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Abstract. Hillslopes are the dominant landscape components
where incoming precipitation becomes groundwater, stream-
flow or atmospheric water vapor. However, directly observ-
ing flux partitioning in the soil is almost impossible. Hydro-
logical hillslope models are therefore being used to inves-
tigate the processes involved. Here we report on a model-
ing experiment using the Catchment Modeling Framework
(CMF) where measured stable water isotopes in vertical
soil profiles along a tropical mountainous grassland hills-
lope transect are traced through the model to resolve poten-
tial mixing processes. CMF simulates advective transport of
stable water isotopes18O and2H based on the Richards equa-
tion within a fully distributed 2-D representation of the hills-
lope. The model successfully replicates the observed tempo-
ral pattern of soil water isotope profiles (R2 0.84 and Nash–
Sutcliffe efficiency (NSE) 0.42). Predicted flows are in good
agreement with previous studies. We highlight the impor-
tance of groundwater recharge and shallow lateral subsurface
flow, accounting for 50 and 16 % of the total flow leaving the
system, respectively. Surface runoff is negligible despite the
steep slopes in the Ecuadorian study region.

1 Introduction

Delineating flow path in a hillslope is still a challenging
task (Bronstert, 1999; McDonnell et al., 2007; Tetzlaff et al.,
2008; Beven and Germann, 2013). However, a more com-
plete understanding of the partitioning of incoming water to
surface runoff, lateral subsurface flow components or perco-
lation allows better understanding, for example, the impact of

climate and land use change on hydrological processes. Mod-
els are often used to test different rainfall–runoff generation
processes and the mixing of water in the soil (e.g., Kirkby,
1988; Weiler and McDonnell, 2004). Due to the prevail-
ing measurement techniques and therefore the available data
sets, it has become common practice to base the valida-
tion of modeled hillslope flow processes on quantitative data
on storage change. In the simplest case, system-wide stor-
age changes are monitored by discharge and groundwater
level measurements or, on more intensively instrumented
hillslopes, the storage change of individual soil compart-
ments is monitored by soil moisture sensors. In the typical
2-D flow regime of a slope, such models bear the neces-
sity to account not only for the vertical but also for the lat-
eral movements of water within the soil (Bronstert, 1999).
Quantitative data on storage change in this regard are only
suitable to account for the actual change in soil water vol-
ume, but not to assess the source or flow direction. Know-
ing tracer compositions of relevant hydrological components
along a hillslope allows one to account for mixing processes
and thereby to delineate the actual source of the incoming
water. Over the years a number of artificial, e.g., fluores-
cence tracers like uranine, and natural tracers, e.g., chloride
or stable water isotopes, have emerged. While the applica-
tion of the artificial tracers is rather limited in space and time
(Leibundgut et al., 2011), the latter ones can be used over
a wide range of scales (Barthold et al., 2011; Genereux and
Hooper, 1999; Leibundgut et al., 2011; Muñoz-Villers and
McDonnell, 2012; Soulsby et al., 2003). Stable water iso-
topes such as oxygen-18 (18O) and hydrogen-2 (2H) are inte-
gral parts of water molecules and consequently ideal tracers
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of water. Over the last decades isotope tracer studies have
proven to provide reliable results on varying scales (chamber,
plot, hillslope to catchment scale) and surface types (open
water, bare soils, vegetated areas) to delineate or describe
flow processes under field experimental or laboratory con-
ditions (Garvelmann et al., 2012; Hsieh et al., 1998; Sklash
et al., 1976; Vogel et al., 2010; Zimmermann et al., 1968).

Although the first 1-D process-orientated models to de-
scribe the dynamics of stable water isotope profiles for
open water bodies (Craig and Gordon, 1965) were devel-
oped as early as in the mid-1960s, and a bit later for soils
(Zimmermann et al., 1968), fully distributed 2-D to 3-D hy-
drological tracer models benefitting from the additional in-
formation to be gained by stable water isotopes are still in
their early development stages (Davies et al., 2013) or use
strong simplifications of the flow processes (e.g., TACD us-
ing a kinematic wave approach; Uhlenbrook et al., 2004).
This can be attributed to the high number of interwoven pro-
cesses affecting the soil water isotope fluxes not only in the
soil’s liquid phase but also in its vapor phase. The more
process-based 1-D models (Braud et al., 2005; Haverd and
Cuntz, 2010) therefore simultaneously solve the heat balance
and the mass balance simultaneously for the liquid and the
vapor phase and are thereby describing the

– convection and molecular diffusion in the liquid and va-
por phase,

– equilibrium fractionation between liquid and vapor
phase,

– fractionation due to evaporation,

– non-fractionated flux due to percolation and
transpiration.

To obtain and compute the data required to apply these kind
of models beyond the plot scale is still challenging. However,
due to emerging measuring techniques the availability of suf-
ficient data is currently becoming more realistic. Increas-
ing computational power and especially the cavity ring-down
spectroscopy (CRDS) – a precise and cost-effective method
to analyze the signature of stable water isotopes (Wheeler et
al., 1998) – promise progress.

Hence, it is tempting to investigate the suitability of iso-
tope tracers to delineate hydrological flow paths using a
more physical modeling approach. Recent research in this
direction includes the work of McMillan et al. (2012) and
Hrachowitz et al. (2013) using chloride as a tracer to study
the fate of water in catchments in the Scottish Highlands.
Even though some processes affecting the soil water isotope
transport are still represented in a simplified manner or, due
to their limited effect/importance of the respective process
within the given study site, could be omitted, this approach
allows us to determine the potential of soil water isotope
modeling in catchment hydrology and highlights the future
need for research.

