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SUMMARY 

With a global production of 766 million tons in 2019, wheat is the world's second most 

important cereal, providing ≥ 20 % of calories and protein for the human diet. Wheat rusts such 

as Puccinia striiformis f. sp. tritici and Puccinia triticina, the causal agents of stripe rust and 

leaf rust respectively, are among the most important fungal pathogens in wheat with the 

potential to cause severe yield and quality losses up to 70 %. Use of resistant cultivars is the 

economically safest and most environmentally friendly approach to avoid yield losses and 

ensure food security. However, the continuous development of new races of stripe rust and leaf 

rust that are virulent against important resistance genes increases the need for new sources of 

resistance. In recent years, the identification of quantitative trait loci (QTL) has become the 

basis of targeted breeding approaches aiming at increased and durable resistance in modern 

wheat cultivars. In addition, multiparent advanced generation intercross (MAGIC) populations 

have proven to be a powerful tool to carry out such genetic studies. 

In the framework of this thesis, the Bavarian MAGIC wheat population (BMWpop) was 

used to detect QTL conferring resistance against leaf rust and stripe rust. Seedling resistance 

was screened under controlled environmental conditions by using a detached leaf assay. Adult 

plant resistance was tested in multi-year’s field trials at three locations in Germany. Phenotypic 

data, together with genotypic data from the 15 K + 5 K Infinium® iSelect® array containing 

17,267 single nucleotide polymorphisms (SNP), were used to perform simple interval mapping 

(SIM) for stripe rust and leaf rust resistance. In total, 19 QTL corresponding to 11 different 

regions on chromosomes 1A, 4A, 4D, 5A, 6B, 7A and 7D were identified in independent SIM 

studies for leaf rust resistance. Six of these regions may represent putative new QTL, which 

have not been described earlier. For stripe rust, 21 QTL corresponding to 13 distinct 

chromosomal regions were detected, of which two may represent putatively new QTL located 

on wheat chromosomes 3D and 7D. Peak markers of the identified QTL were partly directly 

annotated with genes known to be involved in quantitative resistance to leaf and stripe rust. 

Additional promising gene annotations with different functions in relation to resistance 

responses were identified when considering ± 500 kb around each peak marker of a QTL. 

The Bavarian MAGIC wheat population turned out to be well suited for the detection of 

QTL conferring resistance to leaf rust and stripe rust. Based on the phenotypic responses, RILs 

with increased resistance to both rust fungi were identified, which can be easily introduced into 

breeding programs due to their descent from elite parents.  
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ZUSAMMENFASSUNG 

Mit einer weltweiten Produktion von 766 Millionen Tonnen im Jahr 2019 ist Weizen die 

zweitwichtigste Getreideart der Welt, die ≥ 20 % des Kalorien- und Proteinbedarfs der 

menschlichen Ernährung deckt. Weizenroste wie Puccinia striiformis f. sp. tritici und Puccinia 

triticina, die Erreger des Weizengelb- bzw. des Weizenbraunrosts, gehören zu den wichtigsten 

pilzlichen Krankheitserregern im Weizen, die Ertrags- und Qualitätsverluste von bis zu 70 % 

verursachen können. Die Nutzung von resistenten Sorten ist der wirtschaftlich sicherste und 

umweltfreundlichste Ansatz zur Vermeidung von Ertragsverlusten und zur Sicherung der 

menschlichen Ernährung. Durch die kontinuierliche Entwicklung neuer Rassen des Gelb- und 

Braunrosts, die gegen wichtige Resistenzgene virulent sind, ergibt sich die Notwendigkeit nach 

neuen Resistenzquellen zu suchen. In den letzten Jahren ist die Identifizierung von QTL zur 

Grundlage gezielter Züchtungsansätze geworden, die darauf abzielen, ein erhöhtes und 

dauerhaftes Resistenzniveau in modernen Weizensorten zu erreichen. Darüber hinaus haben 

sich MAGIC Populationen als hilfreiches Instrument für die Durchführung solcher genetischen 

Studien erwiesen. 

Im Rahmen dieser Arbeit wurde die Bayerische MAGIC-Weizenpopulation (BMWpop) 

genutzt, um Resistenz QTL gegen Weizenroste zu identifizieren. Dabei lag der Fokus auf dem 

Braun- und Gelbrost. Die Keimlingsresistenz wurde unter kontrollierten Umweltbedingungen 

mit Hilfe spezifischer Blattsegmenttests geprüft. Die Adultpflanzenresistenz wurde in 

mehrjährigen Feldversuchen an drei Standorten in Deutschland getestet. Im Anschluss wurden 

die phänotypischen Daten zusammen mit den genotypischen Daten des 15 K + 5 K Infinium® 

iSelect® Arrays, der 17.267 Einzelnukleotid-Polymorphismen (SNP) enthält, genutzt, um eine 

Simple-Intervallkartierung (SIM) für die Resistenz gegen Gelb- und Braunrost durchzuführen. 

Insgesamt wurden in unabhängigen SIM-Studien 19 QTL für Braunrostresistenz identifiziert, 

die 11 verschiedenen Regionen auf den Chromosomen 1A, 4A, 4D, 5A, 6B, 7A und 7D 

entsprechen. Sechs dieser Regionen könnten mutmaßlich neue QTL darstellen und wurden 

bisher nicht beschrieben. Für Gelbrost wurden 21 QTL entdeckt, die 13 verschiedenen 

chromosomalen Regionen entsprechen, von denen zwei möglicherweise bisher nicht bekannte 

QTL darstellen und sich auf den Weizenchromosomen 3D und 7D befinden. Die Peak-Marker 

der identifizierten QTL konnten teilweise direkt mit Genen annotiert werden, von denen 

bekannt ist, dass sie an der quantitativen Resistenz gegen Gelb- und Braunrost beteiligt sind. 

Zusätzliche vielversprechende Genannotationen im Zusammenhang mit Resistenzreaktionen 

wurden bei Betrachtung eines fixen Intervalls von ± 500 kb um jeden Peak-Marker eines QTLs 

identifiziert. 
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Die bayerische MAGIC-Weizenpopulation erwies sich für den Nachweis von Resistenz 

QTL gegen Gelb- und Braunrost als gut geeignet. Anhand der phänotypischen Reaktionen 

wurden RILs mit erhöhter Resistenz gegen beide Rostpilze identifiziert, die aufgrund ihrer 

Abstammung von Elite-Elternmaterial leicht in Zuchtprogramme integriert werden können. 
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CHAPTER I | GENERAL INTRODUCTION 

1. Bread wheat (Triticum aestivum L.) 

Wheat (Triticum spp.) is one of the ‘big three’ cereals, along with maize (Zea mays L.) and rice 

(Oryza sativa L.), which together account for 90 % of the total cereal production (FAO 2021). 

Wheat is grown on 17 % of all crop areas from 69° North (temperate zone) to 45° South 

(subtropical zone) and represents a major source for food, feed and industrial raw materials 

(Charmet, 2011; Peng et al., 2011). In 2019, around 766 million tons of wheat were produced 

globally on 216 million hectares, putting wheat in second place behind maize in terms of 

production but first in terms of harvested area (FAO 2021). Bread wheat or common wheat 

(Triticum aestivum L.) accounts for approximately 95 % of all wheat types grown, with the 

remaining 5 % being durum wheat (Triticum turgidum subsp. durum) and other less important 

species (Shewry, 2009; Venske et al., 2019). Today, wheat provides ≥ 20 % of the calories and 

proteins for the human diet and additionally contributes essential amino acids, minerals, 

vitamins, as well as beneficial phytochemicals and dietary fibre components (Shewry, 2009; 

Braun et al., 2010). The world's three largest wheat producers are China, India and Russia, with 

an average production of 126.7, 93.3 and 61.5 million tons respectively over the last ten years 

on an area harvested of 24.3, 29.9 and 25.0 million hectares, respectively (FAO 2021). With 

24.1 million tons of wheat on 3.2 million hectares, Germany still belongs to the top ten wheat 

producers worldwide (FAO 2021). Nevertheless, it is expected that the world’s demand for 

wheat by an ever-growing population will increase to more than 900 million tons until 2050, 

which requires an annual increase of 0.9 % until 2050 (FAO 2006; 2021; Dixon, 2009). Since 

the ‘Green Revolution’ in 1966 until 1980, wheat production area continuously expanded 

worldwide. Additionally, average grain yield of wheat steadily increased due to the use of 

short-strawed higher yielding, and disease resistant varieties in combination with the 

development of improved agronomic practices (Ahrends et al.; Dixon, 2009). However, the 

decline in investment in agriculture in the post-‘Green Revolution’ period and environmental 

concerns such as climate change leading to rising temperatures, droughts and soil degradation 

have led to stagnated wheat productivity in many farming systems dominated by wheat (Dixon, 

2009; Pingali, 2012). Compared to the period from 1962 to 2007, the average growth rate of 

wheat yield will be more than halved by 2050. Therefore, the annual increase of yield is 

projected to decline from 1.08 % between the period from 1987 to 2007 to 0.74 % by 2050 

(Alexandratos and Bruinsma, 2012). A possibility to increase wheat productivity is the 

expansion of the acreage. However, area expansion is limited (Alexandratos and Bruinsma, 
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2012). Thus, increasing the yield potential per area is still one of the main objectives of wheat 

breeding to meet the requirements of continuous growing human population (Voss-Fels et al., 

2019). In particular, improving photosynthetic capacity by increasing carbon fixation through 

the insertion of C4 plant genes may be an option (Reynolds et al., 2011). Nevertheless, in the 

context of climate change as a further future challenge, resistance against insects, viruses and 

fungi, as well as tolerance to abiotic stresses such as heat, drought and soil salinity become 

increasingly important in wheat breeding programs (Venske et al., 2019). Since the publication 

of the complete reference genome of wheat, a powerful tool is available for breeding and other 

genetic studies to enhance the understanding of wheat evolution, and to address the challenges 

for wheat production security (Appels et al., 2018). 

Systematically, the wheat group (Amblyopyrum, Aegilops, and Triticum) is classified in the 

tribe Triticeae of the grass family Poaceae. The genus Triticum comprises in total six species at 

the diploid (Triticum monococcum L. and Triticum urartu Tum. Ex Grand.), and different 

polyploidy levels, from which the latter originated by hybridization between Triticum and the 

genus Aegilops (goatgrass): two tetraploid species, Triticum turgidum L. and Triticum 

timopheevii (Zhuk.) Zhuk., and two hexaploid species, Triticum aestivum L. and Triticum 

zhukovskyi Men. & Er. (Dvořák, 2001; Matsuoka, 2011; Feldman and Levy, 2015). Bread wheat 

is an allohexaploid species (2n = 6x = 42), that originated about 10,000 years ago in the Fertile 

Crescent, and more particularly in a region that nowadays surrounds the fertile alluvial plains 

of the Tigris and Euphrates rivers (Braidwood et al., 1969; Charmet, 2011; Venske et al., 2019). 

Two polyploidization events were involved in the evolution of bread wheat. First, natural 

hybridization between Triticum urartu (AA genome) and the donor of the BB genome (Aegilops 

speltoides-related species) formed Triticum turgidum ssp. diccocoides 0.5 million years ago. 

The second hybridization event took place between Triticum turgidum (AABB genome) and 

Aegilops tauschii (DD genome), forming T. aestivum (AABBDD), which through 

domestication and centuries of cultivation gave rise to the bread wheat cultivated today 

(Feldman et al., 1995; El Baidouri et al., 2017; Venske et al., 2019). Compared to most other 

crops (e.g. barley), wheat has a restricted genetic variability. The short period of time available 

for evolution is described to be one reason for this genetic narrowing, as there had not been 

sufficient time for mutations to accumulate or genes to be taken up by natural or artificial 

interspecific crossing processes (Cox, 1997; Venske et al., 2019). In addition, evolution only 

driven by polyploidization events and domestication, and generally, the emergence from only 

a few plants of ancestral species led to the restricted variability (Buckler et al., 2001; Dubcovsky 

and Dvorak, 2007; Charmet, 2011). Today, there are different strategies to broaden the genetic 
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diversity in wheat used in breeding programs. These strategies include traditional techniques as 

introgressions from the secondary and tertiary gene pools or mutagenesis, but also new 

molecular-based techniques as the genetic transformation or genome editing (Parry et al., 2009; 

Li et al., 2015; Crespo-Herrera et al., 2017; King et al., 2017; Wang et al., 2018). 

 

2. Wheat rusts 

Wheat is exposed to several abiotic and biotic stressors leading to significant yield losses. Plant 

diseases are the most important biotic constraint on wheat production and threaten the global 

food supply. Around 40 fungal, 32 viral and 81 bacterial diseases of wheat are described 

(Bonjean and Angus, 2001). Among the fungal diseases, wheat rusts are the most economically 

important diseases (Gessese, 2019).  

In general, rust fungi belong to the order Uredinales, which comprises more than 7000 

species. The largest genera include the genus Uromyces with 600 species and the genus 

Puccinia with around 4000 species, causing damage to a wide range of important agricultural 

crops (Maier et al., 2003). Wheat rusts belong to the genus Puccinia, in which several special 

forms or species exist that differ in their ability to infect certain grasses and thus are classified 

as formae speciales (ff. spp.; Agrios, 2005; Figueroa et al., 2018). Furthermore, each formae 

speciales can be differentiated into many races or pathotypes that are only able to infect certain 

varieties of respective plant species (McIntosh et al., 1995; Gessese, 2019). Rust fungi belong 

to the fungal pathogens with an obligate biotrophic lifestyle and depend in consequence on 

living host cells to complete their life cycle and therefore form specialized infection structures 

to extract nutrients (Mendgen and Hahn, 2002; Voegele et al., 2009). Wheat rusts are 

heteroecious and macrocyclic and thus complete their life cycle on two taxonomically unrelated 

hosts by forming five distinct spore phases (Figure I.2-1, Kolmer, 2013). In successfully 

infected wheat, thousands of dikaryotic uredinospores (N+N) are produced in the uredium. In 

this asexual reproductive phase, the urediniospores produced are capable of leading to several 

re-infection cycles of wheat within one growing season. At the end of wheat growth, the 

uredinial infection transitions into the formation of telia, which produce thick-walled, durable 

dikaryotic teliospores (N+N). In spring and at the beginning of the sexual infection cycle, 

teliospores undergo nuclear fusion (karyogamy, NN) and meiosis to produce four binucleate, 

double haploid basidiospores (2N) that are forcibly released into the air to infect the secondary 

host. During successful infections, pycnia of two mating types are formed on the upper leaf 

surface with hyphae producing mating type-specific mononucleate haploid pycnospores (N). 

The pycnospores are carried by insects to other pycnia, where fusion of the pycnospores with 
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corresponding hyphae of an opposite mating type leads to plasmogamy and the development of 

aecia on the underside of leaves. This event of plasmogamy may occur several times within a 

single pycnium, giving rise to genetically distinct aecia. Dikaryotic aeciospores (N+N) are 

produced in a mature aecium, which are subsequently spread by wind and infect the primary 

host, e.g., wheat. There, uredinial infections develop and the sexual life cycle is completed 

(Kolmer, 2013; Schwessinger, 2017). There are three different wheat rust diseases caused by 

three distinct species: Puccinia graminis f. sp. tritici, Puccinia striiformis f. sp. tritici and 

Puccinia triticina. 

 

Figure I.2-1 | Life cycle of heteroecious, macrocyclic wheat rusts (modified according to 

Kolmer, 2013; original illustration from Jacolyn A. Morrison, USDA-ARS, USA) 
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Puccinia graminis f. sp. tritici Ericks and Henn is the causal agent of stem (black) rust, which 

has been one of the most devastating diseases of cereals and acted as a driving force during the 

Green Revolution (Figueroa et al., 2018; Gessese, 2019). Especially in Western Europe and 

North America, the elimination of barberry species acting as alternative hosts and the general 

distribution of semi-dwarf, high-yielding, resistant cultivars led to the successful control of stem 

rust in many parts of the world (Sharma, 2012). However, the emergence of the highly virulent 

'Ug99' race in Uganda in 1998, its geographical spread across Africa and the Middle East, and 

the appearance of 'Ug99' variants signaled the return of this devastating disease (Singh et al., 

2011; Singh et al., 2015). It is suggested that 90 % of the commercial wheat cultivars in the 

world are susceptible to 'Ug99' (Singh et al., 2011). In Addition, non-'Ug99' races such as the 

‘Digalu’ race caused a devastating epidemic in Ethiopia in 2014 making stem rust currently the 

major concern in East Africa, which is also threatening wheat production in North and South 

Africa, Far East and West Asia, Australia, New Zealand, and South America (Olivera et al., 

2015; Figueroa et al., 2018). Stem rust covers mainly the surface of leaves and stems by forming 

masses of redbrick urediniospores (Figure I.2-2, C). Susceptible varieties may also show 

infections on glumes and awns (Kolmer, 2005). Yield losses are associated with a reduction in 

the number of shoots and grains per ear, reduced grain size, as well as lodging of plants and 

may reach up to 100% depending on the susceptibility of the variety and favorable weather 

conditions (Roelfs, 1985a, 1985b; Leonard and Szabo, 2005). In Africa, the Middle East and 

South Asia, the estimated annual yield losses due to 'Ug99' stem rust race amount to 

approximately USD 3 billion (Singh, 2006). 

Leaf rust is caused by Puccinia triticina Eriks. and is the most common and widespread rust 

disease of wheat. Compared to stem and stripe rust, leaf rust occurs more frequently and in most 

regions worldwide, representing one of the major constraints to wheat in North Africa, Asia 

(Central, South and Southeast), Europe, North and South Americas, Australia, and New 

Zealand (Bolton et al., 2008; Huerta-Espino et al., 2011). Common wheat, durum wheat and 

wild emmer are known as primary hosts of leaf rust. Thalictrum speciosissimum, Isopyrum 

fumaroides and Anchusa azurea are reported as secondary hosts needed to complete the whole 

life cycle (Bolton et al., 2008; Martinez-Moreno and Solís, 2019). Both primary and secondary 

hosts grow in the Fertile Crescent, where the sexual and asexual phases of P. triticina also exist. 

Therefore, it is assumed that leaf rust originated in this area (Bolton et al., 2008). However, the 

sexual phase contributes less to the direct inoculum, as the population of P. triticina is clonal 

in most parts of the world (Kolmer, 2005; Gessese, 2019). Urediniospores are widely spread by 

wind and infect host plants over several kilometers or even across countries (Kolmer, 2005). 
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Typical symptoms of infections caused by P. triticina are reddish-brown pustules of 

urediniospores distributed over the whole leaf (Figure I.2-2, A). A flag leaf infection of 

approximate 60-70 % at the time of ear emergence can lead to yield losses of 30 %. Under 

favorable conditions with temperatures of 20°C, however, leaf rust infection in the early stage 

may account for yield losses of more than 50 %. (Roelfs, 1992; Huerta-Espino et al., 2011). 

These yield losses are mainly associated with a reduction of the kernel weight and the number 

of grains per ear (Figueroa et al., 2018). Between 2003 and 2008, leaf rust caused yield losses 

of 2.5 dt ha-1 on average in Germany, with an average infestation rate of 19 %. (Jahn et al., 

2012). Losses due to leaf rust in the USA from 2000 to 2004 were estimated at over 3 million 

tons, with a market value of over 350 million dollars (Huerta-Espino et al., 2011). Furthermore, 

Miedaner and Juroszek (2021) predict that due to climate change, the incidence and severity of 

wheat leaf rust in NW Europe will further increase during this century. 

The causal agent of stripe rust (yellow rust) is Puccinia striiformis Westend. which causes 

infection on various grass genera by host specialization and comprises up to nine formae 

speciales (Eriksson, 1894; Chen et al., 2014). Of these, Puccinia striiformis f. sp. tritici Erikss. 

is responsible for stripe rust on common wheat, durum wheat, cultivated and wild emmer, as 

well as triticale and is considered to be the most common among the three rust fungi on wheat 

(Gessese, 2019). It is assumed that stripe rust was present long before wheat was cultivated and 

originated in the South Caucasus (Hassebrauk, 1965). First described in Europe in 1777, stripe 

rust is nowadays widespread in all temperate regions with cool and moist weather conditions 

and is common in over 60 countries on all continents (Carver, 2009; Chen et al., 2014; Waqar 

et al., 2018). As there were no alternative hosts known until 2010, P. striiformis f. sp. tritici 

was assumed to only produce dikaryotic uredial and telial stages on primary hosts (Chen, 2005). 

However, additional sexual stages are now reported on Berberis spp. and Mahonia spp. which 

act as alternative hosts and allow P. striiformis to complete its life cycle (Jin et al., 2010; Zhao 

et al., 2011; Wang and Chen, 2013; Zhao et al., 2013). On wheat, P. striiformis f. sp. tritici 

forms yellow to orange-colored urediniospores erupting from uredinia arranged in long, narrow 

stripes on the upper surface of leaves (Figure I.2-2, B). On susceptible plants, uredinia that are 

generally smaller than uredinia of stem or leave rust, may also be formed on leaf sheaths, 

glumes and awns. Under favorable conditions with temperatures of 10 - 12°C and depending 

on the susceptibility of the variety, the time of onset of the infection and the disease progress, 

stripe rust can cause yield losses up to 70 % (Carver, 2009; Begum et al., 2014). These yield 

and quality losses are mainly due to reduced grain size, number and weight of grains per ear 

and reduced dry matter (Wellings, 2011; Bux et al., 2012). Global yield losses caused by stripe 
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rust are estimated at USD 1 billion annually (Wellings, 2011; Beddow et al., 2015). P. 

striiformis f. sp. tritici is characterized by rapid emergence of virulent races and high pathogenic 

variability. This variability is due to the high reproducibility and genetic diversity as a result of 

sexual recombination, the ability to spread over long distances and adapt to different 

environments (Carmona et al., 2020). In the last two decades, new aggressive races of P. 

striiformis f. sp. tritici have emerged that are adapted to a climate with higher temperatures and 

have spread to regions in which stripe rust was previously less common (Ali et al., 2014). 

Considering this trend in the context of climate change and the general emergence of races 

showing virulence against resistances commonly present in cultivars, as e.g. the 'Warrior' races, 

stripe rust can be considered the economically most important wheat rust disease and threat to 

food security worldwide (Carmona et al., 2020; Miedaner and Juroszek, 2021). 

 

Figure I.2-2 | Characteristic symptoms of leaf rust (A, photo: Albrecht Serfling, JKI Germany), 

stripe rust (B, photo: Albrecht Serfling, JKI Germany) and stem rust (C, photo: Albrecht 

Serfling, JKI Germany) on wheat. 

Due to the rapid spread and the frequency of development of new races, the management of 

cereal rust diseases is complex and it is recommended to use a combination of different methods 

to manage cereal rusts in wheat production (Singh et al., 2005). Rust disease control strategies 

include the use of different cultural practices, such as appropriate use of fertilizers, frequency 

and amount of irrigation, timing of seeding, and crop rotation (Roelfs, 1992; Neumann et al., 

2004; Wan et al., 2007; Simón et al., 2011). In addition, the elimination of ‘green bridges’ 

between crops by tillage and the eradication of the alternative host help to control rust diseases 

by reducing the amount of endogenous inoculum that can infect wheat (Zadoks and Bouwman, 

1985; Kolmer et al., 2007). A second line of defense is the chemical control of rust diseases by 

the use of fungicides, especially when new virulent races attack wheat varieties that were 
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previously resistant (Loughman et al., 2005). Fungicides such as quinone outside inhibitors 

(QoIs), 14α-demethylation inhibitors (DMIs) and more recently succinate dehydrogenase 

inhibitors (SDHI) have been approved and showed efficient control against wheat rusts (Oliver, 

2014). In particular, QoIs and DMIs have maintained their performance and efficacy, either 

because rusts have an intron that prevents the G143A mutation that would confer robust 

resistance to QoIs, or because DMIs are low-risk resistance molecules (Carmona et al., 2020). 

However, not only chemical but also microbial bio-pesticides can be used to avoid rust 

epidemics. For example, the bacterial strain Pseudomonas putida has shown the ability to 

produce different types of antibiotics, siderophores and a low quantity of hydrogen cyanide 

(HCN), which inhibit the growth of P. triticina (Flaishman et al., 1996). Furthermore, the 

endophytic Bacillus subtilis strain E1R-j isolated from wheat roots inhibited the urediniospore 

germination of P. striiformis f. sp. tritici and demonstrated effective biological control in both 

greenhouse and field trials (Li et al., 2013). In another approach, the combined application of 

arbuscular mycorrhizal fungi and Azospirillum amazonense improved the growth, yield and 

quality of wheat plants, and reduced the severity of rust disease (Ghoneem et al., 2015; Savadi 

et al., 2018). Nevertheless, besides the use of early warning systems with regular pathogen 

monitoring and disease scoring, the use of genetic resistance has achieved resounding success 

in the management of various rusts in the past (Carmona et al., 2020). Use of resistant cultivars 

is the most effective, economic and environmentally friendly approach to manage cereal rusts. 

To date, more than 80 resistance genes to leaf rust (Lr genes), 82 stripe rust resistance genes 

(Yr genes) and over 61 stem rust resistance genes (Sr genes) are known with their respective 

chromosomal locations (Gill et al., 2019; McIntosh et al., 2019, 2020) 

 

3. Disease resistance mechanism against wheat rusts 

Compared to animals, plant defense mechanisms against pathogen attacks are different because 

there is no intrinsic immune system in plants with antibodies that bind to foreign antigens to 

eliminate them. Nevertheless, plants have evolved complex defense mechanisms, in which each 

plant cell has an innate immune system that defends it against pathogen attack, and in which 

the plant uses systemic signals emanating from sources of infection (Jones and Dangl, 2006; 

Woloshen et al., 2011). The plant immune system is essentially divided into two branches, the 

basal disease resistance that forms the first line of defense, and effector-triggered immunity as 

the second line of defense (Figure I.3-1). In case a pathogen attacks a plant, microbe- or 

pathogen-associated molecular pattern (MAMP or PAMP), such as flagellin, are recognized by 

transmembrane pattern recognition receptors (PRRs) in the plant, triggering various events and 
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referred to as pattern-triggered immunity (PTI) (Jones and Dangl, 2006). However, pathogens 

are able to suppress PTI through the release of effectors capable of modulating host metabolism 

and defense responses, which lead to effector-triggered susceptibility (ETS, Prasad et al., 2019). 

