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Abstract

Genetic variability and mutations are a fundamental necessity for living organisms. In
the context of evolution, both factors facilitate survival and enable the adaption of life
to the environment. However, genetic variability also leads to risk factors for various
medical conditions, and mutation can lead to divergent behavior, such as unsupervised
division and proliferation of cells, known as cancer. With the cause being genetic, the
most effective treatment and therapy is to modify the corresponding genetic sequence
to repair or augmenting erroneous genes and silence risk factors, known colloquially
as gene therapy. Besides applications in therapy, genetic modification is also a break-
through technology for biotechnological engineering where cell cultures are utilized

for drug production.

Modifying genomes is a complex challenge because the correlation within the genome
is neither fully understood, nor is the modification itself based on reliable mechanisms.
Initial approaches to gene therapy in humans have shown that it is a potential game
changer for many targets. However, immune reaction and insertional mutagenesis
is a significant concern and universal application in therapy is only possible if major

side-effects can be avoided.

The foundation of gene therapy is the understanding of genomic function. Thus, in this
dissertation, the aspect of transcript factor binding specificity is closely examined to
gain new insights using a novel technology to analyze ChIP-Seq datasets. My approach
is based on inferring binding models directly from the distributions of reads in relation
to nearby sequences. This novel approach is capable of analyzing data sets that did not

yield results using established methods.

Furthermore, gene therapy relies on vectors that deliver genetic elements and insert
them based on given targets. Therefore, a platform is presented to review insertional
characteristics of genomic positions based on viral integration and transposases. Fun-
damental for the analysis is a mechanism to create computational background models
that can be adapted for technological factors, as well as other known covariates. The
applicability of the platform is shown in several publications that review genomic in-

sertion preferences of delivery vectors.
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1 Introduction

The intricate systems that each cell contains are the foundation of living organisms
and their proliferation. Cell regulation enables cells to uphold physiological equilib-
rium, respond to changing external influences, and perform cell division. Each cell and
each mechanism within constitute a part of organism survival. Evolved mechanisms
ensure the adaptability of life to numerous environments as well as the adaption of
individual cells to their requirements. Metabolic pathways and regulatory complex-
ity needed to uphold physiological balance and cell function are the sine qua non of
biological life. However, failures in cellular processes are inseparable from complex
regulatory systems. Single-cause errors that happen by mischance are a constant oc-
currence. Evolution has led to the prevalence of various correction mechanisms that
are able to repair damage or induce apoptosis of cells for irreparable states. Nonethe-
less, combinations of genetic damage, failure of correction mechanisms, and specific
mutations lead to acquired genetic disorders. For example, cancerous cells average
four mutations, whereby mutations ranging from one to ten per tumor are commonly
found [80], illustrating the impact of minor divergence. Further, inherited genetic dis-
eases appear as systemic divergence, such as chromosome abnormalities, susceptibility

to certain ailments and other genetic conditions are commonly present.

While building the substructure of biological life, cellular mechanisms are also a root
cause for many diseases, and varying cell responses influence disease susceptibility.
Current approaches to curing genetic diseases and reducing risk factors for other dis-
eases rely on the ability to alter genetic elements. Today, gene therapy, including gene
alteration, insertion, and silencing is a highly specialized curative therapy. Numerous
possible side-effects and the lack of understanding of genetic features impede approval

for a multitude of potential targets.

This dissertation is focused on two aspects of gene therapy applications: first, the eval-
uation of insertional elements that are used as delivery vectors for genetic elements;
and second, a re-evaluation of Chromatin immunoprecipitation followed by sequenc-

ing (ChIP-Seq) [107] experiments using a novel k-mer based technology to increase
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understanding of transcription factor mechanisms and therefore cell regulation. Here-
after, an overview of foundations and recent advances in gene therapy as well as cell
regulation by transcription factors is provided, followed by a summary of objectives

and open questions.

1.1 Curing diseases with gene therapy

Mutation is a naturally occurring process in cell lifetime and reproduction caused by
cellular processes and outside influence. The majority of genetic alterations are in-
consistent. Different mechanisms exist for detection and corrective repair. The pro-
liferation of excessive damage is prevented by apoptosis. Nonetheless, certain genetic
alterations elicit diseases. Cell regulation is a balanced process working in complex
coherency and those complex relationships are strongly affected by alterations of ge-
netic function and regulatory mechanisms. Alterations can lead to divergence from
expected behavior and subsequently to diseases that affect cells and consecutively or-
ganisms. This includes common genetic diseases, such as cystic fibrosis, haemophilia,
sickle-cell anaemia and aneuplodies [53]. Furthermore, rare genetic diseases exist that
are rare in relative appearance, yet common when considered collectively [70]. To
date, over 4,000 genes associated with disease phenotypes have been identified [1].
Additionally, genetic constitution exerts an influence on almost all courses of preva-
lent diseases with varying intensity [20, 53]. For example, a hypercholesterolemia
mutation results in a three-fold increased risk of coronary artery disease (CAD) [2].
Genetic predisposition is known to influence the onset of various diseases, such as
Huntington’s disease associated with a genetic defect in the HD gene [92], up to 15%
of cases of Parkinson [129], Amyotrophic lateral sclerosis (ALS) [83], and increased
risk of type 2 diabetes [34, 114], among others.

Commonly-used therapy approaches for such diseases focus on suppressing adverse
implications and symptoms. For genetic variation in a contained set of cells, such as
tumors, the removal of mutated cells is a possibility. However, in the case of metastasis
or genetic diseases that affect the majority of cells, removal is impossible. Actual cu-
rative therapy for genetic diseases and acquired disorders is the modification of DNA,
known as gene therapy. This is the general term for different procedures that aim
to treat a genetic disease by altering the genome. The conception of altering DNA
has been around since the structure of information retention on DNA was discov-

ered [33, 8]. Even though prospects are wide-ranging and over 2,500 clinical studies
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Figure 1.1: Comparison of NHE] and HDR repair of a DSB. Both mechanisms are able to
insert a donor DNA into the DSB. For HDR, a donor DNA is necessary, while
with NHE] both strands can be joined directly (Adapted from [103, 60]).

have been conducted to date, only six gene therapies are approved by the European
Medicines Agency (EMA) and US Food and Drug Administration (FDA) for different
cancer typess, cystic fibrosis, AIDS and deficiency diseases [8]. The complexity of
development, adverse events in clinical trials and a lack of knowledge of cellular in-
teractions impede their development, whereby each of these factors will be reviewed

in the following.

Within the broad term of gene therapy, different strategies to alter genomic features
exist according to Anguela et al. (2019). Non-functional genes can be replaced by in-
serting a functional copy of the gene that compensates for a loss-of-function mutation
of the original gene. Gene silencing inhibits gene expression and is suitable to correct
for gain-of-toxicity mutations. Gene addition inserts genes which modulate diseases
and gene editing specifically repairs gene mutations [8]. Each strategy has different

challenges for research and clinical application, as well as possible side-effects.

Novel genome editing technology relies on the initiation of a DNA double strand break
(DSB) at a specified loci as defined by Cox et al. (2015). The DSB leads to endogenous
repair mechanisms that work with either non-homologous end-joining (NHE]) or ho-
mology directed repair (HDR) to join the break (Figure 1.1). DSBs are initiated by
nucleases, of which four classes are relevant for editing applications, including zinc
finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENSs) and

clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9 [21].

Editing can be conducted ex vivo, where cells are modified outside of the body and
transplanted back. There are several delivery platforms available for ex vivo transfer.
High editing rates as well as accurate control of dosage make ex vivo transfer advanta-

geous. However, not all tissues are capable of surviving extraction and manipulation,
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and the failed re-introduction leads to a diminished effect. In vivo transfer has greater
potential for numerous applications, yet, poses new challenges in development and
application. Especially delivery mechanisms for in vivo transfer are more difficult in
fabrication and regulation [21]. A viral vector or non-viral gene carrier is needed
to transport new genes or other DNA compounds [90]. Commonly-used vectors are
viruses, such as the Adeno-associated virus (AAV) [134]. A closer examination of viral

vectors will take place in the following section.

Gene therapy was successfully used in several cases of cellular disorders, first in 2000
when X-linked severe combined immunodeficiency (SCID-X1) was treated by restor-
ing the II-2 receptor 7 (IL2RG) gene using a viral vector [18]. However, among nine
successfully treated patients, of ten in total, four developed T cell leukemia after ther-
apy [40]. In a trial conducted in 2009, adenoise deaminase (ADA)-deficient SCID could
be corrected by a gene transfer without leukemia side-effect and patients were able to
live a normal life [5]. A study from 2007 showed that the motor functions in six patients
with Parkinson’s disease could be improved using AAV serotype 2 vectors [57]. Fur-
ther, a degenerative disease of inherited blindness of several children benefited from

gene therapy without major side-effects [12, 19, 78].

Although gene therapy has been utilized with success, the main limitation lies with its
safety and tolerability. The main aim of future development is to improve integration
mechanisms and vectors to mitigate side-effects such as immune system response and
improved insertion specificity. Significant effort is undertaken to modify existing vec-
tors, such as AAV, to increase target site specificity and reliability [134]. Additionally,
new vectors are developed based on other platforms. With new vectors and modi-
fied targeting mechanisms comes the need to evaluate those altered vectors for their
integration profile to obtain a risk measurement. As outline before, in many regions
integration into DNA induces adverse effects on cell functionality. Especially inte-
gration into genes or regulatory regions interferes with cell functionality, so-called

insertional mutagenesis.

A recently published review by Bushman (2020) defines four mechanisms responsible
for retroviral-caused mutagenesis in humans. First, enhancer insertion boosting cell
proliferation, which was observed with early gammaretroviral vectors in the afore-
mentioned SCIDX1 trial. Vectors caused integration of strong enhancers in close vicin-
ity of LMO2, a gene associated with cell proliferation. Second, promotor insertion

increasing oncogene activity. Human immunodeficiency virus (HIV) insertions are
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found enriched near genes associated with leukemia and mRNA sequences of those
genes are observed to contain HIV RNA sequences appended at the 5" end. Third,
gene inactivation with chimeric antigen receptor (CAR) targeting cancer with T cells.
CAR T cell therapy utilizes modified T cells to attack cancer cells. However, loss of
function by vector insertion into the intron of TET2 was apparent, a gene involved in
myelopoiesis. Finally, mutagenesis by mRNA 3’ end substitution reported in a success-
ful correction of gene beta-thalassemia. Vector integrations were observed in the gene
HMGAZ2, associated with various cancers. The genes mRNA contains a 3’ untrans-
lated region that is targeted by microRNA, resulting in RNA degradation. With the
3’ end mutation, through lentiviral integration the mRNA was stable and resulted in
increased HMGAZ2 protein levels. Additional potential mechanisms are likely to occur

with advances in therapy development [17].

To evaluate insertional risks, the annotations for cells such as genetic elements, their
expression levels, protein binding sites and histone modifications are commonly inter-
sected with known integration sites, as shown in many publications [37, 22, 109, 26].
Based on statistical evaluation of integration sites in relation to genetic annotations,
preferences of a virus or transposable element can be determined. An increased oc-
currence of sites around highly-expressed genes can often be identified, as shown for

HIV [22].

To measure integration enrichment, viral or other genetic sites are compared to a back-
ground model. Ideally, background models are an experimentally determined set of
genomic sites, subject to equal experimental conditions. However, wet lab costs and
time expenditure often prevent their generation and therefore computational gen-
erated background models are used. The model can be a random selection of sites
throughout the genome. However, the significance of findings is strongly increased
by adjusting random sites to fit experimental parameters, as well as known viral pref-
erences. Background models can be adjusted to mimic integration preferences of virus
sites over a specific annotation, a so-called covariate. By selecting covariates, this ap-
proach enables scientists to formulate specific questions in relation to their dataset.
For example, if a virus is known to integrate close to highly expressed genes, the pref-
erences can be used to adjust the background model to mimic the integration near
genes and help to identify more faint integration preferences that remain masked by

the stronger effect otherwise.
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Figure 1.2: Schematic overview of viral integration into a host genome with subse-
quent translation and transcription of the protein (Adapted from [31, 89,
99, 30]).

1.2 Delivery vectors for in vivo gene therapy

Retroviruses are viruses known to integrate into DNA of host organisms to adapt its
functionality for their own replication [16]. This is accomplished by inserting their vi-
ral RNA into the host genome using a reverse transcriptase protein, then representing
the provirus [16]. After insertion, viral elements are translated alike to other proteins

produced by the cell (Figure 1.2) and lead to further spreading of the viral infection.

The sites that viruses prefer for integration are of major interest. They are identified
by sequencing cells with next-generation sequencing (NGS) in conjunction with poly-
merase chain reaction (PCR) amplification [115]. These methods allowed to gather
large amounts of viral integration sites in recent years. Those are available online,
and organized in different databases [117, 124]. Locations of integration events by
retroviruses and transposable elements (TEs) are predominantly purposefully selected,
based on genetic features in their vicinity. Between groups of retroviruses the pref-
erences for genomic features can differ [28]. Based on genomic positions obtained
from virus integration, it is possible to create a preference profile for each virus that

represents features relevant for their integration site selection.

The preferences of several retroviruses are well known. For example, HIV is directed to
active transcription units which allows the provirus to be transcribed more frequently
[22]. Murine Leukemia Virus (MLV) shows a bimodal integration pattern around tran-
scription start sites (TSS), as well as a preference for chromatin marks near TSS (e.g.
H3K4me3) [37]. AAV serotype 2 has a specific integration site, called AAVS1, which
is located on chromosome 19 [51, 50]. Although the preferences of many viruses are

known, new variants appear and known viruses as well as TEs are modified to abide
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selected integration preferences. Computational investigations into site selection and

integration mechanisms is therefore a continuous effort.

Besides viral vectors, properties of certain TEs form a possible mechanism for genomic
alteration [128], such as Sleeping Beauty (SB) [58] and PiggyBac (PB) [88]. TEs are ge-
netic elements that are able to move within the genome from one position to another.
It has been shown that TEs form up to 50% of our genes [67]. TEs are naturally in-
volved in regulatory processes of cells, including epigenetic activation and acting as
a promotor or enhancer. Further, their ability to mutate genes, as well as chromatin

modification and imprinting affect cell regulation [122].

As previously described, the integration of genetic elements at pseudo-random posi-
tions in the genome is known to have adverse effects on cells. Instead of using vectors
that select their integration positions based on genomic features, a vector targeting a
specific sequence can be used. The target is usually selected such that it occurs infre-
quently and in a safe region for integration. Artificially altered vectors with targeted
insertion exist as well as natural viruses that prefer safe integration regions. Nev-
ertheless, those vectors do not show integration solely at intended target locations,
but rather off-target sites are also possible. Development and testing of those delivery
mechanisms are still subject to recent research [45, 15, 6]. Furthermore, with improved
specificity targeted vectors bring the capability to not only add a missing gene in a re-

mote location but specifically edit sequences to restore nominal conditions.

