
I F I G

Research

R e p o r t

Institut f�ur Informatik

JLU Gie�en

Arndtstra�e 2

D-35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut f�ur Informatik

Deterministic Turing Machines

in the Range between

Real-Time and Linear-Time

Andreas Klein Martin Kutrib

IFIG Research Report 0002

February 2000

Justus-Liebig-

Universit�at
Gie�en

IFIG Research Report

IFIG Research Report 0002, February 2000

Deterministic Turing Machines in the Range

between Real-Time and Linear-Time

Andreas Klein1 and Martin Kutrib2

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Deterministic k-tape and multitape Turing machines with one-way, two-

way and without a separated input tape are considered. We investigate the classes

of languages acceptable by such devices with time bounds of the form n + r(n)

where r 2 o(n) is a sublinear function. It is shown that there exist in�nite time

hierarchies of separated complexity classes in that range. For these classes weak

closure properties are proved. Finally, it is shown that similar results are valid for

several types of acceptors with the same time bounds.

CR Subject Classi�cation (1998): F.1.3, F.1.1, F.4.3

1E-mail: andreas.klein@math.uni-giessen.de
2E-mail: kutrib@informatik.uni-giessen.de

Copyright c
 2000 by the authors

1 Introduction

When one is particularly interested in computations with small time bounds, lets say

in the range between real-time and linear-time, most of the relevant Turing machine

results have been published in the early times of computational complexity.

In the sequel we are concerned with time bounds of the form id+r where id denotes

the identity function on integers and r 2 o(id) a sublinear function. So nonde-

terministic Turing machines would not be fruitful devices for investigations. From

[7] we know that the real-time and linear-time classes are identical for one-tape

machines NTIME1(id) = NTIME1(LIN). In [2] it has been shown that the complex-

ity class Q which is de�ned by nondeterministic multitape real-time computations

(NTIME(id)) is equal to the corresponding linear-time languages (NTIME(LIN)).

Moreover, it has been shown that two working tapes and a one-way input tape

(2 : 1) are su�cient to accept the languages from Q in real-time. With other words,

NTIME2:1(id) = Q = NTIME(LIN). Thus, for almost all nondeterministic Turing

machines there is no di�erence between real-time and linear-time.

The same does not hold true for deterministic machines. Though in [7] for one-tape

the identity DTIME1(id) = DTIME1(LIN) has been proved, for a total of at least

two tapes the real-time languages are strictly included in the linear-time languages:

In [11] a language belonging to DTIME1:1(LIN) but not to DTIME(id) has been

presented. Consequently, the investigations have to be in terms of deterministic

Turing machines.

Another aspect that, at �rst glance, might attack the time range of interest is a

possible speed-up. The well-known [6] linear speed-up from t(n) to id + " � t(n)
for arbitrary " > 0 yields complexity classes close to real-time (i.e. DTIME(LIN) =

DTIME((1+") � id)) for k-tape and multitape machines but does not allow assertions

on the range between real-time and linear-time. An application to the time bound

id+ r, r 2 o(id), would result in a slow-down to id+ " � (id+ r) � id+ " � id.

Let us recall known time hierarchy results. For a number of k � 2 tapes in [4, 10] the

hierarchy DTIMEk(t
0) � DTIMEk(t), if t

0 2 o(t) and t is time-constructible, has been

shown. By the linear speed-up we obtain the necessity of the condition t0 2 o(t).

The necessity of the constructibility property of t follows from the well-known gap

theorem.

Since in case of multitape machines one needs to construct a Turing machine with

a �xed number of tapes that simulates machines even with more tapes, the proof

of a corresponding hierarchy involves a reduction of the number of tapes. This

costs a factor log for the time complexity. The hierarchy DTIME(t0) � DTIME(t), if

t0 � log(t0) 2 o(t) and t is time-constructible, has been proved in [6].

2

Due to the necessary condition t0 2 o(t) resp. t0 � log(t0) 2 o(t), again, the range

between real-time and linear-time is not a�ected by the known time hierarchy results.

On the other hand, the hierarchy DTIMEk(t
0) � DTIMEk(t) is tight above linear-time

what follows immediately from the condition t0 2 o(t) and the linear speed-up. For

example, the trivial inclusions DTIMEk(3 � id) � DTIMEk(2 � id+r) � DTIMEk(2 � id)
become equalities for " = 1

3
by DTIMEk(3 � id) = DTIMEk(id+" �3 � id) = DTIMEk(2 �

id). We conclude that there are no in�nite hierarchies for time bounds of the form

t + r, r 2 o(id), if t � c � id, c > 1. In this sense the range between real-time and

linear-time is a white area in the map. In the following we are going to color it.

The basic notions and preliminary results of a technical
avor are the objects of

the next section. Section 3 is devoted to the hierarchies between real-time and

linear-time. In particular, by generalizing a well-known equivalence relation to time

complexities above real-time it is shown that speci�c languages which are constructed

dependent on the given time complexity are not acceptable by multitape Turing

machines obeying the smaller time bound. Conversely, it is proved by construction

that these languages are acceptable by one-tape Turing machines with a two-way

input tape whereby the larger time bound is obeyed. For the remaining case of

one-tape machines with a one-way input tape a hierarchy is shown by easing the

condition that relates each two time complexities. In Section 4 the question whether

or not the hierarchies may be re�ned are discussed. By relating the hypothesis to

a speed-up result it will turn out that some of the hierachies are optimal. The

weak closure properties of the complexity classes in question are studied in Section

5. Since the proofs of our negative results depend on a equivalence relation we

can show that similar results are valid for several types of acceptors as long as the

number of distinguishable equivalence classes is bounded similarly.

2 Preliminaries

We denote the rational numbers by Q, the integers by Z, the positive integers

f1; 2; :::g by N and the set N [f0g by N0. The empty word is denoted by " and

the reversal of a word w by wR. For the length of w we write jwj. We use � for

inclusions and � if the inclusion is strict. For a function f : N0 ! N we denote

its i-fold composition by f [i], i 2 N. If f is increasing then its inverse is de�ned

according to f�1(n) = minfm 2 N j f(m) � ng. The identity function n 7! n is

denoted by id. As usual we de�ne the set of functions that grow strictly less than f

by o(f) = fg : N0 ! N j limn!1
g(n)

f(n)
= 0g. In terms of orders of magnitude f is an

upper bound of the set O(f) = fg : N0 ! N j 9 n0; c 2 N : 8 n � n0 : g(n) � c�f(n)g.
Conversely, f is a lower bound of the set
(f) = fg : N0 ! N j f 2 O(g)g.

A Turing machine with k 2 N tapes consists of a �nite-state control and k one-

3

dimensional in�nite two-way tapes. On each tape a read-write head is positioned.

At the outset of a computation the Turing machine is in the designated initial

state and the input is the inscription of one of the tapes, all the others are blank.

The read-write head of the nonblank tape scans the leftmost symbol of the input

whereas all the other heads are positioned on arbitrary tape cells. Dependent on the

current state and the currently scanned symbols on the k tapes, the Turing machine

changes its state, rewrites the symbols at the head positions and moves the heads

independently one cell to the left, one cell to the right or not at all. With an eye

towards language recognition the machines have no extra output tape but the states

are partitioned in accepting and rejecting states. More formally:

De�nition 1 A deterministic Turing machine with k 2 N tapes (DTMk) is a system

hS; T;A; �; s0; F i, where
1. S is the �nite set of internal states,

2. T is the �nite set of tape symbols containing the blank symbol ,

3. A � T is the set of input symbols,

4. s0 2 S is the initial state,

5. F � S is the set of accepting states,

6. � : S � T k ! S � T k � f�1; 0; 1gk is the partial transition function.

