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Abstract

We define and study root graded groups, that is, groups graded by finite root
systems. These provide a uniform framework to investigate several existing
concepts in the literature, including in particular Jacques Tits’ notion of RGD-
systems. The most prominent examples of root graded groups are Chevalley
groups over commutative associative rings. Our main result is that every root
graded group of rank at least 3 is coordinatised by some algebraic structure such
that a variation of the Chevalley commutator formula is satisfied. This result can
be regarded as a generalisation of Tits’ classification of thick irreducible spherical
buildings of rank at least 3 to the case of non-division algebraic structures.

All coordinatisation results in this thesis are proven in a characteristic-free
way. This is made possible by a new computational method that we call the
blueprint technique.

Deutsche Zusammenfassung

Wir definieren und untersuchen Wurzel-graduierte Gruppen, das heißt, Gruppen
mit einer Graduierung durch ein endliches Wurzelsystem. Diese liefern einen
einheitlichen Rahmen, um verschiedene Konzepte aus der Literatur zu studieren,
insbesondere Jacques Tits’ Begriff von RGD-Systemen. Das bekannteste Beispiel
von Wurzel-graduierten Gruppen sind Chevalley-Gruppen über kommutativen
assoziativen Ringen. Unser Hauptresultat besagt, dass alle Wurzel-graduierten
Gruppen vom Rang mindestens 3 durch eine algebraische Struktur koordi-
natisiert sind, sodass eine Abwandlung der Chevalley-Kommutatorformel erfüllt
ist. Dieses Resultat lässt sich als Verallgemeinerung von Tits’ Klassifikation der
dicken irreduziblen sphärischen Gebäude vom Rang mindestens 3 auf den Fall
von algebraischen Strukturen ohne Division interpretieren.

Alle Koordinatisierungsresultate in dieser Thesis werden in einer charakteris-
tik-freien Weise bewiesen. Dies ist möglich durch eine neue Technik, die wir die
Blueprint-Methode nennen.
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Preface

Let Φ be a finite irreducible root system. A Φ-grading of a group G is a family of
non-trivial subgroups (Uα)α∈Φ generating G, called the root groups of G, such that
some commutator relations and a non-degeneracy condition are satisfied and
such that so-called Weyl elements exist for each root. If the root system Φ is not
specified, we will also call these objects root gradings, and the pair (G, (Uα)α∈Φ) is
called a Φ-graded group or root graded group. Our definition of Φ-gradings makes
sense for any finite root system, crystallographic or not, but all the central results
of this thesis concern mainly the crystallographic root systems. We will briefly
remark on the situation in the non-crystallographic case in the last part of this
preface. Except for this detour, all root systems in the preface are assumed to be
crystallographic.

Motivation and Examples: Chevalley Groups

The main examples of root graded groups are the Chevalley groups, which were
introduced by Chevalley in his famous Tohoku paper [Che55]. By construction,
every Chevalley group G is defined over a commutative associative unital ring R:
It is a matrix group with coefficients in R, and for each root group Uα there exists
a canonical isomorphism θα : (R,+) → Uα. Further, the celebrated Chevalley
commutator formula asserts that

[θα(a), θβ(b)] = ∏
i,j≥1

iα+jβ∈Φ

θiα+jβ
(
cαβijaibj)

for all non-proportional roots α, β and all a, b ∈ R where cαβij are integral con-
stants which do not depend on R, a and b. In other words, commutators in G are
described by the ring multiplication. For any root α, an element wα ∈ U−αUαU−α

is called an α-Weyl element if it is a “lift” of the reflection σα in the Weyl group
of Φ to the group G. By this we mean that Uwα

β = Uσα(β) for all roots β. It turns
out that an element wα ∈ G is an α-Weyl element if and only if it has the form
wα = θ−α(−a−1)θα(a)θ−α(−a−1) where a is an invertible element of R. In partic-
ular, α-Weyl elements exist because there exists at least one invertible element
in R, namely 1R . We conclude that the group-theoretic structure of a Chevalley
group G is intricately connected with the algebraic structure of the ring R over
which it is defined.

On the other hand, the definition of root graded groups is purely combinato-
rial: it does not refer to any underlying algebraic structure. In fact, the axioms of
a root grading can be seen as a list of the most important properties of Chevalley
groups which can be formulated without reference to the underlying ring R.
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Goals

The Coordinatisation Problem

It is now a natural question whether the combinatorial axioms of a root graded
group are enough to construct (or, in the special case of Chevalley groups, re-
construct) a ring “over which it is defined”. To make this precise, we say that
a root graded group (G, (Uα)α∈Φ) is coordinatised by the ring R if there exist iso-
morphisms (θα : (R,+) → Uα)α∈Φ such that the Chevalley commutator formula
holds. Thus the question is whether each root graded group is coordinatised by
some commutative associative unital ring R. While this question is a step in the
right direction, it is too naively posed to admit a positive answer. We will explain
why in the following.

First of all, the theory of root graded groups seems to be very unruly without
additional assumptions in the lower-rank cases. For this reason, we will largely
restrict ourselves to the case that Φ is of rank at least 3.

Secondly, we cannot hope for the ring to be commutative in all cases be-
cause, for example, (a variation of) the construction of Chevalley groups of
type An works for non-commutative rings. There are even constructions of A2-
and C3-graded groups from so-called alternative rings, which form a class of
nonassociative rings.

Thirdly, even if we allow a more general class of rings, we make the following
observation: If G is coordinatised by a single ring R, then in particular, all root
groups must be pairwise isomorphic. However, we will see that the axioms of a
root grading merely imply that Uα is isomorphic to Uβ if α and β are conjugate
under the Weyl group of Φ. Thus in general, we have to allow the distinct
orbits of root groups to be coordinatised by distinct algebraic structures. For
example, we can construct Bn-graded groups in which the long root groups
are coordinatised by a commutative associative unital ring k and the short root
groups are coordinatised by a quadratic k-module (M, q) (that is, a k-module M
with a quadratic form q : M → k). The commutator formulas in these groups
look exactly like the Chevalley commutator formula, except that terms a2 for
a ∈ M are replaced by q(a) and terms 2ab for a, b ∈ M are replaced by f (a, b)
where f denotes the linearisation of q.

In light of the previous paragraph, we make the following definition where
O denotes the set of orbits in Φ: A coordinatisation of (G, (Uα)α∈Φ) consists of a
family of (usually abelian) groups (MO)O∈O called the coordinatising groups or
coordinatising structures, a family of maps between the coordinatising groups
(MO)O∈O which “equips (MO)O∈O with an algebraic structure” and a family of
group isomorphisms θα : MO → Uα for O ∈ O and α ∈ O. We further require that
a generalised version of the Chevalley commutator formula (involving the maps
between (MO)O∈O and the isomorphisms (θα)α∈Φ) is satisfied. For example, in the
case of Bn-graded groups, the coordinatising structures are abelian groups (k,+)
and (M,+) and we have a map k × k → k which turns k into a commutative
associative unital ring, a map k× M → M which turns M into a k-module and
a map M → k which is a quadratic form on M. The connection between Weyl
elements in G and invertible elements in the algebraic structure that we have seen
earlier for Chevalley groups remains valid in this more general setting, though of
course the precise meaning of “invertibility” depends on the specific algebraic
structure. (For example, an element v in a quadratic module (M, q) is called
“invertible” if q(v) is invertible, and its “inverse” is then defined to be q(v)−1v.)
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In particular, the existence of Weyl elements in G yields that there exists at least
one “invertible” element in each algebraic structure that we encounter. For this
reason, all rings in this thesis are unital.

With these refinements in mind, we can now formulate the main goal of
this work: For each irreducible crystallographic root system Φ of rank at least 3,
show that there exists a class CΦ of (families of) algebraic objects such that each
Φ-graded group is coordinatised by an object in CΦ. This is the coordinatisation
problem. We will discuss in a moment which results in this direction have already
been obtained in the literature. In this thesis, we present a complete solution to the
coordinatisation problem which does not rely on any previous work on abstract
root gradings. We emphasise that our results are completely characteristic-free,
whereas some previous works exclude the case of “characteristic 2”.

Apart from elementary undergraduate algebra, the list of mathematical pre-
requisites that we need is short: We will use the basic theory of finite reflection
groups and some results on Chevalley groups, though the latter could be replaced
by a sequence of long but easy computations in a purely combinatorial setting.
Further, we will cite a few elementary results on nonassociative rings without
proof. We will also encounter several interesting algebraic structures, such as
quadratic modules, composition algebras and involutions on rings, but we will
derive all their basic properties in this text.

We briefly summarise the specific coordinatisation results that we obtain
for each root system. For all n ∈ N≥2, we show that each An-graded group is
coordinatised by a (possibly nonassociative noncommutative) unital ring which
must be associative if n ≥ 3 (Theorem 5.7.14). Now let n ∈ N≥3. Root graded
groups of types Dn or En are coordinatised by commutative unital rings (again
Theorem 5.7.14). Root graded groups of type Bn are coordinatised by pairs
(M, k) where k is a commutative associative unital ring and M is a quadratic
k-module (Theorem 7.11.21). Root graded groups of type F4 are coordinatised by
pairs (A, k) where k is a commutative associative unital ring and A is a multi-
plicative conic alternative algebra over k in the sense of [GPR, Sections 16, 17]
(Theorem 10.7.8). The latter objects should be regarded as a generalisation of
composition algebras. If k is a field of characteristic not 2 and a certain norm
function on A is non-degenerate, then A is a composition algebra in the classical
sense.

The results for the root systems Cn and BCn are more technical. We will show
that every root graded group of type Cn or BCn is coordinatised by a pair (J,R)
where R is an alternative ring with nuclear involution and M is a Jordan module
over (R, σ) which must be abelian if the root system is Cn (Theorem 9.10.26). The
notion of Jordan modules is new and specifically tailored to be exactly the kind
of algebraic structure which coordinatises (B)Cn-graded groups. As important
special cases, the class of abelian Jordan modules contains the class of involutory
sets which are known from the classification of Moufang quadrangles while the
class of non-abelian Jordan modules contains the groups T which are constructed
in [TW02, (11.24)] from pseudo-quadratic modules over R. Here an involutory
set over an alternative ring R with nuclear involution σ is a certain subgroup of
the set of fixed points of σ. If 2R is invertible, then we can prove the following
statement in a purely algebraic manner: Every abelian Jordan module over R is
the direct product of an involutory set with an R-module and every non-abelian
Jordan module can be constructed from a pseudo-quadratic module over R as in
[TW02, (11.24)].
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The Existence Problem

As a second goal, it is of course desirable to show that the class CΦ in our solution
of the coordinatisation problem is chosen optimally. In other words, for every
object X in CΦ there should exist a Φ-graded group which is coordinatised by X.
This is the existence problem or construction problem. In most cases, the objects in
CΦ are related to associative rings and we can easily construct Φ-graded groups
from these objects by writing down some (generalised) matrices. However, the
classes CΦ for Φ ∈ {C3, BC3, F4 } involve alternative rings. For the subclass of CΦ
consisting only of the “associative objects”, a construction in terms of matrices is
usually still possible, but the general construction problem is much more difficult.

For F4-graded groups, no general construction is known. However, if the
desired coordinatising ring R (which is equipped with the structure of a mul-
tiplicative conic algebra) is not only associative but also commutative, then we
know that there exists an E6-graded group G which is coordinatised by R (for
example, a Chevalley group of type E6). Using the general mechanism of foldings
of root graded groups, we obtain an F4-graded group which is coordinatised by the
conic algebra R. This provides a partial solution of the existence problem for this
special case.

Now consider BC3-graded groups. There are strong indications that, while
alternative rings R can technically appear in this setting, only “the associative
part of R is relevant” and thus we can restrict ourselves to the case of associative
rings with good conscience. In this situation, we provide a construction which
works for all objects in CBC3 for which 2 is invertible (and also for a large subclass
of objects in which 2 is not invertible).

For C3-graded groups, Zhang provides a strategy to solve the existence prob-
lem for a certain subclass of CC3 in [Zha14, Section 4.2]. We are confident that his
construction can be adapted to the general case, and we plan to address this in
future work.

The class CA2 involves non-associative rings as well. By a construction of
Faulkner (see [Fau83, Section 3] and the appendix of [Fau89]), this class is known
to contain all alternative rings, but it is unclear whether it contains more general
rings. Just like Zhang’s construction of C3-graded groups, Faulkner’s construc-
tion realises the desired group as a group of automorphism of the Tits-Kantor-
Koecher algebra of a certain Jordan pair.

Root gradings, RGD-systems and Moufang Buildings

We now turn to the history of the subject. As already said, Chevalley groups were
introduced [Che55]. It should be noted, however, that the list of Chevalley groups
contains several classical groups which had been studied before, such as the
special linear group over a field. These are the earliest examples of root graded
groups that have been considered, albeit without the abstract combinatorial
framework of root gradings.

The first and most important example of an abstract structure that is similar
to (but less general than) root gradings is Tits’ notion of RGD-systems1. These

1The letters “RGD” stand for “Root Groups Data”. Tits remarks in [Tit92, p. 258] that he chose
this name “for lack of a better idea (or rather, because all appropriate names that I can think of
seem to be already taken!)”. It goes without saying that the same could be said about the name
“root grading”, which carries essentially the same information as “root group data”.
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objects were introduced under this name in [Tit92, p. 258], but predecessors of
the RGD-axioms can be found as early as in [Tit62, p. 140]. A definition which is
very similar to the one in [Tit92] is the one of données radicielles in [BT72, (6.1.1)].
Further, RGD-systems are essentially the same thing as the groups with Steinberg
relations in [Fau77].

The crucial property that differentiates RGD-systems from root gradings is
that in an RGD-system, every non-trivial root group element bα ∈ Uα \ {1G} can
be “extended” to a Weyl element wα = a−αbαc−α. In a root grading, we only
require that some element bα ∈ Uα \ {1G} has this property. Thus by the corre-
spondence between Weyl elements and invertible elements, any RGD-system that
is coordinatised by an algebraic structure must be coordinatised by a “division
structure”. In fact, the coordinatisation problem for RGD-systems is already
solved by the work of Tits-Weiss in [TW02], but this fact is usually not stated in
the group-theoretic language of RGD-systems. In order to explain this, we first
have to make a brief detour through the theory of spherical buildings.

Spherical buildings were introduced by Tits “in an attempt to give a systematic
procedure for the geometric interpretation of the semi-simple Lie groups and, in
particular, the exceptional groups” (quotation from [Tit74, p. V]). More generally,
they even provide a geometric framework to study simple algebraic groups over
arbitrary fields. There are several different ways to define spherical buildings,
but the technical details are not relevant for our purposes. Each building has
an associated type which is a Coxeter system (or equivalently, a root system).
The rank of a spherical building is by definition the rank of its type, and it is
called irreducible if its type is irreducible. There also exist buildings which are
not spherical (which means that their type is not spherical), but they are not
relevant in this context. Further, there exist a notion of thickness of buildings
and of the so-called Moufang property.2 A spherical building which satisfies the
Moufang property is called a Moufang building. It is a highly non-trivial fact,
proven in [Tit77, 3.5], that every irreducible spherical building of rank at least
3 is automatically Moufang. The notion of generalised polygons is equivalent to
that of spherical buildings of rank 2, and generalised polygons which satisfy the
Moufang property are called Moufang polygons.

Thick irreducible spherical buildings of rank at least 3 have been classified
by Tits in [Tit74], and this classification has later been extended to Moufang
polygons by Tits-Weiss in [TW02]. In fact, the classification of Moufang poly-
gons is completely independent of [Tit74], and the classification of higher-rank
spherical buildings can be deduced from the classification of Moufang polygons
(see [TW02, Chapter 40]). The statement of these classification results is that each
thick irreducible spherical Moufang building of rank at least 2 is “coordinatised”
by some algebraic division structure.

The interest in Moufang buildings for the theory of root graded groups stems
from the following fact: Modulo technical details, the geometrical notion of thick
Moufang buildings of type Φ is essentially equivalent to the group-theoretic
notion of RGD-systems of type Φ (see [AB08, Section 7.8] for details). More
precisely, the Moufang condition ensures the existence of an RGD-system in the
automorphism group of such a spherical building, and a spherical building can

2This condition is named after Ruth Moufang, who is known for her work on the class of
projective planes which today are called Moufang planes. In fact, a projective plane is the same
thing as a thick spherical building of type A2, and a Moufang plane is a thick spherical building of
type A2 with the Moufang property.
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be constructed abstractly from an RGD-system. Thus the classification results
for Moufang buildings that we have cited above provide a complete solution of
the coordinatisation problem for RGD-systems of rank at least 3. In this sense,
the work of this thesis can be seen as a generalisation of the classification of
thick irreducible spherical buildings of rank at least 3 to the case of “non-division
structures”. It is noteworthy that the arguments in [TW02] are very similar in
style to our work: At first Tits-Weiss construct a root group sequence from any
Moufang polygon, which is essentially its RGD-systems, and then they classify
root group sequences. The proofs in [Tit74], on the other hand, have a more
geometric flavour.

Known Results about Root Gradings

We now turn to root gradings which are not necessarily RGD-systems. The
terminology of “Φ-graded groups” appears for the first time in the paper [Shi93]
by Shi. As in our definition, Shi only requires the existence of Weyl elements and
not the stronger “division axiom” that appears in the definition of RGD-systems.
In fact, Shi’s definition of Φ-graded groups (G, (Uα)α∈Φ) is essentially equivalent
to our definition except for one additional axiom: that G contains a homomorphic
image of the Steinberg group of type Φ over some commutative associative unital
ring. Here the Steinberg group is a certain group defined by generators and
relations which mimic the commutator relations in Chevalley groups. We will
explain the motivation behind this axiom in the following paragraph. One of
the main results of [Shi93] is the solution of the coordinatisation problem for
all root graded groups (in Shi’s more restrictive sense) of type A, D or E and of
rank at least 3. That is, Shi coordinatises root graded groups for all simply-laced
types of rank at least 3. He arrives at the same conclusion that we do with our
more general definition of root gradings. In fact, a non-trivial corollary of our
coordinatisation result is that any root graded group in our sense is also a root
graded group in Shi’s sense.

Shi introduced his notion of root graded groups as a group-theoretic analogue
of root graded Lie algebras. These Lie algebras were introduced in [BM92a] by
Berman and Moody, of whom Shi is a student. A complete classification of root
graded Lie algebras is available by the combined work of several authors, see
[BM92a; BZ96; Neh96; ABG00; ABG02; BS03; BGP09]. It plays an important role
in the classification of semisimple Lie algebras over algebraically closed fields of
characteristic at least 5. One of the axioms of a Φ-graded Lie algebra L is that it
contains a subalgebra L′ which is split simple with root system Φ. Clearly this
axiom motivated the additional axiom in Shi’s definition which we discussed in
the previous paragraph. A consequence of this additional axiom is that a certain
sign problem which appears in the coordinatisation of root graded groups can
be solved very efficiently in Shi’s setting. This problem is related to a similar
problem about the signs appearing in the Chevalley commutator formula. In
order to solve this problem in our situation, we introduce a machinery which
is independent of the root system Φ and which builds upon the solution of
the word problem in Coxeter groups. The main result of this machinery is the
parametrisation theorem that we will discuss in a moment. See also Remark 4.1.23
for more details on the sign problem.

The only work known to us which considers root gradings for root systems
which are not simply-laced is the PhD thesis [Zha14] of Zhang, a student of
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Zelmanov. Using essentially the same definition for root gradings as Shi, Zhang
proves some partial results concerning C3-gradings. Namely, he shows that every
C3-graded group satisfying some additional conditions is coordinatised by a
nonassociative ring R with involution. One of these additional conditions on
the group implies that 2R is invertible in R, so it essentially excludes the case
of “characteristic 2”. The general case is significantly more difficult, so this is
a serious restriction. Further, Zhang constructs a C3-graded group from every
alternative ring with involution in which 2 is invertible. The assumption on the
alternativity of the ring is necessary because, as we will show in the main part of
this work, the ring which appears in the coordinatisation of C3-graded groups
must actually be alternative. We prove this using a new method which we call
the blueprint technique.

Finally, there are contributions of Faulkner on A2-gradings that are important
from the historical perspective. In [Fau14, Section 13.3], he defines groups of
Steinberg type, which are essentially the same thing as A2-graded groups in our
sense. Faulkner proceeds to show that every such group is coordinatised by a
nonassociative ring. It is unlikely that arbitrary nonassociative rings can appear
here, so this solution of the coordinatisation problem is incomplete. The most
general known construction of A2-graded groups, given in [Fau83] and in the
appendix of [Fau89], starts from an alternative ring.

We can thus summarise the previous state of the literature for root gradings
of rank at least 3 as follows. For RGD-systems, the coordinatisation and existence
problems are completely solved. For root gradings, all known coordinatisation
results use Shi’s more restrictive definition of root gradings. With this caveat,
the coordinatisation problem for the simply-laced case is completely solved by
[Shi93] and the existence problem is easy in this case. For Cn-gradings, there
exist partial results by [Zha14]. For gradings of type B, BC and F4, there are no
previous results.

Another noteworthy work in the context of root gradings is [LN19], although
its interest does not lie in the coordinatisation and existence problems in our
sense. Still, Loos-Neher define groups with Φ-commutator relations (where Φ can be
a root system, but also any subset of a free abelian group satisfying some axioms),
citing [Fau77] as their inspiration (see [LN19, p. 72]). Further, they also define the
notion of Weyl elements. A Φ-graded group in our sense is essentially the same
thing as a group with Φ-commutator relations in which Weyl elements exist and
which satisfies a non-degeneracy condition.

A Uniform Approach to Root Graded Groups

Since the class CΦ of coordinatising algebraic structures depends on the root
system Φ, it is clear that a certain amount of case-by-case analysis is necessary in
the study of root graded groups. However, we will encounter two root-system-
independent tools which form the cornerstones of our work, and which are both
new: the parametrisation theorem and the blueprint technique. The parametrisation
theorem is our solution to a very delicate and technical sign problem, and it
streamlines the coordinatisation process of root graded groups. The blueprint
technique lies at the heart of our work, and it is pivotal for the determination of
the class CΦ for each root system Φ. In particular, a characteristic-free solution to
the coordinatisation problem would not have been possible without the blueprint
technique. Together, these two tools provide a conceptual approach to root
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gradings which is as uniform as is possible.

The Parametrisation Theorem

Before we delve into the technicalities of the parametrisation theorem, we should
clarify our conventions regarding the notions of “coordinatisations” and “para-
metrisations”. Let G be a Φ-graded group and denote the set of all orbits in
Φ under the Weyl group by O. Under a parametrisation of G, we understand a
family (MO)O∈O of groups and for each O ∈ O a family (θα : MO → Uα)α∈O of
isomorphisms satisfying a certain consistency condition. Thus a coordinatisation
of G in the sense that we have defined earlier is simply a parametrisation of G
together with a family of maps between the parametrising groups satisfying two
conditions: Firstly, these maps describe the commutator relations between the
root groups, and secondly, they equip the parametrising groups with some alge-
braic structure. Hence essentially, a coordinatisation is a parametrisation by an
algebraic structure, and we will use this distinction between “coordinatisations”
and “parametrisations” throughout this thesis.

Our approach to the coordinatisation problem consists of first finding a
parametrisation of G and then turning this parametrisation into a coordinatisa-
tion. The parametrisation theorem is the one and only criterion that we will use to
establish the existence of a parametrisation of G. The main difficulty in the proof
of the parametrisation theorem is a certain sign problem which is related to the
consistency condition in the definition of parametrisations. This problem could
be solved efficiently if the additional axiom in Shi’s definition of root gradings
were satisfied. In this sense, the parametrisation theorem is the solution of the
sign problem in our more general setting.

The requirements of the parametrisation theorem say that, in order to find a
parametrisation, we have to do three things. Firstly, we have to understand the
action of w2

δ on each root group where δ is an arbitrary simple root (with respect
to some fixed root base ∆) and wδ is an arbitrary δ-Weyl element. Secondly,
we have to show that Weyl elements satisfy the braid relations. These first two
properties correspond to the homotopy moves which appear in the solution of
the word problem in Coxeter groups, and the parametrisation theorem is proven
by performing the same kind of moves on the level of Weyl elements. It should be
noted that the braid relations for Weyl elements can be verified in a uniform way
for all root systems, using the beautiful argument of Tits-Weiss in [TW02, (6.9)].
Thirdly, we have to a find a suitable “system of signs” η which is “consistent”.
Technically, η is a map from Φ × ∆ to a finite abelian group A of exponent 2
which acts on each root group, and “consistency” refers to a set of combinatorial
properties that it should satisfy.

Observe that the system of signs η in the previous paragraph is a map between
finite sets. Thus the necessary consistency properties could, in theory, be checked
by a long sequence of easy computations. However, there exists a more elegant
way of doing this: By verifying that η appears as the system of signs in some
example of a “sufficiently generic” root graded group. For the simply-laced root
systems, the Chevalley groups are sufficient for this purpose. In the general
case, a complete solution of the existence problem always produces a sufficiently
generic example as a by-product. Even in the cases where no complete solution
of the existence problem is available, we are still able to construct a group which
is “sufficiently generic” to produce a suitable map η.

After these three problems are tackled, we can apply the parametrisation the-
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orem to obtain a parametrisation of G. In order to turn it into a coordinatisation,
we have to equip the parametrising groups with an algebraic structure. This is
where the blueprint technique comes into play.

The Blueprint Technique

The blueprint technique is a powerful tool which reduces the problem of deter-
mining the commutator relations in root graded groups with a parametrisation
to a straightforward computation involving certain rewriting rules. It is inspired
by the work of Ronan-Tits on the construction of buildings in [RT87] and the key
to our characteristic-free approach to root gradings.

The basic idea of the blueprint technique is as follows. We begin with a
reduced representation f of the longest word ρ in the Weyl group W of Φ. Then
there exists a sequence h1, . . . , hr of elementary homotopy moves which trans-
forms f into itself and which, speaking very loosely in terms of algebraic topology,
“moves around the hole in the Cayley graph of W”. For example, the Cayley
graph of the Weyl group of A3 can be drawn on the 2-sphere with the identity ele-
ment 1W at the north pole and the longest element ρ at the south pole, and there is
a way to move f (which is a path from 1W to ρ) once around the sphere. Further,
we take a word f̃ “corresponding to f ” whose letters are arbitrary elements (in
some sense, “indeterminates”) of the parametrising groups of G.

The blueprint technique associates each elementary homotopy move hi on
f to a rewriting rule h̃i on f̃ . This rule h̃i involves the maps appearing in the
commutator relations of G. Now the blueprint computation consists of iteratively
determining all words which are obtained from f̃ by applying the rewriting rules
h̃1, . . . , h̃r. This computation is purely mechanical, albeit lenghty, and perfectly
suited to be executed on a computer. For abstract reasons, the end result of the
blueprint computation must be the same as the initial word f̃ , so we obtain a
sequence of identities (one for each letter in f̃ ) which are valid in the parametris-
ing structures. These identities allow us to explicitly compute the commutator
relations in G, and the maps involved in these formulas equip the parametrising
groups of G with an algebraic structure.

Organisation of the Thesis

In chapter 1, we recall some basic preliminaries, mainly from the theory of finite
root systems. In chapter 2, we introduce the language of root graded groups
and prove some general results: the bijectivity of certain product maps and the
braid relations for Weyl elements. Chapter 3 is devoted to a brief summary
of the theory of Chevalley groups. We prove the parametrisation theorem in
chapter 4. Afterwards, we begin our investigation of Φ-graded groups for all
root systems Φ of rank at least 3. As explained in the previous section, the
general strategy is independent of Φ: We first verify that the requirements of the
parametrisation theorem are satisfied, then we apply it and finally, we use the
blueprint technique to compute the commutator relations. The only exception
to this rule are the simply-laced root systems, which are covered in chapter 5,
because the commutator relations in this case are so simple that we do not need
to use the blueprint technique. In chapter 6, we formally introduce the blueprint
technique. Afterwards, we study root graded groups of type B in chapter 7, of
type BC (which contains type C as a special case) in chapter 9 and of type F4 in
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chapter 10. Chapter 8 is a prelude to chapter 9 which introduces Jordan modules,
the algebraic structure that coordinatises root gradings of type BC.

Remarks on Related Topics

We now turn back to geometrical aspects of the theory. Recall that Moufang
polygons are geometric objects which correspond to RGD-systems of rank 2. In
[MW22a], Mühlherr-Weiss have introduced Tits polygons, which generalise Mo-
ufang polygons. In [MW19], they show that Tits polygons correspond bijectively
to root gradings of rank 2 which satisfy the so-called stability condition. On the
algebraic side of coordinate systems, this condition corresponds to the notion of
rings of stable rank 2, sometimes simply called stable rings.

The concept of stability originally stems from K-theory, but it was realised
by Veldkamp in [Vel81] that stable rings are precisely those rings over which
projective planes can be defined in a meaningful way. He gives combinatorial
axioms for such planes, which today are called Veldkamp planes, and proceeds to
show that a Veldkamp plane is the projective plane of a stable ring if and only if
it is Desarguesian. See also [Vel95] for additional information.

In [MW22b, 2.8], Mühlherr-Weiss define the notion of Veldkamp n-gons, or
simply Veldkamp polygons. A Veldkamp plane is exactly the same thing as a
Veldkamp triangle (that is, a Veldkamp 3-gon). In this language, a Tits polygon
is a Veldkamp polygon which satisfies the Moufang condition. Higher-rank
analogues of Veldkamp polygons can be defined, which leads to the notion
of Veldkamp buildings (of rank at least 3). It seems likely that every Veldkamp
building of rank at least 3 has an associated stable root graded group (of rank
at least 3), and thus the results of this thesis yield a classification of (or at least
strong coordinatisation results for) Veldkamp buildings of rank at least 3. In fact,
this relation to Veldkamp buildings is a strong motivation for our work. The
absence of stability conditions in this thesis is simply due to the fact that they are
not necessary to build a meaningful theory on the group-theoretic side, at least in
the higher-rank situation.

It is possible to define an analogue of Veldkamp buildings without the stability
condition, the so-called Faulkner buildings. Since the stability condition has proven
crucial in the context of projective geometry, it is not at all clear whether Faulkner
buildings actually describe a meaningful geometry. However, they are the natural
class of spaces which correspond to general root graded groups.

We end with a few words on the non-crystallographic root systems H3 and
H4. It is known from [Tit77, Hauptsatz] that there exist no thick buildings
(and thus no RGD-systems) of these types, so one might expect the same to
be true for root gradings. However, this is wrong: Starting from a D6-graded
group (G, (Uα)α∈D6), one can fold (Uα)α∈D6 to obtain an H3-grading (Vβ)β∈H3

of the same group G in which each root group Vβ equals the product of two
commuting root groups in (Uα)α∈D6 . In particular, if (Uα)α∈D6 is coordinatised
by a commutative associative ring k, then (Vβ)β∈H3 is coordinatised by the ring
k× k. A similar construction for H4-graded groups is possible. In collaboration
with Lennart Berg, we have shown in the joint and yet unpublished work [BW]
that every Φ-graded group for Φ ∈ { H3, H4 } is of this form. Incidentally, this
provides a new proof of the known fact that RGD-systems of these types cannot
exist: The ring k× k is never a field, even when k is a field.



Chapter 1

Preliminaries

In this chapter, we will recall some standard definitions and facts which will be
needed throughout this thesis. The first section collects a variety of definitions
and results from various areas which have no logical place elsewhere. The
following sections are devoted to the theory of finite root systems and their Weyl
groups, which plays a major role in the theory of root graded groups. None of
the material in this chapter is new.

1.1 Elementary Notation and Group-theoretic Facts

1.1.1 Notation. We denote the sets of natural numbers (including 0), positive
integers, integers, real numbers and complex numbers by N0, N+, Z, R and C,
respectively.

We will often consider sets of integers of the form { n, . . . , m } where n ≤
m. Since intervals of real numbers are completely absent from this thesis, the
following notation is not ambiguous.

1.1.2 Notation (Integer intervals). For all n, m ∈ Z, we set

[n, m] := { i ∈ Z | n ≤ i ≤ m } =

{
∅ if n > m,
{ n, . . . , m } if n ≤ m.

Further, we put

⟨n, m⟩ :=

{
[n, m] if n ≤ m,
[m, n] if n > m.

Note that the statement “i ∈ ⟨n, m⟩” can be interpreted as “i lies between n
and m”, independent of whether n < m or m < n.

As we have already seen in the preface, we have to adopt a very general
definition of rings in this work.

1.1.3 Convention. A ring is always understood to be unital, but the multiplication
is not assumed to be associative or commutative. All the necessary background
on these objects will be introduced in section 5.1. However, it suffices to know
only the definition of these objects until we reach section 5.1.

1.1.4 Note. Of course, a ring in our sense can be commutative without being
associative. (Linear) Jordan algebras provide examples of such objects. In this
thesis, however, we will never encounter a situation in which a ring is assumed
to be commutative but not assumed to be associative.
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1.1.5 Notation (Matrices). For any associative ring R and for any positive integers
n, m, we denote by Mnm(R) or by Rn×m the set of matrices with n rows and m
columns. Further, we put Mn(R) := Mnn(R).

Note the assumption on the ring R to be associative in the definition of
matrices. We could, of course, define matrices over arbitrary rings in the same
way, but then the matrix multiplication is not necessarily associative. In particular,
we cannot construct groups from such matrices, which makes them useless for
our purposes.

1.1.6 Definition (Words). Let S be a set. A word over S is a tuple (s1, . . . , sk)
for some k ∈ N0 such that s1, . . . , sk lie in S. The free monoid over S is the set
L(S) of words over S together with the multiplication (s1, . . . , sk) · (t1, . . . , tl) :=
(s1, . . . , sk, t1, . . . , tl). Its neutral element, the empty tuple, is called the empty word
and denoted by ∅. When there is no danger of confusion, we will also denote a
word (s1, . . . , sk) by s1 · · · sk. The free group over S is denoted by F(S).

1.1.7 Notation. Let M be a monoid, let m ∈ N0 and let x, y ∈ M. We denote
by Pm(x, y) the word ∏m

i=1 zi where zi := x for all odd i ∈ [1, m] and zi := y for
all even i ∈ [1, m]. In particular, P0(x, y) = 1M. If x, y lie in a set S which is not
equipped with a multiplication, we denote by Pm(x, y) the word Pm

(
(x), (y)

)
=

(x, y, x, . . .) in the free monoid over S.

1.1.8 Notation (Group-theoretic notions). Let G be a group. For any subset
U of G, we denote by ⟨U⟩ the subgroup of G which is generated by U. For all
g, h ∈ G, the commutator of g and h is [g, h] := g−1h−1gh and the conjugate of g by h
is gh := h−1gh.

1.1.9 Note. Some authors define the commutator by [g, h]′ := ghg−1h−1 and
conjugation by hg := hgh−1. These slightly different conventions are related to
our definitions by the simple relations [g, h]′ = [g−1, h−1] and hg = gh−1

. Thus
every statement in this thesis can easily be translated to a statement using any
other set of conventions, and vice versa. This problem is of practical importance
for our purposes: We will cite several statements about the constants which
appear in the Chevalley commutator formula, and some of the cited references
use a different convention than we do. See Remark 3.2.19 for more details.

1.1.10 Definition. Let G be a group and let H be a subset of G. For any g ∈ G,
we say that g acts on H by inversion if hg = h−1 for all h ∈ H (where h−1 is not
assumed to lie in H) and we say that g acts trivially on H if hg = h for all h ∈ H.
Further, for any a, b ∈ G, we say that a and b act identically on H if ha = hb for all
h ∈ G.

We end this section with some relations which hold in arbitrary groups. The
relations in 1.1.11 form the backbone of many computations, and we will often
use them without specifically saying so.

1.1.11 Relations. Let G be a group and let g, g1, g2, h, h1, h2 ∈ G. Then the follow-
ing relations hold:

(i) gh = g[g, h].
(ii) gh = [h, g−1]g.

(iii) [g1, g2]h = [gh
1 , gh

2 ] and (g1g2)h = gh
1 gh

2 .
(iv) gh = hgh.
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(v) gh = hg[g, h] = [g−1, h−1]hg.
(vi) [g, h]−1 = [h, g].

(vii) [g1g2, h] = [g1, h]g2 [g2, h] and [g, h1h2] = [g, h2][g, h1]
h2 .

(viii) [g1g2, h] = [g2, h] if [g1, h] = 1G and [g, h1h2] = [g, h2] if [g, h1] = 1G.
Further, note that [g, h] = 1G is equivalent to each of the following conditions:
gh = hg, gh = g, [h, g] = 1G, [g−1, h] = 1G and [g, h−1] = 1G.

Another relation which holds in arbitrary groups is the Hall-Witt identity.
As a special case, it says that under certain conditions on the group elements,
the commutator map is associative. It is used in this specific form in [Shi93,
(2.23)] to show that for any simply-laced root system Φ of rank at least 3, any
ring which coordinatises a Φ-graded group is associative. Further, the general
form of the Hall-Witt identity given in Lemma 1.1.12 plays an important role in
the computation of the commutator relations in Cn-graded groups (for n ≥ 3)
in [Zha14, 3.4.15, 3.4.16, 3.4.18]. Thus the Hall-Witt identity holds an important
place in the theory of root graded groups. It is therefore surprising that all results
in this thesis can actually be proven without invoking the Hall-Witt identity. This
is made possible by the blueprint technique, a new tool which we will introduce
in chapter 6.

1.1.12 Lemma (Hall-Witt identity). Let G be a group. Then for all x, y, z ∈ G, we
have [

[x, y], zx][[z, x], yz][[y, z], xy] = 1G.

Proof. Let x, y, z ∈ G be arbitrary. We have[
[x, y], zx] = [x−1y−1xy, x−1zx] = (y−1x−1yx)(x−1z−1x)(x−1y−1xy)(x−1zx)

= y−1x−1yz−1y−1xyx−1zx.

Since x, y, z are arbitrary, it follows that[
[z, x], yz] = x−1z−1xy−1x−1zxz−1yz and[
[y, z], xy] = z−1y−1zx−1z−1yzy−1xy

hold as well. Thus[
[x, y], zx][[z, x], yz] = (y−1x−1yz−1y−1xyx−1zx)(x−1z−1xy−1x−1zxz−1yz)

= y−1x−1yz−1y−1(xyx−1zxx−1z−1xy−1x−1)zxz−1yz

= y−1x−1yz−1y−1zxz−1yz =
[
[y, z], xy]−1.

This finishes the proof.

1.1.13 Lemma (Special case of the Hall-Witt identity). Let G be a group and let
x, z, y ∈ G such that [x, z] = 1G and

[
[y, x−1], [y, z]

]
= 1G. Then[

[x, y], z
]
=
[
x, [y, z]

]
.

Proof. By the Hall-Witt identity, we have
[
[x, y], z

][
[y, z], xy] = 1G. Applying

Relation 1.1.11 (ii) and 1.1.11 (vii), we infer that[
[x, y], z

]
=
[
[y, z], xy]−1

=
[
xy, [y, z]

]
=
[
[y, x−1]x, [y, z]

]
=
[
[y, x−1], [y, z]

]x[x, [y, z]
]
=
[
x, [y, z]

]
,

as desired.
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1.2 Root Systems

In this section and the following one, we collect all the necessary definitions and
facts about finite root systems and their Weyl groups that will be needed later.
We assume that the reader is already familiar with the basics of this theory. It
should be noted, however, that all standard references include either the property
of being reduced or the property of being crystallographic (or even both) in their
definition of root systems. This is a reasonable decision: Either the length of
each root is not considered to be important, in which case there is no reason to
consider non-reduced root systems, or it is considered to be important, and then
the crystallographic condition is indispensable.

While we are ultimately only interested in crystallographic root systems in
this thesis, we want to proof the parametrisation theorem in chapter 4 in full
generality. The reason for this is that we will also use it in [BW] in the study
of root graded groups of types H3 and H4, which are non-crystallographic root
systems. Thus it is practical for us to work in the framework of general (finite)
root systems. Since this is an unusual approach, we will explicitly state all
definitions and results that we will need throughout this thesis. Further, we will
also state some classical results in slightly higher generality than usual. None of
these generalisations are difficult, but we will still spell them out for clarity.

A standard reference for the material presented in this section and the follow-
ing is [Hum90], which considers only reduced root systems. Most statements
from [Hum90] transfer to the non-reduced setting by using Construction 1.2.16.
Further, we will refer to [Bou81] and [Hum72] for statements which are specific
to crystallographic root systems. It should be noted that root systems in [Hum72]
are assumed to be reduced and crystallographic.

1.2.1 Notation for this section. Starting from subsection 1.2.B, we assume that Φ
is a root system in some Euclidean space (V, ·).

1.2.A The Definition of Root Systems

1.2.2 Definition (Euclidean space). A Euclidean space is a pair (V, ·) consisting
of a finite-dimensional real vector space V and an inner product · : V × V → R.
That is, · is a symmetric bilinear form on V with the property that v · v > 0 for all
v ∈ V \ {0}. For any v ∈ V, we denote by v⊥ := {w ∈ V | v · w = 0 } the set of
vectors which are orthogonal to v. For any v ∈ V, the length of v is ∥v∥ :=

√
v · v.

1.2.3 Convention. In the context of root systems, we use the the convention that
automorphisms of a Euclidean space (V, ·) act from the right-hand side. Thus the
image of v ∈ V under an automorphism φ is denoted by vφ, and the composition
of two automorphisms φ, ψ is the map φψ which sends v to (vφ)ψ. The reasoning
behind this somewhat unusual convention will be explained in Note 1.2.17.

1.2.4 Definition (Orthogonal group). Let (V, ·) be a Euclidean space. The orthog-
onal group of (V, ·), denoted by O(V, ·), is the group of all automorphisms φ of V
such that xφ · yφ = x · y for all x, y ∈ V.

1.2.5 Definition (Reflection). Let (V, ·) be a Euclidean space. Then for all v ∈
V \ {0V}, the map

σv : V → V, x 7→ xσv := x − 2
x · v
v · v

v
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is called the reflection associated to v or the reflection along v⊥. We will also denote
it by σ(v). Further, for any word v̄ = (v1, . . . , vm) over V \ {0V}, we define
σv̄ := σv1···vm := σv1 · · · σvm , which is the map x 7→ ((xσv1 )···)σvm and which we also
denote by σ(v̄) or σ(v1 · · · vm).

1.2.6 Remark (Computation rules for reflections). Let v ∈ V \ {0V}. Then we
have σ−1

v = σv, σλv = σv for all λ ∈ R \ {0} and σ(v)φ = σ(vφ) for all φ ∈ O(V, ·).
(The validity of the last statement relies on the fact that reflections act on V from
the right side: If they act from the left, we have σ(v)φ = σ(vφ−1

).) Further, σv
lies in the orthogonal group O(V, ·), so in particular, σ(v)σ(w) = σ(vσ(w)) for all
w ∈ V \ {0V}.

1.2.7 Note. In Definitions 7.1.16 and 7.1.20, we will see that the concepts of or-
thogonal groups and reflections can be generalised to modules over commutative
associative rings which are equipped with a quadratic form. By taking the canon-
ical quadratic form v 7→ v · v on the Euclidean space (V, ·), we obtain the notions
in this section as special cases. However, this observation is irrelevant for the
theory of root systems.

1.2.8 Definition (Root system). Let (V, ·) be a Euclidean space. A root system
in (V, ·) is a finite non-empty subset Φ of V \ {0V} such that βσ(α) ∈ Φ for all
α, β ∈ Φ. The elements of Φ are called roots (of Φ) and the dimension of the vector
space generated by Φ is called the rank of Φ. For any root α, its opposite root is −α.

1.2.9 Definition (Reduced root system). A root system Φ is called reduced if
Rα ∩ Φ = { α,−α } for all α ∈ Φ.

1.2.10 Definition (Root subsystem). Let Φ be a root system. A subset Φ′ of Φ is
called a root subsystem of Φ if σα(Φ′) = Φ′ for all α ∈ Φ′.

1.2.11 Note. There exists no standard terminology for subsystems of root systems.
Definition 1.2.10 is the most general notion that one can think of, but it will
not actually be useful to us in this generality. The reason for this is that root
subsystems Φ′ in this general sense do not give rise to Φ′-graded subgroups of
Φ-graded groups. This is only true if Φ′ is a closed root subsystem, a notion that
we will introduce in Definition 1.2.42. Most of the time, the root subsystems that
we consider will even have the stronger property of being parabolic, which we
also introduce in Definition 1.2.42.

1.2.B Basic Notions

1.2.12 Notation for this section. From now on, we assume that Φ is a root system
in some Euclidean space (V, ·).

1.2.13 Definition (Weyl group). The Weyl group of Φ or the Coxeter group of Φ is
the group

Weyl(Φ) := ⟨σα | α ∈ Φ⟩ ≤ O(V, ·).

We will study the Weyl group and its action on Φ in more detail in section 1.3.

1.2.14 Definition (Divisible roots). A root α ∈ Φ is called indivisible (in Φ) if λα
is not a root (in Φ) for all 0 < λ < 1, and it is called divisible (in Φ) otherwise.
For any set Ψ of roots, we denote the set of all indivisible roots in Ψ by Ψindiv.
Further, a subset Ψ of Φ is called reduced if all roots in Ψ are indivisible in Φ.
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1.2.15 Remark. For any root system Φ, the set Φindiv is a reduced root subsystem
of Φ (which has the same Weyl group). However, it is in general not closed in the
sense of Definition 1.2.39.

1.2.16 Construction (of root systems from reduced root systems). Let O be an
orbit of the Weyl group in Φ and let λ ∈ R \ {0}. Then Φ ∪ λO is a root system as
well. Since for any root system Φ̄ the subset Φ̄indiv is a reduced root system which
contains a scalar multiple of each root in Φ̄, every root system can be constructed
from a reduced root system in this way in a finite number of steps. For this
reason, many statements about reduced root systems can easily be generalised to
arbitrary root systems.

1.2.17 Note (on Convention 1.2.3). One of the defining properties of Φ-graded
groups (G, (Uα)α∈Φ) will be that there exist so-called Weyl elements wα ∈ G such
that Uwα

β = Uβσ(α) for all α, β ∈ Φ. Thus we have a connection between the action
of a reflection σα on (V, ·) and the conjugation action in G. Since it is customary
to write conjugation in groups from the right, we will do the same for reflections.
This explains Convention 1.2.3. However, as the distinction between left and
right actions is only relevant when we compose two reflections, we will still
sometimes write σv(w) instead of wσv for v, w ∈ V, but we will never write σv̄(w)
in place of wσv̄ when v̄ is a word over V. In fact, we will usually write wσ(v̄) in
this situation to avoid excessive nesting of superscripts and subscripts.

1.2.18 Definition (Total ordering, [Hum90, p. 7]). Let W be a finite-dimensional
real vector space. A total ordering of W is a relation ◁ on W with the following
properties.

(i) ◁ is transitive.
(ii) ◁ is total. That is, for all v, w ∈ W, exactly one of the statements v ◁ w,

v = w, w ◁ v holds.
(iii) ◁ is compatible with addition: For all u, v, w ∈ W with u ◁ v, we have

u + w ◁ v + w.
(iv) For all v, w ∈ W with v ◁ w and all λ ∈ R \ {0}, we have λv ◁ λw if λ > 0

and λw ◁ λv if λ < 0.
Given a total ordering ◁, an element v ∈ W is said to be positive if 0W ◁ v, and it
is called negative if v ◁ 0W .

1.2.19 Definition (Positive system). A subset Π of Φ is called a positive system in
Φ if there exists a total order ◁ on V such that

Π = { α ∈ Φ | 0V ◁ v }.

We then say that Π is the positive system induced by ◁.

1.2.20 Remark. For any basis of a finite-dimensional real vector space, there exists
a total ordering with respect to which all basis vectors are positive.

1.2.21 Remark. Let Π be a subset of Φ. Then Π is a positive system in Φ if and
only if there exists a non-zero linear form f : V → R with f (α) ̸= 0 for all roots α
such that

Π = { α ∈ Φ | f (α) > 0 }.

Note that the kernel of f is a hyperplane in V which divides V into two half-
spaces. The positive system Π is exactly the set of roots which lie in one of these
half-spaces.



1.2. Root Systems 25

1.2.22 Definition (Root base, [Bou81, Proposition VI.1.20, Corollaire 3]). A root
base of Φ is a subset ∆ of Φ satisfying the following conditions:

(i) ∆ is a basis of the R-vector space spanned by Φ.
(ii) If δ1, . . . , δl are the pairwise distinct elements of ∆ and λ1, . . . , λl ∈ R are

such that ∑l
i=1 λiδi is a root, then λ1, . . . , λl are all non-negative or all non-

positive.
(iii) All the roots δ1, . . . , δl are indivisible.

Further, an ordered root base of Φ is a tuple (δ1, . . . , δl) such that δ1, . . . , δl are
pairwise distinct and { δ1, . . . , δl } is a root base of Φ. A rescaled root base is a set ∆
for which there exist positive real numbers (λδ)δ∈∆ such that { λδδ | δ ∈ ∆ } is a
root base. A root base ∆ will sometimes be called a proper root base to emphasise
that it is not merely a rescaled root base. If a root base ∆ is fixed, its elements are
called simple roots and the corresponding reflections are called simple reflections.

1.2.23 Note. If the root system Φ is reduced, then every rescaled root base of Φ
is in fact a root base. Thus the distinction between root bases and rescaled root
bases is only relevant in the non-reduced case. Hence by the classification result
that we will state in Theorem 1.2.53, it is only relevant for root systems of type BC.
We will explain in Remark 4.1.31 why the slightly more general notion of rescaled
root bases will be needed for root systems of this type. For the moment, the
distinction between proper root bases and rescaled root bases is not relevant, and
it suffices to notice that some well-known results about root bases (specifically,
Propositions 1.2.24, 1.3.12 and 1.3.16) remain valid in this more general situation.

1.2.24 Proposition. Every rescaled root base ∆ of Φ lies in a unique positive system
Π(∆) (namely, Π(∆) := Φ ∩ {∑δ∈∆ λδδ | λδ ≥ 0 for all δ ∈ ∆ }), and every positive
system Π contains a unique root basis ∆(Π) (namely, ∆(Π) is the set of roots in Π
which cannot be expressed as an R>0-linear combinations of two or more roots in Π ). In
particular, root bases exist.

Proof. This is proven in [Hum90, Theorem 1.3] for reduced root systems and
non-rescaled root bases. The general assertion follows easily from this fact by
considering the reduced root system Φindiv.

1.2.25 Definition. Let ∆ be a rescaled root base. The positive system Π(∆) in
Proposition 1.2.24 is called the positive system corresponding to ∆. Its elements are
called the positive roots with respect to ∆ (or Π(∆)), and the elements of −Π(∆) are
called the negative roots with respect to ∆ (or Π(∆)).

1.2.C Crystallographic Root Systems

We now turn to the definition of crystallographic root systems.

1.2.26 Definition (Cartan number). Let α, β be two elements of a V. The number
⟨α|β⟩ := 2 α·β

β·β ∈ R is called the Cartan number for (α, β). For any root base ∆, the
matrix (⟨α|β⟩)α,β∈∆ is called the Cartan matrix of Φ (with respect to ∆).

Using Proposition 1.3.6, it is not difficult to show that the Cartan matrix does
not depend on the choice of ∆ up to a permutation of the rows and columns.

1.2.27 Definition (Crystallographic root system). The root system Φ is called
crystallographic if for all α, β ∈ Φ, the Cartan number ⟨α|β⟩ is an integer, which is
then called the Cartan integer for (α, β).
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The following properties are specific to crystallographic root system and not
true in general.

1.2.28 Lemma. Assume that Φ is crystallographic. Let α be a root and let λ > 0 such
that λα is also a root. Then λ ∈ { 1/2, 1, 2 }.

Proof. Since Φ is crystallographic, the numbers

⟨α|λα⟩ = 2
α · λα

λα · λα
=

2
λ

and ⟨λα|α⟩ = 2
λα · α

α · α
= 2λ

must be integers. The latter fact implies that λ = m/2 for some m ∈ N+,
and then the former fact yields that 4/m is an integer. Thus m ∈ { 1, 2, 4 }, so
λ ∈ { 1/2, 1, 2 }.

1.2.29 Lemma. Let ∆ be a root base of Φ and let α be a positive root with respect to ∆.
Assume that Φ is crystallographic. Then there exist n ∈ N+ and δ1, . . . , δn ∈ ∆ such
that α = ∑n

i=1 δi and such that for each m ∈ [1, n], the partial sum ∑m
i=1 δi is a root. In

particular, the coefficients of any root with respect to ∆ are always integral.

Proof. For reduced root systems Φ, this is exactly the statement of [Hum72,
Corollary of Lemma 10.2.A]. The general assertion is proven in [Bou81], but the
other way around: It is first proven in [Bou81, Théorème VI.1.3, p. 156] that the
coefficients of any root with respect to ∆ are always integral. This implies that
every positive root α can be written as a sum ∑n

i=1 δi of simple roots δ1, . . . , δn ∈ ∆
and then by [Bou81, Proposition VI.1.19, p. 159], there exists a permutation π of
[1, n] such that each partial sum ∑m

i=1 δπ(i) for m ∈ [1, n] is a root.

1.2.D Root Intervals and Root Subsystems

The following definition introduces root intervals. This notion will be crucial
for the definition of groups with Φ-commutator relations. It is a special case
of the notion of commutator sets (of subsets of Φ) that we will introduce in
Definition 2.1.21.

1.2.30 Definition (Root intervals). Let α, β be non-proportional roots. The open
Coxeter root interval for (α, β) is

]α, β[Cox := { λα + µβ | λ, µ ∈ R>0 } ∩ Φ

and the open crystallographic root interval for (α, β) is

]α, β[ := { λα + µβ | λ, µ ∈ N+ } ∩ Φ ⊆ ]α, β[Cox.

The roots α and β are called adjacent if ]α, β[Cox is empty, and they are called
crystallographically adjacent if ]α, β[ is empty. Further, the sets

[α, β]Cox := { α, β } ∪ ]α, β[Cox and [α, β] := { α, β } ∪ ]α, β[

are called the closed Coxeter root interval for (α, β) and the closed crystallographic
root interval for (α, β), respectively.

1.2.31 Note. In [LN19, (1.5.2), (1.6.3)], root intervals are defined as follows for all
α, β ∈ Φ:

[α, β] := Φ ∩ {mα + nβ | α, β ∈ N0, m + n > 0 },
]α, β[ := Φ ∩ {mα + nβ | α, β ∈ N+ }.

These definitions differ from ours in two ways. Firstly, there is no assumption
on α and β to be non-proportional. For example, we have [α, α] = Φ ∩ N+α
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and ]α, α[ = Φ ∩ N≥2α. Secondly, the closed root interval [α, β] in the sense of
Loos-Neher contains, in addition to the closed root interval in our sense, all the
roots in ]α, α[ ∪ ]β, β[ = Φ ∩ (N≥2α ∪ N≥2β).

1.2.32 Note. The open interval between α and β consists of the roots which lie
“between α and β”. In the crystallographic setting, it is natural to consider only
those roots which can be written as integral linear combinations of α and β. As
explained in the preface of this section, we will only consider crystallographic
root gradings in the main part of this work, which is why we simply write ]α, β[
for the crystallographic root interval (and not, say, ]α, β[cry). Still, many results
and proofs remain valid for Coxeter root intervals. See also Note 2.3.25.

1.2.33 Note. Let α, β be non-proportional roots and assume that Φ is irreducible
and crystallographic. Clearly, the crystallographic root interval is a subset of the
Coxeter root interval. (In particular, adjacent roots are automatically crystallo-
graphically adjacent.) In the general case, it can be smaller. Using the classification
of root systems (Theorem 1.2.53), we can prove the following statements by an
inspection of the irreducible root systems Φ:

(a) If Φ is simply-laced (that is, of type A, D or E), then the Coxeter and
crystallographic intervals are the same for all pairs of roots.

(b) If Φ is not of type G2, then ]α, β[Cox has at most two elements, and if it has
two elements, it equals ]α, β[.

Thus if Φ is not of type G2, then the only difference between Coxeter and crystallo-
graphic root intervals is that for some pairs of roots, ]α, β[ is empty but ]α, β[Cox
has exactly one element. Specifically, using the standard representations, this
happens exactly for the pairs of roots

(
ε(ei − ej), ε(ei + ej)

)
in Bn and the pairs

(ε2ei, ε′2ej) in (B)Cn (where i, j ∈ [1, n] are distinct and ε, ε′ ∈ {±1} are signs).

Since the interval between two roots lies in a subspace of dimension 2, it is
geometrically clear that there exist two “natural” ways to put an order on the
roots in this interval. These two natural orders will be called interval orderings.

1.2.34 Definition (Interval ordering). Let Φ be root system and let S be a subset of
Φindiv which does not contain a pair of opposite roots. Denote by k the cardinality
of S. An interval ordering of S is a tuple (α1, . . . , αk) such that S = { α1, . . . , αk }
and ]αi, αj[

indiv
Cox = { αr | i < r < j } for all i < j ∈ [1, k].

1.2.35 Remark. Let S be a subset of a root system Φindiv and assume that there
exists an interval ordering (α1, . . . , αk) of S. Then we have

S = { α1, . . . , αk } = { α1, αk } ∪ ]α1, αk[
indiv
Cox = [α1, αk]

indiv
Cox .

Thus if there exists an interval ordering of S, then S is the set of indivisible roots
in a (closed) root interval. Conversely, any set of the form S = [α, β]indiv

Cox for
α, β ∈ Φindiv has an interval ordering (α1, . . . , αk), and the only other interval
ordering of S is (αk, . . . , α1).

1.2.36 Note. We could also define “crystallographic interval orderings” by requir-
ing that ]αi, αj[

indiv = { αr | i < r < j } for all i < j ∈ [1, k]. However, there is no
need to do this: We will only use interval orderings of root intervals of length 2,
and for these there is no difference by Note 1.2.33 in our situation.

Using interval orderings, we can introduce a practical way of indexing the
roots of Φ in the rank-2 case, which depends only on the choice of a root base.
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1.2.37 Remark (Rank-2 root systems, [TW02, (4.14), (4.15)]). Assume that Φ is
reduced and of rank 2, put n := |Φ|/2 and choose a root base (α, β). Denote by
(α1, . . . , αn) the unique interval ordering of [α, β]Cox with α1 = α and αn = β (see
Remark 1.2.35). Further, put αi+n := −αi for all i ∈ [1, n]. In this way, we have
identified Φ with the set [1, 2n]. It is practical to define αz := αz′ for all z ∈ Z

where z′ is the unique element of [1, 2n] which is congruent to z modulo 2n. Then
for all i < j ∈ Z with j − i ≤ n − 1, the tuple (αi, . . . , αj) is the unique interval
ordering of ]αi, αj[Cox which starts with αi. Observe that for all z ∈ Z, the pair
∆′ = (αz, αz+n−1) is a root base, and the labeling which is induced by ∆′ is given
by α′

i = αz−1+i for all i ∈ Z. Further, we have

α
σ(αj)

i = α2j+n−i

for all i, j ∈ Z.

1.2.38 Definition (Rank-2 labeling). Assume that Φ is reduced of rank 2 and
let (α, β) be a root base. The rank-2 labeling of Φ induced by (α, β) is the map
Z → Φ, i 7→ αi which we constructed in Remark 1.2.37. A rank-2 labeling of Φ is
the rank-2 labeling induced by some root base.

The notion of root intervals leads in a natural way to the notion of closed sets
of roots. We will study this property more closely in section 2.3.

1.2.39 Definition (Closed set of roots). Let Ψ be a subset of Φ. Then Ψ is called
closed if ]α, β[Cox ⊆ Ψ for all non-proportional α, β ∈ Ψ, and it is called crystallo-
graphically closed if ]α, β[ ⊆ Ψ for all α, β ∈ Ψ.

1.2.40 Remark. Every closed set is also crystallographically closed, but the con-
verse is not true.

We now refine our notion of root subsystems from Definition 1.2.10.

1.2.41 Lemma. Let V ′ be a subspace of the Euclidean space V surrounding Φ and put
Φ′ := V ′ ∩ Φ. Assume that Φ′ is non-empty. Then the following hold:

(a) Φ′ is a root system in V ′ which is closed in Φ. If Φ is reduced and/or crystallo-
graphic, then Φ′ has the same properties.

(b) Let ∆′ be a root base of Φ′. Then there exists a root base ∆ of Φ such that
∆ ∩ Φ′ = ∆′.

(c) Let Π′ be a positive system in Φ′. Then there exists a positive system Π in Φ such
that Π ∩ Φ′ = Π′.

Proof. The first assertion is easily verified. Now let ∆′ be a root base of Φ′.
It is proven in [Bou81, Proposition VI.1.24] for crystallographic Φ that there
exists a root base ∆ of Φ containing ∆′, and the same proof applies in our more
general situation. Thus ∆′ is contained in ∆ ∩ Φ′. Assume that there exists a root
(δ ∈ ∆ ∩ Φ′) \ ∆′. Then ∆′ ∪ {δ} is a linearly independent subset of Φ′ of higher
cardinality than ∆. This contradicts the fact that ∆′ is an R-basis of ⟨Φ′⟩R, so we
must have ∆ ∩ Φ′ = ∆′. Thus the second assertion holds. The third assertion
follows from the second one by the correspondence between root bases and
positive systems (see Proposition 1.2.24).

1.2.42 Definition (Closed and parabolic root subsystems). Let Φ′ be a non-empty
subset of Φ. Then Φ′ is called a (crystallographically) closed root subsystem of Φ
if it is (crystallographically) closed in the sense of Definition 1.2.39 and a root
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subsystem in the sense of Definition 1.2.10. It is called a parabolic root subsystem of
Φ if there exists a subspace W of V such that Φ′ = Φ ∩ W. For any non-empty
subset A of Φ, the root subsystem spanned by A is Φ ∩ ⟨A⟩R.

1.2.43 Note. By Lemma 1.2.41, every parabolic root subsystem is a closed root
subsystem, and clearly every closed root subsystem is a root subsystem. We
will show in Proposition 2.5.11 that closed root subsystems Φ′ of Φ give rise to
Φ′-graded subgroups of Φ-graded groups. Most of the time, we will consider
root subsystems spanned by a subset (often of cardinality 2) of Φ, which are
parabolic by definition.

1.2.44 Remark. Every root subsystem Φ′ of Φ is contained in the parabolic sub-
system Φ′′ := ⟨Φ′⟩R ∩ Φ. Note that the ranks of Φ′ and Φ′′ are identical because
⟨Φ′⟩R = ⟨Φ′′⟩R.

1.2.45 Lemma. Let ∆ be a root base of Φ and let ∆′ be a subset of ∆. Then ∆′ is a root
base of the subsystem that it spans.

Proof. It is clear that ∆′ satisfies the axioms of Definition 1.2.22.

1.2.46 Remark. The statement of Lemma 1.2.41 (c) remains true for closed root
subsystems which are not parabolic: If Π′ is a positive system of a (crystallo-
graphically) closed root subsystem Φ′ in Φ, then there exists a hyperplane H′ in
⟨Φ′⟩R which does not meet Φ′ such that all roots in Π′ lie on one side of H′ and
all roots in −Π′ lie on the other side of H. We can extend H′ to a hyperplane H in
V which does not meet Φ. Now all roots in Π′ lie on one side of H and all roots
in −Π′ lie on the other side. Thus H defines a positive system Π in Φ such that
Π = Π′ ∩ Φ.

1.2.E The Classification of Root Systems

We now turn to the classification of crystallographic root systems. We will also
make some remarks on the non-crystallographic case.

1.2.47 Definition (Irreducible root system). A root system Φ is called reducible if
there exists a non-empty proper subset I of Φ which is orthogonal to Φ \ I (which
means that α · β = 0 for all α ∈ I and β ∈ Φ \ I). It is called irreducible otherwise.
An irreducible component of Φ is a root subsystem Φ′ of Φ which is irreducible and
orthogonal to Φ \ Φ′.

It should be noted that the properties “reduced” and “reducible” have nothing
to do with each other despite sounding similar.

1.2.48 Remark. Using induction, it is not difficult to see that every root system
can be written as a disjoint union of irreducible components. This decomposition
is, in fact, unique. Further, any irreducible component Φ′ of Φ is a parabolic root
subsystem of Φ because it is orthogonal to Φ \ Φ′.

In order to state a precise classification theorem, we need a proper notion of
isomorphism between root systems.

1.2.49 Definition (Isomorphic root systems, [Hum72, Section 9.2], [Bou81, Propo-
sition VI.4.1]). Let Φ′ be another root system in some Euclidean space V ′. We
say that Φ and Φ′ are isomorphic if there exists a vector space isomorphism
f : ⟨Φ⟩R → ⟨Φ′⟩R (which is not necessarily an isometry) such that f (Φ) = Φ′

and such that ⟨ f (α)| f (β)⟩ = ⟨α|β⟩
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1.2.50 Example. For any λ ∈ R \ {±1}, the map f : V → V, v 7→ λv is an
isomorphism between Φ and λΦ, but it is not an isometry.

1.2.51 Remark. Example 1.2.50 shows that the length of a root is not invariant
under isomorphisms. However, the ratio of root lengths is: For all roots α, β, we
have ⟨α|β⟩⟨β|α⟩−1 = α·α

β·β . In particular, the knowledge of the Cartan numbers is
enough to decide whether α is shorter or longer than β. Further, all root intervals
from Definition 1.2.30 are invariant under isomorphisms. The same holds for the
properties of orthogonality and opposition. Since these are all the properties of
root systems that we will use, we are thus free to treat isomorphic root systems
as “the same”.

1.2.52 Remark (List of crystallographic root systems). We now give a list of all
irreducible crystallographic root systems up to isomorphism. For the moment,
we introduce only their names. Precise definitions can be found in [Hum72, Sec-
tion 12.1], [Hum90, Section 2.10] and [Bou81, Section VI.4]. First of all, there are
five infinite families of such root systems: (An)n≥1, (Bn)n≥2, (Cn)n≥2, (BCn)n≥1
and (Dn)n≥4. Further, there exist the root systems F4, E6, E7, E8 and G2 which
are called exceptional because they do not belong to an infinite family. In each
case, the subscript denotes the rank of the root system. All these root systems
are crystallographic. Further, they are pairwise not isomorphic except for the
pair B2 ∼= C2 and they are reduced except for BCn, which is not reduced. We will
provide an explicit description of the root systems of types A, D, B, BC, C and F4
in Remarks 5.2.3, 5.2.4, 7.2.2, 9.1.2, 9.1.3 and 10.3.1, respectively.

1.2.53 Theorem (Classification of root systems). Let Φ be an irreducible crystallo-
graphic root system and denote its rank by n. Then Φ is isomorphic to one of the root
systems in Remark 1.2.52.

Proof. For reduced Φ, this is proven in [Hum72, Theorem 11.4] and [Bou81,
Theorème VI.4.3]. The extension to the non-reduced case and can be found in
[Bou81, Section VI.4.14].

1.2.54 Remark. By computing the Cartan integers of the root systems in Re-
mark 1.2.52, one can show that a reduced root system is uniquely determined by
its Cartan matrix. This cedes to be true for non-reduced root systems, however:
Bn and BCn have the same Cartan matrix. In fact, we will see in Remarks 7.2.2
and 9.1.2 that their standard root bases in the standard representation are exactly
the same.

1.2.55 Remark (Coxeter and Dynkin diagrams). Let ∆ be a root base of Φ. For
all δ, δ′ ∈ ∆ we denote by mδδ′ ∈ N≥1 ∪ {∞} the order of σδσδ′ in the Weyl group.
The matrix (mδδ′)δ,δ′∈∆ is called the Coxeter matrix of Φ. The Coxeter matrix is
independent of the choice of ∆ and we will see in Remark 1.3.13 that it determines
the Weyl group of Φ up do isomorphism. However, it does not determine Φ up
to isomorphism: The root systems Bn and Cn have the same Coxeter matrix and
the same Weyl group.

Another way of expressing the Coxeter matrix of Φ is by its Coxeter diagram
(with respect to ∆): This is the edge-labelled graph whose vertex set is ∆ and
where two vertices δ ̸= δ′ are connected by an edge if and only if mδδ′ ≥ 3. If
δ, δ′ are connected by an edge, then this edge is labelled by mδ,δ′ if mδ,δ′ ≥ 3,
and otherwise it is not labelled. Edges without labels are also called simple edges.
If Φ is crystallographic, then the Dynkin diagram of Φ is essentially the Coxeter
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diagram of Φ with some additional “decorations” which tell us for every pair
(α, β) of roots in ∆ whether ∥α∥ < ∥β∥, ∥α∥ > ∥β∥ or ∥α∥ = ∥β∥. This additional
information allows us to reconstruct the Cartan matrix of Φ and thus the Dynkin
diagram determines the root system up to isomorphism.

1.2.56 Remark. For any parabolic root subsystem Φ′ of Φ, the Dynkin diagram
of Φ′ is a subgraph of the Dynkin diagram of Φ. This is a consequence of
Lemma 1.2.41 (b).

1.2.57 Remark (Non-crystallographic root systems). A classification of reduced
root systems which are not assumed to be crystallographic can be found in
[Hum90, Chapter 2]. Note that the reducedness assumption is harmless by
Construction 1.2.16. The only non-crystallographic root systems of rank at least 3
which appear in this classification are H3 and H4. We will not study them and
their associated root graded groups in this work, but we will sometimes remark
on them in informal discussions.

The following terminology will be used often.

1.2.58 Definition (Type of a root system). Let Φ be a crystallographic root system
and let X ∈ { A, B, BC, C, D, E, F, G }. We say that Φ is of type X if it is isomorphic
to Xn for some n ∈ N+.

1.2.59 Note. We will also refer to H3 and H4 as the “root systems of type H”,
though we have not defined the notion of isomorphism for non-crystallographic
root systems.

1.2.60 Notation (Direct products of root systems). Let Φ1, . . . , Φn be the irre-
ducible components of Φ and let X1, . . . , Xn denote their respective types. Then
the type of Φ is X1 × · · · × Xn.

Using the classification of crystallographic root systems, we can easily state
the definition of simply-laced root systems. We will give some more equivalent
characterisations of these root systems in Remark 5.2.2.

1.2.61 Definition (Simply-laced root system). A crystallographic root system Φ
is called simply-laced if each irreducible component of Φ is of type A, D or E. (We
do not assume that all irreducible components have the same type.)

1.3 Weyl Groups

1.3.1 Notation for this section. We denote by Φ an arbitrary root system in some
Euclidean space (V, ·).

In this section, we study properties of the Weyl group of Φ that we have
introduced in Definition 1.2.13.

1.3.2 Remark. Recall from Remark 1.2.15 that the set Φindiv of indivisible roots
in Φ is a reduced root system. Since σλα = σα for all α ∈ Φ and λ ∈ R \ {0},
it has the same Weyl group as Φ. As a consequence, most statements about
Weyl groups of reduced root systems can easily be generalised to arbitrary root
systems.
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1.3.A Basic Properties

We begin with some properties of the action of the Weyl group on Φ. This
comprises several transitivity properties.

1.3.3 Lemma. The Weyl group Weyl(Φ) acts faithfully on the subset Φ of V. In
particular, it is a finite group.

Proof. This is proven in [Hum90, p. 7] for reduced root systems, which implies
the general assertion.

1.3.4 Proposition. Let α be an indivisible root and let ∆ be a root base of Φ. Then there
exist δ ∈ ∆ and w ∈ Weyl(Φ) such that α = δw.

Proof. This is proven for reduced root systems in [Hum90, Corollary 1.5] and for
crystallographic root systems in [Bou81, Proposition VI.1.15, p. 154]. The general
assertion follows from the one for reduced root systems because both α and ∆
are contained in Φindiv (by Axiom 1.2.22 (iii) in the latter case).

1.3.5 Proposition (Corollary of 1.3.4 and 1.3.12). Let α be any root and let ∆ be
a rescaled root base of Φ. Then there exist δ, δ1, . . . , δn ∈ ∆ and λ ∈ R>0 and
a word δ̄ over ∆ such that λα = δσ(δ1···δm). In particular, σα = σρ̄ where ρ̄ :=
(−δn, . . . ,−δ1, δ, δ1, . . . , δn). If Φ is reduced, then we have λ = 1.

1.3.6 Proposition. The Weyl group of Φ acts simply transitively on the set of root bases
and positive systems of Φ.

Proof. This is proven in [Hum90, Theorem 1.4, 1.8] for reduced root systems.
Since any root base of Φ is contained in Φindiv by Axiom 1.2.22 (iii), the general
assertion follows.

1.3.7 Lemma (Corollary of 1.3.6). Let Φ′ be a parabolic root subsystem of Φ, let ∆′ be
a root base of Φ′ and let ∆ be a root base of Φ. Then there exists w ∈ Weyl(Φ) such that
∆′ is a subset of ∆w.

Proof. By Lemma 1.2.41 (b), there exists a root base ∆2 of Φ containing ∆′. Using
Proposition 1.3.6, we find w ∈ Weyl(Φ) such that ∆2 = ∆w, and the assertion
follows.

In crystallographic root systems, “all roots of the same length are essentially
the same”. The following result makes this statement precise.

1.3.8 Proposition. Assume that Φ is crystallographic and irreducible and let α ∈ Φ.
Then the orbit of α under the Weyl group is { β ∈ Φ | ∥α∥ = ∥β∥ }, the set of roots
which have the same length as α.

Proof. This is proven in [Hum72, Lemma 10.4.C] for reduced Φ. If Φ is crystallo-
graphic, irreducible and not reduced, then it is of type BC. It is not difficult to
verify that the assertion is true in this case as well.

In light of Proposition 1.3.8, we introduce the following notation.

1.3.9 Notation (Orbits). Assume that Φ is irreducible and either crystallographic
or of type H. We put Orb(Φ) := (O1, . . . , Ok) where O1, . . . , Ok are the orbits of Φ
under the Weyl group, ordered by ascending length of roots. This means that for
all i < j ∈ [1, k] and all α ∈ Oi, β ∈ Oj, we have ∥α∥ < ∥β∥. Further, we denote
by Orbred(Φ) the sub-tuple of Orb(Φ) which contains only the indivisible orbits,
that is, the orbits consisting of indivisible roots.
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1.3.10 Note. The point of Notation 1.3.9 is that, in Definition 4.3.4 of parametrisa-
tions of root graded groups, we will need to fix some ordering on the set of orbits.
The ordering of ascending root length is simply a practical way to introduce
such an ordering for all irreducible root systems. This definition makes sense for
crystallographic root systems by Proposition 1.3.8 and it also makes sense for
root systems of type H because these root systems have only one orbit of roots.

The following result about point stabilisers will be needed in our proof of the
parametrisation theorem in chapter 4.

1.3.11 Proposition. Let α ∈ Φ. Then the stabiliser of α in the Weyl group W is the
subgroup of W which is generated by { σβ | β ∈ Φ, β · α = 0 }.

Proof. This is proven in [Hum90, Theorem 1.12] for reduced root systems, and
the general assertion follows easily.

1.3.B The Presentation of Weyl Groups and the Word Problem

We can find a simple finite presentation of the Weyl group. At first, we need a
practical generating set.

1.3.12 Proposition. Let ∆ be a rescaled root base of Φ. Then the Weyl group of Φ is
generated by the reflections { σδ | δ ∈ ∆ }.

Proof. This is proven in [Hum90, Theorem 1.5] for reduced root systems and root
bases. The general result follows because σα = σλα for all α ∈ Φ and λ ∈ R \ {0}
and because for any root system Φ, the set Φindiv is a reduced root system (with
the same Weyl group).

1.3.13 Remark (Presentation of Weyl groups). Let W be the Weyl group of Φ and
let ∆ be any rescaled root base of Φ. For all δ, δ′ ∈ ∆, denote the order of σδσδ′ in
W by m(δ, δ′). Then we have the relation (σδσδ′)

m(δ,δ′) = 1 for all δ, δ′ ∈ ∆, simply
by the definition of m(δ, δ′). Put S := { σδ | δ ∈ ∆ }. It is a non-trivial fact that W
is not only generated by S, but that W is in fact isomorphic to the abstract group
generated by the set S with respect to the relations (σδσδ′)

m(δ,δ′) = 1 for δ, δ′ ∈ ∆.
A proof of this well-known result can be found in [Hum90, Theorem 1.9]. For
δ = δ′, this relation says that σ2

δ = 1. Using this fact and Notation 1.1.7, we can
rewrite the relation (σδσδ′)

m(δ,δ′) = 1 for δ ̸= δ′ as Pm(δ,δ′)(σδ, σδ′) = Pm(δ,δ′)(σδ′ , σδ).
In this form, these relations are called the braid relations.

We now turn to the word problem, which is of course strongly related to the
presentation of the Weyl group from Remark 1.3.13. By Remark 1.3.2, it is not
surprising that the classical solution of the word problem generalises to the case
of rescaled root bases without a problem.

1.3.14 Definition (Homotopy). Let ∆ be a rescaled root base and let ᾱ, β̄ be two
words over ∆ ∪ (−∆). We say that ᾱ, β̄ are square-homotopic if there exist words
ρ̄, ζ̄ over ∆ ∪ (−∆) and a root δ ∈ ∆ such that ᾱ = ρ̄ζ̄ and β̄ = ρ̄δδζ̄ or such that
β̄ = ρ̄ζ̄ and ᾱ = ρ̄δδζ̄. We say that ᾱ, β̄ are braid-homotopic if there exist words ρ̄, ζ̄
and simple roots δ, δ′ ∈ ∆ such that ᾱ = ρ̄Pm(δ, δ′)ζ̄ and β̄ = ρ̄Pm(δ′, δ)ζ̄ where m
denotes the order of σδσδ′ in the Weyl group and where Pm is as in Notation 1.1.7.
We say that ᾱ, β̄ are elementary homotopic if they are square-homotopic or braid-
homotopic, and we say that they are homotopic if they lie in the symmetric reflexive
transitive closure of the relation “elementary homotopic”.
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1.3.15 Note. We define homotopy for words over ∆ ∪ (−∆) and not merely
for words over ∆. In the context of the word problem, this may seem like an
unnecessary generalisation because of the relation σ−δ = σδ. However, we will
later use words δ̄ = (δ1, . . . , δk) over ∆ ∪ (−∆) to represent group elements
wδ̄ = wδ1 · · ·wδk where (wδ)δ∈∆ is a fixed family of so-called Weyl elements in a
root graded group and where w−δ := w−1

δ for all δ ∈ ∆. In this setting, it is not
(necessarily) true that w−δ = wδ, and thus it makes sense to consider words over
∆ ∪ (−∆).

1.3.16 Proposition. Let ∆ be a rescaled root base of Φ and let ᾱ, β̄ be two words over ∆.
Then ᾱ, β̄ are homotopic if and only if σᾱ = σβ̄.

Proof. It is clear from Remark 1.3.13 that homotopic words ᾱ, β̄ automatically
satisfy σᾱ = σβ̄. The other implication is proven in [Hum90, Theorem 8.1]
for reduced root systems and root bases, and the general assertion is an easy
consequence.

1.3.17 Note. Proposition 1.3.16 is only a weaker form of the solution of the word
problem in Weyl groups, and not sufficient to actually decide the word problem
computationally. However, it will be adequate for our purposes.

1.3.18 Note (continuing 1.3.15). Observe that the words ᾱ and β̄ in Proposi-
tion 1.3.16 are not allowed to contain letters from −∆. As a counterexample,
the words ᾱ := (δ,−δ) (for any δ ∈ ∆) and the empty word represent the same
element in the Weyl group, but they are not homotopic. This fact will be relevant
in the proof of Lemma 4.5.5.

1.3.C The Length Function

1.3.19 Notation for this section. From now on, we denote by Φ a root system, by
∆ a rescaled root base of Φ, by Π the unique positive system in Φ which contains
∆ (as in Proposition 1.2.24) and by W the Weyl group of Φ.

The length of any element w in the Weyl group can be characterised as the
cardinality of a certain set N(w) of roots. This fact is usually proved by induction
on the length of w. In the proof, the set N(w) is “constructed” element by element,
which provides a natural ordering of the set N(w). We will show in section 2.4
that in any Φ-graded group, a certain product map with respect to this natural
ordering of N(w) is bijective. This will imply that, in the crystallographic setting,
the product map with respect to any ordering of the set Πindiv is bijective.

In this subsection, we introduce the aforementioned natural ordering of N(w),
using the notion of root sequences. Standard references are [Hum90, 1.6] and
[How96], the latter being closer to our presentation. We will also see that there
exists a unique element ρ in W of highest length, and that this element satisfies
N(ρ) = Πindiv. A corollary of our observations is that the length of any w ∈ W is
indeed the cardinality of N(w), but this fact will not be needed later.

In the literature, the results of this section are usually only phrased for reduced
root systems. They easily generalise to arbitrary root systems, but we have to
make sure to consider Πindiv instead of Π. Further, the main results (Lemma 1.3.25
and Proposition 1.3.28) hold only for proper root bases.

1.3.20 Definition (Length function). Let w ∈ W. An expression of w is a word
δ̄ = (δ1, . . . , δk) over ∆ such that w = σδ1 · · · σδk , and the number k is called the
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length of δ̄. If ∆ is not clear from the context, then an expression of w is also called
a ∆-expression of w. The length of w is the minimal length of an expression of w,
and it is denoted by ℓ∆(w) (or simply by ℓ(w)). A reduced expression of w is an
expression of w of length ℓ(w), and an arbitrary word δ̄ over ∆ is called reduced if
it is a reduced expression of σδ̄.

1.3.21 Definition. For all w ∈ W, we define

N(w) := NΠ(w) := { α ∈ Πindiv | αw−1 ∈ −Π }.

1.3.22 Note. In most references (for example in [Hum90, Section 1.6]), the Weyl
group acts on the root system from the left and the root system is reduced. Then
N(w) is defined as { α ∈ Π | w(α) ∈ −Π }.

1.3.23 Lemma. Let w ∈ W and let α ∈ Φindiv \ N(w). Then there exists a positive
system Π′ which contains N(w) but not α.

Proof. Since α is not contained in N(w), we have either α ∈ −Π or αw−1 ∈ Π.
In the first case, we can choose Π′ := Π. In the second case, we can choose
Π := (−Π)w.

1.3.24 Lemma. For all δ ∈ ∆, we have (Π \ R>0δ)σ(δ) = Π \ R>0δ. In particular,
N(σδ) = {δ}.

Proof. It is proven in [Hum90, Proposition 1.4] for reduced Φ that (Π \ {δ})σ(δ) =
Π \ {δ}. The general assertion follows.

The following result is, essentially, the induction step of Proposition 1.3.28.
It provides an explicit description and even a natural ordering of the set N(w).
In Proposition 2.3.22, we will show that this ordering has the property of being
“extremal”, essentially by Lemma 1.3.23.

1.3.25 Lemma. Assume that ∆ is a proper root base. Let w ∈ W and let δ ∈ ∆ such that
ℓ(wσδ) > ℓ(w). Then N(wσδ) = N(w)σ(δ) ⊔ {δ} (where “⊔” denotes disjoint union).

Proof. This statement is the essence of the proof of [Hum90, Lemma 1.6], albeit
with different conventions (see Note 1.3.22).

The natural ordering on N(w) is captured by the notion of root sequences.

1.3.26 Definition (Root sequence). Let δ̄ = (δ1, . . . , δk) be a reduced word over
∆. The tuple (β1, . . . , βk) where βi := δ

σ(αi+1···αk)
i for all i ∈ [1, k − 1] and βk := δk

is called the root sequence associated to δ̄. Further, the tuple (βk, . . . , β1) is called
the inverse root sequence associated to δ̄.

1.3.27 Remark. Let δ̄ = (δ1, . . . , δk) be a reduced word over ∆ such that k > 0 and
put s := σ(δk). Denote by (α1, . . . , αk−1) the root sequence of (δ1, . . . , δk−1). Then
it is clear from Definition 1.3.26 that the root sequence of δ̄ is (αs

1, . . . , αs
k−1, δk).

1.3.28 Proposition. Assume that ∆ is a proper root base. Let w ∈ W, let δ̄ =
(δ1, . . . , δk) be a reduced expression of w and let ᾱ = (α1, . . . , αk) be the associated
root sequence. Then N(w) = { α1, . . . , αk } and |N(w)| = k = ℓ(w).

Proof. This is clear for k = 0 because N(1W) = ∅. For k > 0, the assertion follows
from Lemma 1.3.25 by induction on k.
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We will show in Proposition 2.3.22 that the ordering of N(w) given by an
inverse root sequence has the desirable property of being extremal.

1.3.29 Proposition ([Hum90]). There exists a unique element ρ of W such that ℓ(ρ) ≥
ℓ(w) for all w ∈ W. This element has length |Πindiv| and satisfies ρ−1 = ρ and
ρ(Π) = −Π. In particular, N(ρ) = Πindiv.

Proof. This is proven in [Hum90, Theorem 1.8] for reduced root systems. In
general, the subset Φindiv of Φ is a reduced root system which has the same Weyl
group as Φ, and the assertion follows easily from this observation.

1.3.30 Definition (Longest element). The element ρ from Proposition 1.3.29 is
called the longest element of W (with respect to ∆).

1.4 Foldings of Root Systems

We have seen in section 1.2 that there are many ways to see root systems as
subsystems of other root systems. Foldings, on the other hands, behave more like
“quotients of root systems”. If a root system Φ′ is a folding of Φ, then Φ′-graded
groups can be constructed from Φ-graded group in a way which we will describe
in section 2.6. We will use this strategy in section 10.4 to construct F4-graded
groups from E6-graded groups.

In this section, we follow the exposition in [Car72, 13.1, 13.2].

1.4.1 Notation for this section. We denote by Φ a crystallographic root system in
the Euclidean space (V, ·) such that V is generated by Φ, and we choose a root
base ∆ of Φ. We denote by W the Weyl group of Φ and by ρ an isomorphism
of the Coxeter diagram of Φ with respect to ∆. That is, ρ is a vector space
automorphism of V such that ρ(∆) = ∆ and such that the group elements σασβ

and σρ(α)σρ(β) have the same order for all α, β ∈ ∆. We denote by τ : V → V the
unique automorphism of V which maps any v ∈ V \ {0} to the unique element
w ∈ R>0ρ(v) with w · w = v · v. Further, we put

F := { v ∈ V | τ(v) = v }
and we denote by π : V → F the orthogonal projection on F. Finally, we set
Φ′ := π(Φ).

1.4.2 Notation. Following the conventions in [Car72, 13.1, 13.2], we let the Weyl
group of Φ act on V from the left side in this section.

1.4.3 Note. The map ρ is not necessarily an isometry of V, and the map τ is
precisely the unique isometry which maps any v ∈ V \ {0} to a positive scalar
multiple of ρ(v). If all roots in Φ have the same length, then τ = ρ. In practice,
we will only need the case Φ = E6 in which this assumption is satisfied.

1.4.4 Lemma ([Car72, p. 217]). Let v ∈ V and denote by J the orbit of v under τ in V.
Then π(v) is the average of the vectors in J. That is, we have

π(v) =
1
|J| ∑

u∈J
u.

Proof. Put v′ := 1
|J| ∑u∈J u. Then π(v′) = v′, so v′ is contained in F. Further, since

τ is an isometry, we have for all k ∈ N+ and u ∈ F that

u · v = τk(u) · τk(v) = u · τk(v).
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Hence v′ is an element of F with u · v = u · v′ for all u ∈ F. Since π(v) is the
unique element with this property, it follows that π(v) = v′.

1.4.5 Definition (Folded Weyl group). We put

W ′ := {w ∈ W | τ−1wτ = w } = {w ∈ W | wτ = τw }.

1.4.6 Lemma. For all w ∈ W ′ and v ∈ V, we have π(w(v)) = w(π(v)).

Proof. Denote by J and J′ the orbits of v and π(v) in V, respectively. Since
wτk(v) = τk(w(v)) for all k ∈ N+ by the definition of W ′, we have w(J) = J′.
Since π(w(v)) is the average of J′ and π(v) is the average of J by Lemma 1.4.4,
the assertion follows.

1.4.7 Lemma ([Car72, 13.1.1]). For all w ∈ W ′, we have w(F) = F, and the action of
W ′ on F is faithful.

Proof. For all w ∈ W ′ and all u ∈ F = { v ∈ V | τ(v) = v }, we have

τ
(
w(v)

)
= w

(
τ(v)

)
= w(v),

so w(F) ⊆ F. Since W ′ consists of automorphism of V, the first assertion follows.
The remaining part of the proof can be found in [Car72, 13.1.1].

1.4.8 Notation. Let J be any subset of ∆. We denote by WJ the subgroup of W
which is generated by { σα | α ∈ J }. This is the Weyl group of the root system
⟨J⟩R ∩ Φ with respect to the root base J, and we denote its longest element by wJ

0.

1.4.9 Lemma ([Car72, 13.1.2, 13.1.3]). The following hold:

(a) For any orbit J of ρ in ∆, the element wJ
0 lies in W ′, and its action on F agrees with

the one of σπ(α) for every α ∈ J.

(b) The set {wJ
0 | J orbit of ρ in ∆ } generates W ′.

The following result is a simple corollary of Lemma 1.4.9, but its specific form
will be useful later.

1.4.10 Lemma. Let α ∈ Φ, β ∈ ∆ and denote by J the orbit of β under ρ. Then

π
(
wJ

0(α)
)
= σπ(β)

(
π(α)

)
.

Proof. By Lemma 1.4.6, π(wJ
0(α)) = wJ

0(π(α)). By Lemma 1.4.9 (a),

wJ
0(π(α)) = σπ(β)(π(α)).

The assertion follows.

1.4.11 Proposition ([Car72, 13.2.2]). The following hold:
(a) Φ′ = π(Φ) is a root system in F which spans F.
(b) The set of indivisible elements in π(∆) is a root base of Φ′.

1.4.12 Proposition. The following hold:
(a) Let Π be a positive system in Φ. Then π(Π) is a positive system in Φ′.
(b) Every root base and every positive system in Φ′ is induced by a corresponding

object in Φ via π.
(c) Let α′, β′ ∈ Φ′ be non-proportional. Then there exists a positive system in Φ

which contains { γ ∈ Φ | π(γ) ∈ {α′, β′} }.



38 1. Preliminaries

Proof. Let Π be a positive system in Φ and denote by ∆̄ the corresponding root
base. By Proposition 1.4.11 (b), ∆′ := π(∆̄)indiv is a root base of Φ′. Now π(Π)
consists of positive linear combinations of ∆′ while π(−Π) consists of negative
linear combinations of ∆, and the disjoint union of these two sets is Φ′. Hence
π(Π) is a positive system in Φ′. This proves (a).

Now let Π′ be an arbitrary positive system in Φ′ and let Π be an arbitrary
positive system in Φ. By Proposition 1.3.6, there exists an element w of the Weyl
group of Φ′ such that Π′ = w(π(Π)). By (a), we can regard w as an element of
W ′. Hence by Lemma 1.4.6, w(π(Π)) = π(w(Π)). Thus Π′ is induced by the
positive system w(Π) in Φ. The assertion for root bases can be proven similarly,
so (b) holds.

Now let α′, β′ ∈ Φ′ be non-proportional. Then there exists a positive system
Π′ in Φ′ which contains α′ and β′. Denote by Π a positive system in Φ such that
π(Π) = Π′. Let α ∈ π−1(α′) ∩ Φ be arbitrary, and suppose for a contradiction
that α /∈ Π. Then α lies in −Π, so

α′ = π(α) ∈ π(−Π) = −Π′.

This contradicts the choice of Π′. Hence π−1(α′) ∩ Φ is contained in Π. In a
similar way, we can show that π−1(β′) ∩ Φ is contained in Π. This finishes the
proof.

1.4.13 Definition (Folding). The root system Φ′ is called a folding of Φ. We will
sometimes refer to the map π : Φ → Φ′ as a folding as well.



Chapter 2

Root Graded Groups: Definition
and General Observations

In this chapter, we introduce the protagonists of this work: Φ-graded groups
where Φ is an arbitrary root system. These are groups G together with a family
(Uα)α∈Φ of subgroups such that, technical details aside, two crucial properties
are satisfied: They satisfy some commutator relations and they have Weyl ele-
ments. These two conditions are relatively straightforward to define, and we will
separately introduce them in sections 2.1 and 2.2, respectively.

For technical reasons, the commutator relations and Weyl elements are not
enough to build a satisfactory theory of root graded groups. The reason for this is
that we want to decompose certain commutators [xα, xγ] in G (where α, γ are non-
proportional roots and xα ∈ Uα, xγ ∈ Uγ) as products x1 · · · xm where xi ∈ Uβi

and β1, . . . , βm are the roots in the root interval ]α, γ[Cox. For this decomposition
to exist and be unique, we have to assume that the product map (on the set of
roots ]α, γ[Cox) in G is bijective, which need not be the case in general. This should
be thought of as a non-degeneracy condition which any root graded group has to
satisfy.

Unfortunately, it is not at all clear how exactly this non-degeneracy condition
should be formulated. There are several possible candidates which seem like a
reasonable choice (and which we compare in Note 2.5.13). In order to understand
the situation better, we will first introduce and study the purely combinatorial
(that is, root-system-theoretic) notion of closed sets of roots in section 2.3. This
concept is indispensable for a proper study of the product maps in root graded
groups. In section 2.4, we will investigate several conditions which imply the
injectivity or surjectivity of certain product maps. The main result of this section
is a simple criterion which guarantees the bijectivity of all product maps on
closed sets of roots. This criterion serves as the third axiom for root graded
groups, which we can finally introduce in section 2.5. In section 2.6, we describe
a construction of Φ′-graded groups from Φ-graded groups for every folding
π : Φ → Φ′. In section 2.7, we discuss various special cases of root gradings
which have already been considered in the literature, and we summarise the
results which have been obtained.

2.1 Groups with Commutator Relations

2.1.1 Notation for this section. We denote by Φ an arbitrary root system.
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2.1.A Definition and Comments

We begin by introducing the notion of Φ-pregradings. Without further assump-
tions, this is not an interesting concept, but it allows us to avoid writing “family
of subgroups of G” all the time.

2.1.2 Definition (Pregradings). Let G be a group. A Φ-pregrading of G is a family
(Uα)α∈Φ consisting of subgroups of G. These subgroups are called the root groups
of G. For any subset S of Φ, we denote by US the subgroup of G which is
generated by (Uα)α∈S. For any word ᾱ = (α1, . . . , αk) over Φ, we define Uᾱ :=
Uα1 × · · · × Uαk . If Φ is of rank-2 and Z → Φ, i 7→ αi is a fixed rank-2 labeling of
Φ (in the sense of Definition 1.2.38), then we put Ui := Uαi for all i ∈ Z.

2.1.3 Convention. Let G be a group with a Φ-pregrading (Uα)α∈Φ. If X is a
property that roots may or may not have, we will also refer to X as a property
of the root groups. For example, a root group Uα is called indivisible if α is an
indivisible root. Most of the time, we will use this convention when refering to
root lengths: A root group Uα is called short or long if α is short or long.

2.1.4 Definition (Group with commutator relations). Let G be a group with a
Φ-pregrading (Uα)α∈Φ. We say that G has Φ-commutator relations with root groups
(Uα)α∈Φ if the following conditions are satisfied:
(RGG-Com) For all distinct, non-proportional roots α, β, we have

[Uα, Uβ] ⊆ U]α,β[Cox
.

(RGG-Div) If α is a root such that 2α is also a root, then

U2α ⊆ Uα, [Uα, U2α] = {1G} and [Uα, Uα] ⊆ U2α.

2.1.5 Definition (Group with crystallographic commutator relations). Let G be
a group which has Φ-commutator relations with root groups (Uα)α∈Φ. We say
that G has crystallographic Φ-commutator relations if the following stronger version
of (RGG-Com) is satisfied:
(RGG-Com-cry) For all distinct, non-proportional roots α, β, we have

[Uα, Uβ] ⊆ U]α,β[.

This definition merits several comments.

2.1.6 Note (Commutators for opposite and equal roots). We have no commutator
relations for [Uα, U−α] and [Uα, Uα] unless 2α is a root, in which case [Uα, Uα] ⊆
U2α. However, if the additional axioms of a Φ-graded group (see Definition 2.5.2)
are satisfied, the latter problem disappears: We will show (in Propositions 5.4.9,
7.6.2 and 9.5.2) that for all irreducible crystallographic root systems Φ of rank at
least 3 as well as for A2, any Φ-graded group satisfies [Uα, Uα] = {1G} (which
means that Uα is abelian) for all roots α for which 2α is not a root. The same holds
for root systems of type H because every root in H3 is contained in a parabolic
subsystem of type A2.

2.1.7 Note (The crystallographic assumption). The notion of crystallographic
commutator relations can be defined even when Φ is not crystallographic. In
practice, however, we will not consider crystallographic commutator relations if
Φ is not crystallographic. Conversely, we will not consider non-crystallographic
commutator relations if Φ is crystallographic. The only exception to this rule will
be section 7.4, where we study non-crystallographic B2-gradings. However, this
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is not due to a genuine interest in non-crystallographic Bn-gradings, but rather
motivated by the fact that certain results about crystallographic BC2-gradings can
be more easily formulated in the language of non-crystallographic B2-gradings.

Recall from Note 1.2.33 that if Φ is crystallographic, then the extra assumption
of crystallographic commutator relations says precisely that for some pairs (α, γ)
for roots with ]α, γ[Cox = {β} for some root β, we have the trivial commutator
relation [Uα, Uγ] = {1} instead of the commutator relation [Uα, Uγ] ⊆ Uβ.

2.1.8 Note (Commutator relations in the sense of Loos-Neher). The specific
terminology of “groups with Φ-commutator relations” appears for the first time
in [Fau83, p. 183]. It also appears in [LN19] by Loos-Neher, who cite [Fau77]
as their inspiration (see [LN19, p. 72]). However, our Definitions 2.1.4 and 2.1.5
differ from the one in [LN19, p. 23] in a few aspects. First of all, while we restrict
our attention to root systems Φ, Loos-Neher define arbitrary R-gradings where R
is any subset of a free abelian group X such that R contains 0 and spans X. Many
of the facts and concepts that we introduce in this chapter are studied in this
broad generality in [LN19, Chapter 1]. In particular, R is allowed to be infinite.

However, when we restrict our attention to reduced root systems, we see
that our definition is actually less restrictive than the one in [LN19]. For once,
Neher-Loos only consider what we call crystallographic commutator relations.
Further, the commutator axiom in [LN19] says that [Uα, Uβ] ⊆ U]α,β[ for any
so-called nilpotent pair (α, β), which includes the case α = β. In our notation,
the interval ]α, α[ is not defined (see Definition 1.2.30), but in the notation of
[LN19], we have ]α, α[ = N≥2α ∩ Φ. For reduced root systems, this set is empty.
Thus the commutator axioms in [LN19] require that each root group is abelian
if Φ reduced, which (for the root systems we are interested in) is redundant by
Note 2.1.6.

2.1.9 Note (Reducedness). The axiom (RGG-Div) can be omitted if Φ is reduced.
Recall from Theorem 1.2.53 that the only crystallographic root system which is
not reduced is BCn. In fact, (RGG-Div) is specifically tailored for this root system.
For root systems which are neither reduced nor crystallographic, the axioms
should be modified.

2.1.10 Note (Commutator formulas). Axioms (RGG-Com) and (RGG-Com-cry)
can be seen as “global” conditions: They tell us what happens on the level on
root subgroups. However, they provide no “local” information: They do not give
a formula for the commutator of two specific root group elements xα ∈ Uα and
xβ ∈ Uβ. Our main goal for root graded groups is to find such formulas for all
pairs (α, β). See Goal 2.5.4 for more details.

2.1.11 Note (The rank-1 case). Assume that Φ = A1. In other words, Φ consists
of exactly two roots α and −α. Then there exist no non-proportional roots in
Φ, so that every A1-pregrading has A1-commutator relations. For this reason,
root gradings of type A1 (or of type A1 × · · · × A1) are much more difficult to
understand than root gradings for other root systems.

As a consequence, we often have to assume that every root in Φ is contained
in a root subsystem which is not of type An

1 for some n ∈ N+. Examples in which
this assumption is explicit are Lemmas 2.2.5 and 2.2.20. In many other situations,
this assumption is not made explicit because it is always satisfied for irreducible
root systems of rank at least 2.

Closed root subsystems induce subgroups with commutator relations in a
natural way. We will extend this result to root graded groups in Proposition 2.5.11.
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2.1.12 Lemma. Let G be a group which has Φ-commutator relations with root groups
(Uα)α∈Φ and let Φ′ be a subset of Φ. Denote by H the group which is generated
by (Uα)α∈Φ′ . If Φ′ is a closed root subsystem, then H has Φ′-commutator relations
with root groups (Uα)α∈Φ′ . If Φ′ is a crystallographically closed root subsystem and
the commutator relations of G are crystallographic, then H has crystallographic Φ′-
commutator relations with root groups (Uα)α∈Φ′ .

Proof. This follows from the fact that the interval between α, β ∈ Φ′ does not
depend on whether we consider α, β as elements of Φ or as elements of Φ′.

2.1.B Commutator and Product Maps

We will often be faced with situations in which we want to decompose a com-
mutator [x1 · · · xn, y1 · · · ym], where x1, . . . , xn ∈ Uα and y1, . . . , ym ∈ Uγ for non-
proportional roots α, γ, into a product of of more “basic” elements, for example
into commutators [xi, yj]. Such a decomposition is always possible, but its na-
ture depends on the number of roots in ]α, γ[Cox. If ]α, γ[Cox is empty, then
[x1, . . . , xn, y1, . . . , ym] = 1G. The following Lemma 2.1.13 describes the situa-
tion in which ]α, γ[indiv

Cox contains exactly one element. This is always the case in
simply-laced root systems, and even in the non-simply-laced case, we can find
many pairs of roots (α, γ) which satisfy this condition.

2.1.13 Lemma. Let G be a group which has Φ-commutator relations with root groups
(Uα)α∈Φ and let α, γ be roots such that ]α, γ[indiv

Cox has exactly one element. Then we have

[xαyα, xγ] = [xα, xγ][yα, xγ] and [xα, xγyγ] = [xα, yγ][xα, xγ]

for all xα, yα ∈ Uα and xγ, yγ ∈ Uγ. In particular,

[x−1
α , xγ] = [xα, xγ]

−1 = [xα, x−1
γ ]

for all xα ∈ Uα and xγ ∈ Uγ.

Proof. Denote the unique root in ]α, γ[indiv
Cox by β and let xα, yα ∈ Uα, xγ, yγ ∈ Uγ.

Then Relation 1.1.11 (vii) says that

[xαyα, xγ] = [xα, xγ]
yα [yα, xγ] and [xα, xγyγ] = [xα, yγ][xα, xγ]

yα .

Observe that [xα, xγ] lies in Uβ by (RGG-Com) and that α is adjacent to β. It
follows that yα commutes with [xα, xγ], so the first assertion follows. In particular,
we have

1G = [1G, xγ] = [xαx−1
α , xγ] = [xα, xγ][x−1

α , xγ],

so [xα, xγ]−1 = [x−1
α , xγ]. Similarly, we can see that [xα, xγ]−1 = [xα, x−1

γ ].

2.1.14 Remark. Lemma 2.1.13 has the minor flaw that the order of the commuta-
tors in the formula [xα, xγyγ] = [xα, yγ][xα, xγ] is reversed. In practice, however,
it will always be the case that either Uβ or Uγ is abelian, which implies that
[xα, xγyγ] = [xα, xγ][xα, yγ].

If ]α, γ[indiv contains more than one root, then the situation is more delicate.
Before we can consider this, we have to introduce some notation.

2.1.15 Notation (Product map). Let G be a group with a Φ-pregrading (Uα)α∈Φ,
let k be a positive integer and let α1, . . . , αk be pairwise distinct roots. The product
map on Uα1 × · · · × Uαk (or simply the product map on (α1, . . . , αk)) is the map

Uα1 × · · · × Uαk → ⟨Uα1 ∪ · · · ∪ Uαk⟩, (g1, . . . , gk) 7→ g1 · · · gk.
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2.1.16 Definition. Let G be a group which has Φ-commutator relations with
root groups (Uα)α∈Φ. Let α, β be non-proportional, indivisible roots and denote
by (α1, . . . , αk) the unique interval ordering of [α, β]indiv

Cox such that α1 = α and
αk = β (see Remark 1.2.35). Assume that the product map on Uα2 × · · · × Uαk−1 is
bijective. (We will see in Remark 2.4.16 that this assumption is always satisfied if
G is rank-2-injective in the sense of Definition 2.1.19.) Then we denote by(

[ · , · ]αi : Uα × Uβ → Uαi , (xα, xβ) 7→ [xα, xβ]αi

)
i∈[2,k−1]

the unique family of maps with the property that

[xα, xβ] = [xα, xβ]α2 · · · [xα, xβ]αk−1

for all xα ∈ Uα, xβ ∈ Uβ. In other words, for each i ∈ [2, k − 1] we denote by
[xα, xβ]αi the unique element of Uαi with the property that

[xα, xβ] ∈ Uα2 · · ·Uαi−1 [xα, xβ]αi Uαi+1 · · ·Uαk−1 . (2.1)

The surjectivity of the product map in Definition 2.1.16 guarantees the exis-
tence of an element [xα, xβ]αi with the property (2.1), and the injectivity of the
product map guarantees that it is uniquely determined. Before we can continue,
there is a subtlety in Definition 2.1.16 that we have to point out.

2.1.17 Note (on Definition 2.1.16). We emphasise that [ · , · ]αi is a map on the
product Uα × Uβ (on the two arguments xα and xβ), not a map on U]α,β[Cox

(on
the argument [xα, xβ]). The reason for this is that we fix an interval ordering of
[α, β]indiv

Cox in Definition 2.1.16, and this is only possible (without ambiguity of
choice) if we declare which of the roots α, β should be the first one and which
should be the last one. In other words, we cannot (without ambiguity) define a
family of maps (

U]α,β[Cox
→ Uαi , g 7→ gαi

)
i∈[2,k−1]

because it is not clear whether the elements gα2 , . . . , gαk−1 are defined by the
property g = gα2 · · · gαk−1 or by the property g = gαk−1 · · · gα2 .

2.1.18 Remark. The notational subtleties of Note 2.1.17 are insubstantial if k = 4
because the root groups Uα2 and Uα3 commute by (RGG-Com). Indeed, it follows
from this that for all g ∈ ⟨Uα2 ∪ Uα3⟩ there exist unique elements g2 ∈ Uα2 and
g3 ∈ Uα3 such that g = g2g3 = g3g2. Since closed root intervals in crystallographic
root systems of rank at least 3 contain at most 4 indivisible roots, this means that
we can largely ignore the implications of Note 2.1.17 in this work.

We continue to assume that k = 4. Then for all x1 ∈ Uα1 , x4 ∈ Uα4 and
i ∈ { 2, 3 }, it follows from the previous remarks and Relation 1.1.11 (vi) that
[x1, x4]αi = [x4, x1]

−1
αi

because

[x1, x4] = [x4, x1]
−1 =

(
[x4, x1]α3 [x4, x1]α2

)−1
= [x4, x1]

−1
α2
[x4, x1]

−1
α3

with [x4, x1]
−1
α3

∈ Uα3 and [x4, x1]
−1
α2

∈ Uα2 . In other words, “([x4, x1]
−1)αi =

([x4, x1]αi)
−1” (which we put in quotes because the notation ([x4, x1]

−1)αi is not
actually defined by Note 2.1.17).

Using Definition 2.1.16, we can prove analogues of Lemma 2.1.13 for the
case that ]α, γ[indiv

Cox contains more than one element. These formulas involve
not only basic commutators [xi, yj] but also nested commutators and the maps
from Definition 2.1.16. We will derive them for the case that ]α, γ[indiv

Cox contains
exactly 2 elements in Lemmas 7.4.4, 7.5.3 and 9.4.3. Since these formulas will be
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used a lot, it is essential that the bijectivity assumption on the product map in
Definition 2.1.16 is always met. We will see in Lemma 2.4.15 that we automatically
have surjectivity, but injectivity need not hold in general. Thus we introduce the
following condition.

2.1.19 Definition (Rank-2-injective). Let G be a group. A Φ-pregrading (Uα)α∈Φ
of G is said to be rank-2-injective if for all parabolic root subsystems Φ′ of Φ of
rank 2, all positive systems Π′ in Φ′ and all interval orderings (α1, . . . , αk) of
(Π′)indiv, the product map on (α1, . . . , αk) is injective.

The following result is an easy consequence of rank-2-injectivity.

2.1.20 Lemma. Let G be a group with a Φ-pregrading (Uα)α∈Φ. If α1, . . . , αk are
pairwise distinct roots such that the product map on (α1, . . . , αk) is injective, then for all
distinct i, j ∈ [1, k], we have Uαi ∩ Uαj = {1G}. In particular, if G is rank-2-injective,
then Uα ∩ Uβ = {1G} for all non-proportional roots α, β.

Proof. Let i, j ∈ [1, k] be distinct and let x ∈ Uαi ∩ Uαj . Denote by φi(x) the
tuple (1G, . . . , 1G, x, 1G, . . . , 1G) with x at position i, and define φj(x) in a similar
way. Then both φi(x) and φj(x) are mapped to x under the product map on
(α1, . . . , αk). By the injectivity of this map, it follows that x = 1G, as desired.

2.1.C Generalised Commutator Relations

Groups with commutator relations satisfy a commutator relation of the form

[Uα, Uβ] ⊆ U]α,β[Cox
.

The goal of this subsection is to derive a stronger formula of the form

[UA, UB] ⊆ U]A,B[Cox

where A, B are subsets of Φ satisfying some conditions. This formula is called the
generalised commutator relation. We closely follow the arguments in [LN19, 3.9 (a)],
but we have to be careful because of the differing conventions concerning root
intervals (see Note 1.2.31).

2.1.21 Definition (Commutator set). Let A, B be two subsets of Φ. Then the sets

]A, B[Cox := Φ ∩


n

∑
i=1

λiαi +
m

∑
j=1

µjβ j

∣∣∣∣∣∣∣
n, m ∈ N+,

λ1, . . . , λn, µ1, . . . , µm ∈ R>0,
α1, . . . , αn ∈ A, β1, . . . , βm ∈ B

,

]A, B[ := Φ ∩
{

n

∑
i=1

λiαi +
m

∑
j=1

µjβ j

∣∣∣∣∣ n, m ∈ N+, λ1, . . . , λn, µ1, . . . , µm ∈ N+,
α1, . . . , αn ∈ A, β1, . . . , βm ∈ B

}
are called the commutator set of (A, B) and the crystallographic commutator set of
(A, B), respectively.

2.1.22 Remark (Root intervals as commutator sets). Let α, β be non-proportional
roots. Then

]α, β[ = ]{α}, {β}[ and ]α, β[Cox = ]{α}, {β}[Cox,

so root intervals are a special case of commutator sets. While root intervals are
defined only for pairs of non-proportional roots, there is no such restriction for
commutator sets. For example, we have

]{α}, {α}[ = Φ ∩ N≥2α and ]{α}, {α}[Cox = Φ ∩ R>0α.
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Note that the set ]{α}, {α}[ is precisely the set ]α, α[ in the notation of [LN19], see
Note 1.2.31.

2.1.23 Remark. Let A, A′, B, B′ be subsets of Φ such that A ⊆ A′ and B ⊆ B′.
Then ]A, B[ ⊆ ]A′, B′[ and ]A, B[Cox ⊆ ]A′, B′[Cox. Further, if C := ]A, B[, then
]A ∪ B, C[ ⊆ C, and similarly for non-crystallographic commutator sets.

We begin with an auxiliary lemma from group theory.

2.1.24 Lemma ([LN19, 3.7]). Let G be a group, let H be a subgroup and let X1, X2
be subsets of G normalising H (meaning that Hx = H for all x ∈ X1 ∪ X2) such that
[X1, X2] ⊆ H. Denote by G1 and G2 the groups generated by X1 and X2, respectively.
Then G1, G2 normalise H and they satisfy [G1, G2] ⊆ H.

Proof. It is clear that X−1
1 and X−1

2 normalise H as well. Hence G1 and G2 nor-
malise H. Further, it follows from Relation 1.1.11 (vii) that

1G = [x−1
1 x1, x2] = [x−1

1 , x2]
x1 [x1, x2]

for all x1 ∈ X1, x2 ∈ X2, which implies that

[x−1
1 , x2] = ([x1, x2]

−1)x−1
1 ∈ Hx−1

1 = H.

Thus we also have [X−1
1 , X2] ⊆ H. In a similar way, it can be shown that

[X1, X−1
2 ] ⊆ H and [X−1

1 , X−1
2 ] ⊆ H. Therefore, by replacing X1 with X1 ∪ X−1

1
and X2 with X2 ∪ X−1

2 , we can assume that G1 and G2 are generated by X1 and
X2 as monoids, respectively.

Now let x1, y1 ∈ X1 and x2 ∈ X2. Then again by Relation 1.1.11 (vii), we have
[x1y1, x2] = [x1, x2]y1 [y1, x2] where [x1, x2] and [y1, x2] lie in H by assumption.
Further, since X1 normalises H, we also have that [x1, x2]y1 lies in H. Thus
[x1y1, x2] lies in H. By a straightforward induction using a similar argument, we
conclude that [g1, g2] lies in H for all g1 ∈ G1 and g2 ∈ G2, as desired.

2.1.25 Lemma ([LN19, 3.9]). Let G be a group with a Φ-pregrading (Uα)α∈Φ and let
A, B, C be subsets of Φ. Assume that for all α ∈ A, β ∈ B, we have [Uα, Uβ] ⊆ UC and
that for all α ∈ A, β ∈ B, γ ∈ C, we have [Uα, Uγ] ⊆ UC and [Uβ, Uγ] ⊆ UC. Then
UA and UB normalise UC and we have [UA, UB] ⊆ UC.

Proof. Put X1 :=
⋃

α∈A Uα, X2 :=
⋃

β∈B Uβ and H := UC. The first assumption on
commutation relations in G yields that [X1, X2] ⊆ H and the second one yields
that X1 and X2 normalise H. Thus the assertion follows from Lemma 2.1.24.

2.1.26 Remark (Cones). Let W be a finite-dimensional real vector space and let C
be a subset of W. Then C is called a cone if it is closed under addition and scalar
multiplication with R>0. The cone of C, denoted by Cone(C), is the smallest cone
which contains C. Equivalently, it is the convex hull of R>0C, and it is also the
additive semigroup generated by R>0C. Note that a cone may, but need not
contain 0W .

2.1.27 Proposition (Generalised commutator relation, [LN19, 3.9]). Let G be a
group with a Φ-pregrading (Uζ)ζ∈Φ and let A, B be subsets of Φ such that

Cone(A) ∩ Cone(−B) = ∅.

Assume that Φ is reduced or crystallographic and that for all roots ζ for which 2ζ is not
a root, the root group Uζ is abelian. Then the following hold:
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(a) If G has Φ-commutator relations with root groups (Uζ)ζ∈Φ, then

[UA, UB] ⊆ U]A,B[Cox
.

(b) If G has crystallographic Φ-commutator relations with root groups (Uζ)ζ∈Φ, then

[UA, UB] ⊆ U]A,B[.

Proof. We only consider the case that G has Φ-commutator relations with root
groups (Uζ)ζ∈Φ. The other assertion can be proven in the same way. Recall from
Lemma 1.2.28 that the only positive multiples of a root α which can possibly be
a root are 1

2 α, α and 2α. Our goal is to verify the conditions in Lemma 2.1.25 for
C := ]A, B[Cox.

Let α ∈ A and β ∈ B. If α ̸= β ̸= −α, then it follows from the commutator
relations of G and Remark 2.1.23 that

[Uα, Uβ] ⊆ U]α,β[Cox
⊆ UC.

If α = β, then

[Uα, Uβ] ⊆
{
{1G} if 2α /∈ Φ,
U2α if 2α ∈ Φ

by assumption and Axiom (RGG-Div), so [Uα, Uβ] ⊆ UC in any case. Further,
the case α = −β cannot occur because A ∩ (−B) ⊆ Cone(A) ∩ Cone(−B) = ∅.
Thus we have [Uα, Uβ] ⊆ UC for all α ∈ A and β ∈ B.

Now let α ∈ A and γ ∈ C = ]A, B[Cox. Again, if α ̸= γ ̸= −α, then

[Uα, Uγ] ⊆ U]α,γ[Cox
⊆ U]A,C[Cox

⊆ UC

by Remark 2.1.23. If α = γ, then

[Uα, Uγ] ⊆
{
{1G} if 2α /∈ Φ,
U2α if 2α ∈ Φ

by the same argument as in the previous paragraph, so [Uα, Uγ] ⊆ UC in any
case. Now suppose for a contradiction that α = −γ. By the definition of C, there
exist n, m ∈ N+, λ1, . . . , λn, µ1, . . . , µm ∈ R>0, α1, . . . , αn ∈ A and β1, . . . , βm ∈ B
such that γ = ∑n

i=1 λiαi + ∑m
j=1 µjβ j. Hence

α +
n

∑
i=1

λiαi = −
m

∑
j=1

µjβ j ∈ Cone(A) ∩ Cone(−B) = ∅,

which is impossible. We conclude that [Uα, Uγ] ⊆ UC for all α ∈ A and γ ∈ C. By
interchanging the roles of A and B, we observe that [Uβ, Uγ] ⊆ UC for all β ∈ B
and γ ∈ C as well. Hence the conditions of Lemma 2.1.25 are satisfied, and it
follows that [UA, UB] ⊆ U]A,B[Cox

.

2.1.28 Remark. Let Π be a positive system in Φ. Then Cone(Π) ∩ Cone(−Π) =
∅. It follows that for any subsets A, B of Π, the assumption in Proposition 2.1.27
that Cone(A) ∩ Cone(−B) = ∅ is satisfied.

Recall from Note 2.1.6 that for Φ-graded groups, the assumption in Proposi-
tion 2.1.27 that certain root groups are abelian is automatically satisfied if Φ is of
rank at least 3. However, this is a non-trivial fact which we still have to prove.

2.1.29 Proposition. Let W be a subspace of the Euclidean space V surrounding Φ and
denote by π : V → W some projection onto W. (That is, φ is a surjective homomorphism
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which fixes W pointwise, but it is not necessarily orthogonal.) Let G be a group which
has (crystallographic) Φ-commutator relations with root groups (Uα)α∈Φ, and put

Ûα′ := ⟨Uα | α ∈ Φ, π(α) = α′⟩
for all α′ ∈ Φ′. Assume that Φ′ := π(Φ) is a reduced root system in W and that for
all non-proportional α′, β′ ∈ Φ′, there exists a positive system Π in Φ which contains
Φ ∩ (π−1(α′) ∪ π−1(β′)). Assume further that Φ is reduced or crystallographic and
that for all roots ζ for which 2ζ is not a root, the root group Uζ is abelian. Then G also
has (crystallographic) Φ′-commutator relations with root groups (Ûα′)α′∈Φ′ .

Proof. We prove only the crystallographic assertion. The proof for the non-
crystallographic assertion is similar. Let α′, β′ be non-proportional roots in
Φ′. Put A := π−1(α′) ∩ Φ and B := π−1(β′) ∩ Φ. By assumption, there ex-
ists a positive system containing A ∪ B, which by Remark 2.1.28 implies that
Cone(A) ∩ Cone(−B) = ∅. Thus it follows from Proposition 2.1.27 that

[Ûα′ , Ûβ′ ] = [UA, UB] ⊆ U]A,B[.

For any γ ∈ Φ, we have Uγ ⊆ Ûπ(γ), so U]A,B[ ⊆ Ûπ(]A,B[). Further,

]α′, β′[ = ]π(α), π(β)[ = Φ′ ∩ { nπ(α) + mπ(β) | n, m ∈ N+ }
= Φ′ ∩ π({ nα + mβ | n, m ∈ N+ })

and

π(]α, β[) = π
(
Φ ∩ { nα + mβ | n, m ∈ N+ }

)
= Φ′ ∩ π

(
Φ ∩ { nα + mβ | n, m ∈ N+ }

)
⊆ Φ′ ∩ π

(
{ nα + mβ | n, m ∈ N+ }

)
.

Hence π(]α, β[) is a subset of ]α′, β′[. Altogether, we infer that

[Ûα′ , Ûβ′ ] ⊆ U]A,B[ ⊆ Ûπ(]A,B[) ⊆ Û]α′,β′[,

which proves Axiom (RGG-Com-cry). Further, Axiom (RGG-Div) is empty by
the assumption that Φ′ is reduced. This finishes the proof.

2.1.30 Note. Let everything be as in Proposition 2.1.29, except that Φ and Φ′ are
not assumed to be root systems. (The notion of “positive systems in Φ and Φ′” is
defined exactly as in 1.2.19.) Then the same proof as above shows that the groups
(Ûα′)α′∈Φ′ satisfy the desired commutator relations.

2.2 Weyl Elements

2.2.1 Notation for this section. Unless otherwise specified, we denote by Φ an
arbitrary root system and by G a group which has Φ-commutator relations with
root groups (Uα)α∈Φ.

In this section, we study Weyl elements. The second axiom of root graded
groups will be that α-Weyl elements exist for all roots α.

2.2.A Definition and Basic Observations

2.2.2 Definition (Weyl elements, Weyl triples). Let G be a group with a Φ-
pregrading (Uα)α∈Φ.
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(a) Let α be any root. An α-Weyl element (in G) is an element wα ∈ U−αUαU−α

with the property that Uwα
β = Uσα(β) for all roots β. The set of all α-Weyl

elements is denoted by Mα.
(b) A Weyl element is an α-Weyl element for some root α.
(c) Let α be any root. An α-Weyl triple is a triple (a−α, bα, c−α) consisting of

a−α, c−α ∈ U−α and bα ∈ Uα such that the product a−αbαc−α is an α-Weyl
element, called the Weyl element corresponding to (a−α, bα, c−α).

(d) A Weyl triple is an α-Weyl triple for some root α.
(e) Let α be any root. An element bα ∈ Uα is called α-invertible if there exists

elements a−α, c−α ∈ U−α such that (a−α, bα, c−α) is an α-Weyl triple. We
denote the set of α-invertible elements of Uα by U♯

α. We will also write
Weyl-invertible in place of α-invertible if the root α is not specified.

(f) If Φ is of rank 2 and Z → Φ, i 7→ αi is a fixed rank-2 labeling of Φ (in the
sense of Definition 1.2.38), then we put U♯

i := U♯
αi

and Mi := Mαi for all
i ∈ Z.

2.2.3 Note. The terminology of “Weyl elements” appears for the first time in
[Fau83, p. 184], though of course these elements had already been considered
before in the contexts of Chevalley groups, algebraic groups and RGD-systems.
Many results about Weyl elements in a more general setting can be found in
[LN19, Section 5].

2.2.4 Note. The notion of Weyl elements does not appear to be useful in groups
without Φ-commutator relations. However, the way we have phrased Defini-
tion 2.2.2 allows us to discuss Weyl elements in groups which have not yet been
proven to have commutator relations.

Before we begin a proper investigation of Weyl elements, we observe that
under reasonable assumptions, the trivial element 1G is never α-invertible. These
assumptions will always be satisfied if Φ is irreducible of rank at least 2 and the
root groups form a root grading in the sense of Definition 2.5.2.

2.2.5 Lemma. Let G be a group which has Φ-commutator relations with root groups
(Uα)α∈Φ and let α be any root. Assume that there exists a root β such that (α, β) is
the root base of a closed rank-2 subsystem of Φ which is not of type A1 × A1. (In other
words, we assume that α is contained in a closed rank-2 root subsystem Φ′ of Φ which is
not of type A1 × A1.) Assume further that Uβ ∩ Uσα(β) = {1G} and that Uβ ̸= {1G}.
Then 1G /∈ U♯

α.

Proof. Assume that 1G is contained in U♯
α. Then there exist a−α, c−α ∈ U−α

such that a−αc−α is an α-Weyl element. In other words, there exists an α-Weyl
element wα which is contained in U−α. Choose an element xβ ∈ Uβ \ {1G}. Then
xwα

β ∈ Uσα(β). At the same time, since β is adjacent to −α, we have xwα
β = xβ ∈ Uβ.

By our assumptions, it follows that xβ = 1G, which is a contradiction.

The following properties of Weyl elements in Proposition 2.2.6 are elementary
and will be used all the time. Interestingly, their proof does not rely on the
Φ-commutator relations of G at all. We will prove more specific variations of
some of these statements in Lemmas 2.2.23 and 2.2.24 for groups which have
“unique Weyl extensions”.

2.2.6 Proposition. Let G be a group with a Φ-pregrading (Uα)α∈Φ. Then the following
statements hold for all roots α:
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(a) If (a−α, bα, c−α) is an α-Weyl triple, then (c−1
−α, b−1

α , a−1
−α) is an α-Weyl triple as

well (with corresponding Weyl element w−1
α ). In particular, the sets Mα and U♯

α

are stable under group inversion.
(b) Let wβ be a β-Weyl element for some root β. If (a−α, bα, c−α) is an α-Weyl

triple with corresponding Weyl element wα, then (a
wβ

−α, b
wβ
α , c

wβ

−α) is a σβ(α)-Weyl
triple with corresponding Weyl element w

wβ
α . In particular, M

wβ
α = Mσβ(α) and

(U♯
α)

wβ = U♯
σβ(α)

.

(c) If (a−α, bα, c−α) is an α-Weyl triple with corresponding Weyl element wα :=

a−αbαc−α, then (cw−1
α

−α , a−α, bα) and (bα, c−α, awα
−α) are (−α)-Weyl triples and all

three Weyl triples have the same corresponding Weyl element. In particular,
Mα = M−α.

(d) If (a−α, bα, c−α) is an α-Weyl triple, then a−α and c−α are (−α)-invertible.
(e) If α is a root such that 2α is also a root, then every 2α-Weyl triple is also an α-Weyl

triple.

Proof. For the whole proof, we fix an arbitrary root α and an α-Weyl triple
(a−α, bα, c−α), whose corresponding Weyl element we denote by wα. For (a),
let β be another arbitrary root. Since wα is an α-Weyl element, we have

Uwα

σα(β)
= Uβ, so Uw−1

α
β = Uσα(β).

Further, we have
w−1

α = c−1
−αb−1

α a−1
−α ∈ U−αUαU−α.

Altogether, we conclude that (c−1
−α, b−1

α , a−1
−α) is an α-Weyl triple with correspond-

ing Weyl element w−1
α . In particular, b−1

α lies in U♯
α. This proves (a). Using that

σβσασβ = σ(ασ(β)) by Remark 1.2.6, assertion (b) can be proven in a similar way.
We turn to (c). A simple computation, using only the definition of conjugation

in groups, shows that

bαc−αawα
−α = wα = cw−1

α
−α a−αbα.

Further, awα
−α and cw−1

α
−α lie in Uα and σ−α = σα, so it follows that (cw−1

α
−α , a−α, bα) and

(bα, c−α, awα
−α) are (−α)-Weyl triples, both with corresponding Weyl element wα.

This proves (c), and (d) is a consequence of (c). Finally, (e) holds because U±2α is
contained in U±α by (RGG-Div).

2.2.7 Lemma. Assume that Φ is reduced. Let ∆ be a root base of Φ and assume that
there exists a δ-Weyl element wδ for each δ ∈ ∆. Then there exists an α-Weyl element for
each root α.

Proof. Let α be an arbitrary root. By Proposition 1.3.4, there exist δ, δ1, . . . , δn ∈ ∆
such that α = δσ(δ1···δn). Then it follows from Proposition 2.2.6 (b) that w

wδ1 ···wδn
δ is

an α-Weyl element, which finishes the proof.

2.2.8 Remark. Lemma 2.2.7 and its proof remain valid if Φ is of type BC and
∆ is the standard rescaled root base (see Remark 9.1.2). For proper root bases
of non-reduced root systems, however, it is not true: The existence of α-Weyl
elements does not imply the existence of 2α-Weyl elements.

2.2.9 Lemma. Assume that G is rank-2-injective. Let α, β, ξ be roots, let γ ∈ ]α, β[indiv
Cox

and let wξ be a ξ-Weyl element for some root ξ. Then we have

[xα, xβ]
wξ
γ = [xwξ

α , xwξ

β ]σξ (γ)
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for all xα ∈ Uα and all xβ ∈ Uβ. In particular,

[xα, xβ]
w2

ξ
γ = [x

w2
ξ

α , x
w2

ξ

β ]γ

for all xα ∈ Uα and all xβ ∈ Uβ.

Proof. Denote by (γ1, . . . , γk) be the unique interval ordering of [α, β]indiv
Cox such

that γ1 = α and γk = β, and let i ∈ [1, k] such that γ = γi. Then (γ
σ(ξ)
1 , . . . , γ

σ(ξ)
k )

is the unique interval ordering of [ασ(ξ), βσ(ξ)]indiv
Cox whose first element is ασ(ξ) and

whose last element in βσ(ξ). By the definition of [xα, xβ]γ, we have

[xα, xβ] ∈ Uγ1 · · ·Uγi−1 [xα, xβ]γUγi+1 · · ·Uγk

and [xα, xβ]γ ∈ Uγ. It follows that

[xwξ
α , xwξ

β ] = [xα, xβ]
wξ ∈ Uwξ

γ1 · · ·Uwξ
γi−1 [xα, xβ]

wξ
γ Uwξ

γi+1 · · ·Uwξ
γk

= U
γ

σ(ξ)
1

· · ·U
γ

σ(ξ)
i−1

[xα, xβ]
wξ
γ U

γ
σ(ξ)
i+1

· · ·U
γ

σ(ξ)
k

and [xα, xβ]
wξ
γ ∈ Uσξ (γ). This implies that [xwξ

α , xwξ

β ]σξ (γ) = [xα, xβ]
wξ
γ .

The following result is crucial in [TW02], and it will be an important tool in
our computations as well.

2.2.10 Proposition ([TW02, (6.4)]). Put n := |Φ|/2. Assume that Φ has rank 2
with n ≥ 3 and that G is rank-2-injective. Further, we fix a rank-2 labeling of Φ and
we will use Notation 2.2.2 (f). Let z ∈ Z, let b1 ∈ U♯

z+1 and let xn ∈ Uz+n. Let
a1+n, c1+n ∈ U♯

z+1+n such that (a1+n, b1, c1+n) is a (z + 1)-Weyl triple, and denote by
w1 the associated Weyl element. For all i ∈ [2, n − 1], we put xi := [b1, x−1

n ]z+i ∈ Uz+i,
so that [b1, x−1

n ] = x2 · · · xn−1. Then the following hold:
(a) xw1

n = x2 = [b1, x−1
n ]z+2. In particular, x2 lies in U♯

z+2 if xn lies in U♯
z+n.

