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Sergei Haller

Notation

Here, we describe some common notation used throughout this work. Given

elements g and h of the group G, we write

gh := h−1gh and hg := hgh−1

for right and left conjugation. For a subgroup H of G, we write CG(H) for the

centralizer of H in G, NG(H) for normalizer of H in G, and Z(G) for the center

of G.

For a given field k, we denote its multiplicative group by k∗. Mn(k) is the set

of all n × n matrices with entries in k. We denote the algebraic and separable

closures of k by k̄ and ksep, respectively.

We finish complete proofs with ¤ and incomplete proofs with ¥. In the latter

case, a reference to a complete proof is given. Known results are indicated as

such by giving a reference after the statement.
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Chapter 1

Introduction

Computations with large finite or infinite groups are usually very tedious and

time consuming. In many cases the computations carried out are very me-

chanical and error prone when carried out by hand. Such computations can

often be carried out more easily by computer. For more complicated tasks

one needs to design and implement new algorithms. For groups in particular,

this includes operations with group elements (multiplication, inversion, conjuga-

tion, etc.) or other important properties (subgroup structure, conjugacy classes,

etc.). The first problem is deciding how elements should be represented in the

computer. Often a group is defined intrinsically, that is, defined implicitly by

requiring some properties on the elements (e.g., the fixed point subgroup of an-

other group). For computations with group elements, such a definition is not

very useful, since it provides no group elements other than the identity. In such

cases one needs an extrinsic definition for the group, such as a presentation or

a matrix representation.

We design and implement algorithms for computation with groups of Lie type.

Algorithms for element arithmetic in the Steinberg presentation of untwisted

groups of Lie type, and for conversion between this presentation and linear

representations, were given in [12] (building on work of [15] and [26]). We

extend this work to twisted groups, including groups that are not quasisplit.

A twisted group of Lie type is the group of rational points of a twisted form

of a reductive linear algebraic group. These forms are classified by Galois coho-

mology. In order to compute the Galois cohomology, we develop a method for

computing the cohomology of a finitely presented group Γ on a finite group A.

This method is of interest in its own right. We then extend this method to the

Galois cohomology of reductive linear algebraic groups.

Let G be a reductive linear algebraic group defined over a field k. A twisted

group of Lie type Gα(k) is uniquely determined by the cocycle α of the Galois

group of K on A := AutK(G), the group of K-algebraic automorphisms where

1



Sergei Haller 1. Introduction

K is a finite Galois extension of k. We give algorithms for computing the

relative root system of Gα(k), the root subgroups, and the root elements, as

well as algorithms for the computing of relations between root elements. This

enables us to compute inside the normal subgroup Gα(k)
† of Gα(k) generated

by the root elements. We apply our algorithms to several examples, including
2E6,1(k) and 3,6D4,1(k). In this application, the field k need not be specified,

one only needs to assume some properties of k.

As an application, we develop an algorithm for computing all twisted maximal

tori of a finite group of Lie type. The order of such a torus is computed as a

polynomial in q, the order of the field k. We also compute the orders of the

factors in a decomposition of the torus as a direct product of cyclic subgroups.

For a given field k, we compute the maximal tori of Gβ(k) as subgroups of

Gβ(K) over some extension field K, and then use the effective version of Lang’s

Theorem [11] to conjugate the torus to a k-torus, which is a subgroup of Gβ(k).

Using this information on the maximal tori, we provide an algorithm for

computing all Sylow subgroups of a finite group of Lie type. If p is not the

characteristic of the field, the Sylow subgroup is computed as a subgroup of the

normaliser of a k-torus.

All algorithms presented here have been implemented by the author in Magma

[5].

2
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Chapter 2

Nonabelian cohomology of

finite groups

We are primarily interested in the twisted forms of linear algebraic groups, which

are classified via the Galois cohomology. In the present chapter, we introduce

the first cohomology of nonabelian groups and develop a new technique for

computing cohomology H1(Γ, A) for a finitely presented group Γ and a finite

group A. In Chapter 3, we extend this technique to Galois cohomology. We

also introduce the concept of twisting in Section 2.3.

2.1 Definitions and first properties

Let Γ be a group. A Γ-set A is a set with a (right) Γ-action. If A is a group

and Γ acts by group automorphisms, then A is called a Γ-group. A subset

(subgroup) of the Γ-set (Γ-group) A that is normalised by the action of Γ, is

called a Γ-subset (Γ-subgroup) of A. Given a Γ-set A, define

H0(Γ, A) := {a ∈ A | aσ = a for all σ ∈ Γ}.

If A is a Γ-group, then H0(Γ, A) is a subgroup of A.

Now let A be a Γ-group. A 1-cocycle of Γ on A is a map

α : Γ→ A, σ 7→ ασ,

such that

αστ = (ασ)
τατ for all σ, τ ∈ Γ. (2.1)

We denote by Z1(Γ, A) the set of all 1-cocycles of Γ on A. The constant map

1 : σ 7→ 1 is a distinguished element of Z1(Γ, A), called the trivial 1-cocycle.

3



Sergei Haller 2. Nonabelian cohomology of finite groups

Applying (2.1) to ασ·1 and ασσ−1 respectively, we immediately obtain the

following important properties:

α1 = 1, (2.2)

ασ−1 = (ασ)
−σ−1

for all σ ∈ Γ. (2.3)

Given a 1-cocycle α ∈ Z1(Γ, A) and an element a ∈ A, the map

β : Γ→ A, σ 7→ βσ := a−σ ·ασ · a (2.4)

is also in Z1(Γ, A), since

βστ = a−σταστa = a−στ (ασ)
τατa

= (a−σασa)
τ (a−τατa) = (βσ)

τβτ .

If there exists a ∈ A such that βσ = a−σ ·ασ · a for all σ ∈ Γ, we write β ∼ α.

We call β and α cohomologous with respect to a, and denote β by α(a). A

1-cocycle cohomologous to the trivial cocycle is called a coboundary. Note that

∼ is an equivalence relation. We denote the equivalence class of α by [α] and

the set of equivalence classes of 1-cocycles by H1(Γ, A). A pointed set is a set

with a distinguished element. Both Z1(Γ, A) and H1(Γ, A) are pointed sets with

distinguished elements being the trivial cocycle and the class of coboundaries,

respectively. If A is abelian, then Z1(Γ, A) and H1(Γ, A) are groups and agree

with the usual definition of group cohomology (see, for example, [1]). In general,

however, Z1(Γ, A) and H1(Γ, A) do not have a group structure.

Given two cohomologous cocycles α,β ∈ Z1(Γ, A), it is a non-trivial problem

to find the intertwining element a ∈ A such that β = α(a). For example, if

Γ = 〈σ〉 is cyclic and α = 1, it amounts to solving

βσ = a−σ · 1σ · a = a−σ · a for a ∈ A.

For connected algebraic groups over finite fields, Lang’s Theorem (Theorem

3.17) gives a nonconstructive proof of the existence of a solution (in other words,

it shows that the cohomology is trivial). Solving this equation constructively

for reductive groups is addressed in [11].

In order to compute the first cohomology more efficiently (Section 2.6), we

sometimes use the second cohomology of abelian groups. Let A be an abelian

Γ-group. Then a map α : Γ× Γ→ A satisfying

αστ,ρα
ρ
σ,τ = ασ,τρατ,ρ for all σ, τ, ρ ∈ Γ (2.5)

is called a 2-cocycle. The set of all 2-cocycles is denoted by Z2(Γ, A). Two

2-cocycles α,β ∈ Z2(Γ, A) are called cohomologous if there is a map ϕ : Γ 7→ A

satisfying

βσ,τ = ασ,τϕ
τ
σϕτϕ

−1
στ for all σ, τ ∈ Γ. (2.6)

4
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2.2. Finitely presented groups Sergei Haller

This is an equivalence relation, whose set of equivalence classes is denoted

H2(Γ, A). Once again, there is a trivial 2-cocycle, denoted 1.

Let M,N be two pointed sets. A map ϕ : M → N is called a morphism

of pointed sets if it maps the distinguished element of M to the distinguished

element of N . Let A and B be Γ-groups and let φ : A → B be a group

homomorphism. We call φ a Γ-homomorphism if it respects the Γ-action, i.e.,

(aσ)φ =
(

aφ
)σ

for all σ ∈ Γ and a ∈ A.

If φ : A→ B is a Γ-homomorphism, it is immediate from the definitions that

there are induced maps

φi : Zi(Γ, A)→ Zi(Γ, B) (i = 1),

φi : Hi(Γ, A)→ Hi(Γ, B) (i = 0, 1).

Note that we use the same name φ1 for the maps Z1(Γ, A) → Z1(Γ, B) and

H1(Γ, A) → H1(Γ, B), since it is obvious from context which one is intended.

Moreover, φ0 is a group homomorphism and φ1 is a morphism of pointed sets. If

A and B are abelian Γ-groups, there are also induced maps φ2, and the maps φ1

and φ2 are group homomorphisms. If ψ : B → C is another Γ-homomorphism,

then the functorial property

(φψ)i = φiψi

holds for all i = 0, 1, 2 whenever the maps are defined.

2.2 Finitely presented groups

A 1-cocycle α ∈ Z1(Γ, A) is uniquely determined by the images of a fixed set

of generators of Γ, since it can be extended by properties (2.1) and (2.3) to all

elements of Γ. In other words, if Γ = 〈γ1, . . . , γk〉, then the cocycle α ∈ Z1(Γ, A)
is uniquely determined by the map f = α|{γ1,...,γk}. Note that an arbitrary map

f : {γ1, . . . , γk} → A does not always define a valid cocycle, but the following

theorem provides a necessary and sufficient condition in case Γ is a finitely

presented group.

Let Γ be a finitely-presented group with generators γ1, . . . , γk and relators

r1, . . . , r`. Let F be the free group on the letters x1, . . . , xk. Let µ : F → Γ

be the universal epimorphism with µ(xi) = γi. Then Γ is identified with F/N

where N := kerµ = 〈rFj | j = 1, . . . , `〉. Note that A is also an F -group with the

action induced by µ and, in this case, every map f : {x1, . . . , xk} → A defines a

cocycle in Z1(F,A).

2.1 Theorem (Recognizing 1-cocycles).

Let Γ be a finitely-presented group with generators γ1, . . . , γk and relators

5
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Sergei Haller 2. Nonabelian cohomology of finite groups

r1, . . . , r`. Let F be the free group on the letters x1, . . . , xk. Let µ : F → Γ

be the universal epimorphism with µ(xi) = γi and let N = kerµ. Let A be a

Γ-group. Choose arbitrary a1, . . . , ak ∈ A and let β be the cocycle in Z1(F,A)

defined by the map xi 7→ ai. Then the map γi 7→ ai defines a cocycle in Z1(Γ, A)

if, and only if, βrj = 1 for j = 1, . . . , `.

Proof. First, since A is a Γ-group, it is also an F -group with the action induced

by µ and β is a cocycle in Z1(F,A).

If α is a cocycle of Γ on A with αγi = ai, then βrj = αµ(rj) = α1 = 1 for j =

1, . . . , `.

Conversely assume that βrj = 1 for j = 1, . . . , `. First we show that βn = 1

for all n ∈ N . Let 1 6= n ∈ N . Then n =
∏m
i=1 r

yi
ji

for some m ∈ N, ji ∈
{1, . . . , `} and yi ∈ F . In the case m = 1, we have

βn = βy−1rjy = β
rjy

y−1β
y
rjβy = β

µ(rj)y

y−1 βy = β
y
y−1βy = βy−1y = 1.

Otherwise, let y := ym and j := jm, so that

βn = βn′ryj
= β

ryj
n′βryj

= 1

with n′ =
∏m−1
i=1 ryiji by induction.

Now let x, y ∈ F with µ(x) = µ(y). Then x = ny for some n ∈ N . Hence

βx = βny = βynβy = βy

and the following map is well defined:

ρ : Γ→ A; ργ := βx for some x ∈ µ−1(γ).

Now ρ1 = β1 = 1 and for σ, τ ∈ Γ and x ∈ µ−1(σ), y ∈ µ−1(τ) we have:

ρστ = βxy = βyxβy = ρyσρτ = ρµ(y)σ ρτ = ρτσρτ .

This shows that ρ is a cocycle in Z1(Γ, A) with ργi = βxi = ai. ¤

Let A be a Γ-group with a finitely presented group Γ and a fixed set γ1, . . . , γk
of generators of Γ. If a map γi 7→ ai defines a valid cocycle, we denote this

cocycle by [[a1, . . . , an]].

2.3 Twisted forms

In this section, we introduce twisting by a cocycle and twisted forms. Let B be

a Γ-set, and let A be a Γ-group with an action on B that commutes with the

action of Γ, i.e.,

(ba)σ = (bσ)a
σ

for all b ∈ B, a ∈ A, σ ∈ Γ.

6
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2.3. Twisted forms Sergei Haller

Now fix an arbitrary 1-cocycle α ∈ Z1(Γ, A) and define

b ∗ σ := bσασ for σ ∈ Γ and b ∈ B.

This is a new action of Γ on B since

b ∗ (στ) = bσταστ = bστα
τ
σατ = bσαστατ = (b ∗ σ) ∗ τ.

We call this the ∗-action with respect to α. The set B with the ∗-action is again

a Γ-set, denoted Bα and called a twisted form of B. We say that Bα is obtained

by twisting B by the 1-cocycle α.

The most common example is when B is a Γ-group and A = Aut(B), the

group of automorphisms of B. Then there is an action of Γ on A given by

aσ = σ−1 ◦ a ◦ σ for σ ∈ Γ, a ∈ A, (2.7)

where ◦ is composition of maps on B. The subgroup H0(Γ,Aut(B)) is exactly

the set of Γ-automorphisms of B.

The following well-known proposition essentially shows that we get nothing

new by looking at the twisted forms of a twisted form, for which we give an

elementary proof.

2.2 Proposition ([30, Proposition 35bis]).

Let A be a Γ-group and α ∈ Z1(Γ, A). Then the map

θα : H1(Γ, Aα)→ H1(Γ, A), [γ] 7→ [αγ],

where αγ denotes the map σ 7→ ασγσ, is a well defined bijection, which takes

the trivial class in H1(Γ, Aα) to the class of α in H1(Γ, A).

Proof. Let γ ∈ Z1(Γ, Aα). Then

αστγστ = ατ
σατ (γσ ∗ τ)γτ = ατ

σατ (γ
τ
σ)
ατγτ = (ασγσ)

τατγτ

and thus αγ ∈ Z1(Γ, A). Let γ′ be cohomologous to γ with respect to a ∈ Aα.

That is, γ′σ = (a−1 ∗ σ)γσa for all σ ∈ Γ. Then we have

ασγ
′
σ = ασ(a

−1 ∗ σ)γσa = ασ(a
−σ)ασγσa = a−σ(ασγσ)a,

and so αγ is cohomologous to αγ ′. Hence the map θα is well defined. Now

ρ : σ 7→ (ασ)
−1 is a cocycle in Z1(Γ, Aα):

ρστ = (αστ )
−1 = (ατ

σατ )
−1 = α−1

τ α−τ
σ ατα

−1
τ

= (α−1
σ ∗ τ)α−1

τ = (ρσ ∗ τ)ρτ .

The induced map θρ : H1(Γ, A)→ H1(Γ, Aα) is the inverse of θα. ¤

7
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Sergei Haller 2. Nonabelian cohomology of finite groups

2.4 Exact sequences

In this section, we prove a fundamental result for the study of cohomology.

First we need some basic terminology for pointed sets. The kernel ker(µ) of

a morphism of pointed sets µ :M → N is the set of all elements in M mapped

to the distinguished point of N . A sequence of morphisms of pointed sets

L
ν→M

µ→ N

is called exact atM if im(ν) = ker(µ). Thus, the sequenceM
µ→ N → 1 is exact

if, and only if, µ is surjective, and the sequence 1 → M
µ→ N is exact if, and

only if, ker(µ) contains only the distinguished point of M . Note that this does

not necessarily imply that µ is injective.

The following proposition is well known. Since this proposition is of a funda-

mental nature, we give a detailed proof.

2.3 Proposition ([30, Propositions 36, 38, 43]).

Let A be a Γ-group and let B be a Γ-subgroup of A. Let i : B → A be the

inclusion map. Then A/B is a Γ-set with the natural action of Γ on cosets, and

it is a Γ-group if B is normal. Let π : A → A/B be the canonical projection

map.

(i) Define

δ0 : H0(Γ, A/B)→ H1(Γ, B), aB 7→ [α],

where α is the cocycle defined by ασ := a−σa. Then δ0 is a map of

pointed sets and the sequence

1→ H0(Γ, B)
i0→ H0(Γ, A)

π0

→ H0(Γ, A/B)
δ0→ H1(Γ, B)

i1→ H1(Γ, A)

is exact.

(ii) If B is normal, the sequence obtained from the sequence in (i) by adding

. . .
π1

→ H1(Γ, A/B)

on the right is exact.

(iii) Suppose B is a subgroup of the center of A. Given γ ∈ Z1(Γ, A/B), choose

a map t : Γ→ A with tσ ∈ γσ for every σ ∈ Γ. Set ασ,τ := tτσtτ t
−1
στ . Then

δ1 : H1(Γ, A/B)→ H2(Γ, B), [γ] 7→ [α]

is a map of pointed sets and the sequence obtained from the sequence in

(ii) by adding

. . .
δ1→ H2(Γ, B)

on the right is exact.

8
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Proof.

(i) Given a coset aB in A/B, the cocycles defined by ασ := a−σa and βσ :=

(ab)−σ(ab) are obviously cohomologous, thus δ0 is well defined. Moreover,

δ0(A) = [1].

Exactness at H0(Γ, B) is obvious since i0 is just the inclusion map. For

exactness at H0(Γ, A), suppose a ∈ ker(π0). Then π0(a) = B and a ∈ B.

If, on the other hand, a ∈ B, then a obviously lies in the kernel of π0.

For exactness at H0(Γ, A/B), suppose that the cocycle ασ = a−σa is

trivial in H1(Γ, B). That is, α ∼ 1 and ασ = b−σb for some b ∈ B. Then

ab−1 ∈ H0(Γ, A) and aB = (ab−1)B = π0(ab−1) ∈ im(π0).

Finally, let [α] ∈ ker(i1). Then α ∈ Z1(Γ, B) and α is cohomologous to

1 ∈ Z1(Γ, A): ασ = a−σa for some a ∈ A. But this implies (aB)σ =

aσB = (a(ασ)
−1)B = aB, thus aB ∈ H0(Γ, A/B) and δ0(aB) = [α]. If,

on the other hand, [α] = δ0(aB) for some a ∈ A, then ασ = a−σa is

cohomologous to 1 ∈ Z1(Γ, A) and [α] ∈ ker(i1).

(ii) Now let α ∈ Z1(Γ, A) with [α] ∈ ker(π1). That means [π1(α)] = [1] ∈
H1(Γ, A/B):

ασB = (aB)−σB(aB) = a−σaB = a−σBa for some a ∈ A.

Hence for all σ ∈ Γ we have ασ = a−σbσa for some bσ ∈ B. Now the

map b : Γ → B defined by σ 7→ bσ turns out to be a cocycle on B:

bσ = aσασa
−1. Thus [α] = [b] ∈ H1(Γ, A) is the image of [b] ∈ H1(Γ, B)

under the map i1.

(iii) First we show that α ∈ Z2(Γ, B):

(tτσtτ t
−1
στ )B = tτσBtτBt

−1
στB = γτσγτγ

−1
στ = 1A/B = B

and thus ασ,τ ∈ B for all σ, τ ∈ Γ. Now we prove the cocycle condition

(note that expressions in parenthesis are in B and thus commute with all

elements):

αστ,ρα
ρ
σ,τ = (tρστ tρt

−1
στρ)(t

τρ
σ t

ρ
τ t

−ρ
στ ) = (tτρσ t

ρ
τ t

−ρ
στ )(t

ρ
στ tρt

−1
στρ)

= tτρσ t
ρ
τ tρt

−1
στρ = tτρσ (tρτ tρt

−1
τρ )tτρt

−1
στρ = tτρσ tτρt

−1
στρ(t

ρ
τ tρt

−1
τρ )

= ασ,τρατ,ρ.

