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The role of semantics 
in the perceptual organization 
of shape
Filipp Schmidt1,2*, Jasmin Kleis1, Yaniv Morgenstern1 & Roland W. Fleming1,2

Establishing correspondence between objects is fundamental for object constancy, similarity 
perception and identifying transformations. Previous studies measured point-to-point 
correspondence between objects before and after rigid and non-rigid shape transformations. 
However, we can also identify ‘similar parts’ on extremely different objects, such as butterflies and 
owls or lizards and whales. We measured point-to-point correspondence between such object pairs. In 
each trial, a dot was placed on the contour of one object, and participants had to place a dot on ‘the 
corresponding location’ of the other object. Responses show correspondence is established based on 
similarities between semantic parts (such as head, wings, or legs). We then measured correspondence 
between ambiguous objects with different labels (e.g., between ‘duck’ and ‘rabbit’ interpretations of 
the classic ambiguous figure). Despite identical geometries, correspondences were different across 
the interpretations, based on semantics (e.g., matching ‘Head’ to ‘Head’, ‘Tail’ to ‘Tail’). We present 
a zero-parameter model based on labeled semantic part data (obtained from a different group of 
participants) that well explains our data and outperforms an alternative model based on contour 
curvature. This demonstrates how we establish correspondence between very different objects by 
evaluating similarity between semantic parts, combining perceptual organization and cognitive 
processes.

We live in a world in which our survival depends critically on successful interactions with objects. This requires 
inferring an object’s properties—such as its material, potential usages, dangerousness and so on. We mostly infer 
these properties from our previous experiences about other objects from the same or similar class. For example, 
what we know about a peacock butterfly (e.g., fragile, able to fly, nectar eater, harmless), we can use to make infer-
ences about other butterfly varieties. Only by constantly making such inferences, can we interact with objects in 
our environment without having to learn the properties of each newly encountered object de novo1–5. As object 
shape is arguably the most important cue for object recognition and concept learning (e.g.,4,6–8), shape presum-
ably plays a major role in this generalization. In other words, we assume that peacock and lemon butterflies have 
similar properties because they have broadly similar shapes. Here, we consider a specific measure of the relation-
ships between shapes: our striking ability to identify point-to-point correspondences between objects (Fig. 1;9,10). 

Previous studies showed that perceived correspondence between object shapes is to some extent robust against 
changes in viewpoint and more complex transformations11–17. This is also true at the level of point-to-point 
correspondence, that is, when identifying the corresponding points on the surfaces of two objects (e.g.,18–22). In 
previous work, we found humans were very good at solving the point-to-point correspondence problem for 2D 
shapes across classes of rigid (e.g., rotation) and non-rigid transformations (e.g., growing new limbs)9,10, with 
high levels of agreement to the ground truth and other observers.

A simple heuristics model based on contour curvature, however, was better at predicting human responses 
than the ground-truth9. The heuristic model assumes observers identify salient locations on the original contour 
(e.g., a spike and a bump on an otherwise smooth contour) and then find the corresponding salient regions on 
the transformed contour (e.g., a spike and a bump on the rotated contour). Finally, observers establish point-to-
point correspondence for intermediate locations on the shapes relative to these salient points. For example, if a 
particular location on the original contour is located halfway between the spike and the bump, they will choose 
as corresponding location that one halfway between spike and bump along the rotated object contour.

Such image-based heuristic approaches cannot, however, explain all point-to-point correspondences between 
objects. Shapes will often be very different making it near impossible to establish correspondence based on their 
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geometrical features alone (e.g., curvature profiles). An alternative that we hypothesize here is that humans can 
also solve correspondence tasks by combining shape and semantic information. For example, in Fig. 1, it is hard 
to reconcile our intuitions about correspondences between the hands in A, B, and C with a correspondence based 
on geometrical features alone. Rather, we seem to use our knowledge about the semantic organization of the hand 
(‘the point lies on the knuckle of the thumb’) to guide our responses. Previous studies with unfamiliar objects 
show that correspondence can be established without such semantic information. In other words, semantics are 
not necessary for determining correspondence. Yet, it seems plausible that—if available—high-level semantic 
information facilitates spatial correspondence judgements. Indeed, here we test whether semantic cues are suf‑
ficient to override geometrical similarities between objects.

It is well known that objects are not only perceived in terms of their overall shape, but also in terms of their 
parts23–25. Accordingly, observers might establish correspondence between very different shapes by relying on 
semantically labelled parts (e.g., the wings or legs of a butterfly). Specifically, we might segment objects into 
recognizable parts, such as legs, wings or tails, that can be matched across objects, and then use broadly the 
same heuristic as described above to interpolate between these sparse correspondences9. The key difference to 
previous work is that, rather than defining the salient regions that form the anchor points for correspondence 
by local geometrical features alone, those regions are instead defined by the semantic parts. This would allow 
observers to identify point-to-point contour correspondences even if contour shapes differ wildly. For example, 
if presented with an elephant and anteater (Fig. 2A), with geometrically very different outlines, observers would 
be able to match up the trunks of the two shapes and work out the correspondence between any given point 
based on its relative position along the trunk’s outline.

To test this hypothesis that humans establish correspondence between very different shapes based on the 
perceptual organization of the shapes together with previous knowledge about semantic parts, we obtained point-
to-point correspondence judgments for contours with different shapes but similar part organizations (6 pairs of 
animal shapes, Experiment 1; Fig. 2) as well as for contours with the same shapes but different part organization 
(5 animal shapes with ambiguous interpretations, Experiment 2; Fig. 5). For the first set of contours (Experiment 
1), it is very difficult to establish point-to-point correspondence based on shape features alone as shapes are very 
different. For the second set of contours (Experiment 2), it is impossible to use shape features at all as the contours 
are geometrically identical and differ only in their interpretation. Thus, Experiment 2 is designed to test the role 
of semantic part organization in establishing correspondence in the extreme. Specifically, by holding shape con-
stant, the experiment tests whether semantics are sufficient to override purely geometrical factors in determining 
correspondence between shapes. Across both experiments, we can test to what extent observers agree in their 
correspondence responses under these challenging conditions, and whether we can explain their responses by a 
model based on part organization and semantic correspondence. For comparison, we contrast it with a simple 
model based on uniform sampling around the contour as well as with a model based on shape features.

Together with previous studies illustrating the role of shape features for correspondence between unfamiliar 
stimuli with no semantic part organization, this would show that depending on the available information human 
observers will flexibly rely on either perceptual or cognitive processes to establish correspondences. Specifically, in 
this paper we aim to demonstrate how we establish correspondence between very different objects by evaluating 
similarity between semantic parts, combining perceptual organization and cognitive processes.

Experiments
Experiment 1: Different geometry, similar parts.  Participants.  15 students from Justus-Liebig-Uni-
versity Giessen, Germany, with normal or corrected vision participated in the experiment for financial compen-
sation (11 w, 4 m, mean age = 22.5 years, SD = 2.9). This number is based on our previous work using the same 
paradigm10. All participants gave informed consent, were debriefed after the experiment, and treated according 
to the ethical guidelines of the American Psychological Association. All testing procedures were approved by the 
ethics board at Justus-Liebig-University Giessen and were carried out in accordance with the Code of Ethics of 
the World Medical Association (Declaration of Helsinki).