1.3 Cell regulation and transcription factor binding

Each cell in an organism fulfils a specific function, e.g. structural roles like epithe-
lial cells, signal transmission of nerve cells or different blood cells. Their individual
function is largely determined by expression based on endogenous factors and their
response to environmental influences, such as interaction with other cells and exter-
nal signals. Expression of genes is controlled by genetic structures on the DNA itself,
which provides instructions of regulatory proteins, binding locations and instructions
for genes. Other regulating mechanisms are chromatin remodeling complexes [93]
and non-DNA-binding co-factors [95]. Regulating transcription of DNA and cell cycle
enables cells to adapt to their environment, uphold physiological balance, ensure func-
tionality and enable cellular differentiation. Regulation of gene expression and thereby

cell functionality holds significant interest to understand cell behavior in normal and
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abnormal performance and it is necessary for all therapeutic approaches [131, 120, 3].
Among other influences, the transcription of DNA into mRNA is controlled by proteins
that bind to DNA at specific locations called transcription factors (TF). This ephemeral
binding induces or inhibits mRNA transcription. Sites where TFs bind are called tran-
scription factor binding sites (TFBS). The relation between TF and gene expression is
often not a simple one-to-relation, but rather a complex set of interactions of different
TFs and TFBS that increase or inhibit transcription, and affect each other. Even for
single genes, a complex network of inhibiting and promoting factors can be relevant
[118]. For example, TF binding affinity is not only moderated by the direct DNA bind-
ing site, but also the flanking DNA structure, as shown for Gen4 [98] and Cbfl in yeast
[38]. Likewise, protein binding specificity can be altered by co-factors that bind in an
adjacently protein-protein interaction. Cooperative binding does change the affinity
to known binding sites and can result in new binding sites. Prominent examples are

Mata2, Matal and Mcml in yeast [139].

The main elements of gene regulation in DNA are promotors and enhancers. Promotor
sequences contain TFBS for protein-DNA interaction and are in the close vicinity of
TSS. Enhancers are regions found further down- or upstream from TSS containing

binding sites for multiple activators [61].

Interaction between enhancers, TFs and promotors is still under investigation. Several
mechanisms are proposed that explain the communication structure, including linking
of transcription factors between both sites or loops in the DNA that form to bring both
genetic elements together (Figure 1.3 right) [35]. It is not fully understood how the
mechanism of loop formation works that associates promotors and enhancer functions

[35].

Binding sites, to which TFs bind, are determined through a sequence motif, a short se-
quence whose counterpart is embedded in the TF. Figure 1.3 left shows a simple model
of TF and TFBS interaction. Binding proteins recognize a set of similar sequences
with varying binding affinity, dependent on the similarity between the binding site
sequence and TF sequence. With higher affinity, TFs bind more firmly and their influ-

ence is increased [52].

Sequence binding motifs are usually represented by a sequence logo, which is a com-
bined visualisation of bases observed at each binding position. The underlying model

of a sequence motif is a position-weight-matrix (PWM), comprising a data matrix
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Figure 1.3: Left: Schematic overview of TF binding to DNA. The transcription factor
has a complementary sequence to the binding site. Colors represent differ-
ent nucleobases. Right: TF binding complex with DNA loop (Adapted from

[35]).

that represents the observed base composition. The logo visually presents informa-
tion about the conservation of bases and motif structure. At each position of the se-
quence logo, letters display the potential binding sequence by letter size, which is
calculated with the relative frequency and information content of the bases [113, 123].
Even though sequence logos provide a visually simple and intuitive representation
of binding preferences, they inherently show limitations in motif representation as
information is highly condensed [39]. Algorithms for motif generation are prone to
over-valuing consensus sequences [29, 112]. PWMs are unable to capture variably
gapped motifs [9] and interdependent bases cannot be displayed, as PWMs assume an

independent contribution of each binding site [39].

Datasets on TF structure and binding site selection are available in different online
databases, including Factorbook [137], JASPAR [111], HOCOMOCO [65], CIS-BP [138],
and UniPROBE [97]. As of 2018, there are 1,639 known or probable human TFs, of
which 93% are expected to bind to DNA features as a monomer or homomultimer

[66, 131].

Genetic alteration variants in TFs also account for genetic diseases; for example, as-
sociations between TF alterations and cancer are well known [96]. Furthermore, in a
recent review, van der Lee et al. [71] compiled a list of 46 regulatory variants with 40 TF
genes associated with rare diseases with a focus on deregulated regulatory elements.
Identification of variants in regulatory components is becoming common practice in
disease identification [82]. However, correlations between changes in regulatory se-
quences and human disease are rare, and identification of therapy targets relies on

comprehensive knowledge of functions and relations [132].
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1.4 Peak-based motif discovery

The commonly-used technology to identify protein binding sites and subsequently se-
quence motifs is ChIP-sequencing [107], with the first publications in 2007 [13, 130, 87,
101]. ChIP-Seq is still used today to identify genetic sections that are bound by a pro-
tein, such as TFBS, and histone modifications. Proteins in question are bound to DNA
and fixed using formaldehyd, followed by sonication of DNA strands to shear them.
Antibodies are used to select DNA fragments with the bound protein, which allows
separating unbound fragments. Selected DNA strands can be sequenced, resulting in
a set of several million reads where a binding is observed. The raw sequences obtained
are then mapped back onto the known sequence of the genome. From the mapping, a
collection of sites in the genome is created where each read is found [101]. Commonly-

used tools for read mapping are BWA [74] and Bowtie2 [68].

Due to molecular and technical variation, such as sequencing errors and incidental
binding of proteins, reads are known to contain a distorted representation of actual
binding events [126]. It is therefore not possible to directly identify a region selected by
aread as a protein binding site and analysis methods are designed to adapt to the high
signal-to-noise ratio. Futher, experiments are replicated and utilize high-throughput
technology to increase coverage. A common approach to identify binding regions from
reads is peak calling with subsequent motif discovery (Figure 1.4) [127]. Reads from
ChIP-Seq experiments, which are known to bind the target protein, are accumulated
based on their position on the genome. Using the distribution of those reads, loca-
tions on the genome can be identified that have an increased coverage of reads. An
enriched number of reads at a position form a peak. Read accumulating reduces out-
lier signals and increases the probability of detecting TFBS in the near vicinity [127].
To discard read accumulations that took place due to experimental bias, peak calling
tools measure significance of peaks to separate signals from noise [55]. Widespread
tools for peak calling are MACS [145], SISSRS [94], QuEST [130], and Hpeak [104].
ChIP-Seq experimental data, including raw data reads and their analysis, is available
online. The Encode Encyclopedia of DNA elements (ENCODE) [24, 125] currently lists

about 130,000 released datasets from various species, cell lines and conditions.

Based on peak locations, binding motifs can be derived that represent binding affin-
ity of the proteins tested. The sequence motifs are short, related patterns that are

repeatedly found and express a biological meaning [42]. Different approaches exist

10
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Figure 1.4: Overview of ChIP-Seq data analysis using peak calling and motif discovery
(Adapted from [85]).

to identify overrepresented sequences around peaks. They can be grouped into enu-
meration approaches that identify consensus sequences and probabilistic approaches
that construct probability-based models [23]. Popular motif discovery tools are Homer
[43], ChIPMunk [72], and MEME-ChIP [10]. There are numerous challenges in motif
discovery based on ChIP-Seq data. As previously described, observations of complex
protein-DNA interactions are made with multiple affinities, TF complexes of multiple
TF and epigenetic features [52]. Furthermore, understanding of regulatory mecha-
nisms is spare and an absolute standard is missing to thoroughly benchmark existing

algorithms [52].

1.5 Objectives and lack of knowledge

Gene therapy will presumably be a key technology in future therapy approaches, sig-
nificantly augmenting the armamentarium beyond current capabilities. The founda-
tion for genetic alterations are delivery vectors that enable the addition and change of
genomic sequences, including retroviral elements and transposases. Both systems are
not artificially built, but rather their integration mechanisms evolved through the need
for proliferation. They show different preferences for genetic elements, such as highly-
expressed genes, histone modifications or sequence motifs. Knowledge on integration
preferences is crucial to evaluate vector safety. Nonetheless, not all preferences for
different vectors are known. While collections of genetic annotations increase in size,

the necessary effort to review each annotation in relation to vectors also increases. In-

11
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tegration sites are therefore often aligned to only a small set of annotations selected as
probable preferences using custom scripts or genome browsers. Moreover, integration
mechanisms are constantly modified to increase safety and effectiveness. Increasing
amounts of annotation and integration data reveal a demand for a software platform to
perform recurring analysis of large amounts of annotation sites. Existing applications
are not capable of handling the quanity of annotation data, both from a computational
perspective and in reporting relevant discoveries from large-scale analysis. The lack

of a scalable application leads to an insufficient usage of available data.

Analysis of genetic positions is based on comparing integration characteristics to back-
ground models. In an ideal setting, those random sites are generated using the same
wet lab protocols to ensure control for experimental factors. However, additional ex-
periments are cost- and work-intensive, and thus capturing more signal sites instead
of controls is usually prefered. For this reason, random background models are often
created artificially based on known experimental factors. Applications exist that create
random genomic sites, although they are not capable of directly creating background
models based on multiple annotations and they require the usage of programming to

be combined.

To simplify the generation of background models, a platform is needed that is able
to build adapted background models based on selected annotations. Only a few stud-
ies make use of adjusted background models for their experiments, which is poten-
tially partly due to the complexity of creating them. This prompts the question of
whether more reliable information can be retrieved from integration sites if adapted
background models are utilized. Furthermore, it holds interest whether other insights
can be gained from positional analysis by using adapted background models not only
for experimental conditions, but also for known preferences. Integration preferences
are not fully understood, partly due to confounding factors that interfuse effects of
different genetic elements. For example, it is challenging to separatly investigate inte-
gration effects into TSS and certain histone modifications that occur near TSS. Com-
bining different covariates and comparing results between the models can possibly
reveal subtle binding preferences and help to further identify confounding factors. A
software capable of instantly yielding results and revealing differences between re-
sults from varying background models can clearly improve the analysis of genomic

positions and therefore integration vectors for gene therapy.
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1.5 Objectives and lack of knowledge

The application of gene therapy certainly relies on a deeper understanding of regu-
latory structures and relationships. Therefore, the extended focus of this dissertation
lies on TF binding characteristics, their binding motifs and ChIP-Seq data analysis. As
previously described, knowledge on TF binding is incomplete. Wet lab experiments are
known to be expensive and time-consuming and have an error rate that is reflected in
the lacking availability of high-quality datasets. Even with increasing data availabil-
ity, the task of unbiased motif discovery is a challenging task. De novo motif discovery
currently relies on peak calling together with motif discovery, which has been the
standard protocol for ChIP-Seq data analysis. As stated before, the accumulation of
peaks reduces noise in the data. Nonetheless, it also removes biologically relevant sig-
nals, which reduces the distinctivenes of the results and with low-quality datasets it
can lead to a complete removal of biological signals. In addition, motif discovery uses
synthetic background models that tend to overvalue the significance of motifs as they

are too random [119].

Based on known limitations of the peak-based process, a novel approach to improve
the detection of TF binding motifs in ChIP-Seq data is build. It implements an alterna-
tive to peak calling that derives k-mers and subsequently binding motifs directly from
read distributions without the need to accumulate peaks. This prompts the question
of how well a k-mer based approach on ChIP-Seq data can identify binding character-
istics of TF to TFBS interaction. The usage of all available reads for TF modelling is
supposedly advantageous for low-quality datasets to discovery faint binding effects,
in contrast to read accumulation into peaks, where many reads are removed as outliers
and low-signal peaks are omitted. The prevalence of low-quality ChIP-Seq data is well
known [79] and presumably even more common when unpublished data is also con-
sidered. Therefore, a novel algorithm with new capabilities to handle low-quality data
would be beneficial for future research and the re-evaluation of existing data. Further-
more, compared to common motif discovery, a direct derivation of binding sequences
allows for the usage of actual background models, which would improve the statistical

significance of identified motifs.

I aim to systematically investigate these assumptions in comparison to established
methods and demonstrate the benefits and limitations of the k-mer-based approach.
Previous analyses have shown that protein binding microarray (PBM) k-mer based
models outperform PWMs in their ability to capture TF preference [29], whereby we
know that k-mer based models of TF specificity are beneficial. As previously described,

prior knowledge on TFs is adjuvant to perform motif discovery. An alternative to exist-
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1 Introduction

ing tools could provide support for established motif discovery pipelines and peak as-
sessment. Moreover, direct derivation of k-mer to read distances could reveal binding
site characteristics that are hidden in the read distributions, as well as faint co-factor

bindings besides the primary motif.

Both publications are included in the following and supplements of the first publication
can be found in the Appendix. After the original publications, the main results are
summarized in Chapter 3, followed by a discussion of the results, as well as an outlook

on future challenges in Chapter 4.

14



2 Publications

2.1 NoPeak: k-mer-based motif discovery in ChIP-Seq
data without peak calling

Michael Menzel', Sabine Hurkal:2, Stefan Glasenhardt!, Andreas Gogol—Déring1

Afhfiliations L MNI, Technische Hochschule Mittelhessen -
University of Applied Sciences, Giessen, Germany.

2 Justus Liebig University, Giessen, Germany.

Journal Bioinformatics, Oxford Journals
Date, Issue Sept 2020, 37(5)

Pages 596-602

DOI 10.1093/bioinformatics/btaa845

Supplementary data  Partialy attached. Full document available online

Contributions

The following contributions are attributed to the thesis author:

Conceptualization Definition of project goals

Methodology Defined metrics and evaluation
Investigation Performed all analysis

Software Implemented the NoPeak software package
Visualization Created all Figures and Supplementary files

Writing Wrote the manuscript




Bioinformatics, 37(5), 2021, 596—602

doi: 10.1093/bioinformatics/btaa845

Advance Access Publication Date: 29 September 2020
Original Paper

Genome analysis

NoPeak: k-mer-based motif discovery in ChIP-Seq data
without peak calling

Michael Menzel', Sabine Hurka
Andreas Gogol-Déring™*

2 Stefan Glasenhardt' and

"MNI, Technische Hochschule Mittelhessen, University of Applied Sciences, Giessen 35390, Germany and 2Institute for Insect
Biotechnology, Justus Liebig University, Giessen 35392, Germany

*To whom correspondence should be addressed.
Associate Editor: Berger Bonnie
Received on February 5, 2020; editorial decision on August 31, 2020; accepted on September 14, 2020

Abstract

Motivation: The discovery of sequence motifs mediating DNA-protein binding usually implies the determination of
binding sites using high-throughput sequencing and peak calling. The determination of peaks, however, depends
strongly on data quality and is susceptible to noise.

Results: Here, we present a novel approach to reliably identify transcription factor-binding motifs from ChIP-Seq
data without peak detection. By evaluating the distributions of sequencing reads around the different k-mers in the
genome, we are able to identify binding motifs in ChIP-Seq data that yield no results in traditional pipelines.
Availability and implementation: NoPeak is published under the GNU General Public License and available as a

standalone console-based Java application at https://github.com/menzel/nopeak.

Contact: andreas.gogol-doering@mni.thm.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Regulation of gene expression is an important factor in the control
of cellular processes. Thus, the elucidation of mechanisms behind
gene regulation is a central research topic in the study of the cell as a
complex system. Transcription factors (TFs) that interact with
DNA at specific genomic regions—the TF-binding sites (TFBS)—
play an essential role in this process. The location of TFBS is mostly
determined by the respective DNA sequence to which the factor
binds. The identification of TF-binding motifs, that is, short se-
quence patterns that are presumably causative for a close interaction
between TF and TFBS, has long been a subject of research (Sandve
and Drables, 2006; Stormo, 2000).

The general approach to identify sequence motifs utilizes
chromatin immunoprecipitation sequencing (ChIP-Seq) (Nakato
and Shirahige, 2016). This method uses antibodies that bind specif-
ically to target proteins for extracting protein-DNA complexes.
Extracted DNA fragments are sequenced and those sequencing reads
are mapped to a reference genome. Due to the antibody-mediated
enrichment process reads map more frequently to genomic regions
with strong protein binding. TFBS can therefore be identified by
detecting areas with significantly increased numbers of reads.
Several tools for finding peaks in ChIP-Seq reads have been devel-
oped in recent years including MACS2 (Zhang et al., 2008), SISSRs
(Narlikar and Jothi, 2012), QuEST (Valouev et al., 2008) and
Hpeak (Qin et al., 2010). Detected TFBS can then be searched for
sequence motifs using motif discovery tools like HOMER (Heinz

et al., 2010), MEME (Bailey et al., 2009), MotifSuite (Claeys et al.,
2012), Trawler (Dang et al., 2018). These tools are compared on
performance in different publications (Keilwagen et al., 2011s
Wilbanks and Facciotti, 2010).

Although peak calling has been established in virtually all stand-
ard methods for the analysis of ChIP-Seq data, the procedure still
presents with difficulties and reproducibility of the identified peaks
is not always guaranteed (Li et al., 2011). The data quality supplied
by ChIP-Seq often poses a problem (Marinov et al., 2014), and it is
particularly crucial for accurate peak calling, which may fail if,
for example, the degree of accumulation by chromatin immunopre-
cipitation is too low or noise in the data is too high (Nakato and
Shirahige, 2016). There is a strong publication bias against datasets
whose analysis encounters any problems. If usual data processing
methods yield no results, the data will likely be discarded from the
study. There might be a considerable number of ChIP-Seq experi-
ments that failed to be analyzed and remained unpublished. Those
data would get a second chance for a reasonable evaluation if an al-
ternative method of analysis was available.

In this publication, we present a novel approach to identify
TF-binding motifs also from datasets in which peak calling
only yields very few or even no peaks. ChIP-Seq ensures that the
DNA is increasingly likely to be sequenced near TFBS, and thus
also near TF-binding motifs. Binding motifs in the genome are
characterized by an increased read frequency. It is therefore not ne-
cessary to search for peaks in the reads before searching for motifs.
Instead, we may skip the intermediate step of peak calling and try
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to deduce TF-binding motifs directly from the distribution of reads
within the genome.

Our motif discovery workflow operates on the analysis of
genome-wide read distribution profiles. To generate these profiles, it
is not necessary to determine TFBS, and therefore our method does
not require peak calling. For each k-mer, that is, each possible DNA
sequence of length k, we calculate one profile that represents a meas-
ure of the read density in the vicinity of the respective k-mer. The
profiles have a characteristic shape for k-mers that resemble a TF-
binding motif (Fig. 1). Unlike other approaches, which consider the
shape of individual peaks in order to enhance peak calling (Nakato
and Shirahige, 2018; Strino and Lappe, 2016; Wu and Ji, 2014), our
method is based on the shape of read profiles that reflect all reads
around all occurrences of the respective k-mer in the genome.

To evaluate the performance, we tested our method against com-
mon motif discovery tools in regards to peak prediction, synthetical-
ly degraded datasets and protein-binding microarray (PBM)
experiments. The algorithm and other tools are combined as an ap-
plication called NoPeak published under GNU General Public
License version 3. Software and source code is available at https://
github.com/menzel/nopeak.

2 Material and methods

Our method is separated in three phases. At first, we build read dis-
tribution profiles for each k-mer. Secondly, the profiles are filtered
for quality to remove k-mers with low information content or
coming from repetitive regions. The remaining profiles are scored
based on their height. Finally, the k-mers of high-scoring profiles
are combined into position weight matrixes (PWMs). Each phase is
explained in detail in the following passage. Figure 2 gives an over-
view of our method in comparison to common motif discovery. We
observed an average runtime <1 h on our hardware to build profiles
using NoPeak, which is on a similar scale to peak calling combined
with motif discovery.

Building profiles. Reads are mapped to the genome using a com-
mon mapping tool (e.g. Bowtie 2; Langmead and Salzberg, 2012)
for both signal and control reads, if control reads are available.
Reads that are not uniquely mapped are discarded. The mean frag-
ment length (FL) for each dataset is estimated using the method
from Gogol-Déring and Chen (2010).

Next, using mapped reads, read distribution profiles for both
control and signal data are built using k-mers and their distance to the
read start. To build profiles, the distribution of mapped reads around
each k-mer is examined inside a fixed window (default 500 bp). The
distance between each read to the k-mer is one data point for the
profile that represents relative occurrence of reads around the k-mer.
High profiles are observed for k-mers with higher frequencies of reads
nearby, while k-mers without increased occurrence of nearby reads
produce profiles that are flat and irregular. Profiles from reverse com-
plement k-mers are combined by adding the profiles.

Reads generated by ChIP-Seq analysis are over-represented
around TFBS. This fact is used in common motif discovery to iden-
tify peaks, which are small regions with an enriched read count. As
shown in Figure 2, instead of identifying read-enriched regions, we
use each read to analyze observable k-mers. Reads from ChIP-Seq
are more abundant upstream of the TFBS. This is due to the tech-
nical process of ChIP-Seq where only DNA-fragments that are
bound to the protein are kept. Therefore, the TF-specific k-mer to
which the TF is attracted is assumed to be downstream of the reads.

The profile shape is determined by the distribution of reads rela-
tive to k-mers. For example, a sharp profile peak with little variance
shows that all mapped reads are located in a similar distance to the
observed k-mer, which could represent a biological meaning. In
Section 4.2, we will discuss the possible relationship between profile
shapes and biological interpretation.

In our profile model (Fig. 1), we assume two underlying tech-
nical induced factors that influence the shape and make the profile
round and broader. First, all methods for DNA fragmentation pro-
duce pieces of DNA not only of a fixed length but from a spectrum
of different lengths. Second, the cross-linking between proteins and

— No variation
Varying fragment length

Read localization + varying fragment length
o— Read with sequencing direction

Fragment

Readcount

Maximum

TR 05FL 0 Distance to BS [bp]
Fig. 1. Model for k-mer profiles. A profile represents the read frequency at each dis-
tance from the k-mer. Reads are cumulated over all occurrences of a k-mer in the
genome. Reads from the negative strand were mirrored at the origin such that all
reads point to the right. The position of a read is defined as the position of its 5’ end
(blue circles). If the k-mer acts as a TF-binding motif, then the frequency of DNA
fragments crossing the k-mer at position 0 is increased. The ideal profile (red line)
corresponds to a rectangle the width of the fragment length (FL). However, we as-
sume that the profile shape is influenced by two sources of variation: Varying frag-
ment lengths and read localization deviation. The blue shape shows the impact of
the varying fragment length and green the expected shape with both factors

ChIP-Seq
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Fig. 2. Comparison between peak calling with motif discovery and NoPeak. For
both analyses, reads extracted from ChIP-Seq experiments are mapped to the gen-
ome. Following this step, common motif discovery and NoPeak use different
approaches to identify the motif. CA(T | G) C is highlighted as an example sequence
motif throughout the steps

DNA with formaldehyde typically used in ChIP protocols causes the
TF to bind to DNA over a wider range than just at the short-binding
position. In this way, also DNA fragments downstream from the
actual binding site are captured by ChIP and appear in profiles as
enrichment on the right of position 0. The effect is modeled by a
statistical deviation of the read localization.

We used the software ChlPulate (Datta et al., 2019) to simulate
reads with different fragment length and fragment jitter to observe
the influence on profile shape (see Supplement Section S1.4). The
simulation shows that two distributions influence variance and
mean distance between reads and k-mers. Examples of actual pro-
files from different k-mers are shown in Figure 3.

Using control data. For a better evaluation of ChIP-Seq studies,
the experimental design usually includes additional control datasets
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that are generated without the selection of reads by specific binding
antibodies. Control data can be used to remove background noise
from the actual signals data as follows. Both control and signal data-
sets are equally processed independently by mapping and building
profiles for each k-mer. For normalizing control profiles with re-
spect to size of the two datasets, profile heights are divided by the
ratio of total read counts in control versus signal data. Then, for
each k-mer, the profile from the signal dataset is divided at each pos-
ition by the corresponding control profile, resulting in a profile of
fold changes.

Occasionally, control and signal data generate almost identical
profiles. This would cause the signal to be removed if the control file
is applied. To improve automatic logo detection, we therefore
implemented a filter that disables the use of control reads if high-
ranking k-mers are below a fixed threshold.

Scoring profiles. So far, NoPeak has built and normalized read
distribution profiles for each k-mer. These profiles are now used to
score and filter the k-mers. Profiles are filtered by several criteria to
remove those based on repetitive regions, technical artifacts or noise.
According to our profile model (Fig. 1), a profile that corresponds to
a k-mer with significant binding is assumed to have a single peak up-
stream and close to the BS with no drop below the surrounding
level. If the shape of a profile clearly deviates from this, the corre-
sponding k-mer is discarded.

The filters are implemented using a fixed set of rules based on
our expectations toward the shape as described before. First, the
mode of the curve is checked to be upstream and within the esti-
mated fragment length of the binding site. Secondly, no sharp drop
up- or downstream of the mode is allowed. The profile smoothness
over a frequency of 50 bp is measured and profiles are filtered out if
above a relative threshold. Finally, the profiles are filtered according
to a shape score which is a measure of the correspondence between
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Fig. 3. Read distribution profiles for the transcription factor GABPA. A sequence
logo in the upper right visualize the binding motif of GABPA as it appears in the
database JASPAR (Khan et al., 2018). The diagram shows the profiles of eleven
8mers that correspond most closely to the GAPBA-binding motif. Each profile
shows the read start count for each position relative to the corresponding 8mer (BS)
within a 1000 bp window. All reads are oriented in positive x-direction. Profiles are
colored for better differentiation and smoothed with a moving average of window

size 20 bp
(ACcl6 CACGTGAs
9= v & AN
ENCFFOOONDP ‘ ‘ :I :
ENCFFOOONDT
ENCFFO0OVPS I I
ENCFFO00VPU

the width of the profile and FL. According to our profile model
(Fig. 1), we expect the read frequency in FL distance upstream from
the putative binding site to be approximately half of the maximum
read frequency. The shape score is therefore defined as the difference
between the profile value at position -FL and one half of the profile
maximum. The profile is filtered if this score is above a certain
threshold. Examples for profiles that were filtered because of their
shape are added in Supplements Section S1.3.

From the remaining profiles, we define the height to be the dif-
ference between the maximum value and the mean of the two bor-
ders of the profile. The height of a profile is assumed to correlate
with binding affinity of the corresponding k-mer and therefore
serves as a score for further analysis.

At this step of the analysis, we have produced a list of scored k-
mers that resembles the output produced by PBM experiments.
Comparisons between the results from NoPeak and PBM are shown
in Section 3.2.

Creation of sequence logos. Lists of scored k-mers contain all
relevant information that is observed by NoPeak. However, they are
lacking a graphic representation often needed to visually interpret
TF-binding patterns. We therefore added an additional step to build
sequence logos from k-mer score lists.

TFs can express multiple targeting sites through co-factors and
chromatin context (Arvey et al., 2012; Badis et al., 2009). We ob-
serve this in our results with a set of different sequence clusters. It is
therefore necessary to group observed k-mers to create sequence
logos for different sequence motifs. The k-mers are combined into
groups based on sequence similarity (default up to £/2 mismatches).
k-mers from each group are aligned to the highest scoring k-mer.
Using the results of the alignment, a position count matrix is gener-
ated that can easily be converted to a sequence logo for visual repre-
sentation, for example, by using WebLogo (Crooks et al., 2004).

3 Results

3.1 Reproducibility of results

To verify that results from NoPeak are reproducible, we used
NoPeak to generate 8mer score lists for different ChIP-Seq experi-
ments of the same TF. Figure 4 shows scores from different datasets
as color intensities for top-scoring k-mers from the TF MAX. The
vertical alignment of scores shows that scores are reproducible be-
tween the experiments.

While most TFs were found to be consistent across experiments
and cell lines, we also identified some TFs such as GATA3 or JUN
with considerably lower score similarity between replicates. When
we analyzed these experiments separately, we found that the differ-
ing datasets feature varying sequence motifs as it is also present in
the motifs enrichment in Factorbook (Wang et al., 2012) for those
TFs. This is illustrated in Supplement Section S1.2 that shows the
intra-TF k-mer correlation for several relevant TFs.

3.2 Comparison to other technologies

We used NoPeak to analyze ChIP-Seq data for a set of 13 well-
researched TFs to show that NoPeak is capable to capture known se-
quence motifs. In total, NoPeak processed 90 datasets downloaded
from ENCODE (Davis et al., 2018), encompassing several replicates

coelialGetr1.0ACeTGE:

Fig. 4. This heatmap shows 109 k-mer scores of four normalized ChIP-Seq datasets of the TF MAX that are present in each experiment. The color intensity represents the
score. k-mer columns are ordered by sequence similarity using CLUSTAL W (Thompson et al., 1994). High-ranking k-mer groups are combined to a sequence logo by
WebLogo (Crooks et al., 2004). The expected motif for TF MAX is shown in Figure 5. Vertical alignment of k-mer scores illustrates that k-mer scores are similar across

experiments
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Fig. 5. Comparison of sequence logos build using NoPeak and from JASPAR for five
well-analyzed TFs. ENCODE experiment IDs are noted above each logo

and experiments from different cell lines per TF. Reads were
mapped using Bowtie 2 and sequence motifs were created using
NoPeak. Figure 5 shows that NoPeak is able to reproduce the
expected sequence logos. Additional sequence logos for more TFs
and datasets for each TF are available in Supplementary Material
(Supplementary Section S1.6).

To evaluate our results further, we compared NoPeak to results
from PBM. It is a well-established procedure for measuring binding
affinities of a given TF (Berger and Bulyk, 2006) to different DNA
sequences. From PBM experiments, it is possible to derive scores for
binding affinity of TFs to each k-mer (e.g. for k=8). In order to
compare the results from our method to PBM, we searched the Cis-
BP database (Weirauch et al., 2014) for TFs for which both ChIP-
Seq and PBM data are available.

ChIP-Seq reads were mapped to the hg38 reference genome
(Schneider et al., 2017) and k-mer scores generated using NoPeak.
NoPeak scores were then correlated to the corresponding Z-scores
from PBM experiments for each TF and sequence logos generated
from both techniques. We found a correlation of k-mer scores and
visual similarity between the sequence logos (Supplement Section
S1.1).

3.3 Discriminating peaks from controls

In order to find out how accurately NoPeak describes binding pref-
erences of TFs compared to a conventional peak-based motif discov-
ery, we have examined the capability of different tools to distinguish
between DNA sequences at ChIP-Seq peaks and random control
sequences. For this, we analyzed all SYDH datasets from ENCODE
(Davis et al., 2018; ENCODE Project Consortium ef al., 2012) com-
prising 806 experiments from 91 TFs. A full list of experiments is
available in Supplement Section S1.10. As positive sets, we selected
100 bp sequences around the top 500 peaks identified by MACS2
(Zhang et al., 2008). The control sequences were generated as
described before (DREAMS Consortium et al., 2013) by using three
methods: (1) randomly sampling from the genome, (2) randomly
sampling from promotor regions, and (3) shuffling the sequences
from the positive set in a way that preserves dinucleotide

frequencies. Each method was used to generate 500 control sequen-
ces, so in total, we generated 1500 control sequences per dataset,
each of length 100 bp.

A prediction model was trained on each experiment with specific
control experiments. Subsequently, based on leave-one-out cross
validation, we used each model to predict each experiment within
the TFs and calculated the area under curve for the receiver-
operating characteristics curve (AUC-ROC). The mean of the AUC-
ROC:s for each experiment was noted as prediction score.

For the comparison, we used three well-established motif discov-
ery tools (HOMER, Heinz et al., 2010; ChIPMunk, Levitsky et al.,
2014; MEME, Bailey et al., 2009). Each tool was used to generate
PWMs based on the discovered peaks. For MEME and ChIPMunk,
we limited the training peaks to 1000 top-scoring peaks to reduce
runtime. HOMER was configured to build a model with three
motifs. MAST from the MEME Suite (Bailey et al., 2009) was used
to score the sequences from both positive and controls sets against
the PWMs.

Using NoPeak, we trained a k-mer-based model on each experi-
ment. The model consisted of a list of k-mers and their associated
scores. To evaluate a potential peak sequence, we identified all
8mers inside the sequence with a sliding window and summed the k-
mer scores learned by NoPeak for this TF. We allowed up to one
mismatch and reverse-complements and used only the 100-top k-
mers to account for the selection of top peaks from the experiments.

A flowchart of the analysis is added to Supplements Section
$1.8. A heatmap showing the mean AUC-ROC scores for each TF is
given in Figure 6.

3.4 Analysis of degraded datasets

Because our method does not rely on peak calling, we hypothesized
that NoPeak may be able to successfully analyze ChIP-Seq datasets
where common peak calling pipelines struggle. To evaluate this hy-
pothesis, we iteratively removed reads from ChIP-Seq experiments
and tested NoPeak and HOMER on motif quality. In each iteration,
we used MACS2 (Zhang et al., 2008) for peak calling and removed
all reads near discovered peaks. The process was repeated until no
detectable peaks were left. In each round, we used NoPeak to pre-
dict motifs from the remaining reads as well as HOMER to discover
motifs within the remaining peaks. Motifs from NoPeak and
HOMER were scored against a reference motif from Factorbook
(Wang et al., 2012) using the Jaccard distance calculated with
MACRO-APE (Vorontsov et al., 2013).

The scores for three TFs are shown in Figure 7. With each iter-
ation, the score of HOMER decreased until MACS2 could not iden-
tify any peaks and consequently, HOMER could not discover any
sequence motifs. NoPeak could keep a high score throughout the
peak removal test for all three TFs.

We analyzed the read distribution of the highest profiles gener-
ated by NoPeak in each round and observed that profile heights
were only decreased in the first round of read removal when the
largest number of reads was removed. In the following rounds, only
few reads were removed for eliminating remaining peaks, which had
only minor impact on read distribution profiles. Additional informa-
tion and sequence logos for each reduction step from both NoPeak
and HOMER are added in Supplement Section S1.5.

Further, we measured the correlation of k-mer scores between
the first and last experiment which resulted in a Pearson Correlation
Coefficient (PCC) of 0.98 for FOXA1, 0.91 for MAX and 0.97 for
JUN. This indicates that read removal from peaks does not affect k-
mer scores generated using NoPeak.

4 Discussion

4.1 Performance of NoPeak

We have shown that NoPeak is able to capture TFBS information
similarly well as conventional tools that are based on peak calling
and subsequent motif discovery. The results calculated by NoPeak
are reproducible and correspond to PWMs available in databases
(Khan et al., 2018; Wang et al., 2012). One advantage of our
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approach is that it is independent of peak calling. Even after the re-
moval of all peaks from datasets, the information about TF-binding
preferences still remains subtly hidden in the remaining reads and
can be revealed using by NoPeak. This implies that our approach
is suitable for experiments where peak calling finds no or too few
reliable TFBS.

The consistency of NoPeak results and PBM experiments and be-
tween different ChIP-Seq replicates shows that our method is robust
for high-scoring k-mers. The scores of low-scoring k-mers on the
other hand are less reproducible and may vary between different
ChIP-Seq experiments as well as in comparison to PBM. For con-
tinuative analyses of k-mer-to-score results from NoPeak, only high-
scoring k-mers should be used. Low-scoring k-mers are subject to
higher noise and are more specific to the dataset than the biological
entity.

Although NoPeak was not designed for the identification of indi-
vidual peaks and it does not consider information about peak posi-
tions in its analysis, the performance of our tool in predicting peak
regions is comparable to peak-based methods and it even outper-
formed the motif discovery tools in 7% of the experiments.
Averaged over all examined TFs, NoPeak achieved a mean AUC-
ROC of 0.68, which is similar for HOMER (0.67) but below
ChIPMunk (0.8) and MEME-ChIP (0.79). However, it should be
noted that TFBS detected in ChIP-Seq replicates usually overlap,
hence the motif discovery tools had the advantage of partially
predicting peaks that they already used to build the model, while
NoPeak could not benefit from this inevitable mixing of training
and test data.

PWMs are a widely used motif model (Stormo, 2000), yet are
known to not capture all TFBS information, as they lack the ability
to represent variable gaps, position dependencies and multiple tar-
gets. Comparative studies have shown that k-mer-based methods
can perform better in capturing TFBS information content
(DREAMS Consortium et al., 2013), and that scored k-mer lists
are more robust against single-base differences (Guo et al., 2018).
NoPeak is a k-mer-based approach, and we encourage to directly
use the k-mer-based model for interpreting TFBS.

A possible disadvantage of NoPeak could be that our approach
is less able to handle very wide sequence motifs, as the number of k-
mers and thus of profiles grows exponentially with the length k. At
the same time, the average number of occurrences of each k-mer in
the genome decreases, so that on average fewer reads are counted in
each profile and the profiles become more noisy. We tested k-mers
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up to 12bp, yet found that lower lengths lead to more distinctive
profiles. Longer motifs could be discovered through the combination
of shorter overlapping k-mers.

4.2 Further evaluation of profile shapes

Read distribution profiles show distinct shapes that could possibly
be used to reveal further binding site characteristics of TF binding.
The profile shape is a direct product of the distribution of reads
around binding sites and corresponding k-mers. Peak shape proper-
ties that might be useful for more detailed characterization of
TF binding include multiple local peaks, change in profile width,
plateaus and their width, downstream decline and drop-off ratio.
These profile shape characteristics are applicable as an indication on
binding site structure.

Figure 8 shows top profiles for different TFs. It is apparent that
profile shape is diverse between TF: The shape for GABPA for ex-
ample is a uniform profile for up- and downstream enrichment,
while MAX presents as skewed in up-stream direction with more
reads up-stream of the peak. Furthermore, FOXA1 shows a two-
peak profile with peaks at a similar height. This could be related to
the shadow peaks that are induced by estrogen-mediated chromatin
loops (Glont et al., 2019). BHLHE40 also has two peaks, but the
first of the two peaks is significantly below the peak closer to the
binding site. ATF3 is known to bind as a dimer (Jadhav and Zhang,
2017) and has a double peak for the top motif. Additional profiles
for all experiments are available in Supplements Section S1.7. A
deeper analysis and interpretation of different profile shapes will be
the subject of future work. We also analyzed data from CUT&RUN
and ChIP-exo experiments and found significant read profiles for
the expected k-mers (Supplement Sections S1.13 and S1.14).

5 Conclusion

With NoPeak, we present a novel method to analyze data from
ChIP-Seq experiments that do not require determination of peaks
and instead rely on the analysis of genome-wide profiles. The shape
of these profiles depends on the TF and contains information about
binding characteristics. NoPeak is capable of finding valid TF-
binding motifs in experiments that are not utilizable with traditional
motif discovery methods. The correspondence between PBM and
NoPeak k-mer scores for high-ranking k-mers, as well as the ability
of NoPeak to distinguish real from random ChIP-Seq peak sequen-
ces supports that the results delivered by NoPeak are biologically
relevant. We therefore consider NoPeak to be usable as a second-
stage tool for motif discovery if common pipelines fail due to low
read count or peak quality.

By involving ChIP-Seq control datasets, NoPeak provides the
unique feature of using an empirical background model in motif dis-
covery, while conventional tools have to rely on potentially ques-
tionable artificially constructed control sequences to identify
overrepresented motifs (Wilbanks and Facciotti, 2010).

NoPeak generates scored k-mer lists, which opens the possibility
to utilize methods from PBM analysis such as Seed-and-Wooble
(Berger and Bulyk, 2006) or BEEML-PBM (Zhao and Stormo,
2011).

Since NoPeak’s analysis is not limited to peak regions but
extracts information from complete ChIP-Seq datasets, we believe
that our approach may be more robust than conventional methods,
both with respect to noise in the data and being less susceptible to
possible collocations of binding motifs with sequence patterns that
are irrelevant to the actual binding. With NoPeak, it might even be
possible to detect subtle binding patterns that are too weak to cause
distinct peaks.

The capabilities of NoPeak could be further enhanced by build-
ing a more intrinsic model for profile shape evaluation that is able to
allow TF-specific variation, yet filters artifacts. Currently, NoPeak
is set up to work with a fixed k-mer length in each run, an additional
approach to combine different lengths k-mers could easily be eval-
uated. This is also associated with the capability to identify long
motifs, as shorter k-mers can be combined to identify larger motifs.
To predict binding sites, we scored sequences by the sum of k-mers
found in the sequence in question. This approach could be enhanced
by using a framework that uses energy-scoring like BEEML-PBM
to better capture binding preferences. As described, sequence logos
present a visual way to store binding site information, yet it cannot
capture all information NoPeak is able to identify. Instead of using
PWMs as a result, we recommend to use scored k-mer lists.
However, a pipeline is needed to work with those k-mer lists as well
as a new visual representation. An application to analyze k-mer lists
together with an advanced sequence scoring framework could
form a new application to improve motif discovery with NoPeak
and subsequently be used to identify peaks using k-mer lists.
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ABSTRACT

The rise of high-throughput methods in genomic research greatly expanded our
knowledge about the functionality of the genome. At the same time, the amount
of available genomic position data increased massively, e.g., through genome-wide
profiling of protein binding, virus integration or DNA methylation. However, there
is no specialized software to investigate integration site profiles of virus integration or
transcription factor binding sites by correlating the sites with the diversity of available
genomic annotations. Here we present Enhort, a user-friendly software tool for relating
large sets of genomic positions to a variety of annotations. It functions as a statistics
based genome browser, not focused on a single locus but analyzing many genomic
positions simultaneously. Enhort provides comprehensive yet easy-to-use methods for
statistical analysis, visualization, and the adjustment of background models according
to experimental conditions and scientific questions. Enhort is publicly available online
at enhort.mni.thm.de and published under GNU General Public License.

Subjects Bioinformatics, Computational Biology

Keywords Virology, Data analysis, Genome annotation, Next-generation sequencing, Integration
profiling

INTRODUCTION

Some viruses like HIV (Craigie ¢ Bushman, 2012) and AAV (Deyle ¢ Russell, 2009) are
able to copy their genomic sequence into the genome of an infected cell. This can have
severe impact on host cell stability as the integration may hit and disable a gene or a
regulatory region. The investigation of characteristics and underlying driving factors for
virus integration is not only relevant for virology and infectious diseases research but
also for approaches in gene therapy that apply virus-derived vectors and transposons to
deliver functional DNA fragments into host cells (Riviere, Dunbar ¢ Sadelain, 2012; Li et
al., 2015). Each gene delivery system has its own mechanisms for genomic integration and
preferences for choosing integration sites, hence different systems may have different risks
for causing undesired side effects.

Next Generation Sequencing (NGS) facilitates the genome-wide profiling of integration
sites, as they are collected e.g., in investigations of protein binding, virus/transposon
integration or DNA methylation. Integration sites are available from databases like the
Retrovirus Integration Database (Shao et al., 2016) and are regularly created for novel
targeted vectors. Typically, the identified sites are related to a variety of genomic features
and any integration preferences are determined by a comparison of actual integration
sites to a set of random control sites (Gogol-Diring et al., 2016). A proper background
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model should mimic all known biases of the signal data originating from experimental

or laboratory conditions. If, for example, a profiling method is only capable of detecting
integration events that are close to certain enzyme restriction sites then the control sites
should also be selected accordingly.

Several tools have been published that are capable of processing genomic positions and
annotations, like the Genomic HyperBrowser (Sandve et al., 2013). Genome browsers
like the UCSC Genome Browser (Kent et al., 2002), IGV (Robinson et al., 2011) or
Artemis (Carver et al., 2011) are designed for inspecting single genomic locations. Also
custom written scripts are commonly used for the analysis of genomic positions (Cook
et al., 2014) or libraries like PyBedTools (Janovitz et al., 2014; Dale, Pedersen ¢ Quinlan,
2011). Once written these scripts have the benefit of being a reusable option to conduct
a specific set of analysis on recurring data. However, they are limited by the available
functionality because each function has be newly developed. Additionally, comparability
across laboratories is afflicted by varying functionality and different implementations of
background models. There is yet no specialized tool for genomic positions analysis that
combines the features of instant analysis and user defined adaptable background models
that mimic known biases.

In this paper we present Enhort, a user-friendly web-platform for deep analysis of large
sets of genomic positions. Our aim is to accelerate and simplify the data analysis process as
well as to standardize it in order to increase reproducibility. Enhort is capable of adjusting
background sites used for comparison by user selected covariates. This includes annotation
tracks like restriction sites or chromatin accessibility, gene expression tracks and sequence
motifs. With covariates it is possible to adjust the background sites selection in a way that
they match the investigated sites for a specific track. The adaptation rules out the effects
of this annotation for the background. This feature can be used to adjust for experimental
bias as well as specific questions. Figure 1 shows the schematic process of data gathering
and the usage of Enhort in the workflow of analyzing genomic positions.

METHODS

Integration sites of viruses are gathered by sequencing infected cells and preprocessing as
shown in Fig. 1. These sites are uploaded to Enhort and are intersected with each annotation
file to compute fold-change enrichment and x? test in comparison to control sites, yielding
ameasure for effect strength and significance of each annotation respectively. Figure 2 shows
the schematic analysis pathway for sites uploaded by a user. Statistical analysis depends
on the Apache Commons Math library (https://commons.apache.org/proper/commons-
math/) and uses Bonferroni correction for multiple hypothesis testing. The libraries
plotly.js (https://plot.ly/javascript/) and Circos (http://circos.ca/) are used for visualization.
The results are sorted according to their relevance and presented in conjunction with
appropriate figures. Example results for a virus can be seen in Fig. 3A. The software has
been designed in a way that analysis results are almost immediately available after upload.
In many cases a background model consisting of random sites is not sufficient for an
adequate analysis. Some protocols, for example, can only detect integration events that
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Figure 1 Overview of preparatory work and data gathering for analysis in Enhort. Reads containing vi-
ral integration sites are identified and sequenced in the WebLab and mapped to a reference genome. Iden-
tified insertion sites are converted to a BED file for the usage in Enhort. Together with genomic annota-
tions from public database the analysis in Enhort is conducted to generated analysis of the given integra-

tion sites.
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occurred in close proximity to a restriction site of a specific enzyme, like EcoRI, which
cuts inside of GAATTC hexamers (Pingoud ¢ Jeltsch, 2001). Background models should be
adapted to mimic the actual integration pattern with regard to any known technical bias.

In this case, the control sites should also be selected to be near restriction sites. This can

be achieved in Enhort by setting the appropriate genome annotation as a covariate. When

selecting the track that contains all possible genomic positions of GAATTC hexamers as

covariate, Enhort will generate a set of control sites having exactly the same distribution of

distances to the enzyme restriction sites as the actual virus integration sites.
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Covariates help to adapt the background model both for technical circumstances, for
example, restriction sites and for eliminating a bias or biological preferences such as

motifs or genetic features. Covariates can also be used to identify dependent or separate
weak integration preferences that are covered by stronger effects, as shown in Fig. 3B.
MLYV integration sites are compared to two different control sets: A random and an altered
background, to identify the actual integration preferences; e.g., for histone mark H3K4me3,
which is a known preference of MLV (Gogol-Ddring et al., 2016).

For the validity of statistical testing it is usually indispensable to normalize the
background model relative to multiple covariates. For that purpose, Enhort supports
the selection of multiple covariates simultaneously in order to further investigate the
integration site characteristics. For example, Enhort may create a control set that considers
chromatin accessibility, restriction site distance as well as several histone modifications
simultaneously. This functionality is needed to build background models for sites that
are influenced by multiple factors, e.g., biological and technical biases. A set of additional

features listed in the following table:

1. Statistical analysis for annotation tracks:

(a) Fold change
(b) x? test
(c) Kolmogorov—Smirnov test

2. Hotspot analysis (Fig. 4C)
3. Position depended enrichment (Fig.
4. Background models based on:

4A)
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Enhort is separated into a lightweight, web-based user interface and a high performance

back-end server attached to a SQLite database storing meta-information about the
annotations fetched from DeepBlue (Albrecht et al., 2016). Results from Enhort are
instantaneously available as seen in Table 1 where the run times for different input

sizes are shown. Our application currently offers 1402 annotation tracks from 97 cell
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Table 1 Analysis execution times for different usual site counts, annotation tracks from hg19 and co-
variate counts. (Back-end server: SuperMicro SuperServer 4048B-TRFT 4x Intel Xeon E7-8867v3 with
2048GB DDR3 ECCLR).

Track count 23 1,127

Covariate count 0 2 5 0 2 5

Site count Execution time (ms)

150k 877 1,188 4,668 8,538 10,436 12,540
125k 717 1,103 5,628 5,509 7,552 7,975
100k 749 817 5,085 3,724 4,672 8,673
75k 624 571 4,019 4,905 4,397 9,633
50k 470 555 5,455 4,736 5,844 10,451
25k 308 351 4,628 3,246 3,091 8,111

lines and tissues for human genome assemblies hgl9 and hg38, downloaded from
UCSC Genome Browser (Fujita et al., 2011), Encode (ENCODE Project Consortium, 2004),
ChIP-Atlas (http://chip-atlas.org), BLUEPRINT Epigenome (Adams et al., 2012) and
Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015) using the DeepBlue
Epigenomic Data Server (Albrecht et al., 2016).

RESULTS AND DISCUSSION

Literature review

We reviewed the relevance of Enhort for contemporary research by systematically searching
PubMed, Google Scholar, and several review articles for publications concerning the analysis
of genomic integration sites. The publications include virus integration site analysis for
HIV, MLV, HRP-2, SIV, foamy virus, HPV, AAV and transposons such as piggyBac,
LINE-1, Alu and sleeping beauty. In total we identified 59 relevant publications. Details on
the reviewed publications and methodological analysis are available in the Table S1. Of these
publications 19 used completely random control sites, only six used adapted control sites.
The data analyses presented in 37 (63%) publications could have been entirely performed
with our tool. Six further publications use at least some methods provided by Enhort. We
assume that if they had the opportunity to use Enhort the authors would have saved a lot
of effort writing custom analysis scripts.

Data re-analysis

To further present the capabilities of Enhort we re-analyzed integration sites of the PiggyBac
transposon (PB) published by Gogol-Ddring et al. (2016) using Enhort. Results from Wilson,
Coates & George (2007) are used for comparison. PB integration characteristics show a
preference for genes, exons, introns, highly expressed genes, DNase I hypersensitive sites,
H3K4me3 and open chromatin structures (Wilson, Coates ¢ George, 2007; Li et al., 2013).
We uploaded the PB integration sites to Enhort, selected all relevant tracks and finally
exported the results. Figure 5A shows the log fold changes for a selection of annotations
for PB against a random background in grey. Figure 5B shows the sequence logos for the
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PB integration sites and the random background. The barplots were created using the
R-export feature of Enhort.

The key feature of the PB integration preference is the TTAA motif in which all
integrations occur. To precisely analyze the preferences of PB integration the background
model has to be adapted to replicate the TTAA motif preference. This can be achieved
using Enhort by creating a set of pseudo-random control sites that are located only inside
a TTAA sequence. To achieve this, we simply selected the sequence logo as a covariates.
Enhort takes genomic positions from a pre-sampled set of positions where each position
has a probability based on the similarity between the surrounding sequence and the TTAA
sequence. The results are shown in Fig. 5C where the background sites and PB show a
similar motif after the motif is added as a covariate using Enhort. The motif adaption also
changes the observed integration characteristics seen in Fig. 5A. The relative decreased
integration of PB into coding exons is changed to a significant preference, because CpG
islands are less likely to be hit by a site from the adapted background model, as TTAA
occurs relatively less frequent in CpG islands. The same applies to DNAse cluster regions,
TSS and exons, where the significance of integration is enriched in comparison to a random
background. Only a small change for the enrichment in introns and genes is visible. Overall
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Table 2 Log fold changes and integration ratios of Wilson, Coates & George (2007) in comparison to Enhort for two PB integration site sets.

Enhort Wilson et al. Enhort Wilson et al. Enhort Wilson et al.
Annotation track Fold change Fold change PB (%) PB (%) Random (%) Random (%)
RefSeq genes 1.32 1.46 63.08 48.8 47.93 33.2
TSS (45 kb) 2.14 3.00 20.8 16.2 9.7 5.4
CpG islands (£1 kb) 5.52 2.00 12.99 3.8 2.35 1.9
CpG islands (£5 kb) 2.82 0.96 22.85 7.7 8.09 8.3
Repeats:
LINE 0.71 0.76 7.72 12.7 10.90 16.7
SINE 0.50 0.54 3.8 6.0 7.64 11.1
LTR 0.56 1.84 2.79 6.8 5.0 3.7
DNA 1.61 1.18 1.87 4.0 1.61 34

this indicates that beside the TTAA preference of PB there are additional mechanisms that
alter the integration preferences. Using the background adaption feature of Enhort it would
be possible to test different hypothesis against the data and build a model that explains the
integration preferences.

To further review the analytic capabilities of our software, the integration counts of
PB sites are compared to published results from Wilson, Coates & George (2007). The
comparison can be seen in Table 2. An increased integration of PB into RefSeq genes,
inside the 5kb-TSS window, as well as a preference for CpG islands is observable for both
analyses.

Wu et al. (2003) published a study on MLV and HIV stating that MLV favors TSS
regions, whereas HIV does not display a strong preference towards TSS regions. The

Menzel et al. (2019), Peerd Comput. Sci., DOl 10.7717/peerj-cs.198 8/13



PeerJ Computer Science

Table 3 Comparison between fold changes of Wu et al. (2003) and Enhort over different annotations
on the same integration sites.

Wuetal. Enhort

HIV MLV HIV MLV HIV* MLV* HIV® MLV®
RefSeq genes 2.58 1.5 1.7 1.4 1 1 1 1
Housekeeping genes - - 3.7 1.36 222 1.12 2.05 1.04
CpG islands (£1 kb) 1 8 0.41 6.24' 0.35 6.17 0.31 4.09
TSS (&5 kb) 2.5 4.7 1.34 2.3 1.14 2.02° 1 1
H4K20mel — - 1.71 1.56 1.34° 1.52° 1.36° 1.42°
H3K4me2 — - 1.23 21.7 1.48 21.29° 1.09 15.2°
H3K27ac — - 0.9 24.52° 1.01 22.79 0.83 20.12°

Notes.
*P < 0.002.

*with RefSeq genes as covariate.

Pwith RefSeq genes and TSS (£ 5 kb) as covariates.
available integration sites were uploaded to Enhort and analyzed using the batch tool
with a random 10,000 site background model. The results from Enhort show a similar
integration pattern as stated in Wu et al. (2003) (Table 3). Except for CpG islands for HIV
where Wu et al. found a near random integration and we found a decreased integration.

For further review, HIV and MLV integration sites were uploaded independently to
Enhort, and RefSeq genes added as covariate. This background model had only a little effect
on MLV as the preference for TSS and CpG islands only changed slightly, indicating that
the preference for TSS is not due to a preference for RefSeq genes. For the HIV integration
sites the housekeeping genes, which are a known preference of HIV (Craigie ¢ Bushman,
2012), are still statistically significant against this background model.

Finally, RefSeq genes and TSS (£5 kb) were both used as covariates together, showing
that the integration ratio of MLV into CpG islands with a (&1 kb) window decreases
slightly. This shows that the integration into the CpG islands is probably not a side effect
of the preference for TSS or genes. The combined background model with RefSeq genes
and TSS does not have any influence on the HIV fold changes compared to the previous
background model.

The creation of each background model and comparing the results was possible using
built-in features of Enhort. We further added histone modifications to the analysis
showing that H4K20mel is significantly enriched for both integration sets and does not
change significantly for the different background models. This indicates that the histone
modification preferences is an additional effect, only slightly influenced by the preference
for genes and TSS. H3K4me2 and H3K27ac are known preferences of MLV (De Ravin
et al., 2014) and show a high fold change for all background models. With the available
database it would be easy to add numerous additional annotations for comparison.

We have shown that Enhort is capable of reproducing integration site analysis with less
effort and additionally offers easy-to-use mechanisms to create more sophisticated analysis
using adaptable background models. The exact annotation files were not available for
comparison, so it was not possible to produce the exact numbers. However, Enhort uses
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the same calculation principle. With the same annotations and sites the results by Enhort
would be the same as in the referenced publications.

CONCLUSION

In this publication we present Enhort, a fast and easy-to-use analyzing platform for genomic
positions. Based on a comprehensive library of genomic annotations, Enhort provides a
wide range of methods to analyze large sets of sites. In contrast to multi-purpose software
such as bioconductor, Enhort enables scientists to analyze data without programming
effort or extensive manual work.

Our literature review shows that Enhort is able to perform most of the analyses commonly
used in the investigation of integration sites. The re-analysis of Wilson, Coates ¢ George
(2007) and Wu et al. (2003) demonstrates that Enhort is able to reproduce analyses from
literature with little effort. It was not possible to reproduce the exact values, because
the version of the annotation was not recorded in the publications. However, more
detailed insights can be made using adaptable background models. This was shown in the
comparison of HIV and MLV from Wu et al. against different control sites.

Most publications use very simple background models for statistical analysis of
integration data and could potentially be improved using better background models.
Enhort provides methods to easily create more sophisticated background models for
improving both the accuracy and the range of possible analyses. Complex background
models can be used to identify weak effects and segregate driving factors for integration,
find a minimal set of annotations to mimic integration characteristics, as well as to
eliminate technical biases. In conclusion, this shows that Enhort will be a valuable tool
for further analyses of genomic positions, no matter if these positions are derived from
virus integration, sequence motifs, enzyme restrictions, histone modifications, or protein
binding.
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3 Summary

3.1 k-mer-based motif discovery

Transcription factors are a vital component of cellular regulation and even though
considerable effort has been devoted to their discovery, knowledge remains far from
complete. As previously described, peak calling together with motif discovery are the
common analysis methods for ChIP-Seq datasets. Although widely used, the typical
two-step process presents limitations as many signals are removed during peak gen-
eration by discarding reads below certain thresholds. The accumulation of reads to
peaks reduces noise, but also removes subtle binding information. To provide an al-
ternative method for the discovery of TF target sequences, NoPeak was developed,
a software tool that identifies motifs based on the enrichment of k-mers near each
read. A k-mer is a short genetic sequence of k bases. The usage of k-mer-based ap-
proaches in motif discovery has been successfully established by different applications

[44, 144, 32, 39, 116].

