Z.-D. Feng et al. (2013)
3 Buddha Cave 109.5 33.4 Speleothem Annual Paulsen et al. (2003)
4 Central India Composite 82 19 Speleothem Summer Sinha et al. (2011)
5 Delingha 97.38 37.38 Tree Annual Yang et al. (2014)
6 Dharamjali Cave 80.21 29.52 Speleothem Annual Sanwal et al. (2013)
7 Dongge Cave 108.8 25.28 Speleothem Annual Wang et al. (2005)
8 Eastern Tibetan Plateau 102.52 32.77 Lake Annual Yu et al. (2006)
9 Furong Cave 107.9 29.29 Speleothem Summer Li et al. (2011)
10 Gonghai Lake 112.23 38.9 Lake Summer Liu et al. (2011)
11 Great Bend of the Yellow River 115 35 Documentary Annual Gong and Hameed (1991)
12 Guliya 81.48 35.28 Ice Annual Yao et al. (1996)
13 Haihe River Basin 116 40 Documentary Annual Yan et al. (1993)
14 Hani 126.51 42.21 Lake Annual Hong et al. (2005)
15 Heihe River Basin 100 38.2 Tree Annual Yang et al. (2012)
16 Heshang_Cave 109.36 19.41 Speleothem Annual Hu et al. (2008)
17 Huangye Cave 105.12 33.92 Speleothem Annual Tan et al. (2011)
18 Huguangyan Lakee 110.28 21.15 Lake Annual Zeng et al. (2012)
19 Jianghuai 113.5 31.5 Documentary Annual Zheng et al. (2006)
20 Jiangnan 115 30 Documentary Annual Zheng et al. (2006)
21 Jiuxian Cave 109.1 33.57 Speleothem Summer Cai et al. (2010)
22 Karakorum Mountains 74.93 35.9 Tree Annual Treydte et al. (2006)
23 Kesang Cave 81.75 42.87 Speleothem Annual Zheng et al. (2012)
24 Kusai Lake 93.25 35.4 Lake Summer Liu et al. (2009)
25 Lake Aibi 82.84 44.9 Lake Annual Wang et al. (2013)
26 Lake Gahai 102.33 34.24 Lake Annual He et al. (2013)
27 Lake Hulun 117.5 49 Lake Annual Zhai et al. (2011)
28 Lake Nam Co 90.78 30.73 Lake Summer Kasper et al. (2012)
29 Lake Xiaolongwan 126.35 42.3 Lake Annual Chu et al. (2009)
30 Lonxi Area 105 30 Documentary Annual Liangcheng Tan et al. (2008)
31 North China Plains 115 38 Documentary Annual Zheng et al. (2006)
32 North-eastern Tibetan Plateau 98 37 Tree Annual Yang et al. (2014)
33 Qaidam Basin 97.5 37.2 Tree Annual Yin et al. (2008)
34 Qaidam Basin 97.5 37.2 Tree Annual Wang et al. (2013)
35 Qigai Nuur 109.5 39.5 Pollen Annual Sun and Feng (2013)
36 Qilian Mountains 99.5 38.5 Tree Annual Zhang et al. (2011)
37 Qinghai Province 99 37 Tree Annual Sheppard et al. (2004)
38 Southern China 110 25 Documentary Annual Qian et al. (2003)
39 Sugan Lake 93.9 38.85 Lake Annual He et al. (2013)
40 Tsuifong Lake 121.6 24.5 Lake Annual Wang et al. (2013)
41 Wanxiang Cave 105 33.19 Speleothem Annual Zhang et al. (2008)
42 Wulungu Lake 87.15 47.15 Pollen Annual Liu et al. (2008)
43 Yangtze Delta 121 32 Documentary Annual Zhang et al. (2008)
44 Yangtze Delta 120 32 Documentary Annual Jiang et al. (2005)
45 Yangtze Delta 115 30 Documentary Annual Qian et al. (2003)
46 Yellow River 110 35 Documentary Annual Qian et al. (2003)
47 Zhijin Cave 105.84 26.73 Speleothem Summer Kuo et al. (2011)

He et al., 2018; Liu et al., 2013). A correlation of 0.3 rep-
resents a high-noise setting, which is still rather common in
real-world proxies (e.g. Jones et al., 2009).