(b) [x2, c−1
1+n] = x3 · · · xn.

Proof. Put w := w1 = a1+nb1c1+n. Since

[a−1
1+n, x−1

n ] ∈ [Uz+n+1, Uz+n] = {1G},

it follows from Relation 1.1.11 (viii) that

[b1, x−1
n ] = [a−1

1+nwc−1
1+n, x−1

n ] = [wc−1
1+n, x−1

n ].

Therefore,

x2 · · · xn = [b1, x−1
n ]xn = [wc−1

1+n, x−1
n ]xn =

(
c1+nw−1xnwc−1

1+nx−1
n
)
xn

= c1+nxw
n c−1

1+n = xw
n (xw

n )
−1c1+nxw

n c−1
1+n = xw

n [x
w
n , c−1

1+n].

Note that c1+n lies in Uz+n+1 and that xw
n lies in

Uw
z+n = Uw1

z+n = U2(z+1)+n−(z+n) = Uz+2

by Remark 1.2.37. Thus [xw
n , c−1

1+n] lies in U[z+3,z+n]. Therefore, it follows from

x2x3 · · · xn = xw
n [x

w
n , c−1

1+n]

and the rank-2-injectivity of G that x2 = xw
n and x3 · · · xn = [xw

n , c−1
1+n] = [x2, c−1

1+n].
This finishes the proof.

2.2.11 Note. Special cases of Proposition 2.2.10 for specific values of n can also
be proven in a slightly different way. We will see this in Lemmas 5.4.2 and 7.4.5.
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We will also perform a similar computation in Lemma 7.5.12 for a pair of roots
which does not form a root base.

2.2.B Balanced Weyl Triples

Any Weyl triple (a, b, c) is associated with four elements of G: a, b, c and w := abc.
These four elements are related by the equation w = abc, so in particular, the
knowledge of any three of these group elements determines the missing fourth
element. We now investigate under which conditions we can find more relations
between these four elements.

2.2.12 Definition (Balanced Weyl triple). A Weyl triple (a, b, c) with correspond-
ing Weyl element w := abc is called weakly balanced if a = c, and it is called
balanced if, in addition, it satisfies the equivalent conditions of the following
Lemma 2.2.14.

2.2.13 Note. We will also refer to the Weyl element w in Definition 2.2.12 as
(weakly) balanced if the corresponding conditions are satisfied, but this is ac-
tually abuse of notation: In general, the Weyl triple (a, b, c) is not necessarily
uniquely determined by the Weyl element abc. (For examples, see Remarks 7.3.14
and 9.3.12.) However, it will always be clear from the context what we mean.

2.2.14 Lemma ([LN19, 5.15]). Let α be a root and let (a−α, bα, a−α) be a weakly balanced
α-Weyl triple with corresponding Weyl element wα := a−αbαa−α. Then the following
statements are equivalent:

(a) bwα
α = a−α.

(b) awα
−α = bα.

(c) wα = bαa−αbα.

Proof. We know from Proposition 2.2.6 (c) that the Weyl elements w′
α := aw−1

α
−α a−αbα

and w′′
α := bαa−αawα

−α are both equal to wα. Clearly, w′
α equals bαa−αbα if and only

if aw−1
α

−α = bα, so (a) is equivalent to (c). Similarly, w′′
α equals bαa−αbα if and only if

awα
−α = bα, so (b) is equivalent to (c) as well.

The notion of balanced Weyl triples is due to [LN19, 5.15] while the terminol-
ogy of weakly balanced Weyl triples is, to our knowledge, new. It is clear that
in a weakly balanced Weyl triple, the knowledge of two of the elements a, b and
w := aba is enough to reconstruct the third one.

2.2.15 Remark. If (a−α, bα, a−α) is a balanced α-Weyl triple with associated Weyl
element wα, then

bw2
α

α = aw−α
−α = bα.

A natural question to ask is whether weakly balanced Weyl triples are auto-
matically balanced. We will see in Lemma 2.2.24 (e) that that this is true if the
group has unique Weyl extensions. This extra assumptions will be satisfied in all
cases that we are interested in by Proposition 2.2.22. In more general situations,
however, the distinction between balanced and weakly balanced Weyl triples is
relevant. Still, we make the following observation.

2.2.16 Proposition. If α is a root such that all α-Weyl triples are weakly balanced, then
all α-Weyl triples are balanced. In particular, if all Weyl triples in G are weakly balanced,
then all Weyl triples in G are balanced.
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Proof. Let α be a root and assume that all α-Weyl triples are weakly balanced. If
there exist no α-Weyl triples, then there is nothing to prove, so we can assume
that there exists an α-Weyl triple (a−α, bα, a−α) with corresponding Weyl element
wα := a−αbαa−α. If (āα, b̄−α, c̄α) is a (−α)-Weyl triple, then (āwα

α , b̄wα
−α, c̄wα

α ) is an
α-Weyl triple by Proposition 2.2.6 (b), so it follows from our assumptions that
āwα

α = c̄wα
α . We conclude that all (−α)-Weyl triples are weakly balanced as well.

Since (bα, a−α, awα
−α) is a (−α)-Weyl triple by Proposition 2.2.6 (c), this implies that

bα = awα
−α, so (a−α, bα, a−α) is balanced. This finishes the proof.

2.2.17 Note. A second natural question is whether every Weyl triple is weakly bal-
anced. We will show in Proposition 5.4.10 that every Weyl element in A2-graded
groups is weakly balanced and thus, by Proposition 2.2.16 or Lemma 2.2.24 (e),
balanced. This implies that the same is true for all roots α in an arbitrary root
system which are contained in a (crystallographically) closed subsystem of type
A2. This holds, for example, for the long roots in Bn, the short roots in Cn (where
n ≥ 3) and for all roots in H3 and H4. However, it does not hold for the short
roots in Bn and the long roots in Cn. We can still prove that all Weyl elements
for such roots are balanced (see Lemmas 7.7.3 and 9.6.4), but this proof relies on
computations in the coordinatising structures of these groups. The only remain-
ing case are the short roots in BCn for n ≥ 3. For these roots, there do in fact exist
examples of Weyl elements which are not weakly balanced. We will encounter
them in Definition 9.3.10.

2.2.C Unique Weyl Extensions

2.2.18 Definition (Unique Weyl extensions). Let α ∈ Φ. We say that G has
unique α-Weyl extensions if for all bα ∈ U♯

α, there exist unique elements a−α, c−α ∈
U−α such that (a−α, bα, c−α) is an α-Weyl triple. If this is the case, we define
κα, λα : U♯

α → Uα to be the unique maps for which κα(bα)bαλα(bα) is an α-Weyl
element for all bα ∈ U♯

α. Further, we define µα : U♯
α → Mα, bα 7→ κα(bα)bαλα(bα).

We say that G has unique Weyl extensions if it has unique α-Weyl extensions for all
roots α. We will sometimes leave out the subscripts of the maps κ, λ and µ if they
are clear from the context.

The property of having unique Weyl extensions says precisely that a Weyl
triple is uniquely determined by its “middle element”. Under mild conditions on
the root system and the root groups, it is in fact true that a Weyl triple (a, b, c) is
uniquely determined by any of the elements a, b, c. This is the statement of the
following Lemma 2.2.20, which is a special case of [LN19, 5.20]. It is also proven
in a less general context in [TW02, (6.1)]. We begin the proof of Lemma 2.2.20
with an auxiliary lemma.

2.2.19 Lemma. Let α, β be roots such that Uα ∩ Uσβ(α) = {1G} and assume that there
exists a β-Weyl element wβ. Then if xα is an element of Uα which centralises Uβ and
U−β, it follows that xα = 1G.

Proof. By assumption, we have xα = x
wβ
α where the element on the left-hand

side lies in Uα while the element on the right-hand side lies in Uσβ(α). Since
Uα ∩ Uσβ(α) = {1G}, it follows that xα = 1G.

2.2.20 Lemma ([LN19, 5.20]). Let α be a root and let

u = (a−α, bα, c−α) and ũ = (ã−α, b̃α, c̃−α)
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be two α-Weyl triples. Assume that α is contained in a parabolic rank-2 closed subsystem
Φ′ of Φ which is not of type A1 × A1 and that there exists a β-Weyl element for some
root β ∈ Φ′ adjacent to α. Assume further that G is rank-2-injective. Then if one of the
three statements a−α = ã−α, bα = b̃α, c−α = c̃−α holds, it follows that u = ũ.

Proof. Denote by Φ′ a parabolic rank-2 subsystem of Φ and by β a root which are
chosen as in the assertion. Without loss of generality, we assume that Φ′ = Φ,
and we fix the unique rank-2 labeling i 7→ αi of Φ with α1 = α and α2 = β.
Further, we put m := |Φ|/2. Since Φ is not of type A1 × A1, we have m ≥ 3.

We begin with the case bα = b̃α. Put

wα := a−αbαc−α and w̃α := ã−αb̃α c̃−α

Then for ā−α := ã−αa−1
−α, c̄−α := c−1

−α c̃−α and for all xm ∈ Uαm , we have

xw̃α
m = xā−αwα c̄−α

m = (xwα
m )c̄−α = xwα

m [xwα
m , c̄−α].

Note that xw̃α
m and xwα

m lie in Uσα(αm) = Uα2 while [xwα
m , c̄−α] lies in U]α2,αm+1[Cox

=
Uα3 · · ·Uαm for all xm ∈ Uαm . Since the product map on ᾱ is injective, we conclude
that xw̃α

m = xwα
m and [xwα

m , c̄−α] = 1G for all xm ∈ Uαm . In particular, c̄−α centralises
Uwα

αm = Uα2 = Uβ. As α is adjacent to β (and thus −α is adjacent to −β), we also
have that c̄−α centralises U−β. Note further that U−α ∩ Uσα(β) = Uαm+1 ∩ Uαm =
{1G} by Lemma 2.1.20. Thus it follows from Lemma 2.2.19 that c̄−α = 1G. In other
words, c−α = c̃−α. Since (c−1

−α, b−1
α , a−1

−α) and (c̃−1
−α, b̃−1

α , ã−1
−α) are α-Weyl elements as

well (by Proposition 2.2.6 (a)), the same chain of arguments yields that a−α = ã−α,
too. This finishes the proof of the case bα = b′α.

Now assume that c−α = c̃−α. By Proposition 2.2.6 (c), we also have (−α)-
Weyl triples (bα, c−α, awα

−α) and (b̃α, c̃−α, ãw̃α
−α). Observe that the requirements of

the current lemma are also satisfied for −α in place of α because the existence
of a β-Weyl element implies the existence of a (−β)-Weyl element, again by
Proposition 2.2.6 (c). Thus the conclusion of the previous paragraph allows us to
infer that bα = b̃α and awα

−α = ãw̃α
−α. The second equation says precisely that

c−1
−αb−1

α a−1
−αa−αa−αbαc−α = c̃−1

−αb̃−1
α ã−1

−α ã−α ã−αb̃α c̃−α,

which implies that a−α = ã−α because we already know that bα = b̃α and c−α =
c̃−α. We conclude that u = ũ in this case as well. The case a−α = ã−α can be
proven in the same way by considering the (−α)-Weyl triples (cw−1

α
−α , a−α, bα) and

(c̃w̃−1
α

−α , ã−α, b̃α).

2.2.21 Note. Lemma 2.2.20 does not rule out the possibility of two distinct Weyl
triples having the same associated Weyl element. In fact, there exist short Weyl
elements in root gradings of types B and BC which have two distinct associated
Weyl triples: see Remarks 7.3.14 and 9.3.12. However, in A2-graded groups, every
Weyl element has a unique associated Weyl triple (Proposition 5.4.10 (b)).

For most applications, we can reduce Lemma 2.2.20 to the following state-
ment.

2.2.22 Proposition. Assume that Φ does not have an irreducible component of type A1,
that U♯

α ̸= ∅ for all roots α and that G is rank-2-injective. Then G has unique Weyl
extensions.

Proof. It follows from the assumption on Φ that every root is contained in a rank-
2 subsystem which is not of type A1 × A1. Thus the assertion is a consequence of
Lemma 2.2.20.
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We now investigate some properties of groups with unique Weyl extensions.
The following two statements are essentially reformulations of Proposition 2.2.6
using the maps µ, κ and λ. The proofs use the same arguments as in [TW02], but
in a more general context.

2.2.23 Lemma ([TW02, (6.2)]). Let α be a root such that G has unique α-Weyl exten-
sions. Then the following hold:

(a) µα(b−1
α ) = µα(bα)−1, κα(b−1

α ) = κα(bα)−1 and λα(b−1
α ) = λα(bα)−1 for all

bα ∈ U♯
α.

(b) Let β be a root for which there exists a β-Weyl element wβ. Then G has unique
σβ(α)-Weyl extensions. Further, we have

µσβ(α)(b
wβ
α ) = µα(bα)

wβ , κσβ(α)(b
wβ
α ) = κα(bα)

wβ , λσβ(α)(b
wβ
α ) = λα(bα)

wβ

for all bα ∈ U♯
α.

Proof. The first assertion follows from Proposition 2.2.6 (a) and the second one
from Proposition 2.2.6 (b).

2.2.24 Lemma ([TW02, (6.3)]). Let α be a root such that G has unique α-Weyl exten-
sions and assume that there exists bα ∈ U♯

α. Then G has unique (−α)-Weyl extensions,
the images of κα and λα are contained in U♯

−α and the following hold:
(a) µα(bα) = µ−α

(
κα(bα)

)
= µ−α

(
λα(bα)

)
.

(b) κ−α

(
λα(bα)

)
= bα = λ−α

(
κα(bα)

)
.

(c) λ−α

(
λα(bα)

)
= κα(bα)µα(bα).

(d) κ−α

(
κα(bα)

)
= λα(bα)µα(bα)−1

.
(e) If λα(bα) = κα(bα), then

bµα(bα)
α = κα(bα) = λα(bα).

That is, every weakly balanced α-Weyl triple is balanced.

Proof. It follows from Lemma 2.2.23 (b) that G has unique (−α)-Weyl extensions
(because σα(α) = −α) and from Proposition 2.2.6 (c) that the images of κα and λα

are contained in U♯
−α. We know from Proposition 2.2.6 (c) that(

bα, λα(bα), κα(bα)
µα(bα)

)
is a (−α)-Weyl triple with associated Weyl element µα(bα). This implies that

µ−α

(
λα(bα)

)
= µα(bα), κ−α

(
λα(bα)

)
= bα, λ−α

(
λα(bα)

)
= κα(bα)

µα(bα).

Similarly, we know from Proposition 2.2.6 (c) that(
λα(bα)

µα(bα)−1
, κα(bα), bα

)
is a (−α)-Weyl triple with associated Weyl element µα(bα), which implies that

µ−α

(
κα(bα)

)
= µα(bα), κ−α

(
κα(bα)

)
= λα(bα)

µα(bα)−1
, λ−α

(
κα(bα)

)
= bα.

This finishes the proof of the first four assertions. If λα(bα) = κα(bα), then it
follows from the previous assertions that

bα = κ−α

(
λα(bα)

)
= κ−α

(
κα(bα)

)
= λα(bα)

µα(bα)−1
.

Conjugating both sides by µα(bα), the final assertion follows.
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2.2.D The Braid Relations for Weyl Elements

In the proof of the parametrisation theorem in chapter 4, we will require that a
fixed family of Weyl elements satisfies the same braid relations as the Weyl group.
We will also use these relations in the computation of certain “blueprint rewriting
rules” which are needed to apply the blueprint technique. To formulate the braid
relations for Weyl elements, we first have to define ∆-systems of Weyl elements.

2.2.25 Notation (System of Weyl elements). Let ∆ be a rescaled root base of
Φ. A ∆-system of Weyl elements (in G) is a family (wδ)δ∈∆ such that wδ is a δ-
Weyl element for each δ ∈ ∆. Given such a ∆-system of Weyl elements, we put
w−δ := w−1

δ for any δ ∈ ∆ and wδ̄ := wδ1 · · ·wδm for any word δ̄ = (δ1, . . . , δm)
over ∆ ∪ (−∆) (with the convention that wδ̄ = 1G if δ̄ is the empty word).

2.2.26 Definition (Braid relations). Let ∆ be a rescaled root base of Φ and let
(wδ)δ∈Φ be a ∆-system of Weyl elements. We say that (wδ)δ∈∆ satisfies the braid rela-
tions (in G) if for any distinct α, β ∈ ∆, we have Po(σασβ)(wα, wβ) = Po(σασβ)(wβ, wα)

where o(σασβ) is the order of σασβ in the Weyl group. Similarly, we say that
(wδ)δ∈∆ satisfies the braid relations modulo Z(G) if the images of Po(σασβ)(wα, wβ)

and Po(σασβ)(wβ, wα) in G/Z(G) are equal for all distinct α, β ∈ ∆. Further, we
say that G satisfies the braid relations for Weyl elements (modulo Z(G)) if for any
root base ∆, each ∆-system of Weyl elements satisfies the braid relations (modulo
Z(G)).

For the purposes of the parametrisation theorem and the blueprint technique,
it would be sufficient to find one ∆-system of Weyl elements which satisfies the
braid relations modulo Z(G). In practice, we can prove a stronger statement
(Theorem 2.2.34): Any ∆-system of Weyl elements satisfies the braid relations
in G, provided that G has unique Weyl extensions and that it is rank-2-injective.
This is proven in [TW02, (6.9)] under less general assumptions, but the same
arguments remain valid in our context. We present this proof in the remaining
part of this subsection.

To avoid notational problems, we briefly rule out the trivial case of the root
system A1 × A1.

2.2.27 Proposition. Assume that Φ = A1 × A1. Let ∆ = { α, β } be a root base of
A1 × A1 and assume that there exist an α-Weyl element wα and a β-Weyl element wβ.
Then the family (wγ)γ∈∆ satisfies the braid relations.

Proof. We only have to show that wαwβ = wβwα, which is trivial because the
subgroup ⟨Uα, U−α⟩ commutes with ⟨Uβ, U−β⟩ by the commutator relations.

2.2.28 Setup. Put n := |Φ|/2. Assume that Φ is reduced of rank 2 with n ≥ 3 and
fix a rank-2 labeling of Φ (in the sense of Definition 1.2.38) as well as elements
u ∈ U♯

1, v ∈ U♯
n. Assume further that G is rank-2-injective and that it has unique

Weyl extensions for all roots. Define sequences (ek)k∈N+
and ( fk)k∈N+

in G by

e1 := u ∈ U♯
1, f1 := v ∈ U♯

n = U♯
1+(n−1) and

ek := f µ(ek−1)
k−1 ∈ U♯

k , fk := λ(ek−1) ∈ U♯
k+(n−1) for all k ∈ N≥2.

(All these elements are Weyl-invertible in the sense of Definition 2.2.2 (e) by
Lemma 2.2.23 (b) and Lemma 2.2.24.) For all k ∈ N+, we define

xk,1 := ek ∈ U♯
k and xk,n := fk ∈ U♯

k+(n−1).



56 2. Root Graded Groups: Definition and General Observations

Further, we put
xk,i := [ek, f−1

k ]k+i−1 ∈ Uk+i−1

for all k ∈ N+ and all i ∈ [2, n − 1]. Thus we have

[xk,1, x−1
k,n ] = xk,2 · · · xk,n−1 (2.2)

for all k ∈ N+. Finally, we put w0 := µ(v) and wk := µ(ek) for all k ∈ N+. Our
goal is to show that (w0, w1) satisfies the braid relations, that is, that Pn(w0, w1) =
Pn(w1, w0).

2.2.29 Lemma. Let everything be as in 2.2.28. Then

fk = xk,n = xk+1,n−1 = xk+2,n−2 = · · · = xk+n−1,1 = ek+n−1

for all k ∈ N+. In particular, fk = ek+n−1 for all k ∈ N+.

Proof. Let k ∈ N+ be arbitrary. By Proposition 2.2.10 (a) and the definition of
ek+1, we have

xk+1,1 = ek+1 = f µ(ek)
k = xµ(xk,1)

k,n = xk,2.

Further,

xk+1,n = fk+1 = λ(ek) = λ(xk,1).

Together with (2.2), these equations imply that

xk+1,2 · · · xk+1,n−1 = [xk+1,1, x−1
k+1,n] = [xk,2, λ(xk,1)

−1] = xk,3 · · · xk,n.

Since G is rank-2-injective, we infer that xk+1,i = xk,i+1 for all i ∈ [2, n − 1]. The
assertion follows.

The following statement is a mere corollary of Lemma 2.2.29, but it is worth
to be pointed out on its own.

2.2.30 Lemma. Let G, Φ and the rank-2 labelling be as in 2.2.28. Let b1 ∈ U♯
1 and

bn ∈ U♯
n. Then for all i ∈ [2, n − 1], the element [b1, bn]i lies in U♯

i .

Proof. Put u := b1 ∈ U♯
1 and v := b−1

n . By Proposition 2.2.6 (a), v is contained in
U♯

n. Thus we can define sequences (ek)k∈N+
, ( fk)k∈N+

and (xk,i)k∈N+,i∈[2,n−1] as
in 2.2.28. Then for all i ∈ [2, n − 1], we have

[b1, bn]i = x1,i = xi,1 = ei ∈ U♯
i ,

as desired.

2.2.31 Lemma. Let everything be as in 2.2.28. Then we have wk = wk+n for all k ∈ N0
and wwk

k−1 = wk+1 for all k ∈ N+.

Proof. Let k ∈ N+. It follows from Lemma 2.2.24 (a), Lemma 2.2.29 and the
definition of fk+1 that

wk = µ(ek) = µ
(
λ(ek)

)
= µ( fk+1) = µ(ek+n) = wk+n.

Similarly,
w0 = µ(v) = µ( f1) = µ(en) = wn.

This proves the first claim. Further, we have

ek+1 = f µ(ek)
k = ewk

k+n−1.

By Lemma 2.2.23 (b) and the previous claim, this implies that

wk+1 = µ(ek+1) = µ(ewk
k+n+1) = µ(ek+n+1)

wk = wwk
k+n−1 = wwk

k−1,
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as desired.

2.2.32 Lemma. Let everything be as in 2.2.28. Then for all k ∈ N+, we have

w2k = ww1(w0w1)
k−1

0 and w2k+1 = w(w0w1)
k

1 .

Proof. We prove that statement by induction on k. For k = 1, it is a direct
consequence of Lemma 2.2.31 that

w2k = w2 = ww1
0 = ww1(w0w1)

k−1

0 and

w2k+1 = w3 = ww2
1 = ww−1

1 w0w1
1 = ww0w1

1 = w(w0w1)
k

1 .

Now assume that the desired statement is true for some k ∈ N+. We proceed to
show that it is true for k + 1 as well. Again by Lemma 2.2.31, we have

w2k+2 = ww2k+1
2k = w−1

2k+1w2kw2k+1.

By the induction hypothesis, it follows that

w2k+2 =
(
w(w0w1)

k

1

)−1ww1(w0w1)
k−1

0 w(w0w1)
k

1 =
(
(ww0

1 )−1w0(w
w0
1 )
)w1(w0w1)

k−1

=
(
w−1

0 w−1
1 w0w0w−1

0 w1w0
)w1(w0w1)

k−1

=
(
w−1

0 w−1
1 w0w1w0

)w1(w0w1)
k−1

= (ww1w0
0 )w1(w0w1)

k−1
= ww1(w0w1)

k

0 .

In the same way, we have

w2k+3 = ww2k+2
2k+1 = w−1

2k+2w2k+1w2k+2 =
(
ww1(w0w1)

k

0

)−1w(w0w1)
k

1 ww1(w0w1)
k

0

=
(
(ww1

0 )−1w1ww1
0

)(w0w1)
k

=
(
w−1

1 w−1
0 w1w1w−1

1 w0w1
)(w0w1)

k

=
(
w−1

1 w−1
0 w1w0w1

)(w0w1)
k

= (ww0w1
1 )(w0w1)

k
= w(w0w1)

k+1

1 .

This finishes the proof.

2.2.33 Remark. Assume that Φ̄ is a root system which is crystallographic and
not reduced and let Ḡ be a group which has Φ̄-commutator relations with root
groups (Ūα)α∈Φ̄. We do not assume that these commutator relations are crystallo-
graphic. For any root α, we denote by α′ the unique indivisible root in R>0α. Then
α′ ∈ { α, α/2 } for all roots α by Lemma 1.2.28. Thus it follows from axiom (RGG-
Div) that Ūα ⊆ Ūα′ for all roots α. Hence every α-Weyl element is also an α′-Weyl
element for all roots α and the groups (Ūα)α∈Φ̄indiv satisfy Φ̄indiv-commutator rela-
tions. We conclude that, in order to verify the braid relations for Weyl elements
in (Ḡ, (Ūα)α∈Φ̄), it suffices to verify the braid relations in (Ḡ, (Ūα)α∈Φ̄indiv).

2.2.34 Theorem ([TW02, (6.9)]). Assume that Φ is crystallographic or reduced, that G
is rank-2-injective and that U♯

α ̸= ∅ for all roots α. Then G satisfies the braid relations
for Weyl elements.

Proof. If Φ is of rank 1, there is nothing to show, so we assume that it has rank at
least 2. Let ∆ be any root base and let α, β ∈ Φ be distinct. It suffices to consider
the root subsystem spanned by { α, β }, so we can assume that Φ is of rank 2.
Further, we can assume by Remark 2.2.33 that Φ is reduced.

Put n := |Φ|/2. If n = 2, then the assertion holds by Proposition 2.2.27, so
assume that n ≥ 3. In this situation, we know from Proposition 2.2.22 that G
has unique Weyl extensions. Fix the rank-2 labeling of Φ which is induced by
(α, β), so that Uα = U1 and Uβ = Un. Let u ∈ U♯

1, v ∈ U♯
n and put w1 := µ(u),
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w0 := µ(v). Then we are in the situation of 2.2.28, and we have to show that
Pn(w1, w0) = Pn(w0, w1).

At first, assume that n is even and put l := n/2 ∈ N+. Then it follows from
Lemma 2.2.32 that

w0 = wn = w2l = ww1(w0w1)
l−1

0 =
(
w1(w0w1)

l−1)−1 · w0 · w1(w0w1)
l−1.

Multiplying this term from the left side with w1(w0w1)
l−1, we infer that

w1(w0w1)
l−1w0 = w0w1(w0w1)

l−1.

In other words, Pn(w1, w0) = Pn(w0, w1), as desired.
Now assume that n is odd, so that n = 2l + 1 for some l ∈ N≥1. Then

w0 = wn = w2l+1 = w(w0w1)
l

1 =
(
(w0w1)

l)−1 · w1 · (w0w1)
l

by Lemma 2.2.32. Multiplying from the left side with (w0w1)
l , we infer that

(w0w1)
lw0 = w1(w0w1)

l .

Again, this says precisely that Pn(w1, w0) = Pn(w0, w1), which finishes the proof
of the braid relations.

2.2.35 Note. The main ingenuity in the proof of Theorem 2.2.34 in [TW02, (6.9)]
lies in the fact that it manages to cover all values of n at the same time. More
explicit variants of the proof which cover only specific root systems will be given
in Remarks 5.4.11, 7.6.17 and 9.5.14.

2.3 Closed and Ordered Sets of Roots

2.3.1 Notation for this section. We denote by Φ a root system and we will
frequently use Convention 2.3.5.

Our next goal is to study under which conditions the product map on a
positive system in Φ is bijective. The notion of closed sets of roots, which we have
already introduced in Definition 1.2.39, will be indispensable in this context. The
current section is dedicated to a proper investigation of these objects. This can be
done on a purely combinatorial, root-system-theoretic level without reference to
any Φ-graded group. We could have already covered this subject in chapter 1,
but we decided not to because it is less standard than the other topics of chapter 1.
Further, the motivation is more obvious after having introduced groups with
Φ-commutator relations and product maps.

Apart from some basic properties, our goal is to show that every positive
system of Φ has an extremal ordering (except when Φ is not reduced, in which
case we have to remove roots until only one root from each ray remains). This is
Proposition 2.3.24. In Lemma 2.4.17, we will show that under a suitable condition
on a group G with Φ-commutator relations, the product map for any extremal
ordering is bijective.

None of the material in this section is new or surprising, but the literature on
this topic can be confusing because no single reference provides all the facts that
we will list here. Further, there are subtle differences in the used definitions. This
concerns, in particular, the case of non-reduced root systems. Some references on
this topic are [Bou81, Section VI.1.7] and [Ste67, Lemmas 16–18].
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2.3.2 Definition (Ideals). Let Ψ be a subset of Φ. A subset I of Ψ is called an ideal
of Ψ if ]α, β[Cox ⊆ I for all non-proportional α ∈ I and β ∈ Ψ, and it is called a
crystallographic ideal of Ψ if ]α, β[ ⊆ I for all non-proportional α ∈ I and β ∈ Ψ.

2.3.3 Warning. The terminology “crystallographic ideal” makes it sound like
being crystallographic is a property that an ideal may or may not have, but it is
actually the other way around: Every ideal is also a crystallographic ideal, but
not every crystallographic ideal is an ideal.

2.3.4 Example. For any element w of the Weyl group and any positive system Π
in Φ, the set N(w) := NΠ(w) := { α ∈ Πindiv | αw−1 ∈ −Π } from Definition 1.3.21
is closed.

The same remarks as in Note 2.1.7 apply to (crystallographically) closed
set and to (crystallographic) ideals: The crystallographic properties are well-
defined even in the non-crystallographic setting, but they are only useful in the
crystallographic setting.

2.3.5 Convention. In the following, we will often put the words “crystallo-
graphic” and “crystallographically” in brackets. Any assertion of this form
should be interpreted as two statements, once with and once without all words
in brackets. For example, the following Remark 2.3.6 asserts that any ideal is
closed and that any crystallographic ideal is crystallographically closed. On
the contrary, it does not assert that any crystallographic ideal is closed. By the
end of this section, it should be clear that the underlying principle is always
the same. In Note 2.3.25, we will indicate how the crystallographic and the
non-crystallographic theory could be treated in a more uniform way.

2.3.6 Remark. Let Ψ be a subset of Φ and let I be a subset of Ψ. If I is a (crystallo-
graphic) ideal of Ψ, then clearly I is (crystallographically) closed. Conversely,
if I = Ψ \ {α} for some α ∈ Ψ and Ψ is (crystallographically) closed, then I is
automatically a (crystallographic) ideal of Ψ if I is (crystallographically) closed.
Further, Ψ is a (crystallographic) ideal of Ψ if and only if Ψ is (crystallographically)
closed.

The following two lemmas would fit into section 1.2 as well. However, we
will only need them in the proof of Lemma 2.3.9, so we have put them here.

2.3.7 Lemma. Assume that Φ is crystallographic and let α, β be non-proportional roots.
If α · β > 0, then α − β is a root. If α · β < 0, then α + β is a root.

Proof. This is proven in [Hum72, Lemma 9.4] for reduced root systems, but the
same arguments work in the general case. Alternatively, since BCn is the only
crystallographic root system which is not reduced (by Theorem 1.2.53), we could
prove the general case by an inspection of this root system.

2.3.8 Lemma. Assume that Φ is crystallographic. Let α, β be non-proportional roots
and let i, j ∈ N+ such that iα + jβ is a root. Then either (i − 1)α + jβ or iα + (j − 1)β
is a root.

Proof. Set γ := iα + jβ. Since i ≥ 1 and j ≥ 1, the sets { α, γ } and { β, γ } are
linearly independent. Therefore, it follows from Lemma 2.3.7 that (i − 1)α + jβ ∈
Φ if γ · α > 0 and iα + (j − 1)β ∈ Φ if γ · β > 0. Now suppose that γ · α ≤ 0 and
γ · β ≤ 0. Then

γ · γ = γ · (iα + jβ) = i(γ · α) + j(γ · β) ≤ 0.
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Since · is positive-definite, it follows that γ · γ = 0 and thus γ = 0. This
contradicts the fact that γ is a root.

The following result shows that the condition in the definition of crystallo-
graphic ideals can be slightly weakened.

2.3.9 Lemma. Assume that Φ is crystallographic. Let Ψ be a crystallographically closed
subset of Φ and let I be a subset of Ψ with the property that for all non-proportional
α ∈ I and β ∈ Ψ for which α + β is a root, α + β lies in I. Then I is a crystallographic
ideal of Ψ.

Proof. Let α ∈ I, β ∈ Ψ and γ ∈ ]α, β[. Then there exist i, j ∈ N+ such that
γ = iα + jβ. By induction on i + j, we show that γ lies in I. If i + j = 2, then
γ = α + β and so γ lies in I by the assumption on I. Now assume that i + j ≥ 3.
By Lemma 2.3.8, we have (i − 1)α + jβ ∈ Φ or iα + (j − 1)β ∈ Φ. The induction
hypothesis now implies that (i − 1)α + jβ ∈ I or iα + (j − 1)β ∈ I. In the first
case, it follows that

γ =
(
(i − 1)α + jβ

)
+ α ∈ I

because γ ∈ Φ, (i − 1)α + jβ ∈ I and α ∈ Ψ. Similarly, in the second case it
follows that

γ =
(
iα + (j − 1)β

)
+ β ∈ I.

This finishes the proof.

We make a brief detour into a slightly different notion of closedness, which
will be needed in the proof of Proposition 2.3.12 (and only there). Alternatively,
we could prove Proposition 2.3.12 by citing [LN19, 1.14], but this would require a
similar amount of notational setup.

2.3.10 Definition (Bourbaki-closed). Assume that Φ is crystallographic. We
say that a subset Ψ of Φ is Bourbaki-closed if it is closed in the sense of [Bou81,
Définition VI.1.4, p. 160], which means that for all α, β ∈ Ψ with α + β ∈ Φ, we
have α + β ∈ Ψ.

2.3.11 Lemma. Assume that Φ is crystallographic and let Ψ be a subset of Φ. Then the
following hold:

(a) If Ψ is Bourbaki-closed, then Ψ is crystallographically closed.
(b) Assume that Ψ is crystallographically closed. Then Ψ is Bourbaki-closed if and

only if it satisfies the following conditions for all roots α for which 2α is also a root:
If α ∈ Ψ then 2α ∈ Ψ; if 2α,−α ∈ Ψ then α ∈ Ψ.

(c) If Φ is reduced, then Ψ is crystallographically closed if and only if it is Bourbaki-
closed.

(d) Assume that Ψ is crystallographically closed and that −λα /∈ Ψ for all α ∈ Ψ and
λ > 0. Then Ψ is contained in a Bourbaki-closed set Ψ′ with Ψ′ ∩ (−Ψ′) = ∅.

Proof. By Lemma 2.3.9, any Bourbaki-closed set Ψ is a crystallographic ideal of
itself, which by Remark 2.3.6 means precisely that Ψ is crystallographically closed.
This proves (a). However, a crystallographically closed set Ψ is not necessarily
Bourbaki-closed because the roots α, β in Definition 1.2.39 are required to be non-
proportional. Thus a crystallographically closed set Ψ is Bourbaki-closed if and
only if for all roots α ∈ Ψ and for all λ ∈ R such that λα ∈ Ψ and (1 + λ)α ∈ Φ,
we have (1 + λ)α ∈ Ψ. By Lemma 1.2.28, we can restrict to λ ∈ { 1/2, 1, 2 },
which yields precisely the statement of (b). Assertion (c) follows from (b). In (d),
we can take Ψ′ := (Ψ ∪ 2Ψ) ∩ Φ.
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2.3.12 Proposition. Assume that Φ is crystallographic and let Ψ be a crystallographi-
cally closed subset of Φ such that for all α ∈ Ψ, we have −λα /∈ Ψ for all λ > 0. (If Φ
is reduced, this simply means that Ψ ∩ (−Ψ) = ∅.) Then there exists a positive system
Π in Φ which contains Ψ.

Proof. This is proven in [Bou81, Proposition VI.1.22, p. 163] under the slightly
modified assumptions that Ψ is Bourbaki-closed and Ψ ∩ (−Ψ) = ∅. We have
proved in Lemma 2.3.11 (d) that Ψ is contained in a set Ψ′ with these properties,
so the assertion follows.

2.3.13 Definition (Extremal root). Let Ψ be a subset of Φ and let α ∈ Ψ. Then
α is called extremal in Ψ if there exists a point p in the Euclidean space (V, ·)
surrounding Φ which is not orthogonal to any root in Φ such that α · p > 0 and
β · p < 0 for all β ∈ Ψ \ {α}.

2.3.14 Remark. Let Ψ be a subset of Φ. Then a root α ∈ Ψ is extremal in Ψ if and
only if there exists a positive system Π in Φ which contains Ψ \ {α} but not α.

2.3.15 Definition (Root ordering). Let Ψ be a subset of Φ. An ordering of Ψ is a tu-
ple (α1, . . . , αm) such that α1, . . . , αm are pairwise distinct and Ψ = { α1, . . . , αm }.

2.3.16 Definition (Properties of orderings). Let Ψ be a subset of Φ and let ᾱ =
(α1, . . . , αm) be an ordering of Ψ.

(a) ᾱ is called extremal if αi is extremal in { αi, . . . , αm } for all i ∈ [1, m].
(b) ᾱ is called (crystallographically) normal if { αi, . . . , αm } is a (crystallographic)

ideal of Ψ for all i ∈ [1, m].
(c) ᾱ is called (crystallographically) subnormal if Ψ is (crystallographically) closed

and { αi+1, . . . , αm } is a (crystallographic) ideal of { αi, . . . , αm } for all i ∈
[1, m − 1].

(d) ᾱ is called a height ordering if Ψ is contained in some positive system Π and
ht(α1) ≤ · · · ≤ ht(αm) where ht denotes the height function with respect to
Π.

We will now investigate various basic properties of the notions defined in
Definition 2.3.16.

2.3.17 Remark (Basic properties of extremal orderings). Let ᾱ = (α1, . . . , αm) be
an ordering of a subset Ψ of Φ.

(1) If ᾱ is extremal, then there cannot exist distinct i, j ∈ [1, m] and λ > 0 such
that αi = λαj.

(2) Let i ∈ [1, m] and λ ∈ R>0 such that λαi is a root. Then (α1, . . . , αm) is
extremal if and only if (α1, . . . , λαi, . . . , αm) is extremal.

(3) Let ψ be an orthogonal automorphism of the Euclidean space (V, ·) sur-
rounding Φ. Then (α1, . . . , αm) is an extremal ordering of Ψ if and only if
(α

ψ
1 , . . . , α

ψ
m) is an extremal ordering of Ψψ.

(4) Any tuple which is obtained from ᾱ by deleting an arbitrary number of
entries is also extremal.

2.3.18 Remark (Basic properties of (sub-) normal orderings). Let Ψ be a subset
of Φ and let ᾱ = (α1, . . . , αm) be an ordering of Ψ.

(1) If ᾱ is (crystallographically) normal, then it is also (crystallographically)
subnormal.
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(2) If ᾱ is (sub-) normal, then it is also crystallographically (sub-) normal.
(3) If ᾱ is (sub-) normal, then for all for all i ∈ [1, m], the tuple (αi, . . . , αm) is a

(sub-) normal ordering of { αi, . . . , αm }. The same assertion holds for the
crystallgraphic properties.

(4) If ᾱ is (crystallographically) normal, then Ψ is a (crystallographic) ideal of
itself, and so it is (crystallographically) closed by Remark 2.3.6.

(5) It follows from Remark 2.3.6 that ᾱ is (crystallographically) subnormal if
and only if all sets { αi, . . . , αm } for i ∈ [1, m] are (crystallographically)
closed.

Observe that we had to require in the definition of (crystallographically) subnor-
mal orderings that Ψ is (crystallographically) closed, which was not necessary
for (crystallographically) normal orderings.

2.3.19 Example (of a subnormal extremal ordering). Let S = [α, β]indiv
Cox for some

indivisible roots α, β and let ᾱ = (α1, . . . , αk) be an interval ordering of S in
the sense of Definition 1.2.34. Then it follows from Remark 2.3.18 (5) that ᾱ is
subnormal. Further, it is clear that ᾱ is extremal.

2.3.20 Lemma. Assume that Φ is crystallographic, let Ψ be a crystallographically
closed subset of Φ and let ᾱ = (α1, . . . , αm) be a height ordering of Ψ. Then ᾱ is a
crystallographically normal ordering of Ψ.

Proof. Let i ∈ [1, m]. We have to show that I := { αi, . . . , αm } is a crystallographic
ideal of Ψ. By the definition of height orderings, there exists a positive subsystem
Π of Φ which contains Ψ such that ht(α1) ≤ · · · ≤ ht(αm). By Lemma 2.3.9, it
suffices to show that for non-proportional α ∈ Ψ and β ∈ I for which α + β is a
root, α + β lies in I. Since Ψ is crystallographically closed, α + β lies in Ψ, so there
exists j ∈ [1, m] such that α + β = αj. Now ht(αj) = ht(α) + ht(β) > ht(β) ≥
ht(αi), so j > i. This implies that αj lies in I, which finishes the proof.

2.3.21 Lemma. Let Ψ be a (crystallographically) closed subset of Φ. Then every extremal
ordering ᾱ = (α1, . . . , αm) of Ψ is (crystallographically) subnormal, and for all i ∈ [1, m],
the set { αi, . . . , αm } is (crystallographically) closed.

Proof. Since (α2, . . . , αm) is also extremal by Remark 2.3.17 (4), it suffices by induc-
tion to show that { α2, . . . , αm } is (crystallographically) closed and a (crystallo-
graphic) ideal of Ψ. By Remark 2.3.6, we only have to prove the first state-
ment because it implies the second one. Let i, j ∈ [2, m] such that αi, αj are
non-proportional. Write I := ]αi, αj[ for the proof of the crystallographic assertion
and I := ]αi, αj[Cox for the proof of the non-crystallographic assertion. Since Ψ
is (crystallographically) closed, we have I ⊆ Ψ, so it suffices to show that α1 is
not contained in I. Assume that α1 = λαi + µαj for some λ, µ ∈ R>0 (where
λ, µ ∈ N+ for the crystallographic assertion). Since α1 is extremal in Ψ, there
exists a point p in the surrounding Euclidean space of Φ such that α1 · p > 0 and
αi · p, αj · p < 0. Then

0 < α1 · p = λ(αi · p) + µ(αj · p) < 0,

which is a contradiction.

We now prove some existence results concerning extremal orderings. The
following result is essentially a stronger version of Proposition 1.3.28: It provides
not only a description of the set N(w), but even an extremal ordering of N(w).
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2.3.22 Proposition. Choose a root base ∆ of Φ and denote by Π the corresponding
positive system. Let w be an element of the Weyl group of Φ, let δ̄ = (δ1, . . . , δk) be a
∆-expression of w and let ᾱ = (αk, . . . , α1) be the inverse associated root sequence from
Definition 1.3.26. Then ᾱ is an extremal ordering of the set N(w) = { β ∈ Πindiv |
βw−1 ∈ −Π } from Definition 1.3.21.

Proof. If k = 0, then w = 1W and there is nothing to prove. We proceed by induc-
tion and assume that k > 0. Put δ := δk, δ̄′ := (δ1, . . . , δk−1) and w′ := σδ̄′ . Then
δ̄′ is a reduced expression of w′ and ℓ(w′σδ) = ℓ(w) > ℓ(w′). Denote the root
sequence of δ̄′ by (β1, . . . , βk−1). By the induction hypothesis, (βk−1, . . . , β1) is
an extremal ordering of N(w′). Thus by Remark 2.3.17 (3), (β

σ(δ)
k−1 , . . . , β

σ(δ)
1 ) is an

extremal ordering of N(w′)σ(δ). Recall from Remark 1.3.27 that the root sequence
of δ̄ is (β

σ(δ)
1 , . . . , β

σ(δ)
k−1 , δ) and from Lemma 1.3.25 that N(w) = N(w′)σ(δ) ⊔

{δ}. Hence it remains to show that δ is extremal in {δ} ∪ N(w′)σ(δ). Equiva-
lently, we have to show that δσ(δ) is extremal in {δσ(δ)} ∪ N(w′), which holds by
Lemma 1.3.23. This finishes the proof.

2.3.23 Proposition. Choose a root base ∆ of Φ and denote by Π the corresponding
positive system. Put m := |Πindiv|, let δ̄ = (δ1, . . . , δm) be any reduced expression of
the longest element ρ of W with respect to ∆ and denote by ᾱ the inverse root sequence
associated to δ̄. Let Ψ be any subset of Πindiv and let β̄ be the tuple which is obtained
from ᾱ by deleting all entries in Π \ Ψ. Then β̄ is an extremal ordering of Ψ.

Proof. Since N(ρ) = Πindiv by Proposition 1.3.29, it is a consequence of Proposi-
tion 2.3.22 that ᾱ is an extremal ordering of Πindiv. Thus by Remark 2.3.17 (4), β̄
is an extremal ordering of Ψ.

2.3.24 Proposition. Let Π be a positive system in Φ and let Ψ be a subset of Π consisting
of pairwise non-proportional roots. Then there exists an extremal ordering of Ψ.

Proof. For any root α ∈ Ψ, there exists a unique indivisible root α′ (which might
be equal to α) such that Rα = Rα′. Then Ψ′ := { α′ | α ∈ Ψ } is a subset of Πindiv.
Thus Proposition 2.3.23 yields an extremal ordering ᾱ′ of Ψ. Scaling the roots in
ᾱ′ appropriately and applying Remark 2.3.17 (2), we obtain an extremal ordering
of Ψ.

2.3.25 Note. Continuing the remarks in Convention 2.3.5, we briefly describe how
the crystallographic and the non-crystallographic considerations in this section
(and in the rest of this thesis) could be treated in a more uniform way. Define a root
system with intervals to be a tuple Ψ = (Φ, (⟨α, β⟩)α,β) where Φ is a root system in
the regular sense and (⟨α, β⟩)α,β is a family of subsets of Φ where α, β runs over
all pairs of non-proportional roots in Φ. We require that ⟨α, β⟩ ⊆ ]α, β[Cox for all
non-proportional roots α, β. Now a group with Ψ-commutator relations is defined
as in Definition 2.1.4, except that we must have [Uα, Uβ] ⊆ U⟨α,β⟩. Similarly, the
notions of ideals and closed sets of roots are defined with respect to the sets
⟨α, β⟩.

Now let Φ be a root system. There are only two root systems with intervals
corresponding to Φ that are interesting:

Φ̃ :=
(
Φ, (]α, β[Cox)α,β

)
and Φ̃cry :=

(
Φ, (]α, β[)α,β

)
.

Note that in this setup, the information “whether we use the crystallographic
terminology or not” is part of the datum of a root system with intervals. For
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example, “C3 regarded as a root system in the Coxeter sense” and “C3 regarded
as a crystallographic root systems” are two distinct objects, namely C̃3 and C̃cry

3 .
Thus C3-graded groups are precisely C̃3-graded groups and crystallographic
C3-graded groups are precisely C̃cry

3 -graded groups.
Many (though not all) results in this thesis which concern Φ-graded groups

for arbitrary root systems Φ can be stated and proven for Ψ-graded groups where
Ψ = (Φ, (⟨α, β⟩)α,β) is an arbitrary root system with intervals. In this setup, root
gradings, root intervals, ideals and closed sets of roots are understood to be
defined with respect to the sets ⟨α, β⟩. Thus the crystallographic and the non-
crystallographic case would not have to be considered separately most of the
time. There are only a few results for which this strategy would not work, such
as Proposition 2.4.13.

Despite the advantages of this approach, we will not use the language of
root systems with intervals in the sequel. The reason for this is that the regular
notion of root systems is well-established and that the distinction between the
crystallographic and the non-crystallographic case is only a minor nuisance.

2.4 Bijectivity of the Product Map

2.4.1 Notation for this section. We denote by Φ a root system and by G a group
with Φ-commutator relations with root groups (Uα)α∈Φ. Further, we will fre-
quently use Convention 2.3.5.

2.4.2 Definition. Let Ψ be a subset of Φ, let ᾱ = (α1, . . . , αm) be an ordering of
Ψ and let G be a group with Φ-commutator relations with root groups (Uα)α∈Φ.
Then ᾱ is called G-injective, G-surjective or G-bijective if the product map on ᾱ is
injective, surjective or bijective, respectively.

The goal of this section is to find a criterion which guarantees the existence
of a G-bijective ordering on a (crystallographically) closed subset Ψ of Φ. In the
crystallographic setting, we will even find that every ordering of Ψ is G-bijective.

2.4.3 Note (The product map in Chevalley groups). Assume that Φ is crystallo-
graphic and reduced and that G is a Chevalley group of type Φ (which implies
that G has crystallographic Φ-commutator relations). Let Ψ be a crystallographi-
cally closed subset of Φ such that Ψ∩ (−Ψ) = ∅. It is shown in [Ste67, Lemma 17]
that every height ordering of Ψ is G-bijective. Further, it is shown in [Ste67,
Lemma 18] that the existence of a crystallographically normal G-bijective or-
dering of Ψ implies that every ordering of Ψ is G-bijective. Since every height
ordering is crystallographically normal by Lemma 2.3.20, it follows that every
ordering of G is bijective.

Our approach in this section is motivated by the strategy for Chevalley groups
outlined above, but some of the arguments do not carry over to our more gen-
eral setting. We begin this section with an investigation of product maps in
arbitrary groups H. This includes Steinberg’s result that the existence of a crys-
tallographically normal G-bijective ordering of Ψ implies that every ordering
of Ψ is G-bijective (Lemma 2.4.6). Unfortunately, this result is not applicable in
our situation, and we state it purely for completeness. In its place, we will use
Lemma 2.4.9, which is due to Tits and which says that a similar assertion holds if
G has a central series with certain properties. Lemma 2.4.9 came to our attention
in the form of [LN19, 3.10].
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In the second part of this section, we prove the existence of a G-bijective
ordering of Ψ (where Ψ is any subset of a positive system of Φ whose roots are
pairwise non-proportional). By the same arguments as in [Ste67, Lemma 17],
every subnormal ordering of Ψ is G-surjective (Lemma 2.4.14). However, Stein-
berg’s proof of G-injectivity uses the natural action of a Chevalley group on a
certain module, so it cannot be generalised to Φ-graded groups. Instead, we will
show in Lemma 2.4.10 that every extremal ordering of Ψ is G-injective. Since ex-
tremal orderings exist by Proposition 2.3.24 and are subnormal by Lemma 2.3.21,
we infer that there exists a G-bijective ordering of Ψ (Proposition 2.4.18). In gen-
eral, this existence result is the best we can do because Steinberg’s Lemma 2.4.6
does not hold for subnormal orderings and the conditions of Tits’ Lemma 2.4.9
are not satisfied for general Φ-gradings. However, Tits’ lemma does apply in the
crystallographic setting, so we infer that every ordering of Ψ is G-bijective in this
case.

2.4.A Purely Group-theoretic Observations

2.4.4 Lemma. Let H be a group, let m ∈ N≥1 and let U1, . . . , Um be subgroups of H.
Then the product map µ1 : U1 × · · · × Um → H is injective, surjective or bijective if
and only if the product map µ2 : Um × · · · × U1 → H is injective, surjective or bijective,
respectively.

Proof. Let gi ∈ Ui for all i ∈ [1, m]. Then we have

µ1(g1, . . . , gm) = µ2(g−1
m , . . . , g−1 )

−1.

The assertion follows.

2.4.5 Lemma. Let H be a group, let m ∈ N≥1 and let U1, . . . , Um be subgroups of H
such that U1 ∪ · · · ∪ Um generates H. Put Vi := ⟨Uj | j ∈ [i, m]⟩ for all i ∈ [1, m]. If
Vi+1 is normal in Vi for all i ∈ [1, m − 1], then the product map U1 × · · · × Um → H
is surjective.

Proof. For m = 1, there is nothing to prove. Now assume that m = 2. Since V2 is
normal in V1, we have that U1 normalises U2. Hence by Relation 1.1.11 (iv), U1U2
is a subgroup of H. In fact, U1U2 = H because U1 ∪ U2 generates H. Thus the
assertion holds for m = 2. The assertion for arbitrary m follows by induction.

For completeness, here is the lemma used in [Ste67] to deduce G-bijectivity of
arbitrary orderings.

2.4.6 Lemma ([Ste67, Lemma 18]). Let H be a group, let m ∈ N≥1 and let U1, . . . , Um
be subgroups of H such that U1 ∪ · · · ∪ Um generates H. Put Vi := ⟨Uj | j ∈ [i, m]⟩
for all i ∈ [1, m]. Assume that Vi is normal in H for all i ∈ [1, m] and that the product
map U1 × · · · × Um → H is injective. Then for all permutations σ : [1, m] → [1, m],
the product map Uσ(1) × · · · × Uσ(m) → H is bijective.

To state Tits’ lemma, we briefly recall the notion of central series.

2.4.7 Definition (Central series). Let H be a group. A central series of H is a finite
subgroup sequence

{1G} = Zn ⊴ Zn−1 ⊴ · · · ⊴ Z1 = H

such that [H, Zi] ⊆ Zi+1 for all i ∈ [1, n − 1]. In particular, Z1, . . . , Zn are normal
subgroups of H.
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2.4.8 Lemma. Let H, K be groups and let π : H → K be a surjective homomorphism. If

{1H} = Zn ⊴ Zn−1 ⊴ · · · ⊴ Z1 = H

is a central series in H, then

{1K} = π(Zn) ⊴ π(Zn−1) ⊴ · · · ⊴ π(Z1) = K

is a central series in K.

Proof. For all i ∈ [1, n − 1], we have

[K, π(Zi)] = [π(H), π(Zi)] = π([H, Zi]) ⊆ π(Zi+1),

as desired.

2.4.9 Lemma ([Tit87, 4.7, Lemma 2, p. 559]). Let H be a group and let H1, . . . , Hn
be subgroups such that H is generated by H1 ∪ · · · ∪ Hn. Assume that H possesses a
central series

{1} = Zh+1 ⊴ Zh ⊴ · · · ⊴ Z1 = H

such that for all j ∈ { 1, . . . , h }, we have Zj ⊆ ⟨Hi(j), Zj+1⟩ for some i(j) ∈ { 1, . . . , n }.
Then the following hold:

(a) For every permutation σ of the set { 1, . . . , n }, the product map

µσ : Hσ(1) × · · · × Hσ(n) → X

is surjective.
(b) If the product map µσ is injective for some permutation σ, then it is injective for

all permutations σ.

2.4.B Existence of a Bijective Ordering

We now turn away from arbitrary groups and back to the group G with Φ-
commutator relations. We begin with our only criterion for G-injectivity.

2.4.10 Lemma. Let ᾱ = (α1, . . . , αm) be an extremal ordering of Ψ. Assume that for
any positive system Π in Φ and any β ∈ −Π, we have Uβ ∩ UΠ = {1G}. Then ᾱ is
G-injective.

Proof. We prove by induction on m that the product map

µᾱ : Uα1 × · · · × Uαm → UΨ

is injective. The case m = 1 is trivial, so assume that m > 1. Let (g1, . . . , gm) and
(h1, . . . , hm) be two elements of Uα1 × · · · × Uαm such that g1 · · · gm = h1 · · · hm.
Then

h−1
1 g1 = h2 · · · hm(g2 · · · gm)

−1 ∈ Uα1 ∩ ⟨Uαj | j ∈ [2, m]⟩. (2.3)

Since α1 is extremal in Ψ, there exists a positive system Π which contains
{ α2, . . . , αm } but not α1, so

Uα1 ∩ ⟨Uαj | j ∈ [2, m]⟩ ⊆ Uα1 ∩ UΠ = {1G}. (2.4)

Putting (2.3) and (2.4) together, we infer that g1 = h1 and g2 · · · gm = h2 · · · hm.
By the induction hypothesis, it follows that gj = hj for all j ∈ [1, m]. Thus µᾱ is
injective.

As a next step, we make the connection between ideals of Φ and normal
subgroups of G. This is done in Lemma 2.4.11 for reduced root systems and in
Lemma 2.4.12 for non-reduced crystallographic root systems. Both lemmas make
essentially the same assertion, and they will be summarised in Proposition 2.4.13.
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2.4.11 Lemma. Assume that Φ is reduced. Let Ψ be a subset of Φ with Ψ ∩ (−Ψ) = ∅
and let I be a subset of Ψ. Assume that I is a (crystallographic) ideal of Ψ (and that G
has crystallographic Φ-commutator relations). Then UI is normal in UΨ.

Proof. Let α ∈ I and let β ∈ Ψ. Let xα ∈ Uα, xβ ∈ Uβ. We have to show
that [xα, xβ] lies in UI . If β lies in I, then this is clear, so we can assume that
β lies in Ψ \ I. In particular, α ̸= β. Since Ψ ∩ (−Ψ) = ∅, we also have α ̸=
−β. As Φ is reduced, this implies that α and β are non-proportional. If G has
crystallographic Φ-commutator relations, then [xα, xβ] lies in U]α,β[, so it lies in
UI if I is a crystallographic ideal of Ψ. In general, [xα, xβ] lies in U]α,β[Cox

, so it lies
in UI if I is an ideal. This finishes the proof.

2.4.12 Lemma. Assume that Φ is crystallographic and not reduced. Let Ψ be a subset
of Φ such that −λα /∈ Ψ for all α ∈ Ψ and all λ > 0. Let I be a subset of Ψ. Assume
that I is a (crystallographic) ideal of Ψ (and that G has crystallographic Φ-commutator
relations). Then UI is normal in UΨ.

Proof. Just like in the proof of Lemma 2.4.11, we only have to show that [xα, xβ]
lies in UI where α ∈ I, β ∈ Ψ \ I, xα ∈ Uα and xβ ∈ Uβ. If α and β are non-
proportional, we can proceed as in the proof of Lemma 2.4.11. Otherwise we
have β = λα for some λ ∈ R>0 \ {1}. Since Φ is crystallographic, we must have
λ = 2 or λ = 1/2 by Lemma 1.2.28. If λ = 2, then xα and xβ both lie in Uα by
(RGG-Div), and thus [xα, xβ] ∈ Uα ⊆ UI . If λ = 1/2, then

[xα, xβ] ∈ [U2β, Uβ] ⊆ [Uβ, Uβ] ⊆ U2β = Uα ⊆ UI ,

again by (RGG-Div). This finishes the proof.

2.4.13 Proposition. Assume that Φ is reduced or crystallographic. Let Ψ be a subset
of Φ such that −λα /∈ Ψ for all α ∈ Ψ and all λ > 0. Let I be a subset of Ψ. Assume
that I is a (crystallographic) ideal of Ψ (and that G has crystallographic Φ-commutator
relations). Then UI is normal in UΨ.

Proof. This follows from Lemmas 2.4.11 and 2.4.12.

As a consequence of Proposition 2.4.13, we obtain a criterion for G-surjectivity.

2.4.14 Lemma. Assume that Φ is reduced or crystallographic. Let Ψ be a subset of Φ
such that −λα /∈ Ψ for all α ∈ Ψ and all λ > 0. Let ᾱ = (α1, . . . , αm) be an ordering of
Ψ. Assume that ᾱ is (crystallographically) subnormal (and that G has crystallographic
Φ-commutator relations). Then ᾱ is G-surjective.

Proof. Put Ui := Uαi for all i ∈ [1, m] and Vi := ⟨Uj | j ∈ [i, m]⟩ for all i ∈ [1, m].
Since ᾱ is (crystallographically) subnormal, it follows from Proposition 2.4.13
that Vi+1 is normal in Vi for all i ∈ [1, m − 1]. Hence by Lemma 2.4.5, the product
map Uα1 × · · · × Uαm → G is surjective, as desired.

A consequence of Lemma 2.4.14 is that the product map on every closed
root interval is surjective. In particular, if G is rank-2-injective (in the sense of
Definition 2.1.19), then it is actually “rank-2-bijective”.

2.4.15 Lemma. Let S = [α, β]indiv
Cox for non-proportional α, β ∈ Φindiv and let ᾱ =

(α1, . . . , αk) be an interval ordering of S in the sense of Definition 1.2.34. Then ᾱ is
G-surjective.

Proof. We know from Example 2.3.19 that ᾱ is a subnormal ordering of S. Thus
the assertion follows from Lemma 2.4.14.
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2.4.16 Remark. It follows from Lemma 2.4.15 that the maps in Definition 2.1.16
are always well-defined if G is rank-2-injective.

Putting everything together, we obtain a criterion for G-bijectivity.

2.4.17 Lemma. Let Ψ be a subset of Π. Assume that Ψ is (crystallographically) closed
(and that G has crystallographic Φ-commutator relations). Assume further that for any
positive system Π′ in Φ and any γ ∈ −Π′, we have Uγ ∩ UΠ′ = {1G}. Then any
extremal ordering of Ψ is G-bijective.

Proof. Any such ordering is G-injective by Lemma 2.4.10 and G-surjective by
Lemmas 2.3.21 and 2.4.14.

In particular, G-bijective orderings exist under natural conditions.

2.4.18 Proposition. Let Π be a positive system in Φ and let Ψ be a subset of Π consisting
of pairwise non-proportional roots. Assume that Ψ is (crystallographically) closed (and
that G has crystallographic Φ-commutator relations). Assume further that for any
positive subsystem Π′ of Φ and any γ ∈ −Π, we have Uγ ∩ UΠ′ = {1G}. Then there
exists a G-bijective ordering of Ψ.

Proof. By Proposition 2.3.24, there exists an extremal ordering of Ψ and this
ordering is G-bijective by Lemma 2.4.17.

2.4.19 Note. The assumption in Proposition 2.4.18 that Ψ is (crystallographically)
closed is essential for the G-surjectivity of Ψ. Even if Ψ is not (crystallographically)
closed, there exists an extremal ordering of Ψ by Proposition 2.3.24, but we cannot
apply Lemma 2.4.17. However, such an extremal ordering is still G-injective by
Lemma 2.4.10.

2.4.C All Orderings are Bijective for Crystallographic Root Systems

In the crystallographic setting, we can apply Lemma 2.4.9 to infer that all order-
ings are G-bijective. Here we have to assume that certain root groups are abelian.
For Φ-graded groups of rank at least 3, this will be proven to automatically be
true (see Note 2.1.6), and the proof of this fact does not rely on Proposition 2.4.20.
The first two assertions of the following result are essentially a special case of
[LN19, 3.12].

2.4.20 Proposition. Assume that Φ is crystallographic, that G has crystallographic Φ-
commutator relations and that for all roots α for which 2α is not a root, the root group Uα

is abelian. Let Ψ be a crystallographically closed subset of Φ such that −λα /∈ Ψ for all
α ∈ Ψ and all λ > 0. Assume further that the roots in Ψ are pairwise non-proportional.
Then the following hold:

(a) Any ordering of Ψ is G-surjective.
(b) If some ordering of Ψ is G-injective, then every ordering of Ψ is G-bijective.
(c) If Uγ ∩ UΠ′ = {1G} for any positive system Π′ in Φ and any γ ∈ −Π, then

every ordering of Ψ is G-bijective.

Proof. By Proposition 2.3.12, there exists a positive system Π in Φ which contains
Ψ. Denote by ht : Φ → Z the height function with respect to Π, choose a height
ordering ᾱ = (α1, . . . , αm) of Ψ and define Zi := ⟨Uαj | j ∈ [i, m]⟩ for all i ∈ [1, m].
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Then by the generalised commutator relation (Proposition 2.1.27), which we can
apply by the assumption on certain root groups to be abelian, we have

[UΨ, Zi] ⊆ ⟨Uα | α ∈ Φ, ht(α) > ht(αi)⟩ ⊆ Zi+1

for all i ∈ [1, m − 1]. Hence

{1G} ⊴ Zm ⊴ Zm−1 ⊴ · · · ⊴ Z1 = UΨ

is a central series of UΨ. Further, it is clear that Zi = ⟨Uαi , Zi+1⟩ for all i ∈
[1, m − 1]. Thus the conditions of Lemma 2.4.9 are satisfied. The assertions of (a)
and (b) follow. Using Proposition 2.4.18, assertion (c) follows from (b).

2.5 Root Graded Groups

2.5.1 Notation for this section. We denote by Φ an arbitrary root system.

In Propositions 2.4.18 and 2.4.20, we have found a simple criterion for the
existence of G-bijective orderings in positive systems of Φ. This criterion is
the final axiom for root graded groups, which should be thought of as a “non-
degeneracy condition”. In Note 2.5.13, we will discuss several variations of this
condition and how they relate to each other.

2.5.2 Definition (Root graded group). Let G be a group. A Φ-grading of G is a
Φ-pregrading (Uα)α∈Φ with the following properties:

(i) G is generated by (Uα)α∈Φ and Uα ̸= {1G} for all roots α.
(ii) G has Φ-commutator relations with root groups (Uα)α∈Φ (in the sense of

Definition 2.1.4).
(iii) For all α ∈ Φ, there exists an α-Weyl element in G (in the sense of Defini-

tion 2.2.2).
(iv) For all positive systems Π and all α ∈ Φ \ Π, we have UΠ ∩ Uα = {1G}.

If, in addition, G has crystallographic Φ-commutator relations with root groups
(Uα)α∈Φ (in the sense of Definition 2.1.5), then (Uα)α∈Φ is called a crystallographic
Φ-grading of G. In this context, the pair (G, (Uα)α∈Φ) is called a (crystallographic)
Φ-graded group.

2.5.3 Notation. If (G, (Uα)α∈Φ) is a Φ-graded group, then the root system Φ is
called the type of (G, (Uα)α∈Φ) or simply the type of G. We adopt the convention
that if X is a property of Φ, then G is also said to have property X. For example,
a root graded group is said to be irreducible, simply-laced or of rank r if its type
has the corresponding property.

Note that the definition of root graded groups is purely combinatorial: it
only involves a root system and its Weyl group. There is no algebraic structure
(like a ring or a module) hidden in the axioms, and there is at first glance no
reason to believe that such a thing should exist. However, in chapter 3 we will
see that Chevalley groups provide a large and well-known class of examples
of crystallographic root graded groups which are “defined over a commutative
associative ring”. The goal of this thesis is to show that every crystallographic
root graded group of rank at least 3 is “of algebraic origin” in a similar way. The
following remark makes this statement more precise.

2.5.4 Goal (Coordinatisations of root graded groups). Let G be a group with
a Φ-grading (Uα)α∈Φ and denote by O := Orbred(Φ) = (O1, . . . , Ok) the set of
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indivisible orbits of Φ (see Notation 1.3.9). Let X = (X1, . . . , Xk) be a family of
algebraic structures (each of which has an underlying group structure) and put
Xα := Xi(α) for all α ∈ Φindiv where i(α) is the unique index such that α ∈ Oi(α).
A coordinatisation of G by X is a family of maps (θα)α∈Φ with the following
properties:

(i) For all α ∈ Φindiv, the map θα : Xα → Uα is an isomorphism between the
underlying group of the algebraic structure Xα and the root group Uα.

(ii) Let (α, β) be a pair of non-proportional indivisible roots and denote by
(γ1, . . . , γp) an interval ordering of ]α, β[Cox. Then there exist maps

( fi : Xα × Xβ → Xγi)i∈[1,p]

such that the following generalisation of the Chevalley commutator formula
(see Theorem 3.2.16) holds:

[θα(a), θβ(b)] =
p

∏
i=1

θγi

(
fi(a, b)

)
for all a ∈ Xα and b ∈ Xβ. Further, the maps f1, . . . , fp can be described
explicitly using only the structural maps of the algebraic structures in X.

The preceding definition should be regarded more as a template than as a pre-
cise definition. For each type of Φ in the classification of root systems, we will
introduce a more concise definition of coordinatisations of Φ-graded groups:
see Definition 5.6.2 for types A, D and E, Definition 7.7.2 for type B, and Defi-
nition 9.6.2 for type BC (which includes type C as a special case). For type F4,
technicalities prevent us from using a definition in the exact same spirit, see
Definition 10.4.15 and Note 10.4.16.

For all crystallographic root systems Φ of rank at least 3, the goal of this
thesis is to find a class CΦ of algebraic structures such that every crystallographic
Φ-graded groups is coordinatised by an object X ∈ CΦ. This is precisely the
content of Theorems 5.7.14, 7.11.21, 9.10.26 and 10.7.8.

2.5.5 Note. The axiom that G is generated by (Uα)α∈Φ is harmless: If G is a group
with a Φ-pregrading (Uα)α∈Φ which satisfies all axioms except for this one, then
(Uα)α∈Φ is a Φ-grading of the group G′ which is generated by (Uα)α∈Φ. Since our
interest lies in the coordinatisation of the root groups, everything outside of G′ is
irrelevant for our purposes, so we simply require that G = G′.

We will never need the notion of homomorphisms of root graded groups, but
there is no harm in stating the obvious definition.

2.5.6 Definition (Homomorphisms of root graded groups). Let (G, (Uα)α∈Φ)
and (G′, (U′

α)α∈Φ) be Φ-graded groups. A group homomorphism f : G → G′

is called a homomorphism of root graded groups if f (Uα) ⊆ U′
α for all roots α. A

homomorphism of root graded groups is called an isomorphism of root graded
groups if it is an isomorphism of groups whose inverse is also a homomorphism
of root graded groups.

We now record some special cases of previous results from this chapter.

2.5.7 Proposition. Let G be a group with a Φ-grading (Uα)α∈Φ. Choose a root base ∆
of Φ and denote by Π the corresponding positive system. Let w be an element of the Weyl
group of Φ, let δ̄ = (δ1, . . . , δk) be a reduced ∆-expression of w and let ᾱ = (α1, . . . , αk)
be the associated root sequence from Definition 1.3.26. Then the product map on ᾱ in G
is bijective.
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Proof. Denote by ᾱ′ := (αk, . . . , α1) the inverse root sequence. Then N(w) =
{ α1, . . . , αk } by Proposition 1.3.28, where N is defined as in Definition 1.3.21.
Further, ᾱ is an extremal ordering by Proposition 2.3.22 and N(w) is clearly closed,
so the product map on ᾱ′ in G is bijective by Lemma 2.4.17. Using Lemma 2.4.4,
we infer that the product map on ᾱ is bijective as well.

2.5.8 Proposition. Assume that Φ is crystallographic and let G be a group with a
crystallographic Φ-grading (Uα)α∈Φ. Assume further that for all roots α for which 2α is
not a root, the root group Uα is abelian. Let Π be a positive system in Φ and let Ψ be a
crystallographically closed subset of Π whose elements are pairwise non-proportional.
Then the product map on any ordering of Ψ is bijective.

Proof. This follows from Proposition 2.4.20 (c).

By Note 2.1.6, the assumption in Proposition 2.5.8 on certain root groups to
be abelian is always satisfied if Φ is of rank at least 3. However, we still have to
prove this fact.

2.5.9 Lemma. Let G be a group with a Φ-grading (Uα)α∈Φ. Then G is rank-2-injective.

Proof. Let Π′ be a positive system in a parabolic rank-2 subsystem of Φ and let
ᾱ = (α1, . . . , αk) be an interval ordering of (Π′)indiv. Then Ψ := { α1, . . . , αk } is
closed and ᾱ is an extremal ordering of Ψ. Thus it follows from Lemma 2.4.17
that the product map on ᾱ is bijective, which finishes the proof.

2.5.10 Theorem (Braid relations). Let G be a group with a Φ-grading (Uα)α∈Φ and
assume that Φ is crystallographic or reduced. Then G satisfies the braid relations for
Weyl elements.

Proof. By Lemma 2.5.9, G is rank-2-injective. Hence the assertion is a special case
of Theorem 2.2.34.

The following result, the analogue of Lemma 2.1.12 for root gradings, guar-
antees the existence of many root graded subgroups in a root graded group. It
allows us to prove many properties of root graded groups by restricting to the
cases of rank 2 or rank 3.

2.5.11 Proposition. Let G be a group with a Φ-grading (Uα)α∈Φ and let Φ′ be a subset
of Φ. Denote by H the group which is generated by (Uα)α∈Φ′ . If Φ′ is a closed root
subsystem, then(Uα)α∈Φ′ is a Φ′-grading of H. If Φ′ is a crystallographically closed root
subsystem and the commutator relations of G are crystallographic, then (Uα)α∈Φ′ is a
crystallographic Φ′-grading of H. For any root α in Φ′, every α-Weyl element in G is
also an α-Weyl element in H.

Proof. The assertion about Weyl elements is clear. The subgroup H has the
desired (crystallographic) Φ′-commutator relations by Lemma 2.1.12. Further,
Axiom 2.5.2 (iv) is satisfied by Remark 1.2.46.

The existence of Weyl elements implies that many pairs of root groups are
isomorphic. However, it does not provide canonical isomorphisms between these
root groups. The purpose of the parametrisation theorem, which we will study
in chapter 4, is precisely to rectify this problem.

2.5.12 Lemma. Let G be a group with a Φ-grading (Uα)α∈Φ and let α, β be roots which
lies in the some orbit under the Weyl group. Then Uα is isomorphic to Uβ.



72 2. Root Graded Groups: Definition and General Observations

Proof. Choose an element u of the Weyl group such that αu = β. By the definition
of the Weyl group, there exist roots γ1, . . . , γk such that u = σ(γ1) · · · σ(γk). For
each i ∈ [1, k], we choose a γi-Weyl element wi, and we put w := w1 · · ·wk. Then
the map x 7→ xw is an isomorphism from Uα to Uβ.

We end this section with a discussion of Axiom 2.5.2 (iv).

2.5.13 Note (Possible choices of the non-degeneracy condition). Let G be a
group which has Φ-commutator relations with root groups (Uα)α∈Φ. We consider
the following conditions on G:

(i) For all positive systems Π in Φ, we have UΠ ∩ U−Π = {1G}.
(ii) Axiom 2.5.2 (iv): For all positive systems Π and all α ∈ Φ \ Π, we have

UΠ ∩ Uα = {1G}.
(iii) For any positive system Π, every ordering of Π is G-bijective.
(iv) For any positive system Π, there exists a G-bijective ordering of Π.
(v) G is rank-2-injective.

(vi) For all non-proportional roots α, β, we have Uα ∩ Uβ = {1G}.
Then we have implications “(i) =⇒ (ii) =⇒ (iv)” and “(iii) =⇒ (v) =⇒ (vi)”
where the non-trivial implications hold by Proposition 2.4.18 and Lemma 2.1.20.
Further, if Φ is crystallographic and G has crystallographic Φ-commutator rela-
tions, then we also have “(iii) ⇐⇒ (iv)” by Proposition 2.4.20 (b). Thus under
crystallographic assumptions, we have a clean chain

(i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv) =⇒ (v) =⇒ (vi).

Most of our proofs work under the relatively weak assumption (v) on rank-2-
injectivity. However, the blueprint technique itself requires the stronger condition
(ii), which is why we have chosen it as an axiom for root graded groups. It is
interesting to note that the coordinatisation of simply-laced root graded groups
in chapter 5 (which does not rely on the blueprint technique) even works under
the weaker condition (vi). This suggests that it might be possible to prove the
coordinatisation results on non-simply-laced root systems under slightly weaker
assumptions than (ii) if one found a way to work without the blueprint technique.
However, even Zhang’s computations on Cn-graded groups in [Zha14] require
condition (iii), so it seems that this is the minimal condition which has to be used
in any case.

As a final remark, it is worth mentioning that all specific examples of root
graded groups that we construct in this thesis (including all Chevalley groups)
even satisfy the strongest condition (i). In these examples, UΠ can be regarded as
a group of upper triangular (generalised) matrices while U−Π consists of lower
triangular matrices.

2.6 Foldings of Root Graded Groups

2.6.1 Notation for this section. We use the same notation as in 1.4.1 for Φ, V,
∆, ρ, τ, F := { v ∈ V | τ(v) = v }, π : V → F and Φ′ := π(Φ). In addition, we
denote by G a group with a Φ-pregrading (Uα)α∈Φ.

In this section, we describe how the folding π : Φ → Φ′ gives rise to a
construction of Φ′-graded groups from Φ-graded groups. This construction is
closely related to the construction of the twisted groups from Chevalley groups
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(see [Car72, 13.4]), but more general. We will use it in section 10.4 to construct
examples of F4-graded groups as foldings of E6-graded groups.

We use a similar method in [BW] to construct H3-graded groups as fold-
ings of D6-graded groups. However, this requires a more general approach
because H3 cannot be realised as a folding of D6 which is induced by a diagram
automorphism, but only by a folding in the more general sense of [Mü92].

By construction, roots in Φ′ can be identified with their preimages under π in
Φ, that is, with sets of roots in Φ. Thus the following definition of a Φ′-pregrading
(Ûα′)α′∈Φ′ is not surprising.

2.6.2 Definition (Folded pregrading). For all α′ ∈ Φ′, we put

Ûα′ := ⟨Uα | α ∈ Φ, π(α) = α′⟩.
The Φ′-pregrading (Ûα′)α′∈Φ′ is called a folding of (Uα)α∈Φ.

The goal of this section is to find conditions on (G, (Uα)α∈Φ) which guarantee
that (G, (Ûα′)α′∈Φ) is a Φ′-graded group. (Note that group G remains the same in
both gradings, only the family of root subgroups changes.) Clearly, we should
require that (G, (Uα)α∈Φ) itself is a Φ-graded group, but it turns out that we need
a bit more.

2.6.3 Lemma (Commutator relations). Assume that Φ′ is reduced and that for all
roots ζ for which 2ζ is not a root, the root group Uζ is abelian. If G has (crystallographic)
Φ-commutator relations with root groups (Uα)α∈Φ, then it also has (crystallographic)
Φ′-commutator relations with root groups (Ûα′)α′∈Φ′ .

Proof. This follows from Proposition 2.1.29, whose assumptions are satisfied by
Proposition 1.4.12 (c).

2.6.4 Lemma (Non-degeneracy). If UΠ ∩ U−Π = {1G} for all positive systems Π in
Φ, then also ÛΠ′ ∩ Û−Π′ = {1G} for all positive systems Π′ in Φ′.

Proof. Let Π′ be a positive system in Φ′. By Proposition 1.4.12 (b), there exists a
positive system Π in Φ such that π(Π) = Π′. Then for all β ∈ Φ, we have β ∈ Π
if and only if π(β) ∈ Π′ because Φ is the disjoint union of Π and −Π. It follows
that

ÛΠ′ ∩ Û−Π′ ⊆ UΠ ∩ U−Π = {1G},

as desired.

2.6.5 Note. We cannot show that the validity of the more general Axiom 2.5.2 (iv)
for (Uα)α∈Φ (that is, UΠ ∩ Uα = {1G} for all α ∈ Φ \ Π) implies the validity of
Axiom 2.5.2 (iv) for (Ûα′)α′∈Φ′ . The reason for this is that root groups in (Ûα′)α′∈Φ′

are not necessarily contained in root groups of (Uα)α∈Φ.

2.6.6 Lemma (Weyl elements). Let J be an orbit of ∆ under ρ and let uα be an α-Weyl
element (with respect to (Uγ)γ∈Φ) for all α ∈ J. Choose k ∈ N+ and α1, . . . , αk ∈ J
such that ᾱ = (α1, . . . , αk) is an expression of the longest element w0 := wJ

0 of the
subgroup WJ := ⟨σα | α ∈ J⟩ of Weyl(Φ). Put u := ∏k

i=1 uαi and denote by α′ the
unique element in π(J). Then Ûu

β′ = Û(β′)σ(α′) for all β′ ∈ Φ′. If, in addition, the roots
in J are pairwise orthogonal, then u is an α′-Weyl element (with respect to (Ûγ′)γ′∈Φ′).
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Proof. Let β ∈ Φ and put β′ := π(β). As a first step, we prove that Uu
β ⊆ Û(β′)σ(α′) .

Since (uγ)γ∈J are Weyl elements, Uu
β lies in the root group associated to

βσ(α1)···σ(αk) = βw0 ∈ Φ.

Now it follows from Lemma 1.4.10 that

π
(

βw0
)
= π(β)σ(α′) = (β′)σ(α′).

We conclude that Uu
β is contained in Û(β′)σ(α′) .

It follows from the conclusion of the previous paragraph that Ûu
β′ ⊆ Û(β′)σ(α′)

for all β′ ∈ Φ′. Note that (αk, . . . , α1) is an expression of (w0)−1 = w0, and
that u−1

α is also an α-Weyl element for all α ∈ J. Hence we can also apply the
conclusion of the previous paragraph to ū := u−1

αk
· · · u−1

α1
= u−1, which yields that

Ûū
β′ ⊆ Û(β′)σ(α′) for all β′ ∈ Φ′. Replacing β′ by (β′)σ(α′) and using that ū = u−1,

we infer that Û(β′)σ(α′) ⊆ Ûu
β′ for all β′ ∈ Φ′. We conclude that Ûu

β′ = Û(β′)σ(α′) for
all β′ ∈ Φ′, which proves the first part of the claim.

To prove that u is an α′-Weyl element, it remains to show that it is contained
in Û−α′Ûα′Û−α′ . By construction, it is contained in ∏k

i=1 U−αi Uαi U−αi . The as-
sumption on J implies that it is a root base of type Ak

1. In particular, α1, . . . , αk
must be pairwise distinct and J = { α1, . . . , αk }. We conclude that for all distinct
i, j ∈ [1, k], the groups Uαi and ⟨Uαj , U−αj⟩ commute. Hence the factors of u can
be reordered in a way which yields

u ∈
k

∏
i=1

U−αi

k

∏
i=1

Uαi

k

∏
i=1

U−αi ⊆ Û−α′Ûα′Û−α′ .

The assertion follows.

We can summarise the previous results as follows.

2.6.7 Proposition. Let (G, (Uα)α∈Φ) be a (crystallographic) Φ-graded group with
UΠ ∩ U−Π = {1G} for all positive systems Π in Φ. Assume that Φ′ is reduced and
that for all roots ζ for which 2ζ is not a root, the root group Uζ is abelian. Assume
further that for each orbit J of ∆ under ρ, all roots in J are pairwise orthogonal. Then
(G, (Ûα′)α′∈Φ′) is a (crystallographic) Φ′-graded group with ÛΠ′ ∩ Û−Π′ = {1G} for
all positive systems Π′ in Φ′.

Proof. This is the culmination of Lemmas 2.6.3, 2.6.4 and 2.6.6. We also use
Lemma 2.2.7 to ensure that Weyl elements exist for all roots and not merely for
the simple roots.

Recall from Note 2.1.6 that the assumption on certain root groups to be abelian
is automatically satisfied if Φ is irreducible of rank at least 3.

2.7 Root Graded Groups in the Literature

In this section, we briefly review several different notions of root gradings which
have been discussed in the literature. All of them are special cases of our defini-
tion. We have already given an overview of this topic in the preface of this thesis,
so we restrict ourselves to filling in the technical details that are missing. Some
references to later parts of this thesis will be necessary at certain points.

We begin with Tits’ notion of RGD-systems.
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2.7.1 Definition (RGD-system, [Tit92, p. 258]). Let Φ be a root system. An RGD-
system of type Φ is a Φ-graded group (G, (Uα)α∈Φ) such that U♯

α = Uα \ {1G} for
all roots α.

As discussed in the preface, predecessors of the RGD-axioms can be found as
early as in [Tit62, p. 140], and essentially the same definition is given in [Fau77].

2.7.2 Note. Definition 2.7.1 does not agree precisely with the one given in [Tit92,
p. 258]. First of all, the root system Φ is not assumed to be finite in [Tit92], which
makes the formulation of the commutator relation axiom slightly more technical.
Secondly, an RGD-system in the sense of Tits is not assumed to be generated by
(Uα)α∈Φ, but by (Uα) ∪ H where H denotes the intersection of the normalisers
of all root groups. Since our interest lies in coordinatising the root groups of a
root graded group, we are free to replace an RGD-system in Tits’ sense by the
subgroup generated by all root groups. Thirdly, Axiom 2.5.2 (iv) is replaced
by the slightly weaker assumption that for any root base ∆ and for all δ ∈ ∆,
the root group U−δ is not contained in UΠ where Π denotes the positive system
corresponding to ∆. Fourthly, the definition in [Tit92] only requires that Uα \ {1G}
is a subset of U♯

α, but by Lemma 2.2.5, this is equivalent to our requirement that
U♯

α = Uα \ {1G} (except possibly for root systems with irreducible components
of type A1).

2.7.3 Note (Invertible elements in root gradings). Let G be a root graded group
which is coordinatised by some algebraic structure A. We will show in Proposi-
tions 5.6.6, 7.7.6 and 9.6.5 and Remark 10.4.17 that for any root α, the elements of
U♯

α are in bijective correspondence with the elements of A which are invertible
(in a suitable algebraic sense). Thus RGD-systems are precisely the root graded
groups which are coordinatised by “division structures”.

We now turn to notions of root gradings which do not have “division assump-
tions”.

2.7.4 Note (Faulkner’s A2-graded groups). In [Fau14, 13.3], Faulkner defines
groups of Steinberg type. These are the same as A2-graded groups, except for a few
minor differences. Firstly, the commutator axiom (RGG-Com) in Definition 2.1.4
is required to hold for α = β as well, which says precisely that all root groups are
abelian. (That is, Faulkner uses the same definition of commutator relations as
Loos-Neher, see Note 2.1.8.) We will show in Proposition 5.4.9 that this axiom is
unnecessary. Secondly, α-Weyl elements in our sense are (−α)-Weyl elements in
Faulkner’s sense, but this is practically irrelevant by Proposition 2.2.6 (c). Thirdly
and finally, Axiom 2.5.2 (iv) is not part of the definition of a group of Steinberg
type. Instead, the weaker axiom that Uα ∩ Uβ = {1G} for all distinct roots α, β is
an additional assumption in Faulkner’s coordinatisation theorem. We will see
that our proof of the coordinatisation theorem for A2-gradings (Theorem 5.7.14)
works under this more general assumption as well. We conclude that Faulkner’s
definition is essentially the same as our definition of A2-graded groups.

We now turn to Shi’s definition of root graded groups. It is formulated in
[Shi93] only for the simply-laced root systems, but the generalisation to arbitrary
(finite) reduced root systems is immediate. Essentially the same definition is used
in [Zha14, 3.1.5]. Before we can phrase it, we have to introduce Steinberg groups.
Their definition relies on some structure constants in Chevalley groups which
will be properly introduced in chapter 3.
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2.7.5 Definition (Steinberg group). Let k be a commutative associative ring, let
Φ be a reduced crystallographic root system and let c = (cα,β)α,β∈Φ be a family of
Chevalley structure constants of type Φ (in the sense of Definition 3.1.18). The
Steinberg group of type Φ over k with respect to c is the abstract group defined by
the following presentation: The generators are symbols x̂α(r) for α ∈ Φ and r ∈ k

and the following relations hold.
(i) x̂α(r + s) = x̂α(r)x̂α(s) for all α ∈ Φ and all r, s ∈ k.

(ii) Let α, β be non-proportional roots and define

I(α, β) := { (i, j) ∈ N2
+ | iα + jβ ∈ Φ }

as in Notation 3.2.15. Then for all r, s ∈ k, we have a relation

[x̂α(r), x̂β(s)] = ∏
(i,j)∈I

x̂iα+jβ
(
cα,β,i,jrisj)

which has exactly the same form a the Chevalley commutator formula
(Theorem 3.2.16). Here the integers cα,β,i,j can be computed from c as in
Remark 3.2.21.

We denote this group by StΦ,c(k) or simply by StΦ(k). For each root α, the
subgroup Ûα := { x̂α(r) | r ∈ k } is called the root group of StΦ,c(k) corresponding
to α. For any root α and any invertible element r in k, we define

ŵα(r) := x̂−α(−r−1)x̂α(r)x̂−α(−r−1).

2.7.6 Definition (Shi’s notion of root gradings, [Shi93, (2.1)]). Let Φ be a reduced
crystallographic root system and let G be a group. A Φ-grading of G in Shi’s sense
is a Φ-pregrading (Uα)α∈Φ for which there exist a family c = (cα,β)α,β∈Φ of
Chevalley structure constants, a commutative associative non-zero ring k and a
homomorphism φ : StΦ(k) → G with the following properties:

(i) There exists a positive system Π in Φ such that the restriction of φ to ⟨Ûα |
α ∈ Π⟩ is injective.

(ii) φ(Ûα) is contained in Uα for all roots α.
(iii) G is generated by (Uα)α∈∆.
(iv) G has crystallographic Φ-commutator relations, and all root groups are

abelian.
(v) For all distinct roots α, β, we have Uα ∩ Uβ = {1G}.

(vi) For all roots α, the element φ(ŵα(1k)) is an α-Weyl element in G.

Observe that all root groups in Definition 2.7.6 are not equal to {1} because k

is non-zero.

2.7.7 Note. Let Φ be a reduced crystallographic root system, let α be an arbitrary
root and put wα := φ(ŵα(1Z)). In [Shi93], it is not assumed that wα is an α-Weyl
element, but only that for all roots β such that (α, β) is a root base of the subsystem
that it spans, we have Uwα

β = Uσα(β). It is then shown in [Shi93, (2.4) (ii)] that the
same equation holds for all roots β, which implies that wα is indeed an α-Weyl
element. Thus Definition 2.7.6 is equivalent to Shi’s definition in [Shi93, (2.1)] for
simply-laced root systems. However, it is not at all clear that [Shi93, (2.1)] also
holds for non-simply-laced root systems. Hence Definition 2.7.6 seems to be the
correct way to formulate Shi’s definition for arbitrary (reduced crystallographic)
root systems.

2.7.8 Remark (Comparison). Let Φ be a reduced crystallographic root system.
It is immediate that every Φ-graded group in Shi’s sense is a crystallographic
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Φ-graded group in our sense. Conversely, assume that Φ is simply-laced of
rank at least 2 and that (G, (Uα)α∈Φ) is a Φ-graded group in our sense. Our
coordinatisation result for such groups (Theorem 5.7.14) says precisely that there
exists a ring R such that G satisfies the same relations as in Definition 2.7.5.
In other words, G is a quotient of “StΦ,c(R)” for an appropriate c, though R

need not be commutative associative. Denote by k the commutative associative
subring of R which is generated by 1R , so that k is isomorphic to Z or to Z/nZ

for some n ∈ N≥2. Then there exists a homomorphism φ : StΦ,c(k) → G with the
properties in Definition 2.7.6. Here the injectivity of φ on ⟨Ûα | α ∈ Π⟩ follows
from the fact that the commutator relations on ⟨Ûα | α ∈ Π⟩ (and thus on ⟨Uα |
α ∈ Π⟩) already determine the group multiplication on this subset. This can
be proven as in [TW02, (8.13)], and it is also a consequence of the arguments in
section 2.4.

We conclude that Shi’s definition of root gradings is in fact equivalent to
ours for simply-laced root systems of rank at least 2. For non-simply-laced
root systems, the situation is more delicate because the involved coordinatising
structures are no longer mere rings. For example, assume that (G, (Uα)α∈B3) is a
crystallographic B3-graded group. Theorem 7.11.21 yields a pointable quadratic
module (M, q) over a commutative associative ring k which coordinatises G via
root isomorphisms (θα)α∈B3 . Choose v0 ∈ M with q(v0) = 1k. Then we have a
homomorphism φ : StΦ,c(k) → G (for an appropriate family c) whose image is

G′ := ⟨{ θα(r) | α long, r ∈ k } ∪ { θβ(rv0) | β short, r ∈ k }⟩.

However, it is not clear that the restriction of φ to ⟨Ûα | α ∈ Π⟩ is injective for some
positive system Π. For example, if k = Z/nZ, it is not obvious that mv0 ̸= 0 for
every proper divisor m of n. This illustrates that Definition 2.7.6 is not adequate
to capture the more general phenomena which may occur in non-simply-laced
root graded groups.

While the involvement of the Steinberg group makes Shi’s definition more
complicated, it has practical benefits: It simplifies the (sign problem in the)
parametrisation of these groups. See Remark 4.1.29 for a few more details.

2.7.9 Coordinatisation results in the literature. Let Φ be a root system. Recall
from the preface that RGD-systems of type Φ are essentially the same thing as
Moufang buildings of type Φ (see [AB08, Section 7.8] for details). Thus Tits’
classification of irreducible Moufang buildings for root systems of rank at least 3
in [Tit74] yields coordinatisation results for irreducible RGD-systems of rank
at least 3. It should be noted, however, that the language of [Tit74] is rather
different from the one in this thesis. In contrast, the classification of irreducible
Moufang buildings of rank 2 (that is, of Moufang polygons) in [TW02] uses
a group-theoretic language which is very similar to ours and which provides
explicit commutator formulas. In [TW02, (40.22)], the classification of irreducible
Moufang buildings of rank at least 3 is deduced from the classification of Moufang
polygons, and explicit commutator relations are provided for some (but not all)
pairs of roots. By Tits’ famous Theorem 4.1.2 (see [Tit74, 4.1.2]), the commutator
relations on all pairs of (non-proportional) roots are uniquely determined by the
commutator relations in [TW02, (40.22)].

We now turn to Φ-gradings which are not assumed to be RGD-systems.
Our coordinatisation result for simply-laced root gradings of rank at least 2
(Theorem 5.7.14) is given in essentially the same way in [Shi93, (2.3)] for root
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gradings in Shi’s sense. For root gradings of types B, BC and F4, there exist no
prior results.

For Cn-graded groups in Shi’s sense with n ≥ 3, a weaker version of our coor-
dinatisation result (Theorem 9.10.26) can be found in 3.4.19 of Zhang’s PhD thesis
[Zha14]. The result in [Zha14] is obtained under the additional assumption that
the root groups are 2-divisible, and it remains a conjecture that the coordinatising
ring is alternative. Further, due to a problem in the proof of [Zha14, 3.4.8 (4)],
Zhang overlooks the examples of Cn-graded groups which are coordinatised
not only by a ring R with involution σ, but by a tuple (R, M) where M is an
additional module over R. See section 9.3 and, in particular, Remark 9.3.29 for
more details on these additional examples. We can solve all these problems in
the setting of BCn-gradings (which properly generalise Cn-gradings) using the
blueprint technique.



Chapter 3

Chevalley Groups

The main examples of root graded groups are Chevalley groups, which were
introduced by Chevalley in his famous paper [Che55] in 1955. By construction,
every Chevalley group is coordinatised by a commutative associative ring R

in the sense that its root groups are isomorphic to the additive group (R,+).
Further, the celebrated Chevalley commutator formula states that commutators
of root group elements can be described in terms of the multiplication on R. In
this chapter, we outline the construction of Chevalley groups and their basic
properties. This will motivate the definition of coordinatisations of root graded
groups. Some subtleties, like the sign problem, are already visible in this context.
However, this chapter is merely a survey: We will give no proofs and state
only those definitions which are either simple or absolutely necessary for this
introduction. None of the material is new, but the viewpoint of root graded
groups lets us see some results in a different light.

Standard references on this topic are [Hum72] for the basic theory of Lie
algebras and [Ste67; Car72] for the material on Chevalley groups. It should be
noted that [Hum72, Chapter VII] also contains the construction of Chevalley
groups (but not many properties of these groups beyond that) and that [Car72]
only covers adjoint Chevalley groups, not general Chevalley groups. Further, all
three references have the disadvantage that they only introduce Chevalley groups
over fields and not over commutative associative rings. However, all the basic
results in this chapter remain valid over commutative associative rings, and only
minor modifications of the proofs are necessary. A survey of Chevalley groups in
this general setting is [VP96]. It contains all the results which we introduce in
this chapter, albeit usually without proofs.

3.1 Semisimple Lie Algebras

Before we can turn to Chevalley groups, we have to introduce semisimple Lie
algebras. By “integrating” these algebras, we will obtain Chevalley groups. The
standard reference for the material in this section is [Hum72].

3.1.1 Definition (Lie algebra, [Hum72, 1.1]). Let k be a commutative associative
ring. A Lie algebra over k is a k-module L together with a k-bilinear operation
[ · , · ] : L × L → L, (x, y) 7→ [x, y] which satisfies the following properties:

(i) Antisymmetry: [x, x] = 0 for all x ∈ L.
(ii) Jacobi identity:

[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0 for all x, y, z ∈ L.
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3.1.2 Example. For any associative k-algebra A, the k-module A together with
the commutator bracket [ · , · ] : A × A → A, (x, y) 7→ xy − yx is a Lie algebra.

3.1.3 Definition (Ideals and subalgebras, [Hum72, 2.1]). Let k be a field, let L
be a Lie algebra over k and let U be a k-subspace of L. Then U is called an ideal
of L if [x, y] ∈ U for all x ∈ L and y ∈ U, and it is called a Lie subalgebra of L if
[x, y] ∈ U for all x, y ∈ U.

3.1.4 Remark. A Lie algebra is called semisimple if it contains no non-trivial
solvable ideal ([Hum72, 3.1]). Further, we define a Cartan subalgebra of L to be a
maximal torus. For any Cartan subalgebra H, we denote by H∗ the vector space
of k-linear maps from H to k.

3.1.5 Notation for this section. From now on, we denote by k an algebraically
closed field of characteristic 0, by L a semisimple Lie algebra over k and by H a
Cartan subalgebra of L.

3.1.6 Definition (Root system of a Lie algebra). For any k-linear map α : H → k,
we call

Lα := { x ∈ L | [h, x] = α(h)x for all h ∈ H }

the root subspace of L corresponding to α. We call α a root of L (with respect to H) if
Lα ̸= {0} and α ̸= 0. We denote the set of all roots of L with respect to H by
Φ := Φ(L, H) and call it the root system of L (with respect to H).

3.1.7 Proposition ([Hum72, 8.2, 8.5]). The Killing form κ : H × H → H is non-
degenerate, and it induces an inner product κR on the real vector space H∗ ⊗Q R.

3.1.8 Definition. For each α ∈ H∗, we denote by tα the unique element of H
which satisfies κ(tα, h) = α(h) for all h ∈ H, and we further put hα := 2

κ(tα,tα)
tα.

3.1.9 Remark. For any α ∈ H∗, we have α(hα) = 2 α(tα)
κ(tα,tα)

= 2 κ(tα,tα)
κ(tα,tα)

= 2.

3.1.10 Proposition ([Hum72, Theorem 8.5]). The set Φ is a reduced crystallographic
root system in the Euclidean space (H∗ ⊗Q R, κR).

3.1.11 Theorem (Root space decomposition, [Hum72, 8.1, 8.2, 8.4]). As a k-vector
space, we have the following root space decomposition of L:

L = H ⊕
⊕

α∈Φ(L,H)

Lα.

Further, dim Lα = 1 for all roots α and [Lα, Lβ] = Lα+β for all roots α, β.

This finishes our outline of the basic theory of semisimple Lie algebras. We
now turn to Chevalley bases and their structure constants. The key idea here is
that a Chevalley basis equips L with an integral structure, which will later allow
us to base change to arbitrary commutative associative rings. This will be crucial
for the definition of Chevalley groups over these rings.

3.1.12 Notation for this section. From now on, we denote by Φ := Φ(L, H) the
root system of L with respect to H and by ℓ the rank of this root system.

3.1.13 Definition (Chevalley basis, [Hum72, Proposition 25.2]). Choose an or-
dered root base ∆ = (α1, . . . , αℓ) of Φ. A Chevalley basis of L of type ∆ (with respect
to H) is a family C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ] with the following properties:
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(i) hi = hαi for all i ∈ [1, ℓ].
(ii) [xα, x−α] = hα for all α ∈ Φ.

(iii) Let α, β be roots such that α + β is a root. If the scalars cα,β, c−α,−β ∈ k are
defined by [xα, xβ] = cα,βxα+β and [x−α, x−β] = c−α,−βx−α−β, then c−α,−β =
−cα,β.

A Chevalley basis of L (with respect to H) is a Chevalley basis of some type.

3.1.14 Note. Let ∆, ∆′ be two ordered root bases of Φ and let C = (xα)α∈Φ ∪
(hi)i∈[1,ℓ] be a Chevalley basis of type ∆. Then (xα)α∈Φ ∪ (hδ)δ∈∆′ is a Chevalley
basis of type ∆′, and this is the unique Chevalley basis of type ∆′ which extends
(xα)α∈Φ. This shows that the crucial objects in a Chevalley basis are the root space
elements (xα)α∈Φ and not the torus elements (hδ)δ∈∆. In particular, the type of a
Chevalley basis usually plays only a minor role, if at all.

3.1.15 Remark. Let C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ] be a Chevalley basis of L. Then
hi = hαi = [xαi , x−αi ] for all i ∈ [1, ℓ] where αi is the corresponding simple root. It
follows that (xα)α∈Φ generates L as a Lie algebra.

3.1.16 Remark. Let C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ] and C′ = (x′α)α∈Φ ∪ (h′i)i∈[1,ℓ] be two
Chevalley bases of L. Since each root space Lα is one-dimensional, there exists
a family (λα)α∈Φ of non-zero complex coefficients such that x′α = λαxα for all
α ∈ Φ. Since

hα = [x′α, x′−α] = λαλ−α[xα, x−α] = λαλ−αhα,

we have λ−α = λ−1
α for all α ∈ Φ.

3.1.17 Definition (Chevalley structure constants). Let C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ]
be a Chevalley basis of L. For any pair of roots α, β, we define cα,β ∈ k by the
equation [xα, xβ] = cα,βxα+β if α + β is a root, and we define cα,β := 0 if α + β is
not a root. The scalars (cα,β)α,β∈Φ are called the (Chevalley) structure constants of L
(with respect to C).

3.1.18 Definition. Let c = (cα,β)α,β∈Φ be a family of integers. We say that c is a
family of Chevalley structure constants of type Φ if there exist a semisimple complex
Lie algebra L with root system Φ and a Chevalley basis C of L such that (cα,β)α,β∈Φ
are the Chevalley structure constants of L with respect to C.

Observe that the structure constants of a Chevalley basis C = (xα)α∈Φ ∪
(hi)i∈[1,ℓ] depend only on (xα)α∈Φ and not on (hi)i∈[1,ℓ].

3.1.19 Example (of a Chevalley basis). Consider the root system Φ = Aℓ for
some ℓ ∈ N+. Without loss of generality, we can use the standard representation
of Aℓ:

Aℓ = { ei − ej | i ̸= j ∈ [1, ℓ+ 1] }

where (e1, . . . , eℓ+1) is an orthonormal basis of some Euclidean space. (See Re-
mark 5.2.3 for more details.) The corresponding Lie algebra is

L := slℓ+1(k) :=

{
A ∈ Mℓ+1(k)

∣∣∣∣∣ ℓ+1

∑
i=1

Aii = 0

}
.

For all i, j ∈ [1, ℓ+ 1], we denote by bij the matrix in Mℓ+1(k) with 1k at position
(i, j) and zero at every other position. For any root α = ei − ej ∈ Aℓ, we now put
xα := xij := bij. Further, we put hi := bii − bi+1,i+1. Then H := ⟨hi | i ∈ [1, ℓ]⟩k,
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the space of diagonal matrices in L, is a Cartan subalgebra of L, and the spaces
Lα := ⟨xα⟩ for all α ∈ Aℓ are the root spaces of L. Using the formulas

bij · bpq =

{
biq if j = p,
0 otherwise,

one can easily compute that [xij, xjk] = xik and [xjk, xij] = −xik for all pairwise
distinct i, j, k ∈ [1, ℓ+ 1]. It follows that (xα)α∈Aℓ

∪ (hi)i∈[1,ℓ] is a Chevalley basis
of L and that the numbers cei−ej,ej−ek := 1 and cej−ek ,ei−ej := −1 for all pairwise
distinct i, j, k ∈ [1, ℓ+ 1] and cα,β := 0 for all other pairs of roots α, β ∈ Φ are the
structure constants of this Chevalley basis.

3.1.20 Remark. In continuation of Example 3.1.19, we can easily determine all
Chevalley bases of type A1. The only root bases of A1 are ∆ = { e1 − e2 } and
∆′ = { e2 − e1 }. In Example 3.1.19, we have seen the Chevalley basis

(x12 = b12, x21 = b21, h1 = b11 − b22)

of type ∆. By Remark 3.1.16, any other Chevalley basis of type ∆ must be of the
form

(x12 = λb12, x21 = λ−1b21, h1 = b11 − b22)

for some λ ∈ C \ {0}, and it is easy to see that this is indeed a Chevalley basis for
all λ ∈ C \ {0}. Similarly, the Chevalley bases of type ∆′ are exactly the tuples of
the form

(x12 = λb12, x21 = λ−1b21, h1 = b22 − b11)

where λ ∈ C \ {0}.

We now cite some essential properties of Chevalley bases.

3.1.21 Lemma ([Hum72, Proposition 25.2]). There exists a Chevalley basis of L.

3.1.22 Lemma ([Hum72, Proposition 25.2]). Let C be a Chevalley basis of L. Then C

is a basis of the k-vector space L, and the Z-span of C is a Lie subalgebra of L over Z.

3.1.23 Lemma. Let C be a Chevalley basis of L. Then the Chevalley structure constants
of L with respect to C have the following properties:

(a) For all roots α, β, we have cα,β = −cβ,α and c−α,−β = −cα,β.
(b) If α, β are roots such that α + β is a root, then cα,β ∈ {±(r + 1) } where r is the

maximal non-negative integer such that β − rα is a root.
(c) All structure constants of L with respect to C are integers, and their absolute

values are uniquely determined by the root system Φ.
(d) If C′ is another Chevalley basis of L with structure constants (c′α,β)α,β∈Φ, then

c′α,β ∈ {±cα,β } for all roots α, β.

(e) If C′ is another Chevalley basis of L with structure constants (c′α,β)α,β∈Φ such that
cα,β = c′α,β for all roots α, β lying in some positive system Π in Φ, then cα,β = c′α,β
for all roots α, β.

Proof. The property cα,β = −cβ,α follows from the anti-commutativity of the Lie
bracket while the second part of (a) is part of the definition of a Chevalley basis.
A proof of (b) can be found in [Hum72, Theorem 25.2]. Parts (c) and (d) are
consequences of (b). Property (e) holds by [VP96, (14.8)].

3.1.24 Remark. It follows from Lemma 3.1.23 (b) that in a simply-laced root
system, we have cα,β ∈ {±1} for all roots α, β for which α + β is a root.
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3.1.25 Note (The sign problem for Chevalley bases). We emphasise the state-
ment of Lemma 3.1.23 (d): The structure constants of a Chevalley basis are only
unique up to a sign. However, not every choice of signs corresponds to a Cheval-
ley basis. This raises the following natural question: How much freedom do we
have in the choice of signs, and can we describe an algorithm which produces
an (or any) explicit choice of signs? This problem is well-known in the theory of
Chevalley groups, and we will refer to it as the sign problem (for Chevalley groups).
In [Car72, Section 4.2], it is shown that the signs can be chosen arbitrarily for so-
called extraspecial pairs of roots, and then all other signs are determined by these
arbitrary choices. More information can also be found in [VP96, Sections 14, 15].

A direct consequence of the sign problem for Chevalley bases is that the signs
in the Chevalley commutator formula are not unique either. Similarly, the signs
which appear in certain conjugation formulas for Weyl elements depend on the
signs of the Chevalley basis. See Notes 3.2.23 and 3.3.8 for more details. Further,
a variation of the sign problem is the main difficulty in the parametrisation of
root graded groups. We will elaborate on this in Remark 4.1.14.

The following fact on complex semi-simple Lie algebras will be needed in
Lemma 3.3.13. Its proof relies on standard arguments, but it is hard to find an
explicit reference in the literature.

3.1.26 Lemma. Let ∆ be a root base of Φ, let C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ] be a Chevalley
basis of L of type ∆ (with respect to H) and let (cα,β)α,β∈Φ be the corresponding structure
constants. Let ∆′ be a non-empty subset of ∆ and denote by Φ′ the root system which
is spanned by ∆′. Put H′ := ⟨hδ | δ ∈ ∆′⟩ and L′ := ⟨(xα)α∈Φ′ ∪ H′⟩. Then L′ is a
semisimple Lie algebra, H′ is a Cartan subalgebra of L′, the root system of L′ with respect
to H′ can be identified with Φ′ in a canonical way and C′ := (xα)α∈Φ′ ∪ (hδ)δ∈∆′ is a
Chevalley basis of L′ of type ∆′ with respect to H′. Further, the structure constants of C′

are precisely (cα,β)α,β∈Φ′ .

3.2 Construction of the Chevalley Groups

3.2.1 Notation for this section. We denote by k an algebraically closed field of
characteristic 0, by L a semisimple Lie algebra over k with a Cartan subalgebra H
and (reduced crystallographic) root system Φ := Φ(L, H) and by C = (xα)α∈Φ ∪
(hi)i∈[1,ℓ] a Chevalley basis with structure constants (cα,β)α,β∈Φ.

In the previous section, we studied only the Lie algebra L. We now introduce
representations of L. For any such representation δ, we will define Chevalley
groups of type δ by “integrating δ”.

3.2.2 Definition. For any k-vector space V, we denote by gl(V) the Lie algebra
consisting of the vector space Endk(V) with the commutator bracket.

3.2.3 Definition (Representations). A representation of L is a homomorphism
δ : L → gl(V) for some k-vector space V. It is called finite-dimensional if V is
finite-dimensional as a k-vector space and it is called faithful if it is injective. In
this context, the vector space V is also called an L-module. An L-module V is
called called irreducible if V ̸= {0} and if there exists no non-trivial submodule
of V.

3.2.4 Example. The homomorphism ad: L → gl(L), y 7→ ady is a representation
of L, called the adjoint representation of L.
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3.2.5 Lemma. Let δ : L → gl(V) be a finite-dimensional representation of L. Then
δ(xα) is nilpotent for all α ∈ Φ.

Proof. This is a consequence of [Hum72, Lemma 20.1].

3.2.6 Strategy. Fix any representation δ : L → gl(V) of L. For all α ∈ Φ, we can
define a map

θα : (k,+) → Autk(V), λ 7→ exp
(
λδ(xα)

)
=

∞

∑
i=0

λi

i!
δ(xα)

i.

Here the sum in the exponential is actually finite by Lemma 3.2.5, so we need not
worry about analytic considerations. It is not too difficult to show that the maps
(θα)α∈Φ are injective homomorphisms (see, however, Remark 3.2.25). We put
Uα := θα(k) for all α ∈ Φ. The Chevalley group of type δ over k is the group G
which is generated by (Uα)α∈Φ, and we will see that (Uα)α∈Φ is a crystallographic
Φ-grading of G.

The construction above was relatively easy because we worked over k, and it
is not at all clear how it should be extended to arbitrary commutative associative
rings. The key idea will be to find a suitable Z-structure of V, and these Z-
structures will be called admissible lattices.

3.2.7 Definition (Admissible lattices). Let δ : L → gl(V) be a finite-dimensional
representation of L. An additive subgroup M of V is called a lattice if there exists
a k-basis B of V such that M is the Z-span of B. It is called an admissible lattice
(with respect to C and δ) if, in addition, δ(xα)n

n! (M) ⊆ M for all non-negative integers
n and all α ∈ Φ.

It is a non-trivial fact that admissible lattices always exist. This is relatively
easy to prove for the adjoint representation, but the general proof uses Kostant’s
Theorem (see [Hum72, Section 26]).

3.2.8 Proposition ([Hum72, Proposition 25.5]). The Z-span of C is an admissible
lattice in L with respect to the adjoint representation ad : L → gl(L).

3.2.9 Proposition ([Hum72, Theorem 27.1]). Let δ : L → gl(V) be any finite-
dimensional representation of L. Then there exists an admissible lattice in V with
respect to δ.

Finally, we have everything we need to construct Chevalley groups.

3.2.10 Remark (Construction of the root homomorphism). Let δ : L → gl(V) be
a finite-dimensional faithful representation of L and choose an admissible lattice
M in V (which exists by Proposition 3.2.9). Let α be an arbitrary root and let R
be an arbitrary commutative associative ring. For any non-negative integer n,
the endomorphism δ(xα)n

n! of V leaves M invariant because M is admissible, and
thus δ(xα)n

n! can be regarded as an endomorphism θα,n of M. Then we also have an
R-endomorphism θα,n ⊗ idR of V(R) := M ⊗Z R. Now we can define a map

θα : (R,+) → EndR

(
V(R)

)
, r 7→

∞

∑
m=0

rm(θα,m ⊗ idR)

where the sum is actually finite because δ(xα) is nilpotent (by Lemma 3.2.5). The
map θα is actually a homomorphism and thus its image lies in AutR(V(R)).
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3.2.11 Definition (Chevalley groups). Let δ : L → gl(V) be a finite-dimensional
faithful representation of L, let M be an admissible lattice in V, let R be a com-
mutative associative ring and put V(R) := M ⊗Z R. For all roots α, we define
the corresponding root homomorphism to be the homomorphism

θα : (R,+) → AutR(V(R))

from Remark 3.2.10 and we define the corresponding root subgroup, denoted by
Uα, to be the image of θα. The Chevalley group of type δ over R (with respect to M
and C) is the subgroup of AutR(V(R)) which is generated by (Uα)α∈Φ. We let it
act on V(R) from the left-hand side (which, in particular, determines in which
order we compose elements of the Chevalley group). A Chevalley group of type
Φ over R is a Chevalley group over R which is defined with respect to some
Chevalley basis of L, some finite-dimensional faithful representation δ of L and
some admissible lattice M in this representation. We will say that a Chevalley
group of type Φ over R is defined with respect to c′ if c′ = (c′α,β)α,β∈Φ is the family
of Chevalley structure constants of a Chevalley basis with respect to which G is
defined.

3.2.12 Note (Adjoint Chevalley groups). The Chevalley groups of type ad are
called adjoint Chevalley groups. Since the existence of admissible lattices for this
representation is relatively easy to verify (see Proposition 3.2.8), the construction
of adjoint Chevalley groups is easier than the general construction. In [Car72], ad-
joint Chevalley groups are actually the only Chevalley groups which are defined.
We will see that the Chevalley commutator formula (Theorem 3.2.16) is indepen-
dent of the chosen representation. Since this formula is the essential property
that we are interested in from the viewpoint of root graded groups, we could
theoretically restrict ourselves to adjoint Chevalley groups as well. However,
the additional effort to define general Chevalley groups is very low as long as
we skip the proof of Proposition 3.2.9. Further, while adjoint Chevalley groups
are easier to define, we will see in Example 3.2.14 that Chevalley groups for the
natural representation of L are easier to compute because this representation is
simply the identity map in terms of matrices.

3.2.13 Note (Chevalley groups over rings). In many references, for example
in [Hum72; Car72; Ste67], Chevalley groups are only defined over fields, and
many results do not extend to rings. For example, adjoint Chevalley groups are
nearly always simple (see [Ste67, Chapter 4]), but Chevalley groups over rings
containing a proper ideal are not simple. However, the basic construction of
Chevalley groups remains the same over rings, and our definition agrees with
the one in [VP96, Section 6].

3.2.14 Example (Chevalley groups of type Aℓ). Consider the Lie algebra L :=
slℓ+1(C) of type Aℓ. Denote by C = (xα)α∈Aℓ

∪ (hi)i∈[1,ℓ] the Chevalley basis of
L from Example 3.1.19. Put V := Cℓ+1 and denote by δ : L → gl(V) the natural
representation of L. Thus for each x ∈ L, the transformation matrix of δ(x) with
respect to the standard basis of V is exactly x. Further, we denote by M the
abelian group which is generated by the standard basis in V. Since for all α ∈ Aℓ,
we have that δ(xα) has integral entries and satisfies δ(xα)2 = 0, the lattice M is
admissible with respect to C and δ.

Now let R be an arbitrary commutative associative ring and let (θα)α∈Aℓ

denote the family of root homomorphisms of the Chevalley group G of type δ over
R with respect to M. Then for each α = ei − ej ∈ Aℓ, the matrix of θα(λ) for λ ∈ R
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is exactly idℓ+1 +λxα = idn+1 +λbij. Matrices of this form are called elementary
matrices. The Chevalley group G is exactly the group which is generated by these
matrices. We call it the elementary group (over R), and we will also denote it by
En+1(R). Clearly, all elementary matrices have determinant 1, so this group is
contained in SLℓ+1(R). If R is a field, then we have SLℓ+1(R) = Eℓ+1(R).

Observe that elementary matrices and the elementary group can also be de-
fined for an arbitrary associative ring R which is not assumed to be commutative.
This group is no longer a Chevalley group, but it is still an Aℓ-graded group.

Finally, we can state the Chevalley commutator formula, which is the most
important result of this chapter. Not only does it say that a Chevalley group has
crystallographic Φ-commutator relations with respect to its root groups, but it
also provides explicit formulas for the commutator of two root group elements.

3.2.15 Notation. For any pair of non-proportional roots α, β, we put

I(α, β) := { (i, j) ∈ N2
+ | iα + jβ ∈ Φ } = { (i, j) ∈ N2

+ | iα + jβ ∈ ]α, β[ }.

3.2.16 Theorem (Chevalley commutator formula, [Ste67, Lemma 15]). Let α, β
be non-proportional roots and put I := I(α, β). Endow the set I with an arbitrary
but fixed order. Then there exists a unique family (cα,β,i,j)(i,j)∈I of integers (which may
depend on the chosen order on I) such that for all commutative associative rings R and
for all Chevalley groups G of type Φ over R, the corresponding root homomorphisms
(θγ)γ∈Φ satisfy

[θα(r), θβ(s)] = ∏
(i,j)∈I

θiα+jβ
(
cα,β,i,jrisj)

for all r, s ∈ R. In particular, G has crystallographic Φ-commutator relations with root
groups (Uα)α∈Φ.

3.2.17 Definition (Chevalley structure constants). The integers cα,β,i,j (where α, β
are non-proportional roots and (i, j) ∈ I(α, β)) in Theorem 3.2.16 are called the
(Chevalley) structure constants of (the Chevalley group) G.

We close this section with some complementary remarks.

3.2.18 Note. The structure constants of a Chevalley group G are already deter-
mined by the semisimple Lie algebra L from which G is constructed, so it would
be more precise to call them “structure constants of L”. However, the terminology
in Definition 3.2.17 is well-established in the literature.

3.2.19 Remark (Commutator conventions). Recall from Note 1.1.9 that we have
defined commutators by [x, y] := x−1y−1xy while some authors prefer the con-
vention [x, y] := xyx−1y−1. Of course, the Chevalley structure constants cαβij
depend on the convention we use. Passing from one convention to the other
one means that we replace r and s by −r and −s on the left-hand side of Theo-
rem 3.2.16, so the structure constant cαβij has to be multiplied by (−1)i+j. This has
practical relevance for us because [VP96] and [Ste67] use the second convention
for commutators while the convention in [Car72] coincides with ours.

3.2.20 Note. In the way Theorem 3.2.16 is stated in [Ste67], it is not actually a
statement about the Chevalley group G but rather about the universal enveloping
algebra U of L (or, more precisely, about a Z-form of U which is determined by
the Chevalley basis C). Even though Steinberg only considers Chevalley groups
over fields, it follows from the statement of [Ste67, Lemma 15] that the Chevalley
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commutator formula holds for Chevalley groups over arbitrary commutative
associative rings. A reference which states the Chevalley commutator formula
over commutative associative rings is [VP96, p. 94].

3.2.21 Remark (Computation of the structure constants). Since, as explained in
Note 3.2.20, the Chevalley commutator cormula is actually a statement about L
and its Chevalley basis C, it is not surprising that the Chevalley structure con-
stants cαβij of its Chevalley groups can be computed from the structure constants
cαβ of L. We now explain how. Let α, β be non-proportional roots and define, for
each m ∈ N+,

Mα,β,m :=
1

m!

m

∏
i=1

cα,β+(i−1)α =
1

m!
cα,βcα,α+β · · · cα,(m−1)α+β.

Using Lemma 3.1.23 (b), one can show that these numbers are binomial coef-
ficients, so in particular, they are integers (see [Car72, p. 62]). Observe that
Mα,β,1 = cα,β and Mα,β,m = 0 if α + (m − 1)β is not a root. Choose any order ≺
on I(α, β) with the property that i + j < i′ + j′ implies (i, j) ≺ (i′, j′). For this
order of I(α, β), [Car72, 5.2.2] supplies formulas for the structure constants c′αβij
defined by the following slightly different version of the Chevalley commutator
formula:

θα(u)−1θβ(t)−1θα(u)θβ(t) = [θα(u), θβ(t)] = ∏
(j,i)

θiβ+jα
(
c′i,j,β,α(−t)iuj).

Clearly, these structure constants are related to our structure constants by the
formula cα,β,i,j = (−1)ici,j,β,α. Thus the formulas in [Car72, 5.2.2] yield:

cα,β,j,1 = −c′1,j,β,α = (−1)j+1Mα,β,j,

cα,β,1,i = (−1)ic′i,1,β,α = (−1)i Mβ,α,i,

cα,β,3,2 = c′2,3,β,α = −2
3

Mα+β,α,2,

cα,β,2,2 = −c′3,2,β,α = −1
3

Mα+β,β,2.

Further, all these numbers lie in {±1,±2,±3 } by [Car72, 5.2.2]. Note that the
formula for cα,β,i,j differs from the one given in [VP96, p. 95] by the sign (−1)i+j

because of the differing convention for commutators (see Remark 3.2.19). Further,
note that cα,β,1,1 = Mα,β,1 = cα,β.

3.2.22 Example. Assume that the root system Φ is simply-laced. Then we know
from Remark 5.2.2 (2) that for all non-proportional roots α, the interval ]α, β[ is
either {α + β} or empty. Hence by Remark 3.2.21, the Chevalley commutator
formula has the form

[θα(r), θβ(s)] = θα+β(cα,βrs)

for all non-proportional roots α, β for which α + β is a root and for all r, s ∈ R. In
the group Eℓ+1(R) from Example 3.2.14, the commutator formula thus has the
form

[θei−ej(r), θej−ek(s)] = θei−ek(rs) and [θej−ek(r), θei−ej(s)] = θei−ek(−rs)

for all pairwise distinct i, j, k ∈ [1, ℓ + 1] and all r, s ∈ R. Note that each of
these two formulas is a simple consequence of the other one by the relation
[x, y]−1 = [y, x]. Further, the first formula remains valid in the group Eℓ+1(R) for
any associative ring R which need not be commutative, but we have to replace
rs in the second formula by sr.
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3.2.23 Note (The sign problem in the Chevalley commutator formula). We have
seen in Remark 3.2.21 that the structure constants in the Chevalley commutator
formula can be computed from the structure constants of the Chevalley bases.
Since the latter are only unique up to a sign by Note 3.1.25, it follows that the
former are only unique up to a sign as well. This is the second occurrence of the
sign problem in the theory of Chevalley groups.

3.2.24 Note. We have already remarked in Note 3.2.12 that Carter only covers
adjoint Chevalley groups in [Car72]. However, we know from Theorem 3.2.16
that the structure constants do not depend on the choice of a representation, so
the formulas in Remark 3.2.21 are still valid for all representations.

3.2.25 Remark (Injectivity of the root homomorphisms). Let α be any root. The
homomorphism θα : (R,+) → Uα is surjective by the definition of Uα, and it is in
fact also injective. This is proven in [Ste67, Corollary 1 of Lemma 17] for fields,
but the proof does not transfer to rings: it uses that λv = 0 implies λ = 0 where
v is a non-zero vector in a module over a field and λ is a scalar. However, it
remains true over commutative associative rings (for example, this is stated in
[VP96, below (9.1)]), but this is a non-trivial fact.

3.2.26 Lemma. Let ∆ be a root base of Φ such that ∆ is the type of C, let ∆′ be a subset
of ∆ and denote by Φ′ the root system which is spanned by ∆′. Let δ : L → gl(V) be a
finite-dimensional faithful representation of L, let M be an admissible lattice in V with
respect to C, let R be a commutative associative ring and let G be the Chevalley group of
type δ over R with respect to C and M. Denote the root groups and root homomorphisms
of G by (Uα)α∈Φ and (θα)α∈Φ, respectively. Put G′ := ⟨Uα | α ∈ Φ′⟩ and let L′ be
the Lie subalgebra of L of type Φ′ with Chevalley basis C′ from Lemma 3.1.26. Then
the restriction δ′ of δ to L′ is a finite-dimensional faithful representation of L′, M is an
admissible lattice in V with respect to δ′ and C′ and G′ is the Chevalley group of type δ′

over R with respect to C and M. Further, the root groups and root homomorphisms of
G′ are (Uα)α∈Φ and (θα)α∈Φ, respectively.

Proof. The only difficulty lies in proving that C′ is indeed a Chevalley basis, which
we already know from Lemma 3.1.26. The remaining assertions are straightfor-
ward to check.

3.3 Weyl Elements in Chevalley Groups

3.3.1 Notation for this section. We denote by k an algebraically closed field of
characteristic 0, by L a semisimple Lie algebra over k with a Cartan subalgebra
H and (reduced crystallographic) root system Φ := Φ(L, H), by ℓ the rank of Φ
and by C = (xα)α∈Φ ∪ (hi)i∈[1,ℓ] a Chevalley basis of L (with respect to H) with
structure constants (cα,β)α,β∈Φ. We fix a finite-dimensional faithful representation
δ : L → gl(V), an admissible lattice M in V and a commutative associative ring
R. We denote by G the Chevalley group of type δ over R (with respect to M), by
(Uα)α∈Φ its root groups and by (θα)α∈Φ its root homomorphisms.

Since we already know from the Chevalley commutator formula that G has
crystallographic Φ-commutator relations with root groups (Uα)α∈Φ, it remains to
establish the existence of Weyl elements in G. However, we will not settle for a
mere existence result. Instead, we will give explicit formulas for the conjugation
action of Weyl elements on the root groups, and we will derive properties of the
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signs which appear in these formulas. In particular, we will encounter the square
formula for Weyl elements (see Note 3.3.12) which plays an important role in the
theory of root graded groups (see Definitions 4.2.10 (e) and 4.4.4).

3.3.2 Note. Essentially all results in this sections are consequences of [Ste67,
Lemma 19 (a), (c)]. It is slightly problematic that Lemma 19 is only formulated
for fields. However, the statements of Lemma 19 (a) and (c) remain valid over
commutative associative rings: For each equation in Lemma 19 (a) and (c), we
can find a certain integral Laurent polynomial

f ∈ Z[t1, . . . , tn, u1, . . . , um, u−1
1 , . . . , u−1

m ]

such that the validity of the desired equation (over R) is equivalent to the asser-
tion that f vanishes at all points in Rn × (R×)m (where R× is the set of invertible
elements in R). If the desired results holds over C, then f must be the zero poly-
nomial, and hence it vanishes at all points in any commutative associative ring.
Thus if Lemma 19 (a) and (c) hold over C, then they hold over all commutative
associative rings. In fact, Steinberg only proves [Ste67, Lemma 19] over C and
then invokes the same argument that we have just described to infer that it holds
over arbitrary fields.

Similarly, it can be shown that statement of Lemma 19 (b) in [Ste67] remains
true over commutative associative rings. However, the existence assertion in
Lemma 19 (b) makes the required argument more subtle. In any case, we will not
need this result.

The validity of [Ste67, Lemma 20 (b), (c)] over commutative associative rings
can be proven by similar arguments. Alternatively, since these results are direct
consequences of Lemma 19 (a) and (c), one can also apply the same proof as
in [Ste67], but with references to Lemma 19 replaced by references to the more
general assertions for commutative associative rings.

We will show that the elements in the following definition are Weyl elements,
and investigate their properties.

3.3.3 Definition. Let α be a root and let r be an invertible element of R. We define
the following two elements of G:

wα(r) := θ−α(−r−1)θα(r)θ−α(−r−1), w′
α(r) := θα(r)θ−α(−r−1)θα(r).

Further, we put wα := wα(1) and w′
α := w′

α(1). The elements (wα)α∈Φ are called
the standard Weyl elements in G.

3.3.4 Note. Clearly, we have the following relations:

wα(r)−1 = wα(−r), w′
α(r)

−1 = w′
α(−r),

wα(r) = w′
−α(−r−1), wα = w′

−α(−1) = (w′
−α)

−1.

The reason that we introduce both wα(r) and w′
α(r) is that [Ste67] uses the ele-

ments w′
α(r) while we prefer to work with the elements wα(r). For this reason, we

will first cite the results in [Ste67] involving w′
α(r) and then state the analogous

results involving wα(r) as a corollary.

The essential result for our purposes is the following one.

3.3.5 Lemma. For any pair of roots α, β, there exists a unique η′
R(α, β) ∈ {±1R}

(independent of the choice of the representation δ and of the admissible lattice M, but not
of the choice of C) such that

w′
αθβ(λ)(w′

α)
−1 = θσα(β)

(
η′
R(α, β)λ

)
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for all λ ∈ R. Further, these constants satisfy

η′
R(α, β) = η′

R(α,−β) and η′
R(α, β)η′

R

(
α, σα(β)

)
= (−1)⟨β|α⟩.

Proof. The first statement is [Ste67, Lemma 20 (b)] and the relation η′
R(α, β) =

η′
R(α,−β) is part of [Ste67, Lemma 19 (a)]. For any invertible element r of

R, we define h′α(r) := w′
α(r)w′

α(−1) (as in [Ste67, Lemma 19]). Then [Ste67,
Lemma 20 (c)] says that

h′α(r)θβ(λ)h′α(r)
−1 = θβ(r⟨β|α⟩λ)

for all invertible r ∈ R and all λ ∈ R. Applying this statement with r := −1R (so
that h′α(r) = w′

α(−1)2 = (w′
α)

−2), we infer that

(w′
α)

−2θβ(λ)(w′
α)

2 = θβ((−1)⟨β|α⟩λ)

for all λ ∈ R. Thus

θβ(λ) = (w′
α)

2θβ

(
(−1)⟨β|α⟩λ

)
(w′

α)
−2 = w′

αθσα(β)

(
η′
R(α, β)(−1)⟨β|α⟩λ

)
(w′

α)
−1

= θβ

(
η′
R(α, σα(β))η′

R(α, β)(−1)⟨β|α⟩λ
)

for all λ ∈ R. Since θβ is injective by Remark 3.2.25, the last assertion follows by
putting λ := 1R .

3.3.6 Note. Lemma 19 in [Ste67] is actually formulated for all elements w′
α(λ)

where λ ∈ R is invertible, and not just for λ = 1R . Lemma 20, on the other hand,
is not stated in this generality. An adaption of the proof of Lemma 20 makes it
possible to show that

w′
α(r)θβ(λ)(w′

α(r))
−1 = θσα(β)

(
η′
R(α, β)r−⟨β|α⟩λ

)
for all invertible r ∈ R. However, the weaker statement of Lemma 3.3.5 will be
sufficient for our purposes.