This study is conducted in a 75 km2 montane rain forest
catchment in south Ecuador, the upper part of the Rio San
Francisco, which has been under investigation since 2007
(Bogner et al., 2014; Boy et al., 2008; Bücker et al., 2011;
Crespo et al., 2012; Fleischbein et al., 2006; Goller et al.,
2005; Timbe et al., 2014; Windhorst et al., 2013b). The find-
ings of those studies (briefly synthesized in Sect. 2.3) will
(a) ease the setup of chosen model, (b) let us define suitable
boundary conditions for the chosen modeling approach and
(c) serve as a reference for the delineated flow bath. The ad-
ditional information from previous studies conducted in the
study area will therefore highlight the potential of this new
model approach to delineate hydrological flow paths under
natural conditions and support our preliminary hydrological
process understanding retrieved from more classical methods
conducted in the past.

Within this catchment we selected a hillslope with a dis-
tinct drainage area and nearly homogenous land use and es-
tablished an experimental sampling scheme to monitor the
isotopic signatures of the soil water of three soil profiles
using passive capillary fiberglass wick samplers (PCaps).
Based on the proposed modeling approach a 2-D virtual hill-
slope representation of this hillslope was then implemented
using the Catchment Modeling Framework (CMF; Kraft et
al., 2011). Due to the necessity to mix the flows in accor-
dance with the observed soil water isotope signatures, we
are confident that the degree of certainty for the modeled
flow path will be higher than for conventional modeling ap-
proaches relying solely on quantitative information to evalu-
ate the modeled data. Replacing the calibration target bears
now the necessity to mix the right amount and signature of
any given flow component, whereas the quantitative change
only relies on the actual amount of water leaving or entering
any given compartment. We will quantify the following flow
components to disentangle the runoff generation processes:
surface runoff, lateral subsurface flow in the vadose zone and
percolation to groundwater. The lateral subsurface flow will
be further subdivided into near-surface lateral flow and deep
lateral flow.

To validate the chosen modeling approach and assess our
process understanding, we tested the following hypotheses:

1. Under the given environmental conditions – high pre-
cipitation and humidity – (Bendix et al., 2008) and full
vegetation cover (Dohnal et al., 2012; Vogel et al., 2010)
only non-fractionating and advective water transport of
isotopes is relevant.

2. Gaseous advection and diffusive process in the gaseous
as well as the liquid phase and the enrichment due to
evaporation are negligible; hence the stable water iso-
topes behave like a conservative tracer.

3. Large shares of the soil water percolate to deeper hori-
zons, thereby creating long mean transit times (MTT)
(Crespo et al., 2012; Timbe et al., 2014).
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Figure 1. (a)Outline of the modeled hillslope and its virtual discretization into cells.(b) Location of the study area within Ecuador.(c) Pho-
tograph showing the location of the wick samplers (P represents pasture, B represents bajo/lower level, M represents medio/middle level, A
represents alto/top level sampler).

4. Due to the high saturated conductivities of the top soil
layers, the occurrence of Hortonian overland flow is un-
likely to have an important contribution to the observed
flows (Crespo et al., 2012).

5. Fast near-surface lateral flow contributes essentially to
downhill water flows and plays a relevant role to un-
derstand the overall hydrological system (Bücker et al.,
2010).

2 Materials and methods

2.1 Study area

The hillslope under investigation is located within the catch-
ment of the Rio San Francisco in south Ecuador (3◦58′30′′ S,
79◦4′25′′ W) at the eastern outskirts of the Andes and en-
compasses an area of 75 km2. Close to the continental divide
the landscape generally follows a continuous eastward de-
cline towards the lowlands of the Amazon basin (Fig. 1b).
Due to the high altitudes (1720–3155 m a.s.l.), the deeply in-
cised valleys (slopes are on average 25–40◦ over the entire
watershed), the low population density and the partly pro-
tected areas of Podocarpus National Park, the human impact
within the catchment is relatively low. The southern flanks of
the Rio San Francisco are covered by an almost pristine trop-
ical mountain cloud forest and lie mostly within Podocar-
pus National Park. At lower elevations the northern flanks
have mostly been cleared by natural or slash-and-burn fires

during the last decades and are now partially used for ex-
tensive pasture (Setaria sphacelataSchumach.); reforesta-
tion sites (Pinus patula) are covered by shrubs or invasive
weeds (especially tropical bracken fern;Pteridium aquil-
inum L.). The climate exhibits a strong altitudinal gradi-
ent, creating relatively low temperatures and high rainfall
amounts (15.3◦C and 2000 mm a−1 at 1960 m a.s.l. to 9.5◦C
and> 6000 mm a−1 at 3180 m a.s.l.) with the main rainy sea-
son in the austral winter (Bendix et al., 2008). A comprehen-
sive description of the soils, climate, geology and land use
has been presented by Beck et al. (2008), Bendix et al. (2008)
and Huwe et al. (2008).

2.2 Experimental hillslope

To test our understanding of hydrological processes within
the study area, we chose a hillslope with a nearly homoge-
nous land use (Fig. 1). It is located on an extensive pasture
site with low-intensity grazing by cows and dominated bySe-
taria sphacelata. Setaria sphacelatais an introduced tropical
C4 grass species that forms a dense tussock grassland with a
thick surface root mat (Rhoades et al., 2000). This grass is ac-
customed to high annual rainfall intensities (> 750 mm a−1),
has a low drought resistance and tolerates water logging to
a greater extent than other tropical grass types (Colman and
Wilson, 1960; Hacker and Jones, 1969). The hillslope has a
drainage area of 0.025 km2, a hypothetical length of the sub-
surface flow of 451 m and an elevation gradient of 157 m with
an average slope of 19.2◦. The soil catena of the slope was
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recorded by Pürckhauer sampling and soil pits. To investigate
the passage of water through the hillslope, a series of three
wick samplers has been installed along the line of subsurface
flow.

Climate forcing data with an hourly resolution of pre-
cipitation, air temperature, irradiation, wind speed and rel-
ative humidity were collected by the nearby (400 m) cli-
mate station “ECSF” at similar elevation. Isotopic forcing
data were collected manually for every rainfall event from
October 2010 until December 2012 using a Ø25 cm fun-
nel located in close proximity to the chosen hillslope at
1900 m a.s.l. (Timbe et al., 2014). To prevent any isotopic
fractionation after the end of a single rainfall event (de-
fined as a period of 30 min without further rainfall), all sam-
ples were directly sealed with a lid and stored within a
week in 2 mL amber glass bottles for subsequent analysis of
the isotopic signature as described in Sect. 2.4.1 (all sam-
ples< 2 mL were discarded).

