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1. Introduction

The equation
(1.f) X(1) = —px(t) +f(x(z = 1))

with u > 0 and with a smooth function f: ® — R satisfying £(0) = 0 and f”(0) < 0, models
delayed negative feedback: Sufficiently small deviations at times ¢ — 1 and ¢ from equilibrium
x=0,e.g.x(t—1) > 0and x(¢) > 0, are followed by a motion into the opposite direction,
x(t) <O.

Equation (u, f) has applications in ecology, physiology and physics, see for example
[81, [11], [18], [19], [23], [25], [31] and the references in [20]. Systems of equations of this
type are used to describe neuronal nets [13], [21].

An appropriate phase space for equation (g, f) is the space C of continuous functions
¢:[—1,0] » R, equipped with the norm ||¢| = max |[¢(?)|]. Real-valued solutions
define phase curves with values in C by tel-1,0]

x(s):==x(t+s) for —1=s

lIA

0,

provided [t — 1, ¢] belongs to the domain of x.

For a wide range of the parameters u and f, the dynamics appears to be structured by
periodic orbits. Existence and further results have been obtained in [2], [3], [4], [8], [12],
[15], [17], [20], [22], [28]. The present paper is an attempt to understand existence and
stability of periodic orbits in terms of an unstable manifold of the stationary state.



A few remarks on the linearized equation
(n, ) (1) =—px(t) —ax(t—1)

(for a = — f7(0) > 0) may help to put the result into perspective. Consider equation (u, «)
with u fixed and a varying parameter o > 0. The analysis of the characteristic equation shows
that for small o, the zero solution is stable and attractive. It becomes unstable when o exceeds
a critical value. In case of instability there exists a 2-dimensional subspace L < C on which
equation (u, ) is given by a linear vectorfield of spiral source type (Section4). Letp: C —» C
denote the eigenprojection associated with L. The space L attracts all phase curves of
equation (u, &) which do not belong to the complementary subspace Q = ¢C, ¢:=id — p.

For the nonlinear equation (4, f), there is a 2-dimensional local invariant manifold
W, < C, tangent to L at 0 e C. Phase curves of equation (4, f) in W,\ {0} spiral away from
0e W, (Section 5 below). These phase curves are given by slowly oscillating solutions of
equation (u, f); i.e. by solutions whose zeros z =+ z’ are spaced at distances |z — z'| > 1.

The main result of the present paper is that for f monotone and bounded from above
(or from below), the forward extension W of W, given by the collection of all phase curves
who start in W, is the graph of a Lipschitz-bounded C'-map w from an open subset L,, < L
into the complementary space Q. Furthermore, the continuation of w to the boundary bd L,
i.e. the set

bd' Wi=cl W\ W
consists of a single periodic orbit which attracts all phase curves in W\ {0}.
The precise statements are given in Theorems 8.1 and 10.1.

The behavior of phase curves in ¢l W can be expressed in terms of a Poincaré-map on
the closure of a one-dimensional C!-submanifold ¥ = W which connects the stationary
point 0 e W to a point of the periodic orbit bd’ W. Proposition 10.4 exhibits that the
Poincaré-map on cl Y is equivalent to a monotone interval map #:[0,1] — [0, 1] which is
strictly above the diagonal on (0, 1) and has fixed points 0 and 1.

An outline of the proof for the main part of Theorem 8.1 is as follows. The space L sits
in the closure Su {0} of a cone S which contains all segments x, € C of slowly oscillating
solutions. The eigenprojection p does not vanish on S (or, S N Q = §). The set W consists of
segments of slowly oscillating solutions (and 0 € W, of course), hence

WecSu{0}.

Consider two points ¢, y in W; ¢ + . There are solutions x: # > Rand y: R - R of
equation (u, f) with x, = @, y, = w. Segments x_, and y_, with ¢ > 0 sufficiently large
belong to Wy; lim x_, = 0 = lim y_,. Tangency

t—+w t—>

Ty Wy =L



implies much more than x_,€ S, y_, € S: For ¢ > 0 sufficiently large, the difference
xX_ =y (+0)

belongs to S, too. Monotonicity of f yields that the cone S is positively invariant for
differences of phase curves. In particular,

QP —WP=Xg—PES,
and therefore
plo—y)=*0, po=+py;
p is injective on W. This means that W is given by a map from pW < L into Q (Section 6).

The proof of Lipschitz boundedness requires a quantitative version of the result on
injectivity, namely an a-priori estimate of the form

(1.1) llgx, — gy || < const||px, — py,ll

along phase curves in W. Such an estimate is derived in Section 7.
A special case of (1.1), an inequality of the form
1.2) llgx |l = const||px,||

along sufficiently small slowly oscillating solutions with segments in the cone S goes back to
work in [32] on equation

N X(1) =f(x(t - 1)

with £f(&) < 0 for all £ + 0. Equation (f) is the basic differential equation for delayed
negative feedback. It has, however, not as many applications as equation (g, f).

The analysis of equation (u, f) is considerably facilitated by a simple fact which was
first used by Pesin [28] and by Hadeler and Tomiuk [8]: If x is a solution of equation (u, f)
then the function y: ¢ — e* x(¢) satisfies the equation

y()=g(t,y(t—1)

with g: (1,7) = e"f(e "~ Vy). The latter is a nonautonomous version of equation (f).
Clearly

ng(t,n) <0 forall n+0, reR.
All proofs in this paper can be modified (in fact, simplified) for equation (f). This yields

analogues of Theorems 8.1 and 10.1 for C*-functions f which satisfy f(0) = 0, ' ({) < 0 for
all (e R, f/(0) < — /2, supf < oo (or, — oo < inff).



In case f=f,, f,(¢) = —a(e®* — 1) for all £ e R, with a > g—, one obtains a result for

Wright’s equation [34]
X() = —ax(t— D[+ x()]

since solutions x with values in (1, o0) are in a one-to-one correspondence with the solutions
x' of equation (f,), via

x'=logo(1+Xx).

The periodic orbit in Theorem 10.1 is the limit cycle of phase curves which spiral away
from zero in the 2-dimensional manifold W. This should be compared to an older result of
Kaplan and Yorke [16], [17]: Certain slowly oscillating solutions x define planar curves
t = (x(¢), x(¢)) without self-intersections; these curves spiral towards a limit cycle in &2,
which is the (x(z), X(¢))-“projection” of a periodic orbit in C. The result is applicable to
phase curves in W, and also to certain phase curves which are sufficiently close to W.

Another aspect of the present approach is that it has also implications on the problem
of periodic solutions in cases where the nonlinearity in equation (4, f) is not assumed to be
globally monotone. In such cases the estimate (1.2) along sufficiently small slowly oscillating
solutions remains valid. Estimate (1.2) can be used to give an alternative proof for a very
general result of Mallet-Paret and Nussbaum, [20], Theorem 1.1, on global bifurcation of
slowly oscillating periodic solutions for one-parameter-families of equations of the form
(1, f). The crucial step in the proof of [20], Theorem 1.1, is to show that instability of the
linearized delay equation implies ‘

(1.3) ind (0, P) = 0

for the index of the fixed point ¢ = 0 of a map P which is defined by intersections of phase
curves with a convex cone; ¢ = 0 is the extremal point of the cone. Estimate (1.2) permits a
rather easy proof of (1.3). Details are as in the note [33] where the simpler equation (f) was
discussed.

What is the role played by the manifold W in the full dynamics of equation (u, f)? Note
that cl Wwillin general not be a global attractor: There exist periodic solutions which are not
slowly oscillating, for —f”(0) > 0 sufficiently large [22], [20]. Most likely there are also
multiple slowly oscillating periodic solutions for certain monotone nonlinearities — compare
the conditions for uniqueness in Nussbaum’s work [26] on equation (f).

An interesting question seems to be whether the Lipschitz graph ¢l W continues beyond
bd’ W to a sort of inertial manifold (see e.g. [7]) for phase curves in Su {0}.

Another result which guarantees that invariant sets of infinite-dimensional systems are
in fact smooth graphs has recently been obtained by Polagik [29]. This applies to classes of
parabolic partial differential equations.



The subsequent sections 2-5 make use of diverse basic properties of functional
differential equations. A general reference for most of these is Hale’s book [19]. For calculus
in Banach spaces, see [6]. For submanifolds and transversality, see [1].

Acknowledgement. 1 would like to thank the referee for his careful reading, in
particular for a hint how to shorten the proof of Proposition 10.3.

2. Notation, preliminaries
N, denotes the set Nu {0}. R* stands for the interval [0, c0).

Consider a subset X < E of a real Banach space E, and a point x € X. The set 7, X of
tangents to X at x is defined to be the set of all vectors '

v= Dc(0)1

where ¢:(—1,1) - E is a differentiable curve with ¢(0) = x and c((—1,1)) = X. Note
0e T X. In general, T, X is not a vector space. For a differentiable map f: U - F, U o X,

Df(x)T. X < Tp,, f(X).

The closure, the interior and the boundary of X are denoted by cl X, int X, bd X,
respectively.

Let a function g: R? — R be given. A solution of the differential delay equation
2.1) X(1) = g(x(1), x(t = 1))
is either a differentiable function x: ® — R so that (2.1) is satisfied for all te R, or a

continuous function x:[t, — 1, ) — R, ¢, € R, which is differentiable on (¢,, c0) and
satisfies (2.1) for all ¢ > ¢,,.

Analogously one defines complex-valued solutions in case g is linear, and solutions of
nonautonomous equations

X(1) =g(t,x(1 1))
for functions g: B> —» Ror g:[ty, 0) X R > R, t e R.
C and C’ denote the real and complex Banach spaces of continuous functions
@:[—1,0] > Rand ¢:[—1,0] — C, respectively. In both cases, ||@|| = max [@(¢)|.
te[—1,0]
Solutions define phase curves ¢ — x, with values in C or C’ by

x,(s)=x(+s) forall se[—1,0],

provided the interval [t — 1, ¢] belongs to the domain of x.



3. Hypotheses, basic properties of solutions
Let a C'-function f: R — R be given, with

(H1) f(0)=0 and f'(£)<0 forall (eR,
bounded from above by a constant ¢, > 0.

Note that f satisfies
(NF) Ef(E) <0 forall &=+0,
a condition which expresses negative feedback.