In order to suit the conventions of this thesis, we will now write down the
assertion of Lemma 3.3.5 for the elements wα in place of w′

α and for ηR(β, α) in
place of η′

R(α, β).

3.3.7 Lemma. For any pair of roots α, β, there exists a unique ηR(β, α) ∈ {±1R}
(independent of the choice of the representation δ and of the admissible lattice M, but not
of the choice of C) such that

w−1
α θβ(λ)wα = θσα(β)

(
ηR(β, α)λ

)
for all λ ∈ R. Further, these constants satisfy

ηR(β, α) = ηR(−β, α) and ηR(β, α)ηR(σα(β), α) = (−1)⟨β|α⟩.

Proof. Using that w−1
α = w′

−α, the first assertion follows from Lemma 3.3.5, and
we see that ηR(β, α) = η′

R(−α, β). Now

ηR(β, α) = η′
R(−α, β) = η′

R(−α,−β) = ηR(−β, α)

and

ηR(β,−α)ηR

(
σα(β),−α

)
= η′

R(α, β)η′
R

(
α, σα(β)

)
= (−1)⟨β|α⟩.

Since σα = σ−α, the latter equality implies that

ηR(β, α)ηR

(
σα(β), α

)
= (−1)⟨β|−α⟩ = (−1)−⟨β|α⟩ = (−1)⟨β|α⟩,

which finishes the proof.
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3.3.8 Note (The sign problem for Weyl elements in Chevalley groups). The
numbers η′

R(α, β) in Lemma 3.3.5 (and, therefore, also the numbers ηR(β, α) in
Lemma 3.3.7) depend only on the root system Φ and the Chevalley basis C and
not on the choice of the representation δ. However, they do depend on the choice
of the Chevalley basis C, and thus on the choice of the signs which appear in
the structure constants of C. This is the third and final occurrence of the sign
problem in the theory of Chevalley groups (see also Notes 3.1.25 and 3.2.23). It
is essentially a special case of the sign problem that we will be faced with in the
parametrisation of root graded groups. See Remark 4.1.23 for more details.

3.3.9 Remark. Note that the numbers ηR(β, α) and η′
R(α, β) in Lemmas 3.3.5

and 3.3.7 lie in {±1R}, not in {±1Z}. We can of course lift them to numbers
η̃R(α, β) ∈ {±1Z} and η̃′

R(β, α) ∈ {±1Z}, but this lift is only uniquely deter-
mined if 1R ̸= −1R (that is, if 2R ̸= 0R). Nonetheless, the uniqueness assertions
in Lemmas 3.3.5 and 3.3.7 remain true if 2R = 0R because in this case, {±1R} is a
singleton and thus, of course, contains a unique element.

In [Ste67, Lemma 19 (a)], it is shown that if R is a field, then the numbers
η′
R(α, β) “do not depend on R” in the sense that there exists c(α, β) ∈ {±1Z}

such that η′
R(α, β) = strR(c(α, β)) for all fields R (where strR denotes the unique

ring homomorphism from Z to R). The same remains true over commutative
associative rings (see Note 3.3.2), and we then of course have c(α, β) = η′

Z(α, β).
Similar assertions hold for the elements ηR(β, α) in Lemma 3.3.7.

We conclude that we have constants η(β, α) := ηZ(β, α) which depend only
on L (or in other words, on the root system Φ) and the choice of a Chevalley basis
(which comes with a choice of Chevalley structure constants). These constants
describe (an important part of) the structure of all Chevalley groups of type L
which are defined with respect to this fixed Chevalley basis. Equivalently, they
describe the structure of all Chevalley groups of type Φ for some fixed family
of Chevalley structure constants. We have seen that these constants satisfy the
relations

η(β, α) = η(−β, α) and η(β, α)η(σα(β),−α) = (−1)⟨β|α⟩.

3.3.10 Definition (Chevalley parity map). The map η : Φ × Φ → {±1Z} from
Remark 3.3.9 is called the Chevalley parity map for c = (cα,β)α,β∈Φ.

We will see in Remark 3.3.14 that η can be computed from c, which justifies
the name.

3.3.11 Remark. It follows from Lemma 3.3.7 that for all roots α, β, we have

w
wβ
α = θ−α(−1)wβ θα(1)wβ θ−α(−1)wβ

= θ−σβ(α)

(
−η(−α, β)

)
θσβ(α)

(
η(α, β)

)
θ−σβ(α)

(
−η(−α, β)

)
= θ−σβ(α)

(
−η(α, β)

)
θσβ(α)

(
η(α, β)

)
θ−σβ(α)

(
−η(α, β)

)
= wη(α,β)

σβ(α)
.

Recall from Proposition 1.3.5 that every root can be written as δσ(δ̄) for some δ ∈ ∆
and some word δ̄ over ∆. It follows that the whole family (wα)α∈Φ of standard
Weyl elements can be reconstructed from (wδ)δ∈∆ using only conjugation and
group inversion.

We will later see that for any ∆-system (wδ)δ∈∆ of Weyl elements in a root
graded group H of rank at least 3, we can find a coordinatisation of H such
that elements (wδ)δ∈∆ behave in a similar ways as the standard Weyl elements
in Chevalley groups. More precisely, the coordinatisation is constructed in a
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way which ensures that the elements (wδ)δ∈∆ satisfy a similar formula as in
Lemma 3.3.7.

3.3.12 Note. The formula η(β, α)η(σα(β),−α) = (−1)⟨β|α⟩ implies that

θβ(λ)
w2

α = θβ

(
(−1)⟨β|α⟩λ

)
for all λ ∈ R, so it describes the action of squares of (certain) Weyl elements on
the root groups. For this reason, we will also call it the square formula for Weyl
elements. It will turn out that, except for a few special cases, the action of squares
of arbitrary Weyl elements in root graded groups of rank at least 3 adheres to
the same formula. See Propositions 5.4.17, 7.6.15 and 9.5.13 In fact, the square
formula and the braid relations for Weyl elements are the main results which
have to be shown in order to parametrise root graded groups.

Observe that the square formula can be formulated purely in terms of the
group G and its root groups (Uα)α∈Φ, without reference to the root isomorphisms:
We have

xw2
α

β = xε
β

for all roots α, β and all xβ ∈ Uβ, where ε := (−1)⟨β|α⟩.

3.3.13 Lemma. For all α ∈ Φ, we have η(α, α) = η(−α, α) = −1 where η(α, α) is the
constant from Definition 3.3.10.

Proof. We know from Remark 3.3.9 that η(α, α) = η(−α, α), so we only have to
show that η(α, α) = −1. By Lemma 3.2.26, the group G′ which is generated by
Uα ∪U−α is a Chevalley group of type A1 over R. Since η can be computed inside
G′, we can thus assume that Φ = A1. Since η does not depend on the choice of a
representation, it suffices to prove the statement for the natural representation.

It remains to show that for every Chevalley basis C of L, there exists an
admissible lattice in the natural representation of L with respect to C such that the
constants η satisfy η(α, α) = −1 for all α ∈ A1. (It then follows that the statement
holds for any admissible lattice because these constants do not depend on the
choice of a lattice.) This means that we have to show that θα(1)wα = θ−α(−1).
For the specific Chevalley basis C = (x12, x21, h1) and the specific admissible
lattice M = ⟨b1, b2⟩Z that are chosen as in Example 3.2.14, we can prove this
with a simple computation. Further, we know from Example 3.1.19 that any
other Chevalley basis must be of the form C′ = (λx12, λ−1x21, h′1) for some
h′1 ∈ { h1,−h1 } and some λ ∈ C \ {0}. Then M′ := ⟨λb1, b2⟩Z is an admissible
lattice with respect to C′. Denote the root isomorphisms of the Chevalley group
defined with respect to C′ and M′ by (θ′α)α∈A1 . Then we see that for all α ∈ A1
and all a ∈ R, the matrix of θ′α(a) with respect to (λb1, b2) is the same as the
matrix of θα(a) with respect to (b1, b2). We conclude that the desired statement
holds for any Chevalley basis of L, which finishes the proof.

3.3.14 Remark (Computation of the Chevalley parity map). Let α, β be roots.
If α ∈ {±β}, then we know from Lemma 3.3.13 that η(β, α) = −1. If α, β are
linearly independent, then we can perform computations similar to the ones in
Lemmas 5.4.2 and 7.4.5 to determine η(β, α) in terms of the structure constants
which appear in the Chevalley commutator formula. Since the structure con-
stants in the Chevalley commutator formula can be computed from the structure
constants c = (cγ,δ)γ,δ∈Φ of the Chevalley basis by Remark 3.2.21, we conclude
that there exists an algorithm to compute η(β, α) from c. For the simply-laced
root systems, the resulting formulas can be found in Lemma 5.5.4.
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In order to conclude that G is a Φ-graded group, we have to make a final
observation.

3.3.15 Proposition. There exist an R-basis B of V(R) and a positive system Π in Φ
such that the matrices of elements of UΠ are unipotent upper-triangular while matrices
of elements of U−Π are unipotent lower-triangular. In particular, UΠ ∩ U−Π = {1}.

Proof. This is proven in [Ste67, Corollary 3 of Lemma 17] for fields, but the same
proof is valid for arbitrary commutative associative rings.

3.3.16 Theorem. (Uα)α∈Φ is a crystallographic Φ-grading of G.

Proof. By definition, G is generated by (Uα)α∈Φ. The Chevalley commutator for-
mula (Theorem 3.2.16) yields that G has crystallographic Φ-commutator relations
with root groups (Uα)α∈Φ. By Lemma 3.3.7, (wα)α∈Φ is a family of Weyl elements
in G. Finally, Axiom Definition 2.5.2 (iv) is satisfied by Proposition 3.3.15.

3.3.17 Note (see also Note 3.3.2). In its generality, Theorem 3.3.16 relies on the fact
that everything we cite from [Ste67] remains true over the arbitrary commutative
associative ring R. However, this fact is only needed to ensure the existence of
Weyl elements. Alternatively, the existence of Weyl elements can be deduced
from the concrete form of the Chevalley commutator formula. We will see a
sketch of the necessary computation in Proposition 5.6.6, and we will also use
this fact in Propositions 7.7.6 and 9.6.5.





Chapter 4

The Parametrisation Theorem

As explained in the preface and in 2.5.4, the goal of this thesis is to coordinatise
root graded groups (G, (Uα)α∈Φ) by algebraic structures. Our general strategy to
construct such a coordinatisation can be broken down into two steps. In the first
step, we construct a parametrisation of G. That it, we construct a family of groups
(Mα)α∈Φ (where Mα = Mβ if α, β are conjugate under the Weyl group) and a
family (θα : Mα → Uα)α∈Φ of isomorphisms which satisfies a certain consistency
condition. A precise definition of parametrisations will be given in 4.3.4. We
emphasise that throughout this thesis, we will carefully distinguish between
“parametrisations” in the sense just described and “coordinatisations” in the
sense of Goal 2.5.4. From this point on, this distinction will be crucial.

In the second step of our general strategy, we show that the commutation
maps which are defined on the parametrising groups satisfy certain identities.
This is done using the blueprint technique, which is described in chapter 6. These
identities turn out to be the axioms of certain algebraic structures. We conclude
that the commutation maps impose an algebraic structure on the parametrising
groups, thereby turning the parametrisation into a coordinatisation.

The present chapter is dedicated to the first step in our general strategy,
that is, to the construction of a parametrisation. The goal of this chapter is the
parametrisation theorem (Theorem 4.5.16), which is a criterion for the existence
of a parametrisation. In section 4.1, we give a detailed and slightly informal
overview of the technical machinery and language that will be used throughout
this chapter. From a purely formal viewpoint, section 4.1 is redundant because
all necessary definitions and statements will be presented in full detail in the
following sections. However, the reader may find the motivation given in sec-
tion 4.1 helpful. A detailed overview of the sections in this chapter will be given
in Note 4.1.32 after we have introduced the necessary technical language.

4.1 Motivation and Overview of this Chapter

4.1.1 Notation for this section. We denote by Φ a root system of rank at least 3
and by ∆ a rescaled root base of Φ. In order to avoid technicalities in this
outline, we assume that Φ is reduced. Further, we write O := Orbred(Φ) =
Orb(Φ) = (O1, . . . , Ok) (see Notation 1.3.9). Unless otherwise specified, we
denote by (G, (Uα)α∈Φ) a Φ-graded group.

This section serves as an overview of the chapter. All definitions and results
that we introduce here will be repeated in the following sections, and we will
sometimes leave out technical details. We will address in Remark 4.1.31 why ∆ is
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allowed to be a rescaled root base, and why it is not sufficient for root systems of
type BC to only consider proper root bases. Further, we will discuss in Note 4.1.10
the changes which are necessary if Φ is not reduced.

4.1.A Goals

We begin with a summary of the properties which relate the structure of a Cheval-
ley group to the structure of the commutative associative ring over which it is
defined.

4.1.2 Summary (Coordinatisations of Chevalley groups). Assume that the root
system Φ is crystallographic and let G be a Chevalley group of type Φ with root
groups (Uα)α∈Φ. Then the following three properties are satisfied:

(1) There exist an abelian group (R,+) and isomorphisms

(θα : (R,+) → Uα)α∈Φ.

(2) There exists a bi-additive map R × R → R which turns R into a com-
mutative associative ring such that the Chevalley commutator formula
(Theorem 3.2.16) is satisfied.

(3) We have a “standard” family of Weyl elements (wα)α∈Φ which satisfy
θβ(λ)

wα = θσα(β)

(
η(β, α)λ

)
for all roots α, β and all λ ∈ R, where η(β, α) ∈

{±1Z } is a sign which does not depend on λ (and, in the Chevalley group
setting, not even on the choice of R and the representation δ). These Weyl
elements are defined with respect to the “standard invertible element” 1R
in R.

In the context of root graded groups, we have to adjust our expectations. The
following three remarks describe how the three properties in Summary 4.1.2
generalise to root gradings. We have already elaborated on this in great detail
in the preface of this thesis, so there will naturally be some overlap. However,
we are now in a better position to introduce some more technical details. In
particular, the material in Remark 4.1.5 has not been discussed beforehand.

4.1.3 Remark (Parametrising groups). We know from Lemma 2.5.12 that roots α,
β which lie in the same orbit under the Weyl group have isomorphic root groups
Uα

∼= Uβ. However, there is no reason for this to be true for arbitrary pairs (α, β).
Thus instead of a single group (R,+) which parametrises all root groups, our
goal is to find multiple groups M1, . . . , Mk and a family (θα : Mi → Uα)α∈Oi of
isomorphisms for all i ∈ [1, k]. The groups M1, . . . , Mk are called the parametrising
groups (of G). Given parametrising groups M1, . . . , Mk, we put Mα := Mi(α) for
all roots α where i(α) ∈ [1, k] is the unique index such that α ∈ Oi(α).

4.1.4 Remark (Commutation maps). Assume that we have parametrising groups
M1, . . . , Mk and root homomorphisms (θα)α∈Φ as in Remark 4.1.3. Let α, β be
non-proportional roots and let (γ1, . . . , γm) be the unique interval ordering of
[α, β]Cox such that γ1 = α and γm = β (as in Remark 1.2.35). Since the root
homomorphisms are bijective, the so-called commutation maps

ψα,β,j : Mα × Mβ → Mγj , (a, b) 7→ θ−1
γj

(
[θα(a), θβ(b)]γj

)
are well-defined for all j ∈ [2, m − 1]. In other words, we have

[θα(a), θβ(b)] =
m−1

∏
j=2

θγj

(
ψα,β,j(a, b)

)
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for all a ∈ Mα, b ∈ Mβ. This equation already looks like the Chevalley commuta-
tor formula. However, it is a purely formal observation. At this point, we know
nothing about the maps ψα,β,j. Furthermore, we need a large number of different
maps ψα,β,j to describe this commutator formula. In contrast, only a single map
f : R ×R → R is required in Summary 4.1.2 (2), and we know that this map
turns R into a commutative associative ring. In other words, we know that f
satisfies the identities

f (x, y) = f (y, x), f
(

f (x, y), z
)
= f

(
x, f (y, z)

)
,

f (x + y, z) = f (x, z) + f (y, z), f (x, y + z) = f (x, y) + f (y, z),
f (x, 1R) = x = f (1R , x)

(4.1)

for all x, y, z ∈ R and for some (necessarily unique) 1R ∈ R.
Our next two goals from this point on are straightforward: Reduce the number

of maps which are needed to describe the commutator relations, and show that
the remaining maps satisfy some identities. These identities will be “nice” in
the sense that they are precisely the axioms of some algebraic structure, just like
the identities in (4.1) are exactly the axioms which turn an abelian group (R,+)
into a commutative associative ring (R,+, f ) with identity element 1R . We will
see in Note 4.1.13 that the reduction of the number of necessary commutation
maps poses no serious problem. The computation of identities, however, is more
complicated and relies on the blueprint technique, which we will introduce in
chapter 6.

4.1.5 Remark (The twisting group). Assume again that we have found parame-
trising groups M1, . . . , Mk and root homomorphisms (θα)α∈Φ as in Remark 4.1.3.
We will later see several examples of root graded groups which illustrate that
we cannot, in general, hope for a formula of the form θβ(λ)

wα = θσα(β)

(
η(β, α)λ

)
where η(β, α) is 1 or −1 (as it is the case for Chevalley groups).

As an example, let R be any associative ring which is equipped with an
involution σ : R → R, r 7→ rσ. (We will define involutions in Definition 8.3.2,
but for the moment, it suffices to think of the complex numbers equipped with
the conjugation map.) In section 9.3, we will construct a C3-graded group in
which, for some roots α, β and a “standard” Weyl element wα, we have θβ(λ)

wα =
θσα(β)(λ

σ) for all λ ∈ R. This example shows that, in our more general setup, the
formula in Summary 4.1.2 (3) should not only allow signs η(β, α) ∈ {±1 } but
more general “twistings” of the parametrising structures.

Further, it turns out to be more practical to only consider a family (wδ)δ∈∆
of Weyl elements for a rescaled root base ∆, not a “full” family (wα)α∈Φ of Weyl
elements. The reasoning behind this will be explained in Note 4.1.18.

We conclude that our goal is as follows: We want to find a (finite abelian)
group A which acts on the parametrising groups M1, . . . , Mk, a family (wδ)δ∈∆ of
Weyl elements and a map η : Φ × ∆ → A such that for all α ∈ Φ and δ ∈ ∆, we
have

θα(λ)
wδ = θσδ(α)

(
η(α, δ).λ

)
for all λ ∈ Mα. (4.2)

Before we move on, we give a name to the objects that we encountered in
Remark 4.1.5. We do not include finiteness in the definition of twisting groups
because this is not necessary in the abstract theory. However, in our concrete
situation, all twisting groups will be of the form {±1}p for some p ∈ [1, 3].

4.1.6 Definition (Parity map). Let A be an abelian group. A parity map (with
values in A) is a map η : Φ × ∆ → A, (α, δ) 7→ ηα,δ = η(α, δ).



98 4. The Parametrisation Theorem

4.1.7 Definition (Parameter system). A parameter system is a tuple

P = (A, M1, . . . , Mk)

consisting of groups M1, . . . , Mk and an abelian group A which acts on each of
the sets M1, . . . , Mk. The group A is called the twisting group of P. Further, we
put Mα := Mi(α) for all roots α where i(α) ∈ [1, k] denotes the unique index such
that α ∈ Oi(α).

4.1.8 Definition (Parametrisation). Let P = (A, M1, . . . , Mk) be a parameter
system, let (wδ)δ∈∆ be a ∆-system of Weyl elements and let η be a parity map
η with values in A. A parametrisation of G by P with respect to η and (wδ)δ∈∆
is a family (θα : Mα → Uα)α∈Φ of isomorphisms satisfying (4.2). Formula (4.2)
is called the conjugation formula for Weyl elements (with respect to P and η), and
(wδ)δ∈∆ is said to be compatible with (θα)α∈Φ if it satisfies the conjugation formula
for Weyl elements. The maps (θα)α∈Φ are called root isomorphisms.

4.1.9 Example. Recall from Remark 4.1.5 that we can construct a C3-graded group
from any associative ring R with involution σ. In this example, the twisting group
is {±1}2 and its action on R is given by (−1, 1).r = −r and (1,−1).r = rσ for all
r ∈ R. (It is worth pointing out that only the short root groups in this example
are parametrised by R, but for the motivational purposes of this section, it is
sufficient to only consider these root groups.)

4.1.10 Note. We briefly consider what happens if Φ is not reduced. In this case,
a parameter systems consists of a parametrising group for each indivisible orbit
and a parametrisation consists of a root isomorphism for each indivisible root.
However, this data automatically yields a parametrisation of all remaining, non-
indivisble groups: If a root is of the form 2α for some root α, then U2α is a subgroup
of Uα, so a root isomorphism θα : Mα → Uα provides a parametrising group
M2α := θ−1

α (U2α) for U2α and a corresponding root isomorphism θ2α := θα|M2α
.

We should also require that any parity map η satisfies ηα,δ = ηλα,δ for all roots
α ∈ Φ, δ ∈ ∆ and all λ > 0 for which λα is a root. Apart from this technicality,
non-reduced root systems are treated in the exact same manner as reduced root
systems. For simplicity, we will stick to the assumption that Φ is reduced for the
scope of this section. However, we will proceed in full generality in the remaining
part of this chapter.

4.1.B The General Strategy

Before we can outline our general strategy to obtain a parametrisation, we have
to introduce another definition of twisting groups which is similar to the one
in Definition 4.1.7. We will clarify the relation between these two definitions in
Remark 4.1.14. Both notions will be needed to formulate the parametrisation
theorem.

4.1.11 Definition (Twisting groups for root gradings). A twisting group for G is
an abelian group A which acts on each root group of G and which satisfies some
additional technical conditions which we will specify in Definition 4.3.13.

4.1.12 Strategy. The order of the three points in Summary 4.1.2 reflects the or-
der in which we encountered these three properties in the context of Chevalley
groups: The isomorphisms (θα)α∈Φ appeared from the beginning, then we estab-
lished the Chevalley commutator formula and then we computed the conjugation
formulas for Weyl elements.
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Our strategy for root graded groups will follow a different order: Starting
from a ∆-system (wδ)δ∈∆ of Weyl elements, a twisting group A for G and a parity
map η, we construct parametrising groups M1, . . . , Mk on which A acts and
root homomorphisms (θα)α∈Φ such that the conjugation formula (4.2) is satisfied.
This construction is precisely the content of the parametrisation theorem. In
other words, the parametrisation theorem reduces the problem of constructing
M1, . . . , Mk and (θα)α∈Φ to the problem of finding an appropriate parity map ηΦ
and an appropriate twisting group AΦ for G such that certain conditions relating
G, AΦ and ηΦ are satisfied. The statement and proof of the parametrisation
theorem is independent of the root system.

After M1, . . . , Mk and (θα)α∈Φ are constructed, we can define commutation
maps as in Remark 4.1.4. It then remains to compute the identities which these
commutation maps verify. This is done using the blueprint technique. We will
elaborate on this in chapter 6 and focus on the parametrisation theorem for the
rest of this chapter.

4.1.13 Note. Recall that we have defined a large number of commutation maps
ψα,β,j in Remark 4.1.4. Using the conjugation formula (4.2) and Lemma 2.2.9, we
can reduce the number of these maps as follows. Recall that ψα,β,j is defined by
the formula

[θα(a), θβ(b)]γj = θγj

(
ψα,β,j(a, b)

)
for all a ∈ Mα and b ∈ Mβ. Here α, β are non-proportional roots and (γ1, . . . , γm)
is an interval ordering of [α, β]Cox. For any δ ∈ ∆, we can conjugate this equation
by wδ to obtain

[θσδ(α)(ηα,δ.a), θσδ(β)(ηβ,δ.b)]σδ(γj) = θσδ(γj)

(
ηγj,δ.ψα,β,j(a, b)

)
for all a ∈ Mα = Mσδ(α) and b ∈ Mβ = Mσδ(β). At the same time, by the definition
of ψσδ(α),σδ(β),j, we also have

[θσδ(α)(ηα,δ.a), θσδ(β)(ηβ,δ.b)]σδ(γj) = θσδ(γj)

(
ψσδ(α),σδ(β),j(ηα,δ.a, ηβ,δ.b)

)
for all a ∈ Mσδ(α) and b ∈ Mσδ(β). Thus we can compute ψσδ(α),σδ(β),j from ψα,β,j if
we know the parity map η and the action of the twisting group. This shows that
we only need to compute a low number of commutation maps because all the
other ones can be obtained by twisting.

4.1.14 Remark (Twisting groups in the parametrisation theorem). Observe that
we have defined two notions of twisting groups: A twisting group for G is a
group which acts on each root group while a twisting group of a parameter sys-
tem (A, M1, . . . , Mk) is a group A which acts on each of the parametrising groups
M1, . . . , Mk. The purpose of the parametrisation theorem can be rephrased as fol-
lows: Starting from a twisting group A for G, we want to construct parametrising
groups M1, . . . , Mk on which A acts and root isomorphisms (θα)α∈Φ such that,
among other properties, we have

θα(a.x) = a.θα(x) (4.3)

for all a ∈ A, all roots α and all x ∈ Mα. This process turns the twisting group A
for G into a twisting group of the parameter system (A, M1, . . . , Mk).

Observe the following subtlety: Let A be a twisting group for G and let α
be a root. Then for any isomorphism θα : Mα → Uα, we can of course define a
unique action of A on Mα which satisfies (4.3). This might make the goal from
the previous paragraph seem trivial. However, if we choose another root α′ with
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Mα = Mα′ , then it is not clear that the aforementioned procedure defines the
same action on Mα. Thus we have to carefully choose the isomorphisms (θα)α∈Φ,
and we need some conditions on the twisting group A for G which guarantee
that for two roots α, α′ lying in the same orbit, the actions of A on Uα and Uα′ are
in some way related.

4.1.C The Parametrisation Theorem

The following remarks outline the strategy for our proof of the parametrisation
theorem.

4.1.15 Convention. For the sake of a less technical explanation, we will in the
following always assume that there is only one orbit of roots under the Weyl
group. In the general situation, all constructions that we describe below have to
be performed separately for each orbit of roots.

We begin with a first naive construction which will be improved later on.

4.1.16 Construction (of the root isomorphisms). It is not difficult to parametrise
a single root group for a fixed root α0 ∈ Φ: We simply choose a group M which is
isomorphic to Uα0 and we choose an isomorphism θα0 : M → Uα0 . Since all root
groups are isomorphic by Lemma 2.5.12 and Convention 4.1.15, it is clear that
there exist isomorphisms θβ : M → Uβ for all β ∈ Φ \ {α0} as well. The proof
of Lemma 2.5.12 even tells us how to construct them: simply conjugate by an
appropriate sequence of Weyl elements. To make this precise, we fix a rescaled
root base ∆ of Φ and a ∆-system (wδ)δ∈∆ of Weyl elements. Then for all β ∈ Φ,
we define an isomorphism θβ : M → Uβ as follows:

(1) Choose a Weyl group element u with αu
0 = β.

(2) Choose roots δ1, . . . , δm ∈ ∆ such that u = σ(δ1) · · · σ(δm). (This is possible
by Proposition 1.3.12.)

(3) Define θβ(λ) := θα0(λ)
wδ1 ···wδm for all λ ∈ M.

It is not clear that the map θβ is independent of the choices that we make in (1)
and (2). In fact, it is not. Still, this construction is a good starting point that we
will improve upon in the following.

4.1.17 Remark (on Construction 4.1.16). If we could show that the definition
of θβ is independent of the choices made in Construction 4.1.16, then it would
follow that

θβ(λ)
wδ =

(
θα0(λ)

wδ1 ···wδm
)wδ = θσδ(β)(λ) (4.4)

for all λ ∈ M and all δ ∈ ∆, simply by the definition of θσδ(β). This formula
is clearly too much to ask for because it does not involve any twisting group.
Instead, we will show that θβ is only almost independent of the choices we made
above: We can find a twisting group A which acts on M such that, if θ′β is the root
isomorphism defined by a different choice of u′ and δ′1, . . . , δ′m′ , then there exists
a ∈ A such that θ′β(λ) = θβ(a.λ) for all λ ∈ M. In other words, θβ is uniquely
determined up to twisting. Even more, we can predict the precise value of a only
from δ1, . . . , δm and δ′1, . . . , δ′m′ using a suitably chosen parity map. A precise first
formulation of this statement will be given in Goal 4.1.21, which will be refined
in Goal 4.1.26.

4.1.18 Note (Canonicity of the Weyl elements). In a first naive approach, we
might have been tempted to fix a “full” system (wγ)γ∈Φ of Weyl elements and
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not merely a ∆-system (wδ)δ∈∆ of Weyl elements. However, recall from Sum-
mary 4.1.2 (3) that in the setting of Chevalley groups, formula (4.2) holds only for
a certain “standard” family (wChev

α )α∈Φ of Weyl elements. Further, we have seen
in Remark 3.3.11 that (wChev

α )α∈Φ is already uniquely determined by (wChev
δ )δ∈∆.

Thus we cannot (or should not) expect that any arbitrary choice of Weyl elements
(wγ)γ∈Φ in G can be used to construct a parametrisation which satisfies the con-
jugation formula. However, it seems plausible that any ∆-system (wδ)δ∈∆ can be
used to construct a parametrisation with respect to which it is “standard” (in the
sense that the conjugation formula is satisfied). This is precisely what happens in
the parametrisation theorem.

Before we can formulate Goal 4.1.21, we have to introduce some notation
concerning parity maps.

4.1.19 Notation. Let η : Φ × ∆ → A be a parity map (with values in some abelian
group A). We define η(α,−δ) := η(ασ(δ), δ)−1 for all α ∈ Φ, δ ∈ ∆ and

η(α, δ̄) :=
m

∏
i=1

η(ασ(δ1···δi−1), δi) = η(α, δ1) · η(ασ(δ1), δ2) · · · η(ασ(δ1···δm−1), δm)

for any word δ̄ = (δ1, . . . , δm) over ∆ ∪ (−∆). We use the convention that ηα,∅ =
1A for the empty word ∅. We will also sometimes write ηα,δ̄ in place of η(α, δ̄).

4.1.20 Note. Let (wδ)δ∈∆ be any ∆-system of Weyl elements which is compatible
with a family of root isomorphisms (θα)α∈Φ with respect to a parity map η (in
the sense of Definition 4.1.8). Notation 4.1.19 is made precisely to ensure that the
following generalisation of (4.2) holds:

θα(λ)
wδ̄ = θσδ̄(α)

(
η(α, δ̄).λ

)
for all roots α, all words δ̄ over ∆ ∪ (−∆) and all λ ∈ Mα. Here wδ̄ is defined as
in Notation 2.2.25. A detailed proof of this fact can be found in Remark 4.3.5.

4.1.21 Goal. Find a twisting group A for G and a parity map η : Φ × ∆ → A such
that for all words δ̄ and ρ̄ over ∆ ∪ (−∆) with α

σ(δ̄)
0 = α

σ(ρ̄)
0 , we have

xwδ̄
α0 = a.(xwρ̄

α0 )

where a := η(α0, δ̄′)−1η(α0, δ̄).
We will see in Remark 4.1.25 that due to some technical difficulties, this goal is

not well-formulated for the root systems of types B, C, BC and F4. In Goal 4.1.26,
we will propose a more refined and more general version.

We begin our pursuit of Goal 4.1.21 with an investigation of the twisting group.
At first, we analyse the effect of the choice which is made in Construction 4.1.16 (2).
The choice in Construction 4.1.16 (1) presents more technical difficulties, which
we will address in Remark 4.1.25.

4.1.22 Remark (Construction of the twisting group, part 1). The construction of
the twisting group A and its action on the root groups depend on the root system
Φ, but the general approach is always the same. Recall that we will always have
A = {±1}p for some p ∈ { 1, 2, 3 }, so in each case, we merely have to determine
the value of p and the action of each direct factor of A on the root groups.

Let δ̄ and ρ̄ be two words over ∆ ∪ (−∆) such that σ(δ̄) and σ(ρ̄) map α0 to
the same root. For the scope of this remark, we focus on step 4.1.16 (2), so we
assume that σ(δ̄) = σ(ρ̄). To avoid technical difficulties, we also assume that δ̄
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and ρ̄ do not contain letters from −∆. Then by the solution of the word problem
in Weyl groups (Proposition 1.3.16), we know that ρ̄ can be obtained from δ̄
by a sequence of elementary homotopy moves. Thus in order to understand
the difference between the actions of wδ̄ and wρ̄, we have to understand the
conjugation action of w2

ζ for all ζ ∈ ∆ and the difference between the conjugation
actions of Pm(wζ , wρ) and Pm(wρ, wζ) for all ρ, ζ ∈ ∆ where m denotes the order
of σζσρ. The latter is easy to understand: We know from Theorem 2.5.10 that Weyl
elements satisfy the braid relations, so the actions of Pm(wζ , wρ) and Pm(wρ, wζ)
agree. In fact, it would be sufficient in this situation to know that the braid
relations are valid modulo the center.

Thus it remains to study the actions of squares of Weyl elements. These
actions are not always trivial, but we will see that in nearly all cases, they are
either trivial or the group inversion. Even more, we will show that the square
formula for Weyl elements that we have seen in Note 3.3.12 for Chevalley groups
is nearly always satisfied for root graded groups. For this reason, the twisting
group A will always have one direct factor {±1} in which −1 acts on all root
groups by group inversion. We adopt the convention that this is always the first
factor of A.

We will also encounter some situations in which p ≥ 2. In these situations, the
action of the other direct factors of A on a root group Uα is defined via conjugation
by w̄2

ζ where ζ is some root (which depends on α) and w̄ζ is any ζ-Weyl element.
In all cases, we can show that this action is independent of the choice of w̄ζ

and that we even have some freedom in choosing the root ζ. In particular, the
definition of the twisting action is independent of the fixed ∆-system (wδ)δ∈∆ of
Weyl elements.

4.1.23 Remark (Choice of a parity map: The sign problem). It is clear that the
parity map η in Goal 4.1.21 cannot be chosen arbitrarily. For example, we will
prove that for certain roots α ∈ Φ and δ ∈ ∆, w2

δ acts on Uα by inversion, so ηα,δδ

must be an element of A which acts on Uα by inversion. More generally, ηα,δδ

must act on Uα in the same way as w2
δ for all α ∈ Φ and δ ∈ ∆. In the language of

Definition 4.4.3, this says precisely that G must be square-compatible with respect to
η and (wδ)δ∈∆. Similarly, the validity of the braid relations shows that we should
require η(α, Pm(δ1, δ2)) = η(α, Pm(δ2, δ1)) for all α ∈ Φ and all δ1, δ2 ∈ ∆ where
m denotes the order of σ(δ1)σ(δ2). This property will be called braid-invariance
(of η).

Generally speaking, we will derive several conditions on η which ensure that
a “consistent” parametrisation with respect to η is possible. One might expect η
to be uniquely determined by these properties, but this is not true. In fact, we
will see in Remark 4.3.12 that as soon as we have found one adequate parity map
η, we can obtain a large number of similar maps from η by “twisting η”. Thus,
for lack of an abstract existence result, we will have to explicitly determine a
map η : Φ × ∆ → A satisfying all desired properties. We refer to the problem of
finding such a map as the sign problem (for root graded groups). When we specialise
to Chevalley groups, it is precisely the sign problem that we have already seen in
this context (see Note 3.3.8 and also Notes 3.1.25 and 3.2.23).

The best way to find a suitable parity map η is to “read it off” from an
appropriate “model” H, that is, from a Φ-graded group H which is known to be
coordinatised by some algebraic structure. For example, in the case of simply-
laced root systems, we can take precisely the constants that appear in Chevalley
groups (see Lemma 3.3.7). It is easy to verify that a parity map which is defined
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in this way automatically satisfies all the consistency conditions that we ask for
(except for the condition of stabiliser-compatibility, which we will introduce in
Remark 4.1.28). For example, it follows from Note 4.1.20 and the braid relations
for Weyl elements that any parity map η which comes from a Φ-graded group H
satisfies that η(α, Pm(δ, δ′)) and η(α, Pm(δ′, δ)) act identically on Uα for all roots
α and all δ, δ′ ∈ ∆. Under suitable faithfulness conditions, this implies that
η(α, Pm(δ, δ′)) = η(α, Pm(δ′, δ)). A precise statement of the results of this kind is
given in Lemma 4.4.10 and Proposition 4.4.11.

Of course, for the strategy from the previous paragraph to work, we have
to require that the parity map η can actually be read off from the group H in a
unique way. This essentially amounts to saying that the twisting group A acts
faithfully on each root group of H. If this is not the case, then η is not uniquely
determined by H. (In practice, we will have to use a slightly weaker condition
than true faithfulness, see Note 4.3.9.) For example, if H is a Chevalley group
defined over a ring R with 1R = −1R , then we have

θα(λ)
wδ = θσδ(α)(λ) = θσδ(α)(−λ)

for all roots α ∈ Φ, δ ∈ ∆ and all λ ∈ R. Thus we cannot read off η(α, δ) from
this specific group H. This example shows that the group H has to be sufficiently
generic, which roughly means that “all twisting phenomena which may arise in
general Φ-graded groups can be observed in H”. The only type of twisting which
occurs in Chevalley groups is additive inversion in the ring, so we can only use
Chevalley groups of type Φ as a model if this is the only type of twisting which
occurs in all Φ-graded groups. This is true for the simply-laced root systems, but
not for the other root systems.

As a more complicated example, consider C3-graded groups. Recall from
Example 4.1.9 that there exist C3-graded groups with twisting group A = {±1}2

where the second factor of A represents an involution σ of some associative ring R.
Thus in order to find a suitable parity map η, we need a C3-graded group H in
which all four elements of A act differently on the root groups. Specifically, this
means that the maps idR , − idR , σ and −σ on R have to be pairwise distinct. In
other words, we have to require that 1R ̸= −1R and σ ̸= idR (because σ = − idR

is not possible for a ring involution σ unless 1R = −1R).

4.1.24 Note (Existence problem and coordinatisation problem). Recall from
the preface of this thesis that the coordinatisation problem for Φ-graded groups
consists of finding a class CΦ of algebraic objects such that each Φ-graded group
is coordinatised (in a suitable sense) by an object in this class. The existence
problem, on the other hand, consists of finding a Φ-graded group GX which is
coordinatised by X for any object X in C. We have seen in Remark 4.1.23 that
our approach to the coordinatisation problem is closely tied to the existence
problem: Before we can coordinatise all Φ-graded groups, we have to construct
one sufficiently generic Φ-graded group H.

It is interesting to note that the group H does not have to be as generic
as the class CΦ allows, only generic enough to read off the parity map. For
example, general C3-graded groups are coordinatised by alternative rings R

with involution which need not be associative (and by some more data which
is irrelevant for this discussion), but the associativity of R plays no role for
the twisting group actions. Thus we can read off the parity map from a group
which is defined over an associative ring. This means that our solution of the
coordinatisation problem is independent of the general solution of the existence
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problem. This will be particularly relevant for F4-graded groups because no
complete solution of the existence problem is available for these groups, but we
can still construct groups which are generic enough to supply a suitable parity
map.

Finally, we turn to the choice in Construction 4.1.16 (1), which causes more
technical problems.

4.1.25 Remark (Construction of the twisting group, part 2). Let α0 be the fixed
root in Construction 4.1.16 and let u, v be elements of the Weyl group such that
αu

0 = αv
0. Then vu−1 stabilises α0, which by Proposition 1.3.11 means that it is

a product σ(β1) · · · σ(βq) where β1, . . . , βq are roots orthogonal to α0. Thus in
order to understand the difference between the actions of wδ̄ and wδ̄′ , we have to
understand the conjugation action of Weyl elements wβ on Uα0 for roots β which
are orthogonal to α0.

Our first impulse is to proceed similarly as in Remark 4.1.22: For every root
α, choose a root β(α) which is orthogonal to α and a β(α)-Weyl element w̄β(α)

and declare that (some direct factor of) A acts on Uα through conjugation by
w̄β(α). However, unlike in Remark 4.1.22, this definition is not independent of the
choices of β(α) and w̄β(α), which renders it unfeasible.

Since the well-definition of the “orthogonal twisting actions” causes problems,
we simply take the approach of not defining them at all (for the beginning) and
trying to proceed without them. As a consequence, we split the twisting group
into two parts: one part A which is a twisting group as before, equipped with the
actions from Remark 4.1.23, and one part B which is simply an abstract group
without any actions. This leads to Goal 4.1.26.

4.1.26 Goal (Refinement of Goal 4.1.21). Find a twisting group A for G, an
abelian group B and parity maps η : Φ × ∆ → A, µ : Φ × ∆ → B such that for all
words δ̄ and ρ̄ over ∆ ∪ (−∆) with α

σ(δ̄)
0 = α

σ(ρ̄)
0 and µ(α0, δ̄) = µ(α0, ρ̄), we have

xwδ̄
α0 = a.(xwρ̄

α0 )

where a := η(α0, δ̄)η(α0, ρ̄)−1.

4.1.27 Remark (Twisting systems). The tuple (A, η, B, µ) in Goal 4.1.26 is called
a partial twisting system for G because only the first part is equipped with twisting
actions on the root groups. See Definition 4.3.18 for a proper definition of partial
twisting system which includes all the necessary technical requirements.

For root system of types A, D, E and H, any pair (α, β) of orthogonal roots is
automatically adjacent and thus every β-Weyl element acts trivially on Uα. This
will allow us to take B = {1} for these root systems, thereby simplifying the the-
ory. A partial twisting system (A, η, B, µ) for which B (and, as a consequence, µ)
is trivial will be called a twisting system. If this is the case, we drop B and µ from
the notation and simply refer to (A, η) as a twisting system.

As soon as we have proven the statement in Goal 4.1.26, we can easily define
an action of B on each root group, thereby turning A × B into a twisting group.
In other words, the statement in Goal 4.1.26 allows us to turn the partial twisting
system (A, η, B, µ) into a twisting system (A × B, η × µ).

4.1.28 Remark (on the proof of 4.1.26). The flexibility of not having to define
an action of B on the root groups from the beginning comes with a price: the
parity map µ has to satisfy some additional properties. In general, these prop-
erties are not satisfied for the map η. This illustrates that the conditions in the
parametrisation theorem are carefully balanced against each other.
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The first necessary condition on µ is square-invariance, which means that
µ(α, δδ) = 1B for all α ∈ Φ and δ ∈ ∆. Together with braid-invariance (see
Remark 4.1.23), this property implies that for all α ∈ Φ and all words δ̄ over
∆ ∪ (−∆), the value of µ(α, δ̄) depends only on σ(δ̄).

Secondly, we have to require a somewhat technical property called stabiliser
compatibility of G with respect to (η, µ) and (wδ)δ∈∆. This property roughly says that
any u ∈ Weyl(Φ) which stabilises some root α and which satisfies µ(α, u) = 1B
“behaves tamely”. It is specifically tailored to make a proof of Goal 4.1.26 possible,
so we have to work some more to verify it for each root system Φ. In fact, it is
usually the most difficult property to verify because it is not a consequence of the
way the parity map µ is defined. See Remark 4.1.23 and also Note 4.4.2 for more
technical details. In every case, Proposition 1.3.11 will play a crucial role.

4.1.29 Remark (4.1.26 for simply-laced root systems). The simply-laced root
systems have the property that every pair of orthogonal roots is adjacent. Thus
whenever α, β are roots such that σα(β) = β, the root groups Uα and Uβ commute
and hence every α-Weyl element acts trivially on Uβ. As a consequence, the
property of stabiliser compatibility is trivially satisfied in this situation. See
Lemma 4.6.4 for a precise formulation of this statement.

Using this simplification and Shi’s more restrictive definition of root gradings
(2.7.6), Shi proves in [Shi93, (2.11)] that the assertion of Goal 4.1.21 holds for the
specific Weyl elements φ(ŵα(1k)) in Axiom 2.7.6 (vi) and for simply-laced root
systems. His proof uses in a significant way that these Weyl elements come from
the homomorphic image of a Steinberg group, which makes it more concise but
less general than our proof of the parametrisation theorem. In particular, the
role of the parity map η (and thus of the sign problem) is not as prominent in
Shi’s work because any Φ-graded group in Shi’s sense comes, by definition, with
a family c = (cα,β)α,β∈Φ of Chevalley structure constants which determine the
parity map. However, the main ideas in Shi’s approach are similar: One has
to understand the action of squares of Weyl elements and the actions of Weyl
elements on orthogonal root groups (which is trivial in the simply-laced setting).

4.1.30 Note (The rank-2 case). Assume that Φ is irreducible crystallographic
of rank 2 and choose a positive system Π in Φ. Recall that irreducible RGD-
systems of type Φ were classified by Tits-Weiss in [TW02]. More precisely, they
classify root group sequences. Here root group sequences are pairs (UΠ, (Uα)α∈Π)
consisting of a group UΠ and a family (Uα)α∈Π satisfying some axioms. For any
RGD-system (G, (Uα)α∈Φ), the pair (UΠ, (Uα)α∈Π) is a root group sequence, and
any RGD-system is essentially determined by its root group sequence. For more
details, see (8.7), (8.10) and (8.11).

By inspecting the classification of irreducible crystallographic root systems of
rank 2, we see that Φ has at most 16 elements, so Π has at most 8 elements. This
low number of roots allows Tits-Weiss to parametrise the root groups “by hand”,
without using a machinery similar to the one in the parametrisation theorem. The
same is true for [Fau14, 13.7] in which Faulkner parametrises A2-graded groups.

4.1.31 Remark (Rescaled root bases and type BC). Recall from Notation 4.1.1
that ∆ is not necessarily a proper root base of Φ but only a rescaled root base (in
the sense of Definition 1.2.22). For reduced root systems, there is no difference
between these notions, so we assume that Φ = BCn for some n ∈ N≥3. In the
standard representation of BCn (see Remark 9.1.2), the standard root base of BCn
is

∆′ = { ei − ei+1 | i ∈ [1, n − 1] } ∪ { en }
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and the only rescaled non-proper root base which can be obtained by rescaling
∆′ is

∆ = { ei − ei+1 | i ∈ [1, n − 1] } ∪ { 2en }.

The only reason for fixing a rescaled root base is that we want to fix a correspond-
ing system of Weyl elements, so the question is: Should we fix an en-Weyl element
or a 2en-Weyl element? Since every 2en-Weyl element is also an en-Weyl element,
every statement which can be proven for a fixed ∆′-system of Weyl elements
can also be proven for a ∆-system of Weyl elements. However, a ∆-system of
Weyl elements might allow us to prove more. In other words, if we chose a
∆′-system, then we would ignore the information that U♯

δ is non-empty for all
long roots. Therefore, we should prefer ∆ over ∆′. This is the reason why many
statements concerning arbitrary root systems – the preliminaries in chapter 1, the
parametrisation theorem and the blueprint technique – are proven for rescaled
root bases not merely for root bases.

4.1.32 Note. We can now give an overview of the sections in this chapter. In
section 4.2, we introduce and study parity maps. This will be done on a purely
combinatorial level, without reference to any Φ-graded group or any action on
root groups. In section 4.3, we define parameter systems, twisting groups and
(partial) twisting systems. In section 4.4, we study the interplay between the
notions from the previous two sections in the form of compatibility conditions.
The parametrisation theorem is proven in section 4.5. In section 4.6, we collect
some criteria which will be used in later chapters to prove the compatibility
conditions for specific partial twisting systems. In section 4.7, we end with some
remarks on how we will apply the parametrisation theorem in the subsequent
chapters.

4.2 Parity Maps

4.2.1 Notation for this section. In this section, Φ is a root system and ∆ is a
rescaled root base of Φ.

In this section, we study the purely combinatorial notion of parity maps,
without reference to some Φ-graded group.

4.2.2 Definition (∆-expressions). For any word ᾱ = (α1, . . . , αm) over ∆ ∪ (−∆),
we define the corresponding inverse word by ᾱ−1 := (−αm, . . . ,−α1). For any root
α, a ∆-expression of α is a word over ∆ ∪ (−∆) of the form (δ̄−1, δ, δ̄) where δ ∈ ∆
and δ̄ is a word over ∆ ∪ (−∆) such that δσ(δ̄) = α.

Note that a ∆-expression of the root α is automatically a ∆-expression of the
element σ(α) in the sense of Definition 1.3.20.

4.2.3 Remark. Let G be a group with a Φ-pregrading (Uα)α∈Φ, let (wδ)δ∈∆ be a
∆-system of Weyl elements and let α be a root. Then by Proposition 2.2.6 (b), wρ̄

is an α-Weyl element for any ∆-expression ρ̄ of α. Further, wᾱ−1 = w−1
ᾱ for any

word ᾱ over ∆ ∪ (−∆). Further, note that we have already seen ∆-expressions in
Proposition 1.3.5.

4.2.4 Definition (Parity map). Let A be an abelian group. A ∆-parity map with
values in A is a map η : Φ × ∆ → A, (α, δ) 7→ ηα,δ = η(α, δ) with the property that
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ηα,δ = ηλα,δ whenever λ is a positive real number such that α and λα are roots.
Given any such map, we define η(α,−δ) := η(ασ(δ), δ)−1 for all α ∈ Φ, δ ∈ ∆ and

ηα,δ̄ :=
m

∏
i=1

η(ασ(δ1···δi−1), δi) = η(α, δ1) · η(ασ(δ1), δ2) · · · η(ασ(δ1···δm−1), δm)

for any word δ̄ = (δ1, . . . , δm) over ∆ ∪ (−∆). We use the convention that ηα,∅ =
1A for the empty word ∅. This defines a map

η : Φ ×L(∆ ∪ (−∆)) → A

which we will sometimes call the extended ∆-parity map. Here L(∆ ∪ (−∆))
denotes the free monoid over the set ∆ ∪ (−∆), see Definition 1.1.6. When ∆ and
A are clear from the context, we will simply say that η is a parity map.

4.2.5 Example. Assume that Φ is crystallographic and reduced. Then we have a
Chevalley parity map η : Φ × Φ → {±1} from Definition 3.3.10. Its restriction to
Φ × ∆ is a ∆-parity map with values in {±1}.

We begin with some easy consequences of Definition 4.2.4.

4.2.6 Remark. Let η be a parity map with values in some abelian group A and
let α ∈ Φ, δ ∈ ∆. Then

η(ασ(δ),−δ) = η(ασ(δ)σ(δ), δ)−1 = η(α, δ)−1.

This implies that

ηα,(δ,−δ) = η(α, δ)η(ασ(δ),−δ) = η(α, δ)η(ασ(δ)σ(δ), δ)−1 = 1A

and that, similarly, ηα,(−δ,δ) = 1A. Thus for any word δ̄ over ∆ ∪ (−∆), we
can delete any occurence of (δ,−δ) for any δ ∈ ∆ ∪ (−∆) without changing
the value of ηβ,δ̄ for any β ∈ Φ. In other words, the extended parity map
Φ×L(∆∪ (−∆)) → A defined by η factors through a map Φ× F(∆) → A where
F(∆) denotes the free group on ∆. Further, since ηα,−(−δ) = ηα,δ = η(ασ(δ),−δ)−1,
we see that η(α,−ρ) = η(ασ(ρ), ρ)−1 holds for all ρ ∈ ∆ ∪ (−∆) (and not merely
for all ρ ∈ ∆).

4.2.7 Lemma. Let η be a parity map with values in some abelian group A, let α ∈ Φ and
let β̄ = (β1, . . . , βm) be a word over ∆ ∪ (−∆) where m ≥ 1. Then η(ασ(β̄), β̄−1) =

η(α, β̄)−1. In particular, ηα,β̄−1 = η−1
α,β̄ if ασ(β̄) = α.

Proof. Write β̄−1 = (β′
1, . . . , β′

m) = (−βm, . . . ,−β1). On the one hand,

η−1
α,β̄ =

(
m

∏
i=1

η(ασ(β1···βi−1), βi)

)−1

=
m

∏
i=1

η(ασ(β1···βi−1), βi)
−1

(with the convention that σ(β1 · · · βi−1) = idΦ for i = 1). On the other hand,

η(ασ(β̄), β̄−1) =
m

∏
i=1

η(ασ(β̄)σ(β′
1···β′

i−1), β′
i) =

m

∏
i=1

η(ασ(β1···βm+1−i),−βm+1−i).

Performing the index shift j := m + 1 − i, we infer that

η(ασ(β̄), β̄−1) =
m

∏
j=1

η(ασ(β1···β j),−β j).

By Remark 4.2.6, we have η(ασ(β1···β j),−β j) = η(ασ(β1···β j−1), β j)
−1 for all j ∈

{ 1, . . . , m }, so it follows that η(ασ(β̄), β̄−1) = η(α, β̄)−1.
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4.2.8 Lemma. Let η be a parity map with values in some abelian group A, let α be a root
and let δ̄, ρ̄ be words over ∆ ∪ (−∆) such that ασ(δ̄) = α. Then ηασ(ρ̄),ρ̄−1 δ̄ρ̄ = ηα,δ̄.

Proof. By induction on the length of ρ̄, we can assume that the word ρ̄ consists of
a single root ρ ∈ ∆ ∪ (−∆). Then

ηασ(ρ),(−ρ,δ̄,ρ) = ηασ(ρ),−ρηα,δ̄ηασ(δ̄),ρ.

Since ηασ(ρ),−ρ = η−1
α,ρ Remark 4.2.6 and since ασ(δ̄) = α, the assertion follows.

We now define some properties of parity maps that will be needed throughout
this chapter.

4.2.9 Note. Every property X that we define in this chapter will be of the form
“α-X holds for all α ∈ Φ” where α-X is another property which is defined for
every root α. However, we will only define the properties α-X for those X for
which this terminology will be needed later, and simply define X directly in all
other cases.

4.2.10 Definition. Let A be an abelian group and let η be a ∆-parity map with
values in A.

(a) We say that η is trivial if ηα,δ = 1 for all α ∈ Φ and δ ∈ ∆.
(b) For any root γ, we say that η is γ-braid-invariant if for all α, β ∈ ∆, we have

η(γ, Pm(α, β)) = η(γ, Pm(β, α)) where m denotes the order of σασβ in the
Weyl group. We say that η is braid-invariant if it is γ-braid-invariant for all
γ ∈ Φ.

(c) We say that η is square-invariant if for all α ∈ Φ, δ ∈ ∆, we have ηα,δδ = 1A.
(d) We say that η is Weyl-invariant if it is braid- and square-invariant.
(e) For any root α, we say that η satisfies the square formula for α if A = {±1}p

for some p ∈ N+ and ηα,δδ = (−1, 1, . . . , 1)⟨α|δ⟩ for all δ ∈ ∆. Further, we
say that η satisfies the square formula if it satisfies the square formula for all
α ∈ Φ.

(f) For any root α ∈ Φ, we say that η is α-adjacency-trivial if for any β ∈ Φ
such that α is adjacent to β and −β and for any ∆-expression ρ̄ of β, we
have ηα,ρ̄ = 1A. We say that η is crystallographically α-adjacency-trivial if
the same property holds with “adjacent” replaced by “crystallographically
adjacent”. Further, we say that η is (crystallographically) adjacency-trivial if it
is (crystallographically) α-adjacency-trivial for all roots α.

4.2.11 Remark. Recall from Note 1.2.33 that adjacency implies crystallographic
adjacency. It follows that crystallographic adjacency-triviality implies adjacency-
triviality.

4.2.12 Note. Braid-invariance and square-invariance are the most essential prop-
erties in Definition 4.2.10. The square formula (which we have already seen, in
a different form, for Chevalley groups in Note 3.3.12) is merely a useful tool
for proving square compatibility for groups which satisfy the square formula
for Weyl elements, see Definitions 4.4.3 and 4.4.4. In a similar way, adjacency-
triviality is merely a tool for proving stabiliser compatibility in certain cases, see
Definition 4.4.5, Proposition 4.6.3, and Lemma 4.6.4. Both the square formula and
adjacency-triviality have the useful property that they can be phrased purely in
terms of parity maps, without reference to a specific root graded group. We will
elaborate on this in Note 4.4.2.
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4.2.13 Remark (Weyl-invariant parity maps). Let η be a square-invariant parity
map with values in some abelian group A. Then for all α ∈ Φ and δ ∈ ∆, we have

ηα,−δ = ηα,−δηασ(−δ),δδ = ηα,(−δ,δ,δ).

Applying Remark 4.2.6, we infer that ηα,−δ = ηα,δ for all α ∈ Φ and δ ∈ ∆. Now
assume that η is, in addition, braid-invariant (so that it is Weyl-invariant). By the
solution of the word problem in Coxeter groups (Proposition 1.3.16), we then
have that ηα,β̄ depends only on α and σ(β̄) but not on the representation β̄ of
σ(β̄), which justifies the name “Weyl-invariant”. Thus in this case, we can and
will regard η as a map defined on Φ × Weyl(Φ).

The notion of transporter sets has not appeared in the motivational section 4.1
because it is of a rather technical nature. It will become important when we
define twisting actions of the group B in a partial twisting system (A, η, B, µ) on
the root groups. See Remark 4.1.27 for more details.

4.2.14 Definition (Transporter sets). Let A be an abelian group and let η be a
∆-parity map with values in A. For any roots α, β which lie in the same orbit
under the Weyl group, the set

Aη,α→β := { ηα,δ̄ | δ̄ word over ∆ ∪ (−∆) with ασ(δ̄) = β } ⊆ A

is called the transporter set for (α, β) with respect to η. If η is clear from the context,
we will usually write Aα→β for Aη,α→β.

4.2.15 Remark. Let η be a parity map with values in some abelian group A. Then
for all roots α, β, γ which lie in the same orbit as α under the Weyl group, we
have Aα→β Aβ→γ ⊆ Aα→γ, A−1

α→β = Aβ→α and 1A ∈ Aα→α. In particular, Aα→β is
not necessarily a subgroup of A, but Aα→α always is.

In practice, we are only interested in parity maps for which all transporter
sets within any orbit are the same (though different orbits may have different
transporter sets). The following Lemma 4.2.16 provides some (seemingly weaker)
criteria from which this property follows. Here we always denote by α̂, β̂ roots
which are prefixed with an existential quantifier and by α, β roots which are
prefixed with a universal quantifier.

4.2.16 Lemma. Let η be a parity map with values in some abelian group A and let O be
an orbit of Φ under the Weyl group. Then the following properties are equivalent:

(i) There exists α̂ ∈ O such that for all β ∈ O, we have 1A ∈ Aα̂→β.
(ii) There exists α̂ ∈ O such that for all β ∈ O, we have 1A ∈ Aβ→α̂.

(iii) There exist α̂, β̂ ∈ O such that Aα̂→β̂ is a subgroup of A which contains Aβ̂→β for
all β ∈ O.

(iv) There exist α̂, β̂ ∈ O such that Aα̂→β̂ is a subgroup of A which contains Aα→β for
all α, β ∈ O.

(v) For all α, β, γ, δ ∈ O, we have Aα→β = Aγ→δ.

Proof. The implications “(v) =⇒ (iv) =⇒ (iii)” and “(i) ⇐⇒ (ii)” are clear. Now
assume that (iii) holds, and choose α̂, β̂ as in the assertion. We want to prove (i).
For all β ∈ O, we have

Aα̂→β̂ Aβ̂→β ⊆ Aα̂→β

by Remark 4.2.15. By assumption, Aα̂→β̂ contains Aβ̂→β. Since it is a subgroup of

A, it also contains A−1
β̂→β

. Thus the inclusion above implies that 1A is contained
in Aα̂→β for all β ∈ O, which proves (i).
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Now assume that (i) holds. We want to prove (v). Let α̂ be as in (i). Note that
property (ii) is also satisfied for α̂, too, because Aβ→α̂ = A−1

α̂→β. Further, for all
β ∈ O, it follows from Remark 4.2.15 that

Aα̂→α̂ Aα̂→β ⊆ Aα̂→β and Aα̂→β Aβ→α̂ ⊆ Aα̂→α̂.

Since Aα̂→β and Aβ→α̂ both contain 1A, we infer that Aα̂→α̂ ⊆ Aα̂→β ⊆ Aα̂→α̂, so
Aα̂→α̂ = Aα̂→β for all β ∈ O. In particular, Aα̂→β is a group, so Aβ→α̂ = A−1

α̂→β =

Aα̂→β = Aα̂→α̂ for all β ∈ O as well. Now for arbitrary β, γ, we have

Aβ→α̂ Aα̂→γ ⊆ Aβ→γ and Aα̂→β Aβ→γ ⊆ Aα̂→γ

where 1A lies in Aβ→α̂ and in Aα̂→β. By similar arguments as above, it follows
that Aα̂→γ = Aβ→γ for all β, γ ∈ O. Since we already know that Aα̂→γ = Aα̂→α̂,
we conclude that all the groups (Aβ→γ)β,γ∈O are equal to Aα̂→α̂. In particular,
they are pairwise equal. This finishes the proof of (v).

4.2.17 Remark. Note that property 4.2.16 (iv) is automatically satisfied if Aα̂→β̂ =

A for some α̂, β̂ ∈ O. In this case, we have Aα→β = A for all α, β ∈ O.

4.2.18 Definition (Transporter properties). Let A be an abelian group and let η
be a ∆-parity map with values in A.

(a) We say that η is complete if Aα→α = A for all roots α.
(b) We say that η is semi-complete if for all roots α, the group Aα→α has a group-

theoretic complement in A. That is, there exists a subgroup Cα of A such
that Aα→α ∩ Cα = {1} and Aα→αCα = A.

(c) For any orbit O of Φ under the Weyl group, we say that η is transporter-
invariant on O if it satisfies the equivalent conditions in Lemma 4.2.16 for O.
Further, we say that η is transporter-invariant if it is transporter-invariant on
all orbits of Φ.

4.2.19 Remark. Let η be a transporter-invariant ∆-parity map with values in
some abelian group A and let α, β be roots which lie in the same orbit. Since
Aα→β = Aα→α, it follows from Remark 4.2.15 that 1A is contained in Aα→β.

4.2.20 Note. Clearly, any complete parity map is also transporter-invariant and
semi-complete. In practice, we would like our parity maps to be complete, but
there will be situations in which this is not the case. We delay an explanation of
this fact until Note 4.3.11. There we will also sketch an alternative approach which
would allow us to only consider complete parity maps, but which introduces
other difficulties.

The notion of semi-completeness is particularly strange. It will be used in
Definition 4.5.9 to construct an action of the group B which appears in a partial
twisting system (A, η, B, µ) on each of the root groups. It will be clear how
this action should be defined on the transporter sets Bα→α. The existence of a
complement Cα of Bα→α allows us to extend this action to B by simply declaring
that Cα acts trivially on all root groups. In all cases that we consider, the twisting
group will be of the form A = {±1}p for some p ∈ { 1, 2, 3 } and every transporter
set in A will simply be the product of some of the p components of A. In this
situation, it is clear that we can simply choose the complement to be the product
of the remaining components.

We have discussed in Remark 4.1.27 that we want to turn a partial twisting
system (A, η, B, µ) into a twisting group A × B with a parity map η × µ. To this
end, we briefly state some properties of products of parity maps for later use.
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4.2.21 Notation. Let η, µ be two parity maps with values in some abelian groups
A, B, respectively. Then we denote by η × µ the parity map

Φ × ∆ → A × B, (α, β) 7→ (ηα,β, µα,β).

4.2.22 Remark. If A, B are two abelian groups and η̄ is a parity map with values
in A× B, then there exist unique parity maps η, µ with values in A, B, respectively,
such that η̄ = η × µ.

4.2.23 Definition (Independent parity maps). Let A, B be two abelian groups
and let η, µ be parity maps with values in A, B, respectively. The parity maps η
and µ are called independent if (A × B)η×µ,α→α = Aη,α→α × Bµ,α→α for all α ∈ Φ.

4.2.24 Remark. Let η1, η2 be two parity maps with values in respective abelian
groups A1 and A2. Denote by π1 and π2 the canonical projection homomorphisms
from A1 × A2 onto A1 and A2, respectively. Then for all roots α, β which lie in
the same orbit under the Weyl group and for all i ∈ { 1, 2 }, we have

πi
(
(A1 × A2)η1×η2,α→β

)
⊆ (Ai)ηi ,α→β.

In particular, if (A × B)η×µ,α→α contains Aη,α→α and Bµ,α→α for all roots α, then η
and µ are independent.

4.2.25 Lemma. Let η, µ be two parity maps with values in respective abelian groups A
and B, let α be any root and let O be any orbit in Φ.

(a) For all the following properties, it is true that η × µ has this property if and
only if η and µ both have this property: square-invariance, (α-) braid-invariance,
Weyl-invariance, (crystallographic) (α-) adjacency-triviality.

(b) For all the following properties, it is true that η and µ both have this property if
η × µ has this property: completeness, transporter-invariance (on O).

Proof. The assertions of (a) are easy to verify. The assertions of (b) follow from
Remark 4.2.24, using criterion 4.2.16 (i) to prove transporter-invariance.

4.3 Parametrisations and Twisting Structures

4.3.1 Notation for this section. In this section, Φ is a root system an G is a group
with a Φ-pregrading (Uα)α∈Φ. Further, we fix a rescaled root base ∆ of Φ and we
assume that there exists a ∆-system (wδ)δ∈∆ of Weyl elements in G, which we
also fix.

In this section, we study the interplay of parity maps with root graded groups.
We begin with the notion of parametrisations.

4.3.2 Definition (Parameter system). Write Orbred(Φ) = (O1, . . . , Ok) (see Nota-
tion 1.3.9). A parameter system (of type Φ) is a tuple P = (A, M1, . . . , Mk) consisting
of an abelian group A and groups M1, . . . , Mk such that A acts on each of the
sets M1, . . . , Mk. The group A is called the twisting group of P and the actions
of A on M1, . . . , Mk are called the twisting actions. Given a parameter system
P = (A, M1, . . . , Mk) and a root α ∈ Φ, we denote by Mα the group Mi(α) where
i(α) ∈ [1, k] is the unique index such that α ∈ Oi(α).

4.3.3 Note. The root system Φ appears in the definition of parameter systems
of type Φ only insofar that the number k of groups M1, . . . , Mk is the number of
indivisible orbits in Φ. However, the definition of the groups (Mα)α∈Φ clearly



112 4. The Parametrisation Theorem

depends on Φ. For this reason, we use the terminology of “parameter systems of
type Φ”.

Further, observe that we do not require A to act on M1, . . . , Mk by group
automorphisms. Thus we need not have a.(xy) = (a.x)(a.y) for all a ∈ A and
x, y in one of the parametrising groups. However, this additional condition will
often be satisfied.

4.3.4 Definition (Parametrisation). Denote by Orbred(Φ) = (O1, . . . , Ok) the
tuple of indivisible orbits of Φ, let P = (A, M1, . . . , Mk) be a parameter system
of type Φ and let η a ∆-parity map with values in A. A parametrisation of G by P

with respect to η and (wδ)δ∈∆ is a family(
θα : Mα → Uα

)
α∈Φindiv

such that for all roots α ∈ Φindiv, δ ∈ ∆ and all x ∈ Mα, we have

θα(x)wδ = θσδ(α)(ηα,δ.x).

If β is a root which is not indivisible and β′ is the unique indivisible root in R>0β,
then we define Mβ := θ−1

β′ (Uβ′) and θβ := θβ′
∣∣

Mβ
: Mβ → Uβ. The family (θα)α∈Φ

will also be called a parametrisation of G, and the maps in this family are called
the root isomorphisms of G. We will also say that G is parametrised by P with respect
to η and (wδ)δ∈∆ and root isomorphisms (θα)α∈Φ.

See also Note 4.1.10 for a discussion of Definition 4.3.4 in the setting of non-
reduced root systems.

4.3.5 Remark. Let everything be as in Definition 4.3.4. Let α ∈ Φ and x ∈ Mα. It
follows from the equation

θα(x)wδ = θσδ(α)(ηα,δ.x)

that
θα(x) = θσδ(α)(ηα,δ.x)w−1

δ .

Replacing α by σδ(α) and x by η−1
σδ(α),δ

.x, we infer that

θσδ(α)(η
−1
σδ(α),δ

.x) = θα(x)w−1
δ .

Thus
θα(x)w−δ = θα(x)w−1

δ = θσδ(α)

(
η−1

σα(α),δ
.x
)
= θσδ(α)

(
ηα,−δ.x

)
.

This implies that for all words δ̄ over ∆ ∪ (−∆), we have

θα(x)wδ̄ = θασ(δ̄)(ηα,δ̄.x).

The notion of faithfulness for parameter systems will not be needed during
the actual parametrisation process. However, as discussed in Remark 4.1.23,
it is necessary to “read off” a parity map from a root graded group with a
parametrisation.

4.3.6 Definition (Faithfulness with respect to parity maps). Let A be any group
acting on a set M and let η be a ∆-parity map with values in A. For any root α, we
say that the action of A on M is α-faithful with respect to η, or simply ηα,·-faithful if
for all words δ̄, ρ̄ over ∆ ∪ (−∆) such that ηα,δ̄ and ηα,ρ̄ act identically on M, we
have ηα,δ̄ = ηα,ρ̄.

4.3.7 Remark. Equivalently, A acts α-faithfully on M with respect to η if and only
if the subgroup

⋃
β∈O Aη,α→β acts faithfully on M where O denotes the orbit of α

in Φ. If η is transporter-invariant, then
⋃

β∈O Aη,α→β = Aη,α→α.
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4.3.8 Definition (Faithfulness for parameter systems). Let P = (A, M1, . . . , Mk)
be a parameter system of type Φ. We say that P is faithful if A acts faithfully on
all groups M1, . . . , Mk. For any ∆-parity map η with values in A, we say that P
is η-faithful if for all roots α, the group A acts α-faithfully with respect to η on all
groups M1, . . . , Mk.

In practice, we will only consider transporter-invariant parity maps η and
η-faithful parameter systems (A, M1, . . . , Mk). In this setting, all groups Aη,α→β

act faithfully on Mi for all α, β in the same orbit and all i ∈ [1, k].

4.3.9 Note. Let P = (A, M1, . . . , Mk) be a parameter system of type Φ and let η a
∆-parity map with values in A. In all practical situations, the map

η : Φ ×L(∆ ∪ (−∆)) → A

will always be surjective because otherwise, we would simply shrink the codo-
main to the image of η. However, this does not imply that the map

ηα,· : L(∆ ∪ (−∆)) → A (4.5)

is surjective for all α ∈ Φ. This is illustrated by Example 4.3.10. As a consequence,
faithfulness of all twisting actions of A is a stronger property than η-faithfulness
of P. However, η-faithfulness of P is precisely the property that we need to show
that a parity map which is read of from some Φ-graded group automatically
satisfies most of the properties that we need (see Lemma 4.4.10).

4.3.10 Example. Let k be a commutative associative ring and let M be a k-module.
Assume that there exist a k-quadratic form q : M → k and an element v0 ∈ M
with q(v0) = 1k, and denote the reflection corresponding to v0 by σv0 : M → M.
(We will give precise definitions of quadratic forms and reflections in Defini-
tions 7.1.8 and 7.1.20, but they are actually not relevant for the moment.) Put
A := {±1}2 and define actions of A on k and M by

(ε1, ε2).a := ε1a and (ε1, ε2).v :=

{
ε1v if ε2 = 1,
ε1σv0(v) if ε2 = −1

for all (ε1, ε2) ∈ A, all a ∈ k and all v ∈ M. In other words, the first component
of A acts on k and M by additive inversion while the second component acts
trivially on k and by σv0 on M. Thus the action of A on M is faithful in the generic
case (that is, unless we specifically choose M and v0 to satisfy, for example,
σv0 = − idM), but the action of A on k is never faithful. There is no way to
avoid this in our setup because we need two twisting actions on M but only one
twisting action on k, so there must be a part of A which acts trivially on k.

In section 7.3, we will construct a B3-graded group H which is parametrised
by the parameter system P := (A, M, k). Since the action of A on k is not faithful,
there is no unique parity map η with respect to which H is parametrised: We
can freely choose the second component of ηα,δ for all long roots α and all δ ∈ ∆.
However, we can choose a parity map η by declaring that the second component
should always be 1 when it is not uniquely determined. It is not difficult to see
that P is η-faithful for this map η.

4.3.11 Note. The fact that certain components of the twisting group A might
only act on some of the parametrising groups but not on all of them, as we have
seen in Example 4.3.10, is also responsible for the problems in Note 4.2.20: If
all components of A acted on all parametrising groups, then the map (4.5) in
Note 4.3.9 would be surjective for all α ∈ Φ and thus η would be complete. In
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particular, any η-faithful parameter system would be faithful. Since this is not
the case, we have to work with the weaker conditions of semi-completeness and
transporter-invariance that we introduced in Definition 4.2.18.

These problems could be avoided by introducing a separate twisting group
AO for each orbit O of roots (or equivalently, one such twisting group for each
parametrising group). In Example 4.3.10, we would have AL = {±1} for the
orbit L of long roots and AS = {±1}2 for the orbit S of short roots. The action
of AL on k would be given by additive inversion while the action of AS on M
would be given by additive inversion in the first component and by σv0 in the
second component. The advantage of this approach is clear: We have to worry
neither about transporter sets and semi-completeness nor about faithfulness with
respect to η. However, this not only increases the number of twisting groups that
we have to carry along, but also the number of parity maps ηO : O × ∆ → AO.
Most root systems have two indivisible orbits S and L of short and long roots,
so this would mean that we need twisting groups AS, AL, groups BS, BL and
parity maps ηS, ηL, µS, µL in order to parametrise the corresponding root graded
groups. This would make our notation rather unwieldy, so we have opted to let
a single twisting group act on all root groups simultaneously.

4.3.12 Remark (Twisted parametrisations). Let P = (A, M1, . . . , Mk) be a param-
eter system of type Φ, let η be a ∆-parity map with values in A and let (θγ)γ∈Φ
be a parametrisation of G by P with respect to η and (wδ)δ∈∆. Fix an arbitrary
root α and an arbitrary element a ∈ A. Assume that the action of a on Mα is
a group endomorphism (and thus an isomorphism). We define a twisted root
isomorphism for Uα by

θ′α : Mα → Uα, x 7→ θα(a.x).

The assumption on a assures that θ′α is indeed a homomorphism. Further, define
θ′β := θβ for all roots β distinct from α. Then (θ′γ)γ∈Φ is also a parametrisation of
G by P with respect to (wδ)δ∈∆, but the corresponding parity map η′ is distinct
from η. Namely, we have

η′
α,δ = aηα,δ

for all δ ∈ ∆ and
η′

β,δ = a−1ηβ,δ

for all β ∈ Φ and δ ∈ ∆ such that σδ(β) = α. We say that (θ′γ)γ∈Φ is obtained
from (θγ)γ∈Φ by twisting, and similarly for η′ and η. More generally, we say that a
parametrisation or a parity map is obtained from another one by twisting if it can
be obtained by a finite number of twistings in the previous sense. It is clear that,
once we have found one parametrisation and a corresponding parity map, we
can construct a large number of different parametrisations and parity maps by
twisting. In Remark 4.5.18, we will show that all parity maps which satisfy the
necessary compatibility conditions for some root graded group G are the same up
to twisting if G is sufficiently generic (which, in more technical terms, translates
to some faithfulness assumptions).

We now turn the the structures which are needed as a stepping stone in the
construction of a parametrisation: twisting groups and (partial) twisting systems.
Since we have already given sufficient motivation in section 4.1, we simply state
their definitions.

4.3.13 Definition (Twisting group). A twisting group for (G, (wδ)δ∈∆) with respect
to ∆ is a tuple (A, (ωα)α∈Φ) with the following properties:
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(i) A is an abelian group.
(ii) For each root α, ωα : A × Uα → Uα, (a, g) 7→ a.g is a group action of A on

the set Uα, called the twisting action of A on Uα.
(iii) The twisting action on G commutes with conjugation by the fixed set of

Weyl elements and their inverses: For all α ∈ Φ, δ ∈ ∆ ∪ (−∆) and a ∈ A,
we have (a.xα)wδ = a.(xwδ

α ) for all xα ∈ Uα.
We will usually simply say that A a twisting group for G, leaving the twisting
actions, the root base and the Weyl elements implicit.

4.3.14 Note. In every example that we will see, the twisting action is the conjuga-
tion by some element of G. Thus it would make sense to write it as a right action
instead of as a left action. However, writing it as a left action makes it easier to
distinguish between twisting actions and conjugation by elements in (wδ)δ∈∆,
as in Axiom 4.3.13 (iii). Since twisting groups are abelian, this does not make a
formal difference in any way.

The following twisting group will play an important role for every root system
that we consider.

4.3.15 Example. Consider the multiplicative group A := {±1} of order 2 and
define that the non-trivial element of A acts on all root groups by group inversion.
That is, a.xα := x−1

α for all α ∈ Φ, xα ∈ Uα and the non-trivial element a ∈
A \ {1A}. Then A is a twisting group for G. Note that for all α ∈ Φ, the twisting
action on Uα is compatible with the multiplication on Uα (that is, A acts by group
automorphisms) if and only if Uα is abelian.

4.3.16 Note. In every example, property 4.3.13 (iii) follows from the fact that,
even though the twisting action can be expressed as conjugation by a certain
group element (which is not uniquely determined), it can be defined “naturally”
without making any choices (see Remark 4.1.22). For example, the twisting group
in Example 4.3.15 acts by inversion, and it is clear that (xwδ

α )−1 = (x−1
α )wδ . In

fact, we will always see that property 4.3.13 (iii) is not only satisfied for the fixed
∆-system (wδ)δ∈∆ of Weyl elements but in fact for all Weyl elements. However,
the weaker condition 4.3.13 (iii) will be sufficient to prove the parametrisation
theorem.

4.3.17 Definition. Let A be a twisting group for G, let g ∈ G and let a ∈ A. For
any root α, we say that g acts on Uα by a if g normalises Uα and xg

α = a.xα for all
xα ∈ Uα.

4.3.18 Definition (Partial twisting system). A tuple (A, η, B, µ) is called a par-
tial twisting system for (G, (wδ)δ∈∆) with respect to ∆ if it satisfies the following
properties:

(i) A is a twisting group for (G, (wδ)δ∈∆) and η is a parity map with values
in A.

(ii) B is an abelian group and µ is a parity map with values in B.
(iii) η is braid-invariant.
(iv) µ is Weyl-invariant and semi-complete.
(v) η × µ is transporter-invariant and η, µ are independent in the sense of

Definitions 4.2.18 and 4.2.23.
We will usually leave the root base ∆ implicit.
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Recall from Lemma 4.2.25 (b) that, as a consequence of Axiom 4.3.18 (v), the
parity maps η and µ in a partial twisting system are transporter-invariant as well.

For root systems of types A, D, E and H, we do not need the generality of
partial twisting systems, so we can work with the following definition.

4.3.19 Definition (Twisting system). A twisting system for (G, (wδ)δ∈∆) with re-
spect to ∆ is a tuple (A, η) where A is a twisting group for (G, (wδ)δ∈∆) and η is
a transporter-invariant braid-invariant parity map with values in A. In other
words, it is a tuple (A, η) such that (A, η, {1}, (α, δ) 7→ 1) is a partial twisting
system, which is then called the partial twisting system associated to (A, η).

4.3.20 Example (Parametrisations of Chevalley groups). We briefly investigate
how the notions defined in this section can be used in the context of Chevalley
groups. Assume that Φ is crystallographic and reduced. Let R be a commutative
associative ring, let c = (cα,β)α,β∈Φ a family of Chevalley structure constants of
type Φ (in the sense of Definition 3.1.17) and let G be a Chevalley group of type
Φ over R with respect to c. Denote by (Uα)α∈Φ the root groups of G, by (θα)α∈Φ
the root isomorphisms of G and by (wα)α∈Φ the standard Weyl elements from
Definition 3.3.3. Then the Chevalley parity map

η : Φ × Φ → A

from Definition 3.3.10 induces a ∆-parity map with values in A := {±1Z}.
Declaring that A acts on all root groups (Uα)α∈Φ by inversion, this group is
a twisting group for (G, (wδ)δ∈∆). Even more, (A, η) is a twisting system for
(G, (wδ)δ∈∆). Further, the tuple P := (A,R, . . . ,R) is a parameter system of type
Φ, where R appears |Orb(Φ)| times in the tuple and A acts on all copies of R by
additive inversion. This parameter system is faithful if and only if 1R ̸= −1R , or
in other words, 2R ̸= 0R . Finally, by Lemma 3.3.7, (θα)α∈Φ is a parametrisation of
G by P with respect to (wδ)δ∈∆ and η.

4.4 Compatibility Conditions

4.4.1 Notation for this section. We continue to use Notation 4.3.1.

4.4.2 Note. Until now, all conditions that we imposed on parity maps were
independent of the twisting actions on G, and vice versa. This clean separation
is desirable: We will prove in Lemma 4.4.10 and Proposition 4.4.11 that every
parity map η which is read off from an example group H automatically has all
the properties that we want, but only with respect to H. For properties which
are phrased purely in terms of parity maps, such as braid-invariance, this is
no restriction. However, the compatibility conditions that we now introduce
relate η only to the specific Φ-graded group H, so we still have to prove that
arbitrary Φ-graded groups (equipped with suitably defined twisting actions) are
compatible with η. For square compatibility, this is usually easy because in most
cases, the square formula provides a clean separation between the combinatoric
side and the group-theoretic side. Stabiliser compatibility, on the other hand, will
cause more difficulties.

4.4.3 Definition (Square compatibility). Let η be a ∆-parity map with values in
some twisting group A for G. For any root α, we say that G is α-square-compatible
with respect to η (and (wδ)δ∈∆) if for all δ ∈ ∆, the element w2

δ acts on Uα by ηα,δδ.
Further, we say that G is square-compatible with respect to η (and (wδ)δ∈∆) if it is
α-square-compatible with respect to η (and (wδ)δ∈∆) for all α ∈ Φ.
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4.4.4 Definition (Square formula). Let α be a root. We say that G satisfies the
square formula (for Weyl elements) for α if for all roots β, we have xw

α = xε
α for all

xα ∈ Uα where w is the square of any β-Weyl element and ε := (−1)⟨α|β⟩. Further,
we say that G satisfies the square formula (for Weyl elements) if it satisfies the square
formula for all roots.

4.4.5 Definition (Stabiliser compatibility). Let η, µ be two ∆-parity maps with
values in some abelian groups A, B where A is a twisting group for G and µ
is Weyl-invariant. For any root α ∈ Φ, we say that G is α-stabiliser-compatible
with respect to (η, µ) (and (wδ)δ∈∆) if for all u ∈ Weyl(Φ) such that µα,u = 1B and
αu = α, there exists a word δ̄ over ∆ ∪ (−∆) such that σδ̄ = u and wδ̄ acts on Uα

by ηα,δ̄. We say that G is stabiliser-compatible with respect to (η, µ) (and (wδ)δ∈∆) if
it is α-stabiliser-compatible with respect to (η, µ) (and (wδ)δ∈∆) for all α ∈ Φ. If
these conditions are satisfied for the trivial parity map µ, we will simply say that
G is (α-) stabiliser-compatible with respect to η (and (wδ)δ∈∆)

4.4.6 Remark. If η is a parity map with values in some abelian group A and G is
α-stabiliser-compatible with respect to η and (wδ)δ∈Φ, then for any abelian group
B and any parity map µ with values in B, the group G is α-stabiliser-compatible
with respect to (η, µ) and (wδ)δ∈∆.

4.4.7 Note. Any element u in Definition 4.4.5 can be written as u = σ(β1) · · · σ(βk)
for some roots β1, . . . , βk which are all orthogonal to α by Proposition 1.3.11. Thus
one might think that it would be sufficient to require u in Definition 4.4.5 to be
of the form σβ for some root β which is orthogonal to α. However, the condition
in Definition 4.4.5 is stronger: We could have u = σβσγ for roots β, γ which are
orthogonal to α such that µα,β = µ−1

α,γ (so that µα,u = 1) but µα,β ̸= 1 ̸= µα,γ.

4.4.8 Note (Admissible partial twisting systems). Both square compatibility and
stabiliser compatibility are needed in the proof of the parametrisation theorem,
so it is tempting to make these conditions part of the definition of partial twisting
systems. Instead we take the following approach: For root systems Φ of type B,
C, BC or F, we will later (in the corresponding chapters) define the notions of
“admissible partial twisting systems”, which are partial twisting systems with
some additional properties which are specific to the root system in question. For
example, the isomorphism types of A and B will be prescribed, and also some
specific values of µ. We will then show that any Φ-graded group is automatically
square-compatible and stabiliser-compatible with respect to an admissible par-
tial twisting system. Hence it makes sense to not require square and stabiliser
compatibility in the definition of partial twisting systems.

4.4.9 Note (Square compatibility with respect to µ). Let (A, η, B, µ) be a partial
twisting system for G. Formally, it does not make sense to ask whether G is
square-compatible with respect to η × µ because there is no action of B given
on the root groups. However, since µ is square-invariant, we have µα,δδ = 1B
for all α ∈ Φ and δ ∈ ∆ anyway. Thus for any action of B on the root groups, it
follows from the assumption that G is square-compatible with respect to η that it
is square-compatible with respect to η × µ as well.

As announced in Remark 4.1.23, we want to define the parity maps η and µ by
reading them of from an example group. More precisely, we will define a parity
map η̄ in this way and then use Remark 4.2.22 to split it into two parity maps
η, µ such that η̄ = η × µ. The following result states that a parity map which
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is defined in this way automatically has many desirable properties. However,
the restrictions of Note 4.4.2 apply. For this reason, only Proposition 4.4.11 is
truly useful, whereas Lemma 4.4.10 merely serves to illustrate the connection
between some of the concepts we have introduced, and to show that they are
natural conditions.

4.4.10 Lemma. Write Orbred(Φ) = (O1, . . . , Ok) for the tuple of indivisible orbits in
Φ. Let P = (A, M1, . . . , Mk) be a parameter system of type Φ and let η be a ∆-parity
map with values in ∆. Assume that there exists a parametrisation (θα)α∈Φ of G by P

with respect to η and (wδ)δ∈∆. For each root α, we define an action ωα of A on Uα by

a.θα(m) := θα(a.m) for all m ∈ Mα.

Then the following hold:
(a) (A, (ωα)α∈Φ) is a twisting group for G.
(b) G is square-compatible and stabiliser-compatible with respect to η and (wδ)δ∈∆.

Proof. For (a), the only non-trivial thing to show is that the twisting actions
commute with conjugation by the fixed Weyl elements. Let α ∈ Φ, δ ∈ ∆ ∪ (−∆)
and let xα ∈ Uα. Let a ∈ A and put m := θ−1

α (xα). Then

(a.xα)
wδ = (a.θα(m))wδ = θα(a.m)wδ = θσδ(α)(ηα,δa.m) and

a.(xwα
α ) = a.

(
θα(m)wδ

)
= a.θσδ(α)(ηα,δ.m) = θσδ(α)(aηα,δ.m).

Since A is abelian, we conclude that (a.xα)wδ = a.(xwα
α ), as desired.

For (b), let α ∈ Φ, δ ∈ ∆ and xα ∈ Uα. Then we have

xw2
δ

α = θα(m)w2
δ = θσδ(α)(ηα,δ.m)wδ = θα(ησδ(α),δηα,δ.m) = θα(ηα,δδ.m) = ηα,δδ.xα

where m := θ−1
α (xα). Thus G is square-compatible. For stabiliser compatibility,

we have to show that for all α ∈ Φ and all u ∈ Weyl(Φ) with αu = α, we can
find a representation δ̄ of u over ∆ such that wδ̄ acts on Uα by ηα,δ̄. Since G is
parametrised with respect to η and (wδ)δ∈∆, this actually holds for all representa-
tions δ̄ of u.

4.4.11 Proposition. Let everything be as in Lemma 4.4.10 and let α be a root. Assume
that the action of Aη,α→α on Mα is α-faithful with respect to η. Then the following hold:

(a) η is α-adjacency-trivial. If the commutator relations of G are crystallographic, then
η is crystallographically α-adjacency-trivial.

(b) If the family (wδ)δ∈∆ satisfies the braid relations modulo Z(G), then η is α-braid-
invariant.

(c) Assume that G satisfies the square formula for Weyl elements and that A = {±1}p

for some p ∈ N+. Assume further that (−1, 1, . . . , 1) lies in Aη,α→α and that it
acts on all parametrising groups M1, . . . , Mk be inversion. Then η satisfies the
square formula for α.

Proof. For (a), let β be a root such that α is adjacent to β and −β and let ρ̄ be a
∆-expression of β. Then σ(ρ̄) = σ(β) and w := wρ̄ is a β-Weyl element. By the
assumption on adjacency, it follows that w acts trivially on Uα, so that

θα(m) = θα(m)w = θασ(ρ̄)(ηα,ρ̄.m) = θασ(β)(ηα,ρ̄.m) = θα(ηα,ρ̄.m)

for all m ∈ Mα. Since the action of A on Mα is α-faithful with respect to η,
this implies that ηα,ρ̄ = 1A. Thus η is α-adjacency-trivial. The assertion for the
crystallographic case can be proven in the same way.
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For (b), let β, γ ∈ ∆ be distinct, denote the order of σβσγ by o and put ρ̄ :=
Po(β, γ), ζ̄ := Po(γ, β). By the braid relation in the Weyl group, we have σρ̄ = σζ̄

and we denote this element by φ. Now for all m ∈ Mα, we see that θα(m)wρ̄ =
θαφ(ηα,ρ̄.m) and θα(m)wζ̄ = θαφ(ηα,ζ̄ .m). Since (wδ)δ∈∆ satisfies the braid relations
modulo Z(G), these two group elements are equals. We infer that ηα,ρ̄ and ηα,ζ̄
act identically on Mα. Since the action of A on Mα is ηα,·-faithful by assumption,
it follows that ηα,ρ̄ = ηα,ζ̄ , so η is α-braid-invariant.

For (c), let δ ∈ ∆ and put ε := (−1)⟨α|δ⟩ and w := w2
δ. Let m ∈ Mα be arbitrary.

Since G satisfies the square formula for Weyl elements, we have

θα(ηα,δδ.m) = θα(m)w = θα(εm).

If ε = 1, then it follows from the fact that Aα→α acts faithfully on Mα that
ηα,δδ = 1A. If ε = −1, then we see that ηα,δδ and (−1, 1, . . . , 1) act identically
on M. Since both elements lie in Aα→α, it follows that ηα,δδ = 1A in this case as
well.

4.5 Proof of the Parametrisation Theorem

4.5.1 Notation for this section. We denote by Φ a root system, by G is a group
with a Φ-pregrading (Uα)α∈Φ, by ∆ a rescaled root base of Φ, by (wδ)δ∈∆ a ∆-
system of Weyl elements in G and by (A, η, B, µ) a partial twisting system for
(G, (wδ)δ∈∆). We assume that G is square-compatible with respect to η and
stabiliser-compatible with respect to (η, µ) and that (wδ)δ∈∆ satisfies the braid
relations modulo Z(G). Further, Notation 4.5.8 holds from the point where it is
introduced.

Finally, we have gathered all the necessary tools to prove the parametrisation
theorem (Theorem 4.5.16). Our first intermediate goal is Proposition 4.5.6, which
is precisely Goal 4.1.26.

4.5.2 Note (Braid relations). If G is a Φ-graded group and Φ is reduced or
crystallographic, then it automatically satisfies the braid relations for Weyl el-
ements by Theorem 2.5.10. However, since the proof of the parametrisation
theorem works without any reference to Axiom 2.5.2 (iv), we formulate it for
more general groups with a Φ-pregrading. Hence we need to make the assump-
tion that (wδ)δ∈∆ satisfies the braid relations modulo Z(G). Note that the braid
relations are only required for this specific system of Weyl elements, not for any
system, and that they are only required to hold modulo Z(G).

4.5.3 Lemma. Let α be a root and let β̄ = (β1, . . . , βm), γ̄ = (γ1, . . . , γk) be two
homotopic words over ∆ ∪ (−∆) such that ασ(β̄) = α = ασ(γ̄). Then the following
assertions are equivalent:

(i) wβ̄ acts on Uα by ηα,β̄.
(ii) wγ̄ acts on Uα by ηα,γ̄.

Proof. By induction, we can assume that γ̄ and β̄ are either braid-homotopic or
square-homotopic. In the case of braid-homotopy, we have ηα,β̄ = ηα,γ̄ (because
η is braid-invariant) and the conjugation actions of wβ̄ and wγ̄ on G are identical
(because (wδ)δ∈∆ satisfies the braid relations modulo Z(G)). Hence the assertion
is clear for braid-homotopy. In the case of square-homotopy, we can assume that

γ̄ = (β1, . . . , βp, δ, δ, βp+1, . . . , βm)
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for some p ∈ [0, m] and some δ ∈ ∆. Put

ω̄ := (β1, . . . , βp), ζ̄ := (βp+1, . . . , βm) and ρ := ασ(ω̄).

Observe that

η(α, γ̄) = η(α, ω̄)η(ρ, δδ)η(ρ, ζ̄) = η(α, ω̄)η(ρ, ζ̄)η(ρ, δδ) = η(α, β̄)η(ρ, δδ)

and wγ̄ = wω̄w2
δwζ̄ . Since G is square-compatible with respect to η and the action

of A commutes with conjugation by wζ̄ (by Axiom 4.3.13 (iii)), we have

xwγ̄
α =

(
ηρ,δδ.xwω̄

α

)wζ̄ = ηρ,δδ.x
wω̄wζ̄
α = ηρ,δδ.x

wβ̄
α .

Since ηα,γ̄ = ηα,β̄ηρ,δδ, the assertion follows.

The following statement allows us to restrict our attention to words over ∆
(and not over ∆ ∪ (−∆)).

4.5.4 Lemma. Let α be a root and let β̄ = (β1, . . . , βm) be a word over ∆ ∪ (−∆) such
that ασ(β̄) = α. Choose an arbitrary i ∈ [1, m] and put

β̄′ := (β1, . . . , βi−1,−βi, βi+1, . . . , βm)

Then the following assertions are equivalent:
(i) wβ̄ acts on Uα by ηα,β̄.

(ii) wβ̄′ acts on Uα by ηα,β̄′ .

Proof. Note that the word β̄′′ := (β1, . . . , βi−1,−βi, βi, βi, βi+1, . . . , βm) is square-
homotopic to β̄′. Thus it follows from Lemma 4.5.3 that (ii) is equivalent to the
statement “wβ̄′′ acts on Uα by ηα,β̄′′”. However, wβ̄′′ = wβ̄ (because w−βi = w−1

βi
)

and ηα,β̄′′ = ηα,β̄ (because of Remark 4.2.6). The assertion follows.

4.5.5 Lemma. Let α ∈ Φ and let δ̄ = (δ1, . . . , δm) be a word over ∆ ∪ (−∆) such that
ασ(δ̄) = α and µα,δ̄ = 1B. Then wδ̄ acts on Uα by ηα,δ̄.

Proof. Since G is stabiliser-compatible with respect to (η, µ), there exists a word
ρ̄ over ∆ ∪ (−∆) such that σρ̄ = σδ̄ and such that wρ̄ acts on Uα by ηα,ρ̄. Denote
by ρ̄′ and δ̄′ the words obtained from ρ̄ and δ̄ by replacing each letter in −∆ by
its negative. Then σρ̄′ = σρ̄ = σδ̄ = σδ̄′ . Hence it follows from Proposition 1.3.16
that ρ̄′ and δ̄′ are homotopic. (Here we use that ρ̄′ and δ̄′ are words over ∆ and
not over ∆ ∪ (−∆). See also Note 1.3.18.) Since wρ̄ acts on Uα by ηα,ρ̄, it follows
from Lemma 4.5.4 that wρ̄′ acts on Uα by ηα,ρ̄′ . By Lemma 4.5.3, this implies that
wδ̄′ acts on Uα by wδ̄′ . Again by Lemma 4.5.4, it follows that wδ̄ acts on Uα by wδ̄.
This finishes the proof.

4.5.6 Proposition. Let α ∈ Φ and let β̄ = (β1, . . . , βm), γ̄ = (γ1, . . . , γk) be two
words over ∆ ∪ (−∆) such that ασ(β̄) = ασ(γ̄) and µα,β̄ = µα,γ̄. Put a := ηα,β̄ · η−1

α,γ̄.

Then x
wβ̄
α = (a.xα)wγ̄ for all xα ∈ Uα.

Proof. Consider γ̄−1 = (−γk, . . . ,−γ1) and δ̄ := (β̄, γ̄−1). Since Uσ(β̄)
α = Uσ(γ̄)

α ,
we have αwδ̄ = α. Further, the following hold by Lemma 4.2.7:

η(α, δ̄) = η(α, β̄)η(ασ(β̄), γ̄−1) = η(α, β̄)η(ασ(γ̄), γ̄−1) = η(α, β̄)η(α, γ̄)−1 = a,

µ(α, δ̄) = µ(α, β̄)µ(ασ(β̄), γ̄−1) = µ(α, β̄)µ(ασ(γ̄), γ̄−1) = µ(α, β̄)µ(α, γ̄)−1 = 1B.
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It follows from the second equation and Lemma 4.5.5 that wδ̄ acts on Uα by a, that
is, by η(α, γ̄)−1. Therefore, we have shown that

x
wβ̄w

γ̄−1
α = xwδ̄

α = a.xα

for all xα ∈ Uα. This finishes the proof.

The following special case of Proposition 4.5.6 will often be useful.

4.5.7 Proposition. Let α ∈ Φ and let β̄ = (β1, . . . , βm), γ̄ = (γ1, . . . , γk) be two
words over ∆ ∪ (−∆) such that ασ(β̄) = ασ(γ̄), ηα,β̄ = ηα,γ̄ and µα,β̄ = µα,γ̄. Then

x
wβ̄
α = xwγ̄

α for all xα ∈ Uα.

4.5.8 Notation for this section. From now on, we write Orbred(Φ) = (O1, . . . , Ok)
and for each root α, we fix a complement Cα of Bµ,α→α in B (which exists because
µ is semi-complete).

Thanks to Proposition 4.5.7, we can now define an action of B on the root
groups. For this, the semi-completeness of µ finally becomes relevant.

4.5.9 Definition. Let α ∈ Φ. Denote by πα : B → Bα→α the canonical projection
with respect to the decomposition B = Bα→α × Cα. We define an action of B
on the set Uα by b.xα := xwδ̄

α for all b ∈ B and xα ∈ Uα where δ̄ is any word
over ∆ ∪ (−∆) such that ασ(δ̄) = α, ηα,δ̄ = 1A and µα,δ̄ = πα(b). (This action is
well-defined by Proposition 4.5.7 and because η and µ are independent.) If δ̄ is
any word with these properties, we say that δ̄ induces the action of b on Uα.

4.5.10 Remark. Equivalently, we could define the action in Definition 4.5.9 by
first defining an action of Bα→α on Uα in the same way, but without using πα, and
then declaring that Cα acts trivially on Uα.

4.5.11 Note. Without the assumption that µ is semi-complete, it is not clear that
the action of Bα→α in Definition 4.5.9 can be extended to all of B. Since a different
choice of the complement Cα would, in general, yield a different action, we have
fixed the choice of (Cα)α∈Φ in Notation 4.5.8. In practice, we will only ever be
interested in the action of elements from Bα→α, so this choice of complements is
harmless in practice.

This observation has two interesting consequences: Firstly, instead of declar-
ing that Cα acts trivially on Uα, we could choose an arbitrary action and the
results of this section would remain true (because these results do not make any
assertions about this action). Secondly, it implies that suitable modifications of
the statements in this section remain true even if µ is not semi-complete if we
take care to replace B by Bα→α in appropriate places. However, the assumption of
semi-completeness is satisfied in all practical examples and it simplifies notation,
which is we why we use it.

As a next goal, we want to show that A× B is a twisting group for (G, (wδ)δ∈∆)
(Proposition 4.5.14).

4.5.12 Lemma. For each α ∈ Φ, the action ωα of B on Uα in Definition 4.5.9 is a
well-defined group action. With these actions, (B, (ωα)α∈Φ) is a twisting group for
(G, (wδ)δ∈∆).

Proof. Let α ∈ Φ. For every b ∈ B there exists a word δ̄ which induces the action
of b on Uα. To show that this defines a group action, we have to show that
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1B.xα = xα and b1b2.xα = b1.(b2.xα) for all xα ∈ Uα and all b1, b2 ∈ B. The first
assertion is clear because the empty word ∅ satisfies µα,∅ = 1B, so that

1B.xα = xw∅
α = x1G

α = xα for all xα ∈ Uα.

For the second assertion, let δ̄1, δ̄2 be two words over ∆ ∪ (−∆) such that

ασ(δ̄i) = α, ηα,δ̄i
= 1A and µα,δ̄i

= πα(bi)

for all i ∈ { 1, 2 }. Then the word δ̄ := (δ̄1, δ̄2) satisfies

ασ(δ̄) = α, ηα,δ̄ = 1A and µα,δ̄ = πα(b1b2),

so that
b1b2.xα = xwδ̄

α =
(
x

wδ̄1
α

)wδ̄2 = b2.(b1.xα) for all xα ∈ Uα.

Since B is abelian, we conclude that ωα is indeed an action. (In this context, it is
worthwhile to recall Note 4.3.14.)

To see that (B, (ωα)α∈Φ) is a twisting group for G, it remains to show that the
twisting action is compatible with conjugation by the fixed set of Weyl elements
and their inverses. Let α ∈ Φ, δ ∈ ∆ ∪ (−∆), xα ∈ Uα and b ∈ B. Choose words
ω̄, ζ̄ over ∆ ∪ (−∆) such that ω̄ induces the action of b on Uα and ζ̄ induces the
action of b on Uασ(δ) . Then

(b.xα)
wδ = xwω̄wδ

α and b.(xwδ
α ) = x

wδwζ̄
α ,

and also
ηα,ω̄ = 1A = ηασ(δ),ζ̄ and ασ(ω̄) = α = ασ(ζ̄).

We now compute that

ηα,ω̄δ = ηα,ω̄ηα,δ = ηα,δ, ηα,δζ̄ = ηα,δηασ(δ),ζ̄ = ηα,δ,

µα,ω̄δ = µα,ω̄µα,δ = bµα,δ, µα,δζ̄ = µα,δµασ(δ),ζ̄ = µα,δb = bµα,δ.

Thus ηα,ω̄δ = ηα,δω̄ and µα,ω̄δ = µα,δω̄. By an application of Proposition 4.5.7, we
conclude that the actions of wω̄wδ and wδwζ̄ on Uα are identical, as desired.

4.5.13 Lemma. Let α ∈ Φ. Then the actions of A and B on Uα commute. That is,
a.(b.xα) = b.(a.xα) for all a ∈ A, b ∈ B and xα ∈ Uα.

Proof. Let a ∈ A, b ∈ B and xα ∈ Uα. Choose a word ζ̄ over ∆ ∪ (−∆) which
induces the action of b on Uα. Using Axiom 4.3.13 (iii), we see that

a.(b.xα) = a.x
wζ̄
α = (a.xα)

wζ̄ = b.(a.xα),

as desired.

4.5.14 Proposition. A × B is a twisting group for G (with the natural action induced
by the actions of A and B) and (A × B, η × µ) is a twisting system for G.

Proof. By Lemma 4.5.13, the actions of A and B induce a natural action of A × B
on each root group. Since the actions of A and B commute with conjugation by
Weyl elements, so does the action of A × B. Thus A × B is indeed a twisting
group for G. Further, it is clear that η × µ is braid-invariant (because both η and
µ are, see Lemma 4.2.25 (a)) and transporter-invariant (by Axiom 4.3.18 (v)), so
(A × B, η × µ) is a twisting system for G.

4.5.15 Notation. We define η̄ := η × µ.
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4.5.16 Theorem (Parametrisation theorem). There exist a parameter system P =
(A × B, M1, . . . , Mk) of type Φ (in the sense of Definition 4.3.2) whose twisting group
is A × B and a parametrisation (θα : Mα → Uα)α∈Φ of G by P with respect to η̄ and
(wδ)δ∈∆ (in the sense of Definition 4.3.4) such that for all roots α, the twisting action of
A × B on Mα is compatible with the twisting action of A × B on Uα, meaning that

c.θα(m) = θα(c.m)

for all c ∈ A × B and all m ∈ Mα.

Proof. For the whole proof, we fix an arbitrary i ∈ [1, k]. Choose an arbitrary root
αi ∈ Oi, a group Mi which is isomorphic to Uαi and an isomorphism θαi : Mi →
Uαi . For each β ∈ Oi, we define an isomorphism

θβ : Mi → Uβ, x 7→ θαi(x)wω̄

where ω̄ is any word over ∆ ∪ (−∆) such that

α
σ(ω̄)
i = β and η̄α,ω̄ = (1A, 1B).

Since η̄ is transporter-invariant, such a word ω̄ exists by Remark 4.2.19. Further,
we know from Proposition 4.5.7 that θβ does not depend on the choice of ω̄. Thus
θβ is well-defined.

Now we define an action of A × B on Mi by c.x := θ−1
αi

(c.θαi(x)) for all
c ∈ A × B and x ∈ Mi, so that θαi(c.x) = c.θαi(x). By definition, this action is
compatible with the twisting action of A. Since A × B is a twisting group for G,
it follows for all β ∈ Oi that

θβ(c.x) = θαi(c.x)wδ̄ =
(
c.θαi(x)

)wδ̄ = c.θαi(x)wδ̄ = c.θβ(x)

for all x ∈ Mi and c ∈ A × B, where δ̄ is an arbitrary word over ∆ ∪ (−∆) such
that θβ(y) = θαi(y)

wδ̄ for all y ∈ Mi. Thus the action of A × B on Mi is compatible
with all root isomorphisms (θβ)β∈Oi .

Now let β ∈ Oi, δ ∈ ∆ and x ∈ Mi. We want to show that θβ(x)wδ = θγ(c.x)
where γ := βσ(δ) and c := η̄β,δ. By its definition, c lies in (A × B)β→γ, so it also
lies in (A × B)γ→γ because η̄ is transporter-invariant. Thus there exists a word ω̄
over ∆ ∪ (−∆) such that

η̄(γ, ω̄) = c and γσ(ω̄) = γ.

Further, by Remark 4.2.19, there also exists a word ζ̄ over ∆ ∪ (−∆) such that

η̄(αi, ζ̄) = (1A, 1B) and α
σ(ζ̄)
i = β.

By their respective definitions, these words satisfy

c.θγ(x) = θγ(c.x) = θγ(x)wω̄ and θαi(x)wζ̄ = θβ(x). (4.6)

Further

η̄(αi, ζ̄δω̄−1) = η̄(αi, ζ̄)η̄(β, δ)η̄(γ, ω̄−1) = cη̄(γσ(ω̄)−1
, ω̄)−1 = cη̄(γ, ω̄)−1

= cc−1 = (1A, 1B).

By the definition of θγ, it follows that w := wζ̄wδw−1
ω̄ satisfies θαi(x)w = θγ(x).

Therefore,

θγ(x)wω̄ = θαi(x)wζ̄ wδ .

Applying both equations in (4.6), we infer that

θγ(c.x) = θβ(x)wδ ,
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which finishes the proof.

4.5.17 Remark. It is clear from the first lines of the proof that the statement
of Theorem 4.5.16 can be slightly strengthened: For all i ∈ [1, k] choose a root
αi ∈ Oi, a group Mi which is isomorphic to Uαi and an isomorphism θαi : Mi →
Uαi . Then there exist an action of A × B on each of the sets M1, . . . , Mk and a
family of isomorphisms (θα)α∈Φ extending (θαi)i∈[1,k] such that the assertions
in Theorem 4.5.16 hold. In other words, whenever we can construct multiple
parametrisations of a group (for different parity maps, for example), we can
always arrange it so that they are parametrised by the same groups M1, . . . , Mk.
This technical observation will be useful in the parametrisation of F4-graded
groups, in which we will parametrise certain B3- and C3-graded subgroups and
then consider their “overlap”.

The following remark says that different choices of parity maps yield the
same parametrisations up to twisting.

4.5.18 Remark. We briefly consider what changes when we choose another
pair η′, µ′ of ∆-parity maps with values in A and B, respectively. Assume that
(A, η′, B, µ′) satisfies the same assumptions as (A, η, B, µ) in Notation 4.5.1. Specif-
ically, this means that (A, η′, B, µ′) is a partial twisting system for (G, (wδ)δ∈∆)
and that G is square-compatible with respect to η′ and stabiliser-compatible with
respect to (η′, µ′). Assume further that Bµ,α→α = Bµ′,α→α for all roots α, and
choose the same complement Cα of these groups in B.

The parametrisation theorem yields two parameter systems

P = (A × B, M1, . . . , Mk) and P′ = (A × B, M′
1, . . . , M′

k)

of type Φ and corresponding parametrisations (θα)α∈Φ and (θ′α)α∈Φ of G with
respect to (wδ)δ∈∆ and η × µ or η′ × µ′, respectively. For each i ∈ [1, k], we fix a
root αi ∈ Oi. Using Remark 4.5.17, we can assume that Mi = M′

i and θαi = θ′αi
for

all i ∈ [1, k]. However, observe that the parameter systems P and P′ are not the
same because the actions of A × B on M1, . . . , Mk may be different. We solve this
notational issue by writing ωi(c, x) for the action of P and ω′

i(c, x) for the action
of P′, where i ∈ [1, k], x ∈ Mα and c ∈ A × B.

We begin by comparing the different twisting actions. Fix i ∈ [1, k] for the
scope of this paragraph. For all a ∈ A, we have

θ′αi

(
ω′

i(a, x)
)
= a.θαi(x) = θαi

(
ωi(a, x)

)
for all x ∈ Mi because the twisting action of A on Uα is fixed. It follows that the
two actions of A on Mi are identical. Now let b ∈ Bµ,αi→αi = Bµ′,αi→αi and choose
a word δ̄ over ∆ ∪ (−∆) such that σ(δ̄) stabilises αi and such that (η × µ)′

αi ,δ̄
= b.

Then

θ′αi

(
ω′

i(b, x)
)
= θ′αi

(x)wδ̄′ = θαi(x)wδ̄′ = θαi

(
ωi((η × µ)αi ,δ̄′ , x)

)
= θ′αi

(
ωi((η × µ)αi ,δ̄′ , x)

)
for all x ∈ Mi. We conclude that, while the actions ωi(b, · ) and ω′

i(b, · ) for
individual elements b might be distinct, each action ωi(b, · ) can be expressed as
ω′

i(b
′, · ) for some b′ ∈ B. In fact, it is not difficult to show that the map b 7→ b′

is an automorphism of the group Bµ,αi→αi . By choosing the same complement
Cα for Bµ,αi→αi and Bµ′,αi→αi in Definition 4.5.9, we can extend b 7→ b′ to an
automorphism of B which still has the property that ωi(b, · ) = ω′

i(b
′, · ) for all

b ∈ B.
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We now compare the different root isomorphisms. Again, let i ∈ [1, k] be
arbitrary. Let β be any root in Oi and let δ̄ be a word over ∆ ∪ (−∆) such that
σ(δ̄) maps αi to β. Since θαi = θ′αi

, we then have

θ′β
(
ωi((η

′ × µ′)α,δ̄, x)
)
= θ′αi

(x)wδ̄ = θαi(x)wδ̄ = θβ

(
ω′

i((η × µ)α,δ̄, x)
)

for all x ∈ Mi. Using the conclusion of the previous paragraph, it follows that
there exists c ∈ A × B such that

θ′β(x) = θβ

(
ωi(c, x)

)
for all x ∈ Mi. We conclude that (θ′γ)γ∈Φ can be obtained from (θγ)γ∈Φ by
twisting (in the sense of Remark 4.3.12). Observe that c automatically has the
property that ωi(c, · ) is a group automorphism of Mi because both θβ and θ′β are
homomorphisms.

Finally, assume in addition that P is (η × µ)-faithful and P′ is (η′ × µ′)-
faithful. (By the previous observations, this is already true if it holds for one of
the parameter systems.) Since then η × µ and η′ × µ′ are determined by their
corresponding parametrisations (θγ)γ∈Φ and (θ′γ)γ∈Φ, it follows that η′ × µ′ can
be obtained from η × µ by twisting as well.

4.5.19 Note. In all examples of root graded groups of rank at least 3, the group B is
{±1} or trivial. It follows that the automorphism B → B, b 7→ b′ in Remark 4.5.18
must be the identity map. In an imaginary example where B is of the form {±1}p,
it would however be possible that b 7→ b′ interchanges some components of B.

4.5.20 Note. A consequence of Remark 4.5.18 is that the specific choice of the
parity maps η and µ is ultimately not relevant. Thus there is no harm in choosing
explicit parity maps ηΦ and µΦ during the parametrisation process of Φ-graded
groups. The reader who prefers a different choice of parity maps η′

Φ and µ′
Φ does

not have to repeat all our proofs: Instead, they can simply take our parametri-
sation (θα)α∈Φ (which respects ηΦ and µΦ) and twist it appropriately to obtain a
parametrisation (θ′α)α∈Φ with respect to η′

Φ and µ′
Φ.

4.6 Criteria for the Compatibility Conditions

4.6.1 Notation for this section. We denote by Φ an arbitrary root system, by ∆
a rescaled root base of Φ, by G a group with a Φ-pregrading (Uα)α∈Φ and by
(wδ)δ∈∆ a ∆-system of Weyl elements in G.

In this chapter, we collect some criteria which will be used to prove the com-
patibility conditions in the parametrisation theorem. We begin with a criterion
for square compatibility. Surprisingly, it will be applicable in many situations,
and similar ideas work in all remaining situations.

4.6.2 Lemma. Let A := {±1}n be a twisting group for (G, (wδ)δ∈∆) for some n ∈ N+

and assume that the first component of A acts on all root groups by inversion. Let α
be any root and let η be a ∆-parity map with values in A. Assume that both η and G
satisfy the square formula for α. Then G is α-square compatible with respect to η (and
any ∆-system of Weyl elements).

Proof. Let δ ∈ ∆, set w := w2
δ for some δ-Weyl element wδ and put ε := (−1)⟨α|δ⟩.

Then xw
α = xε

α for all xα ∈ Uα because G satisfies the square formula for α and
ηα,δδ = (ε, 1, . . . , 1) because η satisfies the square formula for α. It follows that w
acts on Uα by ηα,δδ, as desired.
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The following result is the main criterion for stabiliser compatibility. It is very
general and can be applied for all root systems. However, it is unnecessarily
complicated in many situations, which is why we state a simpler, less general
version in Lemma 4.6.4. We use Convention 2.3.5 to formulate both assertions.

4.6.3 Proposition. Assume that G has (crystallographic) Φ-commutator relations with
root groups (Uα)α∈Φ. Let A be a twisting group for G, let η be a (crystallographically)
adjacency-trivial parity map with values in A such that G is square-compatible with
respect to η and (wδ)δ∈∆ and let µ be a Weyl-invariant parity map with values in the
abelian group B := {±1B}. Fix a root α and define the following sets:

O := { β ∈ Φ | α · β = 0 },
A := { β ∈ O | α is (crystallographically) adjacent to β and − β },

= { β ∈ O | α is (crystallographically) adjacent to β }
Ā := O \A.

Assume that we have µα,σ(β) = 1B for all β ∈ A and µα,σ(β) = −1B for all β ∈ Ā.
Assume further that for all ∆-positive roots β, β′ ∈ Ā, there exist words δ̄, δ̄′ over
∆ ∪ (−∆) such that σ(δ̄) = σ(β), σ(δ̄′) = σ(β′), ηα,δ̄ = ηα,δ̄′ and such that wδ̄ and
wδ̄′ act identically on Uα. Then G is α-stabiliser-compatible with respect to (η, µ) and
(wδ)δ∈∆.

Proof. Let u ∈ Weyl(Φ) such that αu = α and µα,u = 1B. By Proposition 1.3.11,
there exist ρ1, . . . , ρk ∈ O such that u = σρ1 · · · σρk . Since σρi = σ−ρi for all
i ∈ [1, n], we can choose ρ1, . . . , ρk so that all of them are ∆-positive. At first, we
only consider the special case that all roots ρ1, . . . , ρk lie in Ā. We will show that
for each i ∈ [1, k], there exists a word δ̄i over ∆ ∪ (−∆) such that σ(δ̄i) = σ(ρi)
and such that wδ̄1···δ̄k acts on Uα by ηα,δ̄1···δ̄k . By the assumption on the map µ, we
have

1B = µα,u = µα,σ(ρ1)···σ(ρk) =
k

∏
i=1

µα,σ(ρi) = (−1B)
k,

which implies that k is even. For all i ∈ [1, k/2], we can now by assumption
choose words δ̄2i−1, δ̄2i over ∆ ∪ (−∆) such that

σ(δ̄2i−1) = σ(ρ2i−1), σ(δ̄2i) = σ(ρ2i), ηα,δ̄2i−1 = ηα,δ̄2i

and such that wδ̄2i−1 and wδ̄2i act identically on Uα. Then wδ̄1···δ̄k and ∏k/2
i=1 w2

δ̄2i act
identically on Uα. Since G is square-compatible with respect to η, it follows that
wδ̄1···δ̄k acts on Uα by ∏k/2

i=1 ηα,δ̄2i δ̄2i . Since ηα,δ̄2i−1 = ηα,δ̄2i and σδ̄2i(α) = α = σδ̄2i−1(α)
for all i ∈ [1, k/2], we also have that

k/2

∏
i=1

ηα,δ̄2i δ̄2i =
k/2

∏
i=1

ηα,δ̄2i ηα,δ̄2i =
k/2

∏
i=1

ηα,δ̄2i−1 ηα,δ̄2i =
k

∏
j=1

ηα,δ̄j = ηα,δ̄1···δ̄k .

It follows that wδ̄1···δ̄k acts on Uα by ηα,δ̄1···δ̄k , as desired.
Now we consider the general case. Let i(1), . . . , i(n), j(1), . . . , j(m) be pairwise

distinct indices from [1, k] such that

{ p ∈ [1, k] | ρp ∈ A } = { i(1), . . . , i(n) }, i(1) < · · · < i(n),
{ p ∈ [1, k] | ρp ∈ Ā } = { j(1), . . . , j(m) }, j(1) < · · · < j(m).

Put u′ := σ(ρj(1)) · · · σ(ρj(m)). By the assumption on µ, we have µα,σ(ρi(p))
= 1B

for all p ∈ [1, n], and thus µα,u′ = µα,u = 1B. Hence by the conclusion of the
previous paragraph, we can for each p ∈ [1, m] find a word δ̄p over ∆ ∪ (−∆)
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such that σ(δ̄p) = σ(ρj(p)) and such that wδ̄1···δ̄m acts on Uα by ηα,δ̄1···δ̄m . For every
p ∈ [1, n], we choose an arbitrary ∆-expression ζ̄ p of ρi(p). For each q ∈ [1, k], we
can now define ξ̄q := δ̄p if q = j(p) for some p ∈ [1, m] and ξ̄q := ζ̄ p if q = i(p)
for some p ∈ [1, n]. Note that for each p ∈ [1, n], we have ηα,ζ̄ p = 1A because η is
(crystallographically) adjacency-trivial and we also have that wζ̄ p acts trivially on
Uα because it is a ρi(p)-Weyl element and ρi(p) lies in A. This implies that wξ̄1···ξ̄k

and wδ̄1···δ̄m act identically on Uα and that ηα,ξ̄1···ξ̄k = ηα,δ̄1···δ̄m . We conclude that
wξ̄1···ξ̄k acts on Uα by ηα,ξ̄1···ξ̄k , as desired.

In the following result, we consider the special case that Ā is empty. In this
situation, we can easily drop the assumptions on the parity map µ. Again, we
use Convention 2.3.5.

4.6.4 Lemma. Assume that G has (crystallographic) Φ-commutator relations with root
groups (Uα)α∈Φ. Let η be a ∆-parity map with values in some twisting group A for
(G, (wδ)δ∈∆) and let α ∈ Φ. Put

∆W := { δu | δ ∈ ∆, u ∈ Weyl(Φ) }.

Assume that η is (crystallographically) α-adjacency-trivial and that any root in ∆W which
is orthogonal to α is also (crystallographically) adjacent to α. Then G is α-stabiliser-
compatible with respect to η.

Proof. Let u be an element of the Weyl group of Φ such that αu = α. Then by
Proposition 1.3.11, there exist roots β1, . . . , βm ∈ Φ which are all orthogonal to
α such that u = σβ1 · · · σβm . For the rest of this paragraph, we fix an arbitrary
i ∈ [1, m]. Applying Proposition 1.3.5, we can find a ∆-expression ρ̄i of λβi

for some λ ∈ R>0. By Remark 4.2.3, wρ̄i is a λβi-Weyl element. Since λβi

has a ∆-expression, it lies in ∆W , and it is orthogonal to α because βi is. The
same assertions hold for −λβi. Thus it follows from our assumptions that α
is (crystallographically) adjacent to λβi and −λβi. Hence wρ̄i centralises Uα.
Further, ηα,ρ̄i = 1A because η is α-adjacency-trivial. We conclude that wρ̄i acts on
Uα by ηα,ρ̄i .

It follows from the conclusion of the previous paragraph that wρ̄ acts on Uα

by ηα,ρ̄ where ρ̄ := (ρ̄1, . . . , ρ̄m). Since u = σβ1 · · · σβm = σρ̄1 · · · σρ̄m = σρ̄, ρ̄ is a
representation of u. The assertion follows.

4.6.5 Remark. If Φ is reduced, then the set ∆W in Lemma 4.6.4 is the whole root
system by Proposition 1.3.5. In contrast, assume now that Φ is the non-reduced
root system BCn in standard representation for some n ≥ 2 and that ∆ is the
standard rescaled root base of BCn. (We will formally define these objects in
Remark 9.1.2, but we have already seen ∆ in Remark 4.1.28.) Then ∆W consists of
all roots which are long or of medium length. Let α be an short root. Then α does
indeed have the property that any root β in ∆W which is orthogonal to α must be
crystallographically adjacent to α. This conclusion does not hold if β is short: For
example, the roots α := e1 and β := e2 are orthogonal but not crystallographically
adjacent.

4.7 Remarks on the General Strategy

As we have emphasised before, the parametrisation theorem allows us to ap-
proach Φ-graded groups for different root systems Φ in a uniform way. For this
reason, chapters 5 and 7 to 10 all follow a common outline. In this section, we
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describe this outline. We always denote by Φ the specific root system which is
studied in the corresponding chapter (or one of these root systems if there are
multiple).

4.7.1 The parametrising algebraic structures. Each of the aforementioned chap-
ters begins with an investigation of the algebraic structures that coordinatise
Φ-graded groups. Most of the time, these are well-known structures with a
highly developed underlying theory. We confine ourselves to covering the basics
of these theories, though we will sometimes go beyond what is strictly neces-
sary for our purposes. In the case of root gradings of type (B)C, the algebraic
structures in question are so involved that they are covered in a separate chapter.

For each algebraic structure, we define a standard parameter system, which
is a parameter system in the sense of Definition 4.3.2. We will show that every
Φ-graded group can be parametrised by a parameter system of this form.

4.7.2 The root system. As a next step, we study the combinatorial properties of
Φ. We will give a standard representation of Φ, that is, a specific description of
the roots as linear combinations of an orthonormal basis of a Euclidean space.
Using this representation, we can easily compute the Cartan integers, which
will later allow us to prove the square formula for Weyl elements in Φ-graded
groups (in most cases). Further, we will prove some minor lemmas concerning
the relationship between arbitrary roots α and β.

4.7.3 Construction of a generic example. Before we turn to the investigation
of arbitrary Φ-graded groups, we construct examples of such groups. In these
examples, we will see the commutator relations that we ultimately want to estab-
lish in every Φ-graded group. Further, we will also see the standard parameter
system from 4.7.1 in action.

Ideally, we would construct a Φ-graded group for any object in the class
of algebraic structures which were studied in 4.7.1. However, we will restrict
ourselves to certain special cases whenever a general construction would be much
more complicated. In some cases, it is even true that no general construction is
known. Yet, the groups that we construct will be sufficiently generic (in the sense
of Remark 4.1.23) to yield adequate parity maps. These parity maps will later be
used in the parametrisation of Φ-graded groups.

4.7.4 Computations in Φ-graded groups. As a next step, we study the action
of Weyl elements in Φ-graded groups on the root groups, independently of
any choice of a parity map. These results form the mathematical core of the
study of Φ-graded groups for any specific root system Φ. Our goal is to obtain
some fundamental results which will later be used to prove the compatibility
conditions which appear in the parametrisation theorem. This means that we
have to investigate the actions of squares of Weyl elements on all root groups and
the action of β-Weyl elements on any root group which is orthogonal to β. Further,
we will give alternative proofs of the braid relations that were established in
Theorem 2.5.10.

In order to prove the aforementioned statements, we need two computational
tools. At first, we investigate how the commutator maps [ · , · ]α behave under
products in the first and second argument. We will see that these maps are always
additive or, in a loose sense, “quadratic” in each argument, which is precisely the
behaviour that we have seen in the commutator relations in 4.7.3. Secondly, we
need the formulas from Proposition 2.2.10. Using the identities from the previous
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step, we will give alternative, more explicit proofs of these formulas for each root
system.

With these tools in hand, we can approach the problems from the first para-
graph. While all computations in the previous paragraph take place in root
graded subgroups of rank 2, we will now have to use the rank-3 assumptions in
a few places. However, some partial results still hold in the rank-2 situation, and
we will prove as much as we can in this generality.

4.7.5 Standard signs in Φ-graded groups. We say that a Φ-pregrading is coor-
dinatised with standard signs if there exist an algebraic structure as in 4.7.1 and
root isomorphisms which satisfy the precise commutator relations of the example
in 4.7.3 (or a suitable generalisation of these relations). The terminology is due
to the fact that the signs in these relations are not canonically determined, as we
have seen in Remark 4.3.12. Thus we (somewhat arbitrarily) declare that the signs
which occur in 4.7.3 are the “standard ones”. Using the parity maps from 4.7.3,
our goal is to show that every Φ-graded group is coordinatised with standard
signs.

Note that the notion of coordinatisations with standard signs is defined for
arbitrary pregradings. It is clear that any pregrading which is coordinatised in
this way automatically has (crystallographic) Φ-commutator relations, but the
existence of Weyl elements is not obvious. However, we can use our specific
knowledge of the commutator relations to show that any element of the coordi-
natising structure which is invertible (in a suitable sense) induces a Weyl element,
and that every Weyl element is of this form. Thus any Φ-pregrading which has a
coordinatisation with standard signs is automatically a Φ-grading, except that
the validity of Axiom 2.5.2 (iv) is not clear.

4.7.6 Note (On the choice of a parity map). After working with parity maps in
a purely abstract way for the whole chapter, it might seem disappointing that
we ultimately prove our coordinatisation theorems only for a specific choice
of standard signs and not in a more abstract way. However, observe that as
soon as we have established the existence of one coordinatisation θ = (θα)α∈Φ
(with standard signs), we can easily twist θ (as in Remark 4.3.12) to obtain
coordinatisations of the same group with non-standard signs. By Remark 4.5.18,
essentially every coordinatisation can be obtained in this way. Thus it is not a
serious restriction to only consider standard signs. See also Note 4.5.20.

4.7.7 Admissible partial twisting systems and the parametrisation of Φ-graded
groups. Recall that the parametrisation theorem starts from a partial twisting
system (A, η, B, µ) and a Φ-graded group G which satisfies some compatibility
conditions. It is clear that these compatibility conditions impose some restrictions
on the partial twisting system, so not every imaginable partial twisting system
can be used to parametrise Φ-graded groups. A Φ-admissible partial twisting system
is, by definition, an admissible partial twisting which satisfies some additional
conditions which depend on Φ. These conditions are, unlike the compatibility
conditions, easy to verify if the parity maps η and µ are explicitly given.

The standard partial twisting system (of type Φ) is defined to be the partial
twisting system (A, η, B, µ) that we see in 4.7.3, except that we “forget” the actions
of B on the root groups. We will show that the standard partial twisting system
of type Φ is Φ-admissible. Further, we will prove that every Φ-graded group G
satisfies the compatibility conditions with respect to any Φ-admissible partial
twisting system. As a consequence, we can apply the parametrisation theorem to
G and its standard partial twisting system, which yields a parametrisation of G.
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4.7.8 Note (Admissible partial twisting systems). We could in principle work
without the abstract notion of admissible partial twisting systems: It would be
sufficient to simply show that the standard partial twisting system satisfies all
compatibility conditions with respect to any Φ-graded group. However, this
would not simplify our proofs in a significant way: We would still, as a first step,
show that the standard partial twisting system has some properties (which are
exactly the axioms of admissible partial twisting systems) and then, as a second
step, use only these properties to prove the compatibility conditions.

4.7.9 Note (Standard signs and twisting systems for simply-laced groups).
Our approach to standard signs and standard (partial) twisting systems for the
simply-laced root graded groups will be slightly different than described in 4.7.5
and 4.7.7. The reason for this is essentially that we want to cover types A, D and
E at the same time, so we cannot use a single explicit standard twisting system
or a single explicit set of standard signs. We will elaborate on this in sections 5.5
and 5.6.

4.7.10 Blueprint computations. As a final step, we apply the blueprint technique
to compute the commutator relations with respect to the chosen parametrisation.
We will elaborate on this in chapter 6. For these computations, it will be crucial
that the signs in our parametrisation are explicitly given. We emphasise that there
is nothing specific about the standard signs that makes the blueprint computation
work: The only relevant fact is that we make some explicit choice of signs.



Chapter 5

Root Gradings of Simply-laced
Type

In this chapter, we begin our investigation of Φ-graded groups for specific root
systems Φ with the case that Φ is simply-laced (that is, of type A, D or E) and of
rank at least 2. The main result of this section is Theorem 5.7.14: Every Φ-graded
group is coordinatised by a ring which must be associative if Φ is of rank at
least 3 and commutative if Φ is of type D or E. It turns out that, after our hard
work to establish the parametrisation theorem, there is actually not much left to
do to prove this. We can even carry out the complete coordinatisation of these
groups without using the blueprint technique.

The coordinatisation result of this section has already been proven by Shi in
[Shi93], but for a more restrictive definition of root gradings. (See also section 2.7.)
Hence our results are more general than Shi’s, though many of the arguments
are the same. The main additional difficulty in our generality is the sign problem
in the sense of Remark 4.1.23, which we solve using the parametrisation theorem.
A corollary of our coordinatisation result is that every simply laced root graded
group in our sense is also a root graded group in Shi’s sense. Thus the two
notions of root gradings are actually equivalent, but this is a non-trivial fact.