2.3 Current process understanding at the catchment
scale

The catchment of the Rio San Francisco has been under in-
vestigation since 2007 (Bücker et al., 2011; Crespo et al.,
2012; Timbe et al., 2014; Windhorst et al., 2013b) and was
complemented by a number of studies on forested micro-
catchments (≈ 0.1 km2) within this catchment (Bogner et al.,
2014; Boy et al., 2008; Fleischbein et al., 2006; Goller et al.,
2005). Studies on both scales identify the similar hydrologi-
cal processes as being active within the study area.

Studies on the micro-scale (Boy et al., 2008; Goller et
al., 2005), supported by solute data and end member mixing
analysis at the meso-scale (Bücker et al., 2011; Crespo et al.,
2012), showed that fast “organic horizon flow” in forested
catchments dominates during discharge events if the min-
eral soils are water saturated prior to the rainfall. Due to
an abrupt change in saturated hydraulic conductivity (Ksat)
between the organic (38.9 m d−1) and the near-surface min-
eral layer (0.15 m d−1), this organic horizon flow can con-
tribute up to 78 % of the total discharge during storm events
(Fleischbein et al., 2006; Goller et al., 2005). However, the
overall importance of this organic horizon flow is still dis-
putable because the rainfall intensity rarely gets close to such
a high saturated hydraulic conductivity. In 95 % of the mea-
sured rainfall events between June 2010 and October 2012
the intensity was below 0.1 m d−1 (≈ 4.1 mm h−1) and was
therefore 15 times lower than the saturated hydraulic con-
ductivity of the mineral soil layer below the organic layer
under forest vegetation and around 30 times lower than the
saturated hydraulic conductivity of the top soil under pas-
ture vegetation (Zimmermann and Elsenbeer, 2008; Crespo
et al., 2012). The same conclusion holds true for the occur-
rence of surface runoff due to infiltration access on pasture
(lacking a significant organic layer). Solely based on rainfall
intensities, surface runoff is therefore relatively unlikely to

contribute to a larger extent in rainfall–runoff generation. The
reportedKsat values are based on measurements of 250 cm3

undisturbed soil core samples vertically extracted from the
center of each respective layer. Due to the chosen sampling
method and the limited size of the soil cores, the effective
saturated hydraulic conductivity will be even higher and can
vary for the horizontal flow component. When and to which
extent a subsurface saturated prior to the rainfall event would
still trigger surface runoff on pastures therefore remains to be
investigated.

Bücker et al. (2010) and Timbe et al. (2014) were able to
show that base flow, on the other hand, has a rather large
influence on the annual discharge volume across different
land use types, accounting for> 70 and> 85 %, respectively.
These findings are also supported by the long MTT of the
base flow for different sub-catchments of the Rio San Fran-
cisco in comparison to the fast runoff reaction times, varying
according to Timbe et al. (2014) between 2.1 and 3.9 years.
Accordingly, the current findings confirm that the base flow
– originating from deeper mineral soil and bedrock layers–
is dominating the overall hydrological system in the study
area (Crespo et al., 2012; Goller et al., 2005). Apart from this
dominating source of base flow, Bücker et al. (2010) identi-
fied near-surface lateral flow as a second component to be
relevant for the generation of base flow for pasture sites.

2.4 Measurements

2.4.1 Passive capillary fiberglass wick samplers (PCaps)

We installedpassive capillary fiberglass wick samplers(wick
samplersfor short; designed according to Mertens et al.,
2007) as soil water collectors at three locations along an alti-
tudinal transects under pasture vegetation at three soil depths.
PCaps maintain a fixed tension based on the type and length
of wick (Mertens et al., 2007), require low maintenance and
are most suitable to sample mobile soil water without alter-
ing its isotopic signature (Frisbee et al., 2010; Landon et al.,
1999). We used woven and braided 3/8 in. fiberglass wicks
(Amatex Co. Norristown, PA, US). Half (0.75 m) of the 1.5 m
wick was unraveled and placed over a 0.30× 0.30× 0.01 m
square plastic plate, covered with fine-grained parent soil ma-
terial and then put in contact with the undisturbed soil.

Every collector was designed to sample water from three
different soil depths (0.10, 0.25 and 0.40 m) with the same
suction, all having the same sampling area of 0.09 m2, wick
type, hydraulic head of 0.3 m (vertical distance) and total
wick length of 0.75 m. To simplify the collection of soil wa-
ter, the wick samplers drained into bottles placed inside a
centralized tube with an inner diameter of 0.4 m and a depth
of 1.0 m. To avoid any unnecessary alterations of the natural
flow above the extraction area of the wick sampler, the cen-
tralized tube was placed downhill and the plates were evenly
spread uphill around the tube. A flexible silicon tube with
a wall thickness of 5 mm was used to house the wick and
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Table 1.Soil physical parameters.

Soil code Clay Texture Silt Porosity K∗
sat Van Genuchten–

Mualem parameters

[%] sand [%] [%] [m d−1
] α n

[%]

A1 & A1 top 34 17 49 81 0.324 0.641 1.16
A2 & A2 top 19 33 49 63 0.324 0.352 1.13
A3 & A3 top 15 34 51 74 0.324 0.221 1.24
B1 8 16 76 66 0.228 1.046 1.19
B2 15 34 51 59 0.228 0.145 1.13
B3 11 18 70 58 0.228 0.152 1.16
C1 15 45 40 55 0.026 0.023 1.12
C2 45 20 35 47 0.026 0.004 1.17

∗ Ksat values are based on values taken within the proximity of the hillslope under similar land use by Crespo et
al. (2012) and Zimmermann and Elsenbeer (2008).

to connect it to the 2 L sampling bottles storing the collected
soil water. The silicon tube prevents evaporation and contam-
ination of water flowing through the wick. Weekly bulk sam-
ples were collected over the period from October 2010 un-
til December 2012 when the sample volume exceeded 2 mL.
Soil water and the previously mentioned precipitation sam-
ples are analyzed using a CRDS with a precision of 0.1 ‰ for
18O and 0.5 for2H (Picarro L1102-i, CA, US).

