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Abstract

Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the
large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar pro-
genitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies
in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies
present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression,
signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining
homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of
these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of
AT?2 progenitors named “Injury-Activated Alveolar Progenitors” (IAAPs), which express low levels of Sftpc, Sftpb, Sftpal,
Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-11).
IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate
into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found
to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progeni-
tor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their
progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.
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Introduction

Alveoli are the basic structural unit for gas exchange.
Alveolar development occurs in the late stage of lung
development. Compared to the complex pseudostratified
bronchial epithelium, the alveolar epithelium is relatively
simple and consists of two cell types; the large flattened
ATl1s which cover most of the alveolar surface area and
provide an effective interface with the microvascular
endothelium, and the cuboidal and smaller AT2s, which in
addition to producing surfactants, regulating alveolar fluid
movement and secreting a variety of antimicrobial pep-
tides to regulate innate immune response. AT2s also serve
as a prime source of facultative stem cells during lung
regeneration/repair [1, 2]. In this context, the facultative

stem cells usually refer to differentiated cells in a rest-
ing state that can function as stem cells during repair and
regeneration after injury. Both AT1s and AT2s are derived,
during lung development, from distal airway progenitor
cells which express Inhibitor of differentiation 2 (Id2) and
Sex determining region Y—box 9 (Sox9) (Fig. 1) [3-5].
In recent years, two different models of alveolar lineage
specification and formation out of these Id2* Sox9* cells
have been proposed: the bipotential progenitor model and
the early lineage specification model, as illustrated in Fig. 1.
The bipotential progenitor model proposes that I[d2* Sox9*
cells give rise to a population called “bipotential progenitor
cells (BPs)” [6]. These cells were found around E16.5 in
the mouse, and could self-renew or differentiate into either
of the two alveolar epithelial lineages. Based on single-cell
transcriptomic analysis conducted at different embryonic
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Fig. 1 Continuum of AT1 and AT2 formation from lung ontogeny to
homeostasis. During early lung development (E12.5), AT1 and AT2
progenitors and bipotent progenitors (BPs) form from distal lung
progenitor cells (Id2*Sox9"). From E13.5 to E17.5, Hopx* AT1 pro-
genitors differentiate into mature AT1 cells. Mature AT1 cells can be
classified through the expression of insulin-like growth factor bind-
ing protein 2 (Igfbp2). Igfbp2tATI1 cells are terminally differenti-
ated cells while Igfbp2~ATls are progenitors for mature AT1s. AT1
progenitors at E14.5 onwards can also contribute to the AT2 lineage.
Sftpc™ AT2 progenitors differentiate into mature AT2 cells. scR-

@ Springer

SftpctPd-11*
(IAAPs)

SftpcHie'Pd-11-
(mature AT2s, AEP,
I11r*, Scal®)

NAseq data indicate that mature AT2 cells can be subdivided into 2

express Pd-11. It remains unclear if cluster A can contribute to the
Hopx*Igfbp2~ AT1 progenitor cells. Cluster B is Sftpcieh Fgfr2pHieh
and represents mature AT2s. In this group, AEPs, II-1r* AT2s and
Scal™ AT2s stem cells are present. AT2 progenitors also contribute to
the AT1 lineage from E14.5 onwards. The contribution of BPs to the
AT1 and AT?2 lineage during development is still unclear
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timepoints, it was shown that BPs display a gene signature
characteristic of both mature AT1s and AT2s. During alve-
ologenesis, BPs have been proposed to downregulate one
of the two alveolar epithelial cell signatures, while upregu-
lating the other to become mature alveolar epithelial cells.
However, an important limitation of the work supporting
this model was that lineage tracing of the BPs was missing;
it was unclear what proportion of mature alveolar epithelial
cells pass through a BP state.

The second and more recent model of alveolar lineage
formation proposes that the majority of mature AT1s and
AT2s arise from unipotent (committed), not bipotential, pro-
genitors which are specified as early as E13.5 in the mouse
lung [7]. This ‘early lineage specification’ model was sup-
ported by single cell transcriptomic analyses along with
lineage tracing experiments. In one of these experiments, a
dual transgenic mouse line was used to label Sftpc-positive
and Hopx-positive cells at E15.5. These SftpctHopx* cells
were considered bipotential, and it was suggested, based
on their minor contribution to the more mature AT1 and
AT?2 cell populations at postnatal day 0 (P0), that BPs play
a minor role in alveolar lineage formation. However, given
the timepoints chosen in this study to label cells, it remains
unclear what proportion of alveolar epithelial progenitors
are actually unipotent at E13.5; the significance of the BPs
during alveolar lineage formation, therefore, is still to be
established.

Recently, we reported that a significant proportion of AT2
and AT1 progenitors during the late pseudoglandular stage
of lung development are lineage flexible [8]. In this con-
text, lineage flexibility can be defined as the cross-lineage
contribution of AT1 and AT2 progenitors during early lung
development to the opposing lineage, respectively. In sup-
port of this process, AT1 and AT2 progenitors were labelled
via two tamoxifen intraperitoneal injection (Tam-IP) injec-
tions (E14.5 and E15.5), respectively, using HopxCERT2/+;
tdTomato"*% and SfipcCERT* - tdTomato*"** transgenic
mouse lines. The contribution of lineage-labeled cells to
each alveolar epithelial population at E18.5 was assessed. It
was demonstrated that around 20-30% of mature pneumo-
cytes derive from lineage-flexible progenitorswhen labeled
during mid-pseudoglandular development.