The set of rejecting states is implicitly given by the partitioning, i.e. S n F . The

numbers �1, 0 and 1 correspond to the left, no and right moves of the read-write

heads.

If the set of tape symbols is a Cartesian product of some smaller sets T = T1 �
T2 � � � � � Tl we will use the notion register for the single parts of a symbol. The

concatenation of a register of all tape cells of a tape forms a track.

Let M be a DTMk. A con�guration of M at some time t � 0 is a description of

its global state which is a (2k+1)-tuple (s; f1; : : : ; fk; p1; : : : ; pk) where s 2 S is the

current state, fi : Z ! T is a function that maps the tape cells of the ith tape to

their current contents, and pi 2 Z is the current position of the head of the ith tape,

1 � i � k.

The initial con�guration (s0; f1; : : : ; fk; 1; 0; : : : ; 0) at time 0 is de�ned by the input

word w = x1 � � � xn 2 A�, the initial state s0 and blank working tapes:

f1(m) =

�
xm if 1 � m � n

 otherwise

fi(m) = if 2 � i � k

Subsequent con�gurations are computed according to the global transition function

�:

4

Let (s; f1; : : : ; fk; p1; : : : ; pk) be a con�guration and �(s; f1(p1); : : : ; fk(pk)) de�ned

to be (~s; x1; : : : ; xk; d1; : : : ; dk). Then the successor con�guration is as follows, 1 �
j � k:

(s0; f 01; : : : ; f
0
k; p

0
1; : : : ; p

0
k) = �

�
(s; f1; : : : ; fk; p1; : : : ; pk)

�
()

s0 = ~s

f 0i(m) =

�
fi(m) if m 6= pi
xi if m = pi

p0i = pi + di

Thus, the global transition function � is induced by �.

Up to now it is supposed that the input is written on one of the k (working) tapes of a

DTMk. Often in the literature Turing machines with an additional write protected

input tape are considered. Needless to say, if the input tape would not be write

protected then we simply had k + 1 tapes.

 x1 x2 x3 x4 x5 x6 x7 x8

S

|

{
z

}

k

.

.

.

Figure 1: Turing machine with k working tapes and an input tape.

In the following we denote Turing machines with a write protected two-way input

tape and k 2 N working tapes by DTMk:2. The write protection is realized by the

de�nition of the transition function � that now maps from S � (A [f g) � T k to

S � T k � f�1; 0; 1gk+1. Since the input tape cannot be rewritten we need no new

symbol for its current tape cell. Due to the same fact, � may only expect symbols

from A [f g on the input tape.

A further restriction is a write protected one-way input tape (i.e. the input tape

head is not allowed to move to the left). Such Turing machines with k 2 N working

tapes are denoted by DTMk:1. Again the restriction is realized by the transition

function that as in the previous case maps from S� (A[f g)�T k now to S�T k�
f0; 1g � f�1; 0; 1gk .

5

The global transition functions for DTMk:2 and DTMk:1 are induced by the local

ones in a straightforward manner. For consistency we often use the notation DTMk:0

instead of DTMk.

The last class of Turing machines we are dealing with are the so-called multitape

machines: DTM =
S

k2NDTMk

A Turing machine halts i� the transition function is unde�ned for the current con-

�guration. An input word w is accepted by a Turing machine if the machine halts

at some time in an accepting state, otherwise it is rejected.

De�nition 2 Let M = hS; T;A; �; s0; F i be a Turing machine.

1. A word w 2 A� is accepted by M if M on input w halts at some time in an

accepting state.

2. L(M) = fw 2 A� j w is accepted by Mg is the language accepted by M.

3. Let t : N0 ! N, t(n) � n + 1, be a function. A Turing machine is said to be

t-time-bounded or of time complexity t i� it halts on every input of length n

after at most t(n) time steps.

The family of all languages which can be accepted by DTMk:i with time complex-

ity t is denoted by DTIMEk:i(t). For multitape machines it holds DTIME(t) =S
k2NDTIMEk(t) =

S
k2NDTIMEk:2(t) =

S
k2NDTIMEk:1(t).

If t equals the function id+ 1 acceptance is said to be in real-time. The linear-time

languages are de�ned according to

DTIMEk:i(LIN) =
[

c2Q;c�1

DTIMEk:i(c � id)

Since time complexities are mappings to positive integers and have to be greater than

or equal to id + 1, actually, c � id means maxfdc � ide; id + 1g. But for convenience
we simplify the notation in the sequel.

In order to prove tight time hierarchies in almost all cases honest time bounding

functions are required. Usually the notion \honest" is concretized in terms of com-

putability or constructibility of the functions with respect to the device in question.

De�nition 3 Let k � 1. A function f : N0 ! N is said to be DTMk-time-

constructible i� there exists an O(f)-time-bounded DTMk which for every n 2 N0

on input 1n writes the binary representation of f(n) onto (one of) its working tape(s)

and halts.

Here a function f is called time-constructible if there exists a Turing machine that

computes the binary representation of the value f(n) from the unary representation

of its argument n. Moreover, the machine has to be O(f)-time-bounded.

6

Another common de�nition of time-constructibility demands the existence of a Tur-

ing machine that halts after exactly f(n) time steps when given the unary repre-

sentation of the input n. Both de�nitions have been proven to be equivalent for

multitape machines [8]. Since here we are also dealing with Turing machines with a

�xed number of tapes and are naturally interested in rich families of constructible

functions, we will use the next lemma for the proofs in the following sections.

Lemma 4 Let k � 1 and f : N0 ! N be a DTMk-time-constructible function.

Then there exist a function h : N0 ! N, h � f and h 2 O(f) and a DTMk which on

input 1n halts after exactly h(n) time steps with its input head scanning the leftmost

symbol of the input. The input is retained unchanged during the computation.

Proof Let f be a DTMk-time-constructible function and M be a witness for this

fact. A DTMk M0 works as follows:

In a �rst phase M0 simulates the constructor M whereby the input 1n is conserved

on an extra track. Subsequently, it moves the head of the tape that contains the

binary representation of f(n) to the tape cell containing the least signi�cant bit of

the representation. Up to this stage M0 is O(f)-time-bounded since M is.

During a second phaseM0 generates successively the binary representations of f(n)�
1; f(n)� 2; : : : ; 0. Finally, it moves the head of the tape that contains the conserved

input to the cell containing the leftmost symbol of the input and halts.

By calculating an upper bound for the number of moves it is easily veri�ed that M0

needs no more than O(f(n)) steps for successively decreasing the binary counter

from f(n) to 0. (Note that, for example, during every second decrementation only

the least signi�cant bit has to be changed. See e.g. [9] for further details.) It follows

that M0 obeys a time complexity of order O(f). On the other hand, M0 needs at

least f(n) time steps for decreasing the counter.

Now let for every n 2 N0 the function h(n) be de�ned as the running time of M0 on

input 1n. Obviously, h � f and h 2 O(f) what proves the lemma. 2

It is obvious that the lemma remains valid for all common de�nitions of time-

constructibility and, therefore, our results are independent of a speci�c de�nition.

The following de�nition summarizes the properties of honest functions and names

them.

De�nition 5

1. The set of all increasing, unbounded DTMk-time-constructible functions f

with the property O(f(n)) � f(O(n)) is denoted by T (DTMk).

2. The set of their inverses is T �1(DTMk) = ff�1 j f 2 T (DTMk)g.

7

The properties increasing and unbounded are straightforward. At �rst glance the

property O(f(n)) � f(O(n)) seems to be restrictive, but it is not. It is easily veri�ed

that almost all of the commonly considered time complexities have this property.

As usual here we remark that at least for k � 2 the family T (DTMk) is very rich.

More details can be found for example in [1, 12].