For the pseudo-instrumental network we consider all the
locations for which a reconstruction is targeted: 366 model
grid points in south-eastern Asia. For each of these locations,

we take the modelled precipitation time series for the last
100 years of simulation (at either annual or decadal resolu-
tion) and add a small Gaussian noise to represent the instru-
mental errors present in real precipitation measurements. The
added noise is such that, at each location, the correlation be-
tween the original and contaminated time series is 0.95.
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Figure 2. Example of pseudo-proxy, pseudo-instrumental and true
precipitation time series at location [20◦ N, 82.5◦ E]. (a) Annually
resolved data. (b) Decadally resolved data.

As an example, Fig. 2 shows the simulated precipitation
time series at location [20◦ N, 82.5◦ E] (eastern India) to-
gether with the associated pseudo-proxy and instrumental
time series, both at annual and decadal resolution, for the
case of medium-noise level (corresponding to a 0.5 correla-
tion with the target precipitation). At annual resolution, the
simulated mean JJA precipitation at this site is 241 mm per
month, with a standard deviation of 48 mm per month. No
statistically significant changes are found either in mean or
variance. The maximum (minimum) summer precipitation at
this location is 423 (87) mm per month and occurred in the
year 1022 (1208) of the simulation, respectively. At decadal
resolution, the standard deviation is reduced to 14 mm per
month and the maximum (minimum) precipitation value is
283 (208) mm per month, occurring at the period 1180–1189
(870–879).

2.4 Reconstruction techniques

In the following subsections we describe in detail each of the
three reconstruction techniques used in this paper.

2.4.1 Bayesian hierarchical modelling (BHM)

In the BHM technique a hierarchy of parametric stochastic
models is used to describe the relationship between climate,
instrumental and proxy data. The model parameters are es-
timated using the available data, through Bayes’ rule. The
hierarchy consists of three basic components. First, in the
process level, a stochastic model describing the time evolu-
tion of the climate variable is selected. Second, in the data
level, stochastic relationships between the instrumental and
proxy data and the climate variable are developed. Finally, a
level of prior information about the parameters involved in
the other two components of the hierarchy is coupled. Here
we use the BHM algorithm named the Bayesian Algorithm
for Reconstructing Climate Anomalies in Space and Time
(BARCAST), developed by Tingley and Huybers (2010). In

the following, we specify the assumptions and equations for
each of the levels in the model hierarchy.

Process level

The process level describes the evolution of the true cli-
matic field as a multivariate autoregressive process of order 1,
AR(1),with spatially correlated innovations.

The evolution of the true precipitation, sampled at a finite
number of spatial locations, is assumed to follow a first-order
autoregressive process:

Prt+1−µ= α (Prt −µ)+ εPr, t , (1)

where Prt is the vector consisting of the true precipitation
values in all the locations at time step t , µ is the mean
of the process, and α is the AR(1) coefficient. Note that
the coefficients µ and α are the same for all the locations.
To account for different precipitation means at each loca-
tion the following procedure is followed: first, the time se-
ries are standardised; second, the BHM is applied; finally,
the outputs are inversely de-standardised. The standardisa-
tion is performed using the sample mean and standard de-
viation from the pseudo-instrumental time series. The inno-
vations εPr, t , accounting for the interannual or interdecadal
variability, are assumed to be independent and identically
distributed (iid) normal draws εPr, t ∼N (0,6) with an ex-
ponentially decaying spatial structure:

6ij = σ
2e−φ|xi−xj |, (2)

where
∣∣xi − xj ∣∣ is the distance between the locations ith and

j th of the precipitation vector, φ is the range parameter (1/φ
being the e-folding distance) and σ is the partial sill of the
spatial covariance matrix (spatial persistence, homogeneous
in space).

The temporal model within BARCAST allows the esti-
mations of the field at a certain temporal step to be influ-
enced by the information in the previous time step. The as-
sumed covariance matrix structure is supposed constant in
time and follows an exponentially decaying pattern with dis-
tance. Note that, by assuming this structure, if two distant
locations have well-correlated precipitation time series, this
will not be well represented by the BARCAST model as-
sumed. The method parameterises the spatial covariance ma-
trix with two unknown parameters: the covariance at null dis-
tance (σ ) and the exponential decay rate with distance (φ).

