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Abstract
The paper is devoted to the classification of entire solutions to the Cahn–Hilliard equation
−�u = u −u3 −δ inRN , with particular interest in those solutions whose nodal set is either
bounded or contained in a cylinder. The aim is to prove either radial or cylindrical symmetry,
under suitable hypothesis.

Mathematics Subject Classification 35B10 · 35B06

1 Introduction

We consider the entire equation

− �u = f (u) − δ in R
N , (1.1)

with f (u) := u − u3 and δ ∈ R. This equation has a variational characterisation, indeed, if
we consider it on a domain � ⊂ R

N , it arises as the Euler equation of the Ginzburg–Landau
functional

E(u,�) :=
∫

�

(
1

2
|∇u|2 + W (u)

)
dx, W (t) := (1 − t2)2

4
, (1.2)

under the mass constraint
1

|�|
∫

�

udx = m, m ∈ (−1, 1), (1.3)
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which gives rise to the Lagrange multiplier δ. The interest in the minimisers u of E(·p,�)

arises from the phase transitions theory. In other words, if two different fluids are mixed in a
container �, the number u(x) represents the density of one of the two at x , in an equilibrium
configuration. Here we take δ ∈ (− 2

3
√
3
, 2
3
√
3
), so that the polynomial fδ(t) := t − t3 − δ

admits exactly 3 real roots

z1(δ) < −1/
√
3 < z2(δ) < 1/

√
3 < z3(δ),

with z2(δ) satisfying δz2(δ) ≥ 0. Themain results of the paper deal with symmetry properties
of entire solutions to the Cahn–Hilliard equation (1.1).

Theorem 1 Let N ≥ 2, δ ∈ (− 2
3
√
3
, 2
3
√
3
) and let uδ be a solution to (1.1) such that

uδ > z2(δ) outside a ball BR ⊂ R
N . (1.4)

(1) If δ ∈ (− 2
3
√
3
, 0], then u ≡ z3(δ).

(2) If δ ∈ (0, 2
3
√
3
), then uδ is radially symmetric (not necessarily constant).

Wenote that, for δ > 0, nontrivial bubble solutions are known to exist. This is an important
difference with the case δ ≤ 0.Moreover, we will see that the zero level set of radial solutions
is non empty. In particular, we have the following Corollary.

Corollary 2 Let δ ∈ (0, 2
3
√
3
) and let uδ be a non constant solution to (1.1) such that uδ >

z2(δ) outside a ball BR. Then the nodal set of uδ is a sphere.

This result agrees with the variational theory, which studies the asymptotic behaviour of
the scaled functionals

Eε(u,�) =
∫

�

(
ε

2
|∇u|2 + W (u)

ε

)
dx (1.5)

as ε → 0. For instance, Modica proved that, if εk is a sequence of positive numbers tending
to 0 and uεk is a sequence of minimisers of Eεk (·p,�) under the constraint (1.3) such that
uεk → u0 in L1(�), then u0(x) ∈ {±1} for almost every x ∈ �, and the boundary in � of
the set E := {x ∈ � : u0(x) = 1} has minimal perimeter among all subsets F ⊂ � such that
|F | = |E |, where | · p| denotes the volume (see [15], Theorem 1). Further �-convergence
results relating Eε(·p,�) to the perimeter can be found in [16]. Therefore, given a family
{uε}ε∈(0,ε0) of minimisers under the constraint (1.3), their nodal set is expected to be close
to a compact Alexandrov-embedded constant mean curvature surface, at least for ε small.
Corollary 2, together with a scaling argument, shows that, for ε small enough, the nodal set
of any entire solution to

− ε�u = ε−1(u − u3) − �, � > 0, (1.6)

in R
N such that u > z2(ε�) outside a ball is actually a sphere, which is known to be the

unique compact Alexandrov-embedded constant mean surface in R
N (see [1]).

After that, we set

CR := {(x ′, xN ) ∈ R
N : |x ′| < R}

and we consider solutions satisfying

uδ > z2(δ) outside a cylinder CR ⊂ R
N . (1.7)

The aim is to study their symmetry properties and their asymptotic behaviour as δ → 0, with
particular interest in solutions which have one periodicity direction.
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Theorem 3 Let {uδ}δ∈(0, 2
3
√
3
) be a family of non constant solutions to (1.1) inRN , with N ≥ 2.