This chapter is organised in the way described in section 4.7. We begin with a
brief introduction to nonassociative rings. In the following section, we study some
purely combinatorial properties of the simply-laced root systems and compute
the Cartan integers for these root systems. In section 5.3, we discuss the existence
problem for simply-laced root graded groups. The main mathematical work of
this chapter happens in section 5.4: We prove that Φ-graded groups satisfy the
square formula for Weyl elements. In sections 5.5 and 5.6, we introduce standard
twisting systems and standard signs for root graded groups, respectively. Further,
we show that every ring which coordinatises a Φ-graded group (with standard
signs) must be associative if Φ is of rank at least 3 and commutative if Φ is, in
addition, of type D or E. In section 5.7, we carry out the coordinatisation of
simply-laced root graded groups.

5.1 Nonassociative Rings

One of our first actions in this thesis was to announce the frightening Conven-
tion 1.1.3 that rings are not assumed to be associative. We will sometimes call
these objects “nonassociative rings” to emphasise this convention. In this section,
we introduce the most basic notions which are relevant in the theory of nonas-
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sociative rings. Technically, only the definition of these objects is needed in this
chapter, but it seems prudent to go a bit beyond that. Some of the results in this
section will only be needed in later chapters.

Of particular interest to us are rings which satisfy the so-called alternative
laws, and which are called alternative rings. While we can merely show that
every A2-graded group is coordinatised by a nonassociative ring with no further
properties, all known examples of rings which appear as coordinatising rings of
A2-graded groups are in fact alternative. See section 5.3 for a few more details.
However, since we do not need the notion of alternative rings until we investigate
root graded groups of type (B)C in chapter 9, we delay their introduction until
section 8.2.

A standard reference for most of the material in this section is [Sch66].

5.1.1 Definition (Ring). A ring is a triple (R,+, ·) consisting of a set R and two
binary operations

+, · : R ×R → R

such that the following conditions are satisfied:
(i) (R,+) is an abelian group.

(ii) There exists an element 1R ∈ R such that 1R · x = x = x · 1R for all x ∈ R.
(iii) The distributive laws are satisfied. That is,

(x + y) · z = (x · z) + (y · z) and x · (y + z) = (x · y) + (x · z)

for all x, y, z ∈ R.
A subring of R is a subset of R which is closed under addition, additive inversion
and multiplication and which contains 1R . An ideal of R is a subgroup I of (R,+)
such that ax ∈ I and xa ∈ I for all a ∈ R and x ∈ I.

5.1.2 Definition (Homomorphism of rings). Let R, S be two rings. A map
f : R → S is called a homomorphism of rings if it preserves addition and multipli-
cation and f (1R) = 1S .

5.1.3 Notation for this section. For the rest of this section, (R,+, ·) is a ring.

5.1.4 Notation. The neutral element of the group (R,+) will always be denoted
by 0R and the identity element from Axiom 5.1.1 (ii) will always be denoted by
1R . Further, we will often leave out the multiplication dot.

5.1.5 Remark. For any ideal I of R, the quotient R/I has a canonical ring struc-
ture, as in the associative setting.

The standard parameter system for a ring can be defined immediately.

5.1.6 Definition (Standard parameter system). Put A := {±1} and declare that
A acts on (R,+) by inversion. That is, we put 1A.r := r and −1A.r := −r. Then
the pair (A,R) is called the standard parameter system for R.

It is a well-established fact that the commutator is a useful tool for studying
noncommutative structures. Naturally, we can apply the same idea to nonasso-
ciative structures.

5.1.7 Definition (Associator). The associator map or simply the associator is defined
by

R ×R ×R → R, (a, b, c) 7→ [a, b, c] := (ab)c − a(bc).
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A ring element of the form [x, y, z] for some x, y, z ∈ R will also be called an
associator. For any subsets A, B, C of R, we denote by [A, B, C] the ideal which is
generated by { [a, b, c] | a ∈ A, b ∈ B, c ∈ C }.

By the distributive laws, the associator map is additive in each component.
Many of the additional properties which can be imposed on rings, such as the
alternative laws, can be phrased in terms of vanishing of certain associators. We
will get back to this in Definition 8.2.2.

5.1.8 Remark. Clearly, R/[R,R,R] is an associative ring, and any ideal I for
which R/I is associative contains [R,R,R].

It is well-known that any associative ring has a center, which is itself an
associative commutative ring. We can define a similar object for nonassociative
rings, called the nucleus, but here the definition is a bit more delicate because
we have to distinguish between left, middle and right nucleus. We will see in
Remark 8.2.8 that this distinction is superfluous for alternative rings.

5.1.9 Definition (Nucleus and center). We define the following subsets of R,
called the left nucleus, middle nucleus and right nucleus:

LNucl(R) := { x ∈ R | [x, y, z] = 0 for all y, z ∈ R },
MNucl(R) := { y ∈ R | [x, y, z] = 0 for all x, z ∈ R },
RNucl(R) := { z ∈ R | [x, y, z] = 0 for all x, y ∈ R }.

Further, we define the nucleus of R by

Nucl(R) := LNucl(R) ∩ MNucl(R) ∩ RNucl(R).

Finally, the center of R is

Z(R) := { x ∈ Nucl(R) | xy = yx for all x, y ∈ R } ⊆ Nucl(R).

5.1.10 Remark ([Sch66, p. 13]). By the distributive laws, all the nuclei defined
in 5.1.9 are closed under addition and additive inverse. Less obviously, they are
also closed under multiplication: Let x, x′, y, z ∈ R. If x, x′ ∈ LNuclR, then(

(xx′)y
)
z =

(
x(x′y)

)
z = x

(
(x′y)z

)
= x

(
x′(yz)

)
= (xx′)(yz),

so xx′ ∈ LNucl(R). If x, x′ ∈ MNucl(R), then(
y(xx′)

)
z =

(
(yx)x′

)
z = (yx)(x′z) = y

(
x(x′z)

)
= y

(
(xx′)z

)
,

so xx′ ∈ MNucl(R). If x, x′ ∈ RNucl(R), then

(yz)(xx′) =
(
(yz)x

)
x′ =

(
y(zx)

)
x′ = y

(
(zx)x′

)
so xx′ ∈ RNucl(R). Further, the center of R has the same properties because

(xx′)y = x(x′y) = x(yx′) = (xy)x′ = (yx)x′ = y(xx′)

for all x, x′ ∈ Z(R) and y ∈ R. Since 1R is clearly contained in the center of R, it
follows that all the sets defined in 5.1.9 are subrings of R.

5.1.11 Remark ([McC04, 21.2.1]). Since nuclear elements, in the words of Mc-
Crimmon, “slip in and out of parentheses”, we have

n[x, y, z] = [nx, y, z], [xn, y, z] = [x, ny, z],
[x, yn, z] = [x, y, nz], [x, y, zn] = [x, y, z]n
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for all x, y, z ∈ R and all n ∈ Nucl(R). For example,

n[x, y, z] = n
(
(xy)z

)
− n

(
x(yz)

)
=
(
n(xy)

)
z − (nx)(yz)

=
(
(nx)y

)
z − (nx)(yz) = [nx, y, z].

In Lemma 8.2.12, we will see stronger versions of these formulas for alternative
rings .

In an associative ring, an element a is called invertible if there exists b ∈ R

such that ab = ba = 1R . We could make the same definition for nonassociative
rings, but the resulting notion of invertibility is not satisfactory. To see why,
assume that we have ring elements a, x, y such that ax = y. If a is invertible with
inverse b and the ring is associative, then we can multiply by b from the left to
obtain

by = b(ax) = (ba)x = x.

Clearly, this computation relies on the associativity law. Thus, if we want that
ax = y implies x = by, we need to strengthen our assumptions.

5.1.12 Definition (Invertibility, [Fau14, p. 190]). For all x ∈ R, we define left and
right multiplication maps lx, rx : R → R by lx(y) := x · y and rx(y) := y · x for all
y ∈ R. For any x, y ∈ R, we say that y is an inverse of x if lx and rx are invertible
maps such that l−1

x = ly and r−1
x = ry. Further, we say that x is invertible if there

exists z ∈ R such that z is an inverse of x.

5.1.13 Note. There exists no standard notion of invertibility in nonassociative
rings. For example, elements a, b ∈ R are called inverses of each other in [Sch66,
p. 38] if ab = 1R = ba, which by Note 5.1.20 is a weaker notion of invertibility than
ours. However, we will see in Lemma 8.2.9 that the two notions are equivalent
for alternative rings.

Our notion of invertibility is precisely the one which relates to Weyl-invertible
elements in root gradings (in the sense of Definition 2.2.2 (e)). This fact was
first observed by Faulkner in [Fau14, Theorem 13.8], and we will prove it in
Proposition 5.6.6 (a).

5.1.14 Remark. The product of two invertible elements is not necessarily invert-
ible. This is, of course, a major drawback of our notion of invertibility.

5.1.15 Definition (Division ring). A division ring is a ring in which every non-zero
element is invertible.

5.1.16 Remark. Let x, y ∈ R. Then y is an inverse of x if and only if all the maps
lx ◦ ly, ly ◦ lx, rx ◦ ry and ry ◦ rx are trivial, which is to say that

x(yz) = y(xz) = z = (zx)y = (zy)x for all z ∈ R.

Thus clearly, if y is an inverse of x, then x is an inverse of y.

5.1.17 Lemma. For all x, y ∈ R, the following assertions are equivalent:
(i) x is an inverse of y.

(ii) xy = yx = 1R and [x, y, z] = [y, x, z] = [z, x, y] = [z, y, x] = 0R for all z ∈ R.

Proof. At first, assume that x is an inverse of y. Putting z := 1R in Remark 5.1.16
yields that xy = 1R = yx. Further, it follows from Remark 5.1.16 that x(yz) =
z = 1Rz = (xy)z for all z ∈ R, so [x, y, z] = 0R . The remaining statements in (ii)
can be proven similarly. In essentially the same way, it follows from (ii) that x is
an inverse of y.
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5.1.18 Lemma. Let x ∈ R be invertible. Then the following statements are equivalent
for all y ∈ R:

(i) y is an inverse of x.
(ii) xy = 1R .

(iii) yx = 1R .
Further, there exists a unique y ∈ R satisfying these properties.

Proof. If y is an inverse of x, we have already shown in Lemma 5.1.17 that
xy = 1R = yx. Conversely, assume that y ∈ R satisfies xy = 1R . Since x is
invertible, there exists an element x−1 which is an inverse of x. Multiplying the
equation xy = 1R = xx−1 by x−1 from the left, we obtain y = x−1. Thus any
y ∈ R satisfying xy = 1R equals x−1. Similarly, we can prove that any y ∈ R

satisfying yx = 1R equals x−1. In particular, every inverse of x equals x−1, so all
inverses of x are identical. This finishes the proof.

5.1.19 Notation. If x is an invertible element of R, we denote its unique inverse
by x−1.

5.1.20 Note. The assumption that x is invertible in Lemma 5.1.18 is crucial. In
general, if x and y are arbitrary elements of R such that xy = 1R = yx, then by
Lemma 5.1.17 it is not clear that x and y are invertible. Further, the product of
two invertible ring elements is not necessarily invertible.

For nuclear elements, the warning in Note 5.1.20 does not apply.

5.1.21 Lemma. Let x ∈ NuclR and y ∈ R such that xy = 1R = yx. Then x is
invertible and x−1 = y.

Proof. This follows from Lemma 5.1.17.

We end this section with a brief introduction of modules over nonassociative
rings which will be needed in chapter 9. The definition is word by word the
same as for associative rings. However, for reasons that we will see in Observa-
tion 5.1.23, it is not standard in nonassociative algebra. In fact, we are not aware
of a single reference which uses this definition.

5.1.22 Definition (Module). A right R-module is an abelian group (M,+) together
with a scalar multiplication ⋆ : M ×R → M satisfying the following conditions
for all r, s ∈ R and all v, w ∈ M:

(i) (v + w) ⋆ r = (v ⋆ r) + (w ⋆ r).
(ii) v ⋆ (r + s) = (v ⋆ r) + (v ⋆ s).

(iii) v ⋆ (r · s) = (v ⋆ r) ⋆ s.
(iv) v ⋆ 1R = v.

It is called faithful if for any r ∈ R with v ⋆ r = 0 for all v ∈ M, we have r = 0R .
Further, left R-modules are defined similarly.

5.1.23 Observation. Let M be a module over R. Let a, b, c ∈ R and let v ∈ M.
Using only Axiom 5.1.22 (iii), we see that

v ⋆
(
(ab)c

)
=
(
v ⋆ (ab)

)
⋆ c =

(
(v ⋆ a) ⋆ b

)
⋆ c = (v ⋆ a) ⋆ (bc) = v ⋆

(
a(bc)

)
.

Thus M is actually a module over the associative ring R/[R,R,R]. This explains
why Definition 5.1.22 is not standard in the theory of nonassociative rings. How-
ever, it is of use in the theory of root graded groups: We will see root graded
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groups of type (B)C in which some root groups are coordinatised by a ring R

while other root groups are coordinatised by an algebraic structure which in-
volves a module over R. In this setting, we do not have the “freedom” to replace
R by R/[R,R,R] because the full ring R is needed as a coordinatising structure
for some root groups.

On a final note, recall that a module over an associative ring R can also be seen
as an abelian group (M,+) together with a homomorphism R → End(M,+).
Since the ring End(M,+) is associative, it is natural from this viewpoint that any
module structure over R should factor through R/[R,R,R].

5.2 The Simply-laced Root Systems

5.2.1 Notation for this section. Unless otherwise specified, we denote by Φ a
simply-laced root system in the sense of Definition 1.2.61.

In this section, we investigate the simply-laced root systems. We begin with
some more characterisations of these objects.

5.2.2 Remark. Let Φ be a crystallographic root system. Then the following
properties are equivalent:

(1) Φ is simply-laced in the sense of Definition 1.2.61. That is, all irreducible
components of Φ are of type A, D or E.

(2) For all non-proportional roots α, β, we have ]α, β[Cox ⊆ {α + β}. In particu-
lar, ]α, β[ = ]α, β[Cox.

(3) If α, β are two non-proportional roots in Φ, then Φ ∩ ⟨α, β⟩R is of type
A1 × A1 or A2.

(4) If ∆ is a root base of Φ, then for all distinct α, β ∈ ∆, the order of σασβ is
2 or 3. (This says precisely that all edges in the Coxeter diagram of Φ are
simple in the sense of Remark 1.2.55, which motivates the terminology
“simply-laced”.)

If Φ is irreducible, then these properties are equivalent to the property that all
roots have the same length.

We now turn to the standard representations, that is, to the actual definitions
of the root systems A and D. The standard representation of D will never be
needed, but we give it anyway because it is easy to write down. We skip over the
more complicated standard representations of E6, E7 and E8, however. They can
be found, like all the other standard representations, in [Hum72, Section 12.1].

5.2.3 Remark (Standard representation of An). Let n ∈ N+ and let V be a
Euclidean space of dimension n + 1 with orthonormal basis (e1, . . . , en+1). The
standard representation of An is

An := { ei − ej | i ̸= j ∈ [1, n + 1] }.

Note that a root ei − ej is uniquely determined by the tuple (i, j) of indices. For
this reason, we will often use the notation ij in place of ei − ej. For example, we
could write Uij for the root group Uei−ej . The standard (ordered) root base is

∆ := { ei − ei+1 | i ∈ [1, n] }
(
or ∆ord := (e1 − e2, . . . , en − en+1)

)
and the corresponding positive system is

Π := { ei − ej | i < j ∈ [1, n + 1] }.
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Observe that V is not spanned by An.

5.2.4 Remark (Standard representation of Dn). Let V be a Euclidean space of
dimension n ≥ 4 with orthonormal basis (e1, . . . , en). The standard representation
of Dn is

Dn := { ε1ei + ε2ej | i ̸= j ∈ [1, n], ε1, ε2 ∈ {±1} }.

The standard root base is

∆ := { ei − ei+1 | i ∈ [1, n − 1] } ∪ {en−1 + en}
and the corresponding positive system is

Π := { ei − ej | i < j ∈ [1, n] } ∪ { ei + ej | i ̸= j ∈ [1, n] }.

5.2.5 Remark. It is clear to see that the standard root base of An−1 can be regarded
as a subset of the standard root base of Dn. Thus Dn contains An−1 as a root
subsystem. This subsystem is, in fact, parabolic.

5.2.6 Definition (A2-pairs and A2-triples). Let Φ be any root system. An A2-pair
(in Φ) is a tuple (α, γ) of roots such that { α, γ } is a root base of the parabolic root
subsystem that it spans. An A2-triple (in Φ) is a triple (α, β, γ) of roots such that
(α, γ) is an A2-pair and β = α + γ.

α

βγ

−α

−β −γ

Figure 5.1: An A2-triple (α, β, γ).

5.2.7 Remark. In an A2-triple (α, β, γ), the roots α, β, γ are exactly the positive
roots of the corresponding A2-subsystem (with respect to the root base (α, γ)).
Further, the reflection σα interchanges β with γ, −β with −γ and α with −α. See
Figure 5.1 for an illustration.

5.2.8 Note. The terminology of “A2-pairs” is borrowed from [Shi93, (1.4)]. We
will introduce obvious variants of this notion for the root systems B2 and BC2 as
well (Definitions 7.2.4 and 9.1.7).

We now collect some simple facts about simply-laced root systems.

5.2.9 Remark (The Weyl group of An). Let n ∈ N+ and let ∆ be the standard
root base of An. An easy computation shows that

e
σ(ej−ek)

i = ei(j k)

for all i, j, k ∈ [1, n + 1] with j ̸= k where (j k) denotes the transposition which
interchanges j and k. It follows that there exists an isomorphism φ from the Weyl
group W of An to the symmetric group on [1, n + 1] which maps σ(ej − ek) to
(j k) for all distinct j, k ∈ [1, n + 1]. This isomorphism satisfies ew

i = eiφ(w) for all
w ∈ W and i ∈ [1, n + 1]. Observe that φ depends on the choice of the ordered
orthonormal base (e1, . . . , en+1).
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5.2.10 Remark. If Φ is irreducible and of rank at least 2 (or more generally, if Φ
does not contain an irreducible component of type A1), then every root lies in an
A2-triple.

5.2.11 Lemma. Let α, β be roots. Then the subsystem which is spanned by α, β is of
type A1, A2 or A1 × A1.

Proof. This follows from Remark 1.2.56.

By the following result, we do not have to distinguish between A2-subsystems,
closed A2-subsystems and parabolic A2-subsystems of Φ.

5.2.12 Lemma. Every subsystem of Φ of rank at most 2 is parabolic.

Proof. Since Φ is reduced, every rank-1 subsystem is parabolic. Now let Φ′ be
a rank-2 subsystem and denote by Φ′′ the parabolic subsystem that Φ′ spans.
Then Φ′′ is of type A2 or A1 × A1 by Lemma 5.2.11. Since none of these root
systems contains a proper rank-2 subsystem, it follows that Φ′ = Φ′′. Thus Φ′ is
parabolic.

5.2.13 Lemma. If α, β ∈ Φ are orthogonal, then α is adjacent to β and −β.

Proof. Since A2 has no pair of orthogonal roots, it follows from Lemma 5.2.11
that the subsystem spanned by α, β must be of type A1 × A1. The assertion
follows.

We now compute the Cartan integers. They will play an important role in the
proof of the square formula for Weyl elements (Proposition 5.4.17).

5.2.14 Proposition (Cartan integers). Let α, β be roots. The Cartan integer ⟨β|α⟩ =
2 β·α

α·α is determined as follows:
(a) ⟨β|α⟩ = 0 if and only if α and β are orthogonal (or equivalently, if and only if they

lie in no common A2-subsystem).
(b) ⟨β|α⟩ = −1 if and only if (α, β) is an A2-pair.
(c) ⟨β|α⟩ = 1 if and only if (α,−β) is an A2-pair.
(d) ⟨β|α⟩ = 2 if and only if α = β.
(e) ⟨β|α⟩ = −2 if and only if α = −β.

Further, ⟨α|β⟩ = ⟨β|α⟩.

Proof. At first, we assume that Φ is irreducible. Since all roots have the same
length by Remark 5.2.2, we have ⟨α|β⟩ = ⟨β|α⟩. The first assertion is clear. If
(α, β) is an A2-pair, then we can easily compute the Cartan numbers

⟨β|α⟩ = −1, ⟨−β|α⟩ = 2, ⟨α|α⟩ = 2, ⟨−α|α⟩ = −2,

which proves one implication in the remaining assertions. Conversely, assume
that ⟨β|α⟩ ̸= 0. Then α and β lie in an A2-subsystem by the first assertion. Since
we have just computed all Cartan integers which appear in a root system of type
A2, the other implications follow.

We now consider the general case. If the subsystem spanned by α and β is of
type A2 or A1, then they lie in a common irreducible subsystem and the observa-
tions from the previous paragraph apply. Otherwise they lie in a subsystem of
type A1 × A1, so ⟨α|β⟩ = 0 = ⟨β|α⟩. In this case, all assertions hold as well.
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We end this section with the notion of positive A2-pairs. They will be needed
to properly define coordinatisations of An-graded groups (Definition 5.6.2).

5.2.15 Definition (Positive A2-pair). Let (α, β), (α′, β′) be two A2-pairs in Φ. We
say that (α′, β′) is (α, β)-positive if they lie in the same orbit under the Weyl group
Weyl(Φ), that is, if there exists u ∈ Weyl(Φ) such that αu = α′ and βu = β′.

The following result is an easy computation. It is the underlying reason why
any ring which coordinatises a root graded group of type D or E is commutative
while the same is not true for root graded groups of type A.

5.2.16 Lemma ([BM92b, 1.4]). Let (α0, β0) be an A2-pair in Φ, and assume that Φ is
irreducible.

(a) If Φ is of type A, then the set of A2-pairs has exactly two orbits under the Weyl
group of Φ: The set of (α0, β0)-positive A2-pairs and the set of (β0, α0)-positive
A2-pairs.

(b) If Φ is of type D or E, then every A2-pair is (α0, β0)-positive.

The following result on positive A2-pairs will be needed to prove that the
coordinatising ring of an A3-graded group is associative (Proposition 5.6.9).

5.2.17 Lemma. Assume that Φ is of rank at least 3 and choose some A2-pair (α0, γ0).
Then there exist roots α, β, γ with the following properties:

(i) ⟨α, β, γ⟩R ∩ Φ is a root subsystem of type A3 with root base { α, β, γ }.
(ii) (α, β) and (β, γ) are (α0, γ0)-positive A2-pairs.

Further, any such choice of roots has the property that (α + β, γ) and (α, β + γ) are
(α0, γ0)-positive A2-pairs.

Proof. Since Φ is of type A, D or E, it is easy to see that Φ has a parabolic
subsystem of type A3. Thus we can choose roots α, β, γ such that { α, β, γ } is
a root base of a parabolic A3-subsystem of Φ and such that (α, β), (β, γ) are
A2-pairs. We will show that either both (α, β) and (β, γ) or both (γ, β) and (β, α)
are (α0, γ0)-positive. Note that (α, β) and (β, γ) lie in the same orbit under the
Weyl group because σγσβσα maps (α, β) to (β, γ):

α α α + β −α + (α + β) = β,

β β + γ −β + (β + γ) = γ γ.

σ(γ) σ(β) σ(α)

σ(γ) σ(β) σ(α)

By the same argument, (β, α) and (γ, β) lie in the same orbit. Thus for the
existence assertion, it only remains to show that (α, β) or (β, α) is (α0, γ0)-positive.
This holds by Lemma 5.2.16.

Now let α, β, γ be any roots with the desired properties. Then σα maps (β, γ)
to (α + β, γ), so (α + β, γ) is an (α0, γ0)-positive A2-pair (because (β, γ) has the
same properties). Similarly, σγ maps (α, β) to (α, β + γ), so (α, β + γ) is also an
(α0, γ0)-positive A2-pair. This finishes the proof.

5.3 Construction of Simply-laced Root Graded Groups

For simply-laced root graded groups, the existence problem is (nearly) com-
pletely solved by the theory of Chevalley groups. In this sections, we collect
some remarks on this topic. Recall that the existence problem was defined in
Note 4.1.24.
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5.3.1 The existence problem for types D and E. For any root system Φ, the
Chevalley groups of type Φ constitute examples of Φ-graded groups for any
commutative associative ring. Since we will show that every root graded group
of type D or E is coordinatised by such a ring, the Chevalley groups thus provide
a complete solution of the existence problem for these types. We emphasise that
this does not mean that every root graded group of type D or E is isomorphic to
a Chevalley group. Instead, it means that every such group G is coordinatised
by a commutative associative ring R which also coordinatises some Chevalley
group H such that G and H satisfy the same commutator relations.

5.3.2 The existence problem for type A in rank at least 3. We will show that
An-graded groups for n ≥ 3 are coordinatised by associative rings which need
not be commutative. Thus the Chevalley groups only provide a partial solution
of the existence problem. However, a complete solution of this problem is not
far away: Recall from Examples 3.2.14 and 3.2.22 that for any commutative ring
R, the group En+1(R) is a Chevalley group of type An and that the definition of
this group makes sense even when R is not assumed to be commutative. It is not
difficult to see that En+1(R) is An-graded for any associative ring R. Thus this
group solves the existence problem for type An.

It is noteworthy that, even though Chevalley groups do not solve the existence
problem for type An, they are still sufficiently generic in the sense of Remark 4.1.23
to read off a parity map for the parametrisation of arbitrary An-graded groups.

5.3.3 Note (Existence problem for A2-graded groups). The rank-2 case (which,
we recall, is only of secondary concern in this thesis) is more difficult. For any
alternative ring R, Faulkner constructs in [Fau83, Section 3] a Jordan pair V =
V(R), a Tits-Kantor-Koecher algebra T = TKK(V) and a group G(R) = G(T)
such that G(R) is A2-graded and coordinatised by R. Essentially the same
construction, but phrased without the language of Jordan pairs, can also be found
in the appendix of [Fau89]. This is the most general known construction of
A2-graded groups. There is no known example of an A2-graded group which is
coordinatised by a ring that is not alternative. However, the problem whether
every such ring is alternative remains open.

5.4 Rank-2 Computations

5.4.1 Notation for this section. We denote by Φ any irreducible simply-laced root
system of rank at least 2 and by G a group which has Φ-commutator relations
with root groups (Uα)α∈Φ (in the sense of Definition 2.1.4). Further, we assume
that all for all non-proportional roots α, β, we have Uα ∩ Uβ = {1G}.

In this section, we study the action of Weyl elements in simply-laced root
graded groups. Our goal is to show that G satisfies the square formula for
Weyl elements (Proposition 5.4.17). This is also essentially the content of [Shi93,
(2.4)(iii)] and [TW02, (19.3)], but we prove it in a more general setting (see
section 2.7). The core arguments, however, are mostly the same.

Most of the time, we will fix some A2-triple and perform all computations in
the corresponding A2-graded subgroup (see Proposition 2.5.11). Since every root
lies in a parabolic subsystem of type A2 by Remark 5.2.10, this is no restriction of
generality.

Observe that we do not assume that U♯
α is non-empty for all roots α. However,

we will most of the time make statements about arbitrary Weyl elements, and
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these statements are of course empty if no such elements exist. All statements
which do not involve Weyl elements are independent of their existence, however.
Further, note that we do not require Axiom 2.5.2 (iv), simply because all proofs
work without difficulty under the weaker assumption that Uα ∩ Uβ = {1G} for
all non-proportional roots α, β. See also Note 2.5.13.

We begin with a computational result which will be our main tool in this
section. It is essentially the special case of n = 3 in Proposition 2.2.10 (which is
the equivalent of [TW02, (6.4)]), but we prove it again in a slightly different way.
The same arguments can be found in the proof of [Shi93, (2.4)]. The same result
for RGD-systems is proven in [TW02, (19.1)].

5.4.2 Lemma. Let (α, β, γ) be an A2-triple, let a−α, c−α ∈ U−α, let bα ∈ Uα and set
wα := a−αbαc−α. Then the following statements hold:

(a) For any xγ ∈ Uγ, we have xwα
γ ∈ Uβ if and only if xγ = [[xγ, bα], c−α]−1. In this

case, xwα
γ = [xγ, bα].

(b) For any xβ ∈ Uβ, we have xwα
β ∈ Uγ if and only if xβ = [[xβ, a−α], bα]−1. In this

case, xwα
β = [xβ, a−α].

Proof. Let xγ ∈ Uγ. Using the commutator axiom of root graded groups and
Relation 1.1.11 (i), we perform the following computation:

xwα
γ = xbαc−α

γ =
(

xγ[xγ, bα]
)c−α = xc−α

γ [xγ, bα]
c−α = xγ[xγ, bα]

[
[xγ, bα], c−α

]
.

Note that [[xγ, bα], c−α] lies in Uγ while [xγ, bα] lies in Uβ, so these two terms
commute. Thus we can write

xwα
γ = xγ

[
[xγ, bα], c−α

]
[xγ, bα]

with xγ[[xγ, bα], c−α] ∈ Uγ and [xγ, bα] ∈ Uβ. Thus if xγ = [[xγ, bα], c−α]−1, then
xwα

γ lies in Uβ, and in this case xwα
γ = [xγ, bα]. Conversely, if xwα

γ lies in Uβ, then

xwα
γ [xγ, bα]

−1 = xγ

[
[xγ, bα], c−α

]
where the left-hand side lies in Uβ and the right-hand side lies in Uγ. Since
Uβ ∩ Uγ = {1G} by assumption, we infer that xγ[[xγ, bα], c−α] = 1G. In other
words, xγ = [[xγ, bα], c−α]−1. This finishes the proof of (a).

Now let xβ ∈ Uβ. We perform the same kind of computation as in (a), but the
result is slightly more complicated because xβ and a−α do not commute:

xwα
β =

(
xβ[xβ, a−α]

)bαc−α =
(
xβ[xβ, a−α]

[
[xβ, a−α], bα

])c−α

= xβ[xβ, c−α][xβ, a−α]
[
[xβ, a−α], bα

][[
[xβ, a−α], bα

]
, c−α

]
.

Note that xβ and [[xβ, a−α], bα] lie in Uβ while all the other factors on the right-
hand side lie in Uγ. It follows that if xβ = [[xβ, a−α], bα]−1, then xwα

β lies in Uγ.
Conversely, if xwα

β lies in Uγ, then

xβ

[
[xβ, a−α], bα

]
= xwα

β

(
[xβ, c−α][xβ, a−α]

[[
[xβ, a−α], bα

]
, c−α

])−1

where the left-hand side lies in Uβ and the right-hand side lies in Uγ. Since
Uβ ∩ Uγ = {1G}, it follows that xβ = [[xβ, a−α], bα]−1 and

xwα
β = [xβ, c−α][xβ, a−α]

[[
[xβ, a−α], bα

]
, c−α

]
= [xβ, c−α][xβ, a−α][x−1

β , c−α].
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Note that [xβ, c−α] lies in Uγ, so it commutes with xβ and a−α and thus also with
[xβ, a−α]. Hence we have xwα

β = [xβ, a−α][xβ, c−α][x−1
β , c−α] where [x−1

β , c−α] =

[xβ, c−α]−1 by Lemma 2.1.13, so xwα
β = [xβ, a−α]. This finishes the proof of (b).

In practice, we will usually apply Lemma 5.4.2 in the form of the following
formulas.

5.4.3 Proposition (Corollary of Lemma 5.4.2). Let (α, β, γ) be an A2-triple. Assume
that (a−α, bα, c−α) is an α-Weyl triple and denote its corresponding Weyl element by wα.
Then the following statements hold:

(a) For any xγ ∈ Uγ, we have xγ = [[xγ, bα], c−α]−1 and xwα
γ = [xγ, bα].

(b) For any xβ ∈ Uβ, we have xβ = [[xβ, a−α], bα]−1 and xwα
β = [xβ, a−α].

Proof. Since wα is an α-Weyl element, we have xwα
γ ∈ Uβ for all xγ ∈ Uγ and

xwα
β ∈ Uγ for all xβ ∈ Uβ, so these statements follow from Lemma 5.4.2.

5.4.4 Note. In the following, we will often use that for any A2-triple (α, β, γ),
(−α, γ, β) is an A2-triple as well. This is easily seen from Figure 5.1. Thus
Proposition 5.4.3 (a) not only tells us how α-Weyl elements act on Uγ but also
how (−α)-Weyl elements act on Uβ. Since any α-Weyl element is a (−α)-Weyl
element as well (by Proposition 2.2.6 (c)), this is a powerful tool. In fact, this
provides us with an alternative way to prove Proposition 5.4.3 (b). See Note 5.4.6
for more details.

We will show in Proposition 5.4.10 (a) that every Weyl triple is weakly bal-
anced (and thus balanced by Proposition 2.2.16 or by Lemma 2.2.24 (e)). The
following result is a first step into this direction.

5.4.5 Lemma. Let (α, β, γ) be an A2-triple and assume that (a−α, bα, c−α) is an α-Weyl
triple. Then [xβ, a−α] = [xβ, c−α] for all xβ ∈ Uβ.

Proof. Let xβ ∈ Uβ and denote by wα := a−αbαc−α the Weyl element corre-
sponding to (a−α, bα, c−α). We already know from Proposition 5.4.3 (b) that
xwα

β = [xβ, a−α]. Further, we know from Proposition 2.2.6 (c) that (bα, c−α, awα
−α)

is a (−α)-Weyl triple with corresponding Weyl element wα. Applying Proposi-
tion 5.4.3 (a) to the A2-triple (−α, γ, β) and the (−α)-Weyl triple (bα, c−α, awα

−α),
we obtain that xwα

β = [xβ, c−α]. This finishes the proof.

5.4.6 Note. Let everything be as in the proof of Lemma 5.4.5. By choosing the

Weyl triple (cw−1
α

−α , a−α, bα) instead of (bα, c−α, awα
−α), we obtain that xwα

β = [xβ, a−α].
This provides a different proof of (the main result of) Proposition 5.4.3 (b) which
does not rely on the computation in the proof of Lemma 5.4.2 (b).

Recall that the axioms of a group with Φ-commutator relations merely require
that [Uα, Uγ] is a subset of Uα+γ if (α, γ) is an A2-triple. By the following result,
we actually have equality, provided that there exist enough Weyl elements.

5.4.7 Proposition ([Shi93, (2.4)(i)]). Let (α, β, γ) be an A2-triple. Then for all bα ∈
U♯

α, the map
Uγ → Uβ, xγ 7→ [xγ, bα]

is an isomorphism of groups. In particular, [Uα, Uγ] = Uβ if U♯
α is non-empty.
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Proof. Choose a−α, c−α ∈ U−α such that wα := a−αbαc−α is an α-Weyl element. By
Proposition 5.4.3 (a), the map in the assertion is simply the map

Uγ → Uβ, xγ 7→ xwα
γ

which is clearly a homomorphism. Further, it is bijective because wα is an α-Weyl
element.

As a consequence of the previous result, the root groups must be abelian if
we have sufficiently many Weyl elements.

5.4.8 Lemma. Let (α, β, γ) be an A2-triple and assume that U♯
α is non-empty. Then Uβ

is abelian.

Proof. We have Uβ = [Uα, Uγ] by Proposition 5.4.7. Since Uβ commutes with Uα

and Uγ by the commutator axiom, we infer that Uβ commutes with itself. In
other words, Uβ is abelian.

5.4.9 Proposition. Assume that U♯
α is non-empty for all roots α. Then all root groups of

G are abelian.

Proof. Every root lies in an A2-triple by Remark 5.2.10, so the assertion follows
from Lemma 5.4.8.

We are now in a position to prove many desirable properties of Weyl elements
in G. While we already know from Proposition 2.2.22 that G has unique Weyl
extensions, we will give a new proof of this fact to show how it can be derived
from the previous results in this section.

5.4.10 Proposition. Assume that U♯
β is non-empty for all roots β. Then for any root α,

the following statements hold:
(a) Every α-Weyl triple is balanced.
(b) If (a−α, bα, c−α) and (a′−α, b′α, c′−α) are two α-Weyl triples whose corresponding

Weyl elements are identical, then (a−α, bα, c−α) = (a′−α, b′α, c′−α).
(c) G has unique α-Weyl extensions.

Proof. Choose roots β, γ such that (α, β, γ) is an A2-triple and choose invertible
elements xβ ∈ U♯

β, xγ ∈ U♯
γ. We will keep these choices throughout the whole

proof.
For (a), let (a−α, bα, c−α) be an α-Weyl triple. By Lemma 5.4.5, we have

[xβ, c−α] = [xβ, a−α], which implies that

[c−α, xβ] = [xβ, c−α]
−1 = [xβ, a−α]

−1 = [a−α, xβ].

Since (−α, γ, β) is an A2-triple and xβ is invertible, we know from Proposi-
tion 5.4.7 that the map U−α → Uγ, x−α 7→ [x−α, xβ] is an isomorphism. Thus it
follows that a−α = c−α, proving that every α-Weyl triple is weakly balanced. By
Proposition 2.2.16, it follows that every α-Weyl triple is balanced, so (a) holds.

Now let (a−α, bα, c−α) and (a′−α, b′α, c′−α) be two α-Weyl triples whose cor-
responding Weyl elements are identical. Denote their common Weyl element
by wα. Then by Proposition 5.4.3, we have [xβ, a−α] = xwα

β = [xβ, a′−α] and
[xγ, bα] = xwα

γ = [xγ, b′α]. As in the proof of (a), this implies that a−α = a′−α and
bα = b′α. It follows that c−α = (a−αbα)−1wα = (a′−αb′α)−1wα = c′−α. This finishes
the proof of (b).
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Now let bα ∈ U♯
α. By the definition of U♯

α and by (a), there exists a−α ∈ U−α

such that (a−α, bα, a−α) is an α-Weyl triple. To show the uniqueness of a−α, we
take another element a′−α ∈ U−α such that (a′−α, bα, a′−α). (Note that a−αbαa−α and
a′−αbαa′−α are allowed to be distinct.) By Proposition 5.4.3 (b), we have[

[xβ, a−α], bα

]
= x−1

β =
[
[xβ, a′−α], bα

]
.

Using the same arguments as in (a) and (b) and the fact that bα is invertible, we
infer that [xβ, a−α] = [xβ, a′−α]. Another application of the same argument, using
that xβ is invertible, yields a−α = a′−α. This finishes the proof of (c).

5.4.11 Remark (Braid relations). We already know from Theorem 2.5.10 that G
satisfies the braid relations for Weyl elements. In the following, we show how
this result can be derived from the previous results in this section. The proof is
ultimately similar to the one in Theorem 2.5.10, but more explicit because we
have fixed the choice of the root system.

Without loss of generality, it suffices to consider the root system A2, which
we consider in its standard representation (from Remark 5.2.3): We write

A2 = { ei − ej | i, j ∈ [1, 3] }
and we choose the standard root base ∆ = { e1 − e2, e2 − e3 }. Let (a21, b12, a21) be
an (e1 − e2)-Weyl triple, let (a′32, b′23, a′32) be an (e2 − e3)-Weyl triple and denote
by w12 := a21b12a21 and w23 := a′32b′23a′32 the corresponding Weyl elements. We
have to show that w12w23w12 = w23w12w23. Since

w12w23w12 = w23w12ww23w12
12

it suffices to show that ww23w12
12 = w23. Recall that ww23w12

12 is a Weyl element by
Proposition 2.2.6 (b). More precisely, its corresponding root is

σe1−e2(σe2−e3(e1 − e2)) = σe1−e2(e1 − e3) = e2 − e3

and its corresponding Weyl triple is (aw23w12
21 , bw23w12

12 , aw23w12
21 ). By two applications

of Proposition 5.4.3, we have

bw23w12
12 = [b12, b′23]

w12 =
[
[b12, b′23], a21

]
=
[
[b′23, b12]

−1, a21
]
.

Using Lemma 2.1.13 and Proposition 5.4.3 (a), we infer that

bw23w12
12 =

[
[b′23, b12], a21

]−1
= b′23.

Thus we have an (e2 − e3)-Weyl triple (aw23w12
21 , b′23, aw23w12

21 ) corresponding to
ww23w12

12 and an (e2 − e3)-Weyl triple (a′32, b′23, a′32) corresponding to w23. By Propo-
sition 5.4.10 (c), these two Weyl triples must be identical, so that ww23w12

12 = w23.
This finishes the proof of the braid relation.

Our next goal is to prove the square formula for Weyl elements (Proposi-
tion 5.4.17). To do this, we consider arbitrary roots α, β and compute for each
possible “configuration” of (α, β) how the squares of α-Weyl elements act on
Uβ. Here by “configurations” we essentially mean the different cases in Proposi-
tion 5.2.14.

5.4.12 Reminder (see Definition 1.1.10). Let w be an element of G and let α be a
root. We say that w acts trivially on Uα if xw

α = xα for all xα ∈ Uα and we say that
w acts on Uα by inversion if xw

α = x−1
α for all xα ∈ Uα.

The following proof uses the ideas from Note 5.4.4. An alternative proof is
given in Remark 5.4.14.
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5.4.13 Lemma. Let (α, β, γ) be an A2-triple and assume that wα is an α-Weyl element.
Then w2

α acts on Uβ and on Uγ by inversion.

Proof. Choose an α-Weyl triple (a−α, bα, a−α) such that wα = a−αbαa−α and let
xβ ∈ Uβ be arbitrary. Put w := w2

α. Using the formulas from Proposition 5.4.3
two times, we see that

xw
β = [xβ, a−α]

wα = [[xβ, a−α], bα].

By Proposition 5.4.3 (b), this means that xw
β = x−1

β , so w acts on Uβ by inversion.
Since wα is also a (−α)-Weyl element and (−α, γ, β) is an A2-triple, it follows
that w acts on Uγ by inversion as well.

5.4.14 Remark (Alternative proof of Lemma 5.4.13). Let xβ ∈ Uβ. In addi-
tion to the Weyl triple (a−α, bα, a−α), we consider the Weyl triple (a−1

−α, b−1
α , a−1

−α)
whose corresponding Weyl element is w−1

α (see Proposition 2.2.6 (a)). By Proposi-
tion 5.4.3 (b), we have

xwα
β = [xβ, a−α] and xw−1

α
β = [xβ, a−1

−α].

Since [xβ, a−1
−α] = [xβ, a−α]−1 by Lemma 2.1.13, we infer that

xw−1
α

β = (xwα
β )−1.

This means that w2
α acts on xβ by inversion. Using similar arguments, we can

deduce from Proposition 5.4.3 (a) that w2
α acts on Uγ by inversion.

Lemma 5.4.13 was relatively straightforward to prove because we only had
to apply the formulas from Proposition 5.4.3. For the action of wβ on its “own”
root group Uβ, however, we have no such formula. Instead, we have use the fact
that Uβ can be written as the commutator of two adjacent root groups, and then
apply Lemma 5.4.13.

5.4.15 Lemma. Assume that U♯
α is non-empty for all roots α and let β be any root. Then

for all β-Weyl elements wβ, w2
β acts trivially on Uβ and U−β.

Proof. By Remark 5.2.10, there exist roots α, γ such that (α, β, γ) is an A2-pair.
Let xβ ∈ Uβ be arbitrary and put w := w2

β. By Proposition 5.4.7, there exist
xα ∈ Uα and xγ ∈ Uγ such that xβ = [xα, xγ]. Thus it follows from Lemmas 2.1.13
and 5.4.13 that

xw
β = [xw

α , xw
γ ] = [x−1

α , x−1
γ ] = [xα, xγ] = xγ.

That is, w acts trivially on Uβ. Since wβ is also a (−β)-Weyl element by Proposi-
tion 2.2.6 (c), this implies that w acts trivially on U−β, too.

5.4.16 Lemma. Let α, β be orthogonal roots and assume that wα is an α-Weyl element.
Then w2

α acts trivially on Uβ.

Proof. It follows from the assumptions and Lemma 5.2.13 that β is adjacent to α
and −α. This implies that Uβ commutes with ⟨Uα, U−α⟩ and thus with wα. The
assertion follows.

The previous results cover all possible “configurations” of pairs of roots (α, β).
It is now a straightforward computation to check that the square formula is
satisfied in each case.
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5.4.17 Proposition. Assume that U♯
γ is non-empty for all roots γ and let α, β be two

roots. Let wα be an α-Weyl element, put w := w2
α and set ε := (−1)⟨β|α⟩ where

⟨β|α⟩ = 2 β·α
α·α is the Cartan integer for (β, α). Then xw

β = xε
β for all xβ ∈ Uβ. In other

words, G satisfies the square formula for Weyl elements (see Definition 4.4.4).

Proof. We only have to put Lemmas 5.4.13, 5.4.15 and 5.4.16 together and apply
Proposition 5.2.14.

5.5 Standard Twisting Systems

5.5.1 Notation for this section. We denote by Φ an irreducible simply-laced root
system and by c = (cα,β)α,β∈Φ a family of Chevalley structure constants of type
Φ (in the sense of Definition 3.1.18).

In this section, we collect some properties of the Chevalley structure constants
of simply-laced type and of the standard twisting systems which they define.

5.5.2 Note. In 4.7.5 and 4.7.7, we declared that the “standard (partial) twisting
system” and the “standard signs” for Φ-graded groups are the ones which occur
in some kind of “standard example”. For the root systems of types B, BC, C
and F, we will state explicit formulas for the involved signs and parity maps. In
the setting of simply-laced root graded groups, however, this approach is not
possibe because we want to cover three types of root systems at the same time.
For instance, a parity map η defined on An cannot be used to parametrise root
graded groups of type D or E.

Instead, we take a more general approach in this chapter: We define not
a single standard twisting system, but rather a twisting system for every fam-
ily c of Chevalley structure constants of simply-laced type (Definition 5.5.6).
Similarly, we will define coordinatisations of Φ-graded groups with signs c in
Definition 5.6.2. In other words, we can cover all simply-laced root systems at
the same time by working with the family c (which is not explicitly given). An
additional advantage of this approach is that it makes the connection to Chevalley
groups more evident.

It should be noted that the strategy described above is only possible because
simply-laced root graded groups have the exact same twisting systems and
commutator relations as Chevalley groups. The more complicated root systems
will require a different approach.

5.5.3 Note. We will, throughout this section, often consider a Chevalley group H
of type Φ over C with respect to c, and we will denote its root groups, its root
isomorphisms and the standard Weyl elements from Definition 3.3.3 by (Uα)α∈Φ,
(θα)α∈Φ and (wα)α∈Φ, respectively. By choosing the complex numbers as a base
ring, we ensure that the set {±1Z} embeds into the base ring. Thus we can write
θα(a) for any a ∈ {±1Z}, and θα(a) = θα(b) implies a = b for all a, b ∈ {±1Z}
and all α ∈ Φ. This is the only property of the base ring that we need, so we
could as well replace C by any commutative associative ring R with 2R ̸= 0R .
However, the choice of the complex numbers has the additional benefit that the
construction of Chevalley groups over C is easier than over arbitrary rings by
Strategy 3.2.6.

At first, we show how the parity map in simply-laced Chevalley groups can
be computed from the family c. Similar computations could be done for all other
crystallographic root systems as well.
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5.5.4 Lemma. Let η : Φ × Φ → {±1Z} the Chevalley parity map for c from Defini-
tion 3.3.10. Then for all roots α, δ, the value of ηα,δ is determined by c in the following
way:

(a) η(α, α) = η(α,−α) = −1.
(b) η(α, δ) = 1 if α, δ are orthogonal.
(c) η(α, δ) = cα,δ if (α, δ) is an A2-pair.
(d) η(α, δ) = −cα,−δ if (α,−δ) is an A2-pair.

Proof. Let H, (Uα)α∈Φ, (θα)α∈Φ and (wα)α∈Φ be as in Note 5.5.3. The first assertion
holds by Lemma 3.3.13. If α and δ are orthogonal, then wδ commutes with Uα

and so η(α, δ) = 1, which implies the second assertion. Now assume that (α, δ) is
an A2-pair, and put β := α + δ. Then it follows from Proposition 5.4.3 (a) that

θβ(ηα,δ) = θα(1)wδ = [θα(1), θδ(1)] = θβ(cα,δ),

so ηα,δ = cα,δ. Now assume that (α,−δ) is an A2-pair, and put γ := α − δ. Then
(δ, α, γ) is an A2-triple, so it follows from Proposition 5.4.3 (b) that

θγ(ηα,δ) = θα(1)wδ = [θα(1), θ−δ(−1)] = θγ(−cα,−δ).

Thus ηα,δ = −cα,−δ. This finishes the computation of η.

5.5.5 Example. We consider the family of Chevalley structure constants for An
from Example 3.1.19, which is given by

cei−ej,ej−ek = 1, cej−ek ,ei−ej = −1

and cα,β = 0 for all other pairs α, β of roots. Let i, j, k, l ∈ [1, n + 1] such that i ̸= j
and k ̸= l. Write cij,kl for cei−ej,ek−el . We want to compute a := ηei−ej,ek−el . By the
first two assertions in Lemma 5.5.4, we have a = −1 if |{i, j} ∩ {k, l}| = 2 and
a = 1 if {i, j} ∩ {k, l} = ∅. From now on, we assume that |{i, j} ∩ {k, l}| = 1.
Then

a =


cij,jl = 1 if j = k,
−cij,jk = −1 if j = l,
−cij,li = 1 if i = k,
cij,ki = −1 if i = l.

In summary, we have

ηei−ej,ek−el =

{
−1 if l ∈ {i, j},
1 otherwise.

5.5.6 Definition (Standard twisting system). Let ∆ be a root base of Φ. The
standard twisting system of type Φ defined by c with respect to ∆ is the pair (A, η|Φ×∆)
where A := {±1Z} and η is the Chevalley parity map for c (which is given by the
formulas in Lemma 5.5.4). If G is a group with a Φ-pregrading, then the standard
twisting system for G defined by c with respect to ∆ is the same pair together with
the additional information that A acts on all root groups of G by inversion.

5.5.7 Lemma. Let G be a group with a Φ-pregrading, let ∆ be a root base of Φ and let
(wδ)δ∈∆ be a ∆-system of Weyl elements in G. Denote the standard twisting system
for G defined by c with respect to ∆ by (A, η). Then (A, η) is a twisting system for
(G, (wδ)δ∈∆). Further, η is complete and adjacency-trivial and it satisfies the square
formula.
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Proof. By Example 4.3.15, A is a twisting group for (G, (wδ)δ∈∆). We know from
Lemma 5.5.4 (a) that Aα→α = A for all roots α, so η is complete. In particular, it
is transporter-invariant by Remark 4.2.17. Using that the map η is read off from
the Chevalley group H in Note 5.5.3 and that Weyl elements in this group satisfy
the braid relations by Theorem 2.5.10, it follows from Proposition 4.4.11 (b) that
η is braid-invariant as well. Similarly, since H satisfies the square formula for
Weyl elements by Proposition 5.4.17, it follows from Proposition 4.4.11 (c) that η
satisfies the square formula. Finally, η is adjacency-trivial by Proposition 4.4.11 (a).
This finishes the proof.

We end this section with two properties of c and η which, at the moment,
are completely unmotivated. Lemma 5.5.8 will be used in the proof of the
associativity of the coordinatising ring (Proposition 5.6.9). Lemma 5.5.9 will be
applied when we transport the commutator formula on one fixed A2-pair (α0, γ0)
to all other A2-pairs (Lemma 5.7.10).

5.5.8 Lemma. Assume that Φ is of rank at least 3 and let α, β, γ be roots such that
{ α, β, γ } is a root base of a parabolic A3-subsystem of Φ and such that α · γ = 0. Then
cα,βcα+β,γ = cβ,γcα,β+γ.

Proof. By the Chevalley commutator formula (Theorem 3.2.16), we have

[θα(1), θγ(1)] = 1H and[
[θβ(1), θα(1)−1], [θβ(1), θγ(1)]

]
∈ [Uα+β, Uβ+γ] = {1H}

Thus it follows from the variant of the Hall-Witt identity given in Lemma 1.1.13
that [

[θα(1), θβ(1)], θγ(1)
]
=
[
θα(1), [θβ(1), θγ(1)]

]
.

By the Chevalley commutator formula, this means precisely that

θα+β+γ(cα,βcα+β,γ) = θα+β+γ(cβ,γcα,β+γ).

The assertion follows.

5.5.9 Lemma. Let η be the Chevalley parity map for c, let (α, γ) be any A2-pair and let
δ̄ be any word over Φ. Then ηα,δ̄ηβ,δ̄cασ(δ̄),γσ(δ̄) = ηα+γ,δ̄cα,γ.

Proof. Let H, (Uα)α∈Φ, (θα)α∈Φ and (wα)α∈Φ be as in Note 5.5.3. By the Chevalley
commutator formula (Theorem 3.2.16), we have

[θα(1), θγ(1)] = θα+γ(cα,γ)

Conjugating this equation by wδ̄, we obtain

[θασ(δ̄)(ηα,δ̄), θγσ(δ̄)(ηγ,δ̄)] = θασ(δ̄)+γσ(δ̄)(cα,γηα+γ,δ̄).

However, we also have

[θασ(δ̄)(ηα,δ̄), θγσ(δ̄)(ηγ,δ̄)] = θασ(δ̄)+γσ(δ̄)(cασ(δ̄),γσ(δ̄)ηα,δ̄ηγ,δ̄).

Since θασ(δ̄)+γσ(δ̄) is injective, the assertion follows.

5.6 Standard Signs

5.6.1 Notation for this section. We denote by Φ an irreducible simply-laced root
system of rank at least 2, by (α0, γ0) an arbitrary A2-pair in Φ, by c = (cα,β)α,β∈Φ a
family of Chevalley structure constants of type Φ (in the sense of Definition 3.1.18)
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and by G a group with a Φ-pregrading (Uα)α∈Φ. We assume that there exists a
coordinatisation of G by a ring R based at (α0, γ0) with signs c (in the sense of
the following Definition 5.6.2), and we fix this coordinatisation.

In this section, we define the notion of coordinatisations of G with signs c, as
explained in Note 5.5.2. Further, we will show that any ring which coordinatises G
must be associative if rank(Φ) ≥ 3 and, if Φ is of type D or E, even commutative.
In particular, these properties are independent of the specific construction the we
will undertake in section 5.7.

5.6.2 Definition (Coordinatisations). Choose an A2-pair (α0, γ0) and let R be a
ring. A coordinatisation of G by R based at (α0, γ0) with signs c is a family

(θα : (R,+) → Uα)α∈Φ

of isomorphisms such that for all r, s ∈ R and all (α0, γ0)-positive A2-pairs (α, γ)
(in the sense of Definition 5.2.15), we have the commutator formula

[θα(r), θγ(s)] = θα+γ(cα,γrs).

5.6.3 Remark. If Φ is of type D or E, then any A2-pair is (α0, γ0)-positive for any
other A2-pair (α0, γ0) by Lemma 5.2.16 (b). Hence we can drop the “based at
(α0, γ0)” part in Definition 5.6.2 for these root systems.

5.6.4 Remark. Let (α, γ) be an A2-pair which is not (α0, γ0)-positive. Then (γ, α)
is (α0, γ0)-positive by Lemma 5.2.16. Since cγ,α = −cα,γ by Lemma 3.1.23 (a), it
follows that

[θα(r), θγ(s)] = [θγ(s), θα(r)]−1 = θα+γ(−cγ,αsr) = θα+γ(cα,γsr).

for all r, s ∈ R. Thus non-positive A2-pairs satisfy the same commutator relations
as positive A2-pairs except that rs is replaced by sr. This is the key observation
that we will use in Proposition 5.6.11 to show that R must be commutative if Φ
is of type D or E.

5.6.5 Example. Assume that Φ is the root system An in standard representation
for some n ≥ 2 and let c be the family of Chevalley structure constants from
Example 3.1.19. Further, let (α0, γ0) := (ei − ej, ej − ek) for some pairwise distinct
i, j, k ∈ [1, n + 1]. Then a coordinatisation (θα)α∈An by a ring R based at (α0, γ0)
with signs c satisfies the same commutator relations as the group En+1(R) in
Example 3.2.22:

[θei−ej(r), θej−ek(s)] = θei−ek(rs) and [θej−ek(r), θei−ej(s)] = θei−ek(−sr)

for all pairwise distinct i, j, k ∈ [1, ℓ + 1] and all r, s ∈ R. In this case, the set
of (α0, γ0)-positive A2-pairs (that is, the set of A2-pairs which have rs in the
commutator formula and not sr) coincides with the set of A2-pairs which have a
positive sign in the commutator formula. However, for other choices of (α0, γ0)
and c, these sets may be distinct.

Note that we have defined coordinatisations for arbitrary Φ-pregradings.
However, it is clear from the definition that any pregrading with a coordinati-
sation has Φ-commutator relations. The following result says that pregradings
with standard coordinatisations also have Weyl elements.

5.6.6 Proposition. For all roots α and all invertible r ∈ R, define

wα(r) := θ−α(−r−1)θα(r)θ−α(−r−1).

Then the following hold:
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(a) The maps

R× → U♯
α, r 7→ θα(r) and R× → Mα, r 7→ wα(r)

are well-defined bijections for all roots α. Here R×, U♯
α and Mα denote the sets of

invertible elements in R (in the sense of Definition 5.1.12), the set of α-invertible
elements in Uα and the set of α-Weyl elements, respectively.

(b) There exists an α-Weyl element for each root α.
(c) Let ∆ be any root base of Φ and denote by (A, η) the standard twisting system for

G defined by c with respect to ∆ (as in Definition 5.5.6). Then G is parametrised
by (A,R) with respect to η and (wδ(1R))δ∈∆.

Proof. Let α be any root and let wα = θ−α(r)θα(s)θ−α(t) be an α-Weyl element for
some r, s, t ∈ R. Choose a root γ such that (α, γ) is a (α0, γ0)-positive A2-pair,
and put β := α + γ. Then it follows from Proposition 5.4.3 (a) that for all a ∈ R,
we have

θγ(a) =
[
[θγ(a), θα(s)], θ−α(t)

]
= [θβ(cγ,αsa), θ−α(t)] = θγ

(
cβ,−αcγ,α

(
t(sa)

))
.

By performing the same computation in a Chevalley group of type Φ, one can
show that cβ,−αcγ,α = −1. Thus we infer that s is invertible with inverse −t. In
a similar way, one can show that the same assertion holds for t replaced by r.
Hence every Weyl element in G has the desired form. This says precisely that the
second map in (a) is surjective (if it is well-defined).

Now let β be an arbitrary root, let r ∈ R be invertible and consider wβ :=
wβ(r). Using Lemma 5.4.2, a similar computation as in the previous paragraph
shows that U

wβ

ζ = Uσβ(ζ) for all ζ ∈ Φ \ { α,−α }. It remains to show the same
statement for ζ ∈ { α,−α }. Choose an (α0, γ0)-positive A2-pair (α, γ) such that
β = α + γ. Then Uβ = [Uα, Uγ] because θβ(a) = [θα(c−1

α,β1R), θγ(a)] for all a ∈ R.
Similarly, U−β = [U−α, U−γ]. It follows that

U
wβ

±β = [U±α, U±γ]
wβ = [U

wβ

±α, U
wβ

±γ] = [U∓γ, U∓α] = U∓β.

Hence wβ(r) is indeed a β-Weyl element. This shows that the second map in (a)
is well-defined. Further, it is injective by Proposition 5.4.10 (b). It follows that the
first map in (a) is a well-defined bijection as well.

Assertion (b) follows from (a) because R× contains 1R . Finally, assertion (c)
can be proven by similar computations as above, using Proposition 5.4.3.

Observe that Proposition 5.6.6 (c) says precisely that the Weyl elements
(wα(1R))α∈Φ satisfy the same conjugation formulas as in Chevalley groups
(Lemma 3.3.7).

5.6.7 Remark. It follows from Proposition 5.6.6 that G satisfies U♯
α = Uα \ {1G}

(the additional condition of being an RGD-system) if and only if R is a division
ring.

5.6.8 Example. Assume that Φ is the root system An in standard representation
for some n ≥ 2 and let (θα)α∈Φ be a coordinatisation of G by a ring R with
signs and base point chosen as in Example 5.6.5. Then by Example 5.5.5, the
conjugation formula in Proposition 5.6.6 (c) says that

θkl(r)wij(1) =

{
θτ(k),τ(l)(r) if j /∈ {k, l},
θτ(k),τ(l)(−r) if j ∈ {k, l}
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for all i, j, k, l ∈ [1, n + 1] with i ̸= j and k ̸= l and all r ∈ R, where τ is the
transposition which interchanges i and j.

5.6.9 Proposition. Let R be a ring which coordinatises G (with signs c and based at
some A2-pair (α0, γ0)) and assume that Φ is of rank at least 3. Then the ring R is
associative.

Proof. Choose roots α, β, γ as in Lemma 5.2.17, and let r, s, t ∈ R. By the same
arguments as in the proof of Lemma 5.5.8, the Hall-Witt identity in the form of
Lemma 1.1.13 yields that[

[θα(r), θβ(s)], θγ(t)
]
=
[
θα(r), [θβ(s), θγ(t)]

]
.

By the properties of the roots α, β, γ from Lemma 5.2.17, this says precisely that

θα+β+γ

(
cα,βcα+β,γ(r · s) · t

)
= θα+β+γ

(
cβ,γcα,β+γr · (s · t)

)
.

Since cα,βcα+β,γ = cβ,γcα,β+γ by Lemma 5.5.8, it follows that (r · s) · t = r · (s · t).
Thus R is associative.

5.6.10 Remark (Invertible elements are Moufang elements). In [Fau14, Theo-
rem 13.8], it is shown that, in addition to the statement of Proposition 5.6.6 (a),
every invertible element a ∈ R is a Moufang element. This means that for all
y, z ∈ R, the Moufang identities hold:

a
(
y(az)

)
=
(
a(ya)

)
z,(

(za)y
)
a = z

(
(ay)a

)
,

(ay)(za) =
(
a(yz)

)
a.

By Proposition 5.6.9, this statement is only of interest if Φ is of rank 2, which
means that Φ = A2. We will see in Proposition 8.2.6 that a ring satisfies the
Moufang identities for all a, y, z ∈ R if and only if it is an alternative ring. That is,
R is alternative if and only if every element is a Moufang element. Since 0R is
always a Moufang element, it follows that R must be alternative if it is a division
ring. In other words, any ring which coordinatises an RGD-system of type A2
must be alternative. For general A2-gradings, this is not known to be true. See
also Note 5.3.3.

5.6.11 Proposition. Assume that Φ is of type D or E. Then any ring R which coor-
dinatises G (with signs c) is associative and commutative.

Proof. Since root systems of type D are E have rank at least 4, the associativity
of R follows from Proposition 5.6.9. For the commutativity, let r, s ∈ R and let
(α, γ) be any A2-pair. By Remark 5.6.4, the reversed A2-pair (γ, α) satisfies the
commutator formula [

θγ(r), θα(s)
]
= θα+γ

(
cγ,αsr

)
.

On the other hand, since (γ, α) is itself positive with respect to any A2-pair
(α0, γ0) by Lemma 5.2.16 (b), we also have the usual commutator formula[

θγ(r), θα(s)
]
= θα+γ

(
cγ,αrs

)
.

It follows that rs = sr, as desired.

5.6.12 Note. Propositions 5.6.9 and 5.6.11 are not specific to standard signs: By
Note 4.7.6, every coordinatisation of G with non-standard signs can be obtained
from a standard coordinatisation via twisting, and this process does not change
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the coordinatising ring. Thus Propositions 5.6.9 and 5.6.11 hold for non-standard
coordinatisations as well.

5.7 The Coordinatisation

5.7.1 Notation for this section. We denote by Φ any irreducible simply-laced
root system of rank at least 2, by ∆ a root base of Φ and by G a group which has
Φ-commutator relations with root groups (Uα)α∈Φ and which satisfies U♯

α ̸= ∅
for all roots α. We assume that all for all non-proportional roots α, β, we have Uα ∩
Uβ = {1G}. Further, we choose a family c = (cα,β)α,β∈Φ of Chevalley structure
constants of type Φ and we denote by (A, η) the standard twisting system for G
defined by c (in the sense of Definition 5.5.6). From Construction 5.7.6 on, we will
also fix an arbitrary A2-pair (α0, γ0).

5.7.2 Reminder. We know from Lemma 5.5.7 that η is complete and adjacency-
trivial.

In this section, we can finally construct the coordinatising ring for G. We begin
by verifying that the assumptions of the parametrisation theorem are satisfied.

5.7.3 Lemma. G is stabiliser-compatible with respect to η and (wδ)δ∈Φ.

Proof. By Lemma 5.2.13, any pair of orthogonal roots in a simply-laced root sys-
tem is adjacent. Further, we know that η is adjacency-trivial. Thus the assertion
follows from Lemma 4.6.4.

5.7.4 Lemma. G is square-compatible with respect to η and (wδ)δ∈Φ.

Proof. Since G satisfies the square formula for Weyl elements by Proposition 5.4.17
and η satisfies the square formula, this follows from Lemma 4.6.2.

5.7.5 Construction (of the coordinatising ring). Having verified that all the
conditions in Notation 4.5.1 are satisfied, we can now apply the parametrisation
theorem (Theorem 4.5.16). We conclude that there exist a group (R,+) and a
parametrisation (θα)α∈∆ of G by the parameter system P = (A,R) with respect
to η and (wδ)δ∈Φ. By Proposition 5.4.9, the root groups of G are abelian, so (R,+)
is abelian as well. Further, the action of A on the set R is given by the equation

a.θα(r) = θα(a.r)

for all a ∈ A, all roots α and all r ∈ R. It follows that 1A.r = r and (−1A).r = −r
for all r ∈ R. Since (R,+) is abelian, this implies that A acts on R by group
automorphisms, so that a.(r + s) = (a.r) + (a.s) for all a ∈ A and all r, s ∈ R.

5.7.6 Construction (of the ring multiplication). For the remainder of this section,
we fix an arbitrary A2-pair (α0, γ0). Since cα0,γ0 lies in {±1Z} by Remark 3.1.24,
we can regard it as an element of A and thus let it act on R. With this convention,
we now define a multiplication on R by

· : R ×R → R, (a, b) 7→ cα0,γ0 .θ−1
α0+γ0

(
[θα0(a), θγ0(b)]

)
.

Put differently, we define · to be the unique multiplication on R which satisfies

[θα0(a), θγ0(b)] = θα0+γ0(cα0,γ0 .(a · b))

for all a, b ∈ R. (Here we have used that c−1
α0,γ0

= cα0,γ0 .) Since cα0,γ0,1,1 = cα0,γ0 by
Remark 3.2.21, this is the same formula that is satisfied in Chevalley groups, see
Example 3.2.22. We will later show that this multiplication turns R into a ring.
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5.7.7 Note. A priori, the action of A on R is defined independently of the mul-
tiplication on R, and it does not rely on the existence of a “unit element 1R”.
However, we will soon show that R does indeed have a unit element 1R , and
then it is clear that a.r = i(a) · r for all a ∈ A and r ∈ R where i(1A) := 1R and
i(−1A) := −1R .

It remains to verify two properties: Firstly, that R is a ring. Secondly, that the
commutator formula is satisfied for all (α0, γ0)-positive A2-pairs and not merely
for (α0, γ0). We begin with the distributive laws. They are proven in essentially
the same way in [Shi93, (2.19)] and [TW02, (19.7)].

5.7.8 Lemma (Distributive laws). The multiplication on R satisfies

a · (b + c) = a · b + a · c and (a + b) · c = a · c + b · c

for all a, b, c ∈ R. In particular, we have (−a) · b = −(a · b) = a · (−b) for all
a, b ∈ R.

Proof. Let a, b, c ∈ R and denote by (α, γ) := (α0, γ0) the fixed A2-pair from
Construction 5.7.6. By Lemma 2.1.13, we have

[θα(a + b), θγ(c)] = [θα(a)θα(b), θγ(c)] = [θα(a), θγ(c)][θα(b), θγ(c)].

We conclude that

θα+γ

(
cα,γ.((a + b) · c)

)
= [θα(a + b), θγ(c)] = [θα(a), θγ(c)][θα(b), θγ(c)]

= θα+γ(cα,γ.(a · c))θα+γ(cα,γ.(b · c))

= θα+γ

(
cα,γ.(a · c) + cα,γ.(b · c)

)
.

Thus
cα,γ.((a + b) · c) = cα,γ.(a · c) + cα,γ.(b · c).

Since the right-hand side equals cα,γ.((a · c) + (b · c)) by Construction 5.7.5, it
follows that (a + b) · c = (a · c) + (b · c). The right distributive law can be proven
in a similar way.

5.7.9 Note. From now on, we will simply write ar in place of a.r for a ∈ A and
r ∈ R. Since a.(r · s) = (a.r) · s = r · (a.s) for all r, s ∈ R and all a ∈ A by
Lemma 5.7.8, this will not cause any confusion.

5.7.10 Lemma. Let (α, γ) be an A2-pair which lies in the orbit of (α0, γ0) under the
Weyl group of Φ (where (α0, γ0) is the fixed A2-pair from Construction 5.7.6). Then we
have

[θα(r), θγ(s)] = θα+γ(cα,γr · s) and [θγ(s), θα(r)] = θα+γ(cγ,αr · s)

for all r, s ∈ R. In particular, if (α0, γ0) and (α′
0, γ′

0) are two A2-pairs which are con-
jugate under the Weyl group, then replacing (α0, γ0) by (α′

0, γ′
0) in Construction 5.7.6

does not change the multiplication on R.

Proof. By Construction 5.7.6, the first formula is satisfied for (α, γ) = (α0, γ0).
Now let u be an arbitrary element of the Weyl group of Φ and put α := αu

0 ,
β := βu

0 . Since the simple reflections generate the Weyl group (Proposition 1.3.12),
we can choose a word δ̄ over ∆ such that u = σδ̄, and we put w := wδ̄. Let r, s ∈ R

be arbitrary. Conjugating the equation

[θα0(r), θγ0(s)] = θα0+γ0(cα0,γ0r · s)
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by w, we obtain that

[θα(ηα0,δ̄r), θγ(ηγ0,δ̄s)] = θα+γ(ηα0+γ0,δ̄cα0,γ0r · s).

By Lemma 5.5.9, this says that

[θα(ηα0,δ̄r), θγ(ηγ0,δ̄s)] = θα+γ(ηα0,δ̄ηγ0,δ̄cα,γr · s).

Replacing r by η−1
α0,δ̄r and s by η−1

γ0,δ̄s, this gives us the desired first formula.
For the second formula, observe that by Relation 1.1.11 (vi), the first formula

yields that

[θγ(s), θα(r)] = [θα(r), θγ(s)]−1 = θα+γ(−cα,γ.r · s).

Since cγ,α = −cα,γ by Lemma 3.1.23 (a), the second formula follows.

5.7.11 Construction (of the identity element). Fix an arbitrary simple root δ0.
By Proposition 5.4.10, there exist unique a−δ0 ∈ U−δ0 and bδ0 ∈ Uδ0 such that
wδ0 = a−δ0 bδ0 a−δ0 . We can thus define an element 1R := θ−1

δ0
(bδ0) which, a priori,

depends on the choice of δ0.

5.7.12 Lemma ([TW02, (19.9)]). We have r · 1R = r and 1R · r = r for all r ∈ R. In
particular, 1R does not depend on the choice of δ0 in Construction 5.7.11.

Proof. Let r ∈ R and write wδ0 = a−δ0 bδ0 a−δ0 as in Construction 5.7.11. Since
the Weyl group acts transitively on Φ, there exists a root ρ such that (ρ, δ0) is an
A2-pair which lies in the orbit of (α0, γ0). Recall that σδ0(ρ) = ρ + δ0. Now it
follows from Lemmas 5.4.2 and 5.7.10 that

θρ+δ0(cρ,δ0r · 1R) = [θρ(r), θδ0(1R)] = [θρ(r), bδ0 ]

= θρ(r)wδ0 = θρ+δ0(ηρ,δ0r).

Since (ρ, δ0) is an A2-pair, we know from Lemma 5.5.4 that ηρ,δ0 = cρ,δ0 . Thus
r · 1R = r.

The proof of the identity 1R · r = r is similar, but with a twist. This time we
choose a root ξ such that (δ0, ξ) is an A2-pair in the orbit of (α0, γ0). Then again
by Lemmas 5.4.2 and 5.7.10, we have

θδ0+ξ(cδ0,ξ1R · r) = [θδ0(1R), θξ(r)] = [θξ(r), bδ0 ]
−1

= (θξ(r)wδ0 )−1 = θξ+δ0(−ηξ,δ0r).

As above, we know from Lemma 5.5.4 that ηξ,δ0 = cξ,δ0 . Since cξ,δ0 = −cδ0,ξ by
Lemma 3.1.23 (a), we infer that 1R · r = r.

Now assume that 1′R is the element which is defined by the choice of another
simple root δ′0. Then it follows from the previous results that 1′R = 1′R · 1R = 1R ,
which finishes the proof.

5.7.13 Proposition. (R,+, ·) is a ring.

Proof. This is a consequence of Lemmas 5.7.8 and 5.7.12.

We can now state our main result for simply-laced root graded groups.
For simplicity, we phrase it for Φ-graded groups (which have to satisfy Ax-
iom 2.5.2 (iv)), but we have seen that it is actually true for any group G as in
Notation 5.7.1. Recall further from Remark 5.6.3 that the “base point” of a coordi-
natisation is only relevant if Φ is of type A and that in this case, it is possible to
choose (α0, γ0) and c in a way which yields the simple commutator formulas in
Example 5.6.5.



5.7. The Coordinatisation 155

5.7.14 Theorem (Coordinatisation theorem for An, Dn, En). Let Φ be an irreducible
simply-laced root system of rank at least 2 and let (G, (Uα)α∈Φ) be a Φ-graded group.
Choose any A2-pair (α0, γ0) and any family c = (cα,β)α,β∈An of Chevalley structure
constants (in the sense of Definition 3.1.18). Then there exist a ring R and a coordi-
natisation of G by R based at (α0, γ0) with signs c. If Φ is of rank at least 3, then R

is necessarily associative. If Φ is of type D or E, then R is necessarily associative and
commutative. Further, if we fix a ∆-system of Weyl elements in G, then we can choose
the root isomorphisms (θα)α∈Φ so that wδ = θ−δ(−1R)θδ(1R)θ−δ(−1R) for all δ ∈ ∆.

Proof. We have constructed R in Constructions 5.7.5 and 5.7.6, shown that it is a
ring in Proposition 5.7.13 and proven the commutator formulas in Lemma 5.7.10.
By Propositions 5.6.9 and 5.6.11, the assertions about the associativity and com-
mutativity of R hold. By Lemma 5.7.12, the Weyl elements have the desired
form.





Chapter 6

The Blueprint Technique

In [RT87], Ronan-Tits proved the existence of a large class of thick buildings by
constructing them from so-called “blueprints”. Here a blueprint is, essentially, a
local parameter system for a building which encompasses certain commutator
relations in the rank-2 residues. A blueprint is said to be realisable if there exists a
building which conforms to it, and Ronan-Tits give a simple realisability criterion
for blueprints. This criterion involves computations with certain rewriting rules
which are induced by a self-homotopy of the longest element in the Coxeter
group. For example, they show that a blueprint of type A3 is realisable if and
only if it is associative (in a suitable sense). The corresponding computation is
the same one that we will perform in section 6.3.

The blueprint technique is a novel method which consists of performing the
same kind of computations as in [RT87] in the context of root graded groups. It
makes sense for arbitrary root systems, but it will become apparent in this chapter
that it only produces meaningful results if the root system is of rank at least 3.
While the computations in the blueprint technique follow the same algorithm as
in [RT87], the underlying logic is, in a certain sense, inverted: Ronan-Tits start
from explicit commutator relations and then perform computations to derive
conditions on these relations. These extra conditions guarantee that a building
with the given commutator relations exist. On the other hand, we start with
an existing (arbitrary) root graded group G (which one should think of as a
“generalised building”) and use the blueprint computations to obtain information
about the commutation maps in G (in the sense of Remark 4.1.4).

The initial idea to “turn around” the computations of Ronan-Tits in this
way was suggested by Bernhard Mühlherr. Originally, the only objective of
this approach was to prove that coordinatising rings for C3-graded groups are
alternative. It later turned out that the blueprint technique can be used in a more
general way to not only prove identities in the coordinatising algebraic structure
(such as the alternative law), but to actually equip the parametrising groups with
an algebraic structure. See Note 6.4.4 for more details.

We begin this chapter with a section which describes the general idea of the
blueprint technique in a slightly informal way. In the following section, we state
and prove the results which make this technique work. In the third section, we
show how the blueprint technique can be used to obtain a new proof of the
fact that the coordinatising rings for root graded groups of type A in rank at
least 3 are associative. We end this chapter with some concluding remarks which,
in Strategy 6.4.3, also contain a summary of the blueprint technique. Later in
chapters 7 and 9, we will apply the blueprint technique to root graded groups of
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types B and (B)C, respectively. It should be noted that the specific computations
for types B and (B)C have not been performed in [RT87].

6.1 The Idea of the Blueprint Technique

6.1.1 Notation for this section. We denote by Φ a root system of rank n, by
∆ = (δ1, . . . , δn) a rescaled ordered root base of Φ and by W := Weyl(Φ) the Weyl
group. Further, we denote by G a Φ-graded group with root groups (Uα)α∈Φ.

In this section, we describe the idea of the blueprint technique. At some
points, we will restrict ourselves to the root system Φ = A3 and the standard
root base ∆ to simplify notation, but it will always be clear how our arguments
should be generalised to arbitrary root systems. Recall from Remark 5.2.9 that
the Weyl group of A3 can be identified with the symmetric group of [1, 4] in a
canonical way (as soon as a suitable root basis has been fixed).

6.1.2 Notation. In the context of the blueprint technique, we will often write i for
the simple root δi. For example, we write Ui for the root group Uδi or 121 for the
word (δ1, δ2, δ1).

At first, we have to introduce homotopy cycles.

6.1.3 Definition (Homotopy cycles). Let w be an arbitrary element of W and let
ᾱ be any expression of w (in the sense of Definition 1.3.20). A homotopy cycle of ᾱ
is a sequence of braid homotopy moves (in the sense of Definition 1.3.14) which
transforms ᾱ into itself. A homotopy cycle is said to be trivial if every homotopy
step is “reversed” by a later step, and non-trivial otherwise.

6.1.4 Note. Our definition of triviality for homotopy cycles is admittedly rather
vague. However, it will only be used in informal discussions, so this poses no
problem.

6.1.5 Example (Homotopy cycles in A3). Consider the root system Φ = A3. Here
we have the braid moves

121 → 212, 232 → 323, 13 → 31

(and their inverses) which correspond to the braid relations

σ(δ1)σ(δ2)σ(δ1) = σ(δ2)σ(δ1)σ(δ2), σ(δ2)σ(δ3)σ(δ2) = σ(δ3)σ(δ2)σ(δ3),
σ(δ1)σ(δ3) = σ(δ3)σ(δ1).

Thus the sequences 121 → 212 → 121 and 12113 → 21213 → 21231 → 12131 →
12113 are examples of homotopy cycles. Clearly, they are trivial. A reduced
expression of the longest element ρ in W (in the sense of Proposition 1.3.29) is
given by ᾱ1 = 123121. A non-trivial homotopy cycle of ᾱ1 is given in Figure 6.1.

6.1.6 Remark (Homotopy cycles in Cayley graphs). The Cayley graph of W with
respect to the generators σ(δ1), . . . , σ(δn) is, by definition, the graph whose vertex
set is W and whose edge set is

{ {w, wσ(δi)} | w ∈ W, i ∈ [1, n] }.

Further, any edge of the form {w, wσ(δi)} is labelled with i. As an example, we
consider the Weyl group of A3. Recall from Remark 5.2.9 that this group can be
identified with Sym([1, 4]) such that σe1−e2 = (1 2), σe2−e3 = (2 3), σe3−e4 = (3 4).
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(1) 123121 (8) 321323
(2) 121321 (9) 321232
(3) 212321 (10) 312132
(4) 213231 (11) 132312
(5) 231213 (12) 123212
(6) 232123 (13) 123121
(7) 323123

Figure 6.1: A non-trivial homotopy cycle for the longest word in Weyl(A3) (taken
from [TW02, Fig. 8, p. 472]).

The Cayley graph of Sym([1, 4]) with respect to these standard generators is
depicted in Figure 6.2 on page 160. Now the (reduced) expressions of any
element w correspond to the paths from id to w (of minimal length) and the
braid homotopy moves correspond to certain transformation rules for these
paths.

The homotopy cycle of the longest element ρ in Figure 6.1 can be interpreted
as follows. The Cayley graph in Figure 6.2 can also be drawn on the sphere
S2 with the large outer square (whose top-left corner is id) on the top and the
small inner square (whose bottom-right corner is ρ) on the bottom. Then id and
ρ lie on opposite points of S2. Now any minimal path from id to w goes in an
approximate semicircle from the top to the bottom, and the homotopy moves in
Figure 6.1 “push this semicircle once around (the hole in) S2”. The first and the
seventh path of this sequence are depicted in Figures 6.2a and 6.2b, respectively.

As a corollary of the observations in the previous paragraph, we observe that
ρ is the only element of W for which non-trivial homotopy cycles exist: reduced
expression of any other word are “too short to be pushed around the sphere”.
This statement remains true if we replace Φ by any other root system, and it is
the reason why we will only consider reduced expressions of the longest element
in the blueprint technique.

6.1.7 Note. We have observed in Remark 6.1.6 that every element of W which is
not the longest element has only trivial homotopy cycles. If Φ has rank 2, then
even the longest element has only trivial homotopy cycles: If { δ, δ′ } is the root
base of such a root system, then the only reduced expressions of the longest
element ρ are Pm(δ, δ′) and Pm(δ′, δ) for m := |Φ|/2. Hence the only homotopy
cycles of ρ are Pm(δ, δ′) → Pm(δ′, δ) → Pm(δ, δ′) and Pm(δ′, δ) → Pm(δ, δ′) →
Pm(δ, δ′) (and iterations of these cycles). Clearly, these cycles are trivial.

Using the language of homotopy cycles, we can now describe the idea of the
blueprint technique.

6.1.8 The blueprint technique. For ease of presentation, we consider only the
root system Φ = A3 in this introduction, but the underlying principle applies to
all root systems. We use the standard representation of A3 from Remark 5.2.3 and
we denote by ∆ = { δ1, δ2, δ3 } the standard root base of A3, so that δi = ei − ei+1
for all i ∈ [1, 3]. By Theorem 5.7.14, we have a ring (R,+, ·) and isomorphisms
(θα : (R,+) → Uα)α∈Φ. This ring must be associative by Theorem 5.7.14, but we
proceed as if we did not know this, and we try to derive a new proof of this fact.

For each i ∈ [1, 13], we denote by ᾱi the reduced expression of the longest ele-
ment ρ in the i-th column of Figure 6.1. For example, ᾱ1 = (δ1, δ2, δ3, δ1, δ2, δ1) =
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(a) The path 123121 (rows 1 and 13 in Figure 6.1 on page 159).
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(b) The path 323123 (row 7 in Figure 6.1 on page 159).

Figure 6.2: The Cayley graph of Sym([1, 4]) for the standard generators s1, s2, s3
and two reduced paths from id to the longest element ρ. See Remark 6.1.6.
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ᾱ13 or, in simplified notation, ᾱ1 = 123121 = ᾱ13. Further, we choose arbitrary
ring elements a, b, c, d, e, f ∈ R and consider the tuple

y1 :=
(
θ1(a), θ2(b), θ3(c), θ1(d), θ2(e), θ1( f )

)
.

In other words, y1 denotes an arbitrary element of

Uᾱ1 = U1 × U2 × U3 × U1 × U2 × U1.

Recall that Figure 6.1 depicts a non-trivial homotopy cycle of ᾱ1 which uses
the braid moves from Example 6.1.5. Using the theoretical framework of the
blueprint technique, we can compute a “sensible” rewriting rule on the tuple y1
for each of these homotopy moves. For examples, the braid moves 13 → 31 and
121 → 212 correspond to rewriting rules

U1 × U3 → U3 × U1,(
θ1(x), θ3(y)

)
7→
(
θ3(y), θ1(x)

)
and

U1 × U2 × U1 → U2 × U1 × U2,(
θ1(x), θ2(y), θ1(z)

)
7→
(
θ2(z), θ1(−y − zx), θ2(x)

)
.

Now the main part of the blueprint technique consists of “working down” the
column in Figure 6.1 and applying the corresponding rewriting rule to the tuple
y1 in each step. We refer to this procedure as the blueprint computation. In the
first step, we apply the elementary homotopy 31 → 13 to ᾱ1, which produces
ᾱ2 = 121321. Simultaneously, we apply the corresponding rewriting rule U3 ×
U1 → U1 × U3 to y1. This yields a tuple

y2 =
(
θ1(a), θ2(b), θ1(c′), θ3(d′), θ2(e), θ1( f )

)
∈ Uᾱ2

where c′, d′ ∈ R are new ring elements which depend on c and d. In the next
step, we apply the elementary homotopy 121 → 212 to ᾱ2 to obtain the word
ᾱ3 = 212321. Again we use the associated rewriting rule to compute a new tuple

y3 =
(
θ2(a′), θ1(b′), θ2(c′′), θ3(d′), θ2(e), θ1( f )

)
∈ Uᾱ2

where a′, b′, c′′ depend on a, b and c′. After applying twelve transformations in
total, we end up with ᾱ13 = 123121 = ᾱ1 and a tuple

y13 =
(
θ1(ã), θ2(b̃), θ3(c̃), θ1(d̃), θ2(ẽ), θ1( f̃ )

)
∈ Uᾱ13 = Uᾱ1 .

For reasons which will be explained later, we know that we must have y1 = y13,
so ã = a, b̃ = b, . . . , f̃ = f . Since ã, . . . , f̃ can be calculated explicitly (using
our rewriting rules), we obtain six relations which hold for arbitrary elements
a, . . . , f ∈ R. When we actually perform these calculations, five of these relations
turn out to be trivial, but we will see that the last relation is equivalent to the
associativity law. Therefore, the blueprint technique yields that any ring which
coordinatises an A3-graded group must be associative.

6.1.9 Remark (Formal justification). In order to actually perform the calculations
in 6.1.8, we need to state the rewriting rules on our tuples. These rules should be
chosen in a way which guarantees that, at the end of the computation, we have
y13 = y1. The idea is as follows: For every reduced expression β̄ = (β1, . . . , βm)
of the longest element, we define a certain map γβ̄ : Uβ1 × · · · ×Uβm → G and we
choose our rewriting rules so that γᾱi+1(yi+1) = γᾱi(yi) for all i. In other words,
we can think of γ as an invariant of the involved tuples, and the rewriting rules
are chosen precisely to leave the invariant unchanged. Thus we have

γᾱ1(y1) = γᾱ2(y2) = · · · = γᾱk−1(yk−1) = γᾱk(yk) = γᾱ1(yk)



162 6. The Blueprint Technique

where k is the length of the homotopy cycle in question. Now it remains to show
that γᾱ1 is injective, which is done in Proposition 6.2.7.

6.1.10 Remark (Simplification of the blueprint computation). Instead of work-
ing down an entire homotopy cycle, we will in practice perform two separate
computations: One working “halfway down”, which transforms the initial tuple
y1 into some tuple x, and another one working “halfway up”, which transforms
y1 into some other tuple x′. By the same arguments as in Remark 6.1.9, we have
γ(x′) = γ(y1) = γ(x′′), so we infer that x′ = x′′. We will do this because the
tuple entries in the blueprint computation become more complicated with each
step, so it is more efficient to perform two short computations than to perform
one long computation.

6.2 The Formal Framework of the Blueprint Technique

6.2.1 Notation for this section. We denote by Φ a root system of rank n, by
∆ = (δ1, . . . , δn) a rescaled ordered root base of Φ, by Π the corresponding
positve system in Φ and by W := Weyl(Φ) the Weyl group. Further, we denote
by G a Φ-graded group with root groups (Uα)α∈Φ and we fix a ∆-system (wδ)δ∈∆
of Weyl elements in G.

The first part of this section is devoted to the introduction of the invariant γ
that we announced in Remark 6.1.9 and the proof that it is an injective map
(Proposition 6.2.7). In the second part, we state some basic results concerning
rewriting rules which will be used later on.

6.2.2 Reminder. Recall from Definition 2.1.2 that for any word ᾱ = (α1, . . . , αk)
over Φ, we put

Uᾱ := Uα1 × · · · × Uαk .

This should not be confused with the notation US := ⟨Uα | α ∈ S⟩ for any subset
S of Φ.

6.2.3 Definition (Blueprint invariant). Let δ̄ be a word over ∆. The blueprint
invariant of type δ̄ (with respect to (wδ)δ∈∆) is the map

γ̃δ̄ : Uδ̄ → G, (g1, . . . , gm) 7→
m

∏
i=1

wδi gi = wδ1 g1 · · ·wδm gm.

Further, the reduced blueprint invariant of type δ̄ (with respect to (wδ)δ∈∆) is the
composition of γ̃δ̄ with the canonical projection to G/Z(G):

γδ̄ : Uᾱ → G/Z(G), (g1, . . . , gm) 7→ γ̃g1,...,gm Z(G).

6.2.4 Definition (Blueprint rewriting rules). Let ᾱ, β̄ be words over ∆. A rewriting
rule of type (ᾱ, β̄) (with respect to (wδ)δ∈∆) is a map Uᾱ → Uβ̄. A rewriting rule φ

of type (ᾱ, β̄) is called a blueprint rewriting rule if it respects the reduced blueprint
invariant: γβ̄ ◦ φ = γᾱ.

The main result in this section is the fact that the reduced blueprint invariant
is an injective map. For the non-reduced blueprint invariant, this is a direct
consequence of the injectivity of the product maps (Proposition 2.5.7), but we
have to work a bit more to see that it also holds modulo the center.

6.2.5 Lemma. Let ᾱ = (α1, . . . , αm) be a reduced word over ∆ (where m ≥ 1) and let
v := σ(ᾱ). Then UN(v) ∩ Z(G) = {1G} where Z(G) denotes the center of G.
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Uᾱ Uβ̄

G/Z(G)

φ

γᾱ γβ̄

Figure 6.3: The condition of being a blueprint rewriting rule.

Proof. It suffices to prove the statement for the root base corresponding to ∆, so
we can assume that ∆ is a proper root base. This allows us to apply Lemma 1.3.25
and Proposition 1.3.28. The statement is trivial if m = 1, so we assume that m > 1.
Let β̄ = (β1, . . . , βm) be the root sequence associated to ᾱ as in Definition 1.3.26,
so that N(w) = { β1, · · · , βm } by Proposition 1.3.28. Let x ∈ UN(w) ∩ Z(G).
We want to show that x = 1G. By Proposition 2.5.7, the product map on β̄ is
bijective, so there exist x1 ∈ Uβ1 , . . . , xm ∈ Uβm such that x = x1 · · · xm. Choose
an arbitrary βm-Weyl element wm, and observe that βm = αm by the definition of
root sequences. In particular, βm is a simple root. Now x1 · · · xm = xwm

1 · · · xwm
m

because x1 · · · xm is central, which implies that

(xwm
1 · · · xwm

m−1)
−1x1 · · · xm = xwm

m .

Note that the element on the left-hand side lies in UΠ (because (Π \ R>0γ)σ(γ) =
Π \ R>0γ ⊆ Π for any γ ∈ ∆ by Lemma 1.3.24) while the element on the right-
hand side lies in U−βm . Since UΠ ∩ U−βm = {1G} by Axiom 2.5.2 (iv), it follows
that xwm

m = 1G, so xm = 1G.
We conclude from the previous paragraph that x = x1 · · · xm−1. Put v′ :=

vσ(αm). Note that (α1, . . . , αm−1) is a reduced expression of v′. By Lemma 1.3.25,

{ β1, · · · , βm−1 } = N(v) \ {βm} = N(v) \ {αm} = N(w′)σ(αm).

Thus x1 · · · xm−1 lies in UN(v′)σ(αm) = Uwm
N(v′), so xwm

1 · · · xwm
m−1 lies in UN(v′). It

follows that x = xwm
1 · · · xwm

m−1 ∈ UN(w′) ∩ Z(G). Using induction, we infer that
x = 1G, as desired.

6.2.6 Proposition. UΠ ∩ Z(G) = {1G}.

Proof. The longest word ρ satisfies N(ρ) = Πindiv by Proposition 1.3.29. Since
UΠindiv = UΠ, the assertion follows from Lemma 6.2.5.

6.2.7 Proposition. Let ᾱ = (α1, . . . , αm) be a reduced word over ∆. Then the reduced
blueprint invariant γᾱ of type ᾱ with respect to (wδ)δ∈∆ is injective.

Proof. As in Notation 6.1.2, we put Ui := Uδi and wi := wδi for all i ∈ [1, n]. Let
g = (g1, . . . , gm) and h = (h1, . . . , hm) be elements of U1 × · · · × Um such that
γᾱ(g) = γᾱ(h). Then there exists z ∈ Z(G) such that

w1g1w2g2 · · ·wm−1gm−1wmgm = w1h1w2h2 · · ·wm−1hm−1wmhmz.

We want to show that g = h. Using that ab = bab for all a, b ∈ G, we see that the
product on the left side equals

w1w2 · · ·wmgw2···wm
1 gw3···wm

2 · · · gwm
m−1gm.

A similar transformation can be done on the right-hand side. We infer that

gw2···wm
1 gw3···wm

2 · · · gwm
m−1gm = hw2···wm

1 hw3···wm
2 · · · hwm

m−1hmz. (6.1)
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Put

ḡ := (gw2···wm
1 , gw3···wm

2 , . . . , gwm
m−1, gm), h̄ := (hw2···wm

1 , hw3···wm
2 , . . . , hwm

m−1, hm).

Note that for each i ∈ [1, m], gwi+1···wm
i and hwi+1···wm

i lie in the root group associated

to α
σ(αi+1···αm)
i . It follows that ḡ and h̄ lie in Uβ̄ where β̄ = (β1, . . . , βm) denotes

the root sequence associated to ᾱ. Thus (6.1) says that µβ̄(ḡ) = µβ̄(h̄)z where µβ̄

denotes the product map on β̄. Hence

z = µβ̄(h̄)
−1µβ̄(ḡ) ∈ UΠ ∩ Z(G).

By Proposition 6.2.6, it follows that z = 1G, so we actually have µβ̄(ḡ) = µβ̄(h̄).
Using Proposition 2.5.7, we conclude that ḡ = h̄. Since conjugation by Weyl
elements is an automorphism, this yields g = h, so γᾱ is indeed injective.

We can now state the essence of the blueprint technique as follows.

6.2.8 Theorem. Let ᾱ, β̄ be two reduced words over ∆ such that σᾱ = σβ̄, let x ∈ Uᾱ

and let ψ1, ψ2 : Uᾱ → Uβ̄ be two blueprint rewriting rules. Then ψ1(x) = ψ2(x).

Proof. Since ψ1 and ψ2 are γ-compatible, we have

γβ̄

(
ψ1(x)

)
= γᾱ(x) = γβ̄

(
ψ2(x)

)
.

Since γβ̄ is injective by Proposition 6.2.7, the assertion follows.

6.2.9 Note. In practice, all blueprint rewriting rules in this thesis will be compati-
ble with the non-reduced blueprint invariant, and not merely with the reduced
blueprint invariant. Thus it would have been sufficient for our purposes to only
prove the injectivity of the non-reduced blueprint invariant, which would have
been slightly easier.

The rest of this section is a collection of elementary facts about blueprint
rewriting rules.

6.2.10 Remark. Let ᾱ = (α1, . . . , αn) and β̄ = (β1, . . . , βm) be two words over ∆,
let gi ∈ Uαi for all i ∈ [1, n] and let hj ∈ Uβ j for all j ∈ [1, m]. Then

γᾱβ̄(g1, . . . , gn, h1, . . . , hm) = γᾱ(g1, . . . , gn)γβ̄(h1, . . . , hm).

6.2.11 Remark. Let ᾱ, β̄ be words over Φ and let φ : Uᾱ → Uβ̄ be a bijective
blueprint rewriting rule. Then γβ̄ ◦ φ = γᾱ, so

γβ̄ = γβ̄ ◦ φ ◦ φ−1 = γᾱ ◦ φ−1.

That is, φ−1 is also a blueprint rewriting rule.

6.2.12 Remark. Clearly, the concatenation of two blueprint rewriting rules is
again a blueprint rewriting rule.

In the following Lemma 6.2.13 and its proof, we will identify (ḡ, h̄) (for any
tuples ḡ = (g1, . . . , gn), h̄ = (h1, . . . , hm)) with the tuple (g1, . . . , gn, h1, . . . , hm).

6.2.13 Lemma. Let ᾱ, β̄, ᾱ′, β̄′ be words over Φ and let

φ : Uᾱ → Uᾱ′ , ḡ 7→ φ(ḡ) and ψ : Uβ̄ → Uβ̄′ , h̄ 7→ ψ(h̄)

be blueprint rewriting rules. Further, define

φ × ψ : Uᾱβ̄ = Uᾱ × Uβ̄ → Uᾱ′ β̄′ = Uᾱ′ × Uβ̄′ , (ḡ, h̄) 7→
(

φ(ḡ), ψ(h̄)
)
.

Then φ × ψ is a blueprint rewriting rule.
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Proof. Let ḡ ∈ Uᾱ and let h̄ ∈ Uβ̄. By Remark 6.2.10, we have

γᾱβ̄(ḡ, h̄) = γᾱ(ḡ)γβ̄(h̄).

On the other hand,(
γᾱ′ β̄′ ◦ (φ × ψ)

)
(ḡ, h̄) = γᾱ′ β̄′

(
φ(ḡ), ψ(h̄)

)
= γᾱ′

(
φ(ḡ)

)
γβ̄′
(
ψ(h̄)

)
.

Since φ and ψ are blueprint rewriting rules, the assertion follows.

The following result says that it is sufficient to compute blueprint rewriting
rules for the basic braid moves, for example for 121 → 212 in A3. These basic
rewriting rules can then be extended to rewriting rules which are defined on
reduced expressions of the longest word.

6.2.14 Proposition. Let ᾱ1, ᾱ2, ᾱ3, ᾱ′
2 be words over ∆ and let φ : Uᾱ2 → Uᾱ′2

be a
blueprint rewriting rule. Then the map

id×φ × id : Uᾱ1 × Uᾱ2 × Uᾱ3 → Uᾱ1 × Uᾱ′2
× Uᾱ3 , (ḡ1, ḡ2, ḡ3) 7→ (ḡ1, φ(ḡ2), ḡ3)

is a blueprint rewriting rule.

Proof. The identity map is clearly a blueprint rewriting rule, so this is a conse-
quence of Lemma 6.2.13.

The following blueprint rewriting rule is easy to compute and will be used
for all root systems.

6.2.15 Lemma. Let α, β ∈ Φ be such that β is adjacent to α and to −α. Then the map

φ : Uα × Uβ → Uβ × Uα, (xα, xβ) 7→ (xβ, xα).

is a blueprint rewriting rule.

Proof. Note that −β is adjacent to −α because β is adjacent to α. Similarly, −β
is adjacent to α because β is adjacent to −α. Thus ⟨Uα, U−α⟩ commutes with
⟨Uβ, U−β⟩. Hence

γαβ(xα, xβ) = wαxαwβxβ = wβxβwαxα and

(γβα ◦ φ)(xα, xβ) = γβα(xβ, xα) = wβxβwαxα

for all xα ∈ Uα and all xβ ∈ Uβ. In other words, φ is a blueprint rewriting
rule.

6.3 Blueprint Computations for A3

6.3.1 Notation for this section. We consider the root system An for n ≥ 3 in
standard representation and with its standard ordered root base ∆ = (δ1, . . . , δn).
Further, we denote by G a group with an An-grading (Uα)α∈An and by (θα)α∈An

a coordinatisation of G by some ring R with signs and base point chosen as in
Example 5.6.5. and by (wδ)δ∈∆ a fixed ∆-system of Weyl elements in G.

6.3.2 Notation. We will usually (and in contrast to Notation 6.1.2) identify any
root ei − ej with the pair (i, j) and we will always write ij instead of (i, j). In other
words, we set Uij := Uei−ej and θij := θei−ej for all distinct i, j ∈ [1, n + 1]. Further,
we denote by

wij := wij(1R) = θji(−1R)θij(1R)θij(1R)

the Weyl element from Proposition 5.6.6.
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In this section, we will demonstrate how the blueprint technique can be used
to show that the coordinatising ring R must be associative. In other words, we
give a new proof of the An-case in Proposition 5.6.9. All computations in this
section will take place in the parabolic root subsystem

A3 := { ei − ej | i ̸= j ∈ [1, 4] }
of An and in the corresponding A3-graded subgroup of G. No further information
can be obtained from the blueprint technique by considering larger subsystems.

At first, we have to compute the blueprint rewriting rules for A3. We begin
by explicitly stating them. In the proof of Lemma 6.3.4, we will see how to arrive
at these specific formulas.

6.3.3 Definition (Rewriting rules for A3). We define the following rewriting
rules:

ψ123 : U12 × U23 × U12 → U23 × U12 × U12,(
θ12(a), θ23(b), θ12(c)

)
7→
(
θ23(c), θ12(−b − ca), θ23(a)

)
;

ψ234 : U23 × U34 × U23 → U34 × U23 × U34,(
θ23(a), θ34(b), θ23(c)

)
7→
(
θ34(c), θ23(−b − ca), θ34(a)

)
; and

φ : U12 × U34 → U34 × U12,(
θ12(a), θ34(b)

)
7→
(
θ34(b), θ12(a)

)
.

It is easy to see that these maps are bijections whose inverses are given by

ψ−1
123 : U23 × U12 × U12 → U12 × U23 × U12,(
θ23(a), θ12(b), θ23(c)

)
7→
(
θ12(c), θ23(−b − ac), θ12(a)

)
;

ψ−1
234 : U34 × U23 × U34 → U23 × U34 × U23,(
θ34(a), θ23(b), θ34(c)

)
7→
(
θ23(c), θ34(−b − ac), θ23(a)

)
; and

φ−1 : U34 × U12 → U12 × U34,(
θ34(b), θ12(a)

)
7→
(
θ12(a), θ34(b)

)
.

6.3.4 Lemma. ψ123, ψ−1
123, ψ234, ψ−1

234, φ and φ−1 are blueprint rewriting rules (with
respect to the Weyl elements w12, w23, w34).

Proof. By Remark 6.2.11, we only need to prove that ψ123, ψ234 and φ are blueprint
rewriting rules. Further, φ is a blueprint rewriting rule by Lemma 6.2.15. We
proceed to prove that ψ123 is a blueprint rewriting rule (and the proof for ψ234 is
identical). Let a, b, c ∈ R and set

ᾱ := (e1 − e2, e2 − e3, e1 − e2) and β̄ := (e2 − e3, e1 − e2, e2 − e3).

On the one hand, we have

x := (γβ̄ ◦ ψ123)
(
θ12(a), θ23(b), θ12(c)

)
= γβ̄

(
θ23(c), θ12(−b − ca), θ23(a)

)
= w23θ23(c)w12θ12(−b − ca)w23θ23(a)
= w23w12w23θ23(c)w12w23 θ12(−b − ca)w23 θ23(a).

Using the conjugation formula from Example 5.6.8, we can compute that

θ23(c)w12w23 θ12(−b − ca)w23 θ23(a) = θ13(−c)w23 θ13(−b − ca)θ23(a)
= θ12(c)θ13(−b − ca)θ23(a)
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On the other hand, we have

y := γᾱ

(
θ12(a), θ23(b), θ12(c)

)
= w12θ12(a)w23θ23(b)w12θ12(c)

= w12w23w12θ12(a)w23w12 θ23(b)w12 θ12(c)

where

θ12(a)w23w12 θ23(b)w12 θ12(c) = θ13(a)w12 θ13(−b)θ12(c) = θ23(a)θ13(−b)θ12(c).

We have to prove that x = y. Since w23w12w23 = w12w23w12 by Theorem 2.5.10, it
only remains to show that

θ12(c)θ13(−b − ca)θ23(a) = θ23(a)θ13(−b)θ12(c).

In order to prove this, we apply the commutator relations in A3-graded groups:

θ23(a)θ13(−b)θ12(c) = θ23(a)θ12(c)θ13(−b) = θ12(c)θ23(a)[θ23(a), θ12(c)]θ13(−b)

= θ12(c)θ23(a)[θ12(c), θ23(a)]−1θ13(−b)
= θ12(c)θ23(a)θ13(−ca)θ13(−b) = θ12(c)θ13(−b − ca)θ23(a).

Thus x = y, so ψ123 is a blueprint rewriting rule. This finishes the proof.

Now that we have determined the blueprint rewriting rules for A3, we can
apply the ideas from 6.1.8 and 6.1.10 in practice.

6.3.5 Theorem. The multiplication · on R is associative.

Proof. In this proof, we drop Notation 6.3.2 and go back to Notation 6.1.2 instead.
That is, we write θi in place of θi,i+1. Let a, b, c, d, e, f ∈ R be arbitrary and set

x :=
(
θ1(a), θ2(b), θ3(c), θ1(d), θ2(e), θ1( f )

)
.

A homotopy cycle for the longest word in A3 is given in Figure 6.4c on page 168.
Working down rows 1 to 7 and applying the corresponding blueprint rewriting
rules in the process (as in Figure 6.4a), we obtain a tuple y = (y1, . . . , y6) where

y1 = θ3( f ), y2 = θ2(−e − f d), y3 = θ3(d),

y4 = θ1
(
c + ea + f (b + da)

)
, y5 = θ2(−b − da), y6 = θ3(a).

Further, working up rows 13 to 7 yields a tuple z = (z1, . . . , z6) where

z1 = θ3( f ), z2 = θ2(−e − f d), z3 = θ3(d),

z4 = θ1
(
c + f b + (e + f d)a

)
, z5 = θ2(−b − da), z6 = θ3(a).

(For the intermediate steps of these two calculations, see Figures 6.4a and 6.4b.)
Since each used rewriting rule is a blueprint rewriting rule, an application of
Theorem 6.2.8 yields yi = zi for all i ∈ [1, 6]. In particular, y4 = z4, so

c + ea + f (b + da) = c + f b + (e + f d)a for all a, b, c, d, e, f ∈ R.

Setting b = c = e = 0, we conclude that f (da) = ( f d)a for all a, f , d ∈ R. That is,
R is associative.

6.3.6 Note. We could set b, c and e to zero right at the beginning of the computa-
tion in Figure 6.4 to obtain an easier (and yet flawless) proof of Theorem 6.3.5.
Of course, this is only possible with the knowledge which variables turn out to
be immaterial, and we can only obtain this knowledge by performing the full
computation.
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6.3.7 Note. Observe that we have never applied the distributive laws in the com-
putation in Figure 6.4. In fact, these laws follow from the blueprint computations:
Putting c = b = 0 and f = 1 in the equation y4 = z4 in the proof of Theorem 6.3.5,
we obtain that

ea + da = (e + d)a.

Conversely, putting c = d = 0 and d = 1, we infer that

f (b + a) = f b + f a.

This proof is independent of the one in Lemma 5.7.8. We will get back to this
observation in Remark 6.4.2.

6.3.8 Note. In the same manner as for A3, we can use the blueprint technique
to show that any ring which coordinatises a D4-graded group is commutative.
Since all the root systems E6, E7, E8 and Dn for n ≥ 4 contain D4 as a parabolic
subsystem, it follows that the same assertion holds for these root systems as well.

6.4 Concluding Remarks

We end this chapter with some remarks.

6.4.1 Remark (Commutation maps). In section 6.3, we have shown that any
ring (R,+, ·) which coordinatises an A3-graded group (with standard signs) is
associative. We can also phrase this as follows: We have shown in Lemma 5.7.12,
Theorem 6.3.5, and Note 6.3.7 that for any group (R,+) which coordinatises an
A3-graded group with standard signs, the commutation map f : R ×R → R

satisfies the identities (4.1) in Remark 4.1.4 which turn R into an associative
ring. This viewpoint – that the blueprint computations yield identities for the
commutation maps which are precisely the axioms of some algebraic structure –
will generalise without problems to the more complicated root systems.

6.4.2 Remark (Classes of identities). It will be beneficial to informally distin-
guish two classes of identities for commutation maps. We say that an identity
is a rank-2 identity if it follows from computations “within a single rank-2 sub-
group”, and we say that it is a higher-rank identity if it requires computations in a
subgroup of rank 3 or higher. For example, the “bi-additivity” of commutators
in Lemma 2.1.13 is proven in the rank-2 setting, and so the distributive laws for
the ring multiplication in Lemma 5.7.8 are rank-2 identities. We will see other
examples of rank-2 identities in Lemmas 7.4.4, 7.5.3 and 9.4.3. On the other hand,
the associativity and commutativity laws in Propositions 5.6.9 and 5.6.11 are
higher-rank identities.

Both kinds of identities can in principle be derived with the blueprint tech-
nique, as we have seen in Theorem 6.3.5 and Note 6.3.7. However, since the
rank-2 identities can be proven in an easy and straightforward way, it is usually
more efficient to derive them directly and then to use them during the blueprint
computation to simplify terms.

Another important type of identities are those which we call Weyl identities.
These are, by definition, identities which hold for the specific elements that
parametrise the fixed ∆-system (wδ)δ∈∆ of Weyl elements. In the A3-case, the
identity 1R · r = r = r · 1R (where 1R is defined to be the unique element of R
which satisfies wδ0 ∈ U−δ0 θδ0(1R)U−δ0) is an (and the only) example of a Weyl
identity. These identities always follow from formulas as in Proposition 5.4.3.
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Technically, they are rank-2 identities, but it is beneficial to consider them sepa-
rately because they do not follow from the blueprint computations. The reason
for this is that the blueprint computations only produce identities which hold for
arbitrary parameters whereas the Weyl identities involve the specific elements
which parametrise (wδ)δ∈∆.

6.4.3 Strategy. Let Φ be a root system of rank at least 3 and let G be a Φ-graded
group. We can summarise the steps in the blueprint technique for Φ-graded
groups as follows:

(1) Compute a reduced expression of the longest element in Weyl(Φ) and a
non-trivial homotopy cycle of this expression.

(2) Define commutation maps in G, as in Remark 4.1.4 and Note 4.1.13.
(3) Compute the rank-2 identities of the commutation maps, including the

Weyl identities.
(4) For each braid homotopy move in Weyl(Φ), compute a blueprint rewriting

rule. These rewriting rules involve the commutation maps in G.
(5) Perform the blueprint computations, as in Figure 6.4.
(6) Show that the set of identities which result from the blueprint computations

is equivalent to a set of “smaller, easier-to-understand” identities. This
is done by putting several of the involved variables to zero (or to 1 or to
similar “canonical” elements) and then using the resulting identities to
simplify the original identities.

6.4.4 Note (The original conception of the blueprint technique). Using the Hall-
Witt identity, Zhang shows in [Zha14, 3.4.9 to 3.4.18] that the commutation maps
in certain C3-graded groups can be described explicitly in terms of the algebraic
structure of a ring with involution. The original idea of the blueprint technique
was to apply it only after these Hall-Witt computations are done, which results
in more explicit formulas for the blueprint rewriting rules. This in turn makes
the blueprint computation much less cumbersome, essentially because many of
the identities which would “normally” result from the blueprint computation
have already been verified “by hand”. The only new identity which follows from
the “original” blueprint computation is the alternative law, which is in fact all
that we wanted to prove at this time. It is a crucial observation that the blueprint
computations work just as well if the rewriting rules are given only in terms of
abstract commutation maps, which significantly streamlines our approach to root
graded groups for all root systems. See also Remark 6.4.1.

6.4.5 Remark (Rank higher than 3). The length of the longest word in Weyl(Φ)
and thus of the blueprint computation increases with the rank of Φ, so there is a
high incentive to keep this rank as low as possible. It turns out that, in all types
of root systems for which we perform the blueprint computation, there is no
need to go higher than rank 3. For example, if we were to perform the blueprint
computation for A4, we would obtain only the associativity of the coordinatising
ring but no further identities. For this reason, we will always restrict the blueprint
computations to the rank-3 case.

We emphasise that this restriction of the blueprint computation does not lead
to a restriction of the generality of our coordinatising results. To see why, observe
that every root system of type Xn for X ∈ { A, B, C, BC } and n ≥ 3 contains a
subsystem of type X3. Thus every Xn-graded group G contains an X3-graded
subgroup G′. The blueprint computations in rank 3 show that the commutation
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maps in G′ satisfy a certain set of identities. Using the ideas in Note 4.1.13, we
can describe all commutation maps in G using only the commutation maps in G′.
Thus the blueprint computation yields information about the computation maps
in all of G, not only in G′.





Chapter 7

Root Gradings of Type B

In this chapter, we investigate Bn-graded groups for n ≥ 2, though we will
restrict ourselves to the case n ≥ 3 for the main results. Except for the case
of RGD-systems, we are not aware of any prior literature on this topic. The
standard reference for RGD-systems of type B2 is Chapter 23 in [TW02]. Many
of the arguments in [TW02] no longer work in the setting of root graded groups.
Instead, we have to deploy several “rank-3 arguments”.

Unlike the simply-laced root systems, Bn (and every other root systems that
we study from this point on) has multiple orbits of roots, so we will for the first
time see root graded groups with non-isomorphic pairs of root groups. Since
every long root in Bn is contained in an A2-subsystem (Lemma 7.2.12), we should
expect the long root groups to be coordinatised by some ring k. In the end, we
will show that this ring must be commutative associative and that the short root
groups are coordinatised by a quadratic module M over k.

More precisely, we prove the following two statements. Firstly, there exist
an abelian group (k,+) which parametrises the long root groups and another
abelian group (M,+) which parametrises the short root groups. Secondly, the
commutation maps will be described by a map k × k → k which turns k into
a commutative associative ring, a map k × M → M which turns M into a left
k-module, a k-quadratic form q : M → k and a k-bilinear form f : M × M → k

which is the linearisation of q. The commutator formula has the exact same form
as the Chevalley commutator formula, except that expressions of the form v2 and
2vw for v, w ∈ M (which do not make sense for module elements) are replaced
by q(v) and f (v, w), respectively.

This chapter is organised in the way described in section 4.7. We begin
with a brief introduction to quadratic modules over commutative associative
rings. In section 7.2, we study some purely combinatorial properties of the
root system Bn and compute its Cartan integers. In section 7.3, we show how a
so-called elementary orthogonal group can be constructed from any quadratic
module, which provides a complete solution of the existence problem. The rank-2
computations are split into two parts: We begin with the general case of (non-
crystallographic) B2-gradings in section 7.4 and continue with crystallographic
B2-gradings in section 7.5. Results from both sections will be used in chapter 9 as
well.

From the second half of the chapter on, we consider Bn-gradings for n ≥ 3.
In section 7.6, we prove that Weyl elements in these groups satisfy the square
formula. In sections 7.7 and 7.8, we define the notions of standard partial twisting
systems and standard signs for Bn-graded groups, respectively. In section 7.9, we
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apply the results from the previous sections and the parametrisation theorem
to construct parametrising groups (k,+) and (M,+). The commutation maps,
their rank-2 identities and the blueprint rewriting rules are defined, derived and
computed in section 7.10. Finally, we perform the blueprint computations for B3
in section 7.11, and we state our final result in Theorem 7.11.21.

7.1 Quadratic Maps and Modules

7.1.1 Notation for this section. We denote by k an arbitrary commutative asso-
ciative ring. Unless otherwise specified, all modules are understood to be left
modules over k (in the standard sense of Definition 5.1.22).

In this section, we introduce the basic terminology of quadratic maps, forms
and modules. These objects are often only considered over base fields, but the
basic notions (which are all that we need) translate to the case of commutative
associative base rings without a change. With this caveat, all the material in this
section is standard and can be found, for example, in [EKM08, Section 7]. A
reference which treats quadratic modules over arbitrary commutative associative
rings is [Knu91], though it only considers quadratic modules which are finitely
generated projective.

Some of the results in this section will be generalised in section 8.1 to the more
general weakly quadratic maps.

We begin with the notion of quadratic maps between arbitrary k-modules.

7.1.2 Definition (Polarisation, [EKM08, 7.1]). Let (M,+), (N,+) be two abelian
groups and let f : M → N be any map (not necessarily a homomorphism). The
polarisation of f is the map

M × M → N, (v, w) 7→ f (v + w)− f (v)− f (w).

More generally, let n be a positive integer, let (M1,+), . . . , (Mn,+), (N,+) be
abelian groups and let f : M1 × · · · × Mn → N be any map. Then for all i ∈ [1, n],
the polarisation of f at position i is the map

M1 × · · · × Mi−1 × Mi × Mi × Mi+1 × · · · × Mn → N,

(v1, . . . , vi−1, vi, wi, vi+1, . . . , vn) 7→ f̃ (vi + wi)− f̃ (vi)− f̃ (wi)

where f̃ (ui) := f (v1, . . . , vi−1, ui, vi+1, . . . , vn).

7.1.3 Definition (Quadratic map, [EKM08, 7.1], [Knu91, (5.3.5)]). Let M, N be
k-modules. A map q : M → N is called k-quadratic (or simply quadratic) if it
satisfies the following two conditions:

(i) q(λv) = λ2q(v) for all λ ∈ k, v ∈ M.
(ii) The polarisation f : M × M → N, (v, w) 7→ q(v + w)− q(v)− q(w) of f is

k-bilinear. This map is also called the linearisation of q.

In practice, we will only be concerned with the case that N = k, which we
study from Definition 7.1.8 on.

7.1.4 Note (Polarisations and linearisations). The terms “polarisation” and “lin-
earisation” are often used interchangeably in the literature. In this thesis, we will
use “polarisation” as a general descriptor for the maps defined in Definition 7.1.2
while only the polarisations of quadratic maps will be called “linearisations”. In
other words, a polarisation will only be called a linearisation if it is actually linear
(or rather, bilinear).
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7.1.5 Lemma. Let M, N be k-modules, let q : M → N be a quadratic map and let f
denote its linearisation. Then the following statements hold:

(a) q(v + w) = q(v) + q(w) + f (v, w) for all v, w ∈ M.
(b) For all n ∈ N+ and all v1, . . . , vn ∈ M, we have

q

(
n

∑
i=1

vi

)
=

n

∑
i=1

q(vi) +
n

∑
i=1

n

∑
j=i+1

f (vi, vj).

(c) f is symmetric, that is, f (v, w) = f (w, v) for all v, w ∈ M.
(d) q(0M) = 0N .
(e) f (v, v) = 2kq(v) for all v ∈ M.

Proof. The first assertion is simply a reformulation of the definition of f and the
second assertion follows from the first one by induction. The third assertion is
clear. The fourth assertion follows from the equation

q(0M) = q(0M + 0M) = q(0M) + q(0M) + f (0M, 0M) = 2kq(0M).

For the last assertion, let v ∈ M. On the one hand,

q(2kv) = 22
kq(v) = 4kq(v).

On the other hand,

q(2kv) = q(v + v) = q(v) + q(v) + f (v, v) = 2kq(v) + f (v, v).

Thus 4kq(v) = 2kq(v) + f (v, v), or in other words, 2kq(v) = f (v, v).

The following Lemma 7.1.6 says that for commutative associative rings in
which 2 is invertible, a quadratic map from M to N is essentially the same thing
as a symmetric bilinear map from M × M to N. Thus the study of quadratic
maps reduces to the study of symmetric bilinear maps in this case. In the general
situation, however, we will see in Example 7.1.10 that a quadratic map “contains
more information” than its linearisation. For this reason, quadratic maps are bet-
ter suited to the study of general commutative associative rings than symmetric
bilinear forms.

7.1.6 Lemma. Assume that 2k is invertible and let f : M × M → N be a symmetric
k-bilinear map between k-modules M, N. Then

q : M → N, v 7→ f (v, v)
2

is a k-quadratic map with linearisation f , and it is the unique map with these properties.
Thus we have a bijective correspondence between symmetric k-bilinear maps M × M →
N and k-quadratic maps M → N if 2k is invertible.

Proof. It is easy to check that v 7→ f (v,v)
2 defines a quadratic map, and it fol-

lows from Lemma 7.1.5 (e) that a quadratic map is uniquely determined by its
linearisation.

7.1.7 Lemma. Let M, N be k-modules. Then the set of quadratic maps from M to N is
closed under addition and k-scalar multiplication.

Proof. This is clear from the definition of quadratic maps.

From now on, we specialise to the case that the codomain of the quadratic
map in question is k. This is the only case of relevance for our purposes.
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7.1.8 Definition (Quadratic form). Let M be a k-module. A quadratic form on M
is a k-quadratic map q : M → k where k is regarded as a k-module in the natural
way. It is called anisotropic if q(v) = 0 implies v = 0 for all v ∈ M.

7.1.9 Definition (Quadratic module). A quadratic module (over k) is a pair (M, q)
consisting of a (left) k-module M and a quadratic form q on M. It is called
anisotropic if q is anisotropic.

7.1.10 Example. The map q : k → k, r 7→ r2 is a quadratic form with linearisation
f : k× k → k, (r, s) 7→ 2rs. In fact, the group that we will construct in section 7.3
for an arbitrary quadratic module (M, q) will be a Chevalley group if we take
M = k and q : r 7→ r2.

More generally, the map

q : kn → k, v 7→
n

∑
i=1

v2
i

is a quadratic form with linearisation

f : kn × kn → k, (v, w) 7→ 2
n

∑
i=1

viwi.

Note that f = 0 if 2k = 0k. In particular, if 2k = 0k, then q and the zero map are
two quadratic forms which are distinct (unless k is the zero ring) but have the
same linearisation. This shows that in general, a quadratic form “contains more
information” than its linearisation.

7.1.11 Lemma (Direct sum of quadratic modules). Let (M, q), (M′, q′) be two
quadratic modules and let f , f ′ denote the linearisations of q and q′, respectively. Then
the direct sum M ⊕ M′ together with the map

q ⊕ q′ : M ⊕ M′ → k, (v, v′) 7→ q(v) + q′(v′)

is a quadratic module, called the direct sum of (M, q), (M′, q′). The linearisation of
q ⊕ q′ is

f ⊕ f ′ : (M ⊕ M′)× (M ⊕ M′) → k,
(
(u, u′), (v, v′)

)
7→ f (u, v) + f (u′, v′).

Proof. This follows from a simple computation.

7.1.12 Remark (Inner direct sum). Let (M, q) be a quadratic module with sub-
spaces A, B and with linearisation f . We say that M is the (inner) direct sum of
A and B, and we write M = A ⊕ B, if M is the (inner) direct sum of A and B
as k-modules and f (a, b) = 0 for all a ∈ A, b ∈ B. If this is the case, then M is
isomorphic to the outer direct sum of A and B in the sense of Lemma 7.1.11. A
subspace C of M is called a direct summand of M if there exists a subspace D such
that M = C ⊕ D (as quadratic modules).

7.1.13 Example (Hyperbolic space, [EKM08, p. 40], [Knu91, (5.6.2)]). Let n ∈
N≥1 and let V := kn. Denote by V∗ the dual space of V. The hyperbolic space of
dimension 2n over k is the k-module M := V ⊕ V∗ together with the quadratic
form

q : M → k, (v, f ) 7→ f (v).

If we denote the canonical basis of V by (e1, . . . , en) and the corresponding dual
basis by (e−1, . . . , e−n), then q is given on coordinates by

q : kn ⊕ kn → k,
(
(λ1, . . . , λn), (λ−1, . . . , λ−n)

)
7→

n

∑
i=1

λiλ−i.
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The pairs (ei, e−i) are called hyperbolic pairs. More abstractly, a pair (v, w) of
elements in a quadratic module (M′, q′) with linearisation f ′ is called a hyperbolic
pair if q′(v) = 0 = q′(w), f ′(v, w) = 1 and ⟨v, w⟩k is a direct summand of M′ (in
the sense of Remark 7.1.12). Such a pair is automatically k-linearly independent:
If λ, µ ∈ k satisfy λv + µw = 0, then

0k = f ′(v, 0) = f ′
(
v, λv + µw

)
= λ f ′(v, v) + µ f ′(v, w) = 2λq′(v) + µ = µ,

and similarly λ = 0k. Thus v, w span a direct summand of M which is isomorphic
to the hyperbolic plane k2.

7.1.14 Note. The condition in Example 7.1.13 that the module spanned by a
hyperbolic pair is a direct summand will not be relevant in our context. It is
absent from the definition of hyperbolic pairs in [GPR, 11.17].

7.1.15 Lemma. Let (M, q) be a quadratic k-module which contains an element v0 ∈ M
such that q(v0) is invertible. Then for all a ∈ k with av0 = 0M, we have 2a = 0. In
particular, M is a faithful k-module if 2k is not a zero divisor.

Proof. Let a ∈ k such that av0 = 0 and denote the linearisation of q by f .
Then a f (v0, v0) = f (av0, v0) = 0. At the same time, a f (v0, v0) = 2aq(v0) by
Lemma 7.1.5 (e). Since q(v0) is invertible, it follows that 2a = 0, as desired. In
particular, any a ∈ k with aM = {0} satisfies av0 = 0 and thus 2a = 0. Hence M
is faithful if 2k is not a zero divisor.

The notions of orthogonality and orthogonal groups which are known for
inner products (see Definitions 1.2.2 and 1.2.4) transfer to the setting of quadratic
forms without surprises.

7.1.16 Definition (Orthogonal group). For any quadratic module (M, q), we call

O(q) := { φ ∈ Autk(M) | q(φ(v)) = q(v) for all v ∈ M }
the orthogonal group of q. We use the convention that it acts on M from the left
side, so that the composition φ ◦ ψ of φ, ψ ∈ O(q) is the map x 7→ φ(ψ(x)).

7.1.17 Remark. Let (M, q) be a quadratic module and let φ ∈ O(q). Then we also
have f (φ(u), φ(v)) = f (u, v) for all u, v ∈ M where f is the linearisation of q.

7.1.18 Note. Recall from Convention 1.2.3 and Note 1.2.17 that in the context of
root systems in a Euclidean space (V, ·), we always let automorphisms of V act
from the right side. The reason for this is that we often need reflections in the
context of Weyl elements, whose conjugation action is also written on the right
side. Since this specific reasoning does not apply to quadratic forms, we have the
freedom to let O(q) act on M from the left side, “as usual”.

7.1.19 Definition (Orthogonality). For any quadratic module (M, q), we say that
v, u ∈ M are orthogonal if f (u, v) = 0 where f is the linearisation of q. For any
k-subspace U of M, we define U⊥ := { v ∈ M | f (u, v) = 0 for all u ∈ U } and
we put v⊥ := ⟨v⟩⊥k for all v ∈ M.

Even the notion of reflections, which we defined in Definition 1.2.5 for inner
products, can be generalised to the setting of quadratic forms. However, we
have to be a bit more careful at this point. Recall from Definition 1.2.5 that the
reflection corresponding to a non-zero vector v in a Euclidean space (V, ·) is the
map

σv : V → V, x 7→ xσv := x − 2
x · v
v · v

v.
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We can write down the same definition for arbitrary symmetric bilinear forms f
as long as we assume that f (v, v) is invertible. However, since f (v, v) = 2q(v)
by Lemma 7.1.5 (e), this assumption is never satisfied if 2k is not invertible. The
solution to this problems consists of removing the coefficient 2 from the definition
of σv. If 2k is invertible, then the resulting definition is equivalent to the naive
definition above.

7.1.20 Definition (Reflection, [EKM08, 7.2], [Knu91, (6.1.2)]). Let (M, q) be a
quadratic module over k, denote by f the linearisation of q and let v ∈ M such
that q(v) is invertible in k. The reflection corresponding to v is the map

σv : M → M, u 7→ u − q(v)−1 f (u, v)v.

Reflection in quadratic modules satisfy some of the main properties that we
are used to from reflections in Euclidean spaces. The most important caveat is
that in general, we cannot expect the module M to decompose as ⟨v⟩k ⊕ v⊥.

7.1.21 Lemma. Let (M, q) be a quadratic module over k, denote by f the linearisation
of q and let v ∈ M such that q(v) is invertible in k. Then σv lies in O(q) and satisfies
σv(u) = u for all u ∈ v⊥, σv(v) = −v and σ2

v = idM.

Proof. It is clear that σv is k-linear and that it is the identity on v⊥. Further, since
f (v, v) = 2q(v) by Lemma 7.1.5 (e), we have

σv(v) = v − q(v)−1 f (v, v)v = v − 2v = −v.

This implies that for all u ∈ M,

σ2
v (u) = σv

(
u − q(v)−1 f (u, v)v

)
= σv(u)− q(v)−1 f (u, v)σv(v)

= u − q(v)−1 f (u, v)v + q(v)−1 f (u, v)v = u.

Finally, by Lemma 7.1.5 (a),

q
(
σv(u)

)
= q

(
u − q(v)−1 f (u, v)v

)
= q(u) + q

(
−q(v)−1 f (u, v)v

)
+ f

(
u,−q(v)−1 f (u, v)v

)
= q(u) + q(v)−2 f (u, v)2q(v)− q(v)−1 f (u, v) f (u, v) = q(u).

This finishes the proof.

We now turn to pointed quadratic modules.

7.1.22 Definition (Pointed quadratic module). A pointed quadratic module over k
is a triple (M, q, e) where (M, q) is a quadratic module over k and e is an element
of M with q(e) = 1k. The element e is called the base point. A quadratic module
(M, q) is called pointable if there exists e ∈ M such that (M, q, e) is a pointed
quadratic module.

7.1.23 Note. Recall from Lemma 5.7.12 that in simply-laced root graded groups,
the ring element 1k which appears in the decomposition of the fixed Weyl ele-
ments turns out to be the unit element in the coordinatising ring. We will observe
a similar phenomenon in Bn-graded groups: The module element e which ap-
pears in the decomposition of the fixed short Weyl element will ultimately satisfy
q(e) = 1k. Thus the quadratic module that we construct from any Bn-graded
groupg is pointable, and the choice of a ∆-system of Weyl elements determines
a “canonical” choice of a base point. However, note that the unit element of a
ring is uniquely determined by the ring structure whereas a pointable quadratic
module may have many possible base points.
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7.1.24 Note (see [GPR, 11.14]). Let (M, q, e) be a pointed quadratic module and
denote by f the linearisation of q. One can define a trace map

tr : M → k, u 7→ f (e, u) = f (u, e)

and a conjugation map

· : M → M, u 7→ u := tr(u)e − u.