The identity of these progenitors displaying such line-
age flexibility remains to be fully clarified. They could arise
from either unipotent progenitors which over time acquire
the capacity to give rise to the opposite lineage and/or from
bipotent progenitor cells which are present already in the
early lung expressing both AT1 and AT2 markers. Further
studies will have to be conducted to better define the iden-
tity of these lineage-flexible progenitors. Interestingly, sin-
gle cell transcriptomic analysis of whole lung cells captured
between E12.5 and P42 led to the identification of a cluster
of Sftpc/Spock2/Hopx—expressing cells (AT1/AT2) arising

at postnatal day 3 (P3). The gene expression signature dis-
played by this cluster suggests that these cells correspond to
a transitional state of AT2 cells similar to Spock2*/Axin2*
AT?2 cells [9]. Whether these cells arise from the lineage-
flexible AT2 cells remain to be clarified.

Besides AT2s, the heterogeneity of the AT1 lineage has
also been investigated. AT1 progenitors gradually express
insulin-like growth factor binding protein 2 (Igfbp2), a ter-
minal marker of AT1 differentiation. About 62% of Hopx™*
cells express Igfbp2 at P3 (refer Fig. 1 for details). This
percentile is increased to about 95% in the mature lung [10].
The remaining Igfbp2™ AT1s, accounting for about 5% of
total AT1s, are capable of differentiating into Igfbp2™ AT1s
and mature AT2s during alveolar regeneration after pneumo-
nectomy thereby indicating their plasticity [10—12]. Of note,
upon acute neonatal lung injury (hyperoxia), AT1s repro-
gram into AT2s, thereby promoting alveolar regeneration.
While the ability of AT2s to regenerate AT1s is restricted to
the mature lung [11].

Evidence of AT2 as facultative stem cell

Facultative stem cells are differentiated but quiescent cells,
capable of self-renewal or differentiation into other cell types
[13]. Since the first radioactive tracing and electron micros-
copy analysis performed by Evans et al. in 1973, to the study
by Barkauskas et al. in 2013, which applied lineage tracing
following targeted AT2 ablation and 3D organoid culture, it
became clear that AT2s are bona fide facultative stem cells
[14-16]. However, in contrast to cells in the skin, intes-
tine and many other tissues with fast homeostatic renewal
dynamics, lung alveolar cells display much slower turnover
rate, and the less renewing cells are derived from AT2s. In
order to study the frequency and spatiotemporal distribution
of AT1s renewal by AT2s, Desai et al. used the LysM-Cre;
R26R™G mouse to lineage-trace AT2s for up to 16 months.
The study demonstrated that AT2s self-renew and generate
ATls in renewal foci deriving from a single founder AT2
cells. Less than 1% of AT1s expressed the AT2-tdTomato
lineage tag at 1 month after tamoxifen-based labelling. This
percentile is increased to 3.9% and 7.5% at 4 and 16 months,
respectively. This indicates that the turnover of alveoli by
AT?2s is a slow but steady process [17].

The facultative nature of AT2s also raises a series of ques-
tions, such as whether all AT2s or only a portion of them
have stem cell potential, and whether mechanistically simi-
lar proliferative and differentiation processes occur under
homeostatic and injury conditions. A series of subsequent
explorations further confirmed the heterogeneity of AT2s
and stem cell behavior of only subsets of AT2s (182411,
For instance, only a portion of AT2s, usually 3-5% of total
AT2s, exhibit stem cell properties in the alveolosphere
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model which co-cultured AT2s with Pdgfrafie® Cd31/
Cd45/Epcam negative resident mesenchymal cells grown
in growth factor reduced Matrigel.

Morrisey and Desai groups almost simultaneously and
independently reported Wnt-responsive AT2 progenitor/
stem cells characterized by the expression of Axin2, how-
ever the percentage of Axin2* AT?2 cells, in homeostasis, is
different from 1% in one study [25] to 20% in the other study
[26]. This difference is surprising as both study rely on the
use of Axin2"*ERT2 griver lines (Axin2C"*ER2: R26R™™C and
Axin2¢reERTZTdTom . po6 REYFP mice, respectively) and could
be attributed to the methodology used to quantify the Axin2*
AT2s (FACS vs. immunofluorescence, respectively). Axin2*
AT2s (which are also called alveolar epithelial progenitors
or AEPs) are evolutionarily conserved alveolar progenitors
and showed enriched gene expression profile of lung devel-
opmental genes like Fgfr2, Nkx2.1, 1d2, Etv4, Etv5, and
Foxal. These cells are located close to Pdgfra-expressing
fibroblasts which keep their stemness with the secretion of
Whats. Compared to the Axin2~ AT2s, Axin2t AT2s dis-
play enhanced self-renewal capabilities in the alveolosphere
assays, illustrated by increased colony formation efficiency
(around 4% vs. 2%, for AEPs vs bulk AT2s, respectively)
and size (around 150 pm vs. 30 pm for AEPs and bulk AT2s,
respectively) [25, 26]. In the study reported by the Morrisey
group, in context of injury, such as influenza virus (HIN1)
infection, Axin2* AT2s (AEPs) which were also described
to express Transmembrane 4 superfamily 1 (Tm4sf1) prolif-
erate rapidly under the stimulation of Wnt signals. Interest-
ingly when Wnt signals were withdrawn, AEPs differenti-
ated to ATl1s, a process which is instrumental in repairing
the alveoli [26]. Previous studies have found that AT2 cells
positive for Forkhead box M1 (FoxM1) and Stem cell anti-
gen 1 (Scal) function as stem cells after infection with Pseu-
domonas aeruginosa (PA), and differentiate to AT1s to play
a repair role under the stimulation of Wnt signaling [27,
28]. How these FoxM 1" Scal™ AT2s relate to AEPs is still
unclear.