Figure 1.   Correspondence problem and possible solutions. A major computational challenge is establishing 
correspondence between (A) and (B)–(C) across changes in viewpoint, object pose or non-rigid 
re-configuration. Observers generally have strong intuitions about the ‘correct’ solution, often with high 
agreement between observers. Drawings by Robert Marzullo (2017, https​://ramst​udios​comic​s.com).

https://ramstudioscomics.com
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Stimuli.  Stimuli were 6 pairs of 2D contours (Fig. 2) that were chosen to have different shapes but similar part 
organization (e.g., same number of legs or wings). For each of the base shapes (left shapes in Fig. 2A–F), we 
defined 50 probe locations by sampling the contour at equidistant intervals starting from a random position on 
the contour.

Procedure.  Before the start of the experiment, participants were handed a written instruction with an outline 
of the experiment and the literal instruction ‘Your task is to find the correspondence between the red dot on the left 
contour and the dot on the right contour. You can move a green dot with the mouse and confirm your selection with 
a mouse click. Please do not take any breaks while responding to a pair! You can take as much time for each decision 
as you need for a confident choice. Make sure to work thoroughly!’ We also present the Elephant–Anteater pair as 
an example (Fig. 3A), with a red dot on the elephant contour and an unplaced green dot in the white space next 
to the anteater. In response to questions about how to perform the task, the experimenter replied that there was 
no right or wrong answer.

In each trial of the experiment, participants were presented with one of the shape pairs (Fig. 2A–F). The 
base shape (e.g., elephant) was presented on the left side and the test shape (e.g., anteater) on the right side of 
the screen. We successively presented probe points on the contour of the base shape and asked participants to 
use the mouse to place a small bullseye marker ‘at the corresponding location’ on the contour of the test shape 
(Fig. 3A). The probe point was a small red dot (0.10° radius) and the bullseye was a small green dot (0.10° radius) 
surrounded by a ring (0.75° radius). After participants confirmed their choice with a mouse click, the probe point 
was replaced by a probe at a different location, where the location was selected across 50 preselected locations. In 
addition to presenting the points one by one, the locations were also presented in a random order to minimize 
the influence of a participant’s previous decision from nearby locations. Each pair of shapes remained on screen 
until participants responded to all 50 probe points, enabling a dense mapping of perceived correspondences. 
Each participant responded to each of the stimulus pairs and to the same probe points; across participants pairs 
were presented in random order. Finally, base and test shapes were either presented in the same orientation (as 

Figure 2.   Stimuli of Experiment 1. Each pair was presented on the screen simultaneously, with the base shape 
to the left and the test shape to the right (arrangement the same as here in the figure). Images were obtained 
from different online databases and are reprinted with permission. (A) Elephant–Anteater (‘Elephant’ by 
depositphotos.com/bojanovic; ‘Anteater’ by depositphotos.com/160,377), (B) Ostrich–Flamingo (‘Ostrich’ 
by depositphotos.com/kaludov; ‘Flamingo’ by shutterstock/Yaroslavna Zemtsova), (C) Antelope–Giraffe 
(‘Antelope’ by shutterstock.com/Momo0607; ‘Giraffe’ by freedesignfile.com/Starder), (D) Lama–Fox (‘Lama’ by 
vecteezy.com; ‘Fox’ by shutterstock.com/Rey Kamensky), (E) Butterfly–Owl (‘Butterfly’ by shutterstock.com/
ntnt; ‘Owl’ by yayimages.com/Perysty), and (F) Lizard–Whale (‘Lizard’ by shutterstock.com/angelp; ‘Whale’ by 
depositphotos.com/ktinte). All stimuli are  available at https​://doi.org/10.5281/zenod​o.43042​99.

https://doi.org/10.5281/zenodo.4304299
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in Fig. 2) or in different orientation (e.g., elephant and anteater facing each other), with orientation counterbal-
anced across pairs and participants.

Stimuli were presented on a white background on a EIZO CG277 monitor at a resolution of 2560 × 1440 pixels 
and a monitor refresh rate of 59 Hz, controlled by MATLAB2018a (The MathWorks, Inc., Natick, Massachusetts, 
United States) using the Psychophysics Toolbox extension26. The two shapes of each pair were uniformly scaled 
so that their bounding boxes had the same area. The width of the resulting shapes varied between 15.33° and 
22.99° of visual angle, and the height varied between 4.42° and 27.81° of visual angle (with a distance between 
participants and monitor of about 50 cm).

Analysis.  Note that for our stimuli there is no ground truth or mathematically correct solution to map the base 
to the test shape. Consequently, we analyze the results with respect to the extent to which participants agree with 
each other, and test how well this agreement can be explained by different models (random, shape-based and 
semantic-based models).

Results and discussion.  Results of Experiment 1 are plotted in Fig. 4. Responses of participants are highly sys-
tematic with generally (i) high agreement between participants, (ii) well-preserved ordering of corresponding 
locations, and (iii) corresponding locations on similar semantic parts of base and test shape (e.g., probe points on 
the elephant’s trunk are matched with locations on the anteater’s snout; see Fig. 4A and Sect. Modeling).

With respect to (i), we quantify agreement between participants as response congruity on a scale from 0, 
indicating congruity of random responses, up to 1, indicating perfect congruity. Specifically, for each probe 
location on the base shape, we calculated the average of distances between all participants’ responses along the 
contour of the test shape (distances expressed as a percentage of test shape perimeter). Thus, congruity refers to 
the spatial proximity between all responses from the same probe point. We calculate the grand mean of these 
average distances for all probe points, obtaining a single congruity score for each pair of shapes. Finally, we project 
that score onto a continuum between random and perfect congruity by subtracting 1 from the ratio of mean of 
distances to randomly placed responses on the test shape, where a value of 1 refers to perfect congruity with all 
responses at the very same location (i.e., zero distance between responses of different participants). The results 
showed that for all pairs, participants are significantly more congruent than the random model (pairs A–F: 0.90, 
0.86, 0.90, 0.88, 0.48, 0.71; Wilcoxon signed rank test: − 5.61 < Z <  − 6.15, all p < 0.001).

Why are participants considerably less consistent for the Butterfly–Owl pair (0.48) than for the other tested 
pairs? We reasoned that this resulted from the ambiguous 3D orientation that allows seeing the animals as viewed 
from the front or back, rendering correspondence ambiguous too. In line with this idea, individual participants 
either arranged their responses on the owl in the same (n = 8; median responses of this group: inset 1 in Fig. 4E) or 
reversed order (n = 7; inset 2 in Fig. 4E) as the probe points on the butterfly, with congruity of 0.76 and 0.81 within 
both groups. This pattern of responses might be to some extent explained by the presentation of butterfly and owl 
either heading in the same direction (as depicted in Fig. 2E) or in different directions. Indeed, the majority of 

Figure 3.   Overview of experimental paradigms. (A) Example response in the dot-matching task (Experiments 
1 and 2), where participants see a probe point (red) on the contour of the base shape (e.g., elephant) and are 
instructed to place a bullseye (green) on the corresponding location on the contour of the test shape (e.g., 
anteater). (B) Example response for identifying and labeling parts (Experiment 3A). For each shape, participants 
first identify part cuts by using the computer’s mouse to choose two locations on the contour (Task 1). After 
they identified as many parts as they like to, they assign labels to these parts by selecting them and choosing a 
label from a list (Task 2). (C) Example response for establishing correspondence between semantic part labels 
(Experiment 3B). Participants sorted together color-coded names of animal parts identified in Experiment 
3A. In the end, each part label of one animal has to be sorted together with a particular part label of the other 
animal. This includes cases in which several part labels are assigned to the same part label (e.g., neck and body 
of the lizard are both sorted together with the body of the whale).
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participants presented with butterfly and owl heading in the same direction also arranged responses in the same 
order (5 out of 7), while different heading directions rather tended to produce reversed orderings (5 out of 8).

