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Abstract
Alveolar epithelial type II cells (AT2s) together with AT1s constitute the epithelial lining of lung alveoli. In contrast to the 
large flat AT1s, AT2s are cuboidal and smaller. In addition to surfactant production, AT2s also serve as prime alveolar pro-
genitors in homeostasis and play an important role during regeneration/repair. Based on different lineage tracing strategies 
in mice and single-cell transcriptomic analysis, recent reports highlight the heterogeneous nature of AT2s. These studies 
present compelling evidence for the presence of stable or transitory AT2 subpopulations with distinct marker expression, 
signaling pathway activation and functional properties. Despite demonstrated progenitor potentials of AT2s in maintaining 
homeostasis, through self-renewal and differentiation to AT1s, the exact identity, full progenitor potential and regulation of 
these progenitor cells, especially in the context of human diseases remain unclear. We recently identified a novel subset of 
AT2 progenitors named “Injury-Activated Alveolar Progenitors” (IAAPs), which express low levels of Sftpc, Sftpb, Sftpa1, 
Fgfr2b and Etv5, but are highly enriched for the expression of the surface receptor programmed cell death-ligand 1 (Pd-l1). 
IAAPs are quiescent during lung homeostasis but activated upon injury with the potential to proliferate and differentiate 
into AT2s. Significantly, a similar population of PD-L1 positive cells expressing intermediate levels of SFTPC are found 
to be expanded in human IPF lungs. We summarize here the current understanding of this newly discovered AT2 progeni-
tor subpopulation and also try to reconcile the relationship between different AT2 stem cell subpopulations regarding their 
progenitor potential, regulation, and relevance to disease pathogenesis and therapeutic interventions.
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Introduction

Alveoli are the basic structural unit for gas exchange. 
Alveolar development occurs in the late stage of lung 
development. Compared to the complex pseudostratified 
bronchial epithelium, the alveolar epithelium is relatively 
simple and consists of two cell types; the large flattened 
AT1s which cover most of the alveolar surface area and 
provide an effective interface with the microvascular 
endothelium, and the cuboidal and smaller AT2s, which in 
addition to producing surfactants, regulating alveolar fluid 
movement and secreting a variety of antimicrobial pep-
tides to regulate innate immune response. AT2s also serve 
as a prime source of facultative stem cells during lung 
regeneration/repair [1, 2]. In this context, the facultative 

stem cells usually refer to differentiated cells in a rest-
ing state that can function as stem cells during repair and 
regeneration after injury. Both AT1s and AT2s are derived, 
during lung development, from distal airway progenitor 
cells which express Inhibitor of differentiation 2 (Id2) and 
Sex determining region Y—box 9 (Sox9) (Fig. 1) [3–5].

In recent years, two different models of alveolar lineage 
specification and formation out of these  Id2+  Sox9+ cells 
have been proposed: the bipotential progenitor model and 
the early lineage specification model, as illustrated in Fig. 1. 
The bipotential progenitor model proposes that  Id2+  Sox9+ 
cells give rise to a population called “bipotential progenitor 
cells (BPs)” [6]. These cells were found around E16.5 in 
the mouse, and could self-renew or differentiate into either 
of the two alveolar epithelial lineages. Based on single-cell 
transcriptomic analysis conducted at different embryonic 

Fig. 1  Continuum of AT1 and AT2 formation from lung ontogeny to 
homeostasis. During early lung development (E12.5), AT1 and AT2 
progenitors and bipotent progenitors (BPs) form from distal lung 
progenitor cells  (Id2+Sox9+). From E13.5 to E17.5,  Hopx+ AT1 pro-
genitors differentiate into mature AT1 cells. Mature AT1 cells can be 
classified through the expression of insulin-like growth factor bind-
ing protein 2 (Igfbp2).  Igfbp2+AT1 cells are terminally differenti-
ated cells while  Igfbp2−AT1s are progenitors for mature AT1s. AT1 
progenitors at E14.5 onwards can also contribute to the AT2 lineage. 
 Sftpc+ AT2 progenitors differentiate into mature AT2 cells. scR-

NAseq data indicate that mature AT2 cells can be subdivided into 2 
groups (called cluster A and B). Cluster A is  SftpcLow,  Fgfr2bLow and 
 HopxHigh and could represent the progenitors for the IAAPs which 
express Pd-l1. It remains unclear if cluster A can contribute to the 
 Hopx+Igfbp2− AT1 progenitor cells. Cluster B is  SftpcHigh  Fgfr2bHigh 
and represents mature AT2s. In this group, AEPs, Il-1r+ AT2s and 
 Sca1+ AT2s stem cells are present. AT2 progenitors also contribute to 
the AT1 lineage from E14.5 onwards. The contribution of BPs to the 
AT1 and AT2 lineage during development is still unclear
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timepoints, it was shown that BPs display a gene signature 
characteristic of both mature AT1s and AT2s. During alve-
ologenesis, BPs have been proposed to downregulate one 
of the two alveolar epithelial cell signatures, while upregu-
lating the other to become mature alveolar epithelial cells. 
However, an important limitation of the work supporting 
this model was that lineage tracing of the BPs was missing; 
it was unclear what proportion of mature alveolar epithelial 
cells pass through a BP state.

