Mechanistische Studien zur η^1 -Vinylidenkomplex $\rightarrow \eta^2$ -Alkinkomplex-Isomerisierung und synthetische Anwendung von

Carbonylvinylidenkomplexen

des Wolframs

Inaugural-Dissertation zur Erlangung des Doktorgrades der Naturwissenschaftlichen Fachbereiche (Fachbereich Chemie) der Justus-Liebig-Universität Gießen

vorgelegt von

Sascha Uhlig

aus Lollar

Gießen 2002

D 26

Dekan:

1. Berichterstatter

2. Berichterstatter

Tag der mündlichen Prüfung:

Prof. Dr. Jürgen Janek Prof. Dr. Junes Ipaktschi Prof. Dr. Rainer Askani 12. Juni 2002 FÜR KIRSTIN

Inhaltsverzeichnis

A	Einleitung	1
1	Metallorganische Chemie	3
1.1	Entwicklung und Bedeutung	3
1.2	Bindung	4
1.3	Metallorganische Verbindungsklassen	6
	1.3.1 Carbene	6
	1.3.2 Vinylidene	9
	1.3.3 η^2 -Alkinkomplexe	10
	1.3.4 Carbamoylkomplexe	11
	1.3.5 Vinylkomplexe	13
2	Vinyliden- und η^2 -Alkinkomplexe des Wolframs	15
2.1	Darstellung, Spektren und Eigenschaften der Vinylidene	15
2.2	Darstellung, Spektren und Eigenschaften der η^2 -Alkinkomplexe	17
3	Problemstellung und Planung der Experimente	20
B	Umlagerung von Vinylidenen zu η^2 -Alkinkomplexen:	
	Synthetische und kinetische Studien	22
1	Allgemeiner Überblick	23
1.1	Umlagerung von η^2 -Alkinkomplexen zu Vinylidenen	23
1.2	Umlagerung von Vinylidenen zu η^2 -Alkinkomplexen	26
1.3	Umlagerung von η^2 -Silylalkinkomplexen zu Silylvinylidenen und vice versa	30
2	Versuche zur Darstellung und Umlagerung der Vinylidene des Wolframs	34
2.1	Darstellung und Charakterisierung des (Methyldiphenylsilyl)vinylidens 33e	
	sowie des η^2 -(Methyldiphenylsilyl)propinkomplexes 36c	34
2.2	Thermische Umlagerung der Wolframvinylidene	38
3	Kinetische Untersuchungen	41
3.1	Motivation	41
3.2	Kinetischer Isotopeneffekt	43
3.3	Darstellung des Silyl(deutero)vinylidens 33d- <i>d</i> ₁	45

3.4	Bestimmung der kinetischen Daten und der Aktivierungsparameter der	
	Umlagerungsreaktionen $33d \rightarrow 38a$ und $33d-d_1 \rightarrow 38a-d_1$	46
	3.4.1 Bestimmung der Reaktionsordnung	47
	3.4.2 Bestimmung des kinetischen Isotopeneffektes	51
	3.4.3 Bestimmung der Aktivierungsenergie	54
	3.4.4 Berechnung der thermodynamischen Aktivierungsparameter	56
3.5	Interpretation der kinetischen Daten und die daraus resultierenden	
	Schlußfolgerungen	60
4	Zusammenfassung	66
С	Nucleophile Addition an Carbonylvinylidene	67
1	Allgemeiner Überblick	68
2	Nucleophile Addition an den Vinylidenliganden	74
2.1	Darstellung der Aminocarbene 90a-d und 91a-d	74
2.2	Charakterisierung der Aminocarbene 90a-d und 91a-d	75
3	Nucleophile Addition an den Carbonylliganden	79
3.1	Isolierung der Carbamoyl(vinyl)komplexe 92a-d	79
3.2	Charakterisierung der Carbamoyl(vinyl)komplexe 92a-d	80
	3.2.1 Röntgenstrukturanalyse des Carbamoyl(vinyl)komplexes 92b	80
	3.2.2 IR und NMR-Daten	84
4	Mechanismen	90
5	Zusammenfassung	95
D	Experimenteller Teil	97
1	Allgemeine Hinweise	98
1.1	Schutzgas, Lösungsmittel und Reagenzien	98
1.2	Chromatographiematerialien	99
1.3	Spektrometer	100
1.4	Analysen, Schmelzpunkte	100
2	Beschreibung der Versuche	101

Π

2.1	tert-B	utyldimethylsilyl-substituierte Vinylidene und η^2 -Alkinkomplexe	101
	2.1.1	Darstellung von (tert-Butyldimethylsilyl)vinyliden 33d	101
	2.1.2	Darstellung von η^2 -(<i>tert</i> -Butyldimethylsilyl)propinkomplex 36b	103
	2.1.3	Darstellung von η^2 -(<i>tert</i> -Butyldimethylsilyl)acetylenkomplex 38a	104
2.2	Methy	ldiphenylsilyl-substituierte Vinylidene und η^2 -Alkinkomplexe	106
	2.2.1	Darstellung von (Methyldiphenylsilyl)vinyliden 33e und	
		unsubstituiertem Vinyliden 37	106
	2.2.2	Darstellung von η^2 -(Methyldiphenylsilyl)propinkomplex 36c	109
	2.2.3	Darstellung von η^2 -(Methyldiphenylsilyl)acetylenkomplex 38c	110
2.3	Versu	che zur thermischen Umlagerung von nicht-silylsubstituierten	
	Vinyli	denen	112
	2.3.1	Versuch der thermischen Umlagerung von unsubstituiertem	
		Vinyliden 37	112
	2.3.2	Thermische Umlagerung von tert-Butylvinyliden 33a	112
2.4	Versu	che zur Bestimmung der kinetischen Daten der thermischen Umlagerung	
	von 33	$\mathbf{3d} \rightarrow \mathbf{38a} \text{ und } \mathbf{33d} \mathbf{-} d_1 \rightarrow \mathbf{38a} \mathbf{-} d_1$	114
	2.4.1	Darstellung von (<i>tert</i> -Butyldimethylsilyl)(deutero)vinyliden 33d- <i>d</i> ₁	114
	2.4.2	Bestimmung der kinetischen Daten der thermischen Umlagerung von	
		$33d \rightarrow 38a \text{ und } 33d-d_1 \rightarrow 38a-d_1$	115
2.5	Amino	ocarbene	118
	2.5.1	Darstellung von (N-n-Butylamino)(neopentyl)carben 90a	118
	2.5.2	Darstellung von (N-Isopropylamino)(neopentyl)carben 90b	120
	2.5.3	Darstellung von (N-tert-Butylamino)(neopentyl)carben 90c	121
	2.5.4	Darstellung von (N-Pyrrolidino)(neopentyl)carben 90d	123
	2.5.5	Darstellung von (N-n-Butylamino)(silylmethylen)carben 91a	124
	2.5.6	Darstellung von (N-Isopropylamino)(silylmethylen)carben 91b	126
	2.5.7	Darstellung von (N-tert-Butylamino)(silylmethylen)carben 91c	127
	2.5.8	Darstellung von (N-Pyrrolidino)(silylmethylen)carben 91d	129
2.6	Carba	moylvinylkomplexe	130
	2.6.1	Darstellung von (n-Butylcarbamoyl)(cis-tert-butylvinyl)komplex 92a	130
	2.6.2	Darstellung von (Isopropylcarbamoyl)(cis-tert-butylvinyl)komplex 92b	132
	2.6.3	Darstellung von (tert-Butylcarbamoyl)(cis-tert-butylvinyl)komplex 92c	133
	2.6.4	Darstellung von (Pyrrolidinocarbonyl)(cis-tert-butylvinyl)komplex 92d	134

E	Spektren	136
1	¹ H-NMR-Spektren	137
2	¹³ C-NMR-Spektren	145
3	IR-Spektren	153
F	Formelverzeichnis	167
G	Literaturverzeichnis	174
H	Anhang	184
1	Kinetische Daten	185
1.1	Bestimmung der Reaktionsordnung von $33d \rightarrow 38a$	185
1.2	Bestimmung der Geschwindigkeitskonstanten von $33d \rightarrow 38a$	190
1.3	Bestimmung der Geschwindigkeitskonstanten von $33d-d_1 \rightarrow 38a-d_1$	195
2	Röntgenstrukturdaten von Komplex 92b	200

Abkürzungsverzeichnis

A	Arrhenius-Faktor	e^{\ominus}	Elektron
a, b, c	Gitterkonstanten	$E_{\mathbf{A}}$	Aktivierungsenergie
a*, b*, c*	reziproke Gitterkonstanten	Et	Ethyl
Abb.	Abbildung	et al.	et alteri
ber.	berechnet	eu	Entropieeinheiten (entropy
<i>n</i> -BuLi	<i>n</i> -Butyllithium		<i>units</i>), cal $mol^{-1} K^{-1}$ bzw.
Bu ^t	tert-Butyl		$J \text{ mol}^{-1} \text{ K}^{-1}$
bzw.	beziehungsweise	eV	Elektronenvolt
С	Coulomb	f	Atomformfaktor
°C	Grad Celsius	Fc	Ferrocenyl
ca.	zirka	F_{o}	beobachteter Strukturfaktor
cal	Kalorien	G	Freie Enthalpie
cm	Zentimeter	g	Gramm
Ср	η^5 -Cyclopentadien(yl)	GC	Gaschromatographie
Cp*	η^5 -Pentamethylcyclopenta-	gef.	gefunden
	dien(yl)	ges.	gesättigte
d	Tag(e)	Gl.	Gleichung
d.h.	das heißt	Н	Enthalpie
dippe	1,2-Bis(diisopropylphos-	h	Stunde(n)
	phano)ethan	h	Plancksche Konstante
	(Pr ⁱ ₂ PCH ₂ CH ₂ PPr ⁱ ₂)		$(h = 6.61608 \times 10^{-34} \text{ J s})$
d^n	formale d-Elektronen-	hkl	Miller-Indices
	Konfiguration	Hz	Hertz
dppe	1,2-Bis(diphenylphosphano)-	Ι	Intensität
	ethan (Ph ₂ PCH ₂ CH ₂ PPh ₂)	IR	Infrarot
dppm	1,2-Bis(diphenylphosphano)-	J	Joule
	methan (Ph ₂ PCH ₂ PPh ₂)	$^{\mathrm{n}}J$	Kopplungskonstante mit
Е	Elektrophil		Ordnung n
е	Elementarladung	K	Kelvin
	$(e = 1.602177 \times 10^{-19} \mathrm{C})$	Κ	Gleichgewichtskonstante

k	Geschwindigkeitskonstante	R	Rest
$k_{ m B}$	Boltzmann-Konstante	R	Gaskonstante
	$(k_{\rm B} = 1.380662 \times 10^{-23} \text{ J K}^{-1})$		$(R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1})$
kcal	Kilokalorien	R_1	konventioneller R-Wert
kJ	Kilojoule		(Zuverlässigkeitsfaktor, mit Fo-
konz.	konzentriert		Daten berechnet)
Ks	Gleichgewichtskonstante der	r^2	Korrelationskoeffizient
	Protolysereaktion	red. Elim.	reduktive Elimierung
L	Ligand	RK	Reaktionskoordinate
Lit.	Literatur	RT	Raumtemperatur
М	Metall	S	Entropie
M^+	Molekül-Ionenpeak	S.	Seite
Me	Methyl	S	Sekunde(n)
mg	Milligramm	S.	siehe
MHz	Megahertz	S	Standardfehler
min	Minute(n)	Sdp.	Siedepunkt
mm	Millimeter	Smp.	Schmelzpunkt
mmol	Millimol	Т	Temperatur
MO	Molekülorbital	t	Zeit
MS	Massenspektroskopie,	Tab.	Tabelle
	-spektrum	tert	tertiär
m/z	Masse pro Ladung	THF	Tetrahydrofuran
n	0, 1, 2,	u.a.	unter anderem
n	Reaktionsordnung	$U_{ m eq}$	äquivalenter isotroper
NMR	Kernmagnetische Resonanz		Temperaturfaktor
Ph	Phenyl	U_{ij}	anisotrope Temperaturfaktoren
pK _S	$-\log K_{\rm S}$	ÜZ	Übergangszustand
PN	(Diisopropylphosphinodi-	V	Volumen
	methylamino)ethan	v_0	Anfangsgeschwindigkeit
	(Pr ⁱ ₂ PCH ₂ CH ₂ NMe ₂)	wR_2	gewogener <i>R</i> -Wert (mit F_0^2 -
ppm	parts per million		Daten berechnet)
Pr ⁱ	Isopropyl	Х	anderer Rest als R
ру	Pyridin	<i>x</i> , <i>y</i> , <i>z</i>	Atomkoordinaten

Ζ	Zahl der Formeleinheiten pro	z.B.	zum Beispiel
	Elementarzelle		
α, β, γ	Winkel in der Elementarzelle	θ	Beugungswinkel
Δ	Erhitzen	κ	Transmissionskoeffizient
δ	chemische Verschiebung	λ	Wellenlänge
δ^{\oplus} , δ^{\ominus}	positive bzw. negative	v	Frequenz
	Partialladung	ρ	Dichte
η^{n}	Haptizität	σ	Standardabweichung
[X]	molare Konzentration von X	0	Grad
Å	Ångström (10^{-10} m)	*	Kennzeichen für einen
$\widetilde{\nu}$	Wellenzahl		Übergangszustand

Bei der Beschreibung der Spektren werden in den Tabellen zusätzlich die folgenden Abkürzungen verwendet:

NMR	arom.	aromatisch
	br	breit
	d	Duplett
	dd	Duplett von Duplett
	diastereot.	diastereotop
	dq	Duplett von Quartett
	m	Multiplett
	Methylgr.	Methylgruppe(n)
	Prot.	Proton(en)
	S	Singulett
	teilw.	teilweise
	t	Triplett
	überl.	überlappend

IR	m	mittel (medium)
	S	stark (strong)
	W	schwach (weak)

A Einleitung

Organometallverbindungen werden allgemein dadurch definiert, daß sie mindestens eine Metall-Kohlenstoff-Bindung enthalten. Das Gebiet, das sich mit diesen Substanzen beschäftigt – die *metallorganische Chemie* –, kann als Bindeglied zwischen der organischen und der anorganischen Chemie betrachtet werden. Seit Mitte der fünfziger Jahre entwickelte sie sich zu einem erfolgreichen Forschungsgebiet, das neue Reaktionstypen, ungewöhnliche Strukturen und praktische Anwendungen in der organischen Chemie sowie der industriellen Katalyse umfaßt. Die Katalyse mittels metallorganischer Verbindungen wird noch an Bedeutung zunehmen, da der Energieverbrauch von chemischen Verfahren in der Industrie aufgrund von sowohl ökonomischen als auch ökologischen Gründen weiterhin minimiert werden muß.

Diese Arbeit soll einen Beitrag zu diesem wichtigen Bereich der Chemie liefern.

Nachfolgend wird im ersten Kapitel dieser Einleitung auf die Bedeutung bzw. die historische Entwicklung der metallorganischen Chemie und die Bindungsarten in den Organometallverbindungen eingegangen. Daraufhin werden die für die vorliegende Arbeit wichtigen metallorganischen Vebindungsklassen behandelt. Im zweiten Kapitel werden die dieser Arbeit zugrundeliegenden Vinyliden- und η^2 -Alkinkomplexe des Wolframs näher beschrieben. Das letzte Kapitel geht auf die Zielsetzung der vorliegenden Arbeit und die Planung der Experimente ein.

Im *Teil B* wird die selten beobachtbare Umkehrung der wichtigen η^2 -Alkinkomplex \rightarrow Vinyliden-Umlagerung behandelt. Es wird gezeigt, daß die Vinylidene des Wolframs zu den entsprechenden η^2 -Alkinkomplexen isomerisieren können. Außerdem wird diese Umlagerung kinetisch genauer untersucht.

Der *Teil C* setzt sich mit der nucleophilen Addition an die Wolframvinylidene auseinander. Die Resultate werden ein neues Reaktivitätsmuster in der Addition von Aminen an Vinylidene mit einer Carbonylgruppe als konkurrenzfähige elektrophile Seite zeigen.

1 Metallorganische Chemie

1.1 Entwicklung und Bedeutung

Der Ursprung der metallorganischen Chemie fällt in das Jahr 1760. Bei der Herstellung einer unsichtbaren Tinte aus Cobaltmineralien in einer Pariser Militärapotheke verwendete CADET Mineralien, die mit As₂O₃ verunreinigt waren. Dabei entstand eine Flüssigkeit, die u.a. Kakodyloxid [(CH₃)₂As]₂O enthielt – die erste metallorganische Verbindung.^[2]

Die Entdeckung der ersten Organoübergangsmetallverbindung, ein Platinolefinkomplex (Na[PtCl₃C₂H₄]), gelang dem dänischen Apotheker ZEISE im Jahr 1827^[3] und wurde über ein Jahrhundert weder verstanden noch gewürdigt.

Die Darstellung von Ni(CO)₄, dem ersten binären Metallcarbonyl, ca. sechzig Jahre später durch MOND, hatte größere Bedeutung, da diese Entdeckung zu einem kommerziellen Prozeß zur Reinigung von Nickel führte.^[4]

Es gelangen aber erst grundlegende Fortschritte, nachdem Röntgenbeugungsmethoden über den festen Zustand der Verbindungen und IR- sowie NMR-Spektroskopie über die metallorganischen Komplexe in Lösung detaillierte Strukturinformationen lieferten. Ab 1951, zu einem Zeitpunkt als diese Techniken gerade allgemein zugänglich wurden, entwickelte sich die Forschung in der metallorganischen Chemie dann in rasendem Tempo. Der Meilenstein war die unabhängige Entdeckung des Ferrocens durch REALY und PAUSON sowie MILLER.^[5] Die Aufklärung der Struktur des Ferrocens, die Sandwichstruktur, von WILKINSON, ROSENBLUM und WOODWARD als auch die Benzol-ähnlichen elektrophilen Substitutionsreaktionen dieser Verbindung^[6] stimulierte enorm die akademische Forschung auf diesem Gebiet.

Das Wissen um die metallorganische Chemie hat sich seit damals immens gesteigert. Viele wichtige Chemikalien werden heute industriell durch Reaktionen hergestellt, die von metallorganischen Verbindungen katalysiert werden, wie z.B. das *Fischer-Tropsch-Verfahren*^[7] (1925) zur Herstellung von flüssigen Alkanen, Olefinen, Methanol und höheren Alkoholen aus Synthesegas (CO und H₂); die *Oxosynthese*^[8] (ROELEN, 1938), Hydroformylierung von Olefinen mit Synthesegas zu Aldehyden; das *Ziegler-Natta-Verfahren*^[9] (1955), Polymerisation von Alkenen bei Normaldruck und Raumtemperatur; das *Wacker-Verfahren*^[10] (JIRA, 1962), Olefinoxidation in Abhängigkeit des Lösungsmittels zur Darstellung technisch wichtiger organischer Zwischenprodukte wie Acetaldehyd, Vinylacetat und Vinylchlorid sowie das *Monsanto-Verfahren*^[11] (1971) zur Synthese von Essigsäure durch Carbonylierung von Methanol.

1.2 Bindung

Metallorganische Verbindungen sind durch mindestens eine Bindung zwischen einem Metall und Kohlenstoff gekennzeichnet. Das Metall kann ein Hauptgruppen- oder ein Nebengruppenelement sein. Da bei den Übergangsmetallen neben den s- und p-Orbitalen auch d-Orbitale für die Bindungen herangezogen werden können, gibt es bei den Übergangsmetallkomplexen eine Vielzahl von Bindungsarten. Im folgenden werden aber aus Platzgründen nur die für diese Arbeit wichtigen Typen besprochen.

Durch die teilweise Besetzung der d-Orbitale haben die Übergangsmetalle Elektronendonator- und Elektronenakzeptor-Eigenschaften. Sie können mit Donator-/Akzeptorliganden, wie z.B. Carbonylen, in Wechselwirkung treten (s. Abb. 1). Dabei bildet das freie Elektronenpaar des Kohlenmonoxids zum Metall eine dative σ -Bindung Ligand \rightarrow Metall aus. Dadurch entsteht eine hohe Elektronendichte am Metallatom. Über ein leeres π^* -Orbital kann CO aus besetzten d-Orbitalen des Metallatoms Elektronendichte aufnehmen. Es entsteht eine π -Rückbindung Metall \rightarrow Ligand. Dieser Bindungsmechanismus wird als *synergetisch* (zusammenwirkend) bezeichnet.

Abb. 1 Bindung in einem Übergangsmetallcarbonyl: a) σ-Bindung Ligand → Metall. Das nichtbindende Molekülorbital des CO tritt in Wechselwirkung mit einem symmetriegeeigneten, leeren Orbital des Metalles. b) π-Rückbindung Metall → Ligand. Ein besetztes Metall-d-Orbital geeigneter Symmtrie überlappt mit einem leeren p*-Orbital von CO.

Man kann zwei Klassen von π -Akzeptoren unterscheiden:

- a) longitudinale π -Akzeptoren, wie z.B. Carbonyl-, Nitrosyl-, Carben- und Vinylidenliganden und
- b) perpendikulare π -Akzeptoren, wie Alkene und Alkine.

Neben der Bindung eines Carbonylliganden soll hier noch die Bindung eines weiteren wichtigen longitudinalen π -Akzeptors genauer beschrieben werden. Bei den Carbenkomplexen (s. *Kapitel A.1.3.1*) wirkt das sp²-Orbital des Carben-Kohlenstoffs als σ -Donor und das leere p-Orbital als π -Akzeptor (s. Abb. 2).

Abb. 2 Bindung in einem Carbenkomplex: a) σ-Bindung Ligand → Metall. Das sp²-Hybridorbital des Carben-Kohlenstoffs tritt mit einem symmetriegeeigneten, leeren d-Orbital des Metalls in Wechselwirkung. b) π-Rückbindung Metall → Ligand. Ein besetztes d-Orbital des Metallatoms mit geeigneter Symmetrie überlappt mit dem leeren p-Orbital des C-Atoms.

Die η^2 -Alkinkomplexe (s. *Kapitel A.1.3.3*) gehören zu den perpendikularen π -Akzeptoren. Hier geht die σ -Bindung jedoch von einem besetzten π -Orbital des Alkins zum Metall aus. Die Rückbindung erfolgt von einem besetzten d-Orbital des Metalls zum unbesetzten π^* -Orbital des Alkins (s. Abb. 3).

Abb. 3 Bindung in einem Übergangsmetall-η²-Alkinkomplex: a) σ-Bindung Ligand → Metall. Überlappung eines besetzten π-Orbitals des Alkins mit einem symmetriegeeigneten, leeren Orbital des Metallatoms. b) π-Rückbindung Metall → Ligand. Wechselwirkung eines symmetriegeeigneten, besetzten Orbitals des Metallatoms mit einem unbesetzten π*-Orbitals des Alkins.

Da Alkine ein weiteres π - und π *-Orbital besitzen (meist als π_{\perp} - und π_{\perp} *-Orbital bezeichnet), besteht außerdem die Möglichkeit, daß diese ebenfalls mit dem Metall in Wechselwirkung treten. Das Alkin liegt dann als Vier-Elektronen-Ligand vor.

1.3 Metallorganische Verbindungsklassen

Aufgrund der Vielzahl der metallorganischen Verbindungsarten sollen im folgenden nur auf die in dieser Arbeit behandelten Komplexklassen eingegangen werden.

1.3.1 Carbene

Freie Carbenmoleküle sind elektronenarme Intermediate, die mit organischen Verbindungen auf unterschiedliche Weise reagieren. Sie können durch Atome mit freien Elektronenpaaren am Carbenkohlenstoffatom stabilisiert werden. Eine zweite Möglichkeit der Stabilisierung von Carbenen besteht in der Komplexierung. Verbindungen, in denen Metallkohlenstoff-Doppelbindungen vorliegen, werden allgemein als *Carbenkomplexe* bezeichnet. Der erste Carbenkomplex (1) wurde 1964 von FISCHER und MAASBÖL veröffentlicht.^[12] Er ist dadurch charakterisiert, daß das Metall in niedriger Oxidationsstufe vorliegt, daß neben dem Carben Liganden mit guten π -Akzeptoreigenschaften vorhanden sind und daß am Carbenkohlenstoffatom Substituenten mit π -Donorfähigkeiten gebunden sind. Dies führt dazu, daß der Carbenkohlenstoff elektrophil wirkt. Solche Komplexe bezeichnet man auch als *Fischer-Carbene* (Heteroatom-substituiert).

Fast genau zehn Jahre später berichtete SCHROCK von einen neuem Typ von Carbenkomplexen (2).^[13] Sie sind durch Metalle in einer hohen Oxidationsstufe, Liganden ohne π -Akzeptoreigenschaften und Carbensubstituenten ohne π -Donorfähigkeiten ausgezeichnet. Sie werden *Schrock-Carbene* (C,H-substituiert; auch als *Alkylidenkomplexe* bezeichnet) genannt und wirken nucleophil.

Das Reaktionsverhalten läßt sich mit Hilfe der Molekülorbitaltheorie erklären. Bei Fischer-Carbenen liegt das p-Orbital des Carbenkohlenstoffatomes energetisch oberhalb der Metall- $d\pi$ -Orbitale. Die Elektronendichte konzentriert sich daher im wesentlichen auf das Metall, und das Carben-C ist elektrophil. Beim Schrock-Carbenkomplex liegt das p-Orbital energetisch unterhalb der $d\pi$ -Orbitale; die Elektronendichte konzentriert sich also vorwiegend am Carbenkohlenstoffatom, das nun nucleophil ist.

Inzwischen wurden unzählige Carbenkomplexe mit unterschiedlicher Reaktivität hergestellt.^[14] Einige Komplexe liegen zwischen den beiden Extremen. In manchen Reaktionen reagieren sie als Elektrophil und in anderen als Nucleophil, da chemische Reaktionen sowohl ladungskontrolliert als auch grenzorbitalkonrolliert ablaufen können. Im letzteren Fall ist z.B. eine negative Partialladung am Carbenkohlenstoffatom nicht unbedingt mit nucleophilem Verhalten gleichzusetzen, so daß die Einteilung der Carbenkomplexe in Fischer- und Schrock-Carbene nicht immer sinnvoll erscheint.^[15] Wie man anhand der Resonanzstrukturen (**3**) erkennen kann, liegt der Bindungsgrad der M–C-Bindung eines Carbenkomplexes zwischen 1 und 2.

Um Fischer-Carbene darzustellen, sind heute zahlreiche Methoden bekannt; hierbei unterscheidet man drei grundlegende Synthesestrategien:^[16]

- a) Umwandlung einer Metall-Kohlenstoffeinheit zu einer Carbengruppe.
- b) Addition eines Carbenvorläufers an einen geeigneten koordinativ ungesättigten Metallkomplex.
- c) Ligandenaustausch an einem bestehenden Carbenkomplex oder Reaktion in der Ligandensphäre.

Um Fischer-Carbene der sechsten Nebengruppe herzustellen, setzt man ein entsprechendes Metallcarbonyl (4) mit einer Organolithiumverbindung um (s. auch *Kapitel C.1*). Das so erhaltene Lithiumacylmetallat (5) kann dann mit einem Methylierungsreagenz, wie z.B. *Meerweinsalz* (Trimethyloxoniumtetrafluoroborat), zum Carbenkomplex (6) reagieren.^[17]

1.3.2 Vinylidene

Nur zwei Jahre nach der Entdeckung der Carbenkomplexe (s. *Kapitel A.1.3.1*) fiel der Startschuß zur Entdeckung der Vinylidenkomplexe. MILLS und REDHOUSE hatten versucht durch Bestrahlung einer benzolischen Lösung von [Fe(CO)₅] und Diphenylketen eine Carbeneisenverbindung herzustellen. Allerdings erhielten sie ein Produkt der Zusammensetzung [Fe₂(C₂Ph₂)(CO)₈], das sie mittels einer Röntgenstrukturanalyse als verbrückten Vinylidenkomplex identifizieren konnten.^[18] Von der ersten monomolekularen Verbindung mit der Struktureinheit M=C_α=C_βRR' (**8**) berichteten KING und SARAN 1972, welche sie bei der Untersuchung zur Reaktivität der Molybdän- und Wolframvinylkomplexe **7** isolierten.^[19]

Dabei wandert ein Cl-Atom, unter begleitendem Austausch der Carbonylgruppen durch andere Liganden, von einem α -Chlorvinylliganden zum Metall, und es bildet sich das Vinyliden **8**.

Es gibt heute von nahezu allen Übergangsmetallen Vinylidene.^[20] Dies liegt daran, daß die Vinyliden–Metallbindung eine hohe thermodynamische Stabilität aufweist. Vinylidene haben nämlich sehr gute π -Akzeptoreigenschaften, da sie für die Rückbindung des Metalls zum Liganden nicht nur das π^* -Orbital der C=C-Bindung, sondern auch das freie p-Orbital am C_a-Atom zur Verfügung stellen können.^[21,22]

Der Bindungsgrad der Vinyliden-Metallbindung liegt wie bei den Carbenen zwischen einer Einfach- und einer Doppelbindung (9) (s. *Kapitel A.1.3.1*).

$$\begin{bmatrix} L_n M = C = C \begin{pmatrix} H \\ R \end{pmatrix} \leftarrow L_n \overline{M} - C = C \begin{pmatrix} H \\ R \end{pmatrix}$$

Vor allem zwei Methoden haben sich zur Darstellung von Vinylidenen als vielseitig herausgestellt. Der erste Weg wurde vor allem von DAVISON ET AL.^[23] und BRUCE ET AL.^[24] geebnet und geht von Alkinylmetallverbindungen (**10**) aus, die am β -Kohlentoffatom protoniert und methyliert werden können. Anionische Alkinylverbindungen gehen erwartungsgemäß noch bereitwilliger die elektrophile Addition ein.^[25]

Das zweite Verfahren bedient sich koordinativ ungesättigter oder substitutionslabiler Metallkomplexe, welche mit terminalen Alkinen umgesetzt werden. Dabei entstehen η^2 -Alkinkomplexe (12) (s. *Kapitel A.1.3.3*), die thermisch oder photochemisch über einen H-Shift zum Vinyliden (13) umlagern.

Seit der Entdeckung dieser Reaktion ist der Umlagerungsmechanismus Gegenstand zahlreicher Publikationen. In *Kapitel B.1.1* wird auf diese Reaktion ausführlich eingegangen.

1.3.3 η^2 -Alkinkomplexe

Gegenüber den Carbonylen, Carbenen oder auch Vinylidenen sind bei den η^2 -Alkinkomplexen zwei Ligandenatome direkt an das Metall gebunden.

Durch die in *Kapitel A.1.2* beschriebenen Wechselwirkungen des Alkins mit dem Metall wird die C≡C-Bindung geschwächt und die Linearität des Alkinliganden gestört. Das hat zur Folge, daß die C≡C-Bindung länger wird und die Substituenten des Alkins sich abwinkeln.^[26]

Allgemein erfolgt die Darstellung von η^2 -Alkinkomplexen aus koordinativ ungesättigten Organometallverbindungen oder aus Komplexen mit Liganden, die leicht austauschbar sind. So findet z.B. beim η^2 -Alkenplatinkomplex **14** mit Diphenylacetylen eine Substitution des Alkenliganden zu **15** statt.^[27]

$$(Ph_{3}P)_{2}Pt - || \\ CR_{2} \\ 14$$
 + PhC = CPh - (Ph_{3}P)_{2}Pt - ||
CR_{2} \\ 15

Es sei hier nochmals auf eine besondere Reaktion der η^2 -Alkinkomplexe hingewiesen – die Umlagerung zu Vinylidenkomplexen, die ausführlich im *Kapitel B.1.1* behandelt wird.

1.3.4 Carbamoylkomplexe

Die metallorganischen Analoga zu den Amidverbindungen $R^1CONR^2R^3$, den Esterverbindungen R^1COOR^2 und den Carbonylverbindungen R^1COR^2 in der organischen Chemie sind die *Carbamoyl-* (16), *Alkoxycarbonyl-* (17) und *Acylkomplexe* (18).

Als eine Klasse von Liganden wurde die Carbamoylgruppe gegenüber den Acylgruppen,^[28] für die eine direktere industrielle Relevanz der katalytischen Aktivierung von CO vorzuliegen scheint, etwas vernachlässigt. Nichtsdestotrotz sind die weniger stabilen Carbamoylkomplexe Intermediate in etlichen wichtigen Carbonylierungsprozessen (s. auch weiter unten in diesem Kapitel).

Im folgenden sollen nur die Carbamoylkomplexe betrachtet werden, da nur sie in dieser Arbeit dargestellt wurden. Der erste bekannte Carbamoylkomplex (20) wurde vor ca. vierzig Jahren von KING ET AL. durch nucleophilen Angriff eines anionischen Metallkomplexes (19) auf ein Carbamoylchlorid dargestellt.^[29]

$$[Fe(CO)_2Cp]^{\ominus} + Me_2N - C - CI \longrightarrow Me_2N - C - Fe(CO)_2Cp + CI^{\ominus}$$
19 20

Die wohl wichtigste präparative Methode ist aber die Umsetzung von Metallcarbonylkomplexen (21) mit Aminen.

$$L_{n}M-C\equiv O^{\oplus} + 2 HNR^{1}R^{2} = L_{n}M-C^{\vee}O_{NR^{1}R^{2}} + H_{2}^{\oplus}NR^{1}R^{2}$$
21
16

Die Molybdän- und Wolframkomplexe $[M(CO)_4Cp]^+$ ^[30] sowie $[M(CO)_3(NH_3)Cp]^+$ ^[31] (M = Mo, W) z.B. reagieren mit Aminen zu Carbamoylkomplexen. Es muß aber erwähnt werden, daß nicht alle Metallcarbonyle diese Reaktion eingehen. Man kann sie in drei Gruppen einteilen: erstens in die Gruppe von Komplexen, die vollständig mit den Aminen zu den Carbamoylkomplexen reagieren, zweitens in die, die nur teilweise zum Carbamoyl-derivat reagieren und drittens in jene, die überhaupt keine Reaktion mit den Aminen zeigen.

Die Reaktivität der Metallcarbonyle korreliert recht gut mit der Kraftkonstanten der C=O-Schwingung. DARENSBOURG und DARENSBOURG zeigten, daß diese Kraftkonstanten ein Maß für die positive Ladung am Kohlenstoffatom der CO-Gruppe sind.^[32] Eine große positive Ladung favorisiert also kinetisch und thermodynamisch die Bildung der Carbamoylkomplexe. Ausgedrückt in den Frequenzen der C=O-Valenzschwingung bedeutet dies, daß die Metallcarbonyle mit einer C=O-Schwingungsabsorption unterhalb von annäherungsweise 2000 cm⁻¹ keine Carbamoylkomplexe liefern.^[33]

Eine weitere wichtige Reaktion zur Darstellung von Carbamoylkomplexen ist die Insertion von Kohlenmonoxid in die Metallamidobindung,^[28,34] da sie in katalytischen Reaktionen auftritt.^[35] Wenn man z.B. zwei NMe₂-Gruppen in $[W_2(NMe_2)_6]$ durch Cl-Liganden ersetzt (**22**), wird die Aufnahme von CO durch das Metallzentrum stark erhöht, und es entsteht der Wolframcarbamoylkomplex **23**.^[36]

$$\begin{bmatrix} W_{2}(NMe_{2})_{4}Cl_{2} \end{bmatrix} + 2CO + 2py \longrightarrow Me_{2}N - C - W_{2}(NMe_{2})_{3}Cl_{2}(CO)(py)_{2}$$
22
23

Interessant ist auch die Insertionsreaktion der Actinoidmetallkomplexe [M(NR₂)Cl-(Cp*)₂] (M = Th, U und R = Me, Et) (24) unter Bildung der η^2 -Carbamoylkomplexe 25.^[37c]

Ein wichtiges Charakteristikum der Carbamoylfunktionalität kann dort beobachtet werden, nämlich die Fähigkeit der Carbamoylgruppe sich an das gleiche Metallatom sowohl durch das Kohlenstoffatom als auch durch das Sauerstoffatom zu binden.^[37,38] Diese η^2 -Bindung tritt typischerweise bei elektronenarmen Metallzentren auf und ist für Carbamoylkomplexe eher selten anzutreffen.

1.3.5 Vinylkomplexe

Verbindungen mit dem folgenden Strukturelement (26) werden *Metallalkenyle* oder einfach *Vinylkomplexe* genannt.

Vinylkomplexe lassen sich auf vielfältige Arten herstellen, so z.B. durch Reaktion eines Metallhalogenides mit einem Grignardreagens,^[39] über die Insertion eines Acetylens in eine Übergangsmetall–H-Bindung eines Metallhydrids,^[40] durch nucleophile Addition von Hydriden an Vinylidene (s. auch *Kapitel C.1*)^[23a,41] oder durch nucleophile Addition an η^2 -Alkinkomplexe mit einem Zwei-Elektronen-Alkinliganden.

Für den letzten Darstellungsweg sei die Addition eines Cuprates an den kationischen η^2 -Alkineisenkomplex 27 genannt, der ein *trans*-Vinylkomplex (28) liefert.^[42]

Die nucleophile Addition an einen Vier-Elektronen-Alkinliganden führt hingegen nicht zu einem σ -gebundenen Alkenylkomplex, sondern zu einem η^2 -Vinylkomplex. Diese Koordination ist aber für Vinylkomplexe relativ selten zu beobachten. Der kationische Molybdänkomplex **29** z.B. reagiert mit Hydrid zum η^2 -Vinylkomplex **30**, der durch eine Röntgenstrukturanalyse charakterisiert wurde.^[43]

2 Vinyliden- und η^2 -Alkinkomplexe des Wolframs

Die vorliegende Arbeit basiert auf den Ergebnissen der Dissertation von GABRIELE DEMUTH-EBERLE.^[44] Ziel ihrer Arbeit war es, einen Beitrag zur präparativen metallorganischen Chemie von Wolframvinylidenkomplexen in synthetischer und mechanistischer Hinsicht zu leisten.

Als Ausgangskomplex verwendete Demuth-Eberle das bereits bekannte η^5 -Cyclopentadienyl-dicarbonyl-nitrosyl-wolfram (**31**).

Diesen achiralen 18-Elektronen-Komplex setzte sie mit verschiedenen Lithiumacetyliden um und fing ihn mit einer Reihe von Elektrophilen ab. Bei der Umsetzung dieses Wolframkomplexes mit Lithiumacetyliden entstanden nicht, wie man erwarten würde, Fischer-Carbene (s. *Kapitel A.1.3.1*), sondern durch Abspaltung einer Carbonylgruppe Vinyliden- bzw. η^2 -Alkinkomplexe.

2.1 Darstellung, Spektren und Eigenschaften der Vinylidene

Die Darstellung der Vinylidenkomplexe geschah nach folgendem Prinzip. Der Wolframkomplex **31** wurde bei -30° C in THF mit Lithiumacetyliden umgesetzt. Dabei bildeten sich die tiefgrünen Anionen **32a–c**. Methylierung mit Trifluormethansulfonsäuremethylester (Methyltriflat) bzw. Protonierung mit verdünnter Salzsäure führte zu dunkelroten Ölen, die an Kieselgel mit Pentan/Diethylether-Gemischen chromatographiert wurden. Kristallisation aus Pentan bei -20° C lieferte dann orangefarbene bis rote Kristalle von **33a–c** und **34a–c**, die bei -20° C unter Argonatmosphäre mehrere Monate unzersetzt aufbewahrt werden können.

Im Bereich von $\tilde{v} = 2000 \text{ cm}^{-1}$ zeigen die IR-Spektren der Vinylidene **33a–c** und **34a–c** die charakteristische Valenzschwingung für CO und im Bereich von 1640 cm⁻¹ die für NO. Bei 1620 cm⁻¹ erscheint eine Bande für die Vinyliden-C=C-Schwingung, sofern sie nicht durch die im nahen Bereich liegende NO-Schwingungsbande verdeckt ist.

Die ¹H- und ¹³C-NMR-Spektren weisen doppelte Signalsätze für die Vinylidenkomplexe **33a–c** und **34a–c** auf. Dies läßt sich durch das Vorhandensein von zwei Rotameren erklären, die durch die Drehung des Vinylidenliganden um die Wolfram– C_{α} -Bindung zustande kommen. Der Bindungsgrad dieser Bindung liegt nämlich zwischen einer Einfachund einer Doppelbindung. Das Produktverhältnis dieser Isomere läßt sich aus den Integralen im ¹H-NMR-Spektrum bestimmen.

Die Signale der H-Atome des Cyclopentadienylliganden in den ¹H-NMR-Spektren liegen um $\delta = 5.5$ ppm.

In den ¹³C-NMR-Spektren zeigen die α -Kohlenstoffatome extreme Tieffeldverschiebungen, die im Bereich von δ = 340 ppm liegen. Für die β -Kohlenstoffatome findet man um 130 ppm Signale. Die chemischen Verschiebungen für die Kohlenstoffatome des Cyclopentadienylliganden liegen bei 95 ppm und die für CO bei 210 ppm.

2.2 Darstellung, Spektren und Eigenschaften der η^2 -Alkinkomplexe

Die Reaktion der Anionen **32b,d,e** ergab mit Trimethylsilylchlorid keine Vinylidene, sondern η^2 -Alkinkomplexe (**35a–c**). Die Methylierung des Anions mit Trimethylsilylrest (**32f**) mit Methyltriflat lieferte ebenfalls einen η^2 -Alkinkomplex (**36a**).

Die Darstellung und Reinigung der η^2 -Alkinkomplexe **35a–c** und **36a** erfolgte wie bei den Vinylidenkomplexen. Die Kristallisation aus Pentan bei –20°C führte zu orangefarbenen Kristallen von **35a** und **36a**. Die Komplexe **35b,c** sind rote Öle, die nicht zur Kristallisation gebracht werden konnten. Alle Komplexe können unter Argon mehrere Monate unzersetzt gelagert werden.

Es sei hier noch erwähnt, daß die Protonierung des Anions **32f** weder zum monosubstituierten Vinyliden mit einer Trimethylsilylgruppe noch zum entsprechenden η^2 -Alkinkomplex führt, sondern zur Bildung des unsubstituierten Vinylidens [W(=C=CH₂)Cp(CO)-(NO)] (**37**) (s. auch *Kapitel B.2.1*).

Im IR-Spektrum weisen **35a–c** und **36a** eine charakteristische Valenzschwingung für CO bei $\tilde{v} = 1986-1966$ cm⁻¹ und für NO bei 1610–1593 cm⁻¹ auf. Die Acetylen-C=C-Schwingung erscheint bei 1814–1792 cm⁻¹.

Wie bei den Vinylidenkomplexen liegen die η^2 -Alkinkomplexe in Form von zwei Rotameren vor. Sie kommen durch die Drehung um die Wolfram–Acetylenbindung zustande. Aus diesem Grund findet man auch hier in den ¹H- und ¹³C-NMR-Spektren doppelte Signalsätze.