2.4.2 Soil survey

The basic soil and soil hydraulic properties for each distinct
soil layer along the hillslope were investigated up to a depth
of 2 m. Pürckhauer sampling for soil texture and succession
of soil horizons was done every 25 m, while every 100 m soil
pits were dug for sampling soil texture, soil water retention
curves (pF curves), porosity and succession of soil horizons.
The results were grouped into eight classes (Table 1) and as-
signed to the modeling mesh as shown in Fig. 2. Retention
curves (pF curves) were represented by thevan Genuchten–
Mualemfunction using the parametersα andn.

All soils developed from the same parent material (clay
schist) and are classified as Haplic Cambisol with varying
soil thickness. Soil thickness generally increased downhill,
varying between 0.8 and 1.8 m in depressions. Clay illuvia-
tion was more pronounced in the upper part of the hillslope
(higher gradient in clay content), indicating lower conductiv-
ities in deeper soil layers.

2.5 Modeling

2.5.1 The Catchment Modeling Framework (CMF)

The Catchment Modeling Framework developed by Kraft
et al. (2011) is a modular hydrological model based
on the concept of finite volume method introduced by
Qu and Duffy (2007). Within CMF those finite volumes
(e.g., soil water storages, streams) are linked by a series of

Figure 2. Elevation profile (top black line, left ordinate), succes-
sion of soil layer types (color plate) and soil depths assigned to the
modeling grid (right ordinate).

flow-accounting equations (e.g., Richards or Darcy equa-
tion) to a one- to three-dimensional representation of the
real-world hydrological system. The flexible setup of CMF
and the variety of available flow-accounting equations allows
customizing the setup as required in the presented study. In
addition to the water fluxes, the advective movement of trac-
ers within a given system can be accounted for by CMF,
making this modeling framework especially suitable to be
used in our tracer study (Kraft et al., 2010). Starting with
Beven and Germann (1982) scientists over the last decades
have frequently argued that the Richards equation along with
similar flow-accounting equation assuming a time invariant
and well-mixed homogenous flow of water through the soil
pore space, similar to those currently implemented in CMF,
are not suitable to account for preferential flow relevant for
modeling tracer transport (Brooks et al., 2010; Germann et
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al., 2007; Hrachowitz et al., 2013; Stumpp and Maloszewski,
2010). Being developed for the quantitative representation of
soil water flow, these equations cannot distinguish between
water stored in different soil compartments (namely the soil
matrix and macro-pores) and only artificially try to repre-
sent macropore flow, e.g., by favoring high saturated conduc-
tivity values or misshaped conductivity curves controlling
the flow of water between soil compartments. Even though
the capabilities of CMF to account for preferential flow are
still in the development phase (e.g., by following the dual-
permeability approach in the future) and are not accounted
for in the presented setup, our setup will once more highlight
potential drawbacks of the modeling approaches relying on
the Richards equation while modeling tracer transport at the
hillslope scale.

2.5.2 Setup of CMF

To govern the water fluxes within our system, we used the
following flow-accounting equations: Manning equation for
surface water flow; Richards equation for a full 2-D repre-
sentation of the subsurface flow; Shuttleworth–Wallace mod-
ification (Shuttleworth and Wallace, 1985) of the Penman–
Monteith method to control evaporation and transpiration;
and constant Dirichlet boundary conditions representing the
groundwater table and the outlet of the system as a rectan-
gular ditch with a depth of 1.5 m. The lower boundary con-
dition is only applicable if groundwater table is> 2 m be-
low ground. Preliminary testing revealed that a discretiza-
tion based on a constant vertical shift (5 m) and alternat-
ing cell width increasing width depth (ranging from 1.25 to
83.75 cm) yielded the optimum model performance with re-
gard to computing time and model quality. Based on 5 m con-
tour lines (derived by local lidar measurements with a raster
resolution of 1 m; using the Spatial Analyst package of Ar-
cGis 10.1 from ESRI) this hillslope was further separated
into 32 cells ranging in size from 16.6 to 2921.6 m2 (Fig. 1a).
To account for small-scale dynamics in the mixing process of
stable water isotopes and to be able to run the model with a
satisfactory speed, two different horizontal resolutions were
used to discretize each layer with depth. Layers encompass-
ing wick samplers and their upslope neighbor were run with
a finer resolution of at least 26 virtual soil layers increasing in
thickness width depth (1× 1.25, 13× 2.5, 7× 5 and 5× 10–
50 cm). All other cells were calculated with coarser resolu-
tion of at least 14 virtual soil layers (1× 1.25, 1× 2.5, 6× 5,
3× 10 cm and 3× 15–83.75 cm). When the delineated soil
type changed within a soil layer, it was further subdivided
according to Fig. 2.

2.5.3 Evapotranspiration

Soil evaporation, evaporation of intercepted water and plant
transpiration are calculated separately using the sparse
canopy evapotranspiration method by Shuttleworth and

Wallace (1985), in its modification by Federer et al. (2003)
and Kraft et al. (2011). This approach requires the follow-
ing parameterizations: soil-surface-wetness-dependent resis-
tance to extract water from the soil (rss); the plant-type-
dependent bulk stomatal resistance to extract water from the
leaves (rsc); and the aerodynamic resistance parameters (raa,
ras, and rac) for sparse crops as described by Shuttleworth
and Gurney (1990) and Federer et al. (2003), wherebyrac
(resistance canopy atmosphere) restricts the vapor movement
between the leaves and the zero plane displacement height
andras (resistance soil atmosphere) restricts the vapor move-
ment between the soil surface and the zero plane displace-
ment height, which is the height of the mean canopy flow
(Shuttleworth and Wallace, 1985; Thom, 1972). The aero-
dynamic resistance parameterraa refers to the resistance to
move vapor between the zero plane displacement height and
the reference height at which the available measurements
were made. The necessary assumptions to parameterize the
plant (Setaria sphacelata) and soil-dependent parameters of
the Shuttleworth–Wallace equation using the assumptions
made by Federer et al. (2003) and Kraft et al. (2011) are listed
in Table 2.