Let a constant u > 0 be given, and assume in addition that

: H
(H2) —f 0> —— (D)

where v(p) € (—g, n) and v(u) = —ptanv(u). Condition (H2) will imply that the stationary

solution ¢ — 0 of equation
(4.) i(t) = — px(t) + f(x(1 = 1))
is unstable.
Existence and uniqueness of solutions x : [ —1, co) — R of the initial value problems
() =—px(@)+f(x(t=1), x,=¢eC

follow most easily by repeated application of the variation-of-constants formulae

x(t)=e #m [x(n) + ie““"")f(x(s - 1))ds:l

for n < t < n+1, ne N,. The solutions obtained are denoted by x?®.

They depend continuously on initial data in the following sense: Foreverype C,t = 0,
& > 0 there exists 4 > 0 such that for all pe C with [jo — || £ 4,

|x¥(s) —x®(s)| <e forall se[—1,¢].
The phase curves te R* — x? e C define a continuous semiflow
F:(t,p)e R* xC - x{eC;

F(1,-): C - Cmapsbounded sets into sets with compact closure. The last assertion follows
from the variation-of-constants formula for x{, by means of the Theorem of Arzela-Ascoli.



The restriction of F to (1, c0) x Cis of class C*. For t> 1 and ¢ € C,
D F(t,p)1 =X/,

X7 (8)=x?(t+s) for —1 < s < 0. Observe that for every solution x: [z, — 1, 0) — R of
equation (y, f) and for all ¢ > ¢, + 1, the derivative of the map

sety, 0) - x,eC
at ¢ exists, and that one has

D(s - x)()1 =X%,.
The partial derivatives D, F(t, ¢) exist on all of R* x C. They are given by

D, F(t, o)y = y,
where y:[—1, ©0) — [Ris the solution of the initial value problem
YO ==y @O+ (P -D)y—=1), yo=vp.
For a solution x: ® — R of equation (u, f) it follows in particular that for all t = 0,
D,F(t,xy) Xy = X,.
In case ¢ = 0 one obtains the autonomous equation
(1, 0) y(@) = —py(®) —ay(t—1)
with a:= —f"(0) > 0. The operators T(¢):= D, F(z,0), t = 0, form a Cy-semigroup, with
Tty =x"

where now x?: [—1, o0) — R is the solution of the initial value problem given by equation
(1, o) and the initial condition x, = ¢ € C. T(1) is a compact operator.

Let T'(¢), t = 0, denote the operators of the C,-semigroup on C’ which is defined by
complex-valued solutions of equation (u, &) on [—1, o).

It is convenient to introduce stopping maps. Let a hyperplane V' of C be given,
V = ker v for some linear continuous map v: C - R. Consider ¢ € C so that the trajectory

0Lt - F(t,peC
passes at ¢ > 1 transversally through V-

F(t,p)eV and D F(t,p)1¢V.



Remark 3.1. There exist an open neighborhood Uof p anda C'-mapt: U — (1, o)
with the properties

() =1,
F(z(p),w)eV and D,(F(z(y),w)1)¢V forall peU.

Sketch of proof. Apply the Implicit Function Theorem and solve the equation
0 = v(F(s, y))
close to (s, p) = (¢, ¢). This is possible because of
D,(voF)(t,0)1 =v(D,F(t,9)1) #0. QED.
For the computation of derivatives of the C!-map
Fo(rxid):weU —» F(z(p),p)eC

it is convenient to introduce projections

py:C - C
onto V, parallel to vectors y e C\ V-
v(y)
= — ——y for all eC.
P, () o0 * ()

Remark 3.2. For every we U,
D(Fo (v xid) () = p, D, F(x (), v)

with y = D, F(z(y), p)1 (= ¥,

Sketch of proof. Differentiation of
voFo(zxid)=0
at p e U yields
0 = Dr(yp)wo(p) +v(D,F(z(¥), v)v)

for every p e C. Hence

D(Fo(xxid))(p)y = D, F(x(y), v) Dr(p)w + D, F(x(y), ) v

v(D,F(z(y), ) )
v(x)

=p, (D, F(t(p),y)w). QED.

=D,F(z(y), p)yp — D, F(z(y), )1



An important consequence of injectivity of f is injectivity for time-#-maps.

Remark 3.3. Each map F(z,-), t 20, and D, F(t, 9), (t, p)e R* x C, is injective.
Any two solutions x: R - R, x': R — R of equation (y, f) with x, = x; for some te R
coincide.

Sketch of proof. Considersolutionsx: R - Randx’: ® — Rofequation (y, /) with
Xo % Xo but x, = x, for some ¢ > 0. Then x = x"on [ — 1, c0), and there is a smallest ne N
with x, = x,. Injectivity of fin the variation-of-constants formula for x and x" on [n — 1, n]
yields x,_, = x,-,acontradiction either to minimality of n, or to x, % x,. The proof for the
maps D, F(t, ¢) is analogous. QED.

The strong monotonicity of f implies that scaled differences of solutions of equation
(u, f) satisfy nonautonomous equations of the form

(g) x(t) =gt x(t— 1))

where the continuous function g: [¢,, 00) X R - R or g: R?> x R — R has the negative
feedback property

(NF, ) Eg(t,&)<0 forallt andall &+0.

For example, if x’ and x are solutions of equation ( g, f) which are defined on [, — 1, 00), set
d=x"—x and

d(t):=eMd(t) for t=t,—1.
It follows that for all ¢ > ¢,

(fix' —x)  d(t)=e"(pd(t) +d() = e (f(x'(t = 1)) = f(x(t = 1))
= e (fle et d(t— 1) +x(t — 1)) — f(x(t = 1))

x(t—1)te Hterd(t—1)
= e § f(&)ds.

x(t—1)

In particular, if x:[t,—1,00) —» R is a solution of equation (pu,f), then
x:te[ty—1, 0) - e x(f) € R is a solution of the equation

(. f, X) x(t) = e"f(e e x(1— 1))

which is of type (g), with property (NF, ¢).

4. Eigenvalues

The spectrum of the generator of the Cy-semigroup t — T"(t) on C’ consists of isolated
eigenvalues with finite multiplicities, given by the zeros of the entire function

E:z 5> z4+pu+oae*



and their orders. For n > 0, let E, denote the entire function
{ — {+net.

Obviously, E(z) = 0 if and only if z + p is a zero of E, with # = ae™". Long-known results
(see e.g. [34]) on E, imply that for n > 1/e each double strip

{te C:2kn<|Im{|<2kn+mn}, keN,,
contains precisely one pair

Gn), Gty with 0 <Im{(n)

of simple zeros; there are no further zeros. For < 7/2, all Re{;(n) are negative. As «
increases, the zeros move from left to right with nonzero speed. Moreover,

Rely,, (1) < Rel,(n) forall ke Ny,

and

Re(,(n) - —o0 as k - +o0.

It is not hard to see that at

e*  with T« v(w<n and v(w) =-—putanv(y),

____k
n(w)= cosv(u) 2

we have
Lon(w) = u+iv(p).
For a = —f’(0) and ke N,, set

Ay={(ae*)—p and wu,=Rel,, v,:=Imi,.
Then

Eﬂl(O) = U {’lk’ Ik}’

ke Np

each zero of E is simple,

Uy, <y, and 2kn<v, <2kn+mn forall kelN,,

y > —oo as k - 4.

Using hypothesis (H2) one concludes that

0<uy.



For every eigenvalue z, the function
p, it > e”
in C’ is an eigenvector. The associated eigenprojections
p(@):C" - C', ze E~Y(0),
onto the one-dimensional generalized eigenspaces

G(2) = Cy,
satisfy

4.1) p(@)p =p(@)e for all real-valued ¢.

Each G (z) consists of the segments x, of the solutions x : te R — ce* € C, c e C, of equation
(@, ).

The relation (4.1) implies that the expression

(PAo) +p()) e

defines a projection p: C — C onto the subspace

L:=ReG(4y) =ReG(i,) = C;
dim L = 2.
Set
Q:=@1d-p)C.
Note
T(t)p=pT(t) forall ¢t=0;

L and Q are invariant under 7'(¢).
The real eigenspace L consists of all segments x, of the solutions
x:teR — e“(acosvyt+bsinvgt)eR, aandbin R,

of equation (o, 1). Observe that in case (a, b) + (0, 0), zeros of x are spaced at the distance
T eq,2)
Vo

. T

while real parts of solutions with segments in G(4,), k € N, have zeros at distances ~ <1.
k

I.e., the spacing of zeros distinguishes solutions associated with the leading eigenvalues A,

4, from other eigensolutions.
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Remark 4.1. There exists a constant g, > 0 such that for every solution x : R —» Rof
equation (u, @) with 0 % x, € L, there is ¢ € [0, 2] with

[x(s)] 2 agllxoll forall se[r—1,¢].

Sketch of proof. Fix ¢>0 with 1 +2¢< ;n_ Set c:=cosv, (5.1 - e) >0, and
U

ag:=ce ". Consider the case ||x,||=1. There exist ¢ and b in R with
x(t) = ae" cos(vyt + b)forallte R.||x4|| = 1yieldsa = 1. Show that there exists t € [0, 2]
so that |cos(vys+b)| = cforallse[r—1,t]. QED.

Remark 4.2. 1 < xe*.

Proof. Otherwise,
po o(p

1Zae*>a>— = — ,
= cosv(u) sinv(w)

a contradiction to g <v(p)<=m. QED.

5. A local invariant manifold and its extension

The derivative T'(1) of the map F(1,-) at ¢ = 0 induces linear continuous maps
T,:L - Land T,: Q — Q with spectra {e*, e*} and {0} U (] {e*, e**}, respectively. Fix
B > 1 with ke N

et < B <e*,

There exists an equivalent norm | | on C with

ITZ‘|(= sup lTZI(P|) <p!

lel=1
and

| Tol < B.

(Use e. g. arguments from [15], Appendix to Chapter 4.5, with a corrected definition of the
norm on the complexified space. Compare also [15], Theorem 4.19, on hyperbolic
isomorphisms.)

For open neighborhoods U of 0 in C, define

W(U):={¢ € U: There exists a sequence (¢,)?,, in C with ¢, = ¢,
o, =F(1,9,_,) and ¢, "€U forall ne —N,,
@, >0 as n > —oo}.