Die ¹³C-NMR-Spektren der η^2 -Alkinkomplexe zeigen für die Alkinkohlenstoffatome zwei Signale im Bereich von $\delta = 135.8$ bis 122.5 ppm und zwei Signale im Bereich von

104.0 bis 84.6 ppm. Die chemischen Verschiebungen für den Cyclopentadienylliganden liegen bei 95 ppm und die für CO bei 220 ppm.

3 Problemstellung und Planung der Experimente

In der vorangegangenen Diplomarbeit^[45] wurde gezeigt, daß es möglich ist, einen silylsubstituierten Wolfram-Vinylidenkomplex herzustellen. Durch Umsetzung von Ausgangskomplex **31** mit *tert*-Butyldimethylsilylacetylid und anschließender Protonierung konnte das Vinyliden **33d** erhalten werden. Methylierung hingegen führte zu η^2 -Alkinkomplex **36b**.

Weiterhin konnte gezeigt werden, daß sich Vinyliden **33d** thermisch fast vollständig zum η^2 -Alkinkomplex **38a** umlagern läßt,¹ so daß die von DEMUTH-EBERLE geäußerte

¹ Nach längerer Reaktionszeit tritt Zersetzung ein.

Vermutung, daß die silvlsubstituierten η^2 -Alkinkomplexe **35a–c** und **36a** durch eine sofortige Umlagerung der Silvlgruppe aus den Vinylidenen gebildet werden,^[44] um einen weiteren Hinweis bereichert wurde.

Die Entstehung des, bei der Methylierung des Anions **32g** erhaltenen, η^2 -Alkinkomplexes **36b** könnte man sich also so vorstellen, daß zuerst ein Vinyliden gebildet wird, welches aber sofort durch eine Silylwanderung zu **36b** isomerisiert. Die Methylgruppe könnte einen Übergangszustand bzw. ein Zwischenprodukt zum η^2 -Alkinkomplex stabilisieren und somit die Umlagerung erleichtern.

Allerdings muß man beachten, daß bei Vinylidenkomplex **33d** prinzipiell auch der Wasserstoff wandern kann.

Die Messung des kinetischen Isotopeneffektes der Umlagerung von [W{=C=CH(D)-SiMe₂Bu^t}Cp(CO)(NO)] (**33d** bzw. **33d-***d*₁) nach [W{ η^2 -H(D)C=CSiMe₂Bu^t}Cp(CO)-(NO)] (**38a** bzw. **38a-***d*₁) könnte Klarheit darüber verschaffen, ob die Silylgruppe oder der Wasserstoff wandert. Zudem könnte man die Aktivierungsparameter der Umlagerung bestimmen und so etwas über den Mechanismus der Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung herausfinden.

Weiterhin wäre die Frage zu beantworten, ob außer **33d** auch Vinylidene mit anderen Silylgruppen hergestellt werden können. Und wie sieht es mit den analogen Vinylidenen des Wolframs aus, die keine Silylgruppe tragen? Isomerisieren diese Vinylidene ebenfalls zum entsprechenden η^2 -Alkinkomplex?

Der zweite Teil dieser Arbeit beinhaltet die Untersuchung der alkyl- und silylsubstituierten Wolframvinylidene gegenüber Nucleophilen. Als Nucleophile sollten Alkohle, Thiole und Amine eingesetzt werden. Auf den ersten Blick könnte man annehmen, daß nur Carbene gebildet werden. Allerdings ist dabei aber zu berücksichtigen, daß die Carbonylgruppe neben dem Vinylidenliganden ebenfalls angegriffen werden kann.

B Umlagerung von Vinylidenen zu η^2 -Alkinkomplexen:

Synthetische und kinetische Studien

1 Allgemeiner Überblick

1.1 Umlagerung von η^2 -Alkinkomplexen zu Vinylidenen

Die Umlagerung von Acetylen in das Vinyliden ist ein thermodynamisch unvorteilhafter Prozeß, weil das freie Vinyliden :C=CH₂ ca. 44–47 kcal mol⁻¹ weniger stabil ist als das Acetylen HC=CH.^[46] Diese stark endotherme Reaktion ändert sich energetisch drastisch, wenn die beiden Isomere an ein Metall koordiniert sind. In den meisten Fällen sind Vinylidenkomplexe stabilere Verbindungen als die isomeren η^2 -Alkinkomplexe.^[20–22,47]

Die Umlagerung von 1-Alkinen in der Koordinationssphäre eines Metalls hat aus zwei Gründen eine besondere Bedeutung. Zum einen werden die Vinylidenkomplexe häufig über die Tautomerisierung eines η^2 -Alkinkomplexes gebildet. Und zum anderen ist die Isomerisierung der Komplexe ein wichtiger katalytischer Prozeß, der im Reaktionsverlauf von Übergangsmetall-katalysierten Prozessen von Alkinen auftritt.^[48]

Mehrere mögliche Mechanismen wurden für die η^2 -Alkinkomplex \rightarrow Vinyliden-Umwandlung vorgeschlagen (s. Abb. 4).

Abb. 4 In der Literatur vorkommende Mechanismen für die η^2 -Alkinkomplex \rightarrow Vinyliden-Umlagerung.

ANTONOVA ET AL. hatten vor 25 Jahren [MCp(CO)₃] (M = Mn, Re) auf photochemischem Wege mit Phenylacetylen umgesetzt. Dabei entstanden aber nicht die erwarteten η^2 -Alkinkomplexe, sondern die isomeren Vinylidene [M(=C=CHPh)Cp(CO)₂]. Sie haben bereits damals den Vorschlag geäußert, daß nach der Koordination des Alkins eine intramolekulare oxidative Addition unter Bruch einer C–H-Bindung eintritt und das gebildete Alkinyl(hydrido)metallintermediat **40** über einen 1,3-H-Shift zum entsprechenden Vinyliden reagiert (s. Abb. 4, Reaktionsweg C).^[49]

SILVESTRE und HOFFMANN zeigten aber in einer ausführlichen theoretischen Studie, daß diese 1,3-H-Verschiebung in **40** zu einem Vinyliden **13** für d⁶-Metallkomplexe – am Beispiel von [Mn(η^2 -HC=CH)Cp(CO)₂] – eine hohe Aktivierungsenergie erfordert, die viel größer ist als für die direkte 1,2-H-Verschiebung von einem η^2 -Alkinkomplex **12** zum Vinyliden **13**, für die ein Übergangszustand mit einem weggleitenden Alkinliganden ("slippage") vorgeschlagen wurde (s. Abb. 4, Reaktionsweg B).^[47]

Lange Zeit entbehrte der Vorschlag von ANTONOVA ET AL. jeglichen Beweises, bis WERNER ET AL. demonstrierten, daß der fünffach koordinierte Rhodium(III)-Komplex des Typs [RhH(C=CR)(PPrⁱ₃)₂Cl] [R = Bu^t, CH=CH(OMe) und SiMe₃] glatt zum Vinyliden umlagert.^[50] Mit Iridium als Zentralatom gelang es, sowohl alle drei Isomere [Ir(η^2 -HC=CR)(PPrⁱ₃)₂Cl], [IrH(C=CR)(PPrⁱ₃)₂Cl] und [Ir(=C=CHR)(PPrⁱ₃)₂Cl] (R = Me, Ph, CO₂Me, SiMe₃) zu isolieren als auch ihre schrittweise Umwandlung im Experiment nachzuvollziehen.^[51] Das Cobalt(I)-System [Co(η^2 -HC=CR)P(CH₂CH₂PPh₂)₃]⁺ (R = H, Alkyl, Ph, SiMe₃) von BIANCHINI ET AL. zeigt ebenfalls diese schrittweise Umwandlung. Auf der Basis von kinetischen Daten konnte gefolgert werden, daß die Isomerisierung der kationischen Cobalt(III)-Alkinyl(hydrido)komplexe zum entsprechenden Vinyliden in Lösung über ein Deprotonierungs/Reprotonierungsweg verläuft.^[52] Im Gegensatz zu den Alkinyl-(hydrido)komplexen des Cobalts lagern die analogen kationischen Rhodium(III)-Verbindungen [RhH(C=CR)P(CH₂CH₂PPh₂)₃]⁺ (R = H, Alkyl, Ph, SiMe₃) nicht zu den Vinylidenen um.^[53]

PUERTA ET AL. nehmen an, daß die Vinylidene aus den Ruthenium(IV)-Hydridointermediaten $[RuH(C=CR)(Cp^*)(dippe)]^+$ (R = Ph, CO₂Me, SiMe₃) ebenfalls über einen Deprotonierungs/Reprotonierungsweg gebildet werden.^[54]

Ein dritter Mechanismus wurde von WAKATSUKI ET AL. vorgeschlagen. Sie untersuchten die Reaktion von $[RuX_2(PPh_3)_3]$ (X = Cl, Br) mit HC=CBu^t, die zur Bildung der Vinylidene $[Ru(=C=CHBu^t)(PPh_3)_3X_2]$ führte. Theoretische Untersuchungen der Autoren zeigten, daß das Alkin des anfänglich gebildeten η^2 -Alkinkomplexes zu einem η^2 -C–Hkoordinierten Intermediat **39** weggleitet (s. Abb. 4, Reaktionsweg A). Dieser lagert über eine 1,2-H-Verschiebung der Acetyleneinheit zum entsprechenden Vinyliden um.^[55]

Die gleichen Autoren publizierten eine ab initio MO-Analyse basierend auf einem vereinfachten Modellsystem des quadratisch-planaren Rhodium d⁸-System [RhH(C=CR)-(PPrⁱ₃)₂Cl] von WERNER ET AL. (s. oben in diesem Kapitel). Diese Veröffentlichung räumte die Ungewißheit beiseite, daß der Alkinyl(hydrido)komplex kein echtes Intermediat ist. Es wurde nämlich beobachtet, daß dieser im Gleichgewicht mit dem η^2 -Alkinkomplex steht.^[50f] Es wäre also möglich gewesen, daß die Umlagerung über den η^2 -Alkinkomplex, d. h. nicht über den Reaktionsweg C, sondern über den Weg A oder B (s. Abb. 4), verläuft. Außerdem scheint die Bildung des Alkinyl(hydrido)komplexes als ein Minimum in der Potentialhyperfläche von der Elektronenkonfiguration des Metalls abzuhängen. Weiterhin fanden sie, daß das Hydridointermediat über eine intermolekulare H-Verschiebung (bimolekularer Prozeß) zum Vinyliden umlagert.^[56] Auf diese Art von Umlagerung wurde zuerst von WERNER ET AL. für das oben erwähnte Iridiumsystem [IrH(C=CR)(PPrⁱ₃)₂Cl] hingewiesen.^[51b]

Die erwähnten theoretischen Arbeiten betrachteten η^2 -Alkinkomplexe mit Metallen in niedrigen Oxidationsstufen, die formal eine d⁶- [Mn(I), Ru(II)]^[47,55] oder d⁸-Konfiguration [Rh(I)]^[56] haben. STEGMANN und FRENKING berechneten für die W(VI)-Verbindung [W(η^2 -HC=CH)F₄] mit der formalen d⁰-Konfiguration die beiden Reaktionswege B und C (s. Abb. 4). Sie kamen zu dem Ergebnis, daß beide Reaktionswege ähnlich hohe Aktivierungsenergien haben. Die direkte 1,2-H-Verschiebung (Reaktionsweg B) hat eine Barriere von 84.8 kcal mol⁻¹. Der geschwindigkeitsbestimmende Schritt des Zwei-Schritt-Prozesses über das Alkinyl(hydrido)intermediat (Reaktionsweg C) ist die 1,3-H-Verschiebung mit einer ähnlichen Aktivierungsenergie von 85.5 kcal mol⁻¹.^[57]

Allgemein kann man sagen, daß die Umlagerung von η^2 -Alkinkomplexen zu Vinylidenen über verschiedene Wege stattfinden kann und daß die Oxidationsstufe des Metalls und die Art der Liganden dafür verantwortlich sind, welcher Isomerisierungsmechanismus bevorzugt wird.
1.2 Umlagerung von Vinylidenen zu η^2 -Alkinkomplexen

In der Literatur sind meistens Umlagerungen von η^2 -Alkinkomplexen zu Vinylidenen beschrieben (s. *Kapitel B.1.3.1*). Für den umgekehrten Fall, also die Umwandlung von Vinylidenen in η^2 -Alkinkomplexe, existieren bisher nur wenige Veröffentlichungen. Es wurden aber schon verschiedene katalytische Zyklen vorgeschlagen, die die Beteiligung einer Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung beinhalten.^[48d,e,f]

LUGAN ET AL. fanden, daß die Protonierung von [Ru(C=CPh)Cp(CO)(PPh₃)] bei tiefen Temperaturen quantitativ zum kationischen Vinyliden **42** führt. Durch Aufwärmung auf Raumtemperatur entsteht ein Gemisch mit dem isomeren η^2 -Alkin **43** im Überschuß.^[58]

In einer eleganten und erschöpfenden Arbeit haben BLY ET AL. die Isomerisierung des kationischen Polymethylenvinyliden-Eisenkomplex 44 zum stabilen Homocycloalkin 45 über eine, bisher einzigartige, 1,2-Verschiebung einer Alkylgruppe vom β - zum α -Kohlenstoffatom der Vinylideneinheit erklärt.^[59]

CONNELLY ET AL. haben intensiv die Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung der 18-Elektronen-Komplexe [M{=C=C(SiMe_3)_2}(\eta^6-C_6H_nMe_{6-n})(CO)_2] (M = Cr, Mo; n = 2, 3, 6) (46), induziert durch eine Ein-Elektronen-Oxidation, studiert.^[60]

Die thermodynamischen und kinetischen Parameter, die durch elektrochemische Messungen ermittellt wurden, lassen auf einen 1,2-Silyl-Shift schließen (s. Tab. 1 und auch *Kapitel B.1.3*).^[60b]

Tab. 1 Die Aktivierungsparameter der Umlagerungsreaktion von 48 zu 49 und von 46 zu 47.

Reaktion	T/K	k/s^{-1}	$\Delta H^{\ddagger}/\text{kJ mol}^{-1}$	$\Delta S^{\ddagger}/J \text{ mol}^{-1} \text{ K}^{-1}$
$48 \rightarrow 49$	234	0.049 ± 0.015	62 ± 3	-6 ± 13
$46 \rightarrow 47$	234	$[(1.9 \pm 0.6) \times 10^{-11}]^{a}$	$(104)^{a}$	(-6) ^{<i>a</i>}

^a Dieser Wert wurde rechnerisch ermittelt.

Die Niob(III)-Vinylidenkomplexe $[Nb(=C=CHR)(\eta^5-C_5H_4SiMe_3)_2(CO)]^+$ (R= Bu^t, Ph) (**50**) gehen unerwartet einen Isomerisierungsprozeß zu den η^2 -Alkinderivaten $[Nb(\eta^2-HC=CR)(\eta^5-C_5H_4SiMe_3)_2(CO)]^+$ (**52**) ein. GARCÍA-YEBRA ET AL. haben in einer kürzlich veröffentlichten und sehr ausführlichen Arbeit diese Reaktionen auch theoretisch studiert und gezeigt, daß sie über einen Zwei-Schritt-1,2-H-Shift verlaufen. Im ersten Schritt wird ein η^2 -C-H-Alkinkomplex (**51**) durch eine 1,2-H-Wanderung vom β - zum α -Kohlenstoffatom gebildet. Der nächste Schritt ist ein Gleiten ("slippage") des Alkinliganden zum η^2 -Komplex **52** (s. auch Reaktionsweg A in Abb. 4).^[61]

Die Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung scheint auch bei der Eliminierung terminaler Alkine aus Vinylidenen aufzutreten. Einige Rutheniumvinylidene sind bekannt, die diese Eliminierung unter gewöhnlichen Reaktionsbedingungen zeigen, wobei aber der entsprechende η^2 -Alkinkomplex nicht detektiert werden konnte.^[62] Wird z.B. die Lösung des kationischen monosubstituierten Vinylidens [Ru(=C=CHPh)(η^5 -C₉H₇)(PPh₃)₂]⁺ (**53**) in Nitrilen unter Rückfluß erhitzt, erhält man [Ru(N≡CR)(η^5 -C₉H₇)(PPh₃)₂]⁺ (R = Me, Et, Ph) (**55**) und Phenylacetylen. Der Prozeß geschieht über eine anfängliche Tautomerisierung des Vinylidens **53** zum η^2 -Alkinkomplex **54**, gefolgt durch die Ersetzung des koordinierten Alkinliganden durch das Lösungsmittel. Ab initio MO-Berechnungen dieser Reaktion zeigen, daß diese Umlagerung möglich ist und über eine 1,2-H-Verschiebung verläuft. Die Energiebarriere liegt bei 29.9 kcal mol⁻¹. Dieser Wert ist niedrig genug, um bei den Reaktionsbedingungen erreicht zu werden, damit die Bildung des labilen η^2 -Alkinkomplexes **54** und der darauffolgende Austausch des koordinierten Alkinliganden durch das Nitril ermöglicht wird.^[62a]

In der Literatur sind vorwiegend η^2 -Alkinkomplex \rightarrow Vinyliden-Umlagerungen bekannt. Warum sollten also solche Vinylidene wie 42, 44, 46 bzw. 48 und 50 zu η^2 -Alkinkomplexen isomerisieren? Zwei Gründe sind dafür im wesentlichen verantwortlich.^[59a]

Isomerisierungen von einem Vinyliden zu einem η^2 -Alkinkomplex beinhalten einen Übergang eines Restes von einem β - zu einem α -Kohlenstoffatom. Dies entspricht der Wanderung eines Restes bei Vinylkationen. Solche Übergänge hängen bei metallfreien Vinylkationen vom elektrophilen Charakter des positiv geladenen Kohlenstoffatoms ab.^[63] Wegen ihrem stark elektrophilen Charakter sind solche Kohlenstoffatome außerordentlich empfindlich für die elektronische Natur der Substituenten, an die sie gebunden sind.^[63b] Bei Vinylidenen hängt die Elektrophilie des α -Kohlenstoffatoms davon ab, wie stark die restlichen Liganden die Elektronendichte am Metall und somit an C $_{\alpha}$ reduzieren. So führt z.B. die Protonierung des Alkinylkomplexes [Ru(C=CPh)Cp(CO)(PPh_3)] (**41**) mit dem stark π -aciden Carbonylliganden^[27] hauptsächlich zum η^2 -Alkinkomplex **43** (s. Anfang dieses Kapitels), während [Ru(C=CPh)Cp(PPh_3)₂] ausschließlich das Vinyliden [Ru-(=C=CHPh)Cp(PPh_3)₂]⁺ liefert.^[64]

Die Tendenz von Vinylidenen zur Umlagerung wird außerdem durch die größere relative Stabilität der resultierenden η^2 -Alkinkomplexe bestimmt. 18-Elektronen- η^2 -Alkinkomplexe mit schwachen Elektronendonoren als Liganden werden weniger stark destabilisiert durch die abstoßende Wechselwirkung zwischen den gefüllten d-Orbitalen des Metalls und dem gefüllten π_{\perp} -Orbital des Alkinliganden^[65] als 18-Elektronen- η^2 -Alkine, die eine höhere Elektronendichte am Metall haben, wie z. B. jene mit weniger starken π -aciden Liganden.^[27]

1.3 Umlagerung von η^2 -Silylalkinkomplexen zu Silylvinylidenen und vice versa

Die Wanderung einer Silylgruppe entlang der C=C-Dreifachfachbindung wurde zuerst von VAHRENKAMP ET AL. bei der Reaktion von [RuCo₂(CO)₁₁] mit (1-Trimethylsilyl)propin beobachtet, bei dem der Silylalkin-verbrückte Heterometallcluster [RuCo₂(μ_3 -Me₃SiC=CMe)(CO)₉] (**56**) entsteht, der zum entsprechenden Silylvinyliden-verbrückten [RuCo₂{ μ_3 -C=C(Me)SiMe₃}(CO)₉] (**57**) umlagert.^[66]

WERNER ET AL. zeigten kurze Zeit später, daß die internen Alkine mit einer SiMe₃- oder SiPh₃-Gruppe in der Koordinationssphäre von Rhodium(I) zum entsprechenden Vinyliden umlagern können.^[50a,67] Diese Metall-assistierte Isomerisierung monomolekularer η^2 -Silylalkinkomplexe geschieht entweder thermisch oder photochemisch und verläuft über einen Silyl-Shift, da die Wanderung eines Alkyl- oder Arylrestes aufgrund der stärkeren R–C-Bindung und der kinetischen Hinderung des 1,2-Alkyl- oder Aryl-Shiftes nur schwer möglich ist.^[50a] Das ist auch der Grund, warum in der Literatur über die Umlagerung von disubstituierten η^2 -Alkinkomplexen ohne Silylgruppe zu den entsprechenden Vinylidenen fast nichts bekannt ist (s. auch *Kapitel B.1.2*).

Obwohl der exakte Mechanismus der Umlagerung der η^2 -Silylalkinkomplexe des Rhodiums zu den Vinylidenen unbekannt ist, nehmen WERNER ET AL. an, daß er über einen 1,2-Silyl-Shift in einem konzertierten Prozeß, möglicherweise über ein anfängliches Weggleiten des Alkins zu einer η^1 -Geometrie, stattfindet (s. *Kapitel B.1.1*).^[50a,68]

OZAWA ET AL. ermittelten die Aktivierungsparameter für die Umlagerungsreaktion von [*trans*-Rh(η^2 -FcC=CSiMe₃)(PPrⁱ₃)₂Cl] (**58**) zu [*trans*-Rh{=C=C(Fc)SiMe₃}(PPrⁱ₃)₂Cl] (**59**) $(\Delta H^{\ddagger} = 82.9 \pm 0.8 \text{ kJ mol}^{-1} \text{ und } \Delta S^{\ddagger} = -20.1 \pm 2.9 \text{ J mol}^{-1} \text{ K}^{-1})$ und die entsprechende Rückreaktion ($\Delta H^{\ddagger} = 95.0 \pm 0.4 \text{ kJ mol}^{-1} \text{ und } \Delta S^{\ddagger} = -36.0 \pm 1.7 \text{ J mol}^{-1} \text{ K}^{-1}$). Diese Werte sind konsistent mit dem Isomerisierungsmechanismus über eine 1,2-Wanderung der Silylgruppe.^[69]

Abb. 5 Reaktionskoordinate der Umlagerung von [*trans*-Rh(η^2 -FcC=CSiMe₃)(PPrⁱ₃)₂Cl] (**58**) zu [*trans*-Rh{=C=C(Fc)SiMe₃}(PPrⁱ₃)₂Cl] (**59**) und deren Rückreaktion.

Die Daten der Rückreaktion wurden ermittelt, indem [*trans*-Rh{=C=C(Fc)SiMe₃}-(PPrⁱ₃)₂Cl] (**59**) mit verschiedenen Acetylenen umgesetzt wurde. Aus dem Vinyliden **59** bildet sich anfänglich der entsprechende η^2 -Alkinkomplex, der schnell einen Ligandenaustausch mit dem eingesetzten Acetylen vollzieht und zum neuen Vinyliden umlagert. Da der erste Schritt der geschwindigkeitsbestimmende ist, konnten die Parameter auch für die Rückreaktion gemessen werden.

Die Umlagerung der disubstituierten η^2 -Alkinkomplexe mit einer Silylgruppe zu den entsprechenden Vinylidenen ist nicht nur auf Komplexe mit Ruthenium und Rhodium als Zentralatom beschränkt, sondern gibt es z.B. auch für Iridium^[68] und Mangan.^[70]

Die umgekehrte und direkt beobachtbare Silylvinyliden $\rightarrow \eta^2$ -Silylalkinkomplex-Umlagerung ist allerdings bisher nur für die Isomerisierung der 18-Elektronen-Komplexe **46** bzw. **48** bekannt, die schon in *Kapitel B.1.2* beschrieben wurde.

Für den Mechanismus der Metall-assistierten Silylgruppenwanderung ist immer aber auch denkbar, daß zuerst ein Alkinyl(silyl)metallkomplex entsteht. Im ersten Schritt müßte eine 1,3-Silyl-Wanderung (sogenannte β -Silyl-Wanderung) stattfinden.^[71] Dieser Mechanismus konnte zwar noch nicht für η^2 -Silylalkinkomplexe beobachtet werden,^[50a] aber MÜLLER ET AL. berichten, daß der Platin(0)-Komplex [Pt(η^2 -PhC=CSiMe_3)₂(PN)] nicht zum Vinyliden, sondern zum Alkinyl(silyl)platin(II)-Derivat [Pt(C=CPh)(SiMe_3)(PN)] umlagert.^[72]

Weiterhin ist denkbar, daß η^2 -Silylalkinkomplexe über den Mechanismus der σ,π -Ummetallierung zu den entsprechenden Vinylidenen umlagern.

Die Reaktion der Wolframacetylide **32a–c,f** in THF mit [Fe(THF)Cp(CO)₂][BF₄] (**60**) führt zu Metall-substituierten η^2 -Alkinkomplexen (**61**).^[73]

Anstelle der bei den Komplexen des Typs L_nMC=CR üblichen Addition des Elektrophils am C_β zu einem Vinyliden^[20] wird bei dieser Reaktion das zuvor σ-gebundene Metallatom durch das zugesetzte Elektrophil verdrängt und in einen η^2 -Metallalkinkomplex überführt. Eine analoge σ,π -Ummetallierung erfolgt auch bei der Umsetzung von [Fe(C=CR)Cp(CO)₂] mit [Re(CO)₅][BF₄]^[74] und bei der Organoborierung von Metallacetyliden.^[75] Weitere Beispiele sind bei verbrückten σ,π -Acetyliden von Nickel und Zirkonium^[76] sowie Eisenacetyliden^[77] beschrieben worden.

IPAKTSCHI ET AL. stellten folgende Hypothese für diese Umlagerung auf.^[73] Der durch die Addition der elektrophilen Spezies $L_nM'X$ an das Anion 62 gebildete π -Komplex 63 hat die Möglichkeit durch Bindungsbildung zwischen Metall M' und C_β zum Vinyliden-

komplex 64 weiterzureagieren. Alternativ ist über die Addition an C_{α} über das verbrückte Acetylid 65 die Bildung des nunmehr umgelagerten π -Komplex 66 erklärbar.

Wie anfänglich erwähnt, ist es prinzipiell auch denkbar, daß η^2 -Silylalkinkomplexe zu Silylvinyliden über einen ähnlichen Mechanismus isomerisieren. Dabei könnte die Reaktion über einen π -Komplex wie **63** erfolgen.^[73]

Es sei noch erwähnt, daß die Leichtigkeit des 1,2-Silyl-Shiftes während der Bildung von Silylvinyliden bemerkenswert ist, da für freie Silylalkine solch ein Prozeß nur unter ganz besonderen Reaktionsbedingungen auftritt.^[78]

2 Versuche zur Darstellung und Umlagerung der Vinylidene des Wolframs

2.1 Darstellung und Charakterisierung des (Methyldiphenylsilyl)vinylidens 33e sowie des η^2 -(Methyldiphenylsilyl)propinkomplexes 36c

In der vorangegangenen Arbeit wurden aus dem anionischen (*tert*-Butyldimethylsilyl)alkinylkomplex **32g** durch Protonierung bzw. Methylierung die Komplexe **33d** und **36b** erhalten.^[45]

Welche Komplexe entstehen bei der Verwendung eines anionischen Alkinylkomplexes mit einem anderen Silylrest? Um diese Fragen zu beantworten, wurde zuerst der anionische Alkinylkomplex mit einer Methyldiphenylsilylgruppe (**32h**) hergestellt.

Nach einer Synthesevorschrift von HOLMES und SPORIKOU zur Darstellung von Trimethylsilylacetylen^[79] wurde das Methyldiphenylsilyl-substituierte Acetylen aus Methyldiphenylsilylchlorid und Acetylen dargestellt. Anschließende Umsetzung mit *n*-BuLi in THF bei –78°C lieferte das Lithiumacetylid LiC=CSiPh₂Me, welches mit η^5 -Cyclopentadienyl-dicarbonyl-nitrosyl-wolfram (**31**) in THF bei –30°C zum tiefgrünen anionischen Alkinylkomplex **32h** reagiert. Bei der Zugabe von gesättigter NaHCO₃-Lösung schlug die Farbe nach dunkelrot um. Die wäßrige Aufarbeitung und Chromatographie an Kieselgel führte zu zwei Produkten. Das eine lag als dunkelrotes Öl, welches nicht zur Kristallisation gebracht werden konnte, und das andere in Form orangefarbener Kristalle vor. Die erste Verbindung wurde in einer Ausbeute von 16% erhalten. Die Ausbeute des zweiten Poduktes betrug 26%.

Die Strukturzuordnung ergab, daß es sich bei dem dunkelroten Öl um das Methyldiphenyl-substituierte Vinyliden **33e** und bei den orangefarbenen Kristallen um den bereits bekannten unsubstituierten Vinylidenkomplex **37** handelte.^[44]

Im ¹³C-NMR-Spektrum enthalten die beiden Verbindungen das charakteristische Signal um 340 ppm für das C_{α} -Atom des Vinylidenliganden.

In Tab. 2 und Tab. 3 sind zum Vergleich die charakteristischen IR-Absorptionen bzw. ¹³C-NMR-Signale einiger ausgewählter Vinylidenkomplexe angegeben.

Verbindung	IR-Absorptionen in	IR-Absorptionen in cm ⁻¹			
	v (CO)	$\widetilde{\nu}$ (NO)	ν̃ (C=C)		
$[W(=C=CHSiPh_2Me)Cp(CO)(NO)]$ 33e	1990	1636	1595	-	
[W(=C=CH ₂)Cp(CO)(NO)] 37	1998	1635	1591	[44]	
[W(=C=CHBu ^t)Cp(CO)(NO)] 33a	1993	1617	_	[44]	
[W(=C=CHPh)Cp(CO)(NO)] 33b	2019	1653	_	[44]	
$[W(=C=CHSiMe_2Bu^t)Cp(CO)(NO)] 33d$	1972	1636	1604	[45]	

Tab. 2Charakteristische IR-Absorptionen (KBr oder Film) einiger ausgewählter Vinylidenkomplexe im
Vergleich zu denen von (Methyldiphenylsilyl)vinyliden 33e.

Verbindung	¹³ C-NMR-Resonanzen in ppm				Lit.
	$\delta(C_{\alpha})$	$\delta(\text{CO})$	$\delta(C_{\beta})$	$\delta(Cp)$	
$[W(=C=CHSiPh_2Me)Cp(CO)(NO)]$ 33e	334.9	212.3	118.3	95.4	_
	333.6	212.0	117.2	95.3	
[W(=C=CH ₂)Cp(CO)(NO)] 37	341.2	209.9	112.1	96.2	[44]
	_	_	_	_	
[W(=C=CHBu ^t)Cp(CO)(NO)] 33a	338.8	211.8	140.0	96.2	[44]
	338.4	210.8	139.5	96.0	
[W(=C=CHPh)Cp(CO)(NO)] 33b	344.6	210.6	131.3	96.5	[44]
	344.3	209.2	130.9	96.4	
$[W(=C=CHSiMe_2Bu^t)Cp(CO)(NO)] 33d$	332.7	213.9	118.7	95.4	[45]
	330.7	213.0	117.7	95.3	

 Tab. 3
 Charakteristische ¹³C-NMR-Resonanzen einiger ausgewählter Vinylidenkomplexe im Vergleich zu denen von (Methyldiphenylsilyl)vinyliden 33e.

Anscheinend wird bei dieser Reaktion das Silylvinyliden **33e** zum Teil zum unsubstituierten Vinyliden **37** desilyliert. Die Verwendung von leicht basischem Natriumhydrogencarbonat als Protonenquelle hat anscheinend zur Desilylierung von **33e** geführt. Daher wurde versucht das Alkinylanion **32h** mit HCl umzusetzen. Tatsächlich konnte die Ausbeute an unsubstituiertem Vinyliden **37** von 26% auf 15% veringert werden. Die Ausbeute an Silylvinyliden **33e** stieg aber nur von 16% auf insgesamt 21% an.

Bei der analogen Darstellung von (*tert*-Butyldimethylsilyl)vinyliden **33d** entsteht kein unsustituiertes Vinyliden **37**. Und bei der Umsetzung des Trimethylsilylalkinylanions **32f** mit HCl wird ausschließlich **37** gebildet.^[45]

Die Hydrolyseempfindlichkeit von **33e** hat einige Vorläufer in der Literatur. So entsteht z.B. das unsubstituierte Vinyliden *trans*-[Rh(=C=CH₂)(PPrⁱ₃)₂Cl] (**68**) aus dem entsprechenden Silylvinyliden **67**, wenn nicht bei -30° C und unter rigorosem Ausschluß von Wasser gearbeitet wird.^[50a]

Ähnliches gilt für Silylvinylidene mit Iridium^[51b,c] und Eisen^[80] als Zentralatom.

Interessant ist in diesem Zusammenhang noch folgende Reaktion. Bei der Umsetzung von [RuCpCl(dippe)] mit Trimethylsilylacetylen in Methanol wird intermediär das Silylvinyliden [Ru(=C=CHSiMe₃)Cp(dippe)]⁺ gebildet. Durch das Lösungsmittel wird die C–Si-Bindung gebrochen, und es entsteht letztendlich das isolierbare unsubstituierte Vinyliden. Beim analogen Silylvinyliden mit einem Cp*- anstelle eines Cp-Liganden findet aber keine Desilylierung durch das Lösungsmittel Methanol statt.^[54]

Die Methylierung des Alkinylanions **32h** mit Trifluormethansulfonsäuremethylester (Methyltriflat) führte aber, wie die Methylierung von **32g** in der vorangegangenen Arbeit,^[45] ausschließlich zu einem η^2 -Alkinkomplex. Dieser wurde in Form eines dunkelroten Öles – welches wie Vinylidenkomplex **33e** nicht zur Kristallisation gebracht werden konnte – in einer Ausbeute von 47% erhalten.

In Tab. 4 und Tab. 5 kann man die IR-Absorptionen bzw. ¹³C-NMR-Signale des Komplexes **36c** mit denen anderer η^2 -Alkinkomplexe vergleichen.

Tab. 4 Charakteristische IR-Absorptionen (KBr oder Film) einiger ausgewählter η^2 -Silylalkinkomplexe im Vergleich zu denen von η^2 -(Methyldiphenylsilyl)alkinkomplex **36c**.

Verbindung	IR-Absorptionen in cm ⁻¹			Lit.
	v (CO)	ν̃ (C≡C)	$\widetilde{\nu}$ (NO)	
$[W(\eta^2 - MeC \equiv CSiPh_2Me)Cp(CO)(NO)]$ 36c	1966	1806	1575	_
$[W(\eta^2-MeC\equiv CSiMe_3)Cp(CO)(NO)] 36a$	1956	1820	1591	[44]
$[W(\eta^2-PhC\equiv CSiMe_3)Cp(CO)(NO)] 35a$	1984	1786	1559	[44]
$[W(\eta^2-MeC\equiv CSiMe_2Bu^t)Cp(CO)(NO)]$ 36b	1986	1827	1558	[45]

Verbindung	¹³ C-NMR-Resonanzen in ppm				Lit.
	$\delta(CO)$	$\delta(C\equiv C)$	$\delta(C\equiv C)$	$\delta(Cp)$	
$[W(\eta^2 - MeC \equiv CSiPh_2Me)Cp(CO)(NO)]$ 36c	219.1	127.4	90.7	96.0	_
	217.5	_	_	95.3	
$[W(\eta^2-MeC\equiv CSiMe_3)Cp(CO)(NO)] 36a$	219.7	132.4	92.5	95.7	[44]
	_	122.5	87.0	95.5	
$[W(\eta^2-PhC\equiv CSiMe_3)Cp(CO)(NO)]$ 35a	218.4	129.4	104.0	96.3	[44]
	217.9	127.5	97.3	95.9	
$[W(\eta^2-MeC\equiv CSiMe_2Bu^t)Cp(CO)(NO)] 36b$	220.0	122.5	90.7	95.9	[45]
	_	_	_	95.8	

Tab. 5 Charakteristische ¹³C-NMR-Resonanzen einiger ausgewählter η^2 -Silylalkinkomplexe im Vergleichzu denen von η^2 -(Methyldiphenylsilyl)alkinkomplex 36c.

Zusammenfassend läßt sich sagen, daß die Protonierung bzw. Methylierung des Methyldiphenylsilyl-substituierten Alkinylanions **32h** wie das (*tert*-Butyldimethylsilyl)alkinylanion **32g** das entsprechende Vinyliden bzw. den η^2 -Alkinkomplex liefert. Bei der Protonierung hingegen entsteht zusätzlich zum Silylvinyliden **33e** durch Desilylierung desselben das unsubstituierte Vinyliden **37**.

2.2 Thermische Umlagerung der Wolframvinylidene

Wie in *Kapitel B.1.2* beschrieben wurde, ist die Umlagerung von Vinylidenen zu η^2 -Alkinkomplexen gegenüber dem umgekehrten Prozeß eher selten anzutreffen. In der vorangegangenen Arbeit konnte aber gezeigt werden, daß das (*tert*-Butyldimethylsilyl)-vinyliden **33d** zum entsprechenden η^2 -Alkinkomplex **38a** umlagert.^[45] – Dies hat mehrere Gründe.

Betrachtet man den Vinylidenkomplex **33d** genauer, dann erkennt man, daß er alle Eigenschaften erfüllt, um diese Umlagerung vollziehen zu können (s. *Kapitel B.1.2*). Er besitzt einen π -aciden Carbonyl- und Nitrosylliganden; wobei NO sogar ein noch stärkerer π -Akzeptor als CO ist.^[27] Somit ist der Cp(CO)(NO)W-Rest eine relativ stark elektronenziehende Gruppe und folglich der elektrophile Charakter des α -Kohlenstoffatoms des Vinylidenliganden relativ stark ausgeprägt. Durch die verringerte Elektronendichte am Wolfram erfährt der entsprechende η^2 -Alkinkomplex **38a** außerdem eine Stabilisierung, weil die abstoßenden Wechselwirkungen zwischen den gefüllten d-Orbitalen des Wolframs und dem gefüllten π_{\perp} -Orbital des Alkinliganden verkleinert werden. Die Bedingungen für eine Umlagerung von Vinylidenkomplex **33d** zum entsprechenden η^2 -Alkin **38a** sind also sehr günstig.

Daher sollte es auch für den Methyldiphenylsilyl-substituierten Vinylidenkomplex **33e**, das unsubstituierte Vinyliden **37** und die monosubstituierten Vinylidene möglich sein, zum entsprechenden η^2 -Alkinkomplex zu isomerisieren.

Auch der analoge Molydänvinylidenkomplex **69** erfüllt die erwähnten Bedingungen. Die Versuche von BURKHARD G. MÜLLER diesen Komplex thermisch zu isomerisieren scheiterten aber. Bei der mehrstündigen Erhitzung des Komplexes **69** in *n*-Hexan unter Rückfluß konnte keine Isomerisierung zum η^2 -Alkin **70** beobachtet werden.^[81] Dies lag wohl daran, daß die für die Umlagerung erforderliche Temperatur nicht erreicht wurde.

Der Versuch der thermischen Umlagerung des unsubstituierten Wolframvinylidens 37 in Toluol führte ausschließlich zu Zersetzungsprodukten. Der *tert*-Butyl-substituierte Vinylidenkomplex 33a und das (Methyldiphenylsilyl)vinyliden 33e aber lagerten zum entsprechenden η^2 -Alkinkomplex um. Nach 24 Stunden isomerisierten 6% und nach 72 Stunden 16% des Alkylvinylidens 33a zum η^2 -Alkinkomplex 38b, wobei allerdings nach mehr als einem Tag teilweise Zersetzung eintrat. Und beim Silylvinyliden 33e lagerten nach einem Tag schon 63% zum η^2 -Alkin 38c um. Die Produktverhältnisse wurden aus den ¹H-NMR-Rohproduktspektren ermittelt.

In Tab. 6 sind alle Wolframvinylidene, die thermisch zum η^2 -Alkinkomplex umlagern, und das Verhältnis der Produkte nach einer Reaktionszeit von 24 h aufgeführt.

Tab. 6Produktverhältnisse der thermischen Umlagerung der Vinylidene 33a, 33d und 33e in Toluol nach24 h.

Vinyliden	Produktverhältnis η^2 -Alkin : Vinyliden
$[W(=C=CHSiMe_2Bu^t)Cp(CO)(NO)] 33d$	79:21
[W(=C=CHSiPh ₂ Me)Cp(CO)(NO)] 33e	63:37
[W(=C=CHBu ^t)Cp(CO)(NO)] 33a	6 : 94

Wie man anhand der Tabelle deutlich erkennt, ist **33a** nach 24 h weit weniger zum η^2 -Alkinkomplex isomerisiert als **33d** und **33e**, was man damit erklären kann, daß im ersten Fall das H-Atom wandert und in den beiden anderen Fällen die Silylgruppe, wobei ein H-Shift eine größere Aktivierungsenergie hat als ein Silyl-Shift.

3 Kinetische Untersuchungen

3.1 Motivation

Die Protonierung, Methylierung und Silylierung der Alkyl- (**32a–e**) und Silylalkinylanionen (**32f–h**) liefert unterschiedliche Produkte. Bei der Silylierung der Alkylalkinylanionen **32b,d,e**¹ und der Methylierung der Silylalkinylanionen **32f–h** entstehen η^2 -Alkinkomplexe und in allen anderen Fällen Vinylidene.

Es fällt auf, daß bei der Anwesenheit einer Silylgruppe vorzugsweise η^2 -Alkinkomplexe gebildet werden. Nur im Falle der Protonierung der Anionen **32g,h** entstehen Silylvinylidene.² Eine Erklärungsmöglichkeit dafür könnte sein, daß zwar immer Vinylidene ge-

¹ Anion **32a** reagiert nicht mit Trimethylsilylchlorid. Dies hat anscheinend sterische Gründe.

² Die Protonierung von **32g** liefert auschließlich das unsubstituierte Vinyliden **37**, welches wahrscheinlich durch vollständige Desilylierung aus dem intermediär gebildeten (Trimethylsilyl)vinyliden entsteht (s. *Kapitel B.2.1*).

bildet werden, aber bei der Anwesenheit einer Silyl- und Alkylgruppe leicht eine Umlagerung über einen Silyl-Shift zum entsprechenden η^2 -Alkinkomplex stattfindet. Nur die monosubstituierten Vinylidene **33d,e** sind unter den Reaktionsbedingungen bezüglich der Isomerisierung zu den η^2 -Alkinkomplexen stabil.

Die Leichtigkeit der Wanderung einer Silylgruppe (s. auch *Kapitel B.1.3*) zeigt sich z.B. beim Molybdänkomplex [Mo{=C=C(SiMe_3)_2}(η^6 -C₆H₃Me_3-1,3,5)(CO)_2] der bei Raumtemperatur im Gleichgewicht mit dem entsprechenden η^2 -Alkinkomplex steht.^[60a]

Die Umlagerung der monosubstituierten Vinylidene **33d,e** zu den η^2 -Alkinkomplexen ist aber auf thermischem Wege möglich. Wenn die Silylgruppe also leicht wandern sollte, dann sollte sie dies auch bei diesen thermischen Umlagerungen tun.

