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1 Introduction

Spirals and rudimentary maze- or labyrinth-like forms can be already found on
prehistoric cave walls all over the world. Nowadays, the interpretation of these
ancient drawings is that they were believed to be passages to the underworld,
but their true meaning is lost in the darkness of the ages. One of the most famous
mazes (labyrinths) is that of King Minos of Crete, which was designed according
to the Greek mythology by the artificer Daedalus to hold the Minotaur. Ovid, in
his Metamorphoses, has mentioned that Daedalus constructed the labyrinth so
cunningly that he himself could barely escape it after he built it. The Minotaur
was eventually killed by Theseus, who escaped the labyrinth with the help of
Ariadne’s string, which is used to navigate the labyrinth. In modern terms these
can be seen as an algorithm for searching a maze. Although the use of mazes
and labyrinths in several contexts dates back to the beginning of mankind, even
nowadays they haven’t lost their attractiveness.

We investigate the computational complexity of different maze-like prob-
lems. First we consider the reachability problem for (undirected) grid graphs
with diagonal edges, depending on whether one or both diagonal edges in
a unit square are allowed. It turns out that the former problem can be re-
duced back to (undirected) grid graphs, while the latter is L-complete (NL-
complete for directed grid graphs, respectively). Second, we study Xmas tree
mazes, that became popular recently—see, for instance, www.puzzlebeast.

com/christmastree. Here the player moves sticks of length ℓ through the corri-
dors of a maze—for a precise definition of the game we refer to the appropriate
section. The challenge is to move a stick from a starting position to a desig-
nated target position, which is not that easy, as it looks first. Several sticks
may prevent certain moves, since they may block each other’s movements. In
fact, if the number of sticks in such a maze is not bounded by some constant, it
turns out that solving such a maze is extremely complicated from a complex-
ity theoretical point of view, namely PSPACE-complete. While containment in
PSPACE is easy, the hardness is shown with the help of the recently introduced
uniform framework for modeling games, the nondeterministic constraint logic
(NCL) of Demaine and Hearn [3]. If the number of sticks in an Xmas tree maze
is bounded, then it turns out that these problems are closely related to the
reachability problems for undirected grid graphs with diagonal edges.

The paper is organized as follows: In the next section we introduce the nec-
essary notations. Then in Section 3 we study the different reachability problems
for (undirected) grid graphs with diagonal edges. These problems are useful for
proving our results on Xmas tree mazes with a bounded number of sticks in
Section 4.1. Section 4.2 shows that when the number of sticks is not bounded,
the solvability problem for such mazes becomes PSPACE-complete. The results
on Xmas mazes are summarized in Table 1 in the ultimate section, where also
open problems and relations to some other maze puzzle problems are discussed.
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2 Definitions

We assume familiarity with the basic concepts of complexity theory [5] such as
the inclusion chain AC

0 ⊂ NC
1 ⊆ L = SL ⊆ NL ⊆ AL = P ⊆ NP ⊆ PSPACE.

Here AC
0 and NC

1 refer to the sets of problems accepted by polynomial size
uniform families of Boolean {AND, OR, NOT}-circuits having, respectively, un-
bounded fan-in and constant depth, and bounded fan-in and logarithmic depth.
L is the set of problems accepted by deterministic logarithmic space bounded
Turing machines. SL and NL can be taken to be the sets of problems logspace-
reducible to the undirected graph reachability (UGR) and to the directed graph
reachability (GR) problems respectively and AL is the set of problems accepted
by alternating logspace bounded Turing machines. P (NP, respectively) is the
set of problems accepted by deterministic (nondeterministic, respectively) poly-
nomial time bounded Turing machines and PSPACE is the set of problems ac-
cepted by deterministic or nondeterministic polynomial space bounded Turing
machines. All the relationships depicted in the inclusion chain have been known
for a quarter of a century, except for L = SL, shown in [6].