A modification of the proof of the Unstable Manifold Theorem from [10], [24] yields

Theorem 5.1.  There exist convex open neighborhoods L, of 0 in L, Q, of 0 in Q and a
Cl-map wy: Ly — Q with the following properties.



1. wo(Lg) < Qp, wo(0) =0, Dwy(0) = 0.
2. {x+wo(0):xe Lo} = W(Ly+ Qo)

3. Every trajectory (9,)% , (i.e., 9, = F(1, 9,_,) for ne — Ny) with ¢, "€ Ly + Q,
Sor all ne — N, satisfies 9, " - 0asn -» —c0.

Assertion 3 implies ¢, € W(L, + Q,); using part 2 one finds
Qo =X+ wo(x) forsome yelL,.
Set
Wo={x+wo():x€Ly}.
Analogues of further statements from [10], Theorem 3.1/[24], Theorem 2.7, hold also
true. For example, there exists an open neighborhood U of 0 in C so that F(1, - ) induces a

C!-diffeomorphism from W, n U onto W,, with an inverse map which is Lipschitz bounded
with respect to the norm | |, with a Lipschitz constant strictly less than g 1.

But this will not be needed in the sequel.

Define
W:=F(R* x W,).

This forward extension of the “local unstable manifold” W, will turn out to be (the graph of)
a Lipschitz bounded C!-map from an open subset of L into Q. The proof requires an
a-priori-estimate of the form

(5. %) llge — qyll = const|lpp —py|| for ¢ andyin W.

Such an estimate will be derived in the subsequent sections.,

More obvious properties of W, and W are the following.

Proposition 5.1. For every @€ W, there exists a uniquely determined solution
x: R — R of equation (u,f) with x, = @. There exists t(¢p) <0 with

x, e W, forall t=t(p),
and

x -0 as t » —00.

Proof. 1.Part?2of Theorem 5.1 yields a sequence (¢,)% , as in the definition of W (U),
for U= Ly + Qq; @ = ¢, Define x,:= F(t, ¢) for t 2 0, and x,:=F(t —n, ¢,) forne — N
and 0 £ ¢t < 1. This determines a solution x: ® — R of equation (u, f) with x, = ¢. For
uniqueness, see Remark 3.3.



2. Fixr>0withpeL,+ Q, for ||p|| < r. Set

m:=1+ e* max |f"(£)].
il s

For ||yl < r and 0 < ¢t < 1, the variation-of-constants formula yields

x| = lw(0)] +e"1‘n|ax £ O UHwll < mllwll.
glsr

Hence

NEE )l = mllpll for |pllsr, 05151,
3. Fix ke — N with ||x,JI(= |@,l) S r forn< k. For suchn,and for0 St < 1,
1xesull = NLE@ XD = milx,|l-
It follows that x, - 0 as t - — co.

4. Fix ve — N such that mpY <1 and |l¢,f 7 "||Srforn<vin —N. Let 1 <v;
n<t<n+1 for somene —N with n <v. For all je — N,

"xt-i-jﬂ_j” =||F(t—n, xn+j)”ﬂ‘j = mﬂ—j“xn+j“ = mﬂ"”(l’m—j”ﬂ—"_j <r,
and therefore

x:+jﬂ_j€Lo+Qo-

Clearly x,, ; = F(1, x,,;_,) for all je — N,. Using part 3 of Theorem 5.1, the definition of
W(Ly+ Q,) and part 2 of Theorem 5.1, one obtains

X, =X,,0€W,. QED.

Corollary 5.1. 1. F(R* x W) c W.
2. W=F(N, x W,).

3. For every @ € W there exists a uniquely determined solution x : R — R of equation
(u, f) with xy = ¢@. For all t e R, x, € W. There exists t(¢) < 0 with x,€ W, for t < t(¢), and
x> 0ast > —o0.

Proof of W< F(N,x W,). Suppose ¢ = F(t,9’), t20, ¢’'€ W,. There exist
0" e Wyand ne Nwithn 2 tsothat ¢’ = F(n —t, ¢") - see Proposition 5.1. It follows that
¢ =F(n,¢"). QED.



6. Slowly oscillating solutions
A necessary condition for the estimate (5. *) to hold on the set W is
po+0 forall ¢eW\{0}.
pe # 0 is obviously valid for nontrivial tangent vectors ¢ € T, W, = L of W > W,,.
The observation made in Section 4, namely that nontrivial solutions x : R — R of the
linear equation (u, &) with segments x, in L have zeros spaced at distances larger than the

delay 1 — while solutions associated with other eigenspaces are more rapidly oscillating —

leads to a subset of C containing L = T, W where p does not vanish (see Proposition 6.2
below):

Let S denote the set of all nonzero ¢ e C with at most one change of sign, i.e. p € S'if
and only if

o+0, and 0=Z¢pon[—1,z], 9 £0o0n [z 0] for some ze[—1, 0]
or @=0on[—1,2z],0ZL ¢ on [z 0] for some ze[—1,0].
It follows that
S > L\{0}.

S contains all nonzero ¢ = 0 and all nonzero ¢ < 0; it is a cone ((0, ) S = S), but not
convex. Elementary considerations yield

6.1) cdS=Su{0}.

The negative feedback property (NF, ¢) implies forward invariance:

Remark 6.1. 1. If x is a solution of equation (g) (with property (NF, ¢)), and if x,€ S
for some te R, then x,€ .S for all s = .

2. F(R* x S) = S, T(t)S < S for all £ 2 0.

Proof. 1.Suppose x,€S.Incase0 < xon[t—1,t],X<0on (st + 1], by (NF, ).
x(s) %+ Oimplies x (s + 1) # 0. Using this and monotonicity of x on [¢, # + 1], one sees that all
X, t <5 < t+ 1, are nonzero and belong to S. Similar arguments apply to the other cases.
Use induction.

2. Let ¢ € S be given. Consider the solution x: [—1, ©0) — R of equation (g, f) with
X, = @. Apply part 1 to the solution x : t —» e* x(¢) of equation (y, f; x), and conclude that
all x,, t =2 0, belong to S.

Analogously for solutions of equation (p, o). QED.

Solutions which start in S become more regular in the following sense.



Proposition 6.1. Let a solution x of equation (g) be given, with x, € S for some t. Let
¢ € S be given.

1. Thereexistse [t,t +4],s €[0,4] ands" € [0, 4] so that x,, F(s', @) and T(s") ¢ have
no zero.
> < < :
2. Incase0 {(} xon(t—1,1t], either % {>} 0 {)} x on (t, o), or there exists a zero
<
z> twithx {>}0 on(t,z+ 1)and %(z + 1) = 0. All zeros of x in J:= [t — 1, ) are simple,
and

(S0O) z7>z+1 forall zeros z'>zofxinlJ.

d .
3. Suppose x is strictly { ecreasing

>
t— . wi _ .
increasing} on [t—1,1], with x(t 1){ <}0 Suppose
m>t—1is a local extremum of x. Then t <m, x(m—1) =0 = x(m), and x is strictly

> < <
monotone on [m — 1, m]. In case 0 {< } x(m), either x {> } 0 {> } x on(m, 00), or there is a

<
zero z > m of x such that 0 S X in(m,z+1).

Definition. Let a function x:/ — R, I = R, be given. Let J c I be an interval. x is
called slowly oscillating on J if property (SO) holds.

Proof of Proposition 6.1. 1.1. Consider first the solution x of equation (g).

1.1.1. Thecase 0 < x,. By(NF, ¢), x < Oon(¢, t + 1]. Suppose x has a zeroin [¢, ¢ + 1].
Monotonicity implies that the zeros of x in [¢, ¢ + 1] form an interval [z,z'] & [1, ¢+ 1]
(x,4, # 0 since x,,, €5).

Incase t<zg£z' £1,x<0on[t+1,z+1)and X=0on [z+ 1,z + 1]. Hence
x <0on(z,z +1]. Continuity permits to find se (z'+ 1,¢+ 3) with x <O on [s — 1, s].

The case t = z £ z’ < t+ 1 is analogous.

1.1.2. Suppose there exist ¢/, t" in [t — 1, t] with ¢’ < ¢”, x(¢') < 0 < x(¢"). Then there
isazeroze(t—1,t)of xwithx < 0Oon[r—1,2],0 < xon[zt]. Hence0 < Xon (s, z +1].
Therefore, 0 < x on [z, z + 1], and one can argue as in part 1.1.1.

1.1.3. The remaining cases are analogous.

1.2. Let ¢ € S be given. Apply the result proved above to the solution x : ¢ — e* x(t) of
equation (4, f, x), where x : [—1, c0) — R is the solution of equation (u, /) with x, = ¢. In
the same way, one obtains the result for the linear equation (u, a).



2. The first part follows from (NF, 7).

In case x “1(0) N [1, o) + @ (bounded or unbounded), use induction to derive (SO)
and x(z) =+ 0 for all zeros.

3. Suppose x is strictly decreasingon [ — 1, t], with 0 < x(¢ — 1). (NF, ¢) implies x < 0
on (¢, t + ¢] for some ¢ > 0. Hence ¢t < m; x(m) = 0 and, by (NF, ¢), x(m —1) = 0.

Incase 0 < x(t), onehas 0 < x on[¢—1, t], and assertion 2 gives property (SO), with
all zeros of x simple.

In case x(¢) = 0, there is a unique zero z of x in (¢ — 1, ¢]. (NF, ¢) yields x < 0 on
(t,z+1). Hence x < 0 on (z, z + 1]. As before, one sees that property (SO) holds true for all
zeros of x in (z, o0). It follows that (SO) holds on [ — 1, o0) also in case x(¢) < 0, with all
zeros of x in (z, oo) simple. In particular, x(m) # 0 (since ¢ < m and x(m) = 0).

Suppose t <m — 1. x(m — 1) = 0 and (SO) yield x(s) + 0 for all se [m — 2, m —1).
(NF, ¢) implies that x is strictly monotone on [m — 1, m].

Supposem — 1 < t;m — lisazeroof xin[¢r — 1, t). The discussion of the case x (1) < 0
above shows that x is strictly decreasing on [m — 1, m].