With respect to (ii), we quantify the extent to which responses preserved the ordering points on the test 
shape. For this, we calculated how often the ordering of the median responses reversed (i.e., how often a given 
dot was flanked by different dots on the test shape than on the base shape). We compared the number of rever-
sals with the mean number of reversals that occur with the same number of random responses. The results of 
this analysis revealed that ordering was preserved significantly more in the participants’ median responses than 
in the random model (preserved order in pairs A–F: 100%, 80%, 94%, 92%, 16%, 62%; Wilcoxon signed rank 
test: − 2.23 < Z <  − 6.94, p < 0.026). Again, the preservation of ordering is much higher for the Butterfly–Owl pair 
when considering the two groups separately based on their perceived orientation (Fig. 4E, inset 1: 56%; inset 2: 
68%). Regarding (iii), a formal quantification of corresponding locations on similar semantic parts is presented 
in the Results and Discussion of Experiment 3.

Together, these analyses provide an initial indication that participants can consistently identify correspond-
ences across quite widely divergent shapes. This consistency between participants in establishing correspondences 
might be explained by common strategies based on contour curvature9 or based on semantic part organization 
(e.g., elephant’s trunk and anteater’s snout). In Experiment 2, we sought to further test to what extent semantic 
part organization can be used to establish correspondence, by testing stimulus pairs of ambiguous shapes that 
were physically identical but could be interpreted with different semantic part organizations.

Experiment 2: Identical geometry, similar parts.  Participants.  15 students from Justus-Liebig-Uni-
versity Giessen, Germany, with normal or corrected vision participated in the experiment for financial compen-
sation (12 w, 3 m, mean age = 23.7 years, SD = 4.1). Again, the number of participants is based on our previous 
work10. All other details and participant procedures were the same as in Experiment 1.

Stimuli.  Stimuli were 5 pairs of shapes (Fig. 5A–E) that were chosen to have the same shapes but different part 
organization. Specifically, we used ambiguous figures to disentangle shape from part organization. For example, 
the Swan–Squirrel (Fig. 4A) can be seen either as a swimming swan oriented to the left, or a crouching squir-
rel oriented to the right. To measure baseline performance, we also added a condition with the same shape 

Figure 4.   Overview of results of Experiment 1. On each base shape (left, e.g., elephant), we plot the 50 
equidistant probe points. On each test shape (right, e.g., anteater), we plot the corresponding participant 
responses for each of the points. Participant responses are summarized by determining the median position 
along the length of the contour. (A–D) For most pairs and probe points, the order of points on the test shapes is 
the same as that on the base shape even though probe points were queried one at a time. (E) For the Butterfly–
Owl pair, we also show results separately for participants arranging their responses in the same (inset 1) or 
reversed order (inset 2) as the probe points. Data are  available at https​://doi.org/10.5281/zenod​o.43042​99.

https://doi.org/10.5281/zenodo.4304299
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and the same label for two additional shapes: the whale (Fig. 5F) and the antelope (Fig. 4C) from Experiment 
1. In the interest of keeping participant sessions below an hour, the data for the second shape (antelope) was 
obtained from a different set of participants that took part in a separate experiment (n = 15, 7 w, 8 m, mean 
age = 24.5 years, SD = 3.1).

Procedure.  The written instruction was the same as in Experiment 1 with the Duck–Rabbit pair as an example, 
with a red dot on the duck contour and an unplaced green dot in the white space next to the rabbit (both with 
semantic labels presented below the shape).

Also, the procedure was the same as in Experiment 1, again with semantic labels presented below each shape 
(different labels for the ambiguous stimuli, Fig. 5A–E, identical labels for the stimuli that we use as baseline 
condition, Fig. 5F).

Presentation details were the same as in Experiment 1; after scaling, the width of the resulting shapes varied 
between 15.44° and 28.22° of visual angle, and the height varied between 11.39° and 13.63° of visual angle (with 
a distance between participants and monitor of about 50 cm).

Results and discussion.  Figure 6 shows results of Experiment 2. Again, responses of participants are highly 
systematic; however, they are somewhat lower with respect to the (i) agreement between participants, (ii) pre-
served ordering of corresponding locations, but still show (iii) corresponding locations on similar semantic parts 
of base and test shape (e.g., probe points on the swan’s head are matched with locations on the squirrel’s head; 
Fig. 6A).

With respect to (i), we quantify agreement between participants as in Experiment 1; participants are less 
congruent than in Experiment 1 but still more than predicted by the random model (pairs A–E: 0.75, 0.28, 0.40, 
0.37, 0.76; Wilcoxon signed rank test: − 5.85 < Z <  − 6.16, all p < 0.001). We suggest that the lower congruency 
compared to Experiment 1 can be explained by two factors. First, the semantic part organization was less clear 
for ambiguous shapes of Experiment 2 compared to unambiguous shapes of Experiment 1—as unambiguous 
shapes have more contour details and are more prototypical contours of animals. Second, the correspondence 
between semantic parts was less clear for ambiguous shapes of Experiment 2—as part organization (i.e., the 
viewpoint and pose of the objects) of unambiguous base and test shapes in Experiment were more similar (with 
exception of pair Lizard–Whale).

Figure 5.   Stimuli of Experiment 2. Each pair was presented on the screen simultaneously, with the base shape 
to the left and the test shape to the right (arrangement the same as here in the figure). Images were drawings by 
author J. K. inspired by or copying stimuli from previous papers showing ambiguity in visual perception. (A) 
Swan–Squirrel from Fisher27, (B) Parrot–Goose by Tinbergen28, (C) Whale–Snail by Bernstein and Cooper29, 
(D) Duck–Rabbit by Jastrow30, and (E) Swan–Cat by Bernstein and Cooper29. (F) Example of the baseline 
condition with the same shape and label. All stimuli are  available at https​://doi.org/10.5281/zenod​o.43042​99.

https://doi.org/10.5281/zenodo.4304299
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Again, 3D orientation is ambiguous for the parrot and goose and, indeed, individual participants either 
arranged their responses on the goose in the same (n = 5; median responses of this group: inset 1 in Fig. 6B) 
or reversed order (n = 10; inset 2 in Fig. 6B) as the probe points on the parrot, with congruity of 0.86 and 0.51 
within both groups. Again, this corresponds to some extent to observers’ perception of the same (cf. Figure 5B) 
or different orientation of parrot and goose: the majority of participants presented with both heading in the same 
direction also arranged responses in the same order (n = 5 out of 8), while different heading directions produced 
reversed orderings (n = 7 out of 7).

Interestingly, some participants also reported having interpreted the rabbit (Fig. 6D) differently from the 
classical interpretation: while most participants reported seeing a rabbit looking to the left or right (n = 12; see 
illustration and median responses: inset 1 in Fig. 6D), a few participants reported to see a rabbit looking down 
(n = 3; see illustration and median responses in inset 2 in Fig. 6D), with congruencies of 0.50 and 0.70 within 
these groups. This was rather not explained by different heading directions as half of participants seeing the rabbit 
as looking to the left or right (n = 6) were presented with both heading in the same direction and the other half 
(n = 6) with different directions.