Assume furthermore that uδ is periodic in xN and, for any δ ∈ (0, 2
3
√
3
), there exists R(δ) > 0

such that (1.7) is true. Then

(1) z1(δ) < uδ(x) < z3(δ), for any x ∈ R
N .

(2) uδ is radially symmetric in x ′.
(3) uδ → −1 as δ → 0 uniformly on compact subsets of RN .

In view of the aforementioned�-convergence results, given a solution u to (1.6) satisfying
(1.7), with δ = ε�, we expect its nodal set to be close to an Alexandrov-embedded constant
mean curvature surface which is contained in a cylinder. This kind of surfaces are fully
classified, at least the ones which are embedded in R

3, in fact it is known that the unique
examples are the sphere and Delaunay unduloids, that is a family of non compact revolution
surfaces obtained by rotating a periodic curve around a fixed axis in R3, which can be taken
to be the x3-axis, parametrised by a real number τ ∈ (0, 1). We will denote the period of
Dτ by Tτ . For a detailed introduction of Delaunay surfaces, we refer to [12,14]. For any
τ ∈ (0, 1), Kowalczyk and Hernandez [11] constructed a family {uτ,ε}ε∈(0,ε0) of solutions to
(1.6) in R

3, with � = �ε depending on ε, such that

(1) �ε is positive and bounded uniformly in ε.
(2) uτ,ε is radially symmetric in x ′.
(3) uτ,ε(x) → ±1 as ε → 0, uniformly on compact subsets of �±

τ , where �±
τ denote the

exterior and the interior of the Delaunay surface Dτ , respectively.
(4) uτ,ε(x ′, x3) → z3(ε�ε) as |x ′| → ∞, uniformly in x3.
(5) uτ,ε is periodic in x3 of period Tτ .

We observe that the solutions uε,τ constructed in [11] are actually negative outside a cylinder,
however, in order to obtain the aforementioned family, thanks to the oddness of f , it is enough
to replace them with −uε,τ . An interesting question is uniqueness. In other words, we are
interested in the following question.

Question 4 (Uniqueness) Let ε0 > 0, τ ∈ (0, 1) and let v be a non constant solution to (1.6)
in R

3 with � = �ε , for ε ∈ (0, ε0). Assume in addition that

• �ε is bounded uniformly in ε.
• v is periodic in x3, with period Tτ .
• v > z2(ε�ε) outside a ball BR.

Is it true that v = uε,τ , at least if ε0 is small enough?

This would be the counterpart of Corollary 2 for periodic solutions. For now we are not
able to give a full answer to this question. However Theorem 3 is a first step in this direction,
since it proves that any family {vε}ε∈(0,ε0) of such solutions has to share many properties
with the family {uτ,ε}ε∈(0,ε0) constructed by Hernandez and Kowalczyk. For instance, for ε

small, vε has to satisfy (1), (2), (3) and the scaled functions vε(εx) tend to −1 uniformly on
compact subsets of RN as ε → 0.

The plan of the paper is the following. In Sect. 2 we will state some quite general results,
of which the Theorems stated in the introduction are consequences. Section 3 is devoted to
the proofs. It is divided into three subsections, dedicated to prove global boundedness, radial
symmetry and the asymptotic behaviour for δ small respectively.
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2 Some relevant results

In this section we state some results that are proved in Sect. 3. First we prove boundedness
of solutions, which holds irrespectively of the sign of δ.

Proposition 5 Let δ ∈ (− 2
3
√
3
, 2
3
√
3
) and let uδ ∈ L3

loc(R
N ) be a distributional solution to

the Cahn–Hilliard equation (1.1). Then

z1(δ) ≤ uδ(x) ≤ z3(δ)

a. e. in R
N .

Remark 6 • Using Proposition 5, standard elliptic estimates (see [10], Theorem 8.8 and
Corollary 6.3) and a bootstrap argument, it is possible to show that any distributional
solution u ∈ L3

loc(R
3) is actually in C∞(RN ). This parallels the regularity result proved

in [6] for the Allen–Cahn equation.
• It follows from the strong maximum principle that either uδ is constant, and in this case

it has to be either z1(δ), or z2(δ) or z3(δ), or it satisfies z1(δ) < uδ < z3(δ) in R
N .

We observe that Proposition 5 and Remark 6 prove point (1) of Theorem 3, which is
actually true for any non constant entire solution. After that, we rule out the case δ ≤ 0, in
which only constant solutions are allowed.