The model assumes that the climatic variable, precipita-
tion, follows a Gaussian distribution. Although this might
not be the case, especially for arid regions, the simulated JJA
precipitation in the area of study can be taken to reasonably
follow this assumption: for the pseudo-proxy selected loca-
tions, 63 % of the time series (considering the instrumental
period) pass the Kologorov–Smirnov test for normality at a
95 % confidence level (Fig. A1). Despite the Gaussian con-
ditions not being met in all the grid points, the model is still
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Figure 3. Correlation of simulated JJA precipitation time series
across different latitudinal bands versus distance. Only the instru-
mental period (years 1906–2005) and the grid points in continental
Asia are considered for the calculation. (a) Annual-resolution data.
(b) Decadal-resolution data. Dashed horizontal lines indicate the
thresholds of statistical significance at a 95 % confidence level ac-
cording to the Student’s t-test. For this plot, all grid points in the
same latitude band are grouped together and then one-to-one corre-
lations are calculated between members of the same group.

valid, although it might not be the most optimal fit at these
locations.

Figure 3 shows the correlation decay with distance for the
simulated JJA precipitation for different latitudinal bands.
For annual data (Fig. 3a), the correlation between precipi-
tation time series in consecutive grid points is usually high,
around 0.8. With few exceptions, the simulated precipitation
follows an exponentially decaying pattern with distance, with
points located further away than 600 km showing no signifi-
cant correlation. Therefore, we take the exponentially decay-
ing spatial structure of the covariance matrix in BARCAST
to be a reasonable assumption for the model. For decadal data
(Fig. 3b), the correlation behaviours are not uniform with re-
spect to the latitudinal bands. For some of the latitudes the
plot follows an exponentially decaying shape, and for others
it additionally shows a teleconnection pattern (notably the
northern-most 44–48◦ N latitude band).

Data level

The data level specifies the relationship between the mea-
surements (both proxy and instrumental) and the true field
values.

The instrumental observations at each time are assumed to
be noisy variations of the true precipitation field:

Instt =HInst, t
(
Prt + εInst, t

)
. (3)

The noise terms are assumed to be iid multivariate normal
draws εInst, t ∼N

(
0,τ 2

Inst
)
, while HInst, t is a diagonal matrix

with a 1 in position (i, i) if an instrumental observation is
available at the ith location, and a 0 otherwise.

The proxy observations are assumed to follow an unknown
statistically linear relationship with the true precipitation at
each location:

Proxyt =HProxy, t
(
β1Proxyt +β0+ εProxy, t

)
. (4)

Again, the HProx, t is a diagonal matrix with ones only for the
locations with proxy observations, and the noise terms are iid
normal draws: εProxy, t ∼N

(
0,τ 2

Proxy

)
.

Prior level

To close the scheme, prior distributions must be specified for
the eight scalar parameters

(
α,µ,σ,φ,β1,β2,τ

2
Inst,τ

2
Proxy

)
and the initial climate field (i.e. at the first time step). We
use the same priors as Tingley and Huybers (2010) and se-
lect prior distributions that are sufficiently diffuse to not have
any important influence on the posterior distributions.

Using Bayes’ rule the posterior distribution of each of the
unknown variables can be calculated. Samples are drawn
from these posterior distributions using a Gibbs sampler,
with a Metropolis step (Gelman et al., 2003) to update φ,
the spatial range parameter. The output of the Bayesian al-
gorithm is not a unique reconstruction, but an ensemble of
1200 equally probable draws, all of them consistent with the
model equations.

2.4.2 Bayesian hierarchical modelling coupled to
clustering

Here we propose to couple the BHM with a clustering algo-
rithm. The aim of the clustering step is to segregate south-
eastern Asia into several clusters, according to similarities
in the precipitation regimes during the pseudo-instrumental
period. After the clustering, the BHM code is run within
each cluster in an independent manner. Finally, all the results
are merged together to produce the entire spatial reconstruc-
tion over the post-850 period. The idea behind the clustering
step is to reduce the complexity of the problem to be pre-
sented to the BHM algorithm, as after clustering the code
does not have to deal with extreme differences in precipita-
tion regimes (as dipole patterns at mountain ranges) and a
large number of grid cells.
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We use a hierarchical agglomerative clustering technique.
Each observation starts in its own cluster and pairs of clusters
are agglomerated as one moves up in the hierarchy (Izenman,
2008). We select a complete-linking strategy: the distance
between sets of observations is defined as the maximum of
the pairwise distances between the observations in each of
the sets. First, the method groups together the two closest
observations, according to the selected distance, creating a
cluster of two observations. Then, the sets whose distance is
minimum are agglomerated together, iteratively repeating the
process.

Here, the elements to cluster together are the different
grid points in south-eastern Asia. The input variables for the
method are the pseudo-instrumental precipitation time se-
ries at each of these locations. The distance between two
points is defined as 1 minus the correlation between the
pseudo-instrumental precipitation time series at these loca-
tions (points highly correlated display a small distance). In
this way, the method groups together points whose pseudo-
instrumental precipitation time series are highly correlated.
We should note that the clustering algorithm does not require
any expert knowledge as it is a fully unsupervised machine
learning technique. This characteristic makes it easy to apply
as a pre-BHM stage in any other context or area of study.