In general, effectors are proteins that are secreted into the host tissue during infection of 

pathogens and influence cell functions of the host plant in different subcellular compartments 

(Kamoun, 2006). Thereby, effectors either act in self-defense to protect the pathogen from 

antimicrobial compounds produced by the host plant or interact with host targets proteins that 

are for example involved in the second line of plant defense (Rovenich et al., 2014). In this 

second plant defense line, effector proteins produced by avirulence (Avr) genes in the pathogen 

are recognized by nucleotide binding site-leucine rich repeat (NB-LRR) proteins, 

predominately encoded by corresponding resistance (R) genes in plants (Flor, 1956; Juliana et 

al., 2018). This results in an effector-triggered immunity (ETI) that usually initiate a 

hypersensitive response (HR) and leads to a localized programmed cell death preventing further 

colonization of biotrophic fungi in plants (Heath, 2000; Jones and Dangl, 2006). Several 

effector proteins have been characterized in plant pathogens, including Pst_12806 in the stripe 

rust fungus P. striiformis f. sp. tritici. Pst_12806 suppresses the host basal immunity by 

reducing callose deposition and the expression of defense-related genes in wheat (Xu et al., 

2019). Furthermore, recent studies have identified additional effector proteins in 

P. striiformis f. sp. tritici, e.g. Pst18363 and PstGSRE1 (Qi et al., 2019; Yang et al., 2020). 

Pst18363 targets and stabilizes the wheat Nudix hydrolase 23 TaNUDX23, which in turn 

suppresses the effector Pst322-trigged cell death in wheat and thus supports colonization by 

P. striiformis f. sp. tritici (Yang et al., 2020). The effector PstGSRE1 compromises host 

immunity by disrupting the nuclear localization of the reactive oxygen species (ROS)-

associated transcription factor TaLOL2 that suppresses ROS-mediated cell death induced by 

TaLOL2 (Qi et al., 2019).  
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Figure I.3-1 | Exemplary illustration of the plant immune system (modified according to Jones 

and Dangl, 2006). The scheme is divided into four phases: 1) Plant detects microbe- or 

pathogen-associated molecular pattern (MAMP/PAMP; red diamonds) by pattern recognition 

receptors (PRRs) resulting in a pattern-triggered immunity (PTI); 2) Successfully colonized 

pathogen suppresses PTI through the secretion of effectors; 3) Individual effectors (marked in 

red) are recognized by nucleotide binding site-leucine rich repeat (NB-LRR) proteins, 

activating effector-triggered immunity (ETI), which might induce hypersensitive 

response (HR); 4) Pathogen races are selected, which gained new effectors suppressing the ETI. 

Selection favors new plant NB-LRR alleles, which in turn leads to ETI. 

The genetic basis of wheat rust resistance is closely related to host-pathogen interaction and 

can therefore be classified as race-specific or non-race-specific resistance. Race-specific 

resistance also termed as qualitative or seedling resistance is monogenetically inherited, 

expressed throughout all growth stages and the underlying major genes are only effective 

against a subset of races of rust pathogens (Chen, 2005). Thus, race-specific resistance genes 

follow the classical gene-for-gene model, in which resistance responses are only facilitated n 

case the R protein of the plant recognizes the corresponding Avr gene product of the pathogen. 

If an Avr gene is either not present or mutated, the plant will be susceptible regardless of the 

presence of the corresponding R gene (Flor, 1956, 1971; Crute et al., 1997). Most of the 80, 81 

and 61 designated leaf, stripe and stem rust resistance genes, respectively, are classified as 

race-specific since their very distinct phenotypic effects with high resistance values conferred 

by single genes can be rapidly detected in seedling tests, making R genes the first class of 

resistance genes to be genetically defined (Ellis et al., 2014). The use of race-specific resistance 

in plants by breeders is common over large geographical areas, leading to breakdown of major 

resistance genes according to the so-called boom-and-bust cycles (Figure I.3-2, McDonald and 

Linde, 2002). With increased popularity due to resistance and thus increased acreage of a 
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cultivar carrying a single resistance gene (boom), the selection pressure against the 

corresponding avirulence gene carried by a pathogen population also increases. Consequently, 

only one single mutation event at the avirulence locus can result in the development of a new 

virulent pathotype that overcomes the resistance (bust, Pink, 2002). For many race-specific 

resistance genes, e.g. leaf rust resistances Lr26, Lr37, or stripe rust resistances Yr10, Yr24 and 

Yr27, it has already been reported that virulent races of P. triticina and P. striiformis f. sp. tritici 

emerged and overcame these resistance genes (Kolmer, 2005; Huerta-Espino et al., 2011; 

Hovmøller et al., 2017). 

 

Figure I.3-2 | Boom and bust cycles related to resistance and virulence allele frequencies 

(www.apsnet.org). 

Non-race-specific resistance operates against a broad range of races and is sometimes even 

effective against multiple pathogens. It is primarily inherited quantitatively, expressed at later 

growth stages and therefore termed quantitative or adult plant resistance (APR). Quantitative 

APR only confers partial resistance, in which the pathogen grows is less and slowed down and 

no necrotic response is triggered (Krattinger and Keller, 2016; Periyannan et al., 2017). 

However, it has been reported that the combination of individual quantitative APR genes 

showing different levels of partial resistance cause "near immunity" in adult plants grown in 

the field (Singh et al., 2014). In contrast to most NB-LRR-encoding R genes, quantitative APR 

genes appear to encode different proteins, such as ATP-binding cassette (ABC) transporters, 

protein kinases or hexose transporters, and are considered to be genetically durable (Ellis et al., 

2014; Moore et al., 2015; Periyannan et al., 2017). Several studies have demonstrated that 

durability of resistance is more likely with quantitative APR than R genes, as in case of 

Lr34/Yr18/Sr57/Pm38 (Singh, 1992), Lr46/Yr29/Pm39 (Kolmer et al., 2015), Lr67/Yr46 

(Herrera-Foessel et al., 2014). Resistance is considered durable if it remains effective within a 

cultivar under cultivation for a significant number of years over a substantial area with favorable 
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conditions for the respective pathogen (Johnson, 1984). However, masking of APR by R genes 

with stronger resistance phenotypes prevents effective selection of quantitative APR, making 

APR breeding more complex than using R genes (Ellis et al., 2014). Pyramiding of a set of 

single race specific R genes conferring complete resistance with some non-race specific APR 

genes could be an efficient tool create a significantly broader durable resistance over a 

significant number of years in plants (Figlan et al., 2020). 

To date, 25 wheat genes conferring resistance to stem rust (Sr13, Sr21, Sr22, Sr33, Sr35, 

Sr45, Sr46, Sr50, Sr55, Sr57, and Sr60), leaf rust (Lr1, Lr10, Lr21, Lr22a, Lr34, and Lr67) and 

stripe rust (Yr5, Yr7, Yr10, Yr15, Yr18, Yr36, Yr46, and YrSP) have been cloned (Mago et al.; 

Feuillet et al., 2003; Huang et al., 2003; Cloutier et al., 2007; Fu et al., 2009; Krattinger et al., 

2009; Periyannan et al., 2013; Saintenac et al., 2013; Liu et al., 2014; Moore et al., 2015; 

Steuernagel et al., 2016; Thind et al., 2017; Zhang et al., 2017; Chen et al., 2018; Klymiuk et 

al., 2018; Marchal et al., 2018; Arora et al., 2019; Chen et al., 2020). Among these, Lr1, Lr10, 

Lr21, Lr22a, Yr5, Yr7, Yr10, YrSP, Sr13, Sr21, Sr22, Sr33, Sr35, Sr45 and Sr50 are race-

specific genes encoding typical nucleotide-binding and leucine-rich repeat (NLR) proteins 

(Kim et al., 2020; Wang et al., 2020; Desiderio et al., 2021). However, Lr34/Yr18/Sr57/Pm38 

and Lr67/Yr46/Sr55/Pm38 confer quantitative APR to various rust and powdery mildew fungi 

encoding an ABC transporter and hexose transporter, respectively. These multi-pathogen 

resistances are characterized by causing necrosis of leaf tips with accelerated senescence 

(Periyannan et al., 2017). In contrast, the stripe rust resistance genes Yr15 and Yr36 encode a 

protein with predicted kinase/pseudokinase domain and a protein with a kinase domain and a 

putative lipid-binding domain, respectively (Wang et al., 2020). In particular, Yr36 encodes a 

chloroplast-localized protein with kinase and steroidogenic acute regulatory protein-related 

transfer (START) lipid-binding domains and is thought to reduce detoxification of reactive 

oxygen species by phosphorylating a thylakoid-associated ascorbate peroxidase, leading to 

enhanced defense responses (Gou et al., 2015; Periyannan et al., 2017). 

 

4. Molecular Marker and QTL detection methods 

In recent decades, great efforts have been made to identify regions of the genome that contain 

genes associated with a quantitative trait called quantitative trait loci (QTL) (Collard et al., 

2005). As breeders before the 1990s were mostly limited to morphological markers, such as 

color, shape and size of flower, seeds or leaves, molecular markers have emerged in recent 

years as a powerful tool for analyzing genetic variation, allowing linkage of phenotypic and 

genotypic variation (Varshney et al., 2005; Grover and Sharma, 2016). Today, several marker 
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analysis methods have been developed, all of which must meet the following criteria: i) 

reliability through proximity of the markers to a locus under investigation; ii) polymorphisms 

to distinguish between different genotypes; iii) simple and fast technique; and iv) low need for 

genetic material to perform the analyses (Garrido-Cardenas et al., 2018). These molecular 

marker techniques can be divided into three categories depending on the method of analysis: 

non-PCR-based techniques, PCR-based techniques and sequence-based marker techniques 

(Lander and Botstein, 1989; O'Hanlon et al., 2000; Ganal et al., 2012). However, the decision 

for one or the other technique depends strongly on the size and composition of the plant 

population and the number of segregating genes in a population (Collard and Mackill, 2008; 

Garrido-Cardenas et al., 2018). 

Restriction fragment length polymorphism (RFLP) is the only marker system representing 

hybridization-based markers. This involves the use of restriction enzymes and hybridization by 

labelling a target DNA fragment to be used as a probe in Southern blot analysis (Williams, 

1989). RFLP markers are able to detect both alleles in a heterozygous sample resulting from 

either point mutation, DNA insertion, deletion or rearrangement. As RFLP are co-dominant, 

they are advantageous as a reliable marker for linkage analyses, QTL analyses and genetic 

fingerprinting. However, a large and high-quality quantity of DNA with known sequence is 

required, and labelling the probes with radioisotopes makes RFLP a time-consuming, expensive 

and dangerous technique, which is not in use anymore (Beckmann and Soller, 1983; Collard et 

al., 2005; Garrido-Cardenas et al., 2018). In contrast to this technique, the aim of using 

Randomly amplified polymorphic DNA (RAPD) markers is to obtain fragments of different 

sizes resulting from the random amplification of DNA sequences by PCR reaction (Williams et 

al., 1990). Thus, knowledge of the sequence is not necessary and less amount of DNA is 

sufficient. Disadvantages are that most of the markers are dominant and the bad reproducibility 

(Collard et al., 2005). Amplified fragment length polymorphism (AFLP) combines both the 

RFLP and RAPD techniques. It selects restriction fragments generated from a total digest of 

genomic DNA by PCR amplification. Again, no prior knowledge of the sequence is required 

and fingerprints can be made from any DNA regardless of its origin or complexity, resulting in 

high reproducibility. The disadvantage is that a large amount of DNA is required and the 

complex methodology makes the technique time-consuming and laborious (Vos et al., 1995). 

Simple sequence repeats (SSR) or microsatellites are short tandem repeats of DNA sequences 

of 1-10 base pairs that occur in both coding and non-coding regions of all eukaryotic and 

prokaryotic genomes (Vieira et al., 2016). These sequences are amplified using flanking 

primers in a PCR reaction, and the length of the products is subsequently determined by high-
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resolution gel or capillary electrophoresis. The use of SSR markers is a simple, robust and 

reliable technique, and their codominant inheritance provides complete genetic information. 

The main drawback is the cost-, time- and labor-intensive development of new primers (Collard 

et al., 2005). Single nucleotide polymorphism (SNP) markers take advantage of detecting 

polymorphisms between individuals based on point mutations in single nucleotide positions. In 

other words, SNPs are a DNA sequence variation that occurs when a single nucleotide (A, T, 

G or C) differs between individuals of one species. Depending on the type of mutation, SNPs 

can be divided into three categories: (i) transversions with changes in nucleotides C/G, A/T, 

C/A and T/G; (ii) transitions involving changes in C/T or G/A; and (iii) indels resulting from 

insertion or deletion of a single nucleotide (Garrido-Cardenas et al., 2018). Due to their bi-

allelic and codominant properties, they are extremely useful for a variety of analyses, as they 

can evaluate a large number of loci and efficiently distinguish between homozygous and 

heterozygous alleles. In contrast to multiallelic markers, the analysis of bi-allelic SNP markers 

can be completely automated. (Khlestkina and Salina, 2006; Garrido-Cardenas et al., 2018). 

Since the end of the 20th century, the introduction of microarrays (SNP arrays) has enabled the 

analysis of thousands of SNPs simultaneously in a single reaction (Kerr et al., 2000). In these 

arrays, thousands of genomic sequences are bound to a solid surface and hybridized with a 

corresponding biological sample, which has previously been fluorescently labelled. Each 

fluorescent signal is then detected individually, resulting in a hybridization map (Heller, 2002). 

Today, several genotyping SNP arrays are available for wheat, such as the 9K and 90K iSelect, 

as well as the 820K Axiom® array, developed for hexaploid wheat and its secondary and 

tertiary gene pool (Cavanagh et al., 2013; Wang et al., 2014; Winfield et al., 2016). These arrays 

were used to create genetic consensus maps that mapped e.g. 40,267 SNP markers from 81,587 

SNPs based on eight biparental populations, providing an essential resource for diversity studies 

and wheat breeding in general (Wang et al., 2014; Wen et al., 2017).  

One of the main applications of molecular markers is the construction of linkage maps for 

different plant species, reflecting the position and relative genetic distance between markers 

along the chromosomes and used to identify single genes controlling simple traits and QTL. 

The process of constructing linkage maps for QTL analyses is known as QTL mapping, in 

which molecular markers do not represent the target genes themselves, but act as a kind of 

landmark for the chromosomal region of interest (Collard et al., 2005). The principle of QTL 

mapping is based on the linkage of molecular markers and genes of interest during sexual 

reproduction, which allows analysis in the progeny (Paterson, 1996). Another prerequisite for 

QTL mapping is the generation of a segregating (mapping) population, which are mainly bi-
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parental populations such as F2, backcrosses (BC), doubled haploids (DH), recombinant inbred 

lines (RILS) or near-isogenic lines (NIL). For each such segregating population used for QTL 

mapping, an individual linkage map is generated based on genotypic data, and phenotypic data 

are generated for the trait of interest (Xu et al., 2017). The principle of the QTL analysis is 

based on the detection of an association between the phenotype and the genotype of the markers 

used. Based on the presence or absence of a particular marker locus, the corresponding mapping 

population is divided into different genotypic groups to determine whether significant 

differences exist between these groups with respect to the phenotypic data of the measured trait 

(Tanksley, 1993; Young, 1996; Collard et al., 2005). There are four mainly-used QTL mapping 

methods described: i) Single-marker analysis, ii) simple interval mapping, iii) composite 

interval mapping and iv) multiple interval mapping (Lander and Botstein, 1989; Tanksley, 

1993; Zeng, 1993; Kao et al., 1999). Single-marker analysis is the simplest method using 

statistical procedures such as t-test, analysis of variance (ANOVA) and linear regression. The 

advantage is that no complete linkage map is required and the method can be performed with 

simple statistical software programs. However, the main disadvantage is the lower detection 

power and the underestimation of QTL effects (Tanksley, 1993). Simple interval mapping 

(SIM) is based on the maximum likelihood parameter estimation, uses linkage maps and 

simultaneously analyses the intervals between adjacent pairs of linked markers along 

chromosomes (Lander and Botstein, 1989). Thus, it is considered statistically more powerful 

and provides improved estimates of QTL effects compared to single marker analysis. The main 

drawback of this method is the increased computation time and the requirement for specifically 

designed software (Broman, 2001). Composite interval mapping (CIM) combines interval 

mapping with linear regression and includes additional marker loci as covariates. These markers 

serve as proxies for other QTL to increase the resolution of interval mapping by taking into 

account linked QTL and reducing residual variation (Zeng, 1993; Broman, 2001). However, 

the selection of the covariates is considered critical. Once the markers have been selected as 

covariates, CIM transforms the multidimensional QTL scan into a one-dimensional scan. 

Uncertainty in the selection of relevant marker covariates can then lead to an overly optimistic 

estimate of the accuracy of QTL localization (Broman and Sen, 2009). Multiple interval 

mapping (MIM) is the extension of standard interval mapping to a multiple QTL model. MIM 

allows the location of QTL to infer positions between markers, takes into account missing 

genotype data and can account for interactions between QTL. Besides the advantages of QTL 

mapping in which fewer markers are required and rare alleles can be identified, the major 

limitation is that only the diversity of segregating alleles between parents used to construct the 
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mapping population can be tested. In addition, the construction of a mapping population is time-

consuming, and the use of bi-parental populations leads to a low number of recombination and 

thus to a lower mapping resolution (Mitchell-Olds, 2010; Alqudah et al., 2020). 

In recent years, these limitations have been partly overcome by genome-wide association 

studies (GWAS), which rely on linkage disequilibrium (LD) structure throughout the genome 

of genetically diverse populations to calculate the association between markers and phenotypes 

of interest (Zhu et al., 2008). Thus GWAS offers three advantages compared to traditional 

linkage analyses: i) reduced time, ii) greater allele number and iii) increased mapping resolution 

(Yu and Buckler, 2006). However, the power of GWAS to detect associations strongly depends 

on the phenotypic variation, population size, allele frequency and the population structure 

(Alqudah et al., 2020). For example, outliers should be removed from the raw phenotypic data, 

as they lead to deviating from the normal distribution and thus limit the GWAS. Furthermore, 

only traits with medium and high broad-sense heritability should be considered. The population 

size is of great importance as it influences not only detection power, but also the possibility of 

detecting rare alleles and LD-decay, which is particularly important for mapping resolution. In 

general, a range between 100 to 500 individuals is considered suitable for performing GWAS. 

In natural populations used for GWAS, the relatedness between some individuals is closer than 

between other individuals. These specific differences in relatedness are the most limiting factor, 

can lead to non-functional, spurious associations and must therefore be taken into account by 

calculating population structure and kinship (Pritchard et al., 2000; Yu et al., 2006; Alqudah et 

al., 2020). 

Regardless of the detection method used, molecular markers linked to agronomical 

important genes or associated with a trait of interest, respectively, can be used as a molecular 

tool for marker-assisted selection (MAS). MAS uses the presence or absence of a marker to 

replace or support phenotypic selection in a way that is more efficient, effective, reliable and 

cost-effective compared to conventional plant breeding (Collard et al., 2005). Furthermore, 

fully annotated and ordered genome sequences have promoted the development of systematic 

and time-efficient approaches to the selection and understanding of important traits, and 

facilitated the selection of candidate genes based on the predicted functions of the genes and 

gene ontologies (Borevitz and Chory, 2004; Appels et al., 2018). Thus, the recently published 

reference sequence Chinese Spring v1.0 is of great importance for wheat improvement through 

more reliable and accurate mapping of QTL (Appels et al., 2018). Another important milestone 

for the more precise identification of possible candidate genes is the international development 

of the pan-genome in wheat. A pan-genome describes a collection of all DNA sequences that 
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occur not only in one variety, but in one species. This improves the identification of genes 

and/or phenotypically consequential variants (Sherman and Salzberg, 2020). 

 

5. Multiparental populations 

Thanks to new molecular techniques such as next generation sequencing (NGS), resulting in 

sequencing several thousand molecules of genetic material simultaneously, as well as the 

publication of the complete reference genome of wheat, marker information and its availability 

are no longer the limiting factor, but rather the phenotypic variation required to perform QTL 

analyses (Hall, 2007; Gibson, 2012; He et al., 2014; Appels et al., 2018). However, with the 

development of multiparental approaches such as nested association mapping (NAM) and 

multiparent advanced generation intercross (MAGIC) populations, attempts have been made in 

recent years to overcome this limitation while combining the advantages of QTL mapping and 

GWAS populations (Cavanagh et al., 2008; Yu et al., 2008; Huang et al., 2015). NAM bases 

on a multiparental crossing design in which F1 plants arise from a series of bi-parental crosses 

between a common parental line and n other highly divergent founder lines. To produce the 

nested population, the F1 progeny are subsequently backcrossed to the common parental line 

and then selfed several times, producing n RIL families (Maurer et al., 2015; Kidane et al., 

2019). Thus, NAM offers the advantages of lower sensitivity to genetic heterogeneity and 

higher performance and efficiency in using the genome sequence or high marker density while 

maintaining high allelic richness due to different founders (Yu et al., 2008). The first NAM 

design has been applied in maize to dissect the genetic basis of complex quantitative traits (Yu 

et al., 2008). Nowadays, NAM populations are also used in other crops such as barley (Hordeum 

vulgare), rice, sorghum (Sorghum bicolor), wheat, and soybean (Glycine max L.) (Maurer et 

al., 2015; Bouchet et al., 2017; Fragoso et al., 2017; Jordan et al., 2018; Xavier et al., 2018). 

MAGIC populations were first exploited in mice for animals and in Arabidopsis thaliana for 

plants and typically derived from repeated intercrosses of four, eight or 16 parents in a balanced 

funnel scheme (The Complex Trait Consortium, 2004; Kover et al., 2009; Huang et al., 2015). 

Today, several MAGIC populations have been developed for different economical important 

crops, such as wheat, rice, maize, tomato (Solanum lycopersicum), faba bean (Vicia faba L.), 

barley, strawberry (Fragaria × ananassa), sorghum, and mustard (Brassica juncea) (Huang et 

al., 2012; Bandillo et al., 2013; Dell’Acqua et al., 2015; Pascual et al., 2015; Sallam and 

Martsch, 2015; Sannemann et al., 2015; Wada et al., 2017; Ongom and Ejeta, 2018; Yan et al., 

2020). In general, the construction of a MAGIC population involves four steps: 1) selection of 

founder lines based on contrasting phenotypic and genotypic traits, 2) mixing of the selected 
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founders by intercrossing according to a funnel scheme, 3) random and sequential advanced 

intercrosses to produce recombinants in the population and 4) development of homozygous 

inbred lines through several steps of selfing. Compared to bi-parental populations, MAGIC 

populations capture increased genetic recombination and genetic variation, resulting in an 

increased power and resolution in QTL mapping (Samantara et al., 2021). 

In wheat, there are a total of six MAGIC populations, of which the Bavarian MAGIC Wheat 

and WM-800 population were produced in Germany and are mainly based on German elite 

varieties (Huang et al., 2012; Mackay et al., 2014; Gardner et al., 2016; Milner et al., 2016; 

Sannemann et al., 2018; Stadlmeier et al., 2018). The Bavarian MAGIC Wheat population 

(BMWpop) comprises 394 diverse F6:8 RILs, which are based on a simplified intercrossing 

design of the German and Danish winter wheat lines ‘Event’, ‘Format’, ‘BAYP4535’, 

‘Potenzial’, ‘Ambition’, ‘Bussard’, ‘Firl3565’, and ‘Julius’ (Figure I.5-1). 

 

Figure I.5-1 | Crossing scheme of the eight-founder BMWpop. (A) ‘Event’, (B) ‘Format’, 

(C) ‘BAYP4535’, (D) ‘Potenzial’, (E) ‘Ambition’, (F) ‘Bussard’, (G) ‘Firl3565’, (H) ‘Julius’ 

(Stadlmeier et al., 2018). 

Four two-way crosses (AB, CD, EF and GH) were performed to produce the F1 progeny, 

which were further mated in 32 four-way crosses. Out of these, sixteen independently selected 

plants were subsequently crossed to obtain eight F1 populations that involved four reciprocal 

cross combinations (ABCDEFGH and EFGHABCD). The four eight-way crosses were further 
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hybridized with the four reciprocal eight-way crosses to obtain 16 eight-way intercross 

combinations (ABCDEFGH/EFGHABCD). Next, the F1 seeds were selfed to the F6 generation 

via single seed descent followed by two generations of bulk propagation in the field (Stadlmeier 

et al., 2018). This makes BMWpop a valuable tool to conduct genetic studies for a wide range 

of economically important traits and uncover potential interactions related to breeding new 

wheat varieties. 

 

6. Aim 

The rust fungi stem rust (Puccinia graminis f. sp. tritici Ericks and Henn), stripe rust (Puccinia 

striiformis Westend.) and leaf rust (Puccinia triticina Eriks.) occur worldwide, pose a major 

obstacle to wheat production and thus threaten global food security. Known resistance genes to 

stem rust, stripe rust and leaf rust are present and described in many modern wheat varieties. 

However, according to the gene-by-gene hypothesis, these are restricted to certain races within 

the rust population and mainly show qualitative resistance. The emergence of new races of stem 

rust, stripe rust and leaf rust that possess virulence against common resistance genes has led to 

the breakdown of qualitative resistances and thus to an increased demand for more durable 

quantitative resistances. In science and industry, the search for new sources of durable 

resistance and the breeding of new resistant varieties is an ongoing process that has recently 

been forced by developments and advances in molecular markers and genotyping techniques. 

Furthermore, the development of multiparental-based approaches, such as MAGIC populations, 

combines the advantages of linkage analysis and association mapping to investigate genomic 

regions of interest with increased allelic variation and genetic resolution. 

With a focus on leaf rust and stripe rust and based on the Bavarian MAGIC Wheat 

population, the following objectives were pursued in the present thesis: (i) genetic analyses of 

resistance to stripe rust and leaf rust in the context of multi-year field trials and macroscopic 

investigations in greenhouse experiments, (ii) identification of qualitative and quantitative 

resistances by QTL mapping, (iii) comparison of identified QTL to already known resistance 

loci in order to identify putative new resistances, and (iv) alignment of chromosomal QTL 

regions to the reference genome of wheat in order to find candidate genes in the background of 

resistances. Markers linked to these loci may be converted into KASP markers suitable for MAS 

in wheat breeding programs. In addition, the data set can also be used for genomic selection in 

the breeding material. 
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Abstract
Key message  The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was pheno-
typed for Puccinia triticina resistance in multi-years’ field trials at three locations and in a controlled environment 
seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions.
Abstract  The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential 
to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way 
to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the 
demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like 
multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resist-
ances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phe-
notypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed 
to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 
recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials 
at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping 
revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these 
regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can 
be easily introduced in breeding programs.

Introduction

With approximately 219 million hectares worldwide and 
30% of global major cereal crop production in 2017, wheat 
(Triticum spp.) belongs to the most important crops for 
human nutrition (Braun et al. 2010; FAO 2019). Leaf rust, 
caused by the obligate biotrophic fungus Puccinia triticina 
Eriks., is nowadays the most destructive and prevalent rust 
pathogen in wheat (Kolmer 2005). Due to its adaptation to 
a wide range of different environments, leaf rust occurs in 
many wheat-producing areas of the temperate zone, caus-
ing yield losses up to 70% (Aktar-Uz-Zaman et al. 2017; 
Herrera-Foessel et al. 2006; Marasas et al. 2004). Although 
the application of fungicides helps to avoid yield losses, 
the deployment of resistant cultivars is the most effective, 
economic, and environmentally friendly approach to man-
age this disease. For wheat leaf rust, both qualitative and 
quantitative resistances are known. Seedling/qualitative 
resistance is monogenically inherited and only effective 
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against a subset of races. Thus, it mainly follows the gene-
for-gene concept, in which resistance depends on a specific 
genetic interaction between host-resistance genes and aviru-
lence genes of the pathogen (Flor 1956, 1971). These major 
genes confer vertical resistance and tend to be expressed 
from seedling to adult plant stages. Genotypes carrying such 
resistances show a hypersensitive response or programmed 
cell death (Bolton et al. 2008). In contrast, quantitative 
resistance is based on minor genes encoding various resist-
ance responses, which are not restricted to specific pathogen 
races. Quantitative resistances are effective at later growth 
stages and are therefore referred to as field resistance or 
adult plant resistance (APR, Krattinger and Keller 2016). 
To date, more than 80 resistance genes to leaf rust (Lr genes) 
have been identified in bread wheat, durum wheat, and dip-
loid wheat species (Gill et al. 2019). While most of them 
show race-specific resistance at the seedling stage, genes like 
Lr12, Lr13, Lr22a/b, Lr34, Lr35, Lr37, Lr46, Lr67, Lr68, 
and Lr77 confer resistance at the adult plant stage (Dakouri 
et al. 2013; McIntosh et al. 2013, 2017).