Proposition 7 Let uδ be a solution to (1.1) in R
N , with − 2

3
√
3

< δ ≤ 0 such that uδ > z2(δ)

outside a stripe {x ∈ R
N : |xN | < L}. Then uδ ≡ z3(δ).

We stress that the latter result proves point (1) of Theorem 1 and agrees with the sign of
δ obtained by Hernández and Kowalczyk in [11]. Using boundedness and the famous result
by Gidas et al. [9], or Theorem 2 of [7], which relies on the moving planes method, we can
prove this symmetry result.

Proposition 8 Let δ ∈ (0, 2/3
√
3) and let uδ be a non constant solution to (1.1) such that

uδ > z2(δ) outside a ball BR, for some R > 0. Then

• uδ is radially symmetric, that is, up to a translation, uδ(x) = wδ(|x |).
• uδ is radially increasing, in the sense that (∇uδ(x), x) > 0, for any x ∈ R

N \{0}.
Proposition 8 proves point (2) of Theorem 1. More precisely, it is known that, for δ ∈

(0, 2
3
√
3
), the problem

{
−�vδ = vδ − v3δ − δ in R

N

vδ(0) = minRN vδ, vδ < z3(δ), vδ(x) → z3(δ) as |x | → ∞ (2.1)

admits a unique solution which is radially symmetric (see [4,17,18]), that is vδ(x) = wδ(|x |).
In view of this fact, we can actually prove the following classification result.

Proposition 9 Let δ ∈ (0, 2
3
√
3
) and let uδ be a non constant solution to (1.1) such that

uδ > z2(δ) outside a ball BR. Then, up to a translation, uδ = vδ .

In the sequel, we will use the notation Wδ(t) := W (t) + δt .
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Remark 10 It is possible to see that, for any δ ∈ (0, 2
3
√
3
), there exists R(δ) > 0 such that

wδ(R(δ)) = 0. In fact, the energy

Eδ(r) := 1

2
(w′

δ)
2 − Wδ(wδ)

is strictly decreasing, since

d

dr
E(r) = w′

δ(w
′′
δ − W ′

δ(wδ)) = − N − 1

r
(w′

δ)
2 < 0, ∀ r > 0.

Thus, using that, by Proposition 8, vδ is decreasing,

− Wδ(wδ(0)) = Eδ(0) > 0, (2.2)

which yields that wδ(0) < 0.

In particular, in view of Remark 10, which yields that the nodal set of vδ is neither empty
nor a singleton, Corollary 2 is true.

Considering solutions that are approaching a positive limit just with respect to N − 1
variables, we can prove the following.

Proposition 11 Let δ ∈ (0, 2/3
√
3) and let uδ be a non constant solution to (1.1) such that

uδ > z2(δ) outside a cylinder CR, for some R > 0. If uδ is periodic in xN , then

• uδ is radially symmetric in x ′, that is, up to a translation, uδ(x) = wδ(|x ′|, xN ).
• uδ is radially increasing, in the sense that (∇uδ(x), (x ′, 0)) > 0, for any x = (x ′, xN ) ∈

R
N \{0}.

We note that this proves point (2) of Theorem 3. Even in this case, our result agrees
with the construction of [11], where the authors prove the existence of a family of solutions
fulfilling the symmetries of the Delaunay surface Dτ , hence, in particular they are periodic in
xN , radially symmetric and radially increasing in x ′. Here we show that any periodic solution
has to be radially symmetric and radially increasing in x ′. Finally, in order to prove point (3)
of Theorem 3, we need the following result, which shows that the phase transition has to be
complete.

Proposition 12 For any ε > 0 there exists δ0 ∈ (0, 2
3
√
3
) such that, for any δ ∈ (0, δ0) and

for any non constant solution uδ to (1.1) satisfying supRN uδ = z3(δ), we have

inf
RN

uδ < −1 + ε. (2.3)

This result somehow parallels Lemma 2.5 of [8]. The proof relies on both the moving
planes and the sliding method. For a detailed proof of point (3) of Theorem 3, we refer to
Sect. 3.

3 The proofs

3.1 Boundedness

In order to prove boundedness for distributional solutions to (1.1), we will rely on a result
proved by Brezis [2].
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Lemma 13 (Brezis–Kato inequality) Let p > 1 and assume that v ∈ L p
loc(R

k) satisfies

−�v + |v|p−1v ≤ 0 in D′(RN ).