For both the annual and decadal reconstructions we select
two cases: clustering into 5 and into 10 groups (note that the
clusters might be different when using the annual/decadal in-
formation; see Fig. A2). We term the reconstructions in this
category BHM+5Clusters and BHM+10Clusters. The cri-
teria for the selection of the number of clusters were that
most of the clusters should include pseudo-proxy locations
(if a cluster does not include pseudo-proxy information, the
BHM scheme only uses instrumental-period data). While this
condition is met without problems for 5 clusters, with the 10-
cluster division (in both the annual and decadal cases), one
of the clusters is disjunct with the pseudo-proxy network. As
a consequence, a higher number of clustering divisions was
not attempted.

2.4.3 Analogue method

The analogue method is a learning technique first introduced
by Lorenz (1969) for weather forecasting. The technique
uses predictors to determine the value of the target variable,
based on the statistical relationship between them in a learn-
ing set: the so-called pool of possible analogues. The method
can also be applied to produce a CFR. In our study and for
each time step (year or decade), the predictor variables are
the proxy records (38 predictors) and the target variable is
the complete precipitation field at the given time step. For
the annually resolved reconstruction the learning set consists
of the precipitation fields at each of the years in the instru-
mental period, i.e. all the time steps in which we simulta-
neously have the information about proxy and target. For the
decadally resolved reconstruction, the learning set consists of

the mean precipitation field in each possible 10-year period
during the instrumental era.

The reconstruction of the precipitation field at time step t
is obtained as follows. First, a distance between time steps
is defined. Let ti be a time step included in the pool (instru-
mental period). Then, the distance between t and ti is, in this
paper, defined as the Euclidean distance between the vectors
of proxy data at times t and ti :

d (t, ti)=

√√√√ K∑
j=1

(
Prox

(
lj , t

)
−Prox

(
lj , ti

))2
, (5)

where Prox
(
lj , t

)
is the value of the proxy at location lj and

time t . Locations l1, . . ., lK are all the proxy locations (K =
38). Second, the time steps in the pool are ordered according
to their distance from t . Third, the N closest time steps are
selected from the pool and are termed analogues: t1, . . ., tN .
Finally, the precipitation reconstruction for time t is the mean
of the precipitation field in the N analogues:

Reconstruction(t)=
Pr (t1)+ . . .+Pr (tN )

N
. (6)

N can be any value between 1 and the total number of ele-
ments in the pool of analogues. On the one hand, for annual
(decadal) reconstructions, using N = 1 will imply having a
reconstruction identical to just 1 year (10-year mean) of the
instrumental period and, therefore, particularities of this year
(10-year period) might be involved. On the other hand, us-
ing the maximal N implies just giving as reconstruction the
mean during the instrumental period, which eliminates all the
inter-annual or inter-decadal variability. In this paper we se-
lect as N intermediate values, considering N approximately
equal to 20 % of the number of possible analogues. Experi-
ments using values ofN between 15 % and 40 % of the num-
ber of possible analogues were performed and the results are
not significantly different to the ones selected to be displayed
here (not shown).

Note that in this paper we use the analogue method in its
classical version (obtaining the pool of analogues from the
observational data set) and not in combination with the use
of a GCM to draw the analogue cases from.

2.5 Skill metrics

To evaluate the performance of the CFR methodologies, we
compare the reconstruction with the true precipitation field.
We select three different skill metrics. The first skill metric,
the correlation coefficient, evaluates the ability of the recon-
struction to reproduce the temporal evolution of the target. At
each grid point, we calculate the Pearson correlation between
the reconstruction and the true precipitation time series, con-
sidering the whole reconstruction period. As for the Bayesian
algorithms, we have an ensemble of reconstructions: we first
calculate the correlation of each of these ensembles with the
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true precipitation and, finally, we show the mean of these cor-
relations.