Eine Möglichkeit, um herauszufinden, ob die Silylgruppe oder das H-Atom wandert, ist, die Reaktionsgeschwindigkeit der Umlagerungsreaktion des deuterierten (*tert*-Butyldimethylsilyl)vinylidens **33d-** d_1 zum entsprechenden η^2 -Silylalkinkomplex **38a-** d_1 bei einer bestimmten Temperatur zu ermitteln.

Da die Wanderung einer Gruppe sicherlich den langsamsten Schritt der Reaktion darstellt, könnte ein Vergleich mit der Geschwindigkeit der Reaktion des nicht-deuterierten Silylvinylidens **33d** zum η^2 -Silylalkinkomplex **38a** bei der gleichen Temperatur zeigen, ob im geschwindigkeitsbestimmenden Schritt der Reaktion die C–H- oder die C–Si-Bindung gebrochen wird. Man könnte also feststellen, ob ein *primärer kinetischer Isotopeneffekt* (s. auch folgendes Kapitel) auftritt, um herauszufinden, ob die Silylgruppe oder das H-Atom wandert.

Zudem können durch die Bestimmung der Reaktionsgeschwindigkeiten der Umlagerung von **33d** nach **38a** und **33d**-*d*₁ nach **38a**-*d*₁ bei verschiedenen Temperaturen die Aktivierungsparameter ΔH^{\ddagger} und ΔS^{\ddagger} der beiden Reaktionen bestimmt werden, die sicherlich Hinweise zum Mechanismus der Umlagerung geben werden.

3.2 Kinetischer Isotopeneffekt

Isotopeneffekte haben sich als sehr nützlich für die Untersuchung von Reaktionsmechanismen herausgestellt. Dabei wird meist ein Wasserstoffatom durch ein Deuterium (²H) oder Tritium (³H) ersetzt. Man kann zwar auch andere Atome durch Isotope ersetzen, aber beim Wasserstoff sind die quantitativen Unterschiede am größten. Der Ersatz eines Atoms durch sein Isotop ändert nicht den Reaktionsmechanismus, sondern – meist gut meßbar – die Reaktionsgeschwindigkeit. Bei einem primären kinetischen Isotopeneffekt wird im geschwindigkeitsbestimmenden Schritt der Reaktion die C-H- bzw. die C-D-Bindung gebrochen. Die Schwingungsenergie einer Bindung im Grundzustand, die sogenannte Nullpunktsenergie, hängt von der Masse des Atoms ab und ist kleiner, wenn die reduzierte Masse größer ist. Daher hat die C-D-Bindung eine niedrigere Energie im Grundzustand als die korrespondierende C-H-Bindung. Wenn bei einer Reaktion die Bindung eines H-Atoms bzw. eines Deuteriums gebrochen wird, wandelt sich im Übergangszustand ein Schwingungsfreiheitsgrad des Moleküls in einen Freiheitsgrad der Translation um. Der Energieunterschied, der von dieser Schwingung herrührt, verschwindet im Übergangszustand und ist für protonierte und deuterierte Moleküle energetisch gleich. Aufgrund der kleineren Nullpunktsenergie der C-D-Bindung gegenüber der C-H-Bindung ist die Aktivierungsenergie zur Erreichung des Übergangszustandes für die deuterierte Verbindung größer (s. Abb. 6).^[82]

Der kinetische Isotopeneffekt wird im Verhältnis $k_{\rm H}/k_{\rm D}$ ausgedrückt und bewegt sich für primäre Isotopeneffekte meist im Bereich von 1 bis 7 oder 8.^[83] Der Effekt ist am größten, wenn das Wasserstoffatom im Übergangszustand gleichmäßig an die beiden Atome gebunden ist, zwischen denen es übertragen wird.^[84]

Ein sogenannter *sekundärer kinetischer Isotopeneffekt* liegt vor, wenn die Bindung des substituierten Wasserstoffatoms nicht gespalten wird, sondern im Übergangszustand nur gelockert oder gefestigt wird.^[82] Das substituierte H-Atom ist also nicht direkt an der Reaktion beteiligt. Man unterscheidet dabei den α - oder β -*Effekt*, je nachdem ob der substituierte Wasserstoff in α - oder β -Stellung zum Reaktionszentrum bzw. zur Position der zu brechenden Bindung zu finden ist. Diese Effekte sind kleiner als der primäre kinetische Isotopeneffekt, sie können normal ($k_{\rm H}/k_{\rm D} > 1$) oder invers ($k_{\rm H}/k_{\rm D} < 1$) sein und liegen im Bereich von $k_{\rm H}/k_{\rm D} = 0.7$ –1.5. Der sekundäre kinetische Isotopeneffekt läßt sich damit erklären, daß die C–H- und die C–D-Bindung im Übergangszustand durch Änderung der

Hybridisierung oder des Ausmaßes der Hyperkonjugation unterschiedlich gelockert oder gefestigt werden können.

Abb. 6 Vereinfachtes Schaubild zum Einfluß einer Deuterierung auf die Reaktionsgeschwindigkeit.

3.3 Darstellung des Silyl(deutero)vinylidens 33d-*d*₁

Wie in *Kapitel B.3.1* beschrieben, wird zur Bestimmung eines möglichen Isotopeneffektes der Reaktion $33d \rightarrow 38a$ das (*tert*-Butyldimethylsilyl)(deutero)vinyliden $33d-d_1$ benötigt. Die Darstellung von $33d-d_1$ nach folgender Methode bereitete allerdings Schwierigkeiten. GABRIELE DEMUTH-EBERLE hat das *tert*-Butyl-substituierte Vinyliden 33a mittels *n*-BuLi bei -78°C deprotoniert und mit D₂SO₄ deuteriert, wobei sie den gewünschten Komplex $33a-d_1$ erhielt.^[44]

Da mit **33d**- d_1 kinetische Messungen durchgeführt werden sollen, muß dieses deuterierte Vinyliden möglichst rein vorliegen. Für die oben erwähnte Methode der Darstellung ist also noch eine chromatographische Reinigung des Rohproduktes an Kieselgel mit *n*-Pentan/Ether notwendig. Diese führte auf der Säule aber zu einem Austausch des Deuteriums von **33d**- d_1 gegen ein Wasserstoffatom, da Spuren von Wasser am SiO₂ haften.

Es zeigte sich, daß einfach durch Rühren von **33d** in THF/D₂O ein vollständiger H/D-Austausch stattfindet.

Anschließendes Entfernen von THF und D₂O im Vakuum liefert aufgrund der milden Reaktionsbedingungen quantitativ den deuterierten Komplex $33d-d_1$.

3.4 Bestimmung der kinetischen Daten und der Aktivierungsparameter der Umlagerungsreaktionen 33d \rightarrow 38a und 33d- $d_1 \rightarrow$ 38a- d_1

Zuerst muß die *Reaktionsordnung* der Umlagerung $33d \rightarrow 38a$ ermittelt werden, um mit der entsprechenden Geschwindigkeitsgleichung die *Geschwindigkeitskonstanten* für die Umlagerung von $33d \rightarrow 38a$ und $33d-d_1 \rightarrow 38a-d_1$ bestimmen zu können.

Der Quotient der Geschwindigkeitskonstanten $k_{\rm H}$ und $k_{\rm D}$ ergibt den *kinetischen Isotopeneffekt* bei der Temperatur, bei der die Reaktionen durchgeführt wurden. Da aber zusätzlich noch die *thermodynamischen Aktivierungsparameter* der Reaktionen bestimmt werden sollen, müssen die Geschwindigkeitskonstanten bei verschiedenen Temperaturen ermittelt werden. Aus diesen können dann die beiden experimentellen *Aktivierungsenergien* abgeleitet werden, mit der die entsprechenden Aktivierungsparameter berechnet werden können.

Damit ergibt sich für die Vorgehensweise folgende Reihenfolge:

- a) Bestimmung der Reaktionsordnung
- b) Bestimmung des kinetischen Isotopeneffektes
- c) Bestimmung der Aktivierungsenergie
- d) Berechnung der thermodynamischen Aktivierungsparameter

3.4.1 Bestimmung der Reaktionsordnung

Zur Bestimmung der Reaktionsordnung gibt es verschiedene Wege.^[85] Da die vorliegende Umlagerungsreaktion erst bei Temperaturen bis weit über 100°C mit meßbarer Geschwindigkeit abläuft, ist eine teilweise Zersetzung der Edukte und Produkte nach längerer Reaktionszeit nicht zu verhindern. Um dieses Problem zu umgehen, wurde die Reaktionsordnung aus der Anfangsgeschwindigkeit der Reaktion bestimmt,^[85] da für diese Methode eine niedrigere Temperatur und kurze Meßzeiten benötigt werden.

Dieses Verfahren zur Bestimmung der Reaktionsordnung läßt sich folgendermaßen theoretisch ableiten.

Für den allgemeinen Fall einer Reaktion *n*-ter Ordnung gilt folgende Geschwindigkeitsgleichung für das Edukt A:

$$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k_n [\mathrm{A}]^n \,. \tag{1}$$

[A] = Konzentration des Eduktes A $k_n = Geschwindigkeitskonstante n-ter Ordnung$

t = Zeit

Auf das Anfangsstadium einer Reaktion bezogen und durch Logarithmieren der beiden Seiten erhält man

$$\ln v_0 = \ln k_n + n \ln[A]_0.$$
⁽²⁾

 v_0 = Anfangsgeschwindigkeit

 $[A]_0$ = Ausgangskonzentration von A

Mißt man nun die Anfangsgeschwindigkeit v_0 als Funktion der Ausgangskonzentrationen, so kann man aus der Steigung der entsprechenden Auftragung auf einfache Weise die Gesamtreaktionsordnung *n* ermitteln. Für die Bestimmung der Anfangsgeschwindigkeit v_0 bei einer bestimmten Ausgangskonzentration müssen die Konzentrationen des Eduktes A im Anfangsstadium der Reaktion gemessen werden. Es gilt

$$v_0 = -\left(\frac{d[A]}{dt}\right)_0 = -\frac{\Delta[A]}{\Delta t},\tag{3}$$

so daß man durch eine Auftragung von [A] gegen die Zeit t die Steigung der Geraden ermitteln und daraus v_0 berechnen kann.

Die Abnahme der Konzentration des Eduktes ist proportional zur Abnahme des Verhältnisses der Intensitäten der Signale einer Gruppe des Vinylidens **33d** und des η^2 -Alkinkomplexes **38a** im ¹H-NMR-Spektrum, so daß letzteres, multipliziert mit der Ausgangskonzentration von **33d**, gegen die Zeit aufgetragen werden kann, um v_0 zu bestimmen. Damit das Verhältnis der Signale möglichst genau ermittelt werden konnte, wurde die *tert*-Butylgruppe gewählt, da sie die höchste Intensität in den ¹H-NMR-Spektren von **33d** und **38a** aufweist.

Experimentell wurde so vorgegangen,^[86] daß jeweils eine bestimmte Menge des Vinylidenkomplexes **33d** mit 0.8 ml des deuterierten Lösungsmittels Benzol- d_6 in fünf NMR-Röhrchen gefüllt wurden. Da es bei wiederholten Intensitätsmessungen notwendig ist, den gelösten Sauerstoff vollständig zu entfernen, wurden die Lösungen mehrfach im Hochvakuum entgast und die NMR-Röhrchen unter Vakuum abgeschmolzen.

Es wurde eine Reaktionstemperatur von 100°C gewählt und in Zeitabständen von 15 min das ¹H-NMR-Spektrum der Probe bestimmt. Um möglichst genaue Werte für die Anfangsgeschwindigkeit zu erhalten, wurden fünf bis sechs Spektren aufgenommen. Am Ende einer Meßreihe haben sich so nur maximal 5% des Vinylidens **33d** zum η^2 -Alkinkomplex **38a** umgesetzt.

Die Messungen verliefen nach folgendem Schema. Die Probe mit einer bestimmten Einwaage des Vinylidens **33d** wurde in einem Thermostat bei 100°C erwärmt. Nach 15 min wurde das NMR-Röhrchen aus dem Thermostaten genommen und sofort in einem Wasserbad abgekühlt. Anschließend wurde ein ¹H-NMR-Spektrum aufgenommen und der Vorgang mit der gleichen Probe fünf- bis sechsmal wiederholt.

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0096	0.990491	0.122354
15	900	1.0000	0.0154	0.984834	0.121655
30	1800	1.0000	0.0216	0.978857	0.120917
45	2700	1.0000	0.0313	0.969650	0.119779
60	3600	1.0000	0.0413	0.960338	0.118629
75	4500	1.0000	0.0474	0.954745	0.117938

Tab. 7 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 44.2 mg von **33d** [V(Benzol- d_6) = 0.8 ml; $T = 100.0^{\circ}$ C].

^{*a*} Relative Intensitäten des ¹H-NMR-Signals der *tert*-Butylgruppe von **33d** bzw. **38a**.

Bestimmung von v_0 bei [33d]₀ = 44.2 mg

Abb. 7 Auftragung des Logarithmus der Konzentration [**33d**] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9913$).

Tab. 7 und Abb. 7 geben die Daten und die graphische Auftragung zur Ermittlung der Anfangsgeschwindigkeit v_0 beispielhaft für die Einwaage von 44.2 mg von **33d** wieder. In Tab. 8 sind alle Ausgangskonzentrationen von **33d** und die entsprechende Anfangsgeschwindigkeit v_0 aufgeführt. Die Daten und die graphischen Darstellungen zur Ermittlung aller *k*-Werte befinden sich im Anhang. Die Auftragung des Logarithmus der Anfangsgeschwindigkeit v_0 in Abhängigkeit des Logarithmus der Ausgangskonzentration [**33d**]₀ (s. Tab. 8) zeigt Abb. 8. Anhand der Gl. (2) läßt sich aus der Geradengleichung in Abb. 8 der experimentelle Wert von $n = 1.04 \pm 0.04$ für die Reaktionsordnung ablesen.

Tab. 8Daten zur Ermittlung der Ordnung n der Umlagerungsreaktion von 33d zu 38a aus den Anfangsge-
schwindigkeiten v_0 bei verschiedenen Ausgangskonzentrationen [33d]₀.

$[33d]_0/mol l^{-1}$	$ln \{[{\bf 33d}]_0 / mol \ l^{-1}\}$	$v_0/10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}$	$s(v_0)/10^{-6} \text{ mol } l^{-1} \text{ s}^{-1 a}$	$\ln (v_0 / \text{mol } l^{-1} s^{-1})$
0.123529	-2.091283	1.025186	0.048125	-13.790636
0.175511	-1.740053	1.545773	0.095550	-13.379986
0.238393	-1.433833	2.061006	0.053569	-13.092316
0.281433	-1.267862	2.351872	0.178075	-12.960299
0.330621	-1.106784	2.957467	0.175401	-12.731178

^a Standardfehler der Anfangsgeschwindigkeit v₀.

Abb. 8 Auftragung des Logarithmus der Anfangsgeschwindigkeit v_0 in Abhängigkeit des Logarithmus der Ausgangskonzentration [**33d**]₀ (Korrelationskoeffizient $r^2 = 0.9952$).

3.4.2 Bestimmung des kinetischen Isotopeneffektes

Um den kinetischen Isotopeneffekt $k_{\rm H}/k_{\rm D}$ für die Umlagerungsreaktion von **33d** zu **38a** (s. *Kapitel B.3.1*) bei einer bestimmten Reaktionstemperatur bestimmen zu können, muß die Geschwindigkeitskonstante sowohl für die Reaktion des protonierten Komplexes **33d** als auch für die des deuterierten Komplexes **33d**- d_1 ermittelt werden. Damit die Aktivierungsenergien der beiden Reaktionen ermittelt werden können (s. *Abschnitt B.3.4.3*), wurden die Geschwindigkeitskonstaten $k_{\rm H}$ und $k_{\rm D}$ bei insgesamt fünf verschiedenen Temperaturen bestimmt, so daß man fünf Werte von $k_{\rm H}/k_{\rm D}$ berechnen kann.

Für die Ermittlung der Geschwindigkeitskonstanten muß die entsprechende Geschwindigkeitsgleichung integriert werden. Aufgrund der im vorigen *Abschnitt B.3.4.1* bestimmten Reaktionsordnung von n = 1 für **33d** \rightarrow **38a**, muß die Geschwindigkeitsgleichung für eine Reaktion erster Ordnung angewendet werden:

$$-\frac{\mathbf{d}[\mathbf{A}]}{\mathbf{d}t} = k_1[\mathbf{A}]. \tag{4}$$

Die unbestimmte Integration liefert anschließend

$$\ln[\mathbf{A}] = -k_1 t + c. \tag{5}$$

Die Integrationskonstante *c* ergibt sich aus den Anfangsbedingungen. Lag zu Beginn der Reaktion (t = 0) die Anfangskonzentration [A]₀ vor, so gilt

$$\ln[\mathbf{A}]_0 = c. \tag{6}$$

Man erhält also folgende Gleichung:

$$\ln \frac{[\mathbf{A}]}{[\mathbf{A}]_0} = -k_1 t. \tag{7}$$

Die Geschwindigkeitskonstante der Reaktion läßt sich mit Hilfe der integrierten Geschwindigkeitsgleichung (5) ermitteln. Trägt man nämlich ln [A] gegen t auf, so erhält man eine Gerade mit der Steigung -k.

Praktisch wurde wie in *Abschnitt B.3.4.1* vorgegangen. Die Reaktionstemperaturen wurden zwischen 130 und 150°C gewählt, und es wurde eine Halbwertszeit lang gemessen. Eine Temperatur über 150°C ist nicht möglich, da sich dann die Edukte und Produkte zersetzen. Unterhalb 130°C wird die Meßdauer so groß – wenn eine Halbwertszeit lang gemessen werden soll –, daß ebenfalls Zersetzung eintritt. Zwischen 130 und 150°C kann bis zu einer Halbwertszeit ohne wesentliche Zersetzung der Komplexe gemessen werden.

Am Beispiel der Umlagerungsreaktion von **33d** zu **38a** bei 130°C soll gezeigt werden, wie die Geschwindigkeitskonstanten k ermittelt wurden. Tab. 9 enthält die gemessenen und berechneten Daten, um den Logarithmus der Konzentration [**33d**] gegen die Reaktionszeit tauftragen zu können (s. Abb. 9).

Abb. 9 Auftragung des Logarithmus der Konzentration [33d] in Abhängigkeit der Zeit t (Korrelationskoeffizient $r^2 = 0.9998$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$ln \{[33d]/mol l^{-1}\}$
0	0	98.2670	1.0000	0.989926	-2.417279
20	1200	5.7432	1.0000	0.851702	-2.567672
40	2400	2.8730	1.0000	0.741802	-2.705827
60	3600	1.8279	1.0000	0.646381	-2.843521
80	4800	1.2807	1.0000	0.561538	-2.984230
100	6000	0.9504	1.0000	0.487285	-3.126061

Tab. 9 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a**bei 130.0°C [$m(33d) = 28.2 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

^{*a*} Relative Intensitäten des ¹H-NMR-Signals der *tert*-Butylgruppe von **33d** bzw. **38a**.

Der Vergleich der Gl. (5) mit der Geradengleichung aus Abb. 9 liefert für die Geschwindigkeitskonstante $k_{\rm H} = (11.74 \pm 0.07) \times 10^{-5} \text{ s}^{-1}$ bei 130°C.

Die folgende Tab. 10 enthält alle ermittelten Geschwindigkeitskonstanten und die daraus berechneten Isotopeneffekte. Im Anhang befinden sich die Daten und graphischen Darstellungen zur Bestimmung aller *k*-Werte.

Tab. 10Geschwindigkeitskonstanten $k_{\rm H}$ und $k_{\rm D}$ bei verschiedenen Temperaturen und die daraus berechneten
Isotopeneffekte.

T/°C	$k_{\rm H}/10^{-5} \rm \ s^{-1}$	$s(k_{\rm H})/10^{-5} {\rm s}^{-1 a}$	$k_{\rm D}/10^{-5} {\rm s}^{-1}$	$s(k_{\rm D})/10^{-5} {\rm s}^{-1 a}$	$k_{ m H}/k_{ m D}$
130.0	11.741134	0.072162	9.570730	0.165646	1.227
135.0	17.311516	0.270233	14.817838	0.207077	1.168
140.0	27.063323	0.561745	23.096754	0.277550	1.172
145.0	40.367398	0.479378	34.138416	0.504235	1.182
150.0	60.665500	1.013675	49.389804	0.757669	1.228
$\Delta T = 20$					$k_{\rm H}/k_{\rm D} = 1.196 \pm 0.030$

^{*a*} Standardfehler der Geschwindigkeitskonstanten $k_{\rm H}$ bzw. $k_{\rm D}$.

3.4.3 Bestimmung der Aktivierungsenergie

Die Temperaturabhängigkeit der Reaktionsgeschwindigkeit wird durch die Arrhenius-Gleichung beschrieben:

$$k = A e^{-E_A/RT} . ag{8}$$

A = Arrhenius-Faktor (auch Frequenzfaktor genannt)

 $E_{\rm A} = {\rm Aktivierung senergie}$

R = Gaskonstante

T = absolute Temperatur

ARRHENIUS nannte die Größe E_A die *Aktivierungsenergie*. Sie ist ein Maß für die Temperaturabhängigkeit der Reaktionsgeschwindigkeit.

Durch Umformulierung von Gl. (8) ergibt sich

$$\ln k = \ln A - \frac{E_{\rm A}}{RT}.$$
(9)

Trägt man ln *k* in Abhängigkeit von T^{-1} auf (*Arrhenius-Plot*), dann erhält man eine Gerade mit der Steigung $-E_A/R$, aus der sich die Aktivierungsenergie berechnen läßt.

In Tab. 11 und Tab. 12 findet man die Daten, die zur Darstellung des Arrhenius-Plotes für die beiden Umlagerungsreaktionen benötigt werden. Wird nun ln k gegen T^{-1} aufgetragen, dann erhält man die Kurven in Abb. 10 und Abb. 11, die eine sehr gute lineare Abhängigkeit der Werte zeigen. Die Aktivierungsenergien sind also nicht selbst Temperaturfunktionen (s. auch *Abschnitt B.3.4.4*).^[87]

Durch Multiplikation der beiden Steigungen mit -R erhält man für die beiden Aktivierungsenergien

$$E_{\rm A}({\rm H}) = 117.18 \pm 1.55 \text{ kJ mol}^{-1} \text{ und } E_{\rm A}({\rm D}) = 116.83 \pm 1.80 \text{ kJ mol}^{-1}.$$

Die Aktivierungsenergien der beiden Reaktionen sind deshalb nahezu identisch, da sich die Reaktionsgeschwindigkeit der Umlagerung von **33d** durch einen Austausch des H-

Atoms an C_{β} des Vinylidenliganden gegen Deuterium nur wenig verlangsamt (s. *Abschnitt B.3.4.2*). Der Betrag, um den sich die *E*_A ändert, liegt in der Nähe des Größenbereiches des Fehlers der Aktivierungsenergie.

Tab. 11Daten zur Ermittlung der Aktivierungsenergie E_A der Umlagerungsreaktion von 33d zu 38a aus den
Geschwindigkeitskonstanten k_H bei verschiedenen Temperaturen T.

<i>T</i> /°C	<i>T</i> /K	$T^{-1}/10^{-3} \mathrm{K}^{-1}$	$k_{\rm H} / 10^{-5} {\rm s}^{-1}$	$s(k_{\rm H})/10^{-5} {\rm s}^{-1 a}$	$\ln \left(k_{\rm H} / {\rm s}^{-1} \right)$
130.0	403.15	2.480466	11.741134	0.072162	-9.049827
135.0	408.15	2.450080	17.311516	0.270233	-8.661553
140.0	413.15	2.420428	27.063323	0.561745	-8.214746
145.0	418.15	2.391486	40.367398	0.479378	-7.814903
150.0	423.15	2.363228	60.665500	1.013675	-7.407550

^{*a*} Standardfehler der Geschwindigkeitskonstanten $k_{\rm H}$.

Abb. 10 Auftragung des Logarithmus der Geschwindigkeitskonstanten $k_{\rm H}$ in Abhängigkeit von T^{-1} (Korrelationskoeffizient $r^2 = 0.9994$).

T/°C	T/K	$T^{-1}/10^{-3} \mathrm{K}^{-1}$	$k_{\rm D}/10^{-5} {\rm s}^{-1}$	$s(k_{\rm D})/10^{-5} {\rm s}^{-1 a}$	$\ln\left(k_{\rm D}/{\rm s}^{-1}\right)$
130.0	403.15	2.480466	9.570730	0.165646	-9.254216
135.0	408.15	2.450080	14.817838	0.207077	-8.817094
140.0	413.15	2.420428	23.096754	0.277550	-8.373233
145.0	418.15	2.391486	34.138416	0.504235	-7.982502
150.0	423.15	2.363228	49.389804	0.757669	-7.613181

Tab. 12Daten zur Ermittlung der Aktivierungsenergie E_A der Umlagerungsreaktion von 33d- d_1 zu 38a- d_1 aus den Geschwindigkeitskonstanten k_D bei verschiedenen Temperaturen T.

^a Standardfehler der Geschwindigkeitskonstanten k_D.

Abb. 11 Auftragung des Logarithmus der Geschwindigkeitskonstanten k_D in Abhängigkeit von T^{-1} (Korrelationskoeffizient $r^2 = 0.9993$).

3.4.4 Berechnung der thermodynamischen Aktivierungsparameter

Die *Theorie des Übergangszustandes*^[82,85,88] wird verwendet, um die energetischen und entropischen Verhältnisse einer Reaktion zu untersuchen. Dabei geht man davon aus, daß auf dem Weg einer Reaktion zwischen A und B ein *Übergangszustand* (ÜZ) beteiligt ist,

der spontan zu den Edukten oder zu den Produkten zerfällt. Außerdem steht der Übergangszustand immer im Gleichgewicht mit den Reaktanden A und B, egal wie schnell die Reaktionsprodukte gebildet werden.

$$A + B \rightleftharpoons [ÜZ] \rightarrow Produkte$$

Für die Gleichgewichtskonstante K^{\ddagger} gilt

$$K^{\ddagger} = \frac{[\ddot{\mathbf{U}}Z]}{[\mathbf{A}][\mathbf{B}]}.$$
 (10)

Die Geschwindigkeit der Gesamtreaktion ergibt sich aus dem zweiten Schritt mit der Geschwindigkeitskonstanten erster Ordnung (k^{\ddagger}):

$$\frac{\mathrm{d}[\mathrm{Produkt}]}{\mathrm{d}t} = k^{\dagger}[\mathrm{\ddot{U}Z}] = k^{\dagger}K^{\dagger}[\mathrm{A}][\mathrm{B}]. \tag{11}$$

Die Gleichgwichtslage ist von der Freien Aktivierungsenthalpie ΔG^{\ddagger} abhängig, die benötigt wird, um den Übergangszustand zu erreichen:

$$\Delta G^{\ddagger} = -RT \ln K^{\ddagger}. \tag{12}$$

Man erhält also

$$\frac{\mathrm{d}[\mathrm{Produkt}]}{\mathrm{d}t} = k^{\ddagger} \,\mathrm{e}^{-\Delta G^{\ddagger/RT}}[\mathrm{A}][\mathrm{B}]. \tag{13}$$

Mit Hilfe der statistischen Formulierung der Gleichgewichtskonstanten K^{\ddagger} kann man herleiten, daß die Geschwindigkeitskonstante erster Ordnung, k^{\ddagger} , dem Ausdruck $k_{\rm B}T/h$ entspricht, wobei $k_{\rm B}$ die Boltzmann-Konstante und h die Plancksche Konstante ist. Dieser Ausdruck muß allerdings noch mit dem Transmissionskoeffizienten κ multipliziert werden, da die Umwandlung in die Produkte aufgrund besonderer Gegebenheiten nicht immer vollständig stattfindet. Er ist aber in den meisten Fällen, und nahezu bei allen Reaktionen in Lösung, gleich eins.

$$\frac{\mathrm{d}[\mathrm{Produkt}]}{\mathrm{d}t} = \kappa \, \frac{k_{\mathrm{B}}T}{h} \mathrm{e}^{-\Delta G^{\ddagger}/RT} [\mathrm{A}] [\mathrm{B}]. \tag{14}$$

Vergleicht man die Gl. (14) mit der Reaktionsgeschwindigkeit einer beliebigen einstufigen Reaktion

$$\frac{\mathrm{d}[\mathrm{Produkt}]}{\mathrm{d}t} = k[\mathrm{A}][\mathrm{B}] \tag{15}$$

und beachtet, daß die Freie Enthalpie G mit der Enthalpie H und der Entropie S über

$$G = H - TS \tag{16}$$

zusammenhängen, dann kommt man zu der folgenden Schreibweise für die Temperaturabhängigkeit der Geschwindigkeitskonstanten *k*:

$$k = \kappa \, \frac{k_{\rm B}T}{h} \, \mathrm{e}^{\Delta S^{\ddagger/R}} \, \mathrm{e}^{-\Delta H^{\ddagger/RT}} \tag{17}$$

bzw.

$$\ln\frac{k}{T} = \ln\frac{\kappa k_{\rm B}}{h} + \frac{\Delta S^{\ddagger}}{R} - \frac{\Delta H^{\ddagger}}{RT},\tag{18}$$

wobei ΔH^{\ddagger} die Aktivierungsenthalpie und ΔS^{\ddagger} die Aktivierungsentropie³ ist. Mittels Gl. (18) ist es möglich durch Auftragung von $\ln(k/T)$ gegen 1/T (*Eyring-Plot*) aus der Steigung ΔH^{\ddagger} und aus dem Achsenabschnitt ΔS^{\ddagger} zu bestimmen. Diese *thermodynamischen*

³ In der Literatur wird häufig für die Aktivierungsentropie ΔS^{\ddagger} die Einheit eu (*entropy units*, Entpropieeinheiten; entspricht J mol⁻¹ K⁻¹ bzw. cal mol⁻¹ K⁻¹) verwendet.^[1]

Aktivierungsparameter spiegeln die Struktur des Übergangszustandes wider. Dies ist deshalb besonders wichtig, da Übergangszustände nicht direkt beobachtet werden können.

Die Aktivierungsparameter ΔH^{\ddagger} und ΔS^{\ddagger} lassen sich aber auch aus der ermittelten *Aktivierungsenergie* (s. *Abschnitt B.3.4.3*) berechnen. Dazu kann man folgendermaßen vorgehen.

Gl. (8) und (9) liefern eine Definition für die ARRHENIUSsche Aktivierungsenergie E_A :

$$E_{\rm A} = -R \frac{\mathrm{dln}\,k}{\mathrm{d}(1/\mathrm{T})}.\tag{19}$$

Für ΔH^{\ddagger} erhält man aus Gl. (17) und (18) folgende Definition, wenn man annimmt, daß die Aktivierungsenthalpie ΔH^{\ddagger} und Aktivierungsentropie ΔS^{\ddagger} temperaturunabhängig sind:

$$\Delta H^{\ddagger} = -R \frac{\mathrm{dln}\left(k/T\right)}{\mathrm{d}(1/T)}.$$
(20)

Die letzte Gleichung kann folgermaßen umgeschrieben werden:

$$\Delta H^{\ddagger} = -R \frac{\mathrm{dln}\,k}{\mathrm{d}(1/\mathrm{T})} - R \frac{\mathrm{dln}\,(1/\mathrm{T})}{\mathrm{d}(1/\mathrm{T})},\tag{21}$$

so daß man mit Gl. (19) zu dem nachstehenden Ausdruck gelangt

$$\Delta H^{\ddagger} = E_{\rm A} - RT \,. \tag{22}$$

Wie man anhand dieser Gleichung erkennt, können ΔH^{\ddagger} und E_A keine temperaturunabhängigen Konstanten sein. Tatsächlich ist aber der *RT*-Term viel kleiner als die beiden anderen, so daß man in der Praxis für die meisten Reaktionen mit guter Genauigkeit von einer Temperaturunabhängigkeit von ΔH^{\ddagger} und E_A sprechen kann. Daher ist die Wahl der Temperatur auch nicht entscheidend. Ein Wert für die Mitte des gemessenen Temperaturbereiches reicht vollkommen aus.^[88] Die Aktivierungsentropie ΔS^{\ddagger} läßt sich einfach durch Umformung von Gl. (17) berechnen. Für $\kappa = 1$ folgt

$$\Delta S^{\ddagger} = \frac{\Delta H^{\ddagger}}{T} + R \ln \frac{hk}{k_{\rm B}T}.$$
(23)

In Tab. 13 sind die thermodynamischen Aktivierungsparameter ΔH^{\ddagger} , ΔS^{\ddagger} und ΔG^{\ddagger} für die Umlagerungsreaktion von **33d** zu **38a** und von **33d**-*d*₁ zu **38a**-*d*₁ aufgeführt, die mit den Gl. (16), (22) und (23) aus den Aktivierungsenergien $E_A(H)$ und $E_A(D)$ aus *Abschnitt B.3.4.3* berechnet wurden.

Tab. 13 Auflistung aller thermodynamischen Aktivierungsparameter, die aus den Aktivierungsenergien der Umlagerungsreaktion von 33d zu 38a und von 33d-d₁ zu 38a-d₁ berechnet wurden.

Reaktion	T/K^{a}	$E_{\rm A}/{\rm kJ}~{\rm mol}^{-1}$	$\Delta H^{\ddagger}/\text{kJ mol}^{-1}$	$\Delta S^{\ddagger}/J \text{ mol}^{-1} \text{ K}^{-1}$	$\Delta G^{\ddagger}/\text{kJ mol}^{-1}$
		$(E_{\rm A}/{\rm kcal}~{\rm mol}^{-1})$	$(\Delta H^{\ddagger}/\text{kcal mol}^{-1})$	$(\Delta S^{\ddagger}/\text{cal mol}^{-1} \text{ K}^{-1})$	$(\Delta G^{\ddagger}/\text{kJ mol}^{-1})$
$33d \rightarrow 38a$	413.15	117.18 ± 1.55	113.75 ± 1.88	-40.62 ± 4.56	130.53 ± 1.88
		(27.99 ± 0.37)	(27.17 ± 0.45)	(-9.70 ± 1.09)	(31.18 ± 0.45)
$\mathbf{33d}\text{-}\mathbf{d}_1 \rightarrow \mathbf{38a}\text{-}\mathbf{d}_1$	413.15	116.83 ± 1.80	113.40 ± 1.63	-42.79 ± 3.95	131.07 ± 1.63
		(27.90 ± 0.43)	(27.08 ± 0.39)	(-10.22 ± 0.94)	(31.31 ± 0.39)

^a Es wurde der mittlere Wert des experimentellen Temperaturbereiches verwendet.

3.5 Interpretation der kinetischen Daten und die daraus resultierenden Schlußfolgerungen

Im folgenden sollen die kinetischen Daten der Reaktionen $33d \rightarrow 38a$ und $33d-d_1 \rightarrow 38a-d_1$ interpretiert werden. Es wird dabei um die Frage gehen, ob das Wasserstoffatom oder die Silylgruppe bei der Umlagerung des Vinylidens 33d zum η^2 -Alkinkomplex 38a wandert. Außerdem wird untersucht werden, welcher Mechanismus für die Isomerisierung am wahrscheinlichsten ist.

Für die η^2 -Alkinkomplex \rightarrow Vinyliden-Umlagerung sind in der Literatur MO-Berechnungen durchgeführt worden,^[47,55,56] die zu drei möglichen Mechanismen für diesen Pro-

zeß geführt haben. Sie laufen entweder über einen 1,2-H-Shift (Reaktionsweg A und B)^[47,55] oder über einen 1,3-H-Shift (Reaktionsweg C)^[56] (s. Abb. 4). Diese Mechanismen gelten auch für die Wanderung der Silylgruppe (s. *Kapitel B.1.3*) und für die entsprechend umgekehrten Prozesse^[61,62] (s. Abb. 12).

Abb. 12 Mögliche Mechanismen für die Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung über einen H- bzw. Silyl-Shift.

Ausgehend vom Vinyliden 13 bedeutet das für die ersten beiden Mechanismen, daß ein 1,2-H- bzw. Silyl-Shift vom β - zum α -Kohlenstoffatom stattfindet, gefolgt durch ein Weggleiten des Alkinliganden von einem η^2 -C–H- bzw. η^2 -C–SiR₃-koordinierten Intermediat 49 zum η^2 -Alkinkomplex 12 (Reaktionsweg A') oder ohne dieses Intermediat direkt zu 12 (Reaktionsweg B'). Der dritte Mechanimus beinhaltet zuerst eine 1,3-H- bzw. Silyl-Verschiebung vom β -C-Atom zum Metall unter Bildung eines Alkinyl(hydrido)- bzw. Alkinyl(silyl)komplexes 50 und anschließende reduktive Eliminierung zum η^2 -Alkinkomplex 12 (Reaktionsweg C').

Wie einige theoretische Arbeiten zur Wasserstoffumlagerung gezeigt haben, stellt der direkte 1,3-H-Shift stets den geschwindigkeitsbestimmenden Schritt dar, wenn man vom
Vinyliden ausgeht.^[56,57] Beim Reaktionsweg A' ist ebenfalls der H-Shift immer der langsamste Schritt der Umlagerung.^[55,61]

Die Isomerisierung des Vinylidenkomplexes **33d** zum η^2 -Alkinkomplex **38a** ist über die eben beschriebenen Mechanismen denkbar.

Der für die Umlagerungsreaktion der Vinylidene [W(=C=CH(D)SiMe₂Bu^t)Cp(CO)-(NO)] (**33d** bzw. **33d**-*d*₁) zu den η^2 -Alkinkomplexen [W(η^2 -H(D)C=CSiMe₂Bu^t)Cp(CO)-(NO)] (**38a** bzw. **38a**-*d*₁) ermittelte kinetische Isotopeneffekt k_H/k_D beträgt im gemessenen Temperaturbereich von 130–150°C im Mittel 1.196 ± 0.030. Dieser Wert ist für einen primären kinetischen Isotopeneffekt recht klein (s. *Kapitel B.3.2*).

Den kleinen gemessenen Isotopeneffekt kann man folgendermaßen erklären. Wenn die Silylgruppe wandern sollte, würde durch Substitution des Wasserstoffs durch Deuterium in α -Stellung der zu brechenden C–Si-Bindung die Reaktion verlangsamt. Es läge ein α -sekundärer kinetischer Isotopeneffekt vor (s. *Kapitel B.3.2*), der gewöhnlich im Bereich von 0.87 und 1.26 liegt.^[89] Mit einem Wert von 1.196 ± 0.030 würde der α -sekundäre kinetische Isotopeneffekt für die Reaktion von **33d** nach **38a** im oberen Grenzbereich liegen. *Der niedrige Wert von k_H/k_D ist somit für einen Silyl-Shift erklärbar*.

Welche Aussagen kann man anhand der thermodynamischen Aktivierungsparameter ΔH^{\ddagger} und ΔS^{\ddagger} für die Reaktion **33d** \rightarrow **38a** machen? Welcher Mechanismus liegt vor und welcher Rest wandert bei der Umlagerung?

Dazu muß zuerst untersucht werden, ob der Reaktionsweg A' bzw. B' (1,2-Shift) oder der Weg C' (1,3-Shift) wahrscheinlicher ist, wobei nachfolgend der H- und erst anschließend der Silyl-Shift besprochen werden soll.

Auch wenn im folgenden die Faktoren, die die Bildung eines Alkinyl(hydrido)komplexes begünstigen, nur im Zusammenhang mit der η^2 -Alkinkomplex \rightarrow Alkinyl(hydrido)komplex-Umlagerung Erwähnung finden, so liegt dies an den wenigen Veröffentlichungen für den umgekehrten Prozeß. Da aber die Bildung eines Alkinyl(hydrido)komplexes aus einem Vinyliden auch eine oxidative Addition darstellt, sollten die folgenden Faktoren für diese Reaktionsfolge ihre Gültigkeit behalten.

In der Literatur findet man die η^2 -Alkinkomplex \rightarrow Alkinyl(hydrido)komplex-Umlagerung fast auschließlich nur für Übergangsmetallkomplexe, deren Zentralatome von d⁸-(im η^2 -Alkinkomplex) nach d⁶-Konfiguration [im Alkinyl(hydrido)komplex] wechseln können, z.B. von M^I nach M^{III} (M = Co, Rh, Ir) (s. *Kapitel B.1.1*). Es scheint so, als wäre die oxidative Addition für Metalle, die von d⁶ nach d⁴-Konfiguration wechseln, nur unter hohem Energieaufwand möglich. Die theoretischen Arbeiten von SILVESTRE und HOFF-MANN^[47] sowie WAKATSUKI ET AL.^[55] bestätigen diese Annahme.

Aber nicht nur die Oxidationstufe des Metalls spielt eine Rolle, wenn es darum geht, ob der Mechanismus der Isomerisierung über ein oxidatives Additionsprodukt verläuft. Der Alkinyl(hydrido)komplex vom Typ [RuH(C=CR)(Cp*)(dippe)]⁺ (R = Ph, CO₂Me, SiMe₃) wird aus [RuCp*Cl(dippe)] mit terminalen Alkinen in Gegenwart von NaBPh₄ gebildet.⁴ Bei der analogen Reaktion des Komplexes [RuCpCl(dippe)] mit 1-Alkinen konnte kein Hydridokomplex detektiert werden; es entstanden sofort die entsprechenden Vinylidene. Das bedeutet, daß nur die Komplexe mit dem stärker elektronenschiebenden Liganden Cp* eine oxidative Addition eingehen. Außerdem sollte man auch eine erhöhte Aktivität gegenüber dem Bruch der C–H-Bindung erwarten, wenn der Rest des 1-Alkins einen stark elektronenziehenden Effekt hat, wie z.B. CO₂Me oder Ph.^[54]

Zusammenfassend kann man sagen, daß eine oxidative Addition zum Alkinyl(hydrido)komplex dann favorisiert wird, wenn das Metall einen Wechsel der d-Konfiguration von d⁸ nach d⁶ vollziehen kann, Liganden vorliegen, die gute Elektronendonoren sind, und der Rest des Alkins elektronenziehend wirkt.

Einen Vergleich mit dem Vinyliden **33d** zeigt, daß alle diese Faktoren für **33d** nicht zutreffen. Der entsprechende Alkinyl(hydrido)komplex leitet sich formal durch die Insertion des Metallatoms in die C-H-Bindung ab, und muß daher als W(0)- bzw. d⁶-Komplex und das Vinyliden als W(II)- bzw. d⁴-Spezies betrachtet werden. Die Liganden sind keine guten Elektronendonoren. Der CO- und NO-Ligand sind sogar stark π -acide.^[27] Und die *tert*-Butyldimethylsilylgruppe hat zwar durch die leeren d-Orbitale am Si-Atom einen elektronenziehenden Effekt,^[54] dieser ist aber sicherlich nicht so stark wie z.B. der eines CO₂Me-Restes. Für die Reaktion **33d** \rightarrow **38a** ist also *ein Mechanismus über ein Alkinyl(hydrido)komplex unwahrscheinlich*.