In another study, Katsura et al. detected subsets of AT2
cells which survived influenza-induced injury. These cells
are located at proximity to damaged area and proliferate in
response to elevated IL-1p and TNFa in the alveolar niche.
Interestingly, infiltrating CD45% are found in damaged
alveolar regions, suggesting the involvement of immune
cells in the epithelial repair process. Moreover, alveolo-
spheres arising from cultured AT2 cells displayed enhanced
colony forming efficiency after treatment with interferon o
and B, IL-1p and TNFa, and are subjected to regulation by
NF-«B signaling activation. This indicates the role of the
inflammatory response in AT2s proliferation, however, it
is not clear which subset of AT2s are more responsive to
inflammatory cytokines [29, 30]. Additionally, Choi et al.,
introduced a subset of AT2s expressing II-1r1, which were

@ Springer

primed following the secretion of I1-1p from interstitial
macrophages during repair. These AT2s acquire a new gene
expression profile through the HIF-1a-mediated glycolysis
pathway and are called damage-related transient progeni-
tor cells (DATPs). DATPs differentiate to AT1s following
bleomycin induced lung injury [29, 30].

Through single-cell sequencing, it was reported that
human lung tissues also exhibited a rare cluster of AT2s
(called AT2-s) with a distinct transcriptional profile com-
pared to AT2s. These AT2-s selectively expressed com-
ponents of the WNT signaling (WNTSA, LRPS, CTNN-
BIP, TCF4, TCF7L2) as well as detoxification genes (CP,
GSTAI1, CYP4B1). Therefore, it was proposed that AT2-s
may be alveolar stem cells that are homologous to Axin2™*
AT2s in mouse [19]. However, this conclusion may be short
lived because many of the other differences in expression
between human AT2-s and "bulk" AT2s are not shared when
comparing mouse Axin2* AT2s to bulk AT2s [19, 31].

Newly identified alveolar cells, called alveolar cell type
0 (ATO) cells, are related to the alveolar epithelial lineage
in the human lung. These cells emerge from AT2s during
alveolar repair. ATO cells are bipotential and co- express
SFTPC, SCGB3A2 and different levels of AT1 marker (HTI-
56). They give rise to either AT1s or terminal and respiratory
bronchioles stem cells (TRB-SCs) depending on their micro-
environment. However, it is still unknown whether a subset
of AT2 cells are more prone to differentiate to either into
ATls or into TRB-SCs [32]. Therefore, all of these findings
support that distinct subsets of the general AT2 population
may function as stem cells but also illustrate that our current
understanding of these AT?2 subsets is still incomplete.

Recently, our team discovered yet another AT2 progeni-
tor subpopulation, which is different from the previously
discovered AT2 stem cells [33]. During homeostasis, this
subpopulation does not display stem cell activity, but greatly
expands after lung injury, filling the compromised AT2 pool.
This population appears also to be heterogeneous. An in-
depth study of this new subpopulation will certainly comple-
ment our knowledge of the composition and function of the
different subpopulations composing the AT2 stem cell pool,
which will be the focus of this review.

Identification of the injury activated alveolar
progenitors (IAAPs)

Through lineage tracing of tdTomato* cells in the lungs
of SftpcCreERTY* - tdTomato” /' mice, we found that
tdTomato* cells can be divided into two subpopulations,
one with low tdTomato level (Tom™" AT2s), and the
other with high tdTomato level (Tom™€" AT2s). Tom!ieh
AT2s account for around 80% of lineage-traced AT2s,
whereas Tom™" AT2s account for the remaining 20%. The
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ATAC-seq analysis also confirms that they are two distinct
populations with different chromatin configuration. Tom%
AT2s express lower levels of AT2 differentiation markers
such as Sftpc, Sftpb, Sftpal, Fgfr2b and Etv5 compared to
Tom™€" AT2s, and may represent a group of immature AT2s
[33]. Moreover, Tom™" AT2s are different from the AT2
stem cell subgroups mentioned above (AEPs, Sca-1" AT2s
and I1-1r* AT2s), not only because those AT2 stem cell
subgroups express high levels of AT2 differentiation mark-
ers, but also because Tom™" AT2s express a low level of
Axin2 (while expressing Tm4sfI). Moreover, Tom™*" AT2s
do not have any role in maintaining the steady-state in the
adult lung and are only activated under damage stimulation.
For these reasons these cells were called “Injury Activated
Alveolar Progenitors” or IAAPs. IAAPs are neither part of
lineage negative epithelial progenitor (LNEP)/distal air-
way stem cells (DASCs) nor part of bronchoalveolar stem
cells (BASCs) as LNEP/DASCs are negative for Sftpc and
BASC:s express high levels of the AT2 marker Sftpc and the
club cell marker, Scgblal, while they locate in the respira-
tory epithelium and do not display high levels of Scgblal
[34-36]. Therefore, IAAPs may represent a novel subset of
quiescent and immature AT?2 stem cells that is distinct from
the more mature AT?2 stem cells.