The second skill metric quantifies the absolute biases of
the reconstruction at each location. Instead of directly using
the root mean squared error (RMSE), we compare the RMSE
of the different reconstructions with the RMSE obtained with
the simplest possible reconstruction: using the climatological
mean during the instrumental period. In reconstruction stud-
ies, this is usually referred to as the reduction of error (RE,
Cook et al., 1994) and is defined, at each location l, as

RE(l)= 1−

∑
t

(Pr (l, t)−Reconstruction(l, t))2∑
t

(Pr (l, t)−Climatology(l))2 , (7)

where Reconstruction (l, t) is the reconstruction being evalu-
ated at location l and time step t and Climatology (l) is the
climatological mean at location l. The sum is done over all
the time steps within the reconstruction period. In this case
for the Bayesian techniques, and to simplify the interpreta-
tion, we show this metric for the median reconstruction.

The last skill metric is especially designed to evaluate
probabilistic ensemble forecasts of continuous predictands
and is, therefore, particularly suitable for evaluating the
Bayesian schemes. We use the continuous ranked probabil-
ity score (Hersbach, 2000; Wilks, 2011; Werner et al., 2018).
The CRPS measures the difference between the accumulated
probability density function and the step function that jumps
from 0 to 1 at the observed value:

CRPS=

∞∫
−∞

(F (y)−F0 (y))2dy, (8)

F0 (y)=
0, y < observed value,
1, y ≥ observed value. (9)

It has a negative orientation, meaning smaller values are
better. This metric can only be provided for the Bayesian
schemes and not for the analogue reconstructions.

3 Results

In the following sub-sections we evaluate the ability of the
different reconstruction techniques. In Sect. 3.1 we select a
pseudo-proxy scenario with medium noise level (equivalent
to a correlation with the target precipitation of 0.5) and eval-
uate the reconstruction schemes. In Sect. 3.2, we assess the
impact of the noise in the pseudo-proxy time series on the
quality of the reconstruction.

3.1 Evaluation of reconstruction techniques:
medium-noise pseudo-proxy case

As measures of performance we present the three selected
skill metrics (see Sect. 2.5 for details), and in each case, we
show the results at annual and decadal resolutions.

Figure 4 displays the correlation coefficient for the differ-
ent reconstruction techniques. According to this skill mea-
sure, regardless of the method and resolution, proxy-rich
East China (EChina, 20–40◦ N, 100–120◦ E) stands out as the
best-reconstructed area. However, a fairly dense coverage by
proxy records seems not to be a universal indicator of suc-
cess, as North-Western Arid China (NWAChina, 40–50◦ N,
72.5–90◦ E) is highlighted as an area where the Bayesian al-
gorithms are successful while the analogue method displays
no ability. On the other hand, areas poorly covered by the
pseudo-proxy network (south of 18◦ N, north-eastern Asia
and south of Tibet at longitudes 85–95◦ E) are the regions
where the correlation coefficient is lowest.

For the annual-resolution reconstructions, the best perfor-
mance is obtained by the BHM technique, showing a spatial
mean correlation with the target of 0.4 (Fig. 4a). Coupling
the BHM with clustering partially deteriorates the results,
with the correlation coefficient severely dropping over the
proxy-rich EChina region (Fig. 4b and c). Meanwhile, the
performance of the analogue method is inferior: the correla-
tion coefficient spatial mean is 0.25 and there is no skill in
reconstructing precipitation north of 42◦ N despite the fact
that pseudo-proxies are located in that region (Fig. 4d).

For the decadally resolved reconstructions the difference
between the Bayesian methods and the analogue is even
larger. In terms of the correlation coefficient measure the
BHM (analogue method) is the best (worst) performing, with
a spatial average of 0.37 (0.1). Among the Bayesian schemes,
the cluster coupling maintains the skill levels in all regions
except India, where lower correlation values are obtained.
The analogue method shows a much constrained geographi-
cal skill, with correlation values above 0.2 only over EChina
and central India.

In general, for each of the methods, the correlation co-
efficient is higher for the annually resolved than for the
decadally resolved reconstruction. One exception to that is
the BHM+5Clusters over EChina. This behaviour is proba-
bly derived from the clustering division (see Fig. A2).

Figure 5 shows the results for the RE index. In most of the
grid points the RE index is positive, indicating a reduction
of the error in comparison to forecasting the instrumental-
period climatology as a reconstruction. For all the Bayesian
methods and both time resolutions the highest skill is found
in regions with high density of pseudo-proxy information.
Again, the analogue method shows a clearly inferior perfor-
mance to NWAChina, in spite of the considerable number of
pseudo-proxy locations present there.