3 Hierarchies Between Real-Time and Linear-Time

In this section we will present our main results, time hierarchies between real-time

and linear-time. Due to the small time bounds the devices under investigation

are too weak for diagonalization. In order to separate complexity classes counting

arguments are used. The following equivalence relation is well-known. At least

implicitly it has been used several times in connection with real-time computations,

e.g. in [6, 11] for Turing machines and in [3] for iterative arrays.

De�nition 6 Let L � A� be a language over an alphabet A and l 2 N0 be a

constant.

1. Two words w and w0 are l-equivalent with respect to L if

wwl 2 L () w0wl 2 L for all wl 2 Al

2. N(n; l; L) denotes the number of l-equivalence classes of words of length n� l

with respect to L (i.e. jwwlj = n).

The underlying idea is to bound the number of distinguishable equivalence classes.

The following lemma gives a necessary condition for a language to be (id+ r)-time

acceptable by a DTM.

Lemma 7 Let r : N0 ! N be a function. If L 2 DTIME(id+ r) then there exists a

constant p 2 N such that

N(n; l; L) � pl+r(n)

Proof Let M = hS; T;A; �; s0; F i be a (id+ r)-time DTM that accepts a language

L.

In order to determine an upper bound to the number of l-equivalence classes we

consider the possible situations of M after reading all but l input symbols. The

remaining computation depends on the current internal state and the contents of

the 2(l + r(n)) + 1 reachable cells on each tape.

Let p1 = maxfjT j; jSjg.

8

For the 2(l+ r(n)) + 1 cells per tape there are at most p
2(l+r(n))+1
1 di�erent inscrip-

tions. For some k 2 N tapes we obtain altogether at most p
k(2l+2r(n)+1)+1
1 di�erent

situations what bounds the number of l-equivalence classes:

N(n; l; L) � p
k(2l+2r(n)+1)+1
1

The lemma follows for p = p3k+1
1 . 2

Since a DTMk:i has at most k+1 tapes and the previous lemma holds for multitape

machines and, thus, for arbitrary k, it follows immediately:

Corollary 8 Let r : N0 ! N be a function, k � 1 and i 2 f0; 1; 2g. If L 2
DTIMEk:i(id+ r) then there exists a constant p 2 N such that

N(n; l; L) � pl+r(n)

From the next theorem the hierarchies for all but DTM1:1 are derived. Moreover, it

says that the additional time needed in order to obtain a strict superclass cannot be

compensated by any number of additional tracks. Any time-constructible function

which is not constant would be greater than or equal to id, but since here we are

interested in sublinear functions r, the inverses of the honest functions are used.

Theorem 9 Let r : N0 ! N and r0 : N0 ! N be two functions and k � 1. If

r 2 T �1(DTMk) and r0 2 o(r) then

DTIMEk:2(id + r) n DTIME(id+ r0) 6= ;

Proof The �rst part of the proof is to de�ne a witness language for the assertion.

Since r 2 T �1(DTMk) there exists a function fr 2 T (DTMk) such that r = f�1
r .

Due to Lemma 4 one can always �nd a function hr 2 O(fr), hr � fr, and a DTMk

C such that C when given the unary representation of n 2 N runs for exactly hr(n)

time steps and halts on the �rst symbol of its preserved input.

Now we are prepared to de�ne the language dependent on hr (and thus on r):

Lhr =
n
a
2m

b
hr(2m)w1$w2$ � � � $wl¢y¢ j l;m 2 N

^ y; wi 2 f0; 1g+; 1 � i � l

^ 9 j 2 f1; : : : ; lg : y = wj

^ jw1$w2$ � � � $wl¢y¢j = m
o

In order to complete the proof Lhr 2 DTIMEk:2(id + r) and Lhr =2 DTIME(id + r0)

has to be shown what will be done by Lemma 11 and Lemma 12. 2

9

Before presenting the proofs a taste of the hierarchies is given that is based on

natural functions:

Example 10 Since T (DTM2) is closed under composition and contains 2id and idc,

c � 1, the functions log[i], i � 1, and
c

p
id are belonging to T �1(DTM2). (Actually,

the inverses of 2id and idc are dloge and did 1

c e but as mentioned before we simplify

the notation for convenience.) Therefore, an application to the hierarchy theorem

yields

DTIME2:2(id+ 1) � � � �
� � � � DTIME2:2(id+ log[i+1]) � DTIME2:2(id + log[i]) � � � �

� � � � DTIME2:2(LIN)

and

DTIME2:2(id+ 1) � � � �

� � � � DTIME2:2(id+ id
1

i+1) � DTIME2:2(id+ id
1

i) � � � �
� � � � DTIME2:2(LIN)

or in combinations e.g.,

DTIME2:2(id+ 1) � � � �

� � � � DTIME2:2(id+ (log[j+1])
1

i+1) � DTIME2:2(id+ (log[j+1])
1

i) � � � �

� � � � DTIME2:2(id+ (log[j])
1

i+1) � DTIME2:2(id+ (log[j])
1

i) � � � �
� � � � DTIME2:2(LIN)

The next part of the proof of Theorem 9 shows by construction that the language

Lhr is acceptable by a DTMk:2.

Lemma 11 Let r : N0 ! N be a function and k � 1 such that r 2 T �1(DTMk)

then

Lhr 2 DTIMEk:2(id+ r)

Proof In what follows a DTMk:2 M is constructed that accepts Lhr with time

complexity id+ r. Since DTIMEk:2(id+ r) is closed under intersection with regular

sets we may restrict our considerations to inputs of the form

a
+
b
+
�
f0; 1g+$

��f0; 1g+¢f0; 1g+¢
Lets say w = a

p
b
qu¢y¢ where u = w1$w2$ � � � $wl for p; q; l � 1 and w1; � � � ; wl; y 2

f0; 1g+.

10

M is designed to perform three tasks sequentially. The �rst one is to copy the a's

onto a working tape and to check whether the number of b's is correct with respect

to the number of a's. During the second task it is veri�ed that p = 2 � ju¢y¢j. Finally,
the third task is to ensure that wj = y for some 1 � j � l. The input is accepted if

and only if all tasks succeed.

In this case if we setm = ju¢y¢j we have p = 2�ju¢y¢j = 2�m and q = hr(p) = hr(2m)

and, hence, w 2 Lhr .

Task 1 M starts its computation with blank working tapes. During its �rst p time

stepsM copies the a's from its input tape onto the �rst working tape whereby each

two a's are written in one tape cell. Subsequently it simulates the DTMk C on its k

working tapes. During the simulation one input symbol b is read at each time step.

The task succeeds if the simulation stops at that time step the input head has moved

out of the b's, i.e. q = hr(p) has been veri�ed. Due to Lemma 4 the head of M's

�rst working tape is located again at the �rst symbol of its preserved input such

that the a's are still available on the �rst tape.

Task 1 requires p+ q = p+ hr(p) time steps.

Task 2 This task starts with the input head located at the �rst symbol of the

subword u. M copies the remaining input on a second track of its �rst working

tape. Since by construction the a's are 2-fold compressed available on the �rst track

it is easily veri�ed that 2 � ju¢y¢j equals p.

The time needed for task 2 is ju¢y¢j = p
2
.

If Task 1 and Task 2 succeed it holds jwj = p + hr(p) +
p
2
. For m = p

2
this is

jwj = 2m+ hr(2m) +m.

Task 3 The last task starts with the heads of the �rst working tape and input tape

located at the right hand end of the inscriptions w1$ � � � $wl¢y¢, respectively. During

the next jyj+1 time steps the working tape head moves back to the separating symbol

¢ between wl and y. Subsequently, y is compared with wl symbolwise from right to

left. Afterwards the head of the input tape is moved back again to the symbol ¢

following y. The comparison process is now repeated for wl�1; : : : ; w2 and w1.