The second and more recent model of alveolar lineage 
formation proposes that the majority of mature AT1s and 
AT2s arise from unipotent (committed), not bipotential, pro-
genitors which are specified as early as E13.5 in the mouse 
lung [7]. This ‘early lineage specification’ model was sup-
ported by single cell transcriptomic analyses along with 
lineage tracing experiments. In one of these experiments, a 
dual transgenic mouse line was used to label Sftpc-positive 
and Hopx-positive cells at E15.5. These Sftpc+Hopx+ cells 
were considered bipotential, and it was suggested, based 
on their minor contribution to the more mature AT1 and 
AT2 cell populations at postnatal day 0 (P0), that BPs play 
a minor role in alveolar lineage formation. However, given 
the timepoints chosen in this study to label cells, it remains 
unclear what proportion of alveolar epithelial progenitors 
are actually unipotent at E13.5; the significance of the BPs 
during alveolar lineage formation, therefore, is still to be 
established.

Recently, we reported that a significant proportion of AT2 
and AT1 progenitors during the late pseudoglandular stage 
of lung development are lineage flexible [8]. In this con-
text, lineage flexibility can be defined as the cross-lineage 
contribution of AT1 and AT2 progenitors during early lung 
development to the opposing lineage, respectively. In sup-
port of this process, AT1 and AT2 progenitors were labelled 
via two tamoxifen intraperitoneal injection (Tam-IP) injec-
tions (E14.5 and E15.5), respectively, using HopxCreERT2/+; 
tdTomatoflox/flox and SftpcCreERT2/+; tdTomatoflox/flox transgenic 
mouse lines. The contribution of lineage-labeled cells to 
each alveolar epithelial population at E18.5 was assessed. It 
was demonstrated that around 20–30% of mature pneumo-
cytes derive from lineage-flexible progenitorswhen labeled 
during mid-pseudoglandular development.

The identity of these progenitors displaying such line-
age flexibility remains to be fully clarified. They could arise 
from either unipotent progenitors which over time acquire 
the capacity to give rise to the opposite lineage and/or from 
bipotent progenitor cells which are present already in the 
early lung expressing both AT1 and AT2 markers. Further 
studies will have to be conducted to better define the iden-
tity of these lineage-flexible progenitors. Interestingly, sin-
gle cell transcriptomic analysis of whole lung cells captured 
between E12.5 and P42 led to the identification of a cluster 
of Sftpc/Spock2/Hopx–expressing cells (AT1/AT2) arising 

at postnatal day 3 (P3). The gene expression signature dis-
played by this cluster suggests that these cells correspond to 
a transitional state of AT2 cells similar to Spock2+/Axin2+ 
AT2 cells [9]. Whether these cells arise from the lineage-
flexible AT2 cells remain to be clarified.

Besides AT2s, the heterogeneity of the AT1 lineage has 
also been investigated. AT1 progenitors gradually express 
insulin-like growth factor binding protein 2 (Igfbp2), a ter-
minal marker of AT1 differentiation. About 62% of  Hopx+ 
cells express Igfbp2 at P3 (refer Fig. 1 for details). This 
percentile is increased to about 95% in the mature lung [10]. 
The remaining  Igfbp2− AT1s, accounting for about 5% of 
total AT1s, are capable of differentiating into  Igfbp2+ AT1s 
and mature AT2s during alveolar regeneration after pneumo-
nectomy thereby indicating their plasticity [10–12]. Of note, 
upon acute neonatal lung injury (hyperoxia), AT1s repro-
gram into AT2s, thereby promoting alveolar regeneration. 
While the ability of AT2s to regenerate AT1s is restricted to 
the mature lung [11].

Evidence of AT2 as facultative stem cell

Facultative stem cells are differentiated but quiescent cells, 
capable of self-renewal or differentiation into other cell types 
[13]. Since the first radioactive tracing and electron micros-
copy analysis performed by Evans et al. in 1973, to the study 
by Barkauskas et al. in 2013, which applied lineage tracing 
following targeted AT2 ablation and 3D organoid culture, it 
became clear that AT2s are bona fide facultative stem cells 
[14–16]. However, in contrast to cells in the skin, intes-
tine and many other tissues with fast homeostatic renewal 
dynamics, lung alveolar cells display much slower turnover 
rate, and the less renewing cells are derived from AT2s. In 
order to study the frequency and spatiotemporal distribution 
of AT1s renewal by AT2s, Desai et al. used the LysM-Cre; 
R26RmTmG mouse to lineage-trace AT2s for up to 16 months. 
The study demonstrated that AT2s self-renew and generate 
AT1s in renewal foci deriving from a single founder AT2 
cells. Less than 1% of AT1s expressed the AT2-tdTomato 
lineage tag at 1 month after tamoxifen-based labelling. This 
percentile is increased to 3.9% and 7.5% at 4 and 16 months, 
respectively. This indicates that the turnover of alveoli by 
AT2s is a slow but steady process [17].

The facultative nature of AT2s also raises a series of ques-
tions, such as whether all AT2s or only a portion of them 
have stem cell potential, and whether mechanistically simi-
lar proliferative and differentiation processes occur under 
homeostatic and injury conditions. A series of subsequent 
explorations further confirmed the heterogeneity of AT2s 
and stem cell behavior of only subsets of AT2s [[[18–24]]]. 
For instance, only a portion of AT2s, usually 3–5% of total 
AT2s, exhibit stem cell properties in the alveolosphere 



 L. Chong et al.

1 3

145 Page 4 of 13

model which co-cultured AT2s with  PdgfraHigh Cd31/
Cd45/Epcam negative resident mesenchymal cells grown 
in growth factor reduced Matrigel.