For the annual reconstruction, improvements from clima-
tology are found for the Bayesian approaches in EChina,
NWAChina, Mongolia and, to a lesser extent, in central India
(Fig. 5a, b and c). For the analogue method, the improvement
with respect to climatology is confined only to EChina and
central India, and the improvement is weaker than with the
Bayesian techniques (Fig. 5d).
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Figure 4. Correlation between target precipitation and different reconstructions, at each grid point. (a, b, c, d) Annually resolved data.
(e, f, g, h) Decadally resolved data. (a, e) BHM. (b, f) BHM+5Clusters. (c, g) BHM+10Clsuters. (d, h) Analogue method. The boxplots
(indicating median, 25 %, and 75 % percentiles and non-outlier limits) to the right of the colour bars show the distribution of the grid-point
correlation coefficients. Black dots: pseudo-proxy network.

For the decadal data, similar results are obtained. How-
ever, the RE index is notably negative in some grid points
for the BHM+5clusters (mainly in the northern-most extent
of the study region; Fig. 5f) and the analogue cases (every-
where with the exception of EChina; Fig. 5h).

Figure 6 displays the results for the CRPS metric, for the
probabilistic methods (Bayesian schemes). For this metric,
the annually resolved (decadally resolved) reconstructions
have a CRPS of 190 mm per month (22 mm per month), com-
pared to the target precipitation spatially averaged standard

deviation of 34 mm per month (11 mm per month) for annual
(decadal) data. This indicates that the methods have more
problems in reproducing the expected probability distribu-
tion functions in the annual case.

For the annual-resolution reconstructions there is almost
no noticeable difference in the performance of the three
Bayesian schemes. For this metric, the region of best per-
formance is NWAChina. In this case, the performance over
the proxy-rich EChina is intermediate (unlike with the cor-
relation coefficient and RE index metrics). For the decadal-
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Figure 5. RE index for different reconstructions, at each grid point. (a, b, c, d) Annually resolved data. (e, f, g, h) Decadally resolved data.
(a, e) BHM. (b, f) BHM+5Clusters. (c, g) BHM+10Clsuters. (d, h) Analogue method. The boxplots (indicating median, 25 % and 75 %
percentiles and non-outlier limits) to the right of the colour bars show the distribution of the grid-point RE index. Black dots: pseudo-proxy
network.

resolution reconstructions, the performance among the meth-
ods is quite different. While the spatial mean is in all three
cases similar (around 22 mm per month), the spread among
grid points is much higher for the BHM+10Clusters scheme.
In particular, for the 10-cluster scheme the skill over China
and the south-east of the study region is much higher than
in the other methods. In general, the regions with a dense
proxy network display better performance levels, and central
India and the north-east of the study area stand out as low-
performing areas for all three methodologies.

Three main conclusions can be drawn from the experi-
ments above: first, proxy-depleted areas cannot be success-
fully reconstructed. Second, the Bayesian schemes are su-
perior to the analogue method in all metrics (this difference
is particularly acute over NWAChina, where the analogue
method fails despite the relatively good coverage by proxy
data). Third, among the Bayesian algorithms the results are
similar, although a partial deterioration of the skill is detected
in some regions when clustering is coupled.

The underperformance of the analogue method in com-
parison with the BHM variants might seem in contradiction
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Figure 6. CRPS for different reconstructions, at each grid point. (a, b, c) Annually resolved data. (d, e, f) Decadally resolved data. (a, d) BHM
reconstruction. (b, e) BHM+5Clusters. (c, f) BHM+10Clusters. The boxplots (indicating median, 25 % and 75 % percentiles and non-outlier
limits) to the right of the colour bars show the distribution of the grid-point CRPS. Black dots: pseudo-proxy network.

with the results of Gómez-Navarro et al. (2015), who do not
find any significant skill differences between these schemes.
However, we should note an important difference between
the two studies: in Gómez-Navarro et al. (2015) the authors
use as their pool of analogues an independent highly resolved
simulation performed with a regional model, while in this
paper we use the classical analogue approach based on the
instrumental-period pool. This difference makes it impossi-
ble to draw a fair comparison between the two studies, indi-
cating that the pool of analogues is essential for determining
the potential success of the analogue method as a reconstruc-
tion technique.

We hypothesise a couple of reasons for the failure of the
analogue method over NWAChina: first, the semi-arid pre-
cipitation regime dominant in the area and, second, an in-
sufficient number of analogues in the pool. As the method
is unsuccessful at both annual and decadal resolutions, we
think that the number of elements in the pool of analogues
is not an important variable and that the main cause of the
failure resides in the fact that non-normal-behaving time se-
ries could potentially be more difficult to mimic by analogues

than Gaussian-behaving ones. However, providing a proof of
such a hypothesis is out of the scope of this paper and will
require the design of new theoretical experiments with input
data arising from different probability distributions.