⁴ Das Kation [RuH(C≡CR)(Cp*)(dippe)]⁺ ist übrigens eines der seltenen Beispiele für einen d⁴-Alkinyl-(hydrido)komplex aus einem d⁶-η²-Alkinkomplex, der aber nur wegen der im weiteren Text noch erwähnten Gründe zum Vinyliden umlagern kann. Zusätzlich kommt hinzu, daß der Alkinyl(hydrido)- und der η²-Alkinkomplex im Gleichgewicht stehen, so daß noch weitere Faktoren für die Bildung des d⁴-Hydridointermediates verantwortlich sind.^[54]

Aus vier Gründen ist ein 1,3-Silyl-Shift ebenfalls unwahrscheinlich. Erstens lagern alle monosubstituierten Vinylidene mit einer Silylgruppe über einen H-Shift zum Alkinyl-(hydrido)intermediat um, wenn eine oxidative Addition möglich ist.^[50a,51,52,54,68a] Zweitens gelten die eben genannten Faktoren für die Bildung eines Alkinyl(hydrido)komplexes sicherlich auch für die Entstehung des analogen Alkinyl(silyl)intermediates. Drittens scheiterten bisher die Bemühungen, Alkinyl(silyl)intermediate auf dem Weg zu den Silylvinylidenen, z.B. des Rhodiums,^[50a] zu isolieren. Sowie viertens sind alle bisher gemachten kinetischen Messungen für die Isomerisierung eines η^2 -Silylalkinkomplexes zum entsprechenden Vinyliden^[69] bzw. für den umgekehrten Fall^[60b] konsistent mit einem 1,2-Silyl-Shift.

Schlußfolgernd kann man also sagen, daß *ein 1,3-H- bzw. 1,3-Silyl-Shift für die Umla*gerung des Vinylidens **33d** zum η^2 -Alkinkomplex **38a** unwahrscheinlich ist. Es sollte also eine 1,2-Umlagerung vorliegen.

Anhand der thermodynamischen Aktivierungsparameter der Reaktion $33d \rightarrow 38a$ ist es möglich eine Aussage über die Struktur des Übergangszustandes des geschwindigkeitsbestimmenden Schrittes zu machen. Ein Vergleich mit den entsprechenden Übergangszuständen der beiden Reaktionswege A' und B' für einen 1,2-H-Shift ermöglicht es zu entscheiden, ob sie für die Umlagerung von 33d nach 38a in Frage kommen. Prinzipiell gelten die folgenden Aussagen auch wieder für eine Silylwanderung.

Die Resultate der theoretischen Studien von SILVESTRE und HOFFMANN für den d⁶-Metallkomplex [Mn(η^2 -HC=CH)Cp(CO)₂] legten dar, daß ausgehend vom η^2 -Alkinkomplex das Alkin zu einer η^1 -Koordination weggleitet, gefolgt durch einen 1,2-H-Shift des Alkinsubstituenten (Reaktionsweg B').^[47] Für die umgekehrte Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerung bedeutet dies, daß zur Erreichung des Übergangszustandes hauptsächlich das H-Atom wandert und sich das C₂-Fragment relativ zum Metallzentrum kaum bewegt.^[60b]

Die Berechnungen von WAKATSUKI ET AL. an dem System [Ru(η^2 -HC=CBu^t)Cl₂(PH₃)₂] zeigten einen etwas anderen Verlauf der Reaktion: Der Alkinligand gleitet zuerst zu einer η^2 -C-H-Koordination weg und das dabei gebildete Intermediat isomerisiert anschließend über einen 1,2-H-Shift zum entsprechenden Vinyliden (Reaktionsweg A').^[55] Die Erreichung des Übergangszustandes des geschwindigkeitsbestimmenden Schrittes für den umgekehrten Prozeß beinhaltet auch hier wieder vorwiegend die Bewegung des H-Atoms und eine geringe räumliche Veränderung des C₂-Fragments.

Daher sollten die Aktivierungsentropien zur Erreichung der beiden Übergangszustände vergleichbar sein mit denjenigen für 1,2-sigmatrope Umlagerungen eines H-Atoms oder einer Silylgruppe in rein organischen Systemen.

Die Aktivierungsparameter der Isomerisierung von 1-(Trimethylsilyl)inden zu 2-(Trimethylsilyl)isoinden liegen bei $\Delta H^{\ddagger} = -88 \text{ kJ mol}^{-1} \text{ und } \Delta S^{\ddagger} = -33 \text{ J mol}^{-1} \text{ K}^{-1}.^{[90]} \text{ Ver$ gleicht man diese mit denen der Umlagerung von**33d** $<math>\rightarrow$ **38a** ($\Delta H^{\ddagger} = -113.75 \pm 1.88 \text{ kJ}$ mol⁻¹ und $\Delta S^{\ddagger} = -40.62 \pm 4.56 \text{ J mol}^{-1} \text{ K}^{-1}$), dann erkennt man, daß die in dieser Arbeit ermittelten Werte in guter Übereinstimmung mit einem Isomerisierungsmechanismus über einen 1,2-Silyl-Shift in einem konzertierten Prozeß sind.^[91]

Außerdem kommt hinzu, daß die Aktivierungsparameter der Reaktion $33d \rightarrow 38a$ hervorragend übereinstimmen mit denen der Reaktion von [*trans*-Rh{=C=C(Fc)SiMe₃}-(PPrⁱ₃)₂Cl] (59) zu [*trans*-Rh(η^2 -FcC=CSiMe₃)(PPrⁱ₃)₂Cl] (58) ($\Delta H^{\ddagger} = 95.0 \pm 0.4$ kJ mol⁻¹ und $\Delta S^{\ddagger} = -36.0 \pm 1.7$ J mol⁻¹ K⁻¹), die über einen 1,2-Silyl-Shift verläuft (s. *Kapitel B.1.3*).

Ein Vergleich der Aktivierungsparameter der Reaktion $33d \rightarrow 38a$ mit denen von Vinyliden $\rightarrow \eta^2$ -Alkinkomplex-Umlagerungen, die über einen 1,2-H-Shift verlaufen, ist aufgrund des Mangels an solchen Daten in der Literatur nicht möglich.

Anhand des kleinen kinetischen Isotopeneffektes, der theoretischen Überlegungen zur Wahrscheinlichkeit eines 1,3-H- bzw. Silyl-Shiftes für das Vinyliden **33d** und der Aktivierungsparameter der Umlagerungsreaktion **33d** \rightarrow **38a** kommt man zu dem Ergebnis, daß daß die Reaktion des Vinylidens **33d** zum η^2 -Alkinkomplex **38a** über einen konzertierten 1,2-Shift verläuft. Zudem sollte die Umlagerung über die Wanderung der Silylgruppe möglich sein.

4 Zusammenfassung

In der vorliegenden Arbeit wurde gezeigt, daß die monosubstituierten Vinylidene [W(=C=CHR)Cp(CO)(NO)] [R = Bu^t (**33a**), SiMe₂Bu^t (**33d**), SiPh₂Me (**33e**)] thermisch zu den entsprechenden η^2 -Alkinkomplexen umlagern.

Für die Reaktion $33d \rightarrow 38a$ wurden kinetische Untersuchungen durchgeführt, die zu dem Schluß führten, daß diese Umlagerung über einen konzertierten 1,2-Shift verläuft. Außerdem konnten die kinetischen und thermodynamischen Daten die Vermutung nicht widerlegen, daß die Silylgruppe wandert.

Somit sollte es also möglich sein, daß die alkyl- und silylsubstituierten η^2 -Alkinkomplexe **35a–c** und **36a–c** aus den Vinylidenen durch Umlagerung der Silylgruppe gebildet werden.

Dieser Teil der Arbeit befindet sich in Vorbereitung zur Veröffentlichung.

C Nucleophile Addition an Carbonylvinylidene

1 Allgemeiner Überblick

Die Reaktionen von Nucleophilen mit Übergangsmetallkomplexen ermöglichen einige der nützlichsten Verfahren für die Herstellung von neuen Komplexen und – vielleicht wichtiger – für ihre Anwendung in der synthetischen organischen Chemie. Diese Reaktionen können in zwei Kategorien eingeteilt werden. Zum einen kann der nucleophile Angriff am Metallzentrum stattfinden und zum anderen am metallkoordinierten organischen Liganden. Letztere Kategorie ist für den rasch wachsenden Bereich der Verwendung von Übergangsmetallen in organischen Synthesen von großer Bedeutung.

Eine Frage, die sich bei der letzten Kategorie stellt, ist: Welche Gruppe wird bei der Anwesenheit mehrerer Liganden, die nucleophil angegriffen werden können, zuerst attackiert? Worauf sich dieser Frage weitere anschließen, die es ebenfalls zu beantworten gilt: Wovon hängt die Regioselektivität ab und welche Komplexe entstehen letztendlich dabei? Zur Untersuchung dieser Fragen wurden die beiden folgenden neutralen Alkyl- und Silylvinylidene ausgewählt.

Die Komplexe **33a** und **33d** enthalten eine Vinylideneinheit und einen Carbonylliganden, die gegenüber dem Metallzentrum – wie nachfolgend noch gezeigt wird – bevorzugt nucleophil angegriffen werden können. Die Vinylideneinheiten sind einfach substituiert, so daß ein nucleophiler Angriff aus sterischen Gründen nicht verhindert wird und die Carbonylliganden haben C=O-Schwingungsabsorptionen in CCl₄, die um 2000 cm⁻¹ liegen,^[44,45] so daß auch hier ein Angriff möglich sein sollte (s. *Kapitel A.1.3.4*). Außerdem sind sie leicht zugänglich, aufgrund ihrer Stabilität gut handhabbar und unterscheiden sich nur durch den Rest des Vinylidenliganden. Im folgenden wird der nucleophile Angriff auf den Carbonyl- und den Vinylidenliganden allgemein beschrieben.

Der ungesättigte Ligand Kohlenstoffmonoxid ist eine elektronenreiche Spezies und normalerweise nicht reaktiv gegenüber Nucleophilen. Aufgrund der Koordination an elektronenarme Übergangsmetallkomplexe wird CO gegenüber einem nucleophilen Angriff aktiviert. Je elektronenarmer ein Metallzentrum ist, um so reaktiver ist dieser Ligand gegenüber einem derartigen Angriff. Entsprechend sind einerseits kationische Komplexe, andererseits Komplexe, die starke π -Akzeptoren (z.B. CO oder NO) als Zuschauerliganden tragen, besonders reaktiv in derartigen Reaktionen. Bei neutralen Metallcarbonylen benötigt man meist starke Nucleophile.

Eine große Anzahl von Nucleophilen kann den Kohlenstoff von Metallcarbonylen angreifen, ohne vorher an das Metall koordiniert zu werden. Dies schließt gewisse Organolithium und Grignard-Reagentien, Hydrid-Reagentien, Hydroxide, Alkoxide, Amine und Amid-Ionen ein.

Mit Organolithiumverbindungen als starke Nucleophile entstehen Acylatkomplexe (**71**). Sie reagieren mit Elektrophilen entweder am Sauerstoffatom^[92] oder am Metallzentrum.^[93]

Die Reaktion am Sauerstoffatom führt zu Heteroatom-stabilisierten Carbenkomplexen (*Fischer-Carbene*) (72), die eine chemisch hochinteressante und synthetisch äußerst wertvolle Substanzklasse darstellen (s. *Kapitel A.1.3.1*). Der alternative Angriff der Elektrophile am Metallzentrum läßt neutrale Acylkomplexe (73) entstehen, die nach reduktiver Eliminierung Aldehyde, Ketone oder Carbonsäurederivate (74) liefern. Hydrid-Reagentien führen zu Formylkomplexen (75).^[94]

$$LM(CO)_{n} \xrightarrow{NaHB(OR)_{3}} \begin{bmatrix} O \\ II \\ H-C-ML(CO)_{n-1} \end{bmatrix} Na^{\bigoplus} \begin{bmatrix} M = Cr, W, Fe \\ L = CO, PPh_{3} \\ n = 4-6 \end{bmatrix}$$

Hydroxide ergeben Metallcarbonsäuren (Carbohydroxykomplexe) (**76**), die aber instabil sind und CO₂ verlieren, um anionische Metallhydride (**77**) zu bilden (*Hiebersche Basenreaktion*).^[95]

Und Alkoxide, Amine und Amide führen insbesondere mit kationischen Metallcarbonylen, da diese reaktiver sind, zu Alkoxycarbonyl- (**79**) und Carbamoylverbindungen (**16**) (s. auch *Kapitel A.1.3.4*).^[96]

Die Reaktivität des Vinylidenliganden gegenüber Nucleophilen wird durch die Elektronenverteilung auf die beiden Kohlenstoffatome der Vinylideneinheit bestimmt. Nach Berechnungen von KOSTIĆ und FENSKE zeigt das α -Kohlenstoffatom elektrophile und das β -Kohlenstoffatom nucleophile Eigenschaften.^[22] Dieses Reaktionsverhalten konnte auch experimentell bestätigt werden.^[20] Jene Vinylidene, die nicht durch Basen (leicht) deprotoniert werden, erfahren einen Angriff am C_{α}-Atom durch solche Anionen wie MeO⁻, $NH_2^{-[25c]}$ und $H_{,}^{-[23a,41]}$ um Vinylkomplexe zu bilden. So reagiert z.B. der kationische Eisenvinylidenkomplex [Fe{=C=C(Me)R}Cp(dppm)]⁺ (**80**) mit einem Hydrid zu einem Eisenvinylkomplex **81**.^[23a,41]

Als Beispiel für ein Vinyliden, das mit einer Reihe von Nucleophilen zu diversen Carbenkomplexen reagiert, sei hier der kationische unsubstituierte Eisenvinylidenkomplex $[Fe(=C=CH_2)Cp(CO)(PPh_3)]^+$ (82) genannt. Das folgende Schema gibt einen Überblick über die von BOLAND-LUSSIER und HUGHES beschriebenen Produkte.^[97]

Wasser führt zum Acetylkomplex **83**, vielleicht über ein Hydroxy(methyl)carben-Intermediat. Einige Alkohole ergeben Alkoxy(methyl)carbene (**84**), *tert*-Butanol reagiert nicht. Schwefelwasserstoff und Methanthiol führen zu Methyl(thio)carbenen (**85**). Je nach Basizität addieren Amine an das Vinyliden und führen zu Aminocarbenen oder deprotonieren das Vinyliden unter Bildung des Alkinylkomplexes **88**. Benzylamin ($pK_s = 9.33$) führt nur zu **86a**, Methylamin ($pK_s = 10.66$) und Dimethylamin ($pK_s = 10.77$) hingegen zu **87** und **86b**, begleitet von ungefähr 10% von **88**. In Abwesenheit eines Lösungsmittels ergibt die starke Base Trimethylamin ($pK_s = 9.81$) nur **88**. Trockenes HCl addiert auch an das α -Kohlenstoffatom unter Bildung von Chlor(methyl)carben **89**, das schnell zum Acetylderivat **83** hydrolisiert.

Zur Untersuchung des Reaktionsverhaltens der Carbonylvinylidene wurden die Komplexe **33a** und **33d** in THF mit einem Überschuß an Ethanol, *n*-Butanthiol bzw. diversen Aminen versetzt. Beim Einsatz der ersten beiden Nucleophile fand bei Raumtemperatur keine Reaktion statt. Sogar beim Kochen der Vinylidene in Ethanol bzw. *n*-Butanthiol unter Rückfluß fand kein Angriff der Nucleophile statt. Im Falle des Komplexes **33d** wurde neben dem Edukt der entsprechende η^2 -Alkinkomplex gefunden, der durch die thermische Umlagerung des Vinylidenes **33d** entstanden ist (s. auch *Kapitel B*).

Die Komplexe **33a** und **33d** reagieren aber bei Raumtemperatur in THF mit primären und sekundären Aminen zu den entsprechenden Aminocarbenen.

Bei genauerer Betrachtung der Reaktionen konnte aber festgestellt werden, daß die Alkyl- und Silylvinylidene **33a** und **33d** mit den Aminen unterschiedlich reagieren.

In *Kapitel C.2* wird die nucleophile Addition der Amine an die Vinylidene **33a** und **33d**, die zu den Aminocarbenen führt, behandelt. *Kapitel C.3* wird auf die besondere Reaktion des Alkylvinylidens **33a** mit Aminen eingehen. Eine kurze Reaktionszeit führt zuerst zu einer Addition der Amine an den Carbonylliganden. *Kapitel C.4* wird sich schließlich mit den Mechanismen der unterschiedlichen nucleophilen Addition der Amine an die Carbonylvinylidene beschäftigen und eine Erklärung für das unterschiedliche Reaktionsverhalten liefern.

2 Nucleophile Addition an den Vinylidenliganden

2.1 Darstellung der Aminocarbene 90a-d und 91a-d

Die Behandlung der beiden Vinylidenkomplexe $[W(=C=CHBu^{t})Cp(CO)(NO)]$ (**33a**) und $[W(=C=CHSiMe_2Bu^{t})Cp(CO)(NO)]$ (**33d**) in THF mit primären und sekundären Aminen (20-facher Überschuß) bei Raumtemperatur führt zu neutralen Aminocarbenen der allgemeinen Formel $[W{=C(NR^2R^3)CH_2R^1}Cp(CO)(NO)].$

Je nach räumlicher Beanspruchung des Amins dauert die Reaktion bei Raumtemperatur zwischen 1–43 h.

Bei der Umsetzung mit Anilin bzw. Dimethylethylamin trat keine Reaktion ein.

Das (*n*-Butylamino)carben **90a** und alle Silyl(amino)carbene (**91a–d**) sind dunkelrote, zähe Öle, die nicht zur Kristallisation gebracht werden konnten. Die restlichen Alkyl(amino)carbene wurden in Form rosaroter (**90b,d**) bzw. als dunkelorangefarbene Kristalle (**90c**) erhalten. Alle Aminocarbene lösen sich gut in polaren Lösungsmitteln und können mehrere Tage unter Argon bei –20°C unzersetzt aufbewahrt werden. Sie wurden vollständig analytisch und spektroskopisch charakterisiert. Bis auf Komplex **91c** (69% Ausbeute) konnten die Silyl(amino)carbene quantitativ erhalten werden. Die Ausbeuten der Alkyl(amino)carbene lagen hingegen zwischen 28 und 39%. Dies ist auf die im Gegensatz zu den Silyl(amino)carbenen **90a,b,d** notwendige chromatographische Reinigung der Verbindungen und deren Empfindlichkeit gegenüber Kieselgel zurückzuführen. Auch mit Al₂O₃ als Säulenmaterial konnten keine besseren Ausbeuten erzielt werden.

2.2 Charakterisierung der Aminocarbene 90a-d und 91a-d

Die IR-Spektren der gereinigten Verbindungen **90a–d** und **91a–d** zeigen die intensitätsstarke charakteristische Valenzschwingung für CO im Bereich von $\tilde{v} = 1878-1905$ cm⁻¹ und für NO im Bereich von 1558–1576 cm⁻¹ auf. Die schwache bis mittelstarke N–H-Valenzschwingung erscheint zwischen 3252–3326 cm⁻¹. Zur Übersicht sind in Tab. 14 die charakteristischen IR-Absorptionen aller dargestellten Aminocarbene aufgelistet.

Verbindung	IR-Absorptionen in cm ⁻¹			
	$\widetilde{\nu} \; (NH)$	v (CO)	$\widetilde{\nu}$ (NO)	
$[W{=C(NH-n-C_4H_9)CH_2Bu^t}Cp(CO)(NO)] 90a$	3265	1905	1559	
$[W{=C(NHPr^{i})CH_{2}Bu^{t}}Cp(CO)(NO)] 90b$	3267	1898	1570	
$[W{=C(NHBut)CH2But}Cp(CO)(NO)] 90c$	3278	1897	1559	
$[W{=C(cyclo-NC_4H_8)CH_2Bu^t}Cp(CO)(NO)] 90d$	_	1879	1574	
$[W{=C(NH-n-C_4H_9)CH_2SiMe_2Bu^t}Cp(CO)(NO)] 91a$	3260	1901	1559	
$[W{=C(NHPr^{i})CH_{2}SiMe_{2}Bu^{t}}Cp(CO)(NO)] 91b$	3252	1895	1558	
$[W{=C(NHBu^{t})CH_{2}SiMe_{2}Bu^{t}}Cp(CO)(NO)] 91c$	3326	1901	1570	
$[W{=C(cyclo-NC_4H_8)CH_2SiMe_2Bu^{t}}Cp(CO)(NO)] 91d$	_	1889	1576	

Tab. 14 Charakteristische IR-Absorptionen (KBr oder Film) der Aminocarbene 90a-d und 91a-d.

Im ¹H-NMR-Spektrum weisen die Carbenkomplexe **90a,b** und **91a–c** doppelte Signalsätze auf. Dies läßt sich durch das Vorhandensein von zwei Rotameren erklären, die durch die Drehung des Carbenliganden um die Wolfram–Kohlenstoffbindung zustande kommt. (*N-tert*-Butylamino)(neopentyl)carbenkomplex **90c** und die Pyrrolidinocarbenkomplexe **90d** und **91d** zeigen nur einen Signalsatz, welcher eine schnelle Rotation des Carbenliganden anzeigt, die offenbar unabhängig von der Größe der N-Substituenten ist.

Da das Metallatom von vier verschiedenen Liganden umgeben ist, handelt es sich bei den Carbenkomplexen um chirale Moleküle. Die Wasserstoffatome der Methylengruppe am Carben-Kohlenstoff sind daher diastereotop und ergeben ein AB-Multiplett im ¹H- NMR-Spektrum. Das Signal des N–H-Protons erscheint als ein breites Singulett ($\delta = 8.01-$ 6.88 ppm), weil ¹⁴N mit seinem elektrischen Quadrupolmoment zu Signalverbreiterungen führt.^[98]

In Tab. 15 sind die wichtigsten ¹³C-NMR-Daten der Komplexe **90a–d** und **91a–d** aufgeführt.

Verbindung	¹³ C-NMR-Resonanzen in ppm			
	δ (Carben-C)	$\delta(CO)$	$\delta(Cp)$	
$[W{=C(NH-n-C_4H_9)CH_2Bu^{t}}Cp(CO)(NO)] 90a$	262.0	232.0	93.9	
	_	_	93.8	
$[W{=C(NHPr^{i})CH_{2}Bu^{t}}Cp(CO)(NO)] 90b$	258.7	232.7	93.8	
	_	_	-	
$[W{=C(NHBut)CH2But}Cp(CO)(NO)] 90c$	258.9	231.7	94.4	
	_	_	_	
$[W{=C(cyclo-NC_4H_8)CH_2Bu^t}Cp(CO)(NO)] 90d$	258.3	236.1	93.9	
	_	_	_	
$[W{=C(NH-n-C_4H_9)CH_2SiMe_2Bu^t}Cp(CO)(NO)] 91a$	259.7	236.5	93.7	
	259.3	233.0	93.6	
$[W{=C(NHPr^{i})CH_{2}SiMe_{2}Bu^{t}}Cp(CO)(NO)] 91b$	257.7	236.7	93.7	
	255.9	233.8	93.6	
$[W{=C(NHBu^{t})CH_{2}SiMe_{2}Bu^{t}}Cp(CO)(NO)] 91c$	256.3	233.2	94.2	
	_	_	93.7	
$[W{=C(cyclo-NC_4H_8)CH_2SiMe_2Bu^{t}}Cp(CO)(NO)] 91d$	252.4	237.1	93.7	
	_	_	_	

Tab. 15 Charakteristische ¹³C-NMR-Resonanzen der Aminocarbene 90a-d und 91a-d.

Die ¹³C-NMR-Spektren bestätigen die Anwesenheit eines Carbenkohlenstoffes. Die Signale erscheinen bei $\delta = 252.4-262.0$ ppm.^[99,100] Bei ausreichender Meßdauer findet man für das Carben-C Kopplungskonstanten ¹*J*(¹⁸³W,¹³C) im Bereich um 155 Hz. Die Resonanzen des Cyclopentadienylliganden erscheinen bei 93.6–94.4 ppm und zeigen keine Kopplung zum Metallatom. Dies steht z.B. im Einklang mit der Beobachtung von KöHLER, KALDER und FISCHER, die in den beiden Wolframkomplexen [W(CH₂CH=CH₂)Cp(CO)₃] und [W(CH₂C≡CH)Cp(CO)₃] auch keine Kopplung der Cyclopentadienylkohlenstoffe zum Wolfram fanden.^[101] Die Signale für den Carbonylliganden liegen bei 231.7–237.1 ppm und zeigen ebenfalls keine Kopplung zum Zentralatom. Auch hier liegt bei den Aminocar-

benen **90a** und **91a–c** ein doppelter Signalsatz aufgrund der erwähnten Rotationsisomere vor. Beim (*N*-Isopropylamino)(neopentyl)carbenkomplex **90b** hingegen sind die Rotationsisomere, aufgrund des Verhältnisses von 22:1, aber nur im ¹H-NMR-Spektrum zu erkennen.

Um eine eindeutige wechselseitige Zuordnung der ¹³C- und ¹H-NMR-Signale der Aminocarbene vornehmen zu können, wurden für die Komplexe **90a** und **91a** ¹³C,¹H-Shift-Korrelationen durchgeführt (s. Abb. 13 und Abb. 14).^[102] Dabei erhält man ein 2D-NMR-Spektrum, in welchem die Signale eines ¹³C-NMR-Spektrums mit den Peaks eines ¹H-NMR-Spektrums miteinander korreliert werden. Kreuzpeaks erscheinen, wenn direkte Kopplungen [¹*J*(¹³C,¹H)] auftreten.

Abb. 13 ¹³C,¹H-Shift-Korrelationsspektrum (Konturdiagramm) von (*N-n*-Butylamino)(neopentyl)carbenkomplex 90a.

Abb. 14 ¹³C,¹H-Shift-Korrelationsspektrum (Konturdiagramm) von (*N-n*-Butylamino)(silylmethylen)carbenkomplex 91a.

3 Nucleophile Addition an den Carbonylliganden

3.1 Isolierung der Carbamoyl(vinyl)komplexe 92a-d

Bei der Darstellung des Aminocarbens **90a** über das Alkylvinyliden **33a** fällt auf, daß während der Zugabe des *n*-Butylamins sich die Reaktionslösung von rot nach gelb verfärbte. Nach kurzer Zeit wurde sie wieder rot, bis sie am Ende der Reaktion dunkelrot war.

Durch sofortiges Abrotieren der Reaktionslösung nach dem Farbumschlag nach gelb, konnte eine beiger Feststoff erhalten werden. Dieser wurde in wenig CH₂Cl₂ gelöst. Zugabe von *n*-Pentan ergab beige Kristalle von Komplex **92a**. Durch Umsetzung des Alkylvinylidens mit den anderen Aminen wurden auf ähnliche Weise die Kristalle der Komplexe **92b–d** erhalten.

Die ¹H-, ¹³C-NMR-, IR- und massenspektroskopischen Daten der Komplexe **92a–d** ließen vermuten, daß Carbamoyl(vinyl)komplexe vorliegen. Aber erst durch eine Röntgenstrukturanalyse des Komplexes **92b** konnte die genaue Struktur der Verbindungen ermittelt werden: Bei den Kristallen handelt es sich um η^2 -Carbamoyl-(*Z*)-vinylkomplexe.

Die Carbamoyl(vinyl)komplexe **92a–c** liegen als beige Kristalle vor. Die Kristalle der Verbindung **92d** sind braun. Alle Verbindungen lösen sich in CHCl₃ sowie in Diethylether und zersetzen sich bei der Schmelzpunktbestimmung unter Aufschäumen, wobei die Zersetzung zwischen 95 und 125°C stattfindet. Die Ausbeuten liegen zwischen 18 und 84%. Bezüglich der Haltbarkeit läßt sich sagen, daß die Kristalle mehrere Monate unzersetzt unter Argonatmosphäre bei –20°C aufbewahrt werden können.

3.2 Charakterisierung der Carbamoyl(vinyl)komplexe 92a-d

3.2.1 Röntgenstrukturanalyse des Carbamoyl(vinyl)komplexes 92b

Von Komplex **92b** wurde eine Einkristall-Röntgenstrukturanalyse durchgeführt. Um geeignete Kristalle zu erhalten, wurde eine Dichlormethanlösung von Verbindung **92b** mit *n*-Pentan überschichtet und mehrere Tage bei -15° C im Kühlschrank gelagert. Die Datensätze wurden bei Raumtemperatur aufgenommen. Die Röntgenstrukturanalyse zeigte, daß die Verbindung in der triklinen Raumgruppe *P* $\overline{1}$, mit *Z* = 2 Molekülen pro Elemtarzelle, kristallisiert. Die Zelldaten sind in Tab. 16 aufgeführt.

Tab. 16 Zelldaten der triklinen Elementarzelle von Komplex 92b (Standardabweichungen in Klammern).

Zellkonstanten	a = 7.5194(8) Å	$\alpha = 91.200(15)^{\circ}$
	b = 10.5859(13) Å	$\beta = 96.713(14)^{\circ}$
	c = 11.4778(15) Å	$\gamma = 107.345(13)^{\circ}$
Volumen der Elemtarzelle	$V = 864.60(18) \text{ Å}^3$	
Formeleinheiten pro Zelle	Z = 2	
Röntgenographisch bestimmte Dichte	$\rho = 1.718 \text{ g cm}^{-3}$	

Abb. 15 Molekülstruktur von Komplex 92b (ORTEP-Plot mit H-Atomen, Zählschema für die Atome und einem Wahrscheinlichkeitsfaktor für die Schwingungsellipsoide von 30%).

Abb. 15 zeigt ein ORTEP-Plot der Struktur von Komplex **92b**. Man erkennt, daß das Wolframatom in einer verzerrten vierbeinigen "piano-stool"-Geometrie koordiniert ist.

Der *cis*-konfigurierte Vinylligand bildet einen der vier Beine des "piano-stool"-Komplexes und ist σ -gebunden zum Wolfram. Der W–Vinyl-C-Abstand von 2.161(5) Å ist aber kürzer als z.B. im Wolfram- σ -Vinylkomplex [{ $W=C(OEt)(CHPh)_2C=C(Me)CH(OEt)-(NEt_2)$ }(CO)₄]^[103a] mit 2.275(12) Å und sogar noch kürzer als in den Komplexen [W{ η^2 - $O=C(CH_2COOC_2H_5)CH=CBu^t$ }Cp(NO)₂I]^[104a] sowie [{W-CR=CRC(O)SMe}Cp(CO)₂] (R = CO₂Me)^[104b] mit 2.19(1) bzw. 2.19Å, deren W–C-Bindung aufgrund der Resonanzer-scheinungen teilweise Doppelbindungscharakter aufweist. Der Bindungsabstand von **92b** zeigt also, daß die W–Vinyl-Bindung über die Wechselwirkung der gefüllten Orbitale des Metalls mit den π^* -Orbitalen des Liganden etwas π -Charakter hat. Dies führt aber nicht zu einer signifikanten Verlängerung der C=C-Doppelbindung [1.332(8) Å]; obwohl dies nicht verwundert, wenn man die sehr kleinen Veränderungen in der C=O-Bindungslänge bei der Koordination von Kohlenmonoxid betrachtet. Die Bindungswinkel der C-Atome der Doppelbindung, die deutlich vom Idealwinkel eines sp²-hybridisierten C-Atoms mit 120° abweichen [W–C=C- und C=C–Bu^t-Winkel 141.4(4) bzw. 133.1(5)° (s. Tab. 17)], spiegeln hingegen die Orbitalwechselwirkungen wider.

Tab. 17 Die Geometrie der Vinylgruppe in $[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHPr^{i}}Cp(NO)]$ (92b) und Vergleich der Werte mit denen von anderen Vinylkomplexen.

Verbindung	M-C (Å)	C=C (Å)	W-C=C (°)	C=C-R (°)	Lit.
$[W{\sigma-(Z)-CH=CHBu^{t}} \\ {\eta^{2}-C(O)NHPr^{i}}Cp(NO)] 92b$	2.161(5)	1.332(8)	141.4(4)	133.1(5)	_
$[{\overline{W=C(OEt)(CHPh)_2C=CMeR}}(CO)_4]^a$	2.275(12)	1.319(18)	130.9(10)	120.9(12)	[103a]
$[\{W-\overleftarrow{C=CPhC(CN)_2}C(CN)_2\}Cp(CO)_3]$	2.202(9)	1.344(11)	138.9(6)	137.4(8)	[103b]
$[W\{\eta^2-O=CRCH=CBu^t\}Cp(NO)_2I]^b$	2.19(1)	1.36(2)	112.1(7)	116(1)	[104a]
$[{W-CR=CRC(O)SMe}Cp(CO)_2]^c$	2.19	1.36	d	d	[104b]
$[Mo\{\sigma-(E)-CH=CHBu^{t}\}Cp\{P(OMe)_{3}\}_{3}]$	2.243(2)	1.336(3)	128.1(2)	128.2(1)	[105]

^{*a*} R = CH(OEt)(NEt₂). ^{*d*} R = CH₂CO₂C₂H₅. ^{*c*} R = CO₂Me. ^{*d*} Nicht angegeben.

In der Literatur sind nur wenige monomolekulare η^2 -Carbamoylkomplexe bekannt, so daß im folgenden nur wenige Vergleiche mit ähnlichen Komplexen möglich sind.

Die Atome des Carbamoylliganden (O2, C11, N2, C12) und Wolfram liegen annähernd in einer Ebene (Torsionswinkel W–O2–C11–N2 178.9° und O2–C11–N2–C12 –3.2°) und die Isopropylgruppe ist *cis* zum Carbonyl-Sauerstoff angeordnet. Da sowohl C12 und das H-Atom am Stickstoff N2 als auch das Wolfram in der durch C11, O2 und N2 der Carbamoylgruppe aufgespannten Ebene liegen, können Resonanzerscheinungen des π -Elektronensystems mit den Metallorbitalen zu einer Stabilisierung der Anordnung führen. Darauf deutet der kurze W–C11-Abstand mit 2.036(5) Å hin, der vergleichbar ist mit der W–Carbamoyl-C-Bindungslänge von 2.07(3) Å in [WH{ η^2 -C(O)NMe₂}(dppe)₂]^[37b], für deren Metall–C-Bindung ebenfalls ein leichter Doppelbindungscharakter diskutiert wird.

Die W–O2-Bindungslänge beträgt 2.202(4) Å. Sie ist etwas kürzer als im monomolekularen η^2 -Carbamoylkomplex [WH{ η^2 -C(O)NMe_2}(dppe)₂] [2.37(2) Å]^[37b] (s. Tab. 18). Mit den W-O-Abständen in den beiden η^2 -Acylkomplexen [W{ η^2 -C(O)EtCp(CO)Cl_2] [2.167(6) Å]^[106a] und [{W(η^2 -C(O)CH₂SiMe_3)(CO)₂(PMe₃)Cl}₂] [2.289(5) Å]^[106b] ist sie aber vergleichbar (s. Tab. 18).

Verbindung	M-C (Å)	M-O (Å)	C-O (Å)	C-N (Å)	Lit.
$[W{\sigma-(Z)-CH=CHBu^{t}} \\ {\eta^{2}-C(O)NHPr^{i}}Cp(NO)] $ 92b	2.036(5)	2.202(4)	1.273(6)	1.305(6)	_
$[WH(\eta^2-CONMe_2)(dppe)_2]$	2.07(3)	2.37(2)	1.43(4)	1.33(4)	[37b]
$[Mo{\eta^2-C(O)NMe_2}(NCS)_4(NO)][Ph_4P]_2$	2.078(6)	2.029(6)	1.322(8)	1.240(10)	[37d]
$[\text{Th}\{\eta^2\text{-}C(O)\text{NEt}_2\}(\text{Cp*})_2\text{Cl}]^a$	2.418(20)	2.460(16)	1.44(3)	1.34(2)	[37c]
		2.383(31)	1.53(4)		
$[U{\eta^2-C(O)NMe_2}_2(Cp^*)_2]$	2.405(8)	2.370(5)	1.273(10)	1.321(10)	[37c]
	2.402(9)	2.342(7)	1.276(12)	1.344(13)	
$[Mo_3\{C(O)NMe_2\}_6(CO)_6(HNMe_2)_2]$	2.046(4)	2.343(3)	1.263(5)	1.317(6)	[38a]
$[Ru_{3}H{\eta^{2}-C(O)NMe_{2}}(CO)_{10}]$	2.098(8)	2.100(5)	1.287(9)	1.340(10)	[38b]
$[W{\eta^2-C(O)Et}Cp(CO)Cl_2]$	1.999(8)	2.167(6)	1.246(9)	_	[106a]
$[\{W(\eta^2-C(O)CH_2SiMe_3)(CO)_2(PMe_3)Cl\}_2]$	2.029(7)	2.289(5)	1.233(9)	_	[106b]

Tab. 18 Vergleich ausgewählter Bindungslängen von monomolekularen und mehrkernigen η^2 -Carbamoylsowie η^2 -Acylkomplexen.

^a Zwei Isomere im Kristall, die sich durch die Lage der CO-Gruppe bzw. des Carbonyl-O unterscheiden.

Im Vergleich zu η^1 -Carbamoylkomplexen [1.222(6)–1.251(10) Å]^[107] und organischen Amiden [1.219(5)–1.23(4) Å]^[108] (s. Tab. 19) ist der C–O-Abstand mit 1.273(6) Å länger und vergleichbar mit einigen η^2 -Carbamoylkomplexen (s. Tab. 18). Der C–N-Abstand ist mit 1.305(6) Å hingegen kleiner als in organischen Amiden [1.34(4)–1.386(4) Å]^[108] sowie

 η^{1} -Carbamoylkomplexen [1.345(12)–1.443(27) Å]^[107] (s. Tab. 19) und sogar kürzer als in einigen η^{2} -Carbamoylkomplexen (s. Tab. 18). Dies läßt sich folgendermaßen erklären. Wie bei den organischen Amiden kann man für den η^{2} -Carbamoylkomplex **92b** zwei Grenzstrukturen zeichnen (**93**); worauf auch die Planarität des Carbamoylliganden hinweist.

Die Grenzstruktur B wird durch die η^2 -Koordination stabilisiert, so daß es zu einer längeren C–O- bzw. kürzeren C–N-Bindung im Vergleich zu den Amiden kommt. Die Barriere für die C–N-Rotation sollte also im η^2 -Carbamoylkomplex höher sein als im entsprechenden η^1 -koordinierten Komplex.^[37c]

Tab. 19 Die Geometrie der Carbamoylgruppe in $[W \{\sigma-(Z)-CH=CHBu^t\} \{\eta^2-C(O)NHPr^i\} Cp(NO)]$ (92b) und Vergleich der Werte mit denen von anderen η^1 -Carbamoylkomplexen und von organischen Amiden.

Verbindung	C-O (Å)	C-N (Å)	O-C-N (°)	C-N-R (°)	Lit.
$[W{\sigma-(Z)-CH=CHBu^{t}} \\ {\eta^{2}-C(O)NHPr^{i}}Cp(NO)] 92b$	1.273(6)	1.305(6)	126.6((5)	124.1(4)	_
[W(CONHMe)Cp(CO) ₂ (NH ₂ Me)]	1.25(3)	1.41(3)	113(2)	125(2)	[107a]
[Mn(CONHMe)(CO) ₄ (NH ₂ Me)]	1.251(10) ^a	$1.345(12)^{a}$	117.4(8) ^a	122.4(8) ^a	[107b]
	$1.228(15)^{b}$	$1.443(27)^{b}$	$116.7(20)^{b}$	121.9(16) ^b	
[Mn(CONH ₂)Cp(CO)(NO)]	1.222(6)	1.346(6)	119.4(3)	119.9(7)	[107c]
NaI · 3 (CH ₃) ₂ NCHO	1.23(4)	1.34(4)	123.6(2)	120.9(2)	[108a]
HCONHCH ₃ ^c	1.219(5)	1.366(8)	124.6	121.4(9)	[108b]
CH ₃ CONHCH ₃ ^c	1.225(3)	1.386(4)	121.8(4)	119.7(8)	[108c]

^a Tetragonale Form. ^b Monokline Form. ^c Gasphasen-Daten.

Der vollständige Datensatz für den Carbamoyl(vinyl)komplex **92b** mit allen Bindungslängen und -winkeln befindet sich im Anhang.

3.2.2 IR und NMR-Daten

In den IR-Spektren der Komplexe **92a–d** erkennt man bei $\tilde{v} = 1542-1551 \text{ cm}^{-1}$ eine starke Valenzschwingungsbande für die Carbonylgruppe. Der beobachtete niedrige Wert für die CO-Bande ist typisch für die η^2 -Koordination des Carbamoylliganden.^[37b,c] Gewöhnliche η^1 -*N*,*N*-Dimethylcarbamoylkomplexe zeigen charakteristische CO-Signale im Bereich von 1565–1615 cm⁻¹.^[96]

Bei $\tilde{v} = 1626-1645 \text{ cm}^{-1}$ erscheinen die intensitätsstarken Valenzschwingungsbanden für den Nitrosylliganden.

Im festen Zustand findet man für die N–H-Valenzschwingung der Komplexe **92a–c** mittelstarke Banden im Bereich von $\tilde{v} = 3190-3197$ cm⁻¹ und in Lösung (CHCl₃) schwache Signale bei 3419–3430 sowie mittelstarke bei 3202–3214 cm⁻¹. Sekundäre Amide in *trans*-Konfiguration zeigen im festen Zustand eine Bande bei ca. 3300 cm⁻¹ und Amide und Lactame in *cis*-Stellung ein Signal bei ca. 3160–3200 cm⁻¹.^[109] Da die Röntgenstrukturanalyse aber eine *trans*-Konfiguration für den Carbamoylliganden beweist, ist ein Vergleich mit organischen Amiden hier nicht möglich.

In Tab. 20 und Tab. 21 sind die IR-Daten der Komplexe 92a-d übersichtlich dargestellt.

Verbindung	IR-Absorptionen in cm ⁻¹			
	$\widetilde{\nu} \; (NH)$	$\widetilde{\nu}$ (NO)	v (CO)	
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NH-n-C_{4}H_{9}}Cp(NO)] 92a$	3190	1645	1544	
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHPr^{t}}Cp(NO)] 92b$	3197	1627	1551	
$[W\{\sigma-(Z)-CH=CHBu^{t}\}\{\eta^{2}-C(O)NHBu^{t}\}Cp(NO)] 92c$	3190	1626	1542	
$[W\{\sigma-(Z)-CH=CHBu^{t}\}\{\eta^{2}-C(O)(cyclo-NC_{4}H_{8})\}Cp(NO)] 92d$	_	1635	1546	

Tab. 20 Charakteristische IR-Absorptionen (KBr) der Carbamoyl(vinyl)komplexe 92a-d.

Tab. 21 Charakteristische IR-Absorptionen (CHCl₃) der Carbamoyl(vinyl)komplexe 92a-d.