The identification of such resistance genes as well as of 
quantitative trait loci (QTL) has been mainly based on bipa-
rental crosses (Huang et al. 2012). The weakness of such 
populations is the narrow genetic variation and the fact that 
genetic recombination is limited, which leads to a lower map 
resolution (Bandillo et al. 2013). Nowadays, high-throughput 
marker systems are available and genetic marker information 
is no longer limiting (Bayer et al. 2017; Chen et al. 2014; Cui 
et al. 2017; He et al. 2014; Mammadov et al. 2012), but the 
genetic variation present in respective populations (Asimit 
and Zeggini 2010; Gibson 2012). Thus, complex experimen-
tal populations such as nested association mapping (NAM, 
Yu et al. 2008) and multiparent advanced generation inter-
cross (MAGIC) populations have been developed to detect 
QTL with a better reliability (Cavanagh et al. 2008). First 
multiparental intermated populations were exploited in 
mice (Churchill et al. 2004) and Drosophila melanogaster 
(King et al. 2012). In plants, MAGIC populations were 
first developed and described in studies regarding Arabi-
dopsis thaliana (Cavanagh et al. 2008; Kover et al. 2009). 
These experimental designs involved multiple intercrosses 
of inbred founders for several generations to combine the 
genetic variation of all parental lines in the resulting progeny 
(Huang et al. 2012). MAGIC populations have been widely 
used to conduct QTL mapping in several crop species, 
such as rice (Bandillo et al. 2013), maize (Dell’Acqua et al. 
2015), tomato (Pascual et al. 2015), faba bean (Sallam and 
Martsch 2015), sorghum (Ongom and Ejeta 2018), barley 
(Sannemann et al. 2015), and wheat (Gardner et al. 2016; 
Huang et al. 2012; Mackay et al. 2014; Milner et al. 2016; 
Sannemann et al. 2018). There are two clear advantages of 
using multiparental populations. First, based on the choice 
of founders, more traits of interest from each founder can 

be analyzed. Second, due to the higher genetic variability 
and recombination rate, QTL detection can be performed 
with increased precision and resolution (Bandillo et al. 2013; 
Cavanagh et al. 2008).

The Bavarian MAGIC Wheat population (BMWpop) is 
one of only two German MAGIC wheat populations, which 
are mainly based on adapted German elite cultivars. It cap-
tures 71.7% of the allelic diversity available in the German 
wheat breeding gene pool (Stadlmeier et al. 2018). These 
populations provide the potential to carry out genetic stud-
ies of important economical traits, such as plant height and 
resistance to powdery mildew (Sannemann et  al. 2018; 
Stadlmeier et al. 2018). In addition, Stadlmeier et al. (2019) 
detected six, seven and nine QTL for resistance to impor-
tant fungal pathogens, i.e., Blumeria graminis, Zymoseptoria 
tritici, and Pyrenophora tritici-repentis, respectively. The 
objectives of the current study were to (1) phenotype the 
BMW population for quantitative and qualitative leaf rust 
resistance in multi-environment field trials and an exten-
sive seedling test and (2) genetically map QTL in order 
to develop closely linked molecular markers suitable for 
marker-assisted selection (MAS).

Material and methods

Plant material

The study is based on the multiparental BMW population 
comprising elite wheat cultivars (Stadlmeier et al. 2018). It 
consists of 394 diverse F6:8 recombinant inbred lines (RILs), 
which were derived from a simplified eight founder MAGIC 
mating design with additional eight-way intercrosses. The 
founders ‘Event’, ‘BAYB4535′, ‘Potenzial’, ‘Bussard’, 
‘Firl3565’, ‘Format’, ‘Julius’ and ‘Ambition’ originated from 
German and Danish wheat breeders and were selected on 
the criteria of (1) variation for agronomic, quality and dis-
ease resistance traits, (2) originating from different breeding 
programs, and (3) being important cultivars in the respective 
baking quality group. More detailed information about the 
development and the genetics of the BMW population is 
provided by Stadlmeier et al. (2018).

Phenotypic assessment of leaf rust resistance 
in field

Five field trials were performed, each using a randomized 
incomplete block design with two replications at three loca-
tions in Germany: Quedlinburg (QLB, 51° 46′ 21.45″ N 
11° 8′ 34.8″ E) in Saxony-Anhalt, Soellingen (SOE, 52° 5′ 
45.506″ N 10° 55′ 41.711″ E) and Lenglern (LEN, 51° 35′ 
47.53″ N 9° 51′ 39.118″ E) in Lower Saxony. The 394 RILs, 
the eight founders, and the susceptible standard ‘Schamane’ 
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were evaluated in double rows under natural disease epi-
demics in SOE (2017 and 2018) and LEN (2018). In QLB 
entries were sown 2016/2017 and 2017/2018 in double rows 
of 1 m length with 30 plants per row and spacing of 0.2 m 
between rows. Additional infection stripes of susceptible 
varieties were arranged in regular intervals of every third 
plot. Growth regulator Medax® Top (BASF Agricultural 
Solutions, Germany, 1 L ha−1) was applied twice (BBCH31, 
BBCH37) to reduce plant height and lodging. No selective 
fungicides were used. To ensure uniform infestation, the 
infection stripes were artificially inoculated at the begin-
ning of flowering using the highly virulent Puccinia trit-
icina isolate 77WxR (Tab. S1). For this, a spore suspension 
of 10 mg uredospores in 100 ml Isopar M (ExxonMobil 
Chemical Company, USA) was applied in a total amount of 
10 ml suspension per m2, using a hand-held spinning disc 
sprayer (Bromyard, U.K.). Phenotyping of the trials was car-
ried out by scoring the average percentage of infected leaf 
area of the second and third youngest leaves in the two rows 
at two (SOE17, SOE18, LEN18), three (QLB18), and four 
(QLB17) subsequent dates according to Moll et al. (2010), 
starting at the time of clearly visible disease symptoms on 
the infection stripe or the susceptible standard, respectively. 
A time period of 1 to 2 weeks was chosen between the 
scorings.

Phenotypic assessment of leaf rust resistance 
in seedlings

All RILs, the parental lines, and the susceptible standard 
‘Borenos’ were evaluated for resistance at seedling stage 
in a detached leaf assay (Douchkov et  al. 2012). Seed-
lings were grown in 77-cell trays with mixed potting soil 
(Gebr. Patzer GmbH Co KG, Sinntal, Germany) using a 
randomized complete block design with five replications. 
Water agar (7 g L−1) containing 45 mg L−1 benzimidazole 
(Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), 
used to delay senescence of leaf segments, was dispensed 
in 4 × 10 mL aliquots into nonsterile four-well polystyrene 
plates (8 × 12 x 1 cm, Greiner Bio-One GmbH, Fricken-
hausen, Germany). Ten days after sowing, when the sec-
ond leaf was developed, 2.5-cm sections were cut from the 
middle of the primary leaves and placed into the plates, 
keeping the randomization. White polytetrafluoroethylene 
frames (eMachineShop, Mahwah, USA) were used to fix the 
leaves. Inoculation was performed by an infection tower with 
three seconds swirling duration and three minutes of set-
tling time (Melching 1967). Due to space restrictions, plates 
were divided into two infection groups per replication. Each 
group was inoculated with leaf rust isolate 77WxR using 
a mixture of 30 mg uredospores and white clay (1:1 w/w, 
VWR International GmbH, Darmstadt, Germany) after 
application of a 0.01% Tween 20 (Sigma-Aldrich) solution 

to support adhesion. For 24 h, the plates were covered by 
wet cotton paper to support spore germination in the dark 
and at high humidity. Inoculated leaf segments were subse-
quently incubated in greenhouse at night/day temperatures 
of 16 °C/18 °C with additional lighting (16 h/8 h day/night) 
for ten days. Quantitative scoring was conducted using a 
high-throughput phenotyping platform (Douchkov et al. 
2012). Digital images with a resolution of 20 Megapixel 
and four wavelengths between 315 and 750 nm (UV, blue, 
green, and red) were taken automatically from every plate. 
Subsequently, the leaf area was calculated and compared to 
the area of uredospore pustules for analyzing the percentage 
of infected leaf area (Pi) using the software HawkSpex® 
(Fraunhofer IFF, Magdeburg, Germany). Additionally, all 
entries were visually evaluated for infection type (IT) using 
a 0−4 scale (McIntosh et al. 1995). To generate metric data, 
original IT data were converted to a 0 – 10 linear disease 
scale, modified according to Zhang et al. (2014) as follows: 
0, 0;, − 1,1, + 1, − 2, 2, 2 + , − 3, 3, + 3 were coded as 0, 0.5, 
1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. IT − 4 and 4 were 
coded as 10 and in case of special annotation code “C” for 
chlorosis, 0.5 was added to the linear scale.

Data analysis

The multiple scorings of the percentage of infected leaf area 
in field trials were taken to calculate the area under the dis-
ease progress curve (AUDPC) and the average ordinate (AO, 
Moll et al. 1996) for each RIL using the following equations:

where yi is the disease level at the ith observation, ti is the 
time at the ith observation, N is the total number of obser-
vations and T is the total observation time from the first to 
the last scoring date in days. Out of percentage of infected 
leaf area, AUDPC, and AO, only AO values were used for 
subsequent statistical analysis. Different year–location com-
binations of all trials were referred to as “environment”.

Analyses of all phenotypic data were carried out using 
proc mixed of the software package SAS 9.4 (SAS Institute 
Inc., NY, USA). In order to apply a mixed linear model, 
a log10 data transformation of the AO, IT, and Pi values 
was performed. The factors genotype, environment, and the 
genotype × environment interaction of field data were set as 
fix effects, while the design effects of replication and block 
were set as random. To obtain variance components for cal-
culation of the broad sense heritability, all model parameters 
were set as random. Heritability was estimated on a progeny 
mean basis according to Hallauer et al. (2010).

For analyzing IT and Pi scores from seedling test the 
model:

AUDPC =

Ni−1
∑

i=1

(yi + yi+1)

2
∗
(

ti+1 − ti
)

and AO =
AUDPC

T
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was used, where yijk is the trait observation, µ is the overall 
mean, gi is the fixed effect of the genotype, rj is the fixed 
effect of the replication, lk is the random effect of the infec-
tion group nested in the replication and eijk is the random 
residual error. Variance components were obtained by fitting 
the genotype as random to calculate the repeatability as the 
ratio of the genotypic variance and the sum of the genotypic 
and the residual error variance divided by the number of rep-
lications. For each trait, least-square means (lsmeans) were 
calculated and used for subsequent QTL analysis.

QTL mapping

The BMW population and the parental lines were genotyped 
using the 15 K + 5 K Infinium® iSelect® array containing 
17,267 single nucleotide polymorphism (SNP) markers 
(TraitGenetics, Germany). The preparation of genotypic 
data and the construction of the linkage map used for QTL 
mapping were described in detail by Stadlmeier et al. (2018). 
QTL mapping was performed using the R (× 32 3.2.5) pack-
age mpMap V2.0.2 (Huang and George 2011; R Core Team 
2017). To conduct simple interval mapping (SIM), founder 
probabilities were calculated using the function ‘mpprob’. 
These give information about the probability of each locus 
that the observed genotype was inherited from one of the 
eight founders and are based on multipoint haplotype prob-
abilities (Broman et al. 2003). To determine the parental 
origin of an allele, the threshold was set to 0.7. For SIM, 
a genome-wide significant threshold of α < 0.05 was cal-
culated for each trait. The thresholds were obtained from 
permutation of phenotypic data with 1000 simulation runs 
(Churchill and Doerge 1994). QTL detection was performed 
using the function ‘mpIM’, implemented in the mpMap 
package (Huang and George 2011). Phenotypic variance 
explained by individual QTL and additive QTL effects were 
estimated separately using the categorical allele informa-
tion of the founders. QTL support intervals were determined 
using the function ‘supportinterval’ of the mpMap package. 
A QTL support interval was defined as the map interval sur-
rounding a QTL peak at a − log10(p) drop of one unit (Huang 
and George 2011).

In order to compare QTL identified in the present study 
with previously described QTL, overlapping QTL based on 
the support interval was merged together. Databases of the 
Triticeae Toolbox (https​://triti​ceaet​oolbo​x.org/wheat​/genot​
yping​/marke​r_selec​tion.php), GrainGenes (https​://wheat​
.pw.usda.gov/GG3/), as well as CerealsDB (https​://www.
cerea​lsdb.uk.net/cerea​lgeno​mics/Cerea​lsDB/axiom​_downl​
oad.php) were used to obtain marker information. Physical 
positions were received by nucleotide BLAST (BLAST-
n) of the marker sequences against the reference sequence 

yijk = � + gi + rj + lk
(

rj
)

+ eijk
RefSeq v1.0 using the database of 10 + Genome Project 
(https​://webbl​ast.ipk-gater​slebe​n.de/wheat​_ten_genom​es/). 
BLAST hits were considered significant if the percent iden-
tity was greater than 95%, and only the best hit was taken if 
multiple BLAST hits were detected (Gao et al. 2016). The 
start and end positions of peak marker sequences preceded 
by the chromosome name were taken to the URGI database 
to obtain functional gene annotations available from IWGSC 
(https​://wheat​-urgi.versa​illes​.inra.fr/Seq-Repos​itory​/Annot​
ation​s). Sequences of the closest related species, Triticum 
urartu (A-genome donor) and Aegilops tauschii (D-genome 
donor), were considered for the detection of orthologous 
genes.

Results

Phenotypic assessment

Leaf rust severity of field trials clearly varied between years 
and location, displaying in QLB  2017, SOE  2018, and 
LEN 2018 the lowest infestations of leaf rust (Fig. S1). Pear-
son correlation coefficient between the different environ-
ments ranged from 0.26 to 0.74 (P < 0.001). Nevertheless, 
after mixed model adjustment, a broad sense heritability 
(h2) of 0.83 was estimated (Table 1). The mean phenotypic 
distribution of AOs was slightly right-skewed and indicated 
a broad variability within the population (Fig. 1a), ranging 
between 0.2 and 34.8% (mean 13.5%) leaf area diseased. 
However, single maximal AO scores up to 63.8% were 
observed within the population (Table 1). The average per-
formance of parental lines was evenly distributed, resulting 
in a nonsignificant difference (p < 0.05) from the progeny 
mean. Founders ‘BAYP4535′ and ‘Bussard’ were identified 
as the most resistant (4.5%) and most susceptible (22.9%) 
parental line to leaf rust, respectively. The analysis of vari-
ance showed significant differences concerning genotype, 
environment, and the interaction between genotype and envi-
ronment (Table 2).

Scoring qualitative resistance in seedling test was per-
formed twice—using an image analysis software to obtain 
the Pi and visually by assessing the IT (1–10). For both 
traits, phenotypic data revealed a large variability (Fig. 1b 
and c). The average IT ranged from 0.1 to 9.2 (mean 3.8). 
For Pi, the disease severity was on average between 0 and 
28.3% (mean 8.5%). Phenotypic distributions of IT and Pi 
were slightly bimodal, with 131 and 185 RILs showing IT 
values smaller 2 (few areas with restricted sporulation) and 
Pi values below 5%, respectively. Maximal scores of 10 
(IT) and 57.7% (Pi) were observed (Table 1). The popu-
lation means of IT and Pi were not significantly different 
from the means of parental lines. According to the results 
of field trials, ‘BAYP4535’ and ‘Ambition’ were the most 

https://triticeaetoolbox.org/wheat/genotyping/marker_selection.php
https://triticeaetoolbox.org/wheat/genotyping/marker_selection.php
https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://webblast.ipk-gatersleben.de/wheat_ten_genomes/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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resistant and susceptible founders, respectively, in the 
seedling inoculation test. Pearson correlation displayed a 
high correlation coefficient between both traits (r = 0.91; 
Fig S2 C). The qualitative traits IT and Pi and the quantita-
tive scoring of AO showed weak correlations of r = 0.27 
and r = 0.24 (Fig S2 A and B). For both traits, a significant 
genotype effect was observed, while for Pi also a signifi-
cance of replication was found. Repeatability of both traits 
was high with rep(IT) = 0.93 and rep(Pi) = 0.91 (Table 1). 
From the parental lines, only ‘BAYB4535 showed all stage 
resistance, whereas cv. ‘Event’, Format’, ‘Julius’, ‘Potenzial’ 
only showed resistance at seedling and ‘Firl3565’ at adult 
plant stage, respectively. In total, 68 genotypes in the popu-
lation expressed all stage resistance, 92 genotypes showed 

resistance only at seedling stage and 44 genotypes were 
observed showing APR.

QTL mapping

Overall, SIM revealed 19 QTL located on chromosomes 1A, 
4A, 4D, 5A, 6B, 7A, and 7D. Hence, five QTL were detected 
based on field data and seven QTL for seedling resistance, 
each for IT and Pi values (Table 3, Tab. S2).

The phenotypic variance (R2) explained by the individual 
QTL detected in field trials ranged between 8 and 50%, with 
support intervals (SI) from 4 to 33 cM. The two strong-
est QTL, explaining 31% and 50% of R2, were located on 
chromosome 4A with peak markers at 133 cM and 172 cM. 

Fig. 1   Averaged phenotypic distribution of resistance to Puccinia triticina for field trials (A) and seedling test (B, C). Performance of each 
parental line is shown as vertical dashed line

Table 1   Descriptive statistics 
and heritability / repeatability 
for field trials (AO) and 
seedling test (IT and Pi)

a  Average ordinate (AO), infection type (IT), infected leaf area (Pi)
b  Minimum
c  Maximum
d  Standard error
e  Coefficient of variance
f  Broad-sense heritability (h2)
g  Repeatability (rep)

Traita Mean founders Mean population Minb Maxc SE±
d CVe h2/rep

AO [%] 13.70 13.50 0 63.75 0.17 0.83 0.83f

IT [1–10] 3.32 3.84 0 10.00 0.06 0.96 0.93g

Pi [%] 8.06 8.47 0 57.73 0.18 0.72 0.91g
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The largest allelic effects of these QTL were contributed by 
‘BAYP4535’, reducing disease severity by 3.1% and 4.0%, 
respectively. Another QTL detected on chromosome 7D 
(at 18 cM) explained 28% of the phenotypic variance with 
‘BAYP4535′ as the most resistant founder, reducing infected 
leaf area by 3.2%. Remaining QTL on chromosomes 6B (at 
22 cM) and 7A (at 368 cM) accounted for 8% and 7% of leaf 
rust variation. For these QTL, cv. ‘Format’ contributed the 
largest allelic effect reducing infected leaf area by 1.3% and 
1.4%, respectively.

For IT, phenotypic variance explained by the seven QTL 
ranged from 1 to 28% with SIs ranging between 2 and 53 cM 
(Table 3). QTL on chromosomes 4A and 7D accounted 
for the highest R2 i.e. 28% and 17% with peak markers at 
170 cM and 22 cM. The largest allelic effect of both QTL 
was contributed by ‘BAYP4535′, reducing disease severity 
by 2.6 and 1.8 scores, respectively. On chromosome 1A, one 
QTL was detected at 28 cM, explaining 11% of the pheno-
typic variance. A maximum effect of -1.0 score was detected 
for cv. ‘Potenzial’. Furthermore, two QTL were detected on 
chromosome 5A with 8% (at 112 cM) and 7% (at 139 cM) 

Table 2   Analysis of variance of log10-transformed data for leaf rust 
severity evaluated in field trials (AO) and seedling test (IT and Pi)

Significance level at P < 0.05
a  Average ordinate (AO), infection type (IT), infected leaf area (Pi)
b  Degrees of freedom

Traita/factor DFb F value P value

AO
Genotype 402 18.98  < 0.0001
Environment 4 16.05 0.0049
Genotype × environment 1605 2.39  < 0.0001
IT
Genotype 402 17.69  < 0.0001
Replication 4 0.94 0.5196
Pi
Genotype 402 16.63  < 0.0001
Replication 4 6.66 0.0426

Table 3   QTL for resistance to Puccinia triticina in the BMW population detected in field trials and seedling tests

a  Chromosomal position of QTL
b  Position of peak marker based on Stadlmeier et al. (2018)
c  Support interval
d  Proportion of phenotypic variance explained by a single QTL
f  Number of single environments in which QTL was detected
g  Additive effects ( ±) of the founders Event (A), BAYP4535 (B), Ambition (C), Firl3565 (D), Format (E), Potenzial (F), Bussard (G) and Julius 
(H) relative to the population mean. Shown values are back-transformed to the original trait scale
Founder effects were reported as not available (na) if none of the RILs reached the probability threshold of 0.7

Trait Chr.a Pos.[cM]b SI [cM]c P value R2d No. Env.f Eff (A)g Eff (B)g Eff (C)g Eff (D)g Eff (E)g Eff (F)g Eff G)g Eff (H)g

AO 4A 133 125–151 2.00E-22 0.31 4 − 0.17 − 3.12  + 0.93 − 1.21  + 0.90  + 0.88  + 0.86  + 0,83
4A 172 170–174 2.52E-58 0.50 4  + 0.94 − 3.96 − 0.13 − 0.44  + 2.04 − 0.18  + 1.94 − 0,23
6B 22 10–30 1.49E-05 0.08 1  + 0.16 − 1.23  + 1.70  + 1.25 − 1.32 − 0.89 − 1.16  + 1.47
7A 368 346–379 1.52E-05 0.07 1 − 0.16 − 1.26  + 1.10 − 1.39 − 1.42  + 1.22  + 0.94  + 0.89
7D 18 15–19 3.68E-32 0.28 4 na − 3.16 na na  + 1.44  + 0.94  + 0.18  + 0.58

IT 1A 28 0–34 1.55E-06 0.11 na  + 0.76 − 0.27 na − 0.75 − 0.98 − 0.67  + 1.88
4A 170 168–174 8.79E-23 0.28 0.00 − 2.57 − 1.32  + 1.59  + 1.15 − 1.10  + 1.58  + 1.12
4D 69 59–86 2.57E-05 0.01 na  + 0.01 na na  + 1.16 na na -1.98
5A 112 102–152 1.56E-05 0.08 − 0.99  + 0.21  + 0.63  + 0.06 − 2.06  + 0.67  + 0.87  + 0.60
5A 139 99–152 3.31E-05 0.05 − 0.26  + 0.78  + 1.29 − 1.29 − 1.44  + 1.12 − 1.29  + 1.07
6B 249 248–250 2.18E-55 0.01 − 0.5 na na na na na na  + 0.5
7D 22 15–30 6.14E-12 0.17 na − 1.84 na na  + 0.61  + 0.61  + 0.02  + 0.61

Pi 1A 26 0–34 8.11E-06 0.12 na  + 0.60  + 1.64 na − 1.35 − 1.59 − 1.27  + 1.98
4A 171 168–174 1.11E-16 0.21  + 0.33 − 4.14 − 1.33  + 1.67  + 1.47 − 0.88  + 1.47  + 1.42
4D 72 59–86 4.27E-06 0.09 na − 0.06 na na  + 1.6 na na − 1.54
6B 249 247–250 1.76E-91  < .01 − 0.52 na na na na na na  + 0.53
7A 65 54–87 7.02E-06 0.05 na  + 1.05  + 2.15 − 0.95 − 0.13 − 0.73 − 1.41  + 0.03
7A 99 94–111 6.12E-06 0.08 − 0.97  + 1.38  + 0.81  + 0.08  + 0.21  + 0.23 − 2.38  + 0.65
7D 22 15–30 5.64E-09 0.14 na − 2.78 na na  + 1.11  + 1.11 − 0.27  + 0.85
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of the explained variance. SIs of these QTL ranged from 102 
to 152 cM and from 99 to 152 cM, respectively. For both, 
‘Format’ contributed the highest allelic effect (− 2.1 and 
− 1.4 scores). QTL located on chromosomes 4D (69 cM) 
and 6B (249 cM) explained only 1% of the phenotypic vari-
ance, each. By analyzing each environment separately, the 
two QTL on chromosomes 4A were also detected in LEN18, 
QLB17, QLB18 and SOE18, as well as LEN18, QLB18, 
SOE17 and SOE18, respectively. The QTL on chromosome 
6B and 7D was detected in one (SOE18) and four (LEN18, 
QLB17, QLB18, SOE18) environments.

SIM of Pi values also revealed seven individual QTL with 
R2 ranging from less than 1% to 21%. The support inter-
vals varied between 2 and 34 cM. QTL regions on chromo-
somes 1A, 4A, 4D, 6B and 7D overlapped with QTL regions 
detected for IT (Table 3). Nevertheless, smaller R2 of 21% 
(4A), 14% (7D) and < 1% (6B), as well as larger R2 of 12% 
(1A) and 9% (4D) were calculated for individual QTL. The 
maximal reducing effect of the QTL on chromosomes 1A, 
4A, 4D, and 6B ranged between 0.5% and 4.1%, while for 
7D, only the founder ‘BAYP4535′ showed a reducing allelic 
effect of 2.8%. Additionally, two QTL were detected on 
chromosome 7A at 65 cM and 99 cM, accounting for 5% and 
8% of the phenotypic variance. SI ranged from 54 to 87 cM 
and from 94 to 111 cM, respectively. Founders ‘Firl3565′ 
and ‘Bussard’ contributed the largest allelic effect, reducing 
the disease severity by 0.9% and 2.4%.

Based on support intervals of 19 QTL, detected in total 
for the different traits, 11 main QTL were identified (Fig. S3, 
Table 4). In silico annotations of peak markers revealed 
seven genes with known functions partly involved in resist-
ance. Hence, marker CAP8_c2448_355 on chromosome 1A 
referred to a DnaJ domain. A Protein kinase domain and a 
NB-ARC domain were identified for peak markers of QLr.
jki-4A.1 and QLr.jki-4A.2 on chromosome 4A. Marker AX-
95126745 on chromosome 4D and RAC875_c31670_389 on 
chromosome 5A referred to a cation/calcium exchanger 4 
and ankyrin repeats, respectively. For peak markers of QLr.
jki-7A.1 and QLr.jki-7A.1 on chromosome 7A, a pyridoxal-
phosphate dependent enzyme and a sugar efflux transporter 
were annotated, respectively.

Discussion

Continuous evolution of leaf rust results in the emergence 
of new pathotypes virulent against single major resistance 
genes commonly present in cultivars. Many of these race 
specific Lr genes have been broken down in the past (Kolmer 
2005; Serfling et al. 2013). Detection of effective leaf rust 
resistances is of essential importance to avoid rust epidem-
ics. Therefore, experimental populations such as MAGIC 
populations provide powerful tools to discover, characterize, 

and deploy QTL for complex traits including resistances 
(Cavanagh et al. 2008). Out of 80 designated Lr genes, it 
was reported, that only Lr1, Lr3, Lr10, Lr13, Lr14a, Lr17b, 
Lr20, Lr24, Lr26, Lr34, and Lr37 were used individually or 
in combination in European varieties (Goyeau et al. 2006; 
Goyeau and Lannou 2011; Serfling et al. 2013). The BMW 
population emerged from crosses of eight elite parental 
lines originating from Germany and Denmark. Neverthe-
less, Stadlmeier et al. (2018) were able to show the potential 
of the BMW population to detect new QTL for resistance to 
powdery mildew, septoria tritici blotch, as well as tan spot, 
and in general the usefulness for further gene mapping stud-
ies (Stadlmeier et al. 2018, 2019).