Disentangling the reasons leading to a partial deteriora-
tion of skill when coupling the BHM to clustering algorithms
will require additional experiments. However, we hypothe-
sise that the main reason for such behaviour is related to
the loss of information from geographical neighbours. While
during clustering geographical neighbours can be separated,
the information from such sites is taken into account in the
covariance matrix structure of BHM and, therefore, losing
information from close locations might affect the final per-
formance.

3.2 Effect of noise in pseudo-proxy records

Next, we evaluate the impact of noise in the pseudo-proxy
time series on the skill of the reconstruction techniques. We
focus on two schemes: one Bayesian (BHM+5Clusters, se-
lected for its balance between skill and computational re-
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Figure 7. Spatial mean correlation skill of reconstruction tech-
niques for different noise levels (expressed here in terms of the cor-
relation between the pseudo-proxy and truth).

quirements, as shown in Sect. 3.1) and the analogue method.
We work with four noise levels for the pseudo-proxy time
series: high noise (correlation with truth: 0.3), medium noise
(correlation with truth: 0.5), low noise (correlation with truth:
0.7) and perfect proxy (correlation with truth: 1). Note that
the medium-noise proxy case corresponds to the level used
through Sect. 3.1. To simplify and summarise the results, in
this subsection we display the reconstruction performance in
terms of only one skill measure: the correlation coefficient.

Figure 7 shows the dependency of the correlation coef-
ficient, averaged in space, with noise levels in the pseudo-
proxy records. At annual resolution, the skill of the meth-
ods increases in an almost linear way with the quality of
the pseudo-proxy records, except for a drop in the Bayesian
skill in the no-noise scenario. The BHM+5Clusters perfor-
mance is better than the analogue method in all cases ex-
cept the no-noise one. For high-noise proxies the skill of
the BHM+5Clusters (analogue method) is 0.23 (0.18), while
in the perfect-proxy scenario the BHM+5Clusters (analogue
method) reaches 0.30 (0.42). For decadally resolved recon-
structions the picture is quite different. The Bayesian ap-
proaches show a quasi-constant skill for the medium, low and
no-noise examples (around 0.33) and the analogue method
performs poorly, showing for all the noise types a skill be-
tween 0.09 and 0.15. While for the Bayesian schemes the
spatial average skill for the annual or decadal resolutions is
similar, the difference between annual versus decadal is im-
portant in the analogue case. To complement the spatially
averaged information, Figs. 8 and 9 show the sensitivity of
the correlation skill measure field to the noise levels in the
pseudo-proxies for the BHM+5Clusters and the analogue
method, respectively.

For the Bayesian algorithm (Fig. 8), the perfect-proxy case
shows high performance over NWAChina, EChina and north-
east of the study area, at annual and decadal resolutions.
For the annual reconstruction, the skill of the scheme is low
southward of 25◦ N and over some grid cells in the north

of the area. For the decadal reconstruction, the same areas
are also problematic and, in addition, most of India is not
well reconstructed. In general, as the noise level in the input
pseudo-proxies increases, the performance of the method de-
teriorates, and for the high-noise case only East China and
the north-west of the study region show moderate success.

Figure 9 presents the analogue method performance. For
annual resolution, in the case of perfect pseudo-proxies, the
method is successful in the central part of the study area (be-
tween 15 and 45◦ N), while the northern and southern-most
extremes are not well reconstructed. However, the decadal
counterpart is only skilful in EChina. At the high-noise end
of the spectrum, the analogue method only shows a satisfac-
tory performance in EChina, between 20 and 40◦ N (between
25 and 35◦ N) for the annually resolved (decadally resolved)
reconstruction.

To summarise, as expected, the noise in the pseudo-proxy
time series is important, as the quality of the reconstruction
rapidly decreases with the noise level.

4 Summary and conclusions

This study evaluates the ability of several statistical tech-
niques to reconstruct the precipitation field over south-
eastern Asia in a PPE setting. The reconstructions are per-
formed using 1156 years of model simulation (corresponding
to the period 850–2005), at annual and decadal resolution.
The techniques used are BHM, BHM coupled with cluster-
ing (dividing south-eastern Asia into 5 or 10 clusters) and the
analogue method. While the analogue method is a classical
approach and has been widely used, the Bayesian variants are
novel for the hydro-climatological reconstructions’ field, this
being the first time the technique is applied for Asian precipi-
tation reconstruction. Moreover, the coupling of the Bayesian
modelling with clustering algorithms is also an innovation
that could potentially lead to a more widespread application
of these computationally intensive processes.