Then v ≤ 0 a.e. in R
N .

Now we prove Proposition 5.

Proof Writing − fδ(t) = (t − z1(δ))(t − z2(δ))(t − z3(δ)) and setting

α := z1(δ) − z2(δ) < 0,

β := z3(δ) − z2(δ) > 0,

w := uδ − z2(δ),

we have

�w = �uδ = (uδ − z1(δ))(uδ − z2(δ))(uδ − z3(δ)) = w(w − α)(w − β), (3.1)

thus

�(w − β)+ = χ{w>β}�w = χ{w>β}w(w − α)(w − β) ≥ ((w − β)+)3,

where χ{w>β} denotes the characteristic function of the set {∈ R
N : w(x) > β}. By the

Kato–Brezis inequality (see Lemma 13), we have w ≤ β. The same argument applied to
(α − w)+ gives the lower bound w ≥ α. �
Remark 14 A similar argument is used in [5] to prove boundedness for solutions to a class
of vectorial equations of the form

�u = u P ′
n(|u|2), Pn(t) := 1

2
n

j=1(t − k j )
2,

with 0 < k1 < · · · < kn . The scalar Allen–Cahn equation is included in this class. Here we
prove that a similar result is true for a slightly different non linearity, due to the presence of
δ.

Now we can prove Proposition 7, using boundedness and a result of [6] where non-
existence f ground states for some special non linearies is proved.

Proof By Lemma 13, z1(δ) ≤ uδ ≤ z3(δ), in particular, since δ ≤ 0, |z1(δ)| ≤ z3(δ), hence
|uδ| ≤ z3(δ). By Lemma 15, uδ → z3(δ) as x1 → ±∞, the limit being uniform in x ′.
Moreover, setting fδ(t) := f (t) − δ, we have

• fδ(t) ≥ 0, ∀ t ∈ (0, z3(δ)),
• fδ(t) + f−δ(t) = −2δ ≥ 0, ∀ t ∈ (0, z3(δ)),
• fδ(t) is non increasing in a left neighbourhood of z3(δ).

Therefore, by Theorem 4.2 of [6], uδ ≡ z3(δ). �

3.2 Radial symmetry

The aim of this subsection is to prove Proposition 11. In order to do so, we need some decay at
infinity of the solution. From now on, we denote the variables by x := (x1, x ′′) ∈ R×R

N−1.
For λ ∈ R, we set

�λ := {x ∈ R
3 : x1 < λ}. (3.2)

123
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This changing of notation is justified by the fact that several times this section xN is the
periodicity variable, hence we are not allowed to start the moving planes in that direction.

Lemma 15 Let uδ be a solution to (1.1). Assume furthermore that uδ > z2(δ) in the half-space
R

N \�λ, for some λ ∈ R. Then

u(x1, x ′′) → z3(δ), as x1 → ∞, uniformly in x ′′. (3.3)

Proof The statement is trivial if uδ is constant (see Remark 6), hence we can assume that it is
non constant.We apply Lemma 2.3 of [6] tow := uδ −z2(δ) in the half spaceRN \�λ, where,
by Lemma 13, 0 < w < β. This is possible since the non linearity g(t) := −t(t −α)(t −β)

is positive in (0, β) and g′(0) > 0. We recall that the constants α and β are defined in the
Proof of Proposition 5. The conclusion is that

w(x1, x ′′) → β as x1 → ∞,

and the limit is uniform in the other variables. �
Using the fact that f ′(z3(δ)) < 0, we can actually prove a better result about the decay

rate of z3(δ) − uδ .

Lemma 16 Let uδ be a solution to (1.1) such that uδ > z2(δ) in the half space R
N \�λ,

for some λ ∈ R. Then, for any γ ∈ (0,
√− f ′(z3(δ))), there exists a constant C(γ ) > 0,

depending on γ , such that

0 < z3(δ) − uδ(x1, x ′′) ≤ C(γ )e−γ x1 , ∀ x = (x1, x ′′) ∈ R
N \�λ. (3.4)

Proof We compare the bounded function v := z3(δ) − uδ with the barrier μe−γ x1 , for
γ ∈ (0,

√− f ′(z3(δ))), in the half-space R
N \�M , with M > 0 large enough. In fact, on

∂(RN \�M ), we have

v(x) ≤ ‖v‖L∞(RN ) ≤ μe−γ M ,

provided μ ≥ ‖v‖L∞(RN )e
γ M . Note that here we use the fact that v ∈ L∞, which is true by