Moreover, if we choose a different map t′ : Γ→ A with t′σ ∈ γσ for every

σ ∈ Γ, then t′σ = tσbσ for some bσ ∈ B and the obtained 2-cocycle α′ is

cohomologous to α:

α′
σ,τ = (t′σ)

τ t′τ (t
′
στ )

−1 = (tτσb
τ
σ)(tτ bτ )(t

−1
στ b

−1
στ ) = ασ,τ b

τ
σbτ b

−1
στ .

9
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And finally if γ,γ ′ ∈ Z1(Γ, A/B) are cohomologous, then so are the

corresponding 2-cocycles α and α′. For, let a ∈ A have the property

γ′σ = (aB)−σγσ(aB) = (a−σtσa)B. Now we just set t′σ := a−σtσa and

obtain:

α′
σ,τ = (a−σtσa)

τ (a−τ tτa)(a
−στ tστa)

−1 = a−στασ,τa
στ = ασ,τ .

Hence [α] ∈ H2(Γ, B) does not depend on the choice of t nor on the choice

of the cocycle in [γ].

For exactness of the sequence, choose γ ∈ Z1(Γ, A/B), whose cohomology

class lies in the kernel of δ1. Let t and ασ,τ = tτσtτ t
−1
στ be as above. Then α

is cohomologous to the trivial 2-cocycle and thus there is a map ϕ : Γ 7→ B

satisfying

ασ,τ = 1σ,τϕ
τ
σϕτϕ

−1
στ = ϕτσϕτϕ

−1
στ .

Now the map β : Γ 7→ A defined by βσ := tσϕ
−1
σ turns out to be a

1-cocycle:

βστ = tστϕ
−1
στ = (tτσtτϕ

−τ
σ ϕ−1τ ϕστ )ϕ

−1
στ = (tσϕ

−1
σ )τ (tτϕ

−1
τ ) = βτσβτ .

Moreover, γ is the image of β:

(π1(β))σ = βσB = tσϕ
−1
σ B = tσB = γσ.

Conversely, if γ = π1(β) for some β ∈ Z1(Γ, A), then we can choose t := β

and obtain

ασ,τ = βτσβτβ
−1
στ = βστβ

−1
στ = 1.

This completes the proof. ¤

From the definition of exact sequences, it is immediately clear that the kernel

of π1 is trivial if H1(Γ, B) = 1. This does not immediately imply that π1 is

injective, since first cohomologies of nonabelian groups do not have a group

structure in general. We use twisting to prove injectivity. For f : M → N and

n ∈ N we call f−1(n) := {m ∈M | f(m) = n} a fibre of f .

2.4 Proposition.

Let A be a Γ-group, let B be a normal Γ-subgroup of A, and let π : A→ A/B

be the canonical projection map. Then all non-empty fibres of π1 have the same

order, which is at most |H1(Γ, B)|.

Proof. In this proof, we write π for π1 and i for i1 to simplify the notation. Let

α ∈ Z1(Γ, A). Then we obtain Aα, Bα and (A/B)α as in Section 2.3, and an

exact sequence:

. . .→ H1(Γ, Bα)
i′→ H1(Γ, Aα)

π′→ H1(Γ, (A/B)α).

10
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The map θα of Proposition 2.2 induces a bijection between the kernel of π′ and

π−1(π([α])), since

[β] ∈ ker(π′) ⇐⇒ π′([β]) = π′([1])

⇐⇒ π(θα([β])) = π(θα([1]))

⇐⇒ θα([β]) ∈ π−1(π([α])).

This shows that every non-empty fibre of π has the same order.

Of course, the order of such a fibre cannot exceed |H1(Γ, B)|. ¤

2.5 Corollary.

If H1(Γ, B) = 1, then π1 is injective.

The upper bound on the size of the fibres given by Proposition 2.4 is used for

the computation of cohomology in Section 2.6.

2.5 Extending 1-cocycles

In this section, we show how to compute the cocycles on a group from the

cocycles on a quotient. Let A be a Γ-group and let B be a normal Γ-subgroup

of A. Let π : A → A/B be the standard projection. Denote images under the

maps π and π1 by a and α for a ∈ A and α ∈ Z1(Γ, A).
Let α,β ∈ Z1(Γ, A) be cohomologous with respect to some a ∈ A. Then β is

cohomologous to α with respect to a:

βγ = βγ = a−γ ·αγ · a = a−γ ·αγ · a = a−γ ·αγ · a = α(a)γ .

Given a cocycle α ∈ Z1(Γ, A/B), we call a cocycle β ∈ Z1(Γ, A) such that

β = α an extension of α. Two questions now arise:

1. Can every 1-cocycle on A/B be extended to a 1-cocycle on A?

2. Can every 1-cocycle on A be constructed by such an extension?

The answer to the second question is obviously yes. The answer to the first

question is no in general (a counterexample is given at the end of the section).

The following theorem provides a necessary and sufficient condition for a cocycle

to be extendable and an algorithm for finding the extensions. Recall the [[ ]]

notation from the end of Section 2.2.

2.6 Theorem.

Let α ∈ Z1(Γ, A/B) and let Γ have a finite presentation with generators

γ1, . . . , γk and relators r1, . . . , r`. Fix a set T = {t(x) | x ∈ A/B} of coset

representatives. Now follow the following procedure:

11
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1. Let b(γ1), . . . , b(γk), b(γ
−1
1 ), . . . , b(γ−1k ) be indeterminates over B.

2. For r ∈ {r1, . . . , r`}, compute

b(r) :=

m
∏

i=1

(

(

t(ασi)b(σi)
)

∏m
j=i+1 σj

)

(2.8)

where r =
∏m
i=1 σi with each σi ∈ {γ1, . . . , γk, γ−11 , . . . , γ−1k }.

3. Consider the system of equations

{b(rj) = 1}`j=1 (2.9)

for b(γ1), . . . , b(γk) ∈ B.

Then

(a) The system (2.9) is solvable if, and only if, α can be extended to a cocycle

on A.

(b) For every solution of this system,

[[t(αγ1
) · b(γ1), . . . , t(αγk) · b(γk)]]

defines a 1-cocycle β on A such that β = α.

(c) Every cocycle β ∈ Z1(Γ, A) with β = α can be constructed this way.

Proof.

(a) By Theorem 2.1,

β := [[t(αγ1
) · b(γ1), . . . , t(αγk) · b(γk)]]

is a cocycle if, and only if, βr = 1 for all r ∈ {r1, . . . , r`}. Now let

r =
∏m
i=1 σi be one of these relators. Then

βr =

m
∏

i=1

(

(

t(ασi)b(σi)
)

∏m
j=i+1 σj

)

= b(r)

and hence βr = 1 if, and only if, b(r) = 1.

(b) For i = 1, . . . , k, we have

βγi = t(αγi)b(γi) = t(αγi)b(γi)B = t(αγi)B = αγi

and so β = α.

12
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(c) If β ∈ Z1(Γ, A) with β = α, then βγ = αγ and βγ ∈ t(αγ)B. Set

b(γ) := t(αγ)
−1βγ for γ ∈ {γ1, . . . , γk, γ−11 , . . . , γ−1k }.

Then b(γ1), . . . , b(γk), b(γ
−1
1 ), . . . , b(γ−1k ) is a solution of the system (2.9):

b(r) =

m
∏

i=1

(

(

t(ασi)b(σi)
)

∏m
j=i+1 σj

)

=

m
∏

i=1

(

βσi

∏m
j=i+1 σj

)

= βr = 1

for all r ∈ {r1, . . . , r`}.
¤

Note that if Γ acts by conjugation, formula (2.8) reduces to

b(r) =

m
∏

i=1

(

σit(ασi)b(σi)
)

. (2.8′)

We now give a small example demonstrating how Theorem 2.6 is applied to

extend cocycles.

2.7 Example.

Let Γ = Σ3 be the symmetric group on three letters. Then

Γ = 〈γ1, γ2 | γ21 = γ32 = (γ1γ2)
2 = 1〉

with γ1 = (1, 2) and γ2 = (1, 2, 3). Let A := Σ4 be a Γ-group with Γ acting by

conjugation. The alternating group B := A4 is a normal Γ-subgroup of A. We

fix the set T := {1, (1, 2)} of representatives for the elements of A/B ' C2.

Since Aut(C2) = 1, the induced action of Γ on A/B is trivial. First, we

compute the cohomology set H1(Γ, A/B). Let α ∈ Z1(Γ, A/B), a ∈ A/B, and

γ ∈ Γ. Then

a−γαγa = a−1αγa = a−1aαγ = αγ .

Thus, every cohomology class in H1(Γ, A/B) consists of exactly one cocycle.

Since αγδ = αδ
γαδ = αγαδ, the order of αγ1

must be a divisor of 2 and the

order of αγ2
must be a divisor of 3. Thus, αγ2

= 1A/B . Both possible choices for

αγ1
in A/B give rise to cocycles. Hence we have Z1(Γ, A/B) =

{

1, [[(1, 2), 1]]
}

.

Now consider indeterminates b(γ1) and b(γ2) and write down the equations

from (2.8′):

1 = b
(

γ21
)

=
(

γ1 · t(αγ1
) · b(γ1)

)2
,

1 = b
(

γ32
)

=
(

γ2 · t(αγ2
) · b(γ2)

)3
,

1 = b
(

(γ1γ2)
2
)

=
(

γ1 · t(αγ1
) · b(γ1) · γ2 · t(αγ2

) · b(γ2)
)2
.

We now extend these cocycles on A/B to cocycles on A:
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α = 1 ∈ Z1(Γ, A/B).

In this case, the equations reduce to

1 =
(

γ1 · b(γ1)
)2
,

1 =
(

γ2 · b(γ2)
)3
,

1 =
(

γ1 · b(γ1) · γ2 · b(γ2)
)2
.

One solution can be seen immediately (and could have been guessed),

namely b(γ1) = b(γ2) = 1. In this case, the extended cocycle is the trivial

cocycle 1. But there are other solutions. The solution b(γ1) = 1, b(γ2) =

γ−12 provides a cocycle β′, which is not cohomologous to the trivial one.

All other solutions of this system produce cocycles cohomologous to either

1 or β′.

α = [[(1, 2), 1]] ∈ Z1(Γ, A/B).

In this case, the equations reduce to

1 = b(γ1)
2,

1 =
(

γ2 · b(γ2)
)3
,

1 =
(

b(γ1) · γ2 · b(γ2)
)2
.

We present two solutions here, which give rise to non-cohomologous cocy-

cles:

• b(γ1) = 1, b(γ2) = γ−12 gives extended cocycle β′′ = [[γ1, γ
−1
2 ]].

• b(γ1) = (1, 2)(3, 4), b(γ2) = γ−12 gives extended cocycle β′′′ =

[[(3, 4), γ−12 ]].

All other solutions of this system produce cocycles cohomologous to either

β′′ or β′′′.

By Theorem 2.6(c), the cocycles 1,β′,β′′,β′′′ represent all cohomology classes

in H1(Γ, A).

The following example demonstrates the existence of non-extendable cocycles.

2.8 Example.

Let A = Γ = D8 be the symmetry group of a square, with the Coxeter presen-

tation

Γ =
〈

γ1, γ2 | γ21 , γ22 , (γ1γ2)4
〉

.

The group Γ acts on A by conjugation. We label the vertices of the square

by 1, . . . , 4 and write elements of Γ as permutations on the vertices. Let B =

Z(A) = 〈(1, 3)(2, 4)〉 ' C2 be the center of A.
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Now α := [[γ1, γ1]] is a cocycle in Z1(Γ, A/B). Define the map t : Γ → A

by tσ := γ
`(σ)
1 , where ` is the Coxeter length of σ (see for example [19] for the

definition of the Coxeter length). It satisfies the condition tσ ∈ ασ. Now recall

the map δ1 of Proposition 2.3: δ1([α]) = [β] ∈ H2(Γ, B), where βσ,τ := tτσtτ t
−1
στ .

But β is not cohomologous to the trivial 2-cocycle (this can be proven either

by trying all 256 possibilities for a map ϕ : Γ → B in Equation (2.6) or by

using Derek Holt’s algorithms [17]). Hence there are no extensions of α, by

Proposition 2.3(iii).

Note that, by extending only one representative of [α] ∈ H1(Γ, A/B), we do

not necessarily obtain all cohomology classes [β] ∈ H1(Γ, A) that are mapped

onto [α] by π1. In general, we have to extend all elements of [α] in all possible

ways.

2.6 Computing finite cohomology

In this section, we describe algorithms for the computation of the first cohomol-

ogy of a finite group. Let A be a finite Γ-group as before. If A is abelian, the

first cohomologyH1(Γ, A) can be computed efficiently using algorithms of Derek

Holt [17], which are implemented in Magma. Here we describe algorithms for

dealing with the computation in case A is nonabelian.

2.6.1 Groups with a normal subgroup

Suppose B is a normal Γ-subgroup of A. Then we compute the cohomology

H1(Γ, A/B) and lift the cocycles of every cohomology class in H1(Γ, A/B) to a

cocycle on A as in Section 2.5.

It may happen that unnecessary computations are carried out in the following

two situations:

1. Constructing extensions in Z1(Γ, A) that are cohomologous to the cocycles

we already know (see Example 2.7).

2. Trying to construct an extension of a cocycle in Z1(Γ, A/B) that has no

extensions (see Example 2.8).

Knowing a priori that a cocycle is extendable is crucial for the efficiency of

the algorithm provided by Theorem 2.6. Here Proposition 2.4 is very useful:

It provides an upper bound for the number of extensions and also the exact

number of extensions once one cocycle is extended in all possible ways.

2.6.2 Groups with a nontrivial center

Now suppose B is central. In this case, we proceed as in the previous subsec-

tion. But this time we know by Proposition 2.3(iii) that only those cocycles in

15

mailto:Sergei.Haller@math.uni-giessen.de


Sergei Haller 2. Nonabelian cohomology of finite groups

Z1(Γ, A/B) with cohomology classes in ker(δ1) need be extended.

If A is nilpotent and so has a central series, we can proceed recursively. The

number of steps required is equal to the nilpotency class.

2.6.3 Other finite groups

We use brute force otherwise. Though, for an implementation, the cohomology

of these groups could be computed once and stored in a database.

Basically we use Theorem 2.1 to recognise 1-cocycles and compute Z1(Γ, A) in

the first step, and then we split it into cohomology classes in the second. Since

a 1-cocycle is uniquely determined by its images on generators of Γ, all k|A|

sequences [[a1, . . . , ak]] must be considered, where k is the number of generators

of Γ, and up to ` relations must be verified for every sequence. Thus it is vital

to have the smallest possible generating set for Γ and important to have short

relations on these generators. Even so, this method is only feasible for very

small groups.

2.6.4 Timings

We have implemented this algorithm in Magma. The times in Table 2.1 are

given in CPU-seconds for an AMD Opteron 246 (2GHz). In this table we denote

the alternating and the symmetric groups on n letters by An and Σn, the cyclic

group of order n by Cn, the dihedral group of the n-gon by D2n, and the Coxeter

group of type X by W (X).

Table 2.1: Timings for computation of H1(Γ, A).

A Γ action |H1(Γ, A)| time

D16 NΣ8
(D16) conjugation 38 2.880

A4 Σ4 conjugation 5 0.150

A5 Σ5 conjugation 3 1.140

A6 Σ6 conjugation 6 56.990

W (A5) C2 trivial 4 0.340

W (D5) C2 trivial 6 0.730

W (E6) C2 trivial 5 24.530

W (D4) C3 trivial 2 0.120
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2.7 Classical interpretation of group

cohomology

In this section, we give a classical group-theoretic interpretation of the first

cohomology in terms of complements of A in the semidirect product of Γ and

A. Let A be a Γ-group and define the semidirect product

Γ nA = {(γ, a) | γ ∈ Γ, a ∈ A}

with multiplication

(γ1, a1)(γ2, a2) = (γ1γ2, a
γ2

1 a2).

Identify A with {(1, a) | a ∈ A} ≤ Γ n A. For α ∈ Z1(Γ, A), define a subgroup

of Γ nA by Kα := {(γ,αγ) | γ ∈ Γ}. Then the set

{Kα | α ∈ Z1(Γ, A)}

is the set of all complements of A in Γ n A. Two complements Kα and Kβ

are conjugate in Γ n A if, and only if, α and β are cohomologous. Thus, if we

choose a set R of representatives of cohomology classes in H1(Γ, A), then

{Kα | α ∈ R}

is the set of conjugacy class representatives of the complements. Furthermore,

Γ nAα → Γ nA

(γ, a) 7→ (γ,αγa)

is a group isomorphism, where in ΓnAα the group Γ acts on A by the ∗-action
as described in Section 2.3.

The problem of computing the conjugacy classes of complements has been

considered for cases where Γ n A is soluble and A is abelian by, for example,

Celler, Neubüser and Wright [10] or Holt [17]. There are more recent results for

the case where A is nonsoluble, for example in Cannon and Holt [7]. There is

also a faster method to compute a “large subset” of the first cohomology due

to Archer [3].

17

mailto:Sergei.Haller@math.uni-giessen.de


Sergei Haller 2. Nonabelian cohomology of finite groups

18

mailto:Sergei.Haller@math.uni-giessen.de


Chapter 3

Algebraic groups

Our aim is to describe the twisted forms of a linear algebraic group. In the

first sections of the present chapter, we introduce linear algebraic groups and

associated terminology. We state some well-known results which we need in the

sequel. We follow the notation of Springer [32] and Humphreys [18].

In Section 3.4, we recall the classification of the twisted forms via Galois

cohomology. The rest of this chapter is devoted to methods for computing the

Galois cohomology. See Chapter 4 on the problem of describing the twisted

form corresponding to a given cocycle.

3.1 Definitions and basic properties

We start with a definition of affine algebraic groups without going into a deep

discussion of the theory of affine algebraic varieties. Let L be an algebraically

closed field. We denote by Ln the set of all n-tuples of elements of L, called the

n-dimensional affine space over L. For a subfield K of L, let P n
K = K[x1, . . . , xn]

be the polynomial ring in n variables over K. We can interpret the elements of

Pn
K as functions from Ln to L. For a subset T of Pn

L , we define the zero set of

T to be the set of common zeros of all elements of T , namely

Z(T ) := {a ∈ Ln | f(a) = 0 for all f ∈ T}.
Such a zero set is called an affine algebraic variety. If X ⊆ Ln and Y ⊆ Lm are

varieties, a map ϕ : X → Y is called a morphism of varieties if it is given by

polynomials over L, that is, there are polynomials p1, . . . , pm ∈ Pn
L such that

ϕ(x) =
(

p1(x), . . . , pm(x)
)

for x = (x1, . . . , xn) ∈ X.

The subset T generates an ideal of P n
L and, since Pn

L is Noetherian, this ideal

has a finite generating set. Thus Z(T ) is the zero set of some finite set of

polynomials.
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If Z(T ) is a group such that the multiplication map and the inverse map are

both morphisms of varieties, then Z(T ) is called an affine algebraic group. A

simple example is

{(x, y) ∈ L2 | xy − 1 = 0}

with multiplication given by (x1, y1) · (x2, y2) := (x1x2, y1y2). The identity

element is (1, 1) and the inverse of (x, y) is (y, x). This group is isomorphic to

the multiplicative group of L and is denoted Gm.

For the definition of the dimension of an affine variety, we refer to [32, 1.8.1].

Basically, it is the number of algebraically independent coordinates. For exam-

ple, Gm has dimension 1.

A subset of an affine algebraic group G is called closed if it is the zero set

of some polynomials in P n
L . A closed subgroup of G is also an affine algebraic

group. This defines a topology on G, called the Zarisski topology.