Furthermore, soil water extraction by evaporation only af-
fects the top soil layer, and soil water extraction by transpira-
tion is directly controlled by root distribution at a certain soil
depth. In accordance with field observations, we assumed an
exponential decay of root mass with depth, whereby 90 % of
the total root mass is concentrated in the top 0.20 m.

2.5.4 Calibration and validation

For calibration and validation purposes, we compared mea-
sured and modeled stable water isotope signatures of2H and
18O of the soil water at each depths of the each wick sam-
pler along the modeled hillslope. Hourly values of the mod-
eled isotopic soil water signature were aggregated to rep-
resent the mean isotopic composition in between measure-
ments (≈ 7 days) and are reported in per mill relative to
the Vienna Standard Mean Ocean Water (VSMOW) (Craig,
1961).

Literature and measured values for soil and plant param-
eters (Tables 1 and 2) were used to derive the initial val-
ues for the calibration process. The initial states for cali-
bration were retrieved by artificially running the model with
those initial values for the first 2 years of the available data
set (Table 3). The results of this pre-calibration run were
used as a starting point for all following calibration runs.
A warm-up period of 4 months (1 July–31 October 2010)
preceded the calibration period (1 November 2010–31 Oc-
tober 2011) to adjust the model to the new parameter set.
To simulate a wide range of possible flow conditions and
limit the degrees of freedom for the possible model realiza-
tions, we selectedKsat and porosity for calibration, while
the van Genuchten–Mualem parameters remained constant
since measured pF curves were available. Even though not all
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Table 2.Plant (Setaria sphacelata)- and soil-dependent parameters used for the Shuttleworth–Wallace equation.

Parameter Symbol Value Unit Used to Source
calculate

Potential soil surface resistance rss pot 500 s m−1 rss Federer et al. (2003)
Max stomatal conductivity or gmax 270 s m−1 rsc Körner et al. (1979)
max leaf conductance
Leaf area index LAI 3.7 m2 m−2 rsc Bendix et al. (2010)
Canopy height h 0.2 m raa, rac andras Estimate based on

hand measurements
Representative leaf width w 0.015 m rac
Extinction coefficient for photosynthetically CR 70 % rsc Federer et al. (2003)
active radiation in the canopy
Canopy storage capacity – 0.15 mm LAI−1 Interception Federer et al. (2003)
Canopy closure – 90 % Throughfall Estimate based on

image evaluation
Albedo alb 11,7 % Net radiation Bendix et al. (2010)

Table 3.Modeling periods.

Description Period Duration

Start End [days]

Initial states 1 July 2010 30 June 2012 730
Warm-up period 1 July 2010 31 October 2010 122
Calibration period 1 November 2010 31 October 2011 364
Validation period 1 November 2011 31 October 2012 365

sensitive parameters of the Richards equation controlling the
flow regime were accounted for during the calibration pro-
cess, we assume that the measured van Genuchten–Mualem
parameters alpha and n are in the good agreement with the
actual flow characteristics of the soils. As is typical for the
application of the van Genuchten–Mualem approach, the tor-
tuosity/connectivity coefficient remained constant through-
out all model runs with a value of 0.5. Beside the four soil
parameters shown in Table 1 and the upper and lower bound-
ary conditions, only the nine parameters of the Shuttleworth–
Wallace equation (Table 2) had to be set prior to each model
run. To further control the unknown lower boundary condi-
tion and complement the calibration process, the suction in-
duced by groundwater depth was changed for each calibra-
tion run.

To increase the efficiency of the calibration runs and
evenly explore the given parameter space, we used the Latin
Hypercube method presented by McKay et al. (1979). The
parameter range of each variable was therefore subdivided
into 10 strata and sampled once using uniform distribution.
All strata are then randomly matched to get the final pa-
rameter sets. A total of 105 parameter sets were generated
for calibration with varying values forKsat and porosity for
all eight soil types as well as different groundwater depths.
An initial trial using 104 parameter sets was used to narrow
down the parameter range as specified in Table 4 forKsat

Table 4.Soil parameter ranges for the Monte Carlo simulations (as-
suming uniform distribution for each parameter).

Soil code Ksat [m d−1
] Porosity[m3 m−3

]

Min Max Min Max

A1-3 top 0.001 35 0.3 0.9
A1-3 0.001 30 0.3 0.9
B1-3 0.001 12 0.1 0.8
C1-2 0.001 8 0.1 0.8

and porosity for all eight soil types and to 0 to 100 m for
the applicable groundwater depths. The performance of each
parameter set was evaluated based on the goodness-of-fit cri-
teria Nash–Sutcliffe efficiency (NSE) and the coefficient of
determination (R2). In addition, the bias was calculated as
an indicator for any systematic or structural deviation of the
model.

After the calibration the best-performing (“behav-
ioral”) models according to a NSE> 0.15, an overall
bias< ±20.0 ‰ δ2H and a coefficient of determination
R2 > 0.65 were used for the validation period (Table 3) using
the final states of the calibration period as initial values.

3 Results and discussion

3.1 Model performance

In order to quantify the flow processes, we first validated
the overall suitability of the chosen model approach and the
performance of the parameter sets. The parameter sets best
representing the isotope dynamics ofδ2H (as previously de-
fined as best-performing (behavioral) parameter sets; same
accounts forδ18O; results are not shown) during the calibra-
tion period explained the observed variation to an even higher
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Table 5. Model performance during calibration and validation
for all behavioral model runs (based on all calibration runs with
NSE> 0.15, bias< ±20.0 ‰δ2H andR2 > 0.65). Best modeled fit
based on NSE.