With respect to (ii), we quantify the preservation of ordering as in Experiment 1, showing that ordering 
was preserved significantly more in the participants’ median responses than in the random model (preserved 
ordering in pairs A–E: 82%, 90%, 82%, 58%, 82%; Wilcoxon signed rank test: − 2.23 < Z <  − 6.94, p < 0.026). The 
preservation of ordering is similar for the Parrot–Goose pair (‘1’: 88%; ‘2’: 94%) and the Duck–Rabbit pair (‘1’: 
56%; ‘2’: 68%) when considering the two groups separated by their perceived orientation.

As for Experiment 1, regarding (iii) we present a formal quantification of corresponding locations on similar 
semantic parts in the Results and Discussion of Experiment 3. However, in contrast to Experiment 1, the effect 
of semantic interpretation is already evident from the fact that participants’ responses for the test shape are not 
identical to the base shape—as semantics were the only difference between the two.

These analyses indicate that even identical shapes yield different correspondences when they have a differ-
ent semantic part organization. Taken together, Experiments 1 and 2 suggest that semantic features affect how 
corresponding points are placed. To test this hypothesis directly, we conducted a third experiment to obtain 

Figure 6.   Overview of results of Experiment 2. On each base shape (left, e.g., swan), we plot the 50 equidistant 
probe points. On each test shape (right, e.g., squirrel), we plot the corresponding participant responses for each 
of the points. Participant responses are summarized by determining the median position along the length of the 
contour. (A,C,E,F) For most pairs and probe points, the order of points on the test shapes is the same as that 
on the base shape even though probe points were queried one at a time. (B) For the Parrot–Goose pair, we also 
show results separately for participants arranging their responses in the same (inset 1) or reversed order (inset 2) 
as the probe points. (D) For the Duck–Rabbit pair, we also show results separately for participants interpreting 
the rabbit as looking to the right (inset 1) or looking down (inset 2) (eyes added for illustration purposes). Data 
are  available at https​://doi.org/10.5281/zenod​o.43042​99.

https://doi.org/10.5281/zenodo.4304299
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local semantic labels for the stimuli in Experiments 1 and 2, using a part segmentation and labeling task, and 
subsequently tested different models to explain human correspondence responses.

Experiment 3: Semantic labeling of part structures.  In Experiment 3, we identified parts and seman-
tic part labels for all shapes of Experiments 1 and 2. In Experiment 3A, participants identified and labeled parts; 
in Experiment 3B, participants established correspondence between semantic part labels. We used this informa-
tion to build a model based on semantic part organization for predicting participants’ responses in Experiments 
1 and 2.

Experiments 3A and 3B: Participants.  21 students from Justus-Liebig-University Giessen, Germany, with nor-
mal or corrected vision participated in the experiments for financial compensation. A group of 12 students (7 
w, 5 m, mean age = 23.7 years, SD = 3.8) participated in Experiment 3A (Identifying and labeling parts) and a 
group of 9 students (6 w, 3 m, mean age = 24.2 years, SD = 2.5) participated in Experiment 3B (Correspondence 
between semantic part labels). All other details and participant procedures were the same as in Experiment 1.

Experiment 3A: Stimuli.  Stimuli were all individual shapes from Experiments 1 and 2.

Experiment 3A: Procedure.  In each trial, participants were presented with one of the shapes together with 16 
labels on the right side of the screen: ‘Headʼ, ‘Bodyʼ, ‘Eye/sʼ, ‘Neckʼ, ‘Front leg/sʼ, ‘Hind leg/sʼ, ‘Foot/Feetʼ, ‘Ear/
sʼ, ‘Trunkʼ, ‘Mouthʼ, ‘Antennaʼ, ‘Horn/sʼ, ‘Beakʼ, ‘Wing/sʼ, ‘Tailʼ, ‘Fin/sʼ, and ‘None of theseʼ (Fig. 3B). Using the 
point and click operations of the computer’s mouse, participants completed two tasks for each shape. In the first 
task (inspired by31), they defined part boundaries by selecting two locations on the contour (with the restriction 
that the resulting boundary would not intersect existing boundaries or the contour). After defining as many 
parts as they wanted, participants proceeded to the second task where they assigned labels by selecting each 
part in sequence and choosing a label from those on the right side of the screen. Each part was assigned only 
one label, but labels could be used for more than one part. After labelling all of the parts, participants continued 
with the next shape. Each participant responded to each of the shapes, presented in random order. Presentation 
details and size of stimuli were the same as in Experiments 1 and 2.

Experiment 3A: Results.  To determine to which extent participants thought that the provided labels were not 
sufficient to name the parts, we calculated the average percentage of contour sections labelled ‘None of theseʼ. 
As these percentages were very low (Experiment 1: 0.12%; Experiment 2: 3.64%), we assume that participants 
considered the labels sufficient to name the great majority of contour parts.

Then, we identified the most frequent label for each point on the contour for each individual shape. For this, 
we counted for each point on the contour the frequency (i.e., the number of participants) with which each label 
was assigned to that point. Then, we assigned the most frequent label to that point (Fig. 7).

Experiment 3B: Stimuli.  Stimuli were printed paper cards, with one card for each of the most frequent labels 
obtained in Experiment 3A. Cards were color-coded by base shape (yellow) and test shape (green) (Fig. 3C).

Experiment 3B: Procedure.  Participants were handed all cards belonging to a pair of shapes (e.g., all most fre-
quent part labels for ‘Elephantʼ on yellow cards, and all most frequent part labels for ‘Anteaterʼ on green cards), 
together with two cards to identify which color belonged to which animal (e.g., a yellow ‘Elephantʼ and green 
‘Anteaterʼ card; Fig. 3C). No visual shapes were presented, only words (e.g., for ‘Elephantʼ most frequent labels 
were ‘Headʼ, ‘Bodyʼ, ‘Front leg/sʼ, ‘Hind leg/sʼ, ‘Foot/Feetʼ, ‘Trunkʼ, and ‘Tailʼ, and exactly the same labels for 
‘Anteaterʼ; see Fig. 7A). Then, participants were asked to sort cards together so that each part label of one shape 
was assigned to a particular label of the other shape; they also were allowed many-to-one but not many-to-many 
assignments (e.g., antenna and head of the butterfly might both be sorted together with the head of the owl but 
could not also be sorted with its wing; Fig. 7E). Note that for most pairs this was a trivial task as base and test 
shape were described by the very same set of semantic labels (as for Elephant–Anteater; Fig. 7). Each participant 
sorted together the part labels for all of the pairs, successively in random order.

Experiment 3B: Results.  For each pair of shapes and each part label, we identified the most frequent corre-
spondences (i.e., the labels sorted together by the most participants). This provides us with one-to-one corre-
spondences between parts, based on semantic information alone. Consequently, we can build a model based on 
semantic part organization that can also predict participantsʼ responses for parts with non-identical labels (e.g., 
most participants sorted together the beak of the duck and the mouth of the rabbit; Fig. 7J). Data are available at 
https​://doi.org/10.5281/zenod​o.43042​99.