Lemma 13. Moreover, setting hδ(v) := − fδ(z3(δ) − v), we have hδ(0) = − fδ(z3(δ)) = 0
and h′

δ(0) = f ′(z3(δ)) < 0, thus

(−� + γ 2)(v − μeγ x1) = hδ(v) + γ 2v ≤ 0

in R
N \�M if M is large enough, since, by Lemma 15, z3(δ) − v is decaying as x1 → ∞,

uniformly with respect to x ′′. Thus, by the maximum principle for possibly unbounded
domains (see Lemma 2.1 of [3]), we conclude that (3.4) is true in R

N \�M . Changing, if
necessary, the constant C(γ ), the required inequality is fulfilled in the whole space. �

Now we prove Proposition 8

Proof By Proposition 5, z1(δ) < uδ < z3(δ) and, by Remark 6, uδ is smooth. By Lemma 15,
it converges to z3(δ) as |x | → ∞, therefore, by the famous symmetry result by [9], or by
Theorem 2 of [7], we conclude that uδ is radially symmetric and radially decreasing. �

Now we prove Proposition 9.

Proof Since, by Proposition 8, uδ is radially symmetric and radially decreasing, then, up to
translation, we have uδ(0) = minRN uδ . Since, by Lemma 15, uδ(x) → z3(δ) as |x | → ∞,
then it solves (2.1), therefore, by uniqueness, uδ = vδ . �

123
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In order to prove Proposition 11, we need to apply Theorem 2 of [7], which we recall, for
the reader’s convenience.

Theorem 17 ([7]) Let v > 0 be a bounded entire solution to

−�v = g(v)

in R
N , with g ∈ C1(R) such that g′(s) ≤ 0 in (0, η), for some η > 0. Writing x = (y, z) ∈

R
M × R

N−M , we assume that

• v(y, z) → 0 as |y| → ∞, uniformly in z.
• v is periodic in z.

Then v is radially symmetric in y, that is, up to a translation, v(y, z) = w(|y|, z), and radially
decreasing in y, that is ∂y j v(y, z) < 0 for any x = (y, z) ∈ R

M × R
N−M with y �= 0.

Proof By Proposition 5, z1(δ) < uδ < z3(δ) and, by Remark 6, uδ is smooth. By Lemma 15,
it converges to z3(δ) as |x ′| → ∞, uniformly in xN . Since uδ is periodic, in order to conclude
that it is radially symmetric in x ′ and radially decreasing, it is enough to apply Theorem 17
to v := z3(δ) − uδ . �

3.3 The asymptotic behaviour for ı small

First we show that if a solution lies between 1/
√
3 and z3(δ), then it is constant. This is

proved by the moving planes method.

Lemma 18 Let δ ∈ [0, 2/3√3) and let uδ be a solution to (1.1) in R
N such that uδ(x) ≥

1/
√
3, for any x ∈ R

N . Then uδ ≡ z3(δ).

Proof We set v := z3(δ) − uδ . Setting, for any λ ∈ R, vλ(x) := v(2λ − x1, x ′′), we have

v − vλ ≥ 0 in �λ, for any λ ∈ R. (3.5)

In order to prove this fact, we assume by contradiction that there exists λ ∈ R such that the
open set �λ := {x ∈ �λ : v − vλ < 0} is nonempty, and we observe that, in any connected
component ω of �λ we have

{
−�(v − vλ) = hδ(v) − hδ(vλ) < 0 in ω,

v − vλ = 0 on ∂ω,

due to the strict monotonicity of fδ in [1/√3, 1) (for the definition of hδ , see the Proof of
Lemma 16). As a consequence, by the maximum principle for possibly unbounded domains,
we have v − vλ ≤ 0 in ω, a contradiction.

By (3.5), we have ∂x1v ≤ 0 in R
N . The same argument applied to ṽ(x) := v(−x1, x ′)

implies that also ṽ satisfies (3.5), hence ∂x1v ≥ 0 in R
N , thus ∂x1v ≡ 0. Composing v with

any rotation of RN , we conclude that v is a constant solution to (1.1), thus v ≡ 0. �

Given the double well potential W (t) = (1−t2)2

4 , 0 < α < W (1/
√
3) = 1

9 and δ ∈
(0, 2/3

√
3), we set

μ(δ) := max{μ < 0 : Wδ(μ) = α}.