The remaining part of assertion 3 is a consequence of assertion 2. QED.

Observations as in Remark 6.1 and in Proposition 6.1 have been made in nearly every
paper on the equations (u, f) and (f). They are fundamental for any investigation of the
dynamics in case of negative feedback.

The proof of the next result is as in section 5 of [32].
Proposition 6.2. 0¢pS.

Proof. Let @ € S be given. Assume pgp = 0. Consider the solution x:[—1, ©0) » R
of equation (y, o) with x, = ¢. For p e C, set

pv=(p()+pA))yeC,
The case p’ @ % 0: There are ¢ > 0, ¢ > 0 such that for all 1 2 0,
NT(@) (@ —po—p @l < ce™ lo—po—poll,

see Chapter 7 in [9]. The solution y:[—1,0) - R of equation (u,a) with
Yo =p@ +p ¢ = p' ¢ (by assumption) has the form

y(t) = e“*(acosv, t+ bsinv, t)



with constants a, b in R, not both equal to zero since p’ ¢ =+ 0. The last estimate yields
x(t)e ™" —acosv, t—bsinv,;t - 0 as t - o0,
and 27 < v, leads to a contradiction to the fact that all x,, ¢ = 0, belong to S (Remark 6.1).
The case p’ ¢ = 0: Proposition 6.1 guarantees that there exists s = 0 with x(¢) # 0 for
s —1 <t < s. By continuity of T'(s), there is a neighborhood U of ¢ with T(s)yp(¢) + 0 for
—1=51t<0, weU. In particular, T(s)U < S. Choose yep'C\{0} so small that
pi=@+xeU Thenpy =0,p'py=y=+0, T(t)ywe S for all t = s (Remark 6.1), and one

obtains a contradiction as above. QED.

It is also possible to complement Proposition 6.2 by a necessary condition (“If pp + 0
then the curve ¢t — T'(z) ¢ is absorbed into the set S”*), compare section 5 in [32].

The subsequent results deal with slowly oscillating solutions of the nonlinear equation
(i, f). Itis shown that the forward extension W of the local invariant manifold W, consists of
segments X, of such solutions (and of the stationary point 0 € C), and that W is given by a
map from pW < L into Q.

For ¢ € C, let ¢ denote the function

te[—1,0] - e*op(t)eR.
It is convenient to introduce the convex cone
K:={peC:9 +0,9(—1) =0, ¢ increasing},
compare [8], [20]. Note
KcS, cdK=Ku{0}.

Remark 6.2. For every ¢ € K there exists z = z(p)e [—1,0) with ¢ =0 on [ -1, ]
and 0 < ¢ on (z,0].

The next elementary step is to exclude eventually monotone solutions, and to estimate
distances of zeros and extrema of slowly oscillating solutions. Existence of zeros (in other
words, oscillatory behavior) is a consequence of the inequality

1 <ae*
of Remark 4.2 which expresses sufficiently strong feedback at £ = 0.
Analogous results can be found in many papers on the equations (y, ) and (f).

Fix &, > 0 with 1 < (¢ — &,)e*, and 8, > 0 with

(@—e)ll = 1f(&)] for [&]=,.



Proposition 6.3. Let ¢ € S be given; ¢ > 0 or ¢ € K. The solutionx : [ —1, ©) - Rof
equation (u, f) with x, = @ has the following properties.

1. The zeros of x in R™ form a sequence (z;)? with

0<z, and x(t)+0 for 0<t<z,

t1<z.,.,
@ (?(:HOZ]H) forall jeN.
_j 13

X, 41€ {_I;} if )'c(zj){Z}O.

In case pe K, z(p)+ 1 < z,.

2. zl<2+nmx%) log 19%
H do
1 —
z, <z, +3+max{0,—log—M}.
7 do

1 .
3. For z;<t<z, - min f<x(t)<0. For jeN even and z;<t<z;+1,
K 1o.11e1

1
0<x(1) £ ~c.
U

Remarks. Analogous results hold for ¢ < 0 or ¢ € — K. Assertion 1 and 0 < ¢ (0)
imply
0<x on [0,z;) andon (z;,z;,,) with jeN even,

x<0 on (z;z;,, with jeN odd.

Proof of Proposition 6.3. a. Existence of a first zero z, of x in R*, with

0<21§2+max{0 —log(P()
H 9

} Suppose 0 < x in [0, ¢’ + 1] where

t' == max { ~log —)f(—o)}
H 9o

Thesolutionx: te[—1, ) — e*x(t) e Rofequation (4, f, x) decreases on [0, ¢’ + 2], due
to(NE¢). Fort' +1=¢t<t'+2,

(1) =e"f(x(t—1)) < e (—a+eo)x(t—1)
Gince 0 S x(t—1) =e M Vx(t—1) < e ™ x(0) = e " x(0) £ )

=(—a+¢g)etx(t—1),



and therefore

t'+2 t'+1
(' +)—x('+ D)= [ i(Mdt<(~atee* | x(1)dt
t'+1 t

S(—a+eg)etx(t’'+1) s —x(@' +1).
It follows that

x(t'+2)=e M+ Dy £2) < 0.

b. Simplicity of z;, x,, ., € — K : Incase ¢ € K, recall z = z(¢) from Remark 6.2. x = 0
on [—1,z] and 0 < x on (z,0] imply x(¢) = x(0) > 0 for 0 £ ¢ £ z+ 1. Consequently,
z,>z+1, and 0 < x on (z,z,). It follows that x <0 on (z+ 1, z, + 1); in particular,
x,41€ —K(usee” (—x(z,+1+1)) =e ™1*Vx(z, + 1+ t)for —1 £t <0)andx <0
on (z,,z, + 1]. Also,

X(z) =0+f(x(z; - 1)) <0
since
x(z,—1)=e "1 " Dx(z, —1) > 0.

Incase ¢ > OonefindsO0 < xon[—1,z),X<00on(0,z, +1),x, ,, € —K, X(z,) <0and
x<O0on([z,z,+1)

c. Estimates on [—1,z, +1]:x<0=<x on (0,z,] implies that the map
x:t — e *x(t)isdecreasingon (0, z,]. Hence | x| < ||¢llon[—1, z,]. Forz, £t <z, + 1,

t
1
02x(t)=0+ [ e ™ f(x(s—1))ds= min f-.
z olielr H

d. As before, one finds a first zero z, > z, + 1 of x with

. = 1
z,— (2 +1) §2+max{0,;]og_i(f}_i_)}

8
and

0<x on [z;,z;,+1),x,,,,€K, 0<X(z;+1),0<x on (z;,z,+1];

x is increasing on [z; +1,z,]. Forz, £t <z,+1,

t
0<x(t)=0+ [e ™ f(x(s—1))ds < cf—:;.

z2

e. It is now obvious how to construct the full sequence (z;)i°*. QED.



Set

1
ro= ;max {cf, — minf} >0.

[0,cz/p]

Proposition 6.3, the Remark thereafter and Proposition 6.1 yield a criterion for slowly
oscillating solutions on R with arbitrarily large zeros in both directions ¢ > 0 and ¢ < 0:

Corollary 6.1. Suppose x: R - R is a solution of equation (u, f), and there exists a
sequence (t,){° with t, - — o0 asn — 00, so that (x, ){° is a bounded sequence in S. Then the
zeros of x form a sequence (z;)2 ., with property (Z), and

|x(t)| Sry forall teR.

The properties of L, notably the no-zero-statement of Remark 4.1, and tangency can be
used to show that small solutions of the nonlinear equation (u,f) which start in
W,\ {0} = W have segments without zeros, i.e. in S.

The next result goes even further:

Proposition 6.4. There is an open neighborhood U,, of 0 in C such that for all points ¢
and @' in Uy W, with ¢ £ @', there exists t € [0, 2] so that

F(t,p)— F(t,9)e C has no zero.

Proof. 1. An estimate. Let solutions x:[—1,00) - R and x':[—1, ®0) - R of
equation (u, f), and a solution y:[—1, co) — R of equation (u, «) be given. Set

ci=1+ ae* + e*

and

mi=m(x, x")=max{|f (&) —f O] : [£] = 2llxoll + 2l xoll} 5

d=x—x".

Proof of

1d(@) =y ()] £ e(( + m)lldy = yoll + mllyll) for 0=se=1:

By the variation-of-constants formula,

ld(t) —y()] = e““(ld(o) —yO)+ ie’”lf(X(S - 1)) —f(x's =) +oy(s— 1)IdS>-
0



For each s € [0, #] there exists @ € [0, 1] with

Hence

1/ (x(s = 1) =f(x'(s = 1)) +ay(s — 1)]
=|f'(x'(s—1)+ O0d(s —1))d(s — 1) + ay(s — 1)
SIS C ) +ds— Dl +aly(s—1) —d(s —1)]

= m||do |l + alldy — yoll (with & = —f'(0))

e (.. ) 2 1(ldo — yoll + e*mildy — yo |l + e*mllyoll + o dy — yoll).

2. Construction of U,. Choose

r>0 with cr||T(1)|]<%,
r'>0 with |f'(&)—fO|=r for [{|=7,
6>0 with |FUpIST for lIvl<s,

: aq 2 ay
ee(0,1) with cs<—4— and (1+7r)c £<—8—,
0'€(0,6) with [f'(&)—f(0)<e for [Ll=d,
¢ >0 with c(1+a)e'<5’49 and c(1+r)c(1+£)e’<%.

’

Dwy(0) = 0 permits to find 6" € (O, %—) such that

Set

lwll=6” and |ly'||£6” imply pyelL,, py’'elL,,
lwo (pw) — wo(pw)Il £ €'llpy — py'll.

Up={peC:|lpl]| <8}

3. Let ¢, ¢’ in Uy n W, be given; ¢ * ¢'. As W, is the graph of wy, pp + po’. Let
x:[—1,0) > R and x':[—1, o0) = R denote the solutions of equation (u, /) with initial
conditions x, = ¢, xo = ¢'. Setd:=x — x', m=m(x, x") asin part 1. Note m < &. Consider

the solution y:[—1, ) —» R of equation (y, @) with

Observe

Yo =p¢ —po’ € L\{0}.

do—yo=q0 —q0' = wy(po) —wo(pe’).