Let G be an affine algebraic group and let k be a subfield of L. If there

is a subset T of Pn
k such that G = Z(T ), and the multiplication and inverse

maps are given by polynomials over k, then the algebraic group G is said to

be defined over k. Note that if G is defined over k then it is defined over K

whenever k ⊆ K ⊆ L, and G is always defined over L. The group Gm in the

above example is defined over the prime field of L.

From now on, L is assumed to be the algebraic closure k̄ of the field k, and

G is assumed to be defined over k. Let G be an affine algebraic group defined

over k. Let ksep be the separable closure of k. It is a Galois extension of k with

Galois group Γsep := Gal(ksep: k). The action of Γsep on ksep extends uniquely

to an action on k̄. Then the group Γsep acts on G componentwise:

(x1, . . . , xn) 7→ (x1, . . . , xn)
γ = (xγ1 , . . . , x

γ
n) (3.1)

for γ ∈ Γsep. This action is continuous with respect to the profinite topology

on Γsep (cf. [20, Chapter VII]) and the Zarisski topology on G. Let K be a

Galois extension of k contained in k̄; then K is contained in ksep. The set of

K-rational points of G is

G(K) := {g ∈ G | gγ = g for all γ ∈ Gal(ksep:K)}. (3.2)

G(K) is a group, since it is a fixed point subgroup of G, although it is not

necessarily algebraic. Let T be a finite set of polynomials over k such that

G = Z(T ). Obviously, G(K) is the set of zeros of T contained in Kn, i.e.,

G(K) = G ∩Kn. (3.3)

From this, one can see immediately that Gal(K: k) acts componentwise (as in

(3.1)) on G(K).

20

mailto:Sergei.Haller@math.uni-giessen.de


3.1. Definitions and basic properties Sergei Haller

Let G and H be affine algebraic groups defined over the field k. A group

homomorphism α : G → H is algebraic over k or k-algebraic if it is given by

polynomials over k. A group isomorphism α : G→ H is called algebraic over k

or k-algebraic if α and α−1 are both k-algebraic homomorphisms. A k-algebraic

isomorphism from G to G is a k-algebraic automorphism. If k = k̄, then we omit

k from the notation and speak just of algebraic homomorphisms, isomorphisms,

and automorphisms.

3.1 Example.

Let k be a prime field and let L := k̄ be its algebraic closure. The general linear

group GLn is the group of invertible n × n matrices with entries in L. This

group is affine algebraic when considered as a zero set in Ln
2+1 as follows:

GLn ' {(A, t) | A ∈ Mn(L), t ∈ L, tdetA = 1}.

As a consequence, every closed subgroup of GLn is again an affine algebraic

group. Clearly, GLn is defined over k.

A closed subgroup of GLn for some n is called a linear algebraic group. The

following theorem shows that the notions of affine and linear algebraic groups

coincide. We speak, as is more common, of linear algebraic groups in the sequel.

3.2 Theorem ([32, 2.3.7]).

Let G be an affine algebraic group. Then G is isomorphic to a closed subgroup

of some GLn. ¥

The affine variety X ⊆ Ln is called irreducible if it is nonempty and cannot

be expressed as the union X = Y1 ∪ Y2 of two proper closed subsets. By [18,

Proposition 1.3B], every zero set is a union of finitely many irreducible closed

subsets. These are called the irreducible components of Z(T ).

The affine variety X ⊆ Ln is called connected if it cannot be expressed as the

union X = Y1 ∪Y2 of two disjoint proper closed subsets. It follows immediately

that irreducible affine varieties are connected. The converse isn’t necessarily

true, as can be seen from the example {(x, y) ∈ L2 | xy = 0}.

The following proposition shows that the notions of irreducibility and con-

nectedness coincide for linear algebraic groups. Following the usual convention,

we speak of connected algebraic groups rather than irreducible ones.

3.3 Proposition ([32, 2.2.1]).

Let G be a linear algebraic group.

1. There is a unique irreducible component G◦ of G that contains the identity

element 1. It is a closed normal subgroup of finite index.
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2. G◦ is also the unique connected component of G that contains 1.

3. Any closed subgroup of finite index in G contains G◦. ¥

We call G◦ the identity component of G. If G is defined over k, then G◦ is also

defined over k by [32, 12.1.1].

A matrix x is unipotent if (x − 1)s = 0 for some integer s ≥ 1. A matrix

is semisimple if it is diagonalizable, i.e., similar to a diagonal matrix over k̄.

An element x of a linear algebraic group is unipotent (respectively semisimple)

if φ(x) is unipotent (respectively semisimple) for some algebraic isomorphism

φ of G onto a closed subgroup of GLn. By [32, 2.4.9], these definitions are

independent of n and φ. We also have the well-known

3.4 Theorem (Jordan decomposition, [32, 2.4.8(i)]).

Let G be a linear algebraic group and g ∈ G. Then there are unique elements

gs, gu ∈ G such that gs is semisimple, gu is unipotent, and g = gsgu = gugs. ¥

The elements gu and gs are called the unipotent part and the semisimple part of

g, respectively. A linear algebraic group G is called unipotent if all its elements

are unipotent.

3.5 Proposition ([32, 2.4.13]).

A unipotent linear algebraic group is nilpotent. ¥

A torus T is an algebraic group that is algebraically isomorphic to (Gm)
d.

The torus T is a k-torus if it is defined over k. Note that, even for a k-torus

T , the isomorphism T ' (Gm)
d need not be defined over k. If it is, the torus is

said to be k-split. A k-torus is called k-anisotropic if it doesn’t have any proper

k-split subtori.

A subtorus of a linear algebraic group G is an algebraic subgroup of G that is

a torus. A maximal torus of G is a subtorus of G that is not strictly contained

in another subtorus.

3.6 Theorem ([32, 6.4.1]).

Two maximal tori of a connected linear algebraic group G are conjugate in G.

¥

This theorem justifies the definition of the rank of a connected linear algebraic

group G as the dimension of a maximal torus of G. A Cartan subgroup of G is

the identity component of the centralizer of a maximal torus. (In fact, such a

centralizer is connected, see the next lemma.)

3.7 Lemma.

Let G be a connected linear algebraic group.
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(i) If S is a subtorus of G, then CG(S) is connected.

(ii) If T is a maximal torus of G, then CG(T ) is a Cartan subgroup of G.

Proof. (i) is [32, Theorem 6.4.7(i)] and (ii) follows immediately from (i) and the

definition of Cartan subgroup. ¥

3.8 Lemma ([32, 13.2.4]).

Every k-torus T has k-subtori Ts and Ta, which are k-split and k-anisotropic,

respectively, such that T = TaTs and Ta ∩ Ts is finite. ¥

A connected linear algebraic group G defined over k has a maximal torus

T ⊆ G, which is also defined over k. If there exists a maximal k-torus that is

k-split, then G is called k-split.

By [18, Corollary 7.4, Lemma 17.3(c)], every linear algebraic group G has a

unique maximal solvable normal subgroup, which is automatically closed. Its

identity component is then the largest connected solvable normal subgroup of

G. We call this the radical of G and denote it R(G). The subset of unipotent

elements in R(G) is also a normal subgroup in G. We call it the unipotent

radical of G, denoted by Ru(G). It is the largest connected normal unipotent

subgroup of G.

If G is connected, we call it semisimple if R(G) is trivial and reductive if

Ru(G) is trivial. The ranks of G/R(G) and G/Ru(G) are called the semisimple

and reductive ranks of G, respectively.

3.9 Lemma ([32, 7.6.4(ii)]).

If G is a reductive linear algebraic group and T is a maximal torus of G, then

T = CG(T ). ¥

3.10 Theorem ([32, 5.5.10, 12.2.2]).

Let G be a linear algebraic group and let H be a closed normal subgroup of G.

Then the quotient G/H is also a linear algebraic group. If G and H are defined

over the field k, then G/H is also defined over k. ¥

3.2 Root data and the Steinberg presentation

Reductive linear algebraic groups are classified using root data, which we intro-

duce in this section. We start with a brief description of root data using the

notation of [12]. More details on root data can be found in [32].

Consider a quadruple R = (X,Φ, Y,Φ?), where

• X and Y are free Z-modules of finite rank d with a bilinear pairing 〈·, ·〉 :
X × Y → Z putting them in duality.
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• Φ and Φ? are finite subsets of X and Y , and we have a bijective map

r 7→ r? of Φ onto Φ?. We call the elements of Φ roots and the elements of

Φ? coroots.

Assume we have a basis e1, . . . , ed for X and a dual basis f1, . . . , fd for Y , that is

〈ei, fj〉 = δij . Given a root r, we define linear maps sr : X → X and s?r : Y → Y

by

xsr = x− 〈x, r?〉r and ys?r = y − 〈r, y〉r?.

These maps are called reflections if 〈r, r?〉 = 2.

The quadrupleR = (X,Φ, Y,Φ?) is called a root datum if the following axioms

are satisfied for every r ∈ Φ:

(RD1) sr and s?r are reflections,

(RD2) Φ is closed under the action of sr and Φ? is closed under the action

of s?r .

Note that if we let Q denote the submodule of X generated by Φ and let V :=

R ⊗Q, then Φ is a root system in V in the sense of Bourbaki [6, Chapter VI].

In a similar way, Φ? is a root system.

A root datum is called reduced if r and −r are the only roots in Φ of the form

cr with c ∈ Q, for every r ∈ Φ. If a root datum is not reduced and r, cr ∈ Φ for

c ∈ Q, then c ∈ {± 12 ,±1,±2}, see for example [6, Chapter VI]. A root datum is

called irreducible if the root system Φ is not a disjoint union of two proper root

subsystems.

The Weyl group W (R) is the group generated by the reflections sr. We refer

to Bourbaki [6, Chapter VI] for the definitions of positive roots, negative roots,

fundamental systems, and length of a root.

A Dynkin diagram D of a root datum R = (X,Φ, Y,Φ?) is a graph with

the vertex set labeled by the fundamental roots. Two distinct vertices ri and

rj are connected by 〈ri, r?j 〉〈rj , r?i 〉 edges. If the the number of edges between

ri and rj is at least 2, then one of the roots ri and rj is shorter than the

other. We indicate that by placing a less-than sign over the edges. The root

data are classified (see for example [6, Chapter VI]) and Table 3.1 shows all

Dynkin diagrams for a reduced irreducible root datum. The Dynkin diagram

of a reducible root datum is the disjoint union of the Dynkin diagrams of its

irreducible components.

Let G be a reductive linear algebraic group and fix a maximal torus T in G,

then a reduced root datumR = R(G,T ) can be constructed (see [32] for details).

Further, W =W (R) is isomorphic to NG(T )/T . By the Isomorphism Theorem

[32, 9.6.2], the group G is uniquely determined up to algebraic isomorphism by

its root datum and k̄.
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Table 3.1: Dynkin diagrams of reduced irreducible root data.
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Let G be a reductive linear algebraic group defined over k, and let G be k-

split. Then the group of k-rational points G(k) is called an (untwisted) group

of Lie type. (Another common way to introduce groups of Lie type is as groups

of automorphisms of buildings, as in [35, II.§5].)
There is an important presentation for the group G(k), called the Steinberg

presentation. Let R = (X,Φ, Y,Φ?) be the root datum of G with respect to a

k-split maximal torus T . The generators are xr(a), for r a root and a ∈ k, and
y ⊗ t, for y ∈ Y and t ∈ k∗. We also define auxiliary generators

nr(t) := xr(t)x−r(−t−1)xr(t) and nr := nr(1).

The relations are

(y ⊗ t)(y ⊗ u) = y ⊗ (tu),

(y ⊗ t)(z ⊗ t) = (y + z)⊗ t,
r? ⊗ t = nr(−1)nr(t),

(y ⊗ t)nr = ys?r ⊗ t,
xr(a)xr(b) = xr(a+ b),

xr(a)
xr′ (b) = xr(a)

∏

i,j>0

xir+jr′(Cijrr′a
ibj), (3.4)

xr(a)
x−r(t) = x−r(−t2a)xr(t

−1),

where r and r′ are linearly independent roots, y, z ∈ Y , a, b ∈ k and t, u ∈ k∗.
The product on the right-hand side of (3.4) runs over roots of the form ir+ jr′

(for i and j positive integers) in a fixed order. See [12] or [15] for a description

of this order and the definition of Cijrβ . The last relation is redundant except

when the rank is one. Note that hr(t) = r? ⊗ t is another common notation.

The generators of the form xr(a) for a 6= 0 are called root elements.

We can recover the following important subgroups of G(k) from the Steinberg

presentation:

• T (k), the k-rational points of the torus T , is generated by the elements

y ⊗ t.

• N(k), the k-rational points of the normalizer N := NG(T ), is generated

by T (k) and the terms nr.

For w in the Weyl group W , take the lexicographically smallest reduced

expression w = sβ1
· · · sβl and set ẇ = nβ1

· · ·nβl . There is an isomor-

phism between N(k)/T (k) and W given by T (k)ẇ ↔ w.

• The group of k-rational points U(k) of the standard maximal unipotent

subgroup is generated by the elements xr(a) for r a positive root and

a ∈ k.
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• Xr(k) := {xr(t) | t ∈ k} is the root subgroup of G(k) corresponding to the

root r ∈ Φ.

3.3 Automorphisms

In this section, we give a short overview of algebraic and nonalgebraic automor-

phisms of reductive algebraic groups.

Let Aut(G) denote the group of algebraic automorphisms of G, let AutK(G)

denote the algebraic automorphisms of G that are defined over K, and let

Aut(G(K)) denote the group of automorphisms of G(K) as an abstract group.

Note that AutK(G) is the group of K-rational points of Aut(G).

3.11 Lemma ([18, Theorem 27.4]).

If G is a semisimple linear algebraic group, then Aut(G) is a linear algebraic

group. ¥

Although this theorem is only stated for semisimple groups, it can be extended

to reductive groups as well.

We consider the following four types of automorphisms on G: A field auto-

morphism is an automorphism on G induced by an element of Γsep. A inner

automorphism is conjugation by an element of G. A diagram automorphism is

an automorphism induced by a symmetry of the Dynkin diagram of G. Note

further that in types, where all roots have the same length, a diagram automor-

phism corresponding to a Dynkin diagram symmetry τ is uniquely determined

by

xr(t) 7→ xrτ (λrt),

where each λr is either 1 or −1 and all these signs are uniquely determined

by λr for r ∈ Π. Further, the signs may be chosen to be 1 for all r ∈ Π

(see, for example, [9, Proposition 12.2.3]), in which case we denote the diagram

automorphism of G by τ̇ .

Field automorphisms are not algebraic, but inner and diagram automorphisms

are.

3.12 Lemma ([9, Proposition 12.2.3]).

LetG be a k-split reductive linear algebraic group and T a k-split maximal torus.

Denote the group of symmetries of the Dynkin diagram of G by D := Aut(D)
and the group of diagram automorphisms by D′. Then D′T/T = D. ¥

3.4 Classification of twisted forms

Let G be a linear algebraic group defined over the field k and let K be a Galois

extension of k contained in the algebraic closure k̄. Since K is separable, it is
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contained in ksep. Let Γsep := Gal(ksep: k) and Γ := Gal(K: k). Then Γsep acts

continuously on G, as described in Section 3.1, and so Γsep also acts continuously

on Aut(G), the group of algebraic automorphisms of G as in (2.7) of Chapter 2.

Furthermore, actions of Γ on G(K) and on AutK(G) are induced by the actions

of Γsep on G and Aut(G). The first cohomology H1
(

Γsep,Aut(G)
)

is called the

Galois cohomology of G. Note that H1
(

Γsep, G
)

and H1
(

Γsep,Aut(G)
)

are often

denoted H1
(

k,G
)

and H1
(

k,Aut(G)
)

in the literature.

Given α ∈ Z1(Γsep,Aut(G)), we define the ∗-action of Γsep on G with respect

to α as in Section 2.3:

g ∗ γ := gγαγ for γ ∈ Γ and g ∈ G,

and define Gα to be the group G with the ∗-action instead of the natural action

of Γsep on G. The group Gα is called the twisted form of G induced by α.

Although G and Gα are the same as abstract groups, they have different

groups of rational points. Let K be a Galois extension of k contained in k̄.

Then

Gα(K) = {g ∈ G | g ∗ γ = g for all γ ∈ Gal(ksep:K)}
= {g ∈ G | gγαγ = g for all γ ∈ Gal(ksep:K)}.

(3.5)

Note that this agrees with the definition of G(K) in Section 3.1 if we take α to

be the trivial cocycle:

G1(K) = {g ∈ G | gγ1γ = g for all γ ∈ Gal(ksep:K)}
= {g ∈ G | gγ = g for all γ ∈ Gal(ksep:K)} = G(K).

If G is reductive, then a group of rational points of Gα is called a twisted group

of Lie type.

The following proposition, when applied to L = ksep, states that groups of

rational points of two twisted forms are conjugate in Aut(G) if, and only if,

their cocycles are cohomologous. That is, twisted forms of G are classified by

H1(Γsep,Aut(G)).

3.13 Proposition.

Let G be a linear algebraic group defined over k. Let L be a Galois extension

of k contained in k̄ and let K be a Galois extension of k contained in L. Let

Γ = Gal(L:K). Let α and β be in Z1(Γ,AutL(G)). The cocycles α and β are

cohomologous with respect to a ∈ AutL(G) (that is, β = α(a)) if, and only if,

Gα(K)a = Gβ(K).

Proof. First suppose we have a ∈ AutL(G) such that βγ = a−γαγa for all

γ ∈ Γ. Then g ∈ Gβ(K) if, and only if, ga
−1 ∈ Gα(K), since

ga
−1

=
(

gγβγ
)a−1

= gγ(a
−γαγa)a

−1

= ga
−1γαγ
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for all γ ∈ Γ. Hence, Gα(K)a = Gβ(K).

Now suppose Gα(K)a = Gβ(K). Then for every g ∈ Gβ(K) there is an

h ∈ Gα(K) with g = ha and

gγβγ = g = ha =
(

hγαγ
)a

= haa
−1γαγa = ga

−1γαγa = gγa
−γαγa

for all γ ∈ Γ. Hence, gβγ = ga
−γαγa for all g ∈ Gβ(K), and so βγ = a−γαγa.

Thus, α and β are cohomologous. ¤

Finally, we state the analogue of the Proposition 2.3 for linear algebraic

groups. This is a well-known result.

3.14 Proposition ([32, 12.3.4]).

Let G be a linear algebraic group and let H be a closed normal subgroup, both

defined over the field k. Let Γsep := Gal(ksep: k). Let i : H → G be the inclusion

map and π : G→ G/H the canonical projection map. Let δ0 and δ1 be defined

as in Proposition 2.3. Then the sequence

1→H0(Γ, H)
i0→ H0(Γ, G)

π0

→ H0(Γ, G/H)
δ0→

δ0→ H1(Γ, H)
i1→ H1(Γ, G)

π1

→ H1(Γ, G/H)

is exact and, if H is a subgroup of the center of G, the sequence obtained by

adding

. . .
δ1→ H2(Γ, H)

on the right is also exact.

Proof. By Theorem 3.10, the quotient G/H is a linear algebraic group defined

over k, and G, H, and G/H are Γ-groups as described above. The rest of the

proof is analogous to the proof of Proposition 2.3. ¤

3.5 Computation of the Galois cohomology

In this section, we describe how the Galois cohomology of reductive linear alge-

braic groups can be computed. In the first step, we compute the cohomology of

a finite quotient of the automorphism group A := AutK(G). Then we extend

the cocycles to the group A using methods from Section 2.5.

3.5.1 Preliminary results

In this section, we present well known results used in the subsequent sections

to compute Galois cohomology.
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3.15 Theorem (Springer’s Lemma, [30, Lemma III.6]).

Let C be a Cartan subgroup of a linear algebraic group G defined over k, and

let N := NG(C) be the normalizer of C in G. Let Γsep := Gal(ksep: k). The

canonical map H1(Γsep, N)→ H1(Γsep, G) is surjective. ¥

As in [32, 17.10.1], we say that a field k has cohomological dimension ≤ 1 if

there are no nontrivial central division algebras over k. Examples include finite

fields and the field of rational functions C(t).