Observe that, since q(e) = 1k, we have · = −σe where σe denotes the reflection
corresponding to e.

We will not need the trace and conjugation maps in this generality. However,
we will encounter them in Definition 10.1.12 in the special case that (M, q) is a
conic algebra. Further, we will see similar concepts in section 8.3.

Finally, we can define the standard parameter system for pointed quadratic
modules.

7.1.25 Definition (Standard parameter system). Let (M, q, e) be a pointed qua-
dratic module. Put A := B := {±1}. Declare that A acts on k and M by inversion
and that B acts trivially on k and by σe on M. More precisely, this means that

−1A.a = −a, −1A.m = −m, −1B.a = a, −1B.m = σe.m

for all a ∈ k and all m ∈ M. Then the triple (A × B, M, k) is called the standard
parameter system for (M, q, e).

7.1.26 Remark. To obtain an induced action of A × B on M and k, we have to
observe that the actions of A and B commute. This holds because the reflection
map σv0 is linear.

7.2 Root Systems of Type B

7.2.1 Notation for this section. We denote by n an integer at least 2.

In this section, we collect some basic facts about the root system Bn which will
be needed later on. Note that we exclude the case n = 1 because the resulting
root system B1 would be isomorphic to A1.

7.2.2 Remark (Standard representation of Bn). Let V be a Euclidean space of
dimension n with orthonormal basis (e1, . . . , en). The standard representation of Bn
is

Bn := { ε1ei + ε2ej | i ̸= j ∈ [1, n], ε1, ε2 ∈ {±1} } ∪ { εei | i ∈ [1, n], ε ∈ {±1} }.

The long roots are exactly those which lie in the first set and the short roots are
exactly those in the second one. The standard root base is

∆ := { ei − ei+1 | i ∈ [1, n − 1] } ∪ {en}
and the corresponding positive system is

Π := { ei − ej | i < j ∈ [1, n] } ∪ { ei + ej | i ̸= j ∈ [1, n] } ∪ { ei | i ∈ [1, n] }.

7.2.3 Remark. It is clear to see that the standard root base of An−1 (from Re-
mark 5.2.3) can be regarded as a subset of the standard root base of Bn. Thus
Bn contains An−1 as a parabolic root subsystem. We also see that all roots in the
standard representation of Dn (from Remark 5.2.4) are also contained in Bn and
that they even form a crystallographically closed subset of Bn. However, this
subset is not closed (in the non-crystallographic sense) and, consequently, not
parabolic.
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7.2.4 Definition (B2-pairs and B2-quadruples). Let Φ be any root system. A
B2-pair (in Φ) is a pair (α, δ) of roots such that ⟨α, δ⟩R ∩ Φ is a root subsystem
of Φ of type B2 with root base (α, δ) with α being the long simple root in this
subsystem and δ being the short simple root. A B2-quadruple (in Φ) is a quadruple
(α, β, γ, δ) of roots in Φ such that (α, δ) is a B2-pair, β = α + δ and γ = α + 2δ.

α

β

γδ−α

−β

−γ −δ

Figure 7.1: A B2-quadruple (α, β, γ, δ).

7.2.5 Remark. In a B2-quadruple (α, β, γ, δ), the roots α, β, γ, δ are exactly the
positive roots of the corresponding B2-subsystem (with respect to the root base
(α, δ)). All reflection maps on this subsystem can be read off from the diagram in
Figure 7.1.

7.2.6 Remark (compare Remark 9.1.11). Let G be a group with a B2-grading
(Uα)α∈B2 and let (α, β, γ, δ) be a B2-quadruple. Then this grading is crystallo-
graphic if and only if the commutators [Uεα, Uσγ] are trivial for all ε, σ ∈ {±1}.

We now state some simple results, mostly on the possible ways in which to
roots can “relate” to each other. Since every pair of roots lies in a parabolic rank-2
subsystem, there is only a handful of cases which can occur.

7.2.7 Lemma. Let α, β be roots. Then the subsystem which is spanned by α, β is of type
A1, A2, A1 × A1 or B2.

Proof. This follows from Remark 1.2.56.

We can imitate the proof of Lemma 5.2.12 to show that Bn contains no non-
parabolic subsystems of types A2 and B2. Thus we do not have to distinguish
between A2-subsystems, closed A2-subsystems and parabolic A2-subsystems in
the following, and similarly for B2-subsystems. However, the same is not true
for subsystems of type A1 × A1: The short roots in B2 form a subsystem which is
neither parabolic nor crystallographically closed. Similarly, the long roots in B2
form a subsystem which is crystallographically closed but not parabolic.

7.2.8 Lemma. Every A2-subsystem and every B2-subsystem of Bn is parabolic.

Proof. Let Φ′ be an A2-subsystem of Bn. Then Φ′ is contained in the parabolic root
subsystem Φ′′ := ⟨Φ′⟩R ∩ Φ. Since A1 × A1 and B2 do not contain a subsystem
of type A2, it follows from Lemma 7.2.7 that Φ′′ is of type A2, so Φ′ = Φ′′. The
proof for B2-subsystems is similar.

7.2.9 Remark. The assertion of Lemma 7.2.8 remains true for A2 and B2 replaced
by Am and Bm for m ∈ [2, n].

7.2.10 Lemma. Let β, δ be two short roots such that β /∈ {±δ}. Then there exist long
roots α, γ such that (α, β, γ, δ) is a B2-quadruple. In fact, we must have α = β − δ and
γ = β + δ.
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Proof. In the standard representation of Bn, there exist distinct i, j ∈ [1, n] such
that β ∈ {±ei} and δ ∈ {±ej}. Now it can be easily seen that the long roots
α := β − δ and γ := β + δ have the desired property, and that they are the only
roots with this property.

7.2.11 Lemma. Let ρ, ζ be two orthogonal roots in Bn. Then one of the following two
conditions is satisfied:

(i) ρ is crystallographically adjacent to ζ and −ζ.
(ii) ρ and ζ are both short and there exist long roots α, γ such that (α, ρ, γ, ζ) is a

B2-quadruple.

Proof. Denote by Φ′ the root subsystem which is spanned by ρ, ζ. Then Φ′ must
be of type A1 × A1, A2 or B2 by Lemma 7.2.7. In the first case, (i) holds. The
second case is not possible because there are no orthogonal roots in A2. Now
assume that we are in the third case. Then ρ and ζ must have the same length. If
they are both short, then (ii) holds by Lemma 7.2.10. Otherwise (i) holds. This
finishes the proof.

7.2.12 Lemma. If n ≥ 3, then every long root in Bn lies in an A2-subsystem.

Proof. Roots of the form ei − ej span an A2-subsystem together with ej − ek while
roots of the form ±(ei + ej) span an A2-subsystem together with ±(ek − ej), were
k is any index from [1, n] \ { i, j }.

7.2.13 Lemma. If n ≥ 3, then two long roots α, γ in Bn lie in a common A2-subsystem
if and only if they are not orthogonal.

Proof. If α and γ are orthogonal, then they cannot lie in common A2-subsystem
because A2 contains no pair of orthogonal roots. Now assume that α and γ are
not orthogonal. Note that for any element w of the Weyl group, α and γ lie in a
common A2-subsystem if and only if αw and βw lie in a common A2-subsystem.
Since the Weyl group acts transitively on the set of long roots, we can thus assume
that α = e1 + e2.

Since β is long, there exist i ̸= j ∈ [1, n] and ε1, ε2 ∈ {±1} such that β = ε1ei +
ε2ej. At first, assume that { i, j } = { 1, 2 }. Then we must have β ∈ {±α } because
α and β are not orthogonal. In this case, any A2-subsystem which contains α must
also contain β. Since there exists at least one A2-subsystem which contains α by
Lemma 7.2.12, the assertion follows. Now assume that { i, j } ̸= { 1, 2 }. Then
{ 1, 2 } ∩ { i, j } contains exactly one element, because otherwise α and γ would
be orthogonal. Without loss of generality, assume that i = 1. Replacing β by −β
if necessary, we can further assume that ε1 = 1, so that β = e1 + ε2ej. Then α and
β lie in the common A2-subsystem {±(e1 + e2),±(ej − e2),±(e1 + ej) }.

7.2.14 Note. If n = 2, then long roots α, γ with γ ∈ {±α } do not lie in a common
A2-subsystem (because B2 has no A2-subsystem) but they are not orthogonal.
That is why we have to assume n ≥ 3 in Lemma 7.2.13.

7.2.15 Lemma. Let α be a long root and let β be a short root. Then α, β lie in a common
B2-subsystem if and only if they are not orthogonal.

Proof. Since the statement is invariant under the action of the Weyl group, we
can assume without loss of generality that β = e1. Let i ̸= j ∈ [1, n] be the unique
indices such that α ∈ {±ei ± ej }. Then α, β lie in a common B2-subsystem if and
only if 1 ∈ { i, j }, which is the case if and only if they are not orthogonal. This
finishes the proof.
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In the computation of the Cartan integers, it is practical to consider each orbit
of roots separately. By Proposition 1.3.8, the orbits in Bn are precisely the set of
long roots and the set of short roots. Thus we end up with four cases to consider.
We do not give proofs, but all statements follow from a simple investigation of
the standard representation of Bn.

7.2.16 Lemma. Let α, γ be two long roots. Then the Cartan integer ⟨α|γ⟩ = 2 α·γ
γ·γ is

determined as follows:
(a) ⟨α|γ⟩ = 0 if and only if α and γ are orthogonal. (If n ≥ 3, this is equivalent by

Lemma 7.2.13 to α and γ lying in no common A2-subsystem).
(b) ⟨α|γ⟩ = −1 if and only if (α, γ) is an A2-pair.
(c) ⟨α|γ⟩ = 1 if and only if (α,−γ) is an A2-pair.
(d) ⟨α|γ⟩ = 2 if and only if α = γ.
(e) ⟨α|γ⟩ = −2 if and only if α = −γ.

7.2.17 Lemma. Let β, δ be two short roots. Then the Cartan integer ⟨β|δ⟩ is determined
as follows:

(a) ⟨β|δ⟩ = 0 if and only if β and δ are orthogonal (or equivalently, if and only if
β /∈ {±δ }).

(b) ⟨β|δ⟩ = 2 if and only if β = δ.
(c) ⟨β|δ⟩ = −2 if and only if β = −δ.

7.2.18 Lemma. Let α be a long root and let β be a short root. Then the Cartan integer
⟨α|β⟩ is determined as follows:

(a) ⟨α|β⟩ = 0 if and only if α and β are orthogonal (or, equivalently by Lemma 7.2.15,
if and only if they do not lie in a common B2-subsystem).

(b) ⟨α|β⟩ = 2 if and only if (α, β) is a B2-pair.
(c) ⟨α|β⟩ = −2 if and only if (α,−β) is a B2-pair.

7.2.19 Lemma. Let α be a long root and let β be a short root. Then the Cartan integer
⟨β|α⟩ is determined as follows:

(a) ⟨β|α⟩ = 0 if and only if α and β are orthogonal (or equivalently, if and only if they
do not lie in a common B2-subsystem).

(b) ⟨β|α⟩ = 1 if and only if (α, β) is a B2-pair.
(c) ⟨β|α⟩ = −1 if and only if (α,−β) is a B2-pair.

Since we will usually only be interested in the number (−1)⟨α|β⟩ (or, in other
words, the parity of the Cartan integer), the following summary will be very
useful.

7.2.20 Proposition. Let ρ, ζ be two roots in Bn. Then ⟨ρ|ζ⟩ is an even number if and
only if one of the following conditions is satisfied:

(i) ζ is short.
(ii) ρ ∈ {±ζ }.

(iii) ρ and ζ are orthogonal.
Equivalently, we can replace the last statement by the following one:
(iii’) ρ is long and and ρ, ζ do not lie in a common subsystem of type A2 or B2.

We end this section with the definition of a certain subset B̂n of Bn which will
prove useful later on.
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7.2.21 Remark. As we have discussed in Note 4.1.18, we will not work with a
“full” family (wα)α∈Φ of Weyl elements during the coordinatisation of Bn-graded
groups, but only with a ∆-system (wδ)δ∈∆ (which is chosen arbitrarily). Since
the simple reflections generate the Weyl group by Proposition 1.3.12, this poses
no problem on the theoretical side. On the practical side, however, the number
of generators which are needed to express an element of the Weyl group with
respect to ∆ may be rather large, which makes computations more cumbersome.
As a compromise, it will in some situations be useful to consider a B̂n-extension
of (wδ)δ∈∆ (in the sense of the following Definition 7.2.23) where B̂n is the subset

B̂n := { ei − ej | i ̸= j ∈ [1, n] } ∪ { ei | i ∈ [1, n] }

of Bn. In other words, B̂n is the union of the canonical subsystem of type An−1
and the set of positive short roots. Observe that this set is neither closed nor a
root system.

The set S̄ := { σα | α ∈ B̂n } is a practical set of generators for the Weyl group
for the following reason: For all roots α, β ∈ Bn which lie in the same orbit, we
need at most four reflections from S̄ to go from α to β. In other words, there
exist m ∈ [0, 4] and a word δ̄ over B̂n of length m such that ασ(δ̄) = β. The idea
here is to use the subgroup Weyl(An−1) of Weyl(Bn) to permute the basis vectors
(ei)i∈[1,n] (which requires at most two reflections) and the reflections (σei)i∈[1,n] to
change the signs of the basis vectors (which also requires at most two reflections).

7.2.22 Definition (Standard ∆-expression). Let ∆ denote the standard root base
of Bn. For any root α ∈ B̂n, we define a ∆-expression ρ̄α of α (in the sense of
Definition 4.2.2) as follows:

(a) If α ∈ ∆, we put ρ̄α := (α).
(b) If α = ei for some i ∈ [1, n − 1], we define ρ̄ei := (ei − ei+1, ρ̄ei+1 , ei+1 − ei).
(c) If α = ei − ej for some i < j ∈ [1, n − 1] with i + 1 < j, we define ρ̄ei−ej :=

(ej − ej−1, ρ̄ei−ej−1 , ej−1 − ej).
(d) If α = ej − ei for some i < j ∈ [1, n − 1] with i + 1 < j, we define ρ̄ej−ei :=

(ρ̄ei−ej)−1.
The word ρ̄α will also be called the standard ∆-expression of α. We also put ρ̄i := ρ̄ei

for all i ∈ [1, n] and ρ̄ij := ρ̄ei−ej for all distinct i, j ∈ [1, n].

7.2.23 Definition (B̂n-extensions). Let ∆ denote the standard base of Bn, let G be
any group with a Bn-pregrading (Ûα)α∈Bn and let (wδ)δ∈∆ be a ∆-system of Weyl
elements in G. Then we define a family (wα)α∈B̂n

, called the standard B̂n-extension
of (wδ)δ∈∆, by wα := wρ̄α for all α ∈ B̂n. We will sometimes write wij for wei−ej

and wi for wei .

7.2.24 Note. Since σα = σ−α for all roots α, we could remove all negative roots
in An−1 from B̂n without changing the set S̄ of generators in Remark 7.2.21.
However, it will be more practical to have both Weyl elements wij and wji = w−1

ij
available. By contrast, we will show in Proposition 7.6.16 that for all i ∈ [1, n],
the short Weyl elements wi and w−1

i act identically on all root groups. Thus there
is no need to include the short negative roots in B̂n.

7.2.25 Note. The main computations during which we use B̂n-extensions are
Lemma 7.10.7 and Proposition 7.11.19. The reason why B̂n-extensions are useful
in this context are Lemma 7.3.28 and Proposition 7.10.2.
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7.3 Construction of Bn-graded Groups

7.3.1 Notation for this section. We denote by k a commutative associative ring,
by (M, q, v0) a pointed quadratic module over k and by f : M → k the linearisa-
tion of q. Further, we fix an integer n ∈ N≥2, the root system Φ := Bn in standard
representation (as in Remark 7.2.2) and the standard root base ∆ of Bn. We will at
some points consider the subset B̂n of Bn defined in Remark 7.2.21.

The construction of RGD-systems of type Bn from a quadratic module over a
field is well-known. For example, the required matrices can be found for n = 2
in [VM98, p. 469]. The construction in [VM98] is, in fact, more general than what
we need because it starts not from a quadratic module, but from a σ-quadratic
module where σ is an anti-involution of the field. Taking σ to be the identity map,
we obtain the regular notion of quadratic modules. The construction outlined
in this section is essentially an adaption of the one in [VM98] to arbitrary n and
with the field replaced by a commutative associative ring. We will change some
minor specifics of the construction, like signs and the order of the matrix rows
and columns, but in its essence it is the same.

The group EO(q) that we construct in this section can also be implemented on
a computer. All computational results that we state in this section can be verified
in this way. See Note 7.3.29 for a few details on the implementation.

7.3.2 Convention. As in Definition 7.1.16, we consider endomorphisms of any
module to be acting from the left. Thus the composition φ ◦ ψ of two such
endomorphisms is the map x 7→ φ(ψ(x)).

7.3.A Construction

Our example of a Bn-graded group will be a group of orthogonal automorphissm,
but not of the quadratic module (M, q). Instead, we have to add n hyperbolic
pairs to M (in the sense of Example 7.1.13).

7.3.3 Construction. We put V+ := kn, V− := kn and V := M ⊕ V+ ⊕ V−. We
denote by (b1, . . . , bn) the standard basis of V+, by (b−1, . . . , b−n) the standard
basis of V− and we will always consider V+ and V− to be subsets of V without
specifying the natural embedding. We will usually denote elements of V+, V− by
the letters v, w, elements of M by the letters m, u and elements of V by the letters
x, y. Further, we define a map

V → k, m ⊕ (v1, . . . , vn)⊕ (v−1, . . . , v−n) 7→ q(m) +
n

∑
i=1

viv−i

which clearly extends q, and which we denote by q as well.

7.3.4 Lemma. The map q : V → k is a quadratic form on V.

Proof. In fact, V is simply the direct sum of (M, q) with the hyperbolic space of
dimension 2n from Example 7.1.13, so this follows from Lemma 7.1.11.

7.3.5 Remark (Generalised matrices). Since M is not free, we cannot represent
automorphisms of V by matrices with coefficients in k. However, using the direct
sum decomposition of V, we can represent them by “generalised matrices” which
are elements ofHom(M, M) Hom(V+, M) Hom(V−, M)

Hom(M, V+) Hom(V+, V−) Hom(V−, V+)
Hom(M, V−) Hom(V+, V−) Hom(V−, V−)

 ,
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where Hom stands for the group of k-linear homomorphisms. Further, since V+

and V− are free of rank n, we can represent elements of Hom(Vε, Vσ) by (n × n)-
matrices over k, elements of Hom(Vε, M) by (1 × n)-matrices with entries in
M and elements of Hom(M, Vε) by (n × 1)-matrices with entries in Hom(M, k).
Here ε and σ denote arbitrary signs. The elements of Hom(M, k) that we en-
counter will always be of the form f (u, · ) for some u ∈ M, which is the map
v 7→ f (u, v).

We can now construct the desired root homomorphisms.

7.3.6 Construction (Long root homomorphisms). Let i, j ∈ [1, n] be distinct and
let a ∈ k. We denote by θei−ej(a) the unique k-linear endomorphism of V which is
given on the direct summands of V as follows, where m, v+, v− denote arbitrary
elements of M, V+, V−, respectively:

θei−ej(a) : m 7→ m, v+ 7→ v+ + av+j bi, v− 7→ v− − av−i b−j.

Now assume that, in addition, i < j. Then we define θei+ej(a) and θ−ei−ej(a) by
the following formulas:

θei+ej(a) : m 7→ m, v+ 7→ v+, v− 7→ v− + av−j · bi − av−i · bj,

θ−ei−ej(a) : m 7→ m, v+ 7→ v+ + av+i · b−j − av+j · b−i, v− 7→ v−.

Examples of the corresponding generalised matrices are given in Figure 7.2.

7.3.7 Construction (Short root homomorphisms). Let i ∈ [1, n] and let u ∈ M.
Then we define θei(u) and θ−ei(u) to be the unique k-linear endomorphisms of V
which are given on the direct summands of V as follows, where m, v+, v− denote
arbitrary elements of M, V+, V−, respectively:

θei(u) : m 7→ m + f (u, m) · bi, v+ 7→ v+, v− 7→ v− − v−i · u − v−i q(u) · bi,
θ−ei(u) : m 7→ m − f (u, m) · b−i, v+ 7→ v+ + v+i · u − v+i q(v) · b−i, v− 7→ v−.

Examples of the corresponding generalised matrices are given in Figure 7.3.

7.3.8 Lemma. For each short root β and for each long root α, the maps θα : (k,+) →
Endk(V) and θβ : (M,+) → Endk(V) are injective homomorphisms. In particular,
their images lie in Autk(V).

Proof. The injectivity of these maps can be deduced from their matrix represen-
tations. The homomorphism property follows from a straightforward matrix
computation.

Now the definition of the elementary orthogonal group, our main example of
a Bn-graded group, is not surprising.

7.3.9 Definition (Elementary orthogonal group). For each root α, we denote
the image of θα in Autk(V) by Uα, and we denote by EO(q) the group which is
generated by (Uα)α∈Φ. We call EO(q) the elementary orthogonal group of q.

7.3.10 Note. A straightforward computation shows that each root group is con-
tained in the orthogonal group O(q) from Definition 7.1.16. (Here q denotes
the quadratic form on V and not the one on M.) It follows that the elementary
orthogonal group EO(q) is contained in O(q), just like the elementary group from
Example 3.2.14 is contained in the special linear group. However, we will never
formally use this fact, so we do not carry out the tedious computation.
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θe1−e2(a) =



idM
1 a

1
1

1
−a 1

1


,

θe1+e2(a) =



idM
1 a

1 −a
1

1
1

1


,

θ−e1−e2(a) =



idM
1

1
1

−a 1
a 1

1


.

Figure 7.2: The long root homomorphisms for B3.

7.3.B Weyl Elements

We can define Weyl elements in EO(q) which look just like the ones in Chevalley
groups (Definition 3.3.3), except that the notion of “inverses of elements of M” is
not obvious.

7.3.11 Definition (Weyl elements). For all distinct i, j ∈ [1, n] and all invertible
a ∈ k, we define

wij(a) := wei−ej(a) := θej−ei(−a−1) ◦ θei−ej(a) ◦ θej−ei(−a−1) ∈ EO(q)

and wij := wei−ej := wij(1k). For all i ∈ [1, n] and all u ∈ M for which q(u) is
invertible, we define

wi(u) := wei(u) := θ−ei

(
−q(u)−1u

)
◦ θei(u) ◦ θ−ei

(
−q(u)−1u

)
and wi := wei := wi(v0).

7.3.12 Note (see also 7.2.21). Observe that we have defined Weyl elements only
for the roots in the set B̂n from Remark 7.2.21. In theory, it would be enough to
only consider the Weyl elements wi,i+1(a) for i ∈ [1, n − 1] and wn(u), that is, the
ones which correspond to the root base ∆. However, by the considerations in
Remark 7.2.21, it will be more practical to have an explicit α-Weyl element for
all α ∈ B̂n. At the same time, while we could easily define Weyl elements for all
remaining roots in Bn as well, there is no additional benefit in doing so.

7.3.13 Definition (Standard system of Weyl elements). The standard system of
Weyl elements for EO(q) is the family (wδ)δ∈∆ given by Definition 7.3.11.

7.3.14 Remark (Short Weyl elements). Let u ∈ M such that q(u) is invertible.
The goal of this remark is to explicitly compute the generalised matrix of w1(u).
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θe1(u) =



idM −u
f (u, · ) 1 −q(u)

1
1

1
1

1


,

θ−e1(u) =



idM u
1

1
1

− f (u, · ) −q(u) 1
1

1


.

Figure 7.3: The short root homomorphisms for B3.

We will leave out the rows and columns which correspond to (bi)i∈[2,n] and
(b−i)i∈[2,n] because they are trivial. We begin the computation with

θe1(u)θ−e1

(
−q(u)−1u

)
=

 id 0 −u
− f (u, · ) 1 −q(u)

0 0 1

 id −q(u)−1u 0
0 1 0

q(u)−1 f (u, · ) −q(u)−1 1


=

 id−q(u)−1 f (u, · )u −q(u)−1u + q(u)−1u −u
− f (u, · ) + q(u)q(u)−1 f (u, · ) r(u) −q(u)

q(u)−1 f (u, · ) −q(u)−1 1


=

id−q(u)−1 f (u, · )u 0 −u
0 0 −q(u)

q(u)−1 f (u, · ) −q(u)−1 1


where r(u) := −q(u)−1 f (u, u) + 1 + q(u)q(u)−1 = 0 because f (u, u) = 2q(u) by
Lemma 7.1.5 (e). Now

w1(u) = θ−e1

(
−q(u)−1u

)
θe1(u)θ−e1

(
−q(u)−1u

)
=

 id −q(u)−1u 0
0 1 0

q(u)−1 f (u, · ) −q(u)−1 1


·

id−q(u)−1 f (u, · )u 0 −u
0 0 −q(u)

q(u)−1 f (u, · ) −q(u)−1 1


=

id−q(u)−1 f (u, · )u 0 u − q(u)−1q(u)u
0 0 −q(u)
φ −q(u)−1 −q(u)−1 f (u, u) + q(u)−1q(u) + 1


where φ : M → k is the map which sends x ∈ M to

q(u)−1 f
(
u, x − q(u)−1 f (u, x)u

)
+ q(u)−1 f (u, x)

= q(u)−1( f (u, x)− q(u)−1 f (u, x) f (u, u) + f (u, x)
)
= 0.
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We conclude that

w1(u) =

id−q(u)−1 f (u, · )u 0 0
0 0 −q(u)
0 −q(u)−1 0

 .

Hence w1(au) = w1(u) for all a ∈ k with a2 = 1k. In particular, w1(u) = w1(−u).
We conclude that a short Weyl element may in general be represented by distinct
Weyl triples.

The following results show that the elements in Definition 7.3.11 are indeed
Weyl elements. Even more, we have specific formulas for their conjugation
actions. We can see from these formulas that, in addition to additive inversion
on k and M, we can expect a second kind of twisting in Bn-graded groups: the
reflection σv0 on M. Note that, unlike the unit element 1k in the ring k, the
element v0 is not uniquely determined by (M, q), but rather an arbitrary (but
fixed) element of M with the property that q(v0) = 1k.

7.3.15 Lemma. Let i, j ∈ [1, n] be distinct and let a ∈ k be invertible. Then w := wij(a)
is an (ei − ej)-Weyl element. It satisfies the following formulas for all b ∈ k and u ∈ M:

(a) θei−ej(b)
w = θej−ei(−a−2b) and θej−ei(b)

w = θei−ej(−a2b).
(b) For all k ∈ [1, n] \ {i, j}, we have

θei−ek(b)
w = θej−ek(a−1b), θei+ek(b)

w = θej+ek(δ
−
k∈⟨i,j⟩a

−1b),

θek−ei(b)
w = θek−ej(ab), θ−ei−ek(b)

w = θ−ej−ek(δ
−
k∈⟨i,j⟩ab).

(c) For all k ∈ [1, n] \ {i, j}, we have

θej−ek(b)
w = θei−ek(−ab), θej+ek(b)

w = θei+ek(−δ−k∈⟨i,j⟩ab),

θek−ej(b)
w = θek−ei(−a−1b), θ−ej−ek(b)

w = θ−ei−ek(−δ−k∈⟨i,j⟩a
−1b).

(d) θei(u)
w = θej(a−1u) and θ−ei(u)

w = θ−ej(au).

(e) θej(u)
w = θei(−au) and θ−ej(u)

w = θ−ei(−a−1u).
(f) For any root α for which no formula for the conjugation action of w on Uα is given

above, this action is trivial.

Proof. This follows from a straightforward computation. See also Note 7.3.29.

7.3.16 Remark. Let i, j ∈ [1, n] be distinct and let a ∈ k be invertible. Since w :=
wij(a) is a Weyl element by Lemma 7.3.15, it follows from Proposition 2.2.6 (c)
that

wij(a) = θei−ej(a)θej−ei(−a−1)θej−ei(−a−1)w

= θei−ej(a)θej−ei(−a−1)θei−ej(a) = wji(−a−1).

In particular, wij = w−1
ji .

7.3.17 Lemma. Let i ∈ [1, n] and let v ∈ M such that q(v) is invertible. Then
w := wi(v) is an ei-Weyl element. It satisfies the following formulas for all b ∈ k and
u ∈ M:

(a) For all k ∈ [1, n] \ {i}, we have

θei−ek(b)
w = θ−ei−ek

(
δ−i>kq(v)−1b

)
, θei+ek(b)

w = θek−ei

(
δ−i>kq(v)−1b

)
,

θek−ei(b)
w = θek+ei

(
δ−i>kq(v)b

)
, θ−ei−ek(b)

w = θei−ek

(
δ−i>kq(v)b

)
.
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(b) θei(u)
w = θ−ei

(
q(v)−1σv(u)

)
and θ−ei(u)

w = θei

(
q(v)σv(u)

)
.

(c) For all k ∈ [1, n] \ {i}, θek(u)
w = θek

(
σv(u)

)
and θ−ek(u)

w = θ−ek

(
σv(u)

)
.

(d) For any root α for which no formula for the conjugation action of w on Uα is given
above, this action is trivial.

Proof. This follows from a straightforward computation. See also Note 7.3.29.

7.3.C Parity Maps and Twisting Structures

We can read off the correct definition of the twisting groups and parity maps in
EO(q) (with respect to the standard system of Weyl elements) from the above
formulas. In other words, the parity maps and twisting groups are chosen
precisely to ensure that Lemma 7.3.21 holds.

7.3.18 Notation for this section. From now on, we denote by (A × B, M, k) the
standard parameter system for (M, q, v0) (as in Definition 7.1.25). Further, we
define maps η : Bn × B̂n → A and µ : Bn × B̂n → B by the formulas in Figure 7.4,
where B̂n is as in Remark 7.2.21. By restricting the second component to ∆, we
obtain ∆-parity maps which we also denote by η and µ, and which we call the
standard parity maps of type Bn.

α ηα,ei−ej µα,ei−ej

±(ei − ej) −1A 1B
±(ei + ej) 1A 1B
±(ei − ek) 1A 1B
±(ei + ek) δ−k∈⟨i,j⟩1A 1B

±(ej − ek) −1A 1B
±(ej + ek) −δ−k∈⟨i,j⟩1A 1B

±ek ± el 1A 1B
±ei 1A 1B
±ej −1A 1B
±ek 1A 1B

α ηα,ei µα,ei

±(ei − ek) δ−i>k1A 1B
±(ei + ek) δ−i>k1A 1B
±ek ± el 1A 1B
±ei 1A −1B
±ek 1A −1B

Figure 7.4: The definition of ηα,β and µα,β for all α ∈ Bn and β ∈ B̂n, see Nota-
tion 7.3.18. In the left table, we assume that i, j, k, l are pairwise distinct. In the
right table, we assume that i, k, l are pairwise distinct. For small values of n, it is
of course not possible to choose three or four pairwise distinct indices, in which
case the corresponding rows should be ignored.

7.3.19 Note. The values ηα,β for β ∈ B̂n \ ∆ in Figure 7.4 are not relevant for the
definition of the ∆-parity map η because it is defined on the set Φ × ∆. However,
the assertion of the following Lemma 7.3.21 holds for all β ∈ B̂n, not merely for
β ∈ ∆. We will use this observation in Lemma 7.3.28 to express some values of
the extended parity map

η : Φ ×L(∆ ∪ (−∆)) → A

(which we defined in 4.2.4) in terms of the values (ηα,β)α∈Bn,β∈B̂n
. We conclude

that, while the values ηα,β for β ∈ B̂n \ ∆ are not needed to define the parity map
η : Φ × ∆ → A, they nonetheless express important properties of this map. The
fact that we can directly read off these values from Figure 7.4 will allow us to
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simplify some later computations, for example in Lemma 7.10.7. Similar remarks
apply for µ in place of η.

7.3.20 Remark. Consider An−1 = { ei − ej | i ̸= j ∈ [1, n] } as a subset of Bn in the
natural way. Then for all α, β ∈ An−1, the value ηα,β in Figure 7.4 is the same as
the one in Example 5.5.5.

7.3.21 Lemma. Let α ∈ Bn and β ∈ B̂n. Let x ∈ k if α is long and let x ∈ M if α is
short. Then θα(x)wβ = θσβ(α)(ηα,βµα,β.x).

Proof. This follows from Lemmas 7.3.15 and 7.3.17 by putting a := 1k and v := v0,
respectively.

7.3.22 Remark. Note that, even though the definition of η and µ is clearly moti-
vated by Lemmas 7.3.15 and 7.3.17, it is completely independent of the choices of
k, M, q and v0. This is evident from Figure 7.4. As a consequence, we can obtain
information about η and µ by performing computations in the group EO(q) for
any fixed choice of the parameters k, M, q and v0. In the sequel, we will often
choose k := C, M := C2, q : M → C, (x, y) 7→ x2 + y2 and v0 := (1, 0). This choice
of parameters has the following two crucial properties: Firstly, 1k ̸= −1k, so that
the inversion map on (k,+) is non-trivial; and secondly, that σv0 is neither the
inversion map nor the identity map on (M,+). These properties imply that the
standard parameter system (A× B, M, k) from Definition 7.1.25 is (η ×µ)-faithful
(in the sense of Definition 4.3.8).

7.3.23 Lemma. The root isomorphisms (θα)α∈Bn from Constructions 7.3.6 and 7.3.7
form a parametrisation of EO(q) by (A × B, M, k) with respect to η × µ and (wδ)δ∈∆.

Proof. This follows from Lemma 7.3.21.

7.3.24 Lemma. Let (wα)α∈B̂n
be as in Definition 7.3.11. Then the following hold:

(a) For all pairwise distinct i, j, k ∈ [1, n], we have

w
wjk
ij = wik and w

wkj
ij = wki.

For all distinct i, j ∈ [1, n], we have

w
wij
i = wj and w

wji
i = w−1

i .

(b) (wα)α∈B̂n
is the standard B̂n-extension of (wδ)δ∈∆, the standard system of Weyl

elements.

Proof. The first assertion follows from Lemma 7.3.21 and an inspection of the
values in Figure 7.4. The second assertion follows from the first one and from
Remark 7.3.16.

7.3.D Commutator Relations

We now proceed to show that (Uα)α∈Bn is a crystallographic Bn-grading of EO(q).

7.3.25 Proposition. The group EO(q) satisfies the following commutator relations. For
all distinct i, j ∈ [1, n], all a ∈ k and all v ∈ M, we have

[θei−ej(a), θej(v)] = θei(av)θei+ej

(
δ−i<jaq(v)

)
,

[θej−ei(a), θ−ej(v)] = θ−ei(−av)θ−ei−ej

(
δ−i<jaq(v)

)
,

[θei+ej(a), θ−ej(v)] = θei

(
δ−i<jav

)
θei−ej

(
δ−i<jaq(v)

)
,

[θ−ei−ej(a), θej(v)] = θ−ei

(
δ−i>jav

)
θej−ei

(
δ−i<jaq(v)

)
.
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For all distinct i, j ∈ [1, n] and all v, w ∈ M, we have

[θei(v), θej(w)] = θei+ej

(
δ−i<j f (v, w)

)
,

[θei(v), θ−ej(w)] = θei−ej

(
f (v, w)

)
,

[θ−ei(v), θ−ej(w)] = θ−ei−ej

(
δ−i>j f (v, w)

)
.

For all pairwise distinct i, j, k ∈ [1, n] and all a, b ∈ k, we have

[θei−ej(a), θej−ek(b)] = θei−ek(ab),

[θei−ej(a), θej+ek(b)] = θei+ek(δ
−
k∈⟨i,j⟩ab),

[θei−ej(a), θ−ek−ei(b)] = θ−ej−ek(δ
−
k/∈⟨i,j⟩ab),

[θei+ej(a), θ−ek−ei(b)] = θej−ek(δ
−
i∈⟨j,k⟩ab).

Proof. This follows from a straightforward computation. See also Note 7.3.29.

7.3.26 Proposition. Let Π denote the standard positive system in Bn. Then the group
EO(q) satisfies UΠ ∩ U−Π = {1}.

Proof. Recall that the generalised matrices of the root homomorphisms with
respect to the decomposition V = M ⊕ V+ ⊕ V− and with respect to the ordered
bases (b1, . . . , bn) of V+ and (b−1, . . . , b−n) of V− are given in Figures 7.2 and 7.3.
Consider instead the generalised matrices with respect to the decomposition
V = V+ ⊕ M ⊕ V− and with respect to the ordered bases (b1, . . . , bn) of V+ and
(b−n, . . . , b−1) of V−. For n = 2, some of these matrices are displayed in Figure 7.5.
With respect to this decomposition, all generalised matrices of positive root
isomorphisms are upper triangular while all generalised matrices of negative
root isomorphisms are lower triangular. The assertion follows.

7.3.27 Theorem. The family (Uα)α∈Bn is a crystallographic Bn-grading of EO(q).

Proof. By Lemmas 7.3.15 and 7.3.17, there exist Weyl elements for all simple roots
and by Lemma 2.2.7, it follows that there exist Weyl elements for all roots. The
remaining conditions are satisfied by Propositions 7.3.25 and 7.3.26.

7.3.E Concluding Remarks

We state another brief technical observation on the parity maps η and µ which will
be useful for later computations. Specifically, it will be used in Proposition 7.10.2.
See also Remark 7.2.21.

7.3.28 Lemma. Let α ∈ B̂n, let ᾱ be the standard ∆-expression of α in the sense of
Definition 7.2.22 and let ζ be an arbitrary root. Then the element ηζ,α from Figure 7.4
equals the value ηζ,ᾱ of the extended parity map η : Φ ×L(∆ ∪ (−∆)) → A (from
Definition 4.2.4). The same assertion holds for µ in place of η.

Proof. Observe that the assertion is independent of k, M, q and v0, so we have
the freedom to choose these parameters as in Remark 7.3.22. Let x ∈ k = C if ζ is
long and let x ∈ M = C2 if ζ is short. Recall from Lemma 7.3.24 that the family
(wβ)β∈B̂n

of Weyl elements in EO(q) from Definition 7.3.11 coincides with the
standard B̂n-extension of (wδ)δ∈∆ by Lemma 7.3.24. This implies that wα = wᾱ,
so θζ(x)wα = θζ(x)wᾱ . By Lemma 7.3.21, we have

θζ(x)wα = θζσ(α)(ηζ,αµζ,α.x).
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θe1−e2(a) =


1 a

1
idM

1 −a
1

,

θe1+e2(a) =


1 a

1 −a
idM

1
1

,

θ−e1−e2(a) =


1

1
idM

a 1
−a 1

,

θe1(u) =


1 f (u, · ) −u

1 −q(u)
idM

1
1

,

θ−e1(u) =


1

1
u idM

1
−q(u) − f (u, · ) 1

.

Figure 7.5: The generalised matrices of some root isomorphisms with respect to
the decomposition of V in the proof of Proposition 7.3.26.

On the other hand, since (θβ)β∈Bn is a parametrisation of EO(q) by (A × B, M, k)
with respect to η × µ and (wδ)δ∈∆ by Lemma 7.3.23 and since ᾱ is a ∆-expression
of α, we also have

θζ(x)wᾱ = θζσ(ᾱ)(ηζ,ᾱµζ,ᾱ.x) = θζσ(α)(ηζ,ᾱµζ,ᾱ.x).

As the parameter system (A × B, M, k) is (η × µ)-faithful (in the sense of Defini-
tion 4.3.8) by Remark 7.3.22, we infer that ηζ,ᾱµζ,ᾱ = ηζ,ᾱµζ,ᾱ, as desired.

7.3.29 Note (Implementation of the elementary orthogonal group). Every single
computation in this section can be performed by hand in principle, but the
number of necessary computations is rather large. Hence an implementation of
the group EO(q) in a computer algebra system is desirable, for which we have
used the GAP system [Gap]. In the following, we describe the general strategy of
our implementation. First of all, observe that it suffices to consider the case that
k is a (commutative associative) polynomial ring over the integers in sufficiently
many indeterminates and that M is a free module of sufficiently high rank over
k. For example, if we prove that

[θei−ej(t), θej−ek(u)] = θei−ek(tu)

holds for indeterminates t, u in k, then the same equation holds for all elements
t, u in an arbitrary commutative associative ring (and for an arbitrary choice of
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(M, q)).
Denote by (b1, . . . , bm) a k-basis of M. In order to describe the maps q and f ,

we introduce indeterminates (ui)i∈[1,m] and (tij)i<j∈[1,m] in k which represent the
values (q(bi))i∈[1,m] and ( f (bi, bj))i<j∈[1,m]. Using the formulas in Lemma 7.1.5,
we can explicitly define the maps q : M → k and f : M × M → k in terms of these
indeterminates. In other words, there exists a unique k-quadratic map q : M → k

such that q(bi) = ui for all i ∈ [1, m], and similarly for f . Since (ui)i∈[1,m] and
(tij)i<j∈[1,m] are indeterminates, any computation involving (bi)i∈[1,m] and the
values of these module elements under q and f is also valid for any family
(b′i)i∈[1,m] of elements in any quadratic module (M′, q′) with linearisation f ′ over
any commutative associative ring k′.

Once the ring k and the quadratic module (M, q) are represented in GAP, it is
a straightforward task to implement the root homomorphisms and to verify that
all claimed identities (in particular, the commutator relations and the conjugation
formulas for Weyl elements) hold.

7.4 Rank-2 Computations, Non-crystallographic Case

7.4.1 Notation for this section. We denote by G a group which has B2-commu-
tator relations with root groups (Uα)α∈B2 (in the sense of Definition 2.1.4) and
we choose pairwise non-proportional roots α, β, γ, δ such that (α, β, γ, δ) is an
interval ordering of [α, δ]Cox. Further, we assume that G is rank-2-injective.

Our rank-2 computations are split into two parts. In this section, we derive
several formulas in the higher generality of non-crystallographic commutator
relations. In the following section, we will specialise to crystallographic com-
mutator relations to simplify our results. This approach has the advantage that
the distinction between long and short roots disappears, as we will explain in
Note 7.4.3. Thus every computation that can be performed in this generality
saves us the trouble of performing two separate computations later on.

7.4.2 Note. Throughout this section, we will often use that root group elements
from adjacent root groups commute. However, it is a priori not clear (and, in the
general situation of Notation 7.4.1, not even true) that the root groups themselves
are abelian. This will only be proven in Proposition 7.6.2 for the higher-rank case.

7.4.3 Note. Since our only assumption on (α, β, γ, δ) is that it is an interval
ordering of a closed root interval, and since we do not assume that the B2-
commutator relations are crystallographic, everything that we prove in this
section will also be true for the root quadruple (δ, γ, β, α). In particular, we do
not assume that (α, β, γ, δ) is a B2-quadruple, so we do not assume that α, γ are
long and β, δ are short.

Before we can perform any serious computations, we have to derive an
analogue of Lemma 2.1.13 for open root intervals with two elements.

7.4.4 Lemma. The following relations hold for all xα, x′α ∈ Uα and all yδ, y′δ ∈ Uδ:
(a) [xα, yδy′δ]β = [xα, y′δ]β[xα, yδ]β. In particular, [xα, y−1

δ ]β = [xα, yδ]
−1
β .

(b) [yδy′δ, xα]β = [yδ, xα]β[y′δ, xα]β. In particular, [y−1
δ , xα]β = [yδ, xα]

−1
β .

(c) [xα, yδy′δ]γ = [xα, y′δ]γ
[
[xα, yδ]β, y′δ

]
[xα, yδ]γ.

(d) [yδy′δ, xα]γ = [yδ, xα]γ
[
[yδ, xα]β, y′δ

]
[y′δ, xα]γ.
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(e) [xαx′α, yδ]β = [xα, yδ]β
[
[xα, yδ]γ, x′α

]
[x′α, yδ]β.

(f) [yδ, xαx′α]β = [yδ, x′α]β
[
[yδ, xα]γ, x′α

]
[yδ, xα]β.

(g) [xαx′α, yδ]γ = [xα, yδ]γ[x′α, yδ]γ. In particular, [x−1
α , yδ]γ = [xα, yδ]

−1
γ .

(h) [yδ, xαx′α]γ = [yδ, x′α]γ[yδ, xα]γ. In particular, [yδ, x−1
α ]γ = [yδ, xα]−1

γ .

Proof. Using Relation 1.1.11 (vii), we compute that

[xα, yδy′δ] = [xα, y′δ] · [xα, yδ]
y′δ = [xα, y′δ]β[xα, y′δ]γ[xα, yδ]

y′δ
β [xα, yδ]

y′δ
γ .

Applying Relation 1.1.11 (i) and the fact that Uγ commutes with Uδ and with Uβ,
we infer that

[xα, yδy′δ] = [xα, y′δ]β[xα, y′δ]γ[xα, yδ]β
[
[xα, yδ]β, y′δ

]
[xα, yδ]γ

= [xα, y′δ]β[xα, yδ]β · [xα, y′δ]γ
[
[xα, yδ]β, y′δ

]
[xα, yδ]γ.

Since the product map on (β, γ) is injective by assumption, this implies that (a)
and (c) hold. Using Remark 2.1.18 and, in the second computation, Lemma 2.1.13,
we infer that

[yδy′δ, xα]β = [xα, yδy′δ]
−1
β = [xα, yδ]

−1
β [xα, y′δ]

−1
β = [yδ, xα]β[y′δ, xα]β and

[yδy′δ, xα]γ = [xα, yδy′δ]
−1
γ = [xα, yδ]

−1
γ

[
[xα, yδ]β, y′δ

]−1
[xα, y′δ]

−1
γ

= [yδ, xα]γ
[
[yδ, xα]β, y′δ

]
[y′δ, xα]γ,

thereby proving (b) and (d).
By Note 7.4.3, the results of the previous paragraph also hold for (δ, γ, β, α)

in place of (α, β, γ, δ). Thus (a) implies (h), (b) implies (g), (c) implies (f) and (d)
implies (e).

Using Lemma 7.4.4, we can give an alternative proof of Proposition 2.2.10,
just like we did in Lemma 5.4.2 for simply-laced root graded groups.

7.4.5 Lemma. Let xδ ∈ Uδ, let a−α, c−α ∈ U−α, let bα ∈ Uα and set wα := a−αbαc−α.
Then xwα

δ lies in Uβ if and only if the following conditions are satisfied:

(i)
[
xδ, [xδ, bα]β

]
[xδ, bα]γ

[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

= 1G.

(ii) xδ

[
[xδ, bα]β, c−α

]
δ
[[xδ, bα]γ, c−α] = 1G.

Further, in this case, xwα
δ = [xδ, bα]β.

Proof. Using Relation 1.1.11 (i), we compute that

xwα
δ = xbαc−α

δ =
(
xδ[xδ, bα]

)c−α = xδ[xδ, bα]
[
[xδ, bα], c−α

]
.

We want to express xwα
δ as a product of root group elements, so we use the maps

from Definition 2.1.16 to split each factor into its root group components:

xwα
δ = xδ[xδ, bα]β[xδ, bα]γ

[
[xδ, bα]β[xδ, bα]γ, c−α

]
.

By Relation 1.1.11 (vii),[
[xδ, bα]β[xδ, bα]γ, c−α

]
=
[
[xδ, bα]β, c−α

][xδ,bα]γ[[xδ, bα]γ, c−α

]
=
[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

[
[xδ, bα]β, c−α

]
δ

[
[xδ, bα]γ, c−α

]
.

Further, xδ[xδ, bα]β = [xδ, bα]βxδ[xδ, [xδ, bα]β] by Relation 1.1.11 (v). Thus alto-
gether, using that Uγ commutes with Uβ and Uδ, we have

xwα
δ = [xδ, bα]β · yγ · yδ
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where

yγ :=
[
xδ, [xδ, bα]β

]
[xδ, bα]γ

[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

∈ Uγ and

yδ := xδ

[
[xδ, bα]β, c−α

]
δ

[
[xδ, bα]γ, c−α

]
∈ Uδ.

Now the assertion follows from the injectivity of the product map on (β, γ, δ).

We will usually apply Lemma 7.4.5 in the following form. The analogous
statement for RGD-systems is proven in [TW02, (21.19)].

7.4.6 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple and denote by wα :=
a−αbαc−α the corresponding Weyl element. Then the following statements hold for all
xδ ∈ Uδ:

(a) xwα
δ = [xδ, bα]β.

(b)
[
xδ, [xδ, bα]β

]
[xδ, bα]γ

[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

= 1G.

(c) xδ

[
[xδ, bα]β, c−α

]
δ
[[xδ, bα]γ, c−α] = 1G.

Proof. This follows from Lemma 7.4.5.

Similarly to the strategy described in Note 5.4.4, we can apply Lemma 7.4.6
to the root quadruple (−α, δ, γ, β), using the (−α)-Weyl triples given by Proposi-
tion 2.2.6 (c).

7.4.7 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple and denote by wα :=
a−αbαc−α the corresponding Weyl element. Then the following statements hold for all
xβ ∈ Uβ:

(a) xwα
β = [xβ, a−α]δ = [xβ, c−α]δ.

(b)
[
xβ, [xβ, a−α]δ

]
[xβ, a−α]γ

[
[xβ, a−α]δ, bα

][xβ,a−α]γ
γ

= 1G.

(c) xβ

[
[xβ, a−α]δ, bα

]
β
[[xβ, a−α]γ, bα] = 1G.

Proof. By Proposition 2.2.6 (c),

(cw−1
α

−α , a−α, bα) and (bα, c−α, awα
−α)

are (−α)-Weyl triples corresponding to the (−α)-Weyl element wα. Applying
Lemma 7.4.6 to the second Weyl triple and to the root quadruple (−α, δ, γ, β), we
see that xwα

β = [xδ, c−α]δ. Applying Lemma 7.4.6 to the first Weyl triple, we obtain
the remaining assertions.

7.4.8 Note. In Lemma 7.4.7, we did not write down all relations which can be
obtained by applying Lemma 7.4.6 to the Weyl triple (bα, c−α, awα

−α). The reason
for this is simply that these relations are more cumbersome and that we will not
need them in the sequel.

Using Lemma 7.4.6, we obtain a first formula for the action of squares of Weyl
elements.

7.4.9 Lemma. Let (a−α, bα, c−α) be an α-Weyl triple, denote by wα := a−αbαc−α the
corresponding Weyl element and put w := w2

α. Then [xδ, b−1
α ]wβ = [xδ, bα]β for all

xδ ∈ Uδ.

Proof. Let xδ ∈ Uδ. By Lemma 7.4.6 (a), we have

xwα
δ = [xδ, bα]β and xw−1

α
δ = [xδ, b−1

α ]β,
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applying Proposition 2.2.6 (a) in the second case. Since w2
α clearly maps xw−1

α
δ to

xwα
δ , the assertion follows.

7.4.10 Note. It is curious that in Lemma 7.4.9, we cannot prove the stronger
statement that

[xδ, xα]
w
β = [xδ, x−1

α ]β (7.1)

for all xα ∈ Uα and xδ ∈ Uδ. In the more specialised setting of crystallographic
BC2-graded groups, we will be able to show that every square v := w2

2β of a
2β-Weyl element w2β has the property that

[xδ, xα]
v
β = [xδ, x−1

α ]β

for all xα ∈ Uα and xδ ∈ Uδ (see Lemma 9.4.12). This will be enough to
conclude that the actions of w and v on Uβ are identical, so in particular, w
does indeed satisfy (7.1) (see Lemma 9.4.15). However, this proof is only valid
for crystallographic BC2-graded groups, not for the more general case of (non-
crystallographic) B2-graded groups.

7.4.11 Proposition. For all bα ∈ U♯
α, the map Uδ → Uβ, xδ 7→ [xδ, bα]β is an isomor-

phism of root groups.

Proof. Choose a−α, c−α such that wα := a−αbαc−α is an α-Weyl element. By
Lemma 7.4.6, the map above is simply the map xδ 7→ xwα

δ , which is an iso-
morphism by the definition of U♯

α.

We end this section with some purely notational observations which will make
future referencing easier. They follow from the previous results by replacing
(α, β, γ, δ) with (δ, γ, β, α).

7.4.12 Lemma. Assume that (a−δ, bδ, c−δ) is a δ-Weyl triple and denote by wδ :=
a−δbδc−δ the corresponding Weyl element. Then the following statements hold for all
xα ∈ Uα:

(a) xwδ
α = [xα, bδ]γ.

(b)
[
xα, [xα, bδ]γ

]
[xα, bδ]β

[
[xα, bδ]γ, c−δ

][xα,bδ]β
β

= 1G.

(c) xα

[
[xα, bδ]γ, c−δ

]
α
[[xα, bδ]β, c−δ] = 1G.

Proof. This is a reformulation of Lemma 7.4.6, using Note 7.4.3.

7.4.13 Lemma. Assume that (a−δ, bδ, c−δ) is an δ-Weyl triple and denote by wδ :=
a−δbδc−δ the corresponding Weyl element. Then the following statements hold for all
xγ ∈ Uγ:

(a) xwδ
γ = [xα, a−δ]α = [xα, c−δ]α.

(b)
[
xγ, [xγ, a−δ]α

]
[xγ, a−δ]β

[
[xγ, a−δ]α, bδ

][xγ,a−δ]β
β

= 1G.

(c) xγ

[
[xγ, a−δ]α, bδ

]
γ
[[xγ, a−δ]β, bδ] = 1G.

Proof. This is a reformulation of Lemma 7.4.7, using Note 7.4.3.

7.4.14 Proposition. For all bδ ∈ U♯
δ, the map Uα → Uγ, xα 7→ [xα, bδ]γ is an isomor-

phism of root groups.

Proof. This is a reformulation of Proposition 7.4.11, using Note 7.4.3.
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7.5 Rank-2 Computations, Crystallographic Case

7.5.1 Notation for this section. We denote by G a group which has crystallo-
graphic B2-commutator relations with root groups (Uα)α∈B2 and we choose a
B2-quadruple (α, β, γ, δ). Further, we assume that G is rank-2-injective.

In this section, we mostly simplify the results from the previous section under
the additional assumption that the commutator relations are crystallographic.
We will also perform a handful of new computations. Due to the crystallographic
assumption, the distinction of root lengths matters from now on. In particular,
the roles of (α, β, γ, δ) and (δ, γ, β, α) are no longer interchangeable.

7.5.2 Note. Since the root system B2 is isomorphic to C2, all results in this section
are also valid for crystallographic C2-gradings. We will explain how this works
in Remark 9.2.8.

7.5.3 Lemma. The following relations hold for all xα, x′α ∈ Uα and all yδ, y′δ ∈ Uδ:
(a) [xα, yδy′δ]β = [xα, y′δ]β[xα, yδ]β. In particular, [xα, y−1

δ ]β = [xα, yδ]
−1
β .

(b) [yδy′δ, xα]β = [yδ, xα]β[y′δ, xα]β. In particular, [y−1
δ , xα]β = [yδ, xα]

−1
β .

(c) [xα, yδy′δ]γ = [xα, y′δ]γ
[
[xα, yδ]β, y′δ

]
[xα, yδ]γ.

(d) [yδy′δ, xα]γ = [yδ, xα]γ
[
[yδ, xα]β, y′δ

]
[y′δ, xα]γ.

(e) [xαx′α, yδ]β = [xα, yδ]β[x′α, yδ]β. In particular, [x−1
α , yδ]β = [xα, yδ]

−1
β .

(f) [yδ, xαx′α]β = [yδ, x′α]β[yδ, xα]β. In particular, [yδ, x−1
α ]β = [yδ, xα]

−1
β .

(g) [xαx′α, yδ]γ = [xα, yδ]γ[x′α, yδ]γ. In particular, [x−1
α , yδ]γ = [xα, yδ]

−1
γ .

(h) [yδ, xαx′α]γ = [yδ, x′α]γ[yδ, xα]γ. In particular, [yδ, x−1
α ]γ = [yδ, xα]−1

γ .

Proof. These statements follow from Lemma 7.4.4 with the additional assumption
that the commutator relations are crystallographic. More precisely, we only need
that Uα and Uγ commute and the only changes are in (e) and (f).

Since there are two orbits of roots and we want to investigate the actions of
(squares of) Weyl elements on all root groups, we have to distinguish four cases.
For better clarity, we study each of these cases in a separate subsection. The case
of long Weyl elements acting on long root groups will not be covered in this
section because we can reduce it to the study of A2-subsystems in section 7.6.

7.5.A The Action of Long Weyl Elements on Short Root Groups

In this subsection, we show that squares of long Weyl elements act on the short
root groups in the same B2-subsystem by inversion (Lemma 7.5.6).

7.5.4 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple with corresponding Weyl
element wα := a−αbαc−α. Then the following hold:

(a) xwα
δ = [xδ, bα]β.

(b)
[
xδ, [xδ, bα]β

]
[xδ, bα]γ

[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

= 1G.

(c) xδ = [[xδ, bα]β, c−α]
−1
δ .

Proof. Using that U−α and Uγ commute in a crystallographic B2-grading, these
statements follow from Lemma 7.4.6.
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7.5.5 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple with corresponding Weyl
element wα := a−αbαc−α. Then the following hold:

(a) xwα
β = [xβ, a−α]δ = [xβ, c−α]δ.

(b)
[
xβ, [xβ, a−α]δ

]
[xβ, a−α]γ

[
[xβ, a−α]δ, bα

][xβ,a−α]γ
γ

= 1G.

(c) xβ = [[xβ, a−α]δ, bα]
−1
β .

Proof. Using that Uα and Uγ commute in a crystallographic B2-grading, these
statements follow from Lemma 7.4.7.

7.5.6 Lemma. Assume that wα is an α-Weyl element. Then w2
α acts on Uβ and Uδ by

inversion.

Proof. We apply the same strategy as in the proof of Lemma 5.4.13. Choose an
α-Weyl triple (a−α, bα, c−α) such that wα = a−αbαc−α and let xδ be an arbitrary
element of Uδ. Put w := w2

α. Using first Lemma 7.5.4 and then Lemma 7.5.5, we
have

xw
δ = [xδ, bα]

wα
β = [[xδ, bα]β, c−α]δ.

Again by Lemma 7.5.4, we infer that xw
δ = x−1

δ , so w acts on Uδ by inversion.
Since wα is also a (−α)-Weyl element by Proposition 2.2.6 (c) and (−α, δ, γ, β) is
a B2-quadruple, it follows that w acts on Uβ by inversion as well.

7.5.7 Remark (Alternative proof of Lemma 7.5.6). Recall that we gave an alterna-
tive proof of Lemma 5.4.13 in Remark 5.4.14. Using the same strategy, we can also
prove Lemma 7.5.6 in a different way. Let xδ ∈ Uδ. In addition to the Weyl triple
(a−α, bα, c−α), we consider the Weyl triple (c−1

−α, b−1
α , a−1

−α) whose corresponding
Weyl element is w−1

α (see Proposition 2.2.6 (a)). By Lemma 7.5.4, we have

xwα
δ = [xδ, bα]β and xw−1

α
δ = [xδ, b−1

α ]β.

Using Lemma 7.5.3 (f), we infer that

xw−1
α

δ = (xwα
δ )−1.

This means that w2
α acts on Uδ by inversion. By similar arguments, we can deduce

from Lemma 7.5.5 that w2
α acts on Uβ by inversion.

The ideas from the previous paragraph can also be phrased in a slightly
different way: Any xβ ∈ Uβ can, by Proposition 7.4.11, be written as xβ =

[xδ, b−1
α ]β for some xδ ∈ Uδ, and it follows from Lemma 7.4.9 that

xw
β = [xδ, b−1

α ]wβ = [xδ, bα]β.

By Lemma 7.5.3 (f), it follows that xw
β = x−1

β .

7.5.8 Proposition. Assume that U♯
α is non-empty. Then Uβ and Uδ are abelian.

Proof. A group H is abelian if and only if the inversion map h 7→ h−1 is an
endomorphism (and thus an automorphism) of H. By Lemma 7.5.6, the inversion
maps on Uβ and Uδ are the same as conjugation by w2

α for any α-Weyl element
wα, and conjugation by any group element is a homomorphism. The assertion
follows.

7.5.9 Note. In the rank-2 setting, we cannot prove that the long root groups are
abelian as well, but this poses no problem: In the rank-3 setting, every long root
is contained in an A2-subsystem by Lemma 7.2.12, so every long root group is
abelian by Proposition 5.4.9.
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7.5.B The Action of Short Weyl Elements on Long Roots

In this subsection, we obtain no conclusive results. We will revisit this case in the
rank-3 setting.

7.5.10 Lemma. Assume that (a−δ, bδ, c−δ) is a δ-Weyl triple and denote by wδ :=
a−δbδc−δ the corresponding Weyl element. Then the following statements hold for all
xα ∈ Uα:

(a) xwδ
α = [xα, bδ]γ.

(b) [xα, bδ]β
[
[xα, bδ]γ, c−δ

][xα,bδ]β
β

= 1G.

(c) xα

[
[xα, bδ]γ, c−δ

]
α
[[xα, bδ]β, c−δ] = 1G.

Proof. This follows from Lemma 7.4.12, using the additional information that Uα

and Uγ commute in a crystallographic B2-grading.

7.5.11 Lemma. Assume that (a−δ, bδ, c−δ) is an δ-Weyl triple and denote by wδ :=
a−δbδc−δ the corresponding Weyl element. Then the following statements hold for all
xγ ∈ Uγ:

(a) xwδ
γ = [xγ, a−δ]α = [xγ, c−δ]α.

(b) [xγ, a−δ]β
[
[xγ, a−δ]α, bδ

][xγ,a−δ]β
β

= 1G.

(c) xγ

[
[xγ, a−δ]α, bδ

]
γ
[[xγ, a−δ]β, bδ] = 1G.

Proof. This follows from Lemma 7.4.12, using the additional information that Uα

and Uγ commute in a crystallographic B2-grading.

7.5.C The Action of Short Weyl Elements on Short Root Groups

Again, there are no conclusive results in this subsection because rank-3 assump-
tions are necessary.

Note that the following result is not the specialisation of computation in the
non-crystallographic setting, but a new one. The reason for this is simply that
even under crystallographic assumptions, the computation is tedious, and it
would be even more so in the general case.

7.5.12 Lemma. Let a−β, c−β ∈ U−β, let bβ ∈ Uβ, let xδ ∈ Uδ and set wβ := a−βbβc−β.
Then x

wβ

δ lies in Uδ if and only if the following conditions are satisfied:
(i) 1G = [xδ, c−β]

[
[xδ, bβ], c−β

]
−α

[xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

]
·
[[
[xδ, a−β], bβ

]
γ

, c−β

]
−α

.

(ii)
[
[xδ, a−β], bβ

]
γ
= [xδ, bβ]

−1.

Further, in this case,

x
wβ

δ = xδ

[
[xδ, bβ], c−β

]
δ

[
[xδ, a−β], bβ

]
δ

[[
[xδ, a−β], bβ

]
γ

, c−β

]
δ
.

Proof. As in Lemmas 5.4.2 and 7.4.5, we use Relation 1.1.11 (i) to perform the
following computation:

x
wβ

δ =
(
xδ[xδ, a−β]

)bβc−β

=
(
xδ[xδ, bβ][xδ, a−β]

[
[xδ, a−β], bβ

]
δ

[
[xδ, a−β], bβ

]
γ

)c−β

= xδ[xδ, c−β][xδ, bβ]
[
[xδ, bβ], c−β

]
[xδ, a−β]

[
[xδ, a−β], bβ

]
δ

·
[[
[xδ, a−β], bβ

]
δ
, c−β

][
[xδ, a−β], bβ

]
γ

[[
[xδ, a−β], bβ

]
γ

, c−β

]
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= xδ[xδ, c−β][xδ, bβ]
[
[xδ, bβ], c−β

]
−α

[
[xδ, bβ], c−β

]
δ
[xδ, a−β]

[
[xδ, a−β], bβ

]
δ

·
[[
[xδ, a−β], bβ

]
δ
, c−β

][
[xδ, a−β], bβ

]
γ

[[
[xδ, a−β], bβ

]
γ

, c−β

]
−α

·
[[
[xδ, a−β], bβ

]
γ

, c−β

]
δ

Note that each of the factors lies in U−α, Uδ or Uγ and that each of these
root groups commutes with the other two because G has crystallgrophic B2-
commutator relations. (However, we do not have any information on any of the
groups U−α, Uδ or Uγ being abelian.) Thus we can write x

wβ

δ = y−αyδyγ where

y−α := [xδ, c−β]
[
[xδ, bβ], c−β

]
−α

[xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

]
·
[[
[xδ, a−β], bβ

]
γ

, c−β

]
−α

,

yδ := xδ

[
[xδ, bβ], c−β

]
δ

[
[xδ, a−β], bβ

]
δ

[[
[xδ, a−β], bβ

]
γ

, c−β

]
δ
,

yγ := [xδ, bβ]
[
[xδ, a−β], bβ

]
γ

.

Now by the injectivity of the product map on (−α, δ, γ), x
wβ

δ lies in Uδ if and only
if y−α = 1G = yγ, and in this case, x

wβ

δ = yδ. The assertion follows.

We know from Note 7.5.9 that all root groups will ultimately be proven to
be abelian in the higher-rank setting. With this knowledge, we can simplify the
statement of Lemma 7.5.12.

7.5.13 Lemma. Let everything be as in Lemma 7.5.12, and assume additionally that
the root groups U−α, Uδ, Uγ are abelian. Then x

wβ

δ lies in Uδ if and only if the following
conditions are satisfied:

(i) [xδ, c−β][xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

]
= 1G.

(ii)
[
[xδ, a−β], bβ

]
γ
= [xδ, bβ]

−1.

Further, in this case, x
wβ

δ = xδ[[xδ, a−β], bβ]δ.

Proof. Define y−α, yδ, yγ as in the proof of Lemma 7.5.12. At first, assume that
x

wβ

δ lies in Uδ. Then [[xδ, a−β], bβ]γ = [xδ, bβ]
−1 by Lemma 7.5.12. Plugging this

relation into the definitions of y−α and yδ, we obtain that

y−α = [xδ, c−β]
[
[xδ, bβ], c−β

]
−α

[xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

][
[xδ, bβ]

−1, c−β

]
−α

,

yδ = xδ

[
[xδ, bβ], c−β

]
δ

[
[xδ, a−β], bβ

]
δ

[
[xδ, bβ]

−1, c−β

]
δ
.

Note that

[[xδ, bβ]
−1, c−β]δ = [[xδ, bβ], c−β]

−1
δ and [[xδ, bβ]

−1, c−β]−α = [[xδ, bβ], c−β]
−1
−α

by Lemma 7.5.3 (e) and Lemma 7.5.3 (g), respectively. Since U−α and Uδ are
abelian, it follows that

y−α = [xδ, c−β][xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

]
and yδ = xδ

[
[xδ, a−β], bβ

]
δ
.

Since y−α = 1G and yδ = x
wβ

δ by Lemma 7.5.12, this proves the first implication
of the assertion.

Conversely, assume that (i) and (ii) are satisfied. Using (ii) and the same
computation as in the first paragraph, but reversed, we see that the term in (i)
equals y−α. Thus y−α = 1G, and so it follows from Lemma 7.5.12 that x

wβ

δ lies
in Uδ.

As usual, we give a reformulation of Lemma 7.5.13 under the assumption
that wβ is a Weyl element.



7.6. Rank-3 Computations 201

7.5.14 Lemma. Let (a−β, bβ, c−β) be a β-Weyl element and denote by wβ := a−βbβc−β

the corresponding Weyl element. Assume that the root groups U−α, Uδ, Uγ are abelian.
Then the following hold:

(a) x
wβ

δ = xδ[[xδ, a−β], bβ]δ.

(b) [xδ, c−β][xδ, a−β]
[[
[xδ, a−β], bβ

]
δ
, c−β

]
= 1G.

(c)
[
[xδ, a−β], bβ

]
γ
= [xδ, bβ]

−1.

Proof. This is a consequence of Lemma 7.5.13.

7.6 Rank-3 Computations

7.6.1 Notation for this section. We denote by G a group which has crystallo-
graphic Bn-commutator relations with root groups (Uα)α∈Bn for some fixed in-
teger n ≥ 3. We assume that U♯

α is non-empty for all α ∈ Φ and that G is
rank-2-injective.

In this section, we prove that G satisfies the square formula for Weyl elements
(Proposition 7.6.15). Using the square formula, we can give a new proof of the
braid relations in G (Remark 7.6.17).

Before we begin, we make a brief observation which will simplify many
computations.

7.6.2 Proposition. All root groups of G are abelian.

Proof. Every short root lies in a B2-quadruple, so it follows from Proposition 7.5.8
that all short root groups are abelian. Further, every long roots lies in an A2-
subsystem by Lemma 7.2.12, so all short root groups are abelian by Proposi-
tion 5.4.9.

7.6.A The Action of Long Weyl Elements on Short Root Groups

In this case, everything is essentially done by the rank-2 computations, specifically
by Lemma 7.5.6. It remains to put everything together.

7.6.3 Lemma. Let α be a long root, let β be a short root and let wα be an α-Weyl element.
If α and β are orthogonal, then w2

α acts trivially on Uβ. Otherwise w2
α acts on Uβ by

inversion.

Proof. If α and β are orthogonal, then β is adjacent to α and −α by Lemma 7.2.11
because α is long. This implies that w2

α acts trivially on Uβ. If they are not orthog-
onal, then they lie in a common B2-quadruple, so it follows from Lemma 7.5.6
that w2

α acts on Uβ by inversion.

7.6.4 Proposition. Let α be a long root, let β be a short root, let wα be an α-Weyl
element. Put w := w2

α and set ε := (−1)⟨β|α⟩. Then xw
β = xε

β for all xβ ∈ Uβ.

Proof. We know from Proposition 7.2.20 that ε = 1 if α, β are orthogonal and that
ε = −1 if they are not. Thus the assertion follows from Lemma 7.6.3.
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7.6.B The Action of Long Weyl Elements on Long Roots

In this case, we can reduce everything to the case of gradings of type A2 and
A1 × A1.

7.6.5 Proposition. Let α, γ be two long roots and let wα be an α-Weyl element. Put
w := w2

α and set ε := (−1)⟨γ|α⟩. Then xw
γ = xε

γ for all xγ ∈ Uγ.

Proof. If α and γ lie in a common A2-subsystem, then the assertion holds by
Proposition 5.4.17. If they do not lie in a common A2-subsystem, then they must
be orthogonal by Lemma 7.2.13 and thus we have ε = 1. In this case, γ is adjacent
to α and −α by Lemma 7.2.11, and thus wα acts trivially on Uγ. The assertion
follows.

7.6.6 Note. The proof of Proposition 7.6.5 fails if n = 2 because Lemma 7.2.13
does not hold in this case. In fact, it is not necessarily true that w2

α acts trivially
on Uα in a crystallographic B2-graded group. We will see a counterexample in
Note 9.3.30.

7.6.C The Action of Short Weyl Elements on Long Root Groups

In Lemma 7.5.10 (a), we have already derived a simple formula for the action
of short Weyl elements on long root groups. In order to arrive at a formula
for the action of squares, we need to understand the behaviour of the map
(xα, xδ) 7→ [xα, xδ]γ under inverses in the second component. This is only possible
in the rank-3 setting because we have to use Proposition 7.6.5.

7.6.7 Lemma. Let (α, β, γ, δ) be a B2-quadruple. Then [xα, x−1
δ ]γ = [xα, xδ]γ for all

xα ∈ Uα and all xδ ∈ Uδ.

Proof. Let xα ∈ Uα and let xδ ∈ Uδ. Further, choose an arbitrary γ-Weyl ele-
ment wγ and set w := w2

γ. Since xw
δ = x−1

δ by Lemma 7.6.3 and xw
α = xα by

Proposition 7.6.5, it follows from Lemma 2.2.9 that

[xα, xδ]
w
γ = [xw

α , xw
δ ]γ = [xα, x−1

δ ]γ.

However, we also know that w acts trivially on Uγ by Proposition 7.6.5, so
[xα, xδ]

w
γ = [xα, xδ]γ. The assertion follows.

7.6.8 Note. Thinking in terms of the commutator relations that we will ultimately
prove for G (see Proposition 7.3.25), Lemma 7.6.7 corresponds to the fact that
q(−v) = q(v) for a quadratic form q.

7.6.9 Lemma. Let (α, β, γ, δ) be a B2-quadruple and let wδ be a δ-Weyl element. Then
w2

δ acts trivially on Uα and on Uγ.

Proof. Choose a δ-Weyl triple (a−δ, bδ, c−δ) whose corresponding Weyl element is
wδ and let xα ∈ Uα. By Proposition 2.2.6 (a), (c−1

−δ, b−1
δ , a−1

−δ) is a δ-Weyl triple with
corresponding Weyl element w−1

δ . Thus it follows from Lemma 7.5.10 (a) that

xwδ
α = [xδ, bα]γ and xw−1

δ
α = [xδ, b−1

α ]γ.

These terms are equal by Lemma 7.6.7. This implies that w2
δ acts trivially on xα

and this on all of Uα. Since wδ is also a (−δ)-Weyl element and (γ, β, α,−δ) is a
B2-quadruple, it follows that w2

δ acts trivially on Uγ as well.
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7.6.10 Proposition. Let δ be a short, let α be a long root and let wδ be a δ-Weyl element.
Put ε := (−1)⟨α|δ⟩ and w := w2

δ. Then xw
α = xε

α for all xα ∈ Uα. Even more, we always
have ε = 1 and w acts trivially on all long root groups.

Proof. By Lemma 7.2.18, ⟨α|δ⟩ is an even number, so ε = 1. If α and δ lie in a
common B2-subsystem, then w acts trivially on Uα by Lemma 7.6.9. Otherwise
they are orthogonal, and thus α is adjacent to δ and −δ by Lemma 7.2.11. It
follows that w acts trivially on Uα in this case, too.

7.6.D The Action of Short Weyl Elements on Short Root Groups

In this section, the rank-3 assumption is used implicitly when we refer to results
from subsection 7.6.C.

We already know that every long Weyl element in G is balanced by the
corresponding result for A2-graded groups (see Proposition 5.4.10 (a)). For short
Weyl elements, this is not yet clear and will only follow from a combination of
Proposition 7.7.5 and Theorem 7.11.21. However, the following result is a first
step into this direction.

7.6.11 Lemma. Let (α, β, γ, δ) be a B2-quadruple and let (a−β, bβ, c−β) be a β-Weyl
triple. Then [xδ, a−β] = [xδ, c−β] for all xδ ∈ Uδ.

Proof. By Proposition 2.2.6 (a), (c−1
−β, b−1

β , a−1
−β) is also a β-Weyl triple. Thus it

follows from Lemma 7.5.12 (ii) that[
[xδ, a−β], bβ

]
γ
= [xδ, bβ]

−1 = [bβ, xδ] and
[
[xδ, c−1

−β], b−1
β

]
γ
= [b−1

β , xδ].

Note that by Lemma 7.5.3 (g) and Lemma 2.1.13, respectively, we have[
[xδ, c−1

−β], b−1
β

]
γ
=
[
[xδ, c−β], b−1

β

]−1
γ

and [b−1
β , xδ] = [bβ, xδ]

−1.

Further, [[xδ, c−β], b−1
β ]γ = [[xδ, c−β], bβ]γ by Lemma 7.6.7. Altogether, we con-

clude that[
[xδ, a−β], bβ

]
γ
= [bβ, xδ] = [b−1

β , xδ]
−1 =

[
[xδ, c−1

−β], b−1
β

]−1
γ

= [[xδ, c−β], bβ]γ.

Since the map U−α → Uγ, x−α 7→ [x−α, bβ]γ is an isomorphism by Proposi-
tion 7.4.14, we infer that [xδ, a−β] = [xδ, c−β], as desired.

7.6.12 Lemma. Let (α, β, γ, δ) be a B2-quadruple and let wβ be a β-Weyl element. Then
w2

β acts trivially on Uδ.

Proof. Choose a β-Weyl triple (a−β, bβ, c−β) whose corresponding Weyl element
is wβ. By Proposition 2.2.6 (a), (c−1

−β, b−1
β , a−1

−β) is a (−β)-Weyl triple with corre-

sponding Weyl element w−1
β . Applying Lemma 7.5.13 to these two Weyl triples,

we see that

x
wβ

δ = xδ

[
[xδ, a−β], bβ

]
δ

and x
w−1

β

δ = xδ

[
[xδ, c−1

−β], b−1
β

]
δ
.

Using Lemma 2.1.13 and Lemma 7.5.3 (a), we can simplify the last term as follows:

x
w−1

β

δ = xδ

[
[xδ, c−β], bβ

]
δ
.

Since [xδ, a−β] = [xδ, c−β] by Lemma 7.6.11, we conclude that wβ and w−1
β act

identically on Uδ. In other words, w2
β acts trivially on Uδ, which finishes the

proof.
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7.6.13 Lemma. Let β be a short root and let wβ be a β-Weyl elements. Then w2
β acts

trivially on Uβ and U−β.

Proof. Choose roots α, γ, δ such that (α, β, γ, δ) is a B2-quadruple. Further, choose
any α-Weyl element wα. By the definition of Weyl elements, we have Uβ = Uwα

δ , so
Uβ is contained in the group generated by Uδ ∪ Uα ∪ U−α. Since w2

β acts trivially
on Uδ by Lemma 7.6.12 and trivially on Uα and U−α by Proposition 7.6.10, it
follows that w2

β acts trivially on Uβ as well. Since wβ is also a (−β)-Weyl element
by Proposition 2.2.6 (c), this implies that w2

β acts trivially on U−β as well.

7.6.14 Proposition. Let β, δ be two short roots and let wβ be a β-Weyl element. Put
ε := (−1)⟨δ|β⟩ and w := w2

β. Then xw
δ = xε

δ for all xδ ∈ Uδ. Even more, we always have
ε = 1 and w acts trivially on all short root groups.

Proof. By Lemma 7.2.17, ⟨δ|β⟩ is always an even number, so ε = 1. It is clear
that β and δ lie in a common B2-subsystem. Thus w acts trivially on Uδ by
Lemmas 7.6.12 and 7.6.13, which finishes the proof.

7.6.E Summary

We can summarise the results of the previous subsections as follows.

7.6.15 Proposition. Let ξ, ζ be any two roots in Bn and let wζ be a ζ-Weyl element. Put
w := w2

ζ and ε := (−1)⟨ξ|ζ⟩. Then xw
ξ = xε

ξ for all xξ ∈ Uξ . In other words, G satisfies
the square formula for Weyl elements (see Definition 4.4.4).

Proof. This is simply a summary of Propositions 7.6.4, 7.6.5, 7.6.10 and 7.6.14.

The following result is simply a special case of Proposition 7.6.15, but it
deserves to be pointed out.

7.6.16 Proposition. Let β be a short root and let wβ be a β-Weyl element. Then w2
β lies

in the center of G.

Proof. By Propositions 7.6.10 and 7.6.14, w2
β acts trivially on all root groups. Since

these generate G, it follows that w2
β acts trivially on G. In other words, it lies in

the center of G.

7.6.F Final Observations

7.6.17 Remark (Braid relations). We already know from Theorem 2.5.10 that
G satisfies the braid relations for Weyl elements, but as in Remark 5.4.11, we
can give an alternative proof of this fact using the results in this section. Let
∆ be a root base of Bn and denote by (α, δ) the unique B2-pair which appears
in ∆. (Note that since ∆ was chosen arbitrarily, this can be any B2-pair in Bn.)
Choose roots β, γ such that (α, β, γ, δ) is a B2-quadruple. We have to show that
wαwδwαwδ = wδwαwδwα. Since

wαwδwαwδ = wδwαwδwwδwαwδ
α ,

we only have to show that wα = wwδwαwδ
α . Put w := wδwαwδ, and note that

w = w2
δwwδ

α . Since wwδ
α is a γ-Weyl element by Proposition 2.2.6 (b), it lies in

⟨Uγ ∪ U−γ⟩ and thus it commutes with wα. Further, w2
δ even lies in the center of

G by Proposition 7.6.16. We conclude that ww
α = wα, which finishes the proof.
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7.6.18 Note (on 7.6.17). We emphasise the ever-present assumption in this section
that n ≥ 3. While it is true by Theorem 2.5.10 that any B2-graded group satisfies
the braid relations for Weyl elements (even without crystallographic assump-
tions), the proof in Remark 7.6.17 only works for crystallographic B2-graded
groups which occur as root graded subgroups of a B3-graded group. For general
B2-graded groups, it is not necessarily true that w2

δ acts trivially on Uα. We will
see a counterexample in Note 9.3.30.

Before we end this section, we make a quick detour to prove Proposition 7.6.21.
It will be needed in the proof of stabiliser-compatibility for Bn-graded groups
(Proposition 7.9.3).

7.6.19 Lemma. Let (α, β, γ, δ) be a B2-quadruple and choose an α-Weyl element wα

and a δ-Weyl element wδ. Let ρ be any short root which does not lie in {±β,±δ }. Then
the Weyl elements wδ and wwα

δ act identically on Uρ.

Proof. The only short roots which lie in a common B2-subsystem with α are those
in {±β,±δ }, so Uρ commutes with Uα and U−α. The assertion follows.

7.6.20 Lemma. Let α, β, γ be roots which form a root base for a subsystem of Bn of type
B3 such that (α, β) is an A2-pair and (β, γ) is a B2-pair. Choose corresponding Weyl
elements wα, wβ, wγ. Then the actions of wγ and w

wβwα

γ on Uβ are identical.

Proof. Without loss of generality, we can assume that the B3-subsystem is in stan-
dard form (as in Remark 7.2.2). Thus we assume that there exists an orthonormal
basis (e1, e2, e3) of ⟨α, β, γ⟩R which satisfies

α = e1 − e2, β = e2 − e3 and γ = e3.

Further, we put

w12 := wα, w21 := w−1
12 , w23 := wβ, w32 := w−1

23 , w3 := wγ.

For an arbitrary x2 ∈ Ue2 , we have to show that

xw3
2 = xw21w32w3w23w12

2 .

Since xw21
2 lies in Ue1 , this element commutes with w32, so

xw21w32w3w23w12
2 = xw21w3w23w12

2 .

Similarly, xw21w3
2 lies in Ue1 and thus commutes with w23, so

xw21w3w23w12
2 = xw21w3w12

2 .

Finally, w3 commutes with w12, so w21w3w12 = w21w12w3 = w3. This finishes the
proof.

7.6.21 Proposition. Write Bn in standard representation and denote by ∆ the standard
root base of Bn. Let (wδ)δ∈∆ be a ∆-system of Weyl elements in G and let (wα)α∈B̂n

be
its standard B̂n-extension (as in Definition 7.2.23). Then for all i, j, k ∈ [1, n] such that
k /∈ { i, j }, the actions of wei and wej on Uek and U−ek are identical.

Proof. The assertion is trivial if i = j, so we can assume that i, j, k are pairwise
distinct. For all i ∈ [1, n− 1], we put wi,i+1 := wei−ei+1 and wi+1,i := w−1

i,i+1. Further,
we put wi := wei for all i ∈ [1, n]. We begin by showing that for all i ∈ [1, n] and
all k ∈ [1, n − 1] \ {i}, the actions of wi and wn on Uek and U−ek are identical. We
prove this by induction on i, the case i = n being trivial. Thus assume that i < n.
If k ̸= i + 1, then ek and −ek are not contained in {±ei,±ei+1 }, so it follows from
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Lemma 7.6.19 that wi = wwi+1,i
i+1 and wi+1 act identically on Uek and U−ek . By the

induction hypothesis, it follows that wi and wn act identically on Uek and U−ek .
Now assume that k = i + 1. Then i + 2 = k + 1 ≤ n, so

wi = wwi+2,i+1wi+1,i
i+2 .

Thus it follows from Lemma 7.6.20 that wi and wi+2 act identically on Uei+1 and
U−ei+1 . Again by the induction hypothesis, we infer that wi and wn act identically
on Uek and U−ek .

Now let i, j, k ∈ [1, n] be pairwise distinct. If k ̸= n, then it follows from the
conclusion of the previous paragraph that wi and wj act on Uek and U−ek in the
same way as wn, so in particular, wi and wj act identically. Now assume that
k = n. Without loss of generality, assume that i < j. Applying Lemma 7.6.19
inductively, we can easily see that all the Weyl elements

wj, w
wj,j−1
j , w

wj,j−1wj−1,j−2
j , . . . , w

wj,j−1···wi+1,i
j

act identically on Uen and U−en . Since

wi = w
wj,j−1···wi+1,i
j ,

the assertion follows.

7.7 Standard Signs

7.7.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system Bn in its standard representation (as in Remark 7.2.2). We denote by G a
group with a Bn-pregrading (Uα)α∈Bn , by k a commutative associative ring and
by (M, q) a quadratic module over k. We assume that there exists a coordinati-
sation (θα)α∈Bn of G by (M, q) with standard signs (in the sense of the following
Definition 7.7.2), and we fix this coordinatisation.

7.7.2 Definition (Coordinatisation with standard signs). Let G be a group with
a Bn-pregrading (Uα)α∈Bn , let k be a commutative associate ring and let (M, q) be
a quadratic module over k. A coordinatisation of G by (M, q) with standard signs is
a family (θα)α∈Bn with the following properties:

(i) For all roots α, the map θα is an isomorphism from (k,+) to Uα if α is long
and it is an isomorphism from (M,+) to Uα if α is short.

(ii) The same commutator relations as in Proposition 7.3.25 are satisfied. We
will refer to them as the standard commutator relations.

We will show in Theorem 7.11.21 that every Bn-graded group is coordinatised
by some quadratic module with standard signs.

In the remaining part of this section, we investigate some properties of groups
with a standard coordinatisation. We begin by showing that all Weyl elements in
such groups are balanced, which by Theorem 7.11.21 shows that Weyl elements
in all Bn-graded groups are balanced.

7.7.3 Lemma. Let δ be a short root and let wδ be a δ-Weyl element in G. If v′, v, v′′ ∈ M
are such that wδ = θ−δ(v′)θδ(v)θ−δ(v′′), then q(v) is invertible and v′ = v′′ =
−q(v)−1v. In particular, wδ is weakly balanced.

Proof. We prove this for the short root δ = e2. The assertion for all other short
roots can be proven similarly. Let w2 be a e2-Weyl element and let v′, v, v′′ ∈



7.7. Standard Signs 207

M be such that w2 = θ−e2(v
′)θe2(v)θ−e2(v

′′). For all a ∈ k, we know from
Lemma 7.5.10 (a), Lemma 7.5.11 (a) and the standard commutator relations that

θe1−e2(a)ŵ2 = [θe1−e2(a), θe2(v)]e1+e2 = θe1+e2

(
−aq(v)

)
and

θe1+e2(a)ŵ2 = [θe1+e2(a), θ−e2(v
′)]e1−e2 = θe1−e2

(
−aq(v′)

)
.

This implies that θe1−e2(1k)
w2

2 = (q(v)q(v′)). On the other hand, we know that
θe1−e2(1k)

w2
2 = θe1−e2(1k) by Proposition 7.6.10, so it follows that q(v)q(v′) = 1k.

In particular, q(v) is invertible. Further, it follows from Lemma 7.5.10 (b) that

1G = [θe1−e2(1), θe2(v)]e1

[
[θe1−e2(1), θe2(v)]e1+e2 , θ−e2(v

′)
]

e1

= θe1(v)
[
θe1+e2

(
−q(v)

)
, θ−e2(v

′)
]

e1
= θe1

(
v + q(v)v′

)
.

It follows that v = −q(v)v′. Since q(v) is invertible, this implies that v′ =
−q(v)−1v. The same argument can be applied to the Weyl element w−1

2 =
θ−e2(−v′′)θe2(−v)θ−e2(−v′), which then yields that −v′′ = −q(−v)−1(−v). Thus
we have v′′ = −q(v)−1v = v′ as well.

7.7.4 Note. The element v ∈ M in Lemma 7.7.3 need not be uniquely determined
by wδ: See Remark 7.3.14.

7.7.5 Proposition. All Weyl elements in G are balanced.

Proof. For long Weyl elements, we already know this from the corresponding as-
sertion for A2-graded groups, see Proposition 5.4.10 (a). For short Weyl elements,
this follows from Lemma 7.7.3 and Proposition 2.2.16.

7.7.6 Proposition. The following hold:
(a) Let α be a long root. Define

wα(r) := θ−α(−r−1)θα(r)θ−α(−r−1)

for all invertible r ∈ k. Then the maps

k× → U♯
α, r 7→ θα(r) and k× → Mα, r 7→ wα(r)

are well-defined bijections. Here k×, U♯
α and Mα denote the sets of invertible

elements in k (in the sense of Definition 5.1.12), the set of α-invertible elements in
Uα and the set of α-Weyl elements, respectively.

(b) Let δ be a short root and put M× := { u ∈ M | q(u) ∈ k× }. Define

wδ(u) := θ−δ

(
−q(u)−1u

)
θδ(u)θ−δ

(
−q(u)−1u

)
for all u ∈ M×. Then the maps

M× → U♯
δ, u 7→ θδ(u) and M× → Mδ, u 7→ wδ(u)

are well-defined surjections, and the first one is a bijection.
(c) The Weyl elements defined above satisfy the same conjugation formulas as in

Lemmas 7.3.15 and 7.3.17.
(d) Let ∆ be any root base of Bn and choose an element v0 ∈ M with q(v0) = 1k.

Define A, B, η and µ as in Notation 7.3.18. Put wα := wα(1k) for all long roots
in ∆ and wβ := wβ(v0) for the unique short root in ∆. Then G is parametrised by
(A × B, M, k) with respect to η × µ and (wδ)δ∈∆.

Proof. By Proposition 5.6.6 (a), we already know that the maps in (a) are bijective
if they are well-defined. Using computations as in Lemmas 7.5.4 and 7.5.5, one
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can show that elements of the form wα = wα(r) satisfy Uwα
β = Uσα(β) for all short

roots β. This proves (a).
We know from Lemma 7.7.3 that the maps in (b) are surjective if they are

well-defined. Further, the first map is injective because θδ is injective. Now
let u ∈ M× and put wδ := wδ(u). Using the rank-2 computations and the
commutator relations, one can show that Uwδ

ρ = Uσδ(ρ) for all ρ ∈ Bn \ {±δ }.
Even more, these computations show that the same conjugation formulas as
in Lemmas 7.3.15 and 7.3.17 are satisfied. It remains to prove the assertion for
ρ ∈ {±δ }. We do this for δ = e2 = ρ and the remaining cases can be covered in
a similar way. Let v ∈ M be arbitrary. By the standard commutator relations, we
have

θe2(v) = [θe2−e1(1k), θe1(v)]e2 = [θe2−e1(1k), θe1(v)][θe2−e1(1k), θe1(v)]
−1
e1+e2

= [θe2−e1(1k), θe1(v)]θe1+e2

(
−q(v)

)
.

Using that the conjugation formulas in Lemma 7.3.15 are satisfied, we infer that

θe2(v)
w2(u) = [θe2−e1(1k)

w2(u), θe1(v)
w2(u)]θe1+e2

(
−q(v)

)w2(u)

=
[
θ−e1−e2

(
−q(u)−1), θe1

(
σu(v)

)]
θe1−e2

(
q(u)−1q(v)

)
where[

θ−e1−e2

(
−q(u)−1), θe1

(
σu(v)

)]
= θ−e2

(
q(u)−1σu(v)

)
θe1−e2

(
−q(u)−1q

(
σu(v)

))
= θ−e2

(
q(u)−1σu(v)

)
θe1−e2

(
−q(u)−1q(v)

)
.

It follows that

θe2(v)
w2(u) = θ−e1

(
q(u)−1σu(v)

)
,

which is precisely the desired conjugation formula in Lemma 7.3.17 (b) for this
choice of roots. This finishes the proof of (b).

Assertions (c) and (d) follow from similar computations as above, or have
already been proven.

7.7.7 Note. In the proof of Proposition 7.7.6 (b), it is not valid to argue that

θe2(v)
w2(u) = [θe2−e1(1k), θe1(v)]

w2(u)
e2 = [θe2−e1(1k)

w2(u), θe1(v)
w2(u)]−e2

=
[
θ−e1−e2

(
−q(u)−1), θe1

(
σu(v)

)]
−e2

= θ−e2

(
q(u)−1σu(v)

)
because we would have to use Lemma 2.2.9 for the second equality. This would
not be correct because w2(u) is not yet proven to be a Weyl element (and also
because G is not assumed to be rank-2-injective). Instead, we have to use the
workaround outlined above.

7.7.8 Remark. It follows from Proposition 7.7.6 that G satisfies U♯
α = Uα \ {1G}

(the additional condition of being an RGD-system) if and only if k is a field and
(M, q) is anisotropic.

The following result is a special case of Proposition 7.7.6 (b). We prove it
explicitly because it will be used in Lemma 7.11.20.

7.7.9 Lemma. Let β be a short root, let wβ be a β-Weyl element and let v ∈ M such
that wβ = θ−β

(
−q(v)−1v

)
θβ(v)θ−β

(
−q(v)−1v

)
. Then for all short roots δ which are

orthogonal to β, we have
θδ(u)wβ = θδ(σv(u))

for all u ∈ M where σv : M → M, u 7→ u − q(v)−1 f (v, u)v denotes the reflection
associated to v (as in Definition 7.1.20).
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Proof. Let u ∈ M. By Lemma 7.2.10, there exist unique long roots α, γ such that
(α, β, γ, δ) is a B2-quadruple. Then by Lemma 7.5.14 (a), we have

θδ(u)wβ = θδ(u)
[[

θδ(u), θ−β

(
−q(v)−1v

)]
, θβ(v)

]
δ
.

Choose ε1, ε2 ∈ {±1} and i, j ∈ [1, n] such that δ = ε1ei and β = ε2ej. Using the
standard commutator relations, one can show that[[

θδ(u), θ−β

(
−q(v)−1v

)]
, θβ(v)

]
δ
= θδ

(
−q(v)−1 f (u, v)v

)
in every possible case. See Figure 7.6 for a detailed computation. We conclude
that

θδ(u)wβ = θδ

(
u − q(v)−1 f (u, v)v

)
= θδ

(
σv(u)

)
,

as desired.

ε1 ε2 x :=
[
θε1ei(u), θ−ε2ej

(
−q(v)−1v

)] [
x, θε2ej(v)

]
ε1ei

− + θ−ei−ej

(
−δ−i>jq(v)

−1 f (u, v)
)

θ−ei

(
−δ−i>jδ

−
i>jq(v)

−1 f (u, v)v
)

+ + θei−ej

(
−q(v)−1 f (u, v)

)
θei

(
−q(v)−1 f (u, v)v

)
+ − θei+ej

(
−δ−i<jq(v)

−1 f (u, v)
)

θei

(
−δ−i<jδ

−
i<jq(v)

−1 f (u, v)v
)

− − θej−ei

(
q(v)−1 f (v, u)

)
θ−ei

(
−q(v)−1 f (v, u)v

)
Figure 7.6: The computation in Lemma 7.7.9.

7.8 Admissible and Standard Partial Twisting Systems

7.8.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system Bn in its standard representation (as in Remark 7.2.2) with its standard
root base ∆. We choose k := C, M := C2, q : M → C and v0 := (1, 0) as in
Remark 7.3.22. We define the Bn-graded group EO(q) with root groups (Uα)α∈Bn

as in Definition 7.3.9. We denote the root isomorphisms from Constructions 7.3.6
and 7.3.7 by (θα)α∈Bn and the standard system of Weyl elements from Defini-
tion 7.3.13 by (wδ)δ∈∆. Further, we denote by (A, η, B, µ) the standard partial
twisting system of type Bn in the sense of the following Definition 7.8.2.

In this section, we introduce the standard partial twisting system for any
Bn-graded group. Its definition is motivated by the twisting structure of the
elementary orthogonal group in section 7.3. We will show that it has some
desirable properties which serve as the axioms of admissible partial twisting
systems. The goal of the following section 7.9 is that any admissible partial
twisting system satisfies the conditions of the parametrisation theorem. In the
final sections of this chapter, we will then use the standard partial twisting system
to construct a parametrisation of any Bn-graded group with standard signs.

7.8.2 Definition (Standard partial twisting system). The standard partial twisting
system of type Bn (with respect to ∆) is the tuple (A, η, B, µ) where A := B := {±1}
and where η, µ are the ∆-parity maps from Notation 7.3.18. If G is a group with a
Bn-pregrading, then the standard partial twisting system for G (with respect to ∆) is
the same tuple together with the additional information that A acts on all root
groups of G by inversion.
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7.8.3 Note. Technically, the standard partial twisting system of type Bn is not
a partial twisting system because a partial twisting system has to be defined
with respect to a pair (G, (wδ)δ∈∆) where G is a group with a Bn-pregrading and
(wδ)δ∈∆ is a ∆-system of Weyl elements. In particular, the group A has to be
equipped with actions on the root groups of G. For this reason, we distinguish
between the “abstract” standard partial twisting system of type Bn and the
standard partial twisting system for a specific group G. Note further that it is not
obvious that the standard partial twisting system for a Bn-graded group satisfies
all the axioms of a partial twisting system in Definition 4.3.18. We will verify this
throughout this section.

7.8.4 Remark. We can also regard the groups A and B in the standard partial twist-
ing system (A, η, B, µ) as part of the standard parameter system (A × B, M, k)
from Definition 7.1.25. Note that in the former interpretation, A acts on the root
groups and B is equipped with no action while in the latter interpretation, A × B
acts on M and k.

7.8.5 Reminder. Recall from Theorem 7.3.27 that (Uα)α∈Bn is a crystallographic
Bn-grading of EO(q). Thus we can apply all rank-2 and rank-3 computations from
the previous sections to EO(q). Further, we know from Lemma 7.3.23 that EO(q)
is parametrised by the standard parameter system (A × B, M, k) with respect to
η × µ and (wδ)δ∈∆ and from Remark 7.3.22 that (A × B, M, k) is (η × µ)-faithful.

We now prove some basic properties of the parity maps η and µ. Since all
values of η and µ are given explicitly in Figure 7.4, all these properties could be
proven with a straightforward but lengthy computation. However, we will see
that they are much easier to derive by performing certain computations in the
group EO(q).

7.8.6 Lemma. η is braid-invariant and adjacency-trivial and µ is Weyl-invariant and
adjacency-trivial.

Proof. By Theorem 2.5.10, the system (wδ)δ∈∆ satisfies the braid relations. Thus it
follows from Proposition 4.4.11 that η × µ is braid-invariant and adjacency-trivial,
which by Lemma 4.2.25 (a) implies that η and µ have the same properties. Further,
an inspection of Figure 7.4 shows that µ is even square-invariant. Hence µ is
Weyl-invariant, which finishes the proof.

7.8.7 Lemma. µ is semi-complete.

Proof. Note that the only subgroups of B are {1} and B, both of which have a
complement. Thus every parity map with values in B is semi-complete, which
makes the assertion trivial.

7.8.8 Lemma. η × µ is transporter-invariant and η, µ are independent.

Proof. At first, we consider the orbit of short roots. Put α̂ := e1. Then

(η × µ)α̂,(e1−e2,e1−e2) = (η × µ)e1,e1−e2(η × µ)e2,e1−e2 = (1A, 1A)(−1A, 1B)

= (−1A, 1B) and
(η × µ)α̂,e2 = (1A,−1B).

Since these elements generate A × B, it follows that (A × B)α̂→α̂ = A × B. By
Remark 4.2.17, this implies that η × µ is transporter-invariant on the orbit of short
roots.
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Now we consider the orbit of long roots. By an inspection of Figure 7.4, it is
clear that

(A × B)α→β ⊆ A × {1B}

for all long roots α, β. Further, we have

(A × B)e1−e2→e2−e1 = A × {1B}
because (η × µ)e1−e2,e1−e2 = (−1A, 1B). By criterion 4.2.16 (iv), we infer that η × µ
is transporter-invariant on the orbit of long roots as well.

Finally, the previous computations together with Remark 4.2.24 show that η
and µ are independent in the sense of Definition 4.2.23.

7.8.9 Lemma. For all roots α ∈ Φ and δ ∈ ∆, we have ηα,δδ = (−1A)
⟨α|δ⟩ where ⟨α|δ⟩

denotes the Cartan integer for (α, δ). In other words, η satisfies the square formula (in
the sense of Definition 4.2.10 (e)).

Proof. It suffices to verify that the conditions of Proposition 4.4.11 (c) are satisfied.
We have proven in Proposition 7.6.15 that G satisfies the square formula for Weyl
elements. Further, by definition, A = {±1} and −1A acts on both k and M
by inversion. Finally, by the transporter-invariance of η and an inspection of
Figure 7.4, we have Aα→α = A for all roots α. This finishes the proof.

7.8.10 Lemma. Let i, j ∈ [1, n] and let k ∈ [1, n] \ {i, j}. Then the words ρ̄i, ρ̄j from
Definition 7.2.22 satisfy (η × µ)εek ,ρ̄i = (η × µ)εek ,ρ̄j for all ε ∈ {±1}.

Proof. We know from Proposition 7.6.21 that wρ̄i and wρ̄j act identically on Uεek .
Since the action of (A× B, M, k) is (η × µ)-faithful by Remark 7.3.22, the assertion
follows.

7.8.11 Lemma. If ρ, ζ are short roots in Bn, then µρ,σ(ζ) = −1B.

Proof. For the simple root ζ = en, we can immediately read this off from Figure 7.4.
Now let ζ = em for some m ∈ [1, n − 1] and put δi := ei − ei+1 for all i ∈ [1, n − 1].
Then ζ = eσ(δn−1···δm)

n , so

µρ,σ(±ζ) = µρ,δm···δn−1enδn−1···δm = µρ,δm···δn−1 µ
ρσ(δm ···δn−1),en

µ
ρσ(δm ···δn−1en),δn−1···δm

= 1B(−1B)1B = −1B.

The assertion follows.

7.8.12 Note. Lemma 7.8.11 also follows from Lemma 7.3.17 (b) and 7.3.17 (c)
because the parameter system is (η × µ)-faithful.

7.8.13 Definition (Admissible partial twisting system). Let G be a group with a
Bn-pregrading (Uα)α∈Bn and let (w′

δ)δ∈∆ be a ∆-system of Weyl elements in G. A
Bn-admissible partial twisting system for (G, (w′

δ)δ∈∆) is a partial twisting system
(A′, η′, B′, µ′) for (G, (w′

δ)δ∈∆) with the following additional properties:
(i) A′ = {±1} and −1A′ acts on all root groups of G by inversion.

(ii) B′ = {±1}.
(iii) η′ and µ′ are adjacency-trivial.
(iv) η′ satisfies the square formula.
(v) For all i, j ∈ [1, n] and k ∈ [1, n] \ {i, j}, the words ρ̄i, ρ̄j from Defini-

tion 7.2.22 satisfy η′
εek ,ρ̄i = η′

εek ,ρ̄j for all ε ∈ {±1}.
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(vi) If ρ, ζ are orthogonal short roots in Bn, then µ′
ρ,σ(ζ) = −1B′ .

We will sometimes refer to such objects as admissible partial twisting systems if the
root system Bn is clear from the context.

7.8.14 Proposition. Let G be a group with a Bn-pregrading (Uα)α∈Bn . Then for any ∆-
system (wδ)δ∈∆ of Weyl elements in G, the standard partial twisting system (A, η, B, µ)
is a Bn-admissible partial twisting system for (G, (wδ)δ∈∆). In particular, admissible
partial twisting systems exist for each group with a Bn-pregrading.

Proof. We have to check that (A, η, B, µ) satisfies the axioms of a partial twisting
system for (G, (wδ)δ∈∆) (see Definition 4.3.18) and the axioms in Definition 7.8.13.
By Example 4.3.15, A is a twisting group for (G, (wδ)δ∈∆). All the remaining
axioms follow from the results in this section.

7.8.15 Note. We have proven in Lemma 7.8.11 that µρ,σ(ζ) = −1B holds for
any pair of short roots. In Axiom 7.8.13 (vi), however, we only require that
this holds for orthogonal pairs (ρ, ζ). In other words, we do not require that
µρ,σ(ρ) = −1B. In fact, we could for any i ∈ [1, n] replace the homomorphism θ−ei

in Construction 7.3.7 by θ′−ei
: v 7→ θ−ei(σv0(v)). Then the corresponding Weyl

elements would have to be redefined as

wi(u) := wei(u) := θ−ei

(
−q(u)−1σv0(u)

)
◦ θei(u) ◦ θ−ei

(
−q(u)−1σv0(u)

)
for all u ∈ M for which q(u) is invertible. Further, the resulting parity map µ
would then satisfy µ±ei ,σ(ei) = 1B, but we would still have µ±ei ,σ(ej) = −1B for all
j ∈ [1, n] \ {i}. This illustrates that property 7.8.13 (vi) is intrinsic to the group
EO(q) (that is, invariant under a twisting of the parametrisation) while the value
of µρ,σ(ρ) can be different for distinct parametrisations of EO(q).

7.9 The Parametrisation

7.9.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system Bn in its standard representation (as in Remark 7.2.2) with its standard
root base ∆. We denote by G a group which has crystallographic Bn-commutator
relations with root groups (Uα)α∈Bn such that U♯

α is non-empty for all α ∈ Φ and
such that G is rank-2-injective. We fix a ∆-system (wδ)δ∈∆ of Weyl elements and
we denote by (A, η, B, µ) a Bn-admissible partial twisting system for (G, (wδ)δ∈∆).

In this section, we show that G satisfies the conditions in the parametrisation
theorem with respect to any Bn-admissible partial twisting system. In particular,
this holds for the standard partial twisting system, which will be the only case
that we are interested in. After the work in the previous sections, all that is truly
left to do is the verification of stabiliser-compatibility. For this we use the criterion
from Proposition 4.6.3.

7.9.2 Proposition. G is square-compatible with respect to η.

Proof. Since both G and η satisfy the square formula (by Proposition 7.6.15 and
Axiom 7.8.13 (iv)), this follows from Lemma 4.6.2. Here we have to use Ax-
iom 9.7.11 (ii).

7.9.3 Proposition. G is stabiliser-compatible with respect to (η, µ) and (wδ)δ∈∆.
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Proof. Let α be any root. We know from Axiom 7.8.13 (iii) that η is α-adjacency-
trivial and we want to show that G is α-stabiliser-compatible. If α is long, then it
has the property that all roots which are orthogonal to α are adjacent to α, and
thus it follows from Lemma 4.6.4 that G is α-stabiliser-compatible with respect to
η. Thus it is also α-stabiliser-compatible with respect to (η, µ) by Remark 4.4.6,
as desired.

Now assume that α is short. Write α = εek for some ε ∈ {±1} and k ∈ [1, n].
As in Proposition 4.6.3, we consider the following sets:

O := { β ∈ Φ | α · β = 0 } = { σei | i ∈ [1, n] \ {k}, σ ∈ {±1} },
A := { β ∈ O | α is crystallographically adjacent to β } = ∅,
Ā := O \A = O.

For all β ∈ Ā, we have µα,σ(β) = −1B by Axiom 7.8.13 (vi). Now let β, β′ ∈ Ā.
Let i, j ∈ [1, n] and ε, ε′ ∈ {±1} such that β = εei and β′ = ε′ej. Let δ̄ := ρ̄i

and δ̄′ := ρ̄j be the words from Definition 7.2.22. By definition, they satisfy
σ(δ̄) = σ(ei) = σ(β) and σ(δ̄′) = σ(ej) = σ(β′). Further, we have ηα,δ̄ = ηα,δ̄′ by
Axiom 7.8.13 (v) and the actions of wδ̄ and wδ̄′ are identical by Proposition 7.6.21.
Thus all conditions in Proposition 4.6.3 are satisfied, and we conclude that G is
α-stabiliser-compatible. This finishes the proof.

7.9.4 Proposition. There exist abelian groups (k,+) and (M,+) (each equipped, as
a set, with an action of A × B) and a parametrisation (θα)α∈Bn of G by (A × B, M, k)
with respect to η × µ and (wδ)δ∈∆ such that the action of A on k and M is given by
group inversion.

Proof. This follows from the parametrisation theorem (Theorem 4.5.16), whose
assumptions are satisfied by Propositions 7.9.2 and 7.9.3 and Theorem 2.5.10.

7.10 Computation of the Blueprint Rewriting Rules

7.10.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system Bn in its standard representation (as in Remark 7.2.2) with its standard
root base ∆. We denote by G a group with a crystallographic Bn-grading (Uα)α∈Bn .
We fix a ∆-system of Weyl elements (wδ)δ∈∆ and denote its standard B̂n-extension
by (wβ)β∈B̂n

. To simplify notation, we put wij := wei−ej for all distinct i, j ∈ [1, n]
and we put wi := wei for all i ∈ [1, n]. We denote the standard partial twisting
system for G by (A, η, B, µ), by (k,+), (M,+) any groups which satisfy the
assertion of Proposition 7.9.4 and by (θα)α∈Bn the corresponding parametrisation
of G. The groups k and M are equipped with actions of A × B, and we call the
map

M → M, v 7→ v := −1B.v

the involution on M. Further, we choose elements v−1, v0, v1 ∈ M such that
wn = θ−en(v−1)θen(v0)θ−en(v1).

In this section, we define the commutation maps of the parametrisation
(θα)α∈Bn and derive their rank-2 identities. Our goal is to define the blueprint
rewriting rules for Bn and to prove that they are indeed blueprint rewriting rules.

We will frequently apply the following result without reference. It says
that the action of the B̂n-extension (wβ)β∈B̂n

of (wδ)δ∈∆ on the root groups is
determined by the values in Figure 7.4.
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7.10.2 Proposition. Let α ∈ Bn and let β ∈ B̂n. Let x ∈ k if α is long and let x ∈ M
if α is short. Then θα(x)ŵβ = θσβ(α)(ηα,βµα,β.x) where ηα,β and µα,β are the values in
Figure 7.4.

Proof. Denote by β̄ the standard ∆-expression of β from Definition 7.2.22. Since
G is parametrised by (A × B, M, k) with respect to η × µ and (wδ)δ∈∆, we have

θα(x)ŵβ = θσβ(α)(ηα,β̄µα,β̄.x).

We know from Lemma 7.3.28 that ηα,β̄µα,β̄ = ηα,βµα,β, so the assertion follows.

7.10.3 Lemma. The involution M → M, v 7→ v is an automorphism of M with v = v
for all v ∈ M.

Proof. Since the involution is induced by the action of −1B and (−1B)
2 = 1B, we

have v = v for all v ∈ M. Further, since (η × µ)e1,en = (1A,−1B), we have

θe1

(
v + u

)
= θe1(v + u)wn = θe1(v)

wn θe1(u)
wn = θe1(v)θe1(u) = θe1(v + u)

for all v, u ∈ M, so v + u = v + u.

7.10.4 Lemma. For all i ∈ [1, n], we have wi = θ−ei(v−1)θei(v0)θ−ei(v1) for all
i ∈ [1, n].

Proof. By the choice of v−1, v0, v1, this is clear for i = n. Since wi = wwni
n and

(η × µ)±en,en−ei = (1, 1), the general assertion follows from Proposition 7.10.2.

7.10.5 Definition (Commutation maps). We define

· : k× k → k, (a, b) 7→ ab := a · b,
g : k× M → M, (a, v) 7→ g(a, v),
q : k× M → k, (a, v) 7→ q(a, v),

f : M × M → k, (u, v) 7→ f (u, v)

to be the unique maps which satisfy

[θe1−e2(a), θe2−e3(b)] = θe1−e3(a · b),

[θe1−e2(a), θe2(v)] = θe2

(
g(a, v)

)
θe1+e2

(
−q(a, v)

)
,

[θe1(u), θe2(v)] = θe1+e2

(
− f (u, v)

)
for all a, b ∈ k and all u, v ∈ M.

Our goal is to show that · turns k into a commutative associative ring, that
g defines a k-modules structure on M, that M → k, v 7→ q(1k, v) is a quadratic
form with linearisation f and that q(r, v) = rq(1k, v) for all r ∈ k and v ∈ M.

7.10.6 Lemma (Rank-2 identities, part 1). The maps ·, g, q and f are additive in all
components except for the second component of q, which satisfies

q(a, v + w) = q(a, v) + q(a, w) + f
(

g(a, v), w
)

for all a ∈ k and all v, w ∈ M.

Proof. The additivity assertions follow from Lemma 2.1.13, as in the proof of
Lemma 5.7.8. Now let a ∈ k and let v, w ∈ M. By Lemma 7.5.3 (c) and the
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definition of the maps q, g and f , we have

θe1+e2

(
−q(r, v + w)

)
= [θe1−e2(a), θe2(v)θe2(w)]e1+e2

= [θe1−e2(a), θe2(w)]e1+e2

[
[θe1−e2(a), θe2(v)]e1 , θe2(w)

]
[θe1−e2(a), θe2(v)]e1+e2

= θe1+e2

(
−q(a, w)

)[
θe1

(
g(a, v)

)
, θe2(w)

]
θe1+e2

(
−q(a, v)

)
= θe1+e2

(
−q(a, w)− f

(
g(a, v), w

)
− q(a, v)

)
.

By the bijectivity of θe1+e2 , the second assertion follows.

7.10.7 Lemma. For all pairwise distinct i, j, k ∈ [1, n] and all a, b ∈ k, the following
commutator relations hold:

[θei−ej(a), θej−ek(b)] = θei−ek(ab),

[θei−ej(a), θej+ek(b)] = θei+ek(δ
−
k∈⟨i,j⟩ab),

[θei−ej(a), θ−ek−ei(b)] = θ−ej−ek(δ
−
k/∈⟨i,j⟩ab),

[θei+ej(a), θ−ek−ei(b)] = θej−ek(δ
−
i∈⟨j,k⟩ab).

Proof. Let a, b ∈ k. We will frequently apply Proposition 7.10.2 without explicitly
saying so. By definition, the first assertion holds if (i, j, k) = (1, 2, 3). Thus
it suffices to show that if i, j, k ∈ [1, n] are distinct and σ is a permutation of
[1, n], then the validity of the first equation for (i, j, k) implies the validity of the
first equation for (iσ, jσ, kσ). Since the group of permutations is generated by
transpositions, it suffices to prove this for transpositions σ. Thus let i, j, k ∈ [1, n]
be distinct and such that

[θei−ej(a), θej−ek(b)] = θei−ek(a · b) for all a, b ∈ k (∗)

and let σ be the transposition which interchanges the distinct numbers p, q ∈
[1, n]. If { i, j, k } ∩ { p, q } = ∅, the assertion is clear. If |{ i, j, k } ∩ { p, q }| = 1,
conjugating (∗) by wpq (if p ∈ { i, j, k }) or by wqp (if q ∈ { i, j, k }) shows that the
assertion holds. Now assume that |{ i, j, k } ∩ { p, q }| = 2. If { p, q } = { i, j },
then conjugating (∗) by wij and applying Lemma 2.1.13 yields

[θei−ej(a), θej−ek(b)]
wij = [θei−ej(r)

wij , θej−ek(s)
wij ] = [θej−ei(−r), θei−ek(−s)]

= [θej−ei(r), θei−ek(s)] and

[θei−ej(a), θej−ek(b)]
wij = θei−ek(r · s)wij = θej−ek(r · s).

The assertion follows in this case. Similarly, conjugating (∗) by wjk or by wik
shows that the assertion holds for the transposition interchanging j and k or i and
k, respectively. This finishes the proof of the first equation.

Now conjugating the first equation by wk yields

[θei−ej(a), θej+ek(δ
−
k>jb)] = θei+ek(δ

−
k>iab) for all a, b ∈ k,

which (by replacing b with δ−k>jb) implies that

[θei−ej(a), θej+ek(b)] = θei+ek(δ
−
k>iδ

−
k>jab) for all a, b ∈ k.

By going through all possible cases, it is easy to observe that δ−k>iδ
−
k>j = δ−k∈⟨i,j⟩,

which proves the second equation. In a similar manner, we can conjugate the
first equation by wj to obtain

[θei+ej(δ
−
j>ia), θ−ej−ek(δ

−
j>kb)] = θei−ek(ab) for all a, b ∈ k.
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This is equivalent to

[θei+ej(a), θ−ej−ek(b)] = θei−ek(δ
−
j∈⟨i,k⟩) for all a, b ∈ k.

Interchanging the roles of i and j yields the fourth equation. Finally, conjugating
the fourth equation by wj, we see that

[θei−ej(δ
−
j>ia), θ−ek−ei(b)] = θ−ej−ek(δ

−
j>kδ−i∈⟨j,k⟩ab) for all a, b ∈ k.

This implies that

[θei−ej(a), θ−ek−ei(b)] = θ−ej−ek(δ
−
j>iδ

−
j>kδ−i∈⟨j,k⟩ab) for all a, b ∈ k.

Consulting the truth table in Figure 7.7, we see that δ−j>iδ
−
j>kδ−i∈⟨j,k⟩ = δ−k/∈⟨i,j⟩, which

finishes the proof.

δ−j>i δ−j>k δ−i∈⟨j,k⟩ δ−j>iδ
−
j>kδ−i∈⟨j,k⟩ δ−k/∈⟨i,j⟩

i < j < k − + + − −
i < k < j − − + + +
j < i < k + + − − −
j < k < i + + + + +
k < i < j − − − − −
k < j < i + − + − −

Figure 7.7: A truth table which shows that δ−j>iδ
−
j>kδ−i∈⟨j,k⟩ = δ−k/∈⟨i,j⟩ for all pairwise

distinct i, j, k ∈ [1, n].

7.10.8 Remark. We could perform the same computations as in Lemma 7.10.7
for the other commutation maps. However, it will be more efficient to do so at a
later point, when we have acquired more information about the maps f , q and g.
For the moment, we only note that for all i < j ∈ [1, n], conjugating the equations
in Definition 7.10.5 by w2jw1i (where wkk is interpreted as 1G) yields that

[θei−ej(a), θej(v)] = θei

(
g(a, v)

)
θei+ej

(
−q(a, v)

)
,

[θei(u), θej(v)] = θei+ej

(
− f (u, v)

)
for all a ∈ k and all u, v ∈ M. We delay the remaining computations until
Proposition 7.11.19.

7.10.9 Lemma (Rank-2 identities, part 2). (k,+, ·) is a ring. If we denote its identity
element by 1k, we have wij = θej−ei(−1k)θei−ej(1k)θej−ei(−1k) for all distinct i, j ∈
[1, n].

Proof. We already know from Lemma 7.10.6 that the multiplication satisfies the
distributive law, so we only have to verify the existence of an identity element.
Let i, j ∈ [1, n] be distinct and let x ∈ k be arbitrary. Since n ≥ 3, we can choose
some k ∈ [1, n] \ {i, j}. By Proposition 5.4.10, there exist unique a, b ∈ k such that
wij = θej−ei(a)θei−ej(b)θej−ei(a) and we have θej−ei(a) = θei−ej(b)

wij = θej−ei(−b),
so a = −b. Using Proposition 5.4.3 (a), we can now compute that

θek−ej(x · b) = [θek−ei(x), θei−ej(b)] = θek−ei(x)wij = θek−ej(x),

θei−ek(b · x) = [θei−ej(b), θej−ek(x)] = [θej−ek(x), θei−ej(b)]
−1

= (θej−ek(x)wij)−1 = θei−ek(x).
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It follows that k is a ring with identity element 1k := b and that

wij = θej−ei(−1k)θei−ej(1k)θej−ei(−1k).

Since the identity element of a ring is uniquely determined by the ring structure,
our construction does not depend on our choice of i and j. Thus we also have

wkl = θel−ek(−1k)θek−el (1k)θel−ek(−1k)

for any choice of distinct indices k, l ∈ [1, n].

7.10.10 Note. The assertion of Lemma 7.10.9 involves only roots which lie in the
canonical An−1-subsystem of Bn. Further, the signs of η on this subsystem are
the same as in Example 5.5.5 by Remark 7.3.20 and µ is trivial on this subsystem.
Thus Lemma 7.10.9 is also a direct consequence of Lemma 5.7.12.

7.10.11 Lemma (Rank-2 identities, part 3). We have g(1k, v) = v for all v ∈ M and
q(a, v0) = a for all a ∈ k.

Proof. Let v ∈ M. By the definition of g, we have

θe2(g(1, v)) = [θe1−e2(1), θe2(v)]e2 .

By an application of Remark 2.1.18 and Lemma 7.5.4 (a), we can compute that

[θe1−e2(1), θe2(v)]e2 = [θe2(v), θe1−e2(1)]
−1
e2

=
(
θe2(v)

w12
)−1

= θe2(v),

so g(1, v) = v. Now let a ∈ k. In a similar way as above, it follows from
Proposition 7.10.2 and Lemma 7.5.10 (a) that

θe1+e2

(
−q(a, v0)

)
= [θe1−e2(a), θe2(v0)]e1+e2 = θe1−e2(a)w2 = θe1+e2(−a),

so q(a, v0) = a.

We now compute the blueprint rewriting rules. As explained in Remark 6.4.5,
we will only perform the blueprint computation in the rank-3 case: Namely, in
the subgroup of G corresponding to the root subsystem spanned by

{ e1 − e2, e2 − e3, e3 }.

7.10.12 Definition (Blueprint rewriting rules). We define the following rewriting
rules:

ψ12 : Ue1−e2 × Ue2−e3 × Ue1−e2 → Ue2−e3 × Ue1−e2 × Ue1−e2 ,(
θe1−e2(a), θe2−e3(b), θe1−e2(c)

)
7→
(
θe2−e3(c), θe1−e2(−b − ca), θe2−e3(a)

)
,

ψ−1
12 : Ue2−e3 × Ue1−e2 × Ue1−e2 → Ue1−e2 × Ue2−e3 × Ue1−e2 ,(
θe2−e3(a), θe1−e2(b), θe2−e3(c)

)
7→
(
θe1−e2(c), θe2−e3(−b − ac), θe1−e2(a)

)
,

φ13 : Ue1−e2 × Ue3 → Ue3 × Ue1−e2 ,(
θe1−e2(a), θe3(v)

)
7→
(
θe3(v), θe1−e2(a)

)
,

φ−1
13 : Ue3 × Ue1−e2 → Ue1−e2 × Ue3 ,(
θe3(v), θe1−e2(a)

)
7→
(
θe1−e2(a), θe3(v)

)
and

ψ23 : Ue3 × Ue2−e3 × Ue3 × Ue2−e3 → Ue2−e3 × Ue3 × Ue2−e3 × Ue3

which maps
(
θe3(v), θe2−e3(a), θe3(u), θe2−e3(b)

)
to(

θe2−e3(b), θe3

(
u − g(b, v)

)
, θe2−e3

(
x
)
, θe3(−v)

)
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where x := a − q(b,−v)− f
(
u − g(b, v), v

)
.

7.10.13 Lemma. The maps ψ12, ψ−1
12 , φ13, φ−1

13 and ψ23 in Definition 7.10.12 are
blueprint rewriting rules (with respect to (wδ)δ∈∆′). Further, ψ12 and ψ−1

12 are inverses
of each other, and the same holds for φ13 and φ−1

13 .

Proof. The second statement about inverses is easy to verify. Further, we know
from Lemma 6.2.15 that φ13 and φ−1

13 are blueprint rewriting rules. Observe that
the rewriting rule ψ12 and its inverse are the same rules that we have used for
A3. Since the restriction of η to A2 = { ei − ei+1 | i ∈ [1, 2] } yields the same parity
map that we have used for A3 (see Remark 7.3.20), the same computation as in
Lemma 6.3.4 shows that ψ12 and ψ−1

12 are blueprint rewriting rules. It remains
to show that ψ23 is a blueprint rewriting rule. For this, let a, b, c, d ∈ k, let
v, u, h, k ∈ M and put

ᾱ := (e3, e2 − e3, e3, e2 − e3) and β̄ := (e2 − e3, e3, e2 − e3, e3).

Further, we set
x :=

(
θe3(v), θe2−e3(a), θe3(u), θe2−e3(b)

)
.

On the one hand, we have

γ̃ᾱ(x) = w3θe3(v)w23θe2−e3(a)w3θe3(u)w23θe2−e3(b)
= w3w23w3w23θe3(v)

w23w3w23 θe2−e3(a)w3w23 θe3(u)
w23 θe2−e3(b)

= w3w23w3w23θe2(−v)w3w23 θe2+e3(−a)w23 θe2(−u)θe2−e3(b)
= w3w23w3w23θe3(−v)θe2+e3(−a)θe2(−u)θe2−e3(b).

On the other hand, we put

x′ :=
(
θe2−e3(c), θe3(h), θe2−e3(d), θe3(k)

)
.

Then

γ̃β̄(x′) = w23θe2−e3(c)w3θe3(h)w23θe2−e3(d)w3θe3(k)

= w23w3w23w3θe2−e3(c)
w3w23w3 θe3(h)

w23w3 θe2−e3(d)
w3 θe3(k)

= w23w3w23w3θe2+e3(−c)w23w3 θe2(−h)w3 θe2+e3(−d)θe3(k)

= w23w3w23w3θe2−e3(c)θe2(−h)θe2+e3(−d)θe3(k).

In order to compare these two terms, we have to change the order of the product
in the first one, using the commutator formulas in Remark 7.10.8 as well as
Relation 1.1.11 (v):

θe3(−v)θe2+e3(−a)θe2(−u)θe2−e3(b)
= θe3(−v)θe2−e3(b)θe2+e3(−a)θe2(−u)

= θe2−e3(b)θe3(−v)
[
θe3(−v), θe2−e3(b)

]
θe2+e3(−a)θe2(−u)

= θe2−e3(b)θe3(−v)θe2

(
−g(b,−v)

)
θe2+e3

(
q(b,−v)

)
θe2+e3(−a)θe2(−u)

= θe2−e3(b)θe2

(
g(b, v)− u

)
θe2+e3

(
q(b,−v)− a

)
θe3(−v)

·
[
θe3(−v), θe2

(
g(b, v)− u

)]
= θe2−e3(b)θe2

(
g(b, v)− u

)
θe2+e3

(
q(b,−v)− a

)
θe3(−v)

· θe2+e3

(
f
(

g(b, v)− u,−v
))

= θe2−e3(b)θe2

(
g(b, v)− u

)
· θe2+e3

(
q(b,−v)− a + f

(
u − g(b, v), v

))
θe3(−v).
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Since w3w23w3w23 = w23w3w23w3 by Theorem 2.5.10 and since G is rank-2-
injective, we conclude that γ̃ᾱ(x) = γ̃β̄(x′) if and only if

c = b, −h = g(b, v)− u,

−d = q(b,−v)− a + f
(
u − g(b, v), v

)
and k = −v.

In other words, γ̃ᾱ(x) = γ̃β̄(x′) if and only if x′ = ψ23(x), which shows that ψ23
is a blueprint rewriting rule. This finishes the proof.

7.11 The Blueprint Computation

7.11.1 Notation for this section. Notation 7.10.1 continues to hold.

Finally, we have everything ready to perform the blueprint computation. This
computation takes place within the B3-subsystem which is spanned by ∆′ from
Notation 7.10.1, and there are no new identities which could be obtained by
performing the computation in larger subsystems.

7.11.2 Remark (Blueprint computation). A homotopy cycle of the longest word
in the Weyl group of B3 is given in Figure 7.8. We begin with the tuple(

θ3(u), θ2(a), θ1(b), θ3(v), θ2(c), θ3(w), θ2(d), θ1(r), θ2(s)
)

where θ1 := θe1−e2 , θ2 := θe2−e3 , θ3 := θe3 and where u, v, w ∈ M and a, b, c, d, r, s ∈
k are arbitrary. Working down rows 1 to 12 in the homotopy cycle and applying
the respective blueprint rewriting rules in the process, we obtain a tuple(

θ2(x1), θ1(x2), θ2(x3), θ3(x4), θ2(x5), θ3(x6), θ1(x7), θ2(x8), θ3(x9)
)
.

Conversely, working up from row 23 to row 12, we obtain a tuple(
θ2(y1), θ1(y2), θ2(y3), θ3(y4), θ2(y5), θ3(y6), θ1(y7), θ2(y8), θ3(y9)

)
.

Here xi, yi ∈ M for all i ∈ { 4, 6, 9 } and xi, yi ∈ k for all i ∈ { 1, 2, 3, 5, 7, 8 }. Now
xi = yi for all i ∈ [1, 9] by Theorem 6.2.8. The precise results of this computation
can be found in Figures 7.9 to 7.11. The intermediate steps of the computation
have been performed with GAP [Gap].

(1) 321323212 (13) 213232123
(2) 321232312 (14) 213231213
(3) 321232132 (15) 231213213
(4) 312132132 (16) 232123213
(5) 132312132 (17) 232123231
(6) 132321232 (18) 232132321
(7) 123231232 (19) 232312321
(8) 123213232 (20) 323212321
(9) 123212323 (21) 323121321

(10) 123121323 (22) 321323121
(11) 121323123 (23) 321323212
(12) 212323123

Figure 7.8: A homotopy cycle of the longest word in Weyl(B3) (taken from [TW02,
Fig. 8, p. 472]).

7.11.3 Note. Throughout this section, we denote by u, v, w arbitrary elements of
M and by a, b, c, d, r, s arbitrary elements of k.
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(1) s = s, (2) − r − sd = −r − ds, (3) d = d,

(6) − v + g(s, u) = −v + g(s, u), (9) u = u.

Figure 7.9: The equations “(i) xi = yi” for i ∈ { 1, 2, 3, 6, 9 } in Remark 7.11.2.

w − g(d, v)− g(r, u) = w − g(r, u)− g(ds, u)− g(d, v) + g
(
d, g(s, u)

)
a − q(s, u)− f (v, u) + f

(
g(s, u), u

)
= a − q(s,−u)− f (v, u) + f

(
g(s, u), u

)
Figure 7.10: The equations x4 = y4 and x8 = y8 in Remark 7.11.2, respectively.

Since all identities in Figures 7.9 to 7.11 hold for arbitrary values of the
variables, they hold in particular if we replace some variables by 0, 1k or v0. This
allows us to derive shorter identities. We can then use these shorter identities to
simplify the original identities. We continue this process until we have proven
that the set of identities in Figures 7.9 to 7.11 is equivalent to the axioms of a
quadratic module (M, v 7→ q(1k, v)) over a commutative ring k with linearisation
f and scalar multiplication g. The map v 7→ v will turn out to be the reflection σv0 .

7.11.4 Lemma (Equations 2, 6). The ring k is commutative, and we have g(s, u) =
g(s, u) for all s ∈ k, u ∈ M.

Proof. The first equation follows from equation 2 with r = 0, the second one from
equation 6 with v = 0 (see Figure 7.9).