Morrisey and Desai groups almost simultaneously and 
independently reported Wnt-responsive AT2 progenitor/
stem cells characterized by the expression of Axin2, how-
ever the percentage of  Axin2+ AT2 cells, in homeostasis, is 
different from 1% in one study [25] to 20% in the other study 
[26]. This difference is surprising as both study rely on the 
use of Axin2CreERT2 driver lines (Axin2CreERT2; R26RmTmG and 
Axin2creERT2:TdTom; R26REYFP mice, respectively) and could 
be attributed to the methodology used to quantify the  Axin2+ 
AT2s (FACS vs. immunofluorescence, respectively).  Axin2+ 
AT2s (which are also called alveolar epithelial progenitors 
or AEPs) are evolutionarily conserved alveolar progenitors 
and showed enriched gene expression profile of lung devel-
opmental genes like Fgfr2, Nkx2.1, Id2, Etv4, Etv5, and 
Foxa1. These cells are located close to Pdgfrα-expressing 
fibroblasts which keep their stemness with the secretion of 
Wnts. Compared to the  Axin2− AT2s,  Axin2+ AT2s dis-
play enhanced self-renewal capabilities in the alveolosphere 
assays, illustrated by increased colony formation efficiency 
(around 4% vs. 2%, for AEPs vs bulk AT2s, respectively) 
and size (around 150 μm vs. 30 μm for AEPs and bulk AT2s, 
respectively) [25, 26]. In the study reported by the Morrisey 
group, in context of injury, such as influenza virus (H1N1) 
infection,  Axin2+ AT2s (AEPs) which were also described 
to express Transmembrane 4 superfamily 1 (Tm4sf1) prolif-
erate rapidly under the stimulation of Wnt signals. Interest-
ingly when Wnt signals were withdrawn, AEPs differenti-
ated to AT1s, a process which is instrumental in repairing 
the alveoli [26]. Previous studies have found that AT2 cells 
positive for Forkhead box M1 (FoxM1) and Stem cell anti-
gen 1 (Sca1) function as stem cells after infection with Pseu-
domonas aeruginosa (PA), and differentiate to AT1s to play 
a repair role under the stimulation of Wnt signaling [27, 
28]. How these  FoxM1+  Sca1+ AT2s relate to AEPs is still 
unclear.

In another study, Katsura et al. detected subsets of AT2 
cells which survived influenza-induced injury. These cells 
are located at proximity to damaged area and proliferate in 
response to elevated IL-1β and TNFα in the alveolar niche. 
Interestingly, infiltrating  CD45+ are found in damaged 
alveolar regions, suggesting the involvement of immune 
cells in the epithelial repair process. Moreover, alveolo-
spheres arising from cultured AT2 cells displayed enhanced 
colony forming efficiency after treatment with interferon α 
and β, IL-1β and TNFα, and are subjected to regulation by 
NF-κB signaling activation. This indicates the role of the 
inflammatory response in AT2s proliferation, however, it 
is not clear which subset of AT2s are more responsive to 
inflammatory cytokines [29, 30]. Additionally, Choi et al., 
introduced a subset of AT2s expressing Il-1r1, which were 

primed following the secretion of Il-1β from interstitial 
macrophages during repair. These AT2s acquire a new gene 
expression profile through the HIF-1α-mediated glycolysis 
pathway and are called damage-related transient progeni-
tor cells (DATPs). DATPs differentiate to AT1s following 
bleomycin induced lung injury [29, 30].

Through single-cell sequencing, it was reported that 
human lung tissues also exhibited a rare cluster of AT2s 
(called AT2-s) with a distinct transcriptional profile com-
pared to AT2s. These AT2-s selectively expressed com-
ponents of the WNT signaling (WNT5A, LRP5, CTNN-
BIP, TCF4, TCF7L2) as well as detoxification genes (CP, 
GSTA1, CYP4B1). Therefore, it was proposed that AT2-s 
may be alveolar stem cells that are homologous to  Axin2+ 
AT2s in mouse [19]. However, this conclusion may be short 
lived because many of the other differences in expression 
between human AT2-s and "bulk" AT2s are not shared when 
comparing mouse  Axin2+ AT2s to bulk AT2s [19, 31].

Newly identified alveolar cells, called alveolar cell type 
0 (AT0) cells, are related to the alveolar epithelial lineage 
in the human lung. These cells emerge from AT2s during 
alveolar repair. AT0 cells are bipotential and co- express 
SFTPC, SCGB3A2 and different levels of AT1 marker (HTI-
56). They give rise to either AT1s or terminal and respiratory 
bronchioles stem cells (TRB-SCs) depending on their micro-
environment. However, it is still unknown whether a subset 
of AT2 cells are more prone to differentiate to either into 
AT1s or into TRB-SCs [32]. Therefore, all of these findings 
support that distinct subsets of the general AT2 population 
may function as stem cells but also illustrate that our current 
understanding of these AT2 subsets is still incomplete.

Recently, our team discovered yet another AT2 progeni-
tor subpopulation, which is different from the previously 
discovered AT2 stem cells [33]. During homeostasis, this 
subpopulation does not display stem cell activity, but greatly 
expands after lung injury, filling the compromised AT2 pool. 
This population appears also to be heterogeneous. An in-
depth study of this new subpopulation will certainly comple-
ment our knowledge of the composition and function of the 
different subpopulations composing the AT2 stem cell pool, 
which will be the focus of this review.