Screening of the top 100 differential expressed genes
between IAAPs and Tom™#" AT2s (containing mostly the
mature AT2s with no or limited stem cell capabilities as
well as the mature AT2 stem cells such as the AEPs and

Table 1 Comparison of IAAPs with mature AT2 stem cells

Scal* AT2s) led to the identification of several surface
markers expressed at higher level in IAAPs, including pro-
grammed cell death-ligand 1 (Pd-11, also named Cd274),
a cell surface molecule associated with immunosuppres-
sion, Cd33, an adhesion protein expressed at the surface of
myeloid cells [33] and Cd300If as a regulator of immune
response [37]. Data mining of recently published single-
cell sequencing data from normal adult human lung cells
further confirmed the existence of PD-L1% AT2s [19, 33].
Intriguingly, PD-L1" AT2s sub-cluster displays low levels
of ETVS5, SFTPC and AXIN2 but high level of TM4SF1.
TMA4SFI1 is an epithelial cancer stem cell membrane protein,
which is also expressed by AEPs. The differences between
IAAPs, AEPs, Scal "AT2s and I1-1rt AT2s are summarized
in Table 1.

A small parenthesis on the use of tomato
as a reporter for Cre expression

Our discovery that the level of tomato expression could be
used to discriminate between two subpopulations within the
AT2 lineage using the Sftpc " ERT* : tdTom/ " mice was
initially surprising [33]. This difference was observed even
when only one copy of tdTom"* was used (SftpceERT2/+;
tdTom™*) ruling out that this difference was due to one
versus two copies of the Rosa26LoxP=STOP-LoxP-idTomaio 4]]e]e
recombined in the context of SftpcCERT2/* . 1dTom/1ofox

IAAPs

AEPs

ScaltAT2s

II-1r* AT2s

Differentiation status

Status of activation

Markers

Stem cell property# in
homeostasis

Stem cell property in repair

Potential functions

References

Immature

PNX and bleomycin injury

Low levels of AT2 differ-
entiation markers (Sfipc,
Sftpb, Sftpal, Fgfr2b and
Etv5)

High levels of Pd-/1 and
Tm4sfl

No

Yes

Replenishing AT2 stem
cells pool

Rescue the loss of mature
AT2

Ahmadvand et al. [33]
Ahmadvand et al. [43]
Ahmadvand et al. [42]

Mature

Homeostasis and influenza
infection

High levels of AT2 differ-
entiation markers (Sftpc,
Sftpb, Sftpal, Fgfr2b and
Etv5), Wnt target gene
(Axin2) and epithelial
cancer stem cell mem-
brane protein (Tm4sf1)

Yes

Yes

Maintaining lung homeo-
stasis

Promoting alveolar regen-
eration

Nabhan et al. [25]

Zacharias et al. [26]

Mature
PA infection

High levels of AT2 differ-
entiation markers (Sftpc,
Sftpb, Sftpal, Fgfr2b and
ES5), stem cell antigen
(Scal) and FoxM1

Not clear
Yes

Promoting alveolar regen-
eration

Liu et al. [28]
Liu et al. [27]

Mature

Bleomycin injury

High levels of AT2 dif-
ferentiation markers

(Sftpc, Sftpb, Sftpal,
Fgfr2b and Etv5) and
Il-1r

Not clear
Yes

Promoting alveolar regen-
eration

Choi et al. [29]
Strunz et al. [71]

# Assessed using alveolospheres

PNX pneumonectomy, PA Pseudomonas aeruginosa, Tm4sfl Transmembrane 4 superfamily 1, Pd-11 Programmed death ligand-1, CD274 II-1r:
Interleukin-1 receptor, Sca-1 Stem cell antigen 1, FoxM1 Forkhead box M1
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mice. As full recombination of this allele was observed both
in IAAPs and AT2s, this led us to hypothesize that the dif-
ference was instead the result of differential expression of
tdTomato from the Rosa26 promoter per se in the IAAPs vs.
AT2s. Indeed, ATAC-seq analysis indicated a more closed
chromatin configuration at the Rosa26 locus in IAAPS vs.
AT2s. This phenomenon may be unique to the AT?2 lineage
or shared by other lineages and careful work has to be car-
ried out on the characterization of tomato intensity to tease
out the possibility of capturing distinct lineages. Another
important consequence of this differential chromatin con-
figuration is that tomato intensity may potentially be used
to monitor the differentiation process of the IAAPs towards
the AT2s.