In this study, phenotyping of 394 RILs from the BMW 
population resulted in a broad variability of resistance to 
Puccinia triticina. Despite an average correlation coefficient 
of 0.54 between the disease severities in five environments, 
a broad sense heritability of 0.83 was calculated which 
is in the range of previously published studies (Bemister 
et al. 2019; Gao et al. 2016; Zhang et al. 2017, 2019). This 
may hint to a quantitative inheritance due to QTL involved 
in slow rusting loci, which are characterized by relatively 
high heritabilities (Kolmer 1996). Phenotypic distribution 
for field trials was slightly right-skewed, while almost a bi-
modal distribution was observed for both IT and Pi values 
in seedling test. This may give hint that mostly horizon-
tal (quantitative) or vertical (qualitative) resistances were 
scored, respectively. Calculation of correlation between 
field data and seedling test results showed r values of 0.27 
(IT) and 0.24 (Pi), which are in accordance with correla-
tions reported by Gao et al. (2016). Different virulence/
avirulence patterns of leaf rust races may be an explanation 
for these low correlations (Gao et al. 2016). While a single 
highly aggressive race, with many virulence genes was used 
for artificial inoculation for seedling tests and field trials in 
QLB, field trials in SOE and LEN were conducted under 
natural infection pressure.

Overall, simple interval mapping detected 19 QTL, 
which corresponded to 11 distinct chromosomal regions 
(Table 4, Fig. S3). QTLs identified using the LSmeans 
over all environments were also identified by analyzing 
the single environments separately. Out of the 11 distinct 
chromosomal regions three QTL were detected at the adult 
plant stage. Six QTL conferred seedling resistance and two 
were active in both growth stages, indicating the presence 
of effective all-stage leaf rust resistance genes. In total, 
the regions were located on wheat chromosomes 1A, 4A, 
4D, 5A, 6B, 7A and 7D. Peak markers of QTL could be 
partially annotated to genes, known to be involved in quan-
titative resistances to leaf rust, e.g. sugar efflux transport-
ers, DnaJ domain belonging to heat shock protein family 
(Bekh-Ochir et al. 2013), a protein kinase domain, a NB-
ARC domain and a cation/calcium exchanger. Such genes 
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show an increased expression during defense reactions in 
wheat-leaf rust (Sharma et al. 2018) and wheat-stripe rust 
interactions (Wang et al. 2020) and as response to envi-
ronmental stresses.

In this study, QLr.jki-1A.1 on chromosome 1A is based 
on the evaluation of IT and Pi in seedling tests and is physi-
cally located in a region between 1.3 Mbp and 12.5 Mbp 
(Table 5). Pinto da Silva et al. (2018) reviewed 11 QTL 

Table 5   Comparison of physical positions of the QTL identified in the present study (bold) with those reported previously. Physical positions 
based on comparison of marker sequence data to the wheat reference genome (RefSeq1.0)

a  Recombinant inbred line population
b  marker information was not available or position could not be identified in the RefSeq v1.0
c  Doubled haploid population

QTL Marker interval Physical position [Mbp] Genetic material References

QLr.jki-1A.1 IAAV3919–Tdurum_con-
tig42479_3800

1.3–12.5 BMW population (RILa) Lr10?

QLr.ccsu-1A.1 Xbarc263–Xcdo426 11.8–nab Opata85 × W-7984 (RIL) Kumar et al. (2013)
QLr.cau-1AS gpw2246 7.7 Luke × AQ24788-83 (RIL) Du et al. (2015)
MTA IWA3182–IWA7191 7.1–13.7 Spring wheat collection Elbasyoni et al. (2017)
Lr10 12.6 Feuillet et al. (2003)
QLr.jki-4A.1 AX-95253498–TA006348.0950 618.6–649.9 BMW population (RIL)
MTA IWA2816 641.5 Hexaploid Wheat Landraces Kertho et al. (2015)
QLr.jki-4A.2 Tdurum_contig75819_1220–

Excalibur_c33542_113
712.9–na BMW Population (RIL)

4A_t2 BobWhite_c47168_289 726.2 Elite spring wheat lines Gao et al. (2016)
QLr.hebau-4AL BobWhite_c15697_675–Excali-

bur_c2827_580
598.7–726.4 Zhou8425B × Chinese Spring 

(RIL)
Zhang et al. (2017)

QLr.jki-4D.1 AX-94793903–AX-94838884 130.9–479.7 BMW population (RIL) Novel?
QLr.fcu-4DL Xgdm61–Xcfa2173 na TA4152-60 × ND495 (DHc) Chu et al. (2009)
QLr.hebau-4DL AX-110476142–AX-111092299 381.2–428.6 Pingyuan50 × Mingxian169 Zhang et al. (2019)
QLr.sfrs-4DL Xglk302b–Xpsr1101a na Forno × Oberkulmer (RIL) Messmer et al. (2000)
Lr67 Xgwm165–Xgwm192 412.7 RL6077 × Avocet (RIL) Herrera-Foessel et al. (2011)
QLr.jki-5A.1 AX-94732470–wsnp_Ex_

c49211_53875600
444.6–na BMW population Novel?

QLr.cim-5AC wPt-3187–wPt-7769 Na–464.7 Avocet-YrA × Kenya Kongoni 
(RIL)

Calvo-Salazar et al. (2015)

QLr.jki-6B.1 AX-94739546–TA003005.0339 19.3–34.3 BMW population Novel?
QLr.caas-6BS.1 Xcfd13–Xwmc487 34.2–36.5 Bainong64 × Jingshuang16 (DH) Ren et al. (2012)
QLr.wpt-6BS.2 wPt2175 nab Winter wheat accessions Gerard et al. (2018)
QLr.jki-6B.2 wsnp_Ex_c54772_57528275–

Excalibur_c29748_954
710.1–719.7 BMW population Lr3?

QLr.cim-6BL 277,143–1,234,305 714.3–na Bairds × Atred#1 (RIL) Lan et al. (2017)
6B_4 BobWhite_c43263_180–

BS00011795_51
718.9–720.6 Elite spring wheat lines Gao et al. (2016)

QLr.jki-7A.1 BobWhite_rep_c58252_112–
wsnp_BF473884A_Ta_1_3

54.9–71.1 BMW population Novel

QLr.jki-7A.2 RAC875_c75528_355–
BS00024786_51

79.6–na BMW population Novel?

QLr.stars-7AS1 wsnp_Ex_c41150_48040078 78.4 Winter wheat accessions Li et al. (2016)
MTA IWA7192 81.1 Spring wheat collection Elbasyoni et al. (2017)
Lr47 115 Helguera et al. (2000)
QLr.jki-7A.3 Tdurum_contig29240_206–

wsnp_CAP11_c298_250917
702.4–724.1 BMW Population Lr20?

MTA IWA4175 717.1 Spring wheat accessions Turner et al. 2017
QLr.jki-7D.1 TA016282.1180–AX-94883448 na–29.4 BMW Population Novel
Lr34 47.4–51 Krattinger et al. (2009)
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described in hexaploid wheat located on chromosome 1A. 
Based on available physical marker positions, QLr.ccsu-
1A.1 and QLr.cau-1AS identified in two different studies, 
were found to correspond to the region of QLr.jki-1A.1 (Du 
et al. 2015; Kumar et al. 2013). While QLr.ccsu-1A.1 is only 
1.7 Mbp and 0.2 Mbp apart from our peak markers, the dis-
tance of the linked marker to QLr.cau-1AS is 2.4 Mbp and 
3.9 Mbp, respectively (Tables 4, 5). Additionally, Elbasy-
oni et al. (2017) detected several marker-trait associations 
(MTAs) covering a region from 7.2 Mbp to 13.7 Mbp, which 
includes the region of QLr.jki-1A.1. Furthermore, the resist-
ance gene Lr10, which is completely sequenced, is mapped 
at 12.6 Mbp, i.e. 2.5 Mbp and 1 Mbp apart from our peak 
marker (Table 4; Feuillet et al. 1997, 2003). Thus, and due to 
the fact that Lr10, Lr1, Lr3a and Lr20 are the most prevalent 
genes used worldwide, Lr10 is a promising candidate for the 
QTL aforementioned (Dakouri et al. 2013).

On chromosome 4A, two regions harboring leaf rust 
resistance were identified in this study (QLr.jki-4A.1, QLr.
jki-4A.2, Table 4). To date, there are two Lr genes, Lr28 
originating from Ae. speltoides and Lr30 from T. aestivum, 
and two QTL reported on chromosome 4A (Dyck and Ker-
ber 1971; McIntosh et al. 2013; Pinto da Silva et al. 2018). 
Kertho et al. (2015) found one MTA at 641.5 Mbp, using 
the leaf rust race MCDL. Therefore, the marker is physically 
located within the region of QLr.jki-4A.1, but 6.8 Mbp apart 
from our peak marker. Due to the specific virulence pattern 
of the MCDL race, which is avirulent to Lr30, the MCDL-
MTA might identify this Lr gene. However, to our knowl-
edge, no mapping information for Lr30 is available to allow 
a more precise comparison between Lr30, the MCDL-MTA 
and QLr.jki-4A.1 detected in this study. Another significant 
MTA (4A_t2, Gao et al. 2016) was detected in the region 
of QLr.jki-4A.2, only 309 bp apart from the peak marker 
for this QTL (Table 4). 4A_t2 was mapped approximately 
at the position of the marker linked to Lr28 (Bipinraj et al. 
2011). This may be a hint that QLr.jki-4A.2 also corresponds 
to Lr28, but further analyses have to be conducted. Further-
more, Zhang et al. (2017) reported a minor QTL for APR 
in Chinese Spring (QLr.hebau-4AL), which is physically 
located between 598.7 Mbp and 726.4 Mbp. This region 
includes both QTL on chromosome 4A detected in this study 
(Table 5).

In total, nine QTLs were detected on chromosome 4D so 
far, including the resistance gene Lr67/Yr46/Sr55 (Herrera-
Foessel et al. 2011; McIntosh et al. 2013; Pinto da Silva et al. 
2018). In this study, QLr.jki-4D.1 was detected for both IT 
and Pi in the seedling tests and mapped at the distal end of 
chromosome 4DL. Physically, it is located in a large interval 
from 130.9 Mbp to 479.7 Mbp (Table 5) with peak mark-
ers at 455.8 Mbp and 465 Mbp, respectively (Table 4). Chu 
et al. (2009) located a QTL (QLr.fcu-4DL) in douple-hap-
loid population ‘TA4152-60 × ND495′, mapped at a similar 

position as Lr67, around 412.7 Mbp (Herrera-Foessel et al. 
2011; Zhang et al. 2019). Another QTL on chromosome 
4DL (QLr.hebau-4D) was located between 381.2 Mbp and 
428.6 Mbp (Zhang et al. 2019). Considering the physical 
distances to our peak marker, it appears that QLr.jki-4D.1 is 
independent from QLr.fcu-4DL, QLr.hebau-4D, and Lr67 
(Table 5). A higher similarity may exist with another QTL 
(QLr.sfrs-4DL) detected by Messmer et al. (2000). This QTL 
resulted in an APR and was mapped in the Swiss RIL popu-
lation ‘Forno × Oberkulmer’ also at the distal end of chromo-
some 4DL. Since QLr.jki-4D.1 has only been detected at the 
seedling stage, QLr.sfrs-4DL also seems to be located in a 
different region and with the available data, it is not possible 
to further determine whether it corresponds to our regions.

On chromosome 5A one QTL (QLr.jki-5A.1) was detected 
in seedling tests for IT (Table 4). To our knowledge, on chro-
mosome 5A there is no designated Lr gene and only two 
QTL (QLr.cim-5AC, QLr.cimmyt-5A) are known (Calvo-
Salazar et al. 2015; Rosewarne et al. 2012). QLr.cimmyt-5A 
was mapped on the long arm of chromosome 5A, closely 
linked to Vrn-A1 at 587.0 Mbp (Rosewarne et al. 2012). QLr.
cim-5AC was located in the centromeric region of chromo-
some 5A and flanked by markers wPt-7769 and wPt-3187, 
of which the latter is located at 464.7 Mbp (Table 5). When 
comparing the physical positions of these three QTL, it is 
more likely that QLr.jki-5A.1 corresponds to QLr.cim-5AC 
or is a novel QTL.

On chromosome 6B, two QTL were identified (QLr.jki-
6B.1 and QLr.jki-6B.2) in the present study (Table 4). QLr.
jki-6B.1 was mapped on the short arm of chromosome 6B, 
at 19.3—34.3 Mbp (Table 5). Up to now, 5 QTL have been 
described on chromosome 6BS, but only QLr.caas-6BS.1, 
derived from the wheat cultivar Bainong 64, was physically 
localized in the region between 32 and 34 Mbp (Gerard et al. 
2018; Kankwatsa et al. 2017; Ren et al. 2012). Gerard et al. 
(2018) stated that another QTL (QLr.wpt-6BS.2) is geneti-
cally located in the same region as QLr.caas 6BS.1, whereas 
QLr.wpt-6BS.2 was mapped close to the centromere, a 
region clearly distinct from QLr.jki-6B.1 (Table 5). There-
fore, further studies are required to confirm whether our 
QTL is located closely to these known QTL. The second 
QTL QLr.jki-6B.2 was mapped at the distal end of chromo-
some 6BL, within a small interval encompassing 247 cM to 
250 cM (710 – 720 Mbp). Out of six QTL already detected 
on chromosome 6BL, two QTL (QLr.cim-6BL and 6B_4) 
were also located at the distal end of chromosome 6BL (Chu 
et al. 2009; Gao et al. 2016; Lan et al. 2017; Rosewarne et al. 
2012; William et al. 2006). The DArTseq markers 1234305 
and 2277143 flank QLr.cim-6BL detected by Lan et al. 
(2017). Marker 2277143 was converted into a diagnostic 
KASP marker, which is located at 714.3 Mbp, i.e. 1.6 Mbp 
distal from our peak marker of QLr.jki-6B.2 (Tables 4 , 5 ). 
The results of Lan et al. (2017) indicated uniqueness of QLr.
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cim-6BL, showing no relationship to other QTL on chromo-
some 6BL, as well as to Lr3a co-segregating with Xmwg798 
(Sacco et al. 1998). However, the second known QTL 6B_4 
was physically mapped between 718.9 Mbp and 720.6 Mbp, 
and appeared to be in high linkage disequilibrium with Lr3 
(Gao et al. 2016). Regarding the similar physical regions, 
QLr.jki-6B.2 may correspond to QLr.cim-6BL and 6B_4, but 
further research is needed to come to a closer understanding 
of the relationship between these QTL and Lr3.

On chromosome 7A, the major resistance genes Lr20, 
forming a disease-resistance gene cluster with Pm1, and 
Lr47, which was transferred from chromosome 7S of 
Ae. speltoides have been reported (Dubcovsky et al. 1998; 
Neu et  al. 2002). Additionally, three QTL on chromo-
some 7AL and several MTAs were detected (Pinto da Silva 
et al. 2018). In the present study, three QTL (QLr.jki-7A.1 
to QLr.jki-7A.3) were identified on chromosome 7A. The 
first two QTL were detected for Pi in the seedling test and 
their support intervals were separated from each other by a 
map distance of 7.1 cM on chromosome 7AS. QLr.jki-7A.1 
was physically mapped between 54.9 Mbp and 71.1 Mbp 
(Table 5). To our knowledge, no QTL have been reported 
in this region. Hence, QLr.jki-7A.1 might be a novel QTL. 
The second QTL (QLr.jki-7A.2) on chromosome 7AS was 
located between 93 and 111 cM. The peak marker was 
mapped at 84.8 Mbp (Table 4). To date, there are two MTAs 
from different studies detected in similar regions as QLr.
jki-7A.2 (Elbasyoni et al. 2017; Li et al. 2016). The first 
MTA (QLr.stars-7AS1), associated with marker IWA3760 
was mapped at 78.4 Mbp, hence, it appears that QLr.stars-
7AS1 does not correspond to QLr.jki-7A.2. The second 
MTA (IWA7192) was detected by Elbasyoni et al. (2017) at 
81.1 Mbp, and might be correspondent to the resistance gene 
Lr47. When comparing the physical position of a diagnos-
tic marker for Lr47 (around 115 Mbp), both IWA7192, and 
QLr.jki-7A.2 seem to be different from this Lr gene (Hel-
guera et al. 2000). Thus, QLr.jki-7A.2 is likely a novel locus 
involved in resistance to P. triticina.

The third QTL (QLr.jki-7A.3) determined in field trials 
during this study was mapped between 346 and 379 cM 
on chromosome 7AL. This translates to a large physi-
cal distance between 702.4 Mbp and 724.1 Mbp, with 
the peak marker at 712.3 Mbp (Tables 4, 5). Out of five 
known regions on chromosome 7AL involved in leaf rust 
resistance (Kankwatsa et al. 2017; Li et al. 2016; Lu et al. 
2017; Tsilo et al. 2014), only the MTA detected by Turner 
et al. (2017) may be localized within the region of QLr.
jki-7A.3. The associated marker IWA4175 was mapped 
at 717.1  Mbp, which is 4.8  Mbp apart from our peak 
marker. However, after Bonferroni correction, the marker 
was no longer significant (P < 0.1). The Lr gene Lr20 is 

genetically located in the distal part of chromosome 7AL 
(Neu et al. 2002), which may correspond to QLr.jki-7A.3. 
Based on the available data, investigations with diagnostic 
markers need to be conducted to gain further insights.

Finally, one QTL was detected on chromosome 7DS, 
based on phenotypic data from field trials and seedling 
test (Table 4). To date, out of 21 QTL reported on chro-
mosome 7D, 19 correspond to the resistance gene Lr34, 
which confers race non-specific, partial, and slow rust-
ing resistance to leaf rust (Lagudah et  al. 2009; Pinto 
da Silva et al. 2018). Lr34 has been physically located 
at 47.4 Mbp (Krattinger et al. 2009). Thus, QLr.jki-7D.1 
identified in our study does not correspond to the resist-
ance gene Lr34 and the 19 QTL reported (Table 5). The 
remaining two QTL QLr.cim-7DS and QLr.hebau-7DS on 
chromosome 7DS, which were detected in the two RIL 
populations ‘Avocet-YrA × Francolin#1′ and ‘Shanghai3/
Catbird × Naxos’, respectively, were located in different 
chromosome region (Lan et al. 2014; Zhou et al. 2014). 
Hence, QLr.jki-7D.1 seems to be a novel locus.

The objective of this study was to identify QTL for 
resistance to leaf rust, using the Bavarian MAGIC Wheat 
population. We identified 19 leaf rust resistance QTL that 
were confined to 11 distinct chromosomal regions. To date, 
more than 249 leaf rust resistance QTL and 200 MTAs 
were reported covering all 21 chromosomes of hexaploid 
wheat (Pinto da Silva et al. 2018). These regions were 
identified in several mapping populations using different 
genotyping methods. Because of the absence of informa-
tion on physical positions for many of these QTL, it is 
difficult to unequivocally determine the identity of newly 
described QTL. In the present study, six putatively new 
QTL were identified on chromosomes 4D, 5A, 6B, 7A and 
7D. SNP markers linked to these regions may be converted 
into KASP markers suitable for MAS in wheat breeding 
programs (Neelam et al. 2013; Rasheed et al. 2016). This 
will enable stacking of the detected resistance loci to breed 
new varieties with an improved resistance to leaf rust.
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Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one

of the most important diseases of wheat worldwide, causing high yield and quality

losses. Growing resistant cultivars is the most efficient way to control stripe rust, both

economically and ecologically. Known resistance genes are already present in numerous

cultivars worldwide. However, their effectiveness is limited to certain races within a

rust population and the emergence of stripe rust races being virulent against common

resistance genes forces the demand for new sources of resistance. Multiparent advanced

generation intercross (MAGIC) populations have proven to be a powerful tool to carry

out genetic studies on economically important traits. In this study, interval mapping

was performed to map quantitative trait loci (QTL) for stripe rust resistance in the

Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs).

Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials

at three locations across three years and for seedling resistance in a growth chamber.

In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal

regions were detected, of which two may represent putatively new QTL located on wheat

chromosomes 3D and 7D.

Keywords: stripe rust, Yr genes, MAGIC population, simple interval mapping, QTL

INTRODUCTION

The biotrophic fungus Puccinia striiformis Westend. f. sp. tritici Eriks. is the causal agent of
stripe rust and is one of the most important foliar diseases of wheat, which accounted for 25%
of global cereal crop production in 2018 (Food and Agriculture Organization of the United
Nations (FAO), 2020). Particularly prevalent in the temperate and maritime wheat growing
regions, stripe rust can cause yield losses up to 70% mainly by reducing photosynthesis and
taking assimilates from the host plant (Chen, 2005; Jagger et al., 2011; Rosewarne et al., 2012).
In agricultural production systems, the application of fungicides, as well as the growing of
resistant cultivars are currently used to control stripe rust, of which the latter is the most
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economically safe and environmentally friendly approach to
avoid yield losses. To date, about 82 stripe rust resistance genes
(Yr genes) have been unequivocally identified, but a lot more
temporary designated genes and quantitative trait loci (QTL)
have been reported and mapped across the whole wheat genome
(McIntosh et al., 2019; Yang et al., 2019a). Of these, Yr5, Yr7,
Yr10, Yr15, Yr18, Yr36, Yr46, and YrSP have already been cloned
and characterized as intracellular nucleotide-binding leucine-
rich-repeat receptors (Yr5, Yr7, and YrSP), putative kinase-
pseudokinase protein (Yr15), transporters (Yr18 and Yr46), or
wheat kinase start 1 (Yr36) (Fu et al., 2009; Krattinger et al.,
2009; Liu et al., 2014; Moore et al., 2015; Klymiuk et al., 2018;
Marchal et al., 2018). In addition, resistance genes, such as
YrAS2388R derived from Aegilops tauschii and YrU1 derived
from Triticum urartu have recently been cloned, encoding a
nucleotide oligomerization domain-like receptor (NLR) and
a coiled-coil-NBS-leucine-rich repeat protein with N-terminal
ankyrin-repeat and C-terminal WRKY domains, respectively
(Zhang et al., 2019; Wang et al., 2020).

Mainly two different types of resistance are described based
on criteria, such as inheritance, specificity, plant growth stage,
and temperature (Chen, 2013; Liu et al., 2018). The so-called all-
stage resistance is detected at the seedling stage and is therefore
also referred to as seedling resistance. Nevertheless, seedling
resistance is in general expressed throughout all growth stages,
leading to resistance in the seedling stage as well as in adult plants.
It is monogenetically inherited, qualitatively expressed, and the
underlying major genes are only effective against a subset of races
(Chen, 2005; Feng et al., 2018). Thus, it mainly follows the gene-
for-gene concept, in which the resistance depends on a specific
genetic interaction between the host-resistance genes and the
avirulence genes of the pathogen (Flor, 1971). Effectors produced
by the pathogen are recognized by nucleotide binding site-
leucine rich repeat (NB-LRR) proteins, predominately encoded
by corresponding plant resistance genes (Flor, 1956; Juliana
et al., 2018). This results in an effector-triggered immunity
that usually initiates a hypersensitive response leading to a
localized programmed cell death preventing further colonization,
e.g., in the case of Yr5, Yr7, Yr10, and YrSP (Heath, 2000;
Jones and Dangl, 2006). The use of race-specific resistance
in plants is common in wheat, leading to a breakdown of
major resistance genes according to the so-called boom-and-bust
cycles (McDonald and Linde, 2002a). To date, most race-specific
resistance genes against stripe rust, e.g., Yr10, Yr24, and Yr27
have been overcome by virulent races leading to the demand
for more durable resistance (Kolmer, 2005; Hovmøller et al.,
2017; Wang and Chen, 2017). Adult plant resistance (APR),
effective at later growth stages, is quantitatively inherited and
based on minor genes encoding various resistance responses,
which are not restricted to specific pathogen races (Krattinger
and Keller, 2016). Thus, APR does not follow the gene-for-gene
interaction and is generally considered as durable. A special type
of APR to stripe rust is the high-temperature adult plant (HTAP)
resistance that is additionally affected by temperature (Chen,
2013). However, the mechanisms of such durable resistances
include an increased latency period, reduced uredinia size,
reduced infection frequency, and reduced spore production to

inhibit fungal infestation (Rosewarne et al., 2013). To improve
the general stripe rust resistance in commercial cultivars, more
genes and useful genetic markers are needed for increasing the
level and durability of resistance by combining HTAP resistance
with seedling resistance.

In the context of detecting new resistance genes and QTL,
molecular markers are no longer the limiting factors due to
the availability of high-throughput marker systems (Mammadov
et al., 2012; Chen et al., 2014; He et al., 2014; Bayer et al., 2017;
Cui et al., 2017), but rather the genetic variation present in
the respective experimental populations that merge genomes of
diverse founders via designed crosses (Asimit and Zeggini, 2010;
Gibson, 2012). Such experimental populations are traditionally
derived from crosses of two contrasting parents. Thus, only two
alleles at a given locus segregate in such bi-parental populations
(Han et al., 2020). In contrast, the strategy of multiparent
advanced generation intercross (MAGIC) populations is to
interrogate multiple alleles to achieve increased recombination
and mapping resolution (Cavanagh et al., 2008). Prior to
developing such MAGIC populations, founder lines have to
be selected based on genetic and/or phenotypic diversity. The
development itself includes three steps: (1) Selected parents are
crossed with each other to form a broad genetic base. (2) To
increase recombination events, advanced intercrosses among
the mixed lines are performed. (3) Recombinant inbred lines
(RILs) are created via single seed descent or by doubled haploid
production (Huang et al., 2015). This procedure results in a
high number of recombination events enhancing the mapping
resolution (Han et al., 2020).

The Bavarian MAGIC wheat population (BMWpop) is one
of the only two German MAGIC wheat populations, which are
mainly based on adapted German elite cultivars (Sannemann
et al., 2018; Stadlmeier et al., 2018). It captures 71.7% of the
allelic diversity present in the German wheat breeding gene
pool (Stadlmeier et al., 2018). Thus, the BMWpop provides a
greater potential to detect new QTL for resistance to important
fungal pathogens as has been shown for powdery mildew,
septoria tritici blotch, tan spot, leaf rust, and additional important
agronomic traits (Stadlmeier et al., 2018, 2019; Rollar et al., 2021).
The objectives of the present study were to (i) phenotype the
BMWpop for quantitative and qualitative stripe rust resistance in
multi-environment field trials and an extensive seedling test and
to (ii) map QTL for these resistances to develop closely linked
molecular markers suitable for marker-assisted selection (MAS).

MATERIALS AND METHODS

Plant Material
The study is based on the multiparental BMWpop comprising
eight elite wheat cultivars (Stadlmeier et al., 2018). It consists
of 394 diverse F6 : 8 RILs, which were derived from a
simplified eight founder MAGIC mating design with additional
eight-way intercrosses. The founders “Event”, “Bayp4535”,
“Potenzial”, “Bussard”, “Firl3565”, “Format”, “Julius”, and
“Ambition” originated from German and Danish wheat breeding
programs and were selected on the criteria described by
Stadlmeier et al. (2018). Detailed information about the
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development and the genetics of the BMWpop were described
by Stadlmeier et al. (2018).