123
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Moreover, we take a smooth cutoff function χ : R → [0, 1] such that χ = 1 in (−∞,−1)
and χ = 0 in (0,∞) and we set

W̃δ := χδα + (1 − χδ)Wδ, χδ(t) := χ(−t/μ(δ)). (3.6)

We will denote W̃ := W̃0. It is possible to see that W̃δ enjoys the following properties:

W̃δ → W̃ , as δ → 0, uniformly on compact subsets of R, (3.7)

W̃δ(r) = Wδ(r), for any r ≥ 0 and δ ∈ [0, 2/3√3), (3.8)

and

inf
(−∞,0] W̃ = α. (3.9)

In the sequel, we will be interested in a solution to{
−�βR,δ + W̃δ(βR,δ) = 0 in BR,

βR,δ = z1(δ) on ∂ BR,
(3.10)

for δ ≥ 0 small enough and R large. This will be used as a barrier in the Proof of Proposi-
tion 12, which relies on a sliding method. This can be obtained in a variational technique, by
minimising the functional

JR,δ(v) :=
∫

BR

(
1

2
|∇v|2 + W̃δ(v)

)
dx . (3.11)

among all H1(BR) functions with trace z1(δ) on ∂ BR . The case δ = 0 is treated in Lemma
2.4 of [8].

Lemma 19 Let δ0 > 0 be so small that Wδ(z3(δ)) < α/2, for any δ ∈ [0, δ0). Then, For any
R > 0 and δ ∈ [0, δ0), there exists a minimiser βR,δ ∈ C2(BR) of (3.11) among all functions
with trace z1(δ) on ∂ BR. Moreover, there exists R0 > 0 such that, for any R ≥ R0 and for
any δ ∈ [0, δ0),
•

z1(δ) < βR,δ(x) < z3(δ), ∀ x ∈ BR, (3.12)

•
sup
BR

βR,δ >
1√
3
, (3.13)

• there exists a solution βR of (3.10) with δ = 0 such that

sup
BR

βR,δ → sup
BR

βR ∈ [ 1√
3
, 1) as δ → 0. (3.14)

Proof Existence follows from coercivity and weak lower semi continuity. By the fact that
W̃δ ≡ α in (−∞, μ(δ)) and (3.8), we can see the minimiser actually has to satisfy z1(δ) ≤
βR,δ ≤ z3(δ), thus, due to the strongmaximum principle, either (3.12) holds or βR,δ ≡ z1(δ).

Now we prove (3.13), which, in particular, shows that βR,δ > z1(δ) in BR , at least for
R ≥ R0. In order to do so, we assume that there exists a sequence Rk → ∞ and a sequence
δk ∈ [0, δ0) such that

sup
x∈RN

βRk ,δk ≤ 1√
3
.

123
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It follows that, on the one hand

JRk ,δk (βRk ,δk ) ≥ αωN RN
k , (3.15)

where ωN denotes the surface of SN−1. On the other hand, if, for R > 1 and δ ∈ [0, δ0), we
takewR,δ to be equal to z1(δ) on ∂ BR and to z3(δ) in BR−1 with |∇wR,δ| bounded uniformly
in δ, we can see that there exists a constant C > 0 such that, for k large enough,

JRk ,δk (wRk ,δk ) ≤ C RN−1
k + Wδk (z3(δk))ωN RN

k < αωN RN
k , (3.16)

since δk ∈ [0, δ0), hence Wδk (z3(δk)) < α/2. This contradicts the minimality of βRk ,δk .
Finally we prove (3.14). In the forthcoming argument, R > 0 will always be arbitrary

but fixed. We observe that, since βR,δ is bounded uniformly in R > 0 and δ > 0, then any
sequence δk → 0 admits a subsequence, that we still denote by δk , such that βR,δk converges
in C2(BR) to a solution βR to

−�βR + W̃ (βR) = 0 in BR

satisfying βR = −1 on ∂ BR . Since the convergence is uniform and (3.12) holds, then

sup
BR

βR,δ → sup
BR

βR ∈ [−1, 1]

as δ → 0. Moreover, by (3.13) and the strong maximum principle, supBR
βR ∈ [ 1√

3
, 1). �

Now we can prove Proposition 12.

Proof It is enough to prove that, if there exists a sequence δk → 0, a sequence uδk of solutions
to (1.1) and ν > −1 such that

inf
RN

uδk ≥ ν, (3.17)

then there exists a subsequence δk′ such that uδk′ ≡ z3(δk′).