Modeling
In this section, we present our semantic organization model to predict human correspondence responses, and 
compare it to plausible alternative models. Note that the model is not purely image-computable: it relies on 
semantic part labels derived from participant data. However, the model does provide quantitative predictions at 
finer spatial scale (position of corresponding points) than the raw data from which the predictions are derived 
(semantic label data from Experiment 3).

For comparisons between model predictions and human responses we report T-tests and, as a measure of 
effect size, corresponding Scaled JZS Bayes factors (BF10), using a Jeffrey-Zellner-Siow Prior (Cauchy distribution 

https://doi.org/10.5281/zenodo.4304299
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Figure 7.   Overview of results of Experiment 3A. (A–J) On each shape, we plot for each point on the 
contour the most frequent label assigned to that point. (L) Labels and colors. Data are  available at https​://doi.
org/10.5281/zenod​o.43042​99.

https://doi.org/10.5281/zenodo.4304299
https://doi.org/10.5281/zenodo.4304299
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on effect size) with a default scale factor of 0.70732. BF10 expresses the probability of the data given H1 relative to 
H0 (i.e., BF10 > 1 is in favor of H1). BF10 > 3 can be considered as ‘some evidence,’ BF10 > 10 as ‘strong evidence,’ 
and BF10 > 30 as ‘very strong evidence’ for H1, whereas BF10 < 0.33 can be considered as ‘some evidence,’ BF10 < 0.1 
as ‘strong evidence,’ and BF10 < 0.03 as ‘very strong evidence’ for H033.

Semantic organization model.  Our previous work9 suggested that the visual system identifies and estab-
lishes correspondence for a few salient landmarks on the shape, and infers the position of other points on the 
contour relative to these. This provides a robust method to infer correspondence but is only possible if shapes are 
similar enough to enable correspondence between the landmarks to be established. Here, we extend this model 
by suggesting that this correspondence can also be established based on semantic part organization. If corre-
spondence for salient landmarks is difficult or not possible to establish, observers might refer to semantic part 
organization to establish point-to-point correspondence. In line with our previous model9, they would infer the 
position of points relative to identified semantic correspondences. Specifically, the semantic organization model 
(Fig. 8) generates predictions for each probe point on the base shape by identifying its location on a semantic 
part (e.g., on the Elephant’s trunk) and finding the same relative position on the corresponding semantic part 
of the test shape (e.g., on the Anteater’s snout). By this, we can compare the predicted locations to the median 
human responses for every point that we tested.

An overview of the results of Experiment 1 is presented in Fig. 9, with human responses and predictions from 
the semantic organization model plotted with respect to their congruity with (other) human responses between 
random and perfect congruity (for details on calculating congruity see Results and discussion of Experiment 
1). The figure shows that congruity between participants is generally high and much closer to perfect congruity 
than to the congruity of random responses (blue horizontal bars; Fig. 9). Also, when calculating the congruity 
between the predictions of the semantic organization model and human responses, we see that the model is often 
well in the range of human responses (green horizontal bars; Fig. 9): in other words, it often explains human 
responses as well as other human responses. This suggests that the model is capturing the relevant aspects of 
observed human response behavior.

For statistical testing, we calculated the distances of human responses (and model predictions) to the median 
human response for each pair of shapes and sample points, expressed as a percentage of contour perimeter9,10. The 
average distances for human responses to the median responses for each pair of shapes were 2.6% (Elephant–Ant-
eater), 3.6% (Ostrich–Flamingo), 2.5% (Antelope–Giraffe), 5.5% (Butterfly–Owl; across two types: 13.0%), and 
7.2% (Lizard–Whale) (Table 1; grand average: Fig. 12). The average distances for the semantic organization model 
predictions were 2.7%, 6.5%, 2.1%, 3.9%, 4.9% (12.1%), and 5.2% (Table 1; grand average: Fig. 12). T-tests for 
each pair (across the 50 sample points) showed no significant difference between the distances of human results 
and model predictions to median responses (Table 1).

For Experiment 2, we again see that congruity is generally closer to perfect congruity than to the congruity of 
random responses (exception: Whale–Snail; blue horizontal bars; Fig. 10). However, it is also significantly lower 
than in Experiment 1. Before generating predictions from the semantic organization model, we inversed the 
order of contour points, as the two interpretations of each shape (e.g., swan and squirrel) were always heading 
different ways (e.g., swan to the left and squirrel to the right; Fig. 5A). When calculating the congruity between 
the resulting model predictions and all individual human responses, we again see that even though congruity 

Figure 8.   Illustration of our extended model. The model is based on the identified parts, their semantic labels 
and the semantic correspondences from Experiment 3. (A) First, for each probe point, we identify the part on 
the base shape it’s located on. Second, we find the corresponding semantic part on the test shape (using labels 
and semantic correspondences). (B) Third, we define the position of the probe point relative to the start and 
end of the semantic part by calculating its proportion of the length of the semantic part contour (p = ∆b/∆B) 
along the heading direction (as determined by the similarity in ordering of corresponding semantic parts). 
Fourth, we predict the test point by using that proportion to define its position relative to the start and end of 
the corresponding semantic part on the test shape (∆t = ∆T*p). (C) From this we obtain a singular predicted 
location on the test shape for each probe point. By comparing that prediction to the median human response 
and averaging across all points, we get a prediction accuracy score for each pair of shapes.
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Figure 9.   Human results and semantic organization model for Experiment 1. We plot response congruity on 
a continuum between random (0.0: congruity between responses of random model) and perfect congruity to 
human responses (1.0: all responses on top of each other). Horizontal bars plot congruity and standard errors 
for human responses (dark blue) and for the semantic organization model (green), separately for each pair of 
shapes. For the Butterfly–Owl pair, we also report congruity when measured across the two response types (light 
blue bar, see text for explanation). Finally, we plot the congruity of human responses in the baseline condition 
with the two pairs of identical shapes (Whale–Whale and Antelope–Antelope) as reference (grey bar).

Table 1.   Overview of modeling results and statistics for Experiment 1. Significant p values are marked with 
an asterisk (Bonferroni-corrected significance level p < .008). Note that the combined semantic and curvature-
based model is tested against the semantic organization model rather than against human data (NaNs follow 
from exactly the same values for both models).

Model Pair Human–human distance Model-human distance T(49) p BF10

Semantic organization

Elephant–Anteater 2.6 2.7  − 0.12 .905 0.21

Ostrich–Flamingo 3.6 6.5  − 1.94 .058 1.11

Antelope–Giraffe 2.5 2.1 0.63 .533 0.25

Lama–Fox 3.0 3.9  − 0.81 .421 0.28

Butterfly–Owl 5.5 (13.0) 4.9 (12.1) 0.59 .561 0.25

Lizard–Whale 7.2 5.2 1.60 .118 0.65

Uniform sampling

Elephant–Anteater 2.6 8.8  − 6.34  < .001*  > 30

Ostrich–Flamingo 3.6 14.8  − 7.52  < .001*  > 30

Antelope–Giraffe 2.5 3.8  − 1.93 .059 1.09

Lama–Fox 3.0 7.7  − 5.79  < .001*  > 30

Butterfly–Owl 5.5 (13.0) 5.2 (13.6) 0.25 .805 0.22

Lizard–Whale 7.2 8.9  − 1.61 .114 0.66

Curvature-based

Elephant–Anteater 2.6 1.4  − 2.82 .007* 6.64

Ostrich–Flamingo 3.6 16.7  − 6.49  < .001*  > 30

Antelope–Giraffe 2.5 6.2  − 3.01 .004* 10.59

Lama–Fox 3.0 3.0 0.02 .981 0.21

Butterfly–Owl 5.5 (13.0) 8.9 (17.0)  − 2.66 .011 4.60

Lizard–Whale 7.2 15.0  − 4.00  < .001*  > 30

Combined semantic and 
curvature-based

Elephant–Anteater 2.6 3.1  − 1.69 .097 0.75

Ostrich–Flamingo 3.6 6.5 1.00 .322 0.33

Antelope–Giraffe 2.5 2.2  − 0.31 .755 0.22

Lama–Fox 3.0 4.0  − 1.42 .162 0.52

Butterfly–Owl 5.5 (13.0) 4.9 (12.1) NaN NaN NaN

Lizard–Whale 7.2 4.9 3.01 .004* 10.52
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is generally lower than in Experiment 1, the pattern of human responses is well replicated in the predictions 
(green horizontal bars in Fig. 10), again suggesting that the semantic organization model is a good model of 
participant behavior.