The head of the input tape moves back and forth over the inscription y. It may

move back when all the symbols of y are compared with symbols of wi or vice versa.

This needs 2 �min
�
jwij+1; jyj+1

	
time steps. Additionally max

�
jwij�2jyj�1; 0

	
time steps could be needed by the head of the �rst working tape for passing over

remaining leading symbols of wi. Altogether the comparison process needs

1X
i=l

2 �min
�
jwij+ 1; jyj + 1

	
+max

�
jwij � 2jyj � 1; 0

	

11

time steps. In order to resolve the sum for each 1 � i � l we are concerned with

three cases:

1. 2 � (jyj+ 1) � jwij+ 1: 2 � (jyj+ 1) + jwij � 2jyj � 1 = jwij+ 1

2. jyj+ 1 � jwij+ 1 < 2 � (jyj+ 1): 2 � (jyj+ 1) + 0 � 2 � (jwij+ 1)

3. jwij+ 1 < jyj+ 1: 2 � (jwij+ 1) + 0 = 2 � (jwij+ 1)

Thus, the comparison process needs at most 2 � (jwij+1) time steps for each wi and

at most 2 � jw1$ � � � $wl¢j time steps in total.

The task succeeds if one of the wi matches y. Altogether it requires at most

jyj+ 1 + 2 � jw1$ � � � $wl¢j � 2 � jw1$ � � � $wl¢y¢j = 2 �m

time steps.

At the end of task 2 M has read the whole input w exactly one symbol per time

step. Due to the veri�cations jwj is known to be 2m+hr(2m)+m and thus for task

3 there is still r
�
3m+ hr(2m)

�
time. Since fr belongs to T (DTMk) it is increasing

and therefore r = f�1
r is increasing, too. We obtain

r
�
3m+ hr(2m)

�
� r
�
hr(2m)

�
By Lemma 4 and construction it holds hr � fr. It follows

r
�
hr(2m)

�
� r
�
fr(2m)

�
= f�1

r

�
fr(2m)

�
= 2 �m

We conclude that the time complexity id + r is obeyed by M and thus Lhr 2
DTIMEk:2(id+ r). 2

Now the lemma that bounds the number of distinguishable equivalence classes is

applied. By proving that Lhr induces more equivalence classes than are distinguish-

able by any multitape Turing machine (with respect to the given time bound) the

last part of the proof of Theorem 9 is shown.

Lemma 12 Let r : N0 ! N and r0 : N0 ! N be two functions and k � 1. If

r 2 T �1(DTMk) and r0 2 o(r) then

Lhr =2 DTIME(id + r0)

Proof Contrarily assume Lhr is acceptable by some DTMk0 M with time complexity

id+ r0.

We consider words a2mbhr(2m)w1$w2$ � � � $wl¢y¢ from Lhr such that jw1j = � � � =
jwlj = jyj = l and, therefore, we have m = (l+1)2. The situation at time n� (l+1)

where n denotes the length of the input word is as follows. Two words

a
2m

b
hr(2m)w1$ � � � $wl¢ and a

2m
b
hr(2m)w01$ � � � $w0l¢

12

are (l + 1)-equivalent with respect to Lhr if and only if the sets fw1; : : : ; wlg and

fw01; : : : ; w0lg are equal. There are exactly
�
2l

l

�
di�erent subsets of f0; 1gl with l

elements. It follows:

N(n; l + 1; Lhr) = N
�
3m+ hr(2m); l + 1; Lhr

�
�
�
2l

l

�
>

�
2l � l

l

�l

�

2

l

2

l

!l

=
�
2

l

2
�log(l)

�l

> 2
l
2

4 = 2
(l2)

for all su�ciently large l.

On the other hand, by Lemma 7 the number N(n; l + 1; Lhr) of equivalence classes

distinguishable by M is bounded by pl+1+r0(n) for a constant p 2 N:

N(n; l + 1; Lhr) = N
�
3m+ hr(2m); l + 1; Lhr

�
= N

�
(3(l + 1)2 + hr

�
2(l + 1)2

�
; l + 1; Lhr

�
� pl+1+r0(3(l+1)2+hr(2(l+1)2))

De�ne r00(n+ 1) = maxfr0(n+ 1); r00(n)g. Obviously, r0 � r00 and we obtain

� pl+1+r00(3(l+1)2+hr(2(l+1)2))

Since fr belongs to T (DTMk) it is increasing and unbounded and it holds fr � id.

By construction we have hr � fr and hr 2 O(fr) and, thus, hr � id. By de�nition

r00 is increasing. We conclude

� pl+1+r00(4�hr(2(l+1)2))

� pl+1+r00(4�c1�fr(2(l+1)2)); for some c1 2 N
= pl+1+r00(c2�fr(2(l+1)2)); for some c2 2 N

From r = f�1
r it follows that r is increasing. By r0 2 o(r) and the construction of

r00 we conclude r00 2 o(r). Furthermore, we know O(fr(n)) � fr(O(n)). Thus

� pl+1+r00(fr(c3�(l+1)2)); for some c3 2 N
= pl+1+o(r(fr(c3�(l+1)2)))

= pl+1+o(c3�(l+1)2)

13

= pl+1+o((l+1)2)

= po((l+1)2)

= po(l
2)

= 2o(l
2)

Now we have the contradiction that previously N(n; l+ 1; Lhr) has been calculated

to be at least 2
(l2) what proves the lemma. 2

The inclusions

DTIMEk:i(id+ r0) � DTIMEk:i(id+ r) and DTIME(id+ r0) � DTIME(id+ r)

are trivial for r0 � r. Applications of Theorem 9 yield the hierarchies:

Corollary 13 Let r : N0 ! N and r0 : N0 ! N be two functions. If r 2
T �1(DTMk) and r0 2 o(r) then

DTIMEk:2(id+ r0) � DTIMEk:2(id+ r); k � 1

DTIMEk:1(id+ r0) � DTIMEk:1(id+ r); k � 2

Proof The strictness of the �rst assertion has been shown by Lemma 11 and Lemma

12.

Observe that in the proof of Lemma 11 Task 2 and Task 3 do not use the working

tapes 2; : : : ; k. Since for the second assertion k has to be at least 2, Task 2 can be

modi�ed such that the subword u¢y¢ is additionally copied onto the second working

tape. Subsequently the second working tape simulates the two-way input tape in a

straightforward manner. 2

Corollary 14 Let r : N0 ! N and r0 : N0 ! N be two functions and k � 2. If

r 2 T �1(DTMk�1) and r0 2 o(r) then

DTIMEk(id+ r0) � DTIMEk(id+ r)

Proof Here the working tape containing the input has to simulate the two-way input

tape. Therefore, only the remaining k � 1 tapes are available for the simulation of

the time-constructor. 2

Corollary 15 Let r : N0 ! N and r0 : N0 ! N be two functions. If r 2 T �1(DTM)

and r0 2 o(r) then

DTIME(id+ r0) � DTIME(id + r)

14

There are two cases for which Theorem 9 does not yield a hierarchy: DTM1 and

DTM1:1. The �rst one is trivial. By the results in [7] DTIME1(id) = DTIME1(LIN)

is known and, thus, there is no hierarchy between real-time and linear-time.

The one-tape Turing machines with one-way input tape are too weak to accept the

language Lhr in (id + r)-time. So Lemma 11 does not hold for DTIME1:1(id + r).

But nevertheless a hierarchy can be proven if the time for the acceptance is slightly

increased.