Verbindung	IR-Absorptionen in cm ⁻¹		
	$\widetilde{\nu}$ (NH)	$\widetilde{\nu}$ (NO)	v (CO)
$[W\{\sigma-(Z)-CH=CHBu^{t}\}\{\eta^{2}-C(O)NH-n-C_{4}H_{9}\}Cp(NO)]$ 92a	3430/3214	1629	1546
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHPr^{i}}Cp(NO)] 92b$	3421/3202	1624	1540
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHBu^{t}}Cp(NO)] 92c$	3419/3204	1614	1543
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)(cyclo-NC_{4}H_{8})}Cp(NO)] 92d$	_	1610	1561

In den ¹H-NMR-Spektren findet man die Resonanzen der Vinylprotonen bei $\delta = 6.45$ -7.07 und 7.10-7.27 ppm. Die entsprechenden Vinylkohlenstoffsignale in den ¹³C-NMR-Spektren erscheinen bei 147.8–151.4 bzw. 158.2–159.3 ppm. Um herauszufinden, zu welchem Strukturelement die Signale gehören (also ob das entsprechende H- bzw. C-Atom in α - oder β -Stellung zum Wolfram steht), wurde ein COLOC-Experiment (COrrelation spectroscopy via LOng range Coupling) von (N-n-Butylamino)(neopentyl)carbenkomplex 94a durchgeführt.^[102] Dabei handelt es sich um eine ¹³C, ¹H-Shift-Korrelation (s. auch *Ka*pitel C.2.2). Kreuzpeaks erscheinen bei Kopplungen über eine, zwei oder drei Bindungen $[{}^{1}J({}^{13}C, {}^{1}H), {}^{2}J({}^{13}C, {}^{1}H)$ und ${}^{3}J({}^{13}C, {}^{1}H)]$. In Abb. 16 ist das COLOC-Spektrum von **92a** als Konturdiagramm dargestellt. Man erkennt, daß die ¹H-NMR-Resonanzen der tert-Butylgruppe bei 1.19 und 1.17 ppm mit dem ¹³C-Signal des Vinyl-C bei 158.4 ppm korrelieren und nicht mit dem Peak des anderen Vinylkohlenstoffatomes bei 148.6 ppm. Da nur eine Kopplung über maximal drei Bindungen möglich ist, bedeutet dies, daß das Kohlenstoffatom, welches β zum Wolfram steht, für diesen Kreuzpeak verantwortlich ist. Wenn es sich um das andere Vinyl-C-Atom handeln würde, läge eine Kopplung über vier Bindungen vor.

Abb. 16 COLOC-Spektrum (Konturdiagramm) von (N-n-Butylamino)(neopentyl)carbenkomplex 92a.

Die Zuordnung der Vinylprotonen mit dem COLOC-Konturdiagramm ist schon schwieriger, da nicht alle Signale im Spektrum erscheinen. Wenn man für das Konturdiagramm einen Schnitt entlang einer tieferen Höhenlinie vornimmt, dann sieht man aber für die ¹H-Signale bei δ = 7.03 bzw. 7.07 ppm einen Kreuzpeak zum intensitätsschwachen Carbonyl-C-Signal (s. Abb. 17). Es sollte sich also um das Proton handeln, das in α-Stellung zum Wolfram steht. Für das andere Vinylproton bei 7.25 bzw. 7.27 ppm ist hingegen keine Kopplung zu sehen, wobei es somit das β-vinylische Proton sein sollte. In der Literatur findet man aber für die Protonen der Vinylkomplexe [Mo{ σ -(*E*)-CH=CHBu^t}Cp-{P(OMe)₃}]^[105] sowie [Ir(σ -CH=CH₂)(Cp*)Cl(PMe₃)] und [Ir{ σ -(*E*)-CH=CHR}(Cp*)Cl-(PMe₃)] (R = Me, Ph)^[110] die umgekehrte Zuordnung.

Abb. 17 Ausschnitt aus dem COLOC-Konturdiagramm von (*N-n*-Butylamino)(neopentyl)carbenkomplex 92a entlang einer tieferen Höhenlinie.

Eine weitere Bestätigung für diese Zuordnung liefert die Kopplung der Vinylprotonen mit Wolfram in den ¹H-NMR-Spektren. Für das schwächer entschirmte Proton erhält man Kopplungskonstanten ²J(¹⁸³W,¹H) um 12 Hz und für das stärker entschirmte ³J(¹⁸³W,¹H) um 9.5 Hz. Außerdem zeigen die ¹³C-NMR-Spektren nur für das nicht so stark entschirmte

Vinyl-C-Atom auch eine Kopplung zum Metall $[{}^{1}J({}^{183}W,{}^{13}C) = 110.6-150.0 \text{ Hz}]$, so daß es sich bei diesem um das C_a-Atom handelt.

Die ${}^{3}J({}^{1}\text{H}, {}^{1}\text{H})$ -Kopplung für die *cis*-Konfiguration der Vinylprotonen beträgt ungefähr 13.5 Hz. Der Wert für die Kopplungskonstante erscheint relativ groß. Anhand der Röntgenstrukturanalyse von (*N*-Isopropylamino)(neopentyl)carbenkomplex **92b** erkennt man, daß die Bindungswinkel von W–C=C und C=C–R mit 141.4(4) bzw. 133.1(5)° deutlich von dem Idealwinkel eines sp²-hybridisierten C-Atoms mit 120° abweichen (s. *Abschnitt C.3.2.1*), so daß die Winkel von H–C=C relativ klein sind. Da die Kopplungskonstante mit abnehmenden Winkel von H–C=C zunimmt,^[111] ist der relativ große Wert für ${}^{3}J({}^{1}\text{H}, {}^{1}\text{H})$ für die *cis*-Konfiguration erklärbar. Außerdem beträgt die Kopplungskonstante für die *trans*-Konfiguration z.B. von [W{ σ -(*E*)-CH=CH(CH₂)₃CH₃(=NSiBut^t₃)(NHSiBut^t₃)],^[112] [Mo{ σ -(*E*)-CH=CHBut^t}Cp{P(OMe)₃}]^[105] und von [Ir{ σ -(*E*)-CH=CHPh}(Cp*)(PMe_3)-Cl]^[110] 17 Hz.

Die am Stickstoff gebundenen Protonen erscheinen um 9 ppm als breite Signale wegen der Kopplung zum quadrupolaren Stickstoffkern $[I(^{14}N) = 1, s. auch Kapitel C.2.2].^{[98]}$

Bei den ¹³C-NMR-Spektren der Carbamoyl(vinyl)komplexe seien noch das Carbonyl-C-Signal im Bereich von δ = 184.2–213.0 ppm und die Resonanzen für die Vinylkohlenstoffatome C_a bei 147.8–151.4 und C_β bei 158.2–159.3 erwähnt. Alle charakteristischen ¹³C-NMR-Daten der dargestellten Carbamoyl(vinyl)komlexe sind zur Übersicht in Tab. 22 aufgeführt.

Verbindung	¹³ C-NMR-Resonanzen in ppm			
	$\delta(CO)$	$\delta(C_{\beta})$	$\delta(C_{\alpha})$	$\delta(Cp)$
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NH-n-C_{4}H_{9}}Cp(NO)] 92a$	212.1	158.4	148.6	100.7
	_	_	_	100.2
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHPr^{i}}Cp(NO)] 92b$	212.4	158.2	149.1	100.8
	_	_	_	100.1
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)NHBu^{t}}Cp(NO)] 92c$	211.9	158.6	147.8	100.7
	_	_	_	_
$[W{\sigma-(Z)-CH=CHBu^{t}}{\eta^{2}-C(O)(cyclo-NC_{4}H_{8})}Cp(NO)] 92d$	213.0	159.3	151.4	102.9
	184.2	158.2	148.8	99.8

Tab. 22 Charakteristische ¹³C-NMR-Resonanzen der Carbamoyl(vinyl)komplexe 92a-d.

Doppelte Signalsätze sind bei den Carbamoyl(vinyl)komplexen **92a,b,d** in den ¹H- und ¹³C-NMR-Spektren zu erkennen. Dies läßt sich durch das Vorhandensein von zwei Rotameren erklären. Diese können durch die Drehung des Vinylliganden um die W–C-Bindung zustande kommen.

Die Röntgenstrukturanalyse von (*N*-Isopropylamino)(neopentyl)carbenkomplex **92b** zeigt, daß ein leichter Doppelbindungscharakter zwischen der W–Vinyl-C-Bindung auftritt (s. *Abschnitt C.3.2.1*) und daß diese Verbindung im Kristallgitter in der Orientierung A vorliegt. Dies erscheint plausibel, da die sterische Wechselwirkung des Vinylliganden mit dem Carbonyl-O bzw. der Carbamoyleinheit bei diesem Konformer am geringsten ist (s. Abb. 18). Denkbar ist aber auch das nicht so stabile Rotationsisomer B. In der Literatur findet man z.B. Alkenylrotamere bei [Fe{ σ -(*E*)-C(Me)=C(Me)R}Cp(CO){P(OPh)₃}] [R = Me, Ph, CH=CH₂, C=CMe, CH(CO₂Et)₂, CN, SPh].^[113]

Abb. 18 Verschiedene Ansichten der Molekülstruktur von 92b, bei der die W-Vinyl-C-Bindung (a) bzw. die W-Cp-Bindung (b) senkrecht zur Papierebene liegt (ORTEP-Plots mit einem Wahrscheinlichkeitsfaktor für die Schwingungsellipsoide von 30%).

Es existiert aber noch eine weitere Möglichkeit für die Bildung von Rotameren, worauf die ebenfalles verkürzte W–Carbamoyl-C-Bindung hinweist. ERKER und ROSENFELDT fanden, daß bei der Carbonylierung von Diphenylzirconocen 94 der η^2 -Acylkomplex 95 nicht das Produkt der kinetisch kontrollierten Reaktion ist, sondern durch eine thermisch induzierte Umlagerung aus dem stereoisomeren η^2 -Acylkomplex 97 gebildet wird. Die Autoren begründen die Bildung des thermodynamisch weniger günstigen Produktes mit der intermediären Bildung des Carbonylkomplexes 96 mit lateral koordiniertem CO.^[114]

Bei dem η^2 -Carbamoylkomplex [Th{ η^2 -C(O)NEt_2}(Cp*)₂Cl] entdeckten FAGAN ET AL. zwei Isomere in der Festkörperstruktur, die sich nur in der Anordnung des Carbonyl-O unterscheiden. In Lösung sind die beiden Isomere des analogen Uraniumkomplexes bei tiefen Temperaturen im Gleichgewicht.^[37c]

Für die η^2 -Carbamoyl-(Z)-vinylkomplexe **92a,b,d** läßt sich aber nicht klären, ob die Rotationsbarriere um die W–Vinyl-C- oder die W–Carbamoyl-C-Bindung für die Bildung von Rotameren verantwortlich ist, da keine der beiden Möglichkeiten ausgeschlossen werden kann.

4 Mechanismen

Es stellt sich nun die Frage, wie sich die Bildung der Alkyl(amino)carbene erklären läßt. Dabei sind zwei Wege denkbar. Die erste Möglichkeit wäre, daß die Carbamoyl(vinyl)komplexe im Gleichgewicht mit dem Alkylvinyliden **33a** stehen, welches mit einem Amin zum entsprechenden Aminocarben reagiert. Es wäre aber auch denkbar, daß die Carbamoyl(vinyl)komplexe als Zwischenprodukte auf dem Weg zu den Aminocarbenen auftreten.

Für die beiden Möglichkeiten sprechen die Versuche, daß bei Zugabe eines zwanzigfachen Überschusses von *n*-Butylamin und Isopropylamin zum (*n*-Butylcarbamoyl)(vinyl)komplex **92a** die entsprechenden Aminocarbene **90a** und **90b** entstehen.

Einen ersten Hinweis darauf, daß die Carbamoyl(vinyl)komplexe im Gleichgewicht mit dem Alkylvinyliden **33a** stehen, lieferte folgende Beobachtung. Bei der Darstellung von (*n*-Butylcarbamoyl)(vinyl)komplex **92a** waren trotz mehrmaligem Auskristallisieren immer geringe Mengen von Alkylvinyliden **33a** im ¹H-NMR-Spektrum zu erkennen. Auch mehrmaliges Chromatographieren von Carbamoylkomplex **92a** verhinderte nicht das Vorhandensein des Edukts **33a** im Spektrum.

Einen weiteren Hinweis erbrachte folgender Versuch. Nachdem der Carbamoylkomplex 92a in CDCl₃ gelöst und einige Stunden bei Raumtemperatur aufbewahrt wurde, konnte eine Zunahme der Menge an Alkylvinyliden **33a** im Spektrum beobachtet werden. Zudem konnte eine geringere Menge am entsprechenden Aminocarben **90a** detektiert werden.

Da die Carbamoyl(vinyl)komplexe bei Raumtemperatur nicht stabil sind und viele Zersetzungsprodukte im Spektrum zu sehen sind, ist die Zuordnung der Signale mit Fehlern behaftet. Daher sollte (*n*-Butylcarbamoyl)(vinyl)komplex **92a** mit Aminen umgesetzt werden, die nicht mit dem Alkylvinyliden **33a** reagieren. Sollten die Carbamoyl(vinyl)komplexe mit dem Alkylvinyliden **33a** im Gleichgewicht stehen, dann müßte eine Base das Gleichgewicht in Richtung Vinyliden **33a** verschieben. Wenn diese Base nicht mit **33a** reagiert, dann kann das Vinyliden mit dem freigesetzen Amin zum entsprechenden Aminocarben reagieren. Sowohl Ethyldimethylamin als auch Anilin zeigen keine Reaktion mit dem Vinyliden **33a**.

Das ¹H-NMR-Rohprodukt-Spektrum der Umsetzung von (*n*-Butylcarbamoyl)(vinyl)komplex **92a** mit einem zwanzigfachen Überschuß an Ethyldimethylamin zeigte nach sechs Stunden Reaktionszeit, daß Carbamoyl(vinyl)komplex **92a**, Alkylvinyliden **33a** und Aminocarben **90a** ungefähr im Verhältnis 2:2:1 vorlagen. Bei gleicher Reaktionszeit ergab die Umsetzung mit einem zwanzigfachen Überschuß an Anilin ein Verhältnis von ca. 3:6:1. Bei längerer Reaktionszeit nimmt die Konzentration von Carbamoyl(vinyl)komplex **92a** sowie Alkylvinyliden **33a** ab und die Menge an Aminocarben **90a** steigt.

Mit diesem Ergebnis kann man folgenden Mechanismus für die Bildung der Carbamoyl(vinyl)komplexe postulieren.

Das Amin greift nucleophil das Carbonyl-Kohlenstoffatom an. Deprotonierung der Ammoniumgruppe und Protonierung des entstehenden anionischen Komplexes **98** führen zum Carbamoyl(vinyl)komplex.

Die Reaktion des Alkylvinylidens **33a** mit primären und sekundären Aminen führt zum thermodynamisch weniger stabilen (*Z*)-Isomer des Carbamoyl(vinyl)komplexes (sterische Wechselwirkung der *tert*-Butylguppe der Vinylideneinheit mit dem Nitrosylliganden, s. auch Abb. 18). Sie läuft also kinetisch kontrolliert ab. Dies liegt wohl daran, daß die Bildung des (*E*)-Isomers durch die Übertragung eines Protons von der Ammoniumverbindung auf das α -C-Atom des anionischen Komplexes **98** aufgrund des Platzanspruches der *tert*-Butylgruppe stark erschwert ist. Die syn-Addition zum kleineren Substituenten der Vinylidengruppe hingegen ist leicht möglich, so daß ausschließlich das (*Z*)-Isomer entsteht.

Die Bildung der Vinylgruppe entspricht formal der Addition eines Hydrids an einen Vinylidenkomplex. Interessanterweise liefert $[Fe{=C=C(Me)R}Cp(dppm)]^+$ (R = Bu^t, Ph) (80) mit einem Hydrid hingegen stereoselektiv ausschließlich das thermodynamisch stabilere $[Fe{\sigma-(E)-CH=C(Me)R}Cp(dppm)]$ (81) (s. *Kapitel C.1*). Dies wird damit erklärt, daß der nucleophile Angriff ohne sterische Hinderung aufgrund der relativ kleinen Göße des Hydrids abläuft und thermodynamisch kontrolliert ist.^[41]

Bei Anwesenheit eines Überschusses an Amin wird der Carbamoyl(vinyl)komplex am C_{α} -Atom der Vinylgruppe relativ schnell deprotoniert. Das entstandene resonanzstabilisierte Anion **98** bildet unter Abgabe des Amins das Alkylvinyliden **33a** zurück. Die Acidität des α -H-Atoms der Vinylgruppe läßt sich durch das Vorhandensein der elektronenziehenden Nitrosyl- und Carbamoylgruppe erklären. Insbesondere der starke π -Akzeptor NO scheint dafür verantwortlich. Im nächsten Schritt addiert das Amin an die Vinylideneinheit des Alkylvinylidens **33a** und bildet das entsprechende Aminocarben.

Man nimmt an, daß diese Hydroaminierungsreaktion über einen nucleophilen Angriff des Amins an das α -Kohlenstoffatom des Vinylidenliganden und anschließenden Protonentransfer (zwei Schritte)^[97b] oder in einem intermolekular-konzertierten Prozeß^[100] stattfindet.

$$L_{n}M = C = C + H_{2}NR' \rightarrow \begin{bmatrix} R' \\ I \delta^{\Theta} \delta^{\Theta} \\ H - N - H \\ L_{n}M = C = C - H \\ \delta^{\Theta} \delta^{\Theta} \\ R \end{bmatrix}^{\mp} L_{n}M = C + L$$

Die Frage, ob die Addition der Amine an die Vinylideneinheit des Alkylvinylidens oder auch des Silylvinylidens in ein oder zwei Schritten abläuft, läßt sich so ohne weiteres nicht beantworten. Dies hängt sicherlich von der Größe der Reste des Amins und des Vinylidenliganden^[20b,e] ab. Zudem wird die elektronische Natur der Vinylideneinheit, die sowohl vom Metall als auch von den Resten beeinflußt wird, eine entscheidende Rolle spielen.^[20e]

Wie sieht es mit den Silylvinylidenen aus? Ein NMR-Experiment sollte Aufschluß darüber geben, ob bei der Verwendung dieser Vinylidene ebenfalls Carbamoyl(vinyl)komplexe entstehen. Dazu wurde das Silylvinyliden **33d** in THF- d_8 gelöst und in ein NMR-Röhrchen gegeben. In kurzen Zeitabständen wurde nach Zugabe von *n*-Butylamin ein ¹H-NMR-Spektrum aufgenommen. Außer dem (*n*-Butylamino)carben **91a** konnte keine weitere Substanz im Spektrum gefunden werden. Die einzige Veränderung war, daß die Signale des Aminocarbens im Verhältnis zu den Edukten immer mehr zunahmen.

Woran liegt es, daß die Silylvinylidene im Gegensatz zu den Alkylvinylidenen ausschließlich Aminocarbene bilden? Geht man davon aus, daß die nucleophile Addition des Amins an das Vinyliden in zwei Schritten abläuft, dann entsteht durch den Angriff des Amins an das C_{α}-Atom des Vinylidenliganden ein Zwischenprodukt mit einer negativen Ladung am C_{β}-Atom. Diese negative Ladung kann durch die benachbarte Silylgruppe stabilisiert werden. Dafür ist die Überlappung des freien Elektronenpaares an C_{β} mit den antibindenden Orbitalen der Si–C-Bindungen verantwortlich (*\alpha-Effekt des Siliciums*).^[115] Eine Wechselwirkung wäre auch in einem intermolekular-konzertierten Prozeß möglich, dann würde aber "nur" eine Partialladung im Übergangszustand stabilisiert werden.

Der Rest des Vinylidenliganden ist also dafür verantwortlich, ob Carbamoyl(vinyl)komplexe gebildet werden können. Bei den Alkylvinylidenen ist der nucleophile Angriff am C_{α} -Atom des Vinylidenliganden aufgrund der Nicht-Stabilisierung der Partialladung am β -Kohlenstoffatom im Übergangszustand bzw. der negativen Ladung am C_{β} -Atom des Zwischenproduktes – je nachdem ob die Reaktion in ein oder zwei Schritten abläuft – erschwert, so daß der nucleophile Angriff am Carbonyl-C-Atom viel schneller ist und somit zuerst die thermodynamisch weniger stabilen Carbamoyl(vinyl)komplexe entstehen.

5 Zusammenfassung

Alkylvinyliden **33a** und Silylvinyliden **33d** reagieren in THF bei Raumtemperatur mit einem Überschuß an primären oder sekundären Aminen zu Aminocarbenen (Reaktionsweg B). Je nach Größe des Restes des Amins variiert die Reaktionszeit. Mit Anilin und tertiären Aminen tritt keine Reaktion ein.

Die Addition eines Amins verläuft entweder über einen nucleophilen Angriff an das α-Kohlenstoffatom der stark polarisierten C=C-Doppelbindung des Vinylidenliganden und anschließenden Protonentransfer (zwei Schritte) oder in einem intermolekular-konzertierten Prozeß (einstufig). Dabei tritt eine negative Ladung bzw. Partialladung am C_{β} auf. Im Falle eines Silylrestes am Vinylidenliganden kann sie durch Überlappung geeigneter Orbitale stabilisiert werden.

Da bei der Addition eines Amins an das Alkylvinyliden **33a** diese Stabilisierung nicht möglich ist, zeigt dieser Komplex ein dichotomes Verhalten. Zuerst findet ein nucleophiler Angriff am Kohlenstoffatom der Carbonylgruppe statt (Reaktionsweg A). Dabei bilden sich nach anschließender Deprotonierung/Reprotonierung stereoselektiv die (Z)-Isomere der η^2 -Carbamoyl(vinyl)komplexe, die in Gegenwart eines Überschusses an Amin im Gleichgewicht mit dem Alkylvinyliden **33a** stehen. Über das Vinyliden reagiert dann das Amin zu den entsprechenden thermodynamisch stabileren Aminocarbenen.

Die Resultate zeigen ein neues Reaktivitätsmuster in der Addition von Aminen an Vinylidene mit einer Carbonylgruppe als konkurrenzfähige elektrophile Seite, wobei der Rest des Vinylidenliganden für die Regioselektivität verantwortlich ist, also ob der Angriff des Nucleophils zuerst am α -C-Atom des Vinylidenliganden oder am Kohlenstoffatom der Carbonylgruppe stattfindet.

Dieser Teil der Arbeit wurde bereits veröffentlicht.^[116]

D Experimenteller Teil
1 Allgemeine Hinweise

Alle Reaktionen wurden unter Ausschluß von Luft und Feuchtigkeit in einer Argonatmosphäre durchgeführt. Die Apparaturen wurden zu diesem Zweck im Vakuum ausgeheizt und mehrmals mit Argon geflutet.

1.1 Schutzgas, Lösungsmittel und Reagenzien

Als Schutzgas diente Schweiß-Argon (99.99%) der Firma MESSER-GRIESHEIM.

Die für die Experimente verwendeten Lösungsmittel wurden wie folgt gereinigt und getrocknet:

Tetrahydrofuran	Destillation über KOH und Natrium
Toluol	Destillation, Aufbewahrung über Molsieb 4 Å

Für die Chromatographie und Umkristallisation:

Dichlormethan	Destillation
Diethylether	Destillation über KOH
<i>n</i> -Pentan	Destillation über KOH

Es wurden folgende Reagenzien und deuterierten Lösungsmittel für die Versuche gekauft bzw. hergestellt:

Acetylen	MESSER-GRIESHEIM
Benzol- <i>d</i> ₆	DEUTERO GMBH, Kastellaun, 99.8%
1-Butylchlorid	Filtration über basischem Al ₂ O ₃

tert-Butyldimethylchlorsilan	FLUKA CHEMIE AG, Deisenhofen, ~97%ig (GC)
(tert-Butyldimethylsilylchlorid)	
<i>n</i> -Butyllithium	METALLGESELLSCHAFT FRANKFURT, ca.
	1.6 molare Lösung in Hexan
Cyclopentadien	Destillation
η^5 -Cyclopentadienyl-dicarbonyl-	Darstellung nach DEMUTH-EBERLE ^[44]
nitrosyl-wolfram	
Deuteriumoxid	RIEDEL-DE-HAËN AG, Frankfurt am Main,
	≥99.8 Atom % D
Diazald [®]	Darstellung nach DE BOER und BACKER ^[117]
Dideuteroschwefelsäure	SIGMA-ALDRICH CHEMIE GMBH, Steinheim,
(Schwefelsäure-d ₂)	98 Gewichts-% in D ₂ O, ≥99.5 Atom-% D
Methyldiphenylchlorsilan	LANCASTER SYNTHESIS GMBH, Mühlheim am
(Methyldiphenylsilylchlorid)	Main, 97%ig
Tetrahydrofuran-d ₈	DEUTERO GMBH, Kastellaun, 99.8%
Trifluormethansulfonsäure-	SIGMA-ALDRICH CHEMIE GMBH, Steinheim,
methylester (Methyltriflat)	99%ig
Trimethylchlorsilan	SIGMA-ALDRICH CHEMIE GMBH, Steinheim,
(Trimethylsilylchlorid)	98%ig
Wolframhexacarbonyl	FLUKA CHEMIE AG, Deisenhofen, purum

Die deuterierten Lösungsmittel wurden über Molsieb 4 Å getrocknet.

Die Reinheit der eingesetzten Amine wurde mittels ¹H NMR-Spektren überprüft. Falls notwendig wurden die Amine über KOH getrocknet und über CaH₂ unter einer Argonatmosphäre destilliert.

1.2 Chromatographiematerialien

Säulenchromatographie

Kieselgel 0.063–0.200 mm, J. T. BAKER, Deventer (Holland)

	Neutrales Aluminiumoxid, aktiviert, 50–200 Micron,
	ACROS ORGANICS, Ceel (Belgien)
Dünnschichtchromatographie	POLYGRAM [®] Sil/UV ₂₅₄ , Fertigfolien 40 × 80 mm, Schicht: 0.25 mm Kieselgel mit Fluosreszenzindikator, MACHEREY-NAGEL GMBH & CO. KG, Düren

1.3 Spektrometer

¹ H-NMR	BRUKER AM 400, BRUKER AC 200
¹³ C-NMR	BRUKER AM 400, BRUKER AC 200
	Die chemischen Verschiebungen (δ -Werte) der NMR-
	Messungen sind in ppm, bezogen auf Trichlormethan
	$[\delta(^{1}H) = 7.24 \text{ ppm und } \delta(^{13}C) = 77.0 \text{ ppm}] \text{ bzw. Benzol}$
	$[\delta(^{1}H) = 7.17 \text{ ppm}]$ als interner Standard, angegeben.
IR	BRUKER FT-IR IFS 85
	Alle Bandenlagen sind in cm ⁻¹ angegeben. Im Bereich
	von 800–700 cm ⁻¹ wurden die Banden des CHCl ₃ -
	bzw. CCl ₄ -Spektrums entfernt.
MS	VARIAN MAT 311-A, ITD Finnigan MAT

1.4 Analysen, Schmelzpunkte

Elemtaranalysen	CARLO-ERBA-Elementaranalyse MODELL 1104
Schmelzpunkte	Apparatur nach TOTTOLI der Firma BUECHI,
	MODELL SMP-20

2 Beschreibung der Versuche

2.1 *tert*-Butyldimethylsilyl-substituierte Vinylidene und η^2 -Alkinkomplexe^[45]

2.1.1 Darstellung von (tert-Butyldimethylsilyl)vinyliden 33d

a) Darstellung von tert-Butyldimethylsilylacetylen

0.183 mol (4.39 g) Magnesiumspäne und ein Iodkristall wurden in 25 ml THF unter Rückfluß erhitzt. Zu dieser Mischung wurden einige Tropfen einer Lösung von 0.183 mol (19.2 ml bzw. 16.9 g) 1-Chlorbutan¹ hinzugefügt. Nachdem die Reaktion angesprungen war, wurden noch 60 ml THF dazugegeben. Danach tropfte man 1-Chlorbutan so zu, daß die Reaktion unter Rückfluß verlief und erhitzte zum Schluß noch 1 h, bis fast alles Magnesium verbraucht war.

Während der Herstellung von *n*-Butylmagnesiumchlorid leitete man schon Acetylen in 100 ml THF ein. Um das Acetylen zu trocknen und zu reinigen, wurde es durch eine auf -78° C gekühlte Kühlfalle, danach durch konz. H₂SO₄ und letztendlich über NaOH-Plätzchen geleitet.

Das warme *n*-Butylmagnesiumchlorid konnte nun zu der mittels einer Eis/Kochsalzmischung auf -5°C gekühlten Lösung von Acetylen in 100 ml THF getropft werden. Die Acetylenzufuhr wurde dabei nicht eingestellt und die Temperatur bei 10–15°C gehalten. Nachdem noch 1 h Acetylen eingeleitet wurde, ersetzte man dieses durch Argon.

Innerhalb möglichst kurzer Zeit wurde zu der gekühlten Reaktionsmischung eine Lösung von 0.133 mol (18.1 ml bzw. 20.00 g) Methyldiphenylsilylchlorid in 25 ml THF so zugegeben, daß die Temperatur sich im Bereich von 15–20°C bewegte. Danach erhitzte man 1 h unter Rückfluß.

Zur Entfernung von überschüssigem Grignard-Reagenz wurde mit ges. NH₄Cl-Lösung vorsichtig hydrolysiert. Man entfernte das THF und schüttelte mehrmals mit *n*-Pentan aus. Die vereinigten organischen Phasen wusch man mit wenig ges. NaCl-Lösung, trocknete

¹ 1-Chlorbutan wurde durch Filtration über basischem Al₂O₃ gereinigt und getrocknet.

über MgSO₄ und engte ein. Man erhielt 13.30 g (71%) *tert*-Butyldimethylsilylacetylen als farblose Flüssigkeit.

b) Darstellung von (tert-Butyldimethylsilyl)vinyliden 33d

Eine Lösung von 5.4 mmol (0.76 g) *tert*-Butyldimethylsilylacetylen in 10 ml THF wurde auf -78° C gekühlt und mit 4.5 mmol (4.1 ml) einer 1.1 molaren Lösung von *n*-BuLi in Hexan versetzt. Man löste 3 mmol (1.00 g) η^5 -Cyclopentadienyl-dicarbonyl-nitrosyl-wolfram (**31**) in 30 ml THF und versetzte bei -30° C langsam mit der auf -78° C gekühlten Lithium-*tert*-Butyldimethylsilylacetylid-Lösung. Die Farbe wechselte innerhalb kurzer Zeit von orangefarben über braun nach tiefgrün. Es wurde 4 h bei dieser Temperatur gerührt. Anschließend wurde eine Lösung von 1 ml konz. HCl in 20 ml Wasser langsam zu der noch kalten Reaktionslösung zugetropft. Dabei schlug die Farbe nach dunkelrot um. Die Reaktionslösung ließ man dann auf RT erwärmen.

Nachdem das THF bei RT im Vakuum abgezogen worden war, wurde die Lösung mehrmals mit Diethylether extrahiert. Die vereinigten Etherphasen wusch man mit wenig ges. NaCl-Lösung und trocknete über MgSO₄. Nach Abzug des Ethers im Vakuum bei RT wurde das erhaltene dunkelrote Öl an Kieselgel mit *n*-Pentan/Diethylether 3:1 chromatographiert. Man erhielt von Komplex **33d** 845 mg (63%) orangefarbene Kristalle.

Carbonyl-n⁵-cyclopentadienyl-[(tert-butyldimethylsilyl)vinyliden]-nitrosyl-wolfram

Orangefarbene Kristalle Ausbeute: 845 mg (63%) Zwei Rotamere (3:2) Smp.: 62°C

¹H-NMR (CDCl₃, 400.13 MHz):

$$\begin{split} &\delta = 5.75 \; (s, \, 5H, \, Cp), \\ &5.70 \; und \; 5.66 \; (2 \; s, \, 2:3, \; 1H, \; C_\beta H), \\ &0.92 \; und \; 0.89 \; [2 \; s, \; 3:2, \; 9H, \; C(CH_3)_3], \\ &0.14 \; und \; 0.10 \; [2 \; s, 2:3, \; 6H, \; Si(CH_3)_2 Bu^t]. \end{split}$$

¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 332.	δ = 332.7 und 330.7 (C _a),					
	213.9 und 213.0 (CO),						
	118.7 und 117.7 (C _β),						
	95.4 und	d 95.3 (Cp),					
	26.2 [C(26.2 [C(CH ₃) ₃],					
	17.6 und 17.2 [C(CH₃)₃],						
	-4.5 und	d −4.7 [Si(CH ₃) ₂ B	u ^t].				
IR (KBr):	ν̃ = 197	72 cm ^{−1} (CO, s), ′	1636 (NO, s), 16	604 (C=C, s).			
MS (70 eV):	m/z = 447 (M ⁺), 419 (M ⁺ -CO).						
	Hochaut	Hochaufgelöstes MS bezogen auf ¹⁸² W:					
	Ber.:	445.0825					
	Gef.:	445.0806					
C ₁₄ H ₂₁ NO ₂ SiW (447.26)	Ber.:	C 37.60%	H 4.73%	N 3.13%			
	Gef.:	C 37.49%	H 4.38%	N 3.29%			

2.1.2 Darstellung von η^2 -(*tert*-Butyldimethylsilyl)propinkomplex 36b

Die Synthese wurde wie in *Abschnitt D.2.1.1b* durchgeführt. Es wurde aber anstelle einer Lösung von 1 ml konz. HCl in 20 ml Wasser 4.5 mmol (0.5 ml) Methyltriflat langsam zugegeben, wobei die Lösung dunkelrot wurde, und nochmals 1 h bei –30°C gerührt.

Nach dem Versetzen der mit einem Eisbad gekühlten Reaktionsmischung mit ges. Na-HCO₃-Lösung entfernte man das THF im Vakuum ebenfalls bei RT und extrahierte mehrmals mit Diethylether. Die vereinigten Etherphasen wurden mit wenig ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach Abzug des Ethers im Vakuum bei RT wurde das erhaltene dunkelrote Öl an Kieselgel mit *n*-Pentan/Diethylether 3:1 chromatographiert. Man erhielt von Komplex **36b** 927 mg (67%) orangefarbene Kristalle. $Carbonyl-\eta^{5}-cyclopentadienyl-\eta^{2}-[1-(tert-butyldimethylsilyl)propin)]-nitrosyl-wolfram$

Orangefarbene Kristalle Ausbeute: 927 mg (67%) Zwei Rotamere (6:1) Smp.: 119°C	CH ₃ CH ₃ SiMe ₂ Bu ^t				
¹ H-NMR (CDCI ₃ , 400.13 MHz):	δ = 5.65 u 2.92 und 2 0.96 und 0 0.30 [² J(²⁹ [3 s, überl	nd 5.60 (2 s, 6:1, 2.87 (2 s, 1:6, 3H,).90 [2 s, 6:1, 9H, 'Si, ¹ H) = 6.3 Hz], (., diastereot. Meth	5H, Cp), Alkin-CH ₃), C(CH ₃) ₃], D.24 und 0.16 nylgr., 6H, Si(CH	l₃)₂Bu ^t].	
¹³ C-NMR (CDCl₃, 100.61 MHz):	δ = 220.0 (CO), 122.5 (Alkin-C), 95.9 und 95.8 (2 Cp), 90.7 (Alkin-C), 26.6 und 26.5 [C(CH ₃) ₃], 20.6 und 18.6 [C(CH ₃) ₃], 18.2 und 15.7 (Alkin-CH ₃), -3.8 und -3.9 [Si(CH ₃) ₂ Bu ^t].				
IR (KBr):	ṽ = 1986	cm ⁻¹ (CO, s), 182	27 (C≡C, s), 155	i8 (NO, s).	
MS (70 eV):	m/z = 461 (M ⁺), 433 (M ⁺ −CO). Hochaufgelöstes MS bezogen auf ¹⁸² W: Ber.: 459.0981 Gef.: 459.0974				
C ₁₅ H ₂₃ NO ₂ SiW (461.29)	Ber.: Gef.:	C 39.06% C 39.02%	H 5.03% H 4.73%	N 3.04% N 2.78%	

2.1.3 Darstellung von η^2 -(*tert*-Butyldimethylsilyl)acetylenkomplex 38a

Eine Lösung von 250 mg des Vinylidens **33d** in 30 ml Toluol wurde unter Argonatmosphäre 24 h unter Rückfluß erhitzt. Nach Entfernung des Lösungsmittels bei RT im Vakuum wurde das erhaltene dunkelrote Öl mit *n*-Pentan/Diethylether 7:1 chromatographiert. Man erhielt 127 mg (51%) von Komplex **38a** in Form orangefarbener Kristalle. Laut Rohproduktspektrum haben sich 79% des Vinylidens zum η^2 -Alkinkomplex **38a** umgesetzt.

 $Carbonyl-\eta^{5}-cyclopentadienyl-\eta^{2}-[(tert-butyldimethylsilyl)acetylen]-nitrosyl-wolframing and a straight of the straight$

Orangefarbene Kristalle Ausbeute: 127 mg (51%) Zwei Rotamere (5:1) Smp.: 66°C	H H N SiMe ₂ Bu ^t 38a				
¹ H-NMR (CDCl ₃ , 400.13 MHz):	δ = 8.74 (2 s, 1:5, 5.67 und 0.97 und 0.32 [² J(² [4 s, dias	² J(¹⁸³ W, ¹ H) = 7.8 1H, Alkin-H), 5.62 (2 s, 5:1, 5H, 0.93 [2 s, 5:1, 9H, ⁹ Si, ¹ H) = 6.1 Hz], t tereot. Methylgr., 5	Hz] und 8.12 (8 Cp), C(CH ₃) ₃], D.27, 0.25 (6.0 H 5:1:5:1, 6H, Si(C	.8 Hz) Hz) und 0.18 CH ₃) ₂ Bu ^t].	
¹³ C-NMR (CDCI ₃ , 100.61 MHz):	δ = 219.2 und 218.4 [¹ J(¹⁸³ W, ¹³ C) = 178.4 Hz] (CO), 121.9 und 115.7 [¹ J(¹⁸³ W, ¹³ C) = 15.4 Hz] (C≡CH), 105.1 [¹ J(¹⁸³ W, ¹³ C) = 40.3 Hz] und 97.1 (C≡CH), 95.9 (Cp), 26.5 und 26.4 [C(CH ₃) ₃], 18.2 und 17.8 [C(CH ₃) ₃], -3.6 [¹ J(²⁹ Si, ¹³ C) = 52.2 Hz], -4.1 (54.5 Hz), -4.5 und -4.8 [Si(CH ₃) ₂ Bu ^t].				
IR (KBr):	ν̃ = 1965 cm ⁻¹ (CO, s), 1713 (C≡C, m), 1565 (NO, s).				
MS (70 eV):	m/z = 447 (M^+), 419 (M^+ -CO). Hochaufgelöstes MS bezogen auf ¹⁸² W: Ber.: 445.0825 Gef.: 445.0824				
C ₁₄ H ₂₁ NO ₂ SiW (447.26)	Ber.: Gef.:	C 37.60% C 37.87%	H 4.73% H 4.57%	N 3.13% N 2.90%	

2.2 Methyldiphenylsilyl-substituierte Vinylidene und η^2 -Alkinkomplexe

2.2.1 Darstellung von (Methyldiphenylsilyl)vinyliden 33e und unsubstituiertem Vinyliden 37

a) Darstellung von Methyldiphenylsilylacetylen

0.059 mol (1.42 g) Magnesiumspäne und ein Iodkristall wurden in 5 ml THF unter Rückfluß erhitzt. Zu dieser Mischung wurden einige Tropfen einer Lösung von 0.059 mol (6.2 ml bzw. 5.47 g) 1-Chlorbutan² hinzugefügt. Nachdem die Reaktion angesprungen war, wurden noch 15 ml THF dazugegeben. Danach tropfte man 1-Chlorbutan so zu, daß die Reaktion unter Rückfluß verlief und erhitzte zum Schluß noch 1 h, bis fast alles Magnesium verbraucht war.

Während der Herstellung von *n*-Butylmagnesiumchlorid leitete man schon Acetylen in 25 ml THF ein. Um das Acetylen zu trocknen und zu reinigen, wurde es durch eine auf -78° C gekühlte Kühlfalle, danach durch konz. H₂SO₄ und letztendlich über NaOH-Plätzchen geleitet.

Das warme *n*-Butylmagnesiumchlorid konnte nun zu der mittels einer Eis/Kochsalzmischung auf –10°C gekühlten Lösung von Acetylen in 25 ml THF getropft werden. Die Acetylenzufuhr wurde dabei nicht eingestellt und die Temperatur bei 10–15°C gehalten. Nachdem noch 1 h Acetylen eingeleitet wurde, ersetzte man dieses durch Argon.

Innerhalb möglichst kurzer Zeit wurde zu der gekühlten Reaktionsmischung eine Lösung von 0.043 mol (11.0 ml bzw. 10.00 g) Methyldiphenylsilylchlorid in 15 ml THF so zugegeben, daß die Temperatur sich im Bereich von (-5)–0°C bewegte. Danach erhitzte man 2 h unter Rückfluß.

Zur Entfernung von überschüssigem Grignard-Reagenz wurde mit ges. NH₄Cl-Lösung vorsichtig hydrolysiert. Man entfernte das THF und schüttelte mehrmals mit *n*-Pentan aus. Die vereinigten organischen Phasen wusch man mit wenig ges. NaCl-Lösung, trocknete über MgSO₄ und engte ein. Man erhielt 8.78 g (92%) Methyldiphenylsilylacetylen als leicht gelbliche Flüssigkeit.

² 1-Chlorbutan wurde durch Filtration über basischem Al₂O₃ gereinigt und getrocknet.

 b) Darstellung von (Methyldiphenylsilyl)vinyliden 33e und unsubstituiertem Vinyliden 37 mittels NaHCO₃

Eine Lösung von 4.5 mmol (1.00 g) Methyldiphenylsilylacetylen in 10 ml THF wurde auf -78° C gekühlt und mit 4.5 mmol (2.85 ml) einer 1.6 molaren Lösung von *n*-BuLi in Hexan versetzt. Man löste 3 mmol (1.00 g) η^5 -Cyclopentadienyl-dicarbonyl-nitrosyl-wolfram (**31**) in 30 ml THF und versetzte bei -30° C langsam mit der auf -78° C gekühlten Lithium-Methyldiphenylsilylacetylid-Lösung. Die Farbe wechselte innerhalb kurzer Zeit von orangefarben über braun nach tiefgrün. Es wurde 4 h bei dieser Temperatur gerührt. Anschließend wurde ges. NaHCO₃-Lösung langsam zu der noch kalten Reaktionslösung zugetropft. Dabei schlug die Farbe nach dunkelrot um. Die Reaktionslösung ließ man auf RT kommen.

Nachdem das THF bei RT im Vakuum abgezogen worden war, wurde die Lösung mehrmals mit Diethylether extrahiert. Die vereinigten Etherphasen wusch man mit wenig ges. NaCl-Lösung und trocknete über MgSO₄. Nach Abzug des Ethers im Vakuum bei RT konnte das erhaltene dunkelrote Öl zweimal an Kieselgel mit *n*-Pentan/Diethylether 5:1 chromatographiert werden, wobei die erste Säulenchromatographie nur zur Abtrennung von Zersetzungsprodukten diente. Man erhielt Komplex **33e** als dunkelrotes Öl. Die Ausbeute betrug 261 mg (16%). Als weiteres Produkt konnte Komplex **37** in einer Ausbeute von 257 mg (26%) isoliert werden.