3.16 Theorem ([30, Corollary 3 of Theorem III.3]).

Let G be a linear algebraic group defined over a perfect field k of dimension

≤ 1, let G◦ be its identity component, and let π : G → G/G◦ be the standard

projection. Then

π1 : H1(Γsep, G)→ H1(Γsep, G/G
◦)

is bijective. ¥

The importance of this result for the computation of the Galois cohomology is

evident: it reduces the computation of the cohomology on G to the computation

of the cohomology on a finite group. An important special case of this theorem

is:

3.17 Theorem (Lang’s Theorem).

If G is a connected linear algebraic group defined over a finite field k, then

H1(Γsep, G) = 1. ¥

This theorem is often stated in the following, obviously equivalent, form:

3.18 Theorem (Lang’s Theorem).

Let G be a connected linear algebraic group defined over a finite field k with

|k| = q, and let F : G→ G be the field automorphism induced by

k̄ → k̄, x 7→ xq.

Then the map

L : G→ G, h 7→ h−Fh

is surjective. ¥

3.5.2 Cohomology of DW

Let G be k-split reductive linear algebraic group. We use Springer’s Lemma 3.15

to compute Galois cohomology. First we compute the cohomology of Γsep on

DW , where W is the Weyl group and D is the symmetry group of the Dynkin
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diagram of G. This is used to find the Galois cohomology of Aut(G) in Section

3.5.3.

We start with a general lemma:

3.19 Lemma.

Let A be a Γ′-group with the trivial action. Let ∆ be a normal subgroup of Γ′

and let Γ := Γ′/∆. Then the map

iΓ : Z1(Γ, A)→ Z1(Γ′, A),

defined by

iΓ(α) : γ 7→ αγ∆ for α ∈ Z1(Γ, A) and γ ∈ Γ′

is an inclusion of pointed sets.

Proof. To avoid large subscripts, we write α(γ) instead of αγ in this proof.

Since Γ′ acts trivially on A, all cocycles considered here are group homomor-

phisms. Let α ∈ Z1(Γ, A) be a cocycle. Set β := iΓ(α). Then

β(γ1γ2) = α(γ1γ2∆) = α(γ1∆γ2∆) = α(γ1∆)α(γ2∆) = β(γ1)β(γ2)

for all γ1, γ2 ∈ Γ′. Thus β ∈ Z1(Γ′, A). It is also easily seen that iΓ(1) = 1 ∈
Z1(Γ′, A). Thus, iΓ is a morphism of pointed sets.

For injectivity let α,α′ ∈ Z1(Γ, A) and set β := iΓ(α) and β′ := iΓ(α
′).

Suppose β = β′, then we have for all γ ∈ Γ′:

α(γ∆) = β(γ) = β′(γ) = α′(γ∆).

Hence iΓ is injective. ¤

We fix some notation: Let T be a k-split maximal torus of G. Let R =

(X,Φ, Y,Φ?) be the root datum of G with respect to T and Π fundamental

system. Write elements of G as words in the Steinberg presentation, as described

in Section 3.2. Let N be the normaliser of T in G. Then the Weyl group W is

isomorphic to N/T . We have standard representatives ẇ for w ∈W , which are

fixed by all field automorphisms, so are contained in G(k). Let D = Aut(D)
be the automorphism group of the Dynkin diagram D of G. We also identify

elements ofD with the corresponding automorphisms induced on the root datum

R of G.

Set Aut(R) to be the set of automorphisms ofX preserving Φ. Then Aut(R) =

DW . Indeed, if s ∈ Aut(R) leaves Π invariant, it is an element of D. If it does

not, Πs is another fundamental system for Φ and there is a w ∈ W such that

Πw = Πs, hence sw−1 leaves Π invariant, so is an element of D.

IfH is an arbitrary group andR is a root datum, then a group homomorphism

ϕ : H → Aut(R) is called a representation of H on R. Two representations ϕ
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and ψ of H on R are equivalent if there is an automorphism a ∈ Aut(R), such

that ϕ(h) = a−1ψ(h)a for all h ∈ H.

3.20 Proposition.

Let Γsep be the Galois group Gal(ksep: k) of the separable closure ksep of k. Then

a set of representatives of H1(Γsep, DW ) is given by

⋃

Γ

iΓ
(

R(Γ)
)

,

where the union is taken over all subgroups Γ ofDW that occur as Galois groups

of a Galois extension of k, iΓ is as in the previous lemma, and R(Γ) is a set of

representatives of equivalence classes of faithful representations of Γ on R.

Proof. The Galois group Γsep acts trivially on DW and thus Z1(Γsep, DW ) is

the set of homomorphisms from Γsep to DW .

Since DW = Aut(R), each α ∈ Z1(Γsep, DW ) gives a representation of Γsep
on R. Moreover, two cocycles α and β are cohomologous if, and only if, they

are equivalent as representations of Γsep on R. Thus H1(Γsep, DW ) is the set

of equivalence classes of representations of Γsep on R.

Assume α ∈ Z1(Γsep, DW ) is not injective. Then k has a Galois extension

K ⊆ k̄ with ∆ := kerα = Gal(ksep:K) and Γ := Γsep/∆ ' Gal(K: k) by

the Fundamental Theorem of Galois theory. Moreover, α = iΓ(β) for some

β ∈ Z1(Γ, DW ) by Lemma 3.19 and β is a faithful representation.

Hence it is sufficient to consider only faithful representations of Γ on R for

subgroups Γ of DW that occur as Galois groups of a Galois extension of k. ¤

An immediate consequence of this proposition is that |DW | is a bound on the

degree of field extensions that need to be considered.

Note that H1(Γ, DW ) can be computed by the methods of Theorem 2.6.

3.5.3 Extension of an induced 1-cocycle

In this section, we extend Theorem 2.6 to H1(Γ,AutK(G)), replacing the group

equations by polynomial equations. We fix some notation for the rest of this

section: Let G be a reductive linear algebraic group defined over the field k

and let K be a finite Galois extension of k with Galois group Γ. Let W be the

Weyl group of G and let D := Aut(D) the group of symmetries of the Dynkin

diagram D of G. Let A := AutK(G) and let T be a maximal torus of A. Let

C := CA(T ) be a Cartan subgroup of A and let N := NA(C) be the normaliser

of C in A.

3.21 Lemma.

Suppose T = C. Then N = D′ · T ·NG(T ∩G), where D′ is the subgroup of A

generated by the diagram automorphisms. Further, N ◦ = T and N/N◦ ' DW .
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Proof. N is the normaliser of the maximal torus T , hence consists of all diagonal

and diagram automorphisms, all conjugations by a Weyl or a torus element of

G, and their products. The connected component N ◦ consists of all diagonal

automorphisms. Finally,

N/N◦ = D′TNG(T ∩G)/T ' DW. ¤

Using the previous lemma and Section 3.5.2 we can compute the cohomology

on N/N◦. Next we have to extend the cocycles on N/N ◦ to cocycles on N .

This is done using methods of Section 2.5. Since the group N is in general

not finite, solving group equations directly is not feasible. We therefore replace

group equations over N by polynomial equations in several steps.

First we describe how to replace group equations over N by equations overW

and equations over T . Let α ∈ Z1(Γ, N/N◦). Recall the notation of Theorem

2.6: Let Γ = 〈γ1, . . . , γk | r1, . . . , r`〉. Since Γ is finite, we may take ri to be

words in γ1, . . . , γk not involving inverses. We fix a set {t(x) ∈ N | x ∈ N/N ◦}
of coset representatives and introduce indeterminates b(γ1), . . . , b(γk) over N

◦.

Decompose the coset representatives t(αγi) = τ̇γitγiẇγi with τγi ∈ D, tγi ∈ T ,
and wγi ∈ W . Decompose the indeterminates b(γi) = sγi v̇γi into new indeter-

minates sγi ∈ T and vγi ∈W . Then, for every relator r =
∏m
i=1 σi, the equation

m
∏

i=1

(

(

t(ασi)b(σi)
)

∏m
j=i+1 σj

)

= 1, (3.6)

corresponding to (2.8) and (2.9), is equivalent to equation

m
∏

i=1

τσiwσivσi = 1 (3.7)

in DW with indeterminates vγi , and, for each given solution of (3.7), the equa-

tion

m
∏

i=1

τ̇σiẇσi v̇σi

m
∏

i=1

(t
ẇσi
σi sσi)

Xi = 1 (3.8)

in T with indeterminates sγi , where

Xi = v̇σi

m
∏

j=i+1

τ̇σj ẇσj v̇σjσj .

To see this, we use the simple fact that xy = yxy for elements of a group and

that all τ̇σi , ẇσi , and v̇σi commute with field automorphisms, we obtain (3.8)

from (3.6). Now

m
∏

i=1

τ̇σiẇσi v̇σi =
(

m
∏

i=1

(t
ẇσi
σi sσi)

Xi

)−1

∈ T
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and thus

m
∏

i=1

τσiwσivσi = 1.

Note that the right hand side of (3.8) is 1A = idG, and hence is conjugation by

an element from Z(G).

Let K[x1, . . . , x`] be a polynomial ring. A formal sum

p =
n
∑

i=0

ai

mi
∏

j=1

y
αij
j ,

where n andmi are nonnegative integers, ai ∈ K, αij ∈ Γ, and yj ∈ {x1, . . . , x`},
is called a (multivariate) polynomial over K with field automorphisms. The total

degree of p is max{m0, . . . ,mn}.
Fix a solution vγi ∈W of (3.7). We now show that the group equation (3.8)

is equivalent to a polynomial equation with field automorphisms. The left hand

side of the equation

m
∏

i=1

(t
ẇσi
σi sσi)

Xi =
(

m
∏

i=1

τ̇σiẇσi v̇σi

)−1

is a torus element involving indeterminates. The right hand side is a known

torus element. Now we replace every indeterminate sσi over T by a d-tuple

of indeterminates over K, using the isomorphism T ' Gm
d. Then the left

hand side becomes a d-tuple of polynomials with field automorphisms and the

equation is now equivalent to d polynomial equations with field automorphisms.

We now describe how to replace polynomials with a field automorphism by

ordinary polynomials. Let p be a polynomial with field automorphisms over K

in ` variables of total degree n. Let r := [K : k] and let (b1, . . . , br) be a basis

of K as a vector space over k. Substitute the formal sum
∑r

j=1 bjxij for every

indeterminate xi of p, where xi1, . . . , xir are new indeterminates over the field

k. Then p becomes an ordinary polynomial s over K of the same total degree

n with r` variables. The map

(

aij ∈ k | i = 1, . . . , `, j = 1, . . . , r
)

7→
(

r
∑

j=1

bjaij | i = 1, . . . , `
)

is a bijection between the set of zeros of s in kr` and the set of zeros of p in K`.

A simpler approach is available when K is a finite field: Every γ ∈ Γ has the

form γ : x 7→ xq
m

for some m, where q is the size of k. Substituting xq
m

for xγ

provides an ordinary polynomial s′ of degree at most qmn in the same number

of variables. The zero sets of p and s′ are the same. The systems of polynomial
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Table 3.2: Timings for computation of Gröbner Bases.

Group [K : k] time

A6(5) 2 6.250

A7(5) 2 66.980

E6(5) 2 2.070

D4(5) 6 157.980

D5(5) 2 0.700

equations obtained by this method can be solved relatively easily by the Walk

method [13] for Gröbner Basis computation, as can be seen from the Table 3.2

We have now proved the following proposition:

3.22 Proposition.

Let α ∈ Z1(Γ, N/N◦) and suppose T = C. Let vγi be indeterminates overW for

γ1, . . . , γk and let sγi,j be indeterminates over K for γ1, . . . , γk and j = 1, . . . , d,

where d is the dimension of T . Set sγi = (sγi,1, . . . , sγi,d) ∈ T . Consider the

system of equations given by (3.7) and (3.8) for every relator r =
∏m
i=1 σi.

(a) This system is solvable if, and only if, α can be extended to a cocycle

on N .

(b) For every solution of this system,

β := [[t(αγ1
) · sγ1

v̇γ1
, . . . , t(αγk) · sγk v̇γk ]]

is a 1-cocycle on N , such that β = α.

(c) Every cocycle β ∈ Z1(Γ, N) with β = α can be constructed this way.

(d) A representative of every class [β] ∈ H1(Γ, A) can be constructed this

way.

¤

If A is reductive, then T = C and Proposition 3.22 can be applied.

3.5.4 Conclusion

We now give some general remarks on the presented algorithms. We know

N/N◦ from Lemma 3.21 and compute the finite cohomology H1
(

Γ, N/N◦
)

as

described in Section 2.6 and extend its representatives to cocycles on AutK(G)

using Proposition 3.22. We solve the system (3.7) of group equations over the
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Weyl group W and the corresponding system (3.8) of polynomial equations.

The polynomial equations are solved using methods for Gröbner bases.

In general, all solutions of these systems of equations must be found. The

importance of Lemma 3.16 is that, whenever it holds, only one solution for each

system of equations is required.

We now discuss the cases where Lemma 3.16 cannot be applied. If the field

k is not perfect or not of dimension ≤ 1, then one of the following can happen:

1. The same cocycle from Z1(Γ, N/N◦) can be extended to (at least) two

non-cohomologous cocycles in Z1(Γ, N).

For example, A = Aut(SL2) ' PGL2 is connected, thus A/A◦ ' 1 and

there is only the trivial cocycle to extend. This lifts to the trivial cocycle

and to [[ch]] with h =
(

1
c

)

and c 6∈ NK
k (K). (See Case 1 after the proof

of Proposition 4.12 in Section 4.5.1.)

2. Some cocycles in Z1(Γ, N/N◦) may have no extensions in Z1(Γ, N).

In this case Gröbner basis methods would show that there are no solutions.

3.6 Example: GL1

In this section, we explicitly compute the cocycles and twisted forms of GL1.

See Section 4.5 for more examples. Recall the group G := Gm = GL1 defined

in the Section 3.1:

G = {(x, y) ∈ k̄2 | xy − 1 = 0}

with the multiplication (x1, y1) · (x2, y2) := (x1x2, y1y2).

For any Galois extension K of k contained in k̄, the group of rational points

is

G(K) = {(x, y) ∈ K2 | xy = 1}
= {(x, y) ∈ K2 | y = x−1, x 6= 0} ' K∗

By considering polynomials in the variables x and y, which define group auto-

morphisms, we see that the group of algebraic automorphisms of G is

Aut(G) = 〈τ〉

with τ : (x, y) 7→ (y, x). Note that τ 2 = 1 and Aut(G) = AutK(G) for every K.

Now supposeK is an extension of degree 2 and set Γ := Gal(K: k) = 〈γ〉. Con-
sider α ∈ Z1

(

Γ,AutK(G)
)

. Since every cocycle in Z1
(

Γ,AutK(G)
)

is uniquely

determined by the image of γ, we have two cases:

Case 1: The trivial cocycle 1. Then G1(k) = G(k) ' k∗.
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Case 2: α = [[τ ]]. Then

Gα(k) = {g ∈ G(K) | gγαγ = g}
= {(x, y) ∈ K2 | xy = 1 and (x, y)γτ = (x, y)}
= {(x, y) ∈ K2 | xy = 1 and y = xγ}
= {(x, y) ∈ K2 | xxγ = 1 and y = xγ}
' {x ∈ K | xxγ = 1}.

That is, Gα(k) is the set of norm 1 elements of K. In other words, Gα(k)

is the subgroup of unitary matrices of GL1.

In the case k = Fq, we have K = Fq2 , γ : x 7→ xq,

G1(k) ' {x ∈ K | xq−1 = 1}, and

Gα(k) ' {x ∈ K | xq+1 = 1}.

In the case k = R and K = C, we have γ : a+ ib 7→ a− ib,

G1(k) ' {(x, y) ∈ k2 | xy = 1} and

Gα(k) ' {x ∈ K | xxγ = 1}
' {(a, b) ∈ k2 | a2 + b2 = 1}.

The groups of R-rational points of G1 and Gα are shown in Figure 3.1.

Figure 3.1: R-rational points of G1 and Gα.

1 2 3−1−2−3−4

1

2

3

−1

−2

−3

−4

x

y

G1(R)

(split form)

1 2 3−1−2−3−4

1

2

3

−1

−2

−3

−4

x

y

Gα(R)

(compact form)
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Chapter 4

Twisted forms

In this chapter, we study twisted forms of reductive linear algebraic groups.

That is, we are given a reductive k-split linear algebraic group G defined over

a field k and a cocycle α ∈ H1(Γsep,Aut(G)), where Γsep := Gal(ksep: k) is the

Galois group of the separable closure of k. Using Springer’s Lemma 3.15, we can

assume that α stabilizes the standard k-split torus T . Then, as in Section 3.4,

the group of k-rational points of the twisted form Gα is

Gα(k) = {g ∈ G | gγαγ = g ∀γ ∈ Γsep}.

One can easily determine if a given element g ∈ G lies in Gα(k) or not. This is

not satisfactory for computing with Gα(k) however, since this definition gives

us no nontrivial elements to work with. To this end, we develop algorithms

for computing the normal subgroup Gα(k)
† of Gα(k) generated by the root

elements. This also provides a presentation for Gα(k)
†.

The quotient Gα(k)/Gα(k)
† is called the Whitehead group, see for example

[38]. The determination of the Whitehead group is very hard in general. In [23,

Chapter 9], a general overview is given and, among other results, the Whitehead

group is proven to be trivial for algebraic number fields in all types other than
2E6. We expect that our methods will be useful for determining the Whitehead

group.

Note that the methods presented here do not work for types 2B2,
2G2 and

2F4,

since the map induced by the Dynkin diagram symmetry on the root lattice X

is not a linear map. We expect though, that our method will work if we replace

X, which is a Z-module spanned by the fundamental system Π, by a (Z+Z
√
2)-

module in cases 2B2 and 2F4 or a (Z + Z
√
3)-module in the case 2G2.
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4.1 Relative root system

Just as the Steinberg presentation for G(k) is based on a root datum, the pre-

sentation for Gα(k)
† is based on a relative root system, which we describe in

this section. Our description is based on Satake [27] and Schattschneider [28].

First we make the connection between our notation and the notation in [28].

As usual, set A := Aut(G), Γ := Γsep = Gal(ksep: k), and let α ∈ Z1(Γ, NA(T ))

be a fixed cocycle. Let R = (X,Φ, Y,Φ?) be the root datum of G with funda-

mental system Π.

As shown in Section 3.5.2, H1(Γ, NA(T )/(NA(T ))
◦) ' H1(Γ, DW ) and co-

cycles of DW are homomorphisms from Γ to DW . Since DW ' Aut(R), a

cocycle determines an action of Γ on R and thus a permutation action on the

root system Φ. This is the Γ-action in [28].

Let Oα(χ) denote the orbit of χ ∈ X under the Γ-action corresponding to

the cocycle α. By [28, (16)], either Oα(r) is contained in Φ+, or it is contained

in Φ−, or the sum of the roots of Oα(r) is zero. In the latter case, we have

∑

γ∈Γ

rαγ = 0,

which is equivalent to

∑

s∈Oα(r)

s = 0, (4.1)

since

∑

γ∈Γ

rαγ = m
∑

s∈Oα(r)

s,

where m is the order of the stabilizer of r in Γ. Put

X0 := {χ ∈ X |
∑

γ∈Γ

χαγ = 0} and (4.2)

XΓ := {χ ∈ X | χαγ = χ for all γ ∈ Γ} (4.3)

Let Φ0 := Φ ∩X0 and Π0 := Π ∩X0. Then, by [28, §1], X0 is a submodule of

X, Φ0 is a subsystem of Φ, and Π0 is a fundamental system of Φ0. Note that

Π0 is not necessarily a basis of X0 (a counterexample is given in Example 4.1).