Theorem 16 Let r : N0 ! N and r0 : N0 ! N be two functions. If r 2 T �1(DTM1)

and r0 2 o(r) then

DTIME1:1(id+ r0) � DTIME(id + r
3

2)

Proof The language Lhr of Theorem 9 is slightly modi�ed as follows:

L0hr =
n
a
2m

b
hr(2m)w1$w2$ � � � $wl¢y¢ j l;m 2 N ^ y;wi 2 f0; 1gl; 1 � i � l

^ 9 j 2 f1; : : : ; lg : y = wj ^ jw1$w2$ � � � $wl¢y¢j = m
o

The di�erence between Lhr and L0hr is that in the su�xes w1$w2$ � � � $wl¢y¢ of

the words in L0hr are as many subwords wi as there are symbols in the subword

y, and that w1; : : : ; wl and y are of the same length. Thus, for jyj = l it holds

jw1$w2$ � � � $wl¢y¢j = (l+1)2. Moreover, we have L0hr � Lhr . Since the words in L
0
hr

have been used to prove Lemma 12 it follows immediately L0hr =2 DTIME1:1(id+ r0).

It remains to show L0hr 2 DTIME1:1(id + r
3

2). In order to construct an appropriate

DTM1:1 M we only have to modify Task 3 of Lemma 11 as follows.

Task 3' The task starts with the heads of the working tape and the input tape

located at the right hand end of the inscriptions w1$ � � � $wl¢y¢ as Task 3 does.

Since the input tape is one-way the remaining computations are on the working

tape.

The head of the working tape sweeps back and forth over its inscriptionw1$ � � � $wl¢y¢

whereby the subword y is symbolwise copied to the subwords wi and the number of

subwords is checked as follows.

During a right to left sweepMmarks the rightmost non-marked symbol of y and cop-

ies this (on an additional track) onto the rightmost empty register of each subword

wi. Additionally during the sweep, the rightmost non-marked separating symbol ($

or the ¢ between wl and y) is marked.

During a left to right sweep the tape content is not rewritten.

Suppose now the input belongs to L0hr . During its last right to left sweep (M can

detect when it has marked the leftmost symbol of y by its position next to the

15

separating symbol ¢)M can check whether all of the separating symbols are marked,

whether the lengths of all of the subwords wi are equal to the length of y, and whether

one of the subwords wi matches its copy of y. Thus, whether jw1j = � � � = jwlj =
jyj = l and wi = y for some 1 � i � l.

Let jw1$ � � � $wl¢y¢j = m then Task 3' needs less than 2 � m � l time steps. By

m = (l + 1)2 � l2 we conclude less than 2 �m � pm � (2m)
3

2 time steps.

Suppose now the input does not belong to L0hr . If the lengths of the subwords are

correct but none of the wi matches y the time for Task 3' is again less than (2m)
3

2 .

If the lengths are not correct, i.e. ifM cannot �nd an unmarked separating symbol,

or if M cannot �nd an empty register for at least one of the subwords wi, or if

on its last right to left sweep there remain empty registers or unmarked separating

symbols, then M rejects the input immediately.

In these cases let M have performed j � 1 sweeps successfully, j � 1. Then Task 3'

needs less than j � 2 �m time steps. Due to the successful sweeps there have to exist

at least j � 1 subwords wi each of which have to consist of at least j � 1 symbols.

Together with the subword y and the separating symbols it follows m � j2. Thus,

Task 3' needs less than 2 �m � pm � (2m)
3

2 time steps even if the input is rejected.

Recalling the �nal arguments of the proof of Lemma 11 for Task 3' there is
�
r(3m+

hr(2m))
� 3
2 time. Since r(3m+hr(2m)) has shown to be greater than 2m there is at

least (2m)
3

2 time. We conclude that the time complexity id + r
3

2 is obeyed by M
and hence L0hr 2 DTIME1:1(id+ r

3

2). 2

4 Quality of the Hierarchies and Speed-up

This section is devoted to the question whether or not the presented hierarchies

might be more re�ned. A re�nement would necessarily require a weaker hypothesis.

Due to the well-known gap theorem we cannot relax the constructibility of the func-

tion r�1. On the other hand, since the proof of the hierarchies uses actually Lemma

4 that in turn is provable with several di�erent notions of time-constructibility, we

have a very weak constructibility condition.

Now we take a closer look at the second hypothesis r0 2 o(r). Is it necessary that r0

grows strictly less than r? Or is it possible to separate the complexity classes even

under the condition r0 � " � r for some 0 < " < 1? In order to disprove the latter

condition we are going to show a speed-up result that allows to speed-up the time

beyond id linearly. Note that the widely known theorem which allows to speed-up

16

from t to id+ " � t, " > 0, does not help for time bounds of the form id+ r, r 2 o(id).

In such cases an application would yield a slow-down to linear-time.

In the following we consider Turing machines with one-way input tape. A speed-up

from id + r to id + " � r, " > 0, r 2 o(id), has to cope with the situation that only

time steps at which no input symbol is read can be sped-up and, moreover, that

these time steps might alternate with steps at which an input symbol is consumed.

Therefore, a fast machine has to simulate two steps of a slow machine within exactly

one step.

Theorem 17 Let r : N0 ! N be a function, k � 1 and " > 0. Then

DTIMEk:1(id+ r) = DTIMEk:1(id+ " � r)

Proof LetM = hS; T;A; �; s0; F i be a DTMk:1 with time complexity id+r. We are

going to construct a DTMk:1 M0 that accepts L(M) with time complexity id+ " � r.
The construction is shown for "0 = 1

2
but can be iterated i times until 1

2i
� ". Since

all k working tapes are handled identically it su�ces w.l.o.g. to prove the theorem

for k = 1.

Basically, M0 simulates the working tape of M 2-fold compressed (i.e. M0 stores

each two tape symbols of M into one tape cell). Since initially the working tape is

blankM0 needs no extra time to compress any tape inscription. Let us call the two

tape symbols stored in one tape cell a block.

At every time step M0 is designed to store one of the blocks internally as part of its

state. The internal block does not appear on the working tape but the head of M0

scans a cell containing one of the two possible neighboring blocks.

Another part of the internal state of M0 remembers the currently scanned tape cell

of M. The crucial point is to construct M0 such that this cell is always one of the

two possible block components that are next to the border of the blocks. So we have

to deal with four di�erent situations as depicted in Figure 2.

-3

-4

-1

-2

3

2

5

4

1

0

-3

-4

-1

-2

3

2

5

4

1

0

-3

-4

-1

-2

3

2

5

4

1

0

-3

-4

-1

-2

3

2

5

4

1

0

Figure 2: Four possible situations during a speed-up simulation. The gray shaded

component indicates the currently scanned tape cell of the simulated machine.

Formally,M0 = hS0; T 0; A; �0; s00; F 0i is de�ned as follows: S0 = S�T 2�fr; lg�fi; eg
where s 2 S tracks the current state of M, T 2 is for the internal block, r resp. l

17

indicates that the currently scanned block is the right resp. left neighboring block

(of the internal block) and i resp. e indicates whether the internal resp. external

border component is marked to be the currently scanned cell of M. T 0 = T 2,

s00 =
�
s0; (;); r; i

�
and F 0 = F � T 2 � fr; lg � fi; eg.

Due to the mechanism of tracking the current cell of M, during two time steps of

M only the contents of the internal and the currently scanned block of M0 have to

be rewritten. Obviously, this can be done by M0 in one step.

During two steps M can move its head two cells to the right or left, one cell to

the right or left or not at all. Correspondingly, we have to de�ne �0 for these �ve

possibilities with respect to the four situations of Figure 2. It remains to show that

in any case the successor situation is again one of the situations of Figure 2. The

formal de�nitions are tedious and hard to read. Exemplarily, we present the �ve

successor situations of the leftmost situation in Figure 3.

-3

-4

-1

-2

3

2

5

4

1

0

2�left

-3

-4

-1

-2

3

2

5

4

1

0

1�left

-3

-4

-1

-2

3

2

5

4

1

0

no move

-3

-4

-1

-2

3

2

5

4

1

0

1�right

-1

-2

1

0

5

4

7

6

3

2

2�right

-1

-2

1

0

5

4

7

6

3

2

Figure 3: Five possible successor situations of the situation at the top.

By construction M0 is able to simulate two steps of M in exactly one time step if

M does not consume an input symbol during the �rst of the steps. Otherwise M0

simulates only one time step of M.

Since the input tape ofM is one-way the number of time steps at which no speed-up

is possible is bounded by id. 2

It is evident that the previous proof does not hold for Turing machines without a

separate or with a two-way input tape. In these cases the head of the tape containing

the input may move at every time step and therefore at no time step at all a speed-

up would be possible. But nevertheless, we can cope with this problem by adding

an extra tape.

18

Corollary 18 Let r : N0 ! N be a function, k � 1 and " > 0. Then

DTIMEk:2(id+ r) � DTIMEk+1:2(id + " � r)

and

DTIMEk(id+ r) � DTIMEk+1(id + " � r)

Proof In order to prove the corollary we need to show the inclusion DTIMEk(t) �
DTIMEk:1(t) for k 2 N and arbitrary functions t : N0 ! N. What makes the

inclusion less obvious is the fact that a DTMk:1 fetches its input from a restricted

tape whereas a DTMk is allowed to operate unrestricted on all its tapes.

The inclusion becomes obvious by the following construction. A DTMk:1 M0 that

simulates a given DTMk M uses its tapes 2; : : : ; k exactly asM does. In order to be

able to operate on the input likeM, M0 copies the input to its (initially blank) �rst

tape. Since M0 may not waste time for the copying process it copies the symbols

on demand:

Whenever the head on the �rst tape scans the �rst blank tape cell at the right of

the nonblank inscription an input symbol is read. The subsequent write operation

is onto the �rst tape. When the head of the �rst tape scans a nonblank cell then the

cell's content is used and rewritten without reading a symbol from the input tape.

Now the corollary follows from Theorem 17 by some trivial inclusions:

DTIMEk:2(id+ r) � DTIMEk+1(id+ r)

� DTIMEk+1:1(id+ r) = DTIMEk+1:1(id+ " � r)
� DTIMEk+1:2(id+ " � r)

and

DTIMEk(id+ r) � DTIMEk:1(id+ r) = DTIMEk:1(id + " � r)
� DTIMEk:2(id+ " � r)
� DTIMEk+1(id + " � r)

2

Essentially, from the proof of the corollary we obtain a stronger result. A speed-up

is possible if we add a one-way input tape to a DTMk or if we add an extra working

tape to a DTMk:2 though the two-way input tape can be replaced by a one-way one.

For multitape Turing machines it follows immediately:

Corollary 19 Let r : N0 ! N be a function and " > 0. Then

DTIME(id+ r) = DTIME(id+ " � r)

19

Back to the question at the beginning of the section the speed-up results have shown

that the hypothesis r0 � "�r for some " > 0 is not strong enough to obtain hierarchies

of separated complexity classes. We conclude that those of the presented hierarchies

where a speed-up is possible are in some sense optimal.

5 Closure Properties

Besides the fact that closure properties can shed some light on the structure of a

complexity class they may be used as powerful reduction tool in order to simplify

proofs or constructions. It will turn out that the complexity classes under investig-

ation have weak closure properties.

Lemma 20 Let r : N0 ! N be a function, k � 1 and i 2 f0; 1; 2g. Then

DTIMEk:i(id+ r) is closed under complement.

Proof Since a DTMk:i M works deterministically it su�ces to de�ne F 0 to be S nF
in order to construct a DTMk:i that accepts the complement of L(M). 2

The closure under complement is the only known closure of DTIMEk:i(id+ r) under

Boolean operations. It is an open problem whether or not these classes are closed

under union or intersection, but they are closed under union and intersection with

regular sets.

Lemma 21 Let r : N0 ! N be a function, k � 1 and i 2 f0; 1; 2g. Then

DTIMEk:i(id+ r) is closed under union and intersection with regular sets.

Proof The principle is not surprising. A DTMk:i M0 simulates the given DTMk:i

M and a �nite automaton in parallel and decides dependent on the results of both

simulations.

If M has a one-way input tape the simulation of the �nite automaton is rather

simple but for two-way input tapes we have to take account of left moves of the

input tape head. Since the tape is write protected (for i = 2) it is not possible to

mark the corresponding position on the tape in order to continue the simulation

when the head reaches the mark again.

Instead, in some sense, a reversible �nite automaton has to be simulated. Let

F = hS;A; �; s0; F i be a deterministic �nite automaton with internal states S, input

symbols A, initial state s0, accepting states F , and transition function � : S�A! S.

20

For the reversible automaton F 0 = hS0; A; �;0 ; �0r; s00; F 0i we provide two transition

functions. �0 : S0 �A! S0 is applied if the input tape head moves to the right and

�0r : S
0�A! S0 if it moves to the left. If no move occurs or if the head scans blank

cells at the left of the input area then no transition is simulated. The simulation is

stopped when the head moves for the �rst time to a cell at the right of the input

area.

De�ne S0 = 2S�fl; rg where 2S denotes the powerset of S and r resp. l indicates that

the last move was a right resp. left move, s00 =
�
fs0g; r

�
, F 0 =

�
(fsg; r) j s 2 F

	
,

and �0 and �0r as follows. For all Q 2 2S and a 2 A:

�0
�
(Q; r); a

�
=
�
fs 2 S j 9 s0 2 Q : �(s0; a) = sg; r

�
�0
�
(Q; l); a

�
= (Q; r)

�0r
�
(Q; l); a

�
=
�
fs0 2 S j �(s0; a) 2 Qg; l

�
�0r
�
(Q; r); a

�
= (Q; l)

If F 0 would be simulated only with right moves then by construction it would behave

precisely as F does.

Suppose F 0 is in a state (Q; r) 2 S0 with its input head located at some tape cell

i. It is easily proved by induction that after a sequence of moves to cells located at

the left hand side of i, F 0 is again in the state (Q; r) when its input head again is

located at the tape cell i.

Combining these two observations it follows that F 0 accepts precisely the language

L(F). 2

The closure under union and intersection is settled for multitape Turing machines:

Lemma 22 Let r : N0 ! N be a function. Then

DTIME(id + r) is closed under complement, union and intersection.

Proof The closure under complement is proved analogously to lemma 20. Now let

M1 be a DTMk1 and M2 be a DTMk2 which are both of time complexity id + r.

Due to the proof of Corollary 18 one can always �nd a DTMk1:1 M0
1 resp. a DTMk2:1

M0
2 that accepts the language L(M1) resp. L(M2) with the same time complexity.

A Turing machine M0 for the union or the intersection of L(M1) and L(M2) simu-

lates the machines M0
1 and M0

2 nearly parallel and decides at the end of both sim-

ulations dependent on both results whether the input belongs to L(M1) \ L(M2)

or to L(M1) [L(M2).

21

M0 has a one-way input tape and k1 + k2 working tapes. On tapes 1; : : : ; k1 the

working tapes of M0
1 and on tapes k1 + 1; : : : ; k1 + k2 the working tapes of M0

2 are

simulated directly.

During the computation ofM0 there may occur three di�erent demands on the input

tape head.

1. M0
1 and M0

2 are both requesting an input symbol. In this case M0 simulates

a step of M0
1 as well as a step of M0

2 whereby an input symbol is read.

2. If neither M0
1 nor M0

2 are requesting an input symbol, then M0 simulates a

step of M0
1 and one of M0

2 without reading an input symbol.

3. If M0
1 requests an input symbol but M0

2 does not (or vice versa) then M0

simulates one step of M0
2 (or M0

1) only without reading an input symbol.

SinceM0
1 andM0

2 are both equipped with a one-way input tape the number of time

steps at which no input symbol is read is bounded by r. Therefore, the simulation

delay ofM0
1 caused byM0

2 is at most r. The same holds for the delay ofM0
2 caused

by M0
1. Thus M0 obeys the time complexity id+ 2 � r. By Corollary 19 M0 can be

sped-up to id+ r. 2

Now we are exploring some closure properties concerning concatenations. It turns

out that all the classes in question are neither closed under iteration nor under

concatenation.

Theorem 23 Let r : N0 ! N be a function. If r 2 o(id) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are not closed under left concatenation with regular sets.

Proof The language L =
�
y$w¢yR¢ j y 2 f0; 1g+; w 2 f0; 1; $g+g is a deterministic

context-free language that is acceptable by a deterministic pushdown automaton

without "-transitions. Thus, it is a real-time DTM1:1 language and belongs to all

the classes of the assertion.

Let R = f0; 1; $g� be a regular set. The concatenation RL contains all words

of the form w1$w2$ � � � $wl¢y¢ where yR matches one of the wi, 1 � i � l, and

jw1j = � � � = jwlj = l. Two such words are (l + 1)-equivalent i� the sets of the

subwords wi are equal. There are
�
2l

l

�
di�erent subsets of f0; 1gl with l elements. As

calculated in the proof of Lemma 12 the number N
�
(l+1)2; l+1; RL

�
of equivalence

classes is at least of order 2
(l2).

22

But Lemma 7 and Corollary 8 say that the number of equivalence classes distin-

guishable by a Turing machine is bounded by pl+1+r((l+1)2) for a constant p 2 N0:

N
�
(l + 1)2; l + 1; RL

�
� pl+1+r((l+1)2)

Since r 2 o(id) we obtain

= pl+1+o((l+1)2) = 2o(l
2)

From the contradiction the theorem follows. 2

Corollary 24 Let r : N0 ! N be a function. If r 2 o(id) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are not closed under concatenation.

The technical reason why the proof does not work for the only excluded class

DTIME1(id + r) is simple: A (id + r)-time-bounded DTM1 cannot accept the lan-

guage L. In [5] it has been shown that the classes DTIME1(id � o(log)) are precisely
the regular languages. The closure of DTIME1(id + r) under concatenation and

iteration follows immediately.

The proof of Theorem 23 yields a linear-time lower bound for the language RL even

for multitape Turing machines.

In general, the non-closure under iteration is not an immediate corollary of the

non-closure under concatenation.

Theorem 25 Let r : N0 ! N be a function. If r 2 o(id) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are not closed under iteration.

Proof Let L =
�
y$w¢yR¢ j y 2 f0; 1g+; w 2 f0; 1; $g+

	
and R = f0; 1; $g� be

the same languages as in the proof of Theorem 23 and de�ne L0 = L [R. Since all

the classes in question contain L and are closed under union with regular sets, L0

belongs to all the classes either. Suppose contrarily that the classes are closed under

iteration and therefore contain (L0)� each. Since R is regular R0 = R¢R¢ is regular,

too. All the classes in question are closed under intersection with regular sets and,

23

thus, containing (L0)� \ R0. But this is a contradiction since (L0)� \ R0 is precisely

the language RL shown not to belong to all the classes in Theorem 23. 2

The negative closures of DTIME(id) under left concatenation with regular sets and

iteration have been shown in [11]. Our results become interesting with respect to

the corresponding open properties of the linear-time languages.

By the last results the question whether or not the classes are closed under a weaker

kind of concatenation, i.e. marked concatenation, arises immediately. Obviously, all

classes are closed under marked concatenation with regular sets. But for machines

for which a speed-up is possible, i.e. DTMk:1 and multitape Turing machines, we

can prove a stronger result:

Lemma 26 Let r : N0 ! N be an increasing function and k � 1. Then

DTIMEk:1(id+ r) and DTIME(id + r)

are closed under marked concatenation.

Proof Let M1 and M2 be two (id+ r)-time-bounded DTMk:1. A DTMk:1 M for

the marked concatenation of L(M1) and L(M2) works as follows.

In a �rst phase it simulates M1 on the left part of the input. If M1 would halt M
moves the input tape head to the marking symbol and simulates M2 on the right

part of the input.

Let w = w1 � w2 be the input. Then M needs jw1j + r(jw1j) time steps for the

simulation of M1, at most r(jw1j) time steps in order to move the input tape head

to the marking symbol, and additional jw2j + r(jw2j) time steps for the simulation

of M2.

Altogether M obeys the time complexity jw1j+ jw2j+2r(jw1j) + r(jw2j). Since r is
increasing this is at most jwj+3r(jwj) = id+3r. By Theorem 17M can be sped-up

to id+ r.

For DTIME(id+ r) the lemma is shown analogously. 2

Now we turn to the operation reversal. The linear-time languages DTIME(LIN) are

trivially closed under reversal whereas the real-time languages are closed under right

concatenation with regular sets but not under left concatenation, and therefore are

not closed under reversal. Unfortunately, it is an open problem whether or not the

classes between real-time and linear-time are closed under right concatenation with

regular sets. But, fortunately, the non-closure under reversal can be shown by a

certain witness language.

24

Theorem 27 Let r : N0 ! N be a function. If r 2 o(id) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are not closed under reversal.

Proof The language

L =
�
wl$wl�1$ � � � $w1¢y¢ j l 2 N; wi; y 2 f0; 1g+; 1 � i � l; and

9 1 � i � l : (i odd ^ wR
i = y) _ (i even ^ wi = y)

	
does not belong to DTIME(id+ r) for any r 2 o(id).

Two words wl$ � � � $w1¢ and w0l$ � � � $w01¢, jwij = jw0ij = l, 1 � i � l, are (l + 1)-

equivalent i� the sets fw1; : : : ; wlg and fw01; : : : ; w0lg are equal.

As shown in the proof of Lemma 12 the number N
�
(l+ 1)2; l+ 1; L

�
of equivalence

classes is at least of order 2
(l2) whereas a (id+r)-time-bounded DTM can distinguish

at most 2o(l
2) classes.

Conversely, the reversal of L is real-time acceptable by a DTM1:1 as follows: The

subword y is copied from the input tape to the working tape. At the end of this

process the head of the working tape is located at the right hand side of y. Sub-

sequently, it moves back and forth over the inscription y whereby the reversal of y

is compared to w1, y is compared to w2, the reversal of y is compared to w3 and so

on. 2

Since arbitrary erasing homomorphisms are a very powerful operation one expects

that the classes are not closed under this kind of homomorphism. But they are not

closed under weaker "-free homomorphisms neither.

Theorem 28 Let r : N0 ! N be a function. If r 2 o(id) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are not closed under "-free homomorphisms.

Proof Let L =
�
y$w¢yR¢ j y 2 f0; 1g+; w 2 f0; 1; $g+g and R = f0; 1; $g� be

de�ned as in the proof of Theorem 23 where it was shown that RL does not belong

to DTIME(id+ r) for any r 2 o(id).

25

De�ne R0 = f00; 10; $0g�. Since L is a real-time DTM1:1 language, R
0L belongs to all

classes of the assertion.

The "-free homomorphism h(00) = h(0) = 0, h(10) = h(1) = 1, h($0) = h($) = $ and

h(¢) = ¢ maps R0L to RL what proves the lemma. 2

The closure properties concerning homomorphisms are in some sense asymmetric.

It is not known whether the classes are closed under inverse homomorphisms if r

grows strictly faster than log. Moreover we need to express the condition r 2 O(log)

by the functional equation log(m � n) = log(m) + log(n) in order to exclude some

exotic functions with a strange behavior.