Carbonyl-n⁵-cyclopentadienyl-[(methyldiphenylsilyl)vinyliden]-nitrosyl-wolfram

Dunkelrotes Öl Ausbeute: 261 mg (16%) Zwei Rotamere (5:2)

¹H-NMR (CDCl₃, 400.13 MHz): (s. Abb. 19)
$$\begin{split} &\delta = 7.65 \text{--} 7.38 \ (\text{m}, \ 10\text{H}, \ \text{Ph}), \\ &6.02 \ \text{und} \ 5.93 \ (2 \ \text{s}, \ 2:5, \ 1\text{H}, \ \text{C}_{\beta}\text{H}), \\ &5.73 \ \text{und} \ 5.40 \ (2 \ \text{s}, \ 2:5, \ 5\text{H}, \ \text{Cp}), \\ &0.71 \ \text{und} \ 0.69 \ (2 \ \text{s}, \ 5:2, \ 3\text{H}, \ \text{CH}_3). \end{split}$$

¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 35)	$\begin{split} & \overline{\sigma} = 334.9 \text{ und } 333.6 \left[{}^{1}J({}^{183}\text{W},{}^{13}\text{C}) = 183.1 \text{ Hz}\right](C_{\alpha}), \\ & 212.3 \left[{}^{1}J({}^{183}\text{W},{}^{13}\text{C}) = 202.6 \text{ Hz}\right] \text{ und } 212.0 (CO), \\ & 136.0-127.9 (\text{arom. C}), \\ & 118.3 \text{ und } 117.2 \left[{}^{2}J({}^{183}\text{W},{}^{13}\text{C}) = 34.5 \text{ Hz}\right](C_{\beta}), \\ & 95.4 \text{ und } 95.3 (Cp), \\ & -2.0 \text{ und } -2.2 (CH_{3}). \end{split}$			
IR (Film): (s. Abb. 51)	\widetilde{v} = 1990	cm ^{−1} (CO, s), 163	6 (NO, s), 1595	(C=C, s).
MS (70 eV):	m/z = 529 Hochaufge Ber.: Gef.:	(M ⁺), 501 (M ⁺ −CC löstes MS bezoge 527.0668 527.0667)), 471 (M ⁺ −CO- en auf ¹⁸² W:	-NO).
C ₂₁ H ₁₉ NO ₂ SiW (529.33)	Ber.: Gef.:	C 47.65% C 47.28%	H 3.62% H 3.32%	N 2.65% N 2.89%

Carbonyl-n⁵-cyclopentadienyl-nitrosyl-vinyliden-wolfram

c) Darstellung von (Methyldiphenylsilyl)vinylidenkomplex **33e** und unsubstituiertem Vinylidenkomplex **37** mittels HCl

Die Darstellung erfolgte analog der Beschreibung in *Abschnitt D.2.2.1b*. Anstelle von ges. NaHCO₃-Lösung wurde aber eine Lösung von 1 ml konz. HCl in 20 ml Wasser lang-

sam zu der noch kalten Reaktionslösung zugetropft. Dabei schlug die Farbe nach dunkelrot um. Die Reaktionslösung ließ man dann auf RT erwärmen. Nachdem das THF bei RT im Vakuum abgezogen worden war, wurde die Lösung mehrmals mit Diethylether extrahiert. Die vereinigten Etherphasen wusch man mit wenig ges. NaCl-Lösung und trocknete über MgSO₄. Nach Abzug des Ethers im Vakuum bei RT wurde das erhaltene dunkelrote Öl an Kieselgel mit *n*-Pentan/Diethylether 7:1 chromatographiert. Man erhielt wiederum als Hauptprodukt Komplex **33e** als dunkelrotes Öl. Die Ausbeute betrug diesmal 341 mg (21%). Als Nebenprodukt konnte auch hier Komplex **37** gewonnen werden, wobei die Ausbeute bei 230 mg (15%) lag (charakteristische Daten s. *Abschnitt D.2.2.1b*).

2.2.2 Darstellung von η^2 -(Methyldiphenylsilyl)propinkomplex 36c

Die Synthese wurde wie in *Abschnitt D.2.2.1b* durchgeführt. Es wurde aber anstelle von ges. NaHCO₃-Lösung 4.5 mmol (0.5 ml) Methyltriflat langsam zugegeben, wobei die Lösung dunkelrot wurde, und nochmals 30 min bei -30°C gerührt.

Nach dem Versetzen der Reaktionsmischung bei RT mit ges. NaHCO₃-Lösung entfernte man das THF im Vakuum ebenfalls bei RT und extrahierte mehrmals mit Diethylether. Die vereinigten Etherphasen wurden mit wenig ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Nach Abzug des Ethers im Vakuum bei RT wurde das erhaltene dunkelrote Öl an Kieselgel mit *n*-Pentan/Diethylether 7:1 chromatographiert. Man erhielt von Komplex **36c** 760 mg (47%) in Form eines dunkelroten Öles.

Carbonyl-n⁵-cyclopentadienyl-n²-[1-(methyldiphenyllsilyl)propin)]-nitrosyl-wolfram

Dunkelrotes Öl Ausbeute: 760 mg (47%) Zwei Rotamere (8:1)

36c

¹ H-NMR (CDCl ₃ , 400.13 MHz):	δ = 7.62–7.33 (m, 10H, Ph),						
(s. Abb. 20)	5.57 und	5.57 und 5.37 [² J(¹⁸³ W, ¹ H) = 9.5 Hz] (2 s, 1:8, 5H, Cp),					
	2.88 und	2.88 und 2.82 (2 s, 8:1, 3H, Alkin-CH₃),					
	0.83 [² J(²⁹ Si, ¹ H) = 6.6 Hz] und 0.79 (2 s, 8	8:1, 3H, SiPh ₂ CH ₃)).		
¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 219.1 [¹ J(¹⁸³ W, ¹³ C) = 183.1 Hz] und 217.5 (CO),						
(s. Abb. 36)	136.8–1	27.8 (arom. C),					
	127.4 [¹ 、	127.4 [¹ J(¹⁸³ W, ¹³ C) = 13.9 Hz] (Alkin-C),					
	96.0 und	1 95.8 (2 Cp),					
	90.7 [¹ J(90.7 [¹ J(¹⁸³ W, ¹³ C) = 38.9 Hz] (Alkin-C),					
	20.4 und	20.4 und 15.5 (Alkin-CH ₃),					
	-2.0 [¹ J(²⁹ Si, ¹³ C) = 56.9 ł	Hz] und −2.9 (Sil	Ph ₂ CH ₃).			
IR (Film): (s. Abb. 52)	v = 196	66 cm ⁻¹ (CO, s), ²	1806 (C≡C, s), 1	575 (NO, s).			
MS (70 eV):	m/z = 543 (M⁺), 515 (M⁺−CO), 485 (M⁺−CO−NO).						
	Hochaut	Hochaufgelöstes MS bezogen auf ¹⁸² W:					
	Ber.:	541.0820					
	Gef.:	541.0817					
C ₂₂ H ₂₁ NO ₂ SiW (543.36)	Ber.:	C 48.63%	H 3.90%	N 2.58%			
	Gef.:	C 48.90%	H 3.58%	N 2.77%			

2.2.3 Darstellung von η^2 -(Methyldiphenylsilyl)acetylenkomplex 38c

Eine Lösung von 300 mg des Vinylidens **33e** in 30 ml Toluol wurde unter Argonatmosphäre 24 h unter Rückfluß erhitzt. Nach Entfernung des Lösungsmittels bei RT im Vakuum wurde das erhaltene dunkelrote Öl mit *n*-Pentan/Diethylether 7:1 chromatographiert. Man erhielt 40 mg des nicht umgesetzten Vinylidenkomplexes **33e** und 60 mg (20%) des umgelagerten η^2 -Alkinkomplexes **38c** in Form eines dunkelroten Öles. Laut Rohproduktspektrum haben sich 63% des Vinylidens zum η^2 -Alkinkomplex **38c** umgesetzt. $Carbonyl-\eta^{5}-cyclopentadienyl-\eta^{2}-[(methyldiphenylsilyl)acetylen]-nitrosyl-wolframination of the second strain of the second stra$

Dunkelrotes Öl Ausbeute: 60 mg (20%) Zwei Rotamere (5:1)	H H M SiPh ₂ Me				
	3	000			
¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 21)	$\delta = 9.10 [^{2}]_{0}^{2}$ (2 s, 1:5, 1 7.64 und 7 5.59 und 5 0.84 [² J(²⁹ S	J(¹⁸³ W, ¹ H) = 7.4 H H, Alkin-H), .33 (m, 10H, Ph), .38 [2 s, 1:5, 5H, Si, ¹ H) = 6.5 Hz] ur	ltz] und 8.54 (8.8 Cp], nd 0.83 (2 s, 5:1	3 Hz) , 3H, CH ₃).	
¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 37)	δ = 217.6 [¹ J(¹⁸³ W, ¹³ C) = 177.6 Hz] und 217.0 (CO), 136.4–126.7 (arom. C), 120.1 [¹ J(¹⁸³ W, ¹³ C) = 15.3 Hz] (C≡CH), 105.2 [¹ J(¹⁸³ W, ¹³ C) = 40.2 Hz] (C≡CH), 96.0 und 95.9 (Cp), −1.9 [¹ J(²⁹ Si, ¹³ C) = 58.3 Hz] und −2.9 (CH ₃).				
IR (Film): (s. Abb. 53)	v ∈ 1983	cm ^{⁻1} (CO, s), 169	9 (C≡C, m), 159	94 (NO, s).	
MS (70 eV):	m/z = 529 Hochaufge Ber.: Gef.:	(M ⁺), 501 (M ⁺ −CC löstes MS bezoge 527.0668 527.0681)), 471 (M ⁺ −CO ⁻ en auf ¹⁸² W:	-NO).	
C ₂₁ H ₁₉ NO ₂ SiW (529.33)	Ber.: Gef.:	C 47.65% C 47.20%	H 3.62% H 3.34%	N 2.65% N 2.86%	

2.3 Versuche zur thermischen Umlagerung von nicht-silylsubstituierten Vinylidenen

2.3.1 Versuch der thermischen Umlagerung von unsubstituiertem Vinyliden 37

Von Komplex **37** wurden 100 mg in 10 ml Toluol gelöst und 24 h unter Argonatmosphäre unter Rückfluß erhitzt. Dabei färbte sich die orangefarbene Lösung langsam dunkelbraun. Nach Abkühlen auf RT wurde das Lösungsmittel im Vakuum entfernt. Das ¹H-NMR-Rohproduktspektrum enthielt sowohl für den Vinylidenkomplex **37** als auch für den entsprechenden η^2 -Alkinkomplex keine Signale. Es waren nur noch zahlreiche Signale von Zersetzungsprodukten zu sehen.

2.3.2 Thermische Umlagerung von tert-Butylvinyliden 33a

a) Reaktionszeit 24h

Es wurden 100 mg von Vinylidenkomplex **33a** wie in *Abschnitt D.2.3.1* 24 h erhitzt Die Reaktionslösung färbte sich langsam von orangefarben nach rot. Nach Abkühlen auf RT wurde das Lösungsmittels im Vakuum abgezogen. Im ¹H-NMR-Rohproduktspektrum waren die Signale des Vinylidenkomplexes zu sehen. Zusätzlich konnte man schwach die Signale des umgelagerten η^2 -Alkinkomplexes **38b** erkennen. Es setzten sich 6% des Vinylidenkomplexes **33a** zum entsprechenden η^2 -Alkinkomplex **38b** um.

b) Reaktionszeit 3 d

Die Durchführung erfolgte wie unter a), nur daß die Reaktionsdauer nun auf 3 d erhöht wurde. Diesmal waren die Signale des umgelagerten η^2 -Alkinkomplexes **38b** deutlich zu erkennen. Nun lagerten sich 16% um.

 $(tert-Butylvinyliden)-carbonyl-\eta^{5}-cyclopentadienyl-nitrosyl-wolfram$

Orangefarbene Kristalle Zwei Rotamere (5:4)	$ \begin{array}{c} $
	33a
¹ H-NMR (CDCI ₃ , 400.13 MHz):	δ = 5.83 und 5.81 (2 s, 5:4, 5H, Cp), 5.73 [³ J(¹⁸³ W, ¹ H) = 6.7 Hz] und 5.69 (2 s, 5:4, 1H, C _β H), 1.10 und 1.08 [2 s, 4:5, 9H, C(CH ₃) ₃].
¹³ C-NMR (CDCl ₃ , 100.61 MHz):	$\begin{split} &\delta = 338.7 \ [{}^{1}J({}^{183}\text{W}, {}^{13}\text{C}) = 181.8 \text{ Hz}] \\ &\text{und } 338.4 \ (183.2 \text{ Hz}) \ (C_{\alpha}), \\ &211.8 \ [{}^{1}J({}^{183}\text{W}, {}^{13}\text{C}) = 201.0 \text{ Hz}] \text{ und } 210.8 \ (201.0 \text{ Hz}) \ (CO) \\ &140.0 \ [{}^{2}J({}^{183}\text{W}, {}^{13}\text{C}) = 34.5 \text{ Hz}] \text{ und } 139.5 \ (35.1 \text{ Hz}) \ (C_{\beta}), \\ &96.2 \text{ und } 96.0 \ (Cp), \\ &34.6 \ [{}^{3}J({}^{183}\text{W}, {}^{13}\text{C}) = 36.2 \text{ Hz}] \text{ und } 33.0 \ (35.8 \text{ Hz}) \ [C(CH_{3})_{3}], \\ &31.2 \text{ und } 31.0 \ [C(CH_{3})_{3}]. \end{split}$

 η^{2} -(tert-Butylacetylen)-carbonyl- η^{5} -cyclopentadienyl-nitrosyl-wolfram

Hellrote Kristalle Zwei Rotamere (6:1)

38b

¹H-NMR (CDCl₃, 400.13 MHz):

δ = 7.45 [²*J*(¹⁸³W, ¹H) = 8.0 Hz] und 6.98 (9.2 Hz) (2 s, 1:6, 1H, C≡CH), 5.77 und 5.68 (2 s, 6:1, 5H, Cp), 1.35 und 1.32 [2 s, 6:1, 9H, C(CH₃)₃]. ¹³C-NMR (CDCl₃, 100.61 MHz): $\delta = 215.5$ (CO), 133.7 [¹J(¹⁸³W, ¹³C) = 52.0 Hz] und 124.4 (13.6 Hz) (Alkin-C), 96.4 und 96.0 (Cp), 91.0 [¹J(¹⁸³W, ¹³C) = 43.1 Hz] und 88.1 (8.9 Hz) (Alkin-C), 36.4 und 34.6 [C(CH₃)₃], 31.9 und 31.0 [C(CH₃)₃].

2.4 Versuche zur Bestimmung der kinetischen Daten der thermischen Umlagerung von $33d \rightarrow 38a$ und $33d-d_1 \rightarrow 38a-d_1$

2.4.1 Darstellung von (tert-Butyldimethylsilyl)(deutero)vinyliden 33d-d1

300 mg (0.671 mmol) *tert*-Butyldimethylsilylvinyliden **33d** wurden in 5 ml THF und 5ml D₂O 2 h bei RT gerührt. Danach wurde das Lösungsmittel und D₂O im Vakuum entfernt und der Rückstand mehrere Stunden im Vakuum getrocknet. Man erhielt den deuterierten Komplex **33d-** d_1 in quantitativer Ausbeute in Form eines orangefarbenen Pulvers.

[(tert-Butyldimethylsilyl)(deutero)vinyliden]-carbonyl-η⁵-cyclopentadienyl-nitrosylwolfram

```
Orangefarbene Kristalle
Ausbeute: quantitativ
Zwei Rotamere (3:2)
Smp.: 60°C
```


33d-*d*₁

¹H-NMR (CDCl₃, 400.13 MHz): (s. Abb. 19) δ = 5.76 (s, 5H, Cp), 0.91 und 0.89 [2 s, 3:2, 9H, C(CH₃)₃], 0.13, 0.10 und 0.09 [3 s, überl., diastereot. Methylgr., 6H, Si(CH₃)₂Bu^t].

¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 333.	δ = 333.0 und 331.0 (C _a),				
(s. Abb. 38)	213.8 ur	213.8 und 212.0 (CO),				
	118.5 [¹	J(¹³ C, D) = 20.8 H	Hz] und 117.5 (2	2.2 Hz) (C _β),		
	95.4 und	d 95.2 (Cp),				
	26.1 [C(CH ₃) ₃],				
	17.6 und	d 17.1 [<i>C</i> (CH ₃) ₃],				
	-4.4, -4	.5 und −4.8 [Si(C	℃H ₃)₂Bu ^t].			
IR (KBr):	ṽ = 199	99 und 1975 cm ^{-^}	¹ (CO, s), 1635 u	und 1617 (NO, s),		
(s. Abb. 54)	1584 (C	=C, s).				
MS (70 eV):	m/z = 44	48 (M ⁺), 420 (M ⁺ -	·CO).			
	Hochau	fgelöstes MS bez	ogen auf ¹⁸² W:			
	Ber.:	446.0887				
	Gef.:	446.0884				
C ₁₄ DH ₂₀ NO ₂ SiW (448.27)	Ber.:	C 37.51%	H 4.50%	N 3.12%		
	Gef.:	C 37.32%	H 4.53%	N 3.28%		

2.4.2 Bestimmung der kinetischen Daten der thermischen Umlagerung von $33d \rightarrow 38a$ und $33d-d_1 \rightarrow 38a-d_1$

Das (*tert*-Butyldimethylsilyl)vinyliden **33d** wurde wie in der vorangegangenen Arbeit^[45] hergestellt und zusätzlich ein weiteres Mal chromatographisch gereinigt. Ein Teil davon deuterierte man gemäß *Abschnitt D.2.4.1*.

Die entsprechende Substanzmenge von **33d** bzw. **33d**- d_1 bestimmte man mit einer Präzisionswaage und füllte sie in ein NMR-Röhrchen. Anschließend wurde mit Hilfe einer gasdichten GC-Spritze ein bestimmtes Volumen des Lösungsmittels Benzol- d_6 hinzugegeben. Da es bei wiederholten NMR-Intensitätsmessungen und wegen der Empfindlichkeit der Substanzen notwendig ist, den Sauerstoff vollständig zu entfernen, wurde die Reaktionslösung mehrfach im Hochvakuum entgast.

Dazu wurde die Lösung mit einem Gemisch aus *n*-Pentan und flüssigem Stickstoff eingefroren und danach mit einer Ölpumpe Vakuum gezogen. Dann ließ man die Lösung bei geschlossener Apparatur und RT auftauen, indem man das NMR-Röhrchen langsam aus dem Kältebad entfernte. Anschließend wurden alle Schritte noch dreimal wiederholt.

Nachdem die Lösung mit flüssigem Stickstoff eingefroren war, wurde das NMR-Röhrchen vorsichtig abgeschmolzen. Die Messungen der Proben erfolgten in einem Thermostat mit einer Genauigkeit der eingestellten Temperatur von ± 0.1 °C und verliefen nach folgendem Schema.

Die Probe mit einer bestimmten Einwaage des Vinylidens **33d** bzw. **33d**-*d*₁ wurde im Thermostat bei der entsprechenden Temperatur erwärmt. Nach einer gewissen Zeit – die Reaktionsdauer wurde mit einer Stoppuhr gemessen – nahm man das NMR-Röhrchen aus dem Thermostat und schreckte es sofort in einem Wasserbad ab. Anschließend wurde ein ¹H-NMR-Spektrum aufgenommen und der Vorgang mit der gleichen Probe mehrmals wiederholt.

Die Auswertung der Spektren erfolgte mit dem Programm WIN-NMR (Version 6.1.0.0) der Firma BRUKER DALTONIK GMBH. Die Integrationsgrenzen wurden manuell gesetzt, da so die Integrale genauer bestimmt werden konnten.

Die Berechnungen wurden mit dem Programm Excel 2000 durchgeführt. Um die Geradengleichungen zu bestimmen, sind Regressionsanalysen (lineare Regression, Methode der kleinsten Quadrate) vorgenommen worden. Die Fehler der kinetischen und thermodynamischen Parameter sind aus den Fehlern der Steigungen berechnet worden.

[(tert-Butyldimethylsilyl)vinyliden]-carbonyl-n⁵-cyclopentadienyl-nitrosyl-wolfram

Orangefarbene Kristalle Zwei Rotamere (1:1)

¹H-NMR (Benzol-*d*₆, 400.13 MHz):

δ = 5.57 und 5.19 (2 s, 1:1, 1H, C_βH), 5.08 und 5.05 (2 s, 1:1, 5H, Cp), 0.95 [1 s, 9H, C(CH₃)₃], 0.13 und 0.10 [2 s, diastereot. Methylgr., 6H, Si(CH₃)₂Bu^t]. η^{2} -[(tert-Butyldimethylsilyl)acetylen]-carbonyl- η^{5} -cyclopentadienyl-nitrosyl-wolfram

Orangefarbene Kristalle Zwei Rotamere (6:1)

¹H-NMR (Benzol-*d*₆, 400.13 MHz):

δ = 8.36 [²J(¹⁸³W, ¹H) = 7.7 Hz] und 7.85 (8.8 Hz) (2 s, 1:6, 1H, C≡CH), 5.00 und 4.86 (2 s, 6:1, 5H, Cp), 1.01 und 0.99 [2 s, 6:1, 9H, C(CH₃)₃], 0.35, 0.24 und 0.24, 0.20 [4s, diastereot. Methylgr., 1:1:6:6, 6H, Si(CH₃)₂Bu^t)].

(tert-Butyldimethylsilyl)(deutero)vinyliden-carbonyl-n⁵-cyclopentadienyl-nitrosyl-wolfram

¹H-NMR (Benzol-*d*₆, 400.13 MHz):

Orangefarbene Kristalle Zwei Rotamere (10:9)

> δ = 5.09 und 5.05 (2 s, 10:9, 5H, Cp), 0.94 [1 s, 9H, C(CH₃)₃], 0.15, 0.13 und 0.10 [3 s, überl., diastereot. Methylgr., 6H, Si(CH₃)₂Bu^t].

 η^2 -[(tert-Butyldimethylsilyl)(deutero)acetylen]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram

Zwei Rotamere (6:1)

¹H-NMR (Benzol-*d*₆, 400.13 MHz):

 $δ = 4.99 [^2 J(^{183}W, ^1H) = 9.2 Hz] und 4.86 (9.2 Hz)$ (2 s, 6:1, 5H, Cp), 1.01 und 0.99 (2 s, 6:1, 9H, C(CH₃)₃), 0.35 [² J(²⁹Si, ¹H) = 6.3 Hz], 0.24 und 0.24, 0.20 (6.3 Hz) [4s, diastereot. Methylgr., 1:1:6:6, 6H, Si(CH₃)₂Bu^t)].

2.5 Aminocarbene

2.5.1 Darstellung von (N-n-Butylamino)(neopentyl)carben 90a

Zu einer gerührten roten Lösung von 500 mg (1.285 mmol) *tert*-Butylvinyliden **33a** in 25 ml THF wurde ein ca. 20-facher Überschuß von *n*-Butylamin (2.5 ml) bei RT zugetropft. Während der Zugabe färbte sich die Reaktionslösung gelb, nach ca. 20 min war sie rot und nach 60 min dunkelrot. Das Lösungsmittel und das überschüssige Amin wurden nach 7 h bei RT im Vakuum abrotiert. Das erhaltene dunkelrote Öl wurde anschließend mit *n*-Pentan/Diethylether 1:1 chromatographiert. Komplex **90a** konnte in einer Ausbeute von 35% (210 mg) in Form eines dunkelroten, zähen Öles gewonnen werden. [(N-n-Butylamino)(neopentyl)carben]-carbonyl-η⁵-cyclopentadienyl-nitrosyl-wolfram

Dunkelrotes, zähes Öl Ausbeute: 210 mg (35%) Zwei Rotamere (15:1)	
¹ H-NMR (CDCl ₃ , 400.13 MHz):	δ = 7.31 (br s, 1H, NH),
(s. Abb. 23)	5.54 [² J(¹⁸³ W, ¹ H) = 8.9 Hz] und 5.52 (2 s, 15:1, 5H, Cp),
	3.52–3.40 und 3.23–3.18 (2 m, 15:1, 2H, CH ₂ CH ₂ CH ₂ CH ₃),
	2.92 [² <i>J</i> (¹ H, ¹ H) = 12.8 Hz], 2.86 (12.3 Hz), 2.61 (12.3 Hz)
	und 2.40 (12.8 Hz) (4 d, AB-System, 1:15:1:15, 2H, CH ₂ Bu ^t),
	1.70–1.62 (m, 2H, CH ₂ CH ₂ CH ₂ CH ₃),
	1.47–1.37 (m, 2H, $CH_2CH_2CH_3$),
	1.17 [³ <i>J</i> (¹ H, ¹ H) = 7.1 Hz] und 0.94 (7.4 Hz)
	(2 t, 1:15, 3H, CH ₂ CH ₂ CH ₂ CH ₃),
	1.00 und 0.95 [2 s, 1:15, 9H, C(CH ₃) ₃].
¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 262.0 [¹ J(¹⁸³ W, ¹³ C) = 159.5 Hz] (Carben-C),
(s. Abb. 39)	232.0 (CO),
	93.9 und 93.8 (Cp),
	66.5 (CH ₂ Bu ^t),
	52.5 (CH ₂ CH ₂ CH ₂ CH ₃),
	33.0 [<i>C</i> (CH ₃) ₃],
	31.4 (CH ₂ CH ₂ CH ₂ CH ₃),
	31.0 und 29.8 [C(CH ₃) ₃],
	20.4 ($CH_2CH_2CH_2CH_3$),
	13.7 (CH ₂ CH ₂ CH ₂ CH ₃).
IR (Film):	\tilde{v} = 3265 cm ⁻¹ (NH, w), 1905 (CO, s), 1559 (NO, s).
(s. Abb. 55)	
IR (CCl ₄):	\tilde{v} = 1920 (CO, s), 1587 (NO, s).
(s. Abb. 56)	
MS (70 eV):	m/z = 462 (M⁺), 434 (M⁺−CO).
• •	Hochaufgelöstes MS bezogen auf ¹⁸² W:
	Ber.: 460.1477
	Gef.: 460.1453

C ₁₆ H ₂₆ N ₂ O ₂ W (462.25)	Ber.:	C 41.57%	H 5.67%	N 6.06%
	Gef.:	C 41.44%	H 5.56%	N 5.83%

2.5.2 Darstellung von (N-Isopropylamino)(neopentyl)carben 90b

Es wurde analog *Abschnitt D.2.5.1* verfahren und 2.5 ml Isopropylamin anstelle von *n*-Butylamin verwendet. Die Lösung hellte nach kurzer Zeit auf und wurde nach längerer Zeit dunkelrot. Die Reaktionszeit betrug 15 h.

Das nach Chromatographie erhaltene rosarote Pulver wurde in CH₂Cl₂ gelöst und mit *n*-Pentan überschichtet. Die Kristallisation lieferte rosarote Kristalle von **90a** in einer Ausbeute von 39% (223 mg).

[(N-Isopropylamino)(neopentyl)carben]-carbonyl-n⁵-cyclopentadienyl-nitrosyl-wolfram

Rosarote Kristalle Ausbeute: 223 mg (39%) Zwei Rotamere (22:1) Smp.: 143°C

¹H-NMR (CDCl₃, 400.13 MHz): (s. Abb. 24) δ = 7.23 (br s, 1H, NH), 5.55 und 5.51 (2 s, 22:1, 5H, Cp), 4.13–4.04 [m, 1H, CH(CH₃)₂], 2.75 [²J(¹H, ¹H) = 12.8 Hz] und 2.34 (12.8 Hz) (2 d, AB-System 2H, CH₂Bu^t), 1.30 [³J(¹H, ¹H) = 2.0 Hz] und 1.28 (2.0 Hz) [2d, diastereot. Methylgr., 6H, CH(CH₃)₂], 1.01 und 0.95 [2 s, 1:22, 9H, C(CH₃)₃].

¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 258	7 $[^{1}J(^{183}W,^{13}C) =$	159.5 Hz] (Carb	en-C),		
(s. Abb. 40)	232.7 (0	232.7 (CO),				
	93.8 (Cr) ,				
	66.4 (Cł	H₂Bu ^t),				
	53.4 [Cł	H(CH ₃) ₂],				
	33.1 [C(CH ₃) ₃],				
	31.1 [C(CH ₃) ₃],				
	22.8 und	22.7 [CH(CH ₃) ₂].			
IR (KBr):	v = 320	67cm ^{−1} (NH, m),	1898 (CO, s), 15	570 (NO, s).		
(s. Abb. 57)						
IR (CCl ₄):	ṽ = 19 [−]	19 (CO, s), 1586	(NO, s).			
(s. Abb. 58)						
MS (70 eV):	m/z = 44	18 (M ⁺), 420 (M ⁺ -	-CO).			
	Hochau	fgelöstes MS bez	ogen auf ¹⁸² W:			
	Ber.:	446.1321				
	Gef.:	446.1348				
C ₁₅ H ₂₄ N ₂ O ₂ W (448.22)	Ber.:	C 40.20%	H 5.40%	N 6.25%		
	Gef.:	C 40.61%	H 5.27%	N 6.24%		

2.5.3 Darstellung von (N-tert-Butylamino)(neopentyl)carben 90c

Komplex **90c** wurde analog *Abschnitt D.2.5.1* hergestellt. Anstelle von *n*-Butylamin wurde 2.5 ml *tert*-Butylamin verwendet. Die Reaktionslösung hellte zuerst auf und färbte sich nach einigen Stunden dunkelrot. Es wurde insgesamt 43 h gerührt.

Das nach Chromatographie erhaltene dunkelorangefarbene Pulver wurde in CH_2Cl_2 gelöst und mit *n*-Pentan überschichtet. Die Kristallisation führte zu dunkelorangefarbenen Kristallen von **90c** in einer Ausbeute von 28% (169 mg). [(N-tert-Butylamino)neopentylcarben]-carbonyl-ŋ⁵-cyclopentadienyl-nitrosyl-wolfram

Dunkelorangefarbene Kristalle Ausbeute: 169 mg (28%) Smp.: 108°C				
¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 25)	δ = 7.70 5.59 [² J(2.49 [² J((2 d, AB 1.58 [s, 0.95 [s,	(br s, 1H, NH), ¹⁸³ W, ¹ H) = 9.1 Hz ¹ H, ¹ H) = 13.3 Hz] -System, 2H, CH <u>2</u> 9H, NHC(C <i>H</i> ₃) ₃], 9H, CH ₂ C(C <i>H</i> ₃) ₃],	z] (s, 5H, Cp), und 2.23 (13.8 ₂ Bu ^t),)
¹³ C-NMR (CDCI ₃ , 50.32 MHz): (s. Abb. 41)	δ = 258. 231.7 (C 94.4 (Cp 67.5 (CH 56.2 [NH 33.5 [CH 28.9 [CH	9 (Carben-C), ;O), H ₂ Bu ^t), HC(CH ₃) ₃], H ₂ C(CH ₃) ₃], 31.3 [H ₂ C(CH ₃) ₃].	NHC(CH₃)₃],	
IR (KBr): (s. Abb. 59)	ν̃ = 327	78 (NH, m), 1897	(CO, s), 1559 (I	NO, s).
IR (CCl ₄): (s. Abb. 60) MS (70 eV):	\widetilde{v} = 192 m/z = 46	22 (CO, s), 1588 (62 (M⁺), 434 (M⁺−	(NO, s). CO).	
	Hochauf Ber.: Gef.:	gelöstes MS bezo 460.1477 460.1512	ogen auf ¹⁸² W:	
C ₁₆ H ₂₆ N ₂ O ₂ W (462.25)	Ber.: Gef.:	C 41.57% C 41.45%	H 5.67% H 5.68%	N 6.06% N 5.84%

2.5.4 Darstellung von (N-Pyrrolidino)(neopentyl)carben 90d

Die Darstellung erfolgte analog *Abschnitt D.2.5.1*. Es wurde aber 2.5 ml Pyrrolidin anstelle von *n*-Butylamin eingesetzt. Die Reaktionslösung hellte zuerst auf und wurde nach kurzer Zeit rot. Die Reaktionsdauer betrug 7 h.

Die Kristallisation des nach Chromatographie erhaltenen rosaroten Pulvers erfolgte durch Lösen in CH_2Cl_2 und Überschichtung mit *n*-Pentan. Dabei wurde in einer Ausbeute von 31% (184 mg) Aminocarben **90d** in Form rosaroter Kristalle gewonnen.

[(N-Pyrrolidino)(neopentyl)carben]-carbonyl-ŋ⁵-cyclopentadienyl-nitrosyl-wolfram

Rosarote Kristalle Ausbeute: 184 mg (31%) Smp.: 177°C	
¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 26)	δ = 5.50 [² J(¹⁸³ W, ¹ H) = 8.9 Hz] (s, 5H, Cp), 3.72–3.59 und 3.39 (m und br s, 4H, CH ₂ CH ₂ CH ₂ CH ₂ CH ₂), 2.96 [² J(¹ H, ¹ H) = 10.1 Hz] (br d, 2H, CH ₂ Bu ^t), 2.02–1.91 (m, 4H, CH ₂ CH ₂ CH ₂ CH ₂), 1.01 [s, 9H, C(CH ₃) ₃].
¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 42)	δ = 258.3 (Carben-C), 236.1 (CO), 93.9 (Cp), 61.2 und 60.7 (CH ₂ Bu ^t), 52.1 und 45.2 (CH ₂ CH ₂ CH ₂ CH ₂), 33.5 [C(CH ₃) ₃], 31.3 [C(CH ₃) ₃], 25.6 und 25.0 (CH ₂ CH ₂ CH ₂ CH ₂).
IR (KBr): (s. Abb. 61)	ṽ = 1878 (CO, s), 1574 (NO, s).
IR (CCl ₄): (s. Abb. 62)	ṽ = 1910 (CO, s), 1585 (NO, s).

MS (70 eV):	m/z = 460 (M ⁺), 430 (M ⁺ -NO).					
	Hochaufgelöstes MS bezogen auf ¹⁸² W:					
	Ber.:	458.1321				
	Gef.:	458.1354				
C ₁₆ H ₂₄ N ₂ O ₂ W (460.23)	Ber.:	C 41.76%	H 5.26%	N 6.09%		
	Gef.:	C 41.52%	H 4.97%	N 6.21%		

2.5.5 Darstellung von (N-n-Butylamino)(silylmethylen)carben 91a

Zu einer gerührten orangefarbenen Lösung von 200 mg (0.447 mmol) des (*tert*-Butyldimethylsilyl)vinylidens **33d** in 10 ml THF wurde ein ca. 20-facher Überschuß von *n*-Butylamin (1 ml) bei RT zugetropft. Während der Zugabe färbte sich die Lösung dunkelbraun. Kurz darauf hellte sie sich nach rot auf. Nach einstündigem Rühren wurden das Lösungsmittel und das überschüssige Amin bei RT im Vakuum abrotiert. Es blieb das Aminocarben **91a** in Form eines dunkelroten Öles, welches mittels einer Ölpumpe im Vakuum 60 min getrocknet wurde.

[(N-n-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-η⁵-cyclopentadienylnitrosyl-wolfram

Dunkelrotes, zähes Öl Ausbeute: quantitativ Zwei Rotamere (3:2)

¹ H-NMR (CDCI ₃ , 400.13 MHz):	δ = 7.81 und 6.98 (2 br s, 2:3, 1H, NH),					
(s. Abb. 27)	5.55 [² J(¹⁸³ W, ¹ H) = 8.9 Hz] und 5.51 (8.9 Hz) (2 s, 3:					
	3.58-3.42, 3.37-3.28 und 3.17-3.09					
	[4 m (teilv	w. überl.), diastere	ot. Prot., 2H, C	CH ₂ CH ₂ CH ₂ CH ₃],		
	2.85 [² J(¹	H, ¹ H) = 10.9 Hz], 2	2.59 (12.0 Hz),	, 2.46 (10.9 Hz)		
	und 2.42	(12.1 Hz)				
	(4 d, AB-	System, 2:3:2:3, 2	H, CH ₂ SiMe ₂ B	u ^t),		
	1.70–1.60) (m, 2H, CH ₂ C <i>H</i> ₂	CH₂CH₃),			
	1.48–1.36	6 (m, 2H, CH ₂ CH ₂	C <i>H</i> ₂CH₃),			
	0.96 [³ J(¹	H, ¹ H) = 7.3 Hz] ur	nd 0.95 (7.3 Hz	2)		
	(2 t, 3:2, 3	3H, CH ₂ CH ₂ CH ₂ C	H ₃),			
	0.90 und	0.87 [2 s, 2:3, 9H,	SiMe ₂ C(CH ₃)	3],		
	0.11 [² J(²	⁹ Si, ¹ H) = 5.9 Hz],	0.07, 0.06			
	und 0.01	[² J(²⁹ Si, ¹ H) = 5.9 I	Hz]			
	[4 s, dias	tereot. Methylgr., 2	2:3:2:3, 6H, Si(CH ₃) ₂ Bu ^t].		
¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 259.7	und 259.3 (Carbe	en-C),			
(s. Abb. 43)	236.5 und					
	93.7 und 93.6 (Cp),					
	52.3 und 46.8 (CH ₂ CH ₂ CH ₂ CH ₃),					
	43.3 und	37.8 (CH ₂ SiMe ₂ Bi	u ^t),			
	31.7 und	31.4 (CH ₂ CH ₂ CH ₂ CH ₂	2CH₃),			
	26.3 [SiM	e ₂ C(CH ₃) ₃],				
	20.4 und 20.1 (CH ₂ CH ₂ CH ₂ CH ₃),					
	17.5 und 17.0 [SiMe ₂ C(CH ₃) ₃],					
	13.8 und	13.7 (CH ₂ CH ₂ CH ₂ CH ₂	₂CH ₃),			
	-4.1, -4.	7, −5.5 und −6.1 [\$	Si(CH ₃) ₂ Bu ^t].			
IR (Film):	v = 3260) cm ^{−1} (NH, w), 19	001 (CO, s), 15	59 (NO, s).		
(s. Abb. 63)						
IR (CCl ₄):	v ∈ 1912	2 (CO, s), 1584 (N	O, s).			
(s. Abb. 64)						
MS (70 eV):	m/z = 520	0 (M ⁺), 492 (M ⁺ −C	O).			
	Hochaufg	jelöstes MS bezog	gen auf ¹⁸² W:			
	Ber.:	518.1716				
	Gef.:	518.1713				
C ₁₈ H ₃₂ N ₂ O ₂ SiW (520.40)	Ber.:	C 41.54%	H 6.20%	N 5.38%		
	Gef.:	C 41.64%	H 6.59%	N 5.70%		

2.5.6 Darstellung von (N-Isopropylamino)(silylmethylen)carben 91b

Die Durchführung verlief analog *Abschnitt D.2.5.5*. Anstelle von *n*-Butylamin wurde 1 ml Isopropylamin verwendet. Die Reaktionslösung färbte sich nach 45 min rot. Insgesamt wurde 3 h gerührt.

In quantitativer Ausbeute wurde Aminocarben 91b als dunkelrotes, zähes Öl erhalten.

[(N-Isopropylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-η⁵-cyclopentadienyl-nitrosyl-wolfram

Dunkelrotes, zähes Öl Ausbeute: quantitativ Zwei Rotamere (3:1)

¹H-NMR (CDCl₃, 400.13 MHz): (s. Abb.28) δ = 7.63 und 6.88 (2 br s, 1:3, 1H, NH), 5.54 [²J(¹⁸³W,¹H) = 9.5 Hz] und 5.50 (8.8 Hz) (2 s, 3:1, 5H, Cp), 4.17–4.08 und 3.75–3.66 [2 m, 3:1, 1H, CH(CH₃)₂], 2.86 [²J(¹H,¹H) = 11.0 Hz], 2.52 (11.0 Hz) und 2.46 (12.1 Hz), 2.42 (12.1 Hz) (4 d, AB-System, 1:1:3:3, 2H, CH₂SiMe₂Bu^t), 1.29 [³J(¹H,¹H) = 5.5 Hz], 1.28 (5.5 Hz) und 1.24 (6.6 Hz), 1.20 (6.3 Hz) [4 d, diastereot. Methylgr., 3:3:1:1, 6H, CH(CH₃)₂], 0.89 und 0.86 [2 s, 1:3, 9H, SiMe₂C(CH₃)₃], 0.10, 0.08 [²J(²⁹Si,¹H) = 6.6 Hz], 0.04 und 0.01 [²J(²⁹Si,¹H) = 6.6 Hz] [4 s, distereot. Methylgr. 1:3:1:3, 6H, Si(CH₃)₂Bu^t].

¹³ C-NMR (CDCl ₃ , 100.61 MHz):	δ = 257.7 und 255.9 (Carben-C),						
(s. Abb. 44)	236.7 und 233.8 (CO),						
	93.7 und	93.7 und 93.6 (Cp),					
	53.2 und	48.1 [CH(CH ₃) ₂],					
	43.1 und	37.1 (CH ₂ SiMe ₂ B	u ^t),				
	26.3 und	26.3 [SiMe ₂ C(CH	3) 3],				
	23.4 und	23.1 [CH(CH ₃) ₂],					
	22.8 und	22.4 [CH(CH ₃) ₂],					
	17.3 und	16.9 [SiMe ₂ C(CH	3) 3],				
	-4.2, -4.	-4.6, -5.5 und -6.4 [Si(CH ₃)₂Bu ^t].					
IR (Film):	ν̃ = 325	2 cm ⁻¹ (NH, m), 1	895 (CO, s), 15	58 (NO, s).			
(s. Abb. 65)							
IR (CCl ₄):	ν̃ = 191	1 (CO, s), 1584 (N	IO, s).				
(s. Abb. 66)							
MS (70 eV):	m/z = 50	6 (M⁺), 476 (M⁺−N	IO).				
	Hochauf	gelöstes MS bezo	gen auf ¹⁸² W:				
	Ber.:	504.1559					
	Gef.:	504.1557					
C ₁₇ H ₃₀ N ₂ O ₂ SiW (506.38)	Ber.:	C 40.32%	H 5.97%	N 5.53%			
	Gef.:	C 40.09%	H 5.89%	N 5.37%			

2.5.7 Darstellung von (N-tert-Butylamino)(silylmethylen)carben 91c

Die Synthese erfolgte wie bei *Abschnitt D.2.5.5* beschrieben. Anstelle von *n*-Butylamin wurde 1 ml *tert*-Butylamin verwendet. Die Reaktionslösung färbte sich aber erst nach mehreren Stunden rot. Die Reaktionsdauer betrug 43 h.