Possible function of IAAPs

Since IAAPs belong to an immature AT2 stem cell sub-
group, their function is likely different from that of the
previously discovered mature AT2 stem cells. By 3D co-
culture of IAAPs or Tom'#" AT2s with Scal* resident
mesenchymal cells (rMCs, defined as Cd31/Cd45/Epcam
triple negative), respectively, we found that Tom™igh AT2s
form alveolosphere, while IAAPs exhibit a very weak abil-
ity to promote organoid formation. Thus, Tom!g" AT2s
contain mature AT?2 stem cells [33]. Then, what is the
function of IAAPs? The pneumonectomy (PNX) model
in mice, through surgical removal of the left lobe, triggers
the process of compensatory growth in the remaining right
lobes, with a particularly strong response of the accessory
lobe. When PNX and Sham surgeries were carried out on
SftpcCeERT - tdTom" ¥ mice and tamoxifen was admin-
istered before the operation to label the IAAPs and AT2s.
The robust compensatory growth of the remaining lobes
is associated with increased proliferation of AT2s, visible
as early as day 5 following PNX [38]. Such an increase
is not seen in the Sham operated mice. Lung Epcam™
cells account for around 70% of lineage-labeled AT2
cells (either IAAPs or mature AT2s) with the rest being
ATls and bronchial epithelial cells. Surprisingly, analy-
sis at day 7 post-surgery showed that the ratio of IAAPs
over Epcam™* cells were more than doubled in PNX vs.
Sham. While the ratio of mature AT2s over Epcam™ cells
trended towards a decrease. Furthermore, transcriptional
profiling of IAAPs after fluorescence-activated cell sort-
ing (FACS) revealed an increase of Fgfr2b, Etv5, Sftpc,
Cyclin DI (Ccndl), Cyclin D2 (Ccnd2) and Ki67 expres-
sion in PNX compared to the Sham. Overall, these data
indicate that IAAPs are activated and proliferate to replen-
ish the mature AT2s in the context of lung regeneration.
This strongly suggests that the increase in the mature AT2s
observed upon PNX mainly arises from the IAAPs, but not
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the pre-existing mature AT2s. Subsequent analysis through
in vitro culture of precision cut lung slices (PCLS), we
found that while Tom™€" AT2s were massively depleted,
TIAAPs proliferated. Interestingly, the fluorescence inten-
sity of tdTomato in these cells was gradually increased
suggesting their differentiation towards mature AT2s [33].

Further analysis of Sftpc ™ ERT>* . tdTom"*°* mice
with flow cytometry also showed that the percentile of
IAAPs over Epcam? cells expanded significantly follow-
ing bleomycin injury while the percentile of AT2s over
Epcam™ cells decreased, demonstrating that AT2s repre-
sent the main alveolar epithelial target upon bleomycin
injury [39]. The percentile of IAAPs increased gradu-
ally after bleomycin induction, peaked at day 16 (fibrosis
period), then decreased gradually and recovered to the
initial level at day 60 (resolution period). On the contrary,
the number of Tom™&" AT2 (mature AT2) decreased to the
lowest level on day 16 and returned progressively to nor-
mal level on day 60. The inverse correlation between the
percentile of IAAPs and AT2s following bleomycin injury
suggests that IAAPs may represent an AT2 stem cell pool
contributing to replenish the dying AT2s after lung injury
[39]. Additionally, the surviving Tom''8" AT2s at day 16
may contain the AEPs, which will then proliferate and
contribute to the restoration of lung homeostasis. Further
investigation is required to fully delineate the nature of the
survival cells in the Tom'€" AT2s pool.

Altogether, these results demonstrated that IAAPs are
activated only upon injury and that AT2s, which contains
the AEPs and other mature AT2 stem cells is at the best
not changed in the PNX model or even decreased in the
bleomycin model during the first 16 days following injury,
thereby raising important questions on the proposed privi-
leged role played by the AEPs upon injury [39].

Through database mining and examination of lungs
from IPF patients, we and others found that the percentile
of PD-L1% AT2s (similar to mouse IAAPs) over EPCAM
was markedly increased in IPF lungs compared to that
of the dornors. There was a significant shift of the tran-
scriptome in IPF IAAPs compared to AT2s, including
lower AT?2 signaling and dysregulation of gene expres-
sion related to cell proliferation in IPF patients [40-42].
It also appears that these cells are stalled in their transi-
tion to fully mature AT2s. The reasons behind this defect
are still unclear and could be related to the high level of
inflammatory signals present in diseased lungs which were
previously proposed to prevent the differentiation of the
DATPs into mature AT1s [29]. Therefore, we speculate
that IAAPs serve as progenitors for mature AT2 cells. It
is still unclear if IAAPs can also differentiate directly into
ATls, thereby bypassing the previously described transient
DATP state (Fig. 2).
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Fig.2 Possible function of Pd-11 in IAAPs. In homeostasis, IAAPs
are quiescent and do not significantly interact with the resident mes-
enchymal niche for mature AT2s. Around 50% of the IAAPs express
Pd-11. The function of Pd-117 IAAPs is still unclear. We propose
that Pd-11/Pd-1 signaling inhibits T cell activation, thereby keeping
the inflammatory signals low. Mature AT2s interact with the resident
mesenchymal niche which is essential for their survival. After injury,
mature AT2s cells are dying and release damage activated molecu-
lar patterns (DAMPs) such as Il-1 which act on the macrophages for
their recruitment and activation and on IAAPs for their proliferation.