Set X̄ := X/X0 and let π : X → X̄ be the standard projection. Then X̄ is

a free Z-module and π is a homomorphism of modules. Let Ψ and ∆ be the

images under π of Φ \Φ0 and Π \Π0, respectively. Then Ψ is a root system and

∆ is a fundamental system of it. We call Ψ the relative root system and ∆ the

relative fundamental system. Note that Ψ need not be irreducible nor reduced

even if Φ is. The rank of the relative system is |∆| and is called the relative
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rank of Gα, whereas the rank |Π| of Φ is called the absolute rank. Let Ψ+ and

Ψ− denote the images under π of Φ+ \ Φ0 and Φ− \ Φ0. When X0 = X, the

relative root system is an empty set and the form is called anisotropic.

Let δ ∈ Ψ+ be a relative root. We fix a set of representatives of the orbits

Oα(r) with the property π(r) = δ and call this set Jδ Then, by [28, §2],

π−1(δ) =
˙⋃

r∈Jδ

Oα(r) ⊆ Φ+ \ Φ0. (4.4)

We now construct an action of Γ on Π induced by the action on Φ. Remember

that αγ = τw for some τ ∈ D, w ∈W . Then γ acts on Π by

r 7→ rτ .

This is the [Γ]-action of [28]. The cocycle α and the corresponding twisted form

Gα are called inner if the [Γ]-action is trivial and outer otherwise. Let [O]α(r)

be the orbit of r ∈ Π under this action. Then, by [28, Proposition 3.5],

[O]α(r) = Π ∩ π−1(π(r)).

Computation of the actions of Γ on Φ and on Π, as well as the orbits of both

actions, is straightforward using the definitions, and is very fast. For example,

in type A20, the computation takes less than 2 seconds on a Pentium 1.6 GHz.

4.1 Example.

We illustrate this by a small example. Let Φ be a root system of type A3 and let

Π = {r1, r2, r3} be a fundamental root system of Φ with the Dynkin diagram:

�� �� ��

r1 r2 r3

Then the Weyl group W is generated by fundamental reflections s1, s2, and

s3. Let Γ = 〈γ〉 be of order 2. Choose the cocycle α = [[τs2]], where τ is the

non-trivial Dynkin diagram symmetry. Then

X0 = 〈r2, r1 − r3〉, Φ0 = {±r2}, and Π0 = {r2}.

The orbits of the actions of Γ on Φ and Π are

Oα(r1) = {r1, r2 + r3}, [O]α(r1) = {r1, r3},
Oα(r2) = {r2,−r2}, [O]α(r2) = {r2},
Oα(r3) = {r3, r1 + r2},

Oα(r1 + r2 + r3) = {r1 + r2 + r3},

together with the orbits lying entirely in Φ−, which are determined by negating

the orbits in Φ+. The relative root system is Ψ = {±δ1,±2δ1} with δ1 = π(r1).
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This is a root system of type BC1 with the fundamental system ∆ = {δ1}.
Furthermore

π−1(δ1) = Oα(r1) ∪̇ Oα(r3) and π−1(2δ1) = Oα(r1 + r2 + r3).

Finally, we state several basic results that are used in Section 4.3

4.2 Lemma.

Let r and s be positive roots with r ∈ Φ+ \Φ0. If r+s ∈ Φ then r+s ∈ Φ+ \Φ0.

Proof. Every positive root is a unique linear combination of roots in Π with non-

negative coefficients. Since r 6∈ Φ0, the coefficient of at least one fundamental

root in Π\Π0 is positive in the linear combination of r. But then the coefficient

of this fundamental root in the linear combination of r + s is also positive. ¤

For the next lemma, recall that the only scalar multiples of a root r in a (not

necessarily reduced) root system are ± 1
2r, ±r and ±2r.

4.3 Lemma.

Let δ, ε ∈ Ψ+ and r ∈ π−1(δ), s ∈ π−1(ε). If ir + js ∈ Φ for positive integers i

and j, then iδ + jε ∈ Ψ+ and π(ir + js) = iδ + jε. In particular, if δ = ε, then

we must have i = j = 1 and π(r + s) = 2δ.

Proof. By the previous lemma, ir+js ∈ Φ+\Φ0, and, since π is a homomorphism

of Z-modules, we have π(ir + js) = iπ(r) + jπ(s) = iδ + jε ∈ Ψ+.

If δ = ε, then π(ir + js) = (i+ j)δ. This can only be a root in Ψ if i+ j = 2

since i and j are positive integers. ¤

Recall from Section 3.2 the notation for the maximal unipotent subgroup

U(K) of G(K) and the root subgroups.

4.4 Corollary.

Suppose δ ∈ Ψ+ but 2δ 6∈ Ψ and let r, s ∈ π−1(δ). Then [Xr, Xs] = 1.

Proof. By Equation (3.4) in Section 3.2, [xr(u), xs(v)] is a product of root el-

ements corresponding to roots in Φ+ that have the form ir + js for positive

integers i and j. But if ir+ js is a root for some positive integers i and j, then

i = j = 1 and π(r + s) = 2δ ∈ Ψ by Lemma 4.3, a contradiction to 2δ 6∈ Ψ. ¤

4.5 Corollary.

Suppose δ, 2δ ∈ Ψ+ and let r ∈ π−1(δ), s ∈ π−1(2δ). Then [Xr, Xs] = 1.

Proof. The commutator [xr(u), xs(v)] is a product of root elements correspond-

ing to roots in Φ+ that have the form ir+js with positive integers i and j. But if

ir+js is a root for some positive integers i and j, then π(ir+js) = (i+2j)δ ∈ Ψ

by Lemma 4.3 and i+ 2j ≥ 3, a contradiction. ¤
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4.2 Tits indices

In this section, we describe a graphic notation for relative root systems called

the Tits index (see e.g., [37]). It is the Dynkin diagram of the absolute root

system of G together with additional data. We call a vertex of the Dynkin

diagram distinguished if the corresponding fundamental root r is not contained

in Π0. The vertices of the fundamental roots belonging to the same [Γ]-orbit

are placed “next” to each other. If a vertex is distinguished, then all roots in

its [Γ]-orbit are distinguished as well, and we circle the orbit.

Thus, the example from the previous section has the Tits index

��

��

��

r1

r2

r3

.

Let S be a maximal k-split torus contained in T . The commutator subgroup

of the centraliser CG(S) is a semisimple k-anisotropic group and is called the

anisotropic kernel of Gα. The anisotropic kernel is also a reductive group and

the diagram of the anisotropic kernel is obtained from the index of Gα by

removing all distinguished vertices.

We use the same terminology for the Tits indices as in [37]: A Tits index

is denoted by gM t
n,`, where Mn is the Cartan type of the Dynkin diagram, g

is the order of the quotient of Γ modulo the kernel of the [Γ]-action, n and `

are the absolute and the relative ranks, and t denotes the degree of a division

algebra that occurs in the definition of the form in the case of classical types

and it denotes the dimension of the anisotropic kernel in the case of exceptional

types. To emphasize the difference in the notation, t is put in parenthesis for

the classical types. The Tits index in the above example has type 2A
(2)
3,1. We

obviously have g = 1 for inner forms, in which case g is usually omitted.

Note that the computations of the previous section also allow the Tits index

to be computed from the cocycle α.

To compute a cocycle of the linear algebraic group corresponding to a given

Tits index, one first has to read the action on Π off the diagram and then

find Weyl group elements such that [[τ1w1, . . . , τnwn]] is a cocycle of Γ on DW .

Then a cocycle on G is given by α = [[τ̇1ẇ1h1, . . . , τ̇nẇnhn]], where h1, . . . , hn
are torus elements that need to be chosen according to Proposition 3.22, that

is, by solving a system of polynomial equations.

Note that different hi may give noncohomologous cocycles. The corresponding

forms, however, only differ on the anisotropic kernel.
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4.3 Root subgroups

The (standard) unipotent subgroup of Gα(k) is Uα(k) := U(K)∩Gα(k). We now

describe the root elements and root subgroups of Uα(k). Let γ ∈ Γ, let αγ = τn

for n ∈ N , and let w ∈W be the image of n under the natural homomorphism.

Then the image under γαγ of the root element xr(tr) for r ∈ Φ and tr ∈ K, is

xr(tr)
γαγ = xrτw(λrγt

γ
r ),

where λrγ is a constant that depends on the root r and, for a fixed cocycle α,

on γ. Let δ ∈ Ψ be a relative root. Its preimages are, as described by (4.4),

π−1(δ) =
˙⋃

r∈Jδ

Oα(r).

Symbolically construct a K-vector space Vδ with basis Jδ and denote by tr the

coefficient of r ∈ Jδ in the linear combination of t ∈ Vδ. For t ∈ Vδ set

uδ(t) =
∏

r∈Jδ

∏

γ∈Γ

xr(tr)
γαγ , (4.5)

where the whole product is taken in the ordering of the roots fixed for the unique
decomposition of U in Section 3.2, and set

Uδ =
{

uδ(t) | t ∈ Vδ
}

. (4.6)

Then uδ(t)
γαγ is the product of the same terms taken in a different order, since

(

xr(tr)
γ′αγ′

)γαγ
= xr(tr)

γ′γαγ

γ′
αγ = xr(tr)

γ′γαγ′γ ,

and so uδ(t)
γαγ = uδ(t)cγ(t). In other words, we set cγ(t) := uδ(t)

−1uδ(t)
γαγ .

The following lemma provides a description of cγ(t). If δ, 2δ ∈ Ψ, set

Y2δ :=
∏

r∈π−1(2δ)

Xr(K).

4.6 Lemma.

If 2δ 6∈ Ψ, then cγ(t) = 1 for all γ ∈ Γ. Otherwise cγ(t) ∈ Y2δ.

Proof. If 2δ is not a relative root, then all root elements in the product (4.5)

commute by Corollary 4.5.

If 2δ ∈ Ψ, then cγ(t) is a product of commutators of pairs of root elements

from the product (4.5). Let r, s ∈ π−1(δ) be two roots. By Lemma 4.3, the com-

mutator of root elements corresponding to these roots is a single root element

corresponding to the root r + s ∈ π−1(2δ). ¤
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Let δ ∈ Ψ be a relative root. First we consider the case 2δ 6∈ Ψ. In this case

we define the relative root elements to be

xδ(t) := uδ(t) (4.7)

for t ∈ Vδ and the relative root subgroups Xδ := Uδ. Indeed, Xδ is an (abstract)

abelian group by Lemma 4.6 with relations

xδ(t) · xδ(s) = xδ(t+ s),

xδ(t)
−1 = xδ(−t),

[

xδ(t), xδ(s)
]

= 1

for t, s ∈ Vδ.
Now consider the case where 2δ is also a relative root. Choose an arbitrary

u := uδ(t) and compute cγ(t) := u−1uγαγ for all γ ∈ Γ. We need a correction

term v ∈ U(K) such that

uv = (uv)γαγ = uγαγvγαγ = ucγ(t)v
γαγ for all γ ∈ Γ,

which is equivalent to

cγ(t) = vv−γαγ for all γ ∈ Γ.

4.7 Lemma.

(a) For a given t, the map ρ : γ 7→ cγ(t) is a cocycle in Z1(Γ, Y2δ).

(b) There is a solution v for the system of equations

cγ(t) = vv−γαγ , γ ∈ Γ. (4.8)

Proof. To show that ρ is a cocycle, we compute

uδ(t)cγγ′(t) = uδ(t)
γγ′αγγ′ = (uδ(t)

γαγ )γ
′αγ′ = (uδ(t)cγ(t))

γ′αγ′

= uδ(t)cγ′(t)cγ(t)
γ′αγ′ = uδ(t)cγ(t)

γ′αγ′ cγ′(t).

Hence, cγγ′(t) = cγ(t)
γ′αγ′ cγ′(t). But Y2δ is unipotent, thus H

1(Γ, Y2δ) = 1 and

the constructed cocycle is cohomologous to the trivial one, that is, there is an

element v ∈ Y2δ such that cγ(t) = vv−γαγ for all γ ∈ Γ. ¤

A method to construct such a solution v for given elements cγ(t) is discussed

in the Section 4.4 below.

4.8 Lemma.

For given cγ(t), γ ∈ Γ, the set of solutions v ∈ Y2δ for (4.8) is the coset v1X2δ,

where v1 is any particular solution for this equation system.
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Proof. Let v be a solution of (4.8) and x ∈ X2δ, then vx ∈ Y2δ and

(vx)(vx)−γαγ = vxx−γαγv−γαγ = vxx−1v−γαγ = vv−γαγ = cγ(t)

for all γ ∈ Γ. Let on the other hand, v1 and v2 be two solutions for (4.8), then

v2v
−γαγ

2 = cγ(t) = v1v
−γαγ

1 ⇒ v−11 v2 = v
−γαγ

1 v
γαγ

2 = (v−11 v2)
γαγ ,

for all γ ∈ Γ, thus v−11 v2 ∈ X2δ. ¤

Now we can define the relative root elements in the case δ ∈ Ψ with 2δ ∈ Ψ to

be

xδ(t) := uδ(t)v(t) (4.9)

for t ∈ Vδ, where v(t) ∈ Y2δ is an arbitrary fixed solution for (4.8). Define the

relative root subgroups to be

Xδ :=
〈

X2δ; xδ(t) | t ∈ Vδ
〉

.

Note that, by Lemma 4.8, the definition of Xδ does not depend on the choice

of the elements v(t) in (4.9).

4.9 Lemma.

(a) X2δ is a central subgroup of Xδ and Xδ =
〈

xδ(t) | t ∈ Vδ
〉

X2δ.

(b) Xδ =
{

xδ(t)x2δ(s) | t ∈ Vδ, s ∈ V2δ
}

Proof. (a) follows from the fact that elements xδ(t) and x2δ(s) commute for any

t ∈ Vδ, s ∈ V2δ by Corollary 4.5.

For (b), the inclusion of the right hand side in Xδ is trivial. For the other

inclusion, let xδ(t) = uδ(t)v(t) and xδ(s) = uδ(s)v(s) for t, s ∈ Vδ. Then

xδ(t)xδ(s) = uδ(t)v(t)uδ(s)v(s) = uδ(t)uδ(s)v(t)v(s)

= uδ(t+ s)y(t, s)v(t)v(s),

where y(t, s) is a product of root elements corresponding to roots in π−1(2δ),

and depends on t and s.

Now the element xδ(t)xδ(s) is fixed by γαγ and we have

uδ(t+ s)y(t, s)v(t)v(s) =
(

uδ(t+ s)y(t, s)v(t)v(s)
)γαγ

= uδ(t+ s)γαγ
(

y(t, s)v(t)v(s)
)γαγ

= uδ(t+ s)cγ(t+ s)
(

y(t, s)v(t)v(s)
)γαγ

,

where cγ(t+ s) is as before and

cγ(t+ s) =
(

y(t, s)v(t)v(s)
)(

y(t, s)v(t)v(s)
)−γαγ

.
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Hence y(t, s)v(t)v(s) ∈ v(t+ s)X2δ by Lemma 4.8 and

xδ(t)xδ(s) = uδ(t+ s)y(t, s)v(t)v(s) ∈ xδ(t+ s)X2δ. ¤

Finally

xδ(t)xδ(s) ∈ xδ(t+ s)X2δ, (4.10)

xδ(t)
−1 ∈ xδ(−t)X2δ, (4.11)

[

xδ(t), xδ(s)
]

∈ X2δ. (4.12)

In particular, Xδ is nilpotent of nilpotency class 2. The exact relations between

relative root elements of this form can be easily computed inside the original

untwisted group of Lie type. For each group, we compute them for generic

relative root elements once, so we can use them for computations.

4.10 Proposition.

Uα(k) = 〈Xδ | δ ∈ Ψ+〉.

Proof. Let u ∈ Uα(k) be an arbitrary element. Write the unique decomposition

of u as a product of root elements. Let xr(v) be the first nontrivial root element

occurring in the decomposition, that is, r is the first root with coefficient v 6= 0.

Since xr(v) occurs in this product, xr(v)
γαγ must also occur in the product

for each γ ∈ Γ, since u is fixed by γαγ . In particular, Oα(r) must be contained

in Φ+, hence δ := π(r) ∈ Ψ+. Now let t ∈ Vδ with tr = v and ts = 0

for r 6= s ∈ Jδ. Thus u = xδ(t)u
′ and all root elements occurring in the

decomposition of u′ correspond to roots larger than r. Since the number of

roots is finite, u ∈ 〈Xδ | δ ∈ Ψ+〉 by induction. ¤

The relative root elements and relative root subgroups for negative relative

roots are defined in the similar way. Now we define a normal subgroup of Gα(k):

Gα(k)
† := 〈Uα(k)g | g ∈ Gα(k)〉.

The quotient Gα(k)/Gα(k)
† is called the Whitehead group. Its description is a

hard problem and is of interest for the study of Gα(k).

4.4 Cohomology of unipotent subgroups

Suppose we have a reductive algebraic group G defined over k and U is its

standard maximal unipotent subgroup. Let K be a Galois extension of k and

let Γ := Gal(K: k). In this section, we describe how to find an element v ∈ U(K)

with the property

cγ = vv−γαγ , for all γ ∈ Γ
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for a given cocycle c ∈ Z1(Γ, Y2δ), and α ∈ Z1(Γ, NA(U(K))).

By [32, 14.3.10], there are no twisted forms of unipotent groups if k is perfect.

That is, the above equation always has a solution. To obtain the solution, we

repeatedly use the following proposition:

4.11 Proposition ([30, Proposition II.1]).

For every Galois extension K over a field k and Γ := Gal(K: k), we have

H1(Γ,Ga(K)) = 1,

where Ga(K) is the additive group of K. ¥

We first describe how this proposition is applied in case α = 1: We recall that

cγ can be written as a product of root elements in a certain ordering respecting

the heights of the roots, [15, 12]. We write cγ = xr(tr,γ)dγ , where dγ is a product

of root elements corresponding to roots which are larger than r with respect to

this ordering. Now we use the above proposition to find an element sr,γ ∈ K

with the property sr,γ − sγr,γ = tr,γ and obtain

xr(sr,γ)
−1cγxr(sr,γ)

γ = xr(−sr,γ)xr(tr,γ)dγxr(sγr,γ)
= xr(−sr,γ)xr(tr,γ)xr(sγ)d′γ
= xr(−sr,γ + tr,γ + sγr,γ)d

′
γ = d′γ ,

where d′γ is also a product of root elements corresponding to roots which are all

larger than r. Since there is only a finite number of roots, by induction we can

find an element b ∈ U(K) with the property d′γ = bb−γ . Now we obtain

cγ = xr(sr,γ)d
′
γxr(sr,γ)

−γ

= xr(sr,γ)bb
−γxr(sr,γ)

−γ =
(

xr(sr,γ)b
)(

xr(sr,γ)b
)−γ

.

For α 6= 1, the situation is slightly more difficult. But we only need the

solution in a special case: The elements cγ and the solution v are contained in

Y2δ, and this group is commutative. Recall that

cγ =
∏

r∈π−1(2δ)

xr(sr) and v =
∏

r∈π−1(2δ)

xr(ur).

Thus

v−γαγ =
∏

xrαγ (−λrγuγr ).
Now

vv−γαγ =
∏

xrαγ (urαγ − λrγuγr )
and we obtain the following system of equations over K from the equation

cγ = vv−γαγ :

srαγ = urαγ − λrγuγr for r ∈ π−1(2δ). (4.13)
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We recall that the elements sr and λrγ are known and the elements ur are the

indeterminates. The next step is done for every γ ∈ Γ, we write λr instead of

λrγ to simplify the notation. Now we fix a root r ∈ π−1(δ) and get the equation

for

sr + λ
rα

−1
γ

(s
rα

−1
γ

)γ + λ
rα

−1
γ
λ
rα

−2
γ

(s
rα

−2
γ

)γ
2

+ · · · = ur −
o
∏

i=1

λ
r(α

−i
γ )u

γo

r (4.14)

where o is the order of the orbit of r under αγ . This is best shown on a small

example: Suppose π−1(2δ) consists of three roots: r1, r2 and r3, and αγ acts

on them as a permutation (r1, r2, r3). Then the System of equations (4.13) is

sr1 = ur1 − λr3uγr3 ,
sr2 = ur2 − λr1uγr1 ,
sr3 = ur3 − λr2uγr2 .