Identification of the injury activated alveolar 
progenitors (IAAPs)

Through lineage tracing of  tdTomato+ cells in the lungs 
of SftpcCreERT2/+; tdTomatoflox/flox mice, we found that 
 tdTomato+ cells can be divided into two subpopulations, 
one with low tdTomato level  (TomLow AT2s), and the 
other with high tdTomato level  (TomHigh AT2s).  TomHigh 
AT2s account for around 80% of lineage-traced AT2s, 
whereas  TomLow AT2s account for the remaining 20%. The 
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ATAC-seq analysis also confirms that they are two distinct 
populations with different chromatin configuration.  TomLow 
AT2s express lower levels of AT2 differentiation markers 
such as Sftpc, Sftpb, Sftpa1, Fgfr2b and Etv5 compared to 
 TomHigh AT2s, and may represent a group of immature AT2s 
[33]. Moreover,  TomLow AT2s are different from the AT2 
stem cell subgroups mentioned above (AEPs, Sca-1+ AT2s 
and Il-1r+ AT2s), not only because those AT2 stem cell 
subgroups express high levels of AT2 differentiation mark-
ers, but also because  TomLow AT2s express a low level of 
Axin2 (while expressing Tm4sf1). Moreover,  TomLow AT2s 
do not have any role in maintaining the steady-state in the 
adult lung and are only activated under damage stimulation. 
For these reasons these cells were called “Injury Activated 
Alveolar Progenitors” or IAAPs. IAAPs are neither part of 
lineage negative epithelial progenitor (LNEP)/distal air-
way stem cells (DASCs) nor part of bronchoalveolar stem 
cells (BASCs) as LNEP/DASCs are negative for Sftpc and 
BASCs express high levels of the AT2 marker Sftpc and the 
club cell marker, Scgb1a1, while they locate in the respira-
tory epithelium and do not display high levels of Scgb1a1 
[34–36]. Therefore, IAAPs may represent a novel subset of 
quiescent and immature AT2 stem cells that is distinct from 
the more mature AT2 stem cells.

Screening of the top 100 differential expressed genes 
between IAAPs and  TomHigh AT2s (containing mostly the 
mature AT2s with no or limited stem cell capabilities as 
well as the mature AT2 stem cells such as the AEPs and 

 Sca1+ AT2s) led to the identification of several surface 
markers expressed at higher level in IAAPs, including pro-
grammed cell death-ligand 1 (Pd-l1, also named Cd274), 
a cell surface molecule associated with immunosuppres-
sion, Cd33, an adhesion protein expressed at the surface of 
myeloid cells [33] and Cd300lf as a regulator of immune 
response [37]. Data mining of recently published single-
cell sequencing data from normal adult human lung cells 
further confirmed the existence of PD-L1+ AT2s [19, 33]. 
Intriguingly, PD-L1+ AT2s sub-cluster displays low levels 
of ETV5, SFTPC and AXIN2 but high level of TM4SF1. 
TM4SF1 is an epithelial cancer stem cell membrane protein, 
which is also expressed by AEPs. The differences between 
IAAPs, AEPs,  Sca1+AT2s and Il-1r+ AT2s are summarized 
in Table 1.

A small parenthesis on the use of tomato 
as a reporter for Cre expression

Our discovery that the level of tomato expression could be 
used to discriminate between two subpopulations within the 
AT2 lineage using the SftpcCreERT2/+; tdTomflox/flox mice was 
initially surprising [33]. This difference was observed even 
when only one copy of tdTomflox was used (SftpcCreERT2/+; 
tdTomflox/+) ruling out that this difference was due to one 
versus two copies of the Rosa26LoxP−STOP−LoxP−tdTomato allele 
recombined in the context of SftpcCreERT2/+; tdTomflox/flox 

Table 1  Comparison of IAAPs with mature AT2 stem cells

# Assessed using alveolospheres
PNX pneumonectomy, PA Pseudomonas aeruginosa, Tm4sf1 Transmembrane 4 superfamily 1, Pd-l1 Programmed death ligand-1, CD274 Il-1r: 
Interleukin-1 receptor, Sca-1 Stem cell antigen 1, FoxM1 Forkhead box M1

IAAPs AEPs Sca1+AT2s Il-1r+ AT2s

Differentiation status Immature Mature Mature Mature
Status of activation PNX and bleomycin injury Homeostasis and influenza 

infection
PA infection Bleomycin injury

Markers Low levels of AT2 differ-
entiation markers (Sftpc, 
Sftpb, Sftpa1, Fgfr2b and 
Etv5)

High levels of Pd-l1 and 
Tm4sf1

High levels of AT2 differ-
entiation markers (Sftpc, 
Sftpb, Sftpa1, Fgfr2b and 
Etv5), Wnt target gene 
(Axin2) and epithelial 
cancer stem cell mem-
brane protein (Tm4sf1)

High levels of AT2 differ-
entiation markers (Sftpc, 
Sftpb, Sftpa1, Fgfr2b and 
Etv5), stem cell antigen 
(Sca1) and FoxM1

High levels of AT2 dif-
ferentiation markers 
(Sftpc, Sftpb, Sftpa1, 
Fgfr2b and Etv5) and 
Il-1r

Stem cell property# in 
homeostasis

No Yes Not clear Not clear

Stem cell property in repair Yes Yes Yes Yes
Potential functions Replenishing AT2 stem 

cells pool
Rescue the loss of mature 

AT2

Maintaining lung homeo-
stasis

Promoting alveolar regen-
eration

Promoting alveolar regen-
eration

Promoting alveolar regen-
eration

References Ahmadvand et al. [33]
Ahmadvand et al. [43]
Ahmadvand et al. [42]

Nabhan et al. [25]
Zacharias et al. [26]

Liu et al. [28]
Liu et al. [27]

Choi et al. [29]
Strunz et al. [71]



 L. Chong et al.

1 3

145 Page 6 of 13

mice. As full recombination of this allele was observed both 
in IAAPs and AT2s, this led us to hypothesize that the dif-
ference was instead the result of differential expression of 
tdTomato from the Rosa26 promoter per se in the IAAPs vs. 
AT2s. Indeed, ATAC-seq analysis indicated a more closed 
chromatin configuration at the Rosa26 locus in IAAPs vs. 
AT2s. This phenomenon may be unique to the AT2 lineage 
or shared by other lineages and careful work has to be car-
ried out on the characterization of tomato intensity to tease 
out the possibility of capturing distinct lineages. Another 
important consequence of this differential chromatin con-
figuration is that tomato intensity may potentially be used 
to monitor the differentiation process of the IAAPs towards 
the AT2s.