Calibration Validation Best
2010–2011 2011–2012 modeled

Mean SD Mean SD fit

NSE 0.19 0.008 0.35 0.029 0.42
R2 0.67 0.008 0.66 0.020 0.84
Bias −15.90 0.113 −16.93 0.344 −16.16

degree during the validation period (average NSE 0.19 for
calibration versus 0.35 for validation).

The linear correlation between modeled and observed iso-
tope dynamics ofδ2H, for the best-performing parameter
sets, were equally good during the calibration and validation
period (R2

≈ 0.66) (Table 5). The goodness-of-fit criteria for
the single best performing parameter set (“best model fit”)
show anR2 of 0.84 and a NSE of 0.42.

Figure 3 depicts the measured and modeled temporal de-
velopment of the soil water isotope profile along the studied
hillslope as well as theδ2H signature and amount of the in-
coming rainfall used to drive the model. The measured tem-
poral delay of the incoming signal with depth and the general
seasonal pattern of theδ2H signal are captured by the model
(Fig. 3).

The bias was negative throughout all model real-
izations during calibration and validation (−15.90
(±0.11 SD) ‰ δ2H and −16.93 (±0.34 SD) ‰ δ2H, re-
spectively; see Table 5). Even though the high bias indicates
a structural insufficiency of the model, we are confident
that this can be mostly attributed to the discrimination of
evaporation processes at the soil–atmosphere interface and
on the canopy.

Our first hypothesis – that evaporation in general plays
only a minor role for the soil water isotope cycle under
full vegetation – therefore needs to be reconsidered. Even
though hypothesis I has previously been frequently used as
an untested assumption for various models (e.g., Vogel et
al., 2010; Dohnal et al., 2012), it is rarely scrutinized under
natural conditions. A complete rejection of this hypothesis
could therefore affect the interpretations in those studies and
limit their applicability. However, further studies are needed
to support these findings and before finally rejecting this hy-
pothesis. The lateral mixing processes may be obscuring the
observed near-surface enrichment, and the effect of preferen-
tial flow currently not fully accounted for could further hin-
der the full interpretation of these findings. It still holds true
that

– the quantitative loss due to surface evaporation in areas
with a high leaf area index is more or less insignificant

(accounting for 38 mm a−1 out of 1896 mm a−1; ≈ 2 %;
Fig. 5);

– the isotopic enrichment due to evaporation for vegetated
areas is considerably lower than for non-vegetated ar-
eas, as previously shown by Dubbert et al. (2013);

– high rainfall intensity constrains any near-surface iso-
topic enrichment related to evaporation (Hsieh et al.,
1998).

However, our results indicate that the contribution of poten-
tial canopy evaporation (accounting for 344 mm a−1 out of
1896 mm a−1; ≈ 18 %; Fig. 5) to enrich the canopy storage
and thereby potential throughfall (discriminating18O and2H
resulting in more positive isotope signatures) still could par-
tially explain the observed bias.

Nevertheless we presume that fog drip, created by sieving
passing clouds or radiation fog frequently occurring in the
study area (Bendix et al., 2008), explains the majority of the
observed bias. Depending on the climatic processes, generat-
ing the fog drip is typically isotopically enriched compared to
rainfall, due to different condensation temperatures (Scholl
et al., 2009). To get an impression of the magnitude of the
possible bias due to throughfall and fog drip compared to di-
rect rainfall, we compare the observed bias with a study pre-
sented by Liu et al. (2007) conducted in a tropical seasonal
rain forest in China. They observed an average enrichment of
+5.5 ‰ δ2H for throughfall and+45.3 ‰δ2H for fog drip
compared to rainfall. Even though the observed enrichment
of fog drip and throughfall by Liu et al. (2007) may not be
as pronounced within our study area (Goller et al., 2005), the
general tendency could explain the modeled bias. According
to Bendix et al. (2008) fog and cloud water deposition within
our study area contributes 121 to 210 mm a−1 at the respec-
tive elevation. Assessing the actual amount fog drip for grass
species likeSetaria sphacelataunder natural conditions is
challenging and has so far not been accounted for.

If further discrimination below the surface were to sub-
stantially alter the isotope signature, the bias would change
continuously with depth. Any subsurface flow reaching
wick samplers at lower elevations would then further in-
crease the bias. However, the negative bias of−16.19
(±2.80 SD) ‰ δ2H in all monitored top wick samplers
during validation accounts for most of the observed bias
in the two deeper wick samplers amounting to−17.32
(±2.47 SD) ‰δ2H. Thus we conclude that the bias is mainly
a result of constrains related to modeling surface processes,
rather than subsurface ones.

Figure 4 shows the behavior of the chosen parameter sets
for saturated hydraulic conductivity and groundwater depth
during calibration and validation. The parameter space al-
lows us to assess the range of suitable parameters and their
sensitivity over a given parameter range. During calibration
the given parameter space could not be constrained to more
precise values for all parameters, which in this case should
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Figure 3. Time series of soil water isotope signatures (top panels 1–3 for each elevation) for all behavioral model runs with NSE> 0.15,
bias< ±20.0 ‰δ2H andR2 > 0.65, showing the 95 % confidence interval (CI; transparent areas) and best modeled fit (solid line) vs. mea-
sured values (circles) at all three elevations (2010, 1949 and 1904 m a.s.l.) and soil depths below ground (0.10, 0.25 and 0.40 m). Bottom
panels 4 and 5: isotopic signature and rainfall amount, respectively.