Two other particularly relevant problems are undirected grid graph reach-
ability (UGGR) and constraint logic (CL). The former problem is defined as
follows: given an n × n grid of nodes such that an edge only connects imme-
diate vertical or horizontal neighbors, is there a path from node s to node t,
where s and t are designated nodes from the grid? UGGR is NC

1-hard under
AC

0 reducibility, it belongs to L, yet it is not known to be L-hard [1]. The lat-
ter problem, i.e., constraint logic or more precisely nondeterministic constraint
logic (NCL), is defined as follows: given a constraint graph G and an edge e

of G, is there a sequence of legal moves on G that eventually reverses e? Here a
constraint graph is a directed graph with edge weights from the set {1, 2} and
where each vertex has a non-negative minimum inflow. Here the inflow of a ver-
tex is the sum of the weights of inward-directed edges. A legal configuration of
a constraint graph has an inflow of at least the minimum inflow at each vertex
(these are the constraints that have to be satisfied), and a legal move on a con-
straint graph is the reversal of a single edge that results in a legal configuration.
NCL is PSPACE-complete, even for planar constraint graphs built by AND- and
OR-vertices only [3]—see Figure 1 for AND- and OR-vertices. Thus in order

C

A B

C

A B

Fig. 1. Nondeterministic constraint logic (NCL): red (thin) edges have weight 1, blue (thick)
edges have weight 2, and vertices have minimum inflow constraint of 2. (Left:) AND-vertex:
edge C may be directed outward if and only if both edges A and B are directed inward.
(Right:) OR-vertex: edge C may be directed outward if and only if either edge A or edge B is
directed inward.
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to prove PSPACE-hardness it suffices to construct AND- and OR-gadgets that
simulate the behavior of the corresponding vertices and wiring capabilities.

3 Undirected Grid Graph Reachability, Revisited

When generalizing UGGR to UGGR with diagonal edges we obtain the follow-
ing two results, depending on whether both or at most one diagonal edge within
a subsquare of unity is allowed. For the former problem we obtain equivalence
to UGGR under AC

0 reducibility.

Theorem 1. UGGR with at most one diagonal edge within each subsquare of

unity is equivalent to UGGR under AC
0 reducibility.

Proof. Since ordinary UGGR is an instance of the more general problem it ob-
viously reduces to the latter problem. Conversely, consider a UGGR instance G

with at most one diagonal edge within each subsquare of unity. We construct
an equivalent UGGR instance G′. Assume line-column coordinates for the ver-
tices in the UGGR instance. For each vertex (i, j) in G we add to G′ eight
vertices (3i, 3j + 2), (3i + 1, 3j), (3i + 1, 3j + 1), (3i + 1, 3j + 2), (3i + 2, 3j + 1),
(3i + 2, 3j + 2), (3i + 2, 3j + 3), and (3i + 3, 3j + 1) where the four ver-
tices (3i + 1, 3j + 1), (3i + 1, 3j + 2), (3i + 2, 3j + 1), and (3i + 2, 3j + 2)
from a square. Moreover, the four remaining vertices are connected to the
square by the edges ((3i, 3j + 2), (3i + 1, 3j + 2)), ((3i + 1, 3j), (3i + 1, 3j + 1)),
((3i + 2, 3j + 2), (3i + 2, 3j + 3)), and ((3i + 2, 3j + 1), (3i + 3, 3j + 1)). Then
a vertical edge ((i, j), (i + 1, j)) in G gives rise in G′ to the two vertical edges
((3i + 2, 3j + 2), (3i + 3, 3j + 2)) and ((3i + 3, 3j + 1), (3i + 4, 3j + 1)). A hor-
izontal edge ((i, j), (i, j + 1)) in G gives rise in G′ to the two horizontal edges
((3i + 1, 3j + 2), (3i + 1, 3j + 3)) and ((3i + 2, 3j + 3), (3i + 2, 3j + 4)).

Finally, a diagonal edge ((i, j), (i + 1, j + 1)) in G induces two edges ((3i +
2, 3j+3), (3i+3, 3j+3)) and ((3i+3, 3j+3), (3i+4, 3j+3)) in G′ with the new
vertex (3i+3, 3j +3). Similarly for a diagonal edge ((i, j +1), (i+1, j)) in G the
two edges ((3i + 3, 3j + 4), (3i + 3, 3j + 3)) and ((3i + 3, 3j + 3), (3i + 3, 3j + 2))
are added to G′ with the new vertex (3i + 3, 3j + 3).