Phenotypic Assessment of Stripe Rust
Resistance in Field Trials
Six field trials were performed, each using a randomized
incomplete block design with two replications at three locations
in Germany: Quedlinburg (QLB, 51◦ 46′ 21.45 ′′N 11◦ 8′ 34.8′′

E) in Saxony-Anhalt, Soellingen (SOE, 52◦ 5′ 45.506 ′′N 10◦

55′ 41.711′′ E) and Lenglern (LEN, 51◦ 35′ 47.53 ′′N 9◦ 51′

39.118′′ E) in Lower Saxony. The 394 RILs, the eight founders,
and the susceptible standard “Akteur” were evaluated for stripe
rust resistance in double rows under natural disease epidemics in
SOE (2017 and 2018) and LEN (2018 and 2019). In QLB, entries
were sown in 2016/2017 and 2017/2018 in double rows of 1m
length with 30 plants per row and a spacing of 0.2m between
rows. Additional spreader plots with susceptible varieties were
sown in regular intervals of every third plot. To ensure uniform
infestation, the spreader plots were artificially inoculated in
spring at the time of stem elongation (BBCH30, Meier, 2018)
using the highly virulent Puccinia striiformis isolate Warrior +
YR27 (Supplementary Table 1). For this, a spore suspension of
10mg uredospores in 100ml Isopar M (ExxonMobil Chemical
Company, USA) was applied in a total amount of 10ml
suspension per m², using a hand-held spinning disc sprayer
(Bromyard, UK). Phenotyping of the trials was carried out by
scoring the average percentage of infected leaf area of the second
and third youngest leaf in two rows at two to four subsequent
dates according to Moll et al. (2010). Scoring started at the time
of clearly visible disease symptoms on spreader plots and/or
when leaves of the susceptible standard “Akteur” showed ≥10%
diseased leaf area and was conducted in 1-to-2-week intervals.

Phenotypic Assessment of Stripe Rust
Resistance in Seedlings
All RILs, the parental lines, and the susceptible standard “Akteur”
were evaluated for resistance at the seedling stage in a detached
leaf assay (Lück et al., 2020). Seedlings were grown in 77-cell
propagation trays with mixed potting soil (Gebr. Patzer GmbH
Co KG, Germany) using a randomized complete block design
with four replications. Water agar (7 g L−1) containing 45mg
L−1 benzimidazole (Sigma-Aldrich Chemie GmbH, Germany)
for delaying senescence of leaf segments, was dispensed in 4
x 10mL aliquots into non-sterile 4-well polystyrene plates (8
× 12 × 1 cM, Greiner Bio-One GmbH, Germany). Ten days
after sowing, when the second leaf was fully developed, 2.5 cM
sections were cut from the middle of the primary leaves and
placed into the plates according to the initial randomization.
White polytetrafluoroethylene frames (eMachineShop, NJ, USA)
were used to fix the leaves. Inoculation was performed by an
infection tower with the swirling duration of 3 s and settling
time of 3min (Melching, 1967). Due to space restrictions, the
plates were divided into two infection groups per replication.
Each group was inoculated with stripe rust isolate Warrior +

YR27 using a mixture of 50mg uredospores and white clay (1:1
w/w, VWR International GmbH, Bruchsal, Germany) after the

application of a 0.01% Tween 20 (Sigma-Aldrich) solution to
support adhesion. For the first 24 h of incubation, the plates were
covered by wet cotton paper, and placed into a climate cabinet at
7◦C to support spore germination. Next, inoculated leaf segments
were incubated in a growth chamber at night/day temperatures
of 16◦C/18◦C with additional lighting (16 h/8 h day/night) for
15 days. Quantitative scoring was conducted using the high-
throughput phenotyping platform “Macrobot” (Lück et al., 2020).
Digital images with a resolution of 20 megapixel and four
wavelengths between 315 nm and 750 nm (UV, blue, green, and
red) were taken automatically from every plate. Subsequently, the
leaf area was calculated and compared to the area of uredospore
pustules for analyzing the percentage of infected leaf area (Pi)
using the software HawkSpex R© (Fraunhofer IFF, Germany).
Additionally, all entries were visually evaluated for infection type
(IT) using a 0–4 scale (McIntosh et al., 1995). To generate metric
data, original IT data were converted to a 0–10 linear disease
scale, modified according to Zhang et al. (2014), as below: 0, 0,
N, −1, 1, +1, −2, 2, +2, −3, 3, +3 were coded as 0, 0.5, 0.75, 1,
2, 3, 4, 5, 6, 7, 8, and 9, respectively. The values IT−4 and 4 were
coded as 10.

Data Analysis
The multiple scorings of the percentage of Pi in field trials were
taken to calculate the area under the disease progress curve
(AUDPC) and the average ordinate (AO) (Moll et al., 1996)
for each RIL according to Rollar et al. (2021). For subsequent
statistical analysis, only the AO values were used. Different
year-location combinations of all trials were referred to as
“environment”. The analyses of all phenotypic data were carried
out using proc mixed of the software package SAS 9.4 (SAS
Institute Inc., NC, USA). To apply a mixed linear model, a
log10 data transformation of the AO, IT, and Pi values was
performed. The factors, such as genotype, environment, and the
genotype × environment interaction of field data, were set as
fixed effects, while the design effects of replication and block were
set as random. To obtain variance components for calculation
of the broad-sense heritability, all model parameters were set
as random. Heritability was estimated on a progeny mean basis
using the formula according to Hallauer et al. (2010):

h2 =
VG

VE
re + VGE

e + VG

Where VG is the genotypic variance, VE is the environmental
variance, VGE is the genotype× environment variance, and r and
e are the number of replicates and environments, respectively.
For analyzing IT and Pi scores from the seedling test, the
following formula was used:

yijk = µ + gi + rj + lk(rj)+ eijk

Where yijk is the trait observation, µ is the overall mean, gi
is the fixed effect of the genotype, rj is the fixed effect of the
replication, lk is the random effect of the infection group nested
in the replication, and eijk is the random residual error. Variance
components were obtained by setting the genotype as random to
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TABLE 1 | Descriptive statistics of raw data and heritability/repeatability for field

trials (AO) and seedling test (IT and Pi).

Traita Mean

founders

Mean

population

Minb Maxc SEd CVe h2/rep

AO [%] 4.23 8.04 0 98.13 0.21 182.98 0.94f

IT [1-10] 1.28 1.72 0 10.00 0.06 129.08 0.76g

Pi [%] 0.22 0.92 0 25.00 0.07 185.74 0.58g

aAverage ordinate (AO), infection type (IT), infected leaf area (Pi). bMinimum.
cMaximum. dStandard error. eCoefficient of variance. fBroad-sense heritability (h2 ).
gRepeatability (rep).

calculate the repeatability as the ratio of the genotypic variance
and the sum of the genotypic and the residual error variance
divided by the number of replications. For each trait, least
square means (ls means) were calculated and used for subsequent
QTL analysis.

QTL Mapping
The BMWpop and the parental lines were genotyped using the
15K + 5K Infinium R© iSelect R© array (TraitGenetics, Germany)
containing 17,267 single nucleotide polymorphisms (SNPs). The
preparation of genotypic data and the construction of the
linkage map used for QTL mapping were described in detail
by Stadlmeier et al. (2018). QTL mapping was performed using
the R (x32 3.2.5) package mpMap V2.0.2 (Huang and George,
2011; R Core Team, 2017). To conduct simple interval mapping
(SIM), founder probabilities were calculated using the function
“mpprob”. To determine the parental origin of an allele, the
threshold was set to 0.7. For SIM, a genome-wide significant
threshold of α < 0.05 was calculated for each trait. The thresholds
were obtained from permutation of phenotypic data with 1,000
simulation runs (Churchill and Doerge, 1994). QTL detection
was performed using the function “mpIM”, implemented in the
mpMap package (Huang and George, 2011). Phenotypic variance
explained by individual QTL and additive QTL effects were
estimated separately using the categorical allele information of
the founders. A QTL support interval (SI) was defined as the map
interval surrounding a QTL peak at a -log10(p) drop of one unit.

To compare QTL identified in the present study with
previously described QTL, overlapping QTL were merged
based on the support interval. Databases of the Triticeae
Toolbox (https://triticeaetoolbox.org/wheat/genotyping/
marker_selection.php), GrainGenes (https://wheat.pw.usda.gov/
GG3/), as well as CerealsDB (https://www.cerealsdb.uk.net/
cerealgenomics/CerealsDB/axiom_download.php) were used to
obtain marker information. Physical positions were obtained by
nucleotide BLAST (BLAST-n) of the marker sequences against
the reference sequence RefSeq v1.0 (Appels et al., 2018) using
the database of 10+ Genome Project (https://webblast.ipk-
gatersleben.de/wheat_ten_genomes/, Deng et al., 2007). BLAST
hits were considered as significant if the percent identity was
greater than 95% and only the best hit was taken if multiple
BLAST hits were detected (Gao et al., 2016). The start and end
positions of peakmarker sequences preceded by the chromosome
name were taken to the URGI database to obtain functional

gene annotations available from IWGSC (https://wheat-urgi.
versailles.inra.fr/Seq-Repository/Annotations). Furthermore, a
fixed chromosomal region of ± 500 kb on both sides of the QTL
peak markers was examined for additional gene annotations and
the output retrieved from URGI database was listed. Sequences
of the closest related species, Triticum urartu (A-genome donor)
and Aegilops tauschii (D-genome donor), were considered for
the detection of orthologous genes.

RESULTS

Phenotypic Assessment
Stripe rust infestation of field trials was highly correlated between
the year-location combinations (Supplementary Figure 1).
Pearson’s correlation calculations between the different
environments showed only slight differences with high
correlations between r = 0.75 and r = 0.86 (p < 0.001). A
high heritability of h2 = 0.94 was calculated (Table 1). The mean
phenotypic distribution of AOs was right skewed with 266 RILs
showing an AO smaller than 5% (Figure 1A). However, the
mean distribution ranging between 0.4 and 58.1% (mean 8.0%)
diseased leaf area and single maximum AO scores up to 98.1%
were observed within the population (Figure 1A, Table 1). Six
of eight founders showed mean AOs below 5%, resulting in a
nonsignificant difference (p < 0.05) from the progeny mean.
Founders “Bayp4535” and “Event” were identified as the most
resistant (0.7%) and most susceptible (15.1%) parental lines
to stripe rust, respectively. The analysis of variance showed
significant differences concerning the genotype, environment,
and the interaction between genotype and environment
(Table 2).

For IT and Pi assessed in the seedling inoculation test,
the phenotypic data revealed a high degree of resistance
(Figures 1B,C). Phenotypic distributions of IT and Pi were
strongly right skewed, with 287 and even 388 RILs showing
IT values smaller than 2 and Pi values below 5%, respectively.
The average IT ranged from 0.1 to 7.8 (mean 1.7). For Pi,
the disease severity was on average between 0 and 11.1%
(mean 0.9%). Maximal scores of 10 (IT) and 25% (Pi) were
observed (Table 1). The population mean for IT was not
significantly different from the mean of the parental lines, while
a significant difference between the population and founder
mean for Pi was observed. For IT and Pi, respectively, the
parental lines “Potenzial” and “Bayp4535” turned out to be
the most resistant. “Firl3565” was the most susceptible founder
in the seedling inoculation test. Pearson’s correlation displayed
a high correlation coefficient between both traits (r = 0.82;
Supplementary Figure 2C). The traits IT and Pi and the scoring
of AO showed moderate correlations of r = 0.63 and r =

0.46 (Supplementary Figures 2A,B). For both traits, a significant
effect of the genotype was observed. Repeatability of IT was high
with rep(IT) = 0.76, while a moderate repeatability for Pi was
calculated (rep(Pi)= 0.58, Table 1).

QTL Mapping
Overall, SIM revealed 21 QTL located on chromosomes 1A,
1D, 2A, 2B, 2D, 3B, 3D, 6A, and 7D. Eight of these were
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FIGURE 1 | Averaged phenotypic distribution of resistance to Puccinia striiformis for field trials (A) and seedling test (B,C). Performance of the parental lines and the

susceptible standard cv. “Akteur” is shown as vertical dashed lines.

TABLE 2 | Analysis of variance of log10-transformed data for leaf rust severity

evaluated in field trials (AO) and seedling test (IT and Pi).

Traita/factor DFb F value P value

AO

Genotype 402 58.16 <0.0001

Environment 5 101.57 <0.0001

Genotype × environment 2009 1.99 <0.0001

IT

Genotype 402 4.29 <0.0001

Replication 3 1.54 0.3369

Pi

Genotype 402 2.52 <0.0001

Replication 3 1.80 0.2917

aAverage ordinate (AO), infection type (IT), infected leaf area (Pi). bDegrees of freedom.

detected based on field data averaged over six environments,
seven QTL were found for IT, and six QTL for Pi (Table 3,
Supplementary Table 2).

The phenotypic variance (R2) explained by the individual
QTL detected in field trials ranged between 1 and 29%, with SI
from 6 cM to 81 cM. The three strongest QTL, explaining 23,
20, and 29% of R2, were located on chromosomes 1A and 2B
with peak markers at 16 cM, 106 cM and 172 cM, respectively.
“Ambition”, “Potenzial”, and “Bayp4535” contributed to the
largest allelic effects of these QTL, reducing disease severity (AO)
by 2, 1.5, and 1.3%. Another QTL detected on chromosome
6A (at 259 cM) explained 16% of the phenotypic variance with

“Julius” as the most resistant founder line, reducing the Pi by
2.6%. On chromosomes 1A, 3B, and 7D, additional three QTL
were detected at positions 62, 218, and 20 cM, respectively. The
QTL accounted for 6% to 8% of stripe rust variation, while cv.
“Bussard”, “Julius”, and “Potenzial” contributed to the largest
allelic effects reducing the Pi by 1.8, 2.2, and 2.0%, respectively.
The remaining QTL on chromosome 3D (4 cM) explained 1%
of the phenotypic variance with “Firl3565” contributing to the
highest allelic effect (-1.1%). All QTL detected over the mean
of six environments were also identified by analyzing each
environment separately (Supplementary Table 2). Hence, QTL
located on chromosomes 1A, 1D, 2B, 3B, 3D, 6A, and 7D
were identified in five (1A), two (1D), four (2B), five (2B),
three (3B), four (3D), six (6A), and three (7D) environments,
respectively (Table 3). However, on chromosome 4A, a QTL with
a support interval (SI) between 159 cM and 200 cM was detected
in LEN19, QLB18, QLB19, and SOE19, which was no longer
significant when mean AO values across all environments were
used (Supplementary Table 2).

For IT, the phenotypic variance explained by the seven
QTL ranged from 1 to 16% with SIs between 5 and 34 cM
(Table 3). QTL on chromosomes 2B and 6A accounted for
the highest R2, i.e., 16% each with peak markers at 164 cM
and 260 cM, respectively. The founders “Bayp4535” and “Julius”
reduced disease severity by 0.8 and 1.7 IT scores, respectively,
contributing to the largest allelic effects. On chromosome 2D, one
QTL was detected at 162 cM, explaining 9% of the phenotypic
variance. A maximum effect of −1.1 IT scores was detected for
the allele derived from cv. “Julius”. Furthermore, two QTL were
detected on chromosome 1A explaining 11% (at 12 cM) and 6%
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TABLE 3 | QTL for resistance to Puccinia striiformis in the BMWpop detected in field trials (AO) and seedling tests (IT and Pi).

Trait Chr.a Pos.[cM]b SI [cM]c P value R2d Eff (A)e Eff (B)e Eff (C)e Eff (D)e Eff (E)e Eff (F)e Eff (G)e Eff (H)e

AO

No. Env.f

5 1A 16.37 0-34 2.47E-09 0.23 na +0.97 −1.98 na +2.02 −0.94 −0.06 na

2 1D 62.37 51-76 1.18E-05 0.06 −0.71 +0.70 +1.24 −1.76 +1.63 +0.31 −1.78 +0.38

4 2B 105.57 101-182 5.17E-13 0.20 +1.84 −1.38 na na na −1.45 +0.35 +0.60

5 2B 163.5 158-167 1.33E-18 0.29 na −1.27 na na na +0.14 +1.13 na

3 3B 218.05 212-225 2.09E-05 0.07 +0.12 −0.97 −1.20 +2.21 +1.71 +1.38 −1.11 −2.17

4 3D 13.94 5-62 1.53E-05 0.01 +1.13 −0.49 na −1.13 −0.53 na na na

6 6A 259.48 258-264 1.75E-23 0.16 −0.10 +1.80 +1.10 −1.28 +1.10 na na −2.62

3 7D 19.64 12-30 2.16E-06 0.08 na +2.31 na na −0.57 −1.95 +0.07 0.12

IT

1A 11.77 0-34 6.14E-09 0.11 na +0.53 −0.88 na +1.56 −0.70 −0.49 na

1A 210.75 197-215 0.0235 0.06 +0.45 −0.75 +1.55 +1.83 −0.73 −0.57 −1.00 −0.81

2A 0.5 0-13 0.0039 <0.01 +0.19 −0.83 +1.22 −0.98 na na +1.22 −0.83

2A 32.16 21-44 0.0377 0.01 +1.10 +0.05 −0.19 −0.10 −0.38 −0.41 +0.02 −0.05

2B 163.5 155-167 1.33E-18 0.16 na −0.82 na na na 0.25 0.56 na

2D 161.57 144-166 0.0426 0.09 −0.03 na na na +1.14 na na −1.10

6A 259.98 258-263 6.57E-23 0.16 −0.15 +1.14 +0.98 −1.19 +0.88 na na −1.66

Pi

1A 204.48 191-215 0.0470 0.08 +0.22 −0.65 +1.37 +1.57 −0.69 −0.61 −0.63 −0.63

2A 1.51 0-13 0.0041 <0.01 +0.73 −0.16 −0.22 −0.06 na na −0.10 −0.18

2B 163.5 155-169 1.33E-18 0.12 na −0.78 na na na +0.29 0.50 na

2B 197.5 184-217 8.11E-08 0.05 na −0.54 na na +0.53 na na na

2D 161.57 144-166 0.0426 0.07 −0.07 na na na +1.10 na na −1.03

6A 259.98 258-265 6.57E-23 0.10 −0.62 +0.76 +0.50 +0.38 +0.40 na na −1.40

aChromosomal position of QTL. bPosition of peak marker based on the study by Stadlmeier et al. (2018). cSupport interval. dProportion of phenotypic variance explained by a single

QTL. eAdditive effects (±) of the founders Event (A), Bayp4535 (B), Ambition (C), Firl3565 (D), Format (E), Potenzial (F), Bussard (G), and Julius (H) relative to the population mean.

Shown values are back-transformed to the original trait scale. fNumber of single environments in which a QTL was detected. Founder effects were reported as not available (na) if none

of the RILs reached the probability threshold.

(at 211 cM) of the phenotypic variance. The cv. “Ambition” and
“Julius” contributed to the highest allelic effect (−0.9 and −0.8
IT scores). Two QTL located on chromosomes 4D explained only
1% of the phenotypic variance each and weremapped at 1 cM and
32 cM.

QTL analysis of Pi values revealed six individual QTL with
R2 ranging from less than 1 to 12%. The SIs varied between 7
and 33 cM. QTL regions on chromosomes 1A, 2A, 2B, 2D, and
6A overlapped with QTL regions detected for IT (Table 3). The
R2 values of 12% (2B), 7% (2D), 10% (6A), 8% (1A), and <0.1%
(2A) were calculated for individual QTL. Themaximum reducing
effects of each QTL for Pi ranged from 0.2 to 1.4%, contributed
from different founders. Additionally, one QTL was detected on
chromosome 2B at 198 cM, accounting for 5% of the phenotypic
variance. A maximum effect of −0.5% was detected for the allele
derived from the cv. “Bayp4535”.

Based on SIs of 21 QTL detected in total for AO, IT, and
Pi, 13 main QTL regions were derived, i.e., those detected
for all estimated traits (Supplementary Figure 3, Table 4).
In silico annotations of peak markers revealed seven genes
with known functions partly involved in resistance. Marker
wsnp_Ex_c6488_11266589 on chromosome 1A referred to

CRS1-YhbY of A. thaliana, belonging to the chloroplast RNA
splicing and ribosome maturation (CRM) domain-containing
proteins. A dehydrogenase E1 component and a serine
carboxypeptidase-like 19 were identified for peak markers for
QYr.jki-2A.1 and QYr.jki-2A.2 on chromosome 2A. Markers
RAC875_c1226_652 and AX-94388449 on chromosome 2B
referred to BST_chr2B_nlr_143 and a formin-like protein
3, respectively. For the peak markers for QYr.jki-2D on
chromosome 2D and QYr.jki-3B on chromosome 3B, GATA
transcription factor 28 and a dual specificity phosphatase-
catalytic domain were annotated. In addition, a fixed
chromosomal region of ± 500 kb around each peak marker
was examined. In silico annotations revealed additional gene
annotations of different function on both sides of each QTL
peak marker (Supplementary Table 4). On average, 24 gene
annotations were identified within an interval of ± 500 kb on
each side of the peak markers, including leucine-rich repeats
for peak markers AX-95080900 and RAC875_c38756_141 of
the QTL QYr.jki-1A.1, wsnp_Ex_c28149_37293173 of QTL
QYr.jki-1A.2, and BobWhite_c13373_250 of QYr.jki-2A.1. In
addition, NB-ARC domains were detected in the interval of peak
markers AX-95080900 and wsnp_Ku_c23598_33524490 of QTL
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QYr.jki-1A.1, wsnp_Ex_c6488_11266589 of QTL QYr.jki-1A.2,
BobWhite_c13373_250 and wsnp_Ku_c23598_33524490 of
QYr.jki-2A.1, AX-95177447 of QYr.jki-2A.2, RAC875_c1226_652
of QTL QYr.jki-2B.2, AX-94734962 of QYr.jki-2D, and
TA005377-1076 of QYr.jki-7D. Furthermore, protein kinase
domains and/or ABC transporters were identified in the vicinity
of peak markers AX-95080900 and RAC875_c38756_141
of QTL QYr.jki-1A.1, BobWhite_c13373_250 and
wsnp_Ku_c23598_33524490 of QYr.jki-2A.1, and AX-94526138
for QTL QYr.jki-6A. However, a minimum of four different
resistance related gene annotations were identified in the interval
of peak marker AX 94388449 of the QTL QYr.jki-2B.3, while
the maximum of 43 respective annotations were detected
for BobWhite_c13373_250 being the peak marker of QTL
QYr.jki-2A.1 (Supplementary Table 4).

DISCUSSION

Stripe rust occurs worldwide and is one of the most important
pathogens in wheat cultivation. Known stripe rust resistances
are present in many cultivars; however, their effectiveness is
limited to certain races within the rust population in accordance
with the gene-for-gene hypothesis (Flor, 1971). The emergence
and selection of virulent pathotypes and their broad distribution
results in considerable intraspecific variations in rust populations
(Zetzsche et al., 2019). This in general causes the breakdown
of qualitative resistances just a few years after their release
(McDonald and Linde, 2002b; Kolmer, 2005). Thus, a continuous
effort in wheat breeding programs is required to obtain a high
degree of resistance to stripe rust by combining qualitative
resistance genes with major effects andmore durable APR. In this
respect, the use of MAGIC populations in various QTL mapping
studies turned out to be a powerful tool to detect both qualitative
and quantitative resistance genes to different pathogens and other
economically important traits (Pascual et al., 2015; Sallam and
Martsch, 2015; Sannemann et al., 2015; Stadlmeier et al., 2019;
Rollar et al., 2021).

In this study, more than 68% of the 394 RILs showed
resistance to Pucchinia striiformis. A possible explanation for this
can be found in the nature of the founder lines, of which almost
all showed a high level of resistance to P. striiformis (Figure 1)
suitable for the registration of varieties. Phenotypic data with
many 0-values can lead to non-normally distributed residuals
and thus affect the estimation of QTL effects in a regression-
based QTL analysis. However, in this study, the phenotypic
data were log10-transformed to ensure a normal distribution
of the residuals for interval mapping. Thus, the right skewed
distribution of the original phenotypic data did not affect the
QTL detection results. With an average correlation coefficient
of r = 0.82, minor differences between the disease severities
in the six analyzed environments were observed. Additionally,
a high broad-sense heritability of h2 = 0.94 was calculated,
which is in the range of previously published studies (Feng
et al., 2018; Liu et al., 2018; Ma et al., 2019; Yang et al.,
2019a). These results indicate that stripe rust resistance is highly
heritable and that QTL detected in the different environments

were less affected by the occurrence of different P. striiformis
races and/or different environmental conditions (Feng et al.,
2018). Correlation between field data and seedling test results
were as follows: r = 0.63 for IT and r = 0.46 for Pi,
which are higher than the already reported correlations for
leaf rust (Gao et al., 2016; Rollar et al., 2021). However, this
observation may indicate similar scorings for seedling and adult
plant resistance.

A method for linkage mapping in a MAGIC population was
applied first by Xu (1996) based on the regression methods of
Haley and Knott (1992). This method was used and subsequently
improved based on parent probabilities by Mott et al. (2000),
resulting in HAPPY. On this base, Huang and George (2011)
finally developed the “mpMap” package, which was used in
this study, by following a mixed-model context and including
environmental and pedigree effects in the analysis. There are
two main advantages of MAGIC populations: (1) Due to the
crossing design of MAGIC populations, an increased genetic
variation and recombination rate are achieved and (2) due to
the increased genetic variation, QTL detection can be performed
with increased precision and resolution (Cavanagh et al., 2008;
Bandillo et al., 2013; Holland, 2015; Stadlmeier et al., 2019;
and Rollar et al., 2021). This also comes along with smaller
linkage blocks, a higher accuracy, and smaller SIs (Li et al., 2005;
Stadlmeier et al., 2019). Overall, simple interval mapping in this
study detected 21QTL, of which only oneQTL showed SI≤ 5 cM.
Nevertheless, Stadlmeier et al. (2019) successfully demonstrated
the detection of QTL with small SIs in the BMWpop, which
was supported by similar findings in other advanced intermated
populations (Balint-Kurti et al., 2007; Huang et al., 2010). In the
present study, 19% of the detected QTL showed SIs < 10 cM,
and an average SI of 23 cM was calculated. Compared to double
haploid (DH) lines, MAGIC populations are not completely
homozygous. This residual heterozygosity can lead to problems,
as heterozygotes for some markers cannot be distinguished in
genotyping (Huang et al., 2015). This is particularly the case
for polyploids and genotyping-by-sequencing (GBS) approaches
(Elshire et al., 2011; Cavanagh et al., 2013). However, the mean
proportion of heterozygous allele calls per RIL was described as
0.8% in the BMWpop (Stadlmeier et al., 2018).