show a lower SD (Table 6) and narrower box plots (Fig. 4).
Especially theKsat values of the soil layers A1, A3 and B1–
B3; the porosity for all soil layers (not included in Fig. 4);
and the groundwater depth depict a low sensitive over the
entire calibration range (indicated by a high SD, wide box
plot and evenly scattered points; Table 6 and Fig. 4). In
particular the low sensitivity of the model towards ground-
water depth seems surprising, but it can be explained by
the potentially low saturated hydraulic conductivities of the
lower soil layers C1 and C2 limiting the percolation into
the lower soil layers outside of the modeling domain. Even
an extreme hydraulic potential, induced by a deep ground-
water body, can be limited by a low hydraulic conductiv-
ity. Nonetheless it is noteworthy that no model run without
an active groundwater body as a lower boundary condition
(groundwater depth< 2 m) results in a model performance
with NSE> 0 (Fig. 4). With a groundwater depth above 2 m
the boundary condition would serve as a source of water with

an undefined isotopic signal and prevent any percolation of
water into deeper soil layers outside of the modeling domain.
The results are therefore in alignment with the topography
of the system, indicating an active groundwater body deeper
than 2 m, and support our second hypothesis, which we will
further discuss in Sect. 3.2. We identified several parameter
combinations showing the same model performance, known
as equifinality according to Beven and Freer (2001). The ob-
served equifinality can partially be explained by counteract-
ing effects of a decreasingKsatand an increasing pore space,
or by the water flow being restrained due to lower hydraulic
conductivities at adjoining soil layers. Especially for deeper
soil layers the interaction between surrounding layers makes
it especially difficult to further constrain the given parameter
range. Even though the parameter ranges for all behavioral
model realizations are not so well confined, the small con-
fidence intervals indicate a certain degree of robustness to-
wards the predicted flows (Fig. 3). Additional soil moisture
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Figure 4. Dotty plots of NSE values (> 0.0) during calibration (blue) and for behavioral model runs (NSE> 0.15, bias< ±20.0 ‰ δ2H
andR2 > 0.65) during calibration (orange) and validation (red) for saturated hydraulic conductivity (Ksat) for all soil types and groundwater
depth. Box plots show the unweighted parameter distribution of all behavioral model runs (NSE> 0.15, bias< ±20.0 ‰δ2H andR2 > 0.65).
Results for soil porosity look similar to those of the groundwater and are therefore not shown.

Figure 5. Mean annual flows and standard derivation (SD) of the main flow components at a hillslope scale of all behavioral model runs
from 2010 to 2012.

measurements complementing the current setup in the future
will allow us to put further confidence in this new approach
and the drawn conclusions and allow us to directly compare
different calibration targets (i.e., soil moisture vs. soil water
isotopic signature).

Initial Ksat values based on literature values (see Table 1)
deviate to a large extent from those derived through the cali-
bration process. This is attributable to the occurrence of pref-
erential flow within the macro-pores (Bronstert and Plate,
1997) and the sampling method (PCaps) used to extract the
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Table 6. Parameter ranges used for validation (all calibration runs
with NSE> 0.15, bias< ±20.0 ‰δ2H andR2 > 0.65) and param-
eter set for the best modeled fit based on NSE.

Mean SD Best
modeled
fit

Ksat [m d−1
]

A1 top 21.8 5.8 20.4
A2 top 11.0 2.3 12.6
A3 top 25.6 6.3 29.6
A1 11.7 6.6 13.5
A2 7.4 2.8 8.9
A3 15.7 6.4 15.3
B1 4.0 2.4 4.0
B2 5.2 3.2 10.5
B3 4.6 2.2 2.5
C1 1.3 1.2 0.6
C2 1.7 1.4 0.1

Porosity[m3 m−3
]

A1 top 0.54 0.08 0.44
A2 top 0.56 0.09 0.44
A3 top 0.66 0.09 0.53
A1 0.55 0.08 0.42
A2 0.55 0.09 0.46
A3 0.65 0.09 0.74
B1 0.34 0.09 0.31
B2 0.64 0.09 0.54
B3 0.75 0.09 0.70
C1 0.54 0.09 0.41
C2 0.55 0.09 0.67

Groundwater depth[m]

50.5 28.6 76.5

soil water stored in the soil with a matrix potential up to
30 hPa (Landon et al., 1999). It becomes apparent that the
mixing processes (based on dispersion and molecular diffu-
sion) are not sufficient to equilibrate the isotope signature
over the entire pore space (Landon et al., 1999; Šimůnek et
al., 2003) and that the flow through the pore space is not ho-
mogenous. Thus the isotopic signature between the sampled
pore media and the total modeled pore space differs (Brooks
et al., 2010; Hrachowitz et al., 2013; McDonnell and Beven,
2014; McGlynn et al., 2002). The model tries to account for
these effects by favoring highKsat values during calibration
(McDonnell and Beven, 2014; McGlynn et al., 2002).

Modeling soil water movement under such conditions
should therefore be used with caution for models based
on the Darcy–Richards equation, which assumes instanta-
neously homogeneous mixed solutions and uniform flow.
In line with the argumentation started by Beven and
Germann (1982) and refreshed in their recent paper (Beven
and Germann, 2013), we therefore stress the importance

of accounting for preferential flow processes and overcom-
ing the limitation of the Darcy–Richards equation limit-
ing the explanatory power of hydrological models predict-
ing water flow and solute/isotope transport in particular.
Like Gerke (2006) and Šimůnek and van Genuchten (2008),
among others, we therefore seek to implement a dual-
permeability approach accounting for different flow pat-
terns within the soil pore space (Gerke, 2006; Jarvis, 2007;
Šimůnek and van Genuchten, 2008; Vogel et al., 2000, 2006,
2010). In the style of existing 1-D models for soil water iso-
tope transport presented by Braud et al. (2005) and Haverd
and Cuntz (2010), the inter-soil mixing processes by dis-
persion and molecular diffusion between different soil pore
space compartments shall be accounted for in the future.
Based on the presented findings this can now be extended
towards the development and application of soil water iso-
tope models under natural conditions. To conclude, the re-
sults highlight the general suitability of high-resolution soil
water isotope profiles to improve our understanding of sub-
surface water flux separation implemented in current hills-
lope model applications and to predict subsurface soil water
movement.