For statistical testing, we again calculated average distances to the median responses. For human responses, 
distances for each pair of shapes were 6.2% (Swan–Squirrel), 7.9% (Parrot–Goose; across two types: 18.0%), 
15.0% (Whale–Snail), 10.0% (Duck–Rabbit; across two types: 15.8%), and 6.0% (Swan–Cat) (Table 2; grand 
average: Fig. 12). For the semantic organization model predictions, they were 4.9%, 5.3% (6.8%), 16.5%, 6.2% 
(6.6%), and 4.8% (Table 2; grand average: Fig. 12). When comparing the distances of human results and model 
predictions to median responses, they were only significantly different for one (Duck–Rabbit) but not for the 
other four pairs (Table 2).

Overall, this suggests that the semantic organization model is a good approximation of human behavior in 
both experiments (Fig. 11). In the following, we use the same distance metric to test plausible alternative models 
for predicting human responses.

Testing plausible alternative models.  First, we test a uniform sampling model which assumes that 
participants distribute their responses at equidistant intervals around the perimeter of the test shape, while 
replicating the order of the probe points. Second, we test a curvature-based model which assumes that partici-
pants choose corresponding points with respect to correspondences between curvature profiles of base and test 
shape9. Finally, we test whether the semantic organization model can be improved by including curvature-based 
information. To give the first two models the best possible chance, we first searched for the ‘starting point’ of 
the leftmost semantic part (e.g., tails in elephant and anteater; tail in parrot and head in goose) and re-sampled 
contour points in clockwise direction based on that starting position. Without doing that (e.g., if we would just 
sample from the leftmost point of every shape), predictions on curvature profiles (or uniform sampling) would 
be markedly less similar to human correspondence judgments—consequently, this represents a rather strict test 
to see whether the semantic organization model can better explain our data.

Uniform sampling model.  For Experiment 1, average distances of the uniform sampling model predictions to human 
median responses were 8.8%, 14.8%, 3.8%, 7.7%, 5.2% (13.6%), and 8.9% for the pairs (Table 1; grand average: Fig. 12). 
This was considerably lower than the distance between human and median responses (Table 1). To obtain predictions 
from the uniform sampling model for Experiment 2, we again inversed contour points because of the different head-
ing directions of the two interpretations of each shape (Fig. 5A). The resulting average distances to human median 
responses were 32.7%, 33.0% (32.0%), 24.0%, 11.9% (12.0%), and 35.4% for the pairs (Table 2; grand average: Fig. 12), 
all of which were also considerably lower than distances between human and median responses (Table 2).

Curvature‑based model.  As in previous work9, we express contours in terms of their ‘surprisal’—an informa-
tion theoretic measure, related to curvature, which quantifies how much each point on a contour ‘stands out’ 

Congruity to human responses

random 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 10.   Human results and semantic organization model for Experiment 2. We plot response congruity on 
a continuum between random (0.0: congruity between responses of random model) and perfect congruity to 
human responses (1.0: all responses on top of each other). For the Parrot–Goose pair, we also report congruity 
when measured across the two response types (light blue bar, see text for explanation). For the Duck–Rabbit 
pair, we also report congruity when measured across the two semantic interpretations (light blue bar, see text for 
explanation). For other details see Fig. 9.
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Table 2.   Overview of modeling results and statistics for Experiment 2. Significant p values are marked with 
an asterisk (Bonferroni-corrected significance level p < .010). Note that the combined semantic and curvature-
based model is tested against the semantic organization model rather than against human data (NaNs follow 
from exactly the same values for both models).