Revisiting the initial demonstration
that mature AT2s are stem cells: are
the IAAPs the elephant in the room?

The seminal paper establishing the role of AT2s at large
as stem cells capable of self-renewal and differentiation

O
D

Inflammatory signals from the macrophages such as Il-1 and Tnfa
also contribute to the proliferation of the IAAPs. IAAPs are also
interact with the mesenchymal niche to receive survival/proliferative
signals such as Fgfs. Activated/proliferative IAAPs progressively dif-
ferentiate into Pd-11" mature AT2s to replenish the impaired mature
AT?2 pool. These Pd-11" AT2s also re-enforce the inflammatory niche.
During resolution, activated Pd-11"°" TAAPs give rise to Pd-11Ti"
quiescent IAAPs which mitigate inflammation through Pd-11/Pd-1
signaling in macrophages

towards AT2 and AT1 cells was based on the use of a trans-
genic mouse model targeting DTA expression in AT2s while
at the same time labeling them with tomato (Sftpc < ERT*:
R26loxP—ST0P—Loxp—DTA; loxP—STOP—LoxP—thomatO) [16]. UpOIl
tamoxifen-mediated Cre nuclear translocation in AT2s, the
STOP codon at the Rosa26 locus is being removed allowing
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the expression of both tdTomato and DTA. In theory, as
both tdTomato and DTA are co-expressed, these cells should
undergo apoptosis and therefore no lineage traced cells
should be observed. So how is it that some lineage- traced
cells not only survived but expanded in a clonal fashion?
This study attributed this to “chance”, as only one of the
two Rosa26 allele containing the tdTomato but not the DTA
was recombined. However, our recent results with the IAAPs
allow to propose an alternative, and perhaps a more plausible
explanation. What is likely observed in this experiment is
the dual labeling of the IAAPs and the AT2s. IAAPs have
a less opened chromatin configuration of the Rosa26 locus
thereby allowing very low expression, if any of DTA. It is
therefore likely that these IAAPs survived while AT2s, with
a high level of DTA were more efficiently eliminated. What
is observed in this context therefore could be the clonal
expansion of the surviving IAAPs. Another intriguing obser-
vation is that the IAAPs appear to develop mechanisms of
resistance to deleterious genetic manipulation. For example,
Fgfr2b deletion in both AT2s and IAAPs leads to cell death.
However, the surviving IAAPs manage to prevent the dele-
tion of the Fgfr2b allele via a mechanism that remains to
be identified [43]. A similar situation could therefore take
place in the context of the R26R '@*P=STOP=LoxP=DTA 4qje]e,
Although, in theory, everything is in place for the recom-
bination of this allele but survival mechanisms (which we
propose are mechanisms of resistance) are taking place to
prevent the expression of DTA. From an alveolar epithelium
standpoint, the IAAPs may represent the last resort to repair
the distal lung by functioning as a fail-safe mechanism of
self-protection. A similar logic is observed for cancer stem
cells which develop ingenious countermeasure to escape
chemotherapy.

Following the IAAPs during injury

The potential events associated with I[AAPs activation fol-
lowing injury are illustrated Fig. 2. Located on the luminal
surface of the alveoli, epithelial cells are more sensitive to
injury or infection resulting in their death. Recently, a num-
ber of studies have demonstrated that dysfunctional mature
AT?2s are the driver of chronic lung injury such as pulmonary
fibrosis [44, 45]. Dysfunctional or dying mature AT2s may
release damage-associated molecular patterns (DAMPs),
triggering pro-inflammatory pathways and Th2 polarizing
cytokines, which then initiate the activation of macrophages
or maturation and recruitment of other immune cells [46].
As canonical DAMPs, Il-1 family can function in the
inflammatory niche to enhance alveolar regeneration [29,
30, 47]. 1I-1 has been shown to directly act on mature AT2
stem cells to trigger their proliferation [29]. In the future,
it will be important to investigate the potential activating
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role of II-1 and other cytokines on IAAPs. We propose that,
upon injury or infection, the surviving IAAPs may receive
the DAMPs signals from damaged or dying AT2, leading
to their activation and expansion. During their differentia-
tion towards the mature AT2s, activated [AAPs may lose
distinct molecular marker such as Pd-11, and acquire Wnt-
target genes, such as Axin2 (See Fig. 2C). Future studies
using the SftpcCreERT?+ . pd_[1PERT? double recombinase
mouse line to specifically lineage trace Pd-11*Sftpc* TAAPs
will be instrumental to study the activation, fate and func-
tion of IAAPs.