The start and target vertices in G′ are set accordingly. The reduction is
illustrated in Figure 2. The correctness of the construction is easily seen by
inspection. ⊓⊔

What happens if more than one diagonal is allowed within a unit square. In
fact it is easy to see that all possible subgraphs that are unit squares with two
diagonals that can occur in a undirected grid graph with diagonals, except the
X-crossing, can be replaced by a unit square leading to a reachability equiva-
lent undirected graph—see Figure 3. If X-crossings are allowed, we can prove
equivalence to the more general UGR problem as shown next. This result is
optimal by the previous consideration.

Theorem 2. UGGR with diagonal edges is AC
0 equivalent to UGR. This result

holds true even in case only X-crossings are allowed for diagonals.
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A

A

Fig. 2. (Left:) Undirected grid graph G with at most one diagonal edge within each subsquare
of unity. The nodes are drawn red, the horizontal and vertical edges are blue, and the diagonal
edges are shown green. Isolated vertices are not shown (Right:) Equivalent undirected grid
graph G′ obtained by construction form G. Here the red vertices and edges are induced by
the vertices of the original graph G, the blue edges are induced by the horizontal and vertical
edges of G, respectively, and the blue edges are induced by the diagonal vertices of G. The
red subgraph within the circle named A is obtained by the reduction from the single vertex
named A on the left.

Fig. 3. All possible subgraphs that are unit squares with two diagonals up to mirroring and
rotation, that can occur in a undirected grid graph with diagonals. All these subgraphs, except
the last one (X-crossing), can be replaced by a unit square giving a reachability equivalent
undirected graph.
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Proof. Since a UGGR instance with diagonal edges is also a UGR instance, it
remains to prove that UGR can be reduced to UGGR where the instance may
have diagonal edges. Let (G, s, t) be an instance of the UGR problem, where G =
(V, E) is an undirected graph with vertices V and edges E ⊆ V ×V , and s and t

are the source and the target vertices, respectively. Without loss of generality
we may assume that V = {1, 2, . . . , n}, that s = 1 and t = n, and that node n

has a self-loop, i.e., edge (n, n) is in E. We reduce testing reachability in G to
testing reachability in a undirected grid graph with diagonals constructed from
four types of edge gadgets, namely straight edges, X-crossing edges, up-route

edges, and split-join edges. See Figure 4 for a drawing of these four gadget types.
The semantics of the X-crossing gadget on Figure 4 is that crossing edges do
not touch. The constructed undirected grid graph will consist of a 2n × O(n4)

Fig. 4. (Left:) From top to bottom: straight edges, X-crossing edges, up-route edges (with
dead ends), and split-join edges. (Middle:) Subgraph induced by an edge (2, 3) of a directed
graph G on four vertices. (Right:) Termination subgraph (slightly optimized in length to fit
the line) after all edges of G were considered.

rectangular grid of nodes whose lines (“rows”) are numbered 1, 2 . . . , 2n from
top to bottom. This grid is divided up into n identical blocks of size 2n × m,
where m ∈ O(n3). The construction will maintain the property that a path of
length k with k > 0 exists from node i to node j in G if and only if a path of
length at most m · k exists from node (i, 1) to node (j, m · k) in the rectangular
grid.

A block is itself the concatenation from left to right of O(n2) edge layers,
followed by a single termination layer. The edge layers are obtained from left
to right by considering every edge in the graph G (in any order). The layer
corresponding to edge (i, j) in G is constructed by first using a sequence of
X-crossing gadgets to “bend line i downwards” across the lines below it. As
the (bent) line i crosses the line n + j − 1, a split-join gadget is inserted to
create a path from line i to line n + j. Using further X-crossing gadgets, line i

is then bent back upwards and made to return to its original vertical position.
The final (termination) layer in the block uses up-route gadgets to safely create
paths from line n + ℓ to line ℓ, for 1 ≤ ℓ ≤ n. We illustrate the constructions of
an edge layer and of a termination layer in Figure 4.

The upshot of concatenating n identical blocks is that node n is reachable
from node 1 in G if and only if the rightmost node on line n is reachable from
the leftmost node on line 1 in the layered graph. Clearly this construction can
be done in AC

0. ⊓⊔
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Thus we immediately obtain the following corollary by the L-completeness
of UGR.