Lemma 7.11.4 clearly covers all non-trivial identities which can be derived
from Figure 7.9.

7.11.5 Lemma (Equation 4). We have g(ds, u) = g
(
d, g(s, u)

)
for all d, s ∈ k and

u ∈ M.

Proof. Using the relation g(s, u) = g(s, u) from Lemma 7.11.4 and the fact that
the involution on M is of order at most 2 by Lemma 7.10.3, we see that both sides
of equation 4 in Figure 7.10 contain the term w − g(d, v)− g(r, u). Removing
these terms from the equation, we are left with g(ds, u) = g(d, g(s, u)), which by
the same considerations as before yields the desired relation.

Again, it is clear that no more identities can be deduced from equation 4.

7.11.6 Lemma (Equation 8). The following hold:
(a) f (v, u) = f (v, u) and f (v, u) = f (v, u) for all u, v ∈ M.
(b) q(s,−u) = q(s, u) for all s ∈ k, u ∈ M.

Proof. Putting a := s := 0k in equation 8 in Figure 7.10, we see that f (v, u) =
f (v, u), which implies that f (v, u) = f (v, u) = f (v, u). Using Lemma 7.11.4, we
infer that

f
(

g(s, u), u
)
= f

(
g(s, u), u

)
.

Thus we can cancel nearly all terms from equation 8, and what remains is
q(s,−u) = q(s, u). This finishes the proof.

Only equations 5 and 7 remain. We begin with equation 7 because it is shorter,
except that we quickly derive the following fact from equation 5 to simplify our
notation.
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x5 = c − q(d,−v)− f (w, v) + f (g(d, v), v) + ra

−
(
−b − ad − q(r,−u)− f (w, u) + f

(
g(d, v), u

)
+ f

(
g(r, u), u

))
s,

y5 = c + sb −
(
a − q(s,−u)− f (v, u) + f (g(s, u), u)

)
(−r − ds)

− q
(
d,−v + g(s, u)

)
− f (w, v) + f (w, g(s, u)) + f

(
g(r, u), v

)
− f

(
g(r, u), g(s, u)

)
+ f

(
g(ds, u), v

)
− f

(
g(ds, u), g(s, u)

)
+ f

(
g(d, v), v

)
− f (g(d, v), g(s, u))− f

(
g(d, g(s, u)), v

)
+ f

(
g(d, g(s, u)), g(s, u)

)
,

x7 = −b − ad − q(r,−u)− f (w, u) + f
(

g(d, v), u
)
+ f

(
g(r, u), u

)
,

y7 = −b − q(r, u)− q(ds, u)− f (w, u) + f
(

g(r, u), u
)
+ f

(
g(ds, u), u

)
− d
(
a − q(s,−u)− f (v, u) + f

(
g(s, u), u

))
.

Figure 7.11: The values of x5, y5, x7, y7 in Remark 7.11.2.

7.11.7 Lemma. The ring k is associative.

Proof. Putting all variables except for a, d, s in equation 5 in Figure 7.11 to zero,
we obtain that (ad)s = a(ds).

7.11.8 Remark (Equation 7, simplification). With the knowledge obtained so far,
we can cancel many terms in equation 7 in Figure 7.11, which yields the following
simplified equation:

f
(

g(d, v), u
)
= −q(ds, u) + f

(
g(ds, u), u

)
+ dq(s,−u)

+ d f (v, u)− d f
(

g(s, u), u
)
.

By Lemmas 7.11.4 and 7.11.6, this is equivalent to the following equation:

f
(

g(d, v), u
)
= −q(ds, u) + f

(
g(ds, u), u

)
+ dq(s, u)

+ d f (v, u)− d f
(

g(s, u), u
)
.

7.11.9 Lemma (Equation 7). The following hold:
(a) f

(
g(d, v), u

)
= d f (v, u) for all d ∈ k and all u, v ∈ M.

(b) q(d, u) = dq(1k, u) for all d ∈ k and all u ∈ M.

Proof. Putting s := 0 in equation 7 in Remark 7.11.8, we see that f
(

g(d, v), u
)
=

d f (v, u). This proves the first assertion because the involution on M is a bijection.
Using the first assertion and the associativity of k, we see that

f
(

g(ds, u), u
)
= (ds) f (u, u) = d

(
s f (u, u)

)
= d f

(
g(s, u), u

)
.

Thus we can now simplify equation 7 to obtain q(ds, u) = dq(s, u), from which
the second assertion follows by putting s := 1k.

7.11.10 Remark. As a variation of Lemma 7.11.9 (a), we also have f
(

g(d, v), u
)
=

d f (v, u) because, by Lemma 7.11.6 (a),

f
(

g(d, v), u
)
= f

(
g(d, v), u

)
= d f (v, u) = d f (v, u).

7.11.11 Remark. At first glance, the equation q(ds, u) = dq(s, u) that we have
proven in Lemma 7.11.9 may seem stronger than the equation q(d, u) = dq(1k, u).
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However, the first equation follows from the second one together with the asso-
ciativity of k:

q(ds, u) = (ds)q(1k, u) = d
(
sq(1k, u)

)
= dq(s, u).

Thus we do not lose any information by only recording the second equation in
Lemma 7.11.9.

7.11.12 Notation. From now on, we put q(v) := q(1, v) for all v ∈ M.

7.11.13 Remark (Equation 5, simplification, part 1). We are now left with only
equation 5 in Figure 7.11, the most complicated one. Using the previously derived
identities, we can simplify this equation. First of all, note that the right-hand side
of this equation contains the terms

f
(

g(ds, u), v
)
− f

(
g(d, g(s, u)), v

)
and

− f
(

g(ds, u), g(s, u)
)
+ f

(
g(d, g(s, u)), g(s, u)

)
,

both of which are zero. Further, observe that the left-hand side contains

c − f (w, v) + bs + f
(

g(d, v), v
)

while the right-hand side contains

c − f (w, v) + sb + f
(

g(d, v), v
)
.

Since these terms are equal, we can cancel them. What remains are the following
expressions for x5 and y5:

x5 = −q(d,−v) + ra

−
(
−ad − q(r,−u)− f (w, u) + f

(
g(d, v), u

)
+ f

(
g(r, u), u

))
s,

y5 = −
(
a − q(s,−u)− f (v, u) + f (g(s, u), u)

)
(−r − ds)

− q
(
d,−v + g(s, u)

)
+ f (w, g(s, u)) + f

(
g(r, u), v

)
− f

(
g(r, u), g(s, u)

)
− f (g(d, v), g(s, u))

Applying the distributive law and the previously established identities, we see
that

x5 = −dq(v) + ra + ads + rsq(u) + s f (w, u)− ds f (v, u)− rs f (u, u),

y5 = ar + ads − rsq(u)− ds2q(u)− r f (v, u)− ds f (v, u) + rs f (u, u)

+ ds2 f (u, u)− dq
(

g(s, u)− v
)
+ f

(
w, g(s, u)

)
+ r f (u, v)− rs f (u, u)

− ds f (v, u).

Clearly, the term
ra + ads − ds f (v, u)− rs f (u, u)

on the left-hand side cancels the term

ar + ads − ds f (v, u)− rs f (u, u)

on the right-hand side, so we are left with

x5 = −dq(v) + rsq(u) + s f (w, u),

y5 = −rsq(u)− ds2q(u)− r f (v, u) + rs f (u, u) + ds2 f (u, u)

− dq
(

g(s, u)− v
)
+ f

(
w, g(s, u)

)
+ r f (u, v)− ds f (v, u).

7.11.14 Lemma (Equation 5, part 1). The following hold:
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(a) f (u, v) = f (v, u) for all u, v ∈ M.
(b) f

(
v, g(d, u)

)
= d f (v, u) for all u, v ∈ M, d ∈ k.

Proof. Putting s := 0, d := 0, r := 1 in equation 5 (see Remark 7.11.13), we obtain
0 = − f (v, u) + f (u, v). Since the involution on M is a bijection, this implies the
first assertion. Now the second assertion together with Lemma 7.11.9 (a) yields
that

f
(
v, g(d, u)

)
= f

(
g(d, u), v

)
= d f (u, v) = d f (v, u),

as desired.

7.11.15 Remark (Equation 5, simplification, part 2). Lemma 7.11.14 allows us
to simplify equation 5 even further: The term s f (w, u) on the left-hand side
cancels the term f

(
w, g(s, u)

)
on the right-hand side. Further, we see that the

term −r f (v, u) + r f (u, v) on the right-hand side equals zero. Thus we obtain

x5 = −dq(v) + rsq(u),

y5 = −rsq(u)− ds2q(u) + rs f (u, u) + ds2 f (u, u)− dq
(

g(s, u)− v
)
− ds f (v, u).

7.11.16 Lemma (Equation 5, part 2). The following hold:
(a) f (u, u) = 2q(u) for all u ∈ M.
(b) q(−v) = q(v) = q(v) for all v ∈ M.

Proof. Putting r := 1, s := 1, d := 0 and v := 0 in equation 5 in Remark 7.11.15,
we see that q(u) = −q(u) + f (u, u), which implies the first assertion. Using this
identity, we obtain the following simplified version of equation 5:

−dq(v) = −ds2q(u)− dq
(

g(s, u)− v
)
− ds f (v, u).

Putting u := 0 and d := 1, we see that q(v) = q(−v). Since we know that
q(−v) = q(v) by Lemma 7.11.6 (b), the second assertion follows.

7.11.17 Remark. It is not immediately obvious that no further relations can
be deduced from equation 5. However, using the rank-2-computation from
Lemma 7.10.6, we see that

dq
(

g(s, u)− v
)
= dq

(
g(s, u)

)
+ dq(−v) + d f

(
g(s, u),−v

)
= ds2q(u) + dq(v)− ds f (u, v).

Thus the simplified version of equation 5 in the proof of Lemma 7.11.16 reduces
to 0 = 0. It is noteworthy that, up to this point, we have never used the non-linear
identity from Lemma 7.10.6 in our computations. This shows that, even if we
had not proven this identity in our rank-2-computations, we would have derived
it from the blueprint computations.

7.11.18 Summary. The following hold:
(a) The ring k is associative and commutative.
(b) The map g : k× M → M defines a k-scalar multiplication in M which turns

it into a k-module.
(c) The involution on M is a k-linear automorphism of M with v = v and

q(v) = q(v) for all v ∈ M.
(d) The map f : M × M → M is a symmetric k-bilinear form on M and the map

q : M → k, v 7→ q(1k, v) is a k-quadratic form on M with linearisation f .
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7.11.19 Proposition. G satisfies the same commutator relations as the group EO(q) in
Proposition 7.3.25. In other words, (θα)α∈Bn is a parametrisation of G by (M, q) with
standard signs.

Proof. The third set of relations (concerning commutators of medium-length
roots) is satisfied by Lemma 7.10.7. Now let i < j ∈ [1, n], let r ∈ R and let v ∈ M.
Throughout this computation, we will frequently apply Lemma 7.11.6 (a) and
Lemma 7.11.16 (b). We know from Remark 7.10.8 that

[θei−ej(r), θej(v)] = θei(rv)θei+ej

(
−rq(v)

)
.

Conjugating this equation by wij, we infer that

[θej−ei(−r), θei(−v)] = θej(rv)θei+ej

(
−rq(v)

)
.

In other words,

[θej−ei(r), θei(v)] = θej(rv)θei+ej

(
rq(v)

)
.

This says precisely that for all distinct i, j ∈ [1, n], we have

[θei−ej(r), θej(v)] = θei(rv)θei+ej

(
δ−i<jrq(v)

)
, (7.2)

which is the first relation in Proposition 7.3.25.
Continue to assume that r ∈ R, v ∈ M and that i, j ∈ [1, n] are distinct (but

not necessarily that i < j). Conjugating (7.2) by wj, we see that[
θei+ej(δ

−
j>ir), θ−ej

(
v
)]

= θei

(
rv
)
θei−ej

(
δ−j>iδ

−
i<jrq(v)

)
.

In other words,

[θei+ej(r), θ−ej(v)] = θei(δ
−
j>irv)θei−ej

(
δ−j>irq(v)

)
.

This is the third relation in Proposition 7.3.25. Conjugating it by wi, we obtain[
θej−ei(δ

−
i>jr), θ−ej

(
v
)]

= θ−ei

(
δ−j>irv

)
θ−ei−ej

(
δ−i>jδ

−
j>irq(v)

)
.

This says that [
θej−ei(r), θ−ej(v)

]
= θ−ei(−rv)θ−ei−ej

(
δ−j>irq(v)

)
,

which is the second relation in Proposition 7.3.25. Now we conjugate (7.2) by wi.
This yields

[θ−ei−ej(δ
−
i>jr), θej(v)] = θ−ei

(
rv
)
θej−ei

(
δ−i>jδ

−
i<jrq(v)

)
.

Hence

[θ−ei−ej(r), θej(v)] = θ−ei(δ
−
i>jrv)θej−ei

(
δ−i<jrq(v)

)
,

which is the fourth relation in Proposition 7.3.25. This finishes the proof of the
first set of relations in Proposition 7.3.25.

Now let i, j ∈ [1, n] be distinct and let u, v ∈ M. We know from Remark 7.10.8
that

[θei(v), θej(u)] = θei+ej

(
− f (v, u)

)
if i < j. In this case, conjugating this equation by wij yields

[θej(v), θei(−u)] = θei+ej

(
− f (v, u)

)
.

We conclude that
[θei(v), θej(u)] = θei+ej

(
δ−i<j f (v, u)

)
holds for all distinct i, j ∈ [1, n]. This is the fifth relation in Proposition 7.3.25. We
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can conjugate it by wi to obtain

[θ−ei(v), θej(u)] = θej−ei

(
δ−i>jδ

−
i<j f (v, u)

)
,

which means that
[θ−ei(v), θej(u)] = θej−ei

(
− f (v, u)

)
. (7.3)

Since [θ−ei(v), θej(u)] = [θej(u), θ−ei(v)]
−1 and f is symmetric, this is the sixth

relation in Proposition 7.3.25. Finally, we can conjugate (7.3) by wj to obtain

[θ−ei(v), θ−ej(u)] = θ−ej−ei

(
−δ−j>i f (v, u)

)
.

In other words,

[θ−ei(v), θ−ej(u)] = θ−ej−ei

(
δ−j<i f (v, u)

)
,

which is the seventh relation in Proposition 7.3.25. This finishes the proof.

Before we state the main result of this chapter, we make a final observation.

7.11.20 Lemma. We have v−1 = v1 = −v0 and q(v0) = 1 as well as u = σv0(u) for
all u ∈ M. In particular, (M, q, e) is a pointed quadratic module.

Proof. As in the proof of Lemma 7.7.3, we can easily compute that

θe1−e2(1)
w2 = θe1+e2(−q(v0)).

On the other hand, by Proposition 7.10.2, we know that

θe1−e2(1)
w2 = θe1+e2(−1).

It follows that q(v0) = 1. By Lemma 7.7.3, this implies that

v−1 = v1 = −q(v0)
−1v0 = −v0.

Finally, we have shown in Lemma 7.7.9 for every u ∈ M that θe1(u)
w2 =

θe1(σv0(u)), but we also know that θe1(u)
w2 = θe1(u). This finishes the proof.

7.11.21 Theorem (Coordinatisation theorem for Bn). Let G be a group with a
crystallographic Bn-grading (Uα)α∈Bn for some n ∈ N≥3. Then there exist a com-
mutative associative ring k and a pointable quadratic module (M, q) over k such that
G is coordinatised by (M, q) with standard signs (in the sense of Definition 7.7.2).
Further, if we fix a ∆-system of Weyl elements in G, then we can choose the root iso-
morphisms (θα)α∈Bn so that wα = θ−α(−1k)θα(1k)θ−α(−1k) for all long simple roots
α and wδ = −θ−δ(−v0)θδ(v0)θ−δ(−v0) for the short simple root δ where v0 is some
element of M with q(v0) = 1.

Summary of the proof. Choose a root base ∆ of Bn and a ∆-system (wδ)δ∈∆ of Weyl
elements. Denote by (A, η, B, µ) the standard admissible partial twisting system
for G, as in Definition 7.8.2. Then by Proposition 7.9.4, there exist abelian groups
(k,+) and (M,+) on which A × B acts and a parametrisation (θα)α∈Φ of G by
(A × B, M, k) with respect to (wδ)δ∈∆ and η × µ. We can define commutation
maps as in Definition 7.10.5. By Summary 7.11.18, these maps equip k with the
structure of a commutative associative ring and M with a k-module structure
and a k-quadratic form q : M → k. By Proposition 7.11.19, (θα)α∈Φ is a coordi-
natisation of G by (M, q) with standard signs. By Lemmas 7.10.9 and 7.11.20, the
Weyl elements (wδ)δ∈∆ have the desired form.





Chapter 8

Jordan Modules and Related
Structures

Chapters 5 and 7 each started with a section which introduced the coordinatising
algebraic structures of relevance in the respective chapter. For root gradings of
types C and BC, the corresponding algebraic structures are the so-called Jordan
modules. The theory of these objects is rather involved, and we will need several
other algebraic structures to define and investigate them properly. Further, Jordan
modules are a new algebraic structure which we introduce specifically to describe
root gradings of types C and BC. For these reasons, we dedicate an own chapter
to the study of these objects.

Section 8.1 begins with an introduction of weakly quadratic maps, which
generalise quadratic maps. We will also introduce square-modules (M, +̂), which
are groups equipped with a weakly quadratic scalar multiplication. They serve as
the fundamental language in which we describe the other algebraic structures in
this chapter. In sections 8.2 and 8.3, we list some known properties of alternative
rings and (nonassociative) rings with involution, respectively. Section 8.4 is
dedicated to involutory sets, which are alternative rings R equipped with an
involution and a certain subset of R. In section 8.5, we define pseudo-quadratic
modules over involutory sets. Any pseudo-quadratic module M gives rise to a
group T(M) which is our main (and in fact, the only known) example of a Jordan
module.

In section 8.6, we can finally define Jordan modules. A Jordan module is
a pair of groups (J,R) equipped with a family of maps satisfying exactly the
identities which result from the blueprint computation for root gradings of type
BC. The group R in a Jordan module is always equipped with the structure of an
alternative ring with involution. We will show in section 8.7 that if 2R is invertible,
then every Jordan module is of the form T(M) for some pseudo-quadratic module
M. Thus Jordan modules should be regarded as a slight generalisation of the class
of groups T(M) which allows us to capture certain “characteristic-2 phenomena”.
It should be noted that we are not aware of examples of Jordan modules which
are not of the form T(M), but we cannot exclude their existence.

In section 8.8, we will present a notion of “purely alternative rings” which
was introduced by Slater in [Sla67]. We will show that such rings do not admit
non-zero modules. This fact will not formally be needed in the sequel. Rather, it
illustrates that the non-associativity of the base ring in the definition of pseudo-
quadratic modules should be seen as a technicality: Alternative rings admit
pseudo-quadratic modules only insofar that they are not purely alternative.
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The present chapter is independent from chapter 9, with a few exceptions:
The material on pseudo-quadratic modules will be needed in the construction
in section 9.3, and some results on alternative rings will be used in section 9.10.
Hence the the enthusiastic reader may wish to skip ahead to chapter 9 and return
to the current chapter only later.

8.1 Weakly Quadratic Maps

8.1.1 Note. Throughout this chapter, we will often consider groups (M, +̂) which
are not assumed to be commutative but which are still written additively because
we think of them as “modules” and because, in some important cases, they
turn out to be abelian. We indicate this non-commutativity by the hat on the
operator. The neutral element of such groups will always be denoted by 0 and
the inverse of an element x ∈ M will be denoted by −̂x. In particular, we have
−̂(x +̂ y) = −̂y −̂ x. We will later see that in root gradings of type C, only the
commutative case is relevant.

In this section, we introduce weakly quadratic maps and square-modules.
Their theory provides the basic but essential language in which we describe
Jordan modules and related algebraic structures. None of the results in this
section are difficult, but we are not aware of any literature in which weakly
quadratic maps appear.

Weakly quadratic maps generalise quadratic maps (Definitions 7.1.2 and 7.1.3)
in two ways: Firstly, the involved groups are allowed to be nonabelian. Secondly,
we do not require Axiom 7.1.3 (i).

8.1.2 Definition (Weakly quadratic maps). Let (M, +̂), (N, +̂) be groups and let
q : M → N be a map. The polarisation of q is the map

f : M × M → N, (v, w) 7→ −̂q(w) −̂ q(v) +̂ q(v +̂ w).

We say that q is weakly quadratic if its polarisation is bi-additive, in which case the
map f is also called the the linearisation of q.

8.1.3 Remark. Equivalently, the polarisation of a map q : M → N is the unique
map f : M × M → N which satisfies

q(v +̂ w) = q(v) +̂ q(w) +̂ f (v, w)

for all v, w ∈ M. In particular, if q is weakly quadratic, we have

q(0) = q(0 +̂ 0) = q(0) +̂ q(0) +̂ f (0, 0) = q(0) +̂ q(0),

so that q(0) = 0.

8.1.4 Example. Let M, N be groups. Clearly, any additive or constant map
q : M → N is weakly quadratic because its polarisation is the zero map. Further,
if M and N are abelian, then they are Z-modules and any Z-quadratic map
q : M → N is weakly quadratic. Further, if N is abelian, then the sum of two
weakly quadratic maps from M to N is weakly quadratic. Thus in the abelian
setting, sums of quadratic, linear and constant maps are examples of weakly
quadratic. However, not every weakly quadratic map can be written in this way.

Our interest in weakly quadratic maps stems from the fact that in this chapter,
we will frequently see groups which are “modules” over some ring except that
the scalar multiplication is only weakly quadratic in the scalar. Such objects will
be called square-modules.



8.1. Weakly Quadratic Maps 229

8.1.5 Definition (Square-module). Let R be a ring. A (right) square-module over R
is a group (N, +̂) together with a map ω : N ×R → N (called the square-scalar
multiplication) satisfying the following properties:

(i) ω is additive in the first component.
(ii) For all v ∈ N, the map R → N, r 7→ ω(v, r) is weakly quadratic.

(iii) ω(v, 1R) = v for all v ∈ N.

8.1.6 Definition (Properties of square-modules). Let (N, +̂) be a square-module
over a ring R with square-scalar multiplication ω.

(a) We say that N is properly quadratic if N is abelian and the map in Ax-
iom 8.1.5 (ii) is Z-quadratic in the sense of Definition 7.1.3.

(b) We say that N is multiplicative if ω
(
ω(v, r), s

)
= ω(v, rs) for all v ∈ N and

r, s ∈ R.
(c) A subgroup U of N is called a square-submodule if ω(u, r) ∈ U for all u ∈ U

and r ∈ R.

8.1.7 Remark. Let R be a ring. A square-module (M, ω) over R is an R-module
(in the regular sense of Definition 5.1.22) if and only if it is abelian, multiplicative
and ω is additive in the second component.

The most important examples of square modules in our setting come from
alternative rings with nuclear involutions, their involutory sets and pseudo-
quadratic modules over these objects: see Example 8.4.2 and Lemmas 8.4.3, 8.4.5
to 8.4.7 and 8.5.34. All the interesting examples of square-modules will be mul-
tiplicative. However, these examples often arise as square-submodules of (less
interesting) non-multiplicative square-modules, which justifies the higher gener-
ality in our definition of square-modules. An example of a square-module which
is not known to be multiplicative but which contains interesting multiplicative
square-submodules is given in 8.4.2.

8.1.8 Remark. By Remark 8.1.3, the scalar multiplication on a square-module N
satisfies ω(v, 0R) = 0N for all v ∈ N.

8.1.9 Definition. Let (N, ω), (N′, ω′) be two square-modules over a ring R and
let f : N → N′ be a map.

(a) We say that f preserves the square-scalar multiplication if

f
(
ω(v, r)

)
= ω′( f (v), r

)
for all v ∈ N and all r ∈ R.

(b) We say that f is a homomorphism of square-modules from N to N′ if it is a ho-
momorphism of additive groups which preserves the scalar multiplication.
It is called an isomorphism of square-modules if it is a bijective homomorphism
of square-modules, and it is called an automorphism of square-modules if, in
addition, (N, ω) = (N′, ω′).

We record the following standard facts from module theory which remain
valid in this generality.

8.1.10 Lemma. Kernels and images of homomorphisms of square-modules are square-
submodules. Further, intersections of square-submodules are square-submodules.
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Proof. Let f : (N, ω) → (N′, ω′) be a homomorphism of square-modules over
some ring R. If v ∈ N is such that f (v) = 0, then

f
(
ω(v, r)

)
= ω′( f (v), r

)
= ω′(0, r) = 0

for all r ∈ R, so the kernel of f is a square-submodule of N. Further, for all v ∈ N,
we have

ω′( f (v), r
)
= f

(
ω(v, r)

)
for all r ∈ R, so the image of f is a submodule of N′. Finally, the assertion about
intersections is clear.

8.1.11 Lemma. Let (M, ω) be a square-module over some ring R and let U be a square-
submodule of M. Denote by π : M → M/U the canonical projection, which is a
homomorphism of groups. Then there exists a unique map

ω̃ : (M/U)×R → M/U

such that
ω̃
(
π(x), r

)
= π

(
ω(x, r)

)
for all x ∈ M and r ∈ R. Further, (M/U, ω̃) is a square-module, π is a homomorphism
of square-modules and (M/U, ω̃) is multiplicative if (M, ω) is.

Proof. This follows from standard arguments.

On any multiplicative square-module, we have a canonical “involution”.

8.1.12 Definition (Involution on square-modules). Let (M, ω) be a multiplica-
tive square-module over some ring R. The map

· : M → M, x 7→ ω(x,−1R)

is called the canonical involution on (M, ω).

8.1.13 Lemma. Let (M, ω) be a multiplicative square-module over some ring R. Then
the canonical involution on (M, ω) is an automorphism of the square-module (M, ω)
which is its own inverse.

Proof. For all x ∈ M, we have

x = ω
(
ω(x,−1R),−1R

)
= ω

(
x, (−1R)(−1R)

)
= ω(x, 1) = x,

so · is its own inverse. Further, it is a homomorphism of groups because ω is
additive in the first component. Finally, we have for all x ∈ M and r ∈ R that

ω(x, r) = ω
(
ω(x,−1R), r

)
= ω(x,−r) = ω

(
ω(x, r),−1R

)
= ω(x, r).

Thus · is a homomorphism of square-modules, which finishes the proof.

8.2 Alternative Rings

8.2.1 Notation for this section. We denote by R an arbitrary ring.

We have already introduced nonassociative rings and the basic related no-
tions in section 5.1. In this section, we record some elementary facts about the
special case of alternative rings. We will also see some other related classes of
nonassociative rings. A basic reference on this subject is [Sch66, Chapter III], but
we will also cite various other sources.
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8.2.2 Definition (Associativity properties, [Sch66, Chapter III]). We say that R
is alternative if

x(xy) = (xx)y and (xy)y = x(yy)

for all x, y ∈ R. We say that R is weakly alternative if

[x, y, z] = −[y, x, z] and [x, y, z] = −[x, z, y]

for all x, y, z ∈ R. We say that R is flexible if

(xy)x = x(yx)

for all x, y ∈ R. Further, for all a, x, y, z ∈ R, the following relations are called the
Moufang identities: (

x(ax)
)
y = x

(
a(xy)

)
, (LM)

y
(
x(ax)

)
=
(
(yx)a

)
x, (RM)

(xy)(ax) = x
(
(ya)x

)
. (MM)

The terminology of “weakly alternative rings” is borrowed from [Fau89,
p. 170]. It is not standard.

8.2.3 Example. The standard examples of rings which are alternative but not
associative are octonion algebras. These are 8-dimensional composition algebras
over an arbitrary field. In fact, if R is an alternative simple ring, then [Kle53] says
that R is either associative or an octonion algebra over a field. We will encounter
a generalisation of composition algebras over commutative associative rings in
section 10.2.

8.2.4 Note. We will mostly be concerned with alternative rings in this thesis. The
notions of flexible and Moufang rings interest us only insofar that they appear
in the characterisation of alternative rings that we give in Proposition 8.2.6.
The notion of weakly alternative rings, on the other hand, matters to us for
technical reasons: In section 9.10, we will prove that any ring R which arises
from a (B)C3-graded group is always alternative. In the course of the proof, we
will first show that R is weakly alternative (Lemma 9.10.14), which allows us
to apply Remark 8.2.8. Only later can we show that R is actually alternative
(Proposition 9.10.16).

8.2.5 Reminder (Alternating maps). Let n ∈ N+ and let f : Rn → R be a map
which is additive in each component. Then f is alternating if for all v1, . . . , vn ∈ R

such that at least two of the elements v1, . . . , vn are equal, we have f (v1, . . . , vn) =
0R . Further, it is called weakly alternating or antisymmetric if

f (vσ(1), . . . , vσ(n)) = (−1)sgn(σ) f (v1, . . . , vn)

for any permutation σ of [1, n] where sgn(σ) denotes the signum of σ. (It suffices
to verify this condition for transpositions σ because they generate the permutation
group.) Any alternating map is weakly alternating, and if 2R is not a zero divisor
in R, then every weakly alternating map is alternating.

We have the following characterization of alternative rings. The main parts
of the proof can be found in [Sch66, III.1]. The fact that alternative rings satisfy
property 8.2.6 (iv) is usually referred to as Artin’s Theorem. We will see variations
of this theorem in Lemma 8.2.17 and Proposition 8.3.16.

8.2.6 Proposition (Artin’s Theorem). The following conditions on R are equivalent:
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(i) R is alternative.
(ii) R is alternative and flexible.

(iii) The associator map is alternating.
(iv) Every subring of R which is generated by at most two elements is associative.
(v) R satisfies the Moufang identities (LM), (RM) and (MM).

(vi) R satisfies the left and right Moufang identities (LM) and (RM).

8.2.7 Lemma. Every alternative ring is weakly alternative. If R is a weakly alternative
ring in which 2R is not a zero divisor, then R is alternative.

Proof. This follows from Reminder 8.2.5 and Proposition 8.2.6.

8.2.8 Remark. Recall the different notions of nuclei from Definition 5.1.9. If R is
weakly alternative, then

Nucl(R) = LNucl(R) = MNucl(R) = RNucl(R).

We will use this fact in Lemma 9.10.14, in a situation in which R is weakly
alternative but not yet proven to be alternative.

Recall from Definition 5.1.12 that the notion of invertibility is slightly surpris-
ing (and non-standard) in nonassociative rings. In alternative rings, it turns out
that we can use the usual notion of invertibility from associative ring theory.

8.2.9 Lemma. Assume that R is alternative. For all x, y ∈ R, the following assertions
are equivalent:

(i) x is an inverse of y in the sense of Definition 5.1.12.
(ii) xy = 1R = yx.

Proof. Assume that xy = 1R = yx. Using the Moufang identities, it is proven in
[Sch66, p. 38] that [x, y, z] = 0R for all z ∈ R. Since R is alternative, it follows
that [y, x, z] = [z, x, y] = [z, y, x] = 0R for all z ∈ R as well. Thus the assertion
follows from Lemma 5.1.17.

8.2.10 Lemma. If R is weakly alternative and x is an invertible element of the nucleus
of R, then x−1 lies in the nucleus as well.

Proof. Let x be an invertible element of the nucleus and let y, z ∈ R be arbitrary.
Then we have

yz =
(
x(x−1y)

)
z = x

(
(x−1y)z

)
.

Multiplying by x−1 from the left side yields x−1(yz) = (x−1y)z. That is, we have
[x−1, y, z] = 0R for all y, z ∈ R. Using Remark 8.2.8, we conclude that x−1 lies in
the nucleus.

We will have occasion to use the following identities.

8.2.11 Lemma. Assume that R is alternative. Then the following assertions hold for all
x, x′, y, z ∈ R:

(a) [x2, y, z] = x[x, y, z] + [x, y, z]x.
(b) The right bumping formula: [x, y, z]x = [x, xy, z] = [x, y, xz].
(c) The left bumping formula: x[x, y, z] = [x, yx, z] = [x, y, zx].
(d) [x, y, z]x′ + [x′, y, z]x = [x, x′y, z] + [x′, xy, z] = [x, y, x′z] + [x′, y, xz].
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(e) x[x′, y, z] + x′[x, y, z] = [x, yx′, z] + [x′, yx, z] = [x, y, zx′] + [x′, y, zx].

Proof. The first three identities are (2.12), (2.13) and (2.14) in [BK51, Lemma 2.2],
albeit with a typo in (2.14). The last two identities are linearisations of (b) and (c).
By this we mean the following: At first, observe that the formula in (b) is additive
in y and z but “quadratic” in x. Replacing x by x + x′ in this formula, we obtain

[x, y, z]x + [x′, y, z]x + [x, y, z]x′ + [x′, y, z]x′

= [x, y, xz] + [x′, y, xz] + [x, y, x′z] + [x′, y, x′z].

All summands in which only one of the variables x and x′ appears cancel by (b),
so we remain with

[x′, y, z]x + [x, y, z]x′ = [x′, y, xz] + [x, y, x′z].

This is precisely one of the equations in (d). The remaining assertions can be
proven similarly.

We now state some formulas concerning nuclear elements.

8.2.12 Lemma (“Nuclear Slipping Formula”, [McC70, 3.1.6], [McC04, 21.2.1]).
Assume that R is alternative. Then for all x, y, z ∈ R and all n ∈ Nucl(R), we have

n[x, y, z] = [nx, y, z] = [xn, y, z] = [x, ny, z] = [x, yn, z]
= [x, y, nz] = [x, y, zn] = [x, y, z]n.

In particular, nuclear elements commute with associators.

Proof. Let x, y, z ∈ R and let n ∈ Nucl(R). We know from Remark 5.1.11 that in
any nonassociative ring, we have

n[x, y, z] = [nx, y, z], [xn, y, z] = [x, ny, z],
[x, yn, z] = [x, y, nz], [x, y, zn] = [x, y, z]n.

Further, since the associator is alternating, we also have

n[x, y, z] = −n[y, x, z] = −[ny, x, z] = [x, ny, z].

A similar computations yields that we also have n[x, y, z] = [x, y, nz]. Further,

[x, y, nz] = [x, yn, z] = −[x, z, yn] = −[x, z, y]n = [x, y, z]n.

Combining all statements, the assertion follows.

8.2.13 Lemma ([McC70, (1.8), (1.9)]). Assume that R is alternative. Then the following
statements hold, where [x, y] := xy − yx denotes the commutator for x, y ∈ R:

(a)
[
Nucl(R),R

]
⊆ Nucl(R).

(b) [x, n][x, y, z] = 0R for all x, y, z ∈ R and all n ∈ Nucl(R).

Proof. Let x, y, z ∈ R and let n ∈ Nucl(R). Then it follows from Lemma 8.2.12
that [

[n, x], y, z
]
= [nx, y, z]− [xn, y, z] = n[x, y, z]− n[x, y, z] = 0,

which implies the first assertion. The second assertion follows from another
application of Lemma 8.2.12 in combination with the left bumping formula
(Lemma 8.2.11 (c)): We have

(xn)[x, y, z] = x
(
n[x, y, z]

)
= x

(
[x, y, z]n

)
=
(
x[x, y, z]

)
n

= [x, yx, z]n = n[x, yx, z] = n
(
x[x, y, z]

)
= (nx)[x, y, z],

which implies that [x, n][x, y, z] = 0R .
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We end this section with some results on associative subrings of alternative
rings.

8.2.14 Definition (Strongly associative set, [GPR, 14.1]). A subset A of R is
called strongly associative if [a, a′, x] = 0R for all a, a′ ∈ A and all x ∈ R.

8.2.15 Lemma ([BK51, Theorem I.2]). Assume that R is alternative and let A, B, C
be subsets of R satisfying [A, A,R] = [B, B,R] = [C, C,R] = [A, B, C] = {0}. (That
is, A, B, C are strongly associative sets such that [A, B, C] = {0}.) Then the subring of
R which is generated by A ∪ B ∪ C is associative.

8.2.16 Note. Property 8.2.6 (iv) is a special case of Lemma 8.2.15: Assume that R
is alternative and let x, y ∈ R. Then the sets A := { x }, B := { y } and C := { 0 }
satisfy the conditions of Lemma 8.2.15, and so the subring of R generated by
{ x, y } is associative. Similarly, it follows from Lemma 8.2.15 that the subring
generated by { x, y, z } where x, y, z ∈ R satisfy [x, y, z] = 0 is alternative.

8.2.17 Lemma ([BK51, Theorem I.3]). Assume that R is alternative and let A, B be
subsets of R such that A is an associative subring of R and [A, A, B] = [B, B,R] = {0}.
(That is, B is a strongly associative subset of R and A is an associative subring of R such
that [A, A, B] = {0}.) Then the subring of R generated by A ∪ B is associative.

The following corollary of Lemma 8.2.17 is a useful generalisation of Artin’s
Theorem (Proposition 8.2.6).

8.2.18 Proposition. Assume that R is alternative and let x, y ∈ R. Then the subring
generated by { x, y } ∪ Nucl(R) is associative.

Proof. This follows from Lemma 8.2.17 for A := Nucl(R) and B := { x, y }.

8.3 Rings with Involution

8.3.1 Notation for this section. Unless otherwise specified, we denote by R a
ring with an involution σ : R → R in the sense of the following Definition 8.3.2.

In this section, we study involutions on rings. All rings with involution
that we are interested in will be alternative. However, we will be faced with
situations in which a ring with involution is alternative, but not yet proven to
be alternative. For this reason, it is more practical to introduce involutions on
arbitrary rings. A valuable, albeit not easily accessible reference on this subject is
[McC70, Section 9.5]. Another comprehensive book on the subject in the setting
of algebras over a field is [Knu+98].

8.3.A Basic Definitions and Observations

8.3.2 Definition (Involution). An involution of R is a map σ : R → R, r 7→ rσ

satisfying (r + s)σ = rσ + sσ, (r · s)σ = sσ · rσ and (rσ)σ = r for all r, s ∈ R. We
will refer to the second property as anti-compatibility with the ring multiplication.
Elements r ∈ R with the property that rσ = r are called symmetric, and we denote
the set of all symmetric elements by Fix(σ).

8.3.3 Example. The identity map is an involution on R if and only if R is com-
mutative. If this is the case, it is called the trivial involution (on R).
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8.3.4 Example. The conjugation map C → C, a + bi 7→ a − bi is an involution on
the field of complex numbers. More generally, any conic algebra has a conjugation
map which is an involution in certain situations. See Lemmas 10.1.19, 10.1.23
and 10.1.27 for more details.

8.3.5 Remark. The set of symmetric elements is an additive subgroup of (R,+),
and it contains 1R because

1R = (1σ
R)

σ = (1σ
R · 1R)σ = 1σ

R · (1σ
R)

σ = 1σ
R · 1R = 1σ

R .

However, it is in general not a subring of R: For all r, s ∈ Fix(σ), we have
(rs)σ = sσrσ = sr which, in general, is distinct from rs.

8.3.6 Lemma. Let r ∈ R be invertible. Then rσ is invertible and (rσ)−1 = (r−1)σ.

Proof. For all s ∈ R, we have

sσ =
(
r−1(rs)

)σ
= (sσrσ)(r−1)σ.

It follows that (srσ)(r−1)σ = s for all s ∈ R. Similarly, one can show that the
other properties in Definition 5.1.12 are satisfied. Thus rσ is invertible and its
inverse is (r−1)σ.

8.3.7 Notation. For any invertible r ∈ R, we denote the element (rσ)−1 = (r−1)σ

by r−σ.

We can define norm and trace maps on any ring with involution. The latter in
particular will be crucial in the theory of Jordan modules.

8.3.8 Definition (Traces and norms). The map Tr = Trσ : R → R, r 7→ r + rσ is
called the trace (on R) and the map N = Nσ : R → R, r 7→ rσr is called the norm
(on R). We will also refer to ring elements which lie in the image of these maps
as traces and norms and denote the sets of such elements by Tr(R) and N(R),
respectively. Further, we define a bi-additive map

R ×R → Tr(R), (a, b) 7→ Tr(a, b) := Tr(abσ)

which we also denote by Tr or Trσ.

8.3.9 Note. In the definition of the norm, we make the somewhat arbitrary choice
that N(r) = rσr and not N(r) = rrσ. Observe that the set N(R) is independent
of this choice because the norm of r in the first sense equals the norm of rσ in the
second sense. In particular, the notions of nuclear and central involutions that
we will introduce in Definition 8.3.12 do not depend on this choice. Further, we
will show in Lemma 8.3.20 that the two definitions coincide if the involution σ is
central.

8.3.10 Lemma. The following hold:
(a) Every trace and every norm in R is symmetric, and the trace is an additive map.
(b) If 2R is invertible, then N(R) ⊆ Tr(R) = Fix(σ).

Proof. The first assertion is clear. Now assume that 2R is invertible and let r ∈ R

be symmetric. Then

r =
r + r

2
=

r
2
+

rσ

2
= Tr(r/2),

which shows that Fix(σ) is contained in Tr(R). Thus N(R) ⊆ Fix(σ) = Tr(σ), as
desired.
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The following result shows that the mere existence of an involution on a ring
makes it easier to prove that a ring is (weakly) alternative. We will use these facts
in the blueprint computations for BC, see Lemma 9.10.14 and Proposition 9.10.16.

8.3.11 Lemma. The following hold:
(a) We have [x, y, z]σ = −[zσ, yσ, xσ] for all x, y, z ∈ R.
(b) Let R ′ be any ring which admits an involution σ and which satisfies [x, y, z] =

−[x, z, y] for all x, y, z ∈ R ′. Then R ′ is weakly alternative.
(c) Let R ′ be any ring which admits an involution σ and which satisfies [x, y, y] = 0

for all x, y ∈ R. Then R ′ is alternative.

Proof. The first assertion is a simple computation:

[x, y, z]σ =
(
(xy)z − x(yz)

)σ
= zσ(yσxσ)− (zσyσ)xσ = −[zσ, yσ, xσ].

The second assertion follows from the first one because

[x, y, z] = −[zσ, yσ, xσ]σ = [zσ, xσ, yσ]σ = −[y, x, z]

for all x, y, z ∈ R ′, which together with the property [x, y, z] = −[x, z, y] means
that R ′ is weakly alternative. The third assertion can be proven in a similar way:

[x, x, y] = −[yσ, xσ, xσ]σ = −0σ = 0

for all x, y ∈ R ′, and thus R ′ is alternative.

If R is not associative, we usually need additional assumptions on the involu-
tion σ to develop a satisfactory theory. In the context of Jordan modules, nuclear
involutions are particularly important. The stronger notion of central involutions
is not relevant for Jordan modules, but we will see it again in section 10.1.

8.3.12 Definition (Nuclear and central involutions). The involution σ is called
nuclear if every norm lies in the nucleus of R. It is called central if every norm lies
in the center of R.

If the ring R is equipped with the structure of an algebra over some commu-
tative associative ring k, then we can also define the notion of scalar involutions
in a similar way. See Definition 10.1.7.

8.3.13 Remark. Assume that σ is nuclear. Then for all r ∈ R, the element

(1 + r)σ(1 + r) = 1 + rσ + r + rσr

lies in the nucleus. As the nucleus is closed under addition, this implies that
the trace r + rσ lies in the nucleus. Thus if σ is nuclear, then all traces lie in the
nucleus as well. Similarly, if σ is central, then all traces lie in the center. If 2R
is invertible, then it is clear that the converses of these statements are also true
because then every norm is a trace by Lemma 8.3.10 (b). In Propositions 8.3.17
and 8.3.21, we will see that the same remains true for alternative rings even
without assumptions on the invertibility of 2R .

8.3.B Nuclear Involutions

We now study nuclear involutions. A recurring theme here is that many asso-
ciativity results involving a ring element r remain true if we replace some (but
not necessarily all) occurrences of r by rσ. The main example of this behaviour is
Artin’s Theorem for nuclear involutions, see Proposition 8.3.16. Another main
result in this subsection is Proposition 8.3.17.
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8.3.14 Lemma. Assume that every trace is nuclear. Then for all r, s, t ∈ R, we have
[rσ, s, t] = −[r, s, t], [r, sσ, t] = −[r, s, t] and [r, s, tσ] = −[r, s, t]. In particular, if R is
alternative, then [r, rσ, s], [r, s, rσ] and [s, r, rσ] are zero for all r, s ∈ R.

Proof. Let r, s, t ∈ R. Since σ is nuclear, we have [r + rσ, s, t] = 0. This implies
that [rσ, s, t] = −[r, s, t]. The other assertions can be proven similarly.

8.3.15 Lemma (Bumping formulas for nuclear involutions). Assume that R is
alternative and that every trace is nuclear. Then for all x, y, z ∈ R, the following
variations of the bumping formulas from Lemma 8.2.11 are satisfied:

[xσ, y, z]x = [xσ, xy, z] = [xσ, y, xz] and x[xσ, y, z] = [xσ, yx, z] = [xσ, y, zx]

Proof. This is a consequence of Lemma 8.3.14 and the original bumping formulas.
For example,

[xσ, y, z]x = −[x, y, z]x = −[x, xy, z] = [xσ, xy, z].

The other formulas can be derived in the same fashion.

8.3.16 Proposition (Artin’s Theorem for nuclear involutions). Assume that R is
alternative and that the involution on R is nuclear. Then for all r, s ∈ R, the subring of
R generated by { r, s, rσ, sσ } ∪ Nucl(R) is associative.

Proof. Set A := { r, rσ }, B := { s, sσ } and C := { 0 }. Then by Lemma 8.3.14, we
have

[A, A,R] = [B, B,R] = [C, C,R] = [A, B, C] = {0}.

Thus it follows from Lemma 8.2.15 that the subring D of R which is generated by
{ r, rσ, s, sσ } is associative. Applying Lemma 8.2.17, we conclude that the subring
generated by D ∪ NuclR is associative.

8.3.17 Proposition ([McC70, Section 9.5]). Assume that R is alternative. Then the
following assertions on the involution σ are equivalent.

(i) Every norm lies in the nucleus of R. That is, σ is nuclear.
(ii) Every trace lies in the nucleus of R.

Proof. We already know from Remark 8.3.13 that every trace lies in the nucleus if
σ is nuclear. Conversely, assume that every trace is nuclear. Let x, y, z ∈ R. By
the linearised right bumping formula (Lemma 8.2.11 (d)), we have

[x, xσ, y]z + [z, xσ, y]x = [x, zxσ, y] + [z, xxσ, y].

Since the associator is alternating, we can shift all associators on the right-hand
side of the equation one step to the left, which yields that

[xxσ, y, z] = [x, xσ, y]z + [z, xσ, y]x − [zxσ, y, x].

Using Lemma 8.3.14, we obtain that

[xxσ, y, z] = −[x, x, y]z + [zσ, x, y]x + [xzσ, y, x] = [x, y, zσ]x − [x, y, xzσ]

By the right bumping formula (Lemma 8.2.11 (b)), we conclude that [xxσ, y, z] = 0.
This shows that every norm is nuclear as well.

8.3.18 Lemma. If σ is nuclear and 2R is invertible, then

N(R) ⊆ Tr(R) = Fix(σ) ⊆ Nucl(R).

Proof. We have seen in Lemma 8.3.10 (b) that N(R) ⊆ Tr(R) = Fix(σ). Since σ is
nuclear, we have that Tr(R) ⊆ Nucl(R).
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8.3.19 Lemma. Assume that R is alternative and that the involution σ is nuclear. Then
the map Tr : R → R, a 7→ a + aσ is associative in the sense that Tr((ab)c) = Tr(a(bc))
for all a, b, c ∈ R.

Proof. Let a, b, c ∈ R. Since

Tr
(
(ab)c

)
= (ab)c + cσ(bσaσ) and Tr

(
a(bc)

)
= a(bc) + (cσbσ)aσ,

we have to show that [a, b, c] = [cσ, bσ, aσ]. This follows from Lemma 8.3.14 and
the fact that the associator is alternating.

8.3.C Central Involutions

As already mentioned, central involutions are not relevant for the theory of
Jordan modules. Still, it is worth recording that an analogue of Proposition 8.3.17
remains true for this type of involution.

8.3.20 Lemma. Assume that every trace in σ is central. Then aaσ = aσa and Tr(abσ) =
Tr(aσb) for all a, b ∈ R.

Proof. Let a, b ∈ R. Then a(a + aσ) = (a + aσ)a, which implies that aaσ = aσa.
Linearising this identity, we obtain that

abσ + baσ = aσb + bσa.

In other words, Tr(abσ) = Tr(aσb), as desired.

8.3.21 Proposition ([McC70, Section 9.5]). Assume that R is alternative. Then the
following assertions on the involution σ are equivalent.

(i) Every norm lies in the center of R. That is, σ is central.
(ii) Every trace lies in the center of R.

Proof. We already know from Remark 8.3.13 that every trace lies in the center if
σ is central. Now assume that every trace lies in the center. In particular, every
trace is nuclear. Thus we already know from Proposition 8.3.17 that every norm
is nuclear, which is to say that σ is nuclear. Using Lemmas 8.3.14 and 8.3.20, we
now compute that

(aaσ)b = a(aσb) = a
(
Tr(aσb)− bσa

)
= a Tr(aσb)− a(bσa) = Tr(aσb)a − a(bσa)

= (abσ)a + (baσ)a − a(bσa) = (baσ)a = b(aσa).

for all a, b ∈ R. In other words, the norm aaσ lies in the center, as desired.

8.4 Involutory Sets

8.4.1 Notation for this section. Unless otherwise specified, we denote by R an
alternative ring with nuclear involution σ.

In this section, we study involutory sets, which are a slight refinement of
alternative rings with a nuclear involution. The terminology of “involutory sets”
was introduced in [TW02, (11.1)], but more general notions had been studied
beforehand. We will discuss this in Note 8.4.10.

The following map plays a major role in the context of involutory sets. We
will always interpret it in the language of square-scalar multiplications from
section 8.1.
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8.4.2 Example. Let R be an alternative ring with nuclear involution. We define a
square-scalar multiplication on R by

ω : R ×R → R, (r, s) 7→ sσrs = (sσr)s = sσ(rs),

which is well-defined by Proposition 8.3.16. It is called the canonical square-scalar
multiplication on R. With this structure, R is a properly quadratic square-module
over itself. It is also multiplicative if R is associative, but it is not known to us
whether the same is true for alternative rings.

In the following, we will frequently apply Proposition 8.3.16 without com-
ment to avoid excessive use of brackets. Further, we will always use the square-
module structure on R given by Example 8.4.2. We begin by identifying several
interesting square-submodules of R.

8.4.3 Lemma. Fix(σ) is a square-submodule of R.

Proof. It is clear that Fix(σ) is an additive subgroup of R, and we further have
(rσsr)σ = rσsσr = rσsr for all r ∈ R, s ∈ Fix(σ).

8.4.4 Lemma. N(R) is stable under the square-scalar multiplication of R.

Proof. Let r, s ∈ R. Then rσN(s)r = rσ(sσs)r = (rσsσ)(sr) = N(sr) by Proposi-
tion 8.3.16, so the assertion follows.

8.4.5 Lemma ([McC70, Section 9.5]). The nucleus of R is a multiplicative square-
submodule of R.

Proof. Let x, y, z ∈ R and let n ∈ Nucl(R). We want to show that xσnx lies in
the nucleus. Observe that xσnx = [xσ, n]x + nxσx where nxσx lies in the nucleus
because the involution is nuclear. Thus

[xσnx, y, z] =
[
[xσ, n]x, y, z

]
+ [nxσx, y, z] =

[
[xσ, n]x, y, z

]
.

Since [xσ, n] lies in the nucleus by Lemma 8.2.13 (a), it follows from Remark 5.1.11
and Lemma 8.3.14 yields that

[xσnx, y, z] =
[
[xσ, n]x, y, z

]
= [xσ, n][x, y, z] = −[xσ, n][xσ, y, z].

Using Lemma 8.2.13 (b), we infer that [xσnx, y, z] = 0R . By Remark 8.2.8,
this shows that xσnx lies in the nucleus. Thus the nucleus is indeed a square-
submodule of R, and it is multiplicative by Artin’s Theorem for nuclear involu-
tions (Proposition 8.3.16).

8.4.6 Lemma. The map Tr : R → Nucl(R) ∩ Fix(σ), r 7→ r + rσ is a homomor-
phism of square-modules. In particular, Tr(R) is a multiplicative square-submodule of
Nucl(R) ∩ Fix(σ).

Proof. For all r, s ∈ R, we have

Tr(rσsr) = rσsr + (rσsr)σ = rσsr + rσsσr = rσ(s + sσ)r = rσ Tr(s)r

which proves the first statement. It follows that Tr(R) is the image of a homo-
morphism of square-modules, so it is a square-submodule of Nucl(R) ∩ Fix(σ)
by Lemma 8.1.10. Since the square-module Nucl(R) is multiplicative, so is every
square-submodule.

8.4.7 Lemma. The additive subgroup generated by N(R) ∪ Tr(R) is a multiplicative
square-submodule of Fix(σ) ∩ Nucl(R).
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Proof. It is a square-submodule of R by Lemmas 8.4.4 and 8.4.6, it is clearly
contained in Fix(σ) and it is contained in Nucl(R) by Proposition 8.3.17.

With these elementary observations in mind, we can now define involutory
sets.

8.4.8 Definition (Involutory set). A tuple (R,R0, σ) is called a pre-involutory set
(in (R, σ)) if R is an alternative ring, σ is a nuclear involution on R and R0 is a
square-submodule of R such that

Tr(R) ⊆ R0 ⊆ Fix(σ) ∩ Nucl(R).

It is called an involutory set if, in addition, R0 contains 1R . It is called associative if
the ring R is associative and it is called an involutory division set if R is a division
ring (in the sense of Definition 5.1.15).

8.4.9 Remark (on Definition 8.4.8). Let (R,R0, σ) be a pre-involutory set. If it is
an involutory set, then for all r ∈ R, we have

N(r) = rσ1Rr ∈ rσR0r ⊆ R0.

Thus R0 contains N(R). Conversely, if R0 contains N(R), then it contains
N(1R) = 1R .

8.4.10 Note (Involutory sets in the literature). The terminology of “involutory
sets” was introduced in [TW02, (11.1)], but in a less general context: Involutory
sets in the sense of [TW02] are exactly the associative involutory division sets in
our sense. Since [TW02] considers only RGD-systems, the division assumption
on involutory sets is not surprising. Further, since every simple alternative ring is
either associative or a Cayley-Dickson algebra by [Kle53], an involutory division
set is either associative or comes from a Cayley-Dickson algebra. Involutory
division sets of the latter form are called honorary involutory sets in [TW02, (38.11)].
Hence the non-associative case is not actually absent from [TW02], but simply
given a different name.

It should be noted that involutory sets in our sense are the same thing ample
subspaces (of R) in [McC70, Section 9.5]. Further, they are a special case of form
parameters in the sense of [HO89, 5.1.C] and [Knu91, p. 23], except that all rings
in the latter references are associative.

The following observation illustrates that the notion of involutory sets is only
a slight refinement of alternative rings with a nuclear involution and that its main
purpose is to capture certain “characteristic-2 phenomena”.

8.4.11 Remark. Assume that 2R is invertible in R. Then

Tr(R) ∪ N(R) = Tr(R) = Fix(σ) = Fix(σ) ∩ Nucl(R)

by Lemma 8.3.18. It follows that (R, Fix(σ), σ) is the only pre-involutory set in
(R, σ), and it is in fact an involutory set. Thus if we restrict our attention to rings
in which 2R is invertible, then an involutory set carries exactly the same data as
an alternative ring with nuclear involution.

In the general situation, denote by T1 the additive group that is generated by
Tr(R) ∪ N(R). Then (

R, Tr(R), σ
)

and (R, T1, σ)

are the minimal pre-involutory set and the minimal involutory set in (R, σ),
respectively. Further,

(R, Nucl(R) ∩ Fix(σ), σ)
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is the maximal pre-involutory set in (R, σ), and it is also an involutory set.

We close this section with some basic facts about involutory sets.

8.4.12 Remark. Let (R,R0, σ) be a pre-involutory set and assume that R = R0.
Then R = Fix(σ) ∩ Nucl(R), so σ must be the identity map and R must be
associative. By Example 8.3.3, the first fact implies that R must be commutative
as well. We conclude that the case R = R0 can only arise under very specific
circumstances.

8.4.13 Remark. Let (R,R0, σ) and (R ′,R ′
0, σ′) be two pre-involutory sets. Then

(R ⊕R ′,R0 ⊕R ′
0, σ ⊕ σ′) is also an involutory set where σ ⊕ σ′ is the nuclear

involution which maps (r, s) to (rσ, sσ′
). Note that this involutory set is never an

involutory division set unless R or R ′ is zero. Further, it is an involutory set if
and only if both (R,R0, σ) and (R ′,R ′

0, σ′) are involutory sets.

8.4.14 Lemma. Let (R,R0, σ) be a pre-involutory set, let h ∈ R0 and let r, s ∈ R.
Then rσhs + sσhr lies in R0.

Proof. Note that, since h is nuclear, the expression rσhs + sσhr is well-defined.
Further,

rσhs + sσhr = (r + s)σh(r + s)− rσhr − sσhs

where the element on the right-hand side lies in R0 because each summand does.
This finishes the proof.

8.4.15 Remark. Even when h is an arbitrary element of R, the expression on the
right-hand side of the equation in the proof of Lemma 8.4.14 is still well-defined
by Proposition 8.3.16. This observation yields that

(rσh)s + (sσh)r = rσ(hs) + sσ(hr)

for all r, s, h ∈ R, but this element does not necessarily lie in R0.

The following argument is used several times in [TW02, Chapter 11], where all
involutory sets are assumed to have division. It has some important consequences
for pseudo-quadratic modules over these involutory sets, which we collect in
Lemmas 8.5.20 and 8.5.21. In our more general settings, these arguments do not
apply. We merely state them to illustrate the additional difficulties that arise in
the non-division setting.

8.4.16 Lemma. Assume that R is a division ring and that R0 ̸= R. Let s ∈ R such
that sr ∈ R0 for all r ∈ R. Then s = 0R .

Proof. Assume that s ̸= 0 and choose t ∈ R \R0. Then by putting r := s−1t, we
infer that t = sr ∈ R0, which is a contradiction.

8.5 Pseudo-quadratic Modules

In this section, we study pseudo-quadratic forms on modules. These objects were
introduced over associative division rings by Tits in [Tit74, Section 8.2] during
the classification of thick spherical buildings of rank at least 3. Unsurprisingly,
they also play in important role in the classification of thick spherical Moufang
buildings of rank 2 in [TW02]. Most arguments in this section stem from the
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latter reference, though in some cases, they only prove weaker results in our
more general setting.

Any pseudo-quadratic module is defined with respect to some involutory set.
As usual, we cannot restrict our attention to division rings in the context of root
graded groups. In contrast, it is a surprising observation that we even have to
allow alternative rings in this setting. (Recall from Definition 8.4.8 that the ring
R in an involutory set is assumed to be alternative, and also that the involution
σ is nuclear.) However, it will turn out that this is more of a technical nuisance
and that all “interesting” phenomena occur within the associative world. We will
investigate this more deeply in section 8.8.

It is noteworthy that pseudo-quadratic modules over associative rings are a
special case of quadratic modules over rings with a form parameter in the sense
of [HO89, Section 5.1D] (see also Note 8.4.10). However, we are not aware of a
reference which specifically covers the special case of pseudo-quadratic forms in
the generality of non-division base rings. Further, we do not know a previous
reference which treats this subject in the nonassociative setting.

8.5.A Definition and Examples

Before we can define pseudo-quadratic forms, we have to introduce skew-
hermitian forms. These objects relate to pseudo-quadratic maps in a similar
way as symmetric bilinear forms relate to quadratic maps. In this section, we
will only encounter skew-hermitian forms on R-modules. However, we will also
need skew-hermitian forms on square-modules over R to define Jordan modules
in section 8.6, which is why we define them in this generality.

8.5.1 Definition (Sesquilinear form). Let R be an alternative ring with involu-
tion σ and let (M, ω) be a right square-module over R. A sesquilinear form on M
with respect to σ is a bi-additive map f : M × M → Nucl(R) which satisfies

f
(
ω(u, r), ω(v, s)

)
= rσ f (u, v)s

for all r, s ∈ R and u, v ∈ M. It is called hermitian with respect to σ if, in addition, it
satisfies f (u, v)σ = f (v, u) for all u, v ∈ M. It is called skew-hermitian with respect
to σ if it satisfies f (u, v)σ = − f (v, u). The zero map M × M → Nucl(R) is called
the trivial sesquilinear form.

8.5.2 Note. The requirement in Definition 8.5.1 that the image of f lies in the
nucleus of R is necessary because otherwise, the formula f (ur, vs) = rσ f (u, v)s
is not well-defined. Alternatively, we could define a sesquilinear form on M to
be a bi-additive map f : M × M → R which satisfies the two separate formulas
f (ur, v) = rσ f (u, v) and f (u, vs) = f (u, v)s for all u, v ∈ M and all r, s ∈ R. If f
is a sesquilinear form in this sense, then(

rσ f (u, v)
)
s = f (ur, v)s = f (ur, vs) = rσ f (u, vs) = rσ

(
f (u, v)s

)
for all u, v ∈ M and r, s ∈ R. In other words, the image of f necessarily lies in the
middle nucleus of R. For alternative rings, we know from Remark 8.2.8 that the
middle nucleus coincides with the nucleus, so the two definitions of sesquilinear
forms are equivalent.

8.5.3 Definition (Pseudo-quadratic module). Let (R,R0, σ) be a pre-involutory
set and let M be a right module over R. A pseudo-quadratic form on M with respect
to (R,R0, σ) is a map q : M → Nucl(R) for which there exists a skew-hermitian
form f on M such that the following properties are satisfied:
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(i) q(u + v) ≡ q(u) + q(v) + f (u, v) (mod R0) for all u, v ∈ M.
(ii) q(ur) ≡ rσq(u)r (mod R0) for all u ∈ M, r ∈ R.

A map f with these properties is called a skew-hermitian form associated to q. The
form q is called anisotropic if, in addition, the following axiom is satisfied:

(iii) q(u) ≡ 0 (mod R0) implies u = 0M for all u ∈ M.
Two pseudo-quadratic forms q, q′ are called equivalent if q(v) ≡ q(v′) (mod R0)
for all v ∈ M. A pseudo-quadratic form is called trivial if it is equivalent to
the zero map. A pseudo-quadratic module (over (R,R0, σ)) is a triple (M, q, f )
consisting of right module M over R, a pseudo-quadratic form q on M and a
skew-hermitian form f associated to q. If R is an associative division ring, these
objects will also be called pseudo-quadratic spaces. A pseudo-quadratic module
(M, q, f ) is called anisotropic if q is anisotropic.

8.5.4 Remark. We have already seen in Remark 8.4.12 that a pre-involutory set
can satisfy R = R0 only under very specific assumptions. Assume that this is
the case. Then all axioms in Definition 8.5.3 are trivially satisfied, so every map
q : M → R is a pseudo-quadratic form. Further, the only anisotropic pseudo-
quadratic module in this situation is the zero module.

In [TW02], all pseudo-quadratic modules of interest are anisotropic. It follows
from previous remarks that if (M, q, f ) is an anisotropic pseudo-quadratic module
over (R,R0, σ), then either M = {0} or R ̸= R0.

8.5.5 Note. In [TW02, (11.19)], it is shown that in any pseudo-quadratic module
(M, q, f ) over an associative involutory division set (R,R0, σ) with R ̸= R0, the
map f is uniquely determined by q. (We will repeat the proof of this fact in
Lemma 8.5.21.) Using Remark 8.5.4, it follows that the same is true for every
anisotropic pseudo-quadratic module. As a consequence, the map f is not part
of the structure of a pseudo-quadratic space in the definition in [TW02, (11.17)].

8.5.6 Example. For any R-module M, the zero map from M to R is a pseudo-
quadratic form. Thus (M, 0, 0) is a pseudo-quadratic module.

8.5.7 Example. Let (R,R0, σ) be an involutory set and let n ∈ N+. Assume that
there exists h ∈ Nucl(R) such that hσ = −h, and choose such an element. We
define the following maps:

f : Rn ×Rn → R, (u, v) 7→ 2
n

∑
i=1

uσ
i hvi,

q : Rn → R, u 7→
n

∑
i=1

uσ
i hui

(
=

1
2

f (u, u) if 2R is invertible
)
.

Note that if 2R = 0R , then f is the zero map, but q is not necessarily trivial. It
is clear that f is skew-hermitian with respect to σ. We want to show that q is
pseudo-quadratic with associated pseudo-quadratic form f . Let u, v ∈ Rn and
let r ∈ R. It is clear that

q(ur) =
n

∑
i=1

(uir)σhuir = rσ

(
n

∑
i=1

uσ
i hui

)
r = rσq(u)r.
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(Note that this equality holds in R, not merely modulo R0.) Further,

q(u + v) =
n

∑
i=1

(
uσ

i hui + vσ
i hui + uσ

i hvi + vσ
i hvi

)
= q(u) + q(v) +

n

∑
i=1

(
vσ

i hui + uσ
i hvi

)
.

By the choice of h, we have uσ
i hvi = −(vσ

i hui)
σ for all i ∈ [1, n]. Put ri := vσ

i hui
for all i ∈ [1, n]. Then we see that

q(u + v) = q(u) + q(v) +
n

∑
i=1

(ri − rσ
i ) = q(u) + q(v) + 2

n

∑
i=1

ri −
n

∑
i=1

(ri + rσ
i )

= q(u) + q(v) + f (u, v)−
n

∑
i=1

(ri + rσ
i ).

Since R0 contains all traces, it follows that q(u + v) ≡ q(u) + q(v) + f (u, v)
(mod R0).

8.5.8 Example. We can take (R,R0, σ) := (C, R, σ) (where σ denotes complex
conjugation), h := i and n := 1 in Example 8.5.7. Then for all a, b, c, d ∈ R, we
have

f (a + bi, c + di) = 2(a − bi)i(c + di) = 2(b + ai)(c + di)
= 2(bc − ad) + 2(bd + ac)i,

q(a + bi) =
1
2

f (a + bi, a + bi) = (a2 + b2)i.

That is, q is precisely the usual norm function on C, but multiplied with i.

The fact that the images of q and f need to lie in the nucleus of R illus-
trates that pseudo-quadratic modules do not really belong to the nonassociative
world. However, we can still obtain examples of pseudo-quadratic modules over
alternative rings which are not associative using direct sum constructions.

8.5.9 Remark (Direct sums of pseudo-quadratic modules). Let X = (R,R0, σ)
and X′ = (R ′,R ′

0, σ′) be two involutory sets and let (M, q, f ) and (M′, q′, f ′)
be pseudo-quadratic modules over X and X′, respectively. We have seen in
Remark 8.4.13 that X ⊕ X′ := (R ⊕R ′,R0 ⊕R ′

0, σ ⊕ σ′) is also an involutory set.
We can equip the group M ⊕ M′ with an (R ⊕R ′)-module structure by putting

(u, u′) · (r, r′) := (ur, u′r′)

for all u ∈ M, u′ ∈ M′, r ∈ R and r′ ∈ R ′. It is now easy to verify that
(M ⊕ M′, q ⊕ q′, f ⊕ f ′) is a pseudo-quadratic module over X ⊕ X′. This pseudo-
quadratic module is anisotropic if and only if both (M, q, f ) and (M′, q′, f ′) are
anisotropic.

8.5.10 Note (Pseudo-quadratic modules over alternative rings). Let everything
be as in Remark 8.5.9, and assume in addition that (M′, q′, f ′) = ({0}, 0, 0).
Then M ⊕ M′ can be identified with M, so Remark 8.5.9 yields that the pseudo-
quadratic module (M, q, f ) over (R,R0, σ) can also be regarded as a pseudo-
quadratic module over (R,R0, σ) ⊕ (R ′,R ′

0, σ′). Here (R ′,R ′
0, σ′) can be an

arbitrary involutory set. Taking (R ′,R ′
0, σ′) to not be associative, we conclude

that every pseudo-quadratic module can be regarded as a pseudo-quadratic
module over an involutory set which is not associative.
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While the previous example shows that pseudo-quadratic modules over rings
which are not associative exist, it should be regarded as a technicality: Only
the associative ideal R ⊕ {0} of the alternative ring R ⊕R ′ contributes to the
(pseudo-quadratic) module structure of M. We would like to say that, while
R ⊕R ′ is alternative but not associative, it is not “purely alternative” either. In
this example, the ring splits into an alternative part and an associative, but we
cannot expect a similar decomposition to exist for arbitrary alternative rings.
Thus it is not at all clear what a reasonable definition of “purely alternative rings”
should be.

Following [Sla67], we will present a reasonable abstract notion of pure al-
ternativity for rings in section 8.8. We will show that purely alternative rings
do not admit any non-zero modules, so in particular, they do not admit non-
zero pseudo-quadratic modules. This fact substantiates our previous claim that
“pseudo-quadratic modules do not belong to the nonassociative world”. How-
ever, we emphasise that we are not aware of a theorem which allows us to
decompose an arbitrary alternative ring into an associative part and a purely
alternative part. Thus there is still some interest in allowing the underlying
involutory set (R,R0, σ) to not be associative.

8.5.B Basic Properties

8.5.11 Notation for this section. From now on, we denote by (R,R0, σ) a pre-
involutory set, by M a right module over R and by q a pseudo-quadratic form
with respect to (R,R0, σ). Further, unless otherwise specified, the symbol “≡”
will always be used to denote congruence modulo R0.

8.5.12 Remark. Let h : M → R0 be any map. Then q + h is also a pseudo-
quadratic form on M because all axioms are defined modulo R0. Further, a
skew-hermitian form f : M × M → R is associated to q + h if and only if it is
associated to q. Thus the equivalence class of q can be identified with the induced
map q̃ : M → Nucl(R)/R0. (In fact, this is exactly the approach that is taken
in [HO89, 5.1D].) However, it will be important in some contexts that we have
chosen a fixed coset representative q(v) in R for every v ∈ M. See, for example,
Note 8.5.27.

8.5.13 Remark. It follows from Axiom 8.5.3 (ii) that

q(0M) = q(0M0R) ≡ 0σ
Rq(0M)0R = 0R .

8.5.14 Remark. Let r, s ∈ R such that r ≡ s and let t ∈ R. Since tσR0t ⊆ R0, it
follows that tσrt ≡ tσst. If R0t ⊆ R0, then we also have rt ≡ st, but this is not
true in general. Similarly, all t ∈ R such that tR0 ⊆ R0 have the property that
r ≡ s implies ts ≡ ts. For example, these properties hold for all t in the image of
Z in R.

The following result is the analogue of Lemmas 7.1.5 and 7.1.6 for pseudo-
quadratic modules.

8.5.15 Lemma. Let f be a skew-hermitian form associated to q. Then the following hold:
(a) q(0M) ≡ 0R .
(b) f (v, v) ≡ 2q(v) for all v ∈ M.
(c) rσ ≡ −r for all r ∈ R.
(d) f (v, u) ≡ f (u, v) for all u, v ∈ M.
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(e) If 2R is invertible, then the map q′ : M → R, v 7→ f (v,v)
2 is a pseudo-quadratic

form which is equivalent to q and which satisfies q′(vr) = rσq(v)r (in R, not just
modulo R0) for all v ∈ M and all r ∈ R.

(f) If 2R is invertible and f is trivial, then q is trivial as well.

Proof. First of all, note that

q(0M) = q(0M + 0M) ≡ q(0M) + q(0M) + f (0M, 0M) = 2q(0M).

This implies that q(0M) ≡ 0R . In a similar way, we have for all v ∈ M that

q(2v) ≡ 2σq(v)2 = 4q(v) and q(2v) = q(v + v) ≡ 2q(v) + f (v, v).

It follows that 2q(v) ≡ f (v, v). Since R0 contains all traces, we have r + rσ ≡ 0
for all r ∈ R. In other words, rσ ≡ −r for all r ∈ R. This implies that f (u, v) ≡
f (v, u) for all u, v ∈ M because f is skew-hermitian.

Now assume that 2R is invertible and define q′ : M → R, v 7→ f (v,v)
2 . Then

by (d) and the definition of q′,

q′(v + u) =
f (v + u, v + u)

2
=

f (v, v)
2

+
f (u, u)

2
+

f (v, u)
2

+
f (u, v)

2

= q′(v) + q′(u) +
f (v, u)

2
+

f (u, v)
2

≡ q′(v) + q′(u) + f (v, u)

for all u, v ∈ M. Further,

q′(vr) =
f (vr, vr)

2
=

rσ f (v, v)r
2

= rσq(v)r

for all v ∈ M and r ∈ R. Thus (e) holds. Now assume in addition that f is trivial.
Then q′ is trivial by definition. Since q′ is equivalent to q, it follows that q is trivial
as well, which finishes the proof.

In analogy to the orthogonal group of a quadratic module (Definition 7.1.16),
we can define the unitary group of a pseudo-quadratic module.

8.5.16 Definition (Unitary group, [HO89, 5.2A]). The group

U(M) :=
{

φ ∈ Autk(M)
∣∣ q
(

φ(v)
)
≡ q(v) and f

(
φ(u), φ(v)

)
for all u, v ∈ M

}
is called unitary group of M = (M, q, f ). We use the convention that it acts on
M from the left side, so that the composition φ ◦ ψ of φ, ψ ∈ O(q) is the map
x 7→ φ(ψ(x)).

8.5.17 Remark. In the following, we will often consider elements h ∈ R with the
property that h ≡ q(v) for some v ∈ M. Since R0 and the image of q are, both by
definition, contained in the nucleus of R, all such elements are nuclear.

An important result about pseudo-quadratic spaces over associative involu-
tory set is [TW02, (11.19)]. It is not true in the present generality. The following
Lemmas 8.5.18 and 8.5.19 are the parts which remain valid in our general setting.
Lemmas 8.5.20 and 8.5.21 are exactly the assertion of [TW02, (11.19)], except that
the assumption on R to be associative turns out to be unnecessary. We will not
have occasion to apply any of these results, but we state them for the record.

8.5.18 Lemma. Let v ∈ M and let r, s, h ∈ R such that h ≡ q(v). Then f (vs, vr) ≡
sσhr + rσhs.

Proof. On the one hand,

q
(
v(s + r)

)
≡ q(vs) + q(vr) + f (vs, vr) ≡ sσq(v)s + rσq(v)r + f (vs, vr).



8.5. Pseudo-quadratic Modules 247

On the other hand,

q
(
v(s + r)

)
≡ (s + r)σq(v)(s + r) ≡ sσq(v)s + rσq(v)r + sσq(v)r + rσq(v)s.

This implies that the assertion holds for h = q(v). In general, we have h = q(v)+ t
for some t ∈ R0, and it remains to show that sσtr + rσts ≡ 0. This is exactly the
statement of Lemma 8.4.14, so the proof is finished.

8.5.19 Lemma. Let v ∈ M and let h ∈ R such that h ≡ q(v). Then(
f (v, v)− h + hσ

)
r ≡ 0 for all r ∈ R.

In particular, f (v, v) ≡ h − hσ ≡ q(v)− q(v)σ.

Proof. Putting s := 1R in Lemma 8.5.18 yields f (v, v)r − hr − rσh ≡ 0. Since
rσh ≡ −(rσh)σ = −hσr, the assertion follows.

Observe that the assertion of Lemma 8.5.19 is stronger than the special case
f (v, v) ≡ h − hσ by Remark 8.5.14. However, for division rings, we have the
following result.

8.5.20 Lemma. Assume that R is a division ring and that R0 ̸= R. Then for all v ∈ M
and all h ∈ R with h ≡ q(v), we have f (v, v) = h − hσ (in R, not just modulo R0). In
particular, f (v, v) = q(v)− q(v)σ for all v ∈ M.

Proof. For any v ∈ M and any h ∈ q(v) +R0, it follows from Lemmas 8.4.16
and 8.5.19 that f (v, v)− h + hσ is zero. Since q(v) lies in q(v) +R0, the second
assertion follows.

8.5.21 Lemma. Assume that R is a division ring and that R0 ̸= R. Then there exists
exactly one skew-hermitian form which is associated to q.

Proof. Assume that f , f ′ are two such forms. Then g := f − f ′ is a sesquilinear
form whose image is contained in R0. For all u, v ∈ M and r ∈ R, it follows that
g(u, v)r = g(u, vr) ∈ R0. By Lemma 8.4.16, this implies that g(u, v) = 0R for all
u, v ∈ R, so f = f ′.

Motivated by Lemma 8.5.20, we introduce the following definition.

8.5.22 Definition (Standard pseudo-quadratic module). A pseudo-quadratic
module (M, q, f ) over (R,R0, σ) is called standard if f (v, v) = q(v)− q(v)σ for
all v ∈ M.

8.5.23 Note. Being standard is a rather weak condition which is automatically
satisfied in many situations:

(1) We have seen in Lemma 8.5.20 that every pseudo-quadratic module over a
division ring with R ̸= R0 is standard. Further, the zero module is clearly
standard as well. By Remark 8.5.4, this means that every pseudo-quadratic
module that appears in [TW02] is standard.

(2) Assume that 2R is invertible and let (M, q, f ) be a pseudo-quadratic module.
It follows from Lemma 8.5.15 (e) that q is equivalent to a pseudo-quadratic
form q′ such that (M, q′, f ) is a standard pseudo-quadratic module.

We will see that the standard condition is necessary to construct a Jordan mod-
ule from a pseudo-quadratic module (Example 8.6.7). Further, every pseudo-
quadratic module which arises from a Jordan module (that is, from a root grading
of type C or BC) is standard (Lemma 8.7.14). We conclude that standardness
is the right condition to extend the theory of pseudo-quadratic modules to our
general setting.
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8.5.C The Group T(M)

8.5.24 Notation for this section. In addition to Notation 8.5.11, we will from now
on fix a skew-hermitian form f such that (M, q, f ) is a pseudo-quadratic module
over (R,R0, σ).

For any pseudo-quadratic module M, we can define a group T(M). If M
is standard, this group can be equipped with the structure of a Jordan module
(Example 8.6.7). In section 8.7, we will show that every Jordan module arises in
this way if 2R is invertible.

8.5.25 Definition. We define

T(M) := T(M, q, f ) := { (u, h) ∈ M ×R | q(u) ≡ h }
and (u, h) · (v, k) :=

(
u + v, h + k + f (u, v)

)
for all (u, h), (v, k) ∈ T(q).

Observe that the multiplication on T(M) depends on the choice of the skew-
hermitian form f . Further, this multiplication is in general not abelian because f
is, in general, not symmetric.

8.5.26 Remark. We have a canonical bijection

M ×R0 → T(M), (u, h) 7→
(
u, q(u) + h

)
of sets which, in general, is not a group homomorphism with respect to the
canonical group structure on M ×R0.

8.5.27 Note. If q′ is another pseudo-quadratic form which is equivalent to q, then
T(M, q, f ) and T(M, q′, f ) are not only isomorphic, but in fact the same set with
the same group multiplication. However, the bijection in Remark 8.5.26 depends
on the choice of q.

8.5.28 Remark. If q is trivial, then T(M) = M ×R0 as sets and the bijection in
Remark 8.5.26 is the identity map. However, the multiplication on T(M) is not
necessarily the component-wise addition on M ×R0. This is only the case if f
is trivial as well. Note that if 2R is invertible, then the triviality of f implies the
triviality of q by Lemma 8.5.15 (f).

8.5.29 Remark. The map R0 → T(M), r0 7→ (0M, r0) is an injective homo-
morphism of square-modules. It is well-defined because q(0M) ≡ 0R by Re-
mark 8.5.13.

8.5.30 Remark. Let (u, h), (v, k) ∈ T(M). Then

(u, h) · (v, k) = (v, k) · (u, h) ·
(
0, f (u, v)− f (v, u)

)
where f (u, v)− f (v, u) = f (u, v) + f (u, v)σ = Trσ( f (u, v)).

8.5.31 Lemma. The multiplication on T(M) defines a group structure with identity
element (0M, 0R) and inverses given by

(u, h)−1 =
(
−u, f (u, u)− h

)
for all (u, v) ∈ T(q).

Proof. For all (u, h), (v, k) ∈ T(M), it follows from the axioms of a pseudo-
quadratic form that

q(u + v) ≡ q(u) + q(v) + f (u, v) ≡ h + k + f (u, v),
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so (u + v, h + k + f (u, v)) lies in T(q). We infer that the multiplication on T(M) is
well-defined. Further, it is associative because for any (u1, h1), (u2, h2), (u3, h3) ∈
T(M), both

(
(u1, h1)(u2, h2)

)
(u3, h3) and (u1, h1)

(
(u2, h2)(u3, h3)

)
equal(

u1 + u2 + u3, h1 + h2 + h3 + f (u1, u2) + f (u1, u3) + f (u2, u3)
)
.

It is clear that (0, 0) is an identity element in T(q). Finally, for all (u, h) ∈ T(q),
we have

(u, h)
(
−u, f (u, u)− h

)
=
(
0, h − h + f (u, u)− f (u, u)

)
= (0, 0)

=
(
−u, f (u, u)− h

)
(u, h),

so (u, h) is invertible with inverse
(
−u, f (u, u)− h

)
. This finishes the proof.

8.5.32 Remark. Note that, if (M, q, f ) is standard, then the inverse of (u, h) ∈ T(q)
is given by (−u,−hσ).

The following observation will be used to define (non-balanced) Weyl ele-
ments in root gradings of type BC. See Definition 9.3.10.

8.5.33 Lemma. Let (M, q, f ) be a pseudo-quadratic module over (R,R0, σ) and let
(u, h) ∈ T(M) such that h is invertible. Then (uh−1, h−σ) and (−uh−σ, h−σ) lie in
T(M).

Proof. Since (u, h) lies in T(M), there exists r0 ∈ R0 such that q(u) = h + r0. Thus

q(uh−1) ≡ h−σq(u)h−1 = h−σ + h−σr0h−1 ≡ h−σ and

q(−uh−σ) ≡ h−1q(u)h−σ = h−σ + h−1r0h−σ ≡ h−σ.

This proves the claim.

We now define several maps on T(M) which will later be seen to turn T(M)
into a Jordan module over (R, σ). As a first step, we define a square-scalar
multiplication on T(M).

8.5.34 Lemma. Define

φ : T(M)×R → T(M),
(
(v, h), r

)
7→ (vr, rσhr).

Then (T(M), φ) is a well-defined multiplicative square-module.

Proof. For all (v, h) ∈ T(M) and all r ∈ R, it follows from Axiom 8.5.3 (ii) and
Remark 8.5.14 that

q(vr) ≡ rσq(v)r ≡ rσhr,

so that (vr, rσhr) lies in T(M). Thus φ is well-defined. It is clear that φ(t, 1R) = t
for all t ∈ T(M). For all r, s ∈ R and all (v, h) ∈ T(M), we have (vr)s =
v(rs) by Axiom 5.1.22 (iii) and sσ(rσhr)s = (sσrσ)h(rs) by Proposition 8.3.16
and Remark 8.5.17. Hence φ is multiplicative.

To see that φ is weakly quadratic in the second component, let (v, h) ∈ T(M)
and let r, s ∈ R. By the formula for inverses in T(M) from Lemma 8.5.31, we
have

φ
(
(v, h), s

)−1
φ
(
(v, h), r

)−1

= (vs, sσhs)−1(vr, rσhr)−1

=
(
−vs, f (vs, vs)− sσhs

)(
−vr, f (vr, vr)− rσhr

)
=
(
−vs − vr, f (vs, vs)− sσhs + f (vr, vr)− rσhr + f (vs, vr)

)
.
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Further,

φ
(
(v, h), r + s

)
= (vr + vs, rσhr + rσhs + sσhr + sσhs).

Thus the polarisation of φ in the second component is

φ
(
(v, h), s

)−1
φ
(
(v, h), r

)−1
φ
(
(v, h), r + s

)
=
(
0M, f (vs, vs)− sσhs + f (vr, vr)− rσhr + f (vs, vr)

+ rσhr + rσhs + sσhr + sσhs − f (vs + vr, vs + vr)
)

=
(
0M, rσhs + sσhr − f (vr, vs)

)
.

This expression is bi-additive in (r, s), so φ is weakly quadratic in the second
component. Finally, we have for all (v, h), (v′, h′) ∈ T(M) and r ∈ R that

φ
(
(v, h)(v′, h′), r

)
= φ

(
(v + v′, h + h′ + f (v, v′)), r

)
=
(
vr + v′r, rσhr + rσh′r + rσ f (v, v′)r

)
=
(
vr + v′r, rσhr + rσh′r + f (vr, v′r)

)
= (vr, rσhr)(v′r, rσh′r) = φ

(
(v, h), r

)
φ
(
(v′, h′), r

)
.

Hence φ is additive in the first component. This finishes the proof.

8.5.35 Remark. If (M, q, f ) is standard, then the polarisation of φ in Lemma 8.5.34
in the second component is(

0M, rσhs + sσhr − f (vr, vs)
)
=
(
0M, sσhr + sσhσs

)
=
(
0M, Trσ(sσhr)

)
.

Here the “polarisation in the second component” is defined as in 7.1.2.

8.5.36 Observation. By Definition 8.1.12, we have a canonical involution on the
multiplicative square-module (T(M), φ). It is precisely the map

· : T(M) → T(M), (u, h) 7→ (−u, h).

As a next step, we define maps π1 and T1.

8.5.37 Lemma. The projection map

π1 : T(M) → Nucl(R), (v, h) 7→ h

is compatible with the square-scalar multiplication φ from Lemma 8.5.34.

Proof. We denote the canonical square-scalar multiplication on Nucl(R) by ω (see
Example 8.4.2 and Lemma 8.4.5). At first, observe that the image of π1 is indeed
contained in the nucleus of R by Remark 8.5.17. Now for all t = (v, h) ∈ T(M)
and for all r ∈ R, we have

π1
(

φ(t, r)
)
= π1

(
(vr, rσhr)

)
= rσhr = ω(h, r) = ω

(
π1(t), r

)
.

This finishes the proof.

8.5.38 Lemma. The map

T1 : R → T(M), r 7→
(
0M, Trσ(r)

)
= (0M, r + rσ)

is a homomorphism of square-modules.

Proof. This map is the composition of the map Trσ : R → R0 from Lemma 8.4.6
with the embedding R0 → T(M) from Remark 8.5.29. Since both maps are
homomorphisms of square-modules, the assertion follows.
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We have now defined all maps that are needed to equip M with the structure
of a Jordan module. Before we turn to the definition of Jordan modules, we make
a final observation.

8.5.39 Remark (Direct products and T(M)). Write X := (R,R0, σ), let X′ =
(R ′,R ′

0, σ′) be another involutory sets and let (M′, q′, f ′) be a pseudo-quadratic
module over X′. By Remark 8.5.9, we can equip M ⊕ M′ with the structure of a
pseudo-quadratic module over X ⊕ X′. We then have

T(M ⊕ M′) =

{ (
(u, u′), (h, h′)

) ∣∣∣∣∣ u ∈ M, u′ ∈ M′, h ∈ R, h′ ∈ R ′,
(q ⊕ q′)(u, u′) ≡ (h, h′) (mod R0 ⊕R ′

0)

}
,

which is clearly isomorphic to

T(M)⊕ T(M′) =

((u, h), (u′, h′)
) ∣∣∣∣∣∣∣

u ∈ M, u′ ∈ M′, h ∈ R, h′ ∈ R ′,
q(u) ≡ h (mod R0),

q′(u′) ≡ h′ (mod R ′
0)

.

Under this identification, the maps φ, π1 and T1 defined on M ⊕ M′ are precisely
the respective sums of the maps φ, π1, T1 defined on M and M′. In the (not
yet introduced) terminology of Jordan modules, this says precisely that the
identification between T(M ⊕ M′) and T(M) ⊕ T(M′) is an isomorphism of
Jordan modules.

8.6 Jordan Modules

Finally, we can define to the protagonists of this chapter.

8.6.A Definition and Examples

8.6.1 Definition (Jordan module). Let R be an alternative ring with a nuclear
involution σ and denote the square-scalar multiplication on R from Example 8.4.2
by ω. A Jordan module over (R, σ) is a tuple J = (J, φ, π1, T1, ψ) consisting of a
multiplicative right square-module (J, φ) over R, a map

π1 : (J, φ) → (Nucl(R), ω)

which preserves the square-scalar multiplication, a homomorphism

T1 : (R, ω) → (J, φ)

of square-modules and a skew-hermitian form

ψ : J × J → Nucl(R)

with respect to σ such that the following conditions are satisfied:
(i) T1(aσ) = T1(a) and T1

(
(ab)c

)
= T1

(
a(bc)

)
for all a, b, c ∈ R. Thus we can

omit brackets in the argument of T1 without ambiguity.
(ii) π1(u)σ = π1(u)− ψ(u, u) for all u ∈ J.

(iii) ψ
(
T1(a), u

)
= 0 = ψ

(
u, T1(a)

)
for all a ∈ R, u ∈ J.

(iv) The following “linearisation properties” hold for all u, v ∈ J and all a, b ∈ R:

π1(u +̂ v) = π1(u) + π1(v) + ψ(u, v), (8.1)

φ(u, a + b) = φ(u, a) +̂ φ(u, b) +̂ T1
(
bσπ1(u)a

)
, (8.2)

u +̂ v = v +̂ u +̂ T1
(
ψ(u, v)

)
. (8.3)
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(v) For all r ∈ R, we have π1(T1(r)) = r + rσ.
(vi) There exists v0 ∈ J such that π1(v0) = 1R and ψ(v0, u) = 0R = ψ(u, v0) for

all u ∈ J.
Further, the Jordan module J is called abelian if (J, +̂) is an abelian group, it
is called of type C if ψ is the zero map and it is called anisotropic if π1(u) = 0R
implies u = 0 for all u ∈ J. If the Jordan module J is fixed, we will refer to π1 as
the Jordan module projection, to T1 as the Jordan module trace and to ψ as the Jordan
module skew-hermitian form. We will sometimes refer to J as a Jordan module if
the remaining objects in J are clear from the context.

8.6.2 Remark. The requirements on the maps π1, T1, ψ which are given in the
first paragraph of Definition 8.6.1 can be expressed by the following formulas:

π1
(

φ(u, a)
)
= aσπ1(u)a,

T1(a + b) = T1(a) +̂ T1(b),

φ
(
T1(a), b

)
= T1(bσab),

ψ(u +̂ u′, v +̂ v′) = ψ(u, v) + ψ(u, v′) + ψ(u′, v) + ψ(u′, v′),
ψ(u, v)σ = −ψ(v, u),

ψ
(

φ(u, a), φ(v, b)
)
= aσψ(u, v)b

for all u, v, u′, v′ ∈ J and all a, b ∈ R.

8.6.3 Note. We will show in chapter 9 that Jordan modules of type C are precisely
those Jordan modules which coordinatise Cn-graded groups for n ≥ 3. General
Jordan modules appear in the coordinatisation of BCn-graded groups.

8.6.4 Note. The name “Jordan module” is motivated by the fact that every Jordan
module of type C can be equipped with the structure of a quadratic unital Jordan
algebra, except that these Jordan algebras are only “weakly quadratic”. We will
make this observation more precise in subsection 8.6.C.

We now consider a sequence of three examples of Jordan modules, each being
a generalisation of the previous one. Hence it suffices to verify that the last
example satisfies the axioms of a Jordan module, which we do in Lemma 8.6.8.
We will show in section 8.7 that if 2R is invertible, then every Jordan module is
of the form in Example 8.6.7. We do not know an example of a Jordan module
which is not of this form.

8.6.5 Example. Let (R,R0, σ) be an involutory set. Denote by (J, φ) the square-
module R0 with its canonical square-scalar multiplication and by π1 : J →
Nucl(R) the canonical embedding of J into R. Further, we put

T1 := Trσ : R → J, r 7→ r + rσ

and we denote by ψ : J × J → R the zero map. Then J := (J, φ, π1, T1, ψ) is
an abelian Jordan module over (R,R0, σ) of type C. Since π1 is an injective
homomorphism of groups, J is anisotropic.

8.6.6 Example. Let (R,R0, σ) be an involutory set and let M be a right R-module.
Put J := M ×R0, which is an additive abelian group, and

φ : J ×R → J,
(
(v, h), r

)
7→ (vr, rσhr).

Further, we denote by π1 : J → R the canonical projection on the second compo-
nent and by ψ : J × J → R the zero map. Finally, set

T1 : R → J, r 7→ (0M, r + rσ).
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Then J := (J, φ, π1, T1, ψ) is an abelian Jordan module over (R,R0, σ) of type C.
The special case M = {0} is precisely Example 8.6.5. Further, J is anisotropic if
and only if M = {0}.

8.6.7 Example. Let (R,R0, σ) be an involutory set and let (M, q, f ) be a standard
pseudo-quadratic module over (R,R0, σ). Denote by J := T(M) ⊆ M ×R the
group from Definition 8.5.25 and by φ : J ×R → J the square-scalar multiplica-
tion from Lemma 8.5.34. Further, denote by π1 : J → Nucl(R) the projection map
from Lemma 8.5.37. Finally, we put

T1 : R → J, r 7→ (0M, r + rσ) and ψ : J × J → R,
(
(v, h), (v′, h′)

)
7→ f (v, v′).

Then J := (J, φ, π1, T1, ψ) is a Jordan module over (R,R0, σ). A Jordan module
which is isomorphic to one of this form is called of pseudo-quadratic type.

Note that if q and f are trivial (so that the pseudo-quadratic module (M, q, f )
is essentially an R-module with no additional structure), then it follows from
Remark 8.5.28 that this Jordan module is precisely the one from Example 8.6.6.
Note further that f is trivial if and only if T(M) is of type C, and that the triviality
of f implies the triviality of q if 2R is invertible (Lemma 8.5.15 (f)).

8.6.8 Lemma. Let (R,R0, σ) be an involutory set and let (M, q, f ) be a standard
pseudo-quadratic module over (R,R0, σ). Then the tuple J := (J, φ, π1, T1, ψ) from
Example 8.6.7 is indeed a Jordan module.

Proof. By Lemma 8.5.34, (J, φ) is a multiplicative square-module. The map
π1 is compatible with the square-scalar multiplication by Lemma 8.5.37. By
Lemma 8.5.38, the map T1 is a homomorphism of square-modules. Since f
is a skew-hermitian form, the same holds for ψ. Axiom 8.6.1 (i) holds by
Lemma 8.3.19. Axiom 8.6.1 (ii) holds because (J, q, f ) is standard. By the defini-
tion of ψ, T1 and π1, Axioms 8.6.1 (iii) and 8.6.1 (v) are satisfied. Equation (8.1)
holds by the definition of the multiplication on T(M). Equation (8.2) holds by
Remark 8.5.35. Equation (8.3) holds by Remark 8.5.30. In Axiom 8.6.1 (vi), we
can take v0 := (0, 1R). This finishes the proof.

8.6.9 Lemma. Let (R,R0, σ) be an involutory set, let (M, q, f ) be a standard pseudo-
quadratic module over (R,R0, σ) and let J := (J, φ, π1, T1, ψ) be the Jordan module
from Example 8.6.7. Then (M, q, f ) is anisotropic if and only if J is anisotropic.

Proof. At first, assume that (M, q, f ) is anisotropic. Let (u, h) ∈ J such that
π1(u, h) = 0, that is, such that h = 0R . Then q(u) ≡ h = 0 modulo R0. Since q is
anisotropic, it follows that u = 0. Thus (u, h) = 0J , so J is anisotropic.

Now assume that J is anisotropic and let u ∈ M such that q(u) ≡ 0 modulo
R0. Then (u, 0) lies in J and we have π1(u, 0) = 0R . Since J is anisotropic, it
follows that (u, 0) = 0J , so u = 0M. Hence (M, q, f ) is anisotropic.

8.6.B Basic Properties

8.6.10 Notation for this section. From now on, we denote by R an alternative
ring with a nuclear involution σ and by J = (J, φ, π1, T1, ψ) a Jordan module
over (R, σ).

8.6.11 Definition (Homomorphism of Jordan modules). Let

J′ = (J′, φ′, π′
1, T′

1, ψ′)
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be another Jordan module over (R, σ). A homomorphism from J to J′ is a ho-
momorphism f : (J, φ) → (J′, φ′) of square-modules such that π1 = π′

1 ◦ f ,
T′

1 = f ◦ T1 and ψ = ψ′ ◦ ( f × f ). An isomorphism of Jordan modules is a bijective
homomorphism of Jordan modules and an automorphism of Jordan modules is an
isomorphism from a Jordan module to itself.

8.6.12 Definition (Jordan submodule). A Jordan submodule of J is a square-
submodule U of (J, φ) which contains the image of T1 and which satisfies Ax-
iom 8.6.1 (vi).

Clearly, every Jordan submodule of J is a Jordan submodule itself with
respect to the restrictions of the maps φ, π1, T1 and ψ.

Any Jordan module has a canonical involution. It will appear as one of the
twisting actions in the standard parameter system of type BC (Definition 8.6.20).

8.6.13 Definition (Jordan module involution). The canonical involution on the
multiplicative square-module (J, φ) in the sense of Definition 8.1.12 is called the
Jordan module involution (on J). It is the map

· : J → J, u 7→ u := φ(u,−1).

8.6.14 Lemma. The Jordan module involution is an automorphism of J which fixes the
image of T1 element-wise.

Proof. Let u, v ∈ J and r ∈ R. Then we have

π1(u) = π1
(

φ(u,−1R)
)
= (−1R)σπ1(u)(−1R) = π1(u),

ψ(u, v) = ψ
(

φ(u,−1R), φ(v,−1R)
)
= (−1R)σψ(u, v)(−1R) = ψ(u, v),

T1(r) = φ
(
T1(r),−1R

)
= T1

(
(−1R)σr(−1R)

)
= T1(r).

Since · is a homomorphism of square-modules by Lemma 8.1.13, the assertion
follows.

8.6.15 Remark. For all u ∈ J, we have

0J = φ(u, 0R) = φ
(
u, 1R + (−1R)

)
= φ(u, 1R) +̂ φ(u,−1R) +̂ T1

(
(−1)σπ1(u)1R

)
= u +̂ u −̂ T1

(
π1(u)

)
.

This shows that T1(π1(u)) = u +̂ u. Together with Axiom 8.6.1 (v), we conclude
that the diagram in Figure 8.1 commutes.

R R

J J.

a 7→a+aσ

T1 T1
π1

u 7→u+u

Figure 8.1: The commutative square in Remark 8.6.15.

The properties of being abelian and of being of type C are closely related, but
not equivalent.

8.6.16 Lemma. The following statements hold:
(a) J is abelian if and only if T1 ◦ ψ = 0.
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(b) J is of type C if and only if π1 : J → R is a homomorphism of square-modules.
(c) If J is of type C, then it is abelian.
(d) If J is abelian, then ψ is symmetric.
(e) ψ is symmetric if and only if its image lies in the set { r ∈ R | rσ = −r } of

skew-symmetric elements.

Proof. Assertions (a) and (b) follow from Axiom 8.6.1 (iv). Further, (a) implies (c).
Now assume that J is abelian. Then for all u, v ∈ J, it follows from Axiom 8.6.1 (iv)
that

π1(v) + π1(u) + ψ(v, u) = π1(v +̂ u) = π1(u +̂ v) = π1(u) + π1(v) + ψ(u, v).

Since (R,+) is abelian, we infer that ψ is symmetric. This proves (d).
Now let u, v ∈ J. Since ψ is skew-hermitian, we have ψ(u, v)σ = −ψ(v, u).

Thus the following assertions are equivalent:

ψ(u, v) = ψ(v, u) ⇐⇒ ψ(u, v)σ = ψ(v, u)σ ⇐⇒ ψ(u, v)σ = −ψ(u, v).

It follows that (e) holds.

8.6.17 Remark (The radical). Denote by

R := Rad(ψ) = { u ∈ R | ψ(x, u) = 0 = ψ(u, x) for all x ∈ J }
the radical of the skew-hermitian form ψ. This is a square-submodule of J.
Further, Axiom 8.6.1 (iii) says precisely that the image of T1 is contained in
R. Similarly, Axiom 8.6.1 (vi) says that there exists v0 ∈ Rad(ψ) such that
π1(v0) = 1R . Thus

J′ :=
(

R, φ|R×R , π1|R , T1, ψ|R×R
)

is also a Jordan module over (R, σ). In fact, ψ|R×R is the zero map, so J′ is of
type C.

8.6.18 Remark. Assume that 2R is invertible and put v′0 := T1(2−1
R ) ∈ J. Then

π1(v′0) = 2−1
R + (2−1

R )σ = 1R by Axiom 8.6.1 (v) and v′0 ∈ Rad(ψ) by Ax-
iom 8.6.1 (iii). We conclude that Axiom 8.6.1 (vi) is redundant if 2R is invertible.

8.6.19 Remark. We can define the following maps:

π : J ×R → R, (u, a) 7→ aπ1(u) and T: R ×R → J, (a, b) 7→ T1(abσ).

It is straightforward to verify that the following properties, which we will need
later, follow from the axioms of a Jordan module:

φ(u, a) = φ
(

φ(u, a),−1
)
= φ(u,−a) = φ

(
φ(u,−1), a

)
= φ(u, a),

T1(a) = φ
(
T1(a),−1

)
= T1

(
(−1)σa(−1)

)
= T1(a),

ψ(u, v) = (−1)σψ(u, v) = ψ(u, v)(−1) = ψ(u, v),

π(u, a) = aπ1
(

φ(u,−1)
)
= a(−1)σπ1(u)(−1) = π(u, a),

π
(
T(a, b), c

)
= cπ1

(
T1(abσ)

)
= c(abσ) + c(bσa)

= (ca)bσ + (cbσ)a − [c, a, bσ]− [c, bσ, a] = (ca)bσ + (cbσ)a,

π
(

φ(u, a), b
)
= bπ1

(
φ(u, a)

)
= baσπ1(u)a,

T(a, b) = T1(abσ) = T1
(
(abσ)σ

)
= T1(baσ) = T(b, a),

T(ab, c) = T1(abcσ) = T1(cbσaσ) = T(cbσ, a) = T(a, cbσ),

φ
(
T(a, b), c

)
= φ

(
T1(abσ), c

)
= T1(cσabσc) = T(cσa, cσb) = T(cσb, cσa)
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for all a, b, c ∈ R and all u ∈ J. (Here we have used Proposition 8.3.16 to write
the term baσπ1(u)a without brackets.)

The maps π and T are the ones which describe the commutator relations
in root gradings of type BC. Thus in some sense, they are more fundamental
for our group-theoretic interests than the maps π1 and T1. However, the latter
allow for a more concise treatment of Jordan modules in the algebraic setting. In
particular, the fact that π1 and T1 are homomorphisms of square-modules (except
for the minor nuisance that π1 is not necessarily additive) and that we have the
commutative square in Remark 8.6.15 cannot be expressed as succinctly in terms
of the maps π and T.

Jordan modules arise from root gradings of type (B)C in the form of the
following parameter system.

8.6.20 Definition (Standard parameter system). Define A := {±1}2 and B :=
{±1}. Denote the elements of A by (±1A,±1A) and the elements of B by ±1B.
We declare that the first component of A acts on (R,+) and (J, +̂) by inversion
and that the second component of A acts trivially on R and by the Jordan module
involution on J. Further, we declare that B acts by σ on R and trivially on T.
More precisely, these declarations mean that

(−1A, 1A).r = −r, (−1A, 1A).u = −̂u, (1A,−1A).r = r, (1A,−1A).u = u,
−1B.r = rσ, −1B.u = u

for all r ∈ R and all u ∈ J. Then the triple (A × B, J,R) is called the standard
parameter system for J.

8.6.21 Remark. The action of A × B on T and R in Definition 8.6.20 is induced
by the respective actions of A and B. Such an induced action exists because the
actions of A and B commute.

8.6.22 Reminder. If the Jordan module J is of the form T(M, q, f ) for a standard
pseudo-quadratic module (M, q, f ) (as in Example 8.6.7), then for all (u, h) ∈
T(M, q, f ), the inverse −̂(u, h) equals (−u,−hσ) (see Lemma 8.5.31 and Re-
mark 8.5.32). In this situation, the Jordan module involution is given by (u, h) =
(−u, h) (see Observation 8.5.36).

8.6.C Jordan Modules and Jordan Algebras

We now investigate the relation of Jordan modules to Jordan algebras. Nota-
tion 8.6.10 continues to hold.

8.6.23 Definition (Weak Jordan algebra). A weak Jordan algebra is a tuple (J, U, 1J)
consisting of an abelian group J = (J,+), an element 1J ∈ J and a weakly
quadratic map U : J → Hom(J, J), x 7→ Ux such that the following properties are
satisfied for all x, y, z, v ∈ J, where

{ · , · , · } : J × J × J → J, (x, y, z) 7→ Ux+zy − Uxy − Uzy

denotes the tri-linearisation of U:

UUxyv = UxUyUxv,
Ux({y, x, z}) = {Uxy, z, x},

U1v = v,
{Uxy, v, {x, y, z}} = UxUy({x, v, z}) + {x, UyUxv, z},
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{Uxy, v, Uzy}+ U{x,y,z}v = UxUyUzv + UzUyUxv + {x, Uy({x, v, z}), z},

Ux({y, v, z}) + {x, {y, x, z}, v} = {Uxy, z, v}+ {{x, y, v}, z, x}.

Further, (J, U, 1J) is called a Jordan algebra if, in addition, the map U is (properly)
Z-quadratic in the sense of Definition 7.1.3.

8.6.24 Note. What we call “Jordan algebra” could, in more detail, be called
“unital quadratic Jordan algebra over Z”. Our definition agrees with the one
in [Jac81, 1.3.4], but it is phrased in a slightly different way. Observe that the
last three identities in Definition 8.6.23 are precisely the polarisations of the first
two identities. (See, for example, [McC66, p. 1072].) It follows from this fact
that (J, U, 1J) is a Jordan algebra if and only if for all commutative associative
rings k, the scalar extension (Jk, Uk, (1J)k) satisfies the first three identities in
Definition 8.6.23. This is precisely the definition that is given in [Jac81].

The observation in the previous paragraph relies on the fact that a quadratic
map U has a unique and well-defined extension Uk to any scalar extension. (For
a proof, see for example [GPR, 11.5].) This is not clear for weakly quadratic
maps. Thus there is no way to phrase the definition of weak Jordan algebras in
the language of scalar extensions. In particular, scalar extension of weak Jordan
algebras do not necessarily have the structure of a weak Jordan algebra, and need
not even exist.

8.6.25 Remark (Jordan algebras from Jordan modules). Assume that J is of type
C (that is, that ψ = 0). We define a map U : J → HomZ(J, J), x 7→ Ux by

Ux : J → J, v 7→ φ
(
v, π(x)

)
for all x ∈ J. Further, we define a tri-additive map

{ · , · , · } : J × J × J → J,

(x, y, z) 7→ Ux+zy − Uxy − Uzy = T1
(
π(x)σπ(y)π(z)

)
.

Since the map J × J → Hom(J, J), (x, z) 7→ {x, · , z} is the polarisation of U, it
follows that U is weakly quadratic. A straightforward computation shows that
(J, U, v0) is a weak Jordan algebra where v0 is any element as in Axiom 8.6.1 (vi).

8.7 A Near-classification of Jordan Modules

8.7.1 Notation for this section. Unless otherwise stated, we denote by R an
alternative ring with a nuclear involution σ and by J = (J, φ, π1, T1, ψ) a Jordan
module over (R, σ).

In this section, we show that under some weak assumptions, every Jordan
module J is of pseudo-quadratic type in the sense of Example 8.6.7. These
assumptions will always be satisfied if 2R is invertible.

Note that, a priori, the Jordan module J is defined over the ring R with a
nuclear involution σ whereas a pseudo-quadratic module M is defined over an
involutory set (R,R0, σ). Thus as a first step, we should locate an appropriate
subset R0 of R. We know from Remark 8.4.11 that this set is uniquely determined
if 2R is invertible, but in general it is not. It turns out that our choice of R0 will
depend on the choice of a so-called involutory submodule of J.

8.7.2 Definition (Involutory submodule). An involutory submodule of J is a
square-submodule D of J which satisfies

T1(R) ⊆ D ⊆ Rad(ψ)
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where Rad(ψ) denotes the radical of ψ (see Remark 8.6.17). It is called unital
if there exists d ∈ D such that π1(d) = 1R . It is called an embedding involutory
submodule if the restriction π1|D : D → R is injective.

8.7.3 Remark. Let D be an involutory submodule of J. Since D is contained
in Rad(ψ), it follows from Remark 8.6.17 and Lemma 8.6.16 that ψ is zero on
D × D, that D is abelian and that the restriction of π1 to D is a homomorphism
of square-modules.

The following result justifies the terminology of “involutory submodules”.

8.7.4 Lemma. Let D be an involutory submodule of J. Then the triple (R, π1(D), σ)
is a pre-involutory set. It is an involutory set if and only if D is unital.

Proof. It follows from Lemma 8.1.10 and Remark 8.7.3 that π1(D) is a square-
submodule of Nucl(R). Further, since ψ|D×D is the zero map, it follows from Ax-
iom 8.6.1 (ii) that π1(D) is contained in Fix(σ). Finally, as D contains T1(R), Ax-
iom 8.6.1 (v) implies that π1(D) contains Tr(R). We conclude that (R, π1(D), σ)
is a pre-involutory set. The second assertion is trivial.

8.7.5 Example (of an involutory submodule). Assume that J is the Jordan mod-
ule T(M) from Example 8.6.7 for some pseudo-quadratic module (M, q, f ) over
a pre-involutory set (R,R0, σ). Then D := {0J} ×R0 ⊆ T(M) is an embedding
involutory submodule of T(M) (which is unital if and only if (R,R0, σ) is an
involutory set).

We have seen in Example 8.7.5 that the existence of a embedding involutory
submodule of J is a necessary condition for J to be of pseudo-quadratic type. The
main result of this section is precisely that this is also a sufficient condition.

Before we turn to the proof of our main result, we investigate the existence of
embedding involutory submodules. It is clear that both T1(R) and Rad(ψ) are
involutory submodules of J. Further, since the element v0 from Axiom 8.6.1 (vi)
lies in Rad(ψ), the square-submodule generated by T1(R) ∪ {v0} is a unital
involutory submodule of J. Thus the main difficulty lies finding an involutory
submodule which is embedding. Under suitable assumptions on 2-torsion and
related phenomena, we will show that T1(R) satisfies this condition. In the
general situation, however, we have no result which guarantees the existence of
an embedding involutory submodule in J.

Recall from Remark 8.7.3 that the restriction of π1 to T1(R) is a homomor-
phism of groups. Hence to show that T1(R) is embedding, it suffices to verify
that the preimage of 0R in T1(R) under π1 is trivial.

8.7.6 Lemma. Assume that there exists no 2-torsion on T1(R). (That is, if d ∈ T1(R)
satisfies d +̂ d = 0J , then d = 0J .) Then T1(R) is a embedding involutory submodule
of J.

Proof. Let d ∈ T1(R) such that π1(d) = 0R . We want to show that d = 0J .
Applying Remark 8.6.15, we see that

0J = T1(0R) = T1
(
π1(d)

)
= d +̂ d.

Since d lies in T1(R), we have d = d by Lemma 8.6.14. Thus d +̂ d = 0J , which
implies that d = 0J . We infer that the restriction of π1 to T1(R) is injective.

8.7.7 Lemma. Assume that 2R is invertible. Then T1(R) is a unital embedding involu-
tory submodule of J.
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Proof. By Remark 8.6.18, we have π1(v′0) = 1R for v′0 := T1(2−1
R ), so T1(R) is

unital. Now let d ∈ T1(R) such that π1(d) = 0R . We want to show that d = 0J .
Choose r ∈ R such that d = T1(r). It follows from Axiom 8.6.1 (v) that

r + rσ = π1
(
T1(r)

)
= π1(d) = 0R .

Hence d′ := T1(2−1
R r) also satisfies

π1(d′) = π1
(
T1(2−1

R r)
)
=

r
2
+
( r

2

)σ
=

1
2
(r + rσ) = 0R .

Again by Axiom 8.6.1 (v) and Lemma 8.6.14, we infer that

0J = T1(0R) = T1
(
π1(d′)

)
= d′ +̂ d′ = d′ +̂ d′

= T1(2−1
R r) +̂ T1(2−1

R r) = T1(2−1
R r + 2−1

R r) = T1(r) = d.

Thus the restriction of π1 to T1(R) is injective, as desired.

8.7.8 Notation for this section. From now on, we fix an involutory submodule
D of J. We put M := J/D and we denote by φ̃ : M ×R → M the multiplicative
square-scalar multiplication on M from Lemma 8.1.11. That is, we have

ρ
(

φ(u, r)
)
= φ̃

(
ρ(u), r

)
for all u ∈ M, r ∈ R where ρ : J → M denotes the canonical homomorphism of
square-modules.

For the first few observations, we do not have to assume that D is embedding.
This will only be necessary in Lemma 8.7.19.

We begin by equipping M with the structure of a pseudo-quadratic module.
First of all, we have to verify that (M, φ̃) is an R-module and not merely a
square-module.

8.7.9 Lemma. The group (M, +̂) (whose group structure is induced by the one on J) is
abelian.

Proof. Let u, v ∈ J. Then

u +̂ v = v +̂ u +̂ T1
(
ψ(u, v)

)
by Axiom 8.6.1 (iv). Applying ρ, and using that D contains the image of T1, we
infer that ρ(u) +̂ ρ(v) = ρ(v) +̂ ρ(u). Since ρ is surjective, it follows that M is
abelian.

8.7.10 Lemma. (M, φ̃) is an R-module (in the regular sense of Definition 5.1.22).

Proof. By construction, (M, φ̃) is a square-module. Thus it only remains to show
that φ̃ is additive in the second component. Let u ∈ J and let r, s ∈ R. We know
from Axiom 8.6.1 (iv) that

φ̃(u, r + s) = φ̃(u, r) +̂ φ̃(u, s) +̂ T1
(
sσπ1(u)r

)
.

Applying ρ and using that D contains the image of T1, we infer that

φ̃
(
ρ(u), r + s

)
= φ̃

(
ρ(u), r

)
+̂ φ̃

(
ρ(u), s

)
.

Since ρ is surjective, the assertion follows.

We now construct the pseudo-quadratic structure on M.

8.7.11 Lemma. There exists a unique map f : M × M → Nucl(R) such that

f
(
ρ(u), ρ(v)

)
= ψ(u, v)
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for all u, v ∈ J. This map is a skew-hermitian form with respect to σ.

Proof. For all u, v ∈ M and all d, d′ ∈ D, we have ψ(u + d, v + d′) = ψ(u, v)
because D is contained in the radical of ψ. Thus such a map f exists. Since ρ
is surjective, f is uniquely determined. Further, it is skew-hermitian because ψ
is.

Recall from Remark 8.5.12 that the equivalence class of a pseudo-quadratic
form q : M → Nucl(R) can be identified in a canonical way with the induced
map q̃ : M → Nucl(R)/R0. Since the group T(N) depends only on the equiv-
alence class of a pseudo-quadratic module N, it thus makes sense to begin by
constructing q̃ and then lifting it (in an arbitrary way) to a map q : M → Nucl(R).

8.7.12 Lemma. There exists a unique map q̃ : M → Nucl(R)/π1(D) such that
q̃(ρ(u)) = π1(u) + π1(D) for all u ∈ J.

Proof. For any subgroup A of J, the map π1 : J → Nucl(R) induces a map
J/A → Nucl(R)/π1(A). The assertion follows by taking A := D.

8.7.13 Notation. We choose a map q : M → Nucl(R) such that q(u) ∈ q̃(u) for
all u ∈ M.

8.7.14 Lemma. The tuple (M, q, f ) is a standard pseudo-quadratic module with respect
to the pre-involutory set (R, π1(D), σ).

Proof. For all u, v ∈ J, it follows from Axiom 8.6.1 (iv) that

q̃
(
ρ(u) + ρ(v)

)
= q̃

(
ρ(u + v)

)
= π1(u + v) + π1(D)

= π1(u) + π1(v) + ψ(u, v) + π1(D)

= q̃
(
ρ(u)

)
+ q̃
(
ρ(v)

)
+ f

(
ρ(u), ρ(v)

)
+ π1(D).

Further, since π1 is compatible with the square-scalar multiplication, we have

q̃
(

φ̃
(
ρ(u), r

))
= q̃

(
ρ
(

φ(u, r)
))

= π1
(

φ(u, r)
)
+ π1(D)

= rσπ1(u)r + π1(D) ⊇ rσ
(
π1(u) + π1(D)

)
r = rσ q̃

(
ρ(u)

)
r.

for all u ∈ J and r ∈ R. It follows that

q(x + y) ≡ q(x) + q(y) + f (x, y) and q
(

φ̃(x, r)
)
≡ rσq(x)r

modulo π1(D) for all x, y ∈ M and all r ∈ R. We conclude that (M, q, f ) is a
pseudo-quadratic module.

To see that (M, q, f ) is standard, let ũ ∈ M be arbitrary and choose u ∈ J such
that ũ = ρ(u). Then it follows from Axiom 8.6.1 (ii) and the definition of f that

π1(u)− π1(u)σ = π1(u)− π1(u) + ψ(u, u) = f (ũ, ũ).

Since q(ũ) lies in q̃(ũ) = π1(u) + π1(D), there exists d ∈ D such that q(ũ) =
π1(u) + π1(d). Then

q(ũ)− q(ũ)σ = π1(u)− π1(u)σ

because π1(d) lies in Fix(σ) by Lemma 8.7.4. It follows that q(ũ) − q(ũ)σ =
f (ũ, ũ), so we conclude that (M, q, f ) is standard.

Having constructed a pseudo-quadratic structure on M, we can now consider
the group T(M) = T(M, q, f ). It remains to find an isomorphism between this
group and J.
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8.7.15 Definition. We define a map

α : J → T(M), u 7→
(
ρ(u), π1(u)

)
.

By the definition of q, the image of α is indeed contained in T(M), so α is
well-defined.

8.7.16 Lemma. The map α is a homomorphism of groups.

Proof. Let u, v ∈ J and put ũ := ρ(u), ṽ := ρ(v). On the one hand,

α(u +̂ v) =
(
ρ(u +̂ v), π1(u +̂ v)

)
=
(
ũ +̂ ṽ, π1(u) + π1(v) + ψ(u, v)

)
by Axiom 8.6.1 (iv). On the other hand,

α(u)α(v) =
(
ũ, π1(u)

)(
ṽ, π1(v)

)
=
(
ũ +̂ ṽ, π1(u) + π1(v) + f (ũ, ṽ)

)
.

We conclude that α is a homomorphism.

8.7.17 Lemma. The map α is a homomorphism of Jordan modules (with respect to the Jor-
dan module structure on T(M) from Example 8.6.7 and in the sense of Definition 8.6.11).

Proof. Let u, v ∈ M, let r ∈ R and put ũ := ρ(u), ṽ := ρ(v). Denote the structure
maps of the Jordan module T(M) by φ′, π′

1, T′
1 and ψ′. Then we have

α
(

φ(u, r)
)
=
(
ρ
(

φ(u, r)
)
, π1
(

φ(u, r)
))

=
(

φ̃(ũ, r), rσπ1(u)r
)

= φ′((ũ, π1(u)
)
, r
)
= φ′(α(u), r

)
,

π′
1
(
α(u)

)
= π′

1
(
ũ, π1(u)

)
= π1(u),

α
(
T1(r)

)
=
(
ρ
(
T1(r)

)
, π1
(
T1(r)

))
= (0M, r + rσ) = T′

1(r),

ψ′(α(u), α(v)
)
= ψ′((ũ, π1(u)

)
,
(
ṽ, π1(v)

))
= f (ũ, ṽ) = ψ(u, v).

This shows that α is a homomorphism of Jordan modules.

8.7.18 Lemma. The map α is surjective.

Proof. Let (ũ, h) ∈ T(M) be arbitrary and choose u ∈ J such that ũ = ρ(u). By the
definition of T(M), we have h ≡ q(ũ) modulo π1(D), which says precisely that
h ∈ q̃(ũ) = π1(u) + π1(D). Thus there exists d ∈ D such that h = π1(u) + π1(d).
Now

α(u +̂ d) =
(
ũ + ρ(d), π1(u + d)

)
=
(
ũ, π1(u) + π1(d) + ψ(u, d)

)
= (ũ, h).

This shows that α is surjective.

8.7.19 Lemma. The kernel of α is the kernel of π1|D. In particular, α is injective if and
only if D is embedding.

Proof. Let u ∈ J. Then α(u) = (ρ(u), π1(u)). Thus α lies in the kernel of α if and
only if it lies in the kernels of π1 and ρ. Since the kernel of ρ is D, the assertion
follows.

We can now put everything together to obtain the following main result.

8.7.20 Theorem. Let R be an alternative ring, let σ be a nuclear involution on R and let
J = (J, φ, π1, T1, ψ) be a Jordan module over (R, σ). Choose any involutory submodule
D of J. Put M := J/D. Then π1 induces a pseudo-quadratic module structure on M
with respect to (R, π1(D), σ) and there exists a surjective homomorphism α : J → T(M)
of Jordan modules whose kernel is precisely the kernel of π1|D.
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Using the criterion from Lemma 8.7.7, we can simplify the main result as
follows.

8.7.21 Theorem. Let R be an alternative ring such that 2R is invertible, let σ be a
nuclear involution on R and let J be a Jordan module over (R, σ). Then J is of pseudo-
quadratic type. That is, there exists a pseudo-quadratic module M over (R, Trσ(R), σ)
such that J is isomorphic to the Jordan module T(M) from Example 8.6.7.

We can also give a precise classification of Jordan modules of type C if 2R is
invertible.

8.7.22 Theorem. Let R be an alternative ring such that 2R is invertible, let σ be a
nuclear involution on R and let J be a Jordan module over (R, σ) of type C. Put
R0 := Trσ(R) = Fix(σ). Then there exist an R-module M over R such that J is
isomorphic to the Jordan module R0 × M which was constructed in Example 8.6.6.

Proof. This follows from Theorem 8.7.21 and the concluding remarks in Exam-
ple 8.6.7.

8.7.23 Remark. Let (R,R0, σ) be an involutory set and let N be a pseudo-qua-
dratic module over (R,R0, σ). Recall from Example 8.7.5 that D := {0J} ×
R0 is a unital embedding involutory submodule of T(N), independent of any
assumption on the invertibility of 2R . For this choice of D, the isomorphism α is
(up to canonical identifications) the identity map.

Using Remark 8.7.23, we can prove the following corollary of Theorem 8.7.20.

8.7.24 Proposition. Let (R,R0, σ) be an involutory set, let N be a pseudo-quadratic
module over (R,R0, σ) and assume that J is the Jordan module T(N). Let R ′

0 be a subset
of R0 such that (R,R ′

0, σ) is an involutory set. Then there exists a pseudo-quadratic
module N′ over (R,R ′

0, σ) such that T(N) is isomorphic to T(N′) as a Jordan module.

Proof. By Example 8.7.5, D′ := {0N} ×R ′
0 ⊆ T(N) is an embedding involutory

submodule of T(M). Further, we have π1(D′) = R ′
0. Thus it follows from

Theorem 8.7.20 that T(N) is isomorphic as a Jordan module to T(N′) for some
pseudo-quadratic module N′ over (R,R ′

0, σ).

8.8 Purely Alternative Rings and Jordan Modules

Recall from Note 8.5.10 that we can easily construct non-trivial pseudo-quadratic
modules M over rings of the form R ⊕ R ′ where R is associative and R ′ is
alternative. However, we observed that only the associative ideal R ⊕ {0} of
R ⊕R ′ is relevant for the pseudo-quadratic module structure on M. Thus we
attributed the existence of a pseudo-quadratic module over R ⊕R ′ to the fact
that R ⊕R ′ is not “purely alternative”, though we gave no precise definition of
this property.

In this section, we present two closely related definitions of pure alternativity
which were proposed by Slater in [Sla67] for not necessarily unital rings. We will
show that purely alternative rings in the stronger sense do not admit any non-
zero modules and that purely alternative rings in the weaker sense do not admit
pseudo-quadratic modules with non-trivial skew-hermitian form. Some more
information on purely alternative rings can be found in [McC70, Section 9.4].

The material in this section is largely independent from the remaining part of
this thesis and will not be referenced in any formal argument. Instead, its main
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purpose is to convince the reader that pseudo-quadratic modules are objects
which do not properly belong to the world of alternative rings.

To avoid confusion, we explicitly point out that Jordan modules, unlike
pseudo-quadratic modules, have their place in the alternative setting: We have
already seen an important class of Jordan modules over arbitrary alternative
rings with nuclear involution in Example 8.6.5. This class consists precisely of
the Jordan modules T(M) where M = {0}.

8.8.1 Definition (Nuclear ideal). Let R be a ring. An ideal of R is called nuclear
if it is contained in the nucleus of R.

8.8.2 Remark. The nucleus of a ring R is not (necessarily) a nuclear ideal because
it is not (necessarily) an ideal. However, there exists a unique maximal nuclear
ideal of R: the sum of all nuclear ideals.

8.8.3 Lemma. Let R be an alternative ring and let N be a nuclear ideal. Then the left
annihilator

L := { a ∈ R | aN = {0} }

is an ideal of R.

Proof. It is clear that L is closed under addition. Now let a ∈ L and x ∈ R. We
want to show that ax and xa lie in L, so let n ∈ N be arbitrary. We clearly have
(xa)n = x(an) = x0R = 0R because n lies in the nucleus. Hence xa lies in L.
Further, since N is an ideal, we have xn ∈ N. Thus (ax)n = a(xn) = 0R because
a ∈ L. The assertion follows.

8.8.4 Definition (Purely alternative ring, [Sla67, 4.1, 4.2]). Let R be an alternative
ring. We say that R is purely alternative in the weak sense if it has no non-zero
nuclear ideal. We say that R is purely alternative in the strong sense if [R,R,R] = R.
Here [R,R,R] denotes the ideal generated by all associators.

8.8.5 Note. Purely alternative rings in the weak sense are simply called purely
alternative rings in [Sla67, 4.1]. Our notion of purely alternative rings in the strong
sense is suggested in [Sla67, 4.2] as another “reasonable” definition. Further, it
is then shown that any purely alternative ring in the strong sense is also purely
alternative in the weak sense if a mild extra condition is satisfied. This extra
condition is always satisfied in our setting because rings are assumed to be unital.
We will see the precise formulation of this argument in Lemma 8.8.10.

8.8.6 Example (Direct sums). Let R be an associative ring and let R ′ be an
alternative ring. Assume that both rings are not zero. Then R ⊕ {0} is a nuclear
ideal in R ⊕R ′, so R ⊕R ′ is not purely alternative in the weak sense. Further,
the associator ideal of R ⊕R ′ is contained in {0} ⊕R ′, so R ⊕R ′ is not purely
alternative in the strong sense either.

8.8.7 Example. Let R be a ring which is simple in the sense that it contains no
non-trivial ideal. Then R is purely alternative (in either sense) if and only if it is
alternative and not associative.

(Note that in the famous theorem from [Kle53] that every simple alternative
ring is either associative or a Cayley-Dickson algebra over a field, a ring is called
simple if it has no non-trivial ideal and contains at least one element which is not
nilpotent.)
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8.8.8 Remark. An alternative ring is purely alternative in the strong sense if and
only if it has no non-zero homomorphic image which is associative.

8.8.9 Lemma ([Sla67, Section 3]). Let R be an alternative ring and let N be a nuclear
ideal of R. Then [R,R,R]N = {0}.

Proof. Let x, y, z ∈ R and let n ∈ N. It follows from the nuclear slipping formula
(Lemma 8.2.12) that [x, y, z]n = [x, y, zn]. Since N is an ideal, zn lies in N and
thus in the nucleus. Hence [x, y, zn] = 0R . This shows that [x, y, z] lies in the left
annihilator of N. By Lemma 8.8.3, it follows that the whole ideal [R,R,R] which
is generated by all associators is trivial.

8.8.10 Lemma. Let R be a purely alternative ring in the strong sense. Then R is also a
purely alternative ring in the weak sense.

Proof. It follows from Lemma 8.8.9 that RN = {0} for any nuclear ideal N. Since
R contains a unit element 1R , this implies that every nuclear ideal is zero. This
says precisely that R is purely alternative in the weak sense.

We can now prove the results that we announced in the introduction of this
section.

8.8.11 Proposition. Let R be a purely alternative ring in the strong sense and let M be
an R-module. Then M = {0}.

Proof. We have seen in Observation 5.1.23 that modules over R are actually
modules over R/[R,R,R]. In other words, we have vr = 0M for all v ∈ M and
all r ∈ [R,R,R]. Since R is purely alternative in the strong sense, this means that
MR = {0M}. At the same time, we have M1R = M. We infer that M = {0}.

8.8.12 Proposition. Let (R,R0, σ) be an involutory set in which R is purely alternative
in the weak sense and let (M, q, f ) be a pseudo-quadratic module over (R,R0, σ). Then
f = 0. In particular, q is trivial if 2R is invertible.

Proof. Denote by I the additive subgroup of (R,+) which is generated by the
image of f . It follows from the sesquilinearity of f that I is an ideal of R. Further,
I is nuclear by Definition 8.5.1. Since R is purely alternative in the weak sense,
we infer that I = {0}. Hence f = 0. If 2R is invertible, then the triviality of f
implies the triviality of q by Lemma 8.5.15 (f).



Chapter 9

Root Gradings of Types C and BC

In this chapter, we study Cn-graded groups and BCn-graded groups for n ≥ 2,
though we will assume that n ≥ 3 for the main results. We will see that Cn-graded
groups can be regarded as special cases of BCn-graded groups. This allows us to
restrict our attention to BCn-gradings most of the time. Similarly to the situation
in root gradings of type B, every medium-length root in BCn is contained in
an A2-subsystem (Lemma 9.1.13), so it is clear that there exists a ring R which
coordinatises the medium-length root groups. We will show that R is alternative
and that it has a nuclear involution σ. Further, we will parametrise the short root
groups by a (not necessarily abelian) group (J, +̂). The commutator relations
yield maps φ, π1, T1, ψ which equip J with the structure of a Jordan module
over (R, σ).

Some partial results on Cn-gradings for n ≥ 3 have already been obtained by
Zhang in his PhD thesis [Zha14]. See 2.7.9 and also Note 6.4.4 for more details.
For RGD-systems of type BC2, the standard reference are Chapters 25 and 26 in
[TW02].