Potential roles of Pd-11 signaling in IAAPs

To the best of our knowledge, the Pd-11/Pd-1 pathway is an
important immune checkpoint in tumor immunotherapy as
Pd-11 displays immunosuppressive activity. When it binds
to its receptor Pd-1, expressed on the surface of T or B cells,
it inhibits their proliferation. Therefore, in human, anti-PD-
L1 treatment can reduce the immune escape of tumor cells
and enhance the effect of anti-tumor therapy [48]. However,
Pd-11 may have completely different effects in different dis-
eases or when expressed in different cells. Several recent
studies have reported that Pd-11 expression in lung fibro-
blasts increases in pulmonary fibrosis and is secreted into
exosomes to inhibit the proliferation of T cells and promote
the proliferation and migration of fibroblasts. Therefore, it
has been proposed that inhibiting the expression of Pd-11
in lung fibroblasts may improve the process of pulmonary
fibrosis [49-51]. Interestingly, the expression of PD-1, the
receptor for PD-L1, is up-regulated in IPF lymphocytes, and
the PD-11CD4" T cells display reduced proliferative capac-
ity and increased transforming growth factor—f§ (TGF-p)
expression. Both bleomycin administration to Pd-1~'~ mice
or use of antibody against PD-L1 demonstrated significantly
reduced fibrosis upon loss of PD-L1 expression compared to
controls [52]. However, another study on human mesenchy-
mal stem cells (MSCs) found that blocking PD-L.1 expres-
sion in these cells decreased the efficacy of MSCs in treat-
ing pulmonary fibrosis [53]. Other studies in the context of
cancer have found that PD-L1 can promote the transforma-
tion of hepatic stellate cells into myofibroblasts, accelerat-
ing tumorigenesis. Targeting PD-L1 in hepatic stellate cells
can selectively inhibit the occurrence of liver cancer [54].
However, increasing the expression of PD-L1 in hepatocytes
reduced the liver injury of non-alcoholic fatty liver disease
[55]. Knockdown of Pd-I1 or Pd-1 gene can also reduce
the activity of vascular endothelial cells, enhance the tight
junctions of endothelial cells, and significantly improve the
survival rate of mice suffering from acute respiratory dis-
tress syndrome (ARDS) caused by hemorrhagic shock [56].
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IAAPs’s chromatin is more accessible for genes relating
to the innate and adaptive immune system [33], suggesting
their interaction with the immune cells under such circum-
stance is fundamentally different from mature AT2s. PD-L1
could therefore play an instrumental role in IAAPs” stem cell
function, since previous studies demonstrated the function of
PD-L1 in regulation of cell proliferation in cancerous cells.
For instance, Fang et. al, interestingly, found that PD-L1
regulates cell cycle entry in leukemia-initiating cells (LICs)
as PD-LI-null LICs displayed cell cycle arrest and decreased
cell proliferation. Moreover, cell cycle regulators such as
P16, P21, Cyclin D2, and CDK6 were significantly regulated
in PD-LI knock-down cells [57]. Similarly, other studies
illustrated the regulation of pancreatic cancerous prolifera-
tion through cell cycle- related genes and JNK phosphoryla-
tion following PD-L1 overexpression [58]. These suggest the
function of PD-L1 in controlling cell cycle entry. Further
research is required to study whether similar mechanisms
play a role in IAAPs progenitor behavior and how different
are these mechanisms from the ones promoting the cells to
become cancerous. Another function of Pd-11 expression
in IAAPs might be their protection as privileged progeni-
tor cells from the immune system, similar to what has been
shown to protect the hematopoietic stem cells, the stem cells
in the hair follicles, and Lgr5* intestinal stem cells [59-61].

Our discovery that Pd-11 is a molecular marker of IAAPs
also raises a number of interesting possibilities (see Fig. 2A).
For example, whether Pd-11 is related to the innate immune
response of AT2s, whether it can be wrapped by extracel-
lular vesicles to be released in the blood circulation, or
whether IAAPs bind to T cells that infiltrated into the alveoli
through the Pd-11/Pd-1 pathway to promote T cell suppres-
sion during lung homeostasis. Interestingly, by losing Pd-11
expression upon injury, IAAPs may no longer suppress T
cells, which are then capable, as part of the inflammatory
niche, to trigger the proliferation and differentiation of AT2
stem cells towards the AT1 lineage via Il-1. Inhibiting Pd-11
in IAAPs may therefore impact positively the regeneration
of AT2s. This possibility needs to be further investigated.

Role of Fgf10/Fgfr2b signaling pathway
on IAAPs

In view of the key role played by fibroblast growth fac-
tor 10 (Fgf10)/Fgf receptor 2b (Fgfr2b) signaling in lung
development, alveolar regeneration and repair, we further
investigated the impact of Fgf10/Fgfr2b signaling pathway
on IAAPs [62-65]. We found that overexpression of Fgf10
or treatment of recombinant FGF10 (rFGF10) significantly
improved the degree of pulmonary fibrosis in bleomycin-
injured mice, whether administered simultaneously or at day

or day 14 after injury, by promoting the active proliferation
of IAAPs [39, 66].