Part 1 and the choice of 67, ¢, &, ¢ yield

ldy =yill = cA+m)e’llpo — po’ll + emllyo |l < c(1 4 &)&'{| ol + celly, |l

do
= < yoll-

4

Setm,:=m(x(- +1),x'(- +1)). Notem < r, by the choice of §” < % < g, of  and of
r'. A second application of part 1 yields

ldy = y,ll £ c(1 +my)lldy — y,|i +emylly I £ c +n)lld, — |l +crliy,ll
Sc(t+nc((t+e)e +e)llyoll + crll Tyl

(with the estimate for ||d; — y,||)

a
<2l
(by the choice of ¢/, ¢, r). Also,
! ’ ! ! a
ldo — yoll =llge — qo’ll S &'llpe — po'll = &'l yoll < Eollyoll-

It follows that

4@ = yO1 S 2yl forall re[—1,2].
Remark 4.2 guarantees the existence of 7 €[0, 2] with
ld($)| 2 |y —1d(s) =y 2 ggIlyoll >0 forall selr—1,7r]. QED.

Corollary 6.2. 1. W< {peC:|¢@l|l 1}

2. Let ¢ € W\ {0} be given. The zeros of the solution x : R — R of equation (p, ) with
Xo = @ form a sequence (z;)Z ., with property (Z). In particular, ¢ € S.

3. There exists amap w: L, - Q, with L,,==pW > L, such that
W={x+wl:xeL,}.
Proof. a. Consider ¢ € W\ {0} and the solution x: R — R of equation (u, f) with
Xo = @ (Corollary 5.1). Proposition 6.4, applied to x, € U, with —¢ > 0 sufficiently large,

and to 0 € U,, yields a sequence (¢,)7° as in Corollary 6.1; this proves assertions 2 and 1.

b. Assertion 3 follows from injectivity of p| W. Injectivity of p| W is a consequence of
Corollary 5.1 and of Proposition 6.4:



Let ¢ and yp in W be given, ¢ + . Consider the solutions x: # - Randy: R - Rof
equation (4, f) with x, = ¢ and y, = y. It follows that for some ¢ < —2,

xely, yelU, x*y.
Proposition 6.4 gives s < 0 so that d:= x — y has no zero on [s — 1, s]. In particular, the
segment d, of the solutiond : t — e d(t) of equation (g, f, x — y) belongs to S, and Remark
6.1 yields d, € S. It follows that ¢ — yp = d,, belongs to S.
By Corollary 6.1, pp +py. QED.
The map w extends w,, of course. The next section contains an estimate along slowly

oscillating solutions of equation (4, f) which in turn will imply that w satisfies a global
Lipschitz condition.

7. An a-priori estimate

Estimates of the form

const||@|| £ lIpell

on subcones of S can be characterized by estimates involving the simpler operator 7°(1);

1+t

TMWe(t)=e "o 0)+ [ e "' If(p(s~1))ds
0

for pe Cand —1 £t £0. This is done as in Lemma 4 of [32}:
Lemma 7.1. Leta sﬁbcone S’ < 8§ be given. The following statements are equivalent
1. There exists c* > 0 with c*|lo|| S I TV o]l for all pe §'.
2. There exists ¢ > 0 with c||@l| < lipel| for all p€ S’.
Proof. a. Suppose statement 1 holds true. Set S;:={p e S':|l¢|l =1}. c1 T(1)S} is

compact. T(1).S S (Remark 6.1) and (6.1) imply cl T(1) S; = cl S = S U {0}. The estimate
in statement 1 gives 0 ¢ cl T(1) S{, so that ¢l (1) §; < S. Proposition 6.2 yields

0 <inf{llpell: o ecl T(1)Si} < inf{llpT(M)oll: @€ Si} = inf{ TW)poll: @ € Si}
<\ T)linf{l|lpoll: ¢ € S1}.

Set c:=inf{||ppll: ¢ € S} > 0 and use (0, ©0)S' = §'.

b. Assume statement 2 holds. Then 0 ¢ cl pS;. The latter is a closed bounded subset of
the 2-dimensional space L=pC. T(Q)yp+0 for all yeL\{0} implies
0 <inf{]| T(1)w| : y ecl pSi}, and statement 1 follows by arguments as in part a of the
proof. QED. )



Proposition 7.1.  Let r > 0 be given. There exists a constant c¢(r) > 0 with the following
property:Ifx:[ty—1,00) = R andx’': [ty — 1, ©) > R are solutions of equation (u, f) with
x| =r and |x'(O)|<r forall t21t,—1,

and if
x(t)=x'"(t)*£0 forall telty—1,t,],
then
cd Nl = llpd |l forall t2t,+2

where d:=x — x'.

This is a generalization of Lemma 5 from [32].

-

Proof of Proposition 7.1. 1. Let r > 0 be given. There exist a = a,€(0,1) and
b=0>b,>1> asuch that

(7.1) ase!|f'(&)l=b for [&l=r.
Consider solutions x : [t, — 1, 0) - Rand x": [t, — 1, o) —» R of equation (u, f) which
are bounded by r and satisfy x(s) —x'(s) £ 0 for t;—1 <s=¢, Set d:=x"—x and

d(s):=e"d(s) for s = t, — 1. The solution d:[t, — 1, c0) — R of equation (u, f, x' — x)
satisfies, for all s > ¢,

aldis—1)| =e*ae ™ *|x'(s—1)—x(s — 1)]

x'(s—1)

Sler | f’(é)dé’ (see (7.1))

x(s—1)
(7.2) =1d(s)

x'(s—1)

=le* | f'(f)dfl
x(s—1)

<efbe Flx'(s—1)—x(s —1)] (see (7.1))

=bld(s—1)].

d, has no zero.

Property (NF, t) for equation (g, f, x' — x) implies that either

0<d@©0), and d<0 on (f, % +1],
or

d(0)<0, and 0<d on (f, 2 +1].



Let T: C — C denote the time-1-map associated with the linear equation

y(s) =—aety(s—1),
i.e.

T(@)(s) = ¢(0) —ae* | @(s)ds’ for ¢peC and —-1=s550.
-1

2. Claim: There exists a constant ¢ = c(a,, b,, y, &) > 0 such that

clldll < 174,|| forall z2=1,+2.

Proof: Let t = 1, +2 (> th+1+ 515> be given. Note that d is differentiable at each

1
sgt~1—ﬁ>to.

21. Fort—1<sss' £t

' —t

oo
ae” =ae*| | d/(s")ds"
s—t

j‘ _d_(S”)dS"

=|Td(s' — 1) — Td, (s — )| = 2| T4,|l.

2.2. For every local extremum m > ¢, of d let g,, denote the affine linear function with

8n(m) =d(m) and g,(s) = —bd(m), se R. Then g, <m + %) =0.

Part 3 of Proposition 6.1 yields m > ¢, + 1 and d(m) + 0.

1 .
Proof of |d(s)| = |g,(s)form < s < m+ E: Suppose m is a local maximum. Part 3 of
Proposition 6.1 says that d is increasing on [m—1,m] with d(m~—1)=0. For

1
m§s§m+5(<m+l,by1<b),onehas(to<)m—1§s—1§m,hencc

§n(S) = —bd(m) < —bd(s —1) £ d(s) (see (7.2)
<0 (with (NF, 1)).

The argument for a local minimum is analogous.
2.3. It is convenient to distinguish the following cases.
A. There is a local extremum me[t—1,¢].

1
Al t§m+—2-5.

1 ‘
A2 mt oo <t, |dm)|=l4l.



1
A3 m+ 55 <1 ldm)| < |4l

B. d@)+0 for t—1<s<t.
B.1 [d(®)| =lldll-

B2 |d)i<lldll=1dt—DI|, 1d()|z|d(z—1)| for t—l—zibééét—i,

B3 |d@)| <||d,|l=1d(t—1)|, and there exists se[l—l—il—l;,t—l] with
ld(s)] < |d(z—1)|.

2.4, In case A.1,

I Td || 2 1Td,(—1)| = |d()| 2 |1g. ()| 2

1 1 1
gm<m+ %)‘ = >1dom| =3l

In case A.2, consider first se I:m, m+ 21_b:| < [t—1,t]: One has

1 1
1) 2 |gn®)] 2 51d(m)| = S]]l

Part 2.1 yields

L
m+2

i dds| 2 0en - 1

2|74\l 2 ae* 53

Z ae’ .

In case A.3, apply part 3 of Proposition 6.1 to the restriction of d to [¢,, ) :|d| is
increasing on [m — 1, m], m > t,+ 1, and one has the following alternative: Either

there exists a first zero z > m of d
(in which case |d| decreases to 0 on [m, z], and increases on [z, z + 1]) or
|d| > 0 is decreasing on [m, o).

The second possibility would imply ||d,|| < |d(m)|, so it does not occur in case A.3. It follows
that z < ¢ and |d()| = ||d,||. Hence || Td,|| = | Td,(— D] = |d()] = |||

Case B.1 is trivial: Compare the preceding inequality.
2.5.Case B.2. d is monotone on [t—1,t]; |d| is decreasing on [t—1,¢]. For

se (t — 513, t:l, s—1e€ (t -1- —2—1[—), t— ljl < (t,, ), and consequently

|d(s)| 2 ald(s — )| z ald(t — D] = alld ]| > 0.
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It follows that

hence

1411401 (=174

a 1
213”‘—""§|—("55)l

e 1
In the last case, monotonicity implies that for t —1 <s <t — B

FOIE I (z— 5_%)' (z ;’—buc_z,u),

or

and part 2.1 yields

1 1 1
> u - —— 2 K
2| Td,|| = ae (1 Zb)ld(z 2b)l=ae ’<1 2b) a1l

2.6. Case B.3.

2.6.1. Proof that there exists m e (t —-1- —1—,

T 1] with d(m) = 0: Suppose d(s) > 0
for all se (t—l—— —1—,t—1;|.

2b

It follows that d(s) > Oalsoforallse [t — 1, ¢].|d(t — 1)| > |d(¢)|yields d(t — 1) < 0.

1
Furthermore, d(s) < d(t—1) < Oforallse{t—1 — 2 t — 1 |, acontradiction to case B.3.

Analogously one excludes d < 0 on (t e 21_b’ t— 1].
2.6.2. Note

1
. < -1 < —
(71.3) mSt—1<m+ .