Now we build the equation

sr1 + λr3s
γ
r3 + λr3λr2s

γ2

r2

= ur1 − λr3uγr3 + λr3(ur3 − λr2uγr2)
γ + λr3λr2(ur2 − λr1uγr1)

γ2

= ur1 − λr3λr2λr1uγ
3

r1 .

The single Equation (4.14) can be solved in the field k using the proposition

above. The other indeterminates can now be computed using the equations

from the system (4.13). In the above example,

ur2 = λr1u
γ
r1 − sr2 ,

ur3 = λr2u
γ
r2 − sr3 .

4.5 Important Examples

In this section, we present several important examples. For the group SL2, we

compute the Galois cohomology and the corresponding twisted forms explicitly.

We compute the subgroup generated by the root subgroups for twisted groups

of Lie type 2E6,1(k),
3D4,1(k) and

6D4,1(k). Finally, we present an embedding

of the twisted group of Lie type 2A7(k) into E7(k) for finite fields.

4.5.1 Example: SL2

Let k be a field and let G be the linear algebraic group SL2, defined over k. Let

K be a quadratic extension of k. So Γ := Gal(K: k) = 〈σ〉 is of order 2. Write

x := xσ. For X = (xij) ∈ SL2(K), write X := (xij). Let N : K → k be the
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norm map defined by x 7→ xx. We denote by cg the conjugation automorphism

x 7→ xg induced by g ∈ GL2(K).

Let A := AutK(G) ' PGL2(K). Then Γ acts on A as in Section 2.3: ϕσ =

σ−1ϕσ = σϕσ for ϕ ∈ A. But now ϕ = cg for some g ∈ GL2(K), so

ϕσ = cσg = cg.

4.12 Proposition.

Let α ∈ Z1(Γ, A). Then ασ = ch for some h ∈ GL2(K) with the following

properties:

1. hh = xI2 for some x ∈ k∗; and

2. either h =
(

0 1
c 0

)

for c ∈ k∗ (in this case is x = c); or h =
(

a b
c 1

)

for

a, b, c ∈ K with a = −cc−1 = −bb−1 (in this case aa = 1 and x = cb+ 1).

Proof. Since α is a cocycle, ασ ∈ AutK(G) and ασ = ch for some h ∈ GL2(K).

Thus, idG = ασ2 = ασ
σ ·ασ = chh. Hence, hh = xI2 for some x ∈ K∗. Now let

h =
(

a b
c d

)

.

Case d = 0: Then b 6= 0 and we can assume b = 1 (otherwise replace h by

b−1h). Now xI2 = hh =
(

aa+c a
ca c

)

. Thus a = 0 and x = c = c ∈ k∗.

Case d 6= 0: Here we can assume d = 1 (otherwise replace h by d−1h). Now

xI2 = hh =
(

aa+bc ab+b
ca+c cb+1

)

. And it follows that c = −ca and b = −ab.
Further, x = cb+ 1. ¤

We wish to determine which cocycles α = [[ch]] ∈ Z1(Γ, A) are cohomologous

to the trivial cocycle and find the intertwining elements for them. A cocycle α

is cohomologous to 1 if, and only if, ασ = ϕ−σϕ for some ϕ = cg ∈ A and this

is true if, and only if, there is a y ∈ K∗ with ygh = g. Now the problem is to

find such g and y. Set g := (gij).

Case 1: h =
(

1
c

)

, c ∈ k∗.
Then g = ygh =

( ycg12 yg11
ycg22 yg21

)

. Thus we get five equations:

g11 = ycg12, g12 = yg11, det g 6= 0,

g21 = ycg22, g22 = yg21,

and these are equivalent to

N(y) = c−1, g12 = yg11, det g 6= 0,

g22 = yg21.

Hence α is cohomologous to the trivial cocycle if, and only if, c is in

the image of the norm map. If it is, ϕ = cg with g =
( 1 y

i yi

)

, where
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y ∈ N−1(c−1) and i ∈ K\k. By Proposition 3.13, ϕ is an isomorphism

from G(k) = SL2(k) to Gα(k).

If, on the other hand, c is not in the image of the norm map, then G(k)

is not conjugate to Gα(k).

Case 2: h =
(

a b
c 1

)

.

If b 6= 0, then set x =
(

1 0
b−σ 1

)

, and α(cx) was handled in Case 1. If c 6= 0,

then set y =
(

1 −c−1

0 1

)

and α(cy) was handled in Case 1. From now on we

assume that b = c = 0 and h =
(

a
1

)

and (by the above proposition) that

a has norm 1.

We show that α is cohomologous to 1 if, and only if, we can find a λ ∈ K∗

with λ−σλ = a. In this case conjugation by
(

λ−1

1

)

is the intertwining

element in A. In particular, a cocycle of this form is always a coboundary

if k is a finite field (by Hilbert’s Theorem 90) or whenever H1(Γ,K∗) is

trivial.

By the above computation, α is cohomologous to 1 if, and only if, we can

find g ∈ GL2(K) and y ∈ K∗, such that ygh = g. This amounts to solving

the following system of equations:

g11 = yg11a, g12 = yg12, det g 6= 0,

g21 = yg21a, g22 = yg22,

which is equivalent to finding a λ ∈ K∗, such that

λ−σλ = a.

Indeed, if we can find such a λ, then g =
(

λ
1

)

, y = 1 is a solution for the

above system; if we can find a solution for the above system, then at least

one of g11g22, g12g21 is not equal to zero and

λ :=

{

g11 g
−1
22 if g11g22 6= 0,

g21 g
−1
12 if g12g21 6= 0

is a solution for the last equation above.

Finally, we compute the twisted groups explicitly. Let π =
(

1
−1

)

and M :=

π−1h, where h has either form
(

1
c

)

, as in Case 1, or the form
(

a
1

)

, as in Case

2. Then the map fM : K2 × K2 → K, defined by fM : (v, w) 7→ vMwt is a
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Hermitian form and (SL2)α(k) = SU2(K, fM ):

g ∈ (SL2)α(k)⇔ gσασ = g

⇔ h−1gh = g

⇔ h−1ππ−1gππ−1h = g

⇔M−1g−tM = g

⇔ gMgt =M

⇔ fM (vg, wg) = vgMgtwt = vMwt = fM (v, w)

for all v, w ∈ K2

⇔ g ∈ SU2(K, fM ).

Recall that SL2(k) is isomorphic to (SL2)α(k) = SU2(K, fM ) if, and only if, the

cocycle defined by h is a coboundary.

We now present a different point of view for h =
(

1
c

)

, as in Case 1:

(SL2)α(k) =
{

g ∈ SL2(K) | g = gσασ = gσh
}

=

{(

a11 a12
a21 a22

)

∈ SL2(K) |
(

a11 a12
a21 a22

)

=

(

a22 c−1a21
ca12 a11

)}

=

{(

a11 a12
a21 a22

)

∈ SL2(K) | a22 = a11, a21 = ca12

}

=

{(

a11 a12
ca12 a11

)

∈ SL2(K)

}

.

We can describe this group in terms of quaternion algebras:

Choose c ∈ k∗. Then the set of all 2× 2 matrices over K of the form
(

a b

cb a

)

form a quaternion algebra Q = Q(K/k, c) over k (cf. [39, Section 9]). If we

identify K with its image in Q under the map a 7→ diag(a, a) and set λ :=
(

1
c

)

,

then we can write every element of Q as a+ bλ. There is a unique extension of

σ to an involution (antiautomorphism of order 2) of Q, such that λ = −λ. The
norm of an element in Q is given by

N(a+ bλ) = (a+ bλ)(a+ bλ) = (a+ bλ)(a− bλ) = aa− cbb.

Hence (SL2)α(k) is the set of all elements of the quaternion algebra Q with

norm 1, i.e., (SL2)α(k) = SL1(Q).

The quaternion algebra is a division algebra if, and only if, c 6∈ N(K). If

c ∈ N(K), then Q ' M2×2(k). This leads to the two cases: SL1(Q), Q a

quaternion division algebra and SL1(M2×2(k)) ' SL2(k).
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4.5.2 A twisted form of E6 of rank 1: 2E35

6,1
(k)

Let R = (X,Φ, Y,Φ?) be the adjoint root datum of type E6 and G(k) = E6(k)

be given by the Steinberg presentation. Let Π be a fundamental system with

the following Dynkin diagram D:

�� �� �� �� ��

��

r1

r2

r3 r4 r5 r6

Denote the highest root by r∗. We also use the notation acdef
b

for the root

ar1 + br2 + · · · + fr6. In this section, we compute relative root elements and

root subgroups for the twisted group of Lie type corresponding to the Tits index
2E356,1(k):

�� ��

��

��

��

��

r1

r2

r3

r4

r5 r6

This form is known not to exist over finite fields, over p-adic fields, or over R.

There are number fields k over which this form exists (see for example Selbach

[29]). We compute 2E356,1(k)
† as a subgroup of E6(K), where K is a quadratic

extension of k. Denote by γ the non-trivial automorphism in Γ := Gal(K: k).

The cocycle

First we compute a cocycle of Γ on AutK(G) defining a twisted form corre-

sponding to the above index. As described in Section 4.2, this amounts to find

a Weyl group element w, such that τw has the needed action on Φ and Π, where

τ is the non-trivial symmetry of D. Recall the notation τ̇ from Section 3.3. Next

we have to find a torus element h, such that

α := [[τ̇ ẇh]]

is a cocycle.

We know from the Tits index that Π0 = {r1, r3, . . . , r6} and Φ0 is the sub-

system of Φ spanned by Π0 of type A5. The Weyl element w = w0(Φ0) has the

required properties for the Γ-action on Φ. The orbits of Γ on Φ, that sum up

to 0 and those contained in Φ+ are given by

Oα(r) = {r,−r} if r ∈ Φ0,

Oα(r∗) = {r∗},
Oα(r) = {r, r∗ − r} if r ∈ Φ+ \ Φ0 and r 6= r∗.
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The relative root system Ψ = {±δ,±2δ} has type BC1 with

π−1(δ) =
˙⋃

r∈Jδ

Oα(r),

π−1(2δ) = Oα(r∗)

where Jδ = { 00000
1
, 00100

1
, 01100

1
, 00110

1
, 11100

1
}. We denote the elements of Jδ by

β1, . . . , β5 and set βi := βτwi−5 for i = 6, . . . , 10.

Now that we have the required actions of Γ on Φ and Π, we have to choose

a torus element h =
∏6
i=1 hαi(si), where si ∈ k∗. For α to be a cocycle, γαγ

must have order 2, which is true if, and only if,

s22s
2
3s
3
4s
2
5s6 = −1.

Hence s1 is determined by s2, . . . , s6:

s1 = −(s22s23s34s25s6)−1.

By construction, σ leaves the subgroup A5(K) := 〈Xr(K) | r ∈ Φ0〉 of G(K)

invariant and the restriction of σ to this subgroup is also an algebraic automor-

phism defining a cocycle.

Further we assume the existence of s1, s2, s3, . . . , s6 ∈ k∗, such that the group

(A5)α(k) is an anisotropic twisted group of Lie type. Basically, this means that

the standard representation of the torus element
∏

i∈I hαi(si) in SL6(K) defines

an anisotropic unitary form q on K6 and (A5)α(k) ' SU6(k, q).

Relative root elements

We use methods from Section 4.3. By (4.5) and (4.7), we have

x2δ(t) = u2δ(t) =
∏

xr∗(tr∗)
γαγ = xr∗(tr∗ − tγr∗).

For the root δ, we first compute

uδ(t) =
∏

r∈Jδ

∏

xr(tr)
γαγ

and c(t) can be computed, but we omit the details. To compute v(t), we intro-

duce constants

cr =

6
∏

i=1

s
〈r,r?i 〉
i ∈ k∗.

Then for t ∈ K:

xr(t)
αγ = xrτw(Nr,rτw · cr · t),

xr∗(t)
αγ = xr∗(cr∗ · t).
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In characteristic not 2, we introduce a k-valued bilinear form g : Vδ × Vδ → k:

g(t, u) :=

10
∑

i=1

cβitβiu
γ
βi
.

Then a solution v(t) for the equation (4.8) is

v(t) = − 12g(t, t)

and the relative root element is

xδ(t) = uδ(t)v(t).

4.5.3 The groups 3D4,1(k) and 6D4,1(k)

Let R = (X,Φ, Y,Φ?) be the adjoint root datum of type D4. In this section, we

compute the root elements of the twisted groups of Lie type corresponding to

the Tits diagrams 3D4,1 and 6D4,1, both corresponding to the following figure:

��

��

��

��r2

r1

r3

r4

Both these groups were of recent interest, see for example [24].

We start by computing the relative root systems and the root orbits under

the actions of Γ on Φ and Π as described in Section 4.1. We use the notation

of that section and denote the highest root by r∗.

The group of all its symmetries of the Dynkin diagram is D = 〈τ3, τ2〉, where
τ3 = (r1, r3, r4) and τ2 = (r3, r4). Recall the notation τ̇ from Section 3.3.

Type 3D4,1

If Γ has order 3, then there is no cocycle in Z1(Γ, DW ) with the properties

Oα(r2) ⊂ Φ+,
∑

γ∈Γ

rγi = 0 for i = 1, 3, 4.

The smallest possible field extension, for which such a cocycle exists, has cyclic

Galois group of order 6, which we consider in the following construction. Let

Γ = 〈γ〉.
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Then the cocycle α = [[τ3s1s3s4]] admits the above Tits index. The Γ-orbits

are:

Oα(r1) = {±r1,±r3,±r4},
Oα(r2) = {r2, r1 + r2 + r3 + r4},

Oα(r1 + r2) = {r2 + r1, r2 + r3, r2 + r4,

r2 + r1 + r3, r2 + r2 + r4, r2 + r3 + r4},
Oα(r∗) = {r∗}.

The [Γ]-orbits are:

[O]α(r1) = {r1, r3, r4},
[O]α(r2) = {r2},

of which only the latter is distinguished. We have

X0 = 〈r1, r3, r4〉, Π0 = {r1, r3, r4}, Φ0 = {±r1,±r3,±r4}.

The relative root system is Ψ = {±δ,±2δ} of type BC1 with the fundamental

system ∆ = {δ}. We set Jδ = {r∗} and J2δ = {r2, r1 + r2}. Let r5 := r1 + r2.

The [Γ]-action is not faithful. The kernel of the action is 〈γ3〉 and the order

of the quotient is 3. Thus the index is of type 3D4,1.

The cocycle α ∈ Z1(Γ, NA(T )) now has the form [[τ̇3n1n3n4h]], where h is

conjugation by a torus element. The torus element h1(−1)h3(−1)h4(−1) makes

α is a cocycle. By (4.5) and (4.7), we have

x2δ(t) = u2δ(t) =
∏

xr∗(tr∗)
γαγ

= xr∗(tr∗ − tγr∗ + tγ
2

r∗ − t
γ3

r∗ + tγ
4

r∗ − t
γ5

r∗ ).

For the root δ, we first compute

uδ(t) =
∏

r∈Jδ

∏

xr(tr)
γαγ ,

c(t) = xr∗(tr2t
γ
r2 + tr2t

γ3

r2 + tr2t
γ5

r2 − tr5t
γ3

r5 ).

In characteristic not 2, a solution v(t) for the equation (4.8) is

v(t) = xr∗

(

1
2

(

2
∑

i=0

(−1)i(tr2tγ
3

r2 )
γi −

2
∑

i=0

(−1)i(tr5tγ
3

r5 )
γi

+

4
∑

i=0

(−1)i(tr2tγr2)
γi + tr2t

γ5

r2

)

)

and the relative root element is

xδ(t) = uδ(t)v(t).
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Type 6D4,1

Consider a Galois extension K of k with Galois group isomorphic to Σ3 and gen-

erators γ3, γ2 of orders 3 and 2 respectively. Then the cocycle α = [[τ3, τ2s1s3s4]]

admits the above Tits index. The Γ- and [Γ]-orbits are the same as in the case

of 3D4,1, as are X0, Π0 and Φ0. The relative root system is Ψ = {±δ,±2δ}
of type BC1 with the fundamental system ∆ = {δ}. We set Jδ = {r∗} and

J2δ = {r2, r5}, as above.
This time the [Γ]-action is faithful, thus the index is of type 6D4,1.

The cocycle α ∈ Z1(Γ, NA(T )) now has the form [[τ̇3h, τ̇2n1n3n4h
′]], where

h and h′ are conjugations by torus elements. The torus elements h = 1 and

h′ = h1(−1)h3(−1)h4(−1) make α a cocycle. By (4.5) and (4.7), we have

x2δ(t) = u2δ(t) =
∏

xr∗(tr∗)
γαγ

= xr∗(t∗ − tγ2
∗ − tγ2γ3

∗ − tγ3γ2
∗ + tγ3

∗ + tγ3γ3
∗ ).

For the root δ, we first compute

uδ(t) =
∏

r∈Jδ

∏

xr(tr)
γαγ ,

and two terms c(t) for the two generators of Γ:

cγ2
(t) = xr∗(tr2t

γ2
r2 − t

γ2γ3
r2 tγ3

r2 − t
γ2γ3
r2 tγ3γ3

r2 − tγ3γ2
r2 tγ3

r2

− tγ3γ2
r2 tγ3γ3

r2 − tr5tγ2
r5 + tγ2γ3

r5 tγ3
r5 + tγ3γ2

r5 tγ3γ3
r5 ),

cγ3
(t) = xr∗(tr2t

γ2
r2 + tr2t

γ2γ3
r2 + tr2t

γ3γ2
r2 − tγ2

r2 t
γ3
r2 − t

γ2γ3
r2 tγ3

r2

− tγ3γ2
r2 tγ3

r2 − tr5t
γ2
r5 + tγ2γ3

r5 tγ3
r5 ).

In characteristic not 2, a simultaneous solution v(t) for the equation system

cγ2
(t) = v(t)v(t)−γ2αγ2 , cγ3

(t) = v(t)v(t)−γ3αγ3

is

v(t) = xr∗

(

1
2

(

a− tγ2
r2 t

γ2
3
r2 − tγ2γ3

r2 t
γ2
3
r2 − tγ3γ2

r2 t
γ2
3
r2 + tγ3γ2

r5 t
γ2
3
r5

)

)

,

where a is the field element occurring in cγ3
(t), and the relative root element is

xδ(t) = uδ(t)v(t).

4.5.4 2A7(k) inside E7(k)

This section is devoted to the construction of a subgroup of E7(k), which is

isomorphic to the twisted group of Lie type 2A7(k). This subgroup is an open

case in [21, Section 4.1]
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Consider the usual embedding A7(k) ⊆ E7(k), that is, the map

y1(t) 7→ x−r∗(t) y2(t) 7→ x1(t)

yi(t) 7→ xi(t) for i = 3, . . . , 7,

where yi(t) are root elements of A7(k), xi(t) the ones of E7(k) and r∗ is the

highest root in the root system of type E7. Denote by w0(A7) and w0(E7) the

longest elements of the Weyl groups of A7(k) and E7(k), respectively, and set

w := w0(A7)w0(E7).

Then conjugation by ẇ induces the standard diagram automorphism on A7(k)

and α = [[ẇ]] is an inner cocycle on E7(k) but an outer cocycle on A7(k) and
2A7(k) = (A7)α(k).

Using Galois cohomology we have

2A7(k) = (A7)α(k) ⊆ (E7)α(k) ' E7(k),

where the last isomorphism is a conjugation given by Lang’s Theorem 3.17 and

Proposition 3.13. Since ẇ is always defined over the prime field, and has order

4, a conjugating element a can always be found in E7(k
4) by [11, Proposition

2.1], due to the author and Scott Murray.