We find that for all the algorithms and resolutions a high
density of pseudo-proxy information is a necessary but not
sufficient condition for a successful reconstruction. On the
one hand, the lack of proxy data over regions such as the
north-east of the study area, south of Tibet and south of
20◦ N, determines that none of the methods is capable of
delivering a skilful reconstruction. On the other hand, a
good performance over the proxy-rich areas of EChina and
NWAChina is not guaranteed just by the amount of data
present there: while all the methods are highly successful
over EChina, only the Bayesian algorithms deliver quality
reconstructions over NWAChina.

Among the three Bayesian schemes the differences in skill
are not extremely notorious, although a partial deteriora-
tion of the skill is detected in some regions when cluster-
ing is coupled. Noting that the Bayesian technique without
any form of pre-clustering of the area of interest (BHM)
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Figure 8. BHM+5Clusters performance in terms of correlation with the target for different levels of noise at annual (a, b, c, d) or
decadal (e, f, g, h) resolution. (a, b) No noise. (c, d) Low noise. (e, f) Medium-level noise. (g, h) High noise. The boxplots (indicating
median, 25 % and 75 % percentiles and non-outlier limits) to the right of the colour bars show the distribution of the grid-point correlation
coefficients. Black dots: pseudo-proxy network.

is extremely computationally expensive, coupling it with a
clustering scheme (BHM+5Clusters or BHM+10Clusters)
seems to be a good compromise between success of the
reconstruction and computational demand (with computing
times reduced by up to 50 %).

We also find that the quality of the final reconstructions
is highly sensitive to the noise levels included in the input
pseudo-proxy data, those variables being negatively corre-
lated. Only under a perfect-proxy (no-noise) scenario and at
annual resolution is the analogue method capable of over-
performing the Bayesian schemes over most areas. Even in

this ideal no-noise case NWAChina remains elusive for the
analogue methodology.

As a summary, we find that for millennium-length pre-
cipitation reconstructions over south-eastern Asia a dense
network of proxy information is mandatory for success,
highlighting the complex nature of the precipitation field
in the area of study. Among the selected algorithms, the
Bayesian techniques perform generally better than the ana-
logue method, the difference in abilities being highest over
the semi-arid north-west and in the decadal-resolution frame-
work. The superiority of the Bayesian approach indicates that
directly modelling the space and time precipitation field vari-
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Figure 9. Analogue method performance in terms of correlation with target for different levels of noise at annual (a, b, c, d) or
decadal (e, f, g, h) resolution. (a, b) No noise. (c, d) Low noise. (e, f) Medium-level noise. (g, h) High noise. The boxplots (indicating
median, 25 % and 75 % percentiles and non-outlier limits) to the right of the colour bars show the distribution of the grid-point correlation
coefficients. Black dots: pseudo-proxy network.

ability is more appropriate than just relying on similarities
within a restricted pool of observational analogues, in which
certain regimes might not be present.

A natural next step is to implement real-world recon-
structions of precipitation in the region of continental south-
eastern Asia. These PPEs are auspicious for such a future en-
deavour, as some moderate skill can be expected in most of
the region. Nevertheless, it is important to acknowledge that
these experiments are highly idealised and that real-world
data might incorporate additional constraints and challenges.
Additionally, more PPEs could also be designed by omit-
ting some of the simplifications assumed here. For exam-

ple, while here we only took proxy time series that cover the
whole period of interest, with the same temporal resolution,
same signal to noise relation and same relationship with the
underlying hydroclimatic variable of interest, some of these
constraints could be modified to better resemble reality.

Data availability. Data sets, codes and analysis
scripts used in this study can be obtained from:
https://doi.org/10.17605/OSF.IO/B2RXP (Talento, 2019).
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Appendix A

Figure A1. Kolmogorov–Smirnov normality test on the simulated JJA precipitation during the instrumental period (years 1906–2005, at
annual resolution). (a) Rejection or acceptance of the normality hypothesis, at a 95 % confidence level; (b) p values. Black dots: pseudo-
proxy network.

Figure A2. Divisions into clusters (in each plot different colors indicate different clusters), using the simulated JJA precipitation in the
instrumental period (years 1996–2005) as input. (a) Annual data, division into 5 clusters, (b) annual data, division into 10 clusters, (c) decadal
data, division into 5 clusters, and (d) decadal data, division into 10 clusters. Magenta dots: pseudo-proxy network.
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