The 21 QTL detected for AO, IT, and Pi correspond
to 13 distinct chromosomal regions (Table 4,
Supplementary Figure 3). QTL identified using the ls means
across the six environments were also identified in the analyses of
single environments (Supplementary Table 2). Additionally, a
QTL for AO on chromosome 4A was detected in LEN19, QLB18,
QLB19, and SOE19, describing 6% of phenotypic variance
on average. Although this QTL was no longer significant by
analyzing mean AO values across all environments, it may be
of importance since there seems to be a relation to a QTL for
leaf rust (QLr.jki-4A.2) mapped in a previous study (Rollar
et al., 2021). At 13 distinct chromosomal regions, each of the
five QTL was detected at the adult plant and seedling stages
only. In contrast, three QTL were common to both growth
stages, indicating the presence of effective all-stage stripe rust
resistance genes. In total, the 13 QTL regions were located on
wheat chromosomes 1A, 1D, 2A, 2B, 2D, 3B, 3D, 6A, and 7D.
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Peak markers of QTL were partially annotated to genes,
known to be involved in resistance mechanisms of plants. It
was described that several serine carboxypeptidase-like proteins
(QYr.jki-2A.2) catalyze the production of plant secondary
metabolites involved in herbivory defense and UV protection
(Fraser et al., 2005). Mugford et al. (2009) also reported a
possible contribution of serine carboxypeptidase-like proteins in
the synthesis of acylate plant defense compounds (avenacins)
in oats. Peak marker wsnp_Ex_c6488_11266589 for QYr.jki-1A.2
was annotated to CRS1-YhbY, with a CRM protein domain. It
was shown that CRM domain-containing proteins isolated from
maize contribute to RNA binding activity (Barkan et al., 2007).
Such RNA binding proteins are involved in various important
cellular processes and in posttranscriptional regulation of gene
expression, respectively. Thus, the RNA binding proteins play
an important role in plant immune response regulation against
pathogens, as they allow for a quick response to biotic
and abiotic stress stimuli (Woloshen et al., 2011). A similar
finding is the GATA transcription factor 28 for marker AX-
94734962 on chromosome 2D. The GATA gene family is one
of the most conserved families of transcription factors, playing
a significant role in different aspects of cellular processes,
e.g., in the abiotic stress signaling pathways (Gupta et al.,
2017). The pyruvate dehydrogenase (E1) complex annotated for
BobWhite_c13373_250 on chromosome 2A is involved in two
interacting levels of control in plant cells. The first level is
subcellular compartmentation contributing to tricarboxylic acid
cycle and fatty acid biosynthesis, while the second level is the
control of gene expression (Tovar-Méndez et al., 2003). The
mean linkage disequilibrium (LD) decay for the genome in the
BMW population is 9.3 cM, thus, considering a fixed interval of
± 5Mb on both sides of a peak marker resulted in an excessive
number of gene annotations (Stadlmeier et al., 2018). In this
study, the fixed interval was reduced to ± 500 kb (1Mb) based
on several other studies in which the region on either side of the
peak marker of a QTL was reduced to 100 kb (flax) (You and
Cloutier, 2020), 2 kb (wheat) (Juliana et al., 2018), 2 kb (wheat)
(Muqaddasi et al., 2020), or 100 kb (rice) (Hussain et al., 2020).
However, examination of this interval led to the annotation of
several leucine-rich repeats, NB-ARC domains, kinase domains,
and ABC transporters. While leucine-rich repeats and NB-
ARC domains are mainly involved in race-specific resistance
responses, quantitative race unspecific resistance genes appear
to encode different proteins, such as ABC transporters, protein
kinases, and hexose transporters (Ellis et al., 2014; Moore et al.,
2015; and Periyannan et al., 2017).

For the majority of the QTL detected in this study, the
effect magnitudes were rather small as a high fraction of the
population was highly resistant indicating that major stripe
rust QTL were common to the founder lines. Two QTL were
detected on chromosome 1A based on both field and seedling
test data (QYr.jki-1A.1) and on seedling test data (QYr.jki-1A.2)
only. QYr.jki-1A.1 is physically located in a region between
1.3Mb and 12.5Mb (Supplementary Table 3). To date, only
one QTL for all-stage resistance to stripe rust was previously
described in a similar region (Liu et al., 2018). QYrMa.wgp-1AS
was mapped to the distal part of chromosome 1AS with the

closest markers at 7.3Mb (IWB57448) and 9.1Mb (IWB5441).
IWB57448 was also detected as peak marker for QYr.jki-1A.1
in this study (Table 4, Supplementary Table 3). Thus, the two
QTL seem to be identical. QYr.jki-1A.2 was physically located
at the distal end of chromosome 1AL between 540Mb and
593Mb. In the same region, there are two QTL (QYr.caas-1AL,
QRYr1A.1) for APR to stripe rust (Ren et al., 2012; Rosewarne
et al., 2012). These QTL were mapped at around 551Mb and
575Mb, respectively, but both were inconsistently detected across
several environments. Another QTL (QYr.wsu-1A.2) detected at
the adult plant stage and associated with marker IWA3215 was
closely mapped to the distal end of QYr.jki-1A.2 around 593Mb
(Bulli et al., 2016). However, Jighly et al. (2015) described a QTL
for seedling resistance that corresponds to QRYr1A.1 detected by
Rosewarne et al. (2012) based on the linked DArT marker wPt-
6005. Although QYr.jki-1A.2 was only detected in the seedling
test, relationships between the aforementioned QTL previously
described and QYr.jki-1A.2 based on physical positions might
be possible.

On chromosome 1D, QYr.jki-1D was mapped in a large
physical interval between 33Mb and 366Mb. However, the peak
marker was located at 262Mb. Furthermore, four QTL have been
described at the distal end of chromosome 1DS, but none of
these have been physically mapped near the region of QYr.jki-
1D (Zwart et al., 2010; Vazquez et al., 2012; Hou et al., 2015;
Naruoka et al., 2015). Maccaferri et al. (2015) reported the QTL
QYr.ucw-1 D as a novel QTL independent of the aforementioned
QTL. Its linked marker IWA980 is physically mapped at 36.3Mb
and is thus within the SI of QYr.jki 1D, but still far away from
our peak marker (Supplementary Table 3). Ren et al. (2012)
identified a QTL (QYr.caas-1D) flanked by markers Xgwm353
and Xgdm33b on chromosome 1DS in cv. “Naxos”, but no
physical marker information is available for a closer comparison
(Supplementary Table 3). The resistance gene Yr25 was mapped
on chromosome 1D and is one of the commonYr genes identified
in European cultivars (McIntosh, 1988; Hovmøller, 2007). The
stripe rust raceWarrior+ Yr27 used for inoculation in this study
is virulent to Yr25 (Supplementary Table 1). This may give hint
that QYr.jki-1D does not refer to this resistance gene.

QYr.jki-2A.1 and QYr.jki-2A.2 were both detected on
chromosome 2AS based on the seedling test. To date, three
designated Yr genes (Yr17, Yr56, and Yr69) and several QTL
have been described on the short arm of chromosome 2A
(Bariana and McIntosh, 1993; Hao et al., 2011; Lowe et al., 2011;
Agenbag et al., 2012; Vazquez et al., 2012; McIntosh et al., 2014;
Hou et al., 2016; Liu et al., 2018). QYr.jki-2A.1 was mapped
between 3.1Mb and 4.2Mb, with peakmarkers at 3.4Mb (Pi) and
3.9Mb (IT, Table 4, Supplementary Table 3). Liu et al. (2018)
located QYrMa.wgp-2AS around 2.7Mb, corresponding to the
region of Yr17, which was introgressed from Aegilops ventricosa
to the hexaploid wheat line “VPM1” (Bariana and McIntosh,
1993). Based on the physical distance to our peak markers, it
seems likely that QYr.jki-2A.1 corresponds to QYrMa.wgp-2AS
and/or Yr17, respectively (Table 4, Supplementary Table 3). The
second QTL QYr.jki-2A.2 was different from QYr.jki-2A.1 as
the peak marker was mapped at 18.2Mb. Nevertheless, QYr.jki-
2A.2 was mapped in a large physical region from 5.7Mb to
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36.1Mb, showing relationships with three QTL (QYr.ufs-2A,
QYr.uga-2AS, QYr.ucw-2AS), as described previously. QYr.ufs-
2A detected by Agenbag et al. (2012) was located in a region
similar to QYr.ucw-2AS (Lowe et al., 2011) and QYr.uga-
2AS (Hao et al., 2011). QYr.ucw-2AS was detected in an RIL
population (“UC1110” × “PI610750”) and is flanked by markers
wPt-5839 and Xwmc177, of which the latter was mapped at
33.7Mb (Lowe et al., 2011). QYr.uga-2AS, which was derived
from cv. “Pioneer26R61”, was flanked by SSR markers Xbarc124
(3.9Mb) and Xgwm359 (28.2Mb) (Hao et al., 2011). Hence, all
three QTL previously described are located in the chromosomal
region of QYr.jki-2A.2, but further investigation is needed
(Supplementary Table 3).

On chromosome 2B, QTL were detected based on field
(QYr.jki-2B.1) and seedling test data (QYr.jki-2B.3) only, but also
based on both data sets (QYr.jki-2B.2). QTL QYr.jki-2B.1 was
mapped to a large physical region between 69Mb to 407Mb,
including the second QTL QYr.jki-2B.2 (110.9 - 216.5Mb).
However, as the peak marker RAC875_rep_c109207_706 was
located at 69.0Mb, QYr.jki-2B.1 was designated separately
and is assumed to be independent of QYr.jki-2B.2 (Table 4,
Supplementary Table 3). Chromosome 2BS is known to carry
HTAP resistance that was detected in several wheat backgrounds
(Ramburan et al., 2004; Guo et al., 2008; Carter et al., 2009;
Chen et al., 2011). Chen et al. (2011) found QYrid.ui-2B.1,
which was flanked by the markers wPt-9668 and Xgwm429.
The latter was physically mapped at 4.6Mb proximal to the
peak marker for QYr.jki-2B.1. As described by the authors,
QYrid.ui-2B.1 corresponds to two previously reported QTL:
QYr.sgi-2B.1 derived from cv. “Kariega” with the closest marker
Xgwm148 at 100.8Mb (Ramburan et al., 2004) and QYrlu.cau-
2BS1 flanked by Xwmc154 (36.4Mb) and Xgwm148 (100.8Mb)
(Guo et al., 2008). Based on these physical positions, QYrid.ui-
2B.1, QYr.sgi-2B.1, and QYrlu.cau-2BS1 appear to be located
in the same region as QYr.jki-2B.1 (Supplementary Table 3).
For QYr.jki-2B.2, a similar conclusion can be drawn. In the
study by Chen et al. (2011), a second QTL (QYrid.ui-2B.2)
was identified, which was located in the same region as QTL
QYrlu.cau-2BS2Q (Guo et al., 2008) and Yrlo.wgp-2BS (Carter
et al., 2009). Together, the three QTL spanned a region from
around 73.6Mb to 448.7Mb. The peak marker for QYr.jki-2B.2
was mapped at 157.7Mb, and thus is within the region of the
three QTL described previously (Supplementary Table 3). The
third QTL on chromosome 2BL (QYr.jki-2B.3) was detected
for Pi values between 519Mb and 724.5Mb. Till date, there
are seven designated Yr genes located on chromosome 2BL, of
which Yr5, Yr7, and YrSP were already cloned between 615.8Mb
and 773.1Mb (McIntosh et al., 2014; Marchal et al., 2018).
Additionally, several QTL are described to be located at the
long arm of chromosome 2B. One QTL was detected in the RIL
population, “Camp Remy” × “Michigan Amber”, and flanked
by SSR markers Xgwm47 (685.8Mb) and Xgwm501 (672.1Mb)
(Boukhatem et al., 2002). Another QTL (QYraq.cau-2BL)
derived from cv. “Aquileja” was mapped between the markers
Xwmc175 and Xwmc332 corresponding to 670.6–739.4Mb (Guo
et al., 2008). Guo et al. (2008) described that QYraq.cau-2BL
corresponds to QTL which were previously detected by Mallard

et al. (2005) and Christiansen et al. (2006). These QTL in
turn were assigned to the first-mentioned QTL detected by
Boukhatem et al. (2002) and to resistance genes Yr5 and Yr7,
respectively (Supplementary Table 3). Although QYr.jki-2B.3
seems to correspond to the aforementioned regions, the peak
marker was mapped at 576.1Mb, a physical distance of 94.5Mb
to the closest marker interval (Table 4, Supplementary Table 3).
Thus, the relationship between QYr.jki-2B.3 and the previously
described QTL has still to be discussed. Furthermore, it is not
clear whether QYr.jki-2B.3 is related to the Yr5, Yr7, and YrSP.

QYr.jki-2D was mapped at the distal end of chromosome 2DL
with the peak marker at 636.6Mb. To date, there are six Yr genes
(Yr8, Yr16, Yr54, Yr55, Yr37, and YrCK) known to be located on
chromosome 2D. Unfortunately, no information on the physical
positions is available for precise comparison. However, the APR
gene Yr16 was located in the centromeric region of chromosome
2D (Worland and Law, 1986; Ren et al., 2012), suggesting that
this gene is different fromQYr.jki-2D. Ren et al. (2012) reported a
QTL on chromosome 2DL, flanked by the SSR marker Xgwm539
(513.1Mb) andXcfd44 (608.6Mb). The authors assumed that this
QTL is linked to two QTL as described previously, where both
are closely linked to the marker Xgwm349 (Suenaga et al., 2003;
Melichar et al., 2008). This SSRmarker is 7 bp apart from the peak
marker of QYr.jki-2D. Hence, all three QTL may correspond to
QYr.jki-2D (Supplementary Table 3).

On chromosome 3B, one QTL (QYr.jki-3B) was detected
based on field trial data. The QTL SI spans a physical region
from 581.3Mb to 665.3Mb, and is located on the long arm of
chromosome 3B. There are many QTL previously reported that
are partly summarized by Rosewarne et al. (2013) and Chen and
Kang (2017). However, most of these are located on the short
arm of chromosome 3B and do not correspond to QYr.jki-3B. In
addition, the resistance genes Yr4, Yr30, and Yr57 were mapped
on chromosome 3BS. Two QTL are detected on the long arm
of chromosome 3B, QYrex.wgp-3BL (Lin and Chen, 2009) and
QYrid.ui-3B.2 (Chen et al., 2011). For both QTL, the SSR marker
Xgwm299 was reported as a flanking marker physically mapped
at 804.8Mb and does not correspond to the identified region
of QYr.jki-3B (Supplementary Table 3). Recently, another QTL
(QYr-3BL) was discovered in the durum wheat RIL population
“Stewart” x “Bansi” flanked by the marker IWB9451 (660.3Mb)
(Li et al., 2020). The authors associated this QTL with Yr80,
a gene that is flanked by markers KASP65624 and KASP53113
spanning a physical region between 550.3Mb and 605.4Mb
(Nsabiyera et al., 2018). Based on the physical positions, QYr.jki
3Bmay correspond to the resistance gene Yr80.

The quantitative trait locus QYr.jki-3D was mapped based on
field data only. It is located at the distal end of chromosome 3DS
between 19.8Mb and 22.0Mb. The two resistance genes Yr49
linked to Xgwm161 at 7.1Mb, and Yr66 linked to IWB47165
at 2.6Mb, as well as five QTL are described to be located
on the arm of this chromosome (McIntosh et al., 2011, 2014;
Basnet et al., 2013; Rosewarne et al., 2013). However, less marker
information of QTL locations is available for precise comparison
between QYr.jki-3D and QTL identified on chromosome 3DS
by Boukhatem et al. (2002), Singh et al. (2000), and Basnet
et al. (2013). Dedryver et al. (2009) found one QTL in cv.
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“Recital” flanked by the markers Xbarc125 (174.8Mb) and
Xgwm456 (282.5Mb). Another QTL was mapped between
309.9Mb and 357.1Mb, far away from the region identified in
this study (Yang et al., 2013). Thus, neither the QTL nor the
Yr genes correspond to QYr.jki-3D, which therefore seems to
be novel.

Based on the field and seedling test data conducted in this
study, a QTL (QYr.jki-6A) was detected on chromosome 6AL,
with peak markers at 606.4 and 608.5Mb. There are three regions
conferring resistance to stripe rust which are all closely linked
to SSR marker Xgwm617 (William et al., 2006; Lillemo et al.,
2008; Vazquez et al., 2012), which is 2.1 and 4.2Mb away from
our peak markers. William et al. (2006) reported the presence
of QYr.cimmyt-6A, which corresponds to the QTL found by
Lillemo et al. (2008), both contributed by the cv. “Avocet”. It
is likely that this QTL was derived from Agropyron elongatum
due to a translocation in cv. “Avocet” (Lillemo et al., 2008).
However, the third QTL (QYrpl.orr-6A) previously reported
by Vazquez et al. (2012) was found in the RIL population
“Stephens” × “Platte” and was also assigned to the QTL detected
by Lillemo et al. (2008). A close relationship between these
QTL and QYr.jki-6A can be assumed (Supplementary Table 3).
Several additional QTL and major genes are reported to be
located on chromosome 6A, including the resistance genes Yr38,
Yr42, and Yr81 (Marais et al., 2006, 2009; Prins et al., 2010;
Cao et al., 2012; Rosewarne et al., 2012; Gessese et al., 2019).
Unfortunately, the information provided was not sufficient to
allow for further comparison.

The quantitative trait locus QYr.jki-7D based on data from
field trials was located on the short arm of chromosome
7D. The QTL was physically mapped between 5.4Mb and
29.4Mb, with a position of the peak marker at 13.3Mb. The
five closest QTL already reported were linked to the SSR
marker Xgwm295 (53.6Mb), which is 40.3Mb apart from
our peak marker (Ramburan et al., 2004; Navabi et al.,
2005; Bariana et al., 2010; Yang et al., 2013). Xgwm295
was found to be the closest microsatellite marker to the
resistance complex Lr34/Yr18 (Suenaga et al., 2003). In addition,
Jighly et al. (2015) identified a QTL on chromosome 7DS
linked to DaRT marker wPt-668026. The authors associated
this QTL with the 7DS locus near the marker Xbcd1438
described by Singh et al. (2000), which in turn was again
associated with Lr34/Yr18 (Jighly et al., 2015). This resistance
gene has been functionally characterized and is already
sequenced (Krattinger et al., 2009). However, due to the
large distance between these QTL and the one detected in
the present study, QYr.jki-7D seems to be a novel QTL
(Supplementary Table 3).

The aim of this study was to use the Bavarian MAGIC
wheat population to identify new sources of resistance to
stripe rust, a fungal disease that causes devastating yield losses
in wheat worldwide. The analyses resulted in 21 stripe rust
resistance QTL that were confined to 13 distinct chromosomal
regions. Eleven of these regions corresponded to QTL already
described in previous studies. The increasing information on
the physical map position of many stripe rust QTL, helped
to infer the identity of the QTL found in the present study.

Two putatively new QTL were identified on chromosomes 3D
(QYr.jki-3D) and 7D (QYr.jki-7D). SNP markers linked to these
regions may be converted into KASP markers suitable for MAS
in wheat breeding programs (Wu et al., 2017; Yang et al.,
2019b). This will enable stacking of the detected resistance
loci to breed new varieties with an improved resistance to
stripe rust. Additionally, data and information generated in the
present study can be used for weighted selection (Bernardo,
2014).
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Supplementary Figure 1 | Pearson’s correlation of stripe rust severity between

different field trials. Diagonals are histograms for each environment (Lenglern LEN

2018-2019, Quedlinburg QLB 2017 2018, Söllingen SOE 2017 2018). ∗∗∗ denotes

significance at α = 0.001.

Supplementary Figure 2 | Pearson’s correlation (r) between averaged infection

type (IT), infected leaf area (Pi) of seedling test and average ordinate (AO) of field

trials (A,B), as well as correlation between IT and Pi (C). ∗∗∗ denotes significance

at α = 0.001.

Supplementary Figure 3 | Simple interval mapping of resistance to Puccinia

striiformis in field trials (A) and seedling test (B,C). The x-axis shows the 21 wheat

chromosomes. Positions are based on the genetic map, and the -log10(p) values

of each marker are displayed on the y-axis (black line). The red horizontal line

represents the significance thresholds. The seed index (SI) of the significant QTL

detected in this study are colored in blue.

Supplementary Table 1 | List of virulences and avirulences of Puccinia striiformis

isolate, Warrior + Yr27 used in field trials and seedling test. Brackets indicate
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ambiguous results due to the differing symptom ratings between replications or

moderate susceptibility (based on Zetzsche et al., 2019).

Supplementary Table 2 | Complete information of the quantitative trait loci (QTL)

for stripe rust resistance in BMW population, evaluated in field trials (AO) and

seedling test (IT and Pi).

Supplementary Table 3 | Comparison of the physical positions of the QTL

identified in the present study (bold) with those reported previously.

Supplementary Table 4 | List of gene annotations for peak markers ± 500,000

bp, shown as output retrieved from URGI database

(https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations).
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CHAPTER IV | GENERAL DISCUSSION 

1. Variation in disease severity within the population 

Global agriculture is threatened by the rapid development and spread of pathogenic fungi that 

cause diseases such as rusts. For example, in recent years new races of wheat stem rust and 

stripe rust have emerged in parts of Africa, Asia and Europe, posing a threat to food security 

through their rapid spread and ability to overcome resistance in wheat varieties (Periyannan et 

al., 2017). Also, leaf rust is a serious disease because of its high diversity and adaptability to a 

wide range of climates (Figueroa et al., 2018). 

The BMWpop is based on eight elite wheat lines, which were selected according to the 

criteria of multiple variation in agronomic, quality and disease resistance traits (Stadlmeier et 

al., 2018). The phenotypic variation in the BMWpop for leaf rust showed a high variability of 

resistance responses, indicating a high genetic diversity. Only a slightly right-skewed "normal" 

distribution was observed for the field data, while the seedling tests revealed an almost bi-modal 

distribution. These observations are in agreement with previously published studies and suggest 

a polygenic quantitative inheritance within the population as well as the presence of qualitative 

resistance conferred by a single gene (Lan et al., 2017; Aoun et al., 2019; Zhang et al., 2019). 

In contrast, phenotyping of stripe rust resistance in both field trials and seedling tests revealed 

a highly right-skewed distribution with more than 68 % of stripe rust resistant RILs. These 

results demonstrate that the variation within the population arises from the variation between 

the parental lines, as almost all of them showed high levels of resistance. Thus, the genetic 

variation of MAGIC populations is highly dependent on the prior selection of parental lines, 

for which the criteria must be carefully chosen. However, an important advantage of the 

BWMpop is that resistant RILs resulting from crossing elite material can be used directly in 

breeding programs without prior time-consuming backcrossing, compared to populations 

resulting from wild ancestors. A major concern in reviewing the studies was that many 0-values 

(resistant) could lead to residuals that are not normally distributed and thus affect QTL 

mapping. In all studies in this thesis, a log10-transformation of the phenotypic data was 

performed to ensure a normal distribution of the residuals for interval mapping. Furthermore, 

Vatter et al. (2018) have also shown efficient QTL detection using a NAM barley population 

that was highly resistant to Puccinia striiformis f. sp. hordei by ensuring a normal distribution 

of the residuals. 

Successful infection and the extent of disease pressure are highly dependent on 

environmental conditions and thus influence the generation of reliable data in field trials 
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(McIntosh et al., 1995; Chen and Kang, 2017). In addition, simultaneous infection of trials with 

several different diseases can further complicate the evaluation of genotypic responses to a 

particular pathogen. In the field trials conducted to test the BMWpop for both leaf rust and 

stripe rust resistance, significant differences in genotype-environment interactions were 

observed. These differences may be due to different environmental conditions and due to 

different methods used at different locations, such as artificial or natural infection. However, 

for this reason, the focus was on the average performance of the genotypes across all 

environments by calculating model-adjusted LS means (Stigler, 1981; Govindarajulu et al., 

2021). To demonstrate the validity of the data, correlations between environments and 

heritability were calculated. Moderate to high and significant correlations were found for all 

environment-environment combinations for both leaf rust and stripe rust. In addition, high 

heritabilities of 83 % and 94 %, respectively, were estimated, showing that disease severity 

depends mainly on genotype. Finally, simple interval mapping was performed for each 

environment separately, and it was generally found that the same QTL were found for the 

individual environments as for the mean data across environments. Overall, the results of this 

study highlight the suitability of the BMWpop for the detection of population-wide and 

parent-specific QTL conferring resistance to leaf and stripe rust. This is an additional advantage 

due to the previously established effective applicability for the detection of QTL for different 

traits by using multiparental populations (Sannemann et al., 2018; Stadlmeier et al., 2018; 

Stadlmeier et al., 2019). 

In the present thesis, the set of 394 RILs of the BMWpop was investigated in field trials and 

seedling tests for resistance to the fungal pathogens Puccinia triticina and Puccinia striiformis 

f. sp. tritici, the causal agents of leaf rust and stripe rust, respectively. Based on their phenotypic 

response, RILs were identified that showed particularly increased resistance to these rust 

pathogens. A resistant phenotypic response was defined as disease severity of ≤ 15 % or 

infection response type of ≤ 2. Leaf rust was tested in five environments (LEN18, QLB17, 

QLB18, SOE17, SOE18) and stripe rust was tested in six environments (LEN17, LEN18, 

QLB17, QLB18, SOE17, SOE18). In addition, both leaf rust and stripe rust were evaluated in 

the seedling tests under controlled environmental conditions in five and four replications, 

respectively. Out of 394 RILs, 331 RILs showed a resistant phenotype to leaf rust in at least 

two environments (year-location combination). Of these, 98 RILs were also resistant at the 

seedling stage (Table A.3-1). Ninety RILs were resistant in all five test environments, so almost 

a quarter of the BMWpop had high resistance to leaf rust with a total average AO of 5.81%. 

Only twenty-four of these ninety RILs also expressed resistance responses at the seedling tests. 
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The remaining 103, 73 and 65 RILs showed resistance to leaf rust in four, three and two 

environments, of which forty, nineteen and fourteen RILs were also resistant at the seedling 

stage respectively. For stripe rust, 355 out of 394 RILs showed a resistant phenotype in at least 

two environments, of which 270 RILs were also observed to be resistant at the seedling stage 

(Table A.3-2). A total of 250 RILs were resistant in all six environments tested, for which an 

average AO of 1.51 % was calculated. 223 of these 250 RILs, i.e., almost 90 %, showed a 

resistance reaction in the seedling tests. The remaining 48, 25, 21 and 11 RILs showed 

resistance to stripe rust in five, four, three and two environments respectively, of which twenty-

six, eleven, three and seven RILs were also resistant at seedling stage. Half of the BMWpop, 

about 200 RILs, showed resistance to both leaf and stripe rust. 

 

2. Suitability of BMWpop for QTL mapping 

Stadlmeier et al. (2019) evaluated the BMWpop for the first time for its suitability to detect 

QTL conferring resistance to fungal pathogens such as Blumeria graminis, Zymoseptoria tritici, 

and Pyrenophora tritici-repentis. For QTL detection, the analysis tool ‘mpMap’ implemented 

in R was used to conduct SIM, which was developed by Huang and George (2011) and shown 

by Stadlmeier et al. (2019) to be very effective for QTL detection in BMWpop. In general, 

‘mpMap’ also offers the option to carry out CIM, but only SIM was conducted in the context 

of this thesis. CIM attempts to address the problem of epistasis, the genetic interaction between 

independent loci, and can thus increase the statistical power; however, the selection of 

covariates is crucial and determines whether CIM is superior to SIM. If the number of markers 

selected is too low or too high, the power of QTL detection will be compromised. Furthermore, 

the final QTL detection does not take into account the uncertainty in the selection of covariates 

and may lead to overly optimistic support intervals. Because of these drawbacks, Broman 

(2001), the developer of R/qtl and author of critical papers about interval mapping methodology 

generally recommends against the use of CIM (Broman and Sen, 2009). 