For k = F5, the element a given in Figure 4.1 was computed by Scott Murray

using methods from [11]. The same method would work for other finite fields of

characteristic > 3.
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Figure 4.1: Element conjugating (E7)α(F5) to E7(F5).
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The element is given as a word in Steinberg presentation, written in the unique
Bruhat decomposition, ξ being a primitive element of F54 .
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Chapter 5

Maximal tori and Sylow

subgroups

Let G be a reductive algebraic group defined over the field k and Γsep :=

Gal(ksep: k). A twisted torus of G is a twisted form Tα of the standard maxi-

mal torus T ⊆ G, where α ∈ Z1(Γsep, NAut(G)(T )). In this section, we give a

classification of all twisted tori of G using the methods of the previous chap-

ters. In case k is finite, we compute them explicitly. For this computation,

we need a set of conjugacy class representatives of the Weyl group of Gβ for

β ∈ Z1(Γsep, NAut(G)(T )). The conjugacy classes of Weyl groups are known

(see, for example, [22, 8]) and, in [14], algorithms for their computation are

described.

5.1 Twisted maximal tori

In this section, we provide a classification of all twisted tori ofG(k) and, for finite

fields k, we compute them explicitly. It is well known that all the maximal tori

of G are conjugate in G (Theorem 3.6). We are interested the G(k)-conjugacy

classes of the groups of k-rational points of maximal k-tori of G.

We use the cohomology of Γsep on DW , where D is the automorphism group

of the Dynkin diagram and W the Weyl group of G. Therefore, we retain

the notation of Section 3.5.2: Let T be a maximal k-split torus of G and let

R = (X,Φ, Y,Φ?) be the root datum of G with respect to T . Write elements of

G as words in the Steinberg generators, as described in Section 3.2. Let N be

the normaliser of T in G. The Weyl group W is isomorphic to N/T . We have

standard representatives ẇ ∈ N for each w ∈ W , which are invariant under all

field automorphisms, thus contained in G(k). LetD be the automorphism group

of the Dynkin diagram D of G and identify D with the group of automorphisms

induced on the root datum R of G. Then Aut(R) = DW .
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First we consider cocycles that have values in NAut(G)(T ). Remember that,

for a twisted form Gβ of G, the cocycle β can be assumed to have values in

NAut(G)(T ) by Springer’s Lemma 3.15. Thus, Tβ ≤ Gβ is a maximal torus of

Gβ and all its twisted forms are obtained by cocycles with values in NAut(G)(T ).

That is, we obtain in one step not only all twisted tori of G, but also all twisted

tori of all twisted forms of G.

Note that in the following proposition we do not make any restrictions on the

choice of k.

5.1 Proposition.

The set of representatives of NAut(G)(T )-conjugacy classes of twisted tori of G

is
⋃

Γ

{ Tα | α ∈ iΓ
(

R(Γ)
)

},

where the union is taken over all subgroups of DW that occur as Galois groups

of a Galois extension of k, iΓ is as in Lemma 3.19, and R(Γ) is a set of repre-

sentatives of equivalence classes of faithful representations of Γ on R.

Proof. The NAut(G)(T )-conjugacy classes of twisted tori are classified by ele-

ments of H1(Γsep, NAut(G)(T )).

Let N be the normaliser of T in G andW = N/T be the Weyl group. If n1, n2
are two elements of N with n1T = n2T , then conjugation by n1 and by n2 give

the same automorphism of T . Thus, NAut(G)(T )/CAut(G)(T ) ' D′N/T ' DW ,

where D′ is the group of diagram automorphisms.

Now Γsep acts trivially on NAut(G)(T ), and so on DW , and thus

H1(Γsep, NAut(G)(T )) = H1(Γsep, DW ).

The rest follows from Proposition 3.20. ¤

Note that for non-isomorphic field extensions K1 and K2 of k that have iso-

morphic Galois groups Γ := Gal(K1: k) ' Gal(K2: k), and for ρ ∈ iΓ(R(Γ)), the
groups of rational points Tρ(K1) and Tρ(K2) are not isomorphic in general.

5.2 Corollary.

If k is finite, a set of representatives of the NAut(G)(T )-conjugacy classes of

twisted tori of G is given by

{Tα | α = [[w]], w ∈ R},

where R is a set of conjugacy class representatives of elements of DW .

Proof. For finite fields, the finite Galois groups are always cyclic. Let Γ = 〈γ〉
be a cyclic group and α,β : Γ → DW two faithful representations of Γ on
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R. Then o(αγ) = o(γ) and α,β are equivalent if, and only if, αγ and βγ are

conjugate in DW .

Thus, equivalence classes of faithful representations of Γ correspond to con-

jugacy classes of elements of DW of order |Γ|. And

⋃

Γ

{ Tα | α ∈ R(Γ) } = { Tα | α = [[w]], w ∈ R },

where R is a set of conjugacy class representatives of elements of DW . ¤

If k is finite, we also write Tw instead of T[[w]] for w ∈ DW .

5.2 Rational maximal tori

In this section, we describe the rational maximal tori of all twisted and un-

twisted forms Gβ(k) of G(k) and, over finite fields, we classify and compute

them explicitly.

5.3 Lemma.

Let α,β ∈ iΓ
(

R(Γ)
)

, with the notation of Proposition 5.1. These cocycles

naturally embed in Z1(Γ,AutK(G)). If they are cohomologous as cocycles in

Z1(Γ,AutK(G)), then Tα(k) is conjugate in AutK(G) to the group of rational

points of a maximal torus of Gβ(k).

Proof. Suppose, α is cohomologous to β. That is, there is an a ∈ AutK(G)

such that αγ = a−γβγa for all γ ∈ Γ. Then

Tα(k)
a−1 ⊆ Gα(k)

a−1

= Gβ(k)

by Proposition 3.13. ¤

If a ∈ G(k̄) is as in this proof, then Tα(k)
a−1

is called a rational maximal torus

of Gβ(k).

An important special case is given by the following lemma, which, together

with Corollary 5.2, provides a classification of all rational maximal tori of twisted

and untwisted finite groups of Lie type.

Denote the Weyl group of Gβ by Wβ.

5.4 Lemma.

Let k be finite. Define cocycles β = [[τ ]] for τ ∈ D and α = [[τw]] for some

w ∈ Wβ as in Corollary 5.2. Then Tα(k) is conjugate in Gβ(k̄) to a rational

maximal torus of Gβ(k).
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Proof. We apply Lang’s theorem to the group Gβ. By Lang’s theorem, applied

to the group Gβ, [[w]] is a coboundary in Z1(Γ, Gβ); thus

ẇ = a−γβγ · 1 · a = τ−1a−γτa

and the intertwining element a is contained in Gβ(k̄). Now α = [[τw]] is coho-

mologous to β as elements of Z1(Γ,Aut(G)) with the same intertwining element

a. The result now follows from the previous lemma. ¤

Note that, the lemma remains true with k̄ replaced by a finite extension of k.

An algorithm for the construction of the conjugator a is given in [11].

Now we summarise Corollary 5.2 and Lemma 5.4 as

5.5 Corollary.

Let k be a finite field and let β = [[τ ]] for some τ ∈ D. A set of representatives

of the Gβ(k)-conjugacy classes of groups of k-rational points of maximal tori of

Gβ is given by

{T awα (k) | α = [[τw]], w ∈ R},

where R is a set of conjugacy class representatives in Wβ , and aw is the inter-

twining element from the previous lemma, i.e.,

ẇ = a−γτw aw.

5.3 Generators of twisted tori

In this section, we compute the generators of twisted tori explicitly in the case

k is finite. Let the notation be as in the previous section. Denote by ` the

semisimple rank of G. Note that methods from this and the next section do not

apply for twisted groups of types 2B2,
2G2 and 2F4, since the map induced by

the Dynkin diagram symmetry on the root lattice is not a linear map.

5.6 Theorem.

Let w be an element of DW with order r. Let q := |k|, and let K be the field

extension of k of degree r in k̄. Let Γ := Gal(K: k) = 〈γ〉. Set m := |K∗| =
qr − 1. Let M be the matrix of the action of w? on Y and let ξ be a primitive

element of K. Then

Tw(k) =
〈

(ξa1 , . . . , ξa`) | (a1, . . . , a`) ∈ B
〉

,

where B is a generating set of the fixed-point space in Z`
m of qM , interpreted

as a matrix over Zm.
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Proof. Let t ∈ T (K). Then, in the notation of Section 3.2,

t =
∏̀

i=1

α?i ⊗ xi

with xi ∈ K∗. Moreover, for all i = 1, . . . , ` we have xi = ξai for some ai ∈ Zm.

By [12, 5.2]

tẇ =
∏̀

j=1

α?j ⊗
(

∏̀

i=1

x
Mij

i

)

=
∏̀

j=1

α?j ⊗
(

∏̀

i=1

ξaiMij

)

.

Since γ : x 7→ xq in our case,

tγẇ =
∏̀

j=1

α?j ⊗
(

∏̀

i=1

ξaiqMij

)

=
∏̀

j=1

α?j ⊗ ξ

(

∑̀

i=1

aiqMij

)

.

Thus,

tγẇ = t ⇐⇒
∑̀

i=1

aiqMij = aj for all j = 1, . . . , `

⇐⇒ (a1, . . . , a`)qM = (a1, . . . , a`).

That is,

Tw(k) =
{

(ξa1 , . . . , ξa`) | (a1, . . . , a`) ∈ Z`m, (a1, . . . , a`)(qM − I) = 0
}

. (5.1)

¤

Note that for different primitive elements of K this fixed-point space is the

same: For, let ξ, ζ be two primitive elements in K and t = (ξa1 , . . . , ξa`) =

(ζb1 , . . . , ζb`). Then ζ = ξc for some invertible c ∈ Zm and the exponent vector

(a1, . . . , a`) is an eigenvector of qM to the eigenvalue 1 if, and only if, the

exponent vector (b1, . . . , b`) is one as well:

(b1, . . . , b`)qM = c(a1, . . . , a`)qM = c(a1, . . . , a`) = (b1, . . . , b`).

5.4 Computing orders of the maximal tori

Let the notation be as in the previous sections. The maximal tori of G are given

by Corollary 5.2 and Theorem 5.6. The maximal tori are abelian groups which

can be written as a direct product of cyclic subgroups. Given the type of the

root datum of G and an element w ∈ DW , we now compute the orders of the

cyclic factors of Tw(k), as polynomials in q.
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This is done in essentially the same way as in the proof of the Theorem

5.6. We interpret q, the order of k, as an indeterminate, so the Equation (5.1)

becomes
{

(ξa1 , . . . , ξa`)
∣

∣

∣
(a1, . . . , a`) ∈

(

Z[q]/(qr − 1)
)`
,

(a1, . . . , a`)(qM − I) = 0
}

.

NowB := qM−I is a matrix over Z[q]/(qr−1) and the order of the solution space

of the equation XB = 0 is exactly the order of Tw(k), where X ∈
(

Z[q]/(qr −
1)
)`
. We can view B as a matrix over Q[q]/(qr − 1). Using Magma we obtain

the Smith form S of B by elementary matrix transformations. The order of the

solution space of XS = 0 is the same as the order of Tw(k). The order of the

solution space of XS = 0 can now be read from the diagonal entries of S: Set

si :=

{

qr − 1 if Sii = 0,

Sii otherwise

and obtain

Tw(k) =
∏̀

i=1

Csi ,

where si is the i-th diagonal entry of S and Ca is a cyclic group of order a.

A priori, the Smith form S is a diagonal matrix over Q[q]/(qr − 1). Every

diagonal entry has the form si = fi/gi with fi ∈ Z[q]/(qr − 1) and gi ∈ Z. First

we replace every zero on the diagonal by qr−1 and then multiply the last row by
∏`−1
i=1 g

−1
i and all other rows by gi, thus preserving the determinant and making

all but the last entry have integral coefficients. But the determinant of the

matrix obtained is the same as the determinant of B, which is the characteristic

polynomial of the matrixM , hence a polynomial with integral coefficients. Now

the last entry also has integral coefficients. All diagonal entries of the matrix

obtained are factors of the characteristic polynomial.

The results for exceptional types are given in Appendix A.

Raghunathan [25] uses similar techniques to describe the twisted tori, al-

though only in the quasisplit case.

5.7 Example (A1 = SL2).

G(k) = SL2(k), k = GF (q), W = 〈w〉 ' C2. Standard torus:

T (k) = T1(k) = {
( a

a−1

)

| a ∈ k∗} ' k∗ ' Cq−1.

Twisted torus: o(w) = 2, thus K = GF (q2), Γ = Gal(K: k) = 〈γ〉. Now

Tw(k) = {t ∈ T (K) | tγw = t} = {
(

a
aγ
)

∈ SL2(K)}
' {a ∈ K∗ | aaγ = 1} ' Cq+1.
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Examples for types G2, F4, E6, E7, E8,
2A5,

3D4 and 2E6 are stated in

Appendix A.

5.5 Computation of Sylow p-subgroups

We recall that G is a reductive linear algebraic group defined over the field k,

which we assume to be finite of order q in this section. The aim of this section is

to construct a “standard” Sylow p-subgroup of G(k) for every prime p dividing

the order of G(k).

If the prime p is the characteristic of the field k, the maximal unipotent sub-

groups are precisely the Sylow p-subgroups and have order qN , where N is the

number of positive roots of the underlying root system. Using the Steinberg pre-

sentation, we already have a standard choice of a maximal unipotent subgroup:

the subgroup U(k).

From now on we assume that p is different from the characteristic of k. Let

S be a Sylow p-subgroup of G(k). Then S is nilpotent and each element of S is

semisimple. Hence, by Corollary [31, 5.19],

S ≤ NG(k)(Tw(k)) (5.2)

for some (not necessarily unique) w ∈W and we have

NG(k)(Tw(k))/Tw(k) ' CW (w)

and

|NG(k)(Tw(k))| = |Tw(k)| · |CW (w)|.

In case p - |CW (w)|, we have S ≤ Tw(k) and we call the prime p nice.

5.8 Algorithm.

Note that when p is nice, steps 3 and 8 can be omitted.

0. Let pm := |G(k)|p. (A formula for |G(k)| can be found, e.g., in [9])

1. Let R be a set of conjugacy class representatives of W .

Using [14, Algorithm H] by Geck and Pfeiffer, each representative has the

shortest length among all elements of its conjugacy class.

2. Replace R by the set

{

w ∈ R
∣

∣ pm divides |NG(k)(Tw(k))|
}

. (5.2’)

(Otherwise a contradiction to (5.2).)
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3. If p is not nice, select those Weyl elements for which S ∩ Tw(k) is largest.
That is, set u := maxw∈R{|Tw(k)|p} and replace R by the set

{

w ∈ R
∣

∣|Tw(k)|p = u
}

.

4. Replace R by the set of elements w ∈ R having the shortest length. (This

leads to a “maximally split” torus.)

5. Let w be the lexicographically smallest element of R.

6. Compute [s1, . . . , s`] such that Tw(k) =
∏`
i=1 Csi using the algorithms

presented in Section 5.4.

7. For i = 1, . . . , `, let gi be a generator of Csi and si = oi · pxi with p - oi.

Then

S ∩ Tw(k) = 〈 goii | i = 1, . . . , ` 〉.

If S ⊆ Tw(k), we are done (this is always true if p is nice and in a few

cases if p is not nice).

8. Suppose S 6⊆ Tw(k). To simplify notation, denote the order of a group

element g by |g|.
Let po = |S|/|S ∩ Tw(k)|. Find a subgroup H of CW (w) of order po, which

is contained in a p-Sylow subgroup of CW (w). Suppose H is generated by

the set X. Set qx := |ẋ|/|x|. By Tits [36], we have qx = 2`x , where `x ≥ 0

is an integer.

In case p 6= 2, replace ẋ by mx := ẋqx . Then mx has the same order as x

and is a representative of xqx . But since gcd(|x|, qx) = 1, the elements x

and xqx generate the same cyclic subgroup.

In case p = 2, the order of the element ẋ|x| is a power of 2 and it is a torus

element, thus contained in |S ∩ Tw(k)|. Set mx := ẋ in this case.

Now S = 〈(S ∩ Tw(k)) ∪ {mx | x ∈ X}〉. ¤

Since we have standard representatives for every conjugacy class of W by

using [14, Algorithm H], and by Steps 4 and 5, this algorithm constructs a

“standard” Sylow subgroup.
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Appendix A

Decomposition of orders of

maximal tori

In this appendix we present the tables of the decomposed orders of maximal

tori of twisted and untwisted reductive linear algebraic groups defined over

finite fields. Note that the types 2B2,
2G2 and 2F4 are not included here, since

the permutation on Φ induced by the Dynkin diagram symmetry is not a linear

map and thus our method doesn’t work.

A.1 How to read the tables

Each row contains the orders o1, . . . , on of cyclic components of the torus Tw(q) '
Co1 × · · · × Con , where w ∈ W is given as a word in the simple reflections. For

example, in the last line of Table A.1, the Weyl element is

w := s1s2s1s2s1s2,

where W = 〈s1, s2〉 is the Weyl group of G2(q) and

Tw(q) ' Cq+1 × Cq+1.

The generators of the Weyl groups are ordered as shown in the following

Dynkin diagrams. The numbering of fundamental roots is as in Table 3.1.

Computation of the decompositions of all exceptional types takes a total of

about 8 seconds on an Intel Pentium III 1.6GHz processor.
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A.2 Tables

Table A.1: Maximal tori in G2(q)

Orders Weyl word

q − 1, q − 1

q2 − 1 1

q2 − 1 2

q2 − q + 1 12

q2 + q + 1 1212

q + 1, q + 1 121212

Table A.2: Maximal tori in F4(q)

Orders Weyl word

q − 1, q − 1, q − 1, q − 1

q − 1, q − 1, q2 − 1 1

q − 1, q − 1, q2 − 1 3

q − 1, q3 − 1 12

q2 − 1, q2 − 1 13

q − 1, q3 − q2 + q − 1 23

q − 1, q3 − 1 34

q4 − q3 + q − 1 123

q4 + q3 − q − 1 124

q4 + q3 − q − 1 134

q4 − q3 + q − 1 234

q4 − q2 + 1 1234

q2 − 1, q − 1, q + 1 2323

q2 + 1, q2 − 1 12323

q2 + 1, q2 − 1 23234

q4 + 1 123234

q2 − q + 1, q2 − q + 1 12132343

q + 1, q + 1, q2 − 1 121321323

q + 1, q + 1, q2 − 1 232343234

q + 1, q3 + 1 1213213234

q + 1, q3 + 1 1232343234

q2 + 1, q2 + 1 121321343234

q + 1, q3 + q2 + q + 1 12132132343234

q2 + q + 1, q2 + q + 1 1213213432132343

Continued on next page
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Table A.2 – continued from previous page

Orders Weyl word

q + 1, q + 1, q + 1, q + 1 121321323432132343213234

Table A.3: Maximal tori in E6(q)

Orders Weyl word

q − 1, q − 1, q − 1, q − 1, q − 1, q − 1

q − 1, q − 1, q − 1, q − 1, q2 − 1 1

q − 1, q − 1, q2 − 1, q2 − 1 12

q − 1, q − 1, q − 1, q3 − 1 13

q − 1, q − 1, q4 + q3 − q − 1 123

q2 − 1, q2 − 1, q2 − 1 125

q − 1, q − 1, q4 − 1 134

q − 1, q5 − 1 1234

q2 − 1, q4 + q3 − q − 1 1235

q2 − 1, q4 − 1 1245

q3 − 1, q − 1, q2 + q + 1 1356

q2 − 1, q4 − q3 + q − 1 2345

q6 − q4 + q2 − 1 12345

q6 + q5 − q − 1 12346

q2 + q + 1, q4 + q3 − q − 1 12356

q2 + q + 1, q4 − q3 + q − 1 13456

q6 + q5 − q3 + q + 1 123456

q3 − q2 + q − 1, q3 − q2 + q − 1 234254

q6 − q5 + q4 − q2 + q − 1 1234254

q6 + q3 + 1 12342546

q2 − q + 1, q4 + q2 + 1 123142345465

q + 1, q + 1, q2 − 1, q2 − 1 234234542345

q + 1, q + 1, q4 − 1 1234234542345

q + 1, q5 + q4 + q3 + q2 + q + 1 12342345423456

q2 + q + 1, q2 + q + 1, q2 + q + 1 123142314542314565423456

Table A.4: Maximal tori in E7(q)