Theorem 29 Let r : N0 ! N be a function. If r(m � n) � r(m) + r(n) then

DTIMEk:1(id+ r); DTIMEk:2(id+ r); k � 1; and

DTIMEk(id+ r); k � 2; and

DTIME(id+ r)

are closed under inverse homomorphisms.

Proof Let M be a (id + r)-time-bounded Turing machine and A its set of input

symbols. A Turing machineM0 of the same type asM that for a given homomorph-

ism h : B� ! A� accepts the language h�1
�
L(M)

�
=
�
w 2 B� j h(w) 2 L(M)

	
with time complexity id+ r works as follows.

Internally M0 maps the currently scanned input symbol according to the homo-

morphism h and simulates M on this image. Obviously, if the simulation accepts

then h(w) 2 L(M) and, thus, M0 accepts since w 2 h�1
�
L(M)

�
.

De�ne c = maxfjh(b)j j b 2 Bg then for all w 2 B� the image h(w) is not longer

than c � jwj. Therefore M0 is (c � id+ r(c � id))-time-bounded.

A speed-up can be achieved by the methods shown in the proof of Theorem 17.

Since here M0 maps the current input symbol b to jh(b)j input symbols of M, the

next jh(b)j steps can be sped-up as far as a possibly two-way input head of M does

not move out of the jh(b)j symbols to the left. Due to its time bound M performs

at most r left moves and, therefore, M0 can be sped-up to id + r(c � id). From the

condition on r it follows r(c � id) � r(c)+ r(id) � c0+ r(id) for some constant c0 2 N.

Since a Turing machine can always be sped-up by an additive constant as long as the

time complexity does not fall below real-time M0 obeys the time-bound id+ r. 2

26

6 Generalization to other Types of Acceptors

The equivalence relation of De�nition 6 and the upper bound of distinguishable

equivalence classes play an important role in the proofs of our results. Next we are

going to show that similar results are valid for several types of acceptors as long as

the number of distinguishable equivalence classes is bounded similarly.

In general, we consider acceptors that consist of a �nite-state control and an arbitrary

number of memory cells. In each of the cells a symbol from a �nite set may be stored.

After a certain number of time steps the result of the computation is indicated by the

state of the �nite-state control. Moreover, the input is fed serially to the machine.

For example, models with parallel input mode as are cellular automata are not

considered.

De�nition 30

1. A language acceptor has polynomially limited memory access of degree d if at

any time step i 2 N the number of memory cells that are potentially accessible

during the next j 2 N time steps is bounded by c � jd for some constant c 2 N.
2. A class M of language acceptors has polynomially limited memory access of

degree d if each M2M has this property.

Example 31 The following classes of language acceptors have polynomially limited

memory access.

1. DTMk:i, k � 1 and i 2 f0; 1; 2g, degree 1
2. multitape Turing machines, degree 1

3. d-dimensional multihead multitape Turing machines, degree d

4. d-dimensional iterative arrays, degree d

Now Lemma 7 that bounds the number of distinguishable equivalence classes is

generalized.

Lemma 32 Let r : N0 ! N be a function. If a language L is (id+r)-time acceptable

by a machine with polynomially limited memory access of degree d, then there exists

a constant p 2 N such that

N(n; l; L) � p(l+r(n))d

The proof is a straightforward adaption of the proof of Lemma 7.

As a consequence we obtain:

27

Lemma 33 Let M be an acceptor with polynomially limited memory access of

degree d. Then the language

L =
�
w1$ � � � $wl¢y¢ j y;wi 2 f0; 1g+; 1 � i � l ^ 9 j 2 f1; � � � ; lg : y = wi

	
cannot be accepted by M in (id+ r)-time if r 2 o(id

1

d).

Proof L contains all words of the form w1$ � � � $wld¢y¢ where y matches one of the

wi and jw1j = � � � = jwld j = l. Two such words are (l + 1)-equivalent if the sets of

the subwords wi are equal.

There are
�
2l

ld

�
di�erent of theses subsets. Generalizing the calculation in the proof

of Lemma 12 the number N
�
(ld + 1) � (l + 1); l + 1; L

�
of equivalence classes is at

least of order 2
(ld+1).

But by Lemma 32 the number of distinguishable equivalence classes is bounded as

follows.

N
�
(ld + 1) � (l + 1); l + 1; L

�
� p(l+1+r((ld+1)�(p+1)))d

Since r 2 o(id
1

d) we obtain

= p(l+1+o((ld+1+ld+l+1)
1
d))d

= p(l+1+o(l
d+1
d))d

= pl
d+o(ld+1) = 2o(l

d+1)

From the contradiction the lemma follows. 2

For one-dimensional Turing machines the lemma yields a linear-time lower bound

for the language L. Furthermore, the lemma implies that dependent on a honest

function r (with respect to the device in question) a language Lr can be de�ned

similarly to Lhr that is not acceptable in (id + r0)-time if r0 2 o(r). On the other

hand, if L is (id + id
1

d)-time acceptable then Lr is acceptable in (id + r)-time (cf.

proof of Lemma 11). These observations lead to the generalization of the hierarchy

theorem.

Theorem 34 Let M be a class of acceptors with polynomially limited memory

access of degree d and L be the language of Lemma 33. If L is acceptable by some

M 2 M in (id + id
1

d)-time, then there exists an in�nite time hierarchy between

real-time and (id+ id
1

d)-time.

Regarding closure properties the negative results can be generalized.

28

Theorem 35 Let M be a class of acceptors with polynomially limited memory

access of degree d and r : N0 ! N be a function with r 2 o(id
1

d).

1. If L(M) contains the deterministic context-free language fy$w¢yR¢ j y 2
f0; 1g+; w 2 f0; 1; $g+g and the regular language f0; 1; $g� then L(M) is not

closed under left concatenation with regular sets, nor under concatenation.

2. If L(M) is additionally closed under union and intersection with regular sets

then L(M) is not closed under iteration.

3. If L(M) contains the real-time DTM1:1 languages then it is not closed under

reversal.

4. If L(M) in addition to 1. is closed under marked left concatenation with

regular sets then it is not closed under "-free homomorphisms.

References

[1] Balc�azar, J. L., D��az, J., and Gabarr�o, J. Structural Complexity I . Springer,

Berlin, 1988.

[2] Book, R. V. and Greibach, S. A. Quasi-realtime languages. Math. Systems

Theory 4 (1970), 97{111.

[3] Cole, S. N. Real-time computation by n-dimensional iterative arrays of �nite-

state machines. IEEE Trans. Comput. C-18 (1969), 349{365.

[4] F�urer, M. The tight deterministic time hierarchy . Proceedings of the Fourteenth

Annual ACM Symposium on Theory of Computing (STOC '82), 1982, pp. 8{16.

[5] Hartmanis, J. Computational complexity of one-tape turing machine computa-

tions. J. Assoc. Comput. Mach. 15 (1968), 325{339.

[6] Hartmanis, J. and Stearns, R. E. On the computational complexity of al-

gorithms. Trans. Amer. Math. Soc. 117 (1965), 285{306.

[7] Hennie, F. C. One-tape, o�-line turing machine computations. Inform. Control

8 (1965), 553{578.

[8] Kobayashi, K. On proving time constructibility of functions. Theoret. Comput.

Sci. 35 (1985), 215{225.

[9] Paul, W. J. Komplexit�atstheorie. Teubner, Stuttgart, 1978.

[10] Paul, W. J. On time hierarchies. J. Comput. System Sci. 19 (1979), 197{202.

[11] Rosenberg, A. L. Real-time de�nable languages. J. Assoc. Comput. Mach. 14

(1967), 645{662.

[12] Wagner, K. and Wechsung, G. Computational Complexity . Reidel, Dordrecht,

1986.

29