A major concern with regard to the statistical power of linkage mapping in MAGIC 

populations is the possible reduction in the number of detectable QTL due to the complex 

genetic background (Keurentjes et al., 2011; Stadlmeier et al., 2019). While Kover et al. (2009) 

and Huang et al. (2011) each detected fewer QTL when using multiparental populations than 

linkage analyses with bi-parental populations for the same trait, other studies did not detect 

differences in the number of QTL (Gnan et al., 2014). Other studies reported the detection of 

new QTL, presumably due to increased genetic variation resulting from the use of multiple 

parents (Pascual et al., 2015; Sannemann et al., 2015). In this thesis, simple interval mapping 
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based on field trials and seedling tests revealed 19 and 21 QTL corresponding to in total 11 and 

13 different chromosomal regions, respectively, controlling both leaf rust and stripe rust 

resistance. The comparison of these QTL with already described genes and QTL, known to be 

involved in resistance to rusts has already been discussed extensively in the context of Chapter 

II and Chapter III. In more detail, two genetic regions were identified on the short arm of 

chromosome 1A (1AS) and on the short arm of chromosome 7D (7DS), which are associated 

with both rust diseases. QLr.jki-1A.1 and QYr.jki-A.1 overlapped perfectly based on their 

support intervals (SI), which both span a chromosomal region between 0 and 30 cM. However, 

while QYr.jki-A.1 was detected in field trial and seedling tests, QLr.jki-1A.1 was only identified 

at the adult plant stage. Based on the positions of corresponding peak makers for QLr.jki-1A.1 

(RAC875_c57939_78) and QYr.jki-A.1 (RAC875_c38756_141), QTL are still at least 9.75 cM 

apart from each other, which physically represents a distance of 4.2 Mbp. On chromosome 7DS, 

QLr.jki-7D.1 and QYr.jki-7D were located within SI of 15-30 cM and 12-30 cM, respectively, 

with peak markers mapped between 18.1 cM to 21.7 cM. In addition, Stadlmeier et al. (2019) 

discovered a QTL (QPm.lfl-7D) associated with resistance to powdery mildew in the same 

chromosomal region of BMWpop, with an SI of 12 cM to 22 cM and a peak marker at 19 cM. 

The authors reported that QPm.lfl-7D corresponds to the multi-resistance gene 

Lr34/Yr18/Sr57/Pm38, even if the peak marker is 34 Mbp distal to the APR gene Lr34 

(Krattinger et al., 2009; Stadlmeier et al., 2019). Even though QLr.jki-7D.1 and QYr.jki-7D 

were not associated with Lr34 and Yr18 respectively due to their physical position, there is 

strong evidence for the presence of Lr34/Yr18/Sr57/Pm38 as resistance to leaf rust, stripe rust 

and powdery mildew is recorded in the same chromosomal region in three independent studies 

(Stadlmeier et al., 2019; Rollar et al., 2021b; Rollar et al., 2021a). An additional argument for 

this multi-resistance gene based on parental information, as it is also reported that the parental 

line ‘Potenzial’ possesses this gene (Serfling et al., 2011). However, all three QTL were still 

mapped far from corresponding resistance genes, and in addition, QLr.jki-7D.1 was also 

detected at the seedling stage, suggesting that at least QLr.jki-7D.1 is distinct from the APR 

gene Lr34/Yr18/Sr57/Pm38 (Rollar et al., 2021b). 

For plant breeders, the benefit of QTL conferring resistance depends on the percentage of 

phenotypic variance explained by the QTL. A phenotypic variance of at least 10 % to 20 % 

should be explained by a QTL to make MAS feasible (Miedaner and Korzun, 2012). In this 

work, QTL with high phenotypic variances of up to 50 % and 29 % for leaf rust and stripe rust, 

respectively, as well as phenotypic variances of less than 1 % were detected. However, 

especially for stripe rust, only small allele effects of less than 5 % or less than 3 scores were 
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calculated for the QTL. Mapping rare QTL variants in combination with small effects is already 

described as a challenge in MAGIC populations (Kover et al., 2009). This is associated with a 

small phenotypic variance, which in turn depends on both phenotypic and genetic variance. In 

MAGIC designs, there is a higher probability of markers with lower minor allele frequencies. 

In the case of a MAGIC design with eight parental lines, the minor allele frequency in the 

extreme case is 1/8. Since genotypic variance is a function of the QTL effect and the allele 

frequency of the QTL, a low minor allele frequency reduces the estimated proportion of 

explained phenotypic variance of a QTL regardless of the actual value of the phenotypic 

variance (Falconer and Mackay, 1996; Uemoto et al., 2015; Stadlmeier et al., 2019). However, 

minor QTL and QTL with moderate effects are necessary to achieve durable resistance, as 

major genes without any quantitative resistance are in general overcome quickly. Pyramiding 

of resistance genes or QTL, even with a minor effect, may be considered a successful strategy 

to increase the overall resistance level. Thus, the introgression of genes by MAS allows the 

combination of several genes/QTL into a single cultivar (Gupta et al., 2010). Today, multi-gene 

pyramiding strategy is successfully used in resistance breeding of crops such as rice (Liu et al., 

2016), maize (Jiang et al., 2012), soybean (Wang et al., 2017) and wheat (Wang et al., 2001; 

Pietrusińska et al., 2011; Bai et al., 2012; Singh et al., 2017). More recently, the use of MAS 

has enabled the pyramiding of up to 12 genes/QTL for grain quality and rust resistance in wheat 

(Gautam et al., 2020). Nevertheless, in the context of complex quantitative traits, especially 

with small effects, practical breeding is shifting from MAS to genomic selection (GS), which 

seems to be more efficient (Heffner et al., 2009; Crossa et al., 2017). GS is a method to 

overcome the limitations of MAS for quantitative traits (Robertsen et al., 2019). Where MAS 

uses a defined subset of significant markers, GS takes advantage of all molecular markers for 

genomic prediction of the performance of the candidates for selection (Heffner et al., 2009; 

Crossa et al., 2017). In general, genomic selection is a form of MAS in which all locus, 

haplotype or marker effects across the genome are estimated simultaneously in order to 

calculate genomic estimated breeding values (GEBVs) (Meuwissen et al., 2001). By combining 

molecular and phenotypic data in a training population, GS determines the GEBVs of 

individuals in a testing population that have been genotyped but not phenotyped. In other words, 

both phenotypic and genotypic data of the training population are used to estimate GS model 

parameters to subsequently calculate GEBVs of selection candidates (testing population) of 

which only the genotypic data are available (Meuwissen et al., 2001; Heffner et al., 2009; 

Crossa et al., 2017). Thus, GS takes advantage of dense markers to quantify Mendelian 

sampling to avoid the need to extensively phenotype the progeny, making it the most promising 
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breeding method to accelerate the development and release of new genotypes (Crossa et al., 

2017). 

 

3. Annotation of putative candidate genes 

In the present thesis, the BMWpop comprising 394 RILs that are based on elite wheat material 

was evaluated for resistance against the fungal pathogens Puccinia triticina Eriks. and Puccinia 

striiformis Westend., the causal agents of leaf rust and stripe rust. The RILs were phenotyped 

in field trials at three locations in Germany and in seedling test under controlled conditions. 

Subsequent simple interval mapping revealed 19 and 21 QTL corresponding to in total 11 and 

13 different chromosomal regions conferring resistance to leaf rust and stripe rust. Gene 

annotation was performed for each peak marker by transferring the start and end positions to 

the IWGSC RefSeq v1.0 genome assembly of the URGI database (https://wheat-

urgi.versailles.inra.fr/Seq-Repository/Annotations) (Alaux et al., 2018). However, the 

definition of a single candidate gene of the detected QTL only based on the peak markers is not 

sufficient also due to the fact that a mean LD-decay of 9.3 cM was calculated for the BMWpop 

(Stadlmeier et al., 2018). In turn, large support intervals were calculated for the different QTL, 

which also do not allow an adequate representation of potential candidate genes for the relevant 

QTL. Therefore, the search for candidate genes was limited to a defined resolution of ±500 kb 

around the peak markers, which has proven to be sufficient to identify candidates (Hussain et 

al., 2020; Muqaddasi et al., 2020; You and Cloutier, 2020). The number of predicted genes for 

identified QTL ranged between 10 to 38 genes for leaf rust and 4 to 43 genes for stripe rust 

resistance (Table IV.3-1). For leaf rust, 12 regions harbored leucine-rich repeats (LRRs) and/or 

NB-ARC domains (complete list of predicted genes for leaf rust is not published). Ten 

LRR/NB-ARC containing regions were found for stripe rust. 

Table IV.3-1 | Number of predicted genes that are associated with disease recognition or defense 

located in identified QTL regions. 
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QLr.jki-1A.1 

 RAC875_c57939_78 
1A 

11.1 - 12.1 16 4 0 0 1 

 CAP8_c2448_355 9.6 - 10.6 34 1 3 0 0 

QLr.jki-4A.1 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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 Kukri_rep_c109167_89 4A 634.2 - 635.2 10 0 0 0 1 

QLr.jki-4A.2 

 Excalibur_c46904_84 
4A 

736.8 - 737.8 21 0 1 0 4 

 BobWhite_c47168_598 725.7 - 726.7 29 3 4 0 0 

QLr.jki-4D.1 

 BS00023112_51 4D 455.3 - 456.3 28 0 0 0 0 

 AX -95126745 4D 464.5 - 465.5 18 0 0 0 1 

QLr.jki-5A.1 

 IAAV2363 5A 481.4 - 482.4 17 0 1 0 0 

 RAC875_c31670_389 5A 513.6 - 514.6 17 0 1 0 0 

QLr.jki-6B.1 

 AX -94557244 6B 25.4 - 26.4 38 2 2 0 1 

QLr.jki-6B.2  

 RAC875_c59968_234 6B 712.2 - 713.2 35 3 4 1 2 

QLr.jki-7A.1 

 BS00011330_51 7A 62.6 - 63.6 25 0 4 0 0 

QLr.jki-7A.2 

 wsnp_Ku_c26530_36497050 7A 84.3 - 85.3 28 2 1 0 0 

QLr.jki-7A.3 

 BS00011622_51 7A 711.8 - 712.8 28 3 0 0 1 

QLr.jki-7D.1 

 AX -94930280 7D 15.6 - 16.6 17 0 4 0 0 

 IACX11794 7D 12.0 - 13.0 10 0 0 0 0 

QYr.jki-1A.1 

 AX -95080900 1A 11.4 - 12.4 39 5 2 0 2 

 RAC875_c38756_141 1A 6.8 - 7.8 39 2 1 0 2 

QYr.jki-1A.2 

 wsnp_Ex_c28149_37293173 1A 547.5 - 548.5 20 1 0 0 0 

 wsnp_Ex_c6488_11266589 1A 550.1 - 551.1 18 0 1 0 0 

QYr.jki-1D 

 AX -94614313 1D 261.7 - 262.7 24 0 0 0 0 

QYr.jki-2A.1 

 BobWhite_c13373_250 2A 3.5 - 4.5 43 10 2 2 1 
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 wsnp_Ku_c23598_33524490 2A 2.9 - 3.9 30 0 3 2 0 

QYr.jki-2A.2 

 AX -95177447 2A 17.7 - 18.7 39 0 2 0 0 

QYr.jki-2B.1 

 RAC875_rep_c109207_706 2B 68.5 - 69.5 24 0 0 0 0 

QYr.jki-2B.2 

 RAC875_c1226_652 2B 157.2 - 158.2 10 0 1 0 0 

QYr.jki-2B.3 

 AX 94388449 2B 575.6 - 576.6 4 0 0 0 0 

QYr.jki-2D 

 AX 94734962 2D 636.1 - 637.1 23 0 5 0 0 

QYr.jki-3B 

 BobWhite_c14365_59 3B 639.6 - 640.6 5 0 0 0 0 

QYr.jki-3D 

 Kukri_c3773_1450 3D 19.3 - 22.5 55 0 0 0 2 

QYr.jki-6A 

 AX -94526138 6A 608.0 - 609.0 42 0 0 1 3 

 BS00067558_51 6A 605.9 - 606.9 9 0 0 0 0 

QYr.jki-7D 

 TA005377 -1076 7D 12.8 - 13.8 19 0 1 0 0 

 

LRRs play an important role in the immune system of plants, which uses immune receptors 

to recognize pathogens and trigger defense responses. Most of these plant immune receptors 

possess a LRR domain, a structure characterized by a conserved pattern of hydrophobic leucine 

residues. LRR domains have a broad interaction surface that can tolerate a high degree of 

variability. Therefore, LRRs exhibit different classes of immune receptors that serve to mediate 

protein-protein interactions and thus have a dual function as a guardian and activator in plant 

defense against pathogens (Padmanabhan et al., 2009). When LRR domains are fused with a 

central nucleotide binding domain, NB-LRR proteins are formed. The core nucleotide-binding 

fold in NB-LRR proteins is part of a larger entity called the NB-ARC domain because of its 

presence in APAF-1 (apoptotic protease-activating factor-1), R proteins and CED-4 

(Caenorhabditis elegans death-4 protein) (van Ooijen et al., 2008). Thus, these protein 
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constructs are the first receptors to recognize MAMP/ and PAMP in PTI, and Avr proteins in 

ETI, respectively. The LRR domain is involved in auto-inhibition and/or effector recognition 

and the central NB-ARC domain acts as a regulatory domain determining whether the protein 

is in an active or inactive state (Bent et al., 1994; DeYoung and Innes, 2006; Steele et al., 2019). 

First active or induced defense response of plants is, e.g. the production of ROS (oxidative 

bursts) initiating HR (Almagro et al., 2009). By catalyzing the oxidoreduction of hydrogen 

peroxide, peroxidases (AX-94557244; QLr.jki-6B.1) are involved in ROS metabolism and thus 

play an important role in pathogen recognition and disease resistance. Furthermore, peroxidases 

are involved in the biosynthesis of the cell wall components, such as lignin and suberin (Hiraga 

et al., 2001; Almagro et al., 2009). Another enzyme involved in lignin and suberin biosynthesis 

and associated with increased cell wall strength, stress tolerance and disease resistance is 

o-methyltransferase (Lam et al., 2007; Novakazi, 2020). Two family proteins of these enzymes 

were identified within the fixed interval for QLr.jki-4A.1 (Kukri_rep_c109167_89) and QYr.jki-

2D (AX-94734962). 

While race-specific resistance genes often encode NB-LRR proteins, race-nonspecific 

resistance genes encode ABC transporters as well as protein kinases, which are involved in 

various molecular mechanisms (Keller et al., 2005; Krattinger et al., 2011). For leaf rust and 

stripe rust, one (QLr.jki-6B.2; RAC875_c59968_234) and two regions (QYr.jki-2A.1; 

BobWhite_c13373_250/ wsnp_Ku_c23598_33524490; QYr.jki-6A; AX-94526138) 

respectively, were found to contain ABC transporters (Table IV.3-1). In general, transporters 

are integral membrane proteins present in all organisms and differ in the number of 

transmembrane domains and transmembrane helices. In plants, ABC transporters belong to one 

of five different transporter families involved in disease resistance. (Devanna et al., 2021). 

Originally, they were identified as transporters involved in detoxification processes. Today, it 

is known that ABC transporters transport a wide range of substrates involved in various 

processes required for organ growth, plant nutrition, plant development, response to abiotic 

stress, resistance to pathogens and the interaction of plants with the environment (Kang et al., 

2011; Devanna et al., 2021). The ABC superfamily consists of eight subfamilies, designated 

ABCA to ABCI, with ABCH absent and ABCB and ABCG most abundant in plants. These 

subfamilies are further divided into three categories based on their structural domains, number 

of transmembrane domains and nucleotide binding domains (Hwang et al., 2016; Devanna et 

al., 2021). One of the most important quantitative resistance genes incorporated in wheat today 

is Lr34/Yr18/Sr57/Pm38, which encodes the pleiotropic drug resistance (PDR)-type ABCG 

transporter that enables the plant to limit the growth and development of various rust fungi as 
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well as powdery mildew (Krattinger et al., 2009; Krattinger et al., 2011). In Arabidopsis, a 

group of three ABC transporters (PDR, ABCG36 and PEN3) associated with glucosinolate-

dependent defense mechanisms restricts the penetration of non-host fungal pathogens (Hwang 

et al., 2016). 

In the fixed interval of wsnp_Ex_c6488_11266589 (QYr.jki-1A.2) a heat shock factor was 

annotated. Heat shock factors are the transcription factors that regulate the expression of heat 

shock proteins (HSP) (Sorger, 1991). HSPs are divided into six classes, of which HSP70 and 

HSP90 are chaperones responsible for protein folding, translocation and degradation, but are 

also involved in the response to abiotic and biotic stress factors (Rajan and D'Silva, 2009; Al-

Whaibi, 2011). Furthermore, HSP90 regulates cellular signaling, e.g. glucocorticoid receptor 

activity, while cytoplasmic HSP90 is responsible for pathogen resistance by reacting with 

pathogen signaling receptor and thus contributes to resistance of wheat to stripe rust (Pratt et 

al., 2004; Al-Whaibi, 2011; Wang et al., 2011). In contrast, HSP70 does not function alone, but 

binds to so-called J-proteins (DnaJ proteins), which belong to the HSP40 family and determine 

the specificity of HSP70 for function in various cellular processes (Rajan and D'Silva, 2009). 

Corresponding DnaJ domains were identified in the fixed intervals of CAP8_c2448_355 

(QLr.jki-1A.1), Kukri_rep_c109167_89 (QLr.jki-4A.1) and IAAV2363 (QLr.jki-5A.1). The 

function of HSP40 against viral pathogens has been well studied in various virus-plant 

interactions. For example, HSP40 was shown to cause HR-like cell death in soybean when 

overexpressed during infection with Soybean mosaic virus, while silencing resulted in increased 

susceptibility (Liu and Whitham, 2013; Park and Seo, 2015). However, Zhong et al. (2018) 

demonstrated increased ROS content and improved resistance of rice to the rice blast fungus 

Magnaporthe oryzae by silencing DnaJ OsDjA6. 

In the interval of six and seven peak markers for leaf and stripe rust, respectively, on 

chromosomes 1A, 2A, 2B, 3D, 4A, 4D and 7D, cytrochrome P450 was annotated. The 

cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and has 

been found in different organisms such as animals, fungi, protists, archaea, bacteria and viruses 

(Xu et al., 2015). The members of this superfamily are involved in numerous metabolic 

pathways with diverse and complex functions and play an important role in a variety of 

reactions (Xu et al., 2015). In terms of resistance to biotic stress factors, CYPs are important 

enzymes involved in the synthesis of various metabolites such as alkaloids, cyanogenic 

glucosides and terpenoids, but also in the synthesis of various defensive signaling molecules 

such as oxidized fatty acids and hydroperoxides (Xu et al., 2015). Thus, CYP93G2 was found 

to function as a flavanone 2-hydroxylase providing 2-hydroxyflavanones for C-glycosylation, 
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while CYP93G1, the closest homologue of CYP93G2, is a flavone synthase II that catalyzes 

the direct conversion of flavanones to flavones in rice (Lam et al., 2014). In addition, CYP are 

also involved in the biosynthesis of important cell wall components. In wheat, the CYP98 

family catalyzes the 3-hydroxylation step in the phenylpropanoid pathway leading to the 

biosynthesis of suberin phenol monomers (Morant et al., 2007). 

Using the Bavarian MAGIC wheat population, already known and established sources of 

resistance against the two rust fungi Puccinia triticina and Puccinia striiformis were detected, 

but also putative new QTL. For almost all QTL discovered in this study, genes directly involved 

in plant immunity were detected. Thus, the BMWpop contains promising candidate genes 

within the QTL that are worth further analysis. SNP markers for QTL can be converted to KASP 

markers usable in breeding for improved rust resistance. 
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APPENDIX 

1. Supplementary material of Chapter II | QTL mapping of adult plant and seedling 

resistance to leaf rust (Puccinia triticina Eriks.) in a multiparent advanced generation 

intercross (MAGIC) wheat population 

 

Download link: 

https://link.springer.com/article/10.1007/s00122-020-03657-2#additional-information 

 

Fig. S1 Pearson correlation of leaf rust severity between different field trials. Diagonals are 

histograms of each environment (Lengern LEN 2018, Quedlinburg QLB 2017 2018, Söllingen 

SOE 2017 2018). *** denotes significance at α = 0.001. Lowess curves were adjusted to the 

data points with a smoothing range of 0.75, based on the ‘lowess’ function implemented in the 

R-based ‘stats’ package 

Fig. S2 Pearson correlation (r) between averaged infection type (IT), infected leaf area (Pi) of 

seedling test and average ordinate (AO) of field trials (A, B), as well as correlation between IT 

and Pi (C). *** denotes significance at α = 0.001 

Fig. S3 Simple interval mapping of resistance to Puccinia triticina in field trials (A) and 

seedling test (B, C). The x axis shows the 21 wheat chromosomes. Positions are based on the 

genetic map, and the log10(p) values of each Marker are displayed on the y axis (black line). 

The red horizontal line represents the significance thresholds. SI of the significant QTL detected 

in this study are coloured in blue 

Tab. S1 List of virulences and avirulences of Puccinia triticina isolate 77WxR used in field 

trials and seedling test. Brackets indicate ambiguous results due to the differing symptom 

ratings between replications or moderate susceptibility (based on Zetzsche et al. 2019) 

Tab. S2 Complete information of the 19 QTL for leaf rust resistance in BMW population, 

evaluated in field trials (AO) and seedling test (IT and Pi)

https://link.springer.com/article/10.1007/s00122-020-03657-2#additional-information
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2. Supplementary material of Chapter III | Quantitative trait loci mapping of adult 

plant and seedling resistance to stripe rust (Puccinia striiformis Westend.) in a 

multiparent advanced generation intercross wheat population 

 

Download link: 

https://www.frontiersin.org/articles/10.3389/fpls.2021.684671/full#supplementary-material 

 

Supplementary Figure 1 Pearson’s correlation of stripe rust severity between different field 

trials. Diagonals are histograms for each environment (Lenglern LEN 2018-2019, Quedlinburg 

QLB 2017 2018, Söllingen SOE 2017 2018). *** denotes significance at α = 0.001. 

Supplementary Figure 2 Pearson’s correlation (r) between averaged infection type (IT), 

infected leaf area (Pi) of seedling test and average ordinate (AO) of field trials (A, B), as well 

as correlation between IT and Pi (C). *** denotes significance at α = 0.001. 

Supplementary Figure 3 Simple interval mapping of resistance to Puccinia striiformis in field 

trials (A) and seedling test (B, C). The x-axis shows the 21 wheat chromosomes. Positions are 

based on the genetic map, and the -log10(p) values of each marker are displayed on the y-axis 

(black line). The red horizontal line represents the significance thresholds. SI of the significant 

QTL detected in this study are colored in blue. 

Supplementary Table 1 List of virulences and avirulences of Puccinia striiformis isolate 

Warrior + Yr27 used in field trials and seedling test. Brackets indicate ambiguous results due 

to the differing symptom ratings between replications or moderate susceptibility (based on 

Zetzsche et al. 2019) 

Supplementary Table 2 Complete information of the QTL for stripe rust resistance in BMW 

population, evaluated in field trials (AO) and seedling test (IT and Pi). 

Supplementary Table 3 Comparison of physical positions of the QTL identified in the present 

study (bold) with those reported previously. 

Supplementary Table 4 List of gene annotations for peak markers ± 500,000 bp, shown as 

output retrieved from URGI database (https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Annotations) 

  

https://www.frontiersin.org/articles/10.3389/fpls.2021.684671/full%23supplementary-material
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3. Supplementary material of Chapter IV | General discussion 

Table A.3-1 | List of RILs resistant against Puccinia triticina in at least two environments 

(location-year combinations), sorted in descending order. 

RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2263 5 0.19 0.20 0.11 

2268 5 0.26 0.25 0.05 

2417 5 0.30 0.50 0.11 

2059 5 0.98 0.60 1.15 

2166 5 1.08 0.10 0.01 

2241 5 1.14 0.60 0.76 

2094 5 1.19 0.60 0.62 

2291 5 2.05 0.55 0.40 

2140 5 2.12 0.50 0.25 

2258 5 2.30 2.10 3.07 

2120 5 2.32 0.65 1.75 

2164 5 2.36 0.55 0.01 

2332 5 2.40 0.30 0.07 

2170 5 2.71 2.90 3.87 

2243 5 2.74 0.40 0.24 

2248 5 2.92 3.50 3.60 

2099 5 3.11 0.60 0.13 

2086 5 3.19 0.30 0.00 

2200 5 3.39 0.55 1.40 

2492 5 3.42 3.50 5.82 

2478 5 3.51 1.00 0.42 

2449 5 3.70 0.65 1.80 

2178 5 3.90 0.70 0.71 

2334 5 3.93 0.30 0.31 

2126 5 4.22 5.60 9.26 

BAYP4535 5 4.54 0.45 1.14 

2146 5 4.65 0.50 0.12 

2168 5 4.70 4.80 9.22 

2135 5 4.74 4.10 17.78 

2384 5 4.88 6.10 16.24 

2081 5 4.99 6.60 21.12 

2042 5 5.02 6.30 15.25 

2281 5 5.21 0.50 0.00 

2266 5 5.23 3.20 3.06 

2191 5 5.37 5.60 14.55 

2494 5 5.38 4.50 6.41 

2037 5 5.42 0.80 0.64 

2234 5 5.42 6.10 13.09 

2041 5 5.51 6.60 19.94 

2267 5 5.52 4.80 4.49 

2056 5 5.92 4.85 11.08 

2255 5 5.94 7.20 14.84 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2131 5 5.96 2.75 7.58 

2175 5 6.01 4.60 13.32 

2497 5 6.03 2.80 1.93 

2512 5 6.10 0.70 0.27 

2139 5 6.18 4.20 3.69 

2100 5 6.33 2.10 1.42 

2130 5 6.39 5.40 14.06 

2296 5 6.41 0.45 0.21 

2397 5 6.42 0.25 2.87 

2195 5 6.44 5.35 3.55 

2496 5 6.68 5.90 14.98 

2013 5 6.78 7.70 16.63 

2409 5 6.83 1.05 0.53 

2302 5 6.86 1.10 1.68 

2322 5 6.88 4.60 3.53 

2439 5 6.88 3.31 1.42 

2250 5 6.92 5.50 13.46 

2224 5 6.95 0.35 0.11 

2113 5 6.99 2.90 12.06 

2027 5 7.11 1.20 0.71 

2238 5 7.25 5.30 14.39 

2328 5 7.25 3.40 6.05 

2087 5 7.38 4.65 11.12 

2167 5 7.42 4.10 9.92 

2452 5 7.49 0.60 0.22 

2387 5 7.57 4.10 6.53 

2392 5 7.57 0.60 0.10 

2366 5 7.68 2.40 7.15 

2173 5 7.84 4.80 10.13 

2134 5 7.88 5.20 3.78 

2015 5 7.89 5.30 14.07 

2209 5 7.90 1.30 2.36 

2410 5 7.92 5.60 11.31 

2515 5 8.03 1.70 1.24 

2083 5 8.04 5.30 16.15 

2048 5 8.18 5.50 12.14 

2457 5 8.24 1.40 1.17 

2336 5 8.37 6.40 16.51 

2109 5 8.88 2.40 4.38 

2363 5 8.96 5.60 15.48 

2046 5 9.18 5.30 13.50 

2358 5 9.40 1.40 4.00 

2092 5 9.69 7.80 20.74 

2008 5 9.78 5.20 14.30 

2493 5 9.86 5.50 15.81 

2309 5 9.88 4.30 2.25 

2063 5 10.43 5.90 13.66 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2445 5 10.98 6.70 16.56 