3.2 Modeled water fluxes

Acknowledging the general suitability of the model to de-
lineate the prevailing flow patterns, we will now compare
those to the current hydrological process understanding pre-
sented in the Introduction. Figure 5 depicts the water balance
of the modeled hillslope based on all behavioral model re-
alizations, separating the amount of incoming precipitation
into the main flow components: surface runoff and subsur-
face flow directly entering the stream, percolation to ground-
water and evapotranspiration.

Evapotranspiration is further subdivided into transpira-
tion and evaporation from the soil surface and the canopy,
whereby evaporation from the canopy is designated as inter-
ception losses. Due to the small confidence intervals of the
behavioral model runs (see Fig. 3) the standard deviations of
the model’s flow components are relatively small (see Fig. 5;
standard deviation and mean value were computed without
weighting the likelihood value).

The observed order of magnitude for evapotranspiration
is in good agreement with previous values of 945 and
876 mm a−1 reported for tropical grasslands by Windhorst et
al. (2013a) and Oke (1987), respectively. As previously men-
tioned, the evaporation of 382 mm a−1 is dominated by in-
terception losses accounting for 344 mm a−1. Overall, these
results support hypothesis II, which stated that a large share
of the incoming precipitation is routed through the deeper
soil layer and/or the groundwater body (here 49.7 % or
942 mm a−1) before it enters the stream. This also explains
the long mean transit time of water of around 1.0 to 3.9 years
(Crespo et al., 2012; Timbe et al., 2014) in comparison to
the fast runoff reaction time. Well in agreement with our
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current process understanding and hypothesis III, we can fur-
ther show that the occurrence of surface runoff (33 mm a−1)
due to Hortonian overland flow is less important. For the
graphical representation the surface runoff has therefore been
combined with subsurface flow (2 mm a−1) to “surface runoff
and subsurface flow”, accounting in total for 35 mm a−1 (see
Fig. 5). A more heterogeneous picture can be depicted if we
take a closer look at the flow processes along the studied hill-
slope and its soil profiles (Fig. 6).

Vertical fluxes still dominate the flow of water (Fig. 6b),
but the near-surface lateral flow components predicted by
Bücker et al. (2010) become more evident (Fig. 6a). Ex-
plained by the high saturated hydraulic conductivities in the
top soil layers (Table 6 and Fig. 4) up to 7.3× 103 m3 a−1

are transported laterally between cells in the top soil layer,
referring to 15.6 % of the total flow leaving the system per
year. According to the model results, deep lateral flow is min-
imal, accounting only for< 0.1 % of the total flow. It only oc-
curs on top of the deeper soil horizons with lowKsat values.
For all behavioral model realizations the groundwater level
was> 2 m, thereby limiting the direct contribution of subsur-
face flow (2 mm a−1) to the tributary, which had a hydraulic
potential of only 1.5 m. Over the entire hillslope the impor-
tance of overland flow remains below 3 % (≈ 50 mm a−1), of
which a part is re-infiltrating, summing up to total overland
flow losses of around 2 % at the hillslope scale (35 mm a−1,
Fig. 5). These results demonstrate the importance of near-
surface lateral flow and hence support hypothesis IV.

4 Conclusions

These data and findings support and complement the ex-
isting process understanding mainly gained by Goller et
al. (2005), Fleischbein et al. (2006), Boy et al. (2008), Bücker
et al. (2010), Crespo et al. (2012) and Timbe et al. (2014) to
a large extent. Moreover, it was possible to quantify for the
first time the relevance of near-surface lateral flow genera-
tion. The observed dominance of vertical percolation into the
groundwater body, and thereby the importance of preferential
flow seems to be quite common for humid tropical montane
regions and has recently been reported by Muñoz-Villers and
McDonnell (2012) in a similar environment.

Being aware of the rapid rainfall–runoff response of
streams within the catchment of the Rio San Francisco, it
has been questioned whether and how the system can store
water for several years and still release it within minutes.
Throughout the last decades several studies have observed
similar hydrological behavior especially for steep humid
montane regions (e.g., McDonnell, 1990; Muñoz-Villers and
McDonnell, 2012), and concepts have been developed to
explain this behavior: e.g., piston flow (McDonnell, 1990),
kinematic waves (Lighthill and Whitham, 1955) and trans-
missivity feedback (Kendall et al., 1999). Due to the limited
depth of observations (max depth 0.4 m) and the low overall

Figure 6. (a) Lateral and(b) vertical fluxes for the best modeled
fit. Arrows indicate the amount of surface runoff and direct con-
tribution to the outlet through subsurface flow. The maximum flow
between storage compartments is 7.3× 103 m3 a−1, and the total
observed flow leaving as well as entering the system accumulates to
37× 103 m3 a−1.

influence of the lateral flows, a more exact evaluation of the
fate of the percolated water is still not possible. However,
we are confident that in combination with a suitable concept
to account for the rapid mobilization of the percolated wa-
ter into a tributary and experimental findings, further confin-
ing possible model realizations, an improved version of the
current approach could further close the gap in our current
process understanding.

Over decades hydrological models which are based on
the Richards or Darcy equation (like the one we used) have
been tuned to predict quantitative flow processes and mostly
been validated using soil moisture data suitable to account
for overall storage changes. Our results imply that doing this
considerably well does not necessarily mean that the mod-
els actually transport theright water at theright time. Us-
ing tracer data to validate models as we did entails that those
models now not only have to transport the correct amount but
additionally the right water. Consequently, the relevance of
the correct representation of uneven preferential flow through
pipes or macropores, which is misleadingly compensated by
high conductivities over the entire pore space within models
based on the Richards or Darcy equation, becomes immense.
Distinguishing between water flowing in different compart-
ments (e.g., pipes, cracks and macro-pores) of the soil is a
key task to get a closer and more precise representation of
the natural flow processes. Even though the chosen modeling
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structure currently lacks a sufficient robustness to be widely
applicable, it highlights the potential and future research di-
rections for soil water isotope modeling.
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