Der Rückstand wurde an Kieselgel mit *n*-Pentan/Diethylether 3:1 chromatographiert. Man erhielt 7% (14 mg) des Eduktes **33d** und 69% (138 mg) des Aminocarbens **91c** in Form eines dunkelroten, zähen Öles. [(N-tert-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-η⁵-cyclopentadienyl-nitrosyl-wolfram

Dunkelrotes, zähes Öl Ausbeute: 138 mg (69%) Zwei Rotamere (8:1)				
¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 29)	δ = 8.01 un 5.57 [² J(¹⁸³ 3.31 [² J(¹ H und 2.18 (1.50 und 1 0.89 und 0 0.12, 0.08 (3 s, diaste	nd 7.39 (2 br s, 1:4 ³ W, ¹ H) = 8.9 Hz] u I, ¹ H) = 11.3 Hz], 2 12.8) (4 d, AB-Sys .43 [2 s, 8:1, 9H, 1 0.84 [2 s, 1:8, 9H, 5 [² J(²⁹ Si, ¹ H) = 5.9 b ereot. Methylgr., 6b	8, 1H, NH), Ind 5.47 (8.9 Hz .59 (10.8), 2.23 stem, 1:1:8:8, 2F NHC(C <i>H</i> ₃) ₃], SiMe ₂ C(CH ₃) ₃], Hz] und 0.03 H, Si(CH ₃) ₂ Bu ^t).	2) (2 s, 8:1, 5H, Cp), (12.8) ⊣, CH₂SiMe₂Bu ^t),
¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 45)	δ = 256.3 233.2 (CO 94.2 und 9 57.7 und 5 44.4 und 3 31.2 und 2 26.9 und 2 16.9 [SiMe -3.3, -4.5	$[{}^{1}J({}^{183}W, {}^{13}C) = 152)$), (3.7 (Cp), (6.0 [NHC(CH ₃) ₃], (8.8 (CH ₂ SiMe ₂ Bu ¹) (9.1 (NHC(CH ₃) ₃], (6.2 [SiMe ₂ C(CH ₃) ₃], (6.2 [SiMe ₂ C(CH ₃) ₃], (7.5.2 und -5.6 [S	2.2 Hz] (Carber [*]), ₃], i(CH ₃) ₂ Bu ^t].	n-C),
IR (Film): (s. Abb. 67)	v = 3326	(NH, w), 1901 (CC	D, s), 1570 (NO,	, s).
IR (CCl ₄): (s. Abb. 68)	ν̃ = 1913	(CO, s), 1586 (NC), s).	
MS (70 eV):	m/z = 520 Hochaufge Ber.: Gef.:	(M ⁺), 492 (M ⁺ −CC elöstes MS bezoge 518.1716 518.1683)), 462 (M ⁺ −CO· en auf ¹⁸² W:	-NO).
C ₁₈ H ₃₂ N ₂ O ₂ SiW (518.17)	Ber.: Gef.:	C 41.54% C 41.06%	H 6.20% H 6.22%	N 5.38% N 5.14%

2.5.8 Darstellung von (N-Pyrrolidino)(silylmethylen)carben 91d

Die Synthese von Carbenkomplex **91d** erfolgte wie in *Abschnitt D.2.5.5* beschrieben, aber anstelle von *n*-Butylamin wurde 1 ml Pyrrolidin eingesetzt. Die Reaktionslösung färbte sich nach einigen Minuten rosarot. Die Reaktionszeit betrug 1 h.

Es wurde das Aminocarben **91d** als dunkelrotes, zähes Öl in quantitativer Ausbeute erhalten.

[(N-Pyrrolidino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-η⁵-cyclopentadienylnitrosyl-wolfram

Dunkelrotes, zähes Öl Ausbeute: quantitativ

, 3.60–3.53 und 3.48–3.41 und 2 m, 4H, $CH_2CH_2CH_2CH_2)$, $[^2J(^1H,^1H) = 10.8$ Hz] und 2.69 und br s, AB-System, 2H, $CH_2SiMe_2Bu^t$), –1.90 (m, 4H, $CH_2CH_2CH_2CH_2$), [s, 9H, SiMe_2C(CH ₃) ₃], und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH ₃) ₂ Bu ^t].
und 2 m, 4H, $CH_2CH_2CH_2CH_2$), [² J(¹ H, ¹ H) = 10.8 Hz] und 2.69 und br s, AB-System, 2H, $CH_2SiMe_2Bu^t$), -1.90 (m, 4H, $CH_2CH_2CH_2$), [s, 9H, SiMe ₂ C(CH ₃) ₃], und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH ₃) ₂ Bu ^t].
$[{}^{2}J({}^{1}H, {}^{1}H) = 10.8 \text{ Hz}] \text{ und } 2.69$ und br s, AB-System, 2H, CH ₂ SiMe ₂ Bu ^t), -1.90 (m, 4H, CH ₂ CH ₂ CH ₂ CH ₂), [s, 9H, SiMe ₂ C(CH ₃) ₃], und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH ₃) ₂ Bu ^t].
und br s, AB-System, 2H, $CH_2SiMe_2Bu^t$), -1.90 (m, 4H, $CH_2CH_2CH_2CH_2$), [s, 9H, $SiMe_2C(CH_3)_3$], und 0.04 [2 s, diastereot. Methylgr., 6H, $Si(CH_3)_2Bu^t$].
–1.90 (m, 4H, CH ₂ C <i>H</i> ₂ CH ₂ CH ₂), [s, 9H, SiMe ₂ C(CH ₃) ₃], und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH ₃) ₂ Bu ^t].
[s, 9H, SiMe ₂ C(CH ₃) ₃], und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH ₃) ₂ Bu ^t].
und 0.04 [2 s, diastereot. Methylgr., 6H, Si(CH_3)_2Bu^t].
252.4 [¹ J(¹⁸³ W, ¹³ C) = 158.1 Hz] (Carben-C),
1 (CO),
(Cp),
und 51.8 (CH ₂ CH ₂ CH ₂ CH ₂),
(CH ₂ SiMe ₂ Bu ^t),
[SiMe ₂ C(<i>C</i> H ₃) ₃],
und 25.3 ($CH_2CH_2CH_2CH_2$),
[SiMe ₂ C(CH ₃) ₃],
und -6.2 [Si(CH ₃) ₂ Bu ^t].
1889 (CO, s), 1576 (NO, s).

IR (CCl ₄): (s. Abb. 70)	ν̃ = 190	03 (CO, s), 1583	(NO, s).	
MS (70 eV):	m/z = 5	18 (M ⁺), 488 (M ⁺ -	NO).	
	Hochau	fgelöstes MS bez	ogen auf ¹⁸² W:	
	Ber.:	516.1559		
	Gef.:	516.1554		
C ₁₈ H ₃₀ N ₂ O ₂ SiW (518.39)	Ber.:	C 41.71%	H 5.83%	N 5.40%
	Gef.:	C 41.21%	H 5.80%	N 5.22%

2.6 Carbamoylvinylkomplexe

2.6.1 Darstellung von (n-Butylcarbamoyl)(cis-tert-butylvinyl)komplex 92a

Ein ca. 20-facher Überschuß von *n*-Butylamin (1 ml) wurde bei RT mittels einer Spritze in eine gerührte rote Lösung von 200 mg (0.514 mmol) *tert*-Butylvinyliden **33a** in 10 ml THF zugegeben. Nach wenigen Sekunden wurde die Reaktionslösung gelb. Das überschüssige Amin und das Lösungsmittel wurden sofort möglichst schnell abrotiert.

Der Rückstand wurde in 1–2 ml CH_2Cl_2 gelöst. Zugabe von ca. 10 ml *n*-Pentan ergab beige Kristallcluster von Komplex **92a**, die abfiltriert, gut mit *n*-Pentan gewaschen und im Vakuum getrocknet wurden. Die Ausbeute betrug 78% (186 mg).

 η^{2} -(n-Butylcarbamoyl)-(cis-tert-butylvinyl)- η^{5} -cyclopentadienyl-nitrosyl-wolfram

¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 31)	δ = 9.06 [3J(1H, 1H) = 4.8 Hz] (br t, 1H, NH),7.27 [3J(183W, 1H) = 9.6 Hz, 3J(1H, 1H) = 13.6 Hz]und 7.25 [3J(1H, 1H) = 13.2 Hz] (2 d, 11:1, 1H, WCH7.07 [2J(183W, 1H) = 12.1 Hz, 3J(1H, 1H) = 13.6 Hz]und 7.03 [3J(1H, 1H) = 13.6 Hz] (2 d, 1:11, 1H, WCH5.84 und 5.82 [2J(183W, 1H) = 9.2 Hz] (2 s, 1:11, 5H,3.58–3.56 und 3.52 [3J(1H, 1H) = 6.7 Hz](m und dq, 1:11, 2H, CH2CH2CH2CH3),1.70–1.63 und 1.60–1.52 (2 m, 1:11, 2H, CH2CH2CH1.47–1.39 und 1.39–1.30 (2 m, 1:11, 2H, CH2CH2CH1.19 und 1.17 [2 s, 11:1, 9H, C(CH3)3],0.96 [3J(1H, 1H) = 7.5 Hz] und 0.91 (7.4 Hz)(2 t, 1:11, 3H, CH2CH2CH2CH2CH3).			i), .6 Hz] 1H, WCH=C <i>H</i> Bu ^t), 3.6 Hz] 1H, WC <i>H</i> =CHBu ^t), 1:11, 5H, Cp), CH ₂ C <i>H</i> ₂ CH ₂ CH ₂ CH ₃), CH ₂ CH ₂ CH ₂ CH ₂ CH ₃), CH ₂ CH ₂ CH ₂ CH ₂ CH ₃),] VCH=C <i>H</i> Bu ^t), Iz] VC <i>H</i> =CHBu ^t), 5H, Cp), CH ₂ CH ₂ CH ₃), CH ₂ CH ₂ CH ₃),
¹³ C-NMR (CDCI ₃ , 100.61 MHz): (s. Abb. 47)	$\delta = 212.$ 158.4 (V 148.6 [¹ , 100.7 ur 44.7 (CH 35.3 [C(31.5 (CH 30.8 [C(20.0 (CH 13.8 (CH	1 (CO), VCH=CHBu ^t), $J(^{183}W,^{13}C) = 110$ nd 100.2 (Cp), $H_2CH_2CH_2CH_3$), CH ₃) ₃], $H_2CH_2CH_2CH_3$), CH ₃) ₃], $H_2CH_2CH_2CH_3$), $H_2CH_2CH_2CH_3$),	.6 Hz] (WCH=C	HBu ^t),	
IR (KBr): (s. Abb. 71)	v = 319	90 cm ⁻¹ (NH, m),	1645 (NO, s), 15	544 (CO, m).	
IR (CHCl ₃): (s. Abb. 72)	v = 343	30 und 3214 cm ⁻¹	(NH, w), 1629 (NO, m), 1546 (CO, s	3).
MS (70 eV):	m/z = 43 Hochaut Ber.: Gef.:	34 (M ⁺ −CO). fgelöstes MS bezo 460.1477 bzw 432.1541	ogen auf ¹⁸² W: /. 432.1528 (−C0	D)	
C ₁₆ H ₂₆ N ₂ O ₂ W (462.25)	Ber.: Gef.:	C 41.57% C 41.61%	H 5.67% H 5.79%	N 6.06% N 6.01%	

2.6.2 Darstellung von (Isopropylcarbamoyl)(cis-tert-butylvinyl)komplex 92b

Die Darstellung von Carbamoylkomplex **92b** erfolgte wie in *Abschnitt D.2.6.1* beschrieben. Es wurde aber 1 ml Isopropylamin verwendet. Das Reaktionsende wurde an einer Aufhellung der Reaktionslösung festgestellt (nach ca. 5 min). Es wurden beige Kristallcluster in einer Ausbeute von 84% (193 mg) gewonnen.

(cis-tert-Butylvinyl)-η⁵-cyclopentadienyl-η²-isopropylcarbamoyl-nitrosyl-wolfram

Beige Kristalle Ausbeute: 193 mg (84%) Zwei Rotamere (20:1) Smp.: 110–112°C (Zers. unter Aufschäumen)	$ \begin{array}{c} $
¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 32)	δ = 8.89 [³ J(¹ H, ¹ H) = 7.4 Hz] (br d, 1H, NH), 7.27 [³ J(¹⁸³ W, ¹ H) = 9.4 Hz, ³ J(¹ H, ¹ H) = 13.8 Hz] (d, 1H, WCH=C <i>H</i> Bu ^t), 7.05 [² J(¹⁸³ W, ¹ H) = 11.8 Hz, ³ J(¹ H, ¹ H) = 13.3 Hz] (d, 1H, WC <i>H</i> =CHBu ^t), 5.84 und 5.82 [² J(¹⁸³ W, ¹ H) = 9.2 Hz] (2 s, 1:20, 5H, Cp), 4.25–4.17 [m, 1H, C <i>H</i> (CH ₃) ₂], 1.40, 1.27, 1.26 und 1.23 [4 d, 1:1:20:20, 2H, CH(C <i>H</i> ₃) ₂], 1.20 und 1.16 [2 s, 20:1, 9H, C(CH ₃) ₃].
¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 48)	δ = 212.4 (CO), 158.2 (WCH=CHBu ^t), 149.1 [¹ J(¹⁸³ W, ¹³ C) = 114.4 Hz] (WCH=CHBu ^t), 100.8 und 100.1 (Cp), 47.8 [CH(CH ₃) ₂], 35.5 [C(CH ₃) ₃], 31.1 [C(CH ₃) ₃], 22.8 [CH(CH ₃) ₂].
IR (KBr): (s. Abb. 73)	$\widetilde{\nu}~$ = 3197 cm $^{-1}$ (NH, m), 1627 (NO, s), 1551 (CO, s).

IR (CHCl ₃):	\widetilde{v} = 3421 (NH, w), 3202 cm ⁻¹ (NH, m), 1624 (NO, s),				
(s. Abb. 74)	1540 (CO, s).				
MS (70 eV):	m/z = 420 (M ⁺ −CO). Hochaufgelöstes MS bezogen auf ¹⁸² W:				
	Ber.:	r.: 446.1321 bzw. 418.1371 (-CO)			
	Gef.:	418.1380			
C ₁₅ H ₂₄ N ₂ O ₂ W (448.22)	Ber.:	C 40.20%	H 5.40%	N 6.25%	
	Gef.:	C 40.08%	H 5.18%	N 6.34%	

2.6.3 Darstellung von (tert-Butylcarbamoyl)(cis-tert-butylvinyl)komplex 92c

Die Synthese von Carbamoylkomplex **92c** verlief analog zur Darstellung von Komplex **92a** (s. *Abschnitt D.2.6.1*), aber anstelle von *n*-Butylamin wurde 1 ml *tert*-Butylamin eingesetzt. Das Ende der Reaktion war aber nur an einer leichten Aufhellung der Reaktionslösung zu erkennen (nach ca. 15 min). Außerdem wurde der in CH_2Cl_2 gelöste Rückstand (zähes dunkelbraunes Öl) bei $-78^{\circ}C$ mit *n*-Pentan ausgefällt.

Komplex **92c** wurde in Form von beigen Kristallclustern in einer Ausbeute von 18% (43 mg) erhalten.

η^2 -(tert-Butylcarbamoyl)-(cis-tert-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram

Beige Kristalle Ausbeute: 43 mg (18%) Smp.: 125–127°C (Zers. unter Aufschäumen)

¹ H-NMR (CDCl ₃ , 400.13 MHz): (s. Abb. 33)	δ = 9.52 (br s, 1H, NH), 7.27 [³ J(¹⁸³ W, ¹ H) = 10.3 Hz, ³ J(¹ H, ¹ H) = 13.6 Hz] (d, 1H, WCH=CHBu ^t), 7.06 [² J(¹⁸³ W, ¹ H) = 11.8 Hz, ³ J(¹ H, ¹ H) = 13.6 Hz] (d, 1H, WCH=CHBu ^t), 5.82 [² J(¹⁸³ W, ¹ H) = 9.2 Hz] (s, 5H, Cp), 1.44 [s, 9H, NHC(CH ₃) ₃], 1.19 [s, 9H, WCH=CHC(CH ₃) ₃].				
¹³ C-NMR (CDCl ₃ , 100.61 MHz): (s. Abb. 49)	δ = 211. 158.6 (V 147.8 (V 100.7 (C 56.2 [NH 35.6 [W 30.8 [NH 28.8 [W	9 (CO), VCH=CHBu ^t), VCH=CHBu ^t), Cp), $+C(CH_3)_3],$ CH=CHC(CH_3)_3], $+C(CH_3)_3],$ CH=CHC(CH_3)_3].			
IR (KBr): (s. Abb. 75)	$\widetilde{\nu}~$ = 3190 cm $^{-1}$ (NH, m), 1626 (NO, s), 1542 (CO, s).				
IR (CHCl ₃): (s. Abb. 76)	$\widetilde{\nu}$ = 3419 (NH, w), 3204 cm ⁻¹ (NH, m), 1614 (NO, s), 1543 (CO, s).				
MS (70 eV):	m/z = 43 Hochau Ber.: Gef.:	4 (M ⁺ −CO). gelöstes MS bezogen auf ¹⁸² W: 460.1477 bzw. 432.1528 (−CO) 432.1503			
C ₁₆ H ₂₆ N ₂ O ₂ W (462.25)	Ber.: Gef.:	C 41.57% C 41.45%	H 5.67% H 5.68%	N 6.06% N 5.84%	

2.6.4 Darstellung von (Pyrrolidinocarbonyl)(cis-tert-butylvinyl)komplex 92d

Die Darstellung von Carbamoylkomplex **92d** erfolgte wie für **92c** beschrieben (s. *Abschnitt D.2.6.1*). Es wurde aber 1 ml Pyrrolidin anstelle von *n*-Butylamin verwendet. Das Ende der Reaktion konnte hier nur an einer leichten Aufhellung der Reaktionslösung festgestellt werden (nach ca. 15 min). Zusätzlich wurde der in CH_2Cl_2 gelöste Rückstand (zähes dunkelbraunes Öl) bei $-78^{\circ}C$ mit *n*-Pentan ausgefällt.

Man erhielt braune Kristallcluster in einer Ausbeute von 42% (100 mg).

 $(cis-tert-Butylvinyl)-\eta^5-cyclopentadienyl-nitrosyl-\eta^2-pyrrolidinocarbonyl-wolfram$

Braune Kristalle Ausbeute: 100 mg (42%) Zwei Rotamere (6:1) Smp.: 89–91°C (Zers. unter Aufschäumen)		$ \begin{array}{c} $				
¹ H-NMR (CDCI ₃ , 400.13 MHz): (s. Abb. 34)	δ = 7.25 und 7.10 7.06 [² J(und 6.45 5.90 und 4.37, 4.0 (5 m, 4H 2.12–1.9 1.15 und	$[{}^{3}J({}^{183}W,{}^{1}H) = 9.6 \text{ Hz}, {}^{3}J({}^{1}H,{}^{1}H) = 13.3 \text{ Hz}]$ $) [{}^{3}J({}^{1}H,{}^{1}H) = 12.8 \text{ Hz}] (2 \text{ d}, 6:1, 1\text{ H}, WCH=CHBu^{t}),$ $]{}^{183}W,{}^{1}H) = 12.3 \text{ Hz}, {}^{3}J({}^{1}H,{}^{1}H) = 13.3 \text{ Hz}]$ $[5 [{}^{3}J({}^{1}H,{}^{1}H) = 13.3 \text{ Hz}] (2 \text{ d}, 6:1, 1\text{ H}, WCH=CHBu^{t}),$ $]4 5.81 [{}^{2}J({}^{183}W,{}^{1}H) = 9.4 \text{ Hz}] (2 \text{ s}, 1:6, 5\text{ H}, \text{ Cp}),$ $]0-3.94, 3.79-3.72, 3.67-3.61 \text{ und } 3.26$ $]4, CH_{2}CH_{2}CH_{2}CH_{2}),$ $]98, 1.86 \text{ und } 1.76-1.71 (3 \text{ m}, 4\text{ H}, CH_{2}CH_{2}CH_{2}CH_{2}),$ $]4 1.07 [2 \text{ s}, 6:1, 9\text{ H}, C(CH_{3})_{3}].$				
¹³ C-NMR (CDCI ₃ , 100.61 MHz): (s. Abb. 50)	δ = 213. 159.3 un 151.4 [¹ , (WCH=C 102.8 un 67.1, 64. 35.5 und 31.1 und 26.7, 26.	0 und 184.2 (CO), nd 158.2 (WCH=CHBu ^t), $J(^{183}W,^{13}C) = 150.0$ Hz] und 148.8 (111.9 Hz) CHBu ^t), nd 99.8 (Cp), 5, 49.7 und 48.5 (CH ₂ CH ₂ CH ₂ CH ₂), d 35.2 [C(CH ₃) ₃], d 30.8 [C(CH ₃) ₃], 5.5 und 25.1 (CH ₂ CH ₂ CH ₂ CH ₂).				
IR (KBr): (s. Abb. 77)	ν̃ = 163	ṽ = 1635 (NO, s), 1546 (CO, s).				
IR (CHCl ₃): (s. Abb. 78)	ṽ = 161	\widetilde{v} = 1610 (NO, s), 1561 (CO, s).				
MS (70 eV):	m/z = 43 Hochauf Ber.: Gef.:	: (M ⁺ −CO). elöstes MS bezogen auf ¹⁸² W: 458.1321 bzw. 430.1371 (−CO) 430.1359				
C ₁₆ H ₂₄ N ₂ O ₂ W (460.23)	Ber.: Gef.:	C 41.76% C 41.20%	H 5.26% H 5.04%	N 6.09% N 6.15%		

E Spektren

1 ¹H-NMR-Spektren

Abb. 19 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von Carbonyl-η⁵-cyclopentadienyl-[(methyldiphenyl-silyl)vinyliden]-nitrosyl-wolfram (**33e**).

Abb. 20 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[1-(methyldiphenylsilyl)propin]-nitrosyl-wolfram (**36c**).

Abb. 21 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[(methyldiphenyl-silyl)acetylen]-nitrosyl-wolfram (**38c**).

Abb. 22 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von [(*tert*-Butyldimethylsilyl)(deutero)vinyliden]-carbonyl- η^5 -cyclopentadienylnitrosyl-wolfram (**33d**-*d*₁).

Abb. 23 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von [(*N*-*n*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90a**).

Abb. 24 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von [(*N*-Isopropylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90b**).

Abb. 25 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von [(*N-tert*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90c**).

Abb. 26 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von $[(N-Pyrrolidino)(neopentyl)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**90d**).

Abb. 27 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von $[(N-n-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (91a).

Abb.28 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von $[(N-Isopropylamino)(tert-butyldimethylsilylme-thylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**91b**).

Abb. 29 ¹H-NMR-Spektrum von (CDCl₃, 400.13 MHz) [(*N*-tert-Butylamino)(tert-butyldimethylsilylme-thylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91c**).

Abb. 30 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von [(*N*-Pyrrolidino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (91d).

Abb. 31 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von η^2 -(*n*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92a**).

Abb. 32 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl- η^2 -iso-propylcarbamoyl-nitrosyl-wolfram (**92b**).

Abb. 33 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von η^2 -(*tert*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92c**).

Abb. 34 ¹H-NMR-Spektrum (CDCl₃, 400.13 MHz) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl-nitrosyl- η^2 -pyrrolidinocarbonyl-wolfram (**92d**).

2 ¹³C-NMR-Spektren

Abb. 35 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von Carbonyl-η⁵-cyclopentadienyl-[(methyldiphenyl-silyl)vinyliden]-nitrosyl-wolfram (**33e**).

Abb. 36 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[1-(methyldiphenylsilyl)propin]-nitrosyl-wolfram (**36c**).

Abb. 37 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[(methyldiphenyl-silyl)acetylen]-nitrosyl-wolfram (**38c**).

Abb. 38 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*tert*-Butyldimethylsilyl)(deutero)vinyliden]-carbonyl- η^5 -cyclopentadienylnitrosyl-wolfram (**33d-** d_1); im dargstellten Ausschnitt des Spektrums kann man die ¹J(¹³C, D)-Kopplung sehen.

Abb. 39 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N*-*n*-Butylamino)(neopentyl)carben]-carbonyl-η⁵cyclopentadienyl-nitrosyl-wolfram (**90a**).

Abb. 40 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N*-Isopropylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90b**).

Abb. 41 ¹³C-NMR-Spektrum (CDCl₃, 50.32 MHz) von [(*N-tert*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90c**).

Abb. 42 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von $[(N-Pyrrolidino)(neopentyl)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**90d**).

Abb. 43 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N*-Butylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91a**).

Abb. 44 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N*-Isopropylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91b**).

Abb. 45 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N-tert*-Butylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91c**).

Abb. 46 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von [(*N*-Pyrrolidino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91d**).

Abb. 47 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von η^2 -(*n*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92a**).

Abb. 48 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl- η^2 -isopropylcarbamoyl-nitrosyl-wolfram (**92b**).

Abb. 49 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von η^2 -(*tert*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92c**).

Abb. 50 ¹³C-NMR-Spektrum (CDCl₃, 100.61 MHz) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl-nitrosyl- η^2 -pyrrolidinocarbonyl-wolfram (**92d**).

3 IR-Spektren

Abb. 51 IR-Spektrum (Film) von Carbonyl- η^5 -cyclopentadienyl-[(methyldiphenylsilyl)vinyliden]-nitrosyl-wolfram (**33e**).

Abb. 52 IR-Spektrum (Film) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[1-(methyldiphenylsilyl)propin]-nitrosyl-wolfram (**36c**).

Abb. 53 IR-Spektrum (Film) von Carbonyl- η^5 -cyclopentadienyl- η^2 -[(methyldiphenylsilyl)acetylen]-nitrosyl-wolfram (**38c**).

Abb. 54 IR-Spektrum (Film) von [(*tert*-Butyldimethylsilyl)(deutero)vinyliden]-carbonyl- η^5 -cyclopentadienylnitrosyl-wolfram (**33d-***d*₁).

Abb. 55 IR-Spektrum (Film) von [(*N*-*n*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90a**).

Abb. 56 IR-Spektrum (CCl₄) von [(*N*-*n*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90a**).

Abb. 57 IR-Spektrum (KBr) von [(N-Isopropylamino)(neopentyl)carben]-carbonyl-η⁵-cyclopentadienyl-nitrosyl-wolfram (90b).

Abb. 58 IR-Spektrum (CCl₄) von [(*N*-Isopropylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-ni-trosyl-wolfram (**90b**).

Abb. 59 IR-Spektrum (KBr) von [(*N-tert*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90c**).

Abb. 60 IR-Spektrum (CCl₄) von [(*N-tert*-Butylamino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-ni-trosyl-wolfram (**90c**).

Abb. 61 IR-Spektrum (KBr) von [(*N*-Pyrrolidino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90d**).

Abb. 62 IR-Spektrum (CCl₄) von [(*N*-Pyrrolidino)(neopentyl)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**90d**).

Abb. 63 IR-Spektrum (Film) von $[(N-n-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**91a**).

Abb. 64 IR-Spektrum (CCl₄) von $[(N-n-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (91a).

Abb. 65 IR-Spektrum (Film) von [(*N*-Isopropylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (91b).

Abb. 66 IR-Spektrum (CCl₄) von [(*N*-Isopropylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (91b).

Abb. 67 IR-Spektrum (Film) von [(*N-tert*-Butylamino)(*tert*-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (**91c**).

Abb. 68 IR-Spektrum (CCl₄) von [(*N*-tert-Butylamino)(tert-butyldimethylsilylmethylen)carben]-carbonyl- η^5 -cyclopentadienyl-nitrosyl-wolfram (91c).

Abb. 69 IR-Spektrum (Film) von $[(N-Pyrrolidino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**91d**).

Abb. 70 IR-Spektrum (CCl₄) von $[(N-Pyrrolidino)(tert-butyldimethylsilylmethylen)carben]-carbonyl-<math>\eta^5$ -cyclopentadienyl-nitrosyl-wolfram (**91d**).

Abb. 71 IR-Spektrum (KBr) von η^2 -(*n*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92a**).

Abb. 72 IR-Spektrum (CHCl₃) von η^2 -(*n*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92a**).

Abb. 73 IR-Spektrum (KBr) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl- η^2 -isopropylcarbamoyl-nitrosyl-wolfram (**92b**).

Abb. 74 IR-Spektrum (CHCl₃) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl- η^2 -isopropylcarbamoyl-nitrosyl-wolfram (**92b**).

Abb. 75 IR-Spektrum (KBr) von η^2 -(*tert*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92c**).

Abb. 76 IR-Spektrum (CHCl₃) von η^2 -(*tert*-Butylcarbamoyl)-(*cis-tert*-butylvinyl)- η^5 -cyclopentadienyl-nitrosyl-wolfram (**92c**).

Abb. 77 IR-Spektrum (KBr) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl-nitrosyl- η^2 -pyrrolidinocarbonyl-wolfram (**92d**).

Abb. 78 IR-Spektrum (CHCl₃) von (*cis-tert*-Butylvinyl)- η^5 -cyclopentadienyl-nitrosyl- η^2 -pyrrolidinocarbonyl-wolfram (**92d**).

F Formelverzeichnis

33d-*d*₁

 $\mathsf{R} = \mathsf{Bu}^t \, \textbf{(34a)}, \, \mathsf{Ph} \, \textbf{(34b)}, \, \mathsf{p}\text{-}\mathsf{Tolyl} \, \textbf{(34c)}$

$$\label{eq:R} \begin{split} \mathsf{R} &= \mathsf{Ph} \left(\textbf{35a} \right), \mathsf{CH}_2 \mathsf{OCH}_2 \mathsf{CH} {=} \mathsf{CH}_2 \left(\textbf{35b} \right), \\ & (\mathsf{CH}_2)_4 \mathsf{C} {\equiv} \mathsf{CH} \left(\textbf{35c} \right) \end{split}$$

 $R^1 = H, R^2 = C_4 H_9$ (90a) $R^1 = H, R^2 = CH(CH_3)_2$ (90b) $R^{1} = H, R^{2} = C(CH_{3})_{3}$ (90c) $R^1 = R^2 = (CH_2)_4$ (90d)

NR¹R² o^{///C} CH₂SiMe₂Bu^t

 $R^1 = H, R^2 = C_4 H_9$ (91a) $R^1 = H, R^2 = CH(CH_3)_2$ (91b) $R^1 = H, R^2 = C(CH_3)_3$ (91c) $R^1 = R^2 = (CH_2)_4$ (91d)

 $R^1 = H, R^2 = C_4 H_9$ (92a) $R^1 = H, R^2 = CH(CH_3)_2$ (92b) $R^1 = H, R^2 = C(CH_3)_3 (92c)$ $R^1 = R^2 = (CH_2)_4$ (92d)

98

G Literaturverzeichnis

- [1] Schuler, F. W.; Murphy, G. W. J. Am. Chem. Soc. 1950, 72, 3155.
- [2] Cadet de Gassicourt, M. Mem. Mat. Phys. 1760, 3, 623.
- [3] Zeise, W. C. Ann. Phys. 1827, 9, 932.
- [4] Mond, L. J. Chem. Soc. 1890, 57, 749.
- [5] (a) Wilkinson, G. J. Organomet. Chem. 1975, 100, 273. (b) Miller, S. A.; Tebboth,
 J. A.; Tremaine, J. F. J. Chem. Soc. 1952, 632. (c) Kealy, T. J.; Pauson, P. J. Nature (London) 1951, 168, 1039.
- [6] Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. J. Am. Chem. Soc. 1952, 74, 2125.
- [7] Herrmann, W. A. Angew. Chem. 1982, 94, 118.
- [8] Roelen, O. Angew. Chem. **1948**, 60, 62.
- [9] (a) Ziegler, K. Adv. Organomet. Chem. 1968, 6, 1 und zitierte Literatur. (b) Natta,
 G. Scientific American 1961, 205, 33 und zitierte Literatur.
- [10] Smid, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Rüttinger, R.; Kojer, H. Angew. Chem. 1959, 71, 176.
- [11] (a) Forster, D. J. Am. Chem. Soc. 1975, 97, 951. (b) Roth, J. F.; Craddock, J. H.;
 Hershman, A.; Paulik, F. A. Chem. Tech. 1971, 1, 600.
- [12] Fischer, E.O.; Maasböl, A. Angew. Chem. 1964, 14, 645.
- [13] Schrock, R. R. J. Am. Chem. Soc. 1974, 96, 6796.
- [14] Dötz, K. H.; Fischer, H.; Hofmann, P.; Kreissl, F. R.; Schubert, U.; Weiss, K. Transition Metal Carbene Complexes; Verlag-Chemie: Weinheim, Gemany, 1983.
- [15] (a) Gallop, M. A.; Roper, W. R. Adv. Organomet. Chem. 1986, 25, 121. (b) Roper,
 W. R. J. Organomet. Chem. 1986, 300, 167.
- [16] Dötz, K. H. Angew. Chem. 1984, 96, 573.
- [17] Zum Beispiel: Fischer, E. O.; Beck, H.-J. Chem. Ber. 1971, 104, 3101.
- [18] (a) Mills, O. S.; Redhouse, A. D. J. Chem. Soc., Chem. Commun. 1966, 444. (b)
 Mills, O. S.; Redhouse, A. D. J. Chem. Soc. A 1968, 1282.
- [19] King, R. B.; Saran, M. S. J. Chem. Soc., Chem. Commun. 1972, 1052.
- [20] Übersichtsartikel zu Vinylidenkomplexen: (a) Werner, H. Nachr. Chem. Tech. Lab.
 1992, 40, 435. (b) Bruce, M. I. Chem. Rev. 1991, 91, 197. (c) Davies, S. G.;
 McNally, J. P.; Smallridge, A. J. Adv. Organomet. Chem. 1990, 30, 30. (d) Werner,
 H. Angew. Chem. 1990, 102, 1109; Angew. Chem., Int. Ed. Engl. 1990, 29, 1077.
 (e) Bruce, M. I.; Swincer, A. G. Adv. Organomet. Chem. 1983, 22, 59.

- [21] (a) Delbecq, F. J. Organometal. Chem. 1991, 406, 171. (b) Schilling, B. E. R.;
 Hoffmann, R.; Lichtenberger, D. L. J. Am. Chem. Soc. 1979, 101, 585.
- [22] Kostić, N. M.; Fenske, R. F. Organometallics 1982, 1, 974.
- [23] (a) Davison, A.; Selegue, J. P. J. Am. Chem. Soc. 1980, 102, 2455. (b) Davison, A.;
 Selegue, J. P. J. Am. Chem. Soc. 1978, 100, 7763. (c) Davison, A.; Solar, J. P. J.
 Organomet. Chem. 1978, 155, C8.
- [24] (a) Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1982, 2203. (b) Bruce, M. I.; Wallis, R. C. J. Organomet. Chem. 1978, 161, C1.
- [25] Zum Beispiel: (a) Berke, H.; Härter, P.; Huttner, G.; von Seyerl, J. J. Organomet. Chem. 1981, 219, 317. (b) Berke, H. Chem. Ber. 1980, 113, 1370. (c) Berke, H. Z. Naturforsch. B 1980, 35, 86.
- [26] Ittel, S. D.; Ibers, J. A. Adv. Organomet. Chem. 1976, 14, 33.
- [27] Elschenbroich, C.; Salzer, A. Organometallchemie, B. G. Teubner: Stuttgart, Germany, 1990.
- [28] Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valey, United States of America, 1987.
- [29] (a) King, R. B.; Bisnette, M. B.; Fronzaglia, A. J. Organomet. Chem. 1966, 5, 341.
 (b) King, R. B. J. Am. Chem. Soc. 1963, 85, 1918.
- [30] Jetz, W.; Angelici, R. J. J. Am. Chem. Soc. 1972, 94, 3799.
- [31] Behrens, H.; Krohberger, H.; Lampe, R. J.; Langer, J.; Maertens, D.; Pässler, P. Proceedings of the 13th International Conference on Coordination Chemistry, Cracow-Zakopane, Poland, 1970, Vol. II.
- [32] Darensbourg, D. J.; Darensbourg, M. Y. Inorg. Chem. 1970, 9, 1691.
- [33] Angelici, R. J.; Blacik, L. Inorg. Chem. 1972, 11, 1754.
- [34] Durfee, L. D.; Rothwell, I. P. Chem. Rev. 1988, 88, 1059.
- [35] Zum Beispiel: (a) Jones, W. D.; Reynolds, K. A.; Sperry, C. K.; Lachicotte, R. J. Organometallics 2000, 19, 1661. (b) McCusker, J. E.; Logan, J.; McElwee-White, L. Organometallics 1998, 17, 4037.
- [36] Ahmed, K. J.; Chisholm, M. H. Organometallics 1986, 5, 185.
- [37] Monomolekulare η²-Carbamoylkomplexe: (a) Anderson, S.; Cook, D. J.; Hill, A. F.
 Organometallics 1997, 16, 5595. (b) Ishida, T.; Yasushi, M.; Tanase, T.; Hidai, M.

J. Organomet. Chem. 1991, 409, 355. (c) Fagan, P. J.; Manriquez, J. M.; Vollmer,
S. H.; Day, C. S.; Day, V. W.; Marks, T. J. J. Am. Chem. Soc. 1981, 103, 2206. (d)
Müller, A.; Seyer, U.; Eltzner, W. Inorg. Chim. Acta 1979, 32, L65.

- [38] Mehrkernige η²-Carbamoylkomplexe: (a) Chisholm, M. H.; Hammond, C. E.; Huffman, J. C. Organometallics 1987, 6, 210. (b) Szostak, R.; Strouse, C. E.; Kaesz, H. D. J. Organomet. Chem. 1980, 191, 243.
- [39] Cardin, C. J.; Cardin, D. J.; Kelly, J. M.; Norton, R. J.; Roy, A. J. Organomet. Chem. 1977, 132, C23.
- [40] Schwartz, J.; Labinger, J. A. Angew. Chem., Int. Ed. Engl. 1976, 15, 333.
- [41] Gamasa, M. P.; Gimeno, J.; Lastra, E.; Lanfranchi, M.; Tiripicchio, A. J. Organomet. Chem. 1992, 430, C39.
- [42] Reger, D. L.; Belmore, K. A.; Mintz, E.; Charles, N. G.; Griffith, E. A. H.; Amma, E. L. Organometallics 1983, 2, 101.
- [43] Allen, S. R.; Beevor, R. G.; Green, M.; Norman, N. C.; Orpen, A. G.; Williams, I. D. J. Chem. Soc., Dalton Trans. 1985, 435.
- [44] Demuth-Eberle, G. Synthetische und mechanistische Studien am Beispiel von Vinyliden- und η^2 -Alkinkomplexen des Wolframs; Dissertation, Justus-Liebig-Universität Gießen, 1996.
- [45] Uhlig, S. Versuche zur Darstellung von silylsubstituierten Vinylidenen des Wolframs sowie deren Umlagerung in die entsprechenden η^2 -Alkinkomplexe; Diplomarbeit, Justus-Liebig-Universität Gießen, 1997.
- [46] (a) Jensen, J. H.; Morokuma, K.; Gordon, M. S. J. Chem. Phys. 1994, 100, 1981.
 (b) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A., Jr. J. Am. Chem. Soc. 1992, 114, 6133. (c) Gallo, M. M.; Hamilton, T. P.; Schaefer, H. F., III J. Am Chem. Soc. 1990, 112, 8714.
- [47] Silvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461.
- [48] a) Trost, B. M.; Flygar, J. A. J. Am. Chem. Soc. 1992, 114, 5476. (b) Bianchini, C.; Peruzzini, M.; Zanobini, F.; Frediani, P.; Albinati, A. J. Am. Chem. Soc. 1991, 113, 5453. (c) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604. (d) Trost, B. M.; Dyker, G.; Kulawiec, R. J. J. Am. Chem. Soc. 1990, 112, 7809. (e) Mahé, R.; Sasaki, Y.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1989, 54, 1518. (f) Landon, S. J.; Shulman, P. M.; Geoffroy, G. L. J. Am. Chem. Soc. 1985, 107, 6739.

- [49] (a) Antonova, A. B.; Kolobova, N. E.; Petrovsky, P. V.; Lokshin, B. V.; Obezyuk, N. S. J. Organomet. Chem. 1977, 137, 55. (b) Kolobova, N. E.; Antonova, A. B.; Khitrova, O. M.; Antipin, M. Yu.; Struchkov, Yu. T. J. Organomet. Chem. 1977, 137, 69. (c) Nesmeyanov, A. N.; Aleksandrov, G. G.; Antonova, A. B.; Anisimov, K. N.; Kolobova, N. E.; Struchkov, Yu. T. J. Organomet. Chem. 1976, 110, C36.
- [50] (a) Werner, H.; Baum, M.; Schneider, D.; Windmüller, B. Organometallics 1994, 13, 1089. (b) Werner, H.; Rappert, T.; Baum, M.; Stark, A. J. Organomet. Chem. 1993, 459, 319. (c) Rappert, T.; Nürnberg, O.; Mahr, N.; Wolf, J.; Werner, H. Organometallics 1992, 11, 4156. (d) Werner, H.; Brekau, U. Z. Naturforsch. B 1989, 44, 1438. (e) Werner, H.; García-Alonso, F. J.; Otto, H.; Wolf, J. Z. Naturforsch. B 1988, 43, 722. (f) Werner, H.; Wolf, J.; García-Alonso, F. J.; Ziegler, M. L.; Serhadli, O. J. Organomet. Chem. 1987, 336, 397. (g) Werner, H.; Wolf, J.; Schubert, U.; Ackermann, K. J. Organomet. Chem. 1986, 317, 327. (h) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem. 1983, 95, 428.
- [51] (a) Werner, H.; Höhn, A.; Schulz, M. J. Chem. Soc., Dalton Trans. 1991, 777. (b)
 Höhn, A.; Werner, H. J. Organomet. Chem. 1990, 382, 255. (c) Höhn, A.; Otto, H.;
 Dziallas, M.; Werner, H. J. Chem. Soc., Chem. Commun. 1987, 852. (d) GarcíaAlonso, F. J.; Höhn, A.; Wolf, J.; Otto, H.; Werner, H. Angew. Chem. 1985, 97, 401; Angew. Chem., Int. Ed. Engl. 1985, 24, 406.
- [52] Bianchini, C.; Peruzzini, M.; Vacca, A.; Zanobini, F. Organometallics 1991, 10, 3697.
- [53] (a) Bianchini, C.; Meli, A.; Peruzzini, M.; Zanobini, F.; Zanello, P. Organometallics 1990, 9, 241. (b) Bianchini, C.; Masi, D.; Meli, A.; Peruzzini, M.; Ramirez, J. A.; Vacca, A.; Zanobini, F. Organometallics 1989, 8, 2179.
- [54] De los Ríos, I.; Tenorio, M. J.; Puerta, M. C.; Valerga, P. J. Am. Chem. Soc. 1997, 119, 6529.
- [55] Wakatsuki,Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J. Am. Chem. Soc. 1994, 116, 8105.
- [56] Wakatsuki, Y.; Koga, N.; Werner, H.; Morokuma, K. J. Am. Chem. Soc. 1997, 119, 360.
- [57] Stegmann, R.; Frenking, G. Organometallics 1998, 17, 2089.
- [58] Nombel, P.; Lugan, N.; Mathieau, R. J. Organomet. Chem. 1995, 503, C22.