Claim For any ε > 0 and ρ > 0, there exists a subsequence, which we still denote by uδk ,
and a sequence xk ∈ R

N such that

uδk (x) > 1 − ε, ∀ x ∈ Bρ(xk). (3.18)

Since supRN uδk = z3(δk), there exists xk ∈ R
N such that

z3(δk) − uδk (xk) < 1/k. (3.19)

Therefore the sequence uk(x) := uδk (x +xk) admits a subsequence converging, inC2
loc(R

N ),
to a solution u∞ to the Allen–Cahn equation

− �u∞ = f (u∞), in R
N . (3.20)

By (3.19), we can see that u∞(0) = 1, thus u∞ ≡ 1. As a consequence, for any ε > 0 (small)
and ρ > 0, there exists a subsequence (still denoted by uk) such that

‖uk − 1‖L∞(Bρ) < ε, ∀k

hence the claim is true.
In order to prove our result, we first observe that, by (3.13), for δ0 small as in Lemma 19

and δ ∈ (0, δ0), there exists R > 0 and a solution βR,δ to (3.10) such that

sup
BR

βR,δ >
1√
3
, ∀ δ ∈ (0, δ0). (3.21)
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Moreover, by (3.14), there exists a solution βR to

−�βR + W̃ (βR) = 0 in BR, βR = −1 on ∂ BR

and δ1 = δ1(R) > 0 such that, for any δ ∈ (0, δ1), we have

sup
BR

βR,δ <
supBR

βR + 1

2
< 1, ∀ δ ∈ (0, δ1). (3.22)

As a consequence, for any δ ∈ (0, δ̄), where δ̄ = δ̄(R) := min{δ0, δ1(R)}, we get
1√
3

< sup
BR

βR,δ <
supBR

βR + 1

2
< 1. (3.23)

Now, applying the claim with ρ = R and

ε := 1 − supBR
βR + 1

2
,

we can prove the existence of a subsequence, still denoted by uδk , and a sequence xk in R
N

such that

uδk (x) > 1 − ε > sup
BR

βR,δk ≥ βR,δk (x − xk), ∀ x ∈ BR(xk), ∀ k.

Sliding βR,δk , with k ≥ k0 fixed, we get the lower bound

uδk (x) > 1 − ε >
1√
3
, ∀ x ∈ R

N , ∀ k ≥ k0.

In conclusion, by Lemma 18, uδk ≡ z3(δk). �
Proposition 20 Let δ ∈ (0, 2/3

√
3) and let {uδ}δ∈(0, 2

3
√
3
) be a family of non constant solutions

to (1.1) in R
N such that

• for any δ ∈ (0, 2/3
√
3) there exists R(δ) > 0 such that uδ > z2(δ) outside the cylinder

CR(δ).
• uδ is periodic in xN .

Then

uδ → −1 as δ → 0, uniformly on compact subsets of RN . (3.24)

and

R(δ) → ∞ as δ → 0. (3.25)

Remark 21 We note that point (3) of Theorem 3 is a consequence of Proposition 20.

Proof By Lemma 13, the family uδ is uniformly bounded, hence any sequence δk → 0
admits a subsequence, that we still denote by δk , such that uδk converges in C2

loc(R
N ) to a

solution u∞ to the Allen–Cahn equation (3.20). Since uδ are all non constant solutions, then,
by Proposition 12, we have

inf
RN

uδ → −1, as δ → 0. (3.26)
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By periodicity and Theorem 11, we know that, for δ small, uδ is radially symmetric in x ′
and, up to a translation,

inf
RN

uδ = uδ(0),

hence, passing to the limit, we get

u∞(0) = lim
k→∞ uδk (0) = lim

k→∞ inf
RN

uδk = −1,

which yields that u∞ ≡ −1, thus (3.24) holds.
In order to prove (3.25), we assume by contradiction that there exists R̄ > 0 and a sequence

δk → 0 such that R(δk) ≤ R̄. By (3.24), uδk → −1 uniformly in B N−1
2R̄

× [−1, 1], thus, for
k large enough,

uδk (x ′
k, 0) < −1

2
< z2(δk)

if, for instance, x ′
k = (2R(δk), 0) ∈ R×R

N−2, which contradicts the fact that uδk is radially
increasing. �
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