Corollary 3. UGGR with diagonal edges is L-complete. ⊓⊔

Finally, it is worth mentioning that Theorem 2 and Corollary 3 generalize
to directed grid graph reachability (GGR) with oriented X-crossings and NL-
completeness, since the subgraphs that are used in the proof of Theorem 2
and shown in Figure 4 can be oriented accordingly. This nicely contrasts the
situation for ordinary GGR which is a special case of planar directed graph
reachability which was recently proven to be contained in the class UL ∩ coUL

in [2]—here UL is the set of problems that are accepted by unambiguous logspace
bounded Turing machines. Thus, we can state the following corollary.

Corollary 4. GGR with diagonal edges is NL-complete. ⊓⊔

4 Xmas (Tree) Mazes

The name Xmas tree maze comes from a tree like shaped maze where one has
to move a stick of length 2 to light up the star at the top of the Xmas tree—
see www.puzzlebeast.com/christmastree. But one could also think of the
tradition of putting a fir tree on top of a newly constructed roof framework. If
the tree is very large and heavy, multiple persons are needed to carry the tree,
while avoiding falling off the roof beams. An Xmas (tree) maze is played on
an undirected grid graph with bended diagonals such that each subgraph that
is a unit-square has at most one bended diagonal—here a bended diagonal is
nothing other than a quarter of a circle. Thus, no crossings are allowed. The
challenge is to bring a stick, whose length is a multiple of the unit, from a
given starting position s to a target position t by a sequence of legal moves.
A move is legal as long as all positions on the stick that are multiple of the
unit stay in contact with the underlying undirected grid graph and end up at
vertex positions. In case the stick is of unit length the additional property that
both endpoints must end simultaneously on vertices applies. Hence, in this case
it is not possible to move a stick around in a circle that is build by bended
diagonals. An Xmas maze and its solution is shown in Figure 5. The undirected
grid graph is drawn black and the stick of length 2 is red. Note that the stick
has three positions marked by red dots that have to stay on the edges of the
undirected grid graph through each legal movement.

4.1 Xmas Mazes with a Bounded Number of Sticks

After studying UGGR with diagonals in Section 3, we are now ready to investi-
gate Xmas mazes with a constant number of sticks. First we show the following
upper bound.

Theorem 5. Deciding if an Xmas maze with a constant number of sticks has

a solution can be done in deterministic logspace, regardless of the stick lengths.
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Fig. 5. Xmas maze of size 4× 4 with a stick of length 2 (drawn in red with the three marked
points that have to stay in contact with the underlying undirected grid graph) and its solution
shown from left to right and top to bottom with the following movement of the stick: right, up,
left, up-right, rotate clockwise, left, rotate counter clockwise, up-right. The source position s

and the target position t refer to the middle position of the stick. This example is the first
maze from www.puzzlebeast.com/dryclean.

Proof. For the containment in L it suffices to reduce Xmas maze solvability with
a constant number of sticks to UGR. Given an Xmas maze instance, then it is
easy to see that there are only a polynomial number of game configurations,
since the number of sticks is bounded by a constant. These game configurations
induce an undirected graph by the legal move relation, which is symmetric
since a move can simply be undone. Thus, the Xmas maze can be solved by
an appropriate UGR question induced by the source s and the target t. This
proves containment within L by Reingold’s result [6] on UGR. ⊓⊔

Next we prove some lower bounds on Xmas maze solvability. Obviously, an
Xmas maze with a single stick of length 0 is AC

0 equivalent to UGGR. On the
other hand, when allowing sticks of length 2 we already obtain L-completeness,
even for a single stick.

Theorem 6. Solving an Xmas maze with a constant number of sticks is L-

complete, even with a single stick of length 2.

Proof. The containment in L follows by Theorem 5. For the L-hardness we argue
as follows. By Theorem 2 it suffices to reduce UGGR with X-crossings to the
problem under consideration. Let G be an instance of the UGGR problem with
X-crossings. We construct an Xmas maze G′. Assume line-column coordinates
for the vertices in the UGGR instance. For each vertex (i, j) in G we add
to G′ the five vertices (6i, 6j + 1), (6i + 1, 6j), (6i + 1, 6j + 1), (6i + 1, 6j + 2),
and (6i + 2, 6j + 1) connected by a cross and the outer vertices (6i, 6j + 1) and
(6i+1, 6j) are connected by an outward bended diagonal and also (6i+1, 6j+2)
and (6i+2, 6j +1) are connected by a outward bended diagonal—see Figure 6.
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Each non-diagonal edge in G gives rise to four edges of the same orientation

Fig. 6. (Left:) Subgraph of the underlying undirected grid graph of the Xmas maze induced
by a single node in the UGGR plus X-crossing instance. The initial position of the stick of
length 2 is also shown. (Right:) An X-crossing in G gives rise to the depicted subgraph that
allows one to simulate an X-crossing with a single stick of length 1.