Part 3 of Proposition 6.1 implies that either

(7.4) |d| decreases on [m, o),

or
that there exists a first zero z > m of d

(in which case |d| decreases to 0 on [m, z]). In the second case, the inequalities

d| 2 1g.|>0 on [m,m+%)

and (7.3) yield
mst—1<gz,
and

(7.5) ld(m)| 2 1d(t —1)].

The last inequality holds also true in case of (7.4).

' 1 3
Forse[t—l,t—1+z@] < [m,m+%:|, one finds

1d(s)| = |1gn(s)| 2

3
g.,,<m+ Z;)' = %|4(m)| > %uj(z— Dl (see (7.5)

1
=l

and therefore

11
2||Td,|| z ae” 7 2 14l

2.7. Set

mmindt ger L L ger(1- L) & e L
C:=1min 2,(18 8b,4b,ae 2b 160 325 .

3. Proof of ||T(1)d,|| = e %*c||d,|| for t=1t,+2: Let t = 1t,+2 be given. For
—-15s50,

i+s

[T d,(s)| = | e *1*9d(0) —a [ e #1574, (s' — 1)ds’
0

1+s
e M9t —a | e Mt ont s =D g(r 4 ' — 1)ds’
0

1+s

e"d(t) —ae* | d(t+s —1)ds’
0

— e——u(t+1+s)

= 7M1 TG, (9)
2 e M| T ()].



Hence

NT(1)dl = max IT(1)d,(s)| Z e *** Y max |Td,(s)| = e ** V|| Td]|
se[— 1,0}

se[—1,0]

2 e M e|d || =e Ve max |e!TId(t + )]
se[-1,0]

= e *c max |e*d(t+ )|
se[—~1,0]

e "ce ™ max |d(t+5s)|=e "*c|d,].
se[— 1,0}

4. The segment d,, t = ¢, + 2, belongs to the cone

S ={peS:ITWollZe *clioll}

(d, € S implies d, € S, Remark 6.1). Lemma 7.1 guarantees a constant c¢(r) > 0 with

cllell =llpoll forall ¢eS’. QED.

8. Lipschitz condition and C'-smoothness

Theorem 8.1. The domain L, = L of the map w: L,, - Q with

W={x+wx:xeL,}

is open, and w is of class C'. There exists a constant I, > 0 such that

IwO) —wQHI S Llx—x'l forall yx,x inL,.

Proof. 1. Set I, :=||q|lc(r,) ~*, with the constant from Proposition 7.1.

Proof of the Lipschitz estimate: Let y and x' in L,, be given, y + x’. Letx : R - Rand
x': R - R denote the solutions of equation (u,f) with xy = x + w(¥), xo = x' + w(').
Then x, + x, for all t € R, and x and x’ are bounded by r, (Corollary 6.2). Recall x, - 0 and
x; > 0ast > —o0, and x,e W,, x{ e W, for —t > 0 sufficiently large. Proposition 6.4
yields the existence of 7, £ —2 so that x—x' has no zero on [t,—1,¢]. The

a-priori-estimate of Proposition 7.1 gives

c(ro)llxg — xoll < llpxo — pxoll,
hence
wG) —wC)Il = llgxe — gxoll < ligllll xo — xoli
< liglle(ro)™Hlpxo — pxoll = Lllx — x'll -
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2. By Corollary 5.1, W = F(N, x W,). Hence L, = pW = % pF({n} x W), and it

is sufficient to show that each set L, := pF({n} X W), ne N, is open in L, with w| L, of class
C!. Let ne N, be given. Part 1 implies

llgell £ I,llpell for every tangent vector ¢ e LW, peW.
It follows that all restrictions p| T, W, y € W, are injective.

Using F({n} x W,) = W and Remark 3.3, one obtains that all derivatives of the
injective map .

peF(n,-)eoy with y:yeLy, » x+we(x)eC

are injective. This implies that the image pF({n} X W,) = L, is an open subset of L, and that
the inverse map (po F(n,-)oy) ' :L, —» L is of class C*.

3. Proof of w|L, =qoF(n,-)oyo(poF(n,-)oy) L For y = pF(n, y' + w(y’)) and
x' €Ly, F(n,x' +w(x')) € W and

w() =qF(n,x' +w)) =q°F(n,-)oye(poF(n,-)oy) (1)
4. Now it is obvious that w|L, is of class C'.  QED.

The Lipschitz map w has a unique continuation clw tocl L, = L, ubd L,, which is
again Lipschitz continuous with Lipschitz constant /,, and

cdW={y+clw(y):yeclL,}.
Set .
bd' Wi={y+clw(y):xebdL,} =cl W\W

(of course, bd’ W =+ bd W = cl W). Then
cdW=WwWubd' W, Wnbd W=0, 0¢4bd W.

cl W and bd’ W are compact.

Theorem 10.1 of the last section will state that bd’ W consists of a single periodic orbit,
given by a slowly oscillating solution, which attracts all phase curves in the 2-dimensional
submanifold W (except the stationary solution at 0).

This problem is not completely analogous to Poincaré-Bendixson theory for planar
vectorfields in so far as the desired limit cycle will not belong to the 2-dimensional manifold
W on which one has a flow; the limit cycle will only be bordering W.

Until now, not much has been derived about the set bd" W = cl W\ W. Its projection
p(bd’ W) = bd L,, is only known to be the boundary of an open subset of the space L.
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The proof of Theorem 10.1 begins with some a-priori information on phase curves in
bd' W.

Proposition 8.1 (Solutions through points of bd’ W). Let ¢ € bd’ W be given. There
exists a uniquely determined solution x : R — R of equation (u,f) with x, = ¢. For every
te R x,ebd' W and px, + 0. The zeros of x form a sequence (z;)%,, with property (Z).

Proof. 1.Leto = x+ cl w(y) with y e bd L, be given. Choose a sequence (,){ in L,,
with x, = yasn — oo. Forne N, consider the solution x™ : R — R of equation (pu, ) with
x8 = xn+ w(K,)-

‘

Proof of F(¢, p) e bd’ Wiorallt =2 0: All x”, ne Nand ¢ = 0, belong to W. Therefore

F(t,p) = lim x™ecl W= Wubd' W.

Suppose y:= F(t, ) € W for some ¢t = 0. Then ¢ € W (see Corollary 5.1), a contradiction.

2. Backward extension of ¢. Let ke — N be given. The sequence (x{),.n in the
compact set cl W has convergent subsequences. Consider any such subsequence, say
(™),e a» With limit p e cl W. The solution x’: [k — 1, ) —» R of equation (u,f) with
x;, = y satisfies

xp = F(—k,y) = lim F(-k, x™) = lim x§" = ¢.

Using Remark 3.3 one infers that there exists a uniquely determined solution
x® [k —1, 00) > R of equation (g, f) with x{® = ¢. A second application of Remark
3.3 yields

x@) = x@&-V)rk 1 o) forall ke —N.

It follows that there exists a (uniquely determined) solution x: R — R of equation (u, f)
with x, = ¢. Part 1 guarantees x,e bd’ W for all 1 = 0.

3. Note x, ecl W for all ke — N, by construction. Invariance of W under all maps
F(,-), t 20, and continuity yield

x,eclW=Wubd' W forall teR.

x, € W for some ¢ < 0 would imply ¢ = F(—t, x,) € W, a contradiction. Hence x, € bd’ W
also for all 1 < 0.

4. It follows that x is bounded, with

0+ x,ebd WeclWccdS=Su{0} forall treR.

Corollary 6.1 gives the assertion on the zeros of x.
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5. The vectors X,, t€ R, are tangent to the (graph of the) Lipschitz continuous map
clw:cl L, — Q. This yields

llgx. |l = Ll px. Il
Assume px, = 0. By the last estimate, x, = 0, so that x is constant on [¢ — 1, ¢], with

0=5%(t) = —pux(t) + f(x(t — 1)) = — pux(t) + f(x()) .

In particular,

O0=x()=x(—1),

a contradiction to the fact that x is slowly oscillating on R QED.

9. A submanifold and a return map

The next objective is to find a one-dimensional submanifold of W which is transverse to
the phase curves in W, and to describe intersections of phase curves with the submanifold in
terms of a smooth map.

Consider the hyperplane

H={peC:9(—-1)=0}.
H is the nulispace of the evaluation mapev:pe C — ¢(—1)e R. Set
X:=WnH.
Recall that for every solution x : ® — R of equation (u, ) with 0 & x,€ W, t € R, one has
X, +1€X foraljeZ

where (z;)2,, is the sequence of zeros of x (see Corollary 6.2). Moreover, X(z;) + 0 yields

9.1 D(t » x)(z;+ D1 =%, ,, e LW\H foral jeZ
that is, phase curves in W\ {0} pass transversally through H.

Proposition 9.1. X is a one-dimensional C*-submanifold of C.

Proof. 1In view of [1], Corollary 17.2, it is enough to show that the inclusion map

irpeH - ¢peC

is transversal to W (note X=i"!'(W)), ie that for every ¢E€X,
(Di(p))~* TypW =HNT,W is a closed subspace of H with a closed complementary



subspace in H, and that each Di(p) H = H, ¢ € X, contains a closed subspace which is a
complement of T;,, W = T, W in C. The case ¢ = 0. Then

i(p)

T, W=L=Ry® Ry,
where

x() =e“**Icosv(t+5), () =e"“ " Isinv(t+5)

for —1<t<0; with se ® such that v(-—1+s)=g. 0+yeH and p¢ H give

dim H n L = 1. Consequently, there is a complementary subspace H' of HN T, W = Ry in
H. Furthermore,

C=HORpy=HOR)DRpy=H @ T, W.

In case 0 # @ € X, consider the solution x : ® — R of equation (y, f) with x, = (p and its
sequence of zeros (z;)~,. Property (Z) gives zo = 1. By (9.1), ¢ = x, ,, € T, W\ H, and
therefore dim HN T, W <dim T, W = 2. Hn T, W = {0} would imply C=H® I,W, a
contradiction to codim H = 1 and dim W = 2.

Hence dim Hn T, W = 1, and one can proceed as in the previous case. ~QED.