As usual, this chapter follows the outline described in section 4.7, except
that we have already covered all the relevant algebraic structures in chapter 8.
Hence we can begin with the investigation of the root systems Cn and BCn in
section 9.1. In section 9.2, we will uncover several connections between root
gradings of types B, C and BC. In particular, we will show how root gradings of
type C can be regarded as root gradings of type BC with additional properties.
We will also see that the rank-2 results from chapter 7 can also be applied, in a
modified way, to root gradings of type BC. Section 9.3 presents the construction
of a BCn-graded group from a standard pseudo-quadratic module. This does not
provide a complete solution of the construction problem for BCn-graded groups,
and we will summarise what precisely remains to be done.

After this point, the coordinatisation of BCn-graded groups begins. In sec-
tions 9.4 and 9.5, we will perform the necessary rank-2 and rank-3 computations.
We introduce the notions of standard signs and standard partial twisting systems
for BCn-graded groups in sections 9.6 and 9.7, respectively. In section 9.8, we
construct the parametrising groups (R,+) and (J, +̂). The commutation maps,
their rank-2 identities and the blueprint rewriting rules are defined, derived and
computed in section 9.9. Finally, we perform the blueprint computations for BCn
in section 9.10, and we state our final result in Theorem 9.10.26.
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9.1 Root Systems of Types C and BC

9.1.1 Notation for this section. We denote by n an integer at least 1.

In this section, we collect some basic facts about root systems of types C
and BC which will be needed later on. We will see in Remark 9.2.6 that root
gradings of type Cn are special cases of BCn-graded groups. Hence we can restrict
ourselves to root systems of type BC most of the time.

9.1.2 Remark (Standard representation of BCn). Let V be a Euclidean space of
dimension n with orthonormal basis (e1, . . . , en). The standard representation of
BCn is

BCn := { ε1ei + ε2ej | i ̸= j ∈ [1, n], ε1, ε2 ∈ {±1} } ∪ { εei | i ∈ [1, n], ε ∈ {±1} }
∪ { 2εei | i ∈ [1, n], ε ∈ {±1} }

The long roots are exactly those which lie in the third set, the medium-length
roots are those in the first set and the short roots are those in the second one. The
standard root base is

∆ := { ei − ei+1 | i ∈ [1, n − 1] } ∪ {en},

the standard rescaled root base is

∆ := { ei − ei+1 | i ∈ [1, n − 1] } ∪ {2en}
and the corresponding positive system is

Π := { ei − ej | i < j ∈ [1, n] } ∪ { ei + ej | i ̸= j ∈ [1, n] }
∪ { λei | i ∈ [1, n], λ ∈ {1, 2} }.

Recall Remark 4.1.31 for a discussion why we usually prefer the standard rescaled
root base over the standard root base.

9.1.3 Remark (Standard representation of Cn). Let V be a Euclidean space of
dimension n with orthonormal basis (e1, . . . , en). Assume that n ≥ 2. (As for
Bn, we exclude the case n = 1 because the resulting root system C1 would be
isomorphic to A1.) The standard representation of Cn is

Cn := { ε1ei + ε2ej | i ̸= j ∈ [1, n], ε1, ε2 ∈ {±1} } ∪ { 2εei | i ∈ [1, n], ε ∈ {±1} }.

We can see it as a crystallographically closed subset of (the standard representa-
tion of) BCn in a natural way. The long roots are exactly those which lie in the
second set and the short roots are those in the first one. The standard root base is

∆ := { ei − ei+1 | i ∈ [1, n − 1] } ∪ {2en}
and the corresponding positive system is

Π := { ei − ej | i < j ∈ [1, n] } ∪ { ei + ej | i ̸= j ∈ [1, n] } ∪ { 2ei | i ∈ [1, n] }.

9.1.4 Warning. Roots of the form ±ei ± ej are short roots when considered as
roots in Cn but of medium length when considered roots in BCn. However, it will
always be clear from the context in which root system we are working.

9.1.5 Remark. As was the case for Bn (see Remark 7.2.3), Cn contains An−1 as
a parabolic root subsystem and Dn as a root subsystem. However, in this case,
the root subsystem Dn of Cn is not crystallographically closed because 2e1 =
(e1 − e2) + (e1 + e2). Further, BCn contains both Bn and Cn as root subsystems,
but only Cn is crystallographically closed and none of them are parabolic.
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9.1.6 Observation. Since σλα = σα for all λ ∈ R \ {0}, it is clear that the root
systems Bn, Cn and BCn have the same Weyl group.

9.1.7 Definition (BC2-pairs and BC2-quadruples). Let Φ be any root system. A
BC2-pair (in Φ) is a pair (α, δ) of roots such that ⟨α, δ⟩R ∩ Φ is a root subsystem
of Φ of type BC2 with root base (α, δ) with α being the medium-length simple
root in this subsystem and δ being the short simple root. A BC2-quadruple is a
quadruple (α, β, γ, δ) of roots in Φ such that (α, δ) is a BC2-pair, β = α + δ and
γ = α + 2δ.

We can define C2-pairs and C2-quadruples in an analogous way, although
they will rarely be needed.

9.1.8 Definition (C2-pairs and C2-quadruples). Let Φ be any root system. A
C2-pair (in Φ) is a pair (α, δ) of roots such that ⟨α, δ⟩Z ∩ Φ is a root subsystem of
Φ of type C2 with root base (α, δ) such that δ is longer than α. A C2-quadruple is
a quadruple (α, β, γ, δ) of roots in Φ such that (α, δ) is a C2-pair, β = 2α + δ and
γ = α + δ.

9.1.9 Warning. Note that we consider ⟨α, δ⟩Z ∩ Φ in Definition 9.1.8: The parabo-
lic root subsystem ⟨α, δ⟩R ∩ Φ is allowed to be of type BC2.

9.1.10 Remark. Assume that (α, β, γ, δ) is a BC2-quadruple. Then the scaled tuple
(α, 2β, γ, 2δ) is a C2-quadruple.

9.1.11 Remark (compare Remark 7.2.6). Let G be a group with a C2-grading
(Uα)α∈B2 and let (α, β, γ, δ) be a C2-quadruple. Then this grading is crystallo-
graphic if and only if the commutators [Uεβ, Uσδ] are trivial for all ε, σ ∈ {±1}.

α

β
2β

γ
δ

2δ

−α

−β
−2β

−γ
−δ

−2δ

(a) A BC2-quadruple (α, β, γ, δ).

α

β

γ

δ

−α

−β

−γ

−δ

(b) A C2-quadruple (α, β, γ, δ).

Figure 9.1: C2- and BC2-quadruples.

We now prove similar properties as in section 7.2. Unless otherwise specified,
the word “root” always refers to roots in BCn.

9.1.12 Lemma. Let α, β be roots in BCn. Then the subsystem which is spanned by α, β
is of type A1, BC1, A2, A1 × A1 or BC2.

Proof. This follows from Remark 1.2.56.

9.1.13 Lemma. Assume that n ≥ 3 and let α be a medium-length root in BCn. Then
there exists an A2-subsystem of BCn which contains α.
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Proof. We can use the same A2-subsystems as in Lemma 7.2.12 for Bn.

9.1.14 Lemma. Every subsystem of BCn of type A2 or BC2 is parabolic.

Proof. This can be proven in the same way as Lemma 7.2.8.

9.1.15 Remark. In the standard representation, the subsystems of BCn of type
BC2 are exactly the sets of the form ⟨ei, ej⟩R ∩ Φ for distinct i, j ∈ [1, n].

9.1.16 Lemma. The Weyl group of BCn acts transitively on the set of BC2-pairs and on
the set of BC2-quadruples.

Proof. Let (α, δ), (α′, δ′) be two BC2-pairs. By Lemma 1.2.41 (b), there exist root
bases ∆ and ∆′ containing (α, δ) and (α′, δ′), respectively. By Proposition 1.3.6,
there exists an element u of the Weyl group which maps ∆ to ∆′. Note that (α, δ)
is the unique pair of elements in ∆ which forms a BC2-pair, and similarly for
(α′, δ′) and ∆′. It follows from this characterisation that u maps (α, δ) to (α′, δ′).
Thus the Weyl group acts transitively on the set of BC2-pairs. This implies that it
acts transitively on the set of BC2-quadruples as well.

9.1.17 Lemma. Let (α, β, γ, δ) be a BC2-quadruple in BCn and assume that n ≥ 3.
Then there exist medium-length roots γ1, γ2 such that the following conditions are
satisfied:

(i) (γ1, γ, γ2) is an A2-triple. In particular, γ = γ1 + γ2.
(ii) (α, γ1) is an A2-pair.

(iii) (α,−γ2) is an A2-pair.

Proof. Without loss of generality, we can use the standard representation of BCn
and assume that α = e1 − e2 and γ = e1 + e2. Then the roots γ1 := e2 − e3 and
γ2 := e1 + e3 have the desired properties.

9.1.18 Lemma. Assume that n ≥ 2. Let α ∈ BCn be a medium-length root and let
δ ∈ BCn be short. Then α and δ lie in a common BC2-subsystem if and only if α · δ ̸= 0.

Proof. This follows from Remark 9.1.15.

Let v, w be any non-zero vectors in the Euclidean space surrounding BCn. By
the definition of the Cartan numbers, we have ⟨λv|w⟩ = λ⟨v|w⟩ and ⟨v|λw⟩ =
λ−1⟨v|w⟩ for all λ ∈ R \ {0}. Thus as soon as we have computed the Cartan
integers for all short and medium-length roots, we can easily derive the Cartan
integers for all roots in BCn. Since the Cartan integer of short and medium-length
roots stay the same when we consider them as roots in Bn, we can deduce the
following characterisation from Proposition 7.2.20.

9.1.19 Proposition. Let ρ, ζ be two roots in BCn. Then ⟨ρ|ζ⟩ is an even number if and
only if one of the following conditions is satisfied:

(a) ρ is long.
(b) ζ is short.
(c) ρ ∈ {±ζ }.
(d) ρ and ζ are orthogonal.

The following lemma will be used in Proposition 9.8.3 to prove stabiliser-
compatibility for BCn-graded groups. Observe that the set Ā is defined exactly
as in Proposition 4.6.3.
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9.1.20 Lemma. Assume that n ≥ 2. Let α be a medium-length root, choose roots β, γ, δ
such that (α, β, γ, δ) is a BC2-quadruple and put

Ā := α⊥ ∩ { ρ ∈ BCn | ρ is not crystallographically adjacent to α }.

Then Ā = { γ,−γ }. In particular, for any root base ∆ of BCn, there exists exactly one
∆-positive root in Ā, and this root has medium length.

Proof. We use the standard representation of BCn. It is clear that γ and −γ lie in
Ā, so it remains to prove the reverse inclusion. By the transitivity of the Weyl
groups on the set of medium-length roots (Proposition 1.3.8), we can assume that
α = e1 − e2. If ρ is a long or short root which is orthogonal to α, then ρ and −ρ
are adjacent to α, so ρ does not lie in Ā. Now assume that ρ is a medium-length
root in Ā. Since ρ is orthogonal to α, we must have either ρ ∈ { γ,−γ } or
ρ = ε1ei + ε2ej for some ε1, ε2 ∈ {±1 } and i, j ∈ [3, n]. In the latter case, ρ is
crystallographically adjacent to α, which is not possible if ρ ∈ Ā. We conclude
that ρ ∈ { γ,−γ }.

9.1.21 Lemma. Assume that n ≥ 2. Let α, α′ be two orthogonal medium-length roots
which are crystallographically adjacent. Then α and −α′ are crystallographically adjacent
as well.

Proof. Since n ≥ 2, we can choose roots β, γ, δ such that (α, β, γ, δ) is a BC2-
quadruple. Then it follows from Lemma 9.1.20 that the set

Ā := α⊥ ∩ { ρ ∈ BCn | ρ or − ρ is not crystallographically adjacent to α }
equals { γ,−γ }. Now suppose for a contradiction that α and −α′ are not crystal-
lographically adjacent. Then −α′ lies in Ā. Thus α′ ∈ { γ,−γ }. However, both
γ and −γ are not crystallographically adjacent to α whereas α′ is by assumption.
Thus we obtain a contradiction, which finishes the proof.

9.1.22 Lemma. Assume that n ≥ 2. Then the Weyl group of BCn acts transitively on
the set

S :=

{
(α, γ)

∣∣∣∣∣ α, γ are of medium length, orthogonal
and not crystallographically adjacent

}
.

Proof. The set S consists precisely of the pairs (α, γ) for which there exist roots
β, δ such that (α, β, γ, δ) is a BC2-quadruple. Thus the assertion follows from
Lemma 9.1.16.

Recall that we have defined a certain subset B̂n of Bn in Remark 7.2.21. Since
Cn and BCn have the same Weyl group as Bn, the same reasoning leads us to the
definition of the set Ĉn ⊆ Cn ⊆ BCn. We will mainly use this set in Lemma 9.9.8
and Proposition 9.10.24. In this context, it is worth recalling Remark 4.1.31.

9.1.23 Definition. For all n ∈ N≥2, we define the following subset of Cn and
BCn:

Ĉn := { ei − ej | i ̸= j ∈ [1, n] } ∪ { 2ei | i ∈ [1, n] } ⊆ Cn.

9.1.24 Definition (Standard ∆-expression). Let ∆ denote the standard root base of
Cn, considered as a subset of BCn. For any root α ∈ Ĉn, we define a ∆-expression
ρ̄α of α (in the sense of Definition 4.2.2) as follows:

(a) If α ∈ ∆, we put ρ̄α := (α).
(b) If α = 2ei for some i ∈ [1, n − 1], we define ρ̄ei := (ei − ei+1, ρ̄ei+1 , ei+1 − ei).
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(c) If α = ei − ej for some i < j ∈ [1, n − 1] with i + 1 < j, we define ρ̄ei−ej :=
(ej − ej−1, ρ̄ei−ej−1 , ej−1 − ej).

(d) If α = ej − ei for some i < j ∈ [1, n − 1] with i + 1 < j, we define ρ̄ej−ei :=
(ρ̄ei−ej)−1.

The word ρ̄α will also be called the standard ∆-expression of α. We also put ρ̄i := ρ̄ei

for all i ∈ [1, n] and ρ̄ij := ρ̄ei−ej for all distinct i, j ∈ [1, n].

9.1.25 Note. Let n ∈ N≥2. Denote by ∆B the standard root base of Bn and by ∆C
the standard root base of Cn. Let α ∈ An−1. Then α can be regarded as a root in
Bn and as a root in Cn, so we have a standard ∆B-expression ρ̄α

B and a standard
∆C-expression ρ̄α

C. In fact, these expression only contain roots from the canonical
An−1-subsystems of Bn and Cn, and we have ρ̄α

B = ρ̄α
C.

Now let i ∈ [1, n]. Denote by ρ̄i
B the standard ∆B-expression of ei and by

ρ̄i
C the standard ∆C-expression of 2ei. Then ρ̄i

C is the word obtained from ρ̄i
B by

replacing each occurrence of en by 2en.

9.1.26 Definition (Ĉn-extensions). Denote by ∆ the standard rescaled root base
of BCn. Let G be any group with a BCn-pregrading (Ûα)α∈BCn and let (wδ)δ∈∆ be
a ∆-system of Weyl elements in G. Then we define a family (wα)α∈Ĉn

, called the
standard Ĉn-extension of (wδ)δ∈∆, by wα := wρ̄α for all α ∈ Ĉn. We will sometimes
write wij for wei−ej and wi for w2ei .

9.2 The Relationship between Root Gradings of Types B,
C and BC

9.2.1 Notation for this section. We denote by n and integer at least 2 and by G
an arbitrary group.

In this section, we investigate how (crystallographic) root gradings of types
B, C and BC can be constructed from each other. All assertions in this sections
are immediate consequences of the definition of root gradings. The most im-
portant results are Remark 9.2.8, which says that crystallographic B2-gradings
are the same as crystallographic C2-gradings, and Remark 9.2.5, which says that
crystallographic BCn-graded groups have crystallographic Cn-graded subgroups.
Both statements together yield that a crystallographic BCn-graded group has
many crystallographic B2-graded subgroups to which we can apply the results
of section 7.5. Further, Remark 9.2.6 yields that we do not have to consider
crystallographic Cn-gradings separately because they can be seen as a special
case of crystallographic BCn-gradings.

We begin with the situation of non-crystallographic gradings. These observa-
tions are not intrinsically relevant for us because we are ultimately interested in
crystallographic root gradings. Rather, they illustrate that the crystallographic
condition is the key property which differentiates root gradings of types B, C and
BC from each other.

9.2.2 Remark (The non-crystallographic case for B and C). If we consider root
gradings which are not assumed to be crystallographic, the distinction between
Bn and Cn disappears. To make this precise, consider Bn and Cn as root systems
in the same Euclidean space and denote by f : Bn → Cn the map which sends ±ei
to ±2ei and which fixes all other roots. Let (Uα)α∈Bn be a Bn-pregrading of G. Put
U′

β := U f−1(β) for all β ∈ Cn. Then (Uα)α∈Bn is a (not necessarily crystallographic)
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Bn-grading of G if and only if (U′
β)β∈Cn is a (not necessarily crystallographic)

Cn-grading of G.

9.2.3 Remark (The non-crystallographic case for BC). Let (Uα)α∈BCn be a (not
necessarily crystallographic) BCn-grading of G. Then the group U±2ei is a sub-
group of U±ei for all i ∈ [1, n]. Further, (Uα)α∈Bn is a Bn-gradins of G (and thus
also a Cn-grading of G).

Conversely, let (Uα)α∈Cn be a Cn-grading of G. To this grading we can asso-
ciate a BCn-grading (Uα)α∈BCn by setting U±ei := U±2ei . By the observations in
the previous paragraph, we can construct BCn-gradings from Bn-gradings in a
similar way.

We conclude that a BCn-grading (Uα)α∈BCn is the same thing as a Bn-grading
(Uα)α∈Bn (or a Cn-grading) together with an additional family (Uβ)β∈BCn\Bn of
subgroups of the short root groups such that the axioms of a root grading are sat-
isfied for (Uα)α∈BCn . This additional requirement says precisely that the following
statements are satisfied:

(i) For each α ∈ Bn, there exists an α-Weyl element wα with respect to (Uβ)β∈Bn

such that Uwα
±2ei

= U±σα(2ei) for all i ∈ [1, n].
(ii) For all i ∈ [1, n], there exists a ±2ei-Weyl element. That is, there exists a

(±ei)-Weyl element which lies in U∓2ei U±2ei U∓2ei .

We now turn to the case of crystallographic root gradings.

9.2.4 Remark (The crystallographic case for B and C). It is clear from Re-
marks 7.2.6 and 9.1.11 that the map f : Bn → Cn from Remark 9.2.2 no longer in-
duces an equivalence between crystallographic Bn-gradings and crystallographic
Cn-gradings. If n = 2, then we can replace f by a different map to obtain an equiv-
alence between crystallographic B2-gradings and crystallographic C2-gradings.
We will see this in Remark 9.2.8. If n > 2, however, crystallographic Bn-gradings
and crystallographic Cn-gradings are not related.

Some of the constructions in Remark 9.2.2 remain valid in the crystallographic
setting.

9.2.5 Remark (Cn-graded subgroups in BCn-graded groups). Let (Uα)α∈BCn be
a crystallographic BCn-grading of G. Since Cn is a closed root subsystem of
BCn, it follows from Proposition 2.5.11 that (Uα)α∈Cn is a crystallographic Cn-
grading, but of ⟨Uα | α ∈ Cn⟩ and not of G. However, (Uα)α∈Bn is not necessarily
a crystallographic Bn-grading of G: For example, it is not necessarily true that
Ue1−e2 commutes with Ue1+e2 .

9.2.6 Remark (Cn-graded groups as BCn-graded groups). Now let (Uα)α∈Cn

be a crystallographic Cn-grading of G. Putting U±ei := U±2ei for all i ∈ [1, n],
we obtain a crystallographic BCn-grading (Uα)α∈BCn of G. Thus we can regard
crystallographic Cn-gradings as special cases of crystallographic BCn-gradings.
For this reason, we will not specifically consider Cn-gradings most of the time in
this chapter.

9.2.7 Remark (BCn-graded groups as Cn-graded groups). Let (Uα)α∈BCn be a
crystallographic BCn-grading of G. Put U′

2α := Uα for all short roots α in BCn
and U′

β := Uβ for all medium-length roots β in BCn. Then (U′
α)α∈Cn is a crystallo-

graphic Cn-grading of G if and only if for all distinct i, j ∈ [1, n] and for all signs
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ε, σ ∈ {±1 }, we have that Uεei commutes with Uσej . In other words, a crystallo-
graphic BCn-grading can be regarded as a crystallographic Cn-grading if and
only if pairs of orthogonal short root groups commute. A crystallographic BCn-
grading is called proper if it cannot be regarded as a crystallographic Cn-gradings
in this way.

9.2.8 Remark (B2-graded groups are C2-graded groups). Let (α, δ) be a B2-pair in
B2 and let (α′, δ′) be a C2-pair in C2. Then the unique vector space isomorphism
g : ⟨α, δ⟩R → ⟨α′, δ′⟩R which maps α to δ′ and δ to α′ induces an isomorphism
from B2 to C2 (in the sense of Definition 1.2.49). Now let G be a group, let (Uα)α∈B2

be a B2-pregrading of G and put U′
β := Ug−1(β) for all β ∈ C2. Then (Uα)α∈B2

is a crystallographic B2-grading if and only if (U′
β)β∈C2 is a crystallographic C2-

grading. Thus crystallographic B2-gradings and crystallographic C2-gradings are
essentially the same thing.

We will usually apply the previous observation in the following form. Let
G be a group with a crystallographic C2-grading (Uζ)ζ∈C2 and let (α, β, γ, δ) be
a C2-quadruple. Then we can regard (Uζ)ζ∈C2 as a crystallographic B2-grading
of G for which (δ, γ, β, α) is a B2-quadruple. To this grading, we can apply the
results from section 7.5. In other words, we can use the results from section 7.5
by reversing the roles of α and δ (and consequently, of β and γ).

Recall from Remark 9.2.5 that any BCn-graded group has a canonical crystallo-
graphic Cn-graded subgroup and hence many crystallographic C2-graded sub-
groups. We can apply the observations of the previous paragraph to these
subgroups as well.

9.3 Construction of BCn-graded Groups

9.3.1 Notation for this section. We denote by (R,R0, σ) and associative involu-
tory set, by (M, q, f ) a standard pseudo-quadratic module over (R,R0, σ) and by
T := T(M) the group from Definition 8.5.25. Further, we fix an integer n ∈ N≥2,
the root system Φ := BCn in standard representation (as in Remark 9.1.2) and we
denote by ∆ the standard rescaled root base of BCn.

The goal of this section is the construction of a BCn-graded group EU(q) from
the data in Notation 9.3.1. This construction is similar to the one of the elemen-
tary orthogonal group in section 7.3. As a consequence, both sections follow
essentially the same outline, and some remarks remain true almost verbatim. In
Note 9.3.32, we will explain to which extent the construction in this section solves
the existence problem for crystallographic BCn-graded groups. Observe that both
f and q are allowed to be zero. In this case, (M, q, f ) is simply an R-module with
no additional structure, and the group T equals R0 × M by Remark 8.5.28.

Just like the elementary orthogonal orthogonal group, we have implemented
the group EU(q) in GAP [Gap] to perform all the computations in this section.
See Note 9.3.33 for a few details on the implementation.

9.3.2 Convention. In this section, we will consider modules over the ring R.
We use the convention that R-scalars act on such modules from the right while
endomorphisms act from the left. In particular, the composition φ ◦ ψ of two such
endomorphisms φ, ψ is the map x 7→ φ(ψ(x)).
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9.3.A Construction

9.3.3 Construction. We put V+ := Rn, V− := Rn and V := M ⊕ V+ ⊕ V−. We
denote by (b1, . . . , bn) the standard basis of V+, by (b−1, . . . , b−n) the standard
basis of V− and we will always consider V+ and V− to be subsets of V without
specifying the natural embedding. We will usually denote elements of V+, V−
by the letters v, w, elements of M by the letters m, u and elements of V by the
letters x, y. We can represent automorphisms of V using generalised matrices in
the same way as in Remark 7.3.5.

9.3.4 Construction (Medium-length root homomorphisms). Let i, j ∈ [1, n] be
distinct and let a ∈ k. We denote by θei−ej(a) the unique R-linear endomorphism
of V which is given on the direct summands of V as follows, where m, v+, v−

denote arbitrary elements of M, V+, V−, respectively:

θei−ej(a) : m 7→ m, v+ 7→ v+ + bi · av+j , v− 7→ v− − bj · aσv−i .

Now assume that, in addition, i < j. Then we define θei+ej and θ−ei−ej by the
following formulas:

θei+ej(a) : m 7→ m, v+ 7→ v+, v− 7→ v− + bi · av−j + bj · aσv−i ,

θ−ei−ej(a) : m 7→ m, v+ 7→ v+ + b−j · av+i + b−i · aσv+j , v− 7→ v−.

Examples of the corresponding generalised matrices are given in Figure 9.2.

θe1−e2(a) =



idM
1 a

1
1

1
−aσ 1

1


,

θe1+e2(a) =



idM
1 a

1 aσ

1
1

1
1


,

θ−e1−e2(a) =



idM
1

1
1

aσ 1
a 1

1


Figure 9.2: The medium-length root homomorphisms for BC3.

9.3.5 Construction (Short root homomorphisms). Let i ∈ [1, n] and let (u, h) ∈ T.
Then we define θ2ei(u, h) and θ−2ei(u, h) to be the unique R-linear endomor-
phisms of V which are given on the direct summands of V as follows, where m,
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v+, v− denote arbitrary elements of M, V+, V−, respectively:

θ2ei(u, h) : m 7→ m − bi · f (u, m), v+ 7→ v+, v− 7→ v− − u · v−i + bi · hv−i ,
θ−2ei(u, h) : m 7→ m − b−i · f (u, m), v+ 7→ v+ + u · v+i − b−i · hv+i , v− 7→ v−.

Examples of the corresponding generalised matrices are given in Figure 9.3.

θe1(u, h) =



idM −u
− f (u, · ) 1 h

1
1

1
1

1


,

θ−e1(u, h) =



idM u
1

1
1

− f (u, · ) −h 1
1

1


Figure 9.3: The short root homomorphisms for BC3.

9.3.6 Lemma. For each medium-length root α and for each short root β, the maps
θα : (R,+) → EndR(V) and θβ : T → EndR(V) are injective homomorphisms. In
particular, their images lie in AutR(V).

Proof. The injectivity of these maps can be deduced from their matrix represen-
tations. The homomorphism property follows from a straightforward matrix
computation.

We can now define our main example of a BCn-graded group.

9.3.7 Definition (Elementary unitary group). For each root α, we denote the
image of θα by Uα, and we denote by EU(q) the group which is generated by
(Uα)α∈Φ. We call EU(q) the elementary unitary group of q.

9.3.8 Warning. The group EU(q) depends not only on q but also on the choice of
f , which we suppress in our notation.

9.3.9 Note. The same remarks as in Note 7.3.10 hold for the elementary unitary
group: A straightforward computation shows that this group is contained in the
unitary group U(q) from Definition 8.5.16, but we will have no need to formally
use this fact.

9.3.B Weyl Elements

Weyl elements for medium-length roots are defined in the same way as usual.
However, the formula for short Weyl elements, which is nearly the same as in
[TW02, (32.9)], is more intricate. In particular, observe that short Weyl elements
are not necessarily balanced (in the sense of Definition 2.2.12).



9.3. Construction of BCn-graded Groups 275

9.3.10 Definition (Weyl elements). For all distinct i, j ∈ [1, n] and all invertible
a ∈ R, we define

wij(a) := wei−ej(a) := θej−ei(−a−1) ◦ θei−ej(a) ◦ θej−ei(−a−1)

and wij := wei−ej := wij(1R). For all i ∈ [1, n] and all (u, h) ∈ T for which h is
invertible, we define

wi(u, h) := w2ei(u, h) := θ−2ei

(
uh−1, h−σ

)
◦ θ2ei(u, h) ◦ θ−2ei

(
−uh−σ, h−σ

)
and wi := w2ei := wi(0M, 1R). Note that wi(u, h) is well-defined by Lemma 8.5.33
and that (0M, 1R) lies in T because (R,R0, σ) is an involutory set (and not merely
a pre-involutory set).

9.3.11 Definition (Standard system of Weyl elements). The standard system of
Weyl elements for EU(q) is the family (wδ)δ∈∆ given by Definition 9.3.10.

Similar remarks as in Note 7.3.12 apply to Definition 9.3.10: We have only
defined Weyl elements for the subset Ĉn of BCn, but this will pose no problem in
the sequel.

9.3.12 Remark (Short Weyl elements, see also 7.3.14). Let (u, h) ∈ T be such that
h is invertible. The goal of this remark is to explicitly compute the generalised
matrix of w1(u, h). We will leave out the rows and columns which correspond to
(bi)i∈[2,n] and (b−i)i∈[2,n] because they are trivial. We begin the computation with

θe1(u, h)θ−e1(−uh−σ, h−σ)

=

 id 0 −u
− f (u, · ) 1 h

0 0 1

 id −uh−σ 0
0 1 0

h−σ f (u, · ) −h−σ 1


=

 id−uh−1 f (u, · ) −uh−σ + uh−σ −u
− f (u, · ) + hh−1 f (u, · ) f (u, u)h−σ + 1 − hh−σ h

h−1 f (u, · ) −h−σ 1


=

id−uh−1 f (u, · ) 0 −u
0 0 h

h−1 f (u, · ) −h−σ 1

 .

In the last step, we have used that f (u, u) = h − hσ because h ∈ q(u) +R0 and
(M, q, f ) is standard. Now

w1(u, h) = θ−e1(uh−1, h−σ)θe1(u, h)θ−e1(−uh−σ, h−σ)

=

 id uh−1 0
0 1 0

−h−σ f (u, · ) −h−σ 1

id−uh−1 f (u, · ) 0 −u
0 0 h

h−1 f (u, · ) −h−σ 1


=

id−uh−1 f (u, · ) 0 −u + uh−1h
0 0 h
φ −h−σ −h−σ f (u, u)− h−σh + 1


where φ : M → R is the map which sends x ∈ M to

− h−σ f
(
u, x − uh−1 f (u, x)

)
+ h−1 f (u, x)

= −h−σ f (u, x) + h−σ f (u, u)h−1 f (u, x) + h−1 f (u, x) = 0.

We conclude that

w1(u, h) =

id−uh−1 f (u, · ) 0 0
0 0 h
0 −h−σ 0

 .
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Hence w1(ua, h) = w1(u, h) where a is any element of the center of R with
aσa = 1R and aaσ = 1R . (The first equation implies that (ua, h) lies in T and the
second one implies that w1(ua, h) = w1(u, h).) In particular, w1(u, v) = w1(−u, v)
where (−u, v) is the element obtained from (u, v) by applying the Jordan module
involution. Hence there exist short Weyl elements which can be represented by
distinct Weyl triples. We will see in Note 9.5.15 that the same behaviour can be
observed in all BC3-graded groups.

We now prove that the elements in Definition 9.3.10 are indeed Weyl elements.
Since the resulting formulas are rather intricate, we explicitly state the formulas
for the standard Weyl elements separately. Only these simplified formulas will
be needed to see the twisting actions on the root groups.

9.3.13 Lemma. Let i, j ∈ [1, n] be distinct and let a ∈ R be invertible. Then w := wij(a)
is an (ei − ej)-Weyl element. It satisfies the following formulas for all b ∈ R and all
(u, h) ∈ T:

(a) We have

θei−ej(b)
w = θej−ei(−a−1ba−1), θei+ej(b)

w = θei+ej

(
−δσ

i>j
(
aδσ

i<j(b)a−σ
))

,

θej−ei(b)
w = θei−ej(−aba), θ−ei−ej(a)w = θ−ei−ej

(
−δσ

i>j
(
aσδσ

i<j(b)a−1)).
(b) For all k ∈ [1, n] \ { i, j }, we have

θei−ek(b)
w = θej−ek(a−1b), θei+ek(b)

w = θej+ek

(
δσ

k<j
(
a−1δσ

k<i(b)
))

,

θek−ei(b)
w = θek−ej(ba), θ−ei−ek(b)

w = θ−ej−ek

(
δσ

j<k
(
aσδσ

i<k(b)
))

.

(c) For all k ∈ [1, n] \ { i, j }, we have

θej−ek(b)
w = θei−ek(−ab), θej+ek(b)

w = θei+ek

(
−δσ

k<i
(
aδσ

k<j(b)
))

,

θek−ej(b)
w = θek−ei(−ba−1), θ−ej−ek(b)

w = θ−ei−ek

(
−δσ

i<k
(
a−σδσ

j<k(b)
))

.

(d) θei(u, h)w = θej

(
ua−σ, a−1ha−σ

)
and θ−ei(u, h)w = θ−ej

(
ua, aσha

)
.

(e) θej(u, h)w = θei

(
−uaσ, ahaσ

)
and θ−ej(u, h)w = θ−ei

(
−ua−1, a−σha−1).

(f) For any root α for which no formula for the conjugation action of w on Uα is given
above, this action is trivial.

Proof. This follows from a straightforward computation. See also Note 9.3.33.

9.3.14 Lemma (Corollary of 9.3.13). Let i, j ∈ [1, n] be distinct. Then w := wij
is an (ei − ej)-Weyl element. It satisfies the following formulas for all b ∈ R and all
(u, h) ∈ T:

(a) We have

θei−ej(b)
w = θej−ei(−b), θei+ej(b)

w = θei+ej

(
−bσ

)
,

θej−ei(b)
w = θei−ej(−b), θ−ei−ej(a)w = θ−ei−ej

(
−bσ

)
.

(b) For all k ∈ [1, n] \ { i, j }, we have

θei−ek(b)
w = θej−ek(b), θei+ek(b)

w = θej+ek

(
δσ

k∈⟨i,j⟩(b)
)
,

θek−ei(b)
w = θek−ej(b), θ−ei−ek(b)

w = θ−ej−ek

(
δσ

k∈⟨i,j⟩(b)
)
.

(c) For all k ∈ [1, n] \ { i, j }, we have

θej−ek(b)
w = θei−ek(−b), θej+ek(b)

w = θei+ek

(
−δσ

k∈⟨i,j⟩(b)
)
,

θek−ej(b)
w = θek−ei(−b), θ−ej−ek(b)

w = θ−ei−ek

(
−δσ

k∈⟨i,j⟩(b)
)
.
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(d) θei(u, h)w = θej

(
u, h
)

and θ−ei(u, h)w = θ−ej

(
u, h
)
.

(e) θej(u, h)w = θei

(
−u, h

)
and θ−ej(u, h)w = θ−ei

(
−u, h

)
.

(f) For any root α for which no formula for the conjugation action of w on Uα is given
above, this action is trivial.

Proof. This follows from Lemma 9.3.13 by putting a := 1R .

9.3.15 Lemma. Let i ∈ [1, n] and let (v, t) ∈ T be such that t is invertible. Then
w := wi(v, t) is an ei-Weyl element. It satisfies the following formulas for all b ∈ R and
all (u, h) ∈ T:

(a) For all k ∈ [1, n] \ {i}, we have

θei−ek(b)
w = θ−ei−ek

(
δσ

i>k(b
σt−σ)

)
, θei+ek(b)

w = θek−ei

(
−δσ

i<k(b)t
−σ
)
,

θek−ei(b)
w = θek+ei

(
δσ

i<k(bt)
)
, θ−ei−ek(b)

w = θei−ek

(
−tσδσ

i<k(b)
)
.

(b) θei(u, h)w = θ−ei

(
ut−σ + vt−σ f (v, u)t−σ, t−1ht−σ

)
and

θ−ei(u, h)w = θei

(
−ut − vt−σ f (v, u)t, tσht

)
.

(c) θej(u, h)w = θej

(
u + vt−σ f (v, u), h

)
and

θ−ej(u, h)w = θ−ej

(
u + vt−σ f (v, u), h

)
.

(d) For any root α for which no formula for the conjugation action of w on Uα is given
above, this action is trivial.

Proof. This follows from a straightforward computation. See also Note 9.3.33.

9.3.16 Lemma (Corollary of 9.3.15). Let i ∈ [1, n] . Then w := wi is an ei-Weyl
element. It satisfies the following formulas for all b ∈ R and all (u, h) ∈ T:

(a) For all k ∈ [1, n] \ {i}, we have

θei−ek(b)
w = θ−ei−ek

(
δσ

i<k(b)
)
, θei+ek(b)

w = θek−ei

(
−δσ

i<k(b)
)
,

θek−ei(b)
w = θek+ei

(
δσ

i<k(b)
)
, θ−ei−ek(b)

w = θei−ek

(
−δσ

i<k(b)
)
.

(b) θei(u, h)w = θ−ei

(
u, h
)

and θ−ei(u, h)w = θei

(
−u, h

)
.

(c) For any root α for which no formula for the conjugation action of w on Uα is given
above, this action is trivial.

Proof. This follows from Lemma 9.3.15 by putting (v, t) := (0M, 1R).

9.3.17 Remark (compare 7.3.16). Let i, j ∈ [1, n] be distinct and let a ∈ R be
invertible. Since w := wij(a) is a Weyl element by Lemma 9.3.13, it follows from
Proposition 2.2.6 (c) that

wij(a) = θei−ej(a)θej−ei(−a−1)θej−ei(−a−1)w

= θei−ej(a)θej−ei(−a−1)θei−ej(a) = wji(−a−1).

In particular, wij = w−1
ji .

9.3.18 Remark. Let i, j ∈ [1, n] be distinct and put w := w2
i . It follows from

Lemma 9.3.16 (b) that θei(u, h)w = θei(−u, h) for all (u, h) ∈ T. That is, w acts on
Uei by the Jordan module involution (see Observation 8.5.36). In particular, the
action of w on Uei is, in general, neither trivial nor by inversion, so it does not
satisfy the square formula for Weyl elements. By Lemma 9.3.14 (d) and 9.3.14 (e),
w2

ij acts on Uei by the Jordan module involution as well.
The observations in this remark also say that the Jordan module involution

coincides with the short involution that we will define in 9.5.4 on the short root
groups of any BCn-graded group.
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9.3.C Parity Maps and Twisting Structures

As in Notation 7.3.18, the formulas above tell us how to define the twisting
groups and parity maps for EU(q). They are chosen precisely to make sure that
Lemma 9.3.22 holds.

9.3.19 Notation for this section. From now on, we denote by (A × B, T,R) the
standard parameter system (in the sense of Definition 8.6.20) for the Jordan
module T which is constructed from the pseudo-quadratic module (M, q, f ) as
in Example 8.6.7. Further, we define maps

η : BCn × Ĉn → A and µ : Bn × Ĉn → B

by the formulas in Figure 7.4, where Ĉn is as in Definition 9.1.23. By restricting
the second components of η and µ to ∆, we obtain ∆-parity maps which we also
denote by η and µ, and which we call the standard parity maps of type BCn.

α ηα,ei−ej µα,ei−ej

±(ei − ej) (−1A, 1A) 1B
±(ei + ej) (−1A, 1A) −1B
±(ei − ek) (1A, 1A) 1B
±(ei + ek) (1A, 1A) δ−k∈⟨i,j⟩1B

±(ej − ek) (−1A, 1A) 1B
±(ej + ek) (−1A, 1A) δ−k∈⟨i,j⟩1B

±ek ± el (1A, 1A) 1B
±(2)ei (1A, 1A) 1B
±(2)ej (1A,−1A) 1B
±(2)ek (1A, 1A) 1B

α ηα,ei µα,2ei

ei − ek (1A, 1A) δ−i<k1B
ek − ei (1A, 1A) δ−i<k1B

±(ei + ek) (−1A, 1A) δ−i<k1B
±ek ± el (1A, 1A) 1B
(2)ei (1A, 1A) 1B
−(2)ei (1A,−1A) 1B
±(2)ek (1A, 1A) 1B

Figure 9.4: The definition of ηα,β and µα,β for all α ∈ BCn and β ∈ Ĉn, see
Notation 9.3.19. In the left table, we assume that i, j, k, l are pairwise distinct. In
the right table, we assume that i, k, l are pairwise distinct. For small values of n,
it is of course not possible to choose three or four pairwise distinct indices, in
which case the corresponding rows should be ignored.

9.3.20 Note. Similar remarks as in Note 7.3.19 apply in this situation: The values
ηα,β for α ∈ BCn and β ∈ Ĉn \ ∆ are not need in the definition of the parity map
η : BCn × ∆ → A, but they will appear in Lemma 9.3.31.

9.3.21 Remark (compare 7.3.20). Consider the subset

An−1 = { ei − ej | i ̸= j ∈ [1, n] }
of Bn. Then for all α, β ∈ An−1, the first component of ηα,β in Figure 7.4 is the
same as the value in Example 5.5.5 while the second component is trivial.

9.3.22 Lemma. Let α ∈ BCn and β ∈ Ĉn. Let x ∈ R if α is medium-length and let
x ∈ T if α is short. Then θα(x)wβ = θσβ(α)(ηα,βµα,β.x).

Proof. This follows from Lemmas 9.3.14 and 9.3.16.

9.3.23 Remark. As in Remark 7.3.22, we can perform computations in the group
EU(q) for some fixed choice of the parameters in Notation 9.3.1 to obtain in-
formation about the parity maps η and µ. In the sequel, we will often choose
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(R,R0, σ) := (C, R, σ) where σ is complex conjugation and M := C with q and
f defined as in Example 8.5.8. Then the inversion map on R and the ring in-
volution are non-trivial and distinct. Further, the inversion map on T and the
Jordan module involution on T are non-trivial and distinct. These observations
imply that the parameter system (A × B, T,R) is (η × µ)-faithful (in the sense of
Definition 4.3.8).

9.3.24 Lemma. The root isomorphisms (θα)α∈BCn from Constructions 7.3.6 and 7.3.7
form a parametrisation of EU(q) by (A × B, T,R) with respect to η × µ and (wδ)δ∈∆.

Proof. This follows from Lemma 9.3.22.

9.3.25 Lemma. Let (wα)α∈Ĉn
be as in Definition 7.3.11. Then the following hold:

(a) w
wjk
ij = wik and w

wkj
ij = wki for all pairwise distinct i, j, k ∈ [1, n], and w

wij
i = wj

and w
wji
i = w−1

i for all distinct i, j ∈ [1, n].

(b) (wα)α∈Ĉn
is the standard Ĉn-extension of (wδ)δ∈∆.

Proof. The first assertion follows from Lemma 9.3.22 and an inspection of Fig-
ure 9.4. The second assertion follows from the first one and Remark 9.3.17.

9.3.D Commutator Relations

We now proceed to show that (Uα)α∈BCn is a crystallographic BCn-grading of
EU(q).

9.3.26 Proposition. The group EU(q) satisfies the following commutator relations. For
all pairwise distinct i, j, k ∈ [1, n] and all a, b ∈ R, we have

[θei−ej(a), θej−ek(b)] = θei−ek(ab),

[θei−ej(a), θej+ek(b)] = θei+ek

(
δσ

k<i(aδσ
k<j(b))

)
,

[θei−ej(a), θei+ej(b)] = θei

(
0M, Tr(a, δσ

i>j(b))
)
,

[θei−ej(a), θ−ei−ej(b)] = θ−ej

(
0M, Tr(aσ, δσ

j<i(b))
)
,

[θei−ej(a), θ−ei−ek(b)] = θ−ej−ek

(
−δσ

j<k(aσδσ
i<k(b))

)
,

[θei+ej(a), θ−ej−ek(b)] = θei−ek

(
δσ

j<i(a)δσ
j<k(b)

)
where Tr(a, b) := abσ + baσ. For all distinct i, j ∈ [1, n] and all (u, h), (v, k) ∈ T(q),
we have

[θei(u, h), θej(v, k)] =

{
θei+ej

(
f (u, v)

)
if i < j,

θei+ej

(
− f (v, u)

)
if i > j,

[θei(u, h), θ−ej(v, k)] = θei−ej

(
− f (u, v)

)
,

[θ−ei(u, h), θ−ej(v, k)] =

{
θ−ei−ej

(
f (v, u)

)
if i < j,

θ−ei−ej

(
− f (u, v)

)
if i > j.

For all distinct i, j ∈ [1, n], all a ∈ R and all (u, h) ∈ T(q), we have

[θej(u, h), θei−ej(a)] = θei

(
−uaσ, ahaσ

)
θei+ej

(
−δσ

i>j(ah)
)
,

[θ−ei(u, h), θei−ej(a)] = θ−ej

(
ua, aσha

)
θ−ei−ej

(
δσ

i>j(aσh)
)
,

[θ−ei(u, h), θei+ej(a)] = θej

(
−uδσ

i>j(a), δσ
i<j(a)hδσ

i>j(a)
)
θej−ei

(
δσ

i<j(a)h
)
,

[θei(u, h), θ−ei−ej(a)] = θ−ej

(
−uδσ

i<j(a), δσ
i>j(a)hδσ

i<j(a)
)
θei−ej

(
hσδσ

i<j(a)
)
.
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Proof. This follows from a straightforward but lengthy computation. See also
Note 9.3.33.

9.3.27 Proposition. Let Π denote the standard positive system in BCn. Then the group
EU(q) satisfies UΠ ∩ U−Π = {1}.

Proof. We consider the same rearrangement of the decomposition of V as in
Proposition 7.3.26. With respect to this rearrangement, the group UΠ consists of
upper triangular matrices while U−Π consists of lower triangular matrices. The
assertion follows.

9.3.28 Theorem. The family (Uα)α∈BCn is a crystallographic BCn-grading of EU(q).

Proof. By Lemmas 9.3.13 and 9.3.15, there exist Weyl elements for all roots in
the standard rescaled root base of BCn. By Remark 2.2.8, it follows that there
exist Weyl elements for all roots. The remaining conditions are satisfied by
Propositions 9.3.26 and 9.3.27.

9.3.E Concluding Remarks

9.3.29 Remark. It follows from the commutator relations in Proposition 9.3.26
that EU(q) can be regarded as a crystallographic Cn-graded group (in the sense
of Remark 9.2.7) if and only if f = 0. If 2R is invertible, this property implies
that q is trivial by Lemma 8.5.15 (f). In the case that both f and q are zero,
our construction produces a crystallographic Cn-graded group whose long root
groups are parametrised by R0 × M where M is an R-module with no additional
structure.

9.3.30 Note. Assume that M ̸= {0}, q = 0, f = 0 and n = 2, so that EU(q) is
a crystallographic C2-graded group by Remark 9.3.29. Then T = M ×R0 by
Remark 8.5.28. We have seen in Remark 9.3.18 that w := w2

1 and v := w2
21 act on

Ue1 by the Jordan module involution on T. Since M ̸= {0}, this involution is
neither the identity nor the inversion map.

Now put α := e1 and δ := e2 − e1 and regard EU(q) as a crystallographic
B2-graded group, as in Remark 9.2.8. Then (α, δ) is a B2-pair in the B2-grading
of EU(q). The observation in the previous paragraph implies that EU(q) is a
crystallographic B2-graded group in which the squares of α-Weyl elements and
δ-Weyl do not act trivially on Uα. This is the counterexample that was promised
in Notes 7.6.6 and 7.6.18.

The following result is the analogue of Lemma 7.3.28 for the root system BC.
It will be used in the proof of Proposition 9.9.2

9.3.31 Lemma. Let α ∈ Ĉn, let ᾱ be the standard ∆-expression of α in the sense of
Definition 9.1.23 and let ζ be an arbitrary root. Then the element ηζ,α from Figure 9.4
equals the value ηζ,ᾱ of the extended parity map η : Φ ×L(∆ ∪ (−∆)) → A (from
Definition 4.2.4). The same assertion holds for µ in place of η.

Proof. This can be proven in exactly the same way as Lemma 7.3.28, using the
choice of parameters in Remark 9.3.23.

9.3.32 Note (The existence problem). For a complete solution of the existence
problem for BCn-graded groups, we would have to construct a BCn-graded
group from an arbitrary Jordan module T over an alternative ring R with nuclear
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involution σ. This section covers exactly the special case that R is associative and
that T is of pseudo-quadratic type in the sense of Example 8.6.7.

The second restriction is relatively minor: We know from Theorem 8.7.21 that
every Jordan module is of pseudo-quadratic type if 2 is invertible in the base
ring. Further, we are not aware of an example of a Jordan module which is not of
pseudo-quadratic type.

The restriction on R to be associative is more intricate. Recall from Proposi-
tion 8.8.12 that a purely alternative ring R does not admit a pseudo-quadratic
module (M, q, f ) with f ̸= 0. Thus it seems reasonable to exclude alternative
rings which are not associative from the discussion if f ̸= 0. By Remark 9.3.29, the
assumption that f ̸= 0 says precisely that (Uα)α∈BCn is a proper crystallographic
BCn-grading in the sense of Remark 9.2.7. Equivalently, it says that the Jordan
module T(M) is not of type C.

We conclude that the construction in this section is close to a complete solu-
tion of the existence problem for proper crystallographic BCn-gradings. However,
the assumption that R is associative is an important restriction in the setting of
crystallographic Cn-gradings. In [Zha14, Section 4.2], Zhang gives a construction
of crystallographic Cn-graded groups for alternative rings R with nuclear involu-
tion in which 2R is invertible. This construction builds on [LN19, 21.12] and the
standard Jordan matrix algebras in [McC66]. The Jordan module which coordi-
natises the long root groups in this example is always Trσ(R) = Fix(σ). In other
words, this construction covers precisely the Jordan modules in Example 8.6.5 for
which 2R is invertible. We are confident that a generalisation of Zhang’s strategy
can be used to solve the existence problem for arbitrary Jordan modules of type C.
We plan to address this problem in future work.

9.3.33 Note (Implementation of the elementary unitary group). The elemen-
tary unitary group can be implemented in GAP [Gap] in a similar way as the
elementary orthogonal group (see Note 7.3.29), but there are a few additional
complications. At first, we consider the implementation of R. Again it suffices to
consider the case that R is a polynomial ring over the integers, but this time the
indeterminates in R are not assumed to commute. Further, the involution σ on R

is implemented by introducing for each indeterminate ti in R an indeterminate
ui in R and by declaring that σ interchanges ti and ui.

The module M can, as for the elementary orthogonal group, be assumed to be
free, and the map f can be implemented in terms of a family of indeterminates.
The map q causes more problems. In our implementation, it is in fact not repre-
sented by a GAP function at all. Consequently, the short root homomorphisms
are defined on all of M ×R and not only on T (because we cannot represent T
internally without representing q). Of course, most formulas in this section are
not valid in this generality. In order to take advantage of the defining identities
of T, we use the following strategy: Let (u, h) ∈ T where u is a basis vector of
M and h is an indeterminate in R. Since the pseudo-quadratic module (M, q, f )
is standard, we have the identity f (u, u) = h − hσ. Hence we can replace each
occurrence of the indeterminate representing f (u, u) by h − hσ. Since, in fact, an
element (v, t) ∈ M×R lies in T if and only if f (v, v) = t− tσ, this “rewriting rule”
is sufficient to reduce all claimed identities in this section to the equation 0 = 0.
As a corollary, this approach shows that the property of (M, q, f ) to be standard
is not only sufficient but also necessary for the group EU(q) to satisfy the desired
commutator relations.
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9.4 Rank-2 Computations

9.4.1 Notation for this section. We denote by G a group which has crystallo-
graphic BC2-commutator relations with root groups (Uα)α∈BC2 (in the sense of
Definition 2.1.4) and we choose a BC2-quadruple (α, β, γ, δ). Further, we assume
that G is rank-2-injective.

This section is structured similarly to section 7.5. Our goal is to understand
the action of squares of Weyl elements on all root groups. In most cases, we will
see that this action obeys the square formula. However, we have already seen in
the example of the elementary unitary group that this is not always the case (see
Remark 9.3.18).

Recall from Remark 9.2.3 that (Uα)α∈B2 is a (non-crystallographic) B2-grading
of G. Thus we can freely apply the results from section 7.4. By Reminder 9.4.2,
we can also apply all results from section 7.5 if we reverse the roles of α and 2δ
(and, consequently, of 2β and γ).

9.4.2 Reminder. Recall from Remark 9.2.5 that (Uα)α∈C2 is a crystallographic C2-
grading of the subgroup of G that it generates. Thus it is also a crystallographic
B2-grading by Remark 9.2.8. In this B2-grading, (2δ, γ, 2β, α) is a B2-quadruple.

In addition to Lemma 7.4.4, we will frequently use the following computation
rule.

9.4.3 Lemma. The following relations hold for all xα ∈ Uα and y2δ, y′2δ ∈ U2δ:
(a) [xα, y2δy′2δ]γ = [xα, y′2δ]γ[xα, y2δ]γ.
(b) [y2δy′2δ, xα]γ = [y2δ, xα]γ[y′2δ, xα]γ.

Proof. By Lemma 7.4.4, we have the following relations:

[xα, y2δy′2δ]γ = [xα, y′2δ]γ
[
[xα, y2δ]β, y′2δ

]
[xα, y2δ]γ,

[y2δy′2δ, xα]γ = [y2δ, xα]γ
[
[y2δ, xα]β, y′2δ

]
[y′2δ, xα]γ.

Since y′2δ commutes with Uβ, the assertions follow.

9.4.4 Note. We will only investigate the actions of squares of ζ-Weyl elements on
root groups Uρ when ρ is not long and ζ is not short. We do not have to consider
long roots ρ because the short root groups are contained in the long root groups.
Thus if we know the action of w2

ζ on all short and medium-length root groups,
then we know its action on all root groups. Further, we do not consider short
roots ζ by the observations in Remark 4.1.31.

9.4.A The Action of Long Weyl Elements on Medium-length Root
Groups

All results in this subsection follow from the corresponding ones in subsec-
tion 7.5.A using Reminder 9.4.2. Thus we obtain that squares of long Weyl
elements act on the medium-length root groups in the same BC2-subsystem by
inversion.

9.4.5 Lemma. Assume that (a−2δ, b2δ, c−2δ) is a 2δ-Weyl triple and denote by w2δ :=
a−2δb2δc−2δ the corresponding Weyl element. Then the following statements hold for all
xα ∈ Uα:

(a) xw2δ
α = [xα, b2δ]γ.
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(b)
[
xα, [xα, b2δ]γ

]
[xα, b2δ]β

[
[xα, b2δ]γ, c−2δ

][xα,b2δ]β
β

= 1G.

(c) xα =
[
[xα, b2δ]γ, c−2δ

]−1
α

.

Proof. Since Uβ and U2δ commute in a crystallographic B2-grading, these state-
ments follow from Lemma 7.4.12. Alternatively, this follows from Lemma 7.5.4
by the considerations in Reminder 9.4.2.

9.4.6 Lemma. Assume that (a−2δ, b2δ, c−2δ) is a 2δ-Weyl triple and denote by w2δ :=
a−2δb2δc−2δ the corresponding Weyl element. Then the following statements hold for all
xγ ∈ Uγ:

(a) xw2δ
γ = [xγ, a−2δ]α = [xγ, c−2δ]α.

(b)
[
xγ, [xγ, a−2δ]α

]
[xγ, a−2δ]β

[
[xγ, a−2δ]α, b2δ

][xγ,a−2δ]β
β

= 1G.

(c) xγ =
[
[xγ, a−2δ]α, b2δ

]−1
γ

.

Proof. Since Uβ and U2δ commute in a crystallographic B2-grading, these state-
ments follow from Lemma 7.4.13. Alternatively, this follows from Lemma 7.5.5
by the considerations in Reminder 9.4.2.

9.4.7 Lemma. Let w2δ be a 2δ-Weyl element. Then w2
2δ acts on Uα and Uγ by inversion.

Proof. Using Reminder 9.4.2, this follows from Lemma 7.5.6. Alternatively, we
can mimic the proof of Lemma 7.5.6 (or the alternative proof described in Re-
mark 7.5.7) with references to Lemmas 7.5.4 and 7.5.5 replaced by references to
Lemmas 9.4.5 and 9.4.6.

9.4.8 Note. Recall that we gave an alternative proof of Lemma 7.5.6 in Re-
mark 7.5.7. In the same way, Lemmas 9.4.3 and 9.4.5 can be used to obtain
another proof of Lemma 9.4.7.

9.4.9 Proposition. Assume that U♯
2δ is non-empty. Then Uα and Uγ are abelian.

Proof. This follows from Proposition 7.5.8 using Reminder 9.4.2, or alternatively
by mimicing the proof of Proposition 7.5.8 with references to Lemma 7.5.6 re-
placed by references to Lemma 9.4.7.

9.4.10 Note. Since we are ultimately interested in the case of rank at least 3,
Proposition 9.4.9 is of no practical use for us: Since every medium-length root of
BCn for n ≥ 3 lies in an A2-subsystem, we already know from Proposition 5.4.7
that all medium-length root groups are abelian (if there exist invertible elements,
which is always the case in a root graded group).

9.4.B The Action of Long Weyl Elements on Short Root Groups

9.4.11 Lemma. Let w2β be a 2β-Weyl element. Then w2
2β acts trivially on Uδ.

Proof. This is trivial because δ is crystallographically adjacent to 2β and −2β.

We have seen in Remark 9.3.18 that in the elementary unitary group, the
square of a certain “standard” 2β-Weyl element acts on Uβ by the Jordan module
involution. The following formula provides a description of this involution in
the general situation. Note that it holds not only for some specific Weyl element,
but in fact for all 2β-Weyl elements.



284 9. Root Gradings of Types C and BC

9.4.12 Lemma. Let w2β be a 2β-Weyl element and put w := w2
2β. Then [xδ, xα]wβ =

[xδ, x−1
α ]β for all xα ∈ Uα and xδ ∈ Uδ. In particular, the action of w on Uβ does not

depend on the choice of w2β if U♯
α is non-empty.

Proof. We know that w acts trivially on Uδ (by Lemma 9.4.11) and by inversion
on Uα (by Lemma 9.4.7). Thus by an application of Lemma 2.2.9, we see that the
action of w on Uβ satisfies the first assertion.

Now assume, in addition, that U♯
α is non-empty. Then every xβ ∈ Uβ can be

written as xβ = [xδ, xα]β for some xδ ∈ Uδ and xα ∈ U♯
α by Proposition 7.4.11. It

follows that the action of w on Uβ is completely determined by the formula in
the first assertion. In particular, it does not depend on the choice of w2β.

9.4.C The Action of Medium-length Weyl Elements on Short Root
Groups

We begin with a repetition of some of the formulas in subsection 7.5.B.

9.4.13 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple and denote by wα :=
a−αbαc−α the corresponding Weyl element. Then the following statements hold for all
xδ ∈ Uδ:

(a) xwα
δ = [xδ, bα]β.

(b) [xδ, bα]−1
γ =

[
[xδ, bα]β, c−α

][xδ,bα]γ
γ

.

(c) xδ

[
[xδ, bα]β, c−α

]
δ
[[xδ, bα]γ, c−α] = 1G.

Proof. This follows from Lemma 7.4.6 with the additional information that Uβ

and Uδ commute. Alternatively, this follows from Lemma 7.5.10 using the con-
siderations in Reminder 9.4.2.

9.4.14 Lemma. Assume that (a−α, bα, c−α) is an α-Weyl triple and denote by wα :=
a−αbαc−α the corresponding Weyl element. Then the following statements hold for all
xβ ∈ Uβ:

(a) xwα
β = [xβ, a−α]δ = [xβ, c−α]δ.

(b)
[
xβ, [xβ, a−α]δ

]
[xβ, a−α]γ

[
[xβ, a−α]δ, bα

][xβ,a−α]γ
γ

= 1G.

(c) xβ

[
[xβ, a−α]δ, bα

]
β
[[xβ, a−α]γ, bα] = 1G.

Proof. This follows from Lemma 7.4.7 with the additional information that Uβ

and Uδ commute. Alternatively, this follows from Lemma 7.5.11 using the con-
siderations in Reminder 9.4.2.

We can prove the same formula as in Lemma 9.4.12 for the actions of w2
α

on Uβ, but with a caveat: A priori, it is not clear that the element xα ∈ Uα in
this formula can be chosen arbitrarily. This will only follow from an applica-
tion of Lemma 9.4.12. Recall that this curiosity has already been announced in
Note 7.4.10.

9.4.15 Lemma. Let wα be an α-Weyl element and let w2β be a 2β-Weyl element. Then the
actions of w2

α and w2
2β on Uβ are identical. More precisely, we have [xδ, xα]wβ = [xδ, x−1

α ]β

for all xα ∈ Uα, xδ ∈ Uδ and w ∈ {w2
α, w2

2β }.
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Proof. Choose a−α, c−α ∈ U−α and bα ∈ Uα such that wα = a−αbαc−α. Then by
Lemmas 7.4.9 and 9.4.12, both w2

α and w2
2β map [xδ, b−1

α ]β to [xδ, bα]β for all xδ ∈ Uδ.
Since b−1

α lies in U♯
α by Proposition 2.2.6 (a), we know from Proposition 7.4.11 that

any xβ ∈ Uβ can be written as xβ = [xδ, b−1
α ]β for some xδ ∈ Uδ. Thus the actions

of w2
α and w2

2β are completely determined by this property. In particular, these
actions are the same, so it follows from Lemma 9.4.12 that they map [xδ, xα]xβ

to
[xδ, x−1

α ]β for all xα ∈ Uα and all xδ ∈ Uδ. This finishes the proof.

9.4.16 Lemma. Let wα be an α-Weyl element and let wβ be a β-Weyl element. Then w4
α

and w4
β act trivially on Uβ.

Proof. This is a consequence of Lemma 9.4.15.

Using the results of this subsection, we can show that all long root groups are
abelian if sufficiently many medium-length Weyl elements exist.

9.4.17 Lemma. Let bα ∈ U♯
α. Then U2β is generated by Uγ ∪ U2δ ∪ {bα}.

Proof. Let x2β ∈ U2β and let a−α, c−α ∈ U−α such that wα := a−αbαc−α is an
α-Weyl element. Put x2δ := xwα

2β ∈ U2δ. Then by Lemma 9.4.13 (a),

x2β = xw−1
α

2δ = [x2δ, b−1
α ]β.

Thus [x2δ, b−1
α ] = x2β[x2δ, b−1

α ]γ. It follows that

x2β = [x2δ, b−1
α ][x2δ, b−1

α ]−1
γ ∈ ⟨bα, Uγ, U2δ⟩.

This finishes the proof.

9.4.18 Lemma. If U♯
α is not empty, then U2β is abelian.

Proof. Choose an arbitrary element bα ∈ U♯
α. By the crystallographic commu-

tator relations, U2β commutes with Uγ ∪ U2δ ∪ {bα}. Hence it follows from
Lemma 9.4.17 that U2β commutes with itself.

9.5 Rank-3 Computations

9.5.1 Notation for this section. We denote by G a group which has crystallo-
graphic BCn-commutator relations with root groups (Uα)α∈BCn for some fixed
integer n ≥ 3. We assume that U♯

α is non-empty for all roots α and that G is
rank-2-injective.

The main result of this section is Proposition 9.5.13, which provides a formula
for the action of squares of Weyl elements. In contrast to root gradings of types A,
B, D and E, this formula does not obey the square formula for Weyl elements in
all cases. Instead, we will see an additional involution on the short root groups,
which we call the short involution. The short involution will later turn out to be
precisely the Jordan module involution on the Jordan module which coordinatises
the short root groups.

The main part of the proof of Proposition 9.5.13 is already done by the rank-2
computations in the previous section. We will need the rank-3 assumption only
to determine the action of medium-length Weyl elements on medium-length root
groups.

As usual, we can give an alternative proof of the braid relations for Weyl
elements using the main result of this action (Remark 9.5.14). This time, however,
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there is a caveat: We can only prove the braid relations modulo the center in this
way, and only for the standard rescaled root basis of BCn.

Before we begin, we make a quick observation.

9.5.2 Proposition. All long and medium-length root groups are abelian.

Proof. For long root groups, this follows from Lemma 9.4.18. Every medium-
length root is contained in a subsystem of type A2, so the second assertion holds
by Proposition 5.4.9.

9.5.A The Short Involution

9.5.3 Note. In the following, we will often say “let δ be a short root” and then
make statements about the long root 2δ. Since every long root can be written this
way, this simply means that we study an arbitrary long root and call it 2δ.

9.5.4 Definition (Short involution). Let β be a any short root. The (short) involu-
tion on Uβ is the map Uβ → Uβ, xβ 7→ x∗β := xw

β where w := w2
2β for an arbitrary

2β-Weyl element w2β. If the root β is not specified or if it is clear from the context,
we will sometimes call this map the short involution.

9.5.5 Note. It is of course misleading to talk about the short involution since there
is not only one such map but one for each short root group. Whenever we say
“the short involution has some property”, we mean “for every short root β, the
involution on Uβ has this property”.

9.5.6 Note. Recall from Remark 9.2.6 that to any group G′ with a Cn-grading
(U′

α)α∈Cn we can associate a canonical BCn-grading (U′
α)α∈BCn . This allows us

to define the short involution on Cn-graded groups as well. That is, for every
long root β of Cn we have an endomorphism of Uβ = Uβ/2 which is induced
by the conjugation with the square of an arbitrary β-Weyl element, and we call
this endomorphism the short involution on Uβ. Thus confusingly, the short
involution on Cn-graded groups is defined on the long root groups. We accept
this because, over the course of this chapter, we will nearly always work with the
more general case of BCn-graded groups and rarely refer to the special case of
Cn-graded groups.

9.5.7 Lemma. Let β be a short root. Then the short involution (on Uβ) has the following
properties:

(a) It is well-defined. That is, it does not depend on the choice of w2β.

(b) It is a group automorphism of Uβ of order 1 or 2. In particular, (x−1
β )∗ = (x∗β)

−1

for all xβ ∈ Uβ.
(c) If α, γ, δ are roots such that (α, β, γ, δ) is a BC2-quadruple, then [xδ, xα]∗β =

[xδ, x−1
α ]β for all xα ∈ Uα and xδ ∈ Uδ.

(d) Let ρ be any root and let wρ be a ρ-Weyl element. Then (x∗β)
wρ = (xwρ

β )∗ for all
xβ ∈ Uβ.

Proof. The first and the third assertion were proven in Lemma 9.4.12. Since the
short involution is simply conjugation by some group element, it is a group
automorphism. Further, by the formula in (c) and by Proposition 7.4.11, it is clear
that (x∗β)

∗ = xβ for all xβ ∈ Uβ, so the short involution is of order 1 or 2.
The last assertion is, again, essentially a consequence of the formula in (c)

and Proposition 7.4.11. Let xβ ∈ Uβ be arbitrary, choose roots α, γ, δ such that
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(α, β, γ, δ) is a BC2-quadruple and choose xα ∈ Uα, xδ ∈ Uδ such that xβ = [xδ, xα].
Then by Lemma 2.2.9, we have

(x∗β)
wρ = ([xδ, xα]

∗
β)

wρ = [xδ, x−1
α ]

wρ

β = [xwρ

δ , (x−1
α )wρ ]σρ(β)

= [xwρ

δ , (xwρ
α )−1]σρ(β) = [xwρ

δ , xwρ
α ]∗σρ(β) = ([xδ, xα]

wρ

β )∗ = (xwρ

β )∗.

This finishes the proof.

9.5.B The Action of Long Weyl Elements on Medium-length Root
Groups

9.5.8 Lemma. Let δ be a short root, let α be a medium-length root and let w2δ be a
2δ-Weyl element. If α and δ lie in a common BC2-subsystem, then w2

2δ acts on Uα by
inversion. Otherwise w2

2δ acts trivially on Uα.

Proof. The first assertion follows from Lemma 9.4.7. In the second case, α is
adjacent to 2δ and −2δ, so w2

2δ acts trivially on Uα.

9.5.9 Proposition. Let δ be a short root, let α be a medium-length root and let w2δ be a
2δ-Weyl element. Put w := w2

2δ and ε := (−1)⟨α|2δ⟩. Then xw
α = xε

α for all xα ∈ Uα.

Proof. It follows from Proposition 9.1.19 that ε = 1 if and only if α · δ = 0. By
Lemma 9.1.18, this means that ε = −1 if and only if α and δ lie in a common
BC2-subsystem. Thus the assertion is simply a reformulation of Lemma 9.5.8.

9.5.C The Action of Long Weyl Elements on Short Root Groups

9.5.10 Proposition. Let β, δ be two short roots, let w2δ be a 2δ-Weyl element and put
w := w2

2δ. Then the following hold:
(a) If β ∈ {±δ }, then w acts on Uβ through the short involution. That is, we have

xw
β = x∗β for all xβ ∈ Uβ.

(b) If β /∈ {±δ }, then w acts trivially on Uβ. In particular, we have xw
β = xε

β for all
xβ ∈ Uβ where ε := (−1)⟨β|δ⟩ = (−1)0 = 1.

Proof. The first statement is in fact the definition of the short involution, see
Definition 9.5.4. The second statement is trivial because β is crystallographically
adjacent to −δ and δ.

9.5.D The Action of Medium-length Weyl Elements on the Short Root
Groups

9.5.11 Proposition. Let α be a medium-length root, let δ be a short root, let wα be an
α-Weyl element and put w := w2

α. Then the following hold:
(a) If α and δ lie in a common BC2-subsystem, then w acts on Uδ through the short

involution. That is, we have xw
δ = x∗δ for all xδ ∈ Uδ.

(b) If α and δ do not lie in a common BC2-subsystem, then w acts trivially on Uδ. In
particular, we have xw

δ = xε
δ for all xδ ∈ Uδ where ε := (−1)⟨δ|α⟩ = 1.

Proof. At first, assume that α and δ lie in a common BC2-subsystem. Then there
exist roots β, γ such that either (α, δ, γ, β) or (α, β, γ, δ) is a BC2-quadruple. In the
first case, assertion (a) follows directly from Lemma 9.4.15. In the second case,
it is also a consequence of Lemma 9.4.15, but we have to use in addition that
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wα is also a (−α)-Weyl element (which holds by Proposition 2.2.6 (c)) and that
(−α, δ, γ, β) is a BC2-quadruple. This finishes the proof of (a).

Now assume that α and δ do not lie in a common BC2-subsystem. Then they
must be orthogonal by Lemma 9.1.18, so ⟨δ|α⟩ = 0 and δ is adjacent to α and −α.
This proves the second assertion.

9.5.E The Action of Medium-length Weyl Elements on Medium-length
Root Groups

In contrast to the previous subsections, we now have to use that n ≥ 3.

9.5.12 Proposition. Let α, γ be two medium-length roots and let wα be an α-Weyl
element. Put w := w2

α and ε := (−1)⟨γ|α⟩. Then xw
γ = xε

γ for all xγ ∈ Uγ.

Proof. Denote by Φ′ the root subsystem of BCn which is spanned by α and γ.
By Lemma 9.1.12 and because α, γ are both of medium length, Φ′ is of type A1,
A1 × A1, A2 or BC2. If it is of type A1 × A1, then α, γ are orthogonal (so ⟨γ|α⟩ = 0
and ε = 1) and w acts trivially on Uγ. If Φ′ is of type A1 or A2, then it lies in a
subsystem of type A2 and the assertion holds by Proposition 5.4.17.

Now assume that Φ′ is of type BC2. Then there exist short roots β, δ such that
(α, β, γ, δ) is a BC2-quadruple. Choose roots γ1 and γ2 as in Lemma 9.1.17 and
let xγ ∈ Uγ be arbitrary. Since (γ1, γ, γ2) is an A2-triple, it follows from Proposi-
tion 5.4.7 that there exist x1 ∈ Uγ1 and x2 ∈ Uγ2 such that xγ = [x1, x2]. Note that
by the choice of γ1, γ2 and by Lemma 5.4.13, w acts on Uγ1 and Uγ2 by inversion.
Thus xw

γ = [xw
1 , xw

2 ] = [x−1
1 , x−1

2 ], which equals [x1, x2] by Lemma 2.1.13. In other
words, w acts trivially on Uγ. Since α and γ are orthogonal, we further have
ε = 1, so this finishes the proof.

9.5.F Summary

We can summarise the results of this section as follows. By Note 9.4.4, all interest-
ing cases are covered.

9.5.13 Proposition. Let ρ, ζ be any two roots in BCn such that ρ is either short or
medium-length and such that ζ is either medium-length or long. Let wζ be a ζ-Weyl
element and put w := w2

ζ and ε := (−1)⟨ρ|ζ⟩. Then xw
ρ = xε

ρ for all xρ ∈ Uρ unless one
of the following conditions is satisfied:

(i) ρ is short, ζ is long and ζ ∈ {±2ρ}.
(ii) ρ is short, ζ is medium-length and ρ · ζ ̸= 0.

In each of these exceptional cases, we have ε = 1 and w acts on Uρ through the short
involution from Definition 9.5.4.

Proof. By the combined statements of Propositions 9.5.9 to 9.5.12, it only remains
to prove the final assertion on ε. In the first case, we have

⟨ρ|ζ⟩ = 2
ρ · ζ

ζ · ζ
= 2 · ±2

4
= ±1

and in the second case,

⟨ρ|ζ⟩ = 2
±1
2

= ±1.

Thus ε = 1 in both cases.

Using Proposition 9.5.13, we can verify the braid relations modulo the center.
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9.5.14 Remark (Braid relations). Recall from Theorem 2.5.10 that G satisfies the
braid relations. For the root systems A2 and B3, we gave alternative proofs of the
braid relations using the specific computations in root gradings of these types
(see Remarks 5.4.11 and 7.6.17). We can do the same for BC3, but with some
restrictions: Firstly, we can only verify the braid relations modulo Z(G) in this
way. Secondly, the proof only works for the standard rescaled root base ∆ of BCn
(see Remark 9.1.2), but not for a proper root base.

Let w12 be a (e1 − e2)-Weyl element and let w2 be a 2e2-Weyl element. In the
following, we denote congruence modulo Z(G) by the symbol ≡. We have to
show that

w12w2w12w2 ≡ w2w12w2w12.

Since
w2w12w2w12 = w12w2w12ww12w2w12

2 ,

it suffices to show that ww12w2w12
2 ≡ w2. Observe that w12w2w12 = ww−1

12
2 w2

12 and

that ww−1
12

2 commutes with w2 (because it is contained in ⟨U2e1 , U−2e1⟩). Hence

ww12w2w12
2 = ww2

12
2 . Thus it remains to show that w2w2

12 ≡ w2
12w2.

Let α be an arbitrary root. We have to show that the conjugation actions of
w2w2

12 and w2
12w2 on Uα are identical. At first, assume that α is of the form

α = ±ei ± ej for some distinct i, j ∈ [1, n], and put γ := ασ(2e2). Then by
Proposition 9.5.13, w2

12 acts on Uα by (−1)⟨α|e1−e2⟩. Further, since both α and
γ are of medium length, it follows from Proposition 9.1.19 that (−1)⟨α|e1−e2⟩ and
(−1)⟨γ|e1−e2⟩ have the same parity. Thus w2

12 acts on Uα in the same way that
it acts on Uγ. Since both the identity map and group inversion commute with
conjugation by w2, we conclude that the actions of w2w2

12 and w2
12w2 on Uα are

identical.
Now assume that α is of the form α = ±ei for some i ∈ [1, n]. If i ̸= 2, then w2

centralises Uα and thus w2w2
12 and w2

12w2 act identically on Uα. Now assume that
α = ±e2. Note that U±e2 = Uw12

±e1
. By what we have already shown, the actions of

w2w2
12 and w2

12w2 on U±e1 and on w12 are identical, so it follows that their actions
on U±e2 are identical as well. Finally, assume that α = ±2ei for some i ∈ [1, n].
Then Uα is contained in the root group U±ei and the assertion follows from what
we have already shown. This finishes the proof.

9.5.15 Note. Since we know from Theorem 2.5.10 that the braid relations are sat-
isfied in G (and not merely modulo the center), it follows from the computations
in Remark 9.5.14 that we actually have w2w2

12 = w2
12w2. In other words, the Weyl

elements w2 and ww
2 are identical where w := w2

12. Recall from Proposition 9.5.13
that w acts on U2e2 and U−2e2 by the short involution. Thus for any 2e2-Weyl
triple (a−2, b2, c−2), the Weyl triple (a∗−2, b∗2 , c∗−2) has the same associated Weyl
element. This is precisely the behaviour that we have observed in Remark 9.3.12.

9.6 Standard Signs

9.6.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system BCn in its standard representation (as in Remark 9.1.2). We denote by G a
group with a BCn-pregrading (Uα)α∈Bn , by R an alternative ring with a nuclear
involution σ and by J = (J, φ, π1, T1, ψ) a Jordan module over (R, σ). We assume
that there exists a coordinatisation (θα)α∈BCn of G by J with standard signs (in
the sense of the following Definition 9.6.2), and we fix this coordinatisation.
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9.6.2 Definition (Standard signs). Let n ∈ N≥2 and let G be a group with a
BCn-pregrading (Uα)α∈BCn . Let R be an alternative ring with nuclear involution
σ and let J = (J, φ, π1, T1, ψ) be a Jordan module over (R, σ). A coordinatisation
of G by J with standard signs is a family (θα)α∈BCn with the following properties:

(i) For all roots α, the map θα is an isomorphism from (R,+) to Uα if α is
medium-length and it is an isomorphism from (J, +̂) to Uα if α is short.

(ii) The following commutator relations, called the standard commutator relations,
are satisfied. For all pairwise distinct i, j, k ∈ [1, n] and all a, b ∈ R, we have

[θei−ej(a), θej−ek(b)] = θei−ek(ab),

[θei−ej(a), θej+ek(b)] = θei+ek

(
δσ

k<i(aδσ
k<j(b))

)
,

[θei−ej(a), θ−ek−ei(b)] = θ−ej−ek

(
−δσ

j<k(aσδσ
i<k(b))

)
,

[θei+ej(a), θ−ek−ei(b)] = θej−ek

(
δσ

i<j(a)δσ
i<k(b)

)
.

For all distinct i, j ∈ [1, n] and all a, b ∈ R, we have

[θei−ej(a), θei+ej(b)] = θei

(
T1(aδσ

i<j(b))
)
,

[θei−ej(a), θ−ei−ej(b)] = θ−ej

(
T1
(
aσδσ

i<j(b)
))

.

For all distinct i, j ∈ [1, n], all v ∈ M and all a ∈ R, we have

[θej(v), θei−ej(a)] = θei

(
φ(v,−aσ)

)
θei+ej

(
−δσ

i>j
(
aπ1(v)

))
,

[θej(v), θ−ei−ej(a)] = θ−ei

(
φ(v,−δσ

i>j(a))
)
θej−ei

(
π1(v)σδσ

i>j(a)
)
,

[θ−ei(v), θei−ej(a)] = θ−ej

(
φ(v, a)

)
θ−ei−ej

(
−δσ

i>j
(
aσπ1(v)

))
,

[θ−ei(v), θei+ej(a)] = θej

(
φ(v,−δσ

i>j(a))
)
θej−ei

(
δσ

i<j(a)π1(u)
)
.

For all distinct i, j ∈ [1, n] and all u, v ∈ M, we have

[θei(u), θej(v)] =

{
θei+ej

(
ψ(u, v)

)
if i < j,

θei+ej

(
−ψ(v, u)

)
if i > j,

[θei(u), θ−ej(v)] = θei−ej

(
−ψ(u, v)

)
[θ−ei(u), θ−ej(v)] =

{
θ−ei−ej

(
ψ(v, u)

)
if i < j,

θ−ei−ej

(
−ψ(u, v)

)
if i > j.

9.6.3 Note. The commutator relations in Definition 9.6.2 are exactly the same that
we have seen in Proposition 9.3.26, but expressed in the language of Jordan mod-
ules. In other words, if we take J to be a Jordan module of pseudo-quadratic type
as in Example 8.6.6, then the commutator relations in Definition 9.6.2 and Propo-
sition 9.3.26 are the same. In a similar way, the conjugation formulas in root
gradings of type BC are the same as the ones in in Lemmas 9.3.13 and 9.3.15,
but expressed in the language of Jordan modules. For example, the formula
θei(u, h)w = θej

(
ua−σ, a−1ha−σ

)
for all (u, h) ∈ T in Lemma 9.3.13 (d) should be

interpreted as θei(u)
w = θej

(
φ(u, a−σ)

)
for all u ∈ J.

We will show in Theorem 9.10.26 that every BCn-graded group for n ≥ 3 is
coordinatised by a Jordan module with standard signs.

As in Lemma 7.7.3, we can show that all long Weyl elements in BCn-graded
groups with a standard coordinatisation are balanced.

9.6.4 Lemma. Let δ be a short root and let w2δ be a 2δ-Weyl element in G. Choose
v′, v, v′′ ∈ J such that w2δ = θ−δ(v′)θδ(v)θ−δ(v′′). Then π1(v) is invertible with
inverse π1(v′) and v′ = v′′ = φ(v, π1(v)−σ). In particular, w2δ is weakly balanced.
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Proof. We prove this only for δ = e2, the remaining cases being similar. Let w2 be
a 2e2-Weyl element and let v′, v, v′′ ∈ J be such that w2 = θ−e2(v

′)θe2(v)θ−e2(v
′′).

For all a ∈ R, we know from Lemmas 9.4.5 (a) and 9.4.6 (a) and the standard
commutator relations that

θe1−e2(a)w2 = [θe1−e2(a), θe2(v)]e1+e2 = θe1+e2

(
aπ1(v)

)
,

θe1+e2(a)w2 = [θe1+e2(a), θ−e2(v
′)]e1−e2 = θe1−e2

(
−aπ1(v′)

)
.

Together with Proposition 9.5.13, this implies that

θe1−e2(−1R) = θe1−e2(1R)
w2

2 = θe1−e2

(
−π1(v)π1(v′)

)
,

θe1+e2(−1R) = θe1+e2(1R)
w2

2 = θe1+e2

(
−π1(v′)π1(v)

)
.

We infer that π1(v) is invertible with inverse π1(v′).
Further, we know from Lemma 9.4.5 (b) that

1G =
[
θe1−e2(a), [θe1−e2(a), θe2(v)]e1+e2

]
[θe1−e2(a), θe2(v)]e1

·
[
[θe1−e2(a), θe2(v)]e1+e2 , θ−e2(v

′′)
][θe1−e2 (a),θe2 (v)]e1

e1

for all a ∈ R where[
θe1−e2(a), [θe1−e2(a), θe2(v)]e1+e2

]
=
[
θe1−e2(a), θe1+e2

(
aπ1(v)

)]
= θe1

(
T1(aπ1(v)σaσ)

)
,

[θe1−e2(a), θe2(v)]e1 = θe1

(
−̂φ(v,−aσ)

)
,[

[θe1−e2(a), θe2(v)]e1+e2 , θ−e2(v
′′)
]

e1
=
[
θe1+e2

(
aπ1(v)

)
, θ−e2(v

′′)
]

e1

= θe1

(
−̂φ
(
v′′,−π1(v)σaσ

))
.

Observe that

θe1

(
−̂φ
(
v′′,−π1(v)σaσ

))
= θe1

(
φ
(
v′′,−

(
aπ1(v)

)σ))−1

= [θe2(v
′′), θe1−e2

(
aπ1(v)

)
]e1 ,

so this element lies in U2e1 because θe2(v
′′) lies in U2e2 . In particular, it commutes

with [θe1−e2(a), θe2(v)]e1 . Thus it follows from the previous computations that

0J = T1
(
aπ1(v)σaσ

)
−̂ φ(v,−aσ) −̂ φ

(
v′′,−π1(v)σaσ

)
for all a ∈ R. Putting a := 1R in this equation, we infer that

0J = v +̂ v −̂ v −̂ φ
(
v′′, π1(v)σ

)
= v −̂ φ

(
v′′, π1(v)σ

)
.

In other words,

v = φ
(
v′′, π1(v)σ

)
.

Applying the map φ( · , π1(v)−σ) to both sides of the equation, we obtain

φ
(
v, π1(v)−σ

)
= v′′.

Since the 2e2-Weyl element w2 = θ−e2(v
′)θe2(v)θ−e2(v

′′) is arbitrary, the same
conclusion holds for the Weyl element w2 = θ−e2(−̂v′′)θe2(−̂v)θ−e2(−̂v′), which
yields

φ
(
−̂v, π1(v)−σ

)
= −̂v′.

This implies that

v′ = φ
(
v, π1(v)−σ

)
= v′′

because φ is additive in the first component. This finishes the proof for the root
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2δ = 2e2. The remaining cases can be covered in a similar way.

We also have the usual identification between Weyl-invertible group elements
and “invertible” elements of the coordinatising algebraic structure.

9.6.5 Proposition. The following hold:
(a) Let α be a medium-length root. Define

wα(r) := θ−α(−r−1)θα(r)θ−α(−r−1)

for all invertible r ∈ R. Then the maps

R× → U♯
α, r 7→ θα(r) and R× → Mα, r 7→ wα(r)

are well-defined bijections. Here R×, U♯
α and Mα denote the sets of invertible

elements in R (in the sense of Definition 5.1.12), the set of α-invertible elements in
Uα and the set of α-Weyl elements, respectively.

(b) Let δ be a short root and put J× := { u ∈ J | π1(u) ∈ R× }. Define

wδ(u) := θ−δ

(
φ
(
u, π1(u)−σ

))
θδ(u)θ−δ

(
φ
(
u, π1(u)−σ

))
for all u ∈ J×. Then the maps

J× → U♯
δ, u 7→ θδ(u) and J× → Mδ, u 7→ wδ(u)

are well-defined surjections, and the first one is a bijection.
(c) The Weyl elements defined above satisfy the same conjugation formulas as in

Lemmas 9.3.13 and 9.3.15, but expressed in the language of Jordan modules. (See
Note 9.6.3.)

(d) Let ∆ be the standard rescaled root base of BCn and choose an element v0 ∈ J with
π1(v0) = 1R . Define A, B, η and µ as in Notation 9.3.19. Put wα := wα(1R)
for all medium-length roots in ∆ and wβ := wβ(v0) for the unique long root in ∆.
Then G is parametrised by (A × B, J,R) with respect to η × µ and (wδ)δ∈∆.

Proof. This can be proven in a similar way as Proposition 7.7.6. For the proof
of (b), we need Lemma 9.6.4.

9.6.6 Remark. It follows from Proposition 9.6.5 that G satisfies U♯
α = Uα \ {1G}

(the additional condition of being an RGD-system) if and only if R is a division
ring and J is anisotropic.

9.7 Admissible and Standard Partial Twisting Systems

9.7.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system BCn in its standard representation with its standard rescaled root base
∆ (as in Remark 9.1.2). We choose (R,R0, σ) := (C, R, σ), M := C, q : M → C

and f : M × M → R as in Remark 9.3.23. We define the BCn-graded group
EU(q) with root groups (Uα)α∈BCn as in Definition 9.3.7. We denote the root
isomorphisms from Constructions 9.3.4 and 9.3.5 by (θα)α∈Bn and the standard
system of Weyl elements from Definition 7.3.13 by (wδ)δ∈∆. Further, we denote
by (A, η, B, µ) the standard partial twisting system of type BCn in the sense of
the following Definition 9.7.2.

This section is structured similarly to section 7.8: Motivated by the elementary
unitary group from section 9.3, we introduce the standard partial twisting system
of type BC. We will show that it is admissible in the sense that it satisfies a
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number of desirable properties. In section 9.8, we will see that every admissible
partial twisting system satisfies the condition of the parametrisation theorem.

9.7.2 Definition (Standard partial twisting system). The standard partial twisting
system of type BCn (with respect to ∆) is the tuple (A, η, B, µ) where A := {±1}2,
B := {±1} and where η, µ are the ∆-parity maps from Notation 9.3.19. If G is
a group with a crystallographic BCn-grading, then the standard partial twisting
system for G (with respect to ∆) is the same tuple together with the additional
information that A acts on all root groups of G as follows: The first component
of A acts on all root groups by inversion while the second component acts
trivially on all medium-length root groups and by the short involution (from
Definition 9.5.4) on the short root groups.

Similar comments as in Note 7.8.3 and Remark 7.8.4 apply to Definition 9.7.2.

9.7.3 Remark. Let G be a group with a crystallographic BCn-grading (Ûα)α∈BCn

and let (A, η, B, µ) be the standard partial twisting system for G. We have to
verify that the action of A on the root groups of G is well-defined. For the action
on the medium-length root groups, this is evident. For the action on the short root
groups, we have to verify that the short involution is of order at most 2 and that
it commutes with the group inversion. Both assertions hold by Lemma 9.5.7 (b).
Further, the twisting action of A commutes with conjugation by Weyl elements
by Lemma 9.5.7 (d). We conclude that A satisfies all the axioms of a twisting
group for (G, (wδ)δ∈∆) (see Definition 4.3.13).

9.7.4 Note. The assumption in Definition 9.7.2 that G has a crystallographic BCn-
grading is necessary to ensure that the short involution exists. In the Bn-situation
in Definition 7.8.2, no such assumption was necessary.

9.7.5 Reminder (compare 7.8.5). Recall from Theorem 9.3.28 that (Uα)α∈BCn is
a crystallographic BCn-grading of EU(q). Thus we can apply all rank-2 and
rank-3 computations from the previous sections to EU(q). Further, we know
from Lemma 9.3.24 that EU(q) is parametrised by the standard parameter system
(A × B, T(M),R) (from Definition 8.6.20) with respect to η × µ and (wδ)δ∈∆ and
from Remark 7.3.22 that (A × B, T(M),R) is (η × µ)-faithful.

We now verify some basic properties of the standard partial twisting system
of type BC by performing computations in the group EU(q).

9.7.6 Lemma. η is braid-invariant and adjacency-trivial and µ is Weyl-invariant and
adjacency-trivial.

Proof. Using that (wδ)δ∈∆ satisfies the braid relations by Theorem 2.5.10, this can
be proven in the same way as Lemma 7.8.6.

9.7.7 Lemma. µ is semi-complete.

Proof. This follows from the fact that the only subgroups of B are {1} and B, just
like in Lemma 7.8.7.

9.7.8 Lemma. η × µ is transporter-invariant and η, µ are independent.
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Proof. At first, we consider the orbit of short roots. Put α̂ := e1. We can read
off from Figure 9.4 that (A × B)α̂→β is contained in {1A} × {±1A} × {1B} for all
short roots β. Further, we have (A × B)α̂→α̂ = {1A} × {±1A} × {1B} because

(η × µ)α̂,(e1−e2,e1−e2) = (η × µ)e1,e1−e2(η × µ)e2,e1−e2 = (1A, 1A, 1B)(1A,−1A, 1B)

= (1A,−1A, 1B).

Thus it follows from criterion 4.2.16 (iii) (with β̂ := α̂) that η × µ is transporter-
invariant on the orbit of short roots. The same computations apply for α̂ := 2e1,
so it is transporter-invariant on the orbit of long roots as well.

Now we consider the orbit of medium-length roots. Put α̂ := e1 + e2. Again,
we can read off from Figure 9.4 that (A × B)α̂→β is contained in {±1A} × {1A} ×
{±1B} for all medium-length roots β. Further,

(η × µ)α̂,e1−e2 = (−1A, 1A,−1B) and
(η × µ)α̂,(e2−e3,e2−e3) = (η × µ)e1+e2,e2−e3(η × µ)e1+e3,e2−e3

= (1A, 1A, 1B)(−1A, 1A, 1B) = (−1A, 1A, 1B).

Since these two elements generate {±1A} × {1A} × {±1B}, it follows that

(A × B)α̂→α̂ = {±1A} × {1A} × {±1B}.

Hence again by criterion 4.2.16 (iii) (with β̂ := α̂), we infer that η ×µ is transporter-
invariant on the orbit of medium-length roots.

Finally, the previous computations together with Remark 4.2.24 show that η
and µ are independent in the sense of Definition 4.2.23.

9.7.9 Lemma. Let ρ, ζ be any two roots in BCn such that ρ is either short or medium-
length and such that ζ is either medium-length or long. Then the following hold:

(a) If ρ is short, ζ is long and ζ ∈ {±2ρ}, then ηρ,ζζ = (1,−1).
(b) If ρ is short, ζ is medium-length and ρ · ζ ̸= 0, then ηρ,ζζ = (1,−1).

(c) In all cases not covered by the previous assertions, we have ηρ,ζζ =
(
(−1)⟨ρ|ζ⟩, 1

)
.

Proof. This follows from Proposition 9.5.13 because (A × B, T(M),R) is (η × µ)-
faithful. In the first two parts, we also use that the Jordan module involution on
T(M) (through which the second component of A acts on T(M)) coincides with
the short involution on EU(q) by Remark 9.3.18.

9.7.10 Lemma. Let α, γ be two medium-length roots which are orthogonal. Then
µα,σ(γ) = 1B if α and γ are crystallographically adjacent and µα,σ(γ) = −1B if they are
not.

Proof. At first, assume that α and γ are crystallographically adjacent. By Propo-
sition 1.3.5, there exist λ ∈ R>0 such that λγ is a root and a ∆-expression δ̄ of
λγ. Since γ is of medium length, we have λ = 1. By Lemma 9.1.21, α is crystallo-
graphically adjacent to −γ as well, so the γ-Weyl element wδ̄ in EU(q) centralises
Uα. On the other hand, we have

θα(r)wδ̄ = θα(ηα,δ̄µα,δ̄.r)

for all r ∈ R by Lemma 9.3.24. Since the parameter system (A × B, T(M),R) is
(η × µ)-faithful by Reminder 9.7.5, it follows that ηα,δ̄ = (1A, 1A) and µα,δ̄ = 1B.
This implies that µα,σ(γ) = 1B because δ̄ is a ∆-expression of γ.

Now consider the case that α and γ are not crystallographically adjacent.
By Lemma 9.1.22, there exists an element u of Weyl(BCn) such that (α, γ)u =
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(e1 + e2, e1 − e2). Let ρ̄ be any word over ∆ such that u = σ(ρ̄). Then it follows
from Lemma 4.2.8 that

µα,σ(γ) = µασ(ρ̄),σ(ρ̄)−1σ(γ)σ(ρ̄) = µαu,σ(γu) = µe1+e2,σ(e1−e2) = µe1+e2,e1−e2 .

We can read off from Figure 9.4 that µe1+e2,e1−e2 = −1B. Thus the claimed assertion
follows.

9.7.11 Definition (Admissible partial twisting system). Let G be a group with a
BCn-grading (Uα)α∈Bn and let (w′

δ)δ∈∆ be a ∆-system of Weyl elements in G. A
BCn-admissible partial twisting system for (G, (w′

δ)δ∈∆) is a partial twisting system
(A′, η′, B′, µ′) for (G, (w′

δ)δ∈∆) with the following additional properties:
(i) A′ = {±1}2 and B′ = {±1}.

(ii) The element (−1A′ , 1A′) acts on all root groups of G by inversion whereas
(1A′ ,−1A′) acts trivially on the medium-length root groups and by the short
involution on the short and long root groups.

(iii) η′ and µ′ are adjacency-trivial.
(iv) η′ satisfies the formulas in Lemma 9.7.9.
(v) If α, γ are orthogonal medium-length roots, then µα,γ is given by the formula

in Lemma 9.7.10.
We will sometimes refer to such objects as admissible partial twisting systems if the
root system BCn is clear from the context.

9.7.12 Proposition. Let G be a group with a BCn-grading (Uα)α∈Bn . Then for any ∆-
system (wδ)δ∈∆ of Weyl elements in G, the standard partial twisting system (A, η, B, µ)
is a BCn-admissible partial twisting system for (G, (wδ)δ∈∆). In particular, admissible
partial twisting systems exist for each group with a BCn-grading.

Proof. We have to check that (A, η, B, µ) satisfies the axioms of a partial twisting
system for (G, (wδ)δ∈∆) (see Definition 4.3.18) and the axioms in Definition 7.8.13.
These properties follow from the results in this section.

9.8 The Parametrisation

9.8.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system BCn in its standard representation with its standard rescaled root base
∆ (as in Remark 9.1.2). We denote by G a group which has crystallographic
BCn-commutator relations with root groups (Uα)α∈Bn such that U♯

α is non-empty
for all α ∈ Φ and such that G is rank-2-injective. We fix a ∆-system (wδ)δ∈∆ of
Weyl elements and we denote by (A, η, B, µ) a BCn-admissible partial twisting
system for (G, (wδ)δ∈∆).

The goal of this section is to show that G satisfies the conditions in the
parametrisation theorem with respect to the admissible partial twisting system
(A, η, B, µ). As in section 7.9, the main effort lies in the verification of stabiliser
compatibility, for which we will use the criterion from Proposition 4.6.3.

9.8.2 Proposition. G is square-compatible with respect to η.

Proof. This follows from Proposition 9.5.13 and Lemma 9.7.9. Here we use Ax-
iom 9.7.11 (ii).

9.8.3 Proposition. G is stabiliser-compatible with respect to (η, µ).
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Proof. Let α be any root. We know from Axiom 9.7.11 (iii) that η is α-adjacency-
trivial and we want to show that G is α-stabiliser-compatible. At first, assume
that α is short. Then it follows from Lemma 4.6.4 and Remark 4.6.5 that G is
α-stabiliser compatible. Since any long root group is contained in a short root
group, it follows that G is α-stabiliser-compatible for any long root as well.

Now assume that α is medium-length. Then there exist distinct i, j ∈ [1, n]
and signs ε i, ε j ∈ {±1} such that α = ε iei + ε jej. As in Proposition 4.6.3, we
consider the following sets:

O := { β ∈ Φ | α · β = 0 },
A := { β ∈ O | α is crystallographically adjacent to β and − β }
Ā := O \A.

By Lemma 9.1.20, we have

Ā = { ε iei − ε jej, ε jej − ε iei } and

A = Φ ∩ ⟨ek | k ∈ [1, n] \ {i, j}⟩.
Recall that µα,σ(β) = 1B for all β ∈ A and µα,σ(β) = −1B for all β ∈ Ā by
Axiom 9.7.11 (v). Further, observe that Ā contains exactly one ∆-positive root.
This implies that the condition in Proposition 4.6.3 for all ∆-positive roots β, β′ ∈
Ā is trivially satisfied (because β = β′). Hence all conditions in Proposition 4.6.3
hold. We conclude that G is α-stabiliser-compatible with respect to (η, µ) and
(wδ)δ∈∆.

9.8.4 Proposition. There exist an abelian group (R,+), a group (J, +̂) (both equipped,
as sets, with an action of A × B) and a family (θα)α∈BCn of maps such that the following
conditions are satisfied:

(i) (θα)α∈BCn is a parametrisation of G by (A × B, J,R) with respect to η × µ and
(wδ)δ∈∆.

(ii) The action of (−1A, 1A) on R and on J is given by group inversion, the action of
(1A,−1A) on R is trivial and the action of (1A,−1A) on J is given by the formula

θβ

(
(1A,−1A).v

)
= θβ(v)∗

for all v ∈ J and all short roots β where θβ(v)∗ denotes the short involution (from
Definition 9.5.4).

Proof. This follows from the parametrisation theorem (Theorem 4.5.16), whose
assumptions are satisfied by Propositions 9.8.2 and 9.8.3.

9.9 Computation of the Blueprint Rewriting Rules

9.9.1 Notation for this section. We fix an integer n ≥ 3 and consider the root
system BCn in its standard representation with its standard rescaled root base
∆ (as in Remark 9.1.2). We denote by G a group with a crystallographic BCn-
grading (Uα)α∈Bn . We fix a ∆-system of Weyl elements (wδ)δ∈∆ and denote its
standard Ĉn-extension by (wβ)β∈B̂n

. To simplify notation, we put wij := wei−ej

for all distinct i, j ∈ [1, n] and we put wi := w2ei for all i ∈ [1, n]. We denote the
standard partial twisting system for G (from Definition 9.7.2) by (A, η, B, µ), by
(R,+), (J, +̂) any groups which satisfy the assertion of Proposition 9.8.4 and
by (θα)α∈BCn the corresponding parametrisation of G. The groups R and J are



9.9. Computation of the Blueprint Rewriting Rules 297

equipped with actions of A × B, and we call the maps

σ : R → R, r 7→ rσ := −1B.r and · : J → J, v 7→ v := (1A,−1A).v

the involutions on R and J, respectively. Further, we choose elements v−1, v0, v1 ∈ J
such that wn = θ−en(v−1)θen(v0)θ−en(v1).

We will frequently use the following result without reference. It says that the
action of the Ĉn-extension (wβ)β∈Ĉn

of (wδ)δ∈∆ on the root groups is determined
by the values in Figure 9.4.

9.9.2 Proposition. Let α ∈ BCn and let β ∈ Ĉn. Let x ∈ R if α is of medium length
and let x ∈ J if α is short. Then θα(x)ŵβ = θσβ(α)(ηα,βµα,β.x) where ηα,β and µα,β are
the values in Figure 9.4.

Proof. Denote by β̄ the standard ∆-expression of β from Definition 9.1.24. Since
G is parametrised by (A × B, J,R) with respect to η × µ and (wδ)δ∈∆, we have

θα(x)ŵβ = θσβ(α)(ηα,β̄µα,β̄.x).

We know from Lemma 9.3.31 that ηα,β̄µα,β̄ = ηα,βµα,β, so the assertion follows.

9.9.3 Lemma. The involutions on R and J are group automorphisms with (rσ)σ = r
for all r ∈ R and v = v for all v ∈ J.

Proof. Since the involutions are induced by the actions of −1B and (1A,−1A),
respectively, and since both these elements have order 2, we have (rσ)σ = r for
all r ∈ R and v = v for all v ∈ J. Further, since (η × µ)e2,e1−e2 = (1,−1, 1), we
have

θe1(u +̂ v) = θe2(u +̂ v)w12 = θe2(u)
w12 θe2(v)

w12 = θe1(u)θe1(v) = θe1(u +̂ v)

for all u, v ∈ J, which proves that the involution on J is an automorphism.
Similarly,

θe2+e1

(
(r + s)σ

)
= θe2−e1(r + s)w1 = θe2−e1(r)

w1 θe2−e1(s)
w1

= θe2+e1(r
σ)θe2+e1(s

σ) = θe2+e1(r
σ + sσ)

for all r, s ∈ R.

9.9.4 Lemma. For all i ∈ [1, n], we have wi = θ−ei(v−1)θei(v0)θ−ei(v1).

Proof. By the choice of v−1, v0, v1, this is clear for i = n. Since

wi = wwni
n and (η × µ)±en,en−ei = (1, 1, 1)

the general assertion follows from Proposition 9.9.2.

9.9.5 Definition (Commutator maps). We define

· : R ×R → R, (a, b) 7→ ab := a · b,
π : J ×R → R, (v, a) 7→ π(v, a),

φ : J ×R → J, (v, a) 7→ φ(v, a),
T : R ×R → J, (a, b) 7→ T(a, b),
ψ : J × J → R, (u, v) 7→ ψ(u, v)
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to be the unique maps which satisfy the commutator relations

[θe1−e2(a), θe2−e3(b)] = θe1−e3(ab),

[θe2(v), θe1−e2(a)] = θe1+e2

(
−π(v, a)

)
θe1

(
φ(v,−aσ)

)
,

[θe1−e2(a), θe1+e2(b)] = θe1

(
T(a, b)

)
,

[θe1(u), θe2(v)] = θe1+e2

(
ψ(u, v)

)
for all a, b ∈ R and all u, v ∈ J.

9.9.6 Goal. In Definitions 9.10.8 and 9.10.19, we will use π and T to define maps
π1 and T1 by specialising one of the components to the element 1R (which is not
yet defined). See also Remark 8.6.19. Our goal is to show that · equips R with an
alternative ring structure with respect to which σ is a nuclear involution and that
the maps π1, φ, T1, ψ equip J with a Jordan module structure over (R, σ). The
involution · will turn out to be the Jordan module involution.

Parts of the following lemma are analogous to [Zha14, 3.4.8].

9.9.7 Lemma (Rank-2 computations, part 1). The following statements hold:
(a) The maps · , π, φ, T and ψ are additive in all components except (possibly) for the

first component of π and the second component of φ.
(b) For all u in the image of T, we have ψ(u, v) = 0 = ψ(v, u) and u +̂ v = v +̂ u

for all v ∈ J.
(c) π(u +̂ v, a) = π(u, a) + π(v, a) + ψ

(
φ(u, aσ), v

)
for all u, v ∈ J, a ∈ R.

(d) φ(u, a + b) = φ(u, a) +̂ φ(u, b) +̂ T
(
aσ, π(u, bσ)

)
for all u ∈ J, a, b ∈ R.

Proof. The maps · , T and ψ are bi-additive by Lemma 2.1.13 and Remark 2.1.14.
Further, π is additive in the second component by Lemma 7.4.4 (h) and φ is
additive in the first component by Lemma 7.4.4 (b). This proves (a).

Now let u be in the image of T. Then θe1(u) lies in [Ue1−e2 , Ue1+e2 ] and thus in
U2e1 . Since U2e1 commutes with Ue1 and with Ue2 , this implies that u +̂ v = v +̂ u
and ψ(u, v) = 0 for all v ∈ J. Further, since

θe2(u) = θe1(u)
w12 ∈ Uw12

2e1
= U2e2

we also have ψ(v, u) = 0 for all v ∈ J.
Now let u, v ∈ J and let a ∈ R. Then by Lemma 7.4.4 (d), we have

θe1+e2

(
π(u +̂ v, a)

)
= [θe2(u +̂ v), θe1−e2(−a)]e1+e2

= [θe2(u), θe1−e2(−a)]e1+e2

[
[θe2(u), θe1−e2(−a)]e1 , θe2(v)

]
· [θe2(v), θe1−e2(−a)]e1+e2

= θe1+e2

(
π(u, a)

)[
θe1

(
φ(u, aσ)

)
, θe2(v)

]
θe1+e2

(
π(v, a)

)
= θe1+e2

(
π(u, a) + π(v, a) + ψ

(
φ(u, aσ), v

))
.

It follows that (c) holds. Finally, let u ∈ J and let a, b ∈ R. Then by Lemma 7.4.4 (f),

θe1

(
φ(u, a + b)

)
=
[
θe2(u), θe1−e2

(
−(a + b)σ

)]
e1

=
[
θe2(u), θe1−e2(−bσ)θe1−e2(−aσ)

]
e1

=
[
θe2(u), θe1−e2(−aσ)

]
e1

[
[θe2(u), θe1−e2(−bσ)]e1+e2 , θe1−e2(−aσ)

]
· [θe2(u), θe1−e2(−bσ)]e1
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Here [
θe2(u), θe1−e2(−aσ)

]
e1
= θe1

(
φ(u, a)

)
,[

[θe2(u), θe1−e2(−bσ)]e1+e2 , θe1−e2(−aσ)
]
=
[
θe1+e2

(
π(u, bσ)

)
, θe1−e2(−aσ)

]
=
[
θe1−e2(−aσ), θe1+e2

(
π(u, bσ)

)]−1

= θe1

(
T
(
aσ, π(u, bσ)

))
,

[θe2(u), θe1−e2(−bσ)]e1 = θe1

(
φ(u, b)

)
.

Since the image of T centralises J, we conclude that

θe1

(
φ(u, a + b)

)
= θe1

(
φ(u, a) +̂ φ(u, b) +̂ T

(
aσ, π(u, bσ)

))
.

This finishes the proof.

The following computation will not be needed until the end of the following
section, but there is no reason to delay it either.

9.9.8 Lemma. For all pairwise distinct i, j, k ∈ [1, n] and all a, b ∈ R, the following
commutator relations hold:

[θei−ej(a), θej−ek(b)] = θei−ek(ab),

[θei−ej(a), θej+ek(b)] = θei+ek

(
δσ

k<i(aδσ
k<j(b))

)
,

[θei−ej(a), θ−ek−ei(b)] = θ−ej−ek

(
−δσ

j<k(aσδσ
i<k(b))

)
,

[θei+ej(a), θ−ek−ei(b)] = θej−ek

(
δσ

i<j(a)δσ
i<k(b)

)
.

Proof. We can conjugate the equations in Definition 9.9.5 by the same Weyl ele-
ments as in Lemma 7.10.7, but the result is slightly different because the values
of the involved parity maps are different.

9.9.9 Remark. We could perform the same computations as in Lemma 9.9.8 for
the other commutator maps. However, it will be more efficient to do so at a later
point, when we have acquired more information about the maps π, φ, T and ψ.
For the moment, we only note that for all i < j ∈ [1, n], conjugating the equations
in Definition 9.9.5 by w2jw1i (where wkk is interpreted as 1G) yields that

[θej(v), θei−ej(a)] = θei+ej

(
−π(v, a)

)
θei

(
φ(v,−aσ)

)
,

[θei−ej(a), θei+ej(b)] = θei

(
T(a, b)

)
,

[θei(u), θej(v)] = θei+ej

(
ψ(u, v)

)
for all a ∈ R and all u, v ∈ J.

9.9.10 Lemma (Rank-2 computations, part 2). (R,+, ·) is a ring. If we denote its
identity element by 1R , we have wij = θej−ei(−1k)θei−ej(1k)θej−ei(−1k) for all distinct
i, j ∈ [1, n].

Proof. We have already proven in Lemma 9.9.7 (a) that the multiplication satisfies
the distributive law. It remains to verify the existence of an identity element. This
can be done in the same way as for Bn in the proof of Lemma 7.10.9.

9.9.11 Lemma (Rank-2 computations, part 3). We have

φ(v, 1σ
R) = v and φ(v,−1σ

R) = v

for all v ∈ J and π(v0, a) = a for all a ∈ R.
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Proof. Let v ∈ J. Since w12 = θe2−e1(−1R)θe1−e2(1R)θe2−e1(−1R) by Lemma 9.9.10,
it follows from Lemma 9.4.13 (a) and Lemma 9.4.14 (a) that

θe1(v) = θe2(v)
w12 = [θe2(v), θe1−e2(1R)]e1 = θe1

(
φ(v,−1σ

R)
)
,

θe1(v) = θe2(v)
w21 = [θe2(v), θe1−e2(−1R)]e1 = θe1

(
φ(v, 1σ

R)
)
.

This proves the first assertion. Now let a ∈ R and recall from Lemma 9.9.4 that
w2 = θ−e2(v−1)θei(v0)θ−e2(v1). Thus by Lemma 9.4.5 (a),

θe1+e2(a) = θe1−e2(a)w2 = [θe1−e2(a), θe2(v0)]e1+e2 = [θe2(v0), θe1−e2(a)]−1
e1+e2

= θe1+e2

(
π(v0, a)

)
.

This proves the second assertion.

We will show in Lemma 9.10.4 that 1σ
R = 1R , thereby simplifying the formulas

in Lemma 9.9.11.
We can now compute the rewriting rules. As was the case for Bn, we will

only consider the BC3-subsystem spanned by { e1 − e2, e2 − e2, e3 }. See, however,
Remark 9.10.3.

9.9.12 Definition (Blueprint rewriting rules). We define the following rewriting
rules:

ψ12 : Ue1−e2 × Ue2−e3 × Ue1−e2 → Ue2−e3 × Ue1−e2 × Ue1−e2 ,(
θe1−e2(a), θe2−e3(b), θe1−e2(c)

)
7→
(
θe2−e3(c), θe1−e2(−b − ca), θe2−e3(a)

)
,

ψ−1
12 : Ue2−e3 × Ue1−e2 × Ue1−e2 → Ue1−e2 × Ue2−e3 × Ue1−e2 ,(
θe2−e3(a), θe1−e2(b), θe2−e3(c)

)
7→
(
θe1−e2(c), θe2−e3(−b − ac), θe1−e2(a)

)
,

φ13 : Ue1−e2 × U2e3 → U2e3 × Ue1−e2 ,(
θe1−e2(a), θ2e3(v)

)
7→
(
θ2e3(v), θe1−e2(a)

)
,

φ−1
13 : U2e3 × Ue1−e2 → Ue1−e2 × U2e3 ,(
θ2e3(v), θe1−e2(a)

)
7→
(
θe1−e2(a), θ2e3(v)

)
and

ψ23 : U2e3 × Ue2−e3 × U2e3 × Ue2−e3 → Ue2−e3 × U2e3 × Ue2−e3 × U2e3

which maps
(
θe3(v), θe2−e3(a), θe3(u), θe2−e3(b)

)
to(

bσ, φ(v,−bσ) +̂ u +̂ T(b, aσ),−π(v, b)− aσ − ψ
(

φ(v,−bσ) +̂ u, v
)
, v
)

.

9.9.13 Lemma. The maps ψ12, ψ−1
12 , φ13, φ−1

13 and ψ23 in Definition 9.9.12 are blueprint
rewriting rules (with respect to (wδ)δ∈∆′). Further, ψ12 and ψ−1

12 are inverses of each
other, and the same holds for φ13 and φ−1

13 .

Proof. The second statement about inverses is straightforward to verify. Further,
we know from Lemma 6.2.15 that φ13 and φ−1

13 are blueprint rewriting rules.
Observe that the rewriting rule ψ12 and its inverse are the same rules that we
have used for A3. Since the restriction of η to A2 = { ei − ei+1 | i ∈ [1, 2] } yields
the same parity map that we have used for A3 (see Remark 9.3.21), the same
computation as in Lemma 6.3.4 shows that ψ12 and ψ−1

12 are blueprint rewriting
rules. It remains to show that ψ23 is a blueprint rewriting rule. For this, let
a, b, c, d ∈ R, let v, u, h, k ∈ M and put

ᾱ := (e3, e2 − e3, e3, e2 − e3) and β̄ := (e2 − e3, e3, e2 − e3, e3).
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Further, we set x :=
(
θe3(v), θe2−e3(a), θe3(u), θe2−e3(b)

)
. On the one hand, we

have

γ̃ᾱ(x) = w3θe3(v)w23θe2−e3(a)w3θe3(u)w23θe2−e3(b)
= w3w23w3w23θe3(v)

w23w3w23 θe2−e3(a)w3w23 θe3(u)
w23 θe2−e3(b)

= w3w23w3w23θe2(v)
w3w23 θe2+e3(a)w23 θe2(u)θe2−e3(b)

= w3w23w3w23θe3(v)θe2+e3(−aσ)θe2(u)θe2−e3(b).

On the other hand, we put x′ :=
(
θe2−e3(c), θe3(h), θe2−e3(d), θe3(k)

)
. Then

γ̃β̄(x′) = w23θe2−e3(c)w3θe3(h)w23θe2−e3(d)w3θe3(k)

= w23w3w23w3θe2−e3(c)
w3w23w3 θe3(h)

w23w3 θe2−e3(d)
w3 θe3(k)

= w23w3w23w3θe2+e3(c)
w23w3 θe2(h)

w3 θe2+e3(d)θe3(k)

= w23w3w23w3θe2−e3(c
σ)θe2(h)θe2+e3(d)θe3(k).

In order to compare these two terms, we have to change the order of the prod-
uct in the first one, using the commutator formulas in Remark 9.9.9 as well as
Relation 1.1.11 (v):

θe3(v)θe2+e3(−aσ)θe2(u)θe2−e3(b)
= θe3(v)θe2+e3(−aσ)θe2−e3(b)θe2(u)
= θe3(v)θe2−e3(b)θe2+e3(−aσ)[θe2+e3(−aσ), θe2−e3(b)]θe2(u)
= θe3(v)θe2−e3(b)θe2+e3(−aσ)[θe2−e3(b), θe2+e3(aσ)]θe2(u)

= θe3(v)θe2−e3(b)θe2+e3(−aσ)θe2

(
u +̂ T(b, aσ)

)
= θe2−e3(b)θe3(v)[θe3(v), θe2−e3(b)]θe2

(
u +̂ T(b, aσ)

)
θe2+e3(−aσ)

= θe2−e3(b)θe3(v)θe2

(
φ(v, b)

)
θe2+e3

(
−π(v, b)

)
θe2

(
u +̂ T(b, aσ)

)
θe2+e3(−aσ)

= θe2−e3(b)θe2

(
φ(v, b) +̂ u +̂ T(b, aσ)

)
θe2+e3(−π(v, b)− aσ)

·
[
θe3(v), θe2

(
φ(v, b) +̂ u +̂ T(b, aσ)

)]
θe3(v)

= θe2−e3(b)θe2

(
φ(v, b) +̂ u +̂ T(b, aσ)

)
· θe2+e3

(
−π(v, b)− aσ − ψ

(
φ(v, b) +̂ u +̂ T(b, aσ), v

))
θe3(v)

Note that
ψ
(

φ(v, b) +̂ u +̂ T(b, aσ), v
)
= ψ

(
φ(v, b) +̂ u, v

)
by Lemma 9.9.7 (b). Recall that w3w23w3w23 = w23w3w23w3 by Theorem 2.5.10
and that G is rank-2-injective. We conclude that γ̃ᾱ(x) = γ̃β̄(x′) if the following
conditions are satisfied:

c = bσ, h = φ(v, b) +̂ u +̂ T(b, aσ),

d = v, k = −π(v, b)− aσ − ψ
(

φ(v, b) +̂ u, v
)
.

These conditions are equivalent to the equation x′ = ψ23(x), which shows that
ψ23 is a blueprint rewriting rule. This finishes the proof.

9.10 Blueprint Computations

Notation 9.9.1 continues to hold.

9.10.1 Remark (Blueprint computation). We now have everything ready to
perform the blueprint computation for BC3. Since B3 and BC3 have the same
Weyl group, we can use the same homotopy cycle as in Figure 7.8 on page 219.
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We begin with the tuple(
θ3(u), θ2(a), θ1(b), θ3(v), θ2(c), θ3(w), θ2(d), θ1(r), θ2(s)

)
where θ1 := θe1−e2 , θ2 := θe2−e3 , θ3 := θe3 and where u, v, w ∈ J and a, b, c, d, r, s ∈
R are arbitrary. Working down rows 1 to 12 in the homotopy cycle and applying
the respective blueprint rewriting rules in the process, we obtain a tuple(

θ2(x1), θ1(x2), θ2(x3), θ3(x4), θ2(x5), θ3(x6), θ1(x7), θ2(x8), θ3(x9)
)
.

Conversely, working up from row 23 to row 12, we obtain a tuple(
θ2(y1), θ1(y2), θ2(y3), θ3(y4), θ2(y5), θ3(y6), θ1(y7), θ2(y8), θ3(y9)

)
where xi, yi ∈ J for all i ∈ { 4, 6, 9 } and xi, yi ∈ R for all i ∈ { 1, 2, 3, 5, 7, 8 }. Now
xi = yi for all i ∈ [1, 9] by Theorem 6.2.8. The results of this computation can
be found in Figures 9.5 to 9.7. The intermediate steps of the above computation
have been performed with GAP [Gap].

(1) sσ = sσ, (2) − rσ − sσdσ = −rσ − (ds)σ, (3) dσ = dσ, (9) u = u

Figure 9.5: The equations “(i) xi = yi” for i ∈ { 1, 2, 3, 9 } in Remark 9.10.1.

φ(u,−sσ) +̂ v +̂ T(s, aσ) = φ(u,−sσ) +̂ v +̂ T(s, aσ),

−π(u, s)− aσ − ψ
(

φ(u,−sσ) +̂ v, u
)
= −π(u, s)− aσ − ψ

(
φ(u,−sσ) +̂ v, u

)
Figure 9.6: The equations x6 = y6 and x8 = y8 in Remark 9.10.1, respectively.

x4 = φ(u,−rσ) +̂ φ(v,−dσ) +̂ w +̂ T(d, cσ) +̂ T(r,−bσ − (adσ)σ)

y4 = φ
(

φ(u,−sσ) +̂ v +̂ T(s, aσ),−dσ
)
+̂ φ

(
u, rσ + (ds)σ

)
+̂ w

+̂ T(−r − ds, bσ) +̂ T
(
d, cσ + (sb)σ − [A(−rσ − (ds)σ)]σ

)
where A := −π(u, s)− aσ − ψ

(
φ(u,−sσ) +̂ v, u

)
,

x5 = −π(v, d)− cσ − ψ
(

φ(v,−dσ) +̂ w, v
)
+ ra

−
(
−π(u, r) + bσ + (adσ)σ − ψ(B, u)

)
sσ

where B := φ(u,−rσ) +̂ φ(v,−dσ) +̂ w +̂ T(d, cσ),

y5 = −π
(

φ(u,−sσ) +̂ v +̂ T(s, aσ), d
)
− cσ − (sb)σ

+
[(
−π(u, s)− aσ − ψ

(
φ(u,−sσ) +̂ v, u

))(
−rσ − (ds)σ

)]σ

− ψ
(
C +̂ w +̂ T(−r − ds, bσ), φ(u,−sσ) +̂ v +̂ T(s, aσ)

)
,

where C := φ
(

φ(u,−sσ) +̂ v +̂ T(s, aσ),−dσ
)
+̂ φ

(
u, rσ + (ds)σ

)
,

x7 = −π(u, r) + bσ + (adσ)σ − ψ
(

φ(u,−rσ) +̂ φ(v,−dσ) +̂ w +̂ T(d, cσ), u
)
,

y7 = π(u,−r − ds) + bσ + ψ
(

φ(u, rσ + (ds)σ) +̂ w, u
)

− d
(
−π(u, s)− aσ − ψ(φ(u,−sσ) +̂ v, u)

)
Figure 9.7: The values of x4, y4, x5, y5, x7, y7 in Remark 9.10.1.

9.10.2 Note. In the following computations, we have to be careful to remember
that the group J is not abelian. For example, it is not possible to “subtract v from
equation 6” to obtain

φ(u,−sσ) +̂ T(s, aσ) = φ(u,−sσ) +̂ T(s, aσ)
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because v lies “in the middle” of equation 6. (However, it is still true that
the identity above is a consequence of equation 6 because we can simply put
v := 0J .) Similarly, we will avoid refering to inverses in the group (J, +̂) whenever
possible.

As in section 7.11, the goal of this section is to show that equations 1 to 9 are
equivalent to the axioms of a Jordan module. Clearly, equations 1, 3 and 9 are
trivial.

9.10.3 Remark (Associativity for n ≥ 4). If n ≥ 4, then BCn contains a parabolic
subsystem of type A3 whose root groups are parametrised by the ring R. In this
case, the blueprint computations for A3 yield that R must be associative. How-
ever, this is the only identity that can be obtained from the assumption that n ≥ 4.
Note that there is no need to perform a (long) blueprint computation in a rank-4
subsystem: It suffices to perform two separate (short) blueprint computations
in the subsystems A3 and BC3. Of course, the blueprint computation for A3 has
already been done in section 6.3.

9.10.4 Lemma. The map σ is an involution of the ring R. In particular, 1σ
R = 1R .

Proof. The first assertion follows from equation 2 in Figure 9.5. The second
assertion is a consequence of the first one by Remark 8.3.5.

Lemma 9.10.4 clearly covers all non-trivial identities which can be derived
from Figure 9.5.

9.10.5 Lemma (Equation 6). We have φ(u, s) = φ(u, s) and T(a, b) = T(a, b) for all
a, b, s ∈ R and all u ∈ J.

Proof. The first assertion follows from equation 6 in Figure 9.6 by putting v := 0
and a := 0. The second assertion follows from the same equation by putting
u := 0 and v := 0.

9.10.6 Lemma (Equation 8). We have ψ(u, v) = ψ(u, v) and π(u, s) = π(u, s) for
all u, v ∈ J and all s ∈ R.

Proof. The first assertion follows from equation 8 in Figure 9.6 by putting s := 0.
Using Lemma 9.10.5, we can now simplify equation 8 to obtain

−π(u, s)− aσ − ψ
(

φ(u,−sσ) +̂ v, u
)
= −π(u, s)− aσ − ψ

(
φ(u,−sσ) +̂ v, u

)
.

This is equivalent to the second assertion.

Again, it is clear that Lemmas 9.10.5 and 9.10.6 cover everything that can be
deduced from Figure 9.6.

9.10.7 Lemma (Equation 7). The following hold for all u, v ∈ J and all a, b ∈ R:
(a) ψ(u, v) = ψ(u, v) = −ψ(u, v).
(b) ψ

(
φ(u, a), v

)
= aσψ(u, v).

(c) π(u, a) = aπ(u, 1R).
(d) (ab)π(u, 1R) + (ab)ψ(u, u) = a

(
bπ(u, 1R)

)
+ a
(
bψ(u, u)

)
.

Proof. Putting all variables except for u and w in equation 7 to zero, we see that
−ψ(w, u) = ψ(w, u). Together with Lemma 9.10.6 and the fact that · is of order
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at most 2, we infer that (a) holds. Putting all variables except for u, v, and d to
zero, we obtain

−ψ
(

φ(v,−dσ), u
)
= dψ(v, u),

which proves (b).
Observe that the term bσ + daσ appears on both sides of equation 7, that

ψ(w, u) = −ψ(w, u) by (a), that ψ
(
T(d, cσ), u

)
= 0R by Lemma 9.9.7 (b) and

that π(u, r) = π(u, r) and π(u, s) = π(u, s) by Lemma 9.10.6. It follows that
equation 7 is equivalent to x′7 = y′7 where

x′7 = −π(u, r)− ψ
(

φ(u,−rσ) +̂ φ(v,−dσ), u
)
,

y′7 = π(u,−r − ds) + ψ
(

φ(u, rσ + (ds)σ), u
)

− d
(
−π(u, s)− ψ(φ(u,−sσ) +̂ v, u)

)
.

Using (a), the bi-additivity of ψ and the additivity of π in the second component
as well as Lemma 9.10.5, we see that

x′7 = −π(u, r)− ψ
(

φ(u,−rσ), u
)
− ψ

(
φ(v,−dσ), u

)
= −π(u, r) + rψ(u, u) + dψ(v, u) and

y′7 = −π(u, r)− π(u, ds) + (r + ds)ψ(u, u) + dπ(u, s)− d
(
sψ(u, u)

)
+ dψ(v, u).

Cancelling the term −π(u, r) + rψ(u, u) + dψ(v, u) on both sides, it follows that
equation 7 is equivalent to

0R = −π(u, ds) + (ds)ψ(u, u) + dπ(u, s)− d
(
sψ(u, u)

)
.

Putting s := 1R , we infer that (c) is true. With this knowledge, equation 7 is
equivalent to

d
(
sπ(u, 1R)

)
+ (ds)ψ(u, u) = (ds)π(u, 1R) + d

(
sψ(u, u)

)
,

which is exactly (d).

We have seen in Lemma 9.10.7 (c) that the map π is uniquely determined by
the map π( · , 1R). This motivates the following definition.

9.10.8 Definition. We define a map π1 : J → R, u 7→ π(u, 1R).

9.10.9 Note. We will later see that a stronger version of Lemma 9.10.7 (d) holds:
In fact, we have (ab)π(u, 1) = a

(
bπ(u, 1)

)
and (ab)ψ(u, u) = a

(
bψ(u, u)

)
. We

will also see that R is alternative, so by Remark 8.2.8, these equations imply that
π(u, 1) and ψ(u, u) lie in the nucleus of R. Even more, we will see that ψ(u, v)
lies in the nucleus for all u, v ∈ J.

Once more, the proof of Lemma 9.10.7 shows that no further identities can
be obtained from equation 7. Now the only remaining equations are 4 and 5.
Even though equation 4 is shorter, we will continue with equation 5 since it is
an equation in R and not in J. This makes it easier to evaluate because (R,+) is
abelian.

9.10.10 Lemma (Equation 5, part 1). The following identities hold for all u, v ∈ J and
all a, s, d ∈ R:

(a) ψ(u, v)σ = −ψ(v, u).
(b) ψ

(
u, φ(v, a)

)
= ψ(u, v)a.

(c) π
(
T(s, a), d

)
= (ds)aσ + (da)sσ.
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Proof. We consider equation 5 in Figure 9.7. Putting all variables except for u, v
and r to zero, we obtain

0 =
(
ψ(v, u)rσ

)σ − ψ
(

φ(u, rσ), v
)
.

With r := 1R , Lemma 9.9.11 and Lemma 9.10.7 (a), this yields (a). Now (b) is a
consequence of (a) and the previous result 9.10.7 (b) because

ψ
(
u, φ(v, a)

)
= −ψ

(
φ(v, a), u

)σ
= −

(
aσψ(v, u)

)σ
= ψ(u, v)a.

Replacing all variables in equation 5 except for a, d and s by zero, we see that

−(adσ)σsσ = −π
(
T(s, aσ), d

)
+
(
aσ(ds)σ

)σ − ψ
(

φ
(
T(s, aσ),−dσ

)
, T(s, aσ)

)
.

Recall that the last summand on the right-hand side is trivial by Lemma 9.9.7 (b).
Thus we obtain

π
(
T(s, aσ), d

)
= (ds)a + (daσ)sσ.

This proves (c).

9.10.11 Remark. Let u, v ∈ J and a, b ∈ R. By the same computation as in
Note 8.5.2, it follows from Lemma 9.10.7 (b) and Lemma 9.10.10 (b) that(

aψ(u, v)
)
b = a

(
ψ(u, v)b

)
.

In other words, the image of ψ lies in the middle nucleus of R.

9.10.12 Lemma (Equation 5, part 2). The following hold for all u ∈ J:
(a) π1(u)σ = π(u)− ψ(u, u).
(b) π1(u) lies in the middle nucleus of R.

Proof. We consider equation 5 in Figure 9.7 and put all variables except for u, r
and s to zero. This yields

−
(
−π(u, r)− ψ

(
φ(u,−rσ), u

))
sσ =

((
−π(u, s)− ψ

(
φ(u,−sσ), u

))
(−rσ)

)σ

− ψ
(

φ(u, rσ), φ(u,−sσ)
)
.

We can simplify this equation to obtain

π(u, r)sσ − rψ(u, u)sσ = rπ(u, s)σ + rψ(u, u)sσ − rψ(u, u)sσ,

or in other words,
π(u, r)sσ − rψ(u, u)sσ = rπ(u, s)σ.

For r := s := 1R , this is exactly assertion (a). Using (a) and Lemma 9.10.7 (c), the
equation that we have just established simplifies as follows:(

rπ1(u)
)
sσ − rψ(u, u)sσ = r

(
sπ1(u)

)σ
= r
(
π1(u)sσ

)
− rψ(u, u)sσ.

This implies that
(
rπ1(u)

)
sσ = r

(
π1(u)sσ

)
. In other words, π1(u) lies in the

middle nucleus, which finishes the proof of (b).

9.10.13 Remark. Lemma 9.10.7 (c) together with Lemma 9.10.12 (a) yields that

π(u, a)σ =
(
aπ1(u)

)σ
= π1(u)aσ − ψ(u, u)aσ

for all u ∈ J and a ∈ R.