(horizontal or vertical). A vertical edge ((i, j), (i+1, j)) in G gives rise in G′ to
the four vertical edges ((6i+2, 6j+1), (6i+3, 6j+1)), ((6i+3, 6j+1), (6i+4, 6j+
1)), ((6i + 4, 6j + 1), (6i + 5, 6j + 1)), and ((6i + 5, 6j + 1), (6(i + 1), 6j + 1)).
Moreover, the horizontal ((i, j), (i, j +1)) in G gives rise in G′ to the horizontal
edges ((6i + 1, 6j + 2), (6i + 1, 6j + 3)), ((6i + 1, 6j + 3), (6i + 1, 6j + 4)), ((6i +
1, 6j + 4), (6i + 1, 6j + 5)), and ((6i + 1, 6j + 5), (6i + 1, 6(j + 1))).

Finally, an X-crossing gives rise to the subgraph depicted in Figure 6—the
four corner subgraphs correspond to the original vertices in G. The start and the
target vertices in G′ are set to 6 ·s+(1, 1) and 6 · t+(1, 1) assuming component-
wise multiplication. This completes the description of the reduction. Then it is
easy to see that the original UGGR question is simulated by moving the stick
from one corner subgraph to the next by rotating the stick accordingly to take
the right direction. ⊓⊔

It remains to consider the case when the sticks in an Xmas maze are all
bounded in length by 1. When restricting to a single stick we obtain equivalence
to UGGR under AC

0 reducibility. The case for a bounded number of sticks
(larger than one) has to be left open, but by our previous considerations we
deduce that this problem is hard for UGGR and is contained in L.

Theorem 7. Solving an Xmas maze with a single stick of unit length is equiv-

alent to UGGR under AC
0 reducibility.

Proof. Let (G, s, t) be a UGGR instance. We construct an equivalent Xmas
maze instance G′ with a single stick of unit length. Assume line-column coor-
dinates for the vertices in the UGGR instance. For each vertex (i, j) in G we
add to G′ four vertices (2i, 2j), (2i, 2j + 1), (2i + 1, 2j), (2i + 1, 2j + 1) and
the four edges to form a square. Then a horizontal edge ((i, j), (i, j + 1)) in G

gives rise in G′ to the two horizontal edges ((2i+1, 2j +1), (2i+1, 2j +2)) and
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((2i, 2j+1), (2i, 2j+2)). A vertical edge ((i, j), (i+1, j)) in G gives rise in G′ to
the two vertical edges ((2i+1, 2j), (2i+2, 2j)) and ((2i+1, 2j+1), (2i+2, 2j+1)).
The start and target vertices in G′ are set accordingly, i.e., 2 · s and 2 · t, and
the initial position of the stick connects 2 · s with 2 · s + (1, 0). Then it is easy
to see that there is a path linking s to t in G if and only if the stick can move
from its initial position to the target position in the Xmas maze G′.

Conversely we argue as follows: given an Xmas maze instance of size n× n,
first we construct a UGGR instance with diagonals. The idea for the reduction
is that we only have to remember the possible positions of the single stick. Thus,
since a complete n×n grid graph has 2 ·n · (n− 1) edges, the to be constructed
UGGR instance G′ with diagonals has exactly this number of vertices (naturally
embedded into a grid)—each vertex lies at a position of an edge in the complete
grid graph, representing the position of the stick on this very edge. The vertices
of the undirected graph G′ are induced by the movement of the single stick
within the Xmas maze. To this end we consider all 4 × 3 subgraphs of the
Xmas maze in more detail and assume that the stick of unit length resides
in the middle in a horizontal position—see Figure 7. For a stick in a vertical
position a similar argumentation will apply. The movement of the stick can be