Fgfr2b is the main receptor for Fgf10. In the lung,
Fgfr2b restricts AT2 cell fate during alveolar lineage for-
mation and is needed for AT2 survival postnatally [67—69].
An accepted concept in the repair field is that the mecha-
nisms involved recapitulate ontogeny. What occurs to the
TIAAPs during repair is a good illustration of this principle
as the expression of Fgfr2b and its downstream factor Etv5
have been found upregulated in proliferative TAAPs upon
injury. These cells have been called “activated IAAPs” (see
Fig. 2B). This observation suggests that Fgfr2b signaling,
an AT2-specific developmental signaling pathway, is reac-
tivated [43]. Interestingly, Fgfr2b signaling has been pro-
posed to be dispensable for AT2 homeostasis and alveolar
repair [68, 70]. However, far from being dispensable, our
recent study demonstrated that specific inactivation of the
Fgfr2b gene in AT2s leads to apoptosis of both AT2s and
IAAPs. However, the resulting morphological changes in
the mutant lungs were not obvious, suggesting that there
must be compensatory mechanisms at play. Further analy-
sis revealed that surviving IAAPs escaped Fgfr2b deletion
through a mechanism that remains to be identified. These
cells were therefore termed “resistant TAAPs” or RIAAPs.
We propose that RIAAPs are amplified and differentiate into
mature AT2s (we called these cells “differentiated AT2 aris-
ing from RIAAPs” or DRIAAP). Subsequently, as DRIAAPs
acquire high Sftpc expression, the corresponding level of Cre
recombinase expression which is under the control of the
Sftpc promoter is also enhanced, leading to Fgfr2b deletion
in DRIAAPs. Loss of Fgfr2b expression leads to apoptosis
thereby creating a constant cycle of proliferative and apop-
totic alveolar epithelial cells.

Altogether, this leads to the establishment of a novel
proliferation/apoptosis loop in mutant lungs allowing the
maintenance of a constant number of alveolar epithelial cells
needed for proper lung function [43].

Open questions and future directions

Although the AT?2 lineage has been a major topic of inves-
tigation over the years, its study still allows to make sig-
nificant discoveries offering new insight and opportuni-
ties to reconsider some of the dogmas in the field of lung
regeneration. For example, how can we reconcile in vivo
and in vitro observations about the mature AT2s? While
the in vitro studies clearly show that mature AT2s con-
tain stem cells capable of self-renewal and differentia-
tion, the in vivo data, however, clearly show that most of
the action in terms of proliferation is taking place in the
TAAPs and not the mature AT2s. In addition, it is still not
clear whether AEPs, ScalT™AT2s and IL-1r"AT2s co-exist
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as distinct, separate subpopulations or if they are part of a
continuum within a given differentiation process.

Recently, several papers described "intermediate cells"
in AT2 to AT1 transition, which were given by different
groups various names, such as Alveolar Differentiation
Intermediate (Krt8*ADI) [71], Pre-Alveolar Type-1 Tran-
sitional Cell State (PATS) [72] or Damage-Associated
Transition Progenitors (DATPs) [29]. Strunz et al. found
that approximately half of the alveolar Krt8* alveolar dif-
ferentiation intermediate (ADI) cells were derived from
either SftpcC“ERT? or Sox2¢™ERT? Jineage-labelled cells in
the bleomycin model. It is proposed that these cells dif-
ferentiate from elite progenitors belonging to the mature
AT?2s pool, namely the Tm4sf1* Axin2* AEPs. It remains
to be resolved whether IAAPs differentiate into mature
AT2s through a Tm4sf1* Axin2* AEP intermediate or
directly to AT1s via the transient Krt8*ADI cell state. The
answers to these important questions will require further
investigation.

Another important question that needs to be addressed is
whether IAAPs belong to a distinct AT2 sub-population, or
represent a transient AT2 cell state. Usually, a transient cell
state arises from a stable population of cells in response to
injury. As IAAPs represents a group of immature and quies-
cent lineage-traced Sftpc-positive cells consistently detected
during homeostasis, this observation alone would argue that
IAAPs constitutes a cell population on their own, distinct
from mature AT2s. Obviously, only lineage tracing of the
TAAPs, combined with injury models and scRNAseq, will be
able to address their capacity to give rise to mature AT2s and
AT1. Such approaches will also be instrumental to further
define their heterogeneity, which is already suggested by the
fact that only half of IAAPs express PD-L1. Another intrigu-
ing possibility is whether AT2s can differentiate into [AAPs
after injury. This will require the identification of AT2 mark-
ers which are not expressed by IAAPs. So far, the use of the
SftpcCERT? mice does not allow to answer to this important
question as SFTPC is expressed in both AT2s and TAAPs.

The regulatory effect of FGF10 or other target drugs
on different AT2 subsets and their therapeutic application
to enhance the repair process are also worthy of further
study. Furthermore, what is the role of Pd-11 in IAAPs? Is
this just a marker for these cells or does it play an active
role in maintaining their function? Promoting or blocking
Pd-11 expression in the context of lung diseases may also be
important for the precision therapy of lung diseases. Using
dual recombinase approach to specifically label the IAAPs
in combination with single cell RNA/ATAC sequencing
and spatial transcriptomic in the context of lung injury and
regeneration will provide valuable and informative data on
the IAAPs with the aim of expanding our knowledge of this
new subpopulation of AT2 progenitor cells.
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