The key distinction between our approach and past publications is the absence of peak
calling. We offer an approach that is independent from peaks and thus is able to cap-
ture more information by not filtering reads through consolidating them into peaks.
Certainly, besides the signal amounts of noise also increase and poses new challenges
for evaluation techniques. By using all reads available, our method is able to find mo-
tifs in datasets with low coverage where peak calling is unable to identify peaks. The
algorithm and software NoPeak itself was published in 2020 [85]. My work encom-
passed the implementation of a new software package to generate k-mer profiles, new
algorithms to generate sequence logos from k-mer profiles and k-mer lists, and the
analysis of profile shapes. Moreover, the design of two challenges where NoPeak was
tested on depleted datasets and comparison of NoPeak against common peak calling
tools on peak identification, as well as the implementation of additional tools to work
with intermediate outputs. In the following the method of NoPeak will be summarized,

as well as findings and implications that can be drawn from the novel approach.
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3 Summary

3.1.1 Transcription factor models based on k-mers

Different established models to identify motifs from ChIP-Seq data exist. They ap-
ply read mapping and accumulate the mapped reads into peaks. After peak calling,
the identified peak regions are scanned for enriched motifs, often compared to a null
model based on random generated or random selected sequences from the genome not
involved in regulation. Thus, motifs are searched position-dependent and combined

into PWMs at a later stage.

Our novel method directly combines observations for k-mers by searching the vicin-
ity of each read for observed sequences of a specified length (NoPeak Bioinformatics
Fig. 2). The distance from each observed sequence to the read position is registered for
that sequence. Aggregated distances build a profile for each sequence and show their
distribution in relation to reads. Subsequently, those profiles are evaluated to identify
the relevance of each sequence and discard noise. Examples for discarded profiles are
shown in the Appendix in NoPeak Supplement Section 1.3. Based on control reads a
background model is generated with the same procedure. Control profiles are substi-
tuted at each profile position from the signal profiles to remove background effects
from each k-mer, respectively. In contrast to PWMs, where interdependencies are not
resolved and variable gapped motifs are difficult to model, our approach directly iden-

tifies sequences from the genome and only actually present k-mers are recorded.

The method is able to assign scores to each k-mer that represents the observed fre-
quency of occurrence corresponding with binding activity. k-mer scores are based
on relative profile height and multiple filters assure that k-mers based on repetitive
regions and other low-mappability regions are omitted. Profiles are also capturing

expedient information on binding site structure, which will be reviewed hereafter.

Within the publication, it could be shown that the algorithm is capable of producing
meaningful results for TFBS motifs based on k-mer profiles with position-independent
analysis (NoPeak Bioinformatics Section 3.1, Supplements Section 1.6). To make com-
parisons to traditional analysis methods and provide visual results, NoPeak is able to
generate PWMs and sequence logos. Binding motif from NoPeak were compared to
motifs from databases based on well-established methods and identified a close resem-

blance between high-ranking motifs (NoPeak Bioinformatics Section 3.2).

The comparison shows that results from NoPeak closely resemble the main motif by

significant bases that are visible at the expected locations. NoPeak Bioinformatics
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3.1 k-mer-based motif discovery

Fig. 5 contrasts the results for several TFs with clearly visible similarities between the
main motifs. Besides the main motif, less significant bases closer to the borders and
inside the main motif can differ between the methods, which is expected, given that
less signal is available to support base occurrence. Further comparisons between No-
Peak and common databases are available in Supplements Section 1.6, demonstrating
the similarity of a larger set of TFs. Dataset-dependent divergence between results is
observable for different TFs, for example visible for several GATA3 and BRCA1 data
sets, from which several are marked as low or insufficient read length in Encode. Addi-
tionally, NoPeak is able to reveal possible secondary motifs based on k-mer clustering.
However, it remains unclear which of those weak motifs are actual weak binding sites

or whether their appearance is coincidental.

Results from PBM [91, 14] are also k-mer-to-score lists, indicating possible synergies in
software usage. Results from NoPeak and PBM for different TFs found in UniPROBE
[97] were compared exemplary to highlight similarities (Supplements Section 1.1).
Nonetheless, further research is needed to evaluate the possibilities and limitations

of their compatibility.

New technologies to gather information on regulation structures have been developed
in recent years, including ChIP-Seq variants such as ChIP-exo [108] and CUT&RUN
[121]. Fundamental evaluations using NoPeak showed that it is also possible to eval-
uate raw data from both technologies using a genome-wide k-mer profiles approach

(Supplements Section 1.13 and 1.14).

Overall, the findings demonstrate that the direct inference of binding motifs from read
distributions yields good results for TF binding models. The results demonstrate that
our implementation NoPeak is appropriate to be used as de novo motif discovery tool.

Further applications are described in the following sections.

3.1.2 k-mer profile shapes reveal transcription factor characteristics

As previously described, k-mer profiles represent the distribution of k-mers in relation
toreads. The distribution of reads is influenced by technical variation, such as fragment
length and scatter. Additionally, the influence of biological factors including binding

site characteristics such as chromatin structure or dimer binding can be assumed.
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Within the publication, it could be demonstrated that k-mer profiles provide a novel
insight into TFBS characteristics and showed that profile shapes relate to known bind-
ing site structures. Characteristic profile shapes are observable within each TF and
remain visible with the decreasing strength of k-mers. While comparison between
TFs shows divergent profile shapes. For example, the dimer binding of ATF3 shows a
double peak in the profile, while FOXA1 shows a secondary peak, possibly related to
a known shadow peak induced by estrogen-mediated chromatin loops (NoPeak Bioin-
formatics Fig. 8) [54, 36]. This indicates that k-mer profiles can be used to predict
biological structures as k-mer profile shapes indicate analog binding modalities. In a
future evaluation, the systematic search for profile structures in ChIP-Seq experiments

could reveal unknown binding characteristics.

Figure 3.1 shows the top scoring k-mer profiles for two further evaluated TFs. BHLHE40
shows a twin-peak shape, most prominent in the top profile of the right-most data set

(ENCFF216ZWY), but also visible in less prominent profiles.
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Figure 3.1: Different profile shapes for the top scoring k-mers of two TFs (BHLHE40
and GABPA) in different datasets. Colors correspond to the read count.
Encode IDs of each experiment are noted above. Adapted from NoPeak
Supplements Section 1.7.
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3.1 k-mer-based motif discovery

Moreover, a drop below the background after the peak is observable for most profiles.
By contrast, the shape of the GABPA profiles shows a smooth single peak for each
k-mer and no drop below the background (additional profiles from more TFs are in

Supplements Section 1.7).

3.1.3 Motif discovery in low-quality datasets

Low-quality datasets from ChIP-Seq experiments are presumably more common than
apparent when reviewing databases, as they are commonly discarded during analysis
and not published. Besides single datasets, complete experiments often remain unpub-
lished if no significant results are found. Within the publication, it is shown that the
NoPeak approach is able to capture binding motifs in low-quality ChIP-seq data even
if other methods are unable to resolve peaks. This improvement was expected because
NoPeak uses more signal from the given data by relating each read to surrounding
k-mers, in contrast to peak calling, where only peak positions are used to identify the

binding motif.

To prove our claims, two challenges were designed in which reads were iteratively
removed from ChIP-Seq datasets. The first challenge removed reads from peak regions
while the second removed reads at random. Each degraded dataset was evaluated using
peak calling with de novo motif discovery and our approach. The results from each
round for both technologies were then compared to the database motif. Evaluations
show that NoPeak is able to better perform identifications of relevant k-mers for low-
quality datasets. While the motif produced by NoPeak remains almost constant, the
motif produced by Homer further deteriorates with each step. For each experiment, a
reduction step after which peak calling does not yield any more peaks is reached and
no further motif can be generated by common motif discovery, while NoPeak is still

able to return relevant k-mers and the expected motif.

Figure 3.2 exemplary shows the effect of read reduction from peak regions and result-
ing sequence logos from both tools. Within the fourth reduction step the sequence
logo deteriorates from the inital result for Homer, while the motif produced by No-
Peak is constant. The peak count significantly decreases, showing the dependence
between peak calling and subsequent motif discovery. By contrast, the read count is
only slightly reduced after the first round. Results from more experiments correspond-
ing to the NoPeak Bioinformatics Fig. 7 are in NoPeak Supplement Section 1.5 in the
Appendix.
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duction of the TF MAX. The expected motif from JASPAR is shown above.

Redrawn after NoPeak Supplement Section 1.5.

3.1.4 Peak identification using k-mers

Our approach operates without the use of peak calling. However, beside TF binding

motifs the peak positions and therefore binding positions are crucial in understanding

regulatory structures. Therefore, we evaluated our approach based on the capabilities

of identifying peak regions based on k-mer results. We replicated the DREAM5 Motif

Recognition Challenge [29] to evaluate whether our k-mer based approach is able to

differentiate peak from random regions (NoPeak Bioinformatics Section 3.3, Supple-

ment Section 1.11).
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3.2 Genomic position profiling

The challenge is based on 2,000 regions of 100 bp sequences, with 500 of them being
sampled from peak regions, while the others are non-peak regions built by different
methods. Each tool evaluates given regions based on a model that was trained a priori
and assigns a confidence value that states how likely the tool estimated the region to

be in the vicinity of an actual peak.

To differentiate peak and random regions, NoPeak used resulting k-mers together with
their associated score as a model. Each sequence was evaluated based on known k-
mers that were found, together with the certainty that this k-mer is relevant for binding
affinity. The relevance of each k-mer was expressed through its score. Statistical evalu-
ation of the prediction results reveals that our approach is able to produce equal results
to Homer, although it falls behind ChIPMunk and MEME-ChIP. We suspect that the
unavoidable mix of test and training data for the peak-calling-based approaches im-
proves peak prediction for the other tools, while NoPeak does not have this benefit.
Further, the results show that datasets tend to yield similar results for different soft-
ware tools, as is visible in the vertical similarity for many TFs. Besides those similar

results, each software tool shows outliers with low predictability for several TFs.

3.2 Genomic position profiling

The safety of gene therapy applications relies on the capabilities of delivery vectors. In
early gene therapy research, viral vectors were commonly used. Today, they are com-
plemented by transposable elements and technologies like CRISPR/Cas9. Irrespective
of the vector origin, insertion characteristics including genetic feature preferences,
targeted sequences or integration loci need to be determined. To build a platform for
the analysis of genomic positions in relation to annotations and genome sequence, we
developed Enhort. The platform was published in 2019 [86] based on previous work
on background models in my master’s thesis [84]. The platform combines easy-to-
use methods for statistical analysis of genomic sites by providing a comprehensive
database of annotations. At present, 1,402 annotation tracks from 97 cell lines are

available.

Within the scope of this dissertation background model creation for multiple tracks,
as well as sequence motifs was developed. The database of annotation tracks that
contain publically-available annotations for commonly-used cell-lines was built. The

hotspot analysis was implemented, as well as batch analysis of multiple genomic site
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tracks, additional tools for detailed graphic representation, export of results, sequence
logo analysis, sequence logo-based background models and a guided analysis tool to
simplify user access. Hereafter, the main aspects of Enhort are recapitulated followed
by summaries of publications where the platform was used and the contributions made

using Enhort.

3.2.1 Easy-to-use genomic position analysis

The platform is available online as a website (https://enhort.mni.thm.de). Users can
upload genomic positions, such as viral integration sites, TEs sites or TFBS in single or
multiple files. Enhort determines the genome version and intersects given sites with
available annotations. To determine enrichment and statistical significance, a random
background model is created based on positions inside the contig regions. Counts
from given sites and background model are evaluated by statistical significance and
fold change in relation to annotations. The results are presented to the user in various
diagrams. Through custom development and optimization of algorithms, the platform
is able to return results in real time, which we were able to show for various sizes of

input data (Enhort PeerJ Table 1).

After reviewing the results, the user is able to select annotations, such as cell-line spe-
cific features, expression data or custom annotation tracks as covariates to create a
background model based on scientific questions or experimental limitations. Custom
generated background sites are expedient to thoroughly dissect genomic site selec-
tion, and they offer the possibility to study effects of faint integration effects, which
are otherwise covered by large-scale influence. Enhort is able to instantly create back-
ground models based on user selected covariates and thus it provides an easy access
to advanced analysis that previously needed complicated scripting and understanding

of the underlying models.

We were able to reproduce results from well-known viral integration sites such as AAV,
HIV and MLV that are backed up by various publications [142, 22, 26]. We systemat-
ically reviewed literature for publications using genomic position analysis to support
our claims of application possibilities. Out of 59 identified publications, 37 could be
performed using methods from Enhort and six further publications apply methods that
are partly reproducable utilizing Enhort. As previously stated, only a minority of six
publications make use of adapted control sites based on experimental parameters or

known preferences to identify integration preferences. The analysis steps described
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in most publications could have been performed with our platform without any addi-
tional programming, including the analysis of integration near genetic features, his-

tone modifications and sequence motifs.

3.2.2 Multi-factor background models

Enhort likewise allows setting multiple covariates to control background sites for var-
ious annotations in each experiment. For example, a virus is known to integrate near
active TSS and specific histone modifications and sites have to be near restriction
enyzme cutting sites. Background sites mimic integration of given virus sites for each
annotation, as well as each combination of annotations. For the mentioned exam-
ple, that would include TSS without histone modification, histone modification with-
out TSS, both modifications, and corrected for intervals near restriction enzyme cuts.
Computational complexity rises exponentially with an increasing number of selected
covariates, and thus suitable algorithms are implemented to uphold a fast response

time.

Although, background models based on multiple covariates are achievable using cus-
tom scripts, such effort is rather uncommon for positional analysis, as seen in various
publications that we examined during the literature review. Numerous significant in-
tegration effects are observable for viruses and transposable elements besides those
mentioned in the literature. Faint integration preferences are visible and can be found
by explorative analysis of annotation data using Enhort and the built-in mechanism of

adaptable background models.

3.2.3 RNA-guided retargeting of Sleeping Beauty transposition in

human cells

The subsequent section is based on the publication: RNA-guided retargeting of Sleep-
ing Beauty transposition in human cells, published in eLife by Adrian Kova¢, Csaba

Miskey, Michael Menzel, Esther Grueso, Andreas Gogol-Déring and Zoltan Ivics [63].

As previously described, gene therapy and genetic engineering holds strong poten-
tial for developing new treatments and applications in biotechnology. Many chal-

lenges are present that currently prevent universal application, including expression
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levels control to prevent overexpression, as well as low expression levels and inser-
tional mutagenesis. Besides retroviruses as delivery vectors, the usage of transposons
shows promising results as immune reactions are lower and they perform better in
handling [48]. One of the transposons used is Sleeping Beauty (SB), a Class II DNA
transposon. SB has a random genome-wide integration at the specific target sequence
TA. This pseudo-random integration is also the main issue present, as random integra-
tion can disrupt genetic functionality by integrating inside a gene or promotor region
and although this is rare for SB integration it nonetheless occurs [41]. An analysis
of 59,169 SB sites revealed that 2.43 % of SB integration sites are located in 5kbp TSS

regions, which is near random (2.64 %) [7].