Possible function of IAAPs

Since IAAPs belong to an immature AT2 stem cell sub-
group, their function is likely different from that of the 
previously discovered mature AT2 stem cells. By 3D co-
culture of IAAPs or  TomHigh AT2s with  Sca1+ resident 
mesenchymal cells (rMCs, defined as Cd31/Cd45/Epcam 
triple negative), respectively, we found that  TomHigh AT2s 
form alveolosphere, while IAAPs exhibit a very weak abil-
ity to promote organoid formation. Thus,  TomHigh AT2s 
contain mature AT2 stem cells [33]. Then, what is the 
function of IAAPs? The pneumonectomy (PNX) model 
in mice, through surgical removal of the left lobe, triggers 
the process of compensatory growth in the remaining right 
lobes, with a particularly strong response of the accessory 
lobe. When PNX and Sham surgeries were carried out on 
SftpcCreERT2/+; tdTomflox/flox mice and tamoxifen was admin-
istered before the operation to label the IAAPs and AT2s. 
The robust compensatory growth of the remaining lobes 
is associated with increased proliferation of AT2s, visible 
as early as day 5 following PNX [38]. Such an increase 
is not seen in the Sham operated mice. Lung  Epcam+ 
cells account for around 70% of lineage-labeled AT2 
cells (either IAAPs or mature AT2s) with the rest being 
AT1s and bronchial epithelial cells. Surprisingly, analy-
sis at day 7 post-surgery showed that the ratio of IAAPs 
over  Epcam+ cells were more than doubled in PNX vs. 
Sham. While the ratio of mature AT2s over  Epcam+ cells 
trended towards a decrease. Furthermore, transcriptional 
profiling of IAAPs after fluorescence-activated cell sort-
ing (FACS) revealed an increase of Fgfr2b, Etv5, Sftpc, 
Cyclin D1 (Ccnd1), Cyclin D2 (Ccnd2) and Ki67 expres-
sion in PNX compared to the Sham. Overall, these data 
indicate that IAAPs are activated and proliferate to replen-
ish the mature AT2s in the context of lung regeneration. 
This strongly suggests that the increase in the mature AT2s 
observed upon PNX mainly arises from the IAAPs, but not 

the pre-existing mature AT2s. Subsequent analysis through 
in vitro culture of precision cut lung slices (PCLS), we 
found that while  TomHigh AT2s were massively depleted, 
IAAPs proliferated. Interestingly, the fluorescence inten-
sity of tdTomato in these cells was gradually increased 
suggesting their differentiation towards mature AT2s [33].

Further analysis of SftpcCreERT2/+; tdTomflox/flox mice 
with flow cytometry also showed that the percentile of 
IAAPs over  Epcam+ cells expanded significantly follow-
ing bleomycin injury while the percentile of AT2s over 
 Epcam+ cells decreased, demonstrating that AT2s repre-
sent the main alveolar epithelial target upon bleomycin 
injury [39]. The percentile of IAAPs increased gradu-
ally after bleomycin induction, peaked at day 16 (fibrosis 
period), then decreased gradually and recovered to the 
initial level at day 60 (resolution period). On the contrary, 
the number of  TomHigh AT2 (mature AT2) decreased to the 
lowest level on day 16 and returned progressively to nor-
mal level on day 60. The inverse correlation between the 
percentile of IAAPs and AT2s following bleomycin injury 
suggests that IAAPs may represent an AT2 stem cell pool 
contributing to replenish the dying AT2s after lung injury 
[39]. Additionally, the surviving  TomHigh AT2s at day 16 
may contain the AEPs, which will then proliferate and 
contribute to the restoration of lung homeostasis. Further 
investigation is required to fully delineate the nature of the 
survival cells in the  TomHigh AT2s pool.

Altogether, these results demonstrated that IAAPs are 
activated only upon injury and that AT2s, which contains 
the AEPs and other mature AT2 stem cells is at the best 
not changed in the PNX model or even decreased in the 
bleomycin model during the first 16 days following injury, 
thereby raising important questions on the proposed privi-
leged role played by the AEPs upon injury [39].

Through database mining and examination of lungs 
from IPF patients, we and others found that the percentile 
of PD-L1+ AT2s (similar to mouse IAAPs) over EPCAM 
was markedly increased in IPF lungs compared to that 
of the dornors. There was a significant shift of the tran-
scriptome in IPF IAAPs compared to AT2s, including 
lower AT2 signaling and dysregulation of gene expres-
sion related to cell proliferation in IPF patients [40–42]. 
It also appears that these cells are stalled in their transi-
tion to fully mature AT2s. The reasons behind this defect 
are still unclear and could be related to the high level of 
inflammatory signals present in diseased lungs which were 
previously proposed to prevent the differentiation of the 
DATPs into mature AT1s [29]. Therefore, we speculate 
that IAAPs serve as progenitors for mature AT2 cells. It 
is still unclear if IAAPs can also differentiate directly into 
AT1s, thereby bypassing the previously described transient 
DATP state (Fig. 2).
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Revisiting the initial demonstration 
that mature AT2s are stem cells: are 
the IAAPs the elephant in the room?