Model Pair Human–human distance Model-human distance T(49) p BF10

Semantic organization

Swan–Squirrel 6.2 4.9 1.18 .243 0.39

Parrot–Goose 7.9 (18.0) 5.3 (6.8) 1.61 .114 0.66

Whale–Snail 15.0 16.5  − 0.55 .602 0.24

Duck–Rabbit 10.0 (15.8) 6.2 (6.6) 2.85 .006* 7.20

Swan–Cat 6.0 4.8 1.41 .164 0.51

Uniform sampling

Swan–Squirrel 6.2 32.7  − 19.06  < .001*  > 30

Parrot–Goose 7.9 (18.0) 33.0 (32.0)  − 49.82  < .001*  > 30

Whale–Snail 15.0 24.0  − 5.24  < .001*  > 30

Duck–Rabbit 10.0 (15.8) 11.9 (12.0)  − 2.40 .020 2.64

Swan–Cat 6.0 35.4  − 20.27  < .001*  > 30

Curvature-based

Swan–Squirrel 6.2 23.2  − 7.51  < .001*  > 30

Parrot–Goose 7.9 (18.0) 25.7 (27.4)  − 8.48  < .001*  > 30

Whale–Snail 15.0 24.9  − 3.89  < .001*  > 30

Duck–Rabbit 10.0 (15.8) 24.1 (24.1)  − 5.92  < .001*  > 30

Swan–Cat 6.0 23.4  − 8.18  < .001*  > 30

Combined semantic and curvature-
based

Swan–Squirrel 6.2 4.9 NaN NaN NaN

Parrot–Goose 7.9 (18.0) 11.3 (12.4) 4.79  < .001  > 30

Whale–Snail 15.0 16.5 1.51 .137 0.58

Duck–Rabbit 10.0 (15.8) 6.2 (6.6) NaN NaN NaN

Swan–Cat 6.0 7.1 2.13 .038 1.54
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Figure 11.   Congruity of the semantic organization model plotted against the congruity of human responses, 
separately for each stimulus pair in Experiments 1 and 2. As in Figs. 9 and 10, we plot response congruity on 
a continuum between random (0.0: congruity between responses of random model) and perfect congruity to 
human responses (1.0: all responses on top of each other).
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with respect to its local neighborhood34,35. The basic assumption is that contours are likely to continue along 
their current tangent direction; and the more points on the contour diverge from this direction, the less predict-
able and therefore the more informative they are. This can be formalized by a continuous probability (von Mises) 
distribution on the turning angles centered on 0, which is producing monotonically decreasing probabilities 
(p) with increasing divergence from the current tangent direction. Surprisal is then formalized as u =  − log(p), 
increasing with turning angle34. Based on previous work, we calculated turning angles using a window integra-
tion size of 5% of the contour perimeter9,10, treated positive and negative curvature (i.e., convex and concave 
contour segments) symmetrically (unsigned;35,36) and normalized the surprisal for each point on a contour with 
respect to the maximum surprisal on that contour. In contrast to previous work, where we had to refer to ground 
truth transformations to find corresponding salient landmarks between base and test shapes9, ground truth is 
not available for the current stimulus set. Therefore, we use MATLAB’s (The MathWorks, Inc., Natick, Massa-
chusetts, United States) dynamic time warping algorithm (e.g.,37) to find the optimal alignment between contour 
surprisal profiles of the base and test shapes based on their Euclidean distance. We use this alignment to project 
probe points from the base shape to the corresponding locations on the test shape. For Experiment 1, these 
predictions are pretty similar to human responses for the pairs of Elephant–Anteater and Lama–Fox, but much 
less for the other pairs: average distances of the curvature-based model predictions to human median responses 
were 1.4%, 16.7%, 6.2%, 3.0%, 8.9% (17.0%), and 15.0% (Table 1; grand average: Fig. 12). As a result, this was 
significantly lower than human congruity for four of the six pairs (Table 1). For Experiment 2, average distances 
to median responses were considerably higher: 23.2%, 25.7% (27.4%), 24.9%, 24.1% (24.1%), 23.4% (Table 2; 
grand average: Fig. 12). Overall, this shows that the curvature-based model is not a good fit for the human data, 
in contrast to previous experiments in which we tested shapes that were more similar or novel (i.e., with little 
semantic meaning;9).

Combined semantic organization plus curvature‑based model.  To test whether the semantic organization model 
can be improved by adding curvature information, we tested a model where predictions within each semantic 
part were distributed relative to salient landmarks within that part. For example, predictions for probe points 
on the trunk of the elephant would all be placed onto the snout of the anteater, but their exact position would 
depend on their relative position with respect to salient landmarks of both parts (e.g., their tips). We used the 
method established in9 to identify salient landmarks by (i) calculating the normalized distribution of surprisal 
values along the contour of the base shape (− 1, 1) and (ii) finding local minima/maxima that are surrounded 
by values that are higher/lower by 0.05 on both sides and have absolute values > 0.02. If the two corresponding 
semantic parts contained different numbers of local maxima and no unequivocal assignment was possible, we 
used the predictions from the semantic organization model. If the two corresponding semantic parts contained 
the same number of local maxima, and therefore allowed for an unequivocal assignment, we used the relative 
distance to those landmarks to predict the position of responses (with different numbers of local maxima, we 
kept the prediction from the semantic organization model).

For Experiment 1, the average distances of model predictions to human median responses were about the 
same as those of the semantic organization model (3.1%, 6.5%, 2.2%, 4.0%, 4.9% (12.1%), and 4.9%; Table 1; 
grand average: Fig. 12), when directly comparing the two models only performance for the Lizard-Whale pair 
was slightly better (Table 1). This demonstrates that for all pairs tested in Experiment 1, the semantic organization 
model could not be meaningfully improved by adding curvature-based information. For Experiment 2, responses 
were again very similar to those of the semantic organization model (4.9%, 11.3% (12.4%), 16.5%, 6.2% (6.6%), 

Figure 12.   Average distances between human responses and predictions for (A) Experiment 1 and (B) 
Experiment 2. We plot the distance between the human response or model predictions and the human median 
response, expressed as percentage of the perimeter of the contour, and averaged across all stimulus pairs 
and sample points. The semantic organization model is well within the range of human responses, while the 
uniform sampling and curvature-based models perform much worse. The combined semantic organization plus 
curvature-based model does not yield better performance than the semantic organization model alone.



15

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22141  | https://doi.org/10.1038/s41598-020-79072-w

www.nature.com/scientificreports/

and 7.1%; Table 2; grand average: Fig. 12); when testing the two models against each other, the only significant 
difference was a poorer performance for the Parrot–Goose pair (Table 2).

Together, this shows that curvature information could not significantly improve the semantic organization 
model in explaining human responses—at least when considering our implementation of a combined model, 
and the shapes used in the current experiments.

General discussion
Object shape is arguably the most important cue for object recognition and concept learning4–8. Here, we investi-
gate our striking ability to identify point-to-point correspondences between object shapes (e.g.,18–21) with a focus 
on the contribution of cognitive processing (i.e., effects of previous knowledge about semantic organization). 
What is the role of shape correspondence in visual perception and cognition?

Perceptual and cognitive functions of point‑to‑point correspondence.  First, we can use shape 
correspondence to generalize across classes and, for example, predict potential object behavior. Having estab-
lished correspondence between one animal with a trunk (elephant) and one with a long snout (anteater), or 
between two animals with pincers (crab and scorpion), we can make informed inferences about joint location 
and limb flexibility that will help us to predict animal or limb motion trajectories. More broadly, inferences 
based on these correspondences can potentially inspire new innovations; such as robot arms inspired by snakes 
or elephant trunks38. Second, establishing correspondence between different retinal projections of the same or 
similar object helps in preserving object constancy—the ability to identify objects across diverse viewing condi-
tions or organisms across growth. For example, depending on viewing angle, an elephant’s trunk might be visible 
or not; depending on the age of an elephant, the elephant’s head will be larger or smaller compared to the body39.

Taking semantic organization into account, shape correspondence can facilitate and refine the organization 
of objects in a similarity space. For example, if two animals both have a head, horns and four legs, comparisons 
between those parts of the body will help us to decide how similar (i.e., closely related) the animals are: by com-
paring the shape of the head, horns and legs, we will tend to infer that a cow is more closely related to a bison 
than to a rhino40. Finally, we can also use correspondences to build sparse memory representations. By storing 
relevant information about an animal in terms of its main semantic parts together with its salient shape features, 
we can identify members of this animal class, or generate (e.g., imagine) new members of the same class (e.g., 
drawing an elephant to be recognized by others should include a bulky body, plump legs, flapping ears, a curved 
trunk and a narrow tail;41,42).

Relative importance of semantics and geometrical features.  Here, we were interested in the par-
ticular role of semantic organization in establishing correspondences. In previous work9, we showed that observ-
ers’ point-to-point correspondences across object transformations (such as rotation or growth) of unfamiliar 
objects were well explained by a model based on shape—with corresponding locations chosen relative to cor-
responding salient shape features on both shapes. In the current paper, we used stimuli designed to impede the 
potential of shape to guide correspondence judgments. The first experiment employed objects of very different 
shapes but similar semantic part organization; the second experiment employed objects of identical shape but 
different semantic part organization (where a response strategy based purely on shape would simply replicate all 
probe points on the test shape).

In line with our hypotheses and in contrast to previous work, we show that (i) observers agree with each other 
in establishing point-to-point correspondence between very different objects—suggesting that they follow the 
same or similar strategies; (ii) responses are affected by semantic part organization—which is most obvious in 
Experiment 2 where correspondences follow semantic interpretation rather than shape. We introduce a model 
that extends our previous modeling by predicting corresponding locations on the test shape not relative to cor-
responding salient geometrical features of two shapes but relative to their corresponding semantic parts. And, 
indeed, for almost all tested shape pairs, our model predicts median human responses as well as individual human 
observers do. At the same time a model purely based on shape performs considerably worse.