Recall the definition of nuclei from Definition 5.1.9.
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9.10.14 Lemma. The ring R is weakly alternative and satisfies

Nucl(R) = LNucl(R) = MNucl(R) = RNucl(R).

Further, the images of π1 and ψ lie in Nucl(R) and the involution σ is nuclear.

Proof. For any a ∈ R, we have π1(T(1R , a)) = a + aσ by Lemma 9.10.10 (c).
In particular, a + aσ lies in the image of π1, so it lies in the middle nucleus by
Lemma 9.10.12 (b). By the same computation as in Lemma 8.3.14, this implies
that

[d, aσ, s] = −[d, a, s] for all a, d, s ∈ R. (9.1)

Now let a, d, s ∈ R be arbitrary. On the one hand, Lemma 9.10.10 (c) yields that

π
(
T(s, a), d

)
= (ds)aσ(da)sσ.

On the other hand, it follows from Lemma 9.10.7 (c) that

π
(
T(s, a), d

)
= dπ

(
T(s, a), 1R

)
= d

(
saσ + asσ

)
.

Together, these two identities imply that [d, s, aσ] = −[d, a, sσ]. Invoking (9.1),
we infer that −[d, sσ, aσ] = [d, aσ, sσ]. This says precisely that the conditions of
Lemma 8.3.11 (b) are satisfied, so R is weakly alternative.

By Remark 8.2.8, it follows from the weak alternativity of R that nucleus, left
nucleus, middle nucleus and right nucleus coincide. Since we have already seen
in Remark 9.10.11, Lemma 9.10.12 (b) and (9.1) that the images of π1 and ψ and
all traces of R lie in the middle nucleus, the remaining assertions follow.

9.10.15 Lemma (Equation 5, part 3). We have π
(

φ(u, s), d
)
= (dsσ)π1(u)s for all

u ∈ J and d, s ∈ R.

Proof. We put all variables in equation 5 except for u, d and s to zero. This yields

0 = −π
(

φ(u,−sσ), d
)
+

((
−π(u, s)− ψ(φ(u,−sσ), u)

)(
−(ds)σ

))σ

− ψ

(
φ
(

φ(u,−sσ),−dσ
)
+̂ φ

(
u, (ds)σ

)
, φ(u,−sσ)

)
.

Using Lemmas 9.10.5 to 9.10.7 and also Lemma 9.10.10 (a), we observe that((
−π(u, s)− ψ(φ(u,−sσ), u)

)(
−(ds)σ

))σ

= −(ds)
(
−π(u, s)σ − ψ

(
φ(u,−sσ), u

)σ
)

= (ds)
(

π(u, s)σ − ψ
(
u, φ(u,−sσ)

))
= (ds)

(
π(u, s)σ + ψ

(
u, u
)
sσ
)
= (ds)π(u, s)σ + (ds)ψ(u, u)sσ

and

ψ

(
φ
(

φ(u,−sσ),−dσ
)
+̂ φ

(
u, (ds)σ

)
, φ(u,−sσ)

)
= ψ

(
φ
(

φ(u,−sσ),−dσ
)
, φ(u,−sσ)

)
+ ψ

(
φ
(
u, (ds)σ

)
, φ(u,−sσ)

)
= dψ

(
φ(u,−sσ), u

)
sσ − (ds)ψ(u, u)sσ

= −
(
dsψ(u, u)

)
sσ + (ds)ψ(u, u)sσ.
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Therefore,

0 = −π
(

φ(u,−sσ), d
)
+ (ds)π(u, s)σ + (ds)ψ(u, u)sσ

+
(
dsψ(u, u)

)
sσ − (ds)ψ(u, u)sσ

= −π
(

φ(u,−sσ), d
)
+ (ds)π(u, s)σ +

(
dsψ(u, u)

)
sσ.

Since

(ds)π(u, s)σ = (ds)π1(u)sσ − (ds)ψ(u, u)sσ and

(ds)ψ(u, u)sσ =
(
dsψ(u, u)

)
sσ

by Remark 9.10.13 and Lemma 9.10.14, respectively, we infer that

π
(

φ(u,−sσ), d
)
= (ds)π1(u)sσ.

Replacing s by −sσ, the assertion follows.

9.10.16 Proposition. The ring R is alternative.

Proof. Let s, d ∈ R and recall that the fixed element v0 ∈ J from Notation 9.9.1
satisfies π1(v0) = 1R by Lemma 9.9.11. Thus on the one hand, Lemma 9.10.15
yields that

π
(

φ(v0, s), d
)
= (dsσ)π1(v0)s = (dsσ)s.

On the other hand, and together with Lemma 9.10.7 (c), Lemma 9.10.15 implies
that

π
(

φ(v0, s), d
)
= d

(
π
(

φ(v0, s), 1R
))

= d
(
sσπ1(v0)s

)
= d(sσs).

Thus [d, sσ, s] = 0. Since the involution σ is nuclear by Lemma 9.10.14, it follows
that [d, s, s] = 0 for all s, d ∈ R. By an application of Lemma 8.3.11 (c), we
conclude that R is alternative.

9.10.17 Remark. It is not clear that no further identities can be deduced from
equation 5 in Figure 9.7. We verify this by simplifying this equation with our
recently obtained knowledge. For the simplification of y5, we begin with the first
summand. Repeatedly applying Lemma 9.9.7 (c) as well as the identities from
this section and Lemma 9.9.7 (b), we see that

π
(

φ(u,−sσ) +̂ v +̂ T(s, aσ), d
)

= π
(

φ(u,−sσ) +̂ v, d
)
+ π

(
T(s, aσ), d

)
+ ψ

(
φ(φ(u,−sσ) +̂ v, dσ), T(s, aσ)

)
= π

(
φ(u,−sσ) +̂ v, d

)
+ π

(
T(s, aσ), d

)
= π

(
φ(u,−sσ), d

)
+ π

(
v, d
)
+ ψ

(
φ
(

φ(u,−sσ), dσ
)
, v
)
+ π

(
T(s, aσ), d

)
= (ds)π1(u)sσ + dπ1(v)− dsψ(u, v) + (ds)a + (daσ)sσ.

Further,[(
−π(u, s)− aσ − ψ

(
φ(u,−sσ) +̂ v, u

))(
−rσ − (ds)σ

)]σ

= (r + ds)
(
π(u, s)σ + a + ψ

(
φ(u,−sσ) +̂ v, u

)σ)
= (r + ds)

(
π1(u)sσ − ψ(u, u)sσ + a − ψ

(
u, φ(u,−sσ) +̂ v

))
= (r + ds)

(
π1(u)sσ − ψ(u, u)sσ + a + ψ(u, u)sσ − ψ(u, v)

)
= (r + ds)

(
π1(u)sσ + a − ψ(u, v)

)
.
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Finally,

−ψ
(
C +̂ w +̂ T(−r − ds, bσ), φ(u,−sσ) +̂ v +̂ T(s, aσ)

)
= −ψ

(
C +̂ w, φ(u,−sσ) +̂ v

)
= −ψ(C, u)sσ + ψ(C, v) + ψ(w, u)sσ − ψ(w, v)

where, for any x ∈ J,

ψ(C, x) = ψ

(
φ
(

φ(u,−sσ) +̂ v +̂ T(s, aσ),−dσ
)
+̂ φ

(
u, rσ + (ds)σ

)
, x
)

= −dψ
(

φ(u,−sσ) +̂ v +̂ T(s, aσ), x
)
+ (r + ds)ψ(u, x)

= −dsψ(u, x) + dψ(v, x) + (r + ds)ψ(u, x).

Altogether, we conclude that

y5 = −(ds)π1(u)sσ − dπ1(v) + dsψ(u, v)− (ds)a − (daσ)sσ − cσ − bσsσ

+ r
(
π1(u)sσ + a − ψ(u, v)

)
+ (ds)

(
π1(u)sσ + a − ψ(u, v)

)
+ (ds)ψ(u, u)sσ − dψ(v, u)sσ − (r + ds)ψ(u, u)sσ

− dsψ(u, v) + dψ(v, v) + (r + ds)ψ(u, v) + ψ(w, u)sσ − ψ(w, v).

Note that all the summands (ds)π1(u)sσ, (ds)a, rψ(u, v) and (ds)ψ(u, u)sσ appear
once with a positive and once with a negative sign in the expression of y5, and
(ds)ψ(u, v) even appears twice with a positive and twice with a negative sign.
Thus we have

y5 = −dπ1(v)− (daσ)sσ − cσ − bσsσ + r
(
π1(u)sσ + a

)
− dψ(v, u)sσ − rψ(u, u)sσ + dψ(v, v) + ψ(w, u)sσ − ψ(w, v).

For the simplification of x5, we first observe that

ψ(B, u) = ψ
(

φ(u,−rσ) +̂ φ(v,−dσ) +̂ w +̂ T(d, cσ), u
)

= ψ
(

φ(u,−rσ) +̂ φ(v,−dσ) +̂ w, u
)

= −rψ(u, u)− dψ(v, u) + ψ(w, u).

Therefore,

x5 = −dπ1(v)− cσ + dψ(v, v)− ψ(w, v) + ra + rπ1(u)sσ − bσsσ − (daσ)sσ

− rψ(u, u)sσ − dψ(v, u)sσ + ψ(w, u)sσ.

It is now easy to verify that the equation x5 = y5 is equivalent to 0 = 0. Thus
there exist no other identities which can be deduced from equation 5.

9.10.18 Lemma (Equation 4, part 1). The following hold for all u ∈ J and a, b, c ∈ R:
(a) T(ab, c) = T(a, cbσ).
(b) T(a, b) = T(b, a).

(c) φ(u,−a) = φ(u, a).
(d) φ

(
T(a, b), c

)
= T(cσb, cσa).

(e) u +̂ v = v +̂ u +̂ T
(
1R , ψ(u, v)

)
.

Proof. We consider equation 4 in Figure 9.7. Putting all variables except for b, d
and s to zero, we obtain

0J = T(−ds, bσ) +̂ T(d, (sb)σ).

In other words, T(ds, bσ) = T(d, bσsσ). This proves (a).
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Replacing all variables in equation 4 except for a, d and r by zero, we see that

T(r,−(adσ)σ) = T(d,−((−aσ)(−rσ))σ).

This is equivalent to the identity T(r, daσ) = T(d, ra), which for a := 1R implies
that (b) holds.

Now we substitute each variable in equation 4 except for u and r by zero. In
this way, we obtain

φ(u,−rσ) = φ(u, rσ).

Since
φ(u,−rσ) = φ(u,−rσ)

by Lemma 9.10.5, assertion (c) follows.
Putting all variables in equation 4 except for a, d and s to zero, we obtain

0J = φ
(
T(s, aσ),−dσ

)
+̂ T

(
d,−

(
(−aσ)(−(ds)σ)

)σ).
Note that, by (c) and Lemma 9.10.5, we have

φ
(
T(s, aσ),−dσ

)
= φ

(
T(s, aσ), dσ

)
= φ

(
T(s, aσ), dσ

)
= φ

(
T(s, aσ), dσ

)
.

Hence

φ
(
T(s, aσ), dσ

)
= T

(
d, (ds)a

)
,

which together with (a) shows that (d) holds.
Next we put all variables in equation 4 except for u, v, d and r to zero. This

yields

φ(u,−rσ) +̂ φ(v,−dσ) = φ(v,−dσ) +̂ φ(u, rσ) +̂ T
(
d,−(

(
−ψ(v, u)

)
(−rσ))σ

)
.

Using Lemmas 9.10.5 and 9.10.6, we can remove most occurrences of · in this
equation to obtain

φ(u,−rσ) +̂ φ(v,−dσ) = φ(v,−dσ) +̂ φ(u, rσ) +̂ T(d,−rψ(v, u)σ).

Putting d := r := −1R and using (c) and Lemma 9.9.11, we infer that

u +̂ v = v +̂ u +̂ T
(
1R , ψ(u, v)

)
,

which is exactly the assertion of (e).

Motivated by Lemma 9.10.18 (a) and 9.10.18 (b), we make the following
definition, which is similar to Definition 9.10.8.

9.10.19 Definition. We define a map T1 : R → J, a 7→ T(a, 1R) = T(1R , a).

9.10.20 Remark. Let a, b, c ∈ R. Then Lemma 9.10.18 yields the following prop-
erties of the map T1:

φ
(
T1(a), c

)
= T(cσ, cσa) = T(1R , cσac) = T1(cσac),

T1(a) = T(1Ra, 1R) = T(1R , 1Raσ) = T1(aσ),

T1
(
(ab)c

)
= T

(
(ab)c, 1R

)
= T(ab, cσ) = T(a, cσbσ) = T

(
1R , (cσbσ)aσ

)
= T1

(
(cσbσ)aσ

)
= T1

(
a(bc)

)
.

Further, Lemma 9.10.10 (c) implies that

π1
(
T1(a)

)
= π

(
T(a, 1R), 1R

)
= a + aσ.

This last property is in some sense dual to the following Lemma 9.10.21 (a).
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9.10.21 Lemma (Equation 4, part 2). The following identities hold for all u ∈ J and
all s, d ∈ R:

(a) T1
(
π1(u)

)
= u + u = u + u.

(b) φ
(

φ(u, s), d
)
= φ(u, sd).

Proof. In this proof, we will only consider equation 4 in Figure 9.7 with all
variables except for u, d and s replaced by zero. This produces the following
identity:

0 = φ
(

φ(u,−sσ),−dσ
)
+̂ φ

(
u, (ds)σ

)
+̂ T

(
d,−

[(
−π(u, s)− ψ

(
φ(u,−sσ), u

))(
−(ds)σ

)]σ
)

Using the previously computed identities, we can simplify this equation to obtain

0 = φ
(

φ(u,−sσ),−dσ
)
+̂ φ

(
u, sσdσ

)
+̂ T

(
d, (ds)

(
−π(u, s)σ +

(
sψ(u, u)

)σ))
where

T
(

d, (ds)
(
−π(u, s)σ +

(
sψ(u, u)

)σ))
= T

(
d, (ds)

(
−π1(u)sσ + ψ(u, u)sσ − ψ(u, u)sσ

))
= T

(
1R ,−dsπ1(u)sσdσ

)
= T1(−dsπ1(u)sσdσ).

Replacing s and d by −sσ and −dσ, respectively, we conclude that

0 = φ
(

φ(u, s), d
)
+̂ φ(u, sd) +̂ T1

(
−dσsσπ1(u)sd

)
. (9.2)

Putting s := d := 1R , we obtain T1(π1(u)) = u +̂ u. Since π1(u) = π1(u) by
Lemma 9.10.6, it follows that T1(π1(u)) = u +̂ u holds as well. This finishes the
proof of (a).

Using (a) and Lemma 9.10.15, we see that

T1
(
−dσsσπ1(u)sd

)
= −̂T1

(
π1
(

φ(u, sd)
))

= −̂
(

φ(u, sd) +̂ φ(u, sd)
)

=
(
−̂φ(u, sd)

)
+̂
(
−̂φ(u, sd)

)
.

With this information, (9.2) becomes

0 = φ
(

φ(u, s), d
)
+̂
(
−̂φ(u, sd)

)
,

which proves (b).

9.10.22 Remark. Similarly as in Remark 9.10.17, we will now show that no further
identities can be deduced from equation 4 in Figure 9.7. The right-hand side of
this equation can be written as

y4 = φ(u, sσdσ) +̂ φ(v,−dσ) +̂ T1(dsadσ) +̂ φ(u, rσ + sσdσ)

+̂ w +̂ T1(−rb − dsb) +̂ T1(dc) +̂ T1(dsb)

+̂ T1

(
d, (r + ds)

[
−π(u, s)σ − a − ψ

(
φ(u,−sσ) +̂ v, u

)σ]).

By Lemma 9.9.7 (d),

φ(u, rσ + sσdσ) = φ(u, rσ) +̂ φ(u, sσdσ) +̂ T1
(
dsπ1(u)rσ

)
.
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Further,

T1

(
d, (r + ds)

[
−π(u, s)σ − a − ψ

(
φ(u,−sσ) +̂ v, u

)σ])
= T1

(
d, (r + ds)

[
−π1(u)σsσ − a +

(
sψ(u, u)

)σ − ψ(v, u)σ
])

= T1

(
d, (r + ds)

[
−π1(u)σsσ − a − ψ(u, u)sσ + ψ(u, v)

])
= T1

(
−rπ1(u)σsσdσ − radσ − rψ(u, u)sσdσ + rψ(u, v)dσ

)
+̂ T1

(
−dsπ1(u)σsσdσ − dsadσ − dsψ(u, u)sσdσ + dsψ(u, v)dσ

)
.

We conclude that

y4 = φ(u, sσdσ) +̂ φ(v,−dσ) +̂ T1(dsadσ) +̂ φ(u, rσ) +̂ φ(u, sσdσ)

+̂ T1
(
dsπ1(u)rσ

)
+̂ w +̂ T1(−rb − dsb) +̂ T1(dc) +̂ T1(dsb)

T1
(
−rπ1(u)σsσdσ − radσ − rψ(u, u)sσdσ + rψ(u, v)dσ

)
+̂ T1

(
−dsπ1(u)σsσdσ − dsadσ − dsψ(u, u)sσdσ + dsψ(u, v)dσ

)
.

Using that the image of T1 lies in the center of J by Lemma 9.9.7 (b), that the
summands T1(dsadσ) and T1(dsb) appear once with a positive and once with a
negative sign, and that

T1
(
−rπ1(u)σsσdσ

)
= T1

(
−
(
rπ1(u)σsσdσ

)σ)
= −T1

(
dsπ1(u)rσ

)
,

we can simplify this expression of y4 as follows:

y4 = φ(u, sσdσ) +̂ φ(v,−dσ) +̂ φ(u, rσ) +̂ φ(u, sσdσ) +̂ w +̂ T1(−rb)

+̂ T1(dc) +̂ T1(−radσ) +̂ T1
(
−rψ(u, u)sσdσ

)
+̂ T1

(
rψ(u, v)dσ

)
+̂ T1

(
−dsπ1(u)sσdσ

)
+̂ T1

(
−dsψ(u, u)sσdσ

)
+̂ T1

(
dsψ(u, v)dσ

)
.

The left-hand side of equation 4 is easier to simplify:

x4 = φ(u,−rσ) +̂ φ(v,−dσ) +̂ w +̂ T1(dc) +̂ T1(−rb) +̂ T1(−radσ).

Subtracting w +̂ T1(dc) +̂ T1(−rb) +̂ T1(−radσ) from the right side from both x4
and y4, we see that equation 4 is equivalent to x′4 = y′4 where

x′4 = φ(u,−rσ) +̂ φ(v,−dσ),

y′4 = φ(u, sσdσ) +̂ φ(v,−dσ) +̂ φ(u, rσ) +̂ φ(u, sσdσ) +̂ T1
(
−rψ(u, u)sσdσ

)
+̂ T1

(
rψ(u, v)dσ

)
+̂ T1

(
−dsπ1(u)sσdσ

)
+̂ T1

(
−dsψ(u, u)sσdσ

)
+̂ T1

(
dsψ(u, v)dσ

)
.

Observe that by Lemma 9.10.15 and Lemma 9.10.21 (a),

T1
(
−dsπ1(u)sσdσ

)
= T1

(
−π1

(
φ(u, sσdσ)

))
=
(
−̂φ(u, sσdσ)

)
+̂
(
−̂φ(u, sσdσ)

)
.

Thus

y′4 = φ(u, sσdσ) +̂ φ(v,−dσ) +̂ φ(u, rσ) +̂ φ(−̂u, sσdσ) +̂ T1
(
−rψ(u, u)sσdσ

)
+̂ T1

(
rψ(u, v)dσ

)
+̂ T1

(
−dsψ(u, u)sσdσ

)
+̂ T1

(
dsψ(u, v)dσ

)
.

Further, by Lemma 9.10.18 (e),

φ(u,−rσ) +̂ φ(v,−dσ) = φ(v,−dσ) +̂ φ(u,−rσ) +̂ T1
(
ψ
(

φ(u,−rσ), φ(v,−dσ)
))

= φ(v,−dσ) +̂ φ(u,−rσ) +̂ T1
(
rψ(u, v)dσ

)
,

φ(u, sσdσ) +̂ φ(v,−dσ) = φ(v,−dσ) +̂ φ(u, sσdσ) +̂ T1
(
−dsψ(u, v)dσ

)
.
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Therefore, subtracting φ(v,−dσ) +̂ T1(rψ(u, v)dσ) from the left side of the equa-
tion x′4 = y′4, we infer that equation 4 is equivalent to x′′4 = y′′4 where x′′4 =
φ(u,−rσ) and

y′4 = φ(u, sσdσ) +̂ φ(u, rσ) +̂ φ(−̂u, sσdσ) +̂ T1
(
−rψ(u, u)sσdσ

)
+̂ T1

(
−dsψ(u, u)sσdσ

)
.

Again by Lemma 9.10.18 (e), we have

φ(u, sσdσ) +̂ φ(u, rσ) = φ(u, rσ) +̂ φ(u, sσdσ) +̂ T1
(
dsψ(u, u)rσ

)
where

T1
(
dsψ(u, u)rσ

)
= T1

(
−dsψ(u, u)rσ

)
= T1

(
−rψ(u, u)σsσdσ

)
= T1

(
rψ(u, u)sσdσ

)
.

Therefore, y′′4 = φ(u, rσ). Since φ(u, rσ) = φ(u,−rσ) by Lemma 9.10.18 (c), it
follows that equation 4 is equivalent to 0J = 0J . Thus our computations are
finished.

9.10.23 Summary. It follows from the collection of identities in this section and
the previous one that R is an alternative ring, σ is a nuclear involution on R,
(M, φ, π1, T1, ψ) is a Jordan module over (R,R0, σ) and · is the Jordan module
involution on M. If n ≥ 4, then we know in addition that R is associative (see
Remark 9.10.3). Further, the computations in Remark 8.6.2 show that every Jordan
module satisfies all the identities that we have collected in this section and the
previous one. In other words, Jordan modules are exactly the algebraic structures
which are characterised by the results of the blueprint computations. It remains
to compute the commutator relations which are not covered by Lemma 9.9.8
and Remark 9.9.9, which is a straightforward task.

9.10.24 Proposition. (θα)α∈BCn is a coordinatisation of G by (M, φ, π1, T1, ψ) with
standard signs.

Proof. We already know from Lemma 9.9.8 and Remark 9.9.9 that the first set
of the standard commutator relations in Definition 9.6.2 holds and that the first
relation in each of the other sets holds if i < j. We begin with the second set of
relations. We already know that

[θei−ej(a), θei+ej(b)] = θei

(
T1(abσ)

)
holds for i < j. Conjugating this identity by wij, we obtain that

[θej−ei(−a), θei+ej(−bσ)] = θej

(
T1(abσ)

)
.

It follows that the first relation in the second set is true. Conjugating this identity
by wi, we infer that

[θ−ei−ej(δ
σ
i<j(a)), θej−ei(−δσ

i<j(b))] = θ−ei

(
T1(aδσ

i<j(b))
)
,

which proves the second relation.
Now we turn to the third set of equations. We already know that

[θej(v), θei−ej(a)] = θei

(
φ(v,−aσ)

)
θei+ej

(
−π(v, a)

)
.

It follows from this equation by conjugation with wji that

[θei(v), θej−ei(−a)] = θej

(
φ(v, aσ)

)
θei+ej

((
aπ1(v)

)σ).
We infer that the first equation holds. Conjugating it by wi, we see that

[θej(v), θ−ei−ej

(
δσ

i<j(a)
)
] = θ−ei

(
φ(v,−aσ)

)
θej−ei

(
π1(v)σaσ

)
.
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The second equation follows. Conjugating the first equation by wj, we compute
that [

θ−ej(v), θei+ej

(
δσ

i>j(a)
)]

= θei

(
φ(v,−aσ)

)
θei−ej

(
aπ1(v)

)
.

The fourth equation follows from this one by interchanging the roles of i and j.
Conjugating the fourth equation by wj, we obtain[

θ−ei(v), θei−ej

(
−δσ

i>j(a)
)]

= θ−ej

(
φ(v,−δσ

i>j(a))
)
θ−ei−ej

(
δσ

i>j
(
δσ

i<j(a)π1(u)
))

.

This proves the third equation.
Finally, we turn to the last set of equations. Once again, we already know that

[θei(u), θej(v)] = θei+ej

(
ψ(u, v)

)
.

Conjugating this identity by wij, we obtain that

[θei(u), θej(v)] = θei+ej

(
−ψ(u, v)σ

)
= θei+ej

(
ψ(v, u)

)
.

Thus the first relation holds. Conjugating this relation by wj, it follows that

[θei(u), θ−ej(v)] =

{
θei−ej

(
−ψ(u, v)

)
if i < j

θei−ej

(
ψ(v, u)σ

)
= θei−ej

(
−ψ(u, v)

)
if i > j,

proving the second identity. Finally, the last identity follows from the second one
by conjugation with wi.

9.10.25 Lemma. We have v−1 = v1 = v0.

Proof. By Proposition 9.10.24, we can apply Lemma 9.6.4. This yields that

v−1 = v1 = φ
(
v0, π1(v0)

−σ
)
.

Since π1(v0) = 1R by Lemma 9.9.11, the assertion follows.

We can now state the main result of this chapter. Recall the near-classification
results for Jordan modules in Theorems 8.7.20 to 8.7.22.

9.10.26 Theorem (Coordinatisation theorem for BCn). Let n ∈ N≥3 and let G be a
group with a crystallographic BCn-grading (Uα)α∈BCn . Then there exist an alternative
ring R with nuclear involution σ and a Jordan module J = (J, φ, π1, T1, ψ) over
(R, σ) such that G is coordinatised by J with standard signs. The ring R must be
associative if n ≥ 4 and the Jordan module J must be of type C if (Uα)α∈BCn arises
from a crystallographic Cn-grading as in Remark 9.2.6. Further, if we fix a ∆-system of
Weyl elements in G, then we can choose the root isomorphisms (θα)α∈BCn so that wδ =
θ−δ(−1R)θδ(1R)θ−δ(−1R) for all long simple roots δ and wδ = θ−δ(v0)θδ(v0)θ−δ(v0)
for the short simple root δ where v0 is some element of J with π1(v0) = 1 and · denotes
the Jordan module involution.

Summary of the proof. Choose the standard rescaled root base ∆ of BCn and a ∆-
system (wδ)δ∈∆ of Weyl elements. Denote by (A, η, B, µ) the standard admissible
partial twisting system for G, as in Definition 9.7.2. Then by Proposition 9.8.4,
there exist groups (R,+) and (J, +̂) on which A × B acts and a parametrisation
(θα)α∈BCn of G by (A × B, J,R) with respect to (wδ)δ∈∆ and η × µ. We can define
commutation maps as in Definition 9.9.5. By Summary 9.10.23, these maps equip
R with the structure of an alternative ring with nuclear involution (which must be
associative if n ≥ 4) and the group J with the structure of a Jordan module J. By
Proposition 9.10.24, (θα)α∈BCn is a coordinatisation of G by J with standard signs.
By Lemmas 9.9.10 and 9.10.25, the Weyl elements (wδ)δ∈∆ have the desired form.
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If (Uα)α∈BCn arises from a crystallographic Cn-grading, then pairs of orthogonal
short root groups commute (see Remark 9.2.7). This says precisely that ψ = 0, or
in other words, that J is of type C.



Chapter 10

Root Gradings of Type F

In this final chapter, we investigate F4-graded groups. Our goal is to show that
each such group is coordinatised by a multiplicative conic alternative algebra
A over a commutative associative ring k. These objects should be thought of
as suitable generalisations of composition algebras. If the base ring k is a field
of characteristic not 2 and the norm function on A is anisotropic, then A is
a composition division algebra in the classical sense (Lemma 10.2.17). These
assumptions are always satisfied for multiplicative conic alternative algebras
which coordinatise RGD-systems of type F4.

While an explicit standard representation for the root system F4 is available,
it is much less practical to work with than the standard representations for root
systems of types A, B, C, BC and D. This makes it much more difficult to concisely
write down all commutator relations in F4-graded groups. For this reason, we will
only specify the commutator relations which can be seen in some (standard) root
base. All other pairs of non-proportional roots adhere to commutator relations of
the same form, but with twisted signs.

Recall that the main work in the previous chapters consisted of rank-2 and
rank-3 computations. Since every proper root subsystem of F4 is of type A, B
or C (or a product of such root systems), most of the necessary computations
have already been performed in the previous chapters. In fact, we can directly
apply the coordinatisation theorems for B3-graded groups and C3-graded groups
to certain subgroups GB and GC of an arbitrary F4-graded group G. All that
remains to do is to investigate the “overlap” of GB and GC, by which we mean the
root groups which are contained in both groups. By comparing the commutator
relations of GB and GC on these root groups, we obtain additional identities which
turn the coordinatising structure of the short root groups into a multiplicative
conic alternative algebra.

The outline of this chapter is as follows. We introduce conic algebras and
related algebraic structures in sections 10.1 and 10.2 and the root system F4 in
section 10.3. In section 10.4, we construct an F4-graded group for each multi-
plicative conic algebra which is associative, commutative and faithful. We will
also define the notion of coordinatisations with standard signs and the standard
parity maps in this section. In section 10.5, we perform a few computations which
are specific to F4-gradings. In section 10.6, we introduce the standard partial
twisting system for F4-graded groups and show that every F4-graded group has
a parametrisation by a pair of abelian groups (A, k). In section 10.7, we use
the coordinatisation theorems for B3 and C3 to equip k with the structure of an
associative commutative ring and A with the structure of a multiplicative conic
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alternative algebra over k. We state this main result in Theorem 10.7.8.

10.1 Conic Algebras and Related Structures

10.1.1 Notation for this section. We denote by k an arbitrary commutative as-
sociative ring. Unless otherwise specified, all modules and algebras are defined
over k.

10.1.A Algebras and Scalar Involutions

Before we can define conic algebras, we should clarify what an algebra is. We
will also introduce the concept of algebras with scalar involutions, which are
closely related to conic algebras. (For a precise formulation of this statement, see
Remark 10.1.20.) While the notion of scalar involutions will not, strictly speaking,
be necessary to study conic algebras, it fits nicely into the framework of nuclear
and central involutions that we have introduced in section 8.3.

There are two equivalent ways of describing algebras, both of which will be
useful in the sequel: As rings equipped with a structural homomorphism, and as
modules equipped with a bilinear multiplication.

10.1.2 Definition (Algebra). A k-algebra is a pair consisting of a ring A and a
homomorphism k → Z(A), called the structural homomorphism of A and usually
denoted by strA . We will often simply call A a k-algebra, leaving the structural
homomorphism implicit. The elements of A which lie in the image of strA are
called scalars. Further, an algebra is called faithful if its structural homomorphism
is injective.

Recall from Definition 5.1.9 that elements in the center of a ring are not only
assumed to commute with all elements of the ring, but also to lie in the nucleus.

10.1.3 Remark (Algebras as modules). Given a k-algebra (A, strA), we can
define a right k-module structure on A by

⋆ : A × k → A, (a, λ) 7→ strA(λ)a = a strA(λ).

Since k is commutative, we can also consider A as a left k-module with the same
scalar multiplication, and we well use both notations depending on the circum-
stances. We will always use the symbol ⋆ to denote the scalar multiplication on a
k-algebra.

In fact, we could define a k-algebra to be a ring A together with a k-module
structure ⋆ on A such that the ring multiplication of A is k-bilinear. Then the
map strA : k → A, λ 7→ 1A ⋆ λ is a ring homomorphism, and its image lies in
the center of A because the ring multiplication is k-bilinear.

10.1.4 Notation. Let A be a k-algebra, let λ ∈ k and let a ∈ A. We will often
write λa for the element λ ⋆ a = strA(λ)a to simplify notation. In particular, we
will often write λ1A for strA(λ). However, we will never write λ for strA(λ)
because the map strA is not necessarily injective.

The notion of faithfulness for algebras agrees with the one for modules.

10.1.5 Lemma. Let A be a k-algebra. Then A is faithful as a k-algebra (that is, strA is
injective) if and only if it is faithful as a k-module (that is, if λ ∈ k satisfies λA = {0},
then λ = 0).



10.1. Conic Algebras and Related Structures 317

Proof. Assume that A is faithful as a module and let λ ∈ ker(strA). Then we
have λ ⋆ a = strA(λ)a = 0A · a = 0A for all a ∈ A. Thus λ = 0 because A is
faithful as a module. This shows that A is faithful as an algebra.

Now assume that A is faithful as an algebra and let λ ∈ k such that λ ⋆ a = 0A
for all a ∈ A. In particular, we then have strA(λ) = strA(λ) · 1A = λ ⋆ 1A = 0A .
Since A is faithful as an algebra, it follows that λ = 0, so A is faithful as a module
as well.

The property of a ring involution (in the sense of Definition 8.3.2) to be
compatible with the algebra structure can be phrased in two equivalent ways.

10.1.6 Lemma. Let A be a k-algebra and let σ be an involution of the ring A (in the
sense of Definition 8.3.2). Then the following assertions are equivalent:

(i) The map σ is linear with respect to the k-module structure of A.
(ii) The image of the structural homomorphism strA : k → A is contained in Fix(σ).

Proof. The involution σ is k-linear if and only if (a ⋆ λ)σ = aσ ⋆ λ for all λ ∈ k

and a ∈ A. Observe that

(a ⋆ λ)σ =
(
a strA(λ)

)σ
= strA(λ)σaσ and

aσ ⋆ λ = aσ strA(λ) = strA(λ)aσ

for all λ ∈ k and a ∈ A. Thus σ is clearly linear if the image of strA is contained
in Fix(σ). Conversely, by putting a := 1A in the equations above, we see that
strA(λ)σ = strA(λ) for all λ ∈ k if σ is linear.

With the notion of algebra involutions at hand, we can now define scalar
involutions.

10.1.7 Definition (Scalar involution). Let A be a k-algebra. An (algebra) in-
volution of A is an involution σ of the ring A which satisfies the equivalent
properties of Lemma 10.1.6. It is called scalar involution if all norms (in the sense
of Definition 8.3.8) are scalars. That is, aσa lies in strA(k) for all a ∈ A.

Since all scalars in a k-algebra A lie in the center, every scalar involution of A
is central (and thus nuclear) in the sense of Definition 8.3.12. Conversely, every
central involution can be regarded as a scalar involution, though we may have to
change the ground ring.

10.1.8 Lemma ([McC70, Section 9.5]). Let R be a ring with a central involution σ
and put Zσ(R) := Z(R) ∩ Fix(σ). Then R is a faithful Zσ(R)-algebra with scalar
involution σ.

Proof. Since Zσ(R) is a subring of R, the natural inclusion i : Zσ(R) → R pro-
vides a faithful Zσ(R)-algebra structure on R. For all λ ∈ Zσ(R) and all a ∈ R,
we have

(aλ)σ = λσaσ = λaσ = aσλ,

so σ is an involution with respect to this algebra structure on R. Further, all
norms of σ lie in the center of R because σ is central and they satisfy (aσa)σ = aσa
for all a ∈ R. We conclude that all norms lie in Zσ(R), which shows that σ is a
scalar involution
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10.1.9 Remark. Let A be a k-algebra with an algebra involution σ. Recall from
Remark 8.3.13 and Propositions 8.3.17 and 8.3.21 that all traces in A are nuclear
(or central) if σ is nuclear (or central), and that the converse is true if A is
alternative or if 2A is invertible. By the same argument as in Remark 8.3.13, all
traces in A are scalar if σ is scalar and the converse is true if 2A is invertible. If
we know that A is alternative, the assumption that 2A is invertible can be relaxed
slightly: It suffices that some trace in A is invertible, see [McC70, Section 9.5].

10.1.B Conic Algebras

10.1.10 Convention. In this section, we will denote the linearisation of any k-
quadratic form q : M → k by q as well, so that q(x, y) := q(x + y)− q(x)− q(y)
for all x, y ∈ M.

We can now turn to the protagonists of this section. In this subsection, we
will closely follow the exposition in [GPR], which in turn follows [McC85].

10.1.11 Definition (Conic algebra, [GPR, 16.1]). A conic algebra over k is a pair
(A, n) consisting of a k-algebra A and a k-quadratic form n: A → k (in the
sense of Definition 7.1.8) such that n(1A) = 1k and such that the following
Cayley-Hamilton equation is satisfied for all a ∈ A:

a2 − n(a, 1A)a + n(a)1A = 0A .

The map n is called the norm of A.

If (A, n) is a conic algebra, then (A, n, 1A) is a pointed quadratic module.
Thus by Note 7.1.24, we have corresponding conjugation and trace maps.

10.1.12 Definition (Conjugation and trace, [GPR, 16.1]). Let (A, n) be a conic
algebra over k. The map

tr : A → k, a 7→ n(a, 1A)

is called the trace of (A, n) and the map

· = −σ1A : A → A, a 7→ tr(a)1A − x

is called the conjugation of (A, n).

The fact that conic algebras are pointable quadratic modules also has the
following consequence.

10.1.13 Lemma. Assume that 2k is not a zero divisor and let (A, n) be a conic algebra
over k. Then A is a faithful k-algebra.

Proof. This follows from Lemma 7.1.15.

10.1.14 Note. In [McC70, Sections 2.1, 2.2] and [McC85, p. 86], an algebra A is
called of degree 2 if there exist a quadratic form n: A → k and a linear form
tr : A → k such that n(1A) = 1k, tr(1A) = 2k and

a2 − tr(a)a + n(a)1A = 0

for all a ∈ A. Thus conic algebras are precisely those algebras of degree 2 in
which tr(a) = n(a, 1A) for all a ∈ A. If A is an algebra of degree 2 with norm n
and trace tr, then n(a, 1A)1A = tr(a)1A for all a ∈ A by [McC85, (0.8)]. Hence
for faithful algebras, the two notions coincide. In particular, they coincide if 2k
is not a zero divisor because Lemma 10.1.13 is true for algebras of degree 2 as
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well. Even in the non-faithful setting, many results in this section remain true for
algebras of degree 2, but we will have no need to use this fact.

Here are two examples of conic algebras. The first one motivates the name of
the Cayley-Hamilton equation and the second one will be useful in the construc-
tion of F4-graded groups in section 10.4.

10.1.15 Example. Let A be the k-algebra of (2 × 2)-matrices over k and put
n(a) := det(a) for all a ∈ A. Then (A, n) is a conic algebra over k. Its trace is the
usual trace map

tr : A → k, a 7→ a11 + a22

and its conjugation is

· : A → A,
(

a11 a12
a21 a22

)
7→
(

a22 −a12
−a21 a11

)
.

The Cayley-Hamilton theorem says that any a ∈ A is a root of its characteristic
polynomial, and this is precisely the Cayley-Hamilton equation in this situation.

10.1.16 Example ([GPR, 16.2 (d)]). Put A := k × k and n(a, b) := ab for all
(a, b) ∈ A. Then (A, n) is a conic algebra over k with trace tr(a, b) = a + b and
conjugation (a, b) = (b, a) for all (a, b) ∈ A. Further, the linearisation of n is

A ×A → k,
(
(a, b), (c, d)

)
7→ ad + cb.

Observe that, forgetting the multiplication on A, the quadratic module (A, n) is
the hyperbolic plane (that is, the hyperbolic space of dimension 2) from Exam-
ple 7.1.13.

Conic algebras arise from F4-graded groups in the form of the following
parameter system.

10.1.17 Definition (Standard parameter system). Define A := B := {±1}. We
declare that A acts on A and k by inversion and that B acts trivially on k and
by conjugation on A (that is, by the switching involution). More precisely, this
means that

−1A.λ = −λ, −1A.a = −a, −1B.λ = λ, −1B.a = a

for all λ ∈ k and all a ∈ A. Then the triple (A × B,A, k) is called the standard
parameter system for (A, n).

We now investigate some basic properties of conic algebras. The following
identities are straightforward to verify.

10.1.18 Lemma ([GPR, 16.5]). Let (A, n) be a conic algebra over k. Then the following
hold:

(a) n(1A) = 1k and tr(1A) = 2k.
(b) 1A = 1A and a = a for all a ∈ A.
(c) aa = n(a)1A = aa and a + a = tr(a)1A for all a ∈ A.
(d) ab + ba = n(a, b)1A for all a, b ∈ A.
(e) n(a) = n(a), n(a, b) = n(a, b) and tr(a) = tr(a) for all a, b ∈ A.
(f) The conjugation and trace maps are k-linear.

In order to show that the conjugation on a conic algebra is an (algebra) invo-
lution, it only remains to show that it is anti-compatible with the multiplication.
This is, however, not true in general. Instead, we have the following characterisa-
tion.
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10.1.19 Lemma ([GPR, 16.10]). Let (A, n) be a conic algebra over k. Then the con-
jugation of A is an algebra involution if and only if tr(ab)1A = n(a, b)1A (that is,
n(ab, 1A)1A = n(a, b)) for all a, b ∈ A.

10.1.20 Remark (Scalar involutions and conic algebras, [McC85, 1.1]). Let A be
a k-algebra. For the scope of this remark, a linear involution of k is defined to be
the same thing as an algebra involution except that it is not assumed to be anti-
compatible with the ring multiplication. The notion of scalar linear involutions
is defined in the same way as for algebra involutions. It remains true in this
generality that all traces with respect to a scalar involution are scalars and that,
by the same proof as in Lemma 8.3.20, we have aaσ = aσa for all a ∈ A if σ is a
scalar linear involution.

Now assume that (A, n) is a conic algebra over k. Then Lemma 10.1.18 (c)
says precisely that the linear involution · is scalar, though of course it need not
be a ring involution. In particular, it is also central and nuclear.

Conversely, let A be a k-algebra with a scalar linear involution σ. Denote the
image of k in A under the structural homomorphism by k̃. (If A is a faithful
k-algebra, then we can identify k with k̃.) We define

tr : A → k̃, a 7→ Trσ(a) = a + aσ and n: A → k̃, a 7→ Nσ(a) = aaσ = aσa.

Then for all a ∈ A, we have

a2 − tr(a)a + n(a)1A = a2 − (a + aσ)a + aσa = 0A and
n(a, 1A) = (a + 1A)(a + 1A)σ − aaσ − 1A = a + aσ.

Hence (A, n) is a faithful conic k̃-algebra with trace tr and conjugation σ. In
particular, every faithful k-algebra with a scalar linear involution is also a faithful
conic algebra over k. Without faithfulness assumptions, however, it is not at all
clear that n and tr can be lifted from k̃ to k.

We conclude from the previous two paragraphs that faithful k-algebras with
a scalar linear involution are the same thing as faithful conic algebras.

The following identities, which are well-known in the theory of composition
algebras over a field, turn out to be equivalent.

10.1.21 Lemma ([GPR, 16.12]). Let (A, n) be a conic algebra over k. Then the follow-
ing assertions are equivalent:

(a) n(a, ba) = n(ba, a) = tr(b) n(a) for all a, b ∈ A.
(b) n(a, ab) = n(ab, a) = tr(b) n(a) for all a, b ∈ A.
(c) n(ab, c) = n(a, cb) for all a, b, c ∈ A.
(d) n(ab, c) = n(b, ac) for all a, b, c ∈ A.
(e) tr(ab) = n(a, b) and tr

(
(ab)c

)
= tr

(
a(bc)

)
for all a, b, c ∈ A.

10.1.22 Definition (Norm-associativity, [GPR, 16.12]). A conic algebra is called
norm-associative if it satisfies the equivalent conditions in Lemma 10.1.21.

By Lemma 10.1.19 and Lemma 10.1.21 (e), the conjugation in norm-associative
conic algebras is an algebra involution. It turns out that these algebras are
automatically flexible (in the sense of Definition 8.2.2) as well.

10.1.23 Lemma ([GPR, 16.14]). Let (A, n) be a norm-associative conic algebra over k.
Then A is flexible and the conjugation of A is an algebra involution.
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10.1.24 Note. The converse of Lemma 10.1.23 is nearly true: If (A, n) is a flex-
ible conic algebra whose conjugation is an involution, and if in addition A is
projective as a k-module, then (A, n) is norm-associative ([GPR, 16.14]). Further,
the projectiveness assumption can be dropped if the algebra structure on A is
faithful ([GPR, 16.15]).

In general, the norm of a conic algebra (A, n) is not uniquely determined by
the algebra A, as is illustrated by the family of examples in [GPR, Exercise 17.8].
However, we have the following result.

10.1.25 Lemma ([GPR, 16.16]). Let A be a k-algebra and let n, n′ : A → k be two
quadratic forms which turn A into a conic algebra. If A is projective as a k-module,
then n = n′.

The following property is eponymous in the theory of composition algebras.

10.1.26 Definition (Multiplicative conic algebra). A conic algebra (A, n) over k
is called multiplicative if its norm permits composition in the sense that n(ab) =
n(a) n(b) for all a, b ∈ A.

10.1.27 Lemma ([GPR, 17.2]). Multiplicative conic algebras are norm-associative. In
particular, they are flexible and their conjugation is a scalar algebra involution.

Proof. This holds by [GPR, 17.2], except for the assertion that the conjugation is
scalar, which holds by Remark 10.1.20.

In the following, we list some properties of conic algebras which are, in
addition, alternative.

10.1.28 Lemma (Kirmse’s identities, [GPR, 17.4]). Let (A, n) be a conic alternative
algebra. Then we have

a(ab) = n(a)b = (ba)a

for all a, b ∈ A.

10.1.29 Note ([GPR, 17.4]). Let (A, n) be a conic alternative algebra. One can
show that

n(aba) = n(a)2 n(b)

for all a, b ∈ A. In this sense, conic alternative algebras are “close to being
multiplicative”. Yet, [GPR, Exercise 17.8] provides examples of conic alternative
algebras which are not multiplicative. If A is projective as a k-module, however,
(A, n) is indeed multiplicative by [GPR, 17.6].

10.1.30 Lemma ([GPR, 17.5]). Let (A, n) be a conic alternative algebra over k and let
a ∈ A. Then a is invertible (in A) if and only if n(a) is invertible (in k). In this case,
a−1 = n(a)−1a and n(a−1) = n(a)−1.

10.1.C F4-data

We now define an algebraic structure that we call “F4-datum”. In section 10.7,
we will see that F4-data are precisely the kind of structures that coordinatise
F4-graded groups. The goal of this section is to show, on a purely algebraic
level, that an F4-datum contains the same information as a multiplicative conic
alternative algebra.
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10.1.31 Definition (F4-datum). An F4-datum is a tuple(
k,A, ⋆, n, ⟨ · | · ⟩, · , strA , φ

)
with the following properties:

(i) k is a commutative assocative ring.
(ii) A is an alternative ring and ⋆ is a right k-module structure on A (which, a

priori, is not assumed to be compatible with the ring structure).
(iii) n : A → k is a quadratic form with n(1A) = 1k, and ⟨ · | · ⟩ : A ×A → k is

the linearisation of n.
(iv) · : A → A is a nuclear involution of the ring A, and we have · = −σ1A

where σ1A denotes the reflection corresponding to 1A in the quadratic
module (A, n) (in the sense of Definition 7.1.20).

(v) strA : k → Nucl(A) is a map which satisfies a ⋆ λ = a ∗ strA(λ) for all
a ∈ A and λ ∈ k (where ∗ denotes the ring multiplication on A).

(vi) φ is the map k×A → k, (λ, a) 7→ λ n(a).
(vii) (k, φ, strA , ⟨ · |1A⟩, 0) is a Jordan module of type C over (A, · ).

10.1.32 Note. The definition of F4-data contains a lot of redundancy. For example,
the maps ⟨ · | · ⟩, · and φ are uniquely determined by the remaining part of
an F4-datum. For our application of F4-data in section 10.7, however, it will be
practical to keep this redundancy as part of the definition.

10.1.33 Proposition. Let (A, n) be a multiplicative conic alternative algebra over k
and define

φ : k×A → k, (λ, a) 7→ λ n(a).

Then (k,A, ⋆, n, ⟨ · | · ⟩, · , strA , φ) is an F4-datum where ⋆ denotes the k-module struc-
ture on A (from Remark 10.1.3), ⟨ · | · ⟩ denotes the linearisation of n, · is the conjuga-
tion on A, strA is the structural homomorphism of the k-algebra A and the k-module
structure on A is taken to be the one induced by the k-algebra structure.

Proof. Axioms 10.1.31 (i), 10.1.31 (ii), 10.1.31 (iii) are trivial. The conjugation map
· is a nuclear involution by Lemma 10.1.27 and it equals −σ1A by its definition.
Hence Axiom 10.1.31 (iv) is satisfied. Further, Axioms 10.1.31 (v) and 10.1.31 (vi)
hold by the definitions of ⋆ and of φ, respectively. Denote by tr := ⟨ · |1A⟩ the
trace of the conic algebra (A, n). It remains to show that (k, φ, strA , tr, 0) satisfies
the axioms of a Jordan module of type C over (A, · ) from Definition 8.6.1. That
is, π1 := strA plays the role of the Jordan module projection and T1 := tr plays
the role of the Jordan module trace.

At first, we verify that the maps φ, π1 and T1 have the desired properties in
the first paragraph of Definition 8.6.1. We will always denote the square-scalar
multiplication on R from Example 8.4.2 by ω. It is clear that φ is additive in
the first component and weakly quadratic in the second component, so (k, φ)
is a square-module. Since k is associative and n admits composition, it is a
multiplicative square-module.

Since A is a k-algebra, the image of strA = π1 lies in the center and thus in
the nucleus of A. Further, strA preserves the Jordan scalar multiplication: For all
a ∈ A and λ ∈ k, we have

strA
(

φ(λ, a)
)
= strA

(
λ n(a)

)
= strA(λ) strA

(
n(a)

)
= strA(λ)aa

= a strA(λ)a = aπ1(λ)a = ω
(
π1(λ), a

)
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by Lemma 10.1.18 (c) and because k is commutative associative.
It is clear that T1 is additive. Now let a, b ∈ A. Then

T1
(
ω(a, b)

)
= tr

(
bab
)
= n(bab, 1A),

which by Lemma 10.1.21 (d) equals n(ab, b). By Lemma 10.1.21 (a), this term
equals tr(a) n(b). It follows that

T1
(
ω(a, b)

)
= tr(a) n(b) = φ

(
T1(a), b

)
,

so T1 is a homomorphism of square-modules. We conclude that the maps φ, π1
and T1 have all the desired properties in the first paragraph of Definition 8.6.1.

We now turn to the remaining axioms in Definition 8.6.1. Since · is an
algebra involution, the image of strA lies in Fix( · ) (by Lemma 10.1.6), which im-
plies that Axiom 8.6.1 (ii) holds. Axiom 8.6.1 (i) holds by Lemma 10.1.18 (e)
and Lemma 10.1.21 (e), the latter being applicable by Lemma 10.1.27. Ax-
iom 8.6.1 (iii) is trivial because the Jordan module skew-hermitian form is zero.

Now consider Axiom 8.6.1 (iv). Equation (8.1) holds because π1 = strA is
additive and equation (8.3) holds because (k,+) is abelian. Further, for all λ ∈ k

and a, b ∈ A, we have

φ(λ, a + b) = λ n(a + b) = λ n(a) + λ n(b) + λ n(a, b)

where

λ n(a, b) = λ n(b, a) = λ n(b, a) = n
(
b strA(λ)a, 1A

)
= T1

(
bπ1(λ)a

)
by Lemma 10.1.18 (e). This shows that equation (8.2) holds as well, and so
Axiom 8.6.1 (iv) is satisfied.

By Lemma 10.1.18 (c), we have

π1
(
T1(a)

)
= strA

(
tr(a)

)
= tr(a)1A = a + aσ

for all a ∈ A, so Axiom 8.6.1 (v) holds. Finally, Axiom 8.6.1 (vi) is satisfied for
v0 := 1k because π1(1k) = strA(1k) = 1A .

10.1.34 Proposition. Let (k,A, ⋆, n, ⟨ · | · ⟩, · , strA , φ) be an F4-datum. Then the
following hold:

(a) The ring A together with the k-module structure ⋆ is a k-algebra (in the sense of
Remark 10.1.3), and its structural homomorphism is exactly strA .

(b) (A, n) is a multiplicative conic alternative algebra over k with conjugation · .

Proof. Putting a := 1A in Axiom 10.1.31 (v), we see that

strA(λ) = 1A ∗ strA(λ) = 1A ⋆ λ (10.1)

for all λ ∈ k. In particular, strA(1k) = 1A and strA is additive. Further, it follows
from Axiom 10.1.31 (v) that

strA(λµ) = 1A ∗ strA(λµ) = 1A ⋆ λµ = (1A ⋆ λ) ⋆ µ = strA(λ) ⋆ µ

for all λ, µ ∈ k. By another application of Axiom 10.1.31 (v), we infer that

strA(λµ) = strA(λ) ∗ strA(µ)

for all λ, µ ∈ k, so strA is a homomorphism of rings. Further, since strA is the
Jordan module projection in an abelian Jordan module (by Axiom 10.1.31 (vii)),
we know from Axiom 8.6.1 (ii) that strA(λ) = strA(λ) for all λ ∈ k. Moreover,
· is k-linear because it equals −σ1A by Axiom 10.1.31 (iv). In other words,
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a ⋆ λ = a ⋆ λ for all a ∈ A and λ ∈ k. We infer that

strA(λ) ∗ a = strA(λ) ∗ a = a ∗ strA(λ) = a ⋆ λ = a ⋆ λ = a ∗ strA(λ)

for all a ∈ A and λ ∈ k. This says precisely that the image of strA is contained
in the center of A. Thus (A, strA) is a k-algebra, and by (10.1), its k-scalar
multiplication is exactly ⋆. This proves (a).

We now prove that (A, n) is a conic algebra. We already know from Ax-
iom 10.1.31 (iii) that n is a quadratic form with n(1A) = 1k, so it only remains to
verify the Cayley-Hamilton equation. As usual, we denote the square-scalar mul-
tiplication on A by ω. Using that the Jordan module projection strA preserves
the square-scalar multiplications by Axiom 10.1.31 (vii), we find that

strA
(
n(a)

)
= strA

(
φ(1k, a)

)
= ω

(
strA(1k), a

)
= a strA(1k)a = aa

for all a ∈ A. Together with Axioms 8.6.1 (v) and 10.1.31 (v) and the fact that the
image of strA is central, this implies that

a ⋆ ⟨a|1A⟩ = a strA(⟨a|1A⟩) = strA(⟨a|1A⟩)a = (a + a)a

= a2 + aa = a2 + strA
(
n(a)

)
= a2 + 1A ⋆ n(a)

for all a ∈ A. This says precisely that the Cayley-Hamilton equation is satisfied,
so (A, n) is a conic algebra. By Axiom 10.1.31 (ii), it is also alternative.

It remains to show that (A, n) is multiplicative. By the definition of φ (see
Axiom 10.1.31 (vi)) and the fact that it is the scalar multiplication of the multi-
plicative square-module k by Axiom 10.1.31 (vii), we have

n(ab) = φ(1k, ab) = φ
(

φ(1k, a), b
)
= φ

(
n(a), b

)
= n(a) n(b)

for all a, b ∈ A. Thus n permits composition, which finishes the proof.

10.2 Composition Algebras and Pre-composition Algebras

In the previous section, we have seen that multiplicative conic alternative alge-
bras – that is, the objects that will turn out to coordinatise F4-gradings – have
many desirable properties. In this section, we address the question which ad-
ditional properties a conic algebra should satisfy in order to deserve the name
“composition algebra”. There exists no standard terminology for these objects
over commutative associative rings, but we will follow the conventions of [GPR,
Chapter IV]. Composition algebras play no particular role in our treatment of
F4-graded groups (except for the fact that they are special cases of multiplicative
conic alternative algebras), so the content of this subsection will not be needed in
the subsequent parts of this chapter.

10.2.A Regularity Conditions on Quadratic Forms

Before can state the definition of composition algebras, we have to introduce the
notions of regular and non-singular quadratic forms. These properties replace the
usual requirement of non-degeneracy in the classical theory, which is inadequate
over rings because it is not stable under base change. Again, there is no standard
terminology. In the following, we present the conventions of [GPR, 11.9, 11.11].

10.2.1 Definition (Radical). Let M be a k-module and let f : M × M → k be a
symmetric k-bilinear form. The radical of f is

Rad( f ) := { v ∈ M | f (u, v) = 0 for all u ∈ M }.
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If q : M → k is a k-quadratic form with linearisation f , then the radical of q is

Rad(q) := { v ∈ Rad( f ) | q(v) = 0 }.

10.2.2 Definition (Dual module). Let M be a k-module. The dual of M is M∗ :=
Homk(M, k). If f : M × M → k be a symmetric k-bilinear form, we put

f̃ : M → M∗, v 7→
(
u 7→ f (v, u)

)
.

10.2.3 Definition (Regularity conditions on quadratic forms). Let M be a k-
module, let q : M → k be a k-quadratic form and denote by f : M × M → k its
linearisation.

(a) q is called non-degenerate if Rad(q) is zero.
(b) q is called weakly regular if Rad( f ) is zero.
(c) q is called non-singular if M is projective and for all k-algebras K which are

fields, the scalar extension qK is non-degenerate.
(d) q is called regular if M is finitely generated projective and the map f̃ is an

isomorphism.

10.2.4 Remark (Base change). Let M be a k-module and let q : M → k be a k-
quadratic form. For any k-algebra R, the base change (M∗)R of the dual module
can be identified with the dual (MR)

∗ of the base change in a canonical way
if M is finitely generated projective (see [GPR, 9.15]). From this it follows that
the notion of regularity is invariant under base change. The same holds for
non-singularity. However, non-degeneracy is not invariant under base change,
and this defect is precisely the motivation to introduce non-singularity.

Some important relations between the regularity conditions can be found in
Figure 10.1. They are either straightforward to prove or can be found in [GPR,
11.9, 11.11].

regular weakly regular

non-singular non-degenerate

k field, dim M<∞

k field

k field, char(k) ̸=2,
dim M<∞

k field,
char(k) ̸=2

Figure 10.1: The relationship between the regularity conditions for a quadratic
form q : M → k.

10.2.B Composition Algebras

With the notions of non-singularity and regularity at hand, we can now define
composition algebras over commutative associative rings.

10.2.5 Definition (Composition algebra, [GPR, 19.5]). A composition algebra over
k is a k-algebra A which satisfies the following conditions.

(a) A is projective as a k-module.
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(b) The rank function spec(k) → N0 ∪ {∞}, p 7→ rank(Ap) is locally constant
with respect to the Zariski topology on spec(k). Here spec(k) denotes the
set of prime ideals of k and Ap denotes the localisation of A at p.

(c) There exists a non-singular quadratic form n: A → k that permits compo-
sition in the sense that n(1A) = 1k and n(ab) = n(a) n(b) for all a, b ∈ A.

Further, it is called a regular composition algebra if n can be chosen to be a regular
quadratic form.

10.2.6 Remark (Composition algebras over fields). Assume that k is a field.
Then Axiom 10.2.5 (b) is trivially satisfied because k has only one prime ideal,
the zero ideal. Further, every vector space over k is projective. Thus 10.2.5 (c)
is the only non-trivial axiom over fields. However, even over fields, there is
no agreement in the literature on the right definition of composition algebras
because the regularity condition on the norm may be chosen differently. See,
however, Note 10.2.16.

10.2.7 Note. Some authors do not require the existence of an identity element
in the definition of composition algebras. In the context of root graded groups,
however, this convention is not practical.

Composition algebras fit into the framework of conic algebras as follows.

10.2.8 Proposition ([GPR, 19.12]). Let A be a k-algebra. Then the following assertions
are equivalent:

(i) A is a composition algebra (respectively, a regular composition algebra).
(ii) A is finitely generated projective as a k-module and there exists a non-singular

(respectively, regular) quadratic form n: A → k such that (A, n) is a conic
alternative algebra.

In this situation, the norm n is uniquely determined by the k-algebra A. Further,
the conic algebra (A, n) is norm-associative and its conjugation is a scalar algebra
involution.

Proof. The equivalence of the two assertions is proven in [GPR, 19.12]. The
uniqueness of n holds by Lemma 10.1.25. It follows from Lemma 10.1.27 that
the conic algebra is norm-associative and that its conjugation is a scalar algebra
involution.

Observe that the norm in condition 10.2.8 (ii) is necessarily multiplicative by
Note 10.1.29.

10.2.9 Lemma ([GPR, 19.11]). Assume that k is a field of characteristic not 2. Then
every composition algebra over k is regular.

10.2.10 Note. Axiom 10.2.5 (b) is invoked in [GPR, 19.11] to show that a com-
position algebra is finitely generated as a k-module. Conversely, any finitely
generated projective k-module satisfies Axiom 10.2.5 (b). Thus we could replace
Axiom 10.2.5 (b) by “A is finitely generated as a k-module” without changing the
meaning of the word “composition algebra”. However, recall that in the classical
setting over fields, the possibility of non-finitely generated composition algebras
is not ruled out from the beginning, and it is instead a theorem that they must be
finitely generated as modules. Axiom 10.2.5 (b) makes it possible to carry this
result over to the more general situation.
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10.2.C Pre-composition Algebras

In order to discuss composition algebras in the classical situation (that is, over
fields), the notion of pre-composition algebras will be useful.

10.2.11 Definition (Pre-composition algebra, [GPR, 19.1]). A pre-composition
algebra over k is a k-algebra A which satisfies the following conditions.

(a) A is projective as a k-module.
(b) There exists a non-degenerate quadratic form n: A → k that permits

composition in the sense that n(1A) = 1k and n(ab) = n(a) n(b) for all
a, b ∈ n.

We have the following analogue of Proposition 10.2.8 for pre-composition
algebras.

10.2.12 Proposition ([GPR, 17.6, 19.3]). Let A be a k-algebra. Then the following
assertions are equivalent:

(i) A is a pre-composition algebra.
(ii) A is projective as a k-module and there exists a non-degenerate quadratic form

n: A → k such that (A, n) is a conic alternative algebra.
In this situation, the norm n is uniquely determined by the k-algebra A. Further,
the conic algebra (A, n) is norm-associative and its conjugation is a scalar algebra
involution.

Again, the norm in condition 10.2.12 (ii) is necessarily multiplicative by
Note 10.1.29.

10.2.13 Remark. A composition algebra over k is a pre-composition algebra if
and only if its norm is non-degenerate. By Figure 10.1, this is always the case
if the composition algebra is regular of if k is a field. However, as [GPR, 19.6]
illustrates, it is not true in general.

Unlike composition algebras, pre-composition algebras are not stable under
base change, which makes them significantly less interesting.

10.2.14 Example ([GPR, 19.4]). Let K be a purely inseparable field extension of a
field k of characteristic 2 such that K2 ⊆ k. Then K is a pre-composition algebra
with anisotropic norm x 7→ x2. This norm is non-degenerate, but not weakly
regular because its linearisation is the zero map. Further, there exists a scalar
extension of k over which K is no longer a pre-composition algebra. In particular,
K is not a composition algebra.

10.2.15 Lemma. Assume that k is a field of characteristic not 2. Then every pre-
composition algebra over k is a regular composition algebra.

Proof. At first, assume only that k is a field, but make no assumption on its
characteristic. In [SV00, 1.2.1], Springer-Veldkamp define a composition algebra
over k to be a pre-composition algebra over k whose norm is weakly regular.1

If k is not of characteristic 2, then this definition is equivalent to the notion of
pre-composition algebras.

1More precisely, they define a composition algebra to be an algebra which satisfies Ax-
iom 10.2.5 (c) for a “nondegenerate” norm, where by “nondegenerate” they mean what we call
“weakly regular” (see [SV00, p. 2]).
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Now assume, in addition, that k is not of characteristic 2. Then by the con-
clusion of the previous paragraph, it follows from [SV00, 1.6.2] that any pre-
composition algebra A over k is finite-dimensional. By Figure 10.1, this implies
that A is a regular composition algebra.

10.2.16 Note. Putting Lemmas 10.2.9 and 10.2.15 together, we see that the notions
of composition algebras, regular composition algebra and pre-composition alge-
bras coincide over fields of characteristic not 2. As Example 10.2.14 illustrates,
this ceases to be true over general fields. See also [SV00, 1.2.2] for more remarks
on this topic.

The following result will be useful in the discussion of conic algebras which
coordinatise RGD-systems of type F4.

10.2.17 Lemma. Assume that k is a field and let (A, n) be a conic alternative algebra
which is anisotropic as a quadratic space in the sense of Definition 7.1.9 (but which
is not assumed to be multiplicative). Then A is a pre-composition algebra in which
every non-zero element is invertible. If k is not of characteristic 2, then A is a regular
composition algebra in which every non-zero element is invertible.

Proof. Since n is anisotropic, its radical is zero, which says that n is non-degen-
erate. Hence A is a pre-composition algebra by Proposition 10.2.12. If k is
not of characteristic 2, then it follows from Lemma 10.2.15 that A is a regular
composition algebra. Further, A is a division algebra by Lemma 10.1.30.

10.3 The Root System F4

As usual, we begin our discussion of the root system F4 with a standard represen-
tation, even though it is too cumbersome to be of practical use.

10.3.1 Remark (Standard representation of F4). Let V be a Euclidean space of
dimension n with orthonormal basis (b1, . . . , b4). The standard representation of F4
is

F4 := { ε1bi + ε2bj | i ̸= j ∈ [1, n], ε1, ε2 ∈ {±1} } ∪ { εbi | i ∈ [1, n], ε ∈ {±1} }

∪
{

1
2
(
ε1b1 + ε2b2 + ε3b3 + ε4b4

) ∣∣∣∣ ε1, . . . , ε4 ∈ {±1}
}

.

Its standard root base consists of

f1 := b2 − b3, f2 := b3 − b4, f3 := b4, f4 :=
1
2
(b1 − b2 − b3 − b4),

so that f1, f2 are long while f3, f4 are short. In total, F4 has 48 roots.

>
f1 f2 f3 f4

Figure 10.2: The Dynkin Diagram of F4.

We will always consider root bases of F4 to be in the following order, which
we call standard.

10.3.2 Definition (Standard order). Let ∆ = ( f1, f2, f3, f4) be an ordered root
base of F4. We say that ∆ is in standard order if f1, . . . , f4 are as in Figure 10.2. That
is, ( f1, f2) and ( f3, f4) are A2-pairs and ( f2, f3) is a B2-pair (which, in particular,
means that f2 is longer than f3).
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10.3.3 Definition (Canonical root subsystems). Let ∆ = ( f1, f2, f3, f4) be a root
base of F4 in standard order. The canonical subsystem of type B3 (with respect to ∆)
is the root subsystem generated by { f1, f2, f3 }. The canonical subsystem of type C3
(with respect to ∆) is the root subsystem generated by { f2, f3, f4 }.

10.3.4 Lemma. Every root in F4 is contained in a parabolic subsystem of type B3, in a
parabolic subsystem of type C3 and in a parabolic subsystem of type A2.

Proof. By an inspection of Figure 10.2, we see that the root f2 has the desired
properties. Since the Weyl group acts transitively on the set of long roots by
Proposition 1.3.8, it follows that the assertion holds for all long roots. By the same
argument, it holds for all short roots because it holds for f3.

In section 10.4, we will construct examples of F4-graded groups as foldings of
E6-graded groups. In this setting, we will describe the root system F4 as follows.

10.3.5 Construction (F4 as a folding of E6). Let ∆E = (e1, . . . , e6) be an ordered
root base of E6 which is indexed2 as in Figure 10.3, and denote by ρ the unique
non-trivial automorphism of this diagram (also as in Figure 10.3). Denote by
(V, ·) the six-dimensional Euclidean space surrounding E6. Since all roots of E6
have the same length, ρ is an isometry, so ρ = τ in the notation of 1.4.1. Denote
by F the fixed space of τ. Then

F = ⟨e2, e4, e3 + e5, e1 + e6⟩R and F⊥ = ⟨e3 − e5, e1 − e6⟩R.

Denote by π : V → F the orthogonal projection on F (whose kernel is F⊥). Then
it follows from Proposition 1.4.11 that Φ′ := π(E6) is a root system of rank 4 in F
and that ∆′ := π(∆E) is a root base of Φ′. An inspection shows that Φ′ is of type
F4 and that the vectors

f1 := e2, f2 := e4, f3 := π(e3) = π(e5) =
1
2
(e3 + e5),

f4 := π(e1) = π(e6) =
1
2
(e1 + e6)

are in standard order. See, for example, [Car72, 13.3.3].

e2 e4

e5 e6

e3 e1

Figure 10.3: The non-trivial diagram automorphism ρ of E6.

10.3.6 Remark. The long roots in F4 are precisely those whose preimage in E6
under π contains exactly one root (namely, the root itself) while the short roots in
F4 are those whose preimage contains exactly two roots (whose common image
in F4 is their average by Lemma 1.4.4). In particular, every long root in F4 is also
a root in E6. Further, the two roots in the preimage of a short root are orthogonal
(and thus adjacent). This is clear from Figure 10.3 for simple roots and it follows
for arbitrary roots by the transitivity properties of the Weyl group.

2This seemingly unnatural ordering of ∆E agrees with the one in [Hum72]. We use it because it
is the one used by the GAP computer algebra system.
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10.4 Construction of F4-graded Groups via Foldings

10.4.1 Notation for this section. We consider the root system F4 as a folding of E6
as in Construction 10.3.5. In particular, we denote by (V, ·) the Euclidean space
surrounding E6, by ρ = τ the non-trivial diagram automorphism of E6, by F the
fixed space of ρ, by π : V → F the orthogonal projection onto F and by ∆E =
(e1, . . . , e6) and ∆F = ( f1, . . . , f4) = π(∆E) the corresponding root bases. Further,
we fix a family c = (cα,β)α,β∈E6 of Chevalley structure constants of type E6 and by
(G, (Uα)α∈E6) a Chevalley group of type E6 over the commutative associative ring
A with respect to c. We denote the corresponding root isomorphisms by (θE

α )α∈E6 .

10.4.2 Reminder (see Example 10.1.16). The commutative associative ring A×A

is a multiplicative conic algebra over A with norm n(a, b) := ab, trace tr(a, b) =
a + b and conjugation (a, b) = (b, a) for all (a, b) ∈ A.

We already know from Proposition 2.6.7 that the E6-graded group G has a
crystallographic F4-grading (Ûα′)α′∈F4 given by

Ûα′ := ⟨Uα | α ∈ E6, π(α) = α′⟩
for all α′ ∈ F4. In this section, we want to show that this F4-grading is coordina-
tised by the multiplicative conic algebra A ×A over A. In the first subsection,
we describe the naive approach to this question. Unfortunately, this strategy
turns out to be unsuitable because certain signs do not fit together. In the sec-
ond subsection, we construct a refined coordinatisation of (Ûα)α∈F4 by twisting
certain root isomorphism of the naive coordinatisation. Since the choice of root
isomorphisms which have to be twisted depends on the family c, we have to fix c
from this point on. For computational practicality, we choose c to be the family
of structure constants that is used in the computer algebra system GAP [Gap].

In the final subsection, we assume that A is equipped with the additional
structure of a faithful multiplicative conic algebra over a commutative associative
ring k. We then construct a crystallographic F4-graded subgroup of G which is
coordinatised by the conic algebra A. This solves the existence problem for F4-
graded groups for multiplicative conic alternative algebras which are, in addition,
commutative, associative and faithful.

10.4.A The Naive Coordinatisation

At first, we need to introduce a total order on F4. There is no abstract reason
to prefer any one order over another, but we need to fix some ordering in the
definition of the (short) root homomorphisms (see Definitions 10.4.6 and 10.4.10).

10.4.3 Reminder (Lexicographic order). Let n ∈ N+. The strict lexicographic
order on Rn, denoted by <lex, is the strict total order defined as follows: For all
a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, we have a <lex b if and only if there exists
i ∈ [1, n] such that aj = bj for all j ∈ [1, i − 1] and ai < bi. Further, the lexicographic
order on Rn is the total order ≤lex which is defined as follows: a ≤lex b holds if
and only if a = b or a <lex b.

10.4.4 Definition (Total order on F4). We define a total order ≺ on the positive
system ΠF of F4 corresponding to ∆F by

1000 ≺ 0100 ≺ 0010 ≺ 0001 ≺ 1100 ≺ 0110 ≺ 0011 ≺ 1110 ≺ 0120
≺ 0111 ≺ 1120 ≺ 1111 ≺ 0121 ≺ 1220 ≺ 1121 ≺ 0122 ≺ 1221
≺ 1122 ≺ 1231 ≺ 1222 ≺ 1232 ≺ 1242 ≺ 1342 ≺ 2342
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where a sequence a1a2a3a4 represents ∑4
i=1 ai fi. We extend ≺ to a total order on

F4 as follows:
(i) For all α ∈ ΠF, β ∈ −ΠF, we declare that α ≺ β.

(ii) For all α, β ∈ −ΠF, we declare that α ≺ β if and only if −α ≺ −β.

10.4.5 Note. The ordering of the positive roots in Definition 10.4.4 is a height
ordering in the sense of Definition 2.3.16, and it is also the one used in [VP96,
p. 96].

10.4.6 Definition (Naive coordinatisation). The naive coordinatisation of (Ûα′)α′∈F4

consists of the isomorphisms

θn
α′ : (k,+) → Ûα′ = Uα′ , a 7→ θα′(a)

for all long roots α′ ∈ F4 and

θn
β′ : (k× k,+) → Ûβ′ = Uβ1Uβ2 , (a, b) 7→ θβ1(a)θβ2(b)

for all short roots β′ ∈ F4 with corresponding preimage π−1(β′) ∩ E6 = { β1, β2 }
in E6 where β1 ≺ β2.

By Remark 10.3.6, the maps in Definition 10.4.6 are well-defined and isomor-
phisms. Note that we need some total order on F4 to decide without ambiguity
whether (a, b) should be mapped to θβ1(a)θβ2(b) or θβ2(a)θβ1(b).

10.4.7 Definition (Naive Weyl elements). For all roots α ∈ F4, we define the naive
standard α-Weyl element to be

wn
α := θn

−α(−1α)θ
n
α(1α)θ

n
−α(−1α)

where 1α = 1A if α is long and 1α = (1A , 1A) if α is short.

10.4.8 Remark. Let α, β, δ ∈ F4 such that α is long and β is short and let a, b ∈ A.
Put w := wn

δ . A straightforward computation shows that in all possible cases, we
have

θn
α(a)w ∈ { θn

σδ(α)
(εa) | ε ∈ {±1} } and

θn
β(a, b)w ∈ { θn

σδ(β)(εa, σb), θn
σδ(β)(εb, σa) | ε, σ ∈ {±1} }.

This suggests that the twisting group for the coordinatisation of (Ûα′)α′∈F4 should
be Z3

2 where the actions of the three components on A ×A should be given
by (a, b) 7→ (−a,−b), (a, b) 7→ (b, a) and (a, b) 7→ (−a, b) (or (a, b) 7→ (a,−b)).
However, this is a fallacy: By twisting the coordinatisation (θn

α′)α′∈F4 appropriately,
we can arrange it so that only the inversion action (a, b) 7→ (−a,−b) and the
involution (a, b) 7→ (b, a) are required. Note that the latter is precisely the
conjugation of the conic algebra A ×A.

10.4.B A Refined Approach

10.4.9 Notation for this section. From now on, we assume that c is the fam-
ily of structure constants of the simple Lie algebra over Q of type E6 which
is constructed in GAP [Gap] with the command SimpleLieAlgebra(“E”, 6,
Rationals).
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10.4.10 Definition (Refined coordinatisation). Put

T′ :=

{
f2 + f3, f3 + f4, f1 + f2 + f3, f2 + 2 f3 + f4, f1 + f2 + 2 f3 + f4,

f1 + 2 f2 + 2 f3 + f4, f1 + 2 f2 + 3 f3 + 2 f4

}
⊆ F4,

T := T′ ∪ (−T′).

The refined coordinatisation of (G, (Ûα′)α′∈F4) consists of the isomorphisms

θα := θn
α′ : (k,+) → Ûα′ = Uα′ , a 7→ θα′(a)

for all long roots α′ ∈ F4 and

θβ′ : (k× k,+) → Ûβ′ = Uβ1Uβ2 , (a, b) 7→
{

θβ1(a)θβ2(b) if β′ /∈ T,
θβ1(a)θβ2(−b) if β′ ∈ T

for all short roots β′ ∈ F4 with corresponding preimage π−1(β′) ∩ E6 = { β1, β2 }
in E6 where β1 ≺ β2.

10.4.11 Note. The set T′ in Definition 10.4.10 is chosen precisely so that the
following Proposition 10.4.13 holds. The specific form of T′ has been determined
by trial and error.

10.4.12 Definition (Refined Weyl elements). For all roots α ∈ F4, we define the
refined standard α-Weyl element to be

wα := θ−α(−1α)θα(1α)θ−α(−1α)

where 1α = 1A if α is long and 1α = (1A , 1A) if α is short.

10.4.13 Proposition. Denote by (A × B,A ×A,A) the standard parameter system
for the conic algebra A ×A over A in the sense of Definition 10.1.17. Then there exist
unique ∆F-parity maps η : F4 × ∆F → A and µ : F4 × ∆F → B such that (θα)α∈F4 is a
parametrisation of (G, (Ûα)α∈F4) by (A × B,A ×A,A) with respect to (wδ)δ∈∆F and
η × µ and such that µα,δ = 1B for all long roots α ∈ F4 and all δ ∈ ∆F. Further, these
maps satisfy η(α, δ) = η(−α, δ) and µ(α, δ) = µ(−α, δ) for all α ∈ F4 and δ ∈ ∆F.

Proof. For the existence, we have to verify that

θα(a)wδ ∈ { θσδ(α)(εa) | ε ∈ {±1} } and

θβ(a, b)wδ ∈ { θσδ(β)(εa, εb), θσδ(β)(εb, εa) | ε ∈ {±1} }.

for all short roots β ∈ F4, for all long roots α ∈ F4, for all δ ∈ ∆F and all a, b ∈ A.
This is a straightforward computation, which we have performed in GAP [Gap].
The uniqueness follows from the fact that A and B act faithfully on A ×A, that
A acts faithfully on A and from the additional requirement that µα,δ = 1B for
all long roots α ∈ F4 and all δ ∈ ∆F. The property that η(α, δ) = η(−α, δ) and
µ(α, δ) = µ(−α, δ) for all α ∈ F4 and δ ∈ ∆F is also a mere computation.

The precise values of η and µ can be found in Figure 10.4.

10.4.14 Definition (Standard parity maps). Let Φ′ be any root system of type
F4 and let ∆′ = ( f ′1, f ′2, f ′3, f ′4) be any root base of Φ′ in standard order. Denote
by φ : Φ′ → F4 the unique isomorphism of root systems with φ( f ′i ) = fi for
all i ∈ [1, 4]. Then the standard ∆′-parity maps for Φ′ are the ∆′-parity maps
η′, µ′ : Φ′ × ∆′ → Z2 defined by

η′(α, δ) := η
(

φ(α), φ(δ)
)

and µ′(α, δ) := µ
(

φ(α), φ(δ)
)

for all α ∈ Φ′ and δ ∈ ∆′ where η, µ are as in Proposition 10.4.13.
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α η̄(α, f1) η̄(α, f2) η̄(α, f3) η̄(α, f4)

1000 (−1, 1) (−1, 1) (1, 1) (1, 1)
0100 (1, 1) (−1, 1) (−1, 1) (1, 1)
0010 (1, 1) (1, 1) (−1, 1) (−1, 1)
0001 (1, 1) (1, 1) (1, 1) (−1, 1)
1100 (−1, 1) (1, 1) (−1, 1) (1, 1)

0110 (1, 1) (−1, 1) (−1,−1) (−1, 1)
0011 (1, 1) (1, 1) (−1, 1) (1, 1)
1110 (−1, 1) (1, 1) (−1,−1) (−1, 1)
0120 (1, 1) (1, 1) (−1, 1) (−1, 1)
0111 (1, 1) (−1, 1) (1, 1) (1, 1)

1120 (−1, 1) (−1, 1) (−1, 1) (−1, 1)
1111 (−1, 1) (1, 1) (1, 1) (1, 1)
0121 (1, 1) (1, 1) (−1, 1) (−1,−1)
1220 (1, 1) (1, 1) (1, 1) (−1, 1)
1121 (−1, 1) (−1, 1) (−1, 1) (−1,−1)

0122 (1, 1) (1, 1) (1, 1) (−1, 1)
1221 (1, 1) (1, 1) (−1, 1) (−1,−1)
1122 (−1, 1) (−1, 1) (1, 1) (−1, 1)
1231 (1, 1) (1, 1) (1, 1) (1, 1)
1222 (1, 1) (1, 1) (−1, 1) (−1, 1)

1232 (1, 1) (1, 1) (−1,−1) (−1, 1)
1242 (1, 1) (−1, 1) (−1, 1) (1, 1)
1342 (−1, 1) (1, 1) (1, 1) (1, 1)
2342 (1, 1) (1, 1) (1, 1) (1, 1)

Figure 10.4: The values of η and µ in Proposition 10.4.13, where η̄ := η × µ. In the
first column, a sequence a1a2a3a4 represents ∑4

i=1 ai fi. Further, η̄(α, δ) = η̄(−α, δ)
for all α ∈ F4 and δ ∈ ∆F.

Alternatively, the standard parity maps with respect to any root base in
standard order can explicitly be defined to be the values given by Figure 10.4.

We can now compute the commutator relations in G with respect to (θα)α∈F4 .

10.4.15 Definition (Coordinatisation with standard signs). Denote by ∆′ =
( f ′1, f ′2, f ′3, f ′4) any root base of F4 in standard order, let H be a group with an
F4-pregrading (U′

α)α∈F4 and let (wδ)δ∈∆ be a ∆-system of Weyl elements. Let
(B, n) be a multiplicative conic alternative algebra with conjugation · and let
(A × B,B, k) denote the standard parameter system for (B, n). A coordinatisation
of H by (B, n) with standard signs with respect to (wδ)δ∈∆ is a family (θ′α)α∈F4 of
maps such that the following conditions are satisfied:

(i) (θ′α)α∈F4 is a parametrisation of (H, (U′
α)α∈F4) by (A × B,B, k) with respect

to (wδ)δ∈∆F and η × µ. Here η and µ denote the standard ∆′-parity maps
of F4 (from Definition 10.4.14).



334 10. Root Gradings of Type F

(ii) The following commutator relations hold for all λ, µ ∈ k and all c, d ∈ B:

[θ f1(λ), θ f2(µ)] = θ f1+ f2(−λµ),

[θ f2(λ), θ f3(c)] = θ f2+ f3(−c strA(λ))θ f2+2 f3

(
−λ n(c)

)
,

[θ f2+ f3(c), θ f3(d)] = θ f2+2 f3

(
n(c, d)

)
,

[θ f4(c), θ f3(d)] = θ f3+ f4(cd).

In the third relation, n : B × B → k denotes the linearisation of n. These
relations are called the standard commutator relations.

10.4.16 Note. For all root systems Φ except for F4, we defined standard coor-
dinatisations by prescribing formulas for the commutator [Uα, Uβ] for all pairs
(α, β) of non-proportional roots. The number of such pairs is |Φ| · (|Φ| − 2) (if
Φ is reduced), which is a large number even if Φ is “small”. Until now, we
could always bypass this problem by partitioning the set of root pairs into a
manageable number of subsets and giving one commutator formula which holds
for all pairs in a given subset. For example, we needed 13 formulas to describe
the commutator relations in Bn (Proposition 7.3.25), and only one formula to
describe simply-laced root gradings (Definition 5.6.2). In these examples, we did
not have to require that a fixed family of Weyl elements acts on the root groups
in a certain way because this is a consequence of the commutator formulas (see
Propositions 5.6.6 (c), 7.7.6 (d) and 9.6.5 (d)).

For F4, we are not aware of a way to partition the set of root pairs in a similar
manner. Instead, we only describe the commutator relations on a small number
of pairs and require in addition that the coordinatisation is compatible with
a certain ∆′-system of Weyl elements. For any pair (α, β) of non-proportional
roots in F4, there exists an element u of the Weyl group such that (αu, βu) is pair
with a prescribed (standard) commutator relation. Conjugating the standard
commutator relation by an appropriate sequence of Weyl elements, we can thus
compute the commutator relation for an arbitrary pair (α, β).

10.4.17 Remark (Weyl elements in standard coordinatisations). Let (B, n) be a
multiplicative conic alternative algebra over an associative commutative ring k.
Let (H, (Vγ)γ∈F4) be an F4-graded group and let (θH

γ )γ∈F4 be a coordinatisation
of H by (B, n) with standard signs (and with respect to some family of Weyl
elements). Recall from Lemma 10.1.30 that the set B× of invertible elements in B is
precisely { b ∈ B | n(b) ∈ k× }. By a similar computation as in Propositions 7.7.6
and 9.6.5, the maps

θα : k× → V♯
α and θβ : B× → V♯

β

are well-defined bijections for all long roots α and all short roots β. It follows that
if H is an RGD-system, then k is a field and n is anisotropic. By Lemma 10.2.17,
this implies that (A, n) is a pre-composition division algebra, and it is even a
regular composition algebra if k is not of characteristic 2.

10.4.18 Proposition. The F4-graded group (G, (Ûα)α∈F4) is coordinatised by the conic
algebra A ×A over A with standard signs and with respect to (wδ)δ∈∆.

Proof. We already know from Proposition 10.4.13 that Axiom 10.4.15 (i) is satisfied.
It is a straightforward computation, which we have performed in GAP [Gap], to
show that the desired commutator relations hold.
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10.4.19 Remark. Let η and µ denote the standard ∆-parity maps for F4. Only the
following specific values of these parity maps will be needed in sections 10.6
and 10.7:

(η × µ) f2, f1 = (1, 1), (η × µ) f2, f1 f1 = (−1, 1),

(η × µ) f2, f1 f2 = (1, 1), (η × µ) f2, f3 = (−1, 1),

(η × µ) f3, f4 = (−1, 1), (η × µ) f3, f4 f4 = (−1, 1)

(η × µ) f3, f2 = (1, 1), (η × µ) f3, f4 f3 = (1, 1),

(η × µ) f3,(− f2, f3, f2) = (−1,−1).

They can be read off from Figure 10.4, or follow from a short computation.

The following result will be generalised in Lemma 10.6.7 and then used to
apply Proposition 4.6.3.

10.4.20 Lemma. Let α ∈ F4 and let δ ∈ ∆ such that α · δ = 0. If α is crystallographically
adjacent to δ, then µα,δ = 1B. Otherwise, µα,δ = −1B.

Proof. If α is crystallographically adjacent to δ, then it is also crystallographically
adjacent to −δ, so wδ acts trivially on Uα. Hence µα,δ = 1B in this case. The
second assertion follows from an inspection of Figure 10.4.

10.4.C A More General Construction

10.4.21 Notation for this section. From now on, we assume that k is a commuta-
tive associative ring and that A is equipped with the structure of a multiplicative
conic algebra over k which is faithful, commutative and associative. We denote
the norm on A by n and its conjugation by · . Further, we denote by k̃ the image
of k in A and by Ã the subalgebra { (a, a) | a ∈ A } of A ×A.

In Proposition 10.4.18, we have solved the existence problem for the specific
kind of conic algebra from Example 10.1.16. The goal of this subsection is to
construct a subgroup of G which is coordinatised by the conic algebra Ã over k̃.
Since Ã can be identified with A and k̃ can be identified with k, this solves the
existence problem for multiplicative conic algebras which are faithful, commuta-
tive and associative. Observe that the faithfulness assumption is always satisfied
by Lemma 10.1.13 if 2k is not a zero divisor in k.

10.4.22 Definition. For all long roots α in F4, we denote by Ūα the image of k̃
under θα in Ûα. For all short roots β, we denote by Ūβ the image of Ã under θβ

in Ûβ. Further, we denote by θ̄α and θ̄β the induced isomorphisms

θ̄α := θα ◦ strA : k → Ūα and θ̄β : A → Ūβ, a 7→ θβ(a, a)

and by Ḡ the subgroup of G which is generated by (Ūγ)γ∈F4 .

10.4.23 Proposition. The pair (Ḡ, (Ūγ)γ∈F4) is an F4-graded group which is coordi-
natised by the conic algebra (A, n) over k with standard signs and with respect to
(wδ)δ∈∆.

Proof. Observe that the Weyl elements (wδ)δ∈∆ do indeed lie in Ḡ. Further, k̃ and
Ã are invariant under the action of the twisting group A × B in the standard
parameter system (A × B,A ×A,A) for A ×A and A. It follows that

Ūwδ
γ = Ūσδ(γ) (10.2)
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for all γ ∈ F4 and all δ ∈ ∆. Further, Ḡ is generated by (Ūγ)γ∈F4 by definition,
and Ḡ satisfies Axiom 2.5.2 (iv) because each root group of Ḡ is contained in a
root group of G.

We now verify the commutator relations. For all a, b, c ∈ A, we know from
Proposition 10.4.18 that the commutator relation

[θ f2(a), θ f3(b, c)] = θ f2+ f3

(
−(b, c) · (a, a)

)
θ f2+2 f3(−abc)

holds. This implies that

[θ̄ f2(λ), θ̄ f3(b)] = [θ f2(λ1A), θ f3(b, b)] = θ f2+ f3(−λb,−λb)θ f2+2 f3(−λbb)

= θ̄ f2+ f3

(
−b strA(λ)

)
θ̄ f2+2 f3

(
−λ n(b)

)
for all λ ∈ k and b ∈ A. Here we used that bb = n(b)1A by Lemma 10.1.18 (c).
Thus the desired commutator relation for [Ū f2 , Ū f3 ] is satisfied. Further, we know
that

[θ f2+ f3(a, b), θ f3(c, d)] = θ f2+2 f3

(〈
(a, b)

∣∣(c, d)
〉)

for all a, b, c, d ∈ A where ⟨ · | · ⟩ denotes the linearisation of the norm on A ×A.
By Example 10.1.16,

〈
(a, b)

∣∣(c, d)
〉
= ad + bc. We infer that[

θ̄ f2+ f3(a), θ̄ f3(c)
]
= [θ f2+ f3(a, a), θ f3(c, c)] = θ f2+2 f3(ac + ac)

= θ f2+2 f3

(
n(a, c)1A

)
= θ̄ f2+2 f3

(
n(a, c)

)
for all a, b ∈ A. Here we used that ac + ac = n(a, c)1A by Lemma 10.1.18 (d)
Hence the desired commutator relation for [Ū f2+ f3 , Ū f3 ] is satisfied as well. The
commutator relations for [Ū f1 , Ū f2 ] and [Ū f4 , Ū f3 ] can be verified in a similar,
straightforward manner. Together with (10.2), it follows that Ḡ has crystallo-
graphic F4-commutator relations with root groups (Ūγ)γ∈F4 .

Finally, we have to show that the coordinatisation (θ̄γ)γ∈F4 is compatible with
the Weyl elements (wδ)δ∈∆ and the standard ∆-parity maps η, µ. That is, we have
to show that

θ̄α(λ)
wδ = θ̄σδ(α)

(
ηα,δµα,δ.λ

)
and θ̄β(a)wδ = θ̄σβ(α)

(
ηα,δµα,δ.a

)
for all long roots α, all short roots β, all δ ∈ ∆, all λ ∈ k and all a ∈ A. Since
a similar statement is true for the coordinatisation (θγ)γ∈F4 , we only have to
verify that the restriction of the standard parameter system (A× B,A×A,A) to
(Ã, k̃) is the standard parameter system for Ã. Evidently, the inversion action on
A ×A and A restricts to the inversion action on Ã and k̃. Further, the switching
involution (a, b) 7→ (b, a) restricts to the conjugation (a, a) 7→ (a, a) = (a, a) on
Ã. This finishes the proof.

10.5 Computations in F4-graded Groups

10.5.1 Notation for this section. We fix a root base ∆ of F4.

Most rank-2 and rank-3 computations that are necessary to parametrise F4-
graded groups have already been performed in the chapters for B3 and C3. In
this section, we collect a small number of additional results that are required to
apply the parametrisation theorem for F4-graded groups.

We begin with a verification of one of the conditions in Proposition 4.6.3. We
have already shown that it holds for Φ ∈ { B3, C3 }. By a reduction to rank-3
subsystems, we can lift the result to F4.
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10.5.2 Lemma. Let Φ ∈ { B3, C3, F4 }, let ∆ be a root base of Φ and let α ∈ Φ. As in
Proposition 4.6.3, we define sets

O := { β ∈ Φ | α · β = 0 },
A := { β ∈ O | α is (crystallographically) adjacent to β and − β },
Ā := O \A.

Then for all ∆-positive roots β1, β2 ∈ Ō, there exist words 1δ̄, 2δ̄ over ∆ ∪ (−∆)
such that σ(1δ̄) = σ(β1), σ(2δ̄) = σ(β2) and such that for any group G which has
crystallographic Φ-commutator relations with root groups (Uρ)ρ∈F4 and for any ∆-
system (wδ)δ∈∆ of Weyl elements in G, the actions of w

1 δ̄ and w
2 δ̄ on Uα are identical.

Proof. If α is long, then Ā is empty, so we can assume that α is short. If Φ = C3,
then Ā contains exactly one element ∆-positive root (see Lemma 9.1.20), so the
desired statement is trivially satisfied (because we can choose 1δ̄ = 2δ̄). For
Φ = B3, the desired statement holds by Proposition 7.6.21.

We proceed to show that the claim holds for Φ = F4 as well. Throughout
the proof, we denote by G a group which has crystallographic F4-commutator
relations with root groups (Uρ)ρ∈F4 and by (wδ)δ∈∆ a ∆-system of Weyl elements
in G. We will make sure that all constructions in this proof are independent of
the choices of G, (Uρ)ρ∈F4 and (wδ)δ∈∆. Denote by Φ′ a parabolic subsystem of F4
of rank 3 which contains α, β1, β2. Note that Φ′ must be of type A2 × A1, B3 or
C3. In the first case, we can simply take 1δ̄ and 2δ̄ to be ∆-expressions of β1 and
β2, respectively, and then both w

1 δ̄ and w
2 δ̄ act trivially on Uα because orthogonal

roots in A2 × A1 are adjacent. Thus from now on, we can assume that Φ′ is of
type B3 or C3.

Choose an arbitrary root base ∆′ of Φ′. By Lemma 1.3.7, there exists u ∈
Weyl(Φ) such that ∆′ is a subset of ∆u. By Proposition 1.3.12, we can find a word
ζ̄ = (ζ1, . . . , ζk) over ∆ ∪ (−∆) such that u = σ(ζ̄). Choose roots δ1, δ2, δ3 ∈ ∆
such that ∆′ = { δ′1, δ′2, δ′3 } where δ′i := δu

i for all i ∈ { 1, 2, 3 }. Further, define
w′

δ′i
:= w

wζ̄

δi
for all i ∈ { 1, 2, 3 }, so that (w′

δ′)δ′∈∆′ is a ∆′-system of Weyl elements
in the group generated by (Uρ)ρ∈Φ′ . Since the assertion is known to be true for
Φ ∈ { B3, C3 }, there exist words 1δ̄′, 2δ̄′ over ∆′ ∪ (−∆′) such that σ(1δ̄′) = σ(β1),
σ(2δ̄′) = σ(β2) and such that the actions of w′

1 δ̄′
and w′

2 δ̄′
on Uα are identical. For

each i ∈ { 1, 2 }, we can write i δ̄
′ as(

ε i,1δ′n(i,1), . . . , ε i,mi δ
′
n(i,mi)

)
for integers mi ∈ N0, n(i, 1), . . . , n(i, mi) ∈ { 1, 2, 3 } and ε i,1, . . . , ε i,mi ∈ {±1 }
because i δ̄

′ is a word over ∆′ ∪ (−∆′). Now we can define

i δ̄ :=
(
ζ̄−1, ε i,1δn(i,1), . . . , ε i,mi δn(i,mi), ζ̄

)
for all i ∈ { 1, 2 }.

In the following, for any word ρ̄ over ∆ ∪ (−∆) we will write w(ρ̄) instead of wρ̄

for better legibility, and similarly for w′(ρ̄′). Then for all i ∈ { 1, 2 }, we have

w(i δ̄) =

(
m

∏
j=1

w(δn(i,j))
εi,j

)w(ζ̄)

=
m

∏
j=1

w(δn(i,j))
εi,jw(ζ̄) =

m

∏
j=1

w′(δ′n(i,j))
εi,j

= w′(i δ̄
′)
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and, similarly,

σ(i δ̄) =

(
mi

∏
j=1

σ(δn(i,j))

)σ(ζ̄)

=
mi

∏
j=1

σ(δn(i,j))
σ(ζ̄) =

mi

∏
j=1

σ
(
δ

σ(ζ̄)
n(i,j)

)
=

mi

∏
j=1

σ(δ′n(i,j))

= σ(i δ̄
′) = σ(βi).

We conclude that the words 1δ̄ and 2δ̄ have the desired properties.

10.5.3 Remark. Denote by η and µ the standard ∆-parity maps for F4. By the
uniqueness of these maps, the words 1δ̄ and 2δ̄ in Lemma 10.5.2 automatically
satisfy η(α, 1δ̄) = η(α, 2δ̄) and µ(α, 1δ̄) = µ(α, 2δ̄).

10.5.4 Lemma. Let G be a group with a crystallographic F4-grading (Uα)α∈Φ and let
ΦC be a parabolic subsystem of F4 of type C3. Let H be the corresponding ΦC-graded
subgroup of G. Then the short involution on H (which, by Note 9.5.6, is defined on the
long root groups of H) is trivial.

Proof. Let α be a long root in Φ and let wα be any α-Weyl element. By an applica-
tion of Lemma 10.3.4, we find a parabolic A2-subsystem ΦA of F4 which contains
α. Hence it follows from Lemma 5.4.15 that w2

α acts trivially on Uα. This action
is precisely the short involution on Uα (by Definition 9.5.4), which finishes the
proof.

10.5.5 Lemma. Let G be a group with a crystallographic F4-grading (Uα)α∈Φ. Then G
satisfies the square formula for Weyl elements.

Proof. Let α, β be roots and let Φ be a parabolic rank-3 subsystem of F4 which
contains α and β. Then Φ is of type B3, C3 or A2 × A1. In each case, the square
formula is satisfied by Propositions 5.4.17, 7.6.15 and 9.5.13. In the case where Φ
is of type C3, we have to use in addition that the short involution in G is trivial,
which holds by Lemma 10.5.4.

10.6 The Parametrisation

In this section, we define the standard partial twisting system for F4, show that it
satisfies all desired compatibility conditions, and use it to parametrise arbitrary
F4-graded groups.

10.6.1 Notation for this section. We choose a root base ∆ of F4 in standard order
and we denote by (A, η, B, µ) the standard partial twisting system of type F4 with
respect to ∆ in the sense of the following Definition 10.6.2.

10.6.2 Definition (Standard partial twisting system). The standard partial twisting
system of type F4 (with respect to ∆) is the tuple (A, η, B, µ) where A := B := {±1}
and where η, µ are the standard ∆-parity maps for F4. If H is a group with an
F4-pregrading, then the standard partial twisting system for G is the same tuple
together with the additional information that A acts on all root groups of H by
inversion.

We begin with the purely combinatorial properties of the parity maps.

10.6.3 Lemma. η is braid-invariant, µ is Weyl-invariant and both are adjacency-trivial.
Further, η satisfies the square formula.
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Proof. Braid-invariance and adjacency-triviality follow from Proposition 4.4.11.
The square formula follows from Proposition 4.4.11 together with Lemma 10.5.5.
The square-invariance of µ can be verified computationally.

10.6.4 Lemma. η × µ is transporter-invariant and η, µ are independent.

Proof. We begin with the orbit of long roots. Put α̂ := f2. For all long roots β,
we know from Proposition 10.4.13 that (A × B)α̂→β is contained in A × {1B}.
Further,

(η × µ) f2, f1 f1 = (−1, 1)

by Remark 10.4.19. Hence (A × B)α̂→α̂ = A × {1B}. Thus it follows from crite-
rion 4.2.16 (iii) (with β̂ := α̂) that η × µ is transporter-invariant on the orbit of
long roots.

For the orbit of short roots, we consider β̂ := f3. Again by Remark 10.4.19, we
have

(η × µ) f3, f4 f4 = (−1, 1) and (η × µ) f3,(− f2, f3, f2) = (−1,−1).

Since σ( f4 f4) and σ(− f2, f3, f2) stabilise f3, it follows that (A × B)α̂→α̂ = A × B.
Hence again by criterion 4.2.16 (iii) (with β̂ := α̂), we infer that η ×µ is transporter-
invariant on the orbit of short roots as well.

Finally, the previous computations together with Remark 4.2.24 show that η
and µ are independent.

10.6.5 Lemma. µ is semi-complete.

Proof. This follows from the fact that the only subgroups of B are {1} and B, just
like in Lemma 7.8.7.

We conclude that the standard partial twisting system is indeed a partial
twisting system.

10.6.6 Lemma. Let (G, (Uα)α∈F4) be a crystallographic F4-graded group and choose any
∆-system (wδ)δ∈∆ of Weyl elements in G. Then the standard partial twisting system
(A, η, B, µ) for G (in the sense of Definition 10.6.2) is a partial twisting system for
(G, (wδ)δ∈∆) (in the sense of Definition 4.3.18).

Proof. By Example 4.3.15, A is a twisting group for (G, (Uα)α∈F4). The remaining
properties are satisfied by Lemmas 10.6.3 to 10.6.5.

It remains to verify the compatibility conditions. We begin with a generalisa-
tion of Lemma 10.4.20.

10.6.7 Lemma. Let α, β ∈ F4 be orthogonal. Then µα,σ(β) = 1B if α and β are crystallo-
graphically adjacent and µα,σ(β) = −1B otherwise.

Proof. By Lemma 10.4.20, the assertion is true if β lies in ∆. In general, we know
from Proposition 1.3.4 that there exists u ∈ Weyl(F4) such that δ := βu lies in ∆.
Choose a word ρ̄ over ∆ such that σ(ρ̄) = u. Then it follows from Lemma 4.2.8
that

η(α, σβ) = η(ασ(ρ̄), σ−1
ρ̄ σβσρ̄).

Here σ−1
ρ̄ σβσρ̄ = σ(βσ(ρ̄)) = σ(δ). Note that α and β are orthogonal if and only

if αu and δ are orthogonal, and the same holds for crystallographic adjacency.
Hence the general assertion follows from the special case in Lemma 10.4.20.
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10.6.8 Proposition. Let (G, (Uα)α∈F4) be a crystallographic F4-graded group and let
(wδ)δ∈∆ be a ∆-system of Weyl elements in G. Then G is square-compatible with respect
to η and (wδ)δ∈∆.

Proof. We know from Lemma 10.5.5 that G satisfies the square formula for Weyl
elements and from Lemma 10.6.3 that η satisfies the square formula. Hence the
assertion follows from Lemma 4.6.2.

10.6.9 Proposition. Let (G, (Uα)α∈F4) be a crystallographic F4-graded group and let
(wδ)δ∈∆ be a ∆-system of Weyl elements in G. Then G is stabiliser-compatible with
respect to (η, µ) and (wδ)δ∈∆.

Proof. By Lemmas 10.5.2 and 10.6.7 and Remark 10.5.3, the conditions of Proposi-
tion 4.6.3 are satisfied. The assertion follows.

Finally, we can apply the parametrisation theorem.

10.6.10 Proposition. Let (G, (Uα)α∈F4) be a crystallographic F4-graded group, let
(wδ)δ∈∆ be a ∆-system of Weyl elements in G and let (A, η, B, µ) be the standard partial
twisting system for G. Then there exist abelian groups (k,+) and (A,+) (both equipped,
as sets, with an action of A × B) such that G is parametrised by (A × B,A, k) with
respect to η × µ and (wδ)δ∈∆ and such that the action of A on k and A is given by
group inversion.

Proof. This follows from the parametrisation theorem (Theorem 4.5.16), whose
conditions are satisfied by Propositions 10.6.8 and 10.6.9.

10.7 The Coordinatisation

10.7.1 Notation for this section. We denote by ∆ = ( f1, f2, f3, f4) a root base of
F4 in standard order and by (V, ·) the Euclidean space which is generated by ∆.
We consider a group G group with a crystallographic F4-grading (Uα)α∈F4 and
a ∆-system of Weyl elements (wδ)δ∈∆. We denote by (A, η, B, µ) the standard
partial twisting system for G (from Definition 10.6.2), by (k,+), (A,+) abelian
groups as in Proposition 10.6.10 (which are equipped, as sets, with actions of
A × B) and by (θα)α∈F4 the corresponding parametrisation of G. The action of
−1B on A is denoted by

· : A → A, a 7→ a := −1B.a.

We choose elements 1k ∈ k and 1A ∈ A such that

w f2 ∈ U− f2 θ f2(1k)U− f2 and w f3 ∈ U− f3 θ f3(1A)U− f3 .

Put A′ := {±1}2. We identify A with the subgroup { (±1, 1) } of A′ and we
declare that the second component of A′ acts trivially on all root groups. Further,
we denote by GB and GC the root graded subgroups of G which correspond to the
canonical root subsystems of types B3 and C3, respectively (as in Definition 10.3.3).

It follows from Proposition 5.4.10 (b) that 1k and 1A are uniquely determined
by w f2 and w f3 .

10.7.2 Remark (on the proofs of Lemmas 10.7.3 and 10.7.5). In the proof of
Lemma 10.7.3, we will apply the parametrisation theorem for B3-graded groups
(Proposition 7.9.4) to the subgroup GB of G. A priori, this yields a new group k′
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which parametrises the long root groups and a new group A ′ which parametrises
the short root groups. Further, the groups k′ and A ′ are, as sets, equipped with an
action of A × B. Afterwards, Theorem 7.11.21 provides the commutator relations
in GB with respect to k′ and A ′.

By Remark 4.5.17, we can choose k′ to be equal (and not just isomorphic)
to k and A ′ to be equal to A ′. However, it is a priori not clear that the actions
of A × B on k′ and A ′ agree with the respective actions on k and A after this
identification. In other words, the notation (a, b).x is (possibly) ambiguous for
a ∈ A, b ∈ B and x ∈ k ∪A. For the action of A, no ambiguity arises because
we know that −1A acts by group inversion in both cases. Further, the action of
B on k will never be relevant (see Note 4.5.11). However, it will turn out that
the action of B on A does not, in general, agree with the action of B on A ′. This
inconvenience is not relevant in the proof of Lemma 10.7.3, so we delay a more
detailed investigation of this phenomenon until Remark 10.7.4.

A similar remark holds for the proof of Lemma 10.7.5, where we apply the
parametrisation theorem for C3-graded groups (Proposition 9.8.4). One notable
difference is that the parametrisation theorem for C3-graded groups provides
actions of the large group A′ × B on the parametrising structure, not of the group
A × B. However, we can quickly focus our interest on the action of this subgroup.
Further, we will have to investigate the relationship between the two actions of
B on A during the proof of Lemma 10.7.5 (and not, as in Lemma 10.7.3, as an
afterthought). It will turn out that the two actions of B on A are, in fact, identical.

10.7.3 Lemma. There exist a commutative associative ring structure on k whose identity
element is 1k, a (right) k-module structure ⋆ on A and a k-quadratic form n: A → k

with n(1A) = 1k such that the following commutator relations hold for all λ, µ ∈ k and
all c, d ∈ A, where ⟨ · | · ⟩ denotes the linearisation of n:

[θ f1(λ), θ f2(µ)] = θ f1+ f2(−λµ),

[θ f2(λ), θ f3(c)] = θ f2+ f3(−c ⋆ λ)θ f2+2 f3

(
−λ n(c)

)
,

[θ f2+ f3(c), θ f3(d)] = θ f2+2 f3

(
⟨c|d⟩

)
.

Proof. Denote by ∆B := (b1, b2, b3) := ( f1, f2, f3) the ordered root base of the
canonical B3-subsystem of F4 and by ηB : B3 × ∆B → A and µB : B3 × ∆B → B
the ∆B-parity maps which we defined in 7.3.18. This means that, if we choose
an orthonormal basis (e1, e2, e3, e4) of V such that b1 = e1 − e2, b2 = e2 − e3 and
b3 = e3, then the maps ηB and µB are given by the exact same formulas as in
Figure 7.4 on page 189. Observe that (A, ηB, B, µB) is the standard partial twisting
system for GB with respect to ∆B (from Definition 7.8.2).

We know from Proposition 7.9.4 that there exist groups (k′,+) and (A ′,+)
(each equipped with an action of A × B), an isomorphism θB

α : (k′,+) → Uα for
each long root α in B3 and an isomorphism θB

β : (A ′,+) → Uβ for each short root
β in B3 such that GB is parametrised by (A× B,A ′, k′) with respect to ηB ×µB and
(wδ)δ∈∆B and such that the action of A on A ′ and k′ is given by group inversion.
Denote the corresponding root isomorphisms by (θB

α )α∈B3 . By Remark 4.5.17, we
can achieve that k′ = k, A ′ = A, θB

f2
= θ f2 and θB

f3
= θ f3 . (See, however, the

warning in Remark 10.7.2.)
We now turn to the relationship between the two families of root isomor-
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phisms. We know from Remark 10.4.19 that

(η × µ) f2, f1 = (1, 1), (η × µ) f2, f1 f2 = (1, 1), (η × µ) f2, f3 = (−1, 1)

and (η × µ) f3, f2 = (1, 1).

Using the table in Figure 7.4, we can also compute that

(ηB × µB) f2, f1 = (ηB × µB)e2−e3,e1−e2 = (−1, 1),

(ηB × µB) f2, f1 f2 = (ηB × µB)e2−e3,(e1−e2,e2−e3)

= (ηB × µB)e2−e3,e1−e2(η
B × µB)e1−e3,e2−e3

= (−1, 1)(−1, 1) = (1, 1),

(ηB × µB) f2, f3 = (ηB × µB)e2−e3,e3 = (−1, 1),

(ηB × µB) f3, f2 = (ηB × µB)e3,e2−e3 = (−1, 1).

Since

f σ( f1)
2 = f1 + f2, f σ( f1 f2)

2 = f1, f σ( f3)
2 = f2 + 2 f3 and f σ( f2)

3 = f2 + f3,

it follows that

θ f1+ f2(a) = θ f2(a)w f1 = θB
f2
(a)w f1 = θB

f1+ f2
(−a),

θ f1(a) = θ f2(a)w f1
w f2 = θB

f2
(a)w f1

w f2 = θB
f1
(a),

θ f2+2 f3(u) = θ f2(−u)w f3 = θB
f2
(−u)w f3 = θB

f2+2 f3
(u),

θ f2+ f3(u) = θ f3(u)
w f2 = θB

f3
(u)w f2 = θB

f2+ f3
(−u).

We can now investigate the commutator relations. From Theorem 7.11.21,
we know that there exist a commutative associative ring structure on k whose
identity element is 1k, a (left) k-module structure ⋆′ on A and a k-quadratic
form n: A → k with n(1A) = 1k such that GB is coordinatised by (A, k) with
standard signs. In particular, this means that the following commutator relations
hold for all λ, µ ∈ k and all u, v ∈ A, where ⟨ · | · ⟩ denotes the linearisation of n:

[θB
f1
(λ), θB

f2
(µ)] = θB

f1+ f2
(λµ),

[θB
f2
(λ), θB

f3
(c)] = θB

f2+ f3
(λ ⋆′ c)θB

f2+2 f3

(
−λ n(c)

)
,

[θB
f2+ f3

(c), θB
f3
(d)] = θB

f2+2 f3

(
−⟨c|d⟩

)
.

Using the formulas above for the root isomorphisms, and replacing the left
module structure ⋆′ by the corresponding right module structure defined by
c ⋆ λ := λ ⋆′ c, we conclude that the desired commutator relations hold. This
finishes the proof.

10.7.4 Remark. Recall from Remark 10.7.2 that we have two actions of B on the
module A from Lemma 10.7.3. The goal of this remark is two compare these
two actions. First of all, we have to make our notation precise: For all c ∈ A, we
define c := −1B.c where −1B.u denotes the action from Proposition 10.6.10 (as in
Notation 10.7.1) and we define cB := −1B.c where −1B.c denotes the action from
Proposition 7.9.4.

Recall from Remark 10.4.19 that (η × µ) f3,(− f2, f3, f2) = (−1A,−1B). Further,
we can compute that

(ηB × µB) f3,(− f2, f3, f2) = (ηB × µB)e3,(e3−e2,e3,e2−e3)

= (ηB × µB)e3,e3−e2(η
B × µB)e2,e3(η

B × µB)e2,e2−e3

= (1, 1)(1,−1)(1, 1) = (1,−1).
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For all c ∈ A, it follows that

θ f3(−c) = θ f3(c)
w−1

f2
w f3 = θB

f3
(c)w−1

f2
w f3 = θB

f3
(cB) = θ f3(c

B),

so cB = −c.
Since · B is precisely the action of B on A that we have studied in section 7.11,

it follows from Lemma 7.11.20 that it is the reflection corresponding to 1A in the
sense of Definition 7.1.20. That it, · B = σ1A . Thus it follows from the conclusion
of the previous paragraph that · = −σ1A .

10.7.5 Lemma. There exist an alternative ring structure on A whose identity element
is 1A and maps φ, strA , T1 such that (k, φ, strA , T1, 0) is a Jordan module of type C
over A, the map · from Notation 10.7.1 is a nuclear involution of A, strA(1k) = 1A
and the following commutator relations hold for all λ ∈ k and all c, d ∈ A:

[θ f4(c), θ f3(d)] = θ f3+ f4(cd),

[θ f2(λ), θ f3(c)] = θ f2+2 f3

(
−φ(λ,−c)

)
θ f2+ f3

(
−c strA(λ)

)
,

[θ f2+ f3(c), θ f3(c)] = θ f2+2 f3

(
T1(cd)

)
.

Proof. Denote by ∆C := (c1, c2, c3) := ( f4, f3, f2) the ordered root base of the
canonical C3-subsystem of F4 and by ηC : C3 × ∆C → A′ and µC : C3 × ∆C → B
the ∆C-parity maps which we defined in 9.3.19. This means that, if we choose
an orthonormal basis (e1, e2, e3, e4) of V such that c1 = e1 − e2, c2 = e2 − e3
and c3 = 2e3, then the maps ηB and µB are given by the exact same formulas
as in Figure 9.4 on page 278. Further, we denote by η̃C : C3 × ∆C → A ≤ A′

the projection of ηC to the first component. Observe that (A′, ηC, B, µC) is the
standard partial twisting system for GC with respect to ∆C (from Definition 9.7.2).
(Here we use that the short involution on GC is trivial by Lemma 10.5.4, so that
the action of A′ on the root groups has the desired form.)

We know from Proposition 9.8.4 that there exist an abelian group (k′,+)
and a group (A ′,+) (each group being equipped with an action of A′ × B), an
isomorphism θC

α : (k′,+) → Uα for each long root α in C3 and an isomorphism
θC

β : (A ′,+) → Uβ for each short root β in C3 such that GC is parametrised by
(A′ × B,A ′, k′) with respect to η̃C × µC and (wδ)δ∈∆C and such that the action of
(−1A, 1A) on A ′ and k′ is given by group inversion, the action of (1A,−1A) on
A ′ is trivial and the action of (1A,−1A) is given by the short involution. Since
the short involution on GC is trivial, we see that (1A,−1A) acts trivially on both
groups k′ and A ′. Thus the second component of A′ is irrelevant. In a more
technical language, this means that GC is parametrised by (A ′, k′) with respect
to ηC × µC (and not η̃C × µC) and (wδ)δ∈∆C . By Remark 4.5.17, we can achieve
that k′ = k, A ′ = A, θB

f2
= θ f2 and θB

f3
= θ f3 (which shows that, in particular, A ′

must be abelian).
As in the proof of Lemma 10.7.3, Remark 10.7.2 applies in our situation. We

begin by proving that the two actions of B on A are, in fact, equal. By the same
arguments as in Remark 10.7.4, it suffices to show that

(η × µ) f3,(− f2, f3, f2) = (ηC × µC) f3,(− f2, f3, f2).

We already know from Remark 10.4.19 that

(η × µ) f3,(− f2, f3, f2) = (−1A,−1B).
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Further, we can compute that

(ηC × µC) f3,(− f2, f3, f2) = (ηC × µC)e2−e3,(−2e3,e2−e3,2e3)

= (ηC × µC)e2−e3,−2e3(η
C × µC)e2+e3,e2−e3(η

C × µC)e2+e3,2e3

= (ηC × µC)−1
e2+e3,2e3

(ηC × µC)e2+e3,e2−e3(η
C × µC)e2+e3,2e3

= (−1, 1)(−1,−1)(−1, 1) = (−1A,−1B).

This shows that the two actions of B on A. In the following, we will denote them
by · , as in Notation 10.7.1.

We can now turn to the relationship between the two families of root isomor-
phisms. We know from Remark 10.4.19 that

(η × µ) f2, f3 = (−1, 1), (η × µ) f3, f2 = (1, 1),

(η × µ) f3, f4 = (−1, 1), (η × µ) f3, f4 f3 = (1, 1).

Further, we can compute that

(ηC × µC) f2, f3 = (ηC × µC)2e3,e2−e3 = (1, 1),

(ηC × µC) f3, f2 = (ηC × µC)e2−e3,2e3 = (1, 1),

(ηC × µC) f3, f4 = (ηC × µC)e2−e3,e1−e2 = (−1, 1),

(ηC × µC) f3, f4 f3 = (ηC × µC)e2−e3,(e1−e2,e2−e3)

= (ηC × µC)e2−e3,e1−e2(η
C × µC)e1−e3,e2−e3

= (−1, 1)(−1, 1) = (1, 1)

and

f σ( f3)
2 = f2 + 2 f3, f σ( f2)

3 = f2 + f3, f σ( f4)
3 = f3 + f4 and f σ( f4 f3)

3 = f4.

As in the proof of Lemma 10.7.3, it follows that

θ f2+2 f3(λ) = θC
f2+2 f3

(−λ), θ f2+ f3(c) = θC
f2+ f3

(c)

θ f3+ f4(c) = θC
f3+ f4

(c), θ f4(u) = θC
f4
(c)

for all λ ∈ k and all c ∈ A.
Finally, we can investigate the commutator relations. By Theorem 9.10.26,

there exist an alternative ring structure on A whose identity element is 1A , a nu-
clear involution on A (which coincides with the map · defined in Notation 10.7.1)
and maps φ, strA , T1, ψ such that J = (k, φ, strA , T1, ψ) is a Jordan module over
A (where ψ = 0 because GC is C3-graded), strA(1k) = 1A and GC is coordina-
tised (as a BC3-graded group) by J with standard signs. In particular, this means
that the following standard commutator relations from Definition 9.6.2 hold for
all λ ∈ k and all c, d ∈ A:

[θC
f4
(c), θC

f3
(d)] = θC

f3+ f4
(cd),

[θC
f2
(λ), θC

f3
(c)] = θC

f2+2 f3

(
φ(λ,−c)

)
θC

f2+ f3

(
−c strA(λ)

)
,

[θC
f3
(c), θC

f2+ f3
(d)] = θC

f2+2 f3

(
T1(cd)

)
.

Using the formulas above for the root isomorphisms, the assertion follows.

We have the following identities which relate the maps from Lemma 10.7.3 to
the maps from Lemma 10.7.3.

10.7.6 Lemma. The following hold:
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(a) c = −σ1A (c) for all c ∈ A where σ1A denotes the reflection in the quadratic
module (A, n) corresponding to 1A (in the sense of Definition 7.1.20).

(b) c ⋆ λ = c strA(λ) for all c ∈ A and all λ ∈ k.
(c) φ(λ, c) = λ n(c) for all λ ∈ k, c ∈ A.
(d) ⟨c|d⟩ = T1(cd) for all c, d ∈ A. In particular, ⟨c|1A⟩ = T1(c) for all c ∈ A.

Proof. Assertion (a) holds by Remark 10.7.4. For the remaining assertions, let
λ ∈ k and c, d ∈ A be arbitrary. The rank-2 root subsystem generated by
{ f2, f3 } is contained in both the canonical B3-subsystem and the canonical C3-
subsystem, so it follows from Lemmas 10.7.3 and 10.7.5 that we have the following
“overlapping” commutator relations:

θ f2+ f3(−c ⋆ λ)θ f2+2 f3

(
−λ n(c)

)
= [θ f2(λ), θ f3(c)]

= θ f2+2 f3

(
−φ(λ,−c)

)
θ f2+ f3

(
−c strA(λ)

)
,

θ f2+2 f3

(
⟨c|d⟩

)
= [θ f2+ f3(c), θ f3(d)] = θ f2+2 f3

(
T1(cd)

)
.

We conclude that

c ⋆ λ = c strA(λ), λ n(c) = φ(λ,−c), ⟨c|d⟩ = T1(cd).

This proves (b) and (d). For (c), observe that n(c) = n(σ1A (c)) because σ1A lies in
the orthogonal group O(n) by Lemma 7.1.21. Since c = −σ1A (c) by assertion (a),
we infer that

φ(λ,−c) = λ n(c) = λ n
(
σ1A (c)

)
= λ n(−c).

As the map c 7→ −c is bijective, it follows that (c) holds.

10.7.7 Summary. Altogether, we have assembled the following algebraic struc-
tures which coordinatise G and describe its commutator relations:

(1) An associative commutative ring k with identity element 1k.
(2) An alternative ring A with identity element 1A and with a k-module

structure ⋆.
(3) A k-quadratic form n: (A, ⋆) → k with n(1A) = 1k and its linearisation

⟨ · | · ⟩ : A ×A → k.
(4) A nuclear involution · on A.
(5) Maps φ, strA and T1 such that (k, φ, strA , T1, 0) is a Jordan module of

type C.
Further, we know that the identities in Lemma 10.7.6 hold. We conclude that

F :=
(
k,A, ⋆, n, ⟨ · | · ⟩, strA , φ

)
is an F4-datum. By Proposition 10.1.34, it follows that the ring A is a k-algebra
with structural homomorphism strA and associated scalar multiplication ⋆ and
that (A, n) is a multiplicative conic alternative algebra over k with conjugation
· . By Proposition 10.1.33, the multiplicative conic alternative algebra structure
on A determines the remaining objects in F.

10.7.8 Theorem (Coordinatisation theorem for F4). Let G be a group with a crystallo-
graphic F4-grading (Uα)α∈F4 and let (wδ)δ∈∆ be a ∆-system of Weyl elements in G. Then
there exist a commutative associative ring k and a multiplicative conic alternative algebra
(A, n) over k such that (G, (Uα)α∈F4) is coordinatised (A, n) with standard signs and
with respect to (wδ)δ∈∆ (in the sense of Definition 10.4.15).

Proof. This is a consequence of Summary 10.7.7.
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C2-quadruple, 267
Cartan algebra, 80
Cartan matrix, 25
Cartan number, 25
Cayley-Hamilton equation, 318
Cayley-Hamilton theorem, 319
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Chevalley basis, 80
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adjoint, 85
Chevalley parity map, 91
Chevalley structure constants, 81
closed set of roots, 28

Bourbaki-, 60
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Ĉn-extension, 270
commutation map, 96
commutator, 20
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generalised, 44
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composition algebra, 325

pre-, 327
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conic algebra, 318

multiplicative, 321
conjugation, 20
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on a pointed quadratic module,
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type BCn, 290
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type F4, 333
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coordinatising group, 10
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Coxeter diagram, 30
Coxeter matrix, 30
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degree 2 algebra, 318
∆-expression, 106
direct summand, 176
donnée radicielle, 13
dual module, 325
Dynkin diagram, 30

E
elementary group, 86
elementary matrix, 86
elementary orthogonal group, 185
elementary unitary group, 274
empty word, 20
ηα,·-faithful, 112
Euclidean space, 22
existence problem, 12
expression, 34

reduced, 35

F
F4-datum, 322
Faulkner building, 18
folding

of root graded groups, 73
of root systems, 38

form parameter, 240
free group, 20
free monoid, 20

G
generalised matrix, 184
generalised polygon, 13
generated subgroup, 20
generic example group, 16, 103
group of Steinberg type, 75
group with commutator relations,

40

H
Hall-Witt identity, 21
hermitian form, 242
higher-rank identity, 169
homotopic, 33

braid-, 33
elementary, 33
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homotopy cycle, 158
trivial, 158

hyperbolic pair, 177
hyperbolic space, 176

I
I(α, β), 86
ideal (in a ring), 132

nuclear, 263
ideal (in root systems), 59

crystallographic, 59
interval ordering, 27
inverse, 134
inverse word, 106
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involution, 234

central, 236
nuclear, 236
on an algebra, 317
on square-module, 230
scalar, 317
trivial, 234

involutory division set, 240
involutory set, 240

honorary, 240
pre-, 240

involutory submodule, 257
embedding, 258
unital, 258

J
Jacobi identity, 79
Jordan algebra, 257

weak, 256
Jordan module, 251

abelian, 252
anisotropic, 252
automorphism, 254
homomorphism, 254
involution, 254
of pseudo-quadratic type, 253
of type C, 252
projection, 252
skew-hermitian form, 252
submodule, 254
trace, 252

K
Kirmse’s identities, 321

L
lattice, 84

admissible, 84
length function, 35
lexicographic order, 330
Lie algebra, 79
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ideal, 80
module, 83

irreducible, 83
representation, 83
root graded, 14
root space decomposition, 80
semisimple, 80
subalgebra, 80

linearisation, 174, 228
longest element, 36

M
Mnm(R), 20
Mn(R), 20
module, 135

faithful, 135
Moufang element, 151
Moufang identities, 231
Moufang plane, 13
Moufang property, 13

N
norm

on a conic algebra, 318
on a ring with involution, 235

nuclear slipping formula, 233
nucleus, 133

left, 133
middle, 133
right, 133

O
orthogonal group, 22, 177
orthogonality, 22, 177

P
parameter system, 98, 111

faithful, 113
η-, 113

standard, 128
simply-laced type, 132
type BCn, 256
type Bn, 179
type F4, 319

parametrisation, 98
twisted, 114

parametrisation of a root graded
group, 16, 112

parametrisation theorem, 14, 15
parity map, 106, 107

adjacency-trivial, 108
braid-invariant, 108

Chevalley, 91
complete, 110
extended, 107
independent, 111
semi-complete, 110
square-invariant, 105, 108
standard

type BCn, 278
type Bn, 189
type F4, 332

trivial, 108
twisted, 114
Weyl-invariant, 108

partial twisting system, 104
admissible, 117

Pm(x, y), 20
polarisation, 174, 228

at position i, 174
pregrading, see root pregrading
pre-involutory set (in (R, σ)), 240
product map, 42
proper BCn-grading, 272
pseudo-quadratic form, 242

anisotropic, 243
associated skew-hermitian

form, 243
equivalence, 243
trivial, 243

pseudo-quadratic module, 243
anisotropic, 243
standard, 247

pseudo-quadratic space, 243

Q
quadratic form, 176

anisotropic, 176
non-degenerate, 325
non-singular, 325
regular, 325
weakly regular, 325

quadratic map, 174
quadratic module, 176

anisotropic, 176
base point, 178
direct sum, 176

inner, 176
pointable, 178
pointed, 178

R
radical, 255, 324
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rank-2 identity, 169
rank-2 labeling, 28
rank-2-injective, 44
reflection, 23, 178

simple, 25
rewriting rule, 162

blueprint, see blueprint rewrit-
ing rule

RGD-system, 12, 75
ring, 132

alternative, 231
purely, 263

division, 134
flexible, 231
sub-, 132
weakly alternative, 231

root, 23
divisible, 23
extremal, 61
indivisible, 23
opposite, 23
simple, 25

root base, 25
ordered, 25
proper, 25
rescaled, 25
standard order (for F4), 328

root graded group, 69
homomorphism, 70
isomorphism, 70

root graded Lie algebra, 14
root grading, see root graded group
root group, 40
root group sequence, 105
root homomorphism, 85
root interval, 26
root isomorphism, 98, 112
root ordering, 61

bijective, 64
crystallographically normal, 61
crystallographically subnormal,

61
extremal, 61
height ordering, 61
injective, 64
normal, 61
subnormal, 61
surjective, 64

root pregrading, 40
root sequence, 35

inverse, 35

root space, 80
root system, 23

crystallographic, 25
irreducible, 29
irreducible component, 29
isomorphism, 29
positive system, 24
rank, 23
reduced, 23
simply-laced, 31
subsystem, 23

closed, 28
parabolic, 29
spanned by a subset, 29

type, 31
with intervals, 63

S
scalar (of an algebra), 316
sesquilinear form, 242

trivial, 242
short involution, 286
sign problem, 14

for Chevalley bases, 83
for root graded groups, 102
for the Chevalley commutator

formula, 88
for Weyl elements in Chevalley

groups, 91
skew-hermitian form, 242
square formula

for Chevalley groups, 92
for parity maps, 108
for root graded groups, 117

square-compatibility, 116
square-module, 229

homomorphism, 229
multiplicative, 229
properly quadratic, 229
quotient module, 230
submodule, 229

square-scalar multiplication, 229
on a ring, 239
-preserving, 229

stabiliser compatibility, 105
stabiliser-compatibility, 117
stability condition, 18
stable rank 2, 18
standard commutator relations, see

coordinatisation of a root
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graded group with stan-
dard signs

standard ∆-expression, 183, 270
standard representation

of An, 136
of BCn, 266
of Bn, 179
of Cn, 266
of Dn, 137
of F4, 328

Steinberg group, 14, 76
Steinberg relations, 13
Steinberg type, 15
strongly associative set, 234
structural homomorphism, 316
sufficiently generic, see generic ex-

ample group
symmetric element, 234

T
total ordering, 24
trace

on a conic algebra, 318
on a pointed quadratic module,

179
on a ring with involution, 235

transporter set, 109
transporter-invariance, 110
twisting action, 111, 115
twisting group

for a root graded group, 98, 114
of a parameter system, 98, 111

twisting system, 104, 116
partial, 115

admissible, 129
admissible (for BCn), 295
admissible (for Bn), 211
standard, 129
standard (type BCn), 293
standard (type Bn), 209
standard (type F4), 338

standard, 147
type of a root graded group, 69

U
unique Weyl extensions, 52
unitary group, 246

V
Veldkamp building, 18
Veldkamp plane, 18
Veldkamp polygon, 18

W
weakly quadratic map, 228
Weyl element, 48

compatible with parametrisa-
tion, 98

standard, 89, 98
system of, 55

Weyl group, 23
Weyl identity, 169
Weyl triple, 48

balanced, 51
weakly balanced, 51

Weyl-invertible, 48
word, 20
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