Property (Z) in Corollary 6.2 implies that the open subset

Yi=Xn{peC:0< ¢(0)}
of X is contained in the convex cone K. In fact,
Y=XnK.

Proposition 6.3 defines a map K —» K by

¢ - F(z;(9)+1,9)

where z, () is the second zero of the solution x®: [—1, «0) — R of equation (g, f)in R*
(or, the first zero in R+ where X ? is positive). This is as in [8] and in [20]; similar return maps
have been used e.g. in [2], [3], [28].

Proposition 9.2, There exist an open neighborhood N of K in C and a continuous map
P:Nvu {0} - C which is continuously differentiable on N and satisfies

P(9) = F(z,(9)+1,9) forall ¢eKk,
PO) =0,

DP(@)p =p,D,F(z,(9) +1,9)p forall ¢eK, peC

where x = D, F(z,(p) + 1, @)1.
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Proof. 1.Let ¢ € Kbe given. Consider the solution x = x? of equation (u, f), and the
sequence (z;){° of zeros of x in R ™ (Proposition 6.3). Set z = z(¢p) (so that ¢ = 0on [ —1, z],

1
0 < @ on (z,0]). There exists e € (O, 5) so small that

z4+¢e<0, z4+e+1<z,—e, z;+14+e<z,—¢.

Continuous dependence implies that there exists an open neighborhood N, of ¢ such that for
each ¢’ € N, the solution x’:=x® of equation (y, /) satisfies

0<x" on [z+62z,—¢], x'<0 on [z,+¢&2z,—¢],

0<x’" on [z,+¢2z,+1].
An application of Proposition 6.3 to the initial value x; ... ; € S, which is strictly positive,
and the Intermediate Value Theorem show that there exist a unique zero z; of x’ in
(z; — &, 2, + ¢),and aunique zero z; of x' in(z, — ¢, z, + ¢€),and that 0 < x"on [0, z}),x" < 0

on (z1, z3). Incase ¢’ € N, N K, z1 and z; coincide with the first and second zero of x’ in R*
as given by Proposition 6.3.

2. F(z,+1,¢0)e H and %(z,) # 0 (so that D, F(z, + 1, )1 = %,,,, ¢ H) imply that
there are an open neighborhood U,< N, of ¢, diamU,<1, and a C L.map
1,: U, = (1, 00) with

(@) =2z,+1, 1,(U)c(z,+1—¢2,+1 +¢)
so that for all "€ U,

F(t,(¢), 9)eH (Remark 3.1)
or equivalently,
x'(t,(¢")—1) =0 for the solution x':=x* of equation (y,f).
It follows that
1,(9) — 1
coincides with the zero z5 constructed in part 1 above. In particular,
F(1,(¢0), ¢") = F(z,(¢)+1,9") forall ¢'eU,nK.

3. Set

N: U,, P(@)=F(z3+1,¢") for ¢'eU, and ¢eKk,

pek

P(0):=0.

Recall Remark 3.2.
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4. Continuity at zero: Proposition 6.3 implies that the set of all zeros z, (¢) where ¢ € K
and || ¢]| = 2 is bounded by some constant ¢ > 0.

diam U, < 1 shows that each ¢’€ N with ||¢’|| =1 belongs to some set U, with
lloll £ 2. It follows that

z’2<c+—;— for all such ¢'.

Continuity of P at 0 is now a consequence of the fact that restrictions of solutions to the

interval [— 1,c+ :,12— + 1] depend continuously on initial data. QED.

Propesition 9.3. Y is connected, and P maps Y diffeomorphically onto Y.
Proof. 1. P(Y) = Y is an easy consequence of Corollary 6.2.

2. Connectedness: There are an open neighborhood U of 0in C, a constantr > Oand a
C!-diffeomorphism h:(—r,r) - Xn U, with A(0) = 0. Property (Z) in Corollary 6.2
implies

h(s)(0) >0 ifand only if A(s)ekK,
h(s)(0) <0 if and only if h(s)e —K.

The map s — sign A(s)(0) is nonzero and constant on (—r, 0), and on (0, r) — otherwise,
h(s)(0) = 0 for some s =+ 0, a contradiction to 0 + A(s)e X and X < {0} U KU (—K).

Corollary 6.2 and x, - 0 as t - — oo for each solution x: R — R of equation (u, f)
with x, € W imply that X' n U contains elements of K, and of — K. It follows that either

h(s)(0)>0 on (—r,0) and A()(0)<0 on (0,r),
or
hs)<0 on (—r,0) and A(s)(0)>0 on (0,r).

Using Y = X n K, one infers

h((=r,0)=YAU and A((©0,r)=XnUn(-K)
or

h(=r,0))=XnUn(—=K) and h((0,r))=YNU.
Now let ¢ and ¢’ in Y be given. Consider the solutions x: ® - R and x': R - R of
equation (4, f) with x, = @, xo = @', and let z,, zj, for je Z, denote their zeros, ordered
according to Corollary 6.2. Then

20='—1=Z(').
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Because of x, » 0 and x; — 0 ast — — oo there exists an integer n > 0 so that x, __,, and
X, ,.+1 belong to Y n U. Connect both points by a continuous path in ¥ n U and apply P".
The resulting path connects ¢ in Y to ¢'.

3. Injectivity of P: Let ¢ and ¢’ in Y be given. Consider the corresponding solutions x
and x’ as in part 2, and their ordered zeros z;, z;. Let y: R — R denote the solution of

equation (u, f) with y, = P(¢), and let z;, j € Z, denote the zeros of y, as in Corollary 6.2.
Then z, = — 1. The equation

y=x(C+z,+1)
implies
y<O0on(z;—(z;+1),-1), 0<yon(—1—(z;+1),z,—(z,+ 1)),
y(=1—(z,+1)) =0.

It follows that

Z_,=—1—-(z,+1).

Analogously one finds for the solution y’ : R — R of equation (y, f) with y5 = P(¢’) and for
the ordered zeros z;, je Z, of y’ that

Y=x(+z+1) and zl,=—-1-(5+1).

In case Pp = P¢’, uniqueness (Remark 3.3) implies y = y’. Therefore z_, = z_,, and
consequently z, = z;. Hence x = x'; in particular, ¢ = ¢'.

4. In view of P(Y) = Y and dim Y = 1, it remains to show that each map DP(¢)| T, Y,
@€Y, is nonzero. Let peY be given. Choose we C such that 7Y = Ry. Recall
DP(p)y =p,D,F(z,(9) + 1, p)p with y = D, F(z,(9) + 1, ¢)1 (Proposition 9.2). The
vectorsye T, Yc Hand ¢ =X, , ¢ H (where x : R— R is the solution of equation (u, f)
with x, = @,and z, = — 1, see (9.1)) are linearly independent. D, F(z,(¢) + 1, @) is injective
(Remark 3.3) and maps ¢ onto . It follows that y and D, F(z,(¢) + 1, @)y are linearly
independent; the projection p, parallel to y onto H does not annihilate D, F(z,(¢) + 1, @) v,
and one has

DP(p)y +0. QED.

10. Attraction to a periodic orbit

The essential step towards Theorem 10.1 is to construct a homeomorphism from a
compact interval onto cl Y. This requires suitable parametrizations of a piece of clY
containing 0 € C, and of a piece of ¢l Y containing a point of bd’ W. The second one is more
difficult to obtain as it is not a-priori known how Y and cl Y look close to bd’ W.



The construction begins down in L,,.

Choose y € bd L,, with minimal norm:

Hxll = mm hx'\-

Oe L, implies ||}l > 0 and

(10.1) {'eL:Nx'll <lixll} =L,.
Let x®: R — R, 0 < s £ 1, denote the solution of equation (y, f) with
x =sy+clw(sy)ec w.

It follows that all x{*’ belong to bd’ W while for 0 < s <1, x e W for all e R (with
Proposition 8.1, (10.1) and Corollary 5.1).

The projections of these phase curves pass transversally through the ray (0, o) y. More
precisely (and weaker),

Proposition 10.1. There exist s, € (0,1) and t, > 0 with
pxO¢Ry for s, <s<1 and 0<|t]<1,.

Proof. 1.By Proposition 8.1, px{" + 0. Proof of pxy" ¢ Ry: Assume 0 + px5" e Ry.

Ry intersects at y transversally with the circle of radius || x|| and center 0. This fact, the

assumptlon and (10.1) together give px{VeL, for some t+ 0, a contradiction to
(1) ’
ebd' W.

2. Continuity of the map s — x*; at s = 1: Let points 5, € (0, 1], ne N, be given with

s, = 1 as n = 0. The points @,:=x") belong to a compact set; every subsequence

(@,)1 = (@) has a further subsequence (¢,);° which converges to some ¢’e C. By
continuity,

FQ2,¢) = lim F2, ¢;)) = lim x§" = x§"
j=o n—wo

By injectivity,

This yields the assertion.

3. The relation
pD, F(2, x‘”)1 =pxV¢ Ry,

part 2 and continuity of D, Fon (1, c0) X Cimply that there exist s, € (0, 1), ¢, > 0so that for
siSsstland |t =1, .

oD, FQ +t,x)1 —pD, F2, x")1]| < = dlst(l??x, pD,F(2,x"))1).
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For such s and for 0 < |#| < ¢,,
px¥ — px§ = pFQ+t,x%) — pF(2, x*,
t
= [pD,FQ+1t,x9)1dr’
0
=tpD, FQ2, x")1 + 1y

where

1
lpll < Edlst(Rx,leF(Z, xM1),

so that the last sum does not belong to Ry. Using pr)’)eRx, one obtains
pxP ¢ Ry. QED.

The initial values x{’, s, < s < 1, in the graph cl W above [s,, 1]y < L may not belong

tocl Y = H. Therefore one follows the semiflow until it reaches the hyperplane H: Choose a
zero z > 0 of x with 0 < XM (z) and x{}, € K = H (Proposition 8.1). In particular,
(DyFz + 1, xg) 1) (=1) = %2,(=1)
=x1(2)

+0,

and

D, Fz+1,x"1¢H.

Using the Implicit Function Theorem one obtains an open neighborhood U* of xél Yin Cand
a Clmap t*: U* — (1, c0) with

*(x)=z+1,
1 1
*UNclz+1—=zt,z+1+21, ),
2 2
F(t*(p),p)e H and F(t*(¢),»)(0)>0 forall ¢eU*.