Together this suggests that humans use a straightforward approach to establish correspondences between 
objects of very different shapes. When two objects are novel (i.e., unfamiliar) but similar—so that we can easily 
determine the transformation between them—we find corresponding locations relative to corresponding salient 
geometrical features9. However, when objects are not similar enough for that—but we identify familiar elements 
(e.g., different body parts or extremities of animals)—we find corresponding locations relative to those parts (as 
illustrated in the current experiments).

In many cases, humans will use a combination of both approaches, depending on the availability of cues—that 
is, on the similarity of salient shape features9,10 or on the extent of knowledge about semantic part organization 
(Experiments 1 and 2). Accordingly, for unfamiliar shapes they would rather base their judgments on salient 
shape features; for familiar shapes with (sufficiently) similar part organization they would rather base their 
judgments on semantic information. As our stimuli were specifically designed to impede a strategy based on 
shape, we did not find any additional explanatory power of a model combining semantic part organization and 
shape information.

Application to shape morphing.  A promising avenue for future research is the combination of our model 
with recent advances in machine learning. The latest deep neural networks trained on image segmentation poten-
tially provide pixel-by-pixel semantic labels43,44. Through hierarchical segmentation, this information could be 
translated into semantic part organization (i.e., by identifying overlapping image regions corresponding to ‘bird’, 
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‘leg’ and ‘wing’). This information could be used to predict point-to-point correspondences on a large scale45; and 
also to morph objects into each other in a fashion in accordance with human perception. Figuring out perceptu-
ally sensible morphs without detailed user input (i.e., manual definition of anchor points in both objects), has 
been an endeavor in computer graphics and image processing for a long time (e.g.,46,47). As a proof of concept, we 
show how our model can be used to create perceptually sensible morphs between shapes with known semantic 
part organization. In Fig. 13, we show resulting morph examples for two of our shape pairs from Experiment 1.

In the future, such models combined with machine learning techniques will allow for advanced and poten-
tially more human-like descriptions of objects and their shape. Current computer vision models compare shapes 
in terms of their geometric attributes (often in combination with manual user input, e.g.,48) and objects in terms 
of their texture properties (e.g.,7). In addition to these attributes, however, human observers also compare objects 
and shapes in terms of their deeper generative aspects, like their semantic attributes. Thus, to achieve more 
sophisticated and potentially human-like comparisons between shapes, we need models that incorporate a lexi-
con of simple geometric transformations (e.g., ‘rotate’, ‘stretch’, ‘shorten’, ‘bend’, ‘bloat’, ‘shrink’ and ‘enlarge’) with 
corresponding semantic labels (e.g., neck, legs, tail, body and horns). Such models would be able to compare two 
shapes by the differences between their corresponding parts. For example, the difference between an antelope 
and a giraffe might be summarized by a ‘stretching’ of neck, legs and tail, and a ‘shortening’ of body and horns 
(Fig. 2C). Thus, by identifying those transformations from the lexicon describing the relationship between two 
parts best (i.e., produces the smallest error), models will be able to describe more complex, non-linear transfor-
mations between objects in terms of simple transformations of their parts. Whether this leads to more human-
like complex shape judgments by bringing together inferences about correspondence across transformations9,10 
with those about past transformations from visual depictions of objects (causal history; e.g.,49–54) is an interesting 
area for future investigation.

Limitations and future directions.  As our model depends on the detail as well as on the quality of the 
available semantic part information, both will affect the accuracy of the resulting predictions. For example, it 
is not clear at what level of detail observers are typically operating (e.g., ‘Headʼ versus a distinction between 
‘Headʼ, ‘Earsʼ and ‘Mouthʼ). Presumably, that level varies between participants but also between different stimuli 
or stimulus pairs. For example, if only one of the two shapes exhibit a particular semantic feature (e.g., ‘Earsʼ), 
observers might simply ignore them when building correspondences.

Our model cannot predict ambiguities and inter-individual differences in the interpretation of object shapes. 
For example, the wings of the Butterfly–Owl or the Parrot–Goose pair are ambiguous in their orientation (or 
viewing direction) and therefore ambiguous in their correspondence. Similarly, the rabbit in the Duck–Rabbit 
pair is ambiguous in its direction of heading (downwards versus right).

One way to resolve these ambiguities would be to simultaneously consider different predictions, with their 
probability derived from the frequency of the different semantic labeling responses. This might also help to 
resolve cases with less clear correspondences between semantic parts, for example, when asking participants to 
match locations on the four legs of a dog to a two-legged ostrich.

Another way to resolve these ambiguities would be to collect data and model predictions for 3D shapes rather 
than 2D contours. Of course, this would be technically more challenging—in terms of the dot matching proce-
dure as well as in terms of the modeling. For example, a good model for predicting corresponding locations on 
a 3D surface would have to consider all ‘surrounding’ semantic parts of a particular probe point (e.g., ‘the probe 
location on the bird is slightly above the longitudinal axis of its right wing, halfway between head and tip of the 
tail’). Yet it is highly likely that observers can indeed exploit semantics to identify such correspondences in 3D.

Figure 13.   Examples of morphing based on the correspondence predictions of the semantic organization 
model for (A) Elephant–Anteater and (B) Antelope–Giraffe pairs of Experiment 1. Morphs are based on 
correspondences predicted by the semantic organization model with linear interpolation of in-between contour 
segments. Contours are colored according to their correspondence across morph levels. To avoid intersections, 
before building the morphs we excluded all predicted points on the test shape that showed order reversals with 
respect to the corresponding probe points on the base shape. Note that this straightforward approach will work 
less well for shapes with holes (e.g., Ostrich—Flamingo pair) or many order reversals (e.g., Lizard—Whale pair); 
for generalization the morphing procedure would need to be adapted.
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Another avenue for this work is as a potential tool to reveal the interplay between perceptual and cognitive 
processes in bidirectional hierarchical neural networks. One might expect cognitive processes to be spatially 
imprecise and operate on abstract representations. However, our findings illustrate how humans rely flexibly 
on shape or semantic information in establishing local physical correspondence. Specifically, by solving the dot 
matching task, bottom-up perceptual organization is combined with top-down cognitive processes. How this is 
theoretically combined in bidirectional neural networks is still an open question. In terms of neural mechanisms, 
there has long been speculations about forward and backward pathways in the cortex (e.g.,55–58). Murray et al.59, 
for example, used fMRI to show that when local visual information is perceptually organized into whole objects, 
activity in lower areas (e.g., V1) decreases over the same period that activity in higher areas (e.g., lateral occipital 
cortex or LOC) increases. The results were interpreted in terms of high-level hypotheses that compete to explain 
away the lower-level retinal information. In the same manner, the edges and contours of shapes are activated 
in lower layers based on retinal information, and our higher-level cognitions (i.e., semantic judgements) can 
turn down the activity of these lower areas by explaining away the causal factors of these edges at the moment 
of perception. In effect, the present methods can be used to test the role of how such cognitive processes are 
merged with perception in the brain.

Finally, our findings are another building block in the description of shape understanding (e.g.,60,61): when we 
look at an object, we not only work out what shape it has, but also how or why it has that shape by parsing and 
interpreting its geometrical structure to identify its most important features and their relations to one another 
and to features of other objects. In the current work, we highlighted the interpretation component of shape under‑
standing by biasing participants towards higher-level cognitive processes when establishing correspondences.

Data availability
The stimuli and raw data of the current study are available at https​://doi.org/10.5281/zenod​o.43042​99.
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