Apart from integration vectors, the mechanisms of targeted nucleases like ZFNs and
TALENSs and the CRISPR/Cas system can be utilized for genetic modification, as shown
by Aird et al. (2018). Each enzyme functions by a DNA-binding domain (DBD) with
a target sequence and a nuclease domain for DNA cleavage. The Cas nuclease stands
out with its need for a single guide RNA (sgRNA) that determines the target sequence.
This mechanism allows for specific targeting inside the genome. However, the in-
sertional mechanism of nucleases is of poor efficiency because the more frequent
non-homologous end joining (NHE]) repair-mechanism leads to insertions or dele-

tions [4].

Each technology shows a drawback: SB integrates randomly at a common sequence
motif and the integration mechanism of the Cas system has low integration efficiency.
Nevertheless, these issues are complementary, each showing a benefit for the other’s
weakness regarding insertional features. To develop an integration system that is able
to be targeted like the Cas system yet showing the delivering capabilities of SB, both

were successfully combined and the findings were published [63].

Three targeting factors were built to investigate the feasibility of this approach. SB100X,
a hyperactive SB transposase was fused with dCas9 at the C-terminus and N57, an
N-terminal fragment of SB was fused to dCas9 at both the C- and N-terminus, each
with a flexible linker. Two integration targets were selected, the HPRT gene on the
X chromosome and AluY, a highly conserved ALU retrotransposon for which sgRNA
was provided. The fusions were cloned into all-in-one expression plasmids allowing
expression of the targeting factors and sgRNAs and subsequently transposition was
tested in human HelLa cells. Integration datasets were then generated for several fu-

sions and targets.
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The identification of target preferences was conducted by using Enhort, as positional
enrichment is the core functionality of our tool. A custom database was built using
Bowtiel [69] based on the target sequences of AluY and HPRT. The resulting annota-
tion tracks were added as custom tracks to the Enhort database. Both sets of targeted
positions (dCas9-SB100X and dCas9-N57 + SB100X) were uploaded using the batch
feature and untargeted background sites set as a reference model. With Enhort, we
were able to detect the weak preference for the targeted region as described in the
publication and reveal that SB fused with dCas9 is a potential RNA-guided vector for
gene therapy.

3.2.4 Reprogramming triggers mobilisation of endogenous
retrotransposons in human-induced pluripotent stem cells with

genotoxic effects on host gene expression

The following segment is based on a contribution at the European Society of Gene
and Cell Therapy (ESGCT) Congress by Sabine Klawitter et al. [56], supported by my

computational analysis.

Modification of human-induced pluripotent stem cells (hiPSCs) holds interest as they
are capable of unlimited proliferation and generation of in vivo derivatives [62]. How-
ever, reprogramming-induced activation of endogenous mobile retrotransposons LINE-
1, Alu, and SINE-VNTR-Alu (SVA) is observable [62]. Therefore, a study was designed
to identify possible activated transposons and other interferences of L1 insertions with
gene expression. Here, Enhort was used to determine the integration preferences of

L1 for different genomic features, selected genes and sequences.

3.2.5 Engineered transposases and transposons enforce integration
into highly active genomic loci and facilitate optimal transgene

expression

The following section is based on the manuscript in preperation entitled Engineered
transposases and transposons enforce integration into highly active genomic loci and
facilitate optimal transgene expression, written by Sven Kriigener, Thomas Rose, Michael
Menzel, Anneliese Kriiger, Franzi Creutzburg, Annette Knabe, Andreas Gogol-Déring

and Volker Sandig [64].
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Besides the application of in vivo gene therapy to cure illnesses, genetic modification of
pharmaceutical cell lines holds strong interest for industrial purposes. Usually, those
cell lines are grown in suspension cultures and utilized for industrial production of
biopharmaceuticals such as monoclonal antibodies [73]. A suitable vector for genetic
engineering of such cell lines is the piggyBac (PB) transposase, a naturally active trans-
posase targeting TTAA sequences. PB has proven useful in different biotechnological
applications with a capacity for larger insertions compared to other vectors, while
insertions show a preference for gene regions, resulting in improved transgene ex-
pression [140]. Transposase-based delivery systems for Chinese hamster ovary (CHO)
cell lines have recently been developed [81, 106], increasing the expression compared

to conventional transfection, although integration is still random.

Similar to SB, insertions are randomly distributed over the genome at TTAA sequences
[37]. As active transcription regions are rare and integrations occur nearby, efficient
cell cultures are infrequent and need to be selected by a screening process. To in-
crease favorable integration, hyperactive variants of PB have recently been developed
[143, 75], showing increased insertional activity. An overall increase in insertion raises
the chance of insertions into active transcription regions. Selecting highly transcrip-
tional regions for insertion is an important challenge to increase effectiveness in ge-

netic engineering.

To develop an insertion system capable of inserting a given transgene at transcriptional
highly active regions, a novel delivery system based on PB was designed and described
in the manuscript [64]. For targeting the characteristics of histone modifications are
utilized. Histone modifications play a vital role in cell regulation, including the triple
methylation of lysine 4 of histone 3 (H3K4me3), which is frequent in highly active pro-
motor regions. H3K4me3 is recognized by the PHD domain of the TF TAF3. The TAF3
PHD domain could successfully be fused to a PB wildtype and an hyperpactive PB vari-
ant (haPB), both showing significant enrichment in H3K4me3 peak regions. To verify
transcriptional activity, the monoclonal IgG4 antibody Nivolumab was used. Experi-
mental results show a higher viability with increased IgG titers for both technologies
compared to wildtype and non-fused haPB. haPB fused to TAF3 exhibits especially

high titer concentrations.

Enrichment analysis was performed using our position analysis platform Enhort. Cus-
tom annotations were generated using H3K4me3 peaks from the CHO-K1 cell line for

different window sizes around peaks. Additionally, annotation tracks for the CHO
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cell line were created based on genes, exons, CpG and transcriptional regions. An-
notations were loaded as custom tracks into Enhort and their insertion evaluation as
well as statistical evaluation was performed [64]. The results reveal the suitability of
epigenetic targeted PB for genetic engineering by improved transgene expression and

the applicability of Enhort to custom data analysis.
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While being a key-technology for future medicine, the complex topics of gene therapy
and genetic engineering present a multitude of challenges. In this dissertation two
aspects were examined to improve the understanding of delivery vectors in relation
to genetic features and TF binding models. Hereafter, an integration of findings to

current research, limitations and outlook on future challenges are provided.

4.1 k-mer-based motif discovery

Based on known limitations of common ChIP-Seq analysis tools, NoPeak was devel-
oped as an alternative to peak calling approaches. With the evaluation of numerous
datasets and by comparison with known motifs, it could be shown that NoPeak is
able to reproduce expected sequence motifs. Partial differences between results and
databases are observable that can be accounted to the usage of single datasets for the
comparison with JASPAR [111], which uses manual curation. Datasets that show de-
viant sequence motifs are often marked as having insufficient coverage and read depth.
Further, differences in low-certainty bases are expectable. As described in the liter-
ature, sequence motifs overvalue the significance of consensus sequences [29] and
manual curation poses a non-negligible effect on the results. Bias in sequence repre-
sentation due to selected prior knowledge and data handling is inevitably built-in in
all methods. We speculate that NoPeak is less likely to discard contrary findings, as
the results are based on a table of k-mers associated with their individual score, while
other methods usually combine observations directly into single sequence motifs. k-
mer lists are also inherently able to represent secondary motifs, variable gapped motifs

and positional dependencies.

The main difference between NoPeak and peak calling is the extent to which reads
are used. Through peak calling, large amounts of the signals are reduced. Our ap-

proach utilizes each mapped read, which enables us to better detect binding motifs in
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data with low signal content. However, it also introduces the need for enhanced noise
management as noise peak accumulation reduces experimental and biological noise.
To differentiate between signal and noise, the shape of k-mer profiles is used, intro-
ducing new parameters for noise removal. Each parameter leads to a more complex
usage and increases the potential for inaccurate settings or an unintended introduction
of bias. Experimental processes are known to be influenced by observer biases, most
prominently when certain results are expected [46]. Each software used is dependent
on numerous parameters, either alterable by users or hidden. For computational dis-
coveries and especially explorative data analysis, the impact of parameter selection
has to be closely examined to prevent the introduction of incentives. To reduce the
influence of fixed parameters, an interactive version of the motif building step was im-
plemented, allowing researchers to test parameter combinations and review different

outcomes.

Our approach shows restrain for long motifs that are difficult to identify due to com-
putational limitations for large values of k. By combining short overlapping k-mers
to longer motifs by methods like seed-and-wobble [14], size constraints can be shifted.
With increasing motif overhang, uncertainty and instability increases, although large

motifs are also problematic in standard motif discovery tools [47].

The results confirm that NoPeak is able to reproduce known TF preferences and that
k-mer representations serve as an beneficial model of TF affinity, while NoPeak is able
to perform de novo motif discovery in ChIP-Seq and related data. NoPeak is position-
independent, whereby direct identification of binding locations is not possible. There-
fore, NoPeak is not able to replace peak calling as a default method of ChIP-Seq anal-
ysis, as binding positions are also an important measurement. Nevertheless, publi-
cations have shown improvements in peak detection using prior knowledge on TFs
[119]. This suggests that using prior knowledge obtained through NoPeak can sup-
port peak analysis. A further benefit of using a different method for the provision of
a priori knowledge is the prevention of circular reasoning, which could occour if the
same peak evaluation method is used twice. Further information on improving peak

discovery with NoPeak is presented in the following Section 4.1.4.

Based on the algorithmic complexity, the groundwork of k-mer to read relation is pre-
sumably more robust than peak-to-motif relations. NoPeak explores the direct relation
of read signals to surrounding sequences in contrast to the two-step process of peak

calling and separate motif discovery. In future development, representation of k-mers
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as a sequence logo could be improved by including auxiliary information from base
dependencies and frequencies with presentations similar to dependency logos by Keil-
wagen and Grau [59] or Guo et al. [39]. Similar to our observations, several ChIP-Seq
control datasets show extensive read clustering [79] similar to signal values. A filter
was implemented to notify the user if control data too closely resembles the signal.
The relation between control and signal data should be further evaluated for possible

errors in experimental design.

4.1.1 Better background control for motif discovery

De novo motif discovery tools utilize random genetic sequences without TFBS as a
background model for motif identification. Motifs identified inside the peak region that
do not occur in the background are labeled as enriched. It is known that these back-
ground models are often insufficient for motif discovery as their sequences are too ran-

dom compared to peak regions, which leads to overvaluing of motif sequences [119].

By using k-mer profiles from actual ChIP-Seq controls, NoPeak is able to apply real
background data for each k-mer in motif discovery. Background profiles are applied
to each k-mer profile using all genomics regions, in contrast to motif discovery, where
genomic regions are artificially selected to represent the background signal. Back-
ground k-mer profiles are generated with the same procedure as signal values and di-
rectly substracted from the signal profiles. Additionally, background profiles are view-
able and can help to identify control datasets that show unexpected read clustering,
as previously described. Depending on analysis needs, the influence of background

substraction can easily be adjusted.

4.1.2 Profile shape evaluation

Intermediate data from NoPeak revealed that binding characteristics were embedded
in the distribution of reads, and these characteristics are visible in the k-mer profile
shape. By simulating ChIP-Seq reads, it could be shown how motif shape is influ-
enced by fragment length and variation (Supplement Figure 1.4). Besides technical
influences, a strong biological influences on profile shape is probable. By comparing
profiles from different TFs and experiments for each TF, characteristic profile shapes
could be identified (NoPeak Bioinformatics Figure 8). Based on known binding char-

acteristics of the TFs, the observed profile shapes could be correlated with biological
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features. For instance, the dimer-binding of ATF3 or the chromatin shadow loop by
FOXA1 which are presumably related to the profile displayed by the significant k-mers.
Closely related profile shapes appear for all top k-mers found in different datasets for
the same TF (Supplement Section 1.7). Further analysis of profile shapes could yield
insights into binding characteristics such as chromatin structure, sequence features
and binding properties, as those are known to be influental on peak and therefore also
read distribution [136]. Observations on systematic profile shape variation tie well
with previous studies wherein ChIP-Seq data was evaluated using TFBS-Landscapes
[141]. Discovered sequence motifs were used to create a comparable representation
of motif distances to the peak position to derive quality and enrichment without se-
lecting a threshold. Similar properties such as shape and density differences between
TFs were discovered by this approach. Further, analyses performed by Bailey et al.
[11] showed that binding properties as well as quality could be derived from distances

between motif and reads.

The analysis of k-mer profile shapes is still an initial phase as technical and biological
influences can only be partly dissected. Future work should focus on understanding
influential factors on peak shape to improve noise removal and enable the derivation

of biological properties.

4.1.3 Improved motif discovery in low-quality datasets

Previous studies have emphasized that ChIP-Seq data quality in available databases is
not continuously sound. Marinov et al. found 20% of evaluated datasets to be of poor
quality, while about 25% were of intermediate quality [79]. Furthermore, these find-
ings only apply to published datasets, it can be expected that large quantities of data
are not published when certain quality criteria are not met. Therefore, a method capa-
ble of identifying motifs in low-quality data could be an asset to build motif models of
unknown TF or improve existing models. NoPeak combines the observations of each
k-mer across the whole genome for each read. The number of data points collected for
each observation is improved at two stages. First, all reads are used that would other-
wise be discarded by the accumulating peaks. Second, all k-mer-to-read relationships
across the genome are combined for each k-mer and reverse complement. For this
reason, NoPeak is able to identify more faint effects than common motif discovery,
as shown in different evaluations. Performance was evaluated for different types of

quality-modified datasets and could support the claim. Moreover, the models based on
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k-mer profiles can easily be combined for replicates, enhancing the extent of the data.

Software needed for this task was published alongside the main application.

Based on achieved expectations, it can be assumed that the re-evaluation of large
quanitities of unpublished datasets and poor-quality datasets could be performed using
NoPeak. Especially lesser covered TFs could benefit from results of additional datasets
and analysis with a second method that supports uncertain results. A more thorough
dissection of existing datasets is a fast and profitable usage of resources as no further

wet lab experiments need to be conducted.

4.1.4 Assisted peak selection

As previously described, de novo motif discovery without prior knowledge on affini-
ties can be improbable due to several factors [119]. Using k-mer models by NoPeak,
it could be shown that differentiation between peak and random regions in ChIP-Seq
data is possbile. For several cases, NoPeak could outperform common motif discovery
tools. These results ties well with previous studies on evaluation of TF models where
certain algorithms TF-specific outperformed other approchaes [29]. Incorporating ad-
vantages for different TF from multiple algorithms will likely outperform single ap-
proaches This suggest that models based on k-mers can be used as an asset in motif
discovery pipelines. For the utilization, parameters for method combination need to
be defined that combine the advantages of k-mer based results with peak calling. Fur-
ther, utilizing known motifs for motif identification is already common practice. By
using a k-mer based approach, circular reasoning using the same discovery algorithm

in both steps can be prevented.