Orders Weyl word

q − 1, q − 1, q − 1, q − 1, q − 1, q − 1, q − 1

q − 1, q − 1, q − 1, q − 1, q − 1, q2 − 1 1

q − 1, q − 1, q − 1, q2 − 1, q2 − 1 12

Continued on next page
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Table A.4 – continued from previous page

Orders Weyl word

q − 1, q − 1, q − 1, q − 1, q3 − 1 13

q − 1, q − 1, q − 1, q4 + q3 − q − 1 123

q − 1, q2 − 1, q2 − 1, q2 − 1 125

q − 1, q − 1, q − 1, q4 − 1 134

q − 1, q2 − 1, q2 − 1, q − 1, q + 1 257

q − 1, q − 1, q5 − 1 1234

q − 1, q2 − 1, q4 + q3 − q − 1 1235

q − 1, q2 − 1, q4 − 1 1245

q + 1, q2 − 1, q2 − 1, q2 − 1 1257

q − 1, q3 − 1, q3 − 1 1356

q − 1, q2 − 1, q4 − q3 + q − 1 2345

q − 1, q4 − 1, q − 1, q + 1 2457

q − 1, q6 − q4 + q2 − 1 12345

q − 1, q6 + q5 − q − 1 12346

q3 − 1, q4 + q3 − q − 1 12356

q + 1, q2 − 1, q4 + q3 − q − 1 12357

q + 1, q2 − 1, q4 − 1 12457

q − 1, q6 − 1 13456

q − 1, q6 + q5 + q4 − q2 − q − 1 13467

q + 1, q2 − 1, q4 − q3 + q − 1 23457

q − 1, q3 − 1, q3 + 1 24567

q7 − q5 − q4 + q3 + q2 − 1 123456

q + 1, q6 − q4 + q2 − 1 123457

q7 + q6 + q5 − q2 − q − 1 123467

q + 1, q6 + q5 + q4 − q2 − q − 1 123567

q + 1, q6 − 1 124567

q7 − 1 134567

q − 1, q3 − q2 + q − 1, q3 − q2 + q − 1 234254

q + 1, q6 − q5 + q − 1 234567

q − 1, q6 − q5 + q4 − q2 + q − 1 1234254

q7 + q6 − q4 − q3 + q + 1 1234567

q3 − q2 + q − 1, q2 + 1, q2 − 1 2342547

q7 − q6 + q4 − q3 + q − 1 12342546

q + 1, q6 − q5 + q4 − q2 + q − 1 12342547

q2 + 1, q5 − q4 + q − 1 23425467

q7 + 1 123425467

q3 + 1, q4 − q3 + q − 1 2342546547

q7 − q5 + q4 + q3 − q2 + 1 12342546547

Continued on next page
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Table A.4 – continued from previous page

Orders Weyl word

q2 − q + 1, q5 − q4 + q3 − q2 + q − 1 123142345465

q + 1, q2 − 1, q2 − 1, q − 1, q + 1 234234542345

q7 − q6 + q5 + q2 − q + 1 1231423454657

q + 1, q4 − 1, q − 1, q + 1 1234234542345

q + 1, q + 1, q + 1, q2 − 1, q2 − 1 2342345423457

q + 1, q3 − 1, q3 + 1 12342345423456

q + 1, q + 1, q + 1, q4 − 1 12342345423457

q + 1, q + 1, q + 1, q4 − q3 + q − 1 23423454234567

q + 1, q + 1, q5 + 1 123423454234567

q3 + q2 + q + 1, q2 + 1, q2 − 1 2342345423456576

q2 + 1, q5 + q4 + q + 1 12342345423456576

q2 − q + 1, q2 − q + 1, q3 + 1 123142314354234654765

q + 1, q3 + 1, q3 + 1 12314231435423143546576

q2 + q + 1, q2 + q + 1, q3 − 1 123142314542314565423456

q2 + q + 1, q5 + q4 + q3 + q2 + q + 1 123142314542314565423456
7

q + 1, q + 1, q + 1, q + 1, q + 1, q2 − 1 234234542345654234567654
234567

q + 1, q + 1, q + 1, q + 1, q3 + 1 123423454234565423456765
4234567

q + 1, q3 + q2 + q + 1, q3 + q2 + q + 1 123142345423145654234567
654234567

q + 1, q + 1, q + 1, q + 1, q + 1, q + 1, q + 1 123142314354231435426542
314354265431765423143542
654317654234567

Table A.5: Maximal tori in E8(q)

Orders Weyl word

q − 1, q − 1, q − 1, q − 1, q − 1,
q − 1, q − 1, q − 1

q − 1, q − 1, q − 1, q − 1, q − 1,
q − 1, q2 − 1

1

q − 1, q − 1, q − 1, q − 1, q2 − 1,
q2 − 1

12

q − 1, q − 1, q − 1, q − 1, q − 1,
q3 − 1

13

q−1, q−1, q−1, q−1, q4+q3−
q − 1

123

Continued on next page
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Table A.5 – continued from previous page

Orders Weyl word

q− 1, q− 1, q2− 1, q2− 1, q2− 1 125

q − 1, q − 1, q − 1, q − 1, q4 − 1 134

q − 1, q − 1, q − 1, q5 − 1 1234

q−1, q−1, q2−1, q4+q3−q−1 1235

q − 1, q − 1, q2 − 1, q4 − 1 1245

q2 − 1, q2 − 1, q2 − 1, q2 − 1 1257

q − 1, q − 1, q3 − 1, q3 − 1 1356

q−1, q−1, q2−1, q4−q3+q−1 2345

q − 1, q − 1, q6 − q4 + q2 − 1 12345

q − 1, q − 1, q6 + q5 − q − 1 12346

q − 1, q3 − 1, q4 + q3 − q − 1 12356

q2 − 1, q2 − 1, q4 + q3 − q − 1 12357

q2 − 1, q2 − 1, q4 − 1 12457

q − 1, q − 1, q6 − 1 13456

q−1, q−1, q6+q5+q4−q2−q−1 13467

q2 − 1, q2 − 1, q4 − q3 + q − 1 23457

q − 1, q7 − q5 − q4 + q3 + q2 − 1 123456

q2 − 1, q6 − q4 + q2 − 1 123457

q − 1, q7 + q6 + q5 − q2 − q − 1 123467

q2 − 1, q6 + q5 − q − 1 123468

q2 − 1, q6 + q5 + q4 − q2 − q − 1 123567

q4 + q3 − q − 1, q4 + q3 − q − 1 123568

q2 − 1, q6 − 1 124567

q − 1, q7 − 1 134567

q4 − 1, q4 − 1 134678

q− 1, q− 1, q3 − q2 + q− 1, q3 −
q2 + q − 1

234254

q2 − 1, q6 − q5 + q − 1 234567

q−1, q−1, q6−q5+q4−q2+q−1 1234254

q8 − q6 − q5 + q3 + q2 − 1 1234567

q8+q7−q6−2q5+2q3+q2−q−1 1234568

q8 + q7 − q5 + q3 − q − 1 1234578

q8+ q7+ q6+ q5− q3− q2− q− 1 1234678

q8+2q7+2q6+q5−q3−2q2−2q−1 1235678

q8 + q7 − q − 1 1245678

q8 − 1 1345678

q3−q2+q−1, q2−1, q3−q2+q−1 2342547

q8 − q6 + q2 − 1 2345678

Continued on next page
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Table A.5 – continued from previous page

Orders Weyl word

q − 1, q7 − q6 + q4 − q3 + q − 1 12342546

q2 − 1, q6 − q5 + q4 − q2 + q − 1 12342547

q8 + q7 − q5 − q4 − q3 + q + 1 12345678

q3 − q2 + q − 1, q5 − q4 + q − 1 23425467

q8 − q7 + q − 1 123425467

q8 − q6 + q5 − q3 + q2 − 1 123425468

q8 + q6 − q2 − 1 123425478

q8− q7+ q6− q5+ q3− q2+ q− 1 234254678

q2 − 1, q6 − 1 1234254278

q8 − q4 + 1 1234254678

q4 − q3 + q − 1, q4 − q3 + q − 1 2342546547

q8−q7−q6+2q5−2q3+q2+q−1 12342546547

q8 − q7 + q5 − q3 + q − 1 23425465478

q3 − 2q2 + 2q − 1, q5 − q4 + q3 −
q2 + q − 1

123142345465

q3 − q2 + q − 1, q5 + q3 − q2 − 1 123142345478

q8 − q6 + q4 − q2 + 1 123425465478

q2 − 1, q2 − 1, q− 1, q+1, q− 1,
q + 1

234234542345

q8−2q7+2q6−q5+q3−2q2+2q−1 1231423454657

q2−q+1, q2−q+1, q4+q3−q−1 1231423454658

q4 − 1, q − 1, q + 1, q − 1, q + 1 1234234542345

q+1, q+1, q2− 1, q2− 1, q2− 1 2342345423457

q2 − q + 1, q6 − q3 + 1 12314234546578

q − 1, q + 1, q3 − 1, q3 + 1 12342345423456

q + 1, q + 1, q2 − 1, q4 − 1 12342345423457

q+1, q+1, q2−1, q4−q3+q−1 23423454234567

q + 1, q + 1, q6 − q5 + q − 1 123423454234567

q + 1, q + 1, q6 − 1 123423454234568

q+1, q+1, q6+q5+q4−q2−q−1 123423454234578

q + 1, q + 1, q6 − q4 + q2 − 1 234234542345678

q8 − q7 + q5 − q4 + q3 − q + 1 1231423454657658

q + 1, q7 + q6 − q4 − q3 + q + 1 1234234542345678

q2 + 1, q2 − 1, q2 + 1, q2 − 1 2342345423456576

q2 + 1, q4 + 1, q2 − 1 12342345423456576

q+1, q+1, q6−q5+q4−q2+q−1 23423454234565768

q + 1, q7 + 1 123423454234565768

q4 − q2 + 1, q4 − q2 + 1 12314234542365476548

Continued on next page
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Table A.5 – continued from previous page

Orders Weyl word

q2−q+1, q2−q+1, q4−q3+q−1 123142314354234654765

q2 + 1, q2 + 1, q4 − 1 234234542345654765876

q+1, q+1, q2−1, q4+q3−q−1 1231423143542314354278

q2 − q + 1, q6 − q5 + q3 − q + 1 1231423143542346547658

q2 + 1, q6 + 1 1234234542345654765876

q + 1, q3 + 1, q4 − q3 + q − 1 12314231435423143546576

q + 1, q7 − q5 + q4 + q3 − q2 + 1 123142314354231435465768

q2+q+1, q3−1, q−1, q2+q+1 123142314542314565423456

q4−q3+q2−q+1, q4−q3+q2−
q + 1

123142314542345654765876

q2+q+1, q2+q+1, q4−q3+q−1 123142314542314565423456 7

q2+q+1, q2+q+1, q4+q3−q−1 123142314542314565423456 8

q + 1, q7 − q6 + q5 + q2 − q + 1 123142314542314356547658 76

q2 + q + 1, q6 + q5 − q3 + q + 1 123142314542314565423456 78

q2 + q + 1, q6 + q3 + 1 1231423145423145654234567687

q4 + 1, q4 + 1 123142314354231465423476548765

q + 1, q + 1, q + 1, q + 1, q2 − 1,
q2 − 1

234234542345654234567654234567

q+1, q+1, q+1, q+1, q4−q3+
q − 1

1234234542345654234567654234567

q + 1, q + 1, q + 1, q + 1, q4 − 1 2342345423456542345676542345678

q + 1, q + 1, q + 1, q5 + 1 12342345423456542345676542345678

q3+q2+q+1, q2−1, q3+q2+q+1 123142345423145654234567654234567

q3 + q2 + q + 1, q5 + q4 + q + 1 1231423454231456542345676542345678

q2 − q+ 1, q2 − q+ 1, q2 − q+ 1,
q2 − q + 1

12314231435423145654231456765423456
78765

q2−q+1, q3+1, q+1, q2−q+1 12314231435423143542654231456765423
4567876

q4 + q2 + 1, q4 + q2 + 1 12314231435423143546542345676543187
654234567

q + 1, q + 1, q3 + 1, q3 + 1 12314231435423456542314567654231435
465768765

q3 + q2 + q + 1, q5 + q3 + q2 + 1 12314231435423145654231435676542314
35465768765

q3 + 2q2 + 2q + 1, q5 + q4 + q3 +
q2 + q + 1

12314231454231456542345676542345678
76542345678

q4+q3+q2+q+1, q4+q3+q2+
q + 1

12314231454231456542314567654231456
7876542345678

Continued on next page
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Table A.5 – continued from previous page

Orders Weyl word

q2 + 1, q2 + 1, q2 + 1, q2 + 1 12314231435423143542654234576542314
3548765423143542654765876

q + 1, q + 1, q + 1, q + 1, q + 1,
q + 1, q2 − 1

12314231435423143542654231435426543
1765423143542654317654234567

q + 1, q + 1, q + 1, q + 1, q + 1,
q3 + 1

12314231435423143542654231435426543
17654231435426543176542345678

q+1, q+1, q3 + q2 + q+1, q3 +
q2 + q + 1

12314231435423143542654231435426543
1765423143542654317876542345678

q2 + q+ 1, q2 + q+ 1, q2 + q+ 1,
q2 + q + 1

12314231435423143565423143542676542
31435426543178765423143542654317654
2345678765

q + 1, q + 1, q + 1, q + 1, q + 1,
q + 1, q + 1, q + 1

12314231435423143542654231435426543
17654231435426543176542345678765423
14354265431765423456787654231435426
543176542345678

Table A.6: Maximal tori in 2A5(q)

Orders Weyl word

q − 1, q2 − 1, q2 − 1

q − 1, q2 − 1, q2 − 1 24

q + 1, q2 − 1, q2 − 1 23432

q2 − q + 1, q3 + 1 32145

q − 1, q4 − 1 2343215

q5 − q4 + q3 − q2 + q − 1 2321432154

q + 1, q4 − 1 123214354321

q + 1, q2 − 1, q2 − 1 2132143215432

q + 1, q + 1, q + 1, q2 − 1 12132432154321

q + 1, q + 1, q + 1, q + 1, q + 1 121321432154321

Table A.7: Maximal tori in 3D4(q)

Orders Weyl word

q − 1, q3 − 1

q4 − q3 + q − 1 134

q2 − q + 1, q2 − q + 1 2134

q2 + q + 1, q2 + q + 1 21324213

Continued on next page
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Table A.7 – continued from previous page

Orders Weyl word

q4 + q3 − q − 1 213242132

q + 1, q3 + 1 121321421324

Table A.8: Maximal tori in 2E6(q)

Orders Weyl word

q − 1, q − 1, q2 − 1, q2 − 1

q − 1, q5 − q4 + q3 − q2 + q − 1 3156

q2 − q + 1, q4 − q3 + q − 1 31546

q − 1, q − 1, q2 − 1, q2 − 1 243542

q + 1, q + 1, q2 − 1, q2 − 1 343543

q − 1, q − 1, q4 − 1 1431565

q2 − 1, q2 − 1, q2 − 1 423454234

q2 − q + 1, q2 − q + 1, q2 − q + 1 134236542345

q2 − 1, q4 − 1 134315465431

q2 − 1, q2 − 1, q2 − 1 3143154316543

q + 1, q + 1, q + 1, q + 1, q2 − 1 131431543165431

q2 − 1, q4 + q3 − q − 1 1231454654231435

q2 − 1, q4 − q3 + q − 1 2342542314356542

q6 − q4 + q2 − 1 34234542314356542

q3 + q2 + q + 1, q3 + q2 + q + 1 234315423143565431

q2 − 1, q4 + q3 − q − 1 23142542314354654231

q + 1, q + 1, q4 − 1 342314542314354654231

q3 + 1, q + 1, q2 − q + 1 3143542314356542314356

q2 + q + 1, q4 + q2 + 1 134234543654231435426543

q2 − q + 1, q4 + q3 − q − 1 231431542314356542314354
6

q + 1, q + 1, q4 − 1 234231542314354654231435
4

q + 1, q + 1, q + 1, q3 + 1 234231454231435465423143
54

q6 − q5 + q3 − q + 1 242314354231435654231435
46

q + 1, q + 1, q2 − 1, q2 − 1 242314354231435465423143
542654

q + 1, q + 1, q + 1, q + 1, q + 1, q + 1 123142314354231435426542
314354265431
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Samenvatting

Om op een efficiënte manier te rekenen met groepen is een geschikte voorstelling

nodig van de groepselementen. Een groep heeft vaak een intrinsieke defini-

tie, dat wil zeggen dat zij impliciet gedefinieerd wordt door een beschrijving

van de eigenschappen van de elementen (bijv.: de vaste punt ondergroep van

een groep). Een dergelijke definitie is voor berekeningen met groepselementen

niet erg handig aangezien het, afgezien van de identiteit, geen construeerbare

groepselementen geeft. In dergelijke gevallen dient men te beschikken over een

extrinsieke definitie van de groep, zoals een voorstelling.

Wij ontwerpen en implementeren algoritmen voor berekeningen aan gedraaide

groepen van Lie-type, waaronder begrepen zijn de groepen die niet quasi-gesple-

ten zijn. Algoritmen voor het rekenen met elementen in de Steinberg voorstelling

voor ongedraaide groepen van Lie-type en algoritmen voor de overgang tussen

deze voorstelling en de lineaire representatie worden gegeven in [12] (gebaseerd

op werk van [15] en [26]). Dit werk wordt in diverse richtingen uitgebreid.

De gedraaide groepen van Lie-type zijn groepen van rationale punten van

gedraaide vormen van reductieve lineaire algebräısche groepen. De gedraaide

vormen zijn geclassificeerd door Galoiscohomologie. Ten einde de Galoisco-

homologie te berekenen ontwerpen we een methode voor het berekenen van de

cohomologie van een eindig voortgebrachte groep Γ op een groep A. Deze meth-

ode is op zichzelf van belang. De methode wordt toegepast op de berekening

van de Galoiscohomologie van een reductieve lineaire algebräısche groep.

LaatG een reductieve lineaire algebräısche groep gedefinieerd over een lichaam

k zijn. Een gedraaide groep van Lie-type Gα(k) wordt uniek bepaald door de co-

cykel α van de Galois groep van K op AutK(G), en de groep van K-algebräısche

automorfismen waar K de eindige Galoisuitbreiding over k is. Algoritmen voor

de berekening van het relatieve wortelsysteem op Gα(k), voor de wortelonder-

groepen en de wortelelementen worden gegeven. Daarnaast worden ook algo-

ritmen voor de berekening van onderlinge relaties, zoals de commutatorrelaties

en producten gegeven. Dit maakt het mogelijk om te rekenen binnen de nor-

male ondergroep Gα(k)
† van Gα(k) voortgebracht door de wortelelementen.

We passen het algoritme toe op diverse voorbeelden, waaronder 2E6,1(k) en
3,6D4,1(k).
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Een toepassing is een algoritme, ontworpen voor de berekening van alle gedraai-

de maximale tori van een eindige groep van Lie-type. De orde van zo’n torus

wordt berekend als een polynoom in q, de orde van het lichaam k. Daarnaast

berekenen we de ordes van de faktoren in de decompositie van de torus als een

direkt product van cyklische ondergroepen.

Voor een gegeven lichaam k, worden de maximale tori van Gβ(k) berekend

als ondergroepen van Gβ(K) over een uitbreidingslichaam K en daarna wordt

de effectieve versie van Lang’s Theorem [11] gebruikt om de torus te conjugeren

tot een k-torus, wat een ondergroep van Gβ(k) is.

Gebruikmakend van deze informatie over maximale tori, geven we een algo-

ritme voor de berekening van alle Sylowondergroepen van de groep van Lie-type.

Als p niet de karakteristiek van het lichaam is, wordt de Sylowondergroep berek-

end als een ondergroep van de normalisator van de k-torus.

Alle hier besproken algoritmen zijn gëımplementeerd in Magma [5].
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