2127 5 11.35 0.90 2.90 

2190 4 0.07 0.45 0.18 

2106 4 0.11 1.80 5.19 

2082 4 0.28 0.40 0.90 

2114 4 0.28 0.45 0.07 

2090 4 0.42 0.65 0.56 

2091 4 0.42 0.55 0.01 

2498 4 0.46 0.55 2.19 

2344 4 0.74 0.65 0.04 

2372 4 0.74 0.10 0.12 

2097 4 0.94 0.55 0.13 

2442 4 1.16 0.60 0.56 

2340 4 1.37 0.55 0.01 

2108 4 1.41 0.30 0.36 

2483 4 1.65 0.10 0.97 

2077 4 2.89 0.60 0.48 

2125 4 3.03 0.60 1.51 

2045 4 3.19 7.00 16.09 

2321 4 3.31 5.60 15.26 

2275 4 4.13 5.60 8.42 

2510 4 4.19 0.75 1.65 

2347 4 4.29 6.20 13.04 

2468 4 4.43 2.40 3.03 

2323 4 4.77 0.85 0.21 

2154 4 5.12 0.45 0.65 

2047 4 5.14 4.80 4.56 

2503 4 5.42 3.60 8.76 

2376 4 5.52 5.50 12.05 

2388 4 5.54 5.00 12.15 

2165 4 5.75 3.70 10.02 

2444 4 5.91 4.40 3.15 

2354 4 5.97 3.10 6.67 

2473 4 6.08 4.40 4.37 

2276 4 6.14 6.90 15.07 

2338 4 6.18 0.60 2.24 

2075 4 6.40 3.90 1.98 

2364 4 6.51 5.60 10.16 

2112 4 6.56 5.00 5.62 

2186 4 6.56 5.10 13.01 

2284 4 6.62 5.40 12.52 

Firl3565 4 6.63 5.80 8.81 

2039 4 6.76 3.80 10.95 

2425 4 6.85 1.05 0.44 

2467 4 6.95 4.70 12.64 

2413 4 6.97 0.25 0.10 

2157 4 7.12 0.70 1.81 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2071 4 7.15 5.20 15.09 

2511 4 7.15 1.10 0.20 

2237 4 7.24 5.30 12.80 

2007 4 7.30 7.50 17.28 

2310 4 7.43 0.70 0.59 

2080 4 7.46 1.05 0.26 

2304 4 7.53 1.60 1.53 

2043 4 7.54 6.30 14.01 

2356 4 7.55 6.70 18.19 

2128 4 7.69 5.00 13.61 

2447 4 7.72 0.70 0.05 

2516 4 7.73 1.30 1.32 

2485 4 7.93 0.70 1.62 

2143 4 7.95 1.25 4.14 

2156 4 7.99 3.40 2.60 

2002 4 8.02 4.25 7.80 

2141 4 8.04 4.80 8.47 

2118 4 8.05 5.50 15.97 

2489 4 8.15 5.10 11.82 

2023 4 8.17 6.00 14.14 

2219 4 8.23 2.25 3.10 

2355 4 8.38 5.10 13.89 

2145 4 8.48 4.90 10.41 

2330 4 8.50 0.85 0.75 

2353 4 8.54 5.60 13.51 

2474 4 8.56 5.90 14.56 

2095 4 8.58 0.75 0.40 

2203 4 8.68 7.80 20.60 

2038 4 8.70 0.50 0.10 

2293 4 8.72 5.70 14.52 

2272 4 8.82 5.90 12.93 

2465 4 8.88 5.90 16.13 

2438 4 8.90 4.80 9.67 

2018 4 9.09 4.70 10.02 

2394 4 9.21 0.90 0.15 

2475 4 9.22 0.75 1.11 

2230 4 9.27 0.85 1.32 

2025 4 9.47 5.40 13.38 

2220 4 9.48 3.70 1.45 

2193 4 9.52 7.90 22.06 

2031 4 9.65 5.70 15.99 

2271 4 9.74 0.25 0.32 

2205 4 9.75 6.30 14.97 

2287 4 9.85 3.40 5.71 

2052 4 9.90 2.70 8.95 

2277 4 10.01 1.55 1.32 

2507 4 10.05 5.60 13.50 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2242 4 10.09 6.00 14.16 

2369 4 10.21 3.10 1.78 

2137 4 10.34 6.20 16.76 

2179 4 10.55 2.90 3.22 

2456 4 10.56 6.20 15.81 

2504 4 10.86 6.20 14.87 

2180 4 10.96 4.05 2.91 

2231 4 11.23 4.70 7.76 

2212 4 11.26 5.90 13.55 

2034 4 11.28 3.70 10.86 

2129 4 11.54 1.40 2.86 

2024 4 12.31 3.90 6.76 

2107 3 0.73 0.55 0.13 

2202 3 3.82 8.00 16.02 

2297 3 4.86 0.50 0.17 

2264 3 5.01 5.90 13.34 

2257 3 5.16 2.15 1.12 

2361 3 5.37 6.40 13.77 

2294 3 5.71 5.50 13.48 

2121 3 5.90 4.50 15.93 

2246 3 5.98 5.50 5.16 

2054 3 6.02 5.30 9.72 

2279 3 6.33 0.90 2.81 

2217 3 6.38 0.70 1.12 

2365 3 6.39 6.40 15.54 

2124 3 6.61 6.10 13.39 

2206 3 6.94 5.20 19.57 

2443 3 6.97 0.60 0.00 

2229 3 7.03 6.10 15.75 

2028 3 7.15 6.50 11.09 

2481 3 7.21 0.65 0.03 

2490 3 7.21 4.70 14.39 

2454 3 7.36 0.55 0.01 

Potenzial 3 7.45 2.40 7.70 

2245 3 7.52 4.80 3.69 

2288 3 7.55 0.50 0.02 

2207 3 7.57 2.05 0.78 

2315 3 7.62 3.15 4.35 

2396 3 7.72 4.60 12.12 

2299 3 7.74 3.85 4.91 

2003 3 7.78 5.30 14.09 

2337 3 8.04 6.90 15.06 

2368 3 8.06 7.20 18.14 

2441 3 8.11 2.00 2.06 

2435 3 8.13 1.50 2.24 

2393 3 8.15 1.75 1.61 

2265 3 8.20 6.20 11.60 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2116 3 8.29 6.30 17.08 

2352 3 8.34 6.60 14.25 

2184 3 8.37 7.20 16.96 

2252 3 8.37 8.40 21.56 

2005 3 8.39 5.40 10.19 

2429 3 8.55 0.70 1.54 

2236 3 8.57 5.90 15.95 

2030 3 8.63 6.10 18.05 

2073 3 8.63 5.00 13.06 

2218 3 8.71 2.40 3.26 

2329 3 8.90 4.40 8.66 

Ambition 3 9.01 7.10 23.21 

2461 3 9.04 4.35 4.16 

2398 3 9.06 6.30 15.17 

2283 3 9.13 4.90 10.23 

Event 3 9.16 1.15 3.12 

2326 3 9.29 0.80 1.23 

2437 3 9.31 0.65 0.02 

Julius 3 9.35 1.30 1.34 

2153 3 9.59 0.10 0.05 

2286 3 9.71 0.65 1.50 

2233 3 9.79 5.90 15.14 

2111 3 9.98 6.70 19.39 

2285 3 10.12 0.40 0.61 

2320 3 10.20 2.60 2.97 

2377 3 10.28 6.00 10.86 

2020 3 10.29 6.00 10.76 

2172 3 10.30 4.90 13.11 

2162 3 10.51 4.60 11.28 

2401 3 10.61 0.70 1.28 

2261 3 10.72 3.50 2.93 

2004 3 10.74 7.20 19.07 

2386 3 10.92 7.20 15.73 

2351 3 11.17 5.70 11.64 

2226 3 11.25 1.50 0.85 

2424 3 11.31 0.90 2.83 

2244 3 12.33 3.60 10.84 

2096 3 12.62 6.30 16.70 

2274 3 12.88 2.25 4.78 

2469 3 12.94 4.50 4.36 

2472 3 13.16 3.30 3.90 

2051 3 13.43 4.20 10.17 

2455 2 3.15 1.00 3.38 

2240 2 4.12 5.50 15.83 

2152 2 4.42 0.60 0.17 

2132 2 4.75 6.10 28.27 

2459 2 5.13 2.20 1.75 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2148 2 5.19 1.00 3.28 

2314 2 5.39 5.70 9.35 

2509 2 5.82 0.85 0.94 

2325 2 6.00 0.75 0.21 

2177 2 6.21 2.80 5.69 

2029 2 7.26 1.20 0.71 

2213 2 7.36 6.40 18.09 

2446 2 7.39 6.00 14.49 

2362 2 7.46 6.60 15.51 

2360 2 7.72 6.70 18.22 

2182 2 7.76 5.30 14.13 

2144 2 7.82 1.70 0.95 

2001 2 8.07 5.40 9.84 

2151 2 8.10 4.25 10.79 

2292 2 8.19 5.40 5.43 

2421 2 8.21 6.10 13.32 

2176 2 8.23 8.40 23.08 

2036 2 8.37 4.30 7.58 

2232 2 8.78 6.40 16.36 

2300 2 8.81 5.60 22.44 

2216 2 8.88 6.80 17.84 

2440 2 8.91 4.35 3.90 

2373 2 9.31 5.70 17.88 

2426 2 9.32 1.50 3.33 

2204 2 9.56 2.50 2.64 

2197 2 9.58 2.40 0.76 

2136 2 9.65 6.90 20.31 

2305 2 9.86 2.00 3.87 

2223 2 9.90 7.60 18.66 

2066 2 9.98 7.50 17.79 

2133 2 10.05 7.70 16.29 

2402 2 10.13 7.20 18.84 

2270 2 10.21 0.40 0.15 

2278 2 10.26 5.90 20.06 

2280 2 10.27 0.70 1.07 

2289 2 10.27 1.75 0.97 

2249 2 10.32 4.50 8.80 

2423 2 10.35 0.35 0.01 

2342 2 10.43 4.00 3.62 

2044 2 10.52 5.60 20.04 

2032 2 10.64 6.20 16.10 

2399 2 10.67 7.10 18.99 

2269 2 10.80 6.70 16.26 

2026 2 10.88 3.70 6.87 

2006 2 11.00 5.60 10.31 

2295 2 11.08 6.30 18.36 

2508 2 11.16 4.00 9.45 
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RIL of 

BMWpopa 

No. of 

environments 
AOb ITc Pid 

2098 2 11.19 7.10 16.26 

2192 2 11.30 5.70 21.00 

2061 2 11.53 8.60 20.24 

2477 2 11.74 6.70 17.91 

2247 2 12.22 4.30 3.70 

2119 2 12.37 7.10 16.42 

2419 2 12.69 4.45 15.19 

2513 2 12.87 1.70 2.77 

2406 2 13.03 4.30 11.85 

2470 2 13.05 5.10 12.48 

2282 2 13.42 1.65 0.47 

2196 2 13.46 6.60 21.90 

2378 2 13.67 6.20 17.43 
a RILs highlighted in green were resistant in field trials and seedling tests. RILs in bold were resistant against 

both Puccinia triticina and Puccinia striiformis f. sp. tritici 
b Mean value of the average ordinate (field trials) over the number of environments displayed in column 2 
c Mean value of the visually evaluated infection type (seedling test) over five replications 
d Mean value of the percentage of infected leaf area (seedling test) over five replications 

 

Table IV.3-2 | List of RILs resistant against Puccinia striiformis f. sp. tritici in at least two 

environments (location-year combinations), sorted in descending order. 

RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2175 6 0.37 0.63 0.00 

2263 6 0.40 0.56 0.03 

2250 6 0.44 0.50 0.00 

2281 6 0.48 0.44 0.00 

2516 6 0.48 0.56 0.00 

2393 6 0.52 0.69 0.00 

2469 6 0.52 0.56 0.00 

2146 6 0.53 0.69 0.00 

2154 6 0.53 0.31 0.00 

2264 6 0.53 0.50 0.00 

2326 6 0.55 0.56 0.00 

2013 6 0.56 0.50 0.00 

2288 6 0.56 0.44 0.01 

2364 6 0.57 0.69 0.05 

2202 6 0.58 0.63 0.01 

2065 6 0.60 0.69 0.13 

2166 6 0.61 0.75 0.03 

2167 6 0.61 0.38 0.00 

2467 6 0.61 0.13 0.00 

2284 6 0.62 2.31 0.61 

2296 6 0.62 0.25 0.02 

2333 6 0.62 0.50 0.00 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2452 6 0.62 0.63 1.08 

2261 6 0.64 0.38 0.05 

2262 6 0.64 0.44 0.00 

BAYP4535 6 0.64 0.63 0.02 

2177 6 0.65 1.56 0.12 

2135 6 0.66 0.69 0.23 

2173 6 0.66 0.56 0.00 

2188 6 0.66 1.88 0.45 

2289 6 0.66 0.44 0.03 

2493 6 0.66 0.56 0.00 

2140 6 0.68 0.75 0.03 

2179 6 0.68 0.56 0.04 

2168 6 0.69 0.38 0.00 

2256 6 0.69 0.56 0.00 

2427 6 0.69 0.69 0.02 

2041 6 0.70 0.38 0.12 

2088 6 0.70 0.88 0.06 

2156 6 0.70 0.56 0.02 

2192 6 0.71 0.38 0.00 

2204 6 0.71 0.56 0.00 

2508 6 0.72 0.44 0.00 

2229 6 0.73 1.88 0.33 

2325 6 0.74 0.38 0.00 

2421 6 0.74 0.38 0.00 

2141 6 0.75 0.38 0.02 

2353 6 0.75 0.75 0.09 

2386 6 0.75 0.63 0.03 

2089 6 0.76 0.56 0.02 

2504 6 0.77 0.44 0.00 

2181 6 0.78 0.75 0.00 

2028 6 0.79 0.81 0.03 

2245 6 0.79 1.44 0.07 

2398 6 0.79 0.31 0.00 

2437 6 0.79 0.50 0.00 

2151 6 0.80 1.56 0.12 

2176 6 0.80 0.75 0.14 

2494 6 0.80 0.38 0.00 

2182 6 0.81 1.00 0.08 

2422 6 0.81 0.63 0.03 

2476 6 0.81 0.75 0.12 

2457 6 0.82 0.50 0.00 

2083 6 0.83 0.75 0.03 

2294 6 0.83 0.38 0.00 

2136 6 0.84 0.56 0.37 

2336 6 0.84 0.63 0.00 

2454 6 0.84 0.19 0.00 

2269 6 0.85 0.69 0.12 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2205 6 0.86 0.56 0.00 

2153 6 0.87 0.13 0.00 

2449 6 0.87 0.56 0.00 

2124 6 0.88 0.50 0.01 

2165 6 0.88 1.56 0.21 

2419 6 0.89 0.31 0.00 

2223 6 0.90 0.38 0.00 

2507 6 0.91 0.81 0.09 

2119 6 0.92 0.25 0.00 

2428 6 0.92 0.50 0.02 

2515 6 0.92 0.69 0.00 

2071 6 0.93 2.31 0.51 

2226 6 0.93 0.69 0.31 

2472 6 0.94 0.50 0.01 

2034 6 0.95 0.56 0.00 

2180 6 0.95 0.56 0.01 

2255 6 0.96 0.63 0.00 

2295 6 0.96 0.56 0.00 

2392 6 0.96 5.13 3.01 

2510 6 0.96 0.44 0.00 

2109 6 0.97 0.69 0.00 

2164 6 0.97 0.69 0.00 

2187 6 0.97 1.69 0.36 

2208 6 0.97 0.25 0.00 

2212 6 0.97 1.31 0.18 

2440 6 0.97 0.63 0.00 

2023 6 0.98 0.56 0.00 

2139 6 0.98 0.69 1.20 

2365 6 0.99 0.69 0.00 

2130 6 1.00 0.50 0.00 

2238 6 1.00 0.63 0.00 

2293 6 1.00 0.69 0.00 

2069 6 1.01 0.38 0.00 

2231 6 1.01 1.19 0.03 

2438 6 1.01 0.56 0.01 

2039 6 1.02 1.56 0.62 

2234 6 1.02 0.69 0.00 

2277 6 1.02 0.31 0.00 

2423 6 1.02 0.56 0.00 

2126 6 1.04 0.56 0.02 

2144 6 1.05 2.31 0.76 

2443 6 1.05 0.38 0.04 

2465 6 1.05 0.69 0.00 

2506 6 1.05 0.56 0.00 

2222 6 1.07 0.31 0.00 

2274 6 1.07 0.63 0.00 

2399 6 1.07 0.75 0.00 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2051 6 1.08 0.94 0.19 

2197 6 1.08 0.56 3.60 

2058 6 1.10 0.75 0.30 

2441 6 1.10 0.75 0.01 

2361 6 1.11 1.63 0.43 

2475 6 1.11 0.50 0.00 

2094 6 1.12 2.38 0.81 

2066 6 1.13 0.44 0.00 

2162 6 1.13 1.94 2.81 

2470 6 1.14 0.75 0.00 

2025 6 1.15 0.38 0.00 

2063 6 1.15 1.44 0.44 

2087 6 1.16 0.44 0.00 

2152 6 1.17 1.06 0.05 

2015 6 1.18 0.56 0.08 

2243 6 1.18 0.63 0.00 

2458 6 1.18 0.38 0.03 

2098 6 1.20 0.94 0.08 

2099 6 1.20 0.50 0.01 

2300 6 1.20 0.50 0.00 

2447 6 1.20 0.50 0.18 

2455 6 1.20 0.50 0.02 

2199 6 1.21 0.75 1.29 

2268 6 1.22 0.38 0.00 

2059 6 1.23 1.38 0.14 

2006 6 1.24 1.31 0.13 

2178 6 1.24 0.69 0.00 

2286 6 1.25 0.75 0.10 

2512 6 1.25 0.69 0.20 

2081 6 1.26 3.25 3.19 

2219 6 1.27 0.56 0.00 

Potenzial 6 1.27 0.44 0.17 

2031 6 1.28 0.56 0.00 

2492 6 1.28 0.69 0.02 

2373 6 1.29 0.50 0.66 

2497 6 1.30 0.63 0.00 

2207 6 1.31 0.88 0.07 

2312 6 1.31 0.56 0.00 

2496 6 1.34 0.69 0.00 

2128 6 1.36 0.50 0.01 

2342 6 1.36 1.00 0.02 

2409 6 1.36 1.00 0.08 

2417 6 1.36 1.44 0.17 

2191 6 1.38 0.63 0.05 

2360 6 1.40 0.50 0.00 

2413 6 1.40 1.56 0.12 

2215 6 1.41 1.50 0.19 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2446 6 1.41 0.38 0.00 

2240 6 1.42 0.56 0.06 

2459 6 1.42 1.94 1.75 

2077 6 1.43 0.38 0.00 

2163 6 1.43 0.63 0.01 

2048 6 1.45 0.69 0.06 

2514 6 1.46 1.75 0.36 

2265 6 1.47 0.94 1.90 

2032 6 1.48 0.56 0.39 

2061 6 1.48 0.75 0.26 

2211 6 1.49 0.75 0.03 

2237 6 1.49 0.63 0.03 

2456 6 1.50 0.56 0.00 

2451 6 1.51 0.63 0.01 

2155 6 1.52 0.56 0.00 

2275 6 1.56 0.56 0.00 

2445 6 1.59 0.88 0.21 

2394 6 1.62 2.00 1.21 

2448 6 1.62 0.44 0.00 

2272 6 1.63 0.38 0.00 

Bussard 6 1.63 1.50 0.23 

2131 6 1.64 0.44 0.00 

2196 6 1.64 0.56 0.00 

2022 6 1.65 0.69 0.00 

2213 6 1.68 2.33 1.66 

2280 6 1.68 1.19 0.30 

2267 6 1.71 2.19 0.37 

2276 6 1.71 0.63 0.00 

2330 6 1.71 0.44 0.00 

2290 6 1.73 1.00 0.03 

2424 6 1.74 1.38 0.43 

2251 6 1.75 0.63 0.01 

2477 6 1.75 0.63 0.00 

2331 6 1.78 2.44 4.61 

2258 6 1.82 0.63 0.00 

2228 6 1.84 3.06 0.54 

2236 6 1.85 0.75 0.03 

2145 6 1.89 0.13 0.00 

2358 6 1.89 3.13 2.48 

2002 6 1.94 0.50 4.72 

2062 6 1.94 1.06 0.05 

2367 6 1.97 0.81 0.02 

Format 6 2.14 0.88 0.06 

2387 6 2.15 2.50 1.09 

2118 6 2.16 1.25 0.10 

2172 6 2.16 0.31 0.04 

2395 6 2.17 1.44 0.72 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2241 6 2.21 1.00 0.15 

2242 6 2.22 0.63 0.00 

2282 6 2.26 0.58 0.01 

2038 6 2.27 1.50 0.16 

2397 6 2.28 0.50 0.00 

2200 6 2.30 1.44 0.12 

2206 6 2.30 0.56 0.04 

2198 6 2.31 0.31 0.00 

2414 6 2.36 0.38 0.01 

2509 6 2.38 1.94 1.02 

2209 6 2.43 0.75 0.02 

2186 6 2.57 1.44 0.45 

2435 6 2.57 2.19 0.35 

2003 6 2.58 5.00 4.55 

2043 6 2.62 0.69 0.00 

2354 6 2.63 6.00 4.34 

2024 6 2.65 0.88 0.20 

2073 6 2.71 2.25 0.37 

2216 6 2.85 1.88 0.31 

2426 6 2.95 1.25 0.21 

2244 6 3.02 0.50 0.00 

2001 6 3.09 0.69 0.00 

2384 6 3.09 0.75 0.19 

2402 6 3.09 1.38 0.14 

2453 6 3.17 3.88 1.99 

2362 6 3.26 0.63 0.07 

2220 6 3.28 3.13 2.23 

2026 6 3.46 2.13 0.19 

Ambition 6 3.60 0.75 0.03 

2328 6 3.62 0.63 0.00 

2266 6 3.63 0.75 0.03 

2170 6 3.93 0.75 0.00 

2401 6 4.09 2.19 0.72 

2217 6 4.16 0.81 0.00 

2292 6 4.17 1.50 0.46 

2503 6 4.20 2.25 0.62 

2148 6 4.25 0.50 0.00 

2511 6 4.33 1.17 0.00 

Firl3565 6 4.67 3.69 1.05 

2232 6 4.81 5.25 2.24 

2020 6 4.82 1.44 0.08 

Julius 6 5.13 1.50 0.22 

2338 6 5.92 3.94 1.96 

2439 6 5.99 2.06 1.63 

2311 6 6.86 1.63 0.33 

2097 6 7.06 4.50 2.42 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2444 6 7.26 3.75 1.30 

2060 5 0.24 1.25 0.29 

2033 5 0.48 0.81 0.01 

2239 5 0.57 0.88 0.14 

2143 5 0.95 0.50 0.00 

2195 5 1.15 1.50 0.43 

2111 5 1.34 4.31 2.31 

2036 5 1.77 0.38 0.01 

2430 5 1.83 2.25 1.20 

2029 5 1.99 0.69 0.00 

2490 5 1.99 1.63 0.25 

2418 5 2.04 0.56 0.01 

2142 5 2.15 2.94 0.78 

2227 5 2.64 4.25 2.61 

2030 5 2.67 3.25 0.56 

2310 5 2.74 0.75 0.52 

2329 5 2.79 0.75 0.00 

2468 5 2.97 0.94 0.40 

2323 5 3.02 0.69 0.01 

2218 5 3.20 3.00 1.00 

2327 5 3.24 1.63 0.85 

2481 5 3.39 1.50 0.35 

2278 5 3.58 0.56 0.05 

2485 5 3.67 0.69 0.00 

2324 5 3.68 1.38 0.47 

2306 5 3.88 0.69 0.00 

2505 5 3.93 2.44 0.39 

2461 5 3.97 2.69 0.56 

2055 5 4.08 0.69 0.00 

2489 5 4.11 2.69 0.66 

2133 5 4.14 1.00 0.12 

2478 5 4.38 0.81 0.06 

2285 5 4.46 4.94 2.83 

2350 5 4.64 1.94 0.58 

2193 5 4.67 2.13 0.60 

2368 5 4.84 4.50 2.28 

2012 5 5.07 2.38 0.82 

2320 5 5.09 0.69 0.72 

2037 5 5.22 4.25 2.15 

2137 5 6.19 0.75 0.02 

2355 5 6.77 3.63 3.82 

2376 5 6.96 5.13 7.36 

2127 5 7.38 4.38 3.42 

2283 5 8.18 6.00 4.07 

2009 5 8.23 7.50 5.88 

2248 5 8.41 0.81 0.25 

2322 5 8.49 4.25 2.45 
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RIL of  

BMWpopa 

No. of  

environments 
AOb ITc Pid 

2132 5 10.27 6.38 11.07 

2334 5 11.88 6.00 7.40 

2471 4 1.23 0.69 0.04 

2363 4 1.41 1.56 0.41 

2184 4 1.93 6.00 3.66 

2271 4 3.69 5.25 3.93 

2050 4 4.05 3.69 1.22 

2287 4 4.28 0.50 0.00 

2203 4 4.48 5.25 7.01 

2080 4 4.67 0.44 0.00 

2042 4 4.90 4.25 4.07 

2252 4 5.07 2.50 0.77 

2270 4 5.09 0.63 0.01 

2247 4 5.32 1.50 0.23 

2309 4 5.83 3.56 2.52 

2406 4 6.49 1.50 1.23 

2100 4 6.76 4.25 4.03 

2129 4 6.91 2.19 0.52 

2513 4 7.25 0.63 0.00 

2230 4 7.54 0.81 0.12 

2190 4 7.64 0.63 0.08 

2348 4 8.21 4.50 3.63 

2351 4 8.38 5.25 1.03 

2157 4 8.53 1.38 0.16 

2233 4 8.96 3.75 1.75 

2356 4 10.61 4.13 5.18 

2120 4 11.64 3.25 5.34 

2008 3 3.61 4.38 3.57 

Event 3 3.73 1.44 0.35 

2432 3 4.37 1.58 0.04 

2464 3 4.76 2.19 0.28 

2474 3 4.90 2.13 0.84 

2304 3 5.57 1.50 1.75 

2113 3 5.60 3.25 1.89 

2369 3 5.79 4.75 3.76 

2429 3 7.20 1.94 0.59 

2068 3 7.74 2.88 0.03 

2112 3 7.88 5.00 5.68 

2095 3 8.42 3.50 1.26 

2396 3 8.53 3.00 1.72 

2046 3 8.76 2.88 1.92 

2305 3 9.16 3.63 6.93 

2134 3 9.70 4.67 1.85 

2299 3 9.85 3.38 3.34 

2378 3 9.91 5.50 5.14 

2366 3 10.15 7.25 5.97 

2347 3 10.45 6.75 8.14 
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BMWpopa 

No. of  
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AOb ITc Pid 

2121 3 10.86 2.75 2.83 

2005 3 10.89 4.25 2.04 

2307 2 2.41 1.81 0.45 

2372 2 3.31 1.75 0.56 

2344 2 4.04 1.44 0.09 

2075 2 5.60 2.38 2.75 

2249 2 5.71 2.31 2.61 

2410 2 8.04 5.67 2.52 

2340 2 8.14 0.81 0.01 

2044 2 9.27 1.25 0.32 

2027 2 10.73 2.44 1.33 

2096 2 11.77 1.56 0.52 

2224 2 11.79 1.44 0.69 
a RILs highlighted in green were resistant in field trials and seedling tests. RILs in bold were resistant against 

both Puccinia striiformis f. sp. tritici and Puccinia triticina 
b Mean value of the average ordinate (field trials) over the number of environments displayed in column 2 
c Mean value of the visually evaluated infection type (seedling test) over four replications 
d Mean value of the percentage of infected leaf area (seedling test) over four replications 
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