(The last inequality is achieved by x{¥, e K; x{), (0) > 0.) Choose s, € (s,, 1) with x5’ € U*
for s, < s < 1. The desired parametrization is the continuous map

o:5€[s,,1] » F(z*(sy +clw(sy)), sx +cl w(sy) e C.



Figure 10.1
Note
10.2) o) =x,ebd WnK
and
(10.3) o(s)eWnK=Y for s,<s<1

(recall o(s) = F(t*(sx + clw(sy)), sy +clw(sy) e H, a(s)(0) = F(...,...)(0) >0, and
property (Z) for x®). In particular,

(10.4) c(l)ec Y\Wccl Y\,
(10.5) o(1) #0.
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It is convenient to set
2=[s,,1].

Proposition 10.2. ¢ is injective and maps int £ homeomorphically onto an open
subset of Y.

Proof. 1. Injectivity: Suppose o(s) =o0(s'). With ¢:=x§ and ¢':= x(()s'),
F(t* (), ) = F(1*(9"), '). Without loss of generality, t*(¢) < t*(¢'). By Remark 3.3,

(10.6) ¢ =F(x*(¢)—1*(0). ¢).

Assume t*(¢') > t*(¢). Then 0 < t*(p') —1*(¢) < ¢,, and Proposition 10.1 implies
PF(t*(9") — 1*(9), ¢') ¢ Ry, a contradiction to (10.6) and pe € Ry. t*(¢’) = t*(¢) gives
¢ = @', hence s = s’

2. Continuity of g, 6 (int 2) < Y, dim Y = 1 and injectivity imply the remaining part of
the assertion. QED.

Remark. One can also show that all Da(s), s € int X, are nontrivial — which implies
that ¢ maps int 2 diffeomorphically onto an open subset of Y.

Proposition 10.3. We have
cdY=Yu{0,0(1)},
and there exists a homeomorphism h:[0,1] — cl Y with
h©0)=0, R((0,1)=7Y, hl)=0()=x,ebd W.

Proof. 1.7Y is a one-dimensional C!-submanifold of C without boundary, which is
1
not compact (as the points ¢ (1 - r_t>’ n e N large, converge to o (1) ¢ Y). It follows that

there exists a homeomorphism #,, defined on an open interval (a, b) < R, onto Y (see e.g.
[30], Ch. VI, 23.19). We shall show that A has limits 0 at g and o (1) at b (or vice versa); this
will imply the assertion. The proof of Proposition 9.3 shows that there are an open
neighborhood U of 0in C, a constantr, > 0 and a continuousmaph, : [ —r,, r;) = X which
defines a C!-diffeomorphism of (—r,,r,) onto X n U, with h,(—r)e Y, h,(0) =0 and
hi((=r,0)=YNU.

Consider the open subinterval (c, d) = hy * (h, ((—r,,0))) of (a, b).

1 1
2. Exclusion of the case a < ¢ < d < b: The values A, (c + ;) and h, <d - ;) in

h,((—ry,0)), for ne N sufficiently large, converge to hy(c)e Y\h,((—r,,0)) and to
ho(d) e Y\ hy((—r,, 0)), respectively. By 0¢ Y, hy(c) # 0 + hy(d). Both hy(c) and hy(d)
belong to clh, ((—ry,0)) = {h,(—r)} v by ((—ry, 0)) U {0}. We obtain

ho(€) = hy(=ry) = hy(d),
a contradiction.



3. Part2 and h, ((—r,,0)) & Y imply that eithera = candd < b,ora < cand d = b.
Assume the last case. (The proof in the other case is analogous.)

4. Proof of lim Ay (t) = 0: The map h*:=hi ! o (hy|(c, b)) is a homeomorphism onto
t—+b

(—r4, 0). Monotonicity implies that, given a sequence (¢,) in (c, b) with ¢, — b, we have
h*(,) - —r,asn — oo, or h*(t,) - 0 as n —» 0. In the first case,

ho(t,) = hy(h*(1,)) - hy(—r)e?Y,
therefore

ty = ho ' (hy(—rp)ehs ' (Y) = (a,b),

a contradiction. Hence

ho(t,) = hy (R* (1)) — h;(0) =0.

5. Consider the open subinterval (k_, k)= hg * (o (int 2)) of (a, b). We show k_ = a
andk < b:Incasea < k_,wehavehy(k_)e Y, hy(k_) ¢ o(int X), hy(k_)eclo(int 2), and
therefore Ay (k_) = o (s,).

Similarly, k£ < bleads to hy (k) = o (s,). Injectivity of h, now implies that eithera < k _
and k = b, or a=k_ and k < b. In the first case, part 4 yields Oeclo(intX) c o(2), a
contradiction.

6. Proof of lim hy(?) = a(1): Consider a sequence (¢,) in (a, b), t, - a as n - 0.
t—a

Compactness of cl W = hy((a, b)) implies that there is a convergent subsequence (/4 (,,))-
Let / denote its limit; /ecl Y. We have to show /= g(1). Note /¢ Y (otherwise,
by = hg ' (ho(1,)) = hg *(I) € (a, b), a contradiction). Part 5 implies h,(z,,) € o (int X)) for
all sufficiently large k. Therefore

leclo(intX)c Yu{s(1)}. QED.

Note h(1) = x{), € K. Hencecl Y = KU {0}. Continuity of Pand P(Y) = Y (Proposi-
tion 9.3) give P(cl Y) = cl Y. One obtains a continuous map

P,:£e[0,1] » A1 (P(h(&)))e[0,1].
Proposition 10.4. P, is strictly monotonic increasing and satisfies
P(0)=0, E<P(E) for 0<{<1, B(I)=1.

For every £€(0,1), the iterates P;(£), ne N, are strictly increasing and converge to 1 as
n — 00.

Proof. 1. P,(0) =0 is obvious. Propositions 9.3 and 10.3 guarantee that P, is a
bijection from (0, 1) onto (0, 1). For ¢ = 1, one has

P(h(1)) = P(x) =F(..., xR ) ebd W;



in particular,

h(0) =0+ P(h(1)) ¢ Y = h((0,1)).
Using cl Y\ Y = {0, h(1)}, one finds
P(h()))=h(), or P,(1)=1.

It follows also that P, is bijective. Continuity and P,(1) =1 > 0 = P,(0) imply that P, is
strictly monotonic increasing.

2. For £€(0,1), let x: ® — R denote the solution of equation (u, f) with
Xo=h({)eYcK.

The monotonicity property of P, implies that the sequence (P(£))& is strictly increasing,
constant or strictly decreasing. Let z;, j € Z, denote the zeros of x, as in Corollary 6.2. Then

Y=WnK>sx,,,, >0 as j—> —o0,

and for some je — N,

&=h""(x,,,+)€,¢).
It follows that

P _j('xzzj+ 1) = xO >
PII(E)=¢> ¢,
P& >¢
which excludes that the sequence (P}(£))& is constant or decreasing. In particular,

¢ <P(3),

and (Pp(&))¢ converges to some ¢”e(0,1] which is a fixed point of P, — i.e.,
& =1. QED.

Theorem 10.1. There exists a periodic solution y: R — R of equation (u, f) with
bd' W= {y,:teR};

Yo belongs to K, and the minimal period of y is z,(y,) + 1. For every solution x : R — R of
equation (u, f) with 0 = x,e W,

dist(x,,bd W) - 0 as t - .

Proof. 1. P,(1) = 1 implies that the solution y: R — R of equation (g, f) with

Yo=h(1)ebd WnK
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satisfies

F(z,(yo) + 1, 50) = P(h(1)) = h(1) = y,.
By Remark 3.3,

y=y(+z2, ( Yo)+ 1) (periodicity).
Proposition 8.1 gives
yebd' W forall ¢.
2. Proof of bd’ W < {y,: t€ R}: Let ¢ € bd’ W be given. The solution x: R - R of

equation (u, /) with x, = ¢ has a zero z, > 1 with x(z,) > 0 and x(z, + 1) > 0. Remark 3.1
yields an open neighborhood U of ¢ and a C'-map 7: U — (1, o) with

(g) =z, +1,
F(t(y),w)eH and F(z(p),p)(0)>0 forall weU.
There exists a sequence of points y;€ W U, je N, with
Xj > @ as j o oo.
The points F(z(x;), x;),j € N, belong to W n K = Y and converge to F(z(¢), ¢) = x, ., as
J = oo. Therefore x, ., ecl Y. pebd’ W implies x, ., ebd' W, so that x, ,, ¢ Y(<= W).
By cl Y\ Y = {0, (1)} (and by 0¢ bd" W),

xz,,+1 = h(l) =yO,
and Remark 3.3 gives '
(P = y-—z.,—l .

3. Attraction to bd’ W. Let a solution x : ® — R of equation (g, f) with 0 % x, € W be
given. For some zero z, of x,

X, 1 EWNK=Y.
It follows that

X2+t =Pi(x, 11) = Yo as j > ©

(with Proposition 10.4). Boundedness of W and Proposition 6.3 yield a constant ¢ > 0 such
that

z,(Pi(x, s ) +1Sc forall jeN,.

Let & > 0 be given. Continuous dependence on initial data permits to find j, € N such that for
all integers j 2 j, and for all e [0, c],

”F(t, Pj(xz,.+1)) "'F(t,}’o)” _S.. €.
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Consider ¢ 2 z,, ,; + 1. For some j 2 j,

Zngj t 1S 1S 200054y +1
=Zps gy 1+ 2,(PI(x,, 4 ) +1
SZ,4,t1+c.

Hence
diSt(‘xt’ bd’ W) é ”xt —yt"(zn+2j+ 1)”
=1F(t = @pagj+ s %, 01) — F(ooy po)

=1F(..., PI(x, 0 ) = F(.. 3ol
<e. QED.

Remark. A proof of additional stability properties for the periodic orbit in bd’ W,
such as exponential attraction, or the existence of an asymptotic phase, seems not possible
without more hypotheses on f. Compare for example the result in [5].

Remark. All results proven here have analogues for nonlinearities which satisfy the
variant of (H1) where “bounded from above” is replaced by “bounded from below”.
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