The seminal paper establishing the role of AT2s at large 
as stem cells capable of self-renewal and differentiation 

towards AT2 and AT1 cells was based on the use of a trans-
genic mouse model targeting DTA expression in AT2s while 
at the same time labeling them with tomato (SftpcCreERT/+: 
R26loxP−STOP−Loxp−DTA; loxP−STOP−LoxP−tdTomato) [16]. Upon 
tamoxifen-mediated Cre nuclear translocation in AT2s, the 
STOP codon at the Rosa26 locus is being removed allowing 

Fig. 2  Possible function of Pd-l1 in IAAPs. In homeostasis, IAAPs 
are quiescent and do not significantly interact with the resident mes-
enchymal niche for mature AT2s. Around 50% of the IAAPs express 
Pd-l1. The function of Pd-l1− IAAPs is still unclear. We propose 
that Pd-l1/Pd-1 signaling inhibits T cell activation, thereby keeping 
the inflammatory signals low. Mature AT2s interact with the resident 
mesenchymal niche which is essential for their survival. After injury, 
mature AT2s cells are dying and release damage activated molecu-
lar patterns (DAMPs) such as Il-1 which act on the macrophages for 
their recruitment and activation and on IAAPs for their proliferation. 

Inflammatory signals from the macrophages such as Il-1 and Tnfa 
also contribute to the proliferation of the IAAPs. IAAPs are also 
interact with the mesenchymal niche to receive survival/proliferative 
signals such as Fgfs. Activated/proliferative IAAPs progressively dif-
ferentiate into Pd-l1− mature AT2s to replenish the impaired mature 
AT2 pool. These Pd-l1− AT2s also re-enforce the inflammatory niche. 
During resolution, activated Pd-l1Low IAAPs give rise to Pd-l1High 
quiescent IAAPs which mitigate inflammation through Pd-l1/Pd-1 
signaling in macrophages
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the expression of both tdTomato and DTA. In theory, as 
both tdTomato and DTA are co-expressed, these cells should 
undergo apoptosis and therefore no lineage traced cells 
should be observed. So how is it that some lineage- traced 
cells not only survived but expanded in a clonal fashion? 
This study attributed this to “chance”, as only one of the 
two Rosa26 allele containing the tdTomato but not the DTA 
was recombined. However, our recent results with the IAAPs 
allow to propose an alternative, and perhaps a more plausible 
explanation. What is likely observed in this experiment is 
the dual labeling of the IAAPs and the AT2s. IAAPs have 
a less opened chromatin configuration of the Rosa26 locus 
thereby allowing very low expression, if any of DTA. It is 
therefore likely that these IAAPs survived while AT2s, with 
a high level of DTA were more efficiently eliminated. What 
is observed in this context therefore could be the clonal 
expansion of the surviving IAAPs. Another intriguing obser-
vation is that the IAAPs appear to develop mechanisms of 
resistance to deleterious genetic manipulation. For example, 
Fgfr2b deletion in both AT2s and IAAPs leads to cell death. 
However, the surviving IAAPs manage to prevent the dele-
tion of the Fgfr2b allele via a mechanism that remains to 
be identified [43]. A similar situation could therefore take 
place in the context of the R26R loxP−STOP−LoxP−DTA allele. 
Although, in theory, everything is in place for the recom-
bination of this allele but survival mechanisms (which we 
propose are mechanisms of resistance) are taking place to 
prevent the expression of DTA. From an alveolar epithelium 
standpoint, the IAAPs may represent the last resort to repair 
the distal lung by functioning as a fail-safe mechanism of 
self-protection. A similar logic is observed for cancer stem 
cells which develop ingenious countermeasure to escape 
chemotherapy.

Following the IAAPs during injury

The potential events associated with IAAPs activation fol-
lowing injury are illustrated Fig. 2. Located on the luminal 
surface of the alveoli, epithelial cells are more sensitive to 
injury or infection resulting in their death. Recently, a num-
ber of studies have demonstrated that dysfunctional mature 
AT2s are the driver of chronic lung injury such as pulmonary 
fibrosis [44, 45]. Dysfunctional or dying mature AT2s may 
release damage-associated molecular patterns (DAMPs), 
triggering pro-inflammatory pathways and Th2 polarizing 
cytokines, which then initiate the activation of macrophages 
or maturation and recruitment of other immune cells [46].

As canonical DAMPs, Il-1 family can function in the 
inflammatory niche to enhance alveolar regeneration [29, 
30, 47]. Il-1 has been shown to directly act on mature AT2 
stem cells to trigger their proliferation [29]. In the future, 
it will be important to investigate the potential activating 

role of Il-1 and other cytokines on IAAPs. We propose that, 
upon injury or infection, the surviving IAAPs may receive 
the DAMPs signals from damaged or dying AT2, leading 
to their activation and expansion. During their differentia-
tion towards the mature AT2s, activated IAAPs may lose 
distinct molecular marker such as Pd-l1, and acquire Wnt-
target genes, such as Axin2 (See Fig. 2C). Future studies 
using the SftpcCreERT2/+; Pd-l1DreERT2 double recombinase 
mouse line to specifically lineage trace Pd-l1+Sftpc+ IAAPs 
will be instrumental to study the activation, fate and func-
tion of IAAPs.