Fig. 7. (Left:) Xmas maze subgraph of size 4 × 3 (edges of the Xmas maze not shown) with
a stick of unit length in the middle in horizontal position. (Right:) vertices of the UGGR
instance G′ with diagonals induced by the Xmas maze subgraph from the left. The vertices
are drawn in blue.

as follows—in all cases see Figure 8:

Fig. 8. Stick movements on a 4×3 Xmas maze subgraph that give rise to edges in the UGGR
instance with diagonals. The shown Xmas mazes are examples for the movements only. (From
left to right:) horizontal and vertical movements induce diagonal edges (first two pictures),
rotation, special movement, and horizontal-to-vertical movement and vice versa give rise to
unit square edges (next two pictures), and movement by two bended edges induce two unit
length edges in sequence (last picture).

1. Horizontal and vertical stick movements induce diagonal edges in G′.
2. Rotation and special movements give rise to unit edges in G′. Also horizontal-

to-vertical movement and vice versa does the same.
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3. Movements by two bended diagonals in the Xmas maze would introduce long
edges connecting vertices that have Manhattan distance two. These bended
diagonals can also be used to rotate the stick either before or after the
movement under consideration. Hence, the long edge is incident to at least
one ordinary unit edge that is parallel. Therefore, we can safely introduce
two consecutive unit length edges in G′.

This completes the description of the undirected grid graph G′ with diagonals.
Clearly this is an AC

0 reduction.
Next we show that G′ doesn’t contain an X-crossing. Then the equivalence

to UGGR follows by our considerations in Subsection 3. For the sake of a
contradiction assume that G′ contains an X-crossing as subgraph. But then
it is not hard to see that the original Xmas maze must have a unit square
or a cross of unit edges which in turn gives rise to four additional edges that
form a square with the diagonals connecting the opposite vertices in G′. This
contradicts our assumption. Thus, G′ is AC

0 equivalent to an UGGR instance
(without diagonals). ⊓⊔

Note that the constructions in the proof of the previous theorem can be used
to construct a UGGR instance from a given Xmas maze and then in turn an
Xmas maze, now without bending diagonals, that is reachability equivalent to
the original Xmas maze (if only a single stick of unit length is moved). Whether
this is also possible for longer sticks is left open.

4.2 Xmas Mazes with an Unbounded Number of Sticks

Finally, we show that solving an Xmas maze is PSPACE-complete even for sticks
of unit length if the number of sticks is not bounded. For proving PSPACE-
hardness, we give a reduction from NCL.

Theorem 8. Solving an Xmas maze with an unbounded number of sticks is

PSPACE-complete, even if all stick are of unit size.

Proof. Given an Xmas maze, a polynomial space bounded Turing machine can
store the configuration and may simulate the sequence of movements of the
sticks by simply guessing the sequence step by step. Since determinism and
nondeterminism coincides for polynomial space by Savitch’s theorem [7], the
containment within PSPACE follows. It remains to show PSPACE-hardness.

We reduce NCL to the game under consideration. To this end it suffices to
show how to simulate AND- and OR-vertices of constraint graphs as depicted in
Figure 1 by Xmas maze subgames and to connect these subgames appropriately.
The Xmas maze subgames simulating an AND- and an OR-vertex of NCL are
depicted in Figure 9. By inspection it is not hard to see that in the left of Figure 9
(AND-vertex simulation) the both upper sticks at C may move inward, i.e., the
corresponding edge is oriented outward, if and only if both sticks on the left at A

and on the right at B are moved outward, that is, both corresponding edges
are directed inward. Moreover, in the right of Figure 9 (OR-vertex simulation)
the single edge at C may move inward, i.e., the corresponding edge is oriented

11
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Fig. 9. (Left:) Xmas maze subgame simulating an AND-vertex. (Right:) Xmas maze subgame
simulating an OR-vertex.

outward, if and only if both sticks on the left at A or the stick at B is moved
outward, i.e., the corresponding edges are directed inward. The stick fixed in
the middle of the circle enforces that at least one of the sticks at A (both sticks)
and B are moved outward. Here is is worth mentioning that there is a particular
movement that has to be discussed in detail—see Figure 10. The movement of

Fig. 10. Special movements of unit sticks.

the rightmost stick also appears in the Xmas maze subgame for the OR-vertex,
while the latter movement of the leftmost stick has appeared in the previous
section. The reader is invited to verify that the former movement doesn’t change
the functionality of the OR-vertex simulating Xmas maze subgame. This shows
that the vertex simulation of NCL can be done with Xmas maze subgames.