4.2 Genomic position analysis

Continuous efforts in the development of safe insertional vectors prompt the need to
review new vectors and their integrational preferences. The development of targeted
vectors, for genetic features [77], specified sequences [15] or safe harbors [100, 110,
102] is a foundation of gene therapy approaches and close inspection of their actual
insertional behavior is required to prevent insertional mutagenesis [17, 15]. Based on
the requirements, an online platform called Enhort was implemented. Our literature

review and recent publications [63, 56, 64] that use the platform show its practicability
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4.2 Genomic position analysis

and capabilities. The extensive number of annotations simplify analysis for users by
providing data that otherwise needs to be gathered manually. Furthermore, adaptable
background models inside the real-time platform are a novel innovation and extend

the analytical capabilities for integration site analysis.

For a static analysis of few annotations or different species, the usage of BEDTools
[105] is certainly more convenient. By allowing the download of background sites and
upload of custom annotations to Enhort, both tools can utilize their advantages and be
used in conjunction. However, for explorative data analysis with unknown integra-
tional properties, various cell lines and annotation categories, the usage of a platform
combining these with statistical analysis is clearly superior to manual processing and

BEDTools.

With progress in development of sequence targeted vectors, as seen with CRISPR/Cas9,
the focus on insertion site sequence analysis becomes more important. Therefore, En-
hort is able to identify integration motifs based on given sites and display sequence
motifs. Additionally, background models based on sequence motifs can be generated,
alike to using annotations as covariates. Further development could include the de-
tection of preferences of mismatch sites and estimation of the impact of off-target in-
tegrations. To enable the analysis of complex integration motifs custom-build tracks
for target sequences can be uploaded individually for analysis. Viral vectors are also
used as delivery vehicles in novel gene therapy mechanisms like CRISPR/Cas9 as non-
viral delivery proves to be difficult to utilize[76], which shows the importance of viral
mechanisms in future applications and therefore the relevance of the Enhort analysis

platform.

Genomic position analysis using Enhort is limited by the availability and quality of
annotations. Future work to improve Enhort encompasses the addition of annotations

for various species and maintenance of the current annotation database.

4.2.1 Adaptive background models to improve site analysis

The benefits of background correction with covariates has already been shown in dif-
ferent publications. De Jong et al. 2014 [25] analyzed SB and PB with a background
model controlled for their respective integration motif combined with the distance to
the nearest restriction site and unmappable regions. This is similar to Li et al. [75],

where background sites were selected to adhere to the motif that PB integration sites
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express. Hiiser et al. [49] used adapted control sites for restriction enzymes and map-
pability. Wang et al. [135] and Roth et al. [109] used background sites that were
controlled for the distance from restriction enzyme sites. Adapted background models
to TSS regions were used to detect insertion sites by de Ridder et al. [27]. Nonethe-
less, the literature review showed that adapted background models were only used to
improve the analysis in a minority of publications. Even though in many cases speci-
ficially adapted background models are not strictly necessary, it can be assumed that
they would increase the reliability of findings. Their spare usage is potentially due to

the effort needed to generate them and the complexity in calculation.

With the Enhort analysis platform, the effort and complexity is substantially reduced
and researchers are enabled to easily utilize advanced background models. Complex
models with different incorporated factors can be built with little effort. In addition to
the usage of known influences, such as restriction sites, covariates can be selected iter-
atively and thus remove the most prominent effects on site distribution. This method
can be used to build a background model that closely resembles the integration sites.
At this step, the neccessary influence factors that explain observed integrations can be
taken from the set of selected covariates. Adaptable background models can help to
differentiate integration effects. However, genomic structures are known to be highly
dependent and entwined. It is therefore not possible to resolve all confounding fac-
tors based only on computational analysis. With an increasing number of covariates,
the possible regions for background integration are reduced. By selecting covariates
too strictly, sites are forced into the same regions as the given sites and thereby re-
moving the observational significance for any annotation. Nonetheless, the usage of
specifically adapted background models enhances the quality of gathered results and
the extent of results extracted from the given data. Further, the usage of the platform

helps to standardize genomic site analysis and enhances the comparability of results.

4.2.2 Explorative positional data analysis

Large amounts of annotation data on genetic structure have been collected in recent
years. Traditional scientific reasoning is based on a hypothesis-driven method. It starts
by an unexplainable observation, for which the most-likely unproven and testable ex-
planation is evaluated in experiments. If experimental results are supportive of the
hypothesis, new insights are gained, otherwise experiments or hypotheses are al-

tered. With the usage of high-throughput technologies, however, the scientific method
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4.2 Genomic position analysis

shifted to data-driven explorative analysis where numerous measurements are evalu-
ated without prior hypothesis [133]. The applicability of this method relies on com-
putational platforms that are able to handle the large amounts of data and can judge

relevance based on statistical models.

Enhort supports this new method of explorative analysis by allowing repeatedly al-
tering parameters and instantaneously displaying results. As shown, Enhort is capa-
ble of handling large amounts of integration sites and annotation data. The filtering
of most significant findings to present the user with the relevant results could also
be shown in numerous analysis. Furthermore, this approach can be used to generate
novel hypothesis, like observed preferences for certain genetic features of a retrovirus.
Based on hypotheses found in explorative analysis, experiments for validation can be
designed that verify the observation, conjoining traditional scientific reasoning with

high-throughput explorative analysis.
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A Appendix

A.1 NoPeak: k-mer-based motif discovery in ChIP-Seq
data without peak calling — Supplements

The supplements shown here are an abridged version of the full document. Tables with
Encode experiment IDs (Section 1.10, 1.12), correlation plots of ChIP-Seq experiments
(Section 1.2) and a flow chart for the peak identification challenge (Figure 1.8) were

removed. The complete Supplements are published online with the original paper!.

'Available here: https://doi.org/10.1093/bioinformatics/btaa845
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1 Supplements NoPeak
1.1 Similarity between PBM and NoPeak Scores

The scatterplot shows the correlation between 8-mer PBM scores and 8-mer NoPeak scores for the transcription
factor (TF) MAX. Additionally, 8-mers are colored based on the Jaccard distance between the 8-mer and the PWM

from JASPAR calculated by MACRO-APE.
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The table shows the correlation between k-mer scores and logos from PBM experiments against NoPeak with
ChIP-Seq data. Three PBM 8-mer score data sets from Cis-BP data base are correlated using the Pearson correlation
coefficient against scores from NoPeak based on ChIP-Seq data from ENCODE and Short Read Archive (SRA).

Additionally, sequence logos generated by both are shown.
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1.3 Filtered profiles

We assume that profile shapes give insights on binding characteristics. The shape can also be used to filter k-mers
that are located in repetitive regions, such as AAAATTTT. Several shapes for the TF GABPA are shown here that
are deviant from our expectation and are filtered by NoPeak as explained in the main manuscript.
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1.4 ChIPulate simulated read profiles

Using ChIPulate (Datta et al. 2019) synthetic reads were created with changing fragment length (FL) and jitter
(JIT). Subsequently, the reads were mapped and k-mer profiles were build using NoPeak. For each combination of
FL and jitter the k-mer profiles for two selected k-mers are plotted to visualize the effect of both parameters on

profile shape and location.
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1.5 Read reduce from peaks

The table shows the performance of NoPeak and Homer in regard to ChIP-Seq analysis where the reads were
removed iteratively. Scores and peak count are the same as shown in Fig. 7 in the main manuscript. Sequence
logos were generated using WebLogo with the best fitting PWM from Homer and the top-scoring from NoPeak in

each round.

ENCODE ID: ENCFFO0ONDT
TF: MAX
JASPAR sequence logo:
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ENCODE ID: ENCFF000PIJ
TF: FOXA1

JASPAR sequence logo:

5

Round | Score NoPeak

Logo HOMER

Score HOMER Peak count Read count Logo NoPeak
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1.5.1 Read reduce TF MAX

Logos generated using NoPeak when reducing not only reads from peaks but all reads for the TF MAX. The table
shows the sequence logo genereated by NoPeak if reads are removed.

Round | Peak count Read count Logo NoPeak
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1.6 Sequence logos build by NoPeak

The following table contains sequence logos build using NoPeak based on single ChIP-Seq experiments. The
ENCODE ID of each experiment is noted above the sequence logo. The rightmost column contains the sequence
logo from the JASPAR database or from HOCOMOCO (Kulakovskiy et. al 2018) if the motif was not available in
JASPAR (MAFK and TAF1). All logos were build using WebLogo.
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1.7 Read distribution profiles

Read distribution profiles for several TFs from different experiments. For each TF profiles from k-mers close to the
expected motif sequence are shown.

19



ENCFFOOOMWR ENCFFOOOMWV ENCFF(

0000YD AT ENCFF0000Y! ENCFF000PFQ ENCI ENCFFO00YFW

ATCACGTG
350
TCACGTG ATCACGTG

ATCACGTG

TCACGTGA
ATCACGTG /\ M

300

ATCACGTG

>

AreGT
|
250 NWMMM / | CACGT! ‘ﬂ! i “
AA T WWW TCACGTGA /UJ I A Qﬁy ‘Wﬂ'\ww% \‘
ATCACGTC %W‘/'\ JMI/\ ' |
WW‘W s i |
RAEREEFER
o e P /
A

150 M ' Ww Z:W CGT»/

100 Mw/v

N

=

o

IATCACGTG

Read count
N
o
o

5

5%, o & o 20 o © © 26 © © © oo © © & oo @ © o o6 o © o o6 o o o o
S © n oo » n oo » n oo » n oo » n oo » n oo » n o
8 S8y § ®Byp4 N EFF LI 8B H LWy 8B
Distance to BS [bp]
ENCFF000VSD ENCFFOEN) HE40 ENCFFO00XPA ENCFF216ZWY
CACGTGCC
3500
3000
2500
-
e
8 GCACGTGC
O 2000 CACGTGCA
3
& 1500 CACGTGCC /V\
cAceTGCC CACGTGCA / |
CACGTGCA ACARETEE
CACGTGCC
1000 CACGTGCA CACGTGCG
REACETGE \
SR ccacetee |/ |
CACGTGCG %%’R‘%%%% g
B S Jm/ i\ = N —
0
[=) o <} o [=) =) o <} [=} =) [} o [} [=} [=) [} [=) o [=} [=)
S Ire] Ire) S S Jre] Ire) S I} Ire] Ire] S S Ire] Ire] S
o X Y [rs) o X N n o N ~ 0 o X 59 )

|
Distance to BS [bp]



ENCFFO0ONAA ENCFF000! ENCFFO000PIM ENCFFO00RIR
"“FOXA1

IATGTTTAC }
3 5 0 0 CTGTTTAC i
I
I
]
3000 CATEHTA A
TGTTTAAA /\4‘
[CATGTTTA ATGTTTAC \‘/
2500 |
|
"E ATGTTTAC CTGTTTAC \‘)/\
=} CTTGTTTA r/-\ CTTGTTTA “/
8 2000 ATGTTTAC / |
k) SATSTTTA CTTGTTTA |
(0]
o 1500

CGTGTTTA
CGTGTTTA

500
i | |
| | |
0 T T T
=} o S} o o o o S} o o =} o S} o =}
S el el S o el el <3 1S3 el el 1S3
3% & BB g & B 78 & B
ENCFF0000PC ENCFFOOEA B DA ENCFFO00PTV ENCFFO00QNK
CCCGGAAG
CCGGAAGC
1750
1500
ACCGGAAG
1250
—
e
3
S 1000
e cEeBRAGE CCGGAAGG
® EEEBRAGE
& CCGGEARG
750
IACCGGAAG CCGGAAGA
[CCGGAAG ACCGGAAG
CCGGAAGE
500
ceeAAGE CCGGAAGG
CCGGAAGA coeen
250
S § °© § 88 8§ ° 8 88 8 ° g 88 88 ° § s
o N ~ e 5 N ~ 5 5 N ~ 5 5 N ~ st

I
Distance to BS [bp]



ENCFF000XCW

4000

ATGAGTCA

3000

GTGAGTCA |
2000 /
CTGAGTCA |

Read count

-500
-250

1600

1400

CCACGTGC
CACGTGCC

1200

1000 caccTeca

800

IACACGTGC

Read count

600
CACGTGCG
400
200
o o
o 0
P N

ATGAGTCA

GTGAGTCA

CTGAGTCA

(=] o 9 (=}

't} o o [Ye}

R BB R
ENCFFO0ONDP

il

250
500

ENCFF000XQT

250
500

CCACGTGC

CACGTGCC

CACGTGEA

ACACGTGC

GCACGTGC |/
yaa

CACGTGCG

el

-500
-250

Qu

N

ATGAGTCA

GTGAGTCA
CTGAGTCA

TGAGTC,

o o o o
o 'e) Yol
R «
ENCFFOUOND'MAX
N

250

500
-500

500

ATGAGTCA

GTGAGTCA

CTGAGTCA

ENCFFO0O0YAL

(-

[} o o o o
Yo} Yo} o O
N N I.DL(I')

I
Distance to BS [bp]

ENCFF000VPU

o (=] o (=]
o v el
ll|'7 N N

Distance to BS [bp]

ATGAGTCA

GTGAGTCA

CTGAGTCA

-250

ENCFF(

00YAM

250

CCACGTGC

CACGTGCC

CACGTGCA

ACACGTGC

CACGTGCG
GCACGTGC

-500

500

-250

ATGAGTCA

GTGAGTCA
CTGAGTCA

ENCFFO00YKL

-250
250
500

ENCFF000YTF




ChIPMunk

MEME-ChIP [ b b L b 0.98 0.97 0.99 0.99 0.98 0.98 0.96 0.92

1.11 Peak discrimination of additional experiments

Peaks from 13 commonly used TFs that were also used throughout the manuscript were tested for peak discrimi-
nation equivalent to Section 3.4 in the main manuscript.
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1.13 CUT&RUN profile shapes

In addition to ChIP-Seq data we used TFBS CUT&RUN! data with NoPeak from Meers et al.? to build profiles (k:
8bp, radius: 500bp). The 10 most significant k-mers are plotted with their k-mer as well as the expected sequence

logo from JASPAR:
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2Meers, Michael P et al. “Improved CUT&RUN chromatin profiling tools.” eLife vol. 8 e46314. 24 Jun. 2019, doi:10.7554/eLife.46314
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1.14 ChIP-Exo Data

Three ChIP-Exo raw datasets were downloaded from Arrayexpress®, profiles were build using NoPeak (k: 8bp,
radius: 500bp) and the 10 most significant profiles are plotted here with their respective k-mer:
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