Potential roles of Pd‑l1 signaling in IAAPs

To the best of our knowledge, the Pd-l1/Pd-1 pathway is an 
important immune checkpoint in tumor immunotherapy as 
Pd-l1 displays immunosuppressive activity. When it binds 
to its receptor Pd-1, expressed on the surface of T or B cells, 
it inhibits their proliferation. Therefore, in human, anti-PD-
L1 treatment can reduce the immune escape of tumor cells 
and enhance the effect of anti-tumor therapy [48]. However, 
Pd-l1 may have completely different effects in different dis-
eases or when expressed in different cells. Several recent 
studies have reported that Pd-l1 expression in lung fibro-
blasts increases in pulmonary fibrosis and is secreted into 
exosomes to inhibit the proliferation of T cells and promote 
the proliferation and migration of fibroblasts. Therefore, it 
has been proposed that inhibiting the expression of Pd-l1 
in lung fibroblasts may improve the process of pulmonary 
fibrosis [49–51]. Interestingly, the expression of PD-1, the 
receptor for PD-L1, is up-regulated in IPF lymphocytes, and 
the PD-1+CD4+ T cells display reduced proliferative capac-
ity and increased transforming growth factor–β (TGF-β) 
expression. Both bleomycin administration to Pd-1−/− mice 
or use of antibody against PD-L1 demonstrated significantly 
reduced fibrosis upon loss of PD-L1 expression compared to 
controls [52]. However, another study on human mesenchy-
mal stem cells (MSCs) found that blocking PD-L1 expres-
sion in these cells decreased the efficacy of MSCs in treat-
ing pulmonary fibrosis [53]. Other studies in the context of 
cancer have found that PD-L1 can promote the transforma-
tion of hepatic stellate cells into myofibroblasts, accelerat-
ing tumorigenesis. Targeting PD-L1 in hepatic stellate cells 
can selectively inhibit the occurrence of liver cancer [54]. 
However, increasing the expression of PD-L1 in hepatocytes 
reduced the liver injury of non-alcoholic fatty liver disease 
[55]. Knockdown of Pd-l1 or Pd-1 gene can also reduce 
the activity of vascular endothelial cells, enhance the tight 
junctions of endothelial cells, and significantly improve the 
survival rate of mice suffering from acute respiratory dis-
tress syndrome (ARDS) caused by hemorrhagic shock [56].
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IAAPs’s chromatin is more accessible for genes relating 
to the innate and adaptive immune system [33], suggesting 
their interaction with the immune cells under such circum-
stance is fundamentally different from mature AT2s. PD-L1 
could therefore play an instrumental role in IAAPs´ stem cell 
function, since previous studies demonstrated the function of 
PD-L1 in regulation of cell proliferation in cancerous cells. 
For instance, Fang et. al, interestingly, found that PD-L1 
regulates cell cycle entry in leukemia-initiating cells (LICs) 
as PD-L1-null LICs displayed cell cycle arrest and decreased 
cell proliferation. Moreover, cell cycle regulators such as 
P16, P21, Cyclin D2, and CDK6 were significantly regulated 
in PD-L1 knock-down cells [57]. Similarly, other studies 
illustrated the regulation of pancreatic cancerous prolifera-
tion through cell cycle- related genes and JNK phosphoryla-
tion following PD-L1 overexpression [58]. These suggest the 
function of PD-L1 in controlling cell cycle entry. Further 
research is required to study whether similar mechanisms 
play a role in IAAPs progenitor behavior and how different 
are these mechanisms from the ones promoting the cells to 
become cancerous. Another function of Pd-l1 expression 
in IAAPs might be their protection as privileged progeni-
tor cells from the immune system, similar to what has been 
shown to protect the hematopoietic stem cells, the stem cells 
in the hair follicles, and  Lgr5+ intestinal stem cells [59–61].

Our discovery that Pd-l1 is a molecular marker of IAAPs 
also raises a number of interesting possibilities (see Fig. 2A). 
For example, whether Pd-l1 is related to the innate immune 
response of AT2s, whether it can be wrapped by extracel-
lular vesicles to be released in the blood circulation, or 
whether IAAPs bind to T cells that infiltrated into the alveoli 
through the Pd-l1/Pd-1 pathway to promote T cell suppres-
sion during lung homeostasis. Interestingly, by losing Pd-l1 
expression upon injury, IAAPs may no longer suppress T 
cells, which are then capable, as part of the inflammatory 
niche, to trigger the proliferation and differentiation of AT2 
stem cells towards the AT1 lineage via Il-1. Inhibiting Pd-l1 
in IAAPs may therefore impact positively the regeneration 
of AT2s. This possibility needs to be further investigated.

Role of Fgf10/Fgfr2b signaling pathway 
on IAAPs

In view of the key role played by fibroblast growth fac-
tor 10 (Fgf10)/Fgf receptor 2b (Fgfr2b) signaling in lung 
development, alveolar regeneration and repair, we further 
investigated the impact of Fgf10/Fgfr2b signaling pathway 
on IAAPs [62–65]. We found that overexpression of Fgf10 
or treatment of recombinant FGF10 (rFGF10) significantly 
improved the degree of pulmonary fibrosis in bleomycin-
injured mice, whether administered simultaneously or at day 

or day 14 after injury, by promoting the active proliferation 
of IAAPs [39, 66].

Fgfr2b is the main receptor for Fgf10. In the lung, 
Fgfr2b restricts AT2 cell fate during alveolar lineage for-
mation and is needed for AT2 survival postnatally [67–69]. 
An accepted concept in the repair field is that the mecha-
nisms involved recapitulate ontogeny. What occurs to the 
IAAPs during repair is a good illustration of this principle 
as the expression of Fgfr2b and its downstream factor Etv5 
have been found upregulated in proliferative IAAPs upon 
injury. These cells have been called “activated IAAPs” (see 
Fig. 2B). This observation suggests that Fgfr2b signaling, 
an AT2-specific developmental signaling pathway, is reac-
tivated [43]. Interestingly, Fgfr2b signaling has been pro-
posed to be dispensable for AT2 homeostasis and alveolar 
repair [68, 70]. However, far from being dispensable, our 
recent study demonstrated that specific inactivation of the 
Fgfr2b gene in AT2s leads to apoptosis of both AT2s and 
IAAPs. However, the resulting morphological changes in 
the mutant lungs were not obvious, suggesting that there 
must be compensatory mechanisms at play. Further analy-
sis revealed that surviving IAAPs escaped Fgfr2b deletion 
through a mechanism that remains to be identified. These 
cells were therefore termed “resistant IAAPs” or RIAAPs. 
We propose that RIAAPs are amplified and differentiate into 
mature AT2s (we called these cells “differentiated AT2 aris-
ing from RIAAPs” or DRIAAP). Subsequently, as DRIAAPs 
acquire high Sftpc expression, the corresponding level of Cre 
recombinase expression which is under the control of the 
Sftpc promoter is also enhanced, leading to Fgfr2b deletion 
in DRIAAPs. Loss of Fgfr2b expression leads to apoptosis 
thereby creating a constant cycle of proliferative and apop-
totic alveolar epithelial cells.

Altogether, this leads to the establishment of a novel 
proliferation/apoptosis loop in mutant lungs allowing the 
maintenance of a constant number of alveolar epithelial cells 
needed for proper lung function [43].

Open questions and future directions

Although the AT2 lineage has been a major topic of inves-
tigation over the years, its study still allows to make sig-
nificant discoveries offering new insight and opportuni-
ties to reconsider some of the dogmas in the field of lung 
regeneration. For example, how can we reconcile in vivo 
and in vitro observations about the mature AT2s? While 
the in vitro studies clearly show that mature AT2s con-
tain stem cells capable of self-renewal and differentia-
tion, the in vivo data, however, clearly show that most of 
the action in terms of proliferation is taking place in the 
IAAPs and not the mature AT2s. In addition, it is still not 
clear whether AEPs,  Sca1+AT2s and IL-1r+AT2s co-exist 
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as distinct, separate subpopulations or if they are part of a 
continuum within a given differentiation process.

Recently, several papers described "intermediate cells" 
in AT2 to AT1 transition, which were given by different 
groups various names, such as Alveolar Differentiation 
Intermediate  (Krt8+ADI) [71], Pre-Alveolar Type-1 Tran-
sitional Cell State (PATS) [72] or Damage-Associated 
Transition Progenitors (DATPs) [29]. Strunz et al. found 
that approximately half of the alveolar  Krt8+ alveolar dif-
ferentiation intermediate (ADI) cells were derived from 
either SftpcCreERT2 or  Sox2CreERT2 lineage-labelled cells in 
the bleomycin model. It is proposed that these cells dif-
ferentiate from elite progenitors belonging to the mature 
AT2s pool, namely the  Tm4sf1+  Axin2+ AEPs. It remains 
to be resolved whether IAAPs differentiate into mature 
AT2s through a  Tm4sf1+  Axin2+ AEP intermediate or 
directly to AT1s via the transient  Krt8+ADI cell state. The 
answers to these important questions will require further 
investigation.

Another important question that needs to be addressed is 
whether IAAPs belong to a distinct AT2 sub-population, or 
represent a transient AT2 cell state. Usually, a transient cell 
state arises from a stable population of cells in response to 
injury. As IAAPs represents a group of immature and quies-
cent lineage-traced Sftpc-positive cells consistently detected 
during homeostasis, this observation alone would argue that 
IAAPs constitutes a cell population on their own, distinct 
from mature AT2s. Obviously, only lineage tracing of the 
IAAPs, combined with injury models and scRNAseq, will be 
able to address their capacity to give rise to mature AT2s and 
AT1. Such approaches will also be instrumental to further 
define their heterogeneity, which is already suggested by the 
fact that only half of IAAPs express PD-L1. Another intrigu-
ing possibility is whether AT2s can differentiate into IAAPs 
after injury. This will require the identification of AT2 mark-
ers which are not expressed by IAAPs. So far, the use of the 
SftpcCreERT2 mice does not allow to answer to this important 
question as SFTPC is expressed in both AT2s and IAAPs.

The regulatory effect of FGF10 or other target drugs 
on different AT2 subsets and their therapeutic application 
to enhance the repair process are also worthy of further 
study. Furthermore, what is the role of Pd-l1 in IAAPs? Is 
this just a marker for these cells or does it play an active 
role in maintaining their function? Promoting or blocking 
Pd-l1 expression in the context of lung diseases may also be 
important for the precision therapy of lung diseases. Using 
dual recombinase approach to specifically label the IAAPs 
in combination with single cell RNA/ATAC sequencing 
and spatial transcriptomic in the context of lung injury and 
regeneration will provide valuable and informative data on 
the IAAPs with the aim of expanding our knowledge of this 
new subpopulation of AT2 progenitor cells.
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