Finally, it remains to show how to connect these simulating Xmas maze sub-
games appropriately. Moreover, the given construction also ensures that none of
the sticks shown in Figure 9 can leave its submaze. The edge simulating Xmas
maze subgame is drawn in Figure 11. There the two vertices at X (Y , respec-
tively) are identified with the corresponding two vertices in the vertex simulat-
ing Xmas maze subgames at A, B, or C. The correctness of the construction is

X Y

Fig. 11. (Left:) Xmas maze subgame simulating an edge connector. By construction none
of the sticks (even in the vertex simulating Xmas maze subgames) can leave their devices.
(Right:) subgame for bending an edge connector.

verified easily. This completes the proof of the PSPACE-completeness of solving
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Xmas mazes with an unbounded number of sticks, even if all sticks are of unit
size. ⊓⊔

5 Conclusions

We have investigated the computational complexity of reachability problems
for grid graphs with diagonal edges, and of Xmas mazes. For grid graphs it
turns out that allowing only one diagonal edge in each unit square does not
increase the complexity, while allowing both diagonal edges makes the prob-
lem L-complete (NL-complete for directed grid graphs, respectively). For Xmas
mazes we have seen that when the number of sticks in an Xmas maze is bounded
by a constant, the solvability problems are related to the aforementioned grid
graph reachability problems, depending on the stick lengths. If otherwise the
number of sticks is unbounded, then the problem of solving such a maze becomes
PSPACE-complete. Here, NCL turned out to be a great framework for proving
PSPACE-hardness. Our findings on Xmas mazes are summarized in Table 1.

Xmas maze variant
Stick length ℓ bounded (k sticks) unbounded

· ≡ UGGR for k = 1
ℓ = 0

UGGR ≤ · ∈ L

· ≡ UGGR for k = 1
ℓ = 1

UGGR ≤ · ∈ L PSPACE-complete
ℓ with ℓ ≥ 2 L-complete, even for k = 1

Table 1. Xmas maze results for bounded and unbounded number of sticks in dependence of
the stick length ℓ—here ≡ and ≤ refer to AC0 equivalence and AC0 reducibility, respectively.

As the reader can see from the table, there are some open questions on
Xmas mazes, in particular on the relation between complexity and stick length.
What is the exact complexity of Xmas mazes with a constant number of sticks
(more than one stick) all of length 1, or all of length 0? We only know that these
problems are in L, and that UGGR can be reduced to both of them. What about
the complexity if an unbounded number of sticks of length 0 can be used? Here
we only have a PSPACE upper and a non matching lower bound of UGGR-
hardness. This question is also related to similar problems for Alice mazes and
rolling block puzzles—we refer to [4] for further results on these maze puzzle
problems. In rolling block puzzles, the player has to roll blocks of size ℓ× 1× 1
through the corridors, and the goal is to move a designated block to a target
position. The complexity of the special case, where all blocks are cubes of size
1×1×1 is open, the best lower bound we know is UGGR hardness. In an Alice
maze, tokens are moved according to arrows on the squares of the playing board,
while possibly changing their individual speed on special squares. Again, the
goal is to move a particular token to a target position. The complexity of solving
Alice mazes with an unbounded number of tokens, which all have speed 1, and
without any speed changing squares is open. Here, the best lower bound we
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know is NL-hardness. The relations to Xmas mazes are as follows. One can
easily reduce the problem of solving rolling block puzzles with an unbounded
number of cubes to the problem of solving an Xmas maze with an unbounded
number of sticks of length 0. Also the latter problem can be reduced to the
solvability problem for Alice mazes with an unbounded number of tokens, that
all have speed 1, and without any speed changing squares. We believe these
special cases of Xmas and rolling block mazes to be of equal complexity, while
the mentioned Alice mazes could be computationally harder to solve. Whether
this claim is actually true, must be verified by further research on the subject.
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