- [59] (a) Bly, R. S.; Zhong, Z.; Kane, C.; Bly, R. K. Organometallics 1994, 13, 899. (b)
 Bly, R. S.; Raja, M.; Bly, R. K. Organometallics 1992, 11, 1220.
- [60] (a) Bartlett, I. M.; Connelly, N. G.; Martín, A. J.; Orpen, A. G.; Paget, T. J.; Rieger, A. L.; Rieger, P H. J. Chem. Soc., Dalton Trans. 1999, 691. (b) Connelly, N. G.; Geiger, W. E.; Lagunas, M. C.; Metz, B.; Rieger, A. L.; Rieger, P. H.; Shaw, M. J. J. Am. Chem. Soc. 1995, 117, 12202. (c) Connelly, N. G.; Orpen, A. G.; Rieger, A. L.; Rieger, P. H.; Scott, C. J.; Rosair, G. M. J. Chem. Soc., Chem. Commun. 1992, 1293.
- [61] García-Yebra, C.; López-Mardomingo, C.; Fajardo, M.; Antiñolo, A.; Otero, A.; Rodríguez, A.; Vallat, A.; Lucas, D.; Mugnier, Y.; Carbó, J. J.; Lledós, A.; Bo, C. Organometallics 2000, 19, 1749.
- [62] (a) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Pérez-Carreño, E.; García-Granda, S. Organometallics 1999, 18, 2821. (b) Bianchini, C.; Purches, G.; Zanobini, F.; Peruzzini, M. Inorg. Chim. Acta 1998, 272, 1. (c) Martín, M.; Gevert, O.; Werner, H. J. Chem. Soc., Dalton Trans. 1996, 2, 2275. (d) Albertin, G.; Antoniutti, S.; Bordignon, E.; Cazzaro, F.; Ianelli, S.; Pellizi, G. Organometallics 1995, 14, 4114.
- [63] (a) Stang, P. J.; Rappoport, Z.; Hanack, M.; Subramanian, L. R. *Vinyl Cations*; Academic Press: New York, United States of America, 1979. (b) Stang, P. J.; Dueber, T. E. *J. Am. Chem. Soc.* 1977, *99*, 2602. (c) Grob, C. A.; Cseh, G. *Helv. Chim. Acta* 1964, *47*, 194.
- [64] Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471.
- [65] (a) Birdwhistell, K. R.; Nieter, S. J.; Templeton, J. L. J. Am. Chem. Soc. 1983, 105, 7789. (b) Templeton, J. L.; Bennett, C. W. J. Am. Chem. Soc. 1980, 102, 3288.
- [66] Bantel, H.; Powell, A. K.; Vahrenkamp, H. Chem. Ber. 1990, 123, 661.
- [67] (a) Baum, M.; Windmüller, B.; Werner, H. Z. Naturforsch. B 1994, 49, 859. (b)
 Rappert T.; Nürnberg, O.; Werner, H. Organometallics 1993, 12, 1359. (c) Schneider, D.; Werner, H. Angew. Chem. 1991, 103, 710; Angew. Chem., Int. Ed. Engl. 1991, 30, 700.
- [68] Werner, H.; Lass, R. W.; Gevert, O.; Wolf, J. Organometallics 1997, 16, 4077.
- [69] Katayama, H.; Onitsuka, K.; Ozawa, F. Organometallics 1996, 15, 4642.
- [70] Sakurai, H.; Fujii, T.; Sakamoto, K. Chem. Lett. 1992, 339.
- [71] (a) Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. Organometallics 1999, 18, 4660. (b) Kakiuchi, F.; Yamada, A.; Chatani, N.; Murai, S. Organometallics 1999,

18, 2033. (c) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906. (d) Marciniec B.; Pietraszuk, C. J. Chem. Soc., Chem. Commun. 1995, 2003. (e) Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1995, 500, 349. (f) Wakatsuki, Y.; Yamazaki, H.; Nakano, M.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1991, 703. (g) Randolph, C. L.; Wrighton, M. S. J. Am. Chem. Soc. 1986, 108, 3366.

- [72] Müller, C.; Lachicotte, R. J.; Jones, W. D. *Organometallics* **2002**, Veröffentlichung erfolgt in Kürze.
- [73] Ipaktschi, J.; Mirzaei, F.; Müller, B. G.; Beck, J.; Serafin, M. J. Organomet. Chem.
 1996, 526, 363.
- [74] (a) Fritz, P. M.; Polborn, K.; Steimann, M.; Beck, W. Chem. Ber. 1989, 122, 889.
 (b) Appel, M.; Heidrich, J.; Beck, W. Chem. Ber. 1987, 120, 1087.
- [75] (a) Wrackmeyer, B.; Wagner, K.; Abu-Orabi, S. T. J. Chem. Soc., Chem. Commun.
 1988, 333. (b) Sebald, A.; Wrackmeyer, B. J. Chem. Soc., Chem. Commun. 1983, 309. (c) Sebald, A.; Wrackmeyer, B. J. Chem. Soc., Chem. Commun. 1983, 1293.
- [76] (a) Rosenthal, U.; Pulst, S.; Arndt, P.; Ohff, A.; Tillack, A.; Baumann, W.; Kempe, R.; Burlakov, V. V. Organometallics 1995, 14, 2961. (b) Rosenthal, U.; Ohff, A.; Baumann, W.; Kempe, R.; Tillack, A.; Burlakov, V. V. Angew. Chem. 1994, 106, 1678; Angew. Chem., Int. Ed. Engl. 1994, 33, 1605. (c) Rosenthal, U.; Ohff, A.; Baumann, W.; Kempe, R.; Tillack, A.; Burlakov, V. V. Organometallics 1994, 13, 2903.
- [77] (a) Akita, M.; Ishii, N.; Takabuchi, A.; Tanaka, M.; Moro-Oka, Y. Organometallics
 1994, 13, 258. (b) Akita, M.; Terada, M.; Oyama, S.; Moro-Oka, Y. Organometallics
 1990, 9, 816.
- [78] (a) Barton, T. J.; Groh; B. L. Organometallics 1985, 4, 575. (b) Karpf, M.; Dreiding, A. S. Helv. Chim. Acta 1979, 62, 852.
- [79] Holmes, A. B.; Sporikou, C. N. Organic Syntheses; Wiley: New York, 1983; Collect. Vol. VIII.
- [80] Gamasa, M. P.; Gimeno, J.; Lastra, E.; Blanca, M. M. Organometallics 1992, 11, 1373.
- [81] Müller, B. G. Synthetische und mechanistische Studien am Beispiel von Vinyliden-, η^2 -Alkin- und Carbenkomplexen des Molybdäns; Dissertation, Justus-Liebig-Universität Gießen, 1996.

- [82] Carey, F. A.; Sundberg, R. J. Organische Chemie: ein weiterführendes Lehrbuch; VCH: Weinheim, Germany, 1995.
- [83] (a) Westheimer, F. H. Chem. Rev. 1961, 61, 265. (b) Wiberg, K. B. Chem. Rev. 1955, 55, 713.
- [84] (a) Bethell, D.; Hare, G. J.; Kearney, P. A. J. Chem. Soc., Perkin Trans. 2 1981, 684. (b) Motell, E. L.; Boone, A. W.; Fink, W. H. Tetrahedron 1978, 34, 1619. (c) Bell, R. P.; Cox, B. G. J. Chem. Soc. B 1971, 783. (d) Kwart, H.; Latimore, M. C. J. Am. Chem. Soc. 1971, 93, 3770. (e) Pryor, W. A.; Kneipp, K. G. J. Am. Chem. Soc. 1971, 93, 5584. Siehe auch zitierte Literatur in diesen Veröffentlichungen.
- [85] Logan, S. R. Grundlagen der chemischen Kinetik; WILEY-VCH: Weinheim, Gemany, 1997.
- [86] Bunnett, J. F. Kinetics in Solution in Techniques of Chemistry, Volume VI: Investigation of Rates and Mechanisms of Reactions/Third Edition; John Wiley & Sons, Inc.: New York, United States of America, 1974
- [87] (a) Moore, W. J.; Hummel, D. O. *Physikalische Chemie*; Walter de Gruyter: Berlin, Gemany, 1986. (b) Wedler, G. *Lehrbuch der physikalischen Chemie*; WILEY-VCH: Weinheim, Gemany, 1997.
- [88] Espenson, J. H. Chemical Kinetics and Reaction Mechanisms/Second Edition; McGraw-Hill, Inc.: New York, United States of America, 1995.
- [89] March, J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure/Fourth Edition; John Wiley & Sons, Inc.: NewYork, United States of America, 1992.
- [90] Ashe, A. J., III *Tetrahedron Lett.* **1970**, 2105.
- [91] Spangler, C. W. Chem. Rev. 1976, 76, 187.
- [92] Dötz, K. H. Angew. Chem., Int. Ed. Engl. 1984, 23, 587.
- [93] (a) Collman, J. P. Acc. Chem. Res. 1975, 8, 342. (b) Semmelhack, M. F.; Tamura, R. J. Am. Chem. Soc. 1983, 105, 4099.
- [94] (a) Casey, C. P.; Andrews, M. A.; Rinz, J. E. J. Am. Chem. Soc. 1979, 101, 741. (b) Tam, W.; Wong, W. K.; Gladysz, J. A. J. Am. Chem. Soc. 1979, 101, 1589. (c) Gladysz, J. A.; Tam, W. J. J. Am. Chem. Soc. 1978, 100, 2545. (d) Casey, C. P.; Newmann, S. M. J. Am. Chem. Soc. 1976, 98, 5395.
- [95] (a) Catellani, M.; Halpern, J. *Inorg. Chem.* 1980, 19, 566. (b) Darensbourg, D. J.;
 Baldwin, B. J.; Froelich, J. A. J. Am. Chem. Soc. 1980, 102, 4688. (c) Ungermann,

C.; Landis, V.; Moya, S. A.; Cohen, H.; Walker, H.; Pearson, R. G.; Rinker, R. G.; Ford, P. C. J. Am. Chem. Soc. **1979**, *101*, 5922 und zitierte Literatur.

- [96] Angelici, R. J. Acc. Chem. Res. 1972, 5, 335.
- [97] (a) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Or-ganometallics 1982, 1, 628. (b) Boland-Lussier, B. E.; Hughes, R. P. Organometallics 1982, 1, 635.
- [98] Gunnoe, T. B.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 6916.
- [99] Köhler, F. H.; Kalder, H. J.; Fischer, E.O. J. Organomet. Chem. 1976, 113, 11.
- [100] Bianchini, C.; Masi, D.; Romerosa, A.; Zanobini, F.; Peruzzini, M. Organometallics 1999, 18, 2376.
- [101] Köhler, F. H.; Kalder, H. J.; Fischer, E.O. J. Organomet. Chem. 1975, 85, 139.
- [102] Braun, S.; Kalinowski H.-O.; Berger, S. 100 and More Basic NMR Experiments: A Practical Course; VCH: Weinheim, Germany, 1996.
- [103] (a) Hoa Tran Huy, N.; Fischer, E. O.; Riede, J.; Thewalt, U.; Dötz, K. H. J. Organomet. Chem. 1984, 273, C29. (b) Bruce, M. I.; Hambley, T. W.; Rodgers, J. R.; Snow, M. R.; Swincer, A. G. J. Organomet. Chem. 1982, 226, C1.
- [104] (a) Ipaktschi, J.; Mirzaei, F.; Reimann, K.; Beck, J.; Serafin, M. Organometallics 1998, 17, 5086. (b) Davidson, J. L.; Shiralian, M. J. Chem. Soc., Chem. Commun. 1979, 30.
- [105] (a) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Bottrill, M.; Green, M.; Guy Orpen, A. J. Chem. Soc., Dalton Trans. 1983, 927. (b) Bottrill, M.; Green, M. J. Am. Chem. Soc. 1977, 99, 5795.
- [106] (a) Carmona, E.; Marín, J. M.; Poveda, M. L.; Sánchez, L.; Rogers, R. D.; Atwood, J. L. J. Chem. Soc., Dalton Trans. 1983, 1003. (b) Kreißl, F. R.; Sieber, W. J.; Wolfgruber, M.; Riede, J. Angew. Chem. 1984, 96, 618.
- [107] (a) Messer, D.; Landgraf, G.; Behrens H. J. Organomet. Chem. 1979, 172, 349. (b)
 Adams, R. D.; Chodosh, D.F.; Golembeski, N. M. Inorg. Chem. 1978, 17, 266. (c)
 Chipman, D. M.; Jacobson, R. A. Inorg. Chim. Acta 1967, 1, 393.
- [108] (a) Kitano, M.; Kuchitsu, K. *Bull. Chem. Soc. Japan* 1974, 47, 631. (b) Kitano, M.;
 Fukuyama, I.; Kuchitsu, K. *Bull. Chem. Soc. Japan* 1973, 46, 384. (c) Gobillon, Y.;
 Piret, P.; VanMeerssche, M. *Bull. Soc. Chem. France* 1963, 551.
- [109] Günzler, H.; Heise, H. M. IR-Spektroskopie; VCH: Weinheim, Germany, 1996.
- [110] Paisner, S. N.; Burger, P.; Bergmann, R. G. Organometallics 2000, 19, 2073.

- [111] Hesse, M.; Meier, H.; Zeeh, B. Spektroskopische Methoden in der organischen Chemie; Thieme: Stuttgart, Germany, 1991.
- [112] Schafer, D. F.; Wolczanski, P. T. J. Am. Chem. Soc. 1998, 120, 4881.
- [113] Reger, D. L.; Belmore, K. A.; Mintz, E.; McElligott, P. J. Organometallics 1984, 3, 134.
- [114] (a) Erker, G.; Rosenfeldt, F. J. Organomet. Chem. 1980, 188, C1. (b) Erker, G.;
 Rosenfeldt, F. Angew. Chem. 1978, 90, 640; Angew. Chem., Int. Ed. Engl. 1978, 17, 605.
- [115] Reißig, H. U. Chem. unserer Zeit 1984, 18, 46.
- [116] Ipaktschi, J.; Uhlig, S.; Dülmer, A. Organometallics 2001, 20, 4840.
- [117] De Boer, J. T.; Backer, H. J. Org. Synth. 1963, 4, 943.
- [118] G. M. Sheldrick SHELXS-97, Programm zur Lösung von Kristallstrukturen; Universität Göttingen, 1997.
- [119] G. M. Sheldrick SHELXL-97, Programm zur Verfeinerung von Kristallstrukturen; Universität Göttingen, 1997.
- [120] Wilson, A. J. C., Ed. Int. Tables for Crystallography; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, Vol. C.
- [121] Massa, W. *Kristallstrukturbestimmung*; Teubner-Studienbücher: Stuttgart, Germany, 1996.

H Anhang

1 Kinetische Daten

1.1 Bestimmung der Reaktionsordnung von 33d → 38a

Tab. 23 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 44.2 mg von **33d** [V(Benzol- d_6) = 0.8 ml; $T = 100.0^{\circ}$ C].

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0096	0.990491	0.122354
15	900	1.0000	0.0154	0.984834	0.121655
30	1800	1.0000	0.0216	0.978857	0.120917
45	2700	1.0000	0.0313	0.969650	0.119779
60	3600	1.0000	0.0413	0.960338	0.118629
75	4500	1.0000	0.0474	0.954745	0.117938

^{*a*} Relative Intensitäten des ¹H-NMR-Signals der *tert*-Butylgruppe von **33d** bzw. **38a**.

Bestimmung von v_0 bei [33d]₀ = 44.2 mg

Abb. 79 Auftragung des Logarithmus der Konzentration [**33d**] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9913$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0095	0.990589	0.173860
15	900	1.0000	0.0142	0.985999	0.173054
30	1800	1.0000	0.0233	0.977231	0.171515
45	2700	1.0000	0.0323	0.968711	0.170020
60	3600	1.0000	0.0421	0.959601	0.168421

Tab. 24 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 62.8 mg von **33d** [V(Benzol- d_6) = 0.8 ml; $T = 100.0^{\circ}$ C].

Bestimmung von v_0 bei [33d]₀ = 62.8 mg

Abb. 80 Auftragung des Logarithmus der Konzentration [33d] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9887$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0081	0.991965	0.236478
15	900	1.0000	0.0177	0.982608	0.234247
30	1800	1.0000	0.0238	0.976753	0.232851
45	2700	1.0000	0.0336	0.967492	0.230644
60	3600	1.0000	0.0407	0.960892	0.229070
75	4500	1.0000	0.0500	0.952381	0.227041

Tab. 25 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 85.3 mg von **33d** [V(Benzol- d_6) = 0.8 ml; $T = 100.0^{\circ}$ C].

Bestimmung von v_0 bei [33d]₀ = 85.3 mg

Abb. 81 Auftragung des Logarithmus der Konzentration [33d] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit t (Korrelationskoeffizient $r^2 = 0.9973$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0101	0.990001	0.278619
15	900	1.0000	0.0177	0.982608	0.276538
30	1800	1.0000	0.0278	0.972952	0.273821
45	2700	1.0000	0.0337	0.967399	0.272258
60	3600	1.0000	0.0379	0.963484	0.271156
75	4500	1.0000	0.0527	0.949938	0.267344

Tab. 26 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 100.7 mg von **33d** [V(Benzol- d_6) = 0.8 ml; $T = 100.0^{\circ}$ C].

Bestimmung von v_0 bei [33d]₀ = 100.7 mg

Abb. 82 Auftragung des Logarithmus der Konzentration [33d] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9776$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$[33d]/mol l^{-1}$
0	0	1.0000	0.0081	0.991965	0.327964
15	900	1.0000	0.0168	0.983478	0.325158
30	1800	1.0000	0.0231	0.977422	0.323156
45	2700	1.0000	0.0350	0.966184	0.319440
60	3600	1.0000	0.0387	0.962742	0.318302
75	4500	1.0000	0.0523	0.950299	0.314189

Tab. 27 Daten zur Ermittlung der Anfangsgeschwindigkeit v_0 der Umlagerungsreaktion von **33d** zu **38a** bei einer Einwaage von 118.3 mg von **33d** [*V*(Benzol-*d*₆) = 0.8 ml; *T* = 100.0°C].

Bestimmung von v_0 bei [33d]₀ = 118.3 mg

Abb. 83 Auftragung des Logarithmus der Konzentration [33d] im Anfangsstadium der Reaktion in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9861$).

1.2 Bestimmung der Geschwindigkeitskonstanten von $33d \rightarrow 38a$

Tab. 28 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a**bei 130.0°C [$m(38a) = 28.2 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$\ln \{[33d]/mol \ l^{-1}\}$
0	0	98.2670	1.0000	0.989926	-2.417279
20	1200	5.7432	1.0000	0.851702	-2.567672
40	2400	2.8730	1.0000	0.741802	-2.705827
60	3600	1.8279	1.0000	0.646381	-2.843521
80	4800	1.2807	1.0000	0.561538	-2.984230
100	6000	0.9504	1.0000	0.487285	-3.126061

^{*a*} Relative Intensitäten des ¹H-NMR-Signals der *tert*-Butylgruppe von **33d** bzw. **38a**.

Bestimmung von $k_{\rm H}$ bei $T = 130.0^{\circ} \rm C$

Abb. 84 Auftragung des Logarithmus der Konzentration [33d] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9998$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$ln \{[33d]/mol \ l^{-1}\}$
0	0	97.3450	1.0000	0.989832	-2.621202
15	900	5.0933	1.0000	0.835885	-2.790246
30	1800	2.4810	1.0000	0.712726	-2.949640
45	2700	1.5452	1.0000	0.607104	-3.110038
60	3600	1.1000	1.0000	0.523810	-3.257609
75	4500	0.8335	1.0000	0.454595	-3.399330

Tab. 29 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a**bei 135.0°C [$m(38a) = 23.0 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Bestimmung von $k_{\rm H}$ bei $T = 135.0^{\circ}{\rm C}$

Abb. 85 Auftragung des Logarithmus der Konzentration [33d] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9990$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	$I(\mathbf{38a})^a$	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$ln \{[33d]/mol l^{-1}\}$
0	0	111.9500	1.0000	0.991147	-2.243824
10	600	4.9220	1.0000	0.831138	-2.419890
20	1200	2.3849	1.0000	0.704570	-2.585098
30	1800	1.4412	1.0000	0.590365	-2.761944
40	2400	1.0396	1.0000	0.509708	-2.908848
50	3000	0.7916	1.0000	0.441840	-3.051739

Tab. 30 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a** bei 140.0°C [m(38a) = 33.5 mg; $V(\text{Benzol-}d_6) = 0.7$ ml].

Bestimmung von $k_{\rm H}$ bei $T = 140.0^{\circ} \rm C$

Abb. 86 Auftragung des Logarithmus der Konzentration [**33d**] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9983$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$ln \{[33d]/mol \ l^{-1}\}$
0	0	77.1570	1.0000	0.987205	-2.430727
5	300	6.6168	1.0000	0.868711	-2.558594
10	600	3.2644	1.0000	0.765500	-2.685075
15	900	2.0725	1.0000	0.674532	-2.811586
20	1200	1.5021	1.0000	0.600336	-2.928116
25	1500	1.1468	1.0000	0.534190	-3.044852
30	1800	0.9160	1.0000	0.478079	-3.155828

Tab. 31 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a**bei 145.0°C [$m(38a) = 27.9 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Abb. 87 Auftragung des Logarithmus der Konzentration [**33d**] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9993$).

<i>t</i> /min	t/s	$I(\mathbf{33d})^a$	<i>I</i> (38a) ^{<i>a</i>}	<i>I</i> (33d)/[<i>I</i> (33d) + <i>I</i> (38a)]	$ln \{[33d]/mol l^{-1}\}$
0	0	110.0700	1.0000	0.990997	-2.497424
4	240	5.4255	1.0000	0.844370	-2.657544
8	480	2.6148	1.0000	0.723360	-2.812229
12	720	1.6884	1.0000	0.628032	-2.953545
16	960	1.2123	1.0000	0.547982	-3.089893
20	1200	0.9115	1.0000	0.476851	-3.228932

Tab. 32 Daten zur Ermittlung der Geschwindigkeitskonstanten $k_{\rm H}$ der Umlagerungsreaktion von **33d** zu **38a** bei 150.0°C [$m(38a) = 26.0 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Bestimmung von $k_{\rm H}$ bei $T = 150.0^{\circ} \rm C$

Abb. 88 Auftragung des Logarithmus der Konzentration [33d] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9989$).

1.3 Bestimmung der Geschwindigkeitskonstanten von $33d-d_1 \rightarrow 38a-d_1$

Tab. 33 Daten zur Ermittlung der Geschwindigkeitskonstanten *k* der Umlagerungsreaktion von **33d-** d_1 zu **38a-** d_1 bei 130.0°C [$m(33d-d_1) = 24.9 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

<i>t</i> /min	t/s	$I(33d-d_1)^a$	$I(38a-d_1)^a$	$I(33d-d_1)/[I(33d-d_1) + I(38a-d_1)]$	$\ln \{[33d-d_1]/mol l^{-1}\}$
0	0	78.2060	1.0000	0.987375	-2.546562
20	1200	7.1869	1.0000	0.877854	-2.664132
40	2400	3.4463	1.0000	0.775094	-2.788628
60	3600	2.1923	1.0000	0.686746	-2.909647
80	4800	1.5874	1.0000	0.613512	-3.022413
100	6000	1.2190	1.0000	0.549347	-3.132882
120	7200	0.9979	1.0000	0.499474	-3.228055

^{*a*} Relative Intensitäten des ¹H-NMR-Signals der *tert*-Butylgruppe von **33d-***d*₁ bzw. **38a-***d*₁.

Bestimmung von k_D bei $T = 130.0^{\circ}C$

Abb. 89 Auftragung des Logarithmus der Konzentration $[33d-d_1]$ in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9985$).

<i>t</i> /min	t/s	$I(33d-d_1)^a$	$I(38a-d_1)^a$	$I(33d-d_1)/[I(33d-d_1) + I(38a-d_1)]$	$\ln \{[33d-d_1]/mol l^{-1}\}$
0	0	90.4310	1.0000	0.989063	-2.406315
15	900	5.8651	1.0000	0.854336	-2.552749
30	1800	2.8990	1.0000	0.743524	-2.691672
45	2700	1.8303	1.0000	0.646681	-2.831221
60	3600	1.3227	1.0000	0.569467	-2.958373
75	4500	1.0151	1.0000	0.503747	-3.080999
90	5400	0.7947	1.0000	0.442804	-3.209946

Tab. 34 Daten zur Ermittlung der Geschwindigkeitskonstanten *k* der Umlagerungsreaktion von **33d-** d_1 zu **38a-** d_1 bei 135.0°C [$m(33d-d_1) = 28.6 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Bestimmung von k_D bei $T = 135.0^{\circ}C$

Abb. 90 Auftragung des Logarithmus der Konzentration [**33d**- d_1] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9990$).

<i>t</i> /min	t/s	$I(33d-d_1)^a$	$I(38a-d_1)^a$	$I(33d-d_1)/[I(33d-d_1) + I(38a-d_1)]$	$\ln \{[33d-d_1]/mol l^{-1}\}$
0	0	85.9570	1.0000	0.988500	-2.603291
10	600	5.8569	1.0000	0.854162	-2.749359
20	1200	2.8394	1.0000	0.739543	-2.893447
30	1800	1.7993	1.0000	0.642768	-3.033696
40	2400	1.2928	1.0000	0.563852	-3.164687
50	3000	0.9779	1.0000	0.494413	-3.296108

Tab. 35 Daten zur Ermittlung der Geschwindigkeitskonstanten *k* der Umlagerungsreaktion von **33d-** d_1 zu **38a-** d_1 bei 140.0°C [$m(33d-d_1) = 23.5 \text{ mg}$; $V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Bestimmung von k_D bei $T = 140.0^{\circ}C$

Abb. 91 Auftragung des Logarithmus der Konzentration [**33d**- d_1] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9994$).

<i>t</i> /min	t/s	$I(33d-d_1)^a$	$I(38a-d_1)^a$	$I(33d-d_1)/[I(33d-d_1) + I(38a-d_1)]$)] $\ln \{[33d-d_1]/mol l^{-1}\}$
0	0	84.7960	1.0000	0.988344	-2.513957
5	300	7.8550	1.0000	0.887069	-2.622065
10	600	3.8271	1.0000	0.792836	-2.734372
15	900	2.4690	1.0000	0.711732	-2.842287
20	1200	1.8077	1.0000	0.643837	-2.942544
25	1500	1.3943	1.0000	0.582341	-3.042932
30	1800	1.1242	1.0000	0.529235	-3.138557
35	2100	0.9388	1.0000	0.484217	-3.227456

Tab. 36 Daten zur Ermittlung der Geschwindigkeitskonstanten *k* der Umlagerungsreaktion von **33d-** d_1 zu **38a-** d_1 bei 145.0°C [$m(33d-d_1) = 25.7 \text{ mg}$; $V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Abb. 92 Auftragung des Logarithmus der Konzentration $[33d-d_1]$ in Abhängigkeit der Zeit t (Korrelations-

koeffizient $r^2 = 0.9987$).

<i>t</i> /min	t/s	$I(33d-d_1)^a$	$I(38a-d_1)^a$	$I(33d-d_1)/[I(33d-d_1) + I(38a-d_1)]$	$\ln \{[33d-d_1]/mol \ l^{-1}\}$
0	0	90.8910	1.0000	0.989118	-2.581613
4	240	6.4495	1.0000	0.865763	-2.714815
8	480	3.5302	1.0000	0.779259	-2.820082
12	720	2.1645	1.0000	0.683994	-2.950476
16	960	1.5597	1.0000	0.609329	-3.066067
20	1200	1.1598	1.0000	0.536994	-3.192439
24	1440	0.9542	1.0000	0.488282	-3.287534

Tab. 37 Daten zur Ermittlung der Geschwindigkeitskonstanten *k* der Umlagerungsreaktion von **33d-** d_1 zu **38a-** d_1 bei 150.0°C [$m(33d-d_1) = 24.0 \text{ mg}; V(\text{Benzol-}d_6) = 0.7 \text{ ml}$].

Bestimmung von $k_{\rm D}$ bei $T = 150.0^{\circ}$ C

Abb. 93 Auftragung des Logarithmus der Konzentration [33d- d_1] in Abhängigkeit der Zeit *t* (Korrelationskoeffizient $r^2 = 0.9988$).

2 Röntgenstrukturdaten von Komplex 92b

Name der Verbindung	$(cis-tert-Butylvinyl)-\eta^5$ -cyclopentadienyl-			
	η^2 -isopropylcarbamoyl-nitrosyl-wolfram			
Summenformel	$C_{15}H_{24}N_2O_2W$			
Molekulargewicht	$448.22 \text{ g mol}^{-1}$			
Kristalldimensionen	$0.42 \times 0.27 \times 0.15 \text{ mm}$			
Farbe und Habitus	beige, transparent			
Kristallsystem	triklin			
Raumgruppe	<i>P</i> 1 (No. 2)			
Zellkonstanten	$a = 7.5194(8) \text{ Å}$ $\alpha = 91.200(15)^{\circ}$			
	$b = 10.5859(13)$ Å $\beta = 96.713(14)^{\circ}$			
	$c = 11.4778(15) \text{ Å}$ $\gamma = 107.345(13)^{\circ}$			
Volumen der Elementarzelle	864.60(18) Å ³			
Formeleinheiten pro Zelle	Z = 2			
Röntgenographische Dichte (ber.)	1.718 g cm^{-3}			
Linearer Absorptionskoeffizient	66.83 cm^{-1}			
Diffraktometer	Image Plate Diffractometer System (STOE)			
Strahlungsquelle	$MoK_{\alpha} (\lambda = 0.71073 \text{ Å})$			
Monochromator	Graphit			
Meßtemperatur	293 K			
Meßbereich	$55.2^\circ \le 2\theta \le 56.1^\circ$			
	$-9 \le h \le 9, -13 \le k \le 13, -14 \le l \le 15$			
Gemessene Reflexe	7625			
Unabhängige Reflexe	$3786 (R_{int} = 0.024)$			
Unabhängige Reflexe mit $F_0 > 4\sigma(F_0)$	3239			
Korrekturen	Lorentz- und Polarisationskoeffizienten			

Strukturberechnung und Verfeinerung	W-Positionsparameter mit Hilfe der Direk-			
	ten Methoden (Programm SHELXS-97), ^[118]			
	restliche Atome aus Differenz-Fouriersyn-			
	these (Programm SHELXL-97), ^[119] Verfei-			
	nerung mit voller Matrix, Methode der			
	kleinsten Fehlerquadrate mit anisotropen			
	thermischen Parametern für alle Nichtwas-			
	serstoffatome; H-Positionen durch "riding"-			
	Modell; Atomformfaktoren aus Literatur. ^[120]			
Anzahl der Parameter	181			
wR_2	0.0674			
R_1	0.0322			
$R_1 \left[F_{\rm o} > 4\sigma(F_{\rm o}) \right]$	0.0247			
Minimum und Maximum in $\Delta\sigma$	$1.079 \text{ und } -1.154 \text{ e}\text{\AA}^{-3}$			

Abb. 94 ORTEP-Plot der Molekülstruktur von Komplex 92b mit H-Atomen, Zählschema für die Atome und einem Wahrscheinlichkeitsfaktor für die Schwingungsellipsoide von 30%.

Atom	x	у	Ζ	U_{eq}
W	2955(1)	7687(1)	941(1)	47(1)
N(1)	4046(6)	9234(3)	1694(3)	50(1)
O(1)	5022(5)	10304(3)	2183(3)	63(1)
C(11)	1495(7)	8363(4)	-380(4)	54(1)
O(2)	192(5)	7868(4)	243(3)	61(1)
N(2)	1330(6)	8930(4)	-1368(4)	57(1)
C(12)	-470(9)	9033(6)	-1969(5)	66(1)
C(121)	-1690(11)	7717(7)	-2520(7)	96(2)
C(122)	-59(12)	10080(7)	-2838(7)	90(2)
C(1)	2965(10)	5583(6)	120(7)	82(2)
C(2)	4131(11)	5856(6)	1147(6)	78(2)
C(3)	5570(10)	6958(7)	1060(8)	88(2)
C(4)	5320(13)	7416(6)	-26(9)	96(3)
C(5)	3683(16)	6556(10)	-638(6)	106(3)
C(21)	1336(8)	6740(5)	2292(5)	63(1)
C(22)	1485(9)	6595(5)	3446(5)	68(1)
C(23)	3080(10)	7077(6)	4423(5)	76(2)
C(232)	2690(30)	8150(20)	5103(13)	270(13)
C(233)	3101(19)	5977(14)	5206(14)	231(10)
C(231)	4961(14)	7650(13)	4092(7)	165(6)

Tab. 38 Atomkoordinaten (Å \times 10⁴) und äquivalente isotrope Temperaturfaktoren (Å² \times 10³) für **92b**.

Tab. 39 Bindungslängen (Å) für 92b.

W-N(1)	1.754(4)	C(12)-C(122)	1.494(8)
W-C(11)	2.036(5)	C(12)-C(121)	1.499(8)
W-C(21)	2.161(5)	C(1)-C(2)	1.354(10)
W-O(2)	2.202(4)	C(1)-C(5)	1.388(12)
W-C(4)	2.287(6)	C(2)-C(3)	1.349(10)
W-C(3)	2.307(6)	C(3)-C(4)	1.360(12)
W-C(5)	2.356(6)	C(4)-C(5)	1.393(13)
W-C(2)	2.363(6)	C(21)-C(22)	1.332(8)
W-C(1)	2.402(5)	C(22)-C(23)	1.501(9)
N(1)-O(1)	1.232(5)	C(23)-C(231)	1.461(12)
C(11)-O(2)	1.273(6)	C(23)-C(232)	1.479(13)
C(11)-N(2)	1.305(6)	C(23)-C(233)	1.488(10)
N(2)-C(12)	1.481(7)		

N(1)-W-C(11)	96.12(18)	C(5)-W-C(1)	33.9(3)
N(1)-W-C(21)	97.90(18)	C(2)-W-C(1)	33.0(2)
C(11)-W-C(21)	115.2(2)	O(1)-N(1)-W	171.8(4)
N(1)-W-O(2)	102.00(17)	O(2)-C(11)-N(2)	126.6(5)
C(11)-W-O(2)	34.67(16)	O(2)-C(11)-W	79.9(3)
C(21)-W-O(2)	80.52(19)	N(2)-C(11)-W	153.5(4)
N(1)-W-C(4)	101.5(3)	C(11)-O(2)-W	65.5(3)
C(11)-W-C(4)	99.5(3)	C(11)-N(2)-C(12)	124.1(4)
C(21)-W-C(4)	137.9(3)	N(2)-C(12)-C(122)	108.8(5)
O(2)-W-C(4)	130.1(3)	N(2)-C(12)-C(121)	111.2(5)
N(1)-W-C(3)	97.2(2)	C(122)-C(12)-C(121)	112.7(5)
C(11)-W-C(3)	133.8(3)	C(2)-C(1)-C(5)	107.8(7)
C(21)-W-C(3)	106.4(3)	C(2)-C(1)-W	71.9(3)
O(2)-W-C(3)	158.5(2)	C(5)-C(1)-W	71.2(3)
C(4)-W-C(3)	34.4(3)	C(3)-C(2)-C(1)	109.3(7)
N(1)-W-C(5)	133.6(3)	C(3)-C(2)-W	71.0(4)
C(11)-W-C(5)	82.4(2)	C(1)-C(2)-W	75.1(4)
C(21)-W-C(5)	124.8(3)	C(2)-C(3)-C(4)	108.5(7)
O(2)-W-C(5)	102.1(2)	C(2)-C(3)-W	75.5(4)
C(4)-W-C(5)	34.9(3)	C(4)-C(3)-W	72.0(4)
C(3)-W-C(5)	57.0(3)	C(3)-C(4)-C(5)	107.9(7)
N(1)-W-C(2)	123.5(2)	C(3)-C(4)-W	73.6(4)
C(11)-W-C(2)	135.3(2)	C(5)-C(4)-W	75.3(4)
C(21)-W-C(2)	81.7(2)	C(1)-C(5)-C(4)	106.5(6)
O(2)-W-C(2)	132.9(2)	C(1)-C(5)-W	74.9(4)
C(4)-W-C(2)	56.4(3)	C(4)-C(5)-W	69.9(4)
C(3)-W-C(2)	33.5(3)	C(22)-C(21)-W	141.4(4)
C(5)-W-C(2)	56.0(3)	C(21)-C(22)-C(23)	133.1(5)
N(1)-W-C(1)	153.0(2)	C(231)-C(23)-C(232)	105.8(12)
C(11)-W-C(1)	102.8(2)	C(231)-C(23)-C(233)	109.0(9)
C(21)-W-C(1)	91.4(2)	C(232)-C(23)-C(233)	108.5(12)
O(2)-W-C(1)	104.6(2)	C(231)-C(23)-C(22)	117.3(6)
C(4)-W-C(1)	56.7(2)	C(232)-C(23)-C(22)	106.6(7)
C(3)-W-C(1)	55.8(2)	C(233)-C(23)-C(22)	109.2(6)

Tab. 40 Bindungswinkel (°) für 92b.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
W	37(1)	43(1)	58(1)	-8(1)	10(1)	8(1)
N(1)	46(2)	48(2)	54(2)	-2(1)	11(2)	11(2)
O(1)	58(2)	47(2)	74(2)	-16(1)	11(2)	0(1)
C(11)	43(3)	53(2)	60(3)	-13(2)	5(2)	9(2)
O(2)	44(2)	73(2)	63(2)	-2(2)	8(2)	13(2)
N(2)	36(2)	68(2)	64(2)	0(2)	12(2)	13(2)
C(12)	57(4)	77(3)	64(3)	-3(2)	4(2)	22(3)
C(121)	71(5)	99(5)	96(5)	-3(4)	-12(4)	-1(4)
C(122)	85(6)	92(4)	105(5)	23(4)	13(4)	41(4)
C(1)	61(4)	64(3)	119(5)	-34(3)	14(4)	17(3)
C(2)	84(5)	64(3)	99(4)	0(3)	23(4)	38(3)
C(3)	43(4)	85(4)	142(6)	-30(4)	9(4)	31(3)
C(4)	103(7)	65(3)	140(7)	9(4)	75(6)	31(4)
C(5)	150(9)	140(7)	68(4)	-19(4)	10(4)	107(7)
C(21)	53(3)	57(3)	64(3)	-6(2)	9(2)	-4(2)
C(22)	58(4)	59(3)	80(3)	8(2)	21(3)	2(2)
C(23)	82(5)	71(3)	66(3)	14(3)	5(3)	12(3)
C(232)	260(20)	400(30)	179(12)	-201(16)	-113(13)	210(20)
C(233)	152(12)	191(12)	275(16)	162(12)	-73(11)	-32(9)
C(231)	93(8)	254(14)	78(5)	24(6)	-11(4)	-47(8)

Tab. 41 Anisotrope Temperaturfaktoren ($Å^2 \times 10^3$) für **92b** gemäß

 $f' = f \exp\{-2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{13}hla^*c^* + 2U_{12}hka^*b^*\}.^{[121]}$

Diese Arbeit wurde in der Zeit von Februar 1998 bis Juni 2002 am Institut für Organische Chemie der Justus-Liebig-Universität Gießen erstellt.

Meinem verehrten Lehrer, Herrn Prof. Dr. Junes Ipaktschi, danke ich herzlich für die Themenstellung und die stets gewährte Unterstützung in Form von zahlreichen Hinweisen und Diskussionen während der Durchführung meiner Arbeit.

Herrn Prof. Dr. Askani danke ich für die Übernahme des Koreferates.

Bedanken möchte ich mich auch bei Herrn Dr. Hans Peter Reisenauer, der mir besonders gegen Ende dieser Dissertation bei NMR-spektroskopischen Fragen zur Seite stand. Außerdem danke ich Herrn Jörg Christ, der durch sein technisches Wissen am Gelingen der zahlreichen NMR-Messungen Anteil hatte.

Mein Dank gebührt auch Herrn Dipl.-Chem. Ansgar Dülmer für dessen kompetente Unterstützung und unermüdliche Hilfsbereitschaft bei der Röntgenstrukturanalyse.

Weiterer Dank gilt Frau Dr. Kathrin Hofmann, die trotz eigener Promotion die Zeit fand, meine Kristalle "anzuschwenken",

Frau Antonie Pospiech für die stets prompte Erledigung von NMR-Standardmessungen,

sowie meinem Laborkollegen, Herrn Dr. Thomas Klotzbach, für die sehr angenehme Zeit und seine Hilfsbereitschaft.

Letztlich möchte ich allen Mitarbeitern der zentralen Einrichtungen des Instituts für Organische Chemie für die Hilfe bei der Durchführung meiner Arbeit danken.
Lebenslauf

Persönliche Daten

Name:	Sascha Uhlig
Geburtsdatum:	2. Oktober 1970
Geburtsort:	Freiburg im Breisgau

Schulausbildung

1977–1979	Müller-Guttenbrunn-Schule
1979–1980	Geschwister-Scholl-Schule Assenheim
1980–1981	Phillip-Dieffenbach-Schule Friedberg
1981–1987	Gesamtschule Friedberg
1987–1991	Burggymnasium Friedberg
12. Juni 1991	Erwerb der Allgemeinen Hochschulreife

Hochschulstudium

Oktober 1991 – April 1997	Chemiestudium an der Justus-Liebig-Universität
	Gießen
13. April 1994	Diplom-Chemiker-Vorprüfung
12. Dezember 1997	Diplom-Chemiker-Hauptprüfung
Mai 1997 – Dezember 1997	Diplomarbeit am Institut für Organische Chemie
	(Prof. Dr. Junes Ipaktschi, Titel: "Versuche zur Darstel-
	lung von silylsubstituierten Vinylidenen des Wolframs
	sowie deren Umlagerung in die entsprechenden η^2 -
	Alkinkomplexe")
Februar 1998 – Juni 2002	Dissertation am Institut für Organische Chemie
	(Prof. Dr. Junes Ipaktschi, Titel: "Mechanistische Stu-
	dien zur η^1 -Vinylidenkomplex $\rightarrow \eta^2$ -Alkinkomplex-
	Isomerisierung und synthetische Anwendung von Car-
	bonylvinylidenkomplexen des Wolframs")

Berufliche Tätigkeit

Oktober 1998 – März 2000	Wissenschaftliche Hilfskraft am Institut für Organische
	Chemie der Justus-Liebig-Universität Gießen
seit April 2000	Wissenschaftlicher Mitarbeiter am Institut für Organi-
	sche Chemie der Justus-Liebig-Universität Gießen

Ich versichere hiermit, daß die von mir vorgelegte Arbeit nur mit den angegebenen Hilfsmitteln und ohne weitere fremde Hilfe angefertigt wurde.

Datum:

Unterschrift: