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Abstract 

Liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) ena-

bles the implementation of non-targeted screening analysis and complements standard tri-

ple−quadrupole mass spectrometry in veterinary drug residue control as well as in environ-

mental analysis. Metabolomics workflows offer the opportunity to investigate and identify 

metabolites and biomarkers for metabolical change in various biological samples. The chal-

lenge in evaluating HRMS data is working with the huge amount of data which is acquired 

in a non-targeted HRMS setting, rendering several thousand mass spectrometric features per 

sample.   

In this thesis, a workflow for processing and evaluation of non-targeted LC-HRMS data was 

established. The versatile use of non-targeted metabolomics (metabolic fingerprinting) was 

demonstrated by applying this approach in two different analytical fields, i.e., official veteri-

nary drug residue control and environmental analysis.   

The established metabolomics workflow consists of (1) a data processing procedure which 

renders an aligned peak list of all analytes in all samples, (2) chemometric analyses in order 

to distinguish different test groups from each other, (3) biomarker candidate selection by 

applying univariate and bivariate statistical methods and (4) pathway mapping as a com-

plement to manual biomarker identification. A robust data processing procedure was devel-

oped and optimized using a statistical design of experiments (DoE) with a fractional factorial 

design. Minimum time span, minimum height and the amplitude of noise chosen for chro-

matogram deconvolution were identified as factors of significance for reliable peak detec-

tion, integration and alignment. The results of the DoE were further used to optimize the 

final parameter settings. This experimental set-up highlights the benefits of DoE, since a 

manageable number of experiments rendered valuable information for workflow develop-

ment and optimization. 

The aim of the first practical application of this new procedure was to gain further infor-

mation about the origin of antibiotic residues in non-compliant samples taken within the 

frame of official veterinary drug residue control. Furthermore, biomarkers for changes in the 

metabolism of drug-treated, infected animals should be identified. Preferably, these bi-

omarkers should be easily applicable in routine veterinary drug monitoring with minimal 

additional analytical effort. Non-compliant results may be caused by an improper drug ad-

ministration to an infected animal or by sample contamination due to, e.g., cross-over during 
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sampling or analysis, polluted feed or drug-residues in animal farm housing. The feasibility 

of metabolic fingerprinting to distinguish between samples from infected, drug-treated ani-

mals (positive samples) and samples from healthy animals (control samples) was tested and 

successfully demonstrated. Two HRMS platforms (LC-Q-Orbitrap and LC-Q-TOF) were 

used to investigate the applicability of the approach on different instrument settings. The 

experiment was performed with muscle and kidney samples, taken from pigs (𝑛 = 50) and 

cattle (𝑛 = 30). The main focus laid on the examination of porcine muscle tissues, since the 

number of samples from pigs in German veterinary drug residue control clearly exceeds the 

number of samples taken from cattle. Principal components analysis (PCA) with subsequent 

quadratic discriminant analysis (QDA) was successfully applied in order to differentiate be-

tween porcine muscle samples from infected, drug-treated animals and samples from healthy 

animals. Sensitivity (0.826 (Q-Orbitrap) / 0.810 (Q-TOF)) and specificity (0.976 (Q-Orbitrap) / 

0.923 (Q-TOF)) were high for both instruments. Interestingly, quality control samples of 

healthy animals spiked with 70 veterinary drugs were located in the same cluster as control 

samples in both PCA scores plots. These results indicate that the main difference between 

positive and control porcine muscle samples originated from changes in the metabolome of 

animals rather than from the presence of veterinary drugs. Univariate statistical tests, manu-

al biomarker annotation and pathway mapping revealed changes in prostaglandin formation 

and the metabolism of unsaturated fatty acids as established markers of infection and in-

flammation. A Receiver Operating Characteristic (ROC) curve analysis was further used for 

biomarker selection and assessment. Two new biomarker candidates were identified as 

tripeptide prolylphenylalanylglycine and a lysophosphatidylcholine derivative. In order to 

increase the predictive power of these two biomarkers, a bivariate data analysis procedure 

was performed. A 0.9-prediction ellipse accepting an α error probability of 0.1 (specificity of 

0.9) was calculated from the control samples and used as decision border. Applying this reli-

able approach on real world samples, contaminated samples could be unequivocally identi-

fied. Thus, this procedure is a valuable tool to gain legal certainty for non-compliant results 

in official veterinary drug residue control.  

Further investigations showed that chemometric analysis of bovine muscle samples yielded 

comparable results. However, it is crucial to evaluate muscle samples from different species 

separately. The analysis of control muscle samples from pigs and cattle showed substantial 

differences in multivariate statistical analysis. The main difference was attributed to mass 

spectrometric features which were identified as [M+H]+, [M+2H]2+ and [M+3H]3+ of the C-
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terminal octapeptide of bovine myoglobin.   

PCA with subsequent QDA of kidney samples of both species did not enable a sufficient 

separation of samples taken from drug-treated, infected animals and healthy ones. The sensi-

tivity of the models was considered insufficient with a maximum of 0.572 (Q-Orbitrap data 

of porcine kidney samples) and 0.795 (Q-TOF data of bovine kidney samples), while the re-

spective specificity was 0.903 and 0.899. However, a deviation of the expectation vectors of 

the two test groups was observed in the scores plots. In conclusion, the multivariate analysis 

of kidney samples was considered to be less useful for the differentiation of healthy and in-

fected animals.   

In the second practical application of the new procedure, the environmental release of al-

trenogest (ALT), a synthetic progestogen which is used in modern pig production for estrus 

synchronization, was investigated. For certain geographical areas it cannot be excluded that 

the zootechnical use of ALT in gilts may present a risk for fish and other aquatic organisms, 

since manure of ALT-treated gilts may be used as fertilizer for agricultural soils. According 

to current knowledge, no published scientific data on urinary excretion of ALT in gilts is 

available. In this work, a pilot study was conducted to collect urine samples from ALT-

treated gilts as well as from non-medicated control animals. LC-HRMS analysis was applied 

to perform targeted analysis of ALT and known metabolites, i.e., conjugates with glucuronic 

acid and ALT sulfate. Additionally, non-targeted metabolomics analyses were conducted in 

order to investigate further ALT metabolites. A sample preparation and LC-HRMS protocol 

was developed and validated. Sample preparation was performed with and without a hy-

drolysis step in order to quantify ALT glucuronides after enzymatic cleavage using β-

glucuronidase (helix pomatia Type H-2). The targeted investigation showed that glucuronide 

conjugates of ALT and its photo-isomerization product (ALT-CAP) are main urinary metabo-

lites of ALT in gilts. The concentrations in urine ranged from 1900 ng/mL to 4140 ng/mL, 

which is in a similar order of magnitude to data reported for horses. A normalization to uri-

nary creatinine showed that it is crucial to adjust for the fluid balance of animals in order to 

determine a concentration profile over time. Furthermore, a possibly hitherto unknown 

isomerization product of ALT was observed at trace level. ALT and ALT sulfate were not 

detected in the urine samples of the gilts from the study presented herein. The chemometric 

analysis of non-targeted data revealed a clear difference between ALT-treated gilts and con-

trol animals. ALT glucuronide, ALT-CAP glucuronide and their in-source fragmentation 

products were in the top 25 significant variables in a univariate test setting distinguishing the 
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two test groups. Furthermore, a hydroxylated ALT glucuronide was tentatively identified. 

Surprisingly, in the control group of the gilts, several mass spectrometric hits were signifi-

cantly increased. Database and mass spectrometric library comparisons suggested that iso-

flavonoid derivatives and stilbene derivatives were increased in the control group. This may 

indicate that the metabolism of phytoestrogens from feed is altered under ALT treatment. 

However, further studies are needed to support this hypothesis. Pathway mapping based on 

database hits indicated differences in the tryptophan degradation as well as C21-steroid bio-

synthesis pathways in the ALT-treated group compared to the control group. These changes 

can be explained by the mechanism of action of the hormonally active substance ALT.  

Taken together, the results of this thesis illustrate the exceptional potential of non-targeted 

LC-HRMS analyses and metabolomics workflows. This approach provides more legal cer-

tainty for non-compliant samples in veterinary drug residue control and reveales in-depth 

information about the sample under investigation for environmental analysis.  
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Zusammenfassung und Ausblick 

Flüssigkeitschromatographie gekoppelt mit hochauflösender Massenspektrometrie (LC-

HRMS) ermöglicht die Etablierung von Non-Targeted-Screening-Analysen und ergänzt so-

mit die Triple-Quadrupol-Massenspektrometrie in der Tierarzneimittelrückstandsanalytik 

und Umweltanalytik. Metabolomics-Workflows bieten vielversprechende Möglichkeiten zur 

Untersuchung und Identifizierung von Metaboliten und Biomarkern für metabolische Ver-

änderungen in verschiedenen biologischen Matrizes. Die Herausforderung bei der Auswer-

tung von Non-Targeted-HRMS-Daten besteht im Umfang der erhaltenen Datenmenge, da 

diese mehrere Tausend massenspektrometrische Variablen enthalten kann.  

In Rahmen dieser Dissertation wurde eine Strategie zur Prozessierung und Auswertung von 

Non-Targeted-LC-HRMS-Daten etabliert und der vielversprechende Einsatz von Non-

Targeted-Metabolomics-Analysen („Metabolic-Fingerprinting“) in unterschiedlichen analyti-

schen Arbeitsgebieten — der amtlichen Tierarzneimittelrückstandsüberwachung und der 

Umweltanalytik — aufgezeigt.    

Der etablierte Metabolomics-Workflow besteht aus (1) einer Datenauswerteprozedur, welche 

eine Peak-Liste mit allen Analyten aller Proben erzeugt, (2) chemometrischen Analysen zur 

Unterscheidung von unterschiedlichen Testgruppen, (3) univariaten und bivariaten statisti-

schen Methoden zur Biomarkerkandidatenauswahl und (4) Stoffwechselwegsanalysen als 

Ergänzung zur manuellen Biomarkeridentifizierung. Eine robuste Datenauswerteprozedur 

wurde mit Hilfe von statistischer Versuchsplanung durch Anwendung eines teilfaktoriellen 

Plans entwickelt und optimiert. Die minimale Peakbreite, die minimale Signalhöhe und die 

gewählte Amplitude des Hintergrundrauschens bei der Chromatogramm-Dekonvolution 

wurden als signifikante Faktoren für eine verlässliche Peakdetektion, Integration und das 

Chromatogramm-Alignment identifiziert. Die Ergebnisse der statistischen Versuchsplanung 

wurden weiterhin genutzt um die finalen Prozessierungsparameter zu optimieren. Dieser 

experimentelle Aufbau zeigt die Vorteile einer statistischen Versuchsplanung auf, da eine 

überschaubare Anzahl an Experimenten wertvolle Informationen für die Entwicklung und 

Optimierung der Datenauswerteprozedur lieferte.  

Ziel der ersten praktischen Anwendung des neu etablierten Metabolomics-Workflows war 

es, weitere Informationen über den Ursprung von Antibiotikarückständen in beanstan-

dungswürdigen Proben der amtlichen Tierarzneimittelrückstandsüberwachung zu erhalten 

und Biomarker für Veränderungen im Metabolismus von erkrankten, medikierten Tieren zu 
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identifizieren. Die neuen Biomarker sollten mit minimalem analytischem Aufwand in der 

Routineüberwachung von Tierarzneimittelrückstanden angewandt werden können. Bean-

standungswürdige Befunde können durch eine unsachgemäße Medikamentenanwendung 

bei infizierten Tieren aber auch durch eine Kontamination der Probe begründet sein. Eine 

Kontamination der Probe kann während der Probennahme oder Untersuchung der Probe 

zustande kommen oder durch kontaminiertes Futter oder Rückstände im Stall verursacht 

werden. Die Anwendbarkeit von Metabolic-Fingerprinting zur Unterscheidung von Proben 

von infizierten, medikierten Tieren (positive Proben) von denen gesunder Tiere (Kontroll-

proben) wurde getestet und erfolgreich demonstriert. Es wurden zwei HRMS-Plattformen 

(LC-Q-Orbitrap und LC-Q-TOF) verwendet, um die Anwendbarkeit des Ansatzes auf unter-

schiedlichen Geräten zu testen. Das Experiment wurde mit Muskel- und Nierenproben von 

Schweinen (𝑛 = 50) und Rindern (𝑛 = 30) durchgeführt. Der Hauptfokus lag auf der Unter-

suchung von Schweinemuskulatur, da in Deutschland in der Tierarzneimittelrückstands-

überwachung deutlich mehr Proben von Schweinen als von Rindern untersucht werden 

müssen. Eine Hauptkomponentenanalyse (PCA) mit einer anschließenden quadratischen 

Diskriminanzanalyse (QDA) wurde erfolgreich angewandt, um Schweinemuskulatur von 

infizierten, medikierten Tieren von der gesunder Tiere zu unterscheiden. Die Modelle zeig-

ten eine hohe Sensitivität (0,826 (Q-Orbitrap) / 0,810 (Q-TOF)) und Spezifizität (0,976 (Q-

Orbitrap) / 0,923 (Q-TOF)) für beide Geräteplattformen. Auffällig war, dass in beiden PCA-

Scores-Plots Qualitätskontrollproben von gesunden Tieren, die mit 70 Tierarzneimitteln do-

tiert wurden, im selben Cluster lokalisiert waren wie Kontrollproben von gesunden Tieren. 

Diese Ergebnisse deuten darauf hin, dass der Hauptunterschied zwischen positiven Schwei-

ne- und Kontrollmuskulaturproben durch Veränderungen im Metabolom der Tiere begrün-

det ist und nicht auf die Anwesenheit von Tierarzneimitteln zurückzuführen ist. Univariate 

statistische Tests, manuelle Biomarkerannotation und Stoffwechselwegsanalysen offenbarten 

Veränderungen in der Prostaglandinbildung sowie dem Metabolismus von ungesättigten 

Fettsäuren, welche als etablierte Marker für Infektionen und Entzündungen beschrieben 

sind. Zusätzlich wurden ROC (Receiver Operating Characteristic)-Kurven zur Auswahl und 

Bewertung von Biomarkern genutzt. Zwei Biomarker wurden identifiziert: das Tripeptid 

Prolylphenylalanylglycin und ein Lysophosphatidylcholinderivat. Eine bivariate Datenana-

lyse wurde durchgeführt, um die Vorhersagekraft dieser zwei Biomarker zu erhöhen. Eine 

0,9-Prognoseellipse mit einem α-Fehler von 0,1 wurde anhand der Kontrollproben berechnet 

(Spezifizität von 0,9) und als Entscheidungsgrenze verwendet. Unter Anwendung dieses 

Ansatzes auf offizielle Proben der Lebensmittelüberwachung wurden kontaminierte Proben 
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eindeutig identifiziert. Dies zeigt, dass diese Vorgehensweise ein wertvoller Ansatz ist, um 

Rechtssicherheit bei beanstandungswürdigen Proben in der amtlichen Tierarzneimittelrück-

standsüberwachung zu gewähren.  

Chemometrische Analysen von Rindermuskulaturproben lieferten vergleichbare Ergebnisse. 

Es ist allerdings zwingend erforderlich Muskulaturproben von unterschiedlichen Tierarten 

getrennt auszuwerten. Die multivariate statistische Analyse von Kontrollproben von 

Schweine- und Rindermuskulaturproben ergab erhebliche Unterschiede. Der Hauptunter-

schied konnte auf massenspektrometrische Variablen zurückgeführt werden, welche als 

[M+H]+, [M+2H]2+ und [M+3H]3+ des C-terminalen Oktapeptides von Rindermyoglobin iden-

tifiziert wurden.   

PCA mit anschließender QDA von Nierenproben beider Tierarten ermöglichte keine ausrei-

chende Differenzierung von Proben infizierter, medikierter Tiere von denen gesunder Tiere. 

Die Sensitivität der Modelle war mit 0,572 (Q-Orbitrap-Daten von Schweinenierenproben) 

und 0,795 (Q-TOF-Daten von Rindernierenproben) unzureichend, während die Spezifizität 

bei 0,903 bzw. 0,899 lag. Allerdings wurde eine Abweichung der Erwartungsvektoren beider 

Testgruppen in den Scores-Plots beobachtet. Zusammenfassend kann festgehalten werden, 

dass die multivariate statistische Analyse von Nierenproben weniger zur Unterscheidung 

von gesunden und infizierten Tieren geeignet ist.  

Die zweite praktische Anwendung des neu etablierten Metabolomics-Workflows beschäftig-

te sich mit möglichen Umwelteinträgen von Altrenogest (ALT), einem in der intensiven 

Schweinezucht zur Brunstsynchronisation eingesetzten synthetischen Progesteron-Derivat. 

Es kann nicht ausgeschlossen werden, dass für gewisse geographische Regionen der zoo-

technische Einsatz von ALT in Jungsauen ein Risiko für Fische und andere Wasserorganis-

men darstellt, falls Gülle von mit ALT behandelten Jungsauen als Wirtschaftsdünger für 

landwirtschaftliche Flächen verwendet wird. Nach aktuellem Wissensstand sind keine 

publizierten Daten zur renalen Ausscheidung von ALT in Jungsauen verfügbar. Im Rahmen 

dieser Arbeit wurde daher eine Pilotstudie zur Probennahme von Urinproben von mit ALT 

behandelten Jungsauen und unbehandelten Kontrolltieren durchgeführt. LC-HRMS-

Analysen wurden zur zielgerichteten Untersuchung von ALT und seiner bekannten Metabo-

lite (Konjugate mit Glucuronsäure und ALT-Sulfat) durchgeführt. Zusätzlich wurden Non-

Targeted-Metabolomics-Analysen zum Auffinden weiterer Metabolite von ALT angewandt. 

Eine spezifische Probenvorbereitung und das LC-HRMS-Protokoll wurden entwickelt und 

validiert. Die Probenvorbereitung wurde mit und ohne Hydrolyseschritt durchgeführt, um 
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Glucuronid-Konjugate von ALT nach einer enzymatischen Spaltung mittels β-Glucuronidase 

(helix pomatia Type H-2) zu quantifizieren. Die zielgerichtete Untersuchung zeigte, dass 

Glucuronidkonjugate von ALT und seinem Photoisomerisationsprodukt (ALT-CAP) die 

Hauptmetabolite im Urin von Jungsauen darstellen. Die Konzentration der Glucuronidkon-

jugate im Urin variierte von 1900 ng/mL bis 4140 ng/mL. Dies ist vergleichbar mit veröffent-

lichten Daten für die Tierart Pferd. Eine Normalisierung auf Urinkreatinin zeigte auf, wie 

wichtig es ist, den Flüssigkeitshaushalt von Tieren miteinzubeziehen, um ein Konzentrati-

onsprofil über die Zeit zu bestimmen. Es wurde auch ein möglicherweise bislang unbekann-

tes Isomer von ALT im Spurenbereich nachgewiesen. ALT und ALT-Sulfat wurden in den 

Urinproben der Jungsauen nicht detektiert. Die chemometrische Analyse der Non-Targeted-

Daten zeigte einen eindeutigen Unterschied zwischen mit ALT behandelten Jungsauen und 

der Kontrollgruppe. Glucuronidkonjugate von ALT und ALT-CAP sowie deren In-Source-

Fragmentierungs-Produkte waren unter den 25 signifikantesten Variablen in univariaten 

statistischen Tests zur Unterscheidung der beiden Testgruppen. Weiterhin wurde ein Hyd-

roxy-Derviat des Glucuronidkonjugats von ALT anhand der massenspektrometrischen Da-

ten identifiziert. Auffällig war, dass in der Kontrollgruppe der Jungsauen verschiedene mas-

senspektrometrische Variablen signifikant erhöht waren. Vergleiche mit Datenbanken und 

Spektrenbibliotheken wiesen auf eine Erhöhung von Isoflavonoidderivaten und Stilbenderi-

vaten in der Kontrollgruppe hin. Dies kann möglicherweise darauf hindeuten, dass der Me-

tabolismus von Phytoestrogenen aus der Nahrung unter ALT-Behandlung beeinflusst wird. 

Allerdings sind weitere Studien erforderlich um diese Hypothese zu unterstützen. Stoff-

wechselwegsanalysen basierend auf Datenbankergebnissen wiesen weiterhin auf Unter-

schiede im Tryptophanabbau sowie in der C-21 Steroidbiosynthese in der mit ALT behandel-

ten Gruppe hin. Diese Unterschiede können durch den Wirkmechanismus der hormonell 

aktiven Substanz ALT bedingt sein.  

Abschließend kann festgehalten werden, dass die Ergebnisse dieser Doktorarbeit das außer-

ordentliche Potential von Non-Targeted-LC-HRMS-Analysen sowie Metabolomics-Analysen 

aufzeigen. Für die Tierarzneimittelrückstandsüberwachung bietet dieses Verfahren eine er-

höhte Rechtssicherheit bei beanstandungswürdigen Proben und für die Umweltanalytik lie-

fert es tiefgehende Informationen über die zu untersuchende Probe. 
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1 Introduction 

1.1 Veterinary drugs in modern livestock farming 

Parts of the following passage have previously been published in [1]. 

In the European Union, rules for the manufacturing, distribution, control and use of veteri-

nary medicinal products are laid down in the Regulation (EU) 2019/6, which shall apply in 

January 2022, replacing the Directive 2001/82/EC [2, 3]. According to Article 4 (1) of Regula-

tion (EU) 2019/6, veterinary medicinal products are defined as “any substance or combination of 

substances which fulfils at least one of the following conditions:  

(a) it is presented as having properties for treating or preventing disease in animals;  

(b) its purpose is to be used in, or administered to, animals with a view to restoring, correcting or 

modifying physiological functions by exerting a pharmacological, immunological or metabolic action;  

(c) its purpose is to be used in animals with a view to making a medical diagnosis;  

(d) its purpose is to be used for euthanasia of animals;” [2]. 

Veterinary medicinal products may only be placed on the market in the European Union, if 

they have been authorized by the competent federal authority or in the course of a European 

authorization procedure. The applicant for the marketing authorization needs to provide 

documents describing the pharmaceutical quality, efficacy and safety of the new product, 

including but not limited to data about its identity, purity and stability, intended field of use, 

recommended dosage and target animal species as well as data on pharmacodynamics, 

pharmacokinetics, toxicology, microbiology, ecotoxicology and clinical benefit. Furthermore, 

a withdrawal period must be specified for veterinary drugs intended for administration to 

food producing animals [4]. 

In the course of the authorization procedure for a veterinary drug for food producing ani-

mals the Committee for Medicinal Products for Veterinary Use (CVMP) of the European 

Medicines Agency (EMA) issues an opinion including a scientific risk assessment and risk 

management recommendations [5]. If necessary the CVMP recommends maximum residue 

limits (MRL) of the pharmacologically active substance in food gained from previously med-

icated animals [5]. The MRL is calculated with regard to the daily intake of the target tissues 
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(muscle, kidney, liver, etc.) and estimated exposure data. It assures that the worst case theo-

retical daily intake of the new substance does not exceed the acceptable daily intake (ADI) 

[5].  The ADI is an estimate of the amount of the pharmacologically active substance that can 

be ingested daily over a lifetime without appreciable health risks [5]. It can be derived from 

pharmacological, toxicological and microbiological data, which ever has the lowest no ob-

served adverse effect level (NOAEL) [5]. Hence, food which contains residues below the 

MRL does not present any health risks to humans.   

 

Figure 1. Derivation of maximum residue limits (MRL) for pharmacologically active substances 

under consideration of the acceptable daily intake (ADI) and daily consumption of target food tis-

sue; bw.: bodyweight. 

 

In consideration of the scientific opinion of the CVMP, the Commission classifies the phar-

macologically active substance according to Article 14 (1) and (2) of Regulation (EC) No 

470/2009 and sets a MRL, if necessary [5]. The classifications of the pharmacologically active 

substances are set out in the annex of Commission Regulation (EU) No 37/2010 [6]. Food 

from animal origin, which contains residues exceeding the MRL are considered to be not 

compliant with Community legislation according to Article 23 a) of Regulation (EC) No 

470/2009 [5]. This food is not to be placed on the market according to Section 10 (1) of the 

German Food and Feed Code [7].  

 

Pharmacology, toxicology and microbiology studies in animals

No observed adverse effect level (NOAEL)  µg/kg/day

Acceptable daily intake (ADI) µg/kg bw./day

Uncertainty factors for inter- and intra-species variations
(standard uncertainty factor: 1/100)

Worst case calculation of theoretical daily intake 
of contaminated target tissue < ADI

Maximum residue limit (MRL) for marker residue
in target tissue in µg/kg



 

Introduction                                                                                                                         11 

In the framework of preventive consumer health protection, residues of pharmacologically 

active substances in food are monitored in the national residue control plan according to 

Council Directive 96/23/EC1 [8]. The national residue control plan (NRCP) is a food monitor-

ing programme for pharmacologically active substances as well as contaminants like heavy 

metals or dioxins. It is implemented in every EU member state according to uniform criteria 

and is updated yearly. The NRCP lists the required kind and number of samples, the respec-

tive analyte spectrum, the analytical methods to be applied and the sampling method [9]. 

The German NRCP is coordinated by the Federal Office of Consumer Protection and Food 

Safety while the residue analysis is performed in each federal state independently. The num-

ber of samples for each state is determined based on the annual slaughter and production 

figures. Sampling is performed target-oriented at slaughterhouses and farming level, since 

the aims of the NRCP are the monitoring of the proper use of permitted veterinary drugs as 

well as the disclosure of illegal use of unauthorized or banned substances. Summarized data 

is reported to the European Commission [9]. Besides the European provisions in the NRCP, 

the German Animal Food Monitoring Regulation [10] states that two percent of all commer-

cially slaughter calves and at least 0.5 percent of all other commercially slaughtered hoofed 

animals need to be tested for veterinary drug residues. In order to handle this large number 

of samples, a microbiological inhibiting test is used as an initial screening method. A positive 

result of this test needs to be confirmed with LC-MS analysis. 

In Germany in 2018, 59,807 samples from animal origin were tested according to the NRCP 

and 277,308 samples were tested according to the German Animal Food Monitoring Regula-

tion with a very low non-compliant rate of 0.42% and 0.09%, respectively [11]. These results 

are in line with the results of previous years [11]. 

The application of veterinary drugs such as antibiotics is essential for animal health mainte-

nance and animal welfare. Thus, a prudent use of veterinary drugs is crucial in modern live-

stock farming. Several aspects need to be considered for their use. In general, veterinary 

drugs are only to be applied to treat or alleviate diseases. After the treatment of food produc-

ing animals it is important to respect withdrawal periods in order to ensure food safety. In 

the context of a one-health concept it is necessary to reduce antibiotic consumption as much 

as possible in order to prevent the selection and transmission of multi-drug resistant bacteria 

                                                      

1 repealed by Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 

2017; translational measures according to Article 150 No. 1 of Regulation (EU) 2017/625 apply 
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[12]. Furthermore, environmental effects of veterinary drug residues in manure need to be 

considered [13]. 

A public summary of the consumption of veterinary drugs in Germany does not exist. How-

ever, in the light of the development of antimicrobial resistance, German pharmaceutical 

manufacturers are obligated to report their sold volume of antibiotics to an official register 

since 2011 [14]. In Germany, the sold volume of antimicrobials in veterinary medicine de-

creased constantly since 2011 from 1,706 metric tons (t) to a total of 670 t in 2019 [15].  The 

sold amount of antibiotics which are classified as “highest priority critically important anti-

microbials for human medicine” by the World Health Organization (WHO) [16] such as 

fluorquinolones and 3rd and 4th generation cephalosporins also decreased by 1.7 t and 0.5 t, 

respectively [15]. However, regional differences in sales of antibiotics can be observed (see 

Figure 2).  

 

Figure 2. Map of sold volume of antibiotics in Germany for 2019, modified from [15].   

 

 

Sold volume [t] Zones

Postal code region



 

Introduction                                                                                                                         13 

This development may be attributed to an increased public awareness for the risks of the 

development of antibacterial resistance and initiatives from the European Union as well as 

changes in national laws [17]. In 2014, a bench-marking system was established in order to 

evaluate antibiotic use at individual farm level in correlation to nationwide antibiotic con-

sumption. For this purpose, the semi-annual treatment frequency is determined according to 

§ 58c of the German Medicinal Products Act [4]. The treatment frequency is calculated by 

multiplying the number of treated animals with the treatment days, divided by the mean 

number of animals of the farm in the time interval of six months. The median is set as a 

benchmark threshold to consult with a veterinarian and the 75% percentile requests a plan to 

reduce antibiotic use [4]. In general, the treatment frequency for broilers, turkeys and pigs 

are at a higher level than that for cattle, but a comparison of treatment frequencies of differ-

ent species is difficult [18]. 

Up to now, veterinary residue analysis is mainly performed with conventional targeted mul-

ti-analyte methods using liquid chromatography coupled with mass spectrometry. This ap-

proach can reliably detect the presence of antibiotic residues, but it is not possible to deter-

mine if the residue is caused by improper drug administration to an infected animal or by 

sample contamination. Possible causes for sample contamination include analyte cross-over 

during sampling, transport or analysis as well as polluted feed, environmental contamina-

tion, drug residues in farm-animal houses [13, 19] or animal-to-animal transfer via ingestion 

of feces or urine [19]. Residues of veterinary drugs which are administered orally via feed 

can easily be transferred to non-medicated feed when milling tools or other tools like bar-

rows are not properly cleaned. Naturally occurring toxins like mycotoxins such as α- and β-

zearelenol in mouldy silage can be metabolized to zeranol, a banned estrogen [19]. Studies 

have shown that non-compliant residues of sulfamethazine can be found in unmedicated 

pigs which were housed in a stable which prior housed medicated pigs [20, 21]. Further-

more, it was shown that antibiotic residues can be detected in dust of pig confinement build-

ings. Thus, dust needs to be considered as cause for contamination and route for entry of 

veterinary drugs in the environment [22]. The presence of metabolites proofs that the parent 

drug was metabolized by a living animal and a cross-over during sampling, transport or 

analysis can be excluded. However, some antibiotics undergo no or only poor metabolic 

transformation, e.g., tetracyclines [23]. In such cases, biomarkers indicating that the non-

compliant sample originated from an infected, drug-treated animal would be a promising 

approach in terms of legal certainty. 
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1.2 Hormonal preparations as veterinary medicinal products in 

modern livestock farming  

Parts of the following passage have previously been published in [192]. 

Hormones are messenger substances which are produced by glands and are emitted in the 

blood circulation system reaching distant target organs and affecting various biochemical 

processes in the body, e.g., regulation of electrolytes, energy metabolism, regulation of blood 

pressure, growth, development and reproduction as well as behavior, stress and mood [24]. 

Hormonal effects are triggered by hormones binding to high affinity receptors at very low 

concentration levels (ppt level) [25]. Sex steroids, a subclass of steroid hormones, are crucial 

for reproduction and development. They are synthesized from cholesterol within the gonads, 

the adrenal glands and the placenta [26]. Important groups thereof are androgens, estrogens 

and progestogens (for details see Section 1.2.1).  

In the past, substances with hormonal action were used for fattening purposes in livestock 

farming. Recognizing that pharmacologically active substances with hormonal action act at 

very low levels and their residues in foodstuff of animal origin may pose a risk for consumer 

health and affect the quality of meat, Council Directive 96/22/EC prohibits the use of a num-

ber of substances having a hormonal action in stock farming [27]. However, the cited Council 

Directive also lays down conditions for an exceptional use. One reason for an exceptional use 

is estrus synchronization as a zootechnical treatment. These regulations are the legal basis for 

the authorization of altrenogest (ALT), a synthetic progestogen, for the synchronization of 

estrus in gilts and mares. In 2012, the MRL of ALT was set to 2 µg/kg and 4 µg/kg in porcine 

liver and fat tissue, respectively [6]. This represents an increase from the previously set 

MRLs of 0.4 µg/kg and 1 µg/kg for porcine liver and fat tissue, respectively. The CVMP rea-

soned the recommendation for the new MRLs with the modification of the ADI for ALT. The 

most sensitive effects in pharmacology and toxicology studies were related to the hormonal 

activity of ALT resulting in a overall no observed adverse effect level (NOAEL) of 4 µg/kg 

bw/day. Using the uncertainty factor 20 (inter- and intraspecies uncertainty factors 2 and 10, 

respectively), a refined ADI of 0.2 µg/kg bw/day was established on the basis of new phar-

macodynamic and pharmakinetic data submitted to the CVMP [28]. The selected marker 

residue was the parent compound, although this substance makes up only a small percent-

age of total residues in the target tissue liver. However, a ratio between the marker residue 

and the total hormonally active residue could be established and was considered in the deri-
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vation of the MRLs [28, 29]. 

The application of ALT in pig breeding is important to ensure a smooth production rhythm. 

In 2019, pig meat production accounts for 60.4% of the total German commercial meat pro-

duction followed by poultry meat and beef with 18.7% and 13.2%, respectively [30]. The 

German commercial pig meat production increased in the years of 2000 to 2019 from 

3,923,453 t to 5,227,588 t [31]. In order to achieve these outputs, there were 21,200 agricultural 

holdings for pig keeping with an average of 1,229 pigs per holding in 2019 [30, 32]. The agri-

cultural holdings with the highest number of animals were located in Lower Saxony fol-

lowed by North Rhine-Westphalia with 1,600 and 1,065 livestock per holding, respectively 

[33, 34]. Since it is essential to uphold the production chain, 209,900 pregnant gilts and 

1,081,700 pregnant sows were farmed in 7,200 holdings for pig breeding in Germany in 2019 

[31, 32]. In order to efficiently integrate gilts in the production rhythm, synchronization of 

estrus and ovulation is of particular importance in pig breeding [35-37]. A simultaneous es-

trous cycle of gilts and sows facilitates strict batch farrowing (all-in-all-out system) [38].  

Thus, it allows for more efficient use of labor as well as facilities and guarantees a steady 

production number of piglets for fattening. It further facilitates a better hygiene management 

with a decreased use of antibiotics in piglet breeding, since a disinfection of the entire hous-

ing complex after every piglet group can be performed [39, 40]. The optimization of the pro-

duction rhythm has substantial economic value, since farrowing by gilts represents about 

20% of the total farrowing rate [41].   

The control of the reproduction cycle in pig breeding is mostly organized in a 3-week or in a 

7-day production cycle depending on the size of the breeding farm [42] and is based on the 

synchronization of estrus in weaned sows and gilts. Artificial synchronization of estrus in 

pluriparous sows is not necessary, since the simultaneous weaning leads to a synchronized 

estrous cycle [38]. 4–6 days after weaning the estrus of sows can be expected [43]. ALT is the 

only authorized active ingredient for estrus synchronization in gilts. It is administered at 

20 mg/d for 15–18 days to induce a blockage of cycle. Up to 5 days after the last ALT admin-

istration estrus can be observed [39]. An extrapolation from the sales numbers in Lower Sax-

ony to Germany resulted in an estimated consumption of about 250 kg ALT per year in 

Germany [44].   
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1.2.1 Pharmacodynamics of ALT 

In order to understand the pharmacodynamics of ALT, it is imperative to have a basic 

knowledge about the neuroendocrine control system of the estrous cycle. A brief overview is 

given in the following. 

Neuroendocrine control of estrus in female pigs   

The hypothalamus and the pituitary gland act as superior control systems for hormonal pro-

cesses (see Figure 3). During the estrous cycle, they are subjected to a negative and positive 

feedback mechanism by sex steroids. Gonadotropin-releasing hormone (GnRH)—a decapep-

tide hormone—is synthesized in the hypothalamus and controls the release of sex steroids. It 

is secreted in the hypothalamic-hypophyseal portal circulation reaching the anterior pitui-

tary. GnRH pulses stimulate the synthesis and secretion of the gonadotropins follicle-

stimulating hormone (FSH) and luteinizing hormone (LH) in the anterior pituitary. FSH and 

LH stimulate the synthesis of estrogens (mostly 17-β-estradiol), progestogens (progesterone) 

and to a minor extent androgens (testosterone) in the follicular theca and granulosa cells. 

Progesterone and small amounts of 17-β-estradiol inhibit the GnRH-secretion in the hypo-

thalamus and reduce the sensitivity of the GnRH-receptors of the anterior pituitary via a 

negative feedback mechanism. The glycoprotein inhibin, which is mostly synthesized in the 

granulosa cells, inhibits the secretion of FSH from the anterior pituitary. High estrogen levels 

exhibit a positive feedback mechanism on the secretion of gonadotropins [24, 39, 45, 46].  
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Figure 3. Left: plasma concentrations of estradiol, progesterone, LH and FSH in the course of es-

trous cycle (modified according to data from [47]). Right: superior controlling system of the synthe-

sis of sex steroids during female cycle (modified according to [24]).  

 

Table 1. Overview of peptide and sex hormones in estrous cycle, their most important physiologi-

cal effects in female and male body as well as site of biosynthesis [24, 39].  

Peptide hormones  

Gonadotropin releasing hor-

mone (GnRH)  

- synthesized and released from  hypothalamus  

- stimulates biosynthesis of FSH and LH  

Follicle stimulating hormone  

(FSH)  

- synthesized and secreted from anterior pituitary  

- initiates follicle proliferation and maturation in ovaries  

- is in synergy with LH responsible for estrogen synthesis in follicles  

Luteinizing hormone (LH)  - synthesized and secreted from anterior pituitary  

- triggers ovulation  and development of corpus luteum  

- is in synergy with FSH responsible for biosynthesis of androgens in follicles  

Sex steroids  

Estrogens,  

e.g., 17- β-estradiol  

- mainly synthesized in ovaries and placenta  

- promotes growth of female sex organs and female secondary sex   

  characteristics  

- regulates in synergy with progesterone estrous cycle  

- exerts anabolic effect to female reproductive system  

Progestogens,  

e.g., progesterone  

- synthesized mainly in corpus luteum, placenta and the adrenal glands  

- regulates estrous cycle and maintains pregnancy  

Androgens,                                

e.g., testosterone  

- synthesized in testes, ovaries and adrenal glands  

- mainly responsible for the development of male primary sex organs and   male  

  secondary sex characteristics, spermatogenesis  

- precursor of estrogens in biosynthesis 

- exerts an anabolic effect on muscle growth  
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The estrous cycle of pigs is on average 21 days long, but can vary individually from 18–24 

days. It can be divided in four phases: proestrus (days 18–21), estrus (days 1–2), metestrus 

(days 3–6) and diestrus (days 7–18) [39, 43, 48]. Luteolysis of corpus luteum starts at the end 

of diestrus while progesterone concentration sinks to its lowest level during the estrous cycle 

[47]. Consequently, the negative feedback mechanism of progesterone on the secretion of the 

gonadotrophic hormones stops and FSH as well as LH are secreted from the anterior pitui-

tary, at the beginning of proestrus [39]. High estrogen concentrations at the end of the late 

follicular phase induce a pre-ovulatory LH surge, indicating the beginning of estrus. Estrus is 

the period around ovulation, which is characterized by the “standing response” of the sows 

in presence of a boar indicating their receptive behavior for mating [36, 39, 43]. Ovulation 

starts around 24–42 hours after the LH surge and lasts about 1–7 hours [37]. It is character-

ized by increasing progesterone levels [47]. During metestrus, theca and granulosa cells of 

the ovulated follicles transform to luteal cells. Progesterone synthesis and secretion rises with 

increasing rate of lutenization [47]. At the end of metestrus lutenization is complete and in 

case of a pregnancy the corpus luteum secrets progesterone inhibiting follicle proliferation 

[37]. Diestrus lasts from day 6–17. After the maximum progesterone levels are reached at day 

12, luteolysis occurs at day 15 [39, 43]. Low levels of progesterone lead to the start of proes-

trus, while once again gonadotropins stimulate follicle proliferation [43]. 

Pharmacodynamics of ALT—estrus synchronization of gilts for zootechnical purpose  

ALT, also called allyltrenbolone, belongs to the 19-nor-testosterone substance class and is a 

synthetic progesterone agonist. Its main pharmacodynamic actions are based on progesto-

mimetic and anti-gonadotrophic effects. However, weak estrogenic, anabolic and androgenic 

effects are also described [28, 49, 50].  

 

Figure 4. Chemical structure of altrenogest (ALT). 
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For a duration of 15–18 days, 20 mg ALT are administered once a day to cycling gilts to syn-

chronize estrus [37, 51]. ALT suppresses the secretion of the gonadotropins FSH and LH 

from the anterior pituitary via a negative feedback mechanism, resulting in a blockage of 

cycle and a stop of follicle maturation at a medium sized stage (antral follicle, 5 mm) [51-53]. 

The function of the corpus luteum is not compromised, leaving it resistant to the luteolytic 

action of uterine prostaglandin PGF2α secretion before day 12 of the estrous cycle [54]. After 

day 12 of the estrous cycle, the sensitivity of the corpus luteum to prostaglandins increases 

and luteolysis begins [37, 55]. Thus, at the end of the treatment a regression of corpora lutea 

of all gilts can be observed [36]. After cessation of ALT treatment, gonadotropins are secreted 

from the pituitary and LH induced follicle maturation of antral follicles to pre-ovulatory fol-

licles starts. Peripheral estrogen concentrations increase about 3–4 days after the last admin-

istration of ALT and about 5 days after treatment the pre-ovulatory LH surge begins and 

estrus is observed [53, 56, 57]. These progestomimetic effects of ALT enable a synchroniza-

tion of estrus, regardless of estrous cycle stage at the first ALT administration [56, 58]. Fur-

thermore, studies have shown an increase in ovulation rate, size of antral follicle and litter 

size [55, 58, 59]. Soede et al. concluded, that ALT exhibits a lesser inhibiting effect on the de-

velopment of antral follicles than endogenous progesterone [55].   

The administration of ALT is recommended after the first estrus of gilts, since it can cause 

reduced fertility in pubertal gilts due to their not fully developed uteri [35, 37, 58]. Further-

more, ALT can be used to prolong gestation in order to synchronize farrowing and to post-

pone post-weaning estrus in order to improve reproductive performance by allowing the 

sows to recover a better body condition [54, 60-63]. 

1.2.2 Pharmacokinetics of ALT 

Up until recently, scientifically published data about the pharmacokinetic profile and residue 

depletion of orally administered ALT in gilts was limited and fragmented. Pharmacokinetic 

data presented by the marketing authorization holders in the course of the European and 

American drug administration is not publicly available. The only data available was accessi-

ble through product information sheets or was taken from scientific opinions from the 

CVMP and a review of registration data of an ALT containing drug provided by the Ameri-

can Food and Drug Administration (FDA) according to the amendments to the Freedom of 

Information Act [28, 51, 64, 65]. The 2019 study from Xiao et al. was the first scientific and 
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publicly available plasma-pharmacokinetic study in gilts [66]. Urinary excretion data is still 

scarce. 

In general, the results of Xiao and colleagues were coherent with the fragmented data from 

the marketing authorization holders. ALT is readily absorbed after the first oral administra-

tion, reaching a plasma peak concentration after 1.96 ± 1.45 hours with a mean plasma con-

centration of 66.16 ± 19.94 ng/mL [66]. After 24 hours the mean plasma concentration de-

creased to 5 ng/mL [66]. On day 18 of the treatment, maximum plasma levels of 

71.32 ± 19.96 ng/mL were reached after about 3 hours [66]. Data presented to the FDA from 

marketing authorization holders showed a plasma peak concentration of 36.5–55.5 ng/mL at 

1–4 hours after repeated dosing [65]. Plasma concentration decreased biphasically with an 

elimination half life of 9.7 ± 2.83 hours after repeated treatment [66]. The mean residence 

time of ALT was prolonged after repeated treatment and the apparent body clearance de-

creased. A significant accumulation could not be observed [66]. Similar pharmacokinetic pa-

rameters were observed when two different ALT preparations were investigated [67].  

ALT is distributed mainly to the liver and to a minor extent to fat, kidney and muscle tissues 

[28, 68]. Data provided by the marketing authorization holders in the EU showed that ALT 

undergoes an extensive metabolism via oxidation and conjugation, which is in line with all 

steroids. Dealkylation was not observed [28]. In liver extracts, conjugation products with 

glutathione and glucuronic acid as well as an isobaric form and hydroxylated products were 

observed. These metabolites showed a reduced hormonal activity of about 14–21% compared 

to ALT in in vitro assays [28]. The reduced hormonal activity of conjugation products is in 

line with the findings for other steroid metabolites and can be explained by the higher polari-

ty of the metabolites. Hence, they are suspected to have a reduced affinity to sex steroid re-

ceptors [28]. However, it can be expected that glucuronic acid conjugates regain their hor-

monal activity after enzymatic hydrolization in the gut [28].  

Residue depletion studies cited in the authorization process showed that the highest tissue 

residues of radioactivity after dosing of radio-labeled ALT were detected in liver followed by 

kidney and to a lesser extent in fat and muscle (see Appendix Table S1) [28, 64, 65]. In con-

trast, the highest concentration of the parent compound ALT was found in liver followed by 

fat tissue and to a lesser extent in kidney and muscle (see Appendix Table S1) [28, 68]. The 

difference between the total residue levels (determined as radioactive residues) and the resi-

due levels of the parent compound indicates that free ALT makes up only a small part of the 
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total residues in liver. In pig liver 68–79% of the administrated ALT dose is bound to mac-

romolecules such as protein [65, 68]. The specified withdrawal time of registered veterinary 

drugs with ALT as active ingredient is 9 days [51, 66] and the depletion studies showed that 

after 7 days ALT residues were below MRL (see Appendix  Table S1) [28, 68].  

Excretion data is limited and inconsistent for the species pig. The only data available is given 

by the marketing authorization holders in the course of the authorization process. Two stud-

ies are cited in the scientific opinion of the CVMP, which report contradictory results. One 

study reported that elimination via bile is the major excretion pathway with only 20% of re-

nal excretion, whereas in the second study primarily renal excretion (60%) was observed [28]. 

In the scientific opinion of the CVMP in 2016 concerning the potential environmental risk of 

ALT, studies with radio-labeled ALT were cited that showed that after prolonged treatment 

with 20 mg/d of ALT only 25% of the total dose was excreted in urine (sum of ALT and ALT 

conjugates) and 75% was excreted via bile [29]. In urine, 2% of the radioactivity was attribut-

ed to ALT and 24% to its conjugates, corresponding to 0.5% and 6% of the total dose. In bile, 

6% of the radioactivity was caused by ALT and 14% by its conjugates, corresponding of 4.5% 

and 10.5% of the total dose, respectively. A total excretion of about 5% of ALT and 16.5% of 

its conjugates was reported [29]. Furthermore, a renal excretion of ALT of 44% and 53% ex-

cretion via bile within 24 hours in horses was reported [28]. Glucuronides and sulfate conju-

gates are described as renal metabolites of ALT in horses [69]. Twelve days after repeated 

treatment ALT levels in equine urine were below the limit of detection (2 ng/mL) [50]. 

1.2.3 Environmental impact of veterinary drugs with hormonal action 

Synthetic substances with hormonal actions are subject to public discussion since they are 

environmental contaminants and belong to the group of endocrine disrupting chemicals [25]. 

According to the definition by the WHO and the United Nations Environment Programme 

(UNEP) an endocrine disruptor is “an exogenous substance or mixture that alters function(s) of 

the endocrine system and consequently causes adverse health effects in an intact organism, or its prog-

eny, or (sub) populations” [25]. The increase in incidences of endocrine-related disorders of the 

reproduction system and immune system as well as of cardiovascular, thyroid or metabolic 

diseases cannot be explained solely by genetic predispositions, but epigenetic influences, e.g., 

nutrition, or environmental contamination, are likely to play a role in this development [25]. 

Studies showed an increase in feminized male fish living in waters contaminated with estro-

gens, such as, 17-β-estradiol, estrone and ethinylestradiol [25, 70-73]. Even low concentra-
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tions of sex steroids (ppt-level) are environmentally relevant and lead to negative effects on 

the reproduction system of fish and other aquatic organisms [74]. Of particular concern is 

that sex steroids produce a non-linear dose-response curve and can lead to irreversible dam-

ages in the reproduction system, if the organism is exposed at critical time points, such as 

during fetal and postnatal development [25]. Thus, exogenous sex steroids exhibit a potent 

effect on the sensitive endocrine controlled reproduction system. Studies from Jenkins et al. 

and Orlando et al. describe a negative effect of sex steroids originated from effluent from 

paper mills or cattle feedlot on the reproduction systems of fish. Androgens, such as, andros-

tendione, are the cause of a masculinization of female fish and mixtures of sex steroids alter 

the hypothalamic–pituitary–gonadal axis inhibiting the release of GnRH or gonadotropins 

[75, 76]. Furthermore, trenbolone, a growth promoting substance used in cattle feedlot, has 

an anabolic and androgenic effect and leads to masculinization of female fish [77].  

Veterinary medicinal products containing ALT are also discussed to pose a risk to fish and 

other aquatic organisms [78]. Very low concentrations of ALT (< 0.4 ng/L) showed relevant 

effects on the fertilization and survival rate in a two-generation study in fish [78]. Further-

more, a shift in sex ratio toward males caused by the androgenic effect of ALT is described 

and is in line with findings of other synthetic progestogens used in medicinal products for 

human use [78, 79]. According to the “guideline on environmental impact assessment for 

veterinary medicinal products in support of the VICH guidelines GL6 and GL 38” the CVMP 

established a predicted environmental concentration (PEC) in soil for ALT and its conjugates 

of 0.013 µg/kg [29, 80]. For surface water, PEC ranged from 16–219 pg/L, depending on dif-

ferent soil types for run-off calculations [29, 80]. A variety of factors are considered in this 

modeling, i.e, ecotoxicological data, degradation in manure, different soil conditions in Eu-

rope, metabolism and application data. In consideration of the predicted no effect concentra-

tion (PNEC) for surface water of 0.04 ng/L ALT, a risk to fish and other aquatic organism 

associated with the zootechnical use of ALT could not be excluded for certain geographical 

areas [29, 81]. However, in the absence of viable alternatives to ALT for the synchronization 

of estrus in gilts, the CVMP considered the benefit-risk balance positive but recommended 

the addition of risk mitigation measures to the product information [78]. The hormonal activ-

ity of ALT is further underlined by a publication from the FDA, which highlights the poten-

tial health risks for people exposed to ALT products for horses or pigs [82]. Reported repro-

ductive adverse effects include abnormal or absent menstrual cycles in women, and in men 
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decreased libido. Further adverse effects reported were headaches, fever, abdominal pain, 

nausea, diarrhea, vomiting and rashes [82, 83]. 

Scientific data about environmental residues of ALT and its behavior in environmental sam-

ples are scarce. In an environmental residue monitoring program in the U.S., ALT was found 

in 4% of 50 tested lakes in Minnesota [84]. In Czech Republic ALT was detected in influent 

and effluent of a wastewater treatment plant (WWTP) at a concentration of 0.35 ng/L and 

0.15 ng/L, respectively [85]. The same study analyzed 17 progestogens in waste water and 

surface water. Progesterone was detected in all samples, while synthetic progestogens like 

ALT were only detected in influent and effluent waste water samples. Hence, WWTPs were 

not capable of removing progestogens entirely during treatment process [85]. A study from 

Sauer et. al showed that ALT exhibits androgenic activities of up to 14% of the reference sub-

stance dihydrotestosterone in an androgen receptor-specific chemically activated luciferase 

gene expression bioassay, but did not exhibit anti-androgenic activity [86]. This study also 

reported that progestins mostly occurred in influents of WWTPs and accounted for up to 

29% of androgenic activity, but their contribution to an androgenic activity in effluents was 

negligible [86].  

Furthermore, primary and secondary photo-products of ALT, generated in water under en-

vironmentally relevant conditions, showed significant androgenic activity in in vitro cell as-

says at picomolar to nanomolar concentrations [87]. These concentrations are in the range of 

the above mentioned PEC of ALT. Pflug et al. showed that the photo-isomer of ALT exerts 

45–100% of the activity of ALT in activating estrogen receptors, progesterone receptor and 

pregnane X receptor [88]. This emphasizes the importance of further studies on the fate of 

ALT and its metabolites in environmental samples as well as of studies on the pharmacoki-

netics of ALT to determine the elimination rate and identify potential environmentally rele-

vant metabolites.  

Sorption studies at laboratory scale showed further that an accumulation of ALT in different 

soils cannot be excluded and biotic as well as abiotic elimination needs to be considered [44, 

89]. Hence, a potential risk for the environment based on the administration of manure from 

ALT-treated gilts to agricultural soils cannot be ruled out completely, especially in regions 

were manure from gilts is used [44]. However, the estimated consumption of ALT of 250 kg 

in Germany does not suggest the need for the recommendation of a national environmental 

monitoring program [44]. 
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1.3 Non-targeted LC-HRMS screening methods and metabolomics 

workflows 

Parts of the following passage have previously been published in [1]. 

To this day, the majority of analytical methods for veterinary drug residue monitoring and 

environmental analysis are for good reasons based on targeted multi-residue approaches 

using liquid chromatography coupled to quadrupole-based tandem mass spectrometry. Tri-

ple quadrupole mass spectrometers (QqQ) provide high sensitivity and accuracy as well as 

robustness combined with a large dynamic range. Hence, QqQ are still considered to be the 

“gold standard” in veterinary drug residue analysis [90]. However, this technique is intrinsi-

cally limited to a predefined number of known analytes. For instance, it is not possible to 

perform a retrospective analysis of metabolites of veterinary drugs or biomarkers associated 

with a drug administration. Liquid chromatography hyphenated to high resolution mass 

spectrometry (LC-HRMS) offers a complementary approach. High resolution full scan meth-

ods can be used to quantify veterinary drugs at trace levels [90]. Moreover, it is possible to 

perform a non-targeted screening for analytes of interest such as transformation products or 

metabolites in parallel and retrospectively [91-93]. LC-HRMS provides important infor-

mation for the structural elucidation of unknown analytes, such as chromatographic reten-

tion time, accurate mass, isotope distribution and fragmentation pattern. Thus, it is possible 

to identify analytes by library spectrum matches, although a reference standard still renders 

the highest level of analyte identification [94].  

Besides non-targeted screening methods, metabolomics workflows are versatile tools to ob-

tain in-depth information about the sample under investigation. Metabolomics approaches 

are widely used for biomarker discovery in clinical or pharmaceutical applications, cancer 

research or drug discovery [95], but they have also been successfully applied in food safety, 

food quality and traceability [96]. The terms “metabolomics” and “metabonomics” describe 

the exhaustive analysis of the metabolic profile of a biological system and can be used inter-

changeable [97, 98]. Metabolites are intermediates of metabolic pathways, typically with a 

molecular weight below 1.5 kDa [96]. Thus, metabolomics represents best the molecular 

phenotype, i.e., the current state of the biological system influenced by the genomic predis-

position as well as environmental exposures. In general, there are two strategies in metabo-

lomics approaches, i.e., metabolic fingerprinting and metabolic profiling. Fingerprinting re-

fers to the analysis of as many compounds as possible in order to submit the obtained data to 



 

Introduction                                                                                                                         25 

statistical analysis for pattern recognition, whereas identification and quantification of the 

analytes are not mandatory steps. In contrast, profiling refers to the analysis of a set of relat-

ed metabolites including their quantification [96]. 

The use of metabolomics for veterinary drug residue monitoring is a young field of research. 

Only a few studies on this subject have been published until now [99-104]. Two examples 

include the analysis of tissue samples from chickens, which were previously treated with 

amoxicillin [99] or enrofloxacin [100], respectively. Another study investigated metabolic 

changes in cattle urine after steroid treatments [101]. Regal et al. was able to highlight signifi-

cant metabolic modifications in serum after to the administration of estradiol and/or proges-

terone [102]. Metabolomics-based strategies were used to determine diagnostic markers for 

the illegal use of low-dosed “cocktails” of β2-agonists in porcine urine samples [103] and to 

propose potential biomarkers of illicit 5-nitroimidazole abuse in pigs [104]. These initial stud-

ies show that metabolomics approaches can provide insights into the metabolome of drug-

treated animals. Hence, metabolic fingerprinting may be a valuable tool to evaluate the 

origin of residues of veterinary drugs, i.e., have the residues been caused by improper drug 

administration to an infected animal or simply by contamination. 

Furthermore, the number of applications of non-targeted LC-HRMS analysis or metabolom-

ics is also increasing in the field of environmental analysis [105, 106]. Anthropogenic sub-

stances, e.g., veterinary drugs, are released into the environment through various pathways 

such as effluents from WWTP, surface run-off or sorption to soil. However, not only the 

pharmaceutical itself is discharged into the environment but also its transformation products 

which can be formed due to biological or physicochemical processes. It is crucial to identify 

transformation products of these pharmaceuticals in order to assess the risk for exposed or-

ganisms since the toxicity of these mixtures may be altered compared to the toxicity of the 

original pharmaceutical product. Moreover, under real-world conditions environmental or-

ganisms are exposed to mixtures of pollutants at sub-lethal levels. Non-targeted LC-HRMS 

analysis can be applied to investigate transformation products of chemicals such as pharma-

ceuticals or other pollutants [107, 108]. Metabolomics analysis can be further used to study 

the organism’s response to environmental stressors, e.g., after exposure to WWTP effluent 

[108]. These applications show the benefits of non-targeted LC-HRMS in order to investigate 

environmental exposure of pharmaceuticals including veterinary drugs. 
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1.3.1 High resolution mass spectrometry: Q-Orbitrap vs. Q-TOF 

High resolution mass analyzers are characterized by a resolving power of > 10,000 [109]. 

Mass resolving power for an isolated peak is defined as 𝑚 𝑚∆50%⁄  , referencing the mass of 

the spectral peak to its full width at half maximum (FWHM) [110]. Mass resolution is defined 

as the minimum mass difference between two mass spectral peaks, 𝑚2 − 𝑚1, at a given per-

centage of the valley between (e.g., 10% valley method). It determines the ability to distin-

guish ions of different elemental composition but with the same nominal mass. Mass accura-

cy is defined as the difference between a measured mass and the calculated exact mass [109]. 

Two types of high resolution mass analyzer were used for this thesis and are described in the 

following. 

 
Figure 5. Left: schematic assembly of Q Exactive Focus (photo is provided courtesy of Thermo Fish-

er [111]). Right: schematic assembly of X500R QTOF (photo is provided courtesy of SCIEX 

(www.sciex.com) [112]).  

 

OrbitrapTM mass spectrometers  

OrbitrapTM mass spectrometers are high resolution mass analyzers which operate by trapping 

ions in electrostatic fields [113]. The first Orbitrap was described by Alexander Makarov in 

2000 [114], but the principal concept of orbital trapping was yet described in 1923 [115]. 

There is a series of instrument models based on this mass analyzer technique with different 

spectrometer architectures. In this thesis, a Q Exactive Focus model was used (Thermo Fisher 

Scientific). Hence, the following description is focused on the operating principle of this par-

ticular model. 

After ionization of the molecules via atmospheric pressure ionization (e.g., heated electro 

spray ionization (H-ESI)), charged ions are focused in the ion source optics by the means of 

direct current (DC) and radiofrequency (RF) voltage and a vacuum gradient. The ions pass a 

hyperbolic quadrupole mass filter, which can be used for precursor ion selection for parallel-
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reaction monitoring (PRM), selected ion monitoring (SIM) or data-dependent fragmentation. 

After the quadrupole mass filter, the ions are accumulated in the RF-only bent C-Trap, where 

their energy is dampened in a bath gas (nitrogen). The C-Trap focuses the ions in a tight 

package before ejecting them either into the higher-energy collisional dissociation (HCD) cell 

to produce product ions or into the Orbitrap analyzer. All ions are released simultaneously 

to the Orbitrap analyzer by applying DC voltage, but light ions travel faster to the analyzer 

than heavy ones, getting squeezed closer to the central electrode [111]. The Orbitrap consists 

of an axial spindle shaped central electrode, which is surrounded by a pair of bell-shaped 

outer electrodes. It is an ion trap, capturing the moving ions in ion packets around the cen-

tral electrode by electric fields, since the electrostatic attraction is compensated by the cen-

trifugal force from the initial tangential velocity. The ions form stable rotations around the 

axial central electrode while oscillating harmonically along it. The frequency of this harmonic 

oscillation depends on the mass-to-charge (m/z) ratio and the device-specific field curvature. 

An image current produced by the oscillating ions is detected by the outer electrodes and via 

Fast Fourier Transformation (FFT) the frequency of the axial oscillation and hence, the m/z of 

the ions can be determined. Thus, multiple masses can be detected at the same time and with 

a high resolving power. Automatic gain control (AGC) is applied in order to avoid trap over-

filling, which can cause mass shifts or detector saturation [111]. The Q Exactive Focus can be 

operated at a resolving power of up to 70,000 (full width half maximum (FWHM) at m/z 200) 

with a scan rate of 3 Hz. This high resolving power results in a mass accuracy below 5 ppm 

for most ions. Faster scan rates of 12 Hz can be achieved with a resolving power of 17,500. 

Furthermore, the wide linear dynamic range of up to 6 orders of magnitude is a powerful 

tool in pharmacokinetic experiments [111, 113, 116].  

Time-of-flight mass spectrometer  

The first time-of-flight (TOF) analyzer was called “velocitron” and was described in 1948 

[117]. TOF analyzers measure the m/z ratio based on the time of flight through a field-free 

flight path. The measurement principle is based on the conversion of the potential energy of 

a charged particle into kinetic energy after acceleration [118].  
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𝑑: effective distance  𝑒: electron charge      𝑚: mass        𝑞: particle charge     𝑡: flight time      

   𝑈: voltage       𝑉: acceleration voltage       𝑣: velocity       𝑧: number of charges 

 

Ions get accelerated by an electric field with the result that ions with the same charge have 

the same kinetic energy. The velocity of the ions depends on the m/z ratio. Hence, heavier 

ions with the same charge reach the detector later than lighter ones [118]. 

In the particular setting of the X500R QTOF (ABSciex), molecules get ionized in the ion 

source at atmospheric pressure. Then, a series of quadrupoles (Q-Jet) focuses the ion flux 

before they enter the first quadrupole (Q1) which can be used as a mass filter for a specified 

mass range or for specified m/z for MS/MS experiments. After mass filtering in Q1, mass 

fragmentation can be performed in Q2—a linear acceleration collision cell. In order to 

achieve the same starting position as well as starting velocity of the ions, the ions are acceler-

ated in the direction orthogonal to the ion beam. This instrumental set-up leads to an en-

hanced resolving power [109]. Two reflectors increase the ion flight path and aid to focus 

ions, which also results in enhanced resolving power. At the end of the flight tube a micro-

channel plate detector is used for detection of the arrival of the ions [112, 119]. 

The resolving power of the X500R QTOF is specified as ≥ 42,000 (full width half maximum 

(FWHM) at m/z 956) but its scan rate is higher (25 Hz) than that of the Q Exactive Focus. 

QTOF systems typically have a smaller dynamic range of up to 5 orders based on the detec-

tor setup. 

1.3.2 Data processing and statistical analysis 

Metabolomics approaches render a huge amount of data with up to several thousand scans 

per sample. Data processing methods need to be developed which include peak picking, in-

tegration and peak alignment [120]. This is a crucial step and can also lead to data loss. 

Hence, it is important to identify important parameters which significantly influence peak 

detection. In order to do this in a time- and effort efficient way, a statistical design of experi-

ment (DoE) with a fractional factorial design can be used [121]. The mathematical back-

ground of DoE is briefly described in the following. The theory of experimental design con-
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siders the outcome of an experiment, 𝑌, as a random variable which depends on several fac-

tors (𝑥1, 𝑥2, … 𝑥𝑘) [121]. In general, the model function 𝑓 is assumed to be polynomial in sev-

eral variables. 𝑓 is often called response surface:  

𝑌 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) +  𝜖                 𝑥ℎ: factors (ℎ = 1, … , 𝑘)                              (1) 

On the basis of the idea that a response function can be developed as a Taylor series about 

the point of interest, one can approximate the response function in a constrained space by a 

quadratic polynomial. In the case of two factors, for example, one can write 

𝑌 = 𝑎0 + 𝑎1𝑥1+ 𝑎2𝑥2 +  𝑎3𝑥1
2 + 𝑎4𝑥2

2+ 𝑎5𝑥1𝑥2  +  𝜖       (2) 

A more simple approximation to the response function at the point of interest is provided by 

a linear model function, which is the idea that underlies a screening factorial design. In this 

case, when a full factorial design is used, the number of experiments can be calculated as  

𝑛 =  2𝑘                   𝑘: number of factors to be investigated     (3) 

Screening designs are an efficient way to identify significant main effects. In a fractional fac-

torial design, interactions between the effects are omitted and only main effects are consid-

ered. Each factor of a screening design can take two levels that are coded by −1 or +1. 

In order to identify the relevant factors in the data processing setting, a 2𝑚−𝑝 fractional facto-

rial design (i.e., 𝑛 =  2𝑚−𝑝, where 𝑛 is the number of experiments, 𝑚 is the number of factors 

and 𝑝 ∈ ℕ, with 𝑛 ≥  𝑚 +  1) can be useful, since the number of experiments can be reduced 

significantly [121].  

If the influence of five factors shall be investigated by a 2𝑚−𝑝 fractional factorial design and 

one only wants to consider main effects and omits all interactions, this leads to a model with 

6 coefficients. Since one wants to estimate the standard deviation, a number of experiments 

that exceeds the number of the coefficients is needed. 

𝑛 =  25−2 = 8 (with 𝑛 ≥  6) 𝑚 …  sum of factors, 𝑝 ∈ ℕ, with 𝑛 ≥  𝑚 +  1.                  (4) 

𝑌 = 𝑎0 + 𝑎1𝑥1+ 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5  +  𝜖       (5) 

 

 



 

30  Introduction 

Table 2. Example of fractional factorial design of experiment plan. 

Experiment Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 +1 +1 +1 +1 +1 

2 +1 +1 -1 +1 -1 

3 +1 -1 +1 -1 -1 

4 +1 -1 -1 -1 +1 

5 -1 +1 +1 -1 +1 

6 -1 +1 -1 -1 -1 

7 -1 -1 +1 +1 -1 

8 -1 -1 -1 +1 +1 

 

The DoE is drawn up in such a way that the mean of every column is 0 and each column is 

orthogonal to any other column. The estimates of the coefficients 𝑎̂0…5 are stochastically in-

dependent from each other. Furthermore, the sample variance of all factors is identical. 

In case of the optimization of a peak detection workflow, the percentage of peaks detected by 

the data processing workflow in relation to peaks detected using vendor specific software 

with additional manual integration can be defined as the response 𝑌 (identification ratio (ID 

ratio)). 

Ordinary least-squares regression of equation (5) provides the estimates 𝑎̂0…5 and 𝑠.̂ The sig-

nificance of the estimates can be evaluated by a lower (in case of 𝑎̂ > 0) or an upper one-

sided confidence limit (in case of 𝑎̂ < 0), respectively. For example, if a lower one-sided 0.9-

confidence limit is > 0 (in case of 𝑎̂ > 0), one can conclude that the expectation of 𝑎 is higher 

than 0 and the factor is of significance and cannot be eliminated [121]. Only significant fac-

tors need to be considered for optimization of peak detection.  

Hence, with the help of this procedure the best settings for peak detection can be determined 

in a time- and effort efficient way.  

Furthermore, chemometric tools are essential to reduce data complexity and to identify sta-

tistical significant differences. Ultimately, this can lead to the identification of biomarker 

candidates. Principal components analysis (PCA) is a widely used unsupervised exploratory 

technique for data reduction and pattern recognition [122, 123]. PCA consists of an orthogo-

nal transformation of a set of correlated variables into a set of uncorrelated ones, the so-

called principal components (PC). The principal components are constructed in such a way 

that they explain in a descending order of magnitude the variation of the data. First, the data 

are mean-centered, and then the covariance matrix 𝐴𝑚𝑥𝑚 =  
1

𝑛
𝑋′𝑋 is calculated. The eigen-

vectors of 𝐴 are the so called loadings. If the first principal components capture most of the 
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variance, the others can be neglected [124]. Thus, an efficient data reduction is achieved. 

Commonly, the first two or three PCs are used to span a two- or three-dimensional space 

referred to as scores plot. Samples can be represented by their scores which are calculated 

from the original data by multiplying them by the loadings of the PCs. Hence, one can imag-

ine a PCA in the following way. First, a new axis is drawn through the center of the data 

points in such a way that the empirical variance of the new coordinates is maximized. Sub-

sequently, a second axis is drawn through the center of the data points, which is orthogonal 

to the first axis, in such a way that the empirical variance of the coordinates referenced to the 

second axis is also maximized and so forth up to 𝑘 number of axes (𝑘 ≤ min (𝑛, 𝑚)) [121].   

In order to perform classification on the basis of bi- or multivariate data from two (or more) 

classes (either original data or scores) a statistically defined decision criterion is necessary. 

One approach is to use so called prediction ellipsoids [124].  A prediction ellipsoid is an el-

lipsoid which encloses, with a certain error probability, a single future observation from a 

given class. Another approach is the use of discriminant analysis. This supervised discrimi-

nation technique can be performed as a linear discriminant analysis (LDA) or a quadratic 

discriminant analysis (QDA). LDA implies that the covariance matrices of both classes are 

equal. QDA assumes that the covariance matrices of both classes differ from each other. Both 

approaches provide a border which consists of data points at which the probability density 

of both classes is equal. In a bivariate case, LDA renders a straight line and QDA provides a 

quadratic model function [125].    

Monte Carlo simulations can be conducted to assess the performance of discriminant analy-

sis via cross-validation. The number of misclassifications (NMC) can be used as a diagnostic 

statistic. The predicted class membership of samples is compared to the true class member-

ship and the samples are classified as True Positive (TP), True Negative (TN), False Negative 

(FN) or False Positive (FP) [126]. The NMC is defined as the sum of FP and FN. Further per-

formance characteristics can be calculated as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The sensitivity describes the ability of the model to correctly classify positive samples, while 

the specificity is a measure of how well the model performs to identify control samples [127]. 
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In contrast to PCA, partial least squares-discriminant analysis (PLS-DA) is a supervised clas-

sification technique which can be used to classify samples in predefined categorical classes 

[128]. In a first step, partial least squares regression is performed to obtain a relationship be-

tween the observations and a predefined categorical vector by maximizing the square of the 

covariance matrix. In a second step, a class membership is assigned to the prediction by ap-

plying a threshold above which the sample is classified as one of the predefined classes [129]. 

Hence, one can imagine a PLS-DA in the following way. First, a new axis is drawn through 

the center of the data points in such a way that the square of the covariance between the new 

coordinates and the predefined categorical vector is maximized. Subsequently, a second axis 

is drawn through the center of the data points, which is orthogonal to the first axis, in such a 

way that the square of the covariance between the new coordinates and the predefined cate-

gorical vector is maximized and so forth up to 𝑘 number of axes (𝑘 ≤ min (𝑛, 𝑚)). Nowadays, 

there are different PLS-algorithms. Some algorithms implement the original approach de-

scribed above, in which case the loadings are orthogonal to each other while other algo-

rithms provide scores which are orthogonal to each other. In any case the classification out-

come is the same.  

Supervised methods are prone to over-fit data. Thus, Monte Carlo simulations have to be 

conducted to assess the PRESS statistics in order to check for over-fitting. The predicted re-

sidual sum of squares (PRESS) is divided by the total sum of predictions to calculate the 

mean square error of prediction (MSEP). MSEP is used to evaluate the error between the 

predicted categorical variable and the known category [128]. If the MSEP of the cross-

validation via Monte Carlo simulations is clearly higher than the MSEP obtained from the 

residuals of the regression, one can conclude that the model over-fitted the data [121]. This 

part of the introduction provides some theoretical background information, detailed infor-

mation on the data processing and statistical analysis is given in Section 3.1.4 and 3.2.3.3. 
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2 Aims of study 

Non-targeted LC-HRMS screening and metabolomics workflows can be applied to explore 

changes in the metabolome of tissues or body fluids caused by various diseases or after the 

application of drugs. The use of metabolic fingerprinting in veterinary drug residue monitor-

ing and environmental analysis has recently been described as an emerging field of science.   

The overall objectives of this study were to develop non-targeted LC-HRMS metabolomics 

approaches and to assess their feasibility to reveal differences in biological matrices and to 

apply these approaches in order to carry out two separate scientific projects, one in the field 

of veterinary drug monitoring, the other in the field of environmental analysis. 

For this purpose, a general workflow needed to be developed. Primary aims for this work-

flow development were: 

- to develop or to improve sample preparation procedures and LC-HRMS protocols, 

- to establish a workflow for LC-HRMS data processing,  

- to implement an evaluation procedure subjecting non-targeted LC-HRMS data to 

chemometric analysis,  

- to assess the feasibility of different chemometric methods to differentiate between 

positive samples and control samples and  

- to identify unknown metabolites or biomarkers, which could be used as diagnostic 

markers.  

Project 1: Non-targeted LC-HRMS analysis of samples taken within the frame of official 

veterinary drug residue control 

In the first project of this thesis, a workflow should be developed for the investigation of LC-

HRMS data obtained in the frame of official veterinary drug residue control. Up to now, offi-

cial residue control is based on targeted multi-analyte methods in order to detect non-

compliant residues of veterinary drugs. However, with the current methodology it is not 

possible to evaluate whether the presence of antibiotic residues points to a therapeutic appli-

cation or was the result of a contamination or cross-over.  Hence, the aim of this project was 

to apply metabolic fingerprinting to analyze samples from drug-treated, infected animals 

and samples from untreated, healthy animals and to highlight potential biomarkers for 

changes in the metabolism of    drug-treated, infected animals. The identified biomarkers 
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should be easily included in routine veterinary drug monitoring with minimal additional 

analytical effort. A routine protocol for multi-residue analysis of antibiotics in muscle tissue 

should be chosen as starting point. The study aimed to provide analytical tools that can be 

applied for more legal certainty in order to decide whether a non-compliant result was 

caused by improper medication of infected animals or if further investigations are needed 

and sample contamination cannot be excluded. Furthermore, the applicability of the ap-

proach was to be investigated on two different HRMS systems (Q-Orbitrap and Q-TOF).  

Project 2: LC-HRMS analysis of urine samples from ALT-treated gilts 

In the second project of this thesis, the aim was to develop a non-targeted LC-HRMS method 

in order to investigate urine samples from ALT-treated gilts and from non-medicated gilts. 

ALT, a synthetic progestogen, is used in modern pig production for zootechnical purposes, 

i.e., for estrus synchronization in gilts. For certain geographical areas it cannot be excluded 

that the zootechnical use of ALT in gilts may present an environmental risk. Environmental 

residues of veterinary drugs with hormonal action are of rising concern, because even low 

level residues can pose a risk to the environment. There is only limited and inconsistent data 

on the urinary excretion of ALT and its metabolites.  In the course of this study a pilot study 

should be conducted in order to collect urine samples from gilts which were treated with 

ALT as well as urine samples from non-medicated gilts which served as a control group. The 

aims were to determine the amount of ALT and its metabolites excreted in urine and to in-

vestigate the potential of metabolomics workflows (1) to distinguish between ALT-treated 

gilts and non-medicated gilts and (2) to identify new metabolites of ALT, which may be re-

leased in the environment after the application of manure from ALT-treated gilts as fertilizer 

to agricultural soils. 
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3 Material and methods 

3.1 Non-targeted LC-HRMS analysis of samples taken within the 

frame of official veterinary drug residue control 

Parts of the following passage have previously been published in [1]. 

3.1.1  Samples 

Porcine samples  

Twenty-five non-compliant porcine samples from infected, drug-treated animals were collect-

ed within the framework of the European residue control plan [8] and used as positive sam-

ples. These samples exhibited residues of veterinary drugs which exceeded the European 

MRL in muscle tissue, kidney tissue or both (see Supplementary data Table S2 for details on 

analyte spectrum). Twenty-five compliant porcine samples from untreated, healthy animals 

served as controls. All samples were stored at -20°C prior to sample preparation. For reasons 

of quality control (QC), spiked QC samples as well as pooled samples of all positive (positive 

QC) and control samples (control QC) were prepared. Spiked QC samples contained 70 vet-

erinary drugs (including analytes for marker residues) which were added prior to sample 

preparation at MRL level (see Supplementary data Table S4).   

In order to establish a bivariate biomarker model for porcine muscle samples, 50 positive and 

50 control porcine muscle samples were used. These samples were analyzed in several analyt-

ical batches over the course of one year and were retrospectively evaluated for the two bi-

omarker candidates. Detailed sample information is given in Table 3. 

Table 3. Sample information (gender, age, storage time) on the data set used for PCA and the data 

set used for the bivariate model. 

 Data set for PCA Data set for bivariate model 

 Positive Control Positive Control 

Gender     

Male, castrated  14  26 

Female 4 11 9 20 

n.a. 21  41 4 

Age     

Piglet (3 months) 10  21  

Fattened pig  

(4-6 months) 

15 25 29 50 

Storage time     

< 12 months 8 19 19 45 

12–24 months 17 6 31 5 
n.a.: not available. 
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Bovine samples   

Fifteen non-compliant bovine samples from infected, drug-treated animals were collected 

within the framework of the European residue control plan [8] and used as positive samples. 

These samples exhibited residues of veterinary drugs which exceeded the European MRL in 

muscle tissue, kidney tissue or both (see Supplementary data Table S3 for details on analyte 

spectrum). Fifteen compliant bovine samples from untreated, healthy animals served as con-

trols. All samples were stored at -20°C prior to sample preparation. For reasons of quality 

control (QC), spiked QC samples as well as pooled samples of all positive (positive QC) and 

control samples (control QC) were prepared. Spiked QC samples contained 70 veterinary 

drugs (including analytes for marker residues) which were added prior to sample prepara-

tion at MRL level (see Supplementary data Table S4).   

Table 4. Sample information (gender, age, storage time) on the bovine data set used for PCA. 

 Bovine samples 

 Positive Control 

Gender   

Male 4 5 

Female 11 10 

Age   

1–2 years 2 2 

3–5 years 5 4 

6–10 years 4 5 

n.a. 4 4 

Storage time   

< 12 months 9 12 

12–24 months 6 3 

n.a.: not available. 

3.1.2 Sample preparation 

An in-house validated protocol for multi-residue analysis of veterinary drugs was used for 

sample preparation [130]. In brief, 1 g homogenized muscle tissue was weighed into a centri-

fuge tube, fortified with 100 µL of a mixture of internal standards (amoxicillin-d4, ben-

zylpenicillin-d7, demeclocycline, enrofloxacin-d5, oxolinic acid-d5, roxithromycin, sarafloxa-

cin-d8, sulfadimethoxine-d6 and sulfadoxine-d3 each at a concentration of 1000 ng/mL) and 

left at room temperature for 15 min. Ten mL of EDTA-McIlvaine buffer [130] was added. The 

samples were vortexed, shaken for 10 min and then sonicated for 5 min. After centrifugation 

for 10 min at 2,500 × g, the supernatants were collected and filtered through folded filters 

(> 0.4 µm, Macherey-Nagel, Düren, Germany). The extraction was repeated with an addi-
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tional 5 mL buffer and the supernatants were combined. After rinsing the filters with 2 mL 

buffer, the entire solution was applied to a 6 mL/200 mg OASIS HLB® solid phase extraction 

(SPE) cartridge (Waters, Eschborn, Germany), pre-activated with 6 mL of methanol and 6 mL 

of H2O. After a washing step with 6 mL of 5% methanol and 10 min drying in vacuo, the 

samples were eluted with 6 mL of methanol. The extracts were evaporated to near dryness 

under nitrogen (40°C) and reconstituted in 1 mL of H2O/acetonitrile (90/10 (v/v)). After cen-

trifugation at 21,500 × g for 5 min, the supernatants were transferred into HPLC vials for LC-

HRMS analysis. 

3.1.3 LC-HRMS methods (Q-Orbitrap and Q-TOF) 

The LC-MS method was adopted from Bohm et al. and slightly modified [130]. In brief, the 

chromatographic separation was carried out using a Dionex Ultimate 3000 RS UHPLC 

(Thermo Scientific, Idstein, Germany) equipped with a Phenomenex Luna Omega C18 polar 

column (1.6 µm, 100 Å, 100 mm x 2.1 mm; Phenomenex, Aschaffenburg, Germany). Twen-

ty µL of extract was injected for each analytical run. The mobile phase consisted of H2O with 

0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B). 

The chromatographic method started with an initial phase of 10% B for 1 min, followed by a 

linear gradient to 60% B over 12 min and keeping these conditions for 2 min. A washing step 

increased mobile phase B to 95% within 1 min and conditions were held constant for an addi-

tional 5 min. B was decreased to 10% thereafter and held for 5 min to equilibrate the column 

to starting conditions. The flow rate was 0.4 mL/min. The column operated at 30°C. The tem-

perature of the autosampler was set to 15°C. The UHPLC-system was coupled to a Q-

Exactive Focus Orbitrap mass spectrometer (Thermo Scientific, Idfstein, Germany) equipped 

with an heated electrospray (HESI-II) source operating using the following conditions: capil-

lary temperature 300°C, sheath gas flow rate 30 a.u., aux gas flow rate 10 a.u., spray voltage 

3.5 kV, S-lens RF level 60 and aux gas heater temperature 400°C. Data was acquired in posi-

tive ion mode at a resolving power of 70,000 (FWHM at m/z of 200) over a mass range of m/z 

75–1050. The AGC target was set to 1.0 x 106, with a maximum injection time of 220 ms. 

MS/MS-spectra were triggered in fullscan data-dependent MS2 discovery mode by a data-

dependent fragmentation of the most intense ion per scan at 17,500 FWHM covering a mass 

range from m/z 50 to the precursor mass. The isolation window for the precursor was set to 1 

m/z and fragmentation was performed with stepped collision energy of 20, 40 and 60 eV. The 

AGC target was set at 2.0 x 105 with an injection time of 50 ms. To avoid triggering MS/MS 
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data from background ions an exclusion list with the top 50 background ions which were 

observed in reagent blanks was used.  Data acquisition and qualitative analysis were car-

ried out using Trace finder 4.0 (Thermo Scientific, Idstein Germany). 

Furthermore, the samples were analyzed using a LC-Q-TOF system. The chromatographic 

separation was carried out using an Agilent 1290 Infinity UHPLC system (Agilent Technolo-

gies, Waldbronn, Germany) with the chromatographic conditions as mentioned above. The 

UHPLC-system was coupled to a X500R Q-TOF (Sciex, Darmstadt, Germany) mass spec-

trometer equipped with a Turbo V™ source operating in positive electrospray ionization 

(ESI) mode using the following conditions: Atomizing gas 50 psi, auxiliary gas 50 psi, curtain 

gas 35 psi, collision gas 7 a.u., source temperature 550°C and spray voltage 5.5 kV. Data was 

acquired using the information dependent acquisition (IDA) mode. For the IDA experiment, 

TOF MS mass range spanned from m/z 75–1055 with an accumulation time of 0.1 s, a declus-

tering potential (DP) of 80 V with DP spread of 0 V and a collision energy (CE) of 10 V with 

CE spread of 0 V were applied. MS/MS-spectra were triggered for the ten most intense ions 

per scan (intensity threshold of 10 cps) with a collision energy of 35 V (CE spread of 15 V), 

declustering potential of 80 V (DP spread of 0 V) in an accumulation time of 0.05 s. Candi-

date ions were excluded for 5 seconds after 3 occurrences. For TOF-MS/MS the start mass 

was set to m/z 75 and the TOF stop mass was set to m/z 1055. Data acquisition and qualitative 

analysis were carried out using SciexOS 1.3 (Sciex, Darmstadt, Germany). 

3.1.4 Data processing and statistical analysis 

Raw files were converted to mzXML format [131] and imported into MZmine 2 [120]. In or-

der to optimize the MZmine 2 workflow a statistical DoE with a fractional factorial design 

was applied.  

3.1.4.1 DoE with fractional factorial design  

Initial experiments indicated that different settings for noise level, peak time span, minimum 

peak height, smoothing and amplitude of noise used for chromatogram deconvolution had 

relevant effects on peak detection performance in a MZmine 2 workflow. Hence, a screening 

design with these five factors was used in order to identify significant main effects (see Fig-

ure 6).  
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Figure 6. Workflow of MZmine 2 for LC-Q-Orbitrap data processing with low and high level val-

ues of factors for fractional factorial design of experiment. 

 

The 2𝑚−𝑝 fractional factorial DoE consisted of 8 experiments (𝑛 =  25−2). For each factor a 

high and a low level was set (see Figure 6) and the DoE was performed with a test data set 

according to Table 5.  

Table 5. Fractional factorial design of experiment plan. 

Experiment Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

1 +1 +1 +1 +1 +1 

2 +1 +1 -1 +1 -1 

3 +1 -1 +1 -1 -1 

4 +1 -1 -1 -1 +1 

5 -1 +1 +1 -1 +1 

6 -1 +1 -1 -1 -1 

7 -1 -1 +1 +1 -1 

8 -1 -1 -1 +1 +1 

 

The dataset used consisted of three sub datasets of porcine muscle samples each acquired at 

different time points on the LC-Q-Orbitrap system over the time span of two months. One 

sub dataset consisted of one blank and four spiked samples (𝑛 = 15). The spiked samples 

were fortified with 70 different antibiotics prior to sample preparation at 10%, 50%, 100% 

and 150% of MRL level. The percentage of peaks detected by the MZmine 2 workflow in re-
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lation to peaks detected using vendor specific software (Tracefinder) with additional manual 

integration was defined as the response 𝑌 (identification ratio (ID ratio)). 

Validation of MZmine 2 peak detection   

In order to evaluate the performance of the data processing method 15 non-compliant porcine 

muscle samples from drug-treated, infected animals were analyzed as described above (see 

Section 3.1.2 and 3.1.3) with the LC-Q-Orbitrap method and processed with the chosen 

MZmine 2 procedure. These 15 muscle samples contained 16 antibiotics at or above MRL-

level.   

3.1.4.2 Data processing chosen for study 

The final data processing workflow was determined as per the fractional factorial design 

experiments described above (see Section 3.1.4.1 and 4.1.1.1). The following data processing 

workflow was then used for all further experiments. 

Porcine muscle samples  

Raw data from Q-Orbitrap analysis was filtered (0.5–12.5 min) and masses were detected 

with centroid algorithm at a noise level of 1.0 x 105. Chromatogram building was carried out 

with a minimum time span of 0.05 min, a minimum height of 5.0 x 105 and a mass accuracy 

of 5 ppm or 0.002 Da. Chromatograms were smoothed (filter width 15). For chromatogram 

deconvolution, the noise amplitude algorithm with a minimum peak height of 5.0 x 105, peak 

duration of 0.05–1.5 min and amplitude of noise of 1.0 x 105 was applied. After deisotoping 

with an m/z tolerance of 5 ppm or 0.002 Da, a retention time tolerance of 0.01 min, a maxi-

mum charge of 3, peaks were aligned using the join aligner algorithm. The m/z tolerance was 

set to 10 ppm or 0.005 Da weighted with 10%, the retention time tolerance was 0.2 min 

weighted with 10%, only using ions with the same charge. Gap filling was performed with 

20% intensity tolerance at a mass accuracy of 10 ppm or 0.005 Da and 0.05 min retention time 

tolerance after retention time correction. The final steps were duplicate filtering with a mass 

accuracy of 10 ppm or 0.005 Da and 0.2 min absolute retention time tolerance as well as row 

filtering eliminating rows with less than 5 peaks. Data post-processing consisted of eliminat-

ing all mass spectrometric features (m/z at retention time) which were present in the reagent 

blank sample at an intensity of > 1.0 x 107.  

Raw data from Q-TOF analysis was treated similarly, except the noise level was adjusted to 

1.0 x 103 detecting peaks with a minimum height of 5.0 x 103 and m/z tolerance for peak 
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alignment was set to 0.02 Da or 50 ppm. Data post-processing consisted of eliminating all 

mass spectrometric features (m/z at retention time) which were present in the reagent blank 

sample at an intensity of > 1.0 x 106.   

After data processing, a data integrity check was performed. Over the time of two analytical 

batches, 8 spiked QC samples were measured and the identification ratio (ID ratio) of the 

spiked analytes was calculated as well as the relative standard deviation (RSD). The ID ratio 

was defined as the percentage of peaks detected by the MZmine 2 workflow in relation to 

peaks detected using vendor specific software with additional manual integration. Further-

more, the data was evaluated for batch effects, which would have indicated the need for QC 

based signal correction [132].  

Further investigations   

Raw data of bovine muscle samples was processed in exact the same way as porcine muscle 

samples (see Supplementary data Table S5) except that a data integrity check was performed 

on 4 spiked QC samples in the course of one analytical batch.   

Porcine and bovine kidney samples were processed in a similar way with minor changes (see 

Supplementary data Table S6). Data integrity check was performed with 8 and 4 spiked QC 

samples for porcine and bovine kidney samples, respectively. In general, the analysis of porcine 

samples was performed in two analytical batches due to the number of samples, while the 

analysis of bovine samples was completed in one analytical batch. 

3.1.4.3 Statistical analysis 

Porcine muscle samples  

The data was subjected to statistical analysis using an evaluation procedure that was imple-

mented in MATLAB R2019b (The MathWorks Inc., Natick, Massachusetts). In a first step, all 

zero values were replaced by the half of the minimum detected peak area.  The data set was 

normalized by the sum of all peaks, since no batch effect was observed, that would have in-

dicated the need for more complex normalization strategies. Subsequently, the data was 

transformed by taking the natural logarithm. After transposing and standardizing (mean-

centering and division by standard deviation) multivariate statistical analyses were per-

formed, i.e., PCA and PLS-DA.   

Subsequently to PCA, the scores of the 3D-PCA model were submitted to a QDA. Monte 

Carlo cross-validation was used in order to assess the ability of the PCA coupled with QDA 
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to discriminate between the two classes (control vs. positive samples). A test set of 10 sam-

ples was randomly drawn from the data set and PCA with subsequent QDA was performed 

with the remaining training set. This procedure was repeated 5,000 times. The number of 

misclassifications can be used as a diagnostic statistic. The predicted class membership of 

samples is compared to the true class membership and the samples are classified as true pos-

itive, true negative, false negative or false positive. Sensitivity of the PCA with subsequent 

QDA was calculated as the ratio of the number of true positive samples to the sum of true 

positive and false negative samples, specificity was obtained by dividing the number of true 

negative samples by the sum of true negative and false positive samples. The number of mis-

classifications was calculated as the sum of false positive and false negative samples.  

Furthermore, Monte Carlo simulations were conducted to assess the quality of the super-

vised PLS-DA model by calculating the mean square error of prediction (MSEP). The MSEP 

based on the residuals of the PLS-DA regression and the MSEP derived from the cross-

validation procedure were compared and used as diagnostic parameters for over-fitting 

[133]. If the MSEP derived from the cross-validation is higher than MSEP from the residuals 

of the PLS-DA regression, the model over-fitted the data. For exemplary MATLAB codes see 

Supplementary data Section 10. 

Further investigations  

The statistical analysis of bovine muscle samples was performed in the exact same way except 

the test set for Monte Carlo simulations consisted of 5 samples.   

In the case of the kidney samples, further normalization procedures were necessary, since 

batch effects and analytical drifts were observed. In the case of porcine kidney samples, a 

pronounced batch effect between the two analytical batches was noticed. In order to com-

pensate for batch-effects, normalization with QC samples was performed. The mean values 

of all variables of the QC samples from day two of measurement were divided by the mean 

values of all variables of the QC samples from day one of measurement. Subsequently, all 

variables (m/z at retention time) from day two of measurement were divided by this coeffi-

cient. In the case of the data set from bovine kidney samples measured at the Q-TOF system, 

an analytical drift as intra-batch variation was observed. Thus, normalization by applying a 

correction curve fitted to the QC samples in respect to the order of injection was performed. 

A quadratic least-squares regression curve was fitted to the mean peak area of each variable 

of the QC samples as dependent variable 𝑌 with the run number as independent variable 𝑥. 

Then, a correction curve for the whole analytical batch was interpolated for each variable 
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(m/z at retention time) and applied to the data set. For exemplary MATLAB codes see Sup-

plementary data Section 10. 

3.1.5 Study design 

In the process of study design, it was necessary to determine if different factors have an in-

fluence on the multivariate statistical analysis. The factors investigated were species, gender 

and storage time.   

In order to evaluate the possibility to build a species-independent model, 10 blank porcine 

and bovine muscle samples were analyzed as described in Section 3.1.2 and 3.1.3. Further-

more, mixtures of porcine and bovine muscle samples with a ratio of porcine:bovine muscle tis-

sue of 20:80, 50:50 and 80:20 (w/w) were analyzed. The data was processed as described in 

Section 3.1.4.2. For multivariate statistical analysis, all zero values were replaced by the half 

of the minimum detected peak area. The data set was normalized by the sum of all peaks. 

Subsequently, the data was transformed by taking the natural logarithm. After transposing 

and standardizing (mean-centering and division by standard deviation) multivariate statisti-

cal analyses were performed, i.e., PCA and PLS-DA.   

Since multivariate statistical analysis showed substantial differences between the two spe-

cies, the data was additionally submitted to MetaboAnalyst 4.0 for further statistical analysis 

[134]. For structural elucidation of important features discriminating bovine from porcine 

muscle samples the open access software “seven golden rules” [135] was used. Input param-

eters were the accurate mass of the neutralized analyte with a mass accuracy of 20 ppm, the 

isotopic pattern with an isotopic abundance error of 10% and an elemental restriction to car-

bon, hydrogen, nitrogen, sulfur and oxygen.  

The molecular formulas obtained from the “seven golden rules” were searched against avail-

able chemical databases, such as ChemSpider [136], PubChem [137], Metlin [138] and the 

Human Metabolome Database (HMBD) [139]. Product ion spectra were searched in MasCot 

against MS/MS files in NCBIprot and SWISSprot [140-142]. Parameters were set as follows:  

1) Tryptic digestion with the maximum number of missed cleavages was chosen, since tryp-

sin is the most common enzyme used, thus, resulting in many database entries. However, it 

must be kept in mind that enzymatic digestion was not used in the study presented in this 

thesis.  

2.) Peptide and MS/MS tolerance was set to 20 ppm.  
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In a final step, the proposed peptide sequence in FASTA format was searched against nonre-

dundant protein sequences using the protein Basic Local Alignment Search Tool (BLASTp) of 

the NCBI database [141].   

The influence of the variables gender and storage time was examined in 25 control porcine 

samples. The samples were analyzed and processed as described in Section 3.1.2, 3.1.3 and 

3.1.4.2 and PCA was performed in order to check for variable dependent clustering. In con-

trol bovine samples the influence of the variable age was tested additionally, since for this 

species data about the age of the animal was provided in the course of sampling.  

3.1.6 Selection of biomarker candidates and pathway mapping in porcine 

muscle samples 

For biomarker selection in porcine muscle samples, the data was submitted to MetaboAna-

lyst 4.0 [8, 134]. Data pretreatment consisted of (1) replacing zero values by the half of the 

minimum detected peak, (2) normalization by the sum of all peaks, (3) log-transformation 

and (4) standardizing (mean-centering and division by standard deviation). Univariate tests 

(Student’s t-test and a fold change test) were applied for biomarker selection. In order to ac-

count for multiplicity, all 𝑝-values were adjusted using the procedure of Benjamini and 

Hochberg [143]. Biomarker identification was attempted for the top 25 analytes based on 

data obtained from the Q-Orbitrap method. In order to classify the confidence in candidate 

identification, the levels of confidence for unknown annotation described by Schymanski et 

al. were applied [94]. The authors distinguish 5 levels of confidence.  

- Level 5 is chosen for the identification of a unique variable with its accurate mass at a 

specific retention time. 

- Level 4 is determined by the postulation of a molecular formula via isotope abun-

dance distribution, charge state and adduct determination.  

- Level 3 and 2 include structural identification via library spectrum matching or litera-

ture hits as well as via experimental information of diagnostic evidence. Level 3 cor-

responds to a tentative structure with more than one possible structure, e.g., posi-

tional isomers and level 2 refers to a probable structure with one exact proposed 

structure based on diagnostic fragments or an unambiguous library match.  

- In level 1, the biomarker identity is validated by a reference standard [94].  
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For biomarker annotation, several vendor specific as well as open access software packages 

were used in addition to online databases, i.e., Compound Discoverer 3.1 (Thermo Scientific, 

Idstein, Germany), “seven golden rules” software [135], Metlin [138] and the HMDB [139]. 

Furthermore, the data was submitted to pathway mapping by “MS Peaks to Pathway (Ver-

sion 2)” in MetaboAnalyst 4.0 [134]. This functional module is based on the mummichog algo-

rithm, which is able to predict the functional activity from mass spectrometric data without a 

priori identification, since metabolite identification can be derived from local enrichments in 

metabolic pathways [144]. As input parameters, a peak list (m/z at retention time) with the 

corresponding 𝑝-values was provided. The mass accuracy was set to 5 ppm and the top 10% 

significant mass spectrometric features (𝑝-value cut-off: 1.0 x 10-5) were submitted to the 

mummichog algorithm. The manually curated pathway library for Homo sapiens based on 

KEGG, BiGG and Edinburgh Model was selected as knowledge-base for pathway mapping 

[144].  

ROC curves were plotted for two biomarker candidates in MATLAB. ROC curves visualize 

the specificity and sensitivity of the biomarker [145]. In this graph, the sensitivity is plotted 

against 1-specificity. ROC curve analysis can be used to illustrate the compromise between 

sensitivity and specificity regarding the biomarker performance at different discrimination 

thresholds [134]. The area under the ROC (AUROC) is often used as a diagnostic tool for bi-

omarker selection [146]. 

For final biomarker evaluation, bivariate data analysis and construction of prediction ellipses 

were performed using Excel 2010 (Microsoft Office, Redmond, U.S.). According to [124], giv-

en 𝑛 pairs (𝑥𝑖, 𝑦𝑖)𝑖=1,…,𝑛 randomly taken from a bivariate normal population, a (1 − 𝛼) −pre-

diction ellipse for a single further observation is formed by all points (𝜉, 𝜓) that satisfy 
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and 𝑇1−𝛼
2  is the quantile of Hotelling’s distribution with 2 and 𝑛 − 2 degrees of freedom. Note 

that in the bivariate case 𝑇1−𝛼
2 = 𝐹1−𝛼,2,𝑛−2

2(𝑛−1)

𝑛−2
 where 𝐹1−𝛼,2,𝑛−2 is the quantile of the 𝐹-

distribution with 2 and 𝑛 − 2 degrees of freedom. To graph an ellipse with Excel, the lower 

and upper limit of the ellipse’s domain are needed. These values can be obtained by setting 

the term under the root equal to zero and solving the equation for 𝜉: 
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3.2 LC-HRMS analysis of urine samples from ALT-treated gilts 

Parts of the following passage have previously been published in [192]. 

3.2.1 Samples 

In order to investigate the urinary excretion of ALT and its metabolites, a pilot study with 

conventionally housed gilts treated with ALT as part of routine breeding procedures was 

conducted at the “Landesanstalt für Schweinezucht” in Boxberg (Baden-Wuerttemberg, 

Germany) in December 2019. Spontaneous urine samples collected from 5 non-medicated 

gilts (Baden-Wuerttemberg hybrid, age 6 month) and 3 ALT-treated gilts (Baden-

Wuerttemberg hybrid, age 6 month) were studied. Both groups were given the same feed 

stuff consisting of wheat (418 g/kg), barley (398 g/kg), soy extract grist (80 g/kg), fibre mix (40 

g/kg), mineral feed (30 g/kg), rapeseed oil (20 g/kg) and feed acidifiers (14 g/kg). In the 

treatment group, 20 mg ALT were administered daily at 08:00 a.m. over the course of eight-

een days. The samples from medicated gilts were taken at the end of the eighteen-day treat-

ment period, i.e., in the steady-state phase. The sampling time of the urine samples is given 

in Table 6.  

Table 6. Sampling times of spontaneous urine samples from ALT-treated gilts. 

Gilt Day 17 of treatment Day 18 of treatment 

A 3:30 p.m. 11:15 a.m.  

B 4:00 p.m. 11:15 a.m.  

C 3:00 p.m. 07:00 a.m., 10:15 a.m.  

 

For non-targeted analysis, the following QC samples were prepared additionally: QC control 

by pooling all samples from non-medicated gilts, QC positive by pooling all samples from 

medicated gilts and QC total by pooling all samples. All samples were stored at -20°C prior 

to samples preparation. 

3.2.2 Targeted LC-HRMS analysis 

3.2.2.1 Sample preparation 

Development of sample preparation protocol  

Three different SPE cartridges were tested during method development: OASIS HLB® SPE 

cartridges (200 mg, 6 cc) acquired from waters (Eschborn, Germany), Bond Elut C18 SPE car-
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tridges (500 mg, 6 cc) purchased from Agilent Technologies (Santa Clara, USA) and STRATA 

XL SPE cartridges (100 mg, 3 cc) purchased from Phenomenex (Aschaffenburg Germany).  

The sample preparation was adopted from Domínguez-Romero et al. and was slightly modi-

fied [147]. Prior to sample preparation ALT-free urine samples were centrifuged (10 min, 

2,500 x g) and 2 mL of the supernatants were spiked with ALT at the concentration levels 

5 and 500 ng/mL, respectively. The samples were incubated at room temperature for 10 min. 

Two mL of ammonium formate buffer (50 mM, pH 2.6) was added and the extracts were 

used for SPE. OASIS HLB® and Bond Elut C18 SPE cartridges were conditioned using 6 mL 

of methanol and 6 mL of H2O. After the conditioning step the extracts were loaded to the 

cartridges followed by a washing step with 6 mL of 5% methanol and 10 min drying in vacuo 

to remove excess water. Elution of the analyte was performed with 6 mL of methanol. Using 

the STRATA XL SPE cartridges the analytical procedure was the same except using 3 mL for 

the conditioning and washing step, respectively. The extracts were evaporated to near dry-

ness at a temperature of 50°C under nitrogen gas flow. The samples were reconstituted in 

0.5 mL of methanol/water (60:40 (v/v)) resulting in a pre-concentration factor of 4:1. Prior to 

LC-HRMS analysis, the samples were filtered (0.45 µm filter) and transferred to a HPLC vial. 

In order to assess losses during the extraction procedure, blank urine extracts were spiked 

after the extraction procedure with 20 and 2000 ng/mL, respectively. Recovery was deter-

mined via external calibration. Furthermore, samples of each loading and washing step were 

collected and analyzed to determine possible losses during the extraction procedure of ALT 

spiked urine samples.  

In order to investigate if an additional defattening step would reduce the effect of matrix 

components on the recovery, the reconstituted samples (0.5 mL) were extracted with hexane 

(0.5 mL) (n = 10). After the extracts were shaken for 10 min and centrifuged for 5 min at 

21,500 x g, the upper hexane layer was removed. The extracts were transferred to a HPLC 

vial prior to analysis.   

Furthermore, stabile isotope dilution analysis was performed to compensate for matrix ef-

fects. Prior to sample preparation, 2 mL of the supernatant of ALT-free urine was spiked 

with a fixed concentration of ALT-d5 and the sample treatment was performed as described 

above. For quantification the response ratios of ALT and ALT-d5 were plotted against the 

corresponding concentration levels. 

Final sample preparation method  

After method development the OASIS HLB® (200 mg, 6 cc) SPE cartridges were chosen for 
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sample preparation. Furthermore, a hydrolysis step was incorporated into the protocol in 

order to quantify ALT after β-glucuronidase treatment. Hence, the method validation and 

quantification of ALT in urine samples was performed twice, i.e., with and without hydroly-

sis step.  

a) Sample preparation without hydrolysis step  

Prior to sample treatment, urine samples were centrifuged (10 min, 2,500 x g) and 2 mL of 

the supernatants were spiked with internal standard ALT-d5 at a fixed concentration de-

pending on the operating range (see Section 3.2.2.3 and 3.2.2.4). The samples were incubated 

at room temperature for 10 min. After the addition of 5 mL of ammonium formate buffer 

(50 mM, pH 2.6), the samples were used for SPE. OASIS HLB® (200 mg, 6 cc) SPE cartridges 

were conditioned using 6 mL of methanol and 4 mL of H2O. After the conditioning step, the 

samples were loaded to the cartridges followed by a washing step with 6 mL of 5% methanol 

and 10 min drying in vacuo to remove excess water. Elution of the analyte was performed 

with 6 mL of methanol. The extracts were evaporated to near dryness at a temperature of 

50°C under nitrogen gas flow. The samples were reconstituted in 0.5 mL of methanol/water 

(60:40 (v/v)). Prior to LC-HRMS analysis, the samples were filtered (0.45 µm filter) and trans-

ferred to a HPLC vial.    

b) Sample preparation with hydrolysis step  

2 mL of urine were spiked with internal standard ALT-d5 at a fixed concentration depending 

on the operating range (see Section 3.2.2.3 and 3.2.2.4). The samples were incubated at room 

temperature for 10 min. Subsequently, 5 mL of ammonium acetate (50 mM, pH 4.8) was add-

ed and pH was adjusted to pH 5.0 with aqueous KOH solution (6 M). The samples were in-

cubated with 100 µL β-glucuronidase (helix pomatia Type H-2, ≥85,000 units/mL) for 24 hours. 

After centrifugation (10 min, 2,500 x g), the addition of 5 mL of ammonium formate buffer 

(50 mM, pH 2.6) and pH adjustment to 2.6 with formic acid, the samples were used for SPE 

as described above. Quantification was performed via matrix calibration. 

3.2.2.2 LC-HRMS method 

The chromatographic separation was carried out using a Dionex Ultimate 3000 RS UHPLC 

(Thermo Scientific, Idstein Germany) equipped with a Phenomenex Prodigy C18 column 

(5 µ, ODS (3), 100 Å, 150 mm x 3 mm; Phenomenex, Aschaffenburg Germany). 20 µl of ex-

tract was injected for each analytical run. The mobile phase consisted of water with 0.1% 
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formic acid (mobile phase A) and methanol with 0.1% formic acid (mobile phase B). The 

chromatographic method started with an initial phase of 70% B for 3 min, followed by a line-

ar gradient to 100% B in 2 min and keeping these conditions for 5 min. In 1 min the propor-

tion of B was decreased to 70% and held for 10 min to equilibrate the column to starting con-

ditions. The flow rate was set to 0.3 mL/min. The column temperature was held at 30°C 

whereas the temperature of the autosampler was set to 15°C.  

The UHPLC-system was coupled to a Q-Exactive Focus Orbitrap mass spectrometer (Thermo 

Scientific, Idstein Germany) equipped with an heated electrospray (H-ESI) source using the 

following conditions: Capillary temperature 300°C, sheath gas flow rate 30 a.u., aux gas flow 

rate 9 a.u., spray voltage 3.5 kV, S-lens RF level 60 and aux gas heater temperature 350°C. 

Data was acquired in positive and negative ion mode at a resolving power of 70,000 (FWHM 

at m/z of 200) over a mass range of m/z 75–1055. The AGC target was set to 1.0 x 106, with a 

maximum injection time of 220 ms. MS/MS-spectra were triggered in fullscan data-

dependent MS2 confirmation mode at 17,500 FWHM covering a mass range from m/z 50 to 

the precursor mass. The isolation window for the precursor was set to 1 m/z and fragmenta-

tion was performed with stepped collision energy of 20, 40 and 60 eV. The AGC target was 

set at 2.0 x 105 with an injection time of 50 ms. To avoid triggering MS/MS data from back-

ground ions an exclusion list with the top 50 background ions which were observed in rea-

gent blanks was used.  Mass tolerance was set to 5 ppm. Data acquisition and quantitative 

analysis was carried out using Trace finder 4.0 (Thermo Scientific, Idstein Germany). 

Table 7. Parameters (retention time, ionization mode, precursor ion and fragment ions) of the LC-

HRMS analysis. 

 Retention 

time 

(min) 

Ionization 

mode 

Precursor ion 

(m/z) used as 

Quantifier 

Characteristic fragment ions 

m/z 

Altrenogest 7.67 Positive 311.2006 227.1425, 251.1427, 269.1533, 

293.1905, 199.1118, 159.0802 

Altrenogest-CAP 7.31 Positive 311.2006 227.1425, 251.1427, 269.1533, 

293.1905, 199.1118, 159.0802 

Altrenogest-d5 7.65 Positive 316.2319 227.1425, 251.1427, 269.1533, 

298.2207, 199.1118, 159.0802 

Altrenogest     

glucuronides 

6.20 Positive 487.2327 311.2006, 293.1905, 269.1533, 

227.1425, 159.0802 

Altrenogest-CAP 

glucuronides 

5.30 Positive 487.2327 311.2006, 293.1905, 269.1533, 

227.1425, 159.0802 

Altrenogest     

sulfate 

3.83 Negative 389.1433 309.1855, 197.0966, 211.1123, 

213.1279, 225.1280, 253.1230 

CAP: cycloaddition product 
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3.2.2.3 Method validation 

Matrix calibration curves were analyzed following the respective urinary extraction methods 

as described in Section 3.2.2.1 and 3.2.2.2. Two concentration ranges were covered to assess 

the operating range of the method. The spiking levels ranged from 5–3000 ng/mL ALT and 

2.5–50 ng/mL ALT, respectively, using ALT-d5 as internal standard at a concentration of 

50 ng/mL. Matrix calibration curves were analyzed on consecutive working days using four 

different porcine urine samples (n = 4).  

Performance characteristics   

Analytical methods used in testing of official samples for veterinary drug residues have to be 

validated according to the EU Commission Decision 2002/657/EC [148]. This Decision makes 

demands on the analytical proficiency and provides rules and recommendations for the de-

termination of performance characteristics.  

In this work, performance characteristics as defined in Commission Decision 2002/657/EC as 

well as performance characteristics as defined in DIN 32645 [149] were established. For sta-

bility testing, also the “Guidance for Industry on Bioanalytical Method Validation” of the 

Food and Drug Administration (FDA) was taken into account [150]. 

Performance characteristics according to CD 2002/657/EC  

Selectivity 

Selectivity describes the ability of a method to distinguish structurally similar analytes 

from one another. The EU Commission Decision 2002/657/EU states the following re-

quirements for selective substance identification in confirmatory methods: The relative 

retention time of the analyte in the sample shall correspond to the calibration solution in 

the range of ± 2.5%. Besides the chromatographic match, mass spectrometry require-

ments also need to be met, since they provide information of the chemical structure of the 

target analyte. Using triple quadrupole mass spectrometry, at least two product ions 

need to be detected and their ion ratio must correspond to standard solutions or spiked 

matrix samples with predefined tolerances depending on the relative intensity of the de-

tected ion expressed as a percentage of the base peak [148]. Using fullscan HRMS meth-

ods, the detection of one fullscan ion (i.e., molecular ion or characteristic adducts) [148] 

and one product ion with a mass deviation lower than 5 ppm is sufficient to identify the 

analyte unambiguously. 
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Specifity 

A method can be considered to be specific if the detection and identification of the ana-

lyte is not impaired by other substances or matrix components. In order to evaluate the 

specificity of the method, blank matrix samples were analyzed and checked for peaks co-

eluting at the expected retention time.  

Stability 

The chemical stability of the analyte in solvent is assessed over a period of one year to de-

termine the storability of the stock and spiking solutions at 4°C. A deviation of 20% is 

considered acceptable. The analysis of the chemical stability of the analyte in matrix is 

important in order to determine the best storage conditions and maximum storage time 

during the study. The stability of the analyte in matrix is analyzed at bench top condi-

tions (room temperature with and without light exposure) and storage conditions (4°C 

and -20°C) over the course of 28 days as well as after three freeze and thaw cycles. 

Uncertainty-related performance characteristics  

The uncertainty-related performance characteristics that have to be determined are the 

standard deviation of repeatability, the standard deviation of reproducibility, the deci-

sion limit 𝐶𝐶𝛼, the detection capability 𝐶𝐶𝛽 and the trueness. The decision limit 𝐶𝐶𝛼 is de-

fined as:  "[...] the limit at and above which it can be concluded with an error probability 𝛼 that a 

sample is non-compliant" [148]. Put another way, 𝐶𝐶𝛼 represents the measured concentra-

tion from which on a certain threshold value 𝑥0 is exceeded significantly. For substances 

with an established maximum residue limit (MRL) the threshold 𝑥0 equates to this MRL 

value. The error probability than can be set to 0.05. For banned substances 𝑥0 is zero and 

𝛼 = 0.01. The official definition of the detection capability 𝐶𝐶𝛽 reads: "Detection capability 

means the smallest content of the substance that may be detected, identified and/or quantified with 

an error probability of 𝛽. In the case of substances for which no permitted limit has been estab-

lished, the detection capability is the lowest concentration at which a method is able to detect truly 

contaminated samples with a statistical certainty of 1 − 𝛽. In the case of substances with an estab-

lished permitted limit, this means that the detection capability is the concentration at which the 

method is able to detect permitted limit concentrations with a statistical certainty of 1 − 𝛽.” [148] 

Practically, the detection capability is the true concentration value whose measurement 

with a probability of 1 − 𝛽 brings forth a result that exceeds 𝐶𝐶𝛼.               
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To determine the standard deviation of repeatability, the standard deviation of reproduc-

ibility, the decision limit 𝐶𝐶𝛼 and the detection capability 𝐶𝐶𝛽, a variance components 

model was fitted to the experimental data of the validation study that was performed as 

described above and included several analytical runs. The data analysis approach as-

sumes empirical data to obey a linear, first order regression model. The deviation be-

tween the observed measurement and the "true" response is regarded as the sum of two 

error terms. The one error term reflects the measurement dispersion within an arbitrarily 

selected calibration series, while the other expresses the run-related variability that leads 

to fluctuations among different calibration series [151, 152].  

Trueness or accuracy of the mean describes the closeness of agreement between the aver-

age value obtained from a large series of test results and an accepted reference value  

[148] and can be assessed by the recovery of the analytical method. Recovery represents 

the percentage of the true concentration recovered during the analytical procedure [148]. 

In the concrete case, the analytical method uses matrix-calibration to accomplish quanti-

fication. That is, the solutions used to calibrate the analytical instrument are obtained by 

spiking blank samples at different levels and submitting those samples to the whole 

sample preparation procedure. In the case of matrix calibration, the expectation of the re-

covery within the calibration range is approximately 100%, provided that sample matrix 

and calibration matrix do not differ substantially from each other [153]. Since matrix cali-

bration allows to quantify accurately without the necessity of correcting results for the 

bias error, no recovery has to be determined. Nevertheless, recovery is a valuable tool in 

the course of method development to assess systematic errors that may arise due to the 

sample preparation procedure (e.g. loss of analyte) or are caused by matrix effects (e.g. 

ion suppression or enhancement). Hence, recovery was investigated for the case of exter-

nal calibration. 

Performance characteristics according to DIN 32645  

Performance characteristics according to DIN 32645 are determined under repeatability 

conditions. The decision limit according to DIN 32465 (in German called “Nachweisgren-

ze”) is the concentration, which according to the calibration curve, corresponds to the 

critical response. The critical response is the response at and above which it can be con-

cluded with an error probability of 𝛼 =  0.05 that the analyte is present in the sample. 

The detection limit (in German called “Erfassungsgrenze”) is the true concentration value 

whose measurement with a probability of 1 − 𝛽 brings forth a result that exceeds the de-
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cision limit. The determination limit (in German called “Bestimmungsgrenze”) is the 

concentration from which on, the uncertainty is adequately low in comparison to the 

measured value. In residue analysis a relative uncertainty of 50% is considered to be ac-

ceptable [149]. 

 

Figure 7. Schematic illustration of the performance characteristics decision limit (𝑪𝑪𝜶) and detec-

tion capability (𝑪𝑪𝜷) under reproducibility conditions at a threshold value 𝒙𝟎 = 0 compared to the 

decision limit and detection limit according to DIN 32645 under repeatability conditions; 𝒀𝒄: criti-

cal response.  

 

3.2.2.4 Analysis of urine samples from ALT-treated gilts 

First, sample preparation was performed without a hydrolysis step in order to check for the 

presence of known metabolites such as ALT-glucuronide, sulfate conjugate, isomers and the 

parent drug (ALT) as described above (see Section 3.2.2.1) with internal standard ALT-d5 at 

a concentration of 500 ng/mL. In a second step, quantification of ALT after β-glucuronidase 

treatment was performed. For this purpose, 400 µL of urine were spiked with internal stand-

ard ALT-d5 at a concentration of 500 ng/mL and sample preparation was done as described 

above (see Section 3.2.2.1). Quantification was performed via matrix calibration using pooled 

samples of the non-medicated gilts. Calibration levels ranged from 2.5–100 ng/mL (for the 
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quantification of ALT and its isomer in non-hydrolyzed samples) and 50–2500 ng/mL (for the 

quantification of deconjugated ALT after hydrolysis). 

3.2.2.5 NMR analysis of creatinine for normalization purposes  

1H NMR data acquisition was performed by Svenja Wenig (CVUA Karlsruhe) and Eva 

Gottstein (CVUA Karlsruhe). Text section regarding NMR data acquisition was provided by 

Svenja Wenig. Data evaluation was performed by myself. 

1H NMR data acquisition  

1H NMR spectra were acquired using a Bruker Avance III 400 Ultrashield spectrometer 

(BrukerBiospin, Rheinstetten, Germany) equipped with a 5-mm selective inverse probe (SEI) 

with Z-gradient coils, using a Bruker Automatic Sample Changer (Sample Xpress). 1H NMR 

spectra were acquired using the standard pulse program noesygppr1d (1D NMR spectra) 

with presaturation of water signal and a prolonged d7. With a time domain of 65 k, 64 scans 

and 4 dummy scans, a spectral width of 20.55 ppm (8223 Hz), an acquisition time of 3.98 s 

and receiver gain of 64 for the 1H 1D measurement. The temperature was set at 300 K (+/- 0.2 

K). All spectra were automatically phased and baseline corrected. Data were acquired under 

the control of Sample Track Client (BrukerBiospin, Rheinstetten, Germany), requiring about 

15 min per sample. NMR spectra were analyzed using TopSpin version 3.2 (Bruker Biospin, 

Rheinstetten, Germany). Creatinine concentration was determined via external calibration in 

the concentration range from 0.05 to 10.0 mg/mL. 

Urine sample preparation for 1H NMR analysis   

For 1H NMR, 500 µL urine or creatinine calibration standard, respectively, were spiked with 

100 µL K2HPO4 buffer in D2O (pH 7.4, 1.5 M) containing 5 mM TSP (trimethylsilylpropanoic 

acid-2,2,3,3-d4). Thus, a final D2O concentration of 16.6% (v/v) for lock and shim purposes 

and TSP concentration of 0.87 mM was achieved. 

3.2.3 Non-targeted LC-HRMS analysis 

3.2.3.1 Sample preparation  

For non-targeted screening the sample preparation was performed as described above (see 

Section 3.2.2.1) with 2 mL of urine and without the hydrolysis step. Furthermore, a reagent 

blank sample was also submitted to sample preparation. 
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3.2.3.2 LC-HRMS method 

For untargeted analysis the same chromatographic and mass spectrometric parameters as 

listed under targeted analysis were used except MS/MS-spectra were triggered in fullscan 

data-dependent MS2 discovery mode by a data-dependent fragmentation of the most intense 

ion per scan (see Section 3.2.2.2). Subsequently, instead of analyzing predefined target ions 

(ALT and ALT metabolites) a non-targeted data processing and statistical analysis workflow 

was utilized (see below).  

3.2.3.3 Data processing and statistical analysis of non-targeted data  

Raw files were converted to mzXML format [131] and imported into MZmine 2 [120]. Raw 

data were filtered (0.5–13 min) and masses were detected with centroid algorithm at a noise 

level of 1.0 x 106. Chromatogram building was carried out with a minimum time span of 

0.05 min, a minimum height of 1.0 x 106 and a mass accuracy of 5 ppm or 0.002 Da. Chroma-

tograms were smoothed (filter width 15). For chromatogram deconvolution, the noise ampli-

tude algorithm with a minimum peak height of 3.0 x 106, peak duration of 0.05–1.5 min and 

amplitude of noise of 1.0 x 106 was applied. After deisotoping with an m/z tolerance of or 

5 ppm or 0.002 Da, a retention time tolerance of 0.01 min and a maximum charge of 3, peaks 

were aligned using the join aligner algorithm. The m/z tolerance was set to 10 ppm or 0.005 

Da weighted with 10%, the retention time tolerance was 0.2 min weighted with 10%, only 

using ions with the same charge. Gap filling was performed with 20% intensity tolerance at a 

mass accuracy of 10 ppm or 0.005 Da and 0.05 min retention time tolerance after retention 

time correction. The final steps were duplicate filtering with a mass accuracy of 10 ppm or 

0.005 Da and 0.2 min absolute retention time tolerance as well as row filtering eliminating 

rows with less than 5 peaks. Data post-processing consisted of eliminating all mass spectro-

metric features (m/z at retention time) with relative standard deviation > 25% in QC samples 

(QC total: all samples pooled) and all mass spectrometric features which were present in the 

reagent blank sample at an intensity of > 1.0 x 107.   

The data was subjected to statistical analysis using an evaluation procedure that was imple-

mented in MATLAB R2019b (The MathWorks Inc., Natick, Massachusetts). In a first step, all 

zero values were replaced by the half of the minimum detected peak area. The data set was 

normalized by the sum of all peaks. Subsequently, the data was transformed by taking the 

natural logarithm. After transposing and standardizing (mean-centering and division by 

standard deviation) multivariate statistical analysis was performed, i.e., PCA. The calculation 
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of a 0.9-prediction ellipse for the PCA data was performed using EXCEL 2010 (Microsoft Of-

fice, Redmond, U.S.). 

3.2.3.4 Metabolite and biomarker identification   

For metabolite identification, the data was submitted to MetaboAnalyst 4.0 [134]. Data pre-

processing was performed as described above (see Section 3.2.3.3). Univariate tests (Student’s 

t-test and a fold change test) were applied to identify significant features distinguishing the 

ALT-medicated from the non-medicated group. All 𝑝-values were adjusted using the proce-

dure of Benjamini and Hochberg to account for multiplicity [143]. In order to visualize the 

results a 2D heatmap of the top 25 significant features of the Student’s t-test was constructed 

in MetaboAnalyst 4.0.  The samples were hierarchically clustered based on Euclidean dis-

tance as distance metric and Ward’s linkage (algorithm to perform clustering to minimize the 

sum of squares of any two clusters) [134]. 

Structural elucidation was attempted for the top 25 features. In order to classify the confi-

dence in candidate identification, the levels of confidence for unknown annotation described 

by Schymanski et al. were used [94]. Several vendor specific as well as open access software 

packages in addition to online databases for biomarker annotation, i.e., Compound Discov-

erer 3.1 (Thermo Scientific, Idstein, Germany), “seven golden rules” software [135], Metlin 

[138] and the HMDB [139] were used. 

Furthermore, the data was submitted to pathway analysis by “MS Peaks to Pathway (Ver-

sion 2)” in MetaboAnalyst 4.0 [134]. This functional module is based on the mummichog algo-

rithm, which is able to predict the functional activity from mass spectrometric data without a 

priori identification, since metabolite identification can be derived from local enrichments in 

metabolic pathways [144]. As input parameters, a peak list (m/z at retention time) with the 

corresponding 𝑝-values was provided. The mass accuracy was set to 5 ppm and the top 10% 

significant mass spectrometric features were submitted to mummichog algorithm. The manu-

ally curated pathway library for Homo sapiens based on KEGG, BIGG and Edinburgh Model 

was selected as knowledge-base for pathway mapping as no model for the genus sus was 

available [144]. Pathways with the most mass spectrometric hits were further checked using 

the “Metabolika Pathways” function in Compound Discoverer 3.1. 
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4 Results and discussion 

4.1 Non-targeted LC-HRMS analysis of samples taken within the 

frame of official veterinary drug residue control 

Parts of the following passage have previously been published in [1]. 

4.1.1 Workflow development 

The aim of this project was to develop and apply a data analysis procedure to data obtained 

by the application of a routine LC-HRMS method in order to gain further information about 

the origin of veterinary drug residues in non-compliant samples taken within the frame of 

official veterinary drug residue control. The LC-HRMS method used was an already existing 

in-house validated method for the quantitative determination of veterinary drugs in muscle 

and kidney samples. The validation was previously performed according to Commission 

Decision 2002/657/EC [148], but was not part of this thesis. The focus of this study laid on the 

development of a reliable data processing procedure for peak detection as well as on the ap-

plication and assessment of chemometric methods in order to evaluate HRMS data.   

4.1.1.1 Development of a data processing procedure using MZmine 2 

For an assessment of the impact of different settings for peak detection and their optimiza-

tion a statistical design of experiment with a fractional factorial approach was employed. For 

this purpose, 70 veterinary drugs were spiked in blank porcine muscle samples prior to sam-

ple preparation at different spiking levels ranging from 10%–150% of MRL of the respective 

veterinary drugs. Three data sets were prepared in three analytical batches over the course of 

two months in order to account for intensity variations caused by instrument related drifts.  

Figure 8 shows the identification (ID) ratios of the 8 different experiments at the spiking lev-

els ranging from 10% MRL to 150% of MRL. The settings of experiment 6 led to the best ID 

ratios with 90% at a spiking level of 10% of MRL and 96% at spiking level of 150% of MRL, 

respectively. The settings of experiment 4 and 8 resulted in the lowest ID ratios.  
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Figure 8. ID (identification) ratio of spiked antibiotics in porcine muscle samples at 10% MRL to 

150% MRL using the fractional factorial DoE; mean of three datasets (𝒏 = 3, for reasons of clarity 

the measurement uncertainty is not given since it was very low (range of 0–0.12%)) and number of 

mass spectrometric features detected with respective experiment conditions. 

 

The response function of the applied fractional factorial DoE is given by 

𝑌 = 𝑎0 + 𝑎1𝑥1+ 𝑎2𝑥2 +  𝑎3𝑥3 +  𝑎4𝑥4 + 𝑎5𝑥5  +  𝜖         

Ordinary least-squares regression provided the estimates 𝑎̂0,…,5 and 𝑠̂, which are given in 

Table 8. The significance of the estimates was evaluated by the lower one-sided (in case 

of â > 0) or the upper one-sided 0.9-confidence limit (in case of  â < 0), respectively. The 

lower 0.9-confidence limit of â2 and â3 is > 0 as well as the upper 0.9-confidence limit of â5 is 

< 0, respectively. Hence, these factors are of significance and cannot be eliminated. 

Table 8. Estimates of coefficients obtained by ordinary least-squares regression and 0.9-confidence 

limits. 

 𝑎̂0 𝑎̂1 𝑎̂2 𝑎̂3 𝑎̂4 𝑎̂5 𝑠̂𝑎 

Estimated value 66.875 -1.125 17.625 9.875 -0.375 -12.375 2.019 

Lower 0.9-confidence limit 63.067 -4.932 13.817 6.067 -4.183 -16.183  

Upper 0.9-confidence limit 70.683 2.683 21.433 13.683 3.433 -8.567  
𝑎̂1: noise level, 𝑎̂2: peak time span (min), 𝑎̂3: minimum peak height, 𝑎̂4: smoothing 𝑎̂5: amplitude of noise (chromatogram de-

convolution); bold values: upper/lower confidence border is less/greater than zero and thus the factor is of significance. 

 

The factors of significance were minimum time span, minimum height and the amplitude of 

noise for chromatogram deconvolution, while smoothing and the initial noise level showed 

no significant effect. This approach shows the benefits of DoE, since a manageable number of 

experiments rendered valuable information for workflow development, i.e., to focus particu-

lar on the optimization of these 3 parameters.   

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

ID
 ra

ti
o

 (
%

)

Experiment

10% MRL 50% MRL 100% MRL 150% MRL
Number of 

features

1 16432

2 24182

3 7389

4 7903

5 11048

6 37573

7 10858

8 9715



 

60  Results and discussion 

Furthermore, the ID ratios of experiment 6 were very satisfactory. Hence, no further optimi-

zation using central composite design was needed. In experiment 6 the amplitude of noise 

and minimum height of peaks were set to the low level of 1.0 x 105 and 5.0 x 105, respectively, 

while the time span was set to the maximum level 0.05–1.5 min. Thus, the highest number of 

features (m/z at retention time) was detected, and consequently the highest ID ratio was 

achieved, detecting also analytes with lower intensities and analytes with a narrow peak 

shape as well as analytes which showed a broader peak shape. 

The final data processing procedure was further validated with real world data of 15 non-

compliant porcine muscle samples analyzed with the Q-Orbitrap method (as described in 

Section 3.1.4.1). In total, 16 antibiotics were identified with the vendor specific data acquisi-

tion software at or above MRL level (see Figure 9). Using the chosen Mzmine 2 data pro-

cessing procedure, 15 out of the 16 antibiotics were detected resulting in an identification 

rate of 96%. Only one sample was false-negative for benzylpenicillin. This can be explained 

by its very narrow peak shape of < 0.1 min.  

 

Figure 9. Comparison of peak integration via MZmine 2 and vendor specific software (Tracefinder) 

using veterinary drug residues in 15 non-compliant porcine muscle samples (S1–S15).   

 

As a result, the settings of experiment 6 were maintained for all further data processing of Q-

Orbitrap data for muscle samples, with the exception of the change of the smoothing width 

to the mean value of the two tested levels. The final data processing procedure was trans-

ferred to the Q-TOF data with minor changes which were due the instrument specification. 
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The m/z tolerance was set to 50 ppm or 0.02 Da and the intensity values for noise level and 

minimum peak height were adjusted according to the instrument (see also Section 3.1.4.2). 

Furthermore, the data processing procedure was adapted for the analysis of kidney samples 

only by decreasing the intensity threshold for the minimum peak height. In general, ion sup-

pression in kidney samples was observed to be higher than in muscle samples. Hence, this 

adaption was rendered necessary. 

4.1.1.2 Evaluation of a species-independent model 

In order to evaluate whether samples from different species can be used in one multivariate 

statistical model, blank porcine and bovine muscle samples were examined. It was observed 

that the extracts of the bovine muscle samples were darker than that of porcine muscle sam-

ples and that they were slightly red colored (see Figure 10).  

 
Figure 10. Extracts after SPE from porcine muscle samples (left) and bovine muscle samples (right). 

The experimental data of porcine and bovine muscle samples was subjected to a PCA and PLS-

DA. The scores plot of the PCA showed that the two species were well separated. The main 

variance was explained by PC1 (40.6%) which also was the main principal component re-

sponsible for the separation of the two species. PLS-DA also showed a good separation of the 

two species, but one must keep in mind that PLS-DA belongs to the supervised methods and 

that these methods are prone to over-fit data. Especially, when the data set used is small (n = 

20).  

Furthermore, mixtures of porcine and bovine muscle samples were analyzed and the data was 

projected in the PCA scores plot. For this purpose, the experimental data of the mixtures was 

normalized by the sum of all peaks, log-transformed and standardized (mean-centered and 

divided by standard deviation). The standardized data was multiplied by the loadings of the 

PCA and the resulting scores were graphed in the scores plot. The projection of the mixtures 

showed a gradual difference considering their composition (see Figure 11). 
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Figure 11. Left: scores plot of PCA of LC-HRMS (Q-Orbitrap) data of porcine and bovine muscle 

samples; blue: porcine muscle samples, red: bovine muscle samples, green: mixtures of porcine and 

bovine muscle samples (w/w); explained variance is shown in brackets. Right: scores plot of PLS-

DA of LC-HRMS data of porcine and bovine muscle samples.  

 

In order to identify significant analytes, univariate statistical analysis was performed, i.e., 

two-sided Student’s t-test, fold change test and volcano plot [134]. A volcano plot illustrates 

the combined results from a two-sided Student’s t-test and a fold change (FC) test, plotting 

the significance (−log10(𝑝)) versus the ratio between the area of a feature in bovine samples 

divided by the area of the same feature in porcine samples (log2(𝐹𝐶)). The result is shown in 

Figure 12. 

 
Figure 12. Volcano plot illustrating fold change (threshold 20) and statistical significance (t-test 

threshold 0.01); fold changes and p-values are log transformed; blue circles represent features (m/z 

at retention time) above the thresholds; red filled circle: m/z 460.7528 (@ 4.054 min), magenta filled 

circle: m/z 307.5042 (@ 4.053 min) and green filled circle: m/z 920.4978 (@ 4.053 min). 
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The five most significant variables in a two-sided Student’s t-test are listed in Table 9 with the 

respective fold change indicating higher levels in bovine muscle samples. Four of the five top 

significant variables elute at the same retention time. Hence, the raw data was checked for 

these variables. The isotope patterns of four of the five variables revealed that they all belong 

to one analyte, which elutes at 4.05 min. M/z 460.7528 is a double-charged ion ([M+2H]2+), m/z 

307.5042 is a triple-charged ion ([M+3H]3+) and m/z 920.4978 corresponds to the product ion 

([M+H]+). M/z 307.8386 is the isotope M+1 of m/z 307.5042 (see Figure 13). 

Table 9. Top five significant variables in two-sided Student’s t-test at a significance level of 5% 

with the respective fold change (FC).  

m/z (at retention time in min) FC 𝒑-adj. −log10(𝒑) 

460.7528 (@ 4.054) 512630 6.41 x 10-31  30.193 

307.5042 (@ 4.053) 93294 8.45 x 10-30 29.073 

397.5486 (@ 4.212) 253860 1.55 x 10-29 28.810 

307.8386 (@ 4.053) 48454 1.74 x 10-29 28.759 

920.4978 (@ 4.053) 46170 2.41 x 10-29 28.618 

FC: fold change, 𝒑-adj.: multiple test corrected p-value based on the Benjamini Hochberg false discovery rate. 

 

Thus, the focus was set on the identification of this analyte with the accurate mass of 

919.4905, denoted as analyte X in the following. For structural elucidation, a validated, freely 

accessible software called “the seven golden rules” was used [135]. The name of the algo-

rithm of the software originates from seven heuristic rules, which are used for filtering the 

possible molecular formulas, i.e., (1) restriction for the number of elements, (2) LEWIS and 

SENIOR chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of 

nitrogen, oxygen, phosphor and sulphur versus carbon, (6) element ratio probabilities and 

(7) presence of trimethylsilylated compounds2 [135]. On the basis of the accurate mass and 

the corresponding isotope pattern, the software computes proposals for elemental composi-

tions with an assigned score. Subsequently, it performs a search against the database of Pub-

Chem and an integrated peptide database. Table 10 shows the top ten proposals for molecu-

lar formulas for analyte X. 

 

                                                      

2 One should note that rule number 7 (i.e., trimethylsilylated products being considered) is only rele-

vant for structural elucidations of GC-MS data where derivatization procedures such as silylation are 

employed. 
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Figure 13. Isotopic pattern of m/z 920.4982, 460.7529 and 307.5043 at retention time 4.05 min. The 

mass differences between M, M+1, M+2 and M+3 indicate the charge state of the ions as single-

charged, double charged and triple charged. 
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Table 10. Top ten proposals for molecular formulas obtained with seven golden rules; score: isotop-

ic pattern score for respective molecular formula; peptide: match in peptide database of software. 

Molecular formula Mass accuracy (ppm) Score (%) Pubchem result Peptide 

C42H61N15O9 14.01 98.34  Found 

C41H57N23O3 11.88 98.33  - 

C41H61N17O8 1.79 98.20  Found 

C44H65N13O9 13.35 97.90  Found 

C39H53N25O3 15.47 97.76  - 

C42H57N21O4 0.33 97.71  - 

C40H61N19O7 10.43 97.57  - 

C43H69N9O13 11.89 97.40 octapeptide FGLQLELT Found 

C44H69N7O14 0.32 97.24  - 

C45H65N11O10 1.13 97.10  Found 

 

It needs to be noted that five out of the top ten results were found in the peptide database of 

the software and in consideration of the multiple charge states observed for the analyte X, it 

can be hypothesized that analyte X could be a peptide.   

Additionally, an MS/MS-spectra search against the Metlin database and MasCot database 

was performed in order to identify characteristic fragments in the product ion spectra of ana-

lyte X. MasCot is particularly useful since it offers an MS/MS spectra search against various 

protein databases such as SWISSprot or NCBIprot. Although, the sample preparation was 

not designed for peptide analysis, it is possible, that the acidic buffering conditions led to 

protein digestion into smaller peptides. With the help of the database search, various frag-

ments in the product ion sprectra were identified (see Figure 14).  
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Figure 14. Representative product ion spectra of m/z 920.4982 [M+H]+ (top), 460.7529 [M+2H]2+ (mid-

dle) and 307.5044 [M+3H]3+ (bottom) at 4.05 min. The table illustrates the fragment ions of the pep-

tide YKVLGFHG as predicted by [140]. a-, b- and y-fragments which match are illustrated in red; 

a2*, b2* represents the respective a- and b-fragment after loss of ammonia (-17 Da); K: immonium 

related ions of K; H: immonium ion of H; F: immonium and immonium related ions of F (for de-

tails for peptide fragment identification see Supplementary data Figure S1). 
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These fragments led to the proposal of the peptide sequence YKVIGFHG or YKVLGFHG. 

However, I (isoleucine) and L (leucine) could not be differentiated with the available data as 

they represent molecular ions with the same exact mass. In evaluation of all three MS/MS-

spectra, all y-fragments of the proposed peptide sequence except y1 were observed as well as 

some b- and a-fragments. a2* and b2* are diagnostic fragments for YK, since they are formed 

after a loss of ammonia. Characteristic immonium ions and immonium related ions of H, F 

and K were also observed. Furthermore, the molecular formula of the proposed peptide se-

quence is C45H65N11O10, which was hit number 10 of the seven golden rules with a mass accu-

racy of 1.13 ppm and an isotopic pattern score of 97.10%.   

In a final step, both peptide sequences YKVIGFHG and YKVLGFHG were compared against 

the NCBI protein database using BLASTp, resulting in a match with the sequence string 147-

154 of myoglobin in cattle (bos taurus, UniProt accession number P02192) for YKVLGFHG 

[154]. A comparison of the myoglobin in pork (sus scrofa, UniProt accession number P02189) 

showed that this specific sequence is not present in porcine myoglobin (see Figure 15). In the 

literature, myoglobin has already been described as a protein with species-specific peptide 

sequences and can be used as biomarker for species differentiation [155, 156]. Furthermore, 

the areas of the corresponding peaks of YKVLGFHG in the extracted ion chromatograms of 

m/z 460.7529 ([M+2H]2+) are gradually descending with decreasing amount of cattle tissue in 

extracts of mixtures of cattle and pork muscle tissues (see Figure 16). These observations are 

line with the literature, since this marker peptide can also be applied quantitatively [155]. 

Even 1 % of cattle muscle tissue spiked in pork muscle tissue was clearly detected via m/z 

460.7529 ([M+2H]2+) with high sensitivity. 

 
Figure 15. Protein sequence of myoglobin in cattle (top, P02192) and pig (bottom, P02189). The red 

sequence string indicates the marker peptide for cattle. 
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Figure 16. Extracted ion chromatograms of m/z 460.7529 ([M+2H]2+) of extracts from mixtures of pork 

and cattle muscle tissue (w/w). A: YKVLGFHG is decreasing with descending order of bovine tis-

sue in the mixture. B: One percent of bovine muscle tissue spiked in porcine muscle tissue is shown 

in enlarged section. 

 

The robustness of the peptide detection of the used method which originally was developed 

for veterinary drug residue detection was investigated with regard to changes in pH of buff-

er solutions. The sample preparation was performed as described above, with the exception 

that the extraction was carried out at various pH levels (pH = 4.0, 4.3, 4.7). A significant de-

crease in peak area was observed with a buffer at pH 4.7 in comparison with a buffer at pH 

4.0 (see Figure 17). The decrease in peak area of the marker peptide showed that out of the 

three pH levels examined, a McIlvaine buffer at pH 4.0 represents the best condition for an 

efficient formation or extraction of the marker peptide. The results showed further that the 

sample preparation is not robust with regard to an increase in pH. 

However, these results do not provide a complete explanation for the decrease in peak area 

of the marker peptide with increasing pH. Several possible reasons can be hypothesized. One 

reason could be a decreased extraction efficiency with higher pH. Other explanations could 

be a poor formation rate via acid cleavage of the marker peptide at higher pH or that pH 4.0 

represents a pH optimum for an unspecific peptidase which cleaves the marker peptide se-

quence. An online search in the MEROPS database for peptidases with a preference of glu-
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tamine in P1 and tyrosine P1’ of the cleaved bond did not lead to conclusive results [157]. 

Thus, it is not possible to decide whether the octapeptide is cleaved from the C-terminal of 

myoglobin due to acidic conditions of the buffer or due to an unspecific endopeptidase after 

acidic denaturation of the protein. 

 

Figure 17. Peak areas of m/z 460.7529 ([M+2H]2+) at 4.05 min in bovine muscle tissue extracts pre-

pared with McIlvaine buffer at 3 different pH levels (n = 3); mean ± measurement uncertainty (MU, 

half-width of the 0.95-confidence interval); ** 𝒑-value from Student’s t-test: 𝒑 < 0.01.  

 
 

In summary, these results showed that samples from different species, i.e., pigs and cattle, 

needed to be evaluated separately. The most significant analyte for discriminating these two 

species was identified as the octapeptide YKVLGFHG cleaved from the C-terminal of bovine 

myoglobin. These observations served further as proof of concept for the chosen workflow 

and the approach to identify differences in two test groups based a non-targeted approach 

with subsequent multivariate statistical analysis and biomarker identification.  

4.1.1.3 Evaluation of the variables sample storage time and gender 

In the process of study design, the influence of sample storage time and gender of the animal 

were also investigated in order to determine whether these factors have an effect. For porcine 

samples, 25 samples from healthy animals of both genders (female vs. male, castrated) with 

different storage times (three, four and twelve months) were analyzed and the experimental 

data was submitted to PCA. The scores plots showed no sample clustering according to gen-

der or storage time in muscle samples (see Figure 18).  
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Figure 18. 2D-scores plot of PCA of LC-HRMS (Q-Orbitrap) data obtained from the examination of 

control porcine muscle samples. Left: samples were colored according to sample storage time; right: 

samples were colored according to gender of the animal from which the sample was taken; PC: 

principal component with explained variance shown in brackets. 

 

Hence, storage times as well as gender of animals were not deemed confounding variables 

for LC-HRMS. The influence of age of the animals could not be checked. Normally, pigs are 

slaughtered around 6 months of age after fattening. Hence, all control samples consisted of 

samples from fattening pigs. Yet, the positive samples also consisted of samples from piglets 

which were approximately 3 months of age. However, the age difference is small with max-

imum 3 months and consequently, it was decided to move forward despite this limitation of 

the sample population.  

 

Figure 19. 2D-scores plot of PCA of LC-HRMS (Q-Orbitrap) data obtained from the examination of 

control porcine kidney samples. Left: samples were colored according to sample storage time; right: 

samples were colored according to gender of the animal from which the sample was taken; PC: 

principal component with explained variance shown in brackets. 
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In porcine kidney samples a trend towards clustering of samples stored for 12 months was 

observed in the PCA scores plot. The limitation of a change of the metabolome due to pro-

longed storage can thus not be excluded for porcine kidney samples. The gender of the ani-

mals showed no effect in the PCA scores plot of porcine kidney samples (see Figure 19). 

Comparable results were observed in the PCA scores plots of bovine samples (see Figure 20). 

In muscle samples no apparent clustering according to storage time or gender was visible. 

However, in kidney samples an effect of storage time cannot be excluded, since a clustering 

tendency of samples stored for 12 months was observed. Furthermore, the effect of age of the 

control bovine samples was evaluated. Cattle farming differs substantially from pig farming. 

Heifers are slaughtered at an age of 18–24 months, while dairy cows can live for up to 10 

years [158].  However, the scores plots of bovine muscle and kidney samples showed no clus-

tering according to age. In general, one needs to keep in mind that the sample size for the 

examination of bovine samples was low with 15 control samples.  

Considering the available sample size, the observations obtained during study design and 

the economic importance of the two species, the focus of the following study was on the ex-

amination of porcine muscle sample. In Germany commercial slaughtering of pigs (2018: 

56,825,400 animals corresponding to 5,363,300 t) significantly exceeds commercial slaughter-

ing of cattle (2018: 3,456,000 animals corresponding to 1,115,600 t) [159]. Hence, pig slaugh-

tering has a higher economic value. Furthermore, the treatment frequency of pigs with anti-

biotics is significantly higher than that of cattle [18], although a direct comparison is difficult.  
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Figure 20. 2D-scores plot of PCA of LC-HRMS (Q-Orbitrap) data obtained from the examination of 

control bovine samples. Left: bovine muscle samples; right: bovine kidney samples; top: samples 

were colored according to sample storage time; middle: samples were colored according to gender 

of the animal from which the sample was taken; bottom: samples were colored according to age; 

PC: principal component with explained variance shown in brackets. 
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4.1.2 Non-targeted LC-HRMS analysis of porcine muscle samples 

Data integrity   

In order to verify that data processing via MZmine 2 performed a reliable peak detection as 

well as peak integration and to check for analytical drifts, a data integrity check was per-

formed. For this purpose, the number of spiked analytes in the spiked QC samples was de-

termined and compared against the expected detection rate. Eight spiked QC samples were 

scattered throughout two analytical batches. The data integrity check revealed that 87% and 

90% of all spiked analytes were detected in the Q-Orbitrap data and the Q-TOF data, respec-

tively (see Table 11). The relative standard deviation (RSD) of the peak areas of the spiked 

analytes were mostly below 20%, which indicated that the analytical method was robust. 

Nine analytes in the Q-Orbitrap data and 7 analytes in the Q-TOF data were not detected 

with the chosen data processing method. A check of the raw data showed that the peak in-

tensities of these analytes were below the chosen minimum peak height for mass detection. 

This compromise was necessary since otherwise too many artifact peaks would have been 

detected as chromatographic peaks. 

Table 11. Mean peak areas of spiked analytes at MRL level in QC samples with measurement un-

certainty (MU, half-width of the 0.95-confidence interval) and relative standard deviation (RSD; 𝒏 = 

8). 

Analyte Q-Orbitrap  Q-TOF 

 Mean MU RSD  Mean MU RSD 

 (a.u.x107) (a.u.x107) (%)  (a.u.x104) (a.u.x104) (%) 

Cephalosporins      

Cefalexin 6.85 0.19 3.35  20.46 1.21 7.25 

Cefapirin 1.59 0.07 5.41  7.27 0.31 5.31 

Ceftiofur 19.36 1.13 7.16  196.05 19.33 12.09 

Cefquinome 0.65 0.06 11.42  4.20 0.29 8.37 

Desacetylcefapirin 1.61 0.09 6.96  8.35 0.46 6.80 

Desfuroylceftiofur 5.94 0.72 14.87  33.02 7.78 28.91 

Coccidiostats       

Halofuginone 0.24 0.04 20.36  n.d.   

Corticosteroids       

Betamethasone n.d.    n.d.   

Methylprednisolone 0.35 0.04 14.35  1.66 0.81 60.17 

Prednisolone n.d.    0.45 0.38 103.79 

Diaminopyrimidines       

Trimethoprim 28.6 1.37 5.87  59.49 3.67 7.56 

Lincosamides       

Lincomycin 16.3 0.73 5.47  95.79 6.11 7.82 

Pirlimycin 7.28 1.37 23.05  85.18 5.85 8.43 
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Analyte Q-Orbitrap  Q-TOF 

 Mean MU RSD  Mean MU RSD 

 (a.u.x107) (a.u.x107) (%)  (a.u.x104) (a.u.x104) (%) 

Macrolides        

3-O-Acetyltylosina 1.90 0.19 11.91  34.79 4.21 14.84 

Azithromycin 0.36 0.07 24.53  18.14 1.55 10.50 

Erythromycin 2.39 1.28 65.55  11.74 2.32 24.23 

Gamithromycin 3.60 0.4 13.44  58.03 3.73 7.89 

Josamycin 2.33 0.1 5.5  43.63 4.16 11.68 

Oleandomycin 0.1 0.02 21.9  13.25 1.55 14.36 

Spiramycin 1.98 0.5 31.09  34.08 4.22 15.17 

Tildipirosin 27.92 2.02 8.88  356.98 21.14 7.26 

Tilmicosin 1.35 0.37 33.24  32.29 4.95 18.79 

Tulathromycin 4.16 0.6 17.7  117.52 10.76 11.24 

Tylosin 7.30 0.53 8.86  121.80 13.53 13.62 

Tylvalosin 2.20 0.15 8.57  39.46 2.61 8.12 

Pleuromutilins       

8-Α-Hydroxymutilinb n.d.    n.d.   

Tiamulin 28.87 0.93 3.93  2.81 0.41 17.94 

Valnemulin 7.69 0.33 5.30  130.92 8.32 7.79 

Quinolones        

Ciprofloxacin 13.73 1.45 12.94  36.52 1.70 5.72 

Danofloxacin 32.34 1.31 4.95  103.94 7.81 9.22 

Difloxacin 56.86 6.77 14.60  223.39 18.22 10.00 

Enrofloxacin 12.55 0.55 5.34  31.08 14.37 56.69 

Flumequine 46.73 2.57 6.75  69.60 6.67 11.75 

Marbofloxacin 22.74 2.87 15.48  82.31 3.88 5.79 

Nalidixic Acid 16.57 0.92 6.82  17.94 1.40 9.59 

Oxolinic Acid 32.83 3.22 12.04  33.74 4.18 15.21 

Sarafloxacin 1.76 0.19 12.91  5.89 0.44 9.13 

Sulfonamides       

Dapsone 0.97 0.11 13.44  n.d.   

Sulfachlorpyrazine n.d.    8.96 0.81 11.11 

Sulfachlorpyridazine 3.59 0.26 8.76  8.36 0.49 7.24 

Sulfadiazine 6.97 0.31 5.36  13.63 0.72 6.48 

Sulfadimethoxine 12.24 0.89 8.91  33.78 3.63 13.18 

Sulfadoxine 12.31 0.43 4.30  28.80 3.20 13.62 

Sulfamerazine 1.33 0.12 11.08  20.63 1.20 7.13 

Sulfamethazine 13.97 1.15 10.08  22.19 2.23 12.35 

Sulfamethoxazole 3.63 0.19 6.43  18.47 1.15 7.61 

Sulfamethoxypyridazine 10.42 0.95 11.15  18.83 2.06 13.43 

Sulfanilamide n.d.    n.d.   

Sulfaquinoxaline 5.05 0.49 11.91  15.83 1.33 10.28 

Sulfathiazole 4.91 0.25 6.14  10.64 0.44 5.09 

Tetracyclines       

Chlortetracycline 2.97 0.78 32.12  22.77 2.96 15.93 
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Analyte Q-Orbitrap  Q-TOF 

 Mean MU RSD  Mean MU RSD 

 (a.u.x107) (a.u.x107) (%)  (a.u.x104) (a.u.x104) (%) 

Doxycycline 4.16 0.21 6.04  6.18 0.88 17.38 

Oxytetracycline 3.66 0.51 17.04  0.19 0.04 26.70 

Tetracycline 5.87 0.73 15.28  36.66 1.04 3.49 

β-Lactam antibiotics       

Ampicillin 2.61 0.09 4.19  18.64 1.23 8.10 

Benzylpenicillin 0.08 0.02 28.26  n.d.   

Cloxacillin n.d.    39.96 3.36 10.30 

Dicloxacillin n.d.    21.93 1.85 10.34 

Nafcillin 8.34 0.84 12.41  26.36 4.36 20.26 

Oxacillin n.d.    48.23 4.92 12.50 

Phenoxymethylpenicillin n.d.    n.d.   

Internal standards       

Amoxicillin-D4 0.02 0.01 96.19  0.09 0.05 72.12 

Benzylpenicillin-D7 0.38 0.11 34.16  1.53 0.72 57.24 

Demeclocycline 2.79 0.14 6.27  25.01 1.06 5.19 

Enrofloxacin-D5 11.1 0.72 7.87  33.30 2.71 10.00 

Oxolinic Acid-D5 33.67 3.90 14.20  39.09 5.37 16.86 

Roxithromycin 0.70 0.13 23.60  142.54 13.89 11.95 

Sarafloxacin-D8 8.04 0.43 6.56  46.60 1.75 4.60 

Sulfadimethoxine-D6 12.62 1.23 11.98  37.05 4.71 15.58 

Sulfadoxine-D3 15.05 0.62 5.08  36.77 5.08 16.95 

n.d.: not detected; a: marker residue for tylvalosin, b: marker residue for tiamulin. 

 

Multivariate data analysis  

The data pretreatment consisted of data normalization, transformation and scaling. Data 

normalization was performed by dividing each variable by the sum of all peaks. This is a 

common normalization technique in order to adjust for analytical drifts and matrix effects. In 

the case of porcine muscle samples, no further QC based normalization was performed since 

the data integrity check showed that there was no observable batch effect. Log-

transformation was applied to account for skewness of the original data. Furthermore, the 

data was standardized (mean-centering and division by standard deviation), since peak are-

as spanned over different orders of magnitude. This scaling method helps to make all varia-

bles equally important for further analysis [160].  
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Figure 21. PCA of HRMS data obtained from the examination of porcine muscle samples with Q-

Orbitrap mass spectrometer (A) and Q-TOF mass spectrometer (B). Top: 3D-scores plot, blue: con-

trol samples (porcine muscle samples of untreated, healthy animals), magenta: positive samples 

(porcine muscle samples of infected, drug-treated animals); blue filled: control QC samples, blue 

filled with cross: QC samples spiked with 70 veterinary drugs, magenta filled: positive QC sam-

ples; PC: principal component with explained variance shown in brackets. Bottom: confusion ma-

trix of porcine muscle samples classified as positive samples or control samples via PCA with sub-

sequent QDA using a Monte Carlo cross-validation (𝒏 = 5,000; see Figure 1 in [1]). 

 

After data pretreatment, the experimental data of porcine muscle samples was subjected to 

PCA. As illustrated in Figure 21, both PCA models revealed differences between samples 

from untreated, healthy animals (control) and samples from drug-treated, infected animals 

(positive samples). Since all QC samples coincided in the plot, sample preparation and data 

processing workflows were considered robust. Monte Carlo cross-validation was used in 

order to assess the ability of the PCA coupled with QDA to discriminate between the two 

classes (control vs. positive samples). The number of misclassifications based on the PCA 

with subsequent QDA was 19.8% (Q-Orbitrap) and 26.7% (Q-TOF), respectively (see Figure 

21). The models reached a high specificity of 0.976 (Q-Orbitrap) and 0.923 (Q-TOF), respec-

tively. The sensitivity of 0.826 (Q-Orbitrap) and 0.810 (Q-TOF) was also satisfactory. Hence, 

both HRMS systems showed comparable results, although the false-positive rate (falsely 

classified as infected) of the Q-TOF method was slightly higher. Interestingly, the QC sam-

ples spiked with 70 veterinary drugs located in the same cluster as control samples in both 

models. These results suggest that the main difference between positive and control porcine 
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muscle samples originated from changes in the metabolome of animals rather than from the 

presence of veterinary drugs.   

Furthermore, the experimental data was subjected to PLS-DA and Monte Carlo cross-

validation was conducted to check for over-fitting. The number of misclassifications based 

on the 2D PLS-DA was 18.2% (Q-Orbitrap) and 23.0% (Q-TOF), respectively (see Figure 22). 

The models reached a high specificity of 0.991 (Q-Orbitrap) and 0.951 (Q-TOF), respectively. 

The sensitivity was also high with 0.827 (Q-Orbitrap) and 0.819 (Q-TOF), respectively.  

 

Figure 22. PLS-DA of HRMS data obtained from the examination of porcine muscle samples with 

Q-Orbitrap mass spectrometer (A) and Q-TOF mass spectrometer (B). Top: 2D-scores plot, blue: 

control samples porcine muscle samples of untreated, healthy animals), magenta: positive samples 

porcine muscle samples of infected, drug-treated animals); blue filled: control QC samples, blue 

filled with cross: QC samples spiked with 70 veterinary drugs, magenta filled: positive QC sam-

ples; PC: principal component with explained variance shown in brackets. Bottom: confusion ma-

trix of porcine muscle samples classified as positive samples or control samples via 2D PLS-DA 

using a Monte Carlo cross-validation (𝒏 = 5,000). 

 

However, the evaluation of the MSEP indicated that the PLS-DA models over-fitted the data. 

The MSEP based on the residuals of the PLS-DA regression (Q-Orbitrap data: 0.022; Q-TOF: 

0.041) was significantly lower than the MSEP obtained from the cross-validation (Q-Orbitrap 

data: 0.388; Q-TOF: 0.406). Models which incorporated too many parameters tend to show 

low deviations from observations that were used to build the model, but higher deviations to 
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new observations. This is common in the case of a data set which consists of a limited num-

ber of samples and a very high number of variables. The data set consisted of 50 samples and 

several thousand mass spectrometric features (m/z at retention time). Therefore, merely un-

supervised models, PCA with subsequent QDA, were used for the performance assessment 

of sample classification.  

4.1.3 Biomarker candidate selection and pathway mapping 

In order to further select biomarker candidates for the differentiation of control porcine mus-

cle samples from muscle samples taken from drug-treated, infected animals, univariate sta-

tistical tests were applied (see Section 3.1.6). The results of the top 25 mass spectrometric fea-

tures of the Q-Orbitrap data are given in Table 12. All adjusted 𝑝-values of the top 25 fea-

tures were considered highly significant (𝑝-adj. < 3.9 x 10-11) and the mean fold changes 

ranged from 0.3 for analyte m/z 1004.4665 (@6.13 min) to 404.8 for analyte m/z 552.3288 (@8.87 

min). The mass spectrometric data obtained with the Q-Orbitrap method was used for struc-

tural elucidation and biomarker annotation due to the higher mass accuracy and reproduci-

bility of MS/MS-spectra. Although, 20 out of the 25 top mass spectrometric features from the 

Q-Orbitrap data were also highly significant in the Q-TOF data (𝑝-adj. < 1.1 x 10-6, see Sup-

plementary data Table S7).     
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Table 12. Top 25 significant analytes (m/z at retention time in min) responsible for the difference 

between positive and control porcine muscle samples with proposed elemental composition and 

biomarker annotation (level of identification confidence (ID) according to [94]); positive fold 

changes indicate higher levels in positive samples compared to control samples (see Table 1 in [1]). 

m/z (@min) Adduct Proposed    

elemental   

composition 

δ  

ppm 

ID 

level 

Annotation 𝑝-adj. FC 

393.2239 (@8.55) [M+Na]+ C20H34O6 -2.2 3 similar to 6-keto-prosta-

glandin F1α  

5.8 x 10-15  76.7 

320.1599 (@2.09) [M+H]+ C16H21N3O4 -3.5 1 PFG 2.1 x 10-14  3.7 

375.2133 (@8.93) [M+Na]+ C20H32O5 -2.4 3 similar to thromboxane B2 2.7 x 10-14 62.3 

570.3394 (@6.75) [M+H]+ C26H52NO10P -2.3 3 oxidation product of lyso-

PC  

4.0 x 10-14 37.5 

348.2737 (@8.81) [M+NH4]+ C18H34O5 -2.2 3 similar to trihydroxy-

derivative  of octadecenoic 

acid 

4.0 x 10-14 12.0 

404.2637 (@7.10) [M+H]+ C16H33N7O5 4.4 4  5.2 x 10-14 68.1 

386.2529 (@8.23) [M+H]+ C16H31N7O4 4.4 4  1.4 x 10-13 76.3 

480.1642 (@1.19) [M+H]+ C19H25N7O6S -3.5 4  1.4 x 10-13 56.3 

335.2209 (@8.54) [M+H]+ C20H30O4 -2.5 4  2.4 x 10-13 97.7 

552.3286 (@7.64) [M+H]+ C26H50NO9P -1.8 3 similar to hydroperoxy  

derivative of lyso-PC C18:2 

2.4 x 10-13 66.6 

375.2136 (@11.14) [M+Na]+ C20H32O5 0.8 3 similar to thromboxane B2 4.9 x 10-13 117.2 

391.2083 (@8.18) [M+H]+ C18H26N6O4 -1.7 4  9.9 x 10-13 17.4 

372.2738 (@9.64) [M+H]+ C20H37NO5 -2.1 4  2.2 x 10-12 41.6 

534.3184 (@10.20) [M+H]+ C26H48NO8P -2.5 3 similar to oxo derivative of 

lyso-PC C18:2 

2.2 x 10-12 109.9 

506.1800 (@3.94) [M+H]+ C21H27N7O6S -3.3 4  2.2 x 10-12 36.5 

388.2686 (@8.19) [M+H]+ C16H33N7O4 4.5 4  2.5 x 10-12 163.6 

173.117 (@8.87) [M+H]+ C9H16O3 -1.6 4  2.7 x 10-12 22.1 

170.081 (@1.57) [M+H]+ C8H11NO3 -1.1 4  2.9 x 10-12 14.4 

204.1050 (@4.95) [M+H]+ C9H17NO2S -1.4 3 similar to L-Cystein 2.9 x 10-12 13.1 

536.3337 (@9.99) [M+H]+ C26H50NO8P -1.6 3 similar to lyso-PC deriva-

tive  

5.0 x 10-12 58.2 

301.2157 (@9.63) [M+H]+ C20H28O2 -2.0 4  5.0 x 10-12 61.8 

552.3288 (@8.87) [M+H]+ C26H50NO9P -1.7 3 similar to hydroperoxy 

derivative of lyso-PC C18:2 

1.4 x 10-11 404.8 

394.2275 (@8.55) [M+Na]+ C20H34O6 -2.2 3 13C isotope of 393.2239 

(@8.55) 

2.0 x 10-11 6.8 

1004.4665 (@6.13) [M+H]+ C47H71N7O13P2 0.5 4  2.2 x 10-11 0.3 

335.2209 (@9.69) [M+H]+ C20H30O4 -2.5 3 similar to 15(S)-HpEPE 3.9 x 10-11 21.6 

FC: fold change, 𝑝-adj.: multiple test corrected 𝑝-value based on the Benjamini Hochberg false discovery rate, PFG: 

prolylphenylalanylglycine, lyso-PC: lysophosphatidylcholine, 15(S)-HpEPE: 15S-hydroperoxy-5Z,8Z,10E,14Z,17Z-

eicosapentaenoic acid. 
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Metabolite annotation is time-consuming and challenging. It is the bottleneck of biomarker 

discovery in data-driven, non-targeted analysis. Therefore, the levels of identification confi-

dence as described by Schymanski et al. [94] were used as means to communicate the confi-

dence of biomarker annotation. It was possible to verify the identity of analyte m/z 320.1599 

(@2.09 min) as tripeptide prolylphenylalanylglycine (PFG) with a reference standard (level 1, 

see Figure 23).  

 

Figure 23. Representative product ion spectrum of tripeptide PFG (m/z 320.1599 [M+H]+ @ 2.09 min). 

Characteristic fragments were confirmed via reference standard; m/z ratio next to structure repre-

sents exact calculated mass compared to measured accurate mass of fragments (see Figure 2 (top) in 

[1]). 

 

Furthermore, the analytes m/z 570.3394 (@6.75 min), 552.3286 (@7.64 min), 534.3184 

(@10.20 min), 536.3337 (@9.99 min) and 552.3288 (@8.87 min) were tentatively identified as 

lysophosphatidylcholine (lyso-PC) derivatives (level 3), since their product ion scans showed 

the characteristic fragments m/z 184.0736 and m/z 104.1073 [161]. These characteristic frag-

ments were confirmed with the reference standard lyso-PC 17:0. Of particular note is the loss 

of three H2O molecules from the molecular ion in the product ion scan of m/z 570.3394 (@6.75 

min). A similar MS/MS-pattern has most recently been described for hydroperoxides and 

hydroxides of lipid mediators derived from ω-3 eicosapentaenoic acids [162]. Thus, it is pro-

posed that the analyte m/z 570.3394 (@6.75 min) is a trihydroxide of lyso-PC C18:1 (level 3, 

see Figure 24). A proposal for the fragmentation mechanism is given in Figure 25. This ana-

lyte will be referred to as “lyso-PC derivative 570” hereafter.  
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Figure 24. Representative product ion spectrum of lyso-PC derivative 570 (m/z 570.3394 [M+H]+ 

@ 6.75 min). M/z 86, 184, 125 and 104 are characteristic fragments for lysophosphatidylcholines 

(lyso-PC) and were confirmed via reference standard; m/z ratio next to structure represents exact 

calculated mass compared to measured accurate mass of fragments (see Figure 2 (bottom) in [1]). 

 

 

Figure 25. Proposal of fragmentation mechanism of tentatively identified trihydroxy derivative of 

lyso-PC (C18:1), referred to as “lyso-PC derivative 570” (see Supporting information Figure S3 in 

[1]). 
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Database hits suggested that the analytes m/z 393.2239 (@8.55 min), 375.2133 (@8.93 min), 

375.2136 (@11.14 min) and 394.2275 (@8.55 min; 13C isotope of m/z 393.2239) belong to the 

substance class of prostanoids (level 3). The product ion spectra of the analytes m/z 348.2737 

(@8.81 min) and 335.2209 (@9.69 min) showed similarities to oxidation products of unsaturat-

ed fatty acids (level 3). For some analytes, only level 4 of identification was achieved, i.e., 

proposal of chemical composition based on isotope pattern.   

 

Additionally an “MS peak to pathway” mapping was performed in MetaboAnalyst 4.0 to 

complement manual biomarker identification. This procedure applies a computational algo-

rithm called mummichog to map mass spectrometric features to functional activities by lever-

aging the collective insights of metabolic pathways [144]. 1523 significant mass spectrometric 

features (𝑝-value from t-test < 1.0 x 10-5) were used for pathway analysis and 105 empirical 

compounds were annotated by “MS peaks to pathway”. The significant hits per pathway 

were checked manually for plausibility (chromatographic retention and adduct identifica-

tion). The pathway enrichment factor is calculated as the ratio of the number of significant 

pathway hits and the expected number of randomly matched compound hits [134]. The sig-

nificance of the pathway enrichment is determined by the 𝑝-value of Fisher’s exact test (FET) 

[144]. In order to take the size of each pathway into account, an adjusted 𝑝-value per path-

way is calculated based on permutation-testing [144]. Prostaglandin formation from arachi-

donate (FET 𝑝-value: 0.01, adjusted 𝑝-value: 0.04, enrichment factor: 1.76) and arachidonic 

acid metabolism (FET 𝑝-value: 0.04, adjusted 𝑝-value: 0.04, enrichment factor: 1.95) followed 

by linoleate metabolism (FET 𝑝-value: 0.10, adjusted 𝑝-value: 0.04, enrichment factor: 1.50) 

were the three most stimulated pathways differentiating positive samples from control sam-

ples (see Figure 26). These results were conclusive with the manually performed biomarker 

annotations. However, it is to be kept in mind that isobaric mass spectrometric features can-

not be distinguished by this method. Hence, this tool was mainly used for an unbiased iden-

tification of patterns, i.e., pathway enrichments in order to complement manual biomarker 

identification.  
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Figure 26. Pathway mapping summary: all matched pathways are displayed as circles. The color 

and size of each circle corresponds to its Fisher’s exact test (FET) 𝒑-value and enrichment factor, 

respectively. Small white circle represent non-significant hits, while larger, red circles represent 

significant pathway enrichments (see Figure 3 in [1]). 

 

Prostanoids, i.e., prostaglandins and thromboxane A2, are lipid mediators derived from ara-

chidonic acid. Their biosynthesis is catalyzed by cyclooxgenase (COX) isoenzymes (COX-1 

and COX-2) which are targets for medication by non-steroidal anti-inflammatory drugs 

(NSAIDs) [163]. Prostaglandins play a key role in inflammatory response with partly coun-

teracting effects [163]. For example, prostaglandin E2, one of the most abundant prostaglan-

dins in vivo is involved in typical signs of infection, such as swelling, redness and pain [164]. 

Thromboxane A2 increases platelet-aggregation and activates endothelial inflammatory re-

sponses [163]. Increased concentrations of prostaglandins in inflamed tissues have been de-

scribed [165]. Stimulated linoleic acid metabolism is reasonable, since elevated levels of oxi-

dation products of linoleic acid have recently been reported during inflammation processes 

due to oxidative stress [166]. Lysophosphatidylcholines (lyso-PCs) are lipid mediators, which 

are formed by cleavage of phosphatidylcholine via phospholipase A2 or by the activity of 

lecithin-cholesterol acyltransferase [167]. Lyso-PCs exert pro-inflammatory effects and are 

positively associated with inflammatory diseases, e.g., atherosclerosis [168]. The application 
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of lyso-PCs as biomarkers for different pathophysiological changes has been described [167]. 

Oxidation products similar to the tentative proposals, e.g., monohydroxyperoxy derivatives, 

trihydroxides and oxo derivatives have been found in human plasma [169].   

To the best of my knowledge, the tripeptide PFG has not yet been described as biomarker for 

inflammation or infection. However, in the present study elevated levels of PFG were deter-

mined reproducibly in porcine muscle tissue from infected animals and PFG was unequivo-

cally identified using a reference standard. Furthermore, the biological importance of tripep-

tides has been recently summarized [170]. The review of Ung et al. shows that endogenous 

tripeptides as well as contiguous tripeptide sequences which are incorporated in larger pro-

teins are capable to function as efficient ligands for protein receptors. The review also gives 

examples for tripeptides which exhibit anti-inflammatory activity [170].  Recently, extensive 

research into the development of anti-inflammatory drugs based on tripeptide motifs has 

been reported [170].   

The tripeptide PFG and lyso-PC derivative 570 were used as specific markers in the further 

investigations. The rationale behind this decision was that both analytes were among the top 

five most significant analytes and chromatographic baseline separation was achieved. Fur-

thermore, the identity of both analytes at least at substance class level was verified.  
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4.1.4 Bivariate biomarker model 

In a first step, ROC curves were constructed for the two chosen biomarker candidates based 

on the log-transformed, standardized data used for PCA in order to evaluate their perfor-

mance as biomarkers for the differentiation of porcine muscle samples from infected, drug-

treated animals and healthy, untreated animals. The area under the ROC curve (AUROC) of 

lyso-PC derivative 570 and tripeptide PFG was 0.9472 and 0.9552, respectively. This indicat-

ed an excellent discrimination between the two test groups based on the selected biomarker 

candidates.   

 

Figure 27. Receiver operating characteristic (ROC) curves (left) and boxplots (right) of normalized, 

log-transformed and standardized peak areas of biomarker candidates lyso-PC derivative 570 (top) 

and tripeptide PFG (bottom) in control and positive porcine muscle samples; AUROC: area under 

the curve; boxplot:  the central mark indicates the median, and the bottom and top edges of the box 

indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most extreme data 

points not considered outliers (+). 

 

AUROC values close to 0.5 indicate that the discrimination between the test groups is simply 

by chance. In contrast, an AUROC value of 1 indicates that a biomarker enables perfect sepa-

ration between the two test groups [145]. The sensitivity at a fixed specificity of 1.0 (i.e., no 

false positives allowed) was 0.60 for lyso-PC derivative 570 and 0.72 for tripeptide PFG. The 

specificity at a sensitivity of 1.0 (i.e., no false negatives allowed) was 0.64 for lyso-PC deriva-

tive 570 and 0.52 for tripeptide PFG, respectively. These results indicate that both biomarkers 

were suitable to distinguish between positive and control porcine muscle samples in the un-

derlying data set. The drawback of this evaluation strategy is that it is hard to incorporate 

new samples in this model, since in LC-HRMS analysis the intensity of peak areas in differ-
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ent analytical batches can vary based on the instrument status, i.e., instrument related drifts 

over time. However, the aim of this study was to identify biomarker candidates and develop 

a model which can be used in routine veterinary drug analysis to determine whether a resi-

due is caused by medication or contamination. Hence, if one would want to use the de-

scribed procedure in order to classify a sample in question as originated from a drug-treated, 

infected animal or a healthy one, one would have to reanalyze the data set of positive and 

control porcine muscle samples to construct a model which is generated with data measured 

in a short time period. This is not feasible for routine veterinary drug analysis. 

Since a correlation between the two biomarkers was observed in healthy animals, a bivariate 

data model for the control group was developed. The peak areas of the two biomarker can-

didates were divided by the peak areas of the internal standard oxolinic acid-d5. This refer-

encing procedure led to run-independent values, which can be compared to values from oth-

er measurements.  

 

Figure 28. Bivariate data analysis of the log-transformed response ratios of the two biomarker can-

didates tripeptide PFG and lyso-PC derivative 570 (internal standard: oxolinic acid-d5). Control 

porcine muscle samples from healthy animals (blue) with prediction ellipses and positive porcine 

muscle samples from drug-treated, infected animals (magenta); blue shaded lines illustrate predic-

tion ellipses of control samples constructed with 𝜶 error probability of 0.3–0.01. 
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Hence, 50 positive and 50 control porcine muscle samples which were analyzed during the 

course of one year in several analytical batches were retrospectively evaluated for the two 

biomarker candidates. The ratios were transformed by taking their natural logarithm and 

visualized in a scatter plot. As shown in Figure 28, the log-transformed values of control 

samples appear to follow a bivariate normal distribution. In contrast, this cannot be assumed 

for positive samples, which is not surprising, since this group consisted of a heterogeneous 

muscle sample population of pigs having different diseases. For practical purposes, it is nec-

essary to apply a statistically defined criterion by which one can decide whether a porcine 

muscle sample can be classified as taken from a drug-treated, infected animal or from a 

healthy one. In this case it is reasonable to use a prediction ellipse calculated from the control 

samples as decision border. A prediction ellipse for a single future observation is an ellipse 

that will, with a specified degree of confidence, enclose a region that contains the next (or 

some other prespecified) randomly selected observation of a bivariate population [124]. 

Thus, a 0.9-prediction ellipse accepting an 𝛼 error probability of 0.1 (specificity of 0.9) was 

employed. As shown in Figure 28, only 2 out of 50 positive samples were classified as false 

negative applying this approach, which is equivalent to a sensitivity of 0.96. 

The referencing procedure with the internal standard oxolinic acid-d5 was applied, since it 

was not possible to select a priori an optimal internal standard, because the outcome of the 

investigations was unknown. In the routine method 9 internal standards are included into 

the analyses. Oxolinic acid-d5 was chosen because it was the internal standard with the low-

est difference in retention time to lyso-PC derivative 570. Thus, one can anticipate similar 

chromatographic properties to lyso-PC derivative 570, keeping in mind that sample prepara-

tion also includes a chromatographic method, i.e., a SPE step. This procedure was transferred 

to the tripeptide PFG because of the lack of a suitable alternative internal standard. One ad-

ditional aim was to retrospectively evaluate data for further validation purposes. This would 

not have been possible by including another internal standard. However, the effect of using 

internal standards was investigated on the overall performance of the bivariate model and it 

was found that a clear separation between the test groups was observed, even without using 

any internal standards (see Figure 29). However, especially in LC-MS, it is important to per-

form a referencing procedure in order to compare different measurement series. 
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Figure 29. Bivariate data analysis of the two biomarker candidates tripeptide PFG and lyso-PC de-

rivative 570; control porcine muscle samples from healthy animals (blue) with 0.9-prediction el-

lipse, positive porcine muscle samples from drug-treated, infected animals (magenta); top: data was 

log-transformed and referenced to internal standard oxolinic acid-d5; bottom: data was merely log-

transformed.   
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In order to illustrate the practical value of this sophisticated approach, two samples unam-

biguously contaminated during sampling and transport were analyzed as described above. 

The areas of PFG and lyso-PC derivative 570 were divided by the area of the internal stand-

ard oxolinic acid-d5 and after log-transformation the results were plotted (see Figure 30).  

 
Figure 30. Bivariate data analysis of the log-transformed response ratios of the two biomarker can-

didates tripeptide PFG and lyso-PC derivative 570 (internal standard: oxolinic acid-d5). Control 

porcine muscle samples from healthy animals (blue) with 0.9-prediction ellipse and positive porcine 

muscle samples from drug-treated, infected animals (magenta); porcine muscle samples known to 

be contaminated with residues of veterinary drugs (blue cross) illustrate the practical relevance of 

0.9-prediction ellipse in routine analysis (see Figure 4 in [1]). 

 

Both points lie within the 0.9-prediction ellipse of the control samples. Hence, they were clas-

sified as samples taken from healthy animals but contaminated with veterinary drugs. If a 

porcine muscle sample with veterinary drug residues is classified as negative (taken from a 

healthy animal), further investigations at the farm level are needed. Possible reasons for this 

observation could be a contamination during sampling, transport or analysis or a cross-

contamination based on contaminated feed. The latter can only be excluded by the absence of 

metabolites. However, it is to be kept in mind that many metabolites of veterinary drugs are 

not detectable in muscle tissue. Nonetheless, this newly developed approach can be of great 

benefit in routine laboratory practice, since a non-targeted LC-HRMS setting offers the ad-
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vantage, that these two biomarkers can easily be analyzed retrospectively. Hence, this pro-

cedure can ensure to rule out a suspected cross-contamination of a sample under investiga-

tion.   

4.1.5 Further investigations 

The main focus of this project was the multivariate statistical analysis of porcine muscle sam-

ples and the identification of biomarker candidates in order to discriminate samples from 

drug-treated, infected pigs from untreated, healthy ones. The rationale behind the decision to 

focus on porcine muscle samples was based on the fact that in Germany the commercial 

slaughtering numbers of pigs are higher compared to cattle [159]. Thus, the number of offi-

cial samples for veterinary drug residue control of porcine samples is higher than of bovine 

samples. Furthermore, in kidney samples a clustering trend according to the storage time of 

samples was observed in control samples. However, multivariate statistical analysis was 

performed for both species (pig and cattle) in both sample types in order to test the methodo-

logical approach. The results are shown in the following further investigations. 

Bovine muscle samples 

Data integrity   

After data processing using Mzmine 2, a data integrity check was performed. In the course of 

one analytical batch 4 spiked QC samples were measured. The QC samples were scattered 

throughout the batch in order to check for instrument related drifts. Eigthy-three percent of 

the spiked analytes were detected in the Q-Orbitrap data as well as in the Q-TOF data. The 

RSDs of the peak areas were high for the majority of the spiked analytes (on average about 

30%, see Supplementary data Table S8) on both instruments. A closer look at the raw data 

showed an intensity loss over time, i.e., an instrument related drift. Therefore, normalization 

by the sum of all peaks for each sample was performed in order to evaluate the suitability of 

the data after this data pretreatment step. Normalization by the sum of all peaks is a com-

mon way to account for intensity loss over the course of the analysis and it is part of the data 

pretreatment prior to PCA. After normalization the RSDs of the peak areas were acceptable 

with a mean of 20% (Q-Orbitrap) and 11% (Q-TOF, see Supplementary data Table S8), re-

spectively. Twelve analytes were not detected with the chosen data processing method for 

both data sets. A check of the raw data showed that the peaks were low in intensity and 
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showed a narrow peak shape. Subsequently, the number of data points across the peak was 

too low for the chosen data processing method.  

Multivariate statistical analysis   

After normalization, transformation and scaling, the experimental data of bovine muscle 

samples was subjected to PCA. As illustrated in Figure 31 differences between the two test 

groups (drug-treated, infected cattle and untreated, healthy cattle) were observed. In the case 

of the Q-Orbitrap data, the main variance contributing to the separation was observed in 

PC1, which accounted for 12.7% of the total variance in the data set. In evaluation of the QC 

samples, a drift during the course of the analysis was noted. However, the drift was mainly 

observed in PC2 and did not impede the discrimination of the two groups. The observations 

in the Q-TOF data were similar. The main variance contributing to the separation was ob-

served in PC1, which accounted for 22.2% of the variance in the data set. In evaluation of the 

QC samples, a slight drift in PC2 was observed. However, this analytical drift was less pro-

nounced than in the analysis using the LC-Q-Orbitrap method. Hence, sample analysis using 

the LC-Q-TOF and the data processing workflow was considered to be robust.  

In the analysis of both HRMS instruments, the spiked QC samples from untreated, healthy 

animals were located in the same cluster as the negative samples from untreated animals. 

This observation indicated that the main difference in the data did not originate from the 

presence of antibiotic residues but from a change in the metabolism in infected animals, simi-

lar to the observations made in porcine muscle samples (see Section 4.1.2). 

In order to assess the performance of the PCA with subsequent QDA, Monte Carlo simula-

tions were conducted. The results are shown in Figure 31 as a confusion matrix. Both models 

showed a high specificity of 0.952 (Q-Orbitrap) and 0.979 (Q-TOF), respectively. Thus, in 

both cases the data analysis procedure was suitable for the correct identification of control 

samples as samples taken from untreated, healthy cattle. The sensitivity of both methods was 

also very high with 0.963 (Q-Orbitrap) and 0.958 (Q-TOF), respectively. The number of mis-

classifications was 8.5% (Q-Orbitrap) and 6.3% (Q-TOF), respectively. These data indicate 

that in both cases PCA with subsequent QDA performed well in distinguishing samples 

from the two test groups. 
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Figure 31. PCA of HRMS data obtained from the examination of bovine muscle samples with Q-

Orbitrap mass spectrometer (A) and Q-TOF mass spectrometer (B). Top: 3D-scores plot, blue: con-

trol samples (bovine muscle samples of untreated, healthy animals), magenta: positive samples 

(bovine muscle samples of infected, drug-treated animals), blue filled: control QC samples, blue 

filled with cross: QC samples spiked with 70 veterinary drugs, magenta filled: positive QC sam-

ples; PC: principal component with explained variance shown in brackets. Bottom: confusion ma-

trix of bovine muscle samples classified as positive samples or control samples via PCA with sub-

sequent QDA using a Monte Carlo cross-validation (𝒏 = 5,000). 

 

Furthermore, the experimental data was subjected to PLS-DA and Monte Carlo cross-

validation was conducted to check for the performance and quality of the PLS-DA. The per-

formance was very good, but the MSEP of the cross-validation indicated that the PLS-DA 

models over-fitted the data (data not shown). The same observation was made for the porcine 

muscle data. In the case of the bovine data set, the sample number was even smaller with a 

total of 30 samples. Hence, merely unsupervised methods were used for the evaluation of 

sample classification performance. 

 

 

 

 

True Class Membership

Q-Orbitrap data Positive Control

Predicted
Class 

Membership

Positive 0.963 0.048

Control 0.037 0.952

True Class Membership

Positive Control Q-TOF data

0.958 0.021 Positive Predicted
Class 

Membership0.042 0.979 Control

A B
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Porcine kidney samples 

Data integrity   

In the course of two analytical batches 8 spiked QC samples were measured and used for a 

data integrity check after data processing using Mzmine 2. The QC samples were scattered 

throughout the batch in order to check for instrument drifts. Eighty percent (Q-Orbitrap) and 

87% (Q-TOF) of the spiked analytes were found, respectively (see Supplementary data Table 

S9). The RSDs of the peak areas were mostly below 20% in the Q-Orbitrap data. The RSDs of 

the Q-TOF data was generally higher than the RSDs of the Q-Orbitrap data, but still mostly 

below 30%, which was considered satisfactory. Fourteen analytes (Q-Orbitrap) and 9 ana-

lytes (Q-TOF) were not detected with the chosen data processing method. A check of the raw 

data showed that the peak areas of these analytes were below the chosen minimum peak 

height. This is in line with the general observation that ion suppression was high in extracts 

from kidney tissue leading to lower peak intensities. 

Multivariate statistical analysis  

After normalization, transformation and scaling, the experimental data of porcine kidney 

samples was subjected to PCA. The two scores plots (Figure 32, top) illustrate that the PCA 

did not reveal clear differences between samples from untreated, healthy animals and sam-

ples from infected, drug-treated animals, since the distribution of the scores of the two 

groups overlapped considerably. However, the expectation vectors of the two test groups 

appear to deviate from each other. In evaluation of the QC samples, an analytical batch effect 

was observed, i.e., QC samples from different analytical batches did not coincide. This indi-

cates that the applied data normalization process was still susceptible to variations based on 

the instrument performance or variations based on the sample preparation across analytical 

batches. In order to compensate for batch effects, a normalization process was performed 

using the QC samples which were measured regularly within each batch (Figure 32, bottom). 

This normalization effectively compensated the batch effect in the data set. The variation 

explained by PC1 and PC2 was reduced by the normalization procedure, since part of the 

variation explained by these two principal components was due to fluctuations based on the 

batch effect. This normalization step was implemented in the workflow of data processing 

for every multivariate analysis of the experimental data of porcine kidney samples. Yet, the 

outcome of the PCA was not significantly improved. A distinct class separation was not ob-

served; merely a deviation in the expectation vectors was observed. It is noticeable, however, 

that the spiked QC samples coincided with the control samples.  
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Figure 32. 2D-scores plot of PCA of LC-HRMS (left: Q-Orbitrap, right: Q-TOF) data of porcine kid-

ney samples; blue: control samples (porcine kidney samples of untreated animals), magenta: posi-

tive samples (porcine kidney samples of infected, drug-treated animals); blue filled: negative QC 

samples, blue filled with cross: spiked QC samples, magenta filled: positive QC samples; PC: prin-

cipal component with explained variance shown in brackets. Top: data prior QC based normaliza-

tion; bottom: data after QC based normalization.  

 

Monte Carlo cross-validation was applied in order to assess the ability of the PCA coupled 

with QDA to discriminate between the two test groups (control samples vs. positive sam-

ples). The results are shown in Figure 33. The models show a specificity of 0.903 for the Q-

Orbitrap data and 0.884 for the Q-TOF data, respectively. Thus, in both cases the data analy-

sis procedure was suitable for the correct identification of control samples as samples taken 

from untreated, healthy pigs with a false positive rate of maximum 11.6%. However, the sen-

sitivity of the models was unsatisfactory with 0.572 (Q-Orbitrap data) and 0.561 (Q-TOF da-

ta), respectively. Hence, kidney samples were not a suitable matrix in order to determine if 

the sample was taken from an infected, drug-treated pig. 

Q-Orbitrap Q-TOF
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Figure 33. Confusion matrix of porcine kidney samples classified as positive samples (samples of 

infected, drug-treated animals) or control samples (samples of untreated animals) via 3D-PCA with 

subsequent QDA using a Monte Carlo cross-validation (𝒏 = 5,000). Left: Q-Orbitrap data, right: Q-

TOF data. 

 

Supervised multivariate statistical analyses, i.e., PLS-DA, were performed, but the MSEP of 

the Monte Carlo cross-validation indicated that the model over-fitted the data (data not 

shown). These observations were in line with the observations for porcine muscle samples, 

since in the case of a small sample size these methods are prone to over-fit data.  

Bovine kidney samples 

Data integrity   

A data integrity check using 4 spiked QC samples scattered throughout the analytical batch 

was performed. Eighty-six% (Q-Orbitrap) and 91% (Q-TOF) of the spiked analytes were 

found. The RSDs of the peak areas of the Q-Orbitrap data were mostly below 20% (see Sup-

plementary data Table S10). Hence, the analytical method in the case of the Q-Orbitrap data 

was considered robust. In the case of the Q-TOF data, the RSD of the peak areas of the spiked 

QC samples were overall high with a maximum of 62%. This indicated the need for a nor-

malization procedure, since analytical drifts could not be excluded. The data pretreatment 

prior PCA consisted of normalization by the sum of all peaks. This normalization was per-

formed and subsequently, the data was reevaluated. This normalization process lead to RSDs 

of spiked QC samples which were mostly below 20%. Thus, it was concluded in a first data 

integrity check that after a normalization step the data was fit for further multivariate analy-

sis (see Supplementary data Table S10). Ten analytes (Q-Orbitrap) and 6 analytes (Q-TOF) 

were not detected with the chosen data processing method. A check of the raw data showed 

that the peak areas of these analytes were below the chosen minimum peak height, which 

was due to pronounced ion suppression. This observation was comparable to the observa-

tions made during the analysis of porcine kidney samples. 

 

 

True Class Membership True Class Membership

Q-Orbitrap data Positive Control Positive Control Q-TOF data

Predicted 
Class 

Membership

Positive 0.572 0.097 0.561 0.116 Positive Predicted 
Class 

MembershipControl 0.428 0.903 0.439 0.884 Control
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Multivariate statistical analysis 

After data pretreatment, the experimental data of bovine kidney samples was subjected to 

PCA. In the data set obtained from Q-TOF analysis, an analytical drift was observed over 

time (Figure 34, left). A distinct analytical drift in the direction of the first principal compo-

nent was critical for the further evaluation of the data, since differences between the two test 

groups were mainly revealed by a distinct distribution of the samples along the first princi-

pal component. Thus, a correction based on the number of injection was implemented to 

minimize any influence due to order of injection. A quadratic least-squares regression curve 

was fitted to the mean peak areas of each variable of the QC samples in respect to the order 

of injection. Then the correction curve was applied to the whole data set. The clustering of 

the QC samples showed that the analytical drift was effectively removed by the normaliza-

tion procedure (Figure 34, right). Hence, this step was implemented in the workflow of data 

processing for every multivariate analysis of the experimental data of bovine kidney samples 

obtained by Q-TOF analysis. Furthermore, it was noticeable that this normalization proce-

dure resulted in a reduced variance explained by PC1, but the general outcome remained the 

same. 

 

Figure 34. 2D-scores plot of PCA of LC-HRMS (Q-TOF) data of bovine kidney samples before (left) 

and after (right) normalization by applying a correction curve fitted to the QC samples with respect 

to the order of injection; blue: control samples (bovine kidney samples of untreated, healthy ani-

mals), magenta: positive samples (bovine kidney samples of infected, drug-treated animals); blue 

filled: negative QC samples, blue filled with cross: spiked QC samples, magenta filled: positive QC 

samples; PC: principal component with explained variance shown in brackets. 

 

The scores plots of the Q-Orbitrap and Q-TOF data (see Figure 35) illustrate that the PCA 

revealed differences between samples from untreated, healthy animals and samples from 

infected, drug-treated animals, since the samples of the two groups showed a distinct disper-

sion along PC1, which accounted for 12.5% (Q-Orbitrap) and 21.8% (Q-TOF) of the total vari-

Prior normalization Post normalization
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ance. However, a slight overlap of the scores of the sample groups was observed. The QC 

samples in the Q-Orbitrap data showed a variation in PC2. However, further normalization 

attempts were not performed since the main differences between the two groups were ob-

served in PC1. Again, the spiked QC samples coincided with the control samples. 

 

Figure 35. 2D-scores plot of PCA of LC-HRMS (left: Q-Orbitrap, right: Q-TOF) data of bovine kid-

ney samples; blue: control samples (bovine kidney samples of untreated animals), magenta: posi-

tive samples (bovine kidney samples of infected, drug-treated animals); blue filled: negative QC 

samples, blue filled with cross: spiked QC samples, magenta filled: positive QC samples; PC: prin-

cipal component with explained variance shown in brackets. 

 

Monte Carlo cross-validation was applied in order to assess the ability of the PCA coupled 

with QDA to discriminate between the two classes (control samples vs. positive samples). 

The results are shown in Figure 36 as a confusion matrix. The models showed a specificity of 

0.947 for the Q-Orbitrap data and 0.899 for the Q-TOF data, respectively. Thus, in both cases 

the data analysis procedure was suitable for the correct identification of control samples as 

samples taken from untreated, healthy cattle with a false positive rate of maximum 10%. The 

sensitivity of the model obtained from the Q-Orbitrap data (0.772) was comparable to the 

sensitivity of the model obtained from the Q-TOF data (0.795) with a false negative rate of 

maximum 22.8%.  

Q-Orbitrap Q-TOF
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Figure 36. Confusion matrix of bovine kidney samples classified as positive samples (bovine kidney 

samples of infected, drug-treated animals) or control samples (porcine kidney samples of untreated 

animals) via 3D-PCA coupled with QDA using a Monte Carlo cross-validation (𝒏 = 5,000). Left: Q-

Orbitrap data, right: Q-TOF data. 

 

Supervised multivariate statistical analyses, i.e., PLS-DA, were performed, but the results are 

not shown since the model over-fitted the data.  

In conclusion, the further investigations confirmed the overall applicability of the established 

approach to all matrices under investigation. Several methodological findings were recog-

nized in the course of these investigations.   

First, it is crucial to evaluate the quality of the raw data used for multivariate statistical anal-

ysis. A data integrity check of the mean peak areas and RSDs of known analytes in spiked 

QC samples provides a first impression of the data quality. High values of RSD indicate that 

the variation in the data set is high, which may be due to analytical drifts. This may negative-

ly affect sample classification based on PCA with subsequent QDA, since the principle of 

PCA is that the principal components are constructed in such a way that they explain in a 

descending order of magnitude the variation of the data. Hence, a high variation in the data 

set originated from the instrument performance may superimpose variance based on differ-

ent test groups. In general, a RSD below 20% is considered to be a good value for LC-MS 

data while a RSD of 30% is still considered to be sufficient [134]. In this study, in the case of 

higher variation, a normalization step was performed in order to check if the transformation 

by the division by the sum of all peaks rendered satisfactory values for RSD of analytes. This 

was done for the data obtained from the analysis of bovine samples. After the normalization 

the variation of the data was at an acceptable level. Normalization by the sum of all peaks is 

very common and was always the first step in the data pretreatment prior to PCA.   

Besides an overall high variation in data sets, batch effects or a gradual intensity loss over 

time are also common phenomena in LC-MS analysis. These observations were also made in 

this study. In the case of the analysis of porcine kidney samples a pronounced batch effect 

was observed and in the case of the analysis of bovine kidney samples a gradual analytical 

True Class Membership True Class Membership

Q-Orbitrap data Positive Control Positive Control Q-TOF data

Predicted 
Class 

Membership

Positive 0.772 0.053 0.795 0.101 Positive Predicted 
Class 

MembershipControl 0.228 0.947 0.205 0.899 Control
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drift was noted. Two different QC based normalization procedures were applied to the re-

spective data sets. In the first case, a correction factor based on the ratio of the mean peak 

areas of the QC samples from the two different batches was applied. In the second case, a 

correction curve based on the number of injection was used for normalization. Both proce-

dures successfully reduced the variation based on analytical drifts. These examples show 

that it is crucial to evaluate the data integrity and, if necessary, apply normalization strate-

gies in order to reduce analytical variance which may superimpose differences from different 

test groups. 

Furthermore, the investigations via PCA showed that for both species and matrices a differ-

ence between positive (drug-treated, infected animals) and control (untreated, healthy ani-

mals) samples was observed. However, the difference was more pronounced in the data sets 

obtained from the examination of muscle samples. In all test scenarios, spiked QC samples 

coincided with control samples. Neither the control nor the positive samples contained all 70 

veterinary drugs, but still the spiked QC samples coincided with the control samples. As-

suming that the presence of one or multiple veterinary drugs at the level of MRL is the main 

difference between non-compliant samples and control samples, one would have expected 

that spiked QC samples coincided with positive (drug-treated, infected animals) samples. 

Since this was not the case, but QC samples spiked with veterinary drugs coincided with 

control samples, it can be concluded that in an unsupervised setting the main difference be-

tween these two test groups is not the presence of veterinary drug residues, but changes in 

the metabolome of the positive samples caused by the underlying infection of the animal. 

In bovine muscle samples the sensitivity and specificity were high. Hence, PCA with subse-

quent QDA was considered to be a suitable approach in order to discern samples from the 

two test groups. This result was comparable to the outcome of the multivariate analysis of 

porcine muscle samples (see Section 4.1.2). However, one must keep in mind that the sample 

size used for the examination of cattle tissue was very small with only 15 samples per group. 

In future investigations, the sample size should be increased. Based on a larger data set it 

may then become feasible to attempt biomarker identification for this matrix.  

In the multivariate statistical analyses of kidney samples of both species no clear separation 

of the two test groups was observed. Yet, it was evident that the expectation vectors of the 

two test groups deviated from each other. PCA coupled with QDA showed that the specifici-

ty of the models was high with 0.884 (Q-TOF data of porcine kidney samples)–0.947 (Q-

Orbitrap data of bovine kidney samples), but the sensitivity was insufficient with a maximum 
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of 0.795 (Q-TOF data of bovine kidney samples). The false negative rate varied from 20.5% (Q-

TOF data of bovine kidney samples) to 43.9% (Q-TOF data of porcine kidney samples), which 

indicated that this approach was not feasible in order to identify true positive samples, i.e., 

samples taken from drug-treated, infected animals. One possible reason could be that renal 

tissue is more metabolically and hormonally active than muscle tissue [171]. The kidneys 

exert diverse functions which include the maintenance of volume and composition of body 

fluids as well as the control of electrolyte and acid-base balance [172]. They participate in the 

regulation of blood pressure via the regulation of sodium balance as well as the synthesis 

and secretion of renin, erythropoietin and vasoactive eicosanoids [172]. Furthermore, polar 

chemicals as well as metabolites of xenobiotics and endogenous substances are excreted re-

nally [24].  Hence, the metabolome of the renal tissue is influenced by various metabolic pro-

cesses. This may explain the high variation in the data set of positive samples and thus, ex-

plain the high false negative rate. Besides, one must keep in mind that a trend according to 

storage time was observed in kidney samples and thus this parameter may present a con-

founding factor.   

In consideration of all these observations, it can be concluded that the analysis of muscle tis-

sue as described in Section 4.1.2 was the most suitable approach.  

In general, the investigations showed further that supervised multivariate statistical analysis, 

i.e., PLS-DA, over-fitted the data and thus, PCA coupled with QDA was considered to be a 

better choice for sample classification. 
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4.2 LC-HRMS analysis of urine samples from ALT-treated gilts 

Parts of the following passage have previously been published in [192]. 

4.2.1 Targeted LC-HRMS analysis 

4.2.1.1 Method development and validation 

Development of sample preparation protocol  

Based on extraction methods for anti-doping drug testing [147]  three different SPE cartridg-

es were tested. Two of them, OASIS HLB® (200 mg, 6 cc) and STRATA XL (100 mg, 3 cc) SPE 

cartridges, contain a polymeric sorbent, which offers a reversed-phase retention mechanism 

of acidic, basic and neutral compounds [173]. The Bond Elut C18 (500 mg, 6 cc) SPE cartridge 

consists of a hydrophobic, silica-based sorbent allowing the retention of non-polar com-

pounds. However, it is not recommended for the analysis of polar compounds [173].  

 

Figure 37. Recovery rates of ALT in urine samples using 3 different SPE cartridges (n = 5); mean ± 

measurement uncertainty (half-width of the 0.95-confidence interval); blue: spiking was performed 

before sample preparation; magenta: spiking was performed after sample preparation; hatched 

columns: spiking level: 5 ng/mL; filled columns: spiking level 500 ng/mL; *: 𝒑-value from Student’s 

t-test: 𝒑 < 0.05.  

 

All three of the SPE cartridges showed comparable recovery rates of ALT in urine samples at 

the two tested concentration levels. The results varied from 29.0% to 45.6% (see Figure 37). 

The highest measurement uncertainty was observed for the results obtained by the Strata XL 

SPE procedure with a maximum of 9.4% while the variation of the measurement uncertainty 
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obtained by the OASIS HLB® and Bond Elut C18 procedure were comparable with a maxi-

mum of 4.9%.   

The recovery rates at the spiking level 5 ng/mL were generally higher than the recovery at 

the spiking level 500 ng/mL.  A comparison of means by a two-sided Student’s t-test showed 

no significant difference between the recovery rates of the samples spiked before and after 

the SPE procedure for all three SPE cartridges at the concentration range of 5 ng/mL (𝛼 =

 0.05). The only difference was observed in the recovery rates of samples prepared with the 

OASIS HLB® cartridge (pre vs. post SPE procedure) at the concentration level of 500 ng/mL 

(𝑝 < 0.05). Note, that the OASIS HLB® cartridge’s measurement uncertainty values at 

500 ng/mL were distinctly lower than for all the other SPE cartridges. Overall, these results 

indicate that there was no notable loss of the analyte during the solid phase extraction pro-

cedure. The analysis of solutions recovered from the loading and washing steps also con-

firmed that no analyte was eluted during those steps (data not shown). Hence, the low re-

covery rates of 29.0% to 45.6% resulted from a reduced signal abundance of the analyte in 

matrix samples compared to standard solutions. This ion suppression was addressed with an 

additional extract cleaning step prior to LC-HRMS analysis. Hexane was used for defattening 

of the extracts. The hexane extraction of matrix components significantly increased signal 

abundance and recovery increased from 39.6% ± 12.9% to 52.5% ± 17.2% (mean ± measure-

ment uncertainty, 𝑝 < 0.01, see Figure 38). Thus, an additional cleaning step of the final ex-

tract prior to analysis is recommended if no internal standard is used.  

 

Figure 38. Recovery of ALT in urine extracts (5 ng/mL) prepared with OASIS HLB SPE procedure 

without and with defattening step (𝒏 = 10); mean ± measurement uncertainty (half-width of the 

0.95-confidence interval); **: 𝒑-value from Student’s t-test: 𝒑 < 0.01.  
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However, in this study an isotopic-labeled internal standard (ALT-d5) was used to compen-

sate for matrix induced ion suppression. The internal correction resulted in a trueness of 

99.3% to 107.0% (see Table 13). These results show that quantification via internal standard is 

a valuable tool to compensate matrix suppression during LC-MS analysis. 

Table 13. Trueness of ALT in urine sample using three different SPE cartridges, corrected with in-

ternal standard ALT-d5 at concentration level of 5 ng/mL (𝒏 = 5); mean ± measurement uncertainty 

(half-width of the 0.95-confidence interval). 

 OASIS HLB® Bond Elut C18 STRATA XL 

Trueness (%)  106.7 ± 10.8 107.0 ± 14.6 99.3 ± 8.4 

 

Conclusively, all three SPE cartridges showed comparable recovery rates for ALT. None of 

the extraction procedures led to a significant loss of the analyte during the solid phase ex-

traction. The matrix effect which reduced the recovery can be corrected using an internal 

standard in the final method.   

The results obtained with the STRATA XL SPE procedure showed the highest measurement 

uncertainty. The lowest measurement uncertainty was observed after the sample preparation 

with the OASIS HLB® SPE cartridges at spiking level 500 ng/mL. The precision achieved 

with the Bond Elut C18 procedure was also considered satisfying. However, considering the 

retention mechanism this cartridge is not ideal for analyzing more polar metabolites of ALT. 

Hence, the SPE cartridge OASIS HLB® was selected for further method validation, keeping 

in mind the scope of the method analyzing ALT and potentially more polar metabolites, such 

as its glucuronides and sulfates [69, 174]. 

LC-HRMS method development and evaluation of fitness for purpose   

Chromatographic parameters were optimized in terms of chromatographic resolution and 

total time of analysis. When analyzing ALT standard solutions the main analyte (ALT) was 

retained at 7.67 min. Additionally, a small peak at 7.34 min was observed in standard solu-

tion as well as in spiked urine samples. The isotopic labeled internal standard ALT-d5 was 

retained at 7.65 min (see Figure 39).  
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Figure 39. Comparison of extracted ion chromatograms obtained by PRM method (left) and full 

scan mode (right) for ALT (@ 7.67 min) and internal standard ALT-d5 (@ 7.65 min, bold line); in 

PRM mode m/z 227.1425 (black) was used as quantifier and m/z 159.0804 (grey) was used as qualifi-

er; in full scan [M+H]+ was used for quantification (ALT: m/z 311.2006; ALT-d5: m/z 316.2309); A/B: 

extracted ion chromatograms of standard solutions of ALT and ALT-d5; C/D: extracted ion chroma-

tograms of ALT and ALT-d5 in urine samples at spiking level 5 ng/mL; E/F: extracted ion chroma-

tograms of blank urine samples. The photo-isomer ALT-CAP (@ 7.34 min) can also be observed in 

standard and matrix samples. 

 

As described in the literature, the isomerization of ALT has been observed and the photo-

isomer has been described as a 2 + 2 cycloaddition product (ALT-CAP) [87]. Hence, the iden-

tity of the isomer detected at 7.34 min was further investigated and the isomer was identified 

as ALT-CAP via 1H NMR (see Section 8.1.1). The gradient program was set to separate the 

isomers (chromatographic resolution R: 1.6) while reducing the total analysis time to 20 min 

per analytical run.   
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Initially, two different scan modes were tested: parallel reaction monitoring (PRM) and full 

scan mode with confirmatory fragmentation. PRM mode is comparable to the multiple reac-

tion monitoring (MRM) mode used in triple quadrupole mass spectrometry. However, a full 

scan of all product ions is performed after inducing a collision in the HCD cell. Therefore, all 

product ions can be acquired simultaneously. In contrast, in triple quadrupole mass spec-

trometry using MRM mode, a second m/z filter in Q3 selects only some of the product ions 

for data acquisition. The quantification in PRM mode was performed using the product ion 

m/z 227.1425 as quantifier for ALT and the internal standard ALT-d5, while m/z 159.0804 was 

monitored as qualifier. The molecule ions [M+H]+ were detected and used for quantification 

in full scan mode. Additionally, fragments were used for confirmatory purposes.  

 
Figure 40. A: product ion spectrum of ALT obtained at Q-Orbitrap at 7.67 min (precursor ion m/z 

311.1991; [M+H]+) by the analysis of spiked urine samples; B: product ion spectrum of ALT-d5 ob-

tained at Q-Exactive Focus at 7.65 min (precursor ion m/z 316.2309; [M+H]+) by the analysis of 

spiked urine samples. 
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Commission Decision 2002/657/EC [148] defines requirements for the identification of an 

analyte (see Section 3.2.2.3). Besides matching retention times of a standard solution and the 

analyte in a test sample, confirmatory methods need to provide information on the chemical 

structure of the analyte. Using PRM this can be achieved by measuring at least 2 product 

ions and comparing their ion ratio to standard solutions and spiked matrix samples. Using 

high resolution full scan with confirmatory fragmentation, the accurate mass of the analyte 

with a mass deviation lower than 5 ppm to the calculated exact mass as well as isotopes of 

the analyte and characteristic fragments allow for unequivocal identification. Figure 39 

shows that the ion ratio of the detected ions can be used as diagnostic parameter in order to 

assure the selectivity of a PRM method. The ion ratios of ALT in standard solutions and ma-

trix samples were comparable. In a HRMS full scan method, the mass deviation compared to 

the calculated exact mass was -1.8 ppm in standard solutions and -2.5 ppm in matrix sam-

ples, respectively. Furthermore, more than 3 characteristic fragments were observed in the 

product ion spectrum of ALT in urine samples (see Figure 40). Thus, the results of both scan 

modes meet the demands for selective substance identification in confirmative methods set 

by the Commission Decision 2002/657/EC. The analysis of blank matrix samples showed no 

interfering signals of matrix components in both scan modes (see Figure 39). Hence, both 

methods were considered to be specific. With respect to the comparable results for selectivity 

and specificity for the two scan modes, full scan mode with data-dependent fragmentation 

was chosen for further method development, since it can be used to quantify analytes at trace 

level and offers valuable advantages for metabolic fingerprinting, i.e., the possibility to per-

form retrospective analyses of relevant biomarker candidates combined with MS/MS infor-

mation for structural elucidation. Thus, the chosen mass spectrometric method is fit for tar-

geted as well as for non-targeted analyses. 
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Validation data 

Stability  

A stability study demonstrated that after 28 days under storage conditions (-20°C) ALT 

showed a minor decrease of 10%. Storage at 4°C led to a decrease of 20%. ALT stored at room 

temperature decreased to 67% without light exposure and to 33% (sum of ALT and ALT-

CAP) with light exposure, respectively (see Figure 41). Furthermore, storage at room tem-

perature with light exposure led to an elimination of the analyte accompanied by the for-

mation of the photo-isomer ALT-CAP as it has been reported before [87, 174]. Nevertheless, 

the formation of the photo-isomer resulted only in 33% of the initial concentration of the par-

ent compound. Thus, different elimination pathways must be considered, but remain unre-

vealed.  

 

Figure 41. Top: concentration profile of ALT (including its isomer ALT-CAP) in urine extracts over 

time under different storage conditions (rhombus: -20°C; square: 4°C; dot: room temperature with-

out light exposure; triangle: room temperature with light exposure). Bottom: isomerization of ALT 

in matrix extracts over time when stored at room temperature with light exposure. 
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Furthermore, three freeze-thaw cycles were performed with spiked matrix extracts at three 

different concentration levels (high, medium, low). No significant elimination was observed 

(see Table 14). 

Table 14. Recovery of ALT in urine extracts after three freeze-thaw cycles (𝒏 = 3) at three spiking 

levels (low, medium, high); mean ± measurement uncertainty (MU; half-width of the 0.95-

confidence interval). 

 Recovery (%) @ spiking level (ng/mL)  

 5 500 3000 

three freeze-thaw cycles 92.8 ± 13.9 109.6 ± 10.7  107.5 ± 4.5 

no freeze-thaw cycles 96.9 ± 6.6  110.8 ± 10.3  105.5 ± 8.9 

𝑝-value (t-test) N.S.  N.S. N.S. 
Recovery rates of matrix extracts after three freeze-thaw cycles and no freeze-thaw cycles were compared by Student’s t-test 

(error probability of α = 0.05); N.S.: not significant. 

Uncertainty-related performance characteristics   

Uncertainty-related performance characteristics were calculated for ALT in porcine urine ap-

plying the sample preparation procedure without and with an additional hydrolysis step in 

order to quantify ALT and the sum of ALT and the hydrolyzed conjugates of ALT, respec-

tively.  

No scientific data concerning the urinary excretion of ALT in gilts was available, only data 

on the plasma-pharmacokinetics of ALT have recently been published [66]. Therefore, phar-

macokinetic data on urinary excretion of ALT in horse were used to estimate the concentra-

tion range for method validation, i.e, determination of uncertainty-related performance char-

acteristics. In a pharmacokinetic study in horse the maximum urinary concentration values 

of hydrolyzed ALT varied between 1000–3000 ng/mL [174]. The calibration range was ad-

justed accordingly. A linear relationship between the response Y and the concentration x was 

observed for the operating range of both methods (see Figure 42).  
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Figure 42. Top: four individual matrix calibration series at the concentration range of 5–3000 ng/mL; 

middle: variance components model fitted to data obtained from the analysis of four individual 

matrix calibration series; green curves: 0.95-prediction bands; bottom: relative standard deviation of 

repeatability (𝑺𝑫𝒓 in%) and relative standard deviation of within-laboratory reproducibility (𝑺𝑫𝒘𝒊𝑹 

in%) as a function of concentration. Left: data obtained from the analysis without β-glucuronidase 

treatment; right: data obtained from the analysis with β-glucuronidase treatment.  

 

The uncertainty-related performance characteristics as defined in Commission Decision 

2002/657/EC as well as performance characteristics as defined in DIN 32645 [149] were estab-

lished for both methods (with and without hydrolysis step). Decision limit (𝐶𝐶𝛼) and detec-

tion capability (𝐶𝐶𝛽) were obtained under within-laboratory reproducibility conditions ac-

cording to Commission Decision 2002/657/EC, while the decision limit (𝐶𝐿), detection limit 
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(𝐿𝑂𝐷) and determination limit (𝐿𝑂𝑄) were calculated under repeatability conditions accord-

ing to DIN 32645 (see Figure 43). The results showed that 𝐶𝐶𝛼 and 𝐶𝐶𝛽 as well as the per-

formance characteristics according to DIN 32645 cover the same concentration range (see 

Table 15).  𝐶𝐶𝛼 was 1.3 ng/mL and 0.9 ng/mL using the method without hydrolysis step and 

with an additional β-glucuronidase step, respectively. 𝐶𝐶𝛽 was 2.5 ng/mL and 1.8 ng/mL 

using the method without any pre-treatment and with an additional β-glucuronidase step, 

respectively. Interestingly, the method with an additional pre-treatment step resulted in a 

slightly decreased 𝐶𝐶𝛼 and 𝐶𝐶𝛽. 𝐶𝐿 and 𝐿𝑂𝑄 according to DIN 32645 were 1.6 ng/mL and 3.9 

ng/mL (without hydrolysis step) as well as 1.2 ng/mL and 3.0 ng/mL (with hydrolysis step). 

 

Table 15. Comparison of performance characteristics for the determination of ALT in urine extracts 

using different sample pre-treatment procedures: 𝑪𝑪𝜶 and 𝑪𝑪𝜷 obtained via variance components 

model vs. decision limit (𝑪𝑳), detection limit (𝑳𝑶𝑫) and determination limit (𝑳𝑶𝑸) according to 

DIN 32645. 

    DIN 32645*  CD 2002/657/EC 

Pre-treatment 𝑪𝑳 

(ng/mL) 

𝑳𝑶𝑫 

(ng/mL) 

𝑳𝑶𝑸 

(ng/mL) 
 𝑪𝑪𝜶 (@𝒙𝟎 = 0) 

(ng/mL) 

𝑪𝑪𝜷 (@𝒙𝟎 = 0) 

 (ng/mL) 

None 1.6 3.2 3.9  1.3 2.5 

β-glucuronidase 1.2 2.4 3.0  0.9 1.8 
* worst case values of 4 independent calibration curves. 

 

The standard deviation of repeatability (𝑆𝐷𝑟) and the standard deviation of reproducibility 

(𝑆𝐷𝑤𝑖𝑅) were below 5.0% at the highest concentration level of ALT (3000 ng/mL) and maxi-

mum 13.9% at the lowest concentration level (5 ng/mL) (see Table 16). At higher concentra-

tion levels the deviation between the prediction bands increased, which is a result of a heter-

oscedastic variance. This demonstrates a phenomenon which is often observed in residue 

analysis: Experimental errors often are heteroscedastic under reproducibility conditions, 

since the variance of the measurement error in that case is related to the concentration [175].  

Table 16. Relative standard deviation of repeatability (𝑺𝑫𝒓  in %) and relative standard deviation of 

within-laboratory reproducibility (𝑺𝑫𝒘𝒊𝑹 in %) at three spiking levels (low, medium, high) in urine 

extracts. 

 𝑺𝑫𝒓 in % @  𝑺𝑫𝒘𝒊𝑹 in % @ 

 spiking level (ng/mL)  spiking level (ng/mL) 

Pre-treatment 5 500 3000  5 500 3000 

None 13.9  7.5  1.3   13.9  8.4  4.0 

β-glucuronidase 10.3  6.1  1.0   11.1  6.4  2.6  
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Figure 43. Top: variance components model fitted to data obtained from the analysis of four indi-

vidual matrix calibration series to determine 𝑪𝑪𝜶 and 𝑪𝑪𝜷 according to CD 2002/657/EC; green 

curves: 0.95-prediction bands; middle: relative standard deviation of repeatability (𝑺𝑫𝒓 in%) and 

relative standard deviation of within-laboratory reproducibility (𝑺𝑫𝒘𝒊𝑹 in%) as a function of con-

centration; bottom: exemplary data of ordinary least squares regression (OLS) to determine perfor-

mance characteristics according to DIN 32645, blue curves: 0.95-prediction bands. Left: data ob-

tained from the analysis without β-glucuronidase treatment; right: data obtained from the analysis 

with β-glucuronidase treatment. 
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Recovery was assessed by plotting measured values obtained via external calibration against 

actual values in the concentration range from 10–200 ng/mL in the final extract. The recovery 

was 101%–105% using the method without hydrolysis step and 81%–100% using the method 

with hydrolysis step, respectively. However, in this study quantification was done via matrix 

calibration. Provided that sample matrix and calibration matrix do not differ substantially 

from each other, the expectation of the recovery is nearly 100% [153].  

 
Figure 44. Left: measured value plotted relative to actual value in urine extracts in the concentration 

range from 10–200 ng/mL (corresponding to a spiking level from 2.5–50 ng/mL); right: recovery (%) 

as a function of the concentration. Top: data obtained from the analysis without β-glucuronidase 

treatment; bottom: data obtained from the analysis with β-glucuronidase treatment 

 

Overall, method validation showed that matrix calibration and the use of an internal stand-

ard lead to accurate and precise results. The uncertainty-related performance criteria (CCα as 

well as CL) were in the range of 1 ng/mL ALT in urine samples (with and without hydroly-

sis) and thus, meet the purpose of the method analyzing urine samples to determine the uri-

nary excretion rate of ALT and ALT metabolites, i.e., glucuronides. 

0

50

100

150

200

250

0 50 100 150 200 250

M
e

as
u

re
d

 v
al

u
e

 (n
g/

m
L)

Actual value (ng/mL)

0

50

100

150

200

250

300

0 50 100 150 200 250

M
e

as
u

re
d

 v
al

u
e

 (n
g/

m
L)

Actual value (ng/mL)

No hydrolysis step

With hydrolysis step

80

85

90

95

100

105

110

0 50 100 150 200 250

R
e

co
ve

ry
 (%

)

Acutal value (ng/mL)

80

85

90

95

100

105

0 50 100 150 200 250

R
e

co
ve

ry
 (%

)

Acutal value (ng/mL)



 

Results and discussion                                                                                                                         113 

4.2.1.2 Identification and quantitative determination of ALT glucuronides  

In the targeted analysis of urine samples of ALT-treated gilts pronounced peaks at 5.3 and 

6.2 min (m/z 487.2327 [M+H]+) were detected (see Figure 45). These peaks were identified as 

glucuronides of the parent drug ALT (peak at 6.2 min) and of the primary photo-isomer 

ALT-CAP (peak at 5.3 min). Since the glucuronide of ALT was not commercially available, it 

was synthesized using an in vitro enzymatic reaction [176]. For details see Supplementary 

data Section 8.1.2. The in vitro synthesis in aqueous solution also rendered the glucuronide of 

ALT-CAP, which was consisted with the observation in urine samples. The product ion spec-

tra of the two glucuronides showed characteristic fragments, i.e., m/z 311.2006 (ALT), 

293.1895, 269.1531, 227.1426. The mass deviation of the product ions compared to the calcu-

lated mass of ALT glucuronides was very low with a maximum of -3.3 ppm and within the 

accuracy of the instrument (5 ppm). A peak with the mass-to-charge ratio of ALT was ob-

served at the same retention time than of ALT glucuronide. Hence, this peak was contributed 

to an in-source fragmentation of ALT glucuronide.  

ALT and its photo-isomer were not observed at the expected retention time (7.3 and 7.7 min, 

m/z 311.2006 [M+H]+) in the extracted ion chromatogram of samples from ALT-treated gilts. 

However, a new peak at 7.9 min was detected with this mass-to-charge ratio. It can be hy-

pothesized that this peak corresponds to an unknown isomer, since its product ion spectrum 

showed all characteristic fragments of ALT. However, the isomer was only detected at trace 

level and thus, preparative purification was not possible. Furthermore, in negative ion mode, 

no ALT sulfate was observed. 
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Figure 45. A: overlay of representative extracted ion chromatogram of urine sample from ALT-

treated gilt and reference standard; black: ALT glucuronide (@ 6.2 min) and ALT-CAP glucuronide 

(@ 5.3 min) (m/z 487.2327); magenta: in-source fragmentation product of ALT glucuronide (@ 6.2 

min) and unknown isomer of ALT (@ 7.9 min) (m/z 311.2006); blue: internal standard ALT-d5  (m/z 

311.2006 @ 7.7 min); B: product ion spectrum of ALT glucuronide at 6.2 min (precursor ion m/z 

487.2327; [M+H]+). 

 

For quantification of ALT glucuronides (i.e., ALT glucuronide and ALT-CAP glucuronide), 

enzymatic hydrolysis was performed for 24 hours with a sample volume of 400 µL in order 

to reduce the amount of ALT glucuronides which needed to be hydrolyzed. However, a 

complete hydrolysis could not be achieved since the response ratios of ALT glucuron-

ides/ALT-d5 only decreased by 42–63% (see Figure 46). This phenomenon is not uncommon, 

since enzymatic hydrolysis often results in incomplete hydrolysis [177].  
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Figure 46. Response ratio of (sum of ALT glucuronide and ALT-CAP glucuronide)/ALT-d5 in urine 

samples from ALT-treated gilts before (blue) and after (magenta) hydrolysis step; numbers in 

brackets indicate sampling time (see Table 6).  

 

In order to accomplish a complete hydrolysis, an acid hydrolysis was also tested (50% HCl 

for 1.5 hours at 100°C) [177]. However, ALT was not stable under these conditions (data not 

shown).  

Hence, quantification of ALT glucuronides (sum of ALT glucuronide and ALT-CAP glucu-

ronide) was performed as follows: 

1. The concentration of ALT (sum of ALT and ALT-CAP) in mol/L after enzymatic hy-

drolysis, 𝑐+, was quantified via matrix calibration. 

 

2. Response ratios 𝑦+ and 𝑦− were calculated as 

𝑦− = (
𝐴𝑟𝑒𝑎 (𝐴𝐿𝑇 glucuronides)

𝐴𝑟𝑒𝑎 (ALT-d5)
)

before hydrolysis

 

and 

𝑦+ = (
𝐴𝑟𝑒𝑎 (𝐴𝐿𝑇 glucuronides)

𝐴𝑟𝑒𝑎 (ALT-d5)
)

after hydrolysis

 

 

3. The concentration of ALT glucuronides in mol/L, 𝑐ALT glucuronides, was estimated as 

𝑐ALT glucuronides =
𝑦−

𝑦− − 𝑦+
∙ 𝑐+ 
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The results are shown in Table 17. The concentrations varied from 1900 ng/mL to 

4140 ng/mL, which is comparable to data reported for horses by Machnik et al. [50]. Howev-

er, no pronounced decrease of ALT glucuronides according to sampling time was observed. 

Hence, a normalization procedure was attempted. 

Table 17. Quantification of ALT, an unkown isomer of ALT and ALT glucuronides (sum of ALT 

glucuronide and ALT-CAP glucuronide) in urine samples of gilts after ALT treatment of 20 mg/day 

at different sampling times (𝒏 = 2; mean ± measurement uncertainty). 

Sample Hours after 

last treatment 

 ALT1 ALT isomer  

(@ 7.9 min)2 

ALT glucuronides3 

   ng/mL 

gilt A 

  3:30 pm (day 17) 7.5  n.d. (<CL)  <LOQ 3900 ± 250 

  11:15 am (day 18) 3.25  n.d. (<CL) <LOQ 3950 ± 250 

gilt B 

  4:00 pm (day 17) 8  n.d. (<CL) <LOQ 1900 ± 250 

  11:15 am (day 18) 3.25  n.d. (<CL) <LOQ 4140 ± 250 

gilt C 

  3:00 pm (day 17) 7  n.d. (<CL) <LOQ 3780 ± 250 

  7:00 am (day 18) 23  n.d. (<CL) <LOQ 3320 ± 250 

  10:15 am (day 18) 2.25  n.d. (<CL) <LOQ 2780 ± 250 
n.d.: not detected, decision limit CL: 1.6 ng/mL, determination limit LOQ: 3.9 ng/mL; 1ALT analyzed by method without enzy-

matic hydrolysis; 2unknown ALT isomer analyzed by method without enzymatic hydrolysis; 3ALT glucuronides quantified as 

ALT after enzymatic hydrolysis. 

 

Normalization of ALT glucuronide to urinary creatinine concentration  

Concentrations of metabolites in urine are depending on the hydration status of the respec-

tive animal and thus, the total urine volume in which urinary metabolites are excreted [178]. 

In order to account for urinary volume, it is a common practice to reference urinary bi-

omarkers to urinary creatinine concentration since creatinine—a product of muscle metabo-

lism—is excreted at a fairly constant rate within healthy individuals [178]. Urinary creatinine 

concentration was determined via 1H NMR. Method validation of quantitative 1H NMR 

method is described in the Supplementary data Section 8.2. The results are shown in Table 

18. The concentration of ALT glucuronides normalized to urinary creatinine decreased over 

time for gilt B and gilt C. The ALT glucuronides/Ucr of gilt A was nearly the same at 3.25 

hours and 7.5 hours after the last treatment. 
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Table 18. Normalization of urinary ALT glucuronides (sum of ALT glucuronide and ALT-CAP glu-

curonide) to urinary creatinine concentration Ucr (𝒏 = 2; mean ± measurement uncertainty and rela-

tive measurement uncertainty based on error propagation calculation). 

Sample Hours after 

last treat-

ment 

 ALT glucuron-

ides1 

Creatinine (Ucr) ALT glucuronides/Ucr 

   ng/mL mg/mL µg/mg 

gilt A 

  3:30 pm (day 17) 7.5  3900 ± 250 1.04 3.76 ± 6% 

  11:15 am (day 18) 3.25  3950 ± 250 1.02 3.86 ± 6% 

gilt B 

  4:00 pm (day 17) 8  1900 ± 250 0.36 5.32 ± 13% 

  11:15 am (day 18) 3.25  4140 ± 250 0.29 14.06 ± 6% 

gilt C 

  3:00 pm (day 17) 7  3780 ± 250 0.80 4.74 ± 6% 

  7:00 am (day 18) 23  3320 ± 250 1.77 1.87 ± 7% 

  10:15 am (day 18) 2.25  2780 ± 250 0.36 7.69 ± 9% 
1ALT glucuronides quantified as ALT equivalents after enzymatic hydrolysis. 

According to the “summary of medicinal product characteristics”[51] a steady-state is de-

scribed after several days of treatment. Since the sample collection was done during the last 

two days of treatment, a steady-state can be assumed. Consequently, the concentration of 

urinary ALT glucuronides was plotted against the hours after the last treatment in order to 

visualize the effect of normalization to urinary creatinine Ucr. A continuous decrease in the 

ratio of ALT glucuronides/Ucr can be observed, which confirms that a normalization of uri-

nary biomarkers is crucial in order to determine a pharmacokinetic profile. This observation 

is especially evident in the concentration profile over time for gilt C. The non-normalized 

values were nearly constant, while after normalization a decrease was observed (see Figure 

47). This can be explained by the fact that the spot urine taken at 23 hours was most likely 

morning urine, since it was highly concentrated and strongly colored.  
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Figure 47. Top:  urinary ALT glucuronides (sum of ALT glucuronide and ALT-CAP glucuronide) 

concentration (ng/mL) plotted against hours after last treatment; middle: ratio of ALT glucuronides 

to urinary creatinine (UCr) plotted against hours after last treatment; blue: gilt A, magenta: gilt B, 

green: gilt C, mean values (𝒏 = 2) ± measurement uncertainty; bottom: mean of ALT glucuronides 

normalized to urinary creatinine (UCr) of urine samples from ALT-treated gilts grouped by time 

intervals after last treatment with individual values plotted as dots. 
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Unfortunately, it was not possible to fit an excretion function to this data since the number of 

samples per individual was too small. This real world study took place under routine breed-

ing conditions without any additional interventions. Hence, only spontaneous spot urine 

was sampled. It was not possible to sample urine at fixed time points or with a predefined 

number of samples per individual animal. Furthermore, inter-individual variations in the 

excretion rate appear to be high, since urinary ALT glucuronides/Ucr values at 2–4 hours after 

the last treatment range from 3.86 µg/mg to 14.06 µg/mg. In contrast, the ratios of ALT glu-

curonides/UCr at approximately 7–8 hours only varied from 3.76–5.32 µg/mg. However, a 

pronounced decrease over time was observed. 

In general, the results are in line with the literature with glucuronide conjugation being de-

scribed as a major metabolic pathway for ALT [28]. Sulfate conjugates which have been al-

ready described as renale metabolites in horses [69] were not detected in the present study.   

No urinary excretion data of ALT in gilts are available in the published scientific literature. 

The only urinary excretion data for ALT in gilts available was taken from scientific opinions 

from the CVMP. However, these data are limited and range from 20% of the total dose ex-

creted via urine to 60% renal excretion [28]. The CVMP used a release rate of 25% (ALT or 

ALT conjugates) of the total dose of ALT via urine for the refinement of the predicted envi-

ronmental concentrations in soil (PECsoil) in their phase II environmental risk assessment [29]. 

After the application of radio-labeled ALT, 2% of the total radioactivity in urine was identi-

fied as ALT and 24% as ALT conjugates, corresponding to 0.5% to 6% of the total dose [29]. 

Since only spot urine was available, it is not possible to calculate the total amount of ALT 

excreted as glucuronides and compare the obtained data to the literature. In order to deter-

mine the total urinary excretion an administration of radio-labeled ALT as well as the collec-

tion of urine over a longer time period would be necessary.   

In addition, excretion via feces was not investigated in the present study. However, it also 

needs to be taken into account for the assessment of the environmental release of ALT.  The 

CVMP stated that in bile 6% of the radioactivity was identified as ALT and 14% as ALT con-

jugates, corresponding to 4.5% and 10.5% of the total dose [29]. 

The environmental impact of ALT needs to be discussed, since manure is often used as ferti-

lizer for agricultural soils. In order to estimate worst case predicted environmental concen-

trations for ALT in Germany, a worst case scenario of 5 mg/kg ALT in manure was calculat-

ed in a literature study [44]. The observed excretion data in this thesis was in the same con-

centration range of up to 4.14 mg/L ALT in urine samples. Hence, the assumption taken for a 
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worst case scenario of the cited literature study can be confirmed with the data generated as 

part of this thesis. However, it has to be taken into account that under realistic conditions 

manure consists of urine and feces from many animals and only a minority of which are like-

ly to have been treated with ALT. Therefore, a dilution of synthetic hormonal residues in 

manure cannot be excluded. A study from Biswas et al. demonstrated that manure from cat-

tle treated with different hormonal substance, i.e., α-zearalanol, trenbolone, 17-β-estradiol 

and melengesterol acetate contained total residues from 9.9–26.7 µg/kg [179]. Yet, in the 

swine industry production phases are segregated and therefore, regional hot spots can occur, 

when manure from sow farms is used for fertilization. 

In this study, only ALT glucuronide and ALT-CAP glucuronide were detected in urine sam-

ples at higher concentration levels, ALT was not detected and only traces of an unknown and 

for the first time observed isomer of ALT were observed. ALT conjugates may exhibit a hor-

monal effect after microbial deconjugation and thus, need to be considered in the environ-

mental risk assessment. However, according to CVMP summary report in order to specify a 

MRL for ALT, the hormonal activity of ALT conjugates after deconjugation was 14% of the 

activity of ALT [28]. The CVMP stated further that the hormonal activity of the isomeric form 

of ALT (ALT-CAP) was very low [28], which is in contrast to the findings of Wammer et al. 

and Pflug et al. [87, 88].  Pflug et al. showed that the photo-isomer ALT-CAP exhibited 45–

100% of the activity of ALT in activating estrogen receptors, progesterone receptor and preg-

nane X receptor [88].  

The environmental fate of ALT is a topic of recent research. The octanol/water distribution 

coefficient (log𝐾𝑂𝑊) of ALT was estimated at 3.54 by the US environmental protection agency 

(EPA) [180] and experimental values range from 3.44–3.74 [89, 181]. This indicates that sorp-

tion processes to soil or sediments are likely to occur. Sorption studies for ALT at laboratory 

scale with an estimated worst case concentration in manure of 5 mg/kg showed a high affini-

ty to soil and an accumulation in soil, while the total recovery decreased over the course of 

the study (28 days) [44]. Experiments with ALT spiked manure resulted in higher sorption to 

soil matrix compared to experiments with ALT spiked directly to the added water. After 28 

days the concentration of ALT in water was still at a level above the lowest observed effect 

concentration of progesterone in fathead minnows [44]. Yang et al. showed in sorption stud-

ies with different soil types that sorption of ALT occurred concurrently with abiotic-

transformation catalyzed by soil-minerals [89]. It is important to keep in mind that ALT un-

dergoes rapid photo-isomerization, which may have an impact on the sorption behavior 
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when manure is spread on agricultural fields. Investigations of the sorption behavior of the 

photo-isomers of ALT (ALT-CAP and ALT-CAP-OH) revealed that they have a reduced 

sorption affinity to sand-soil mixtures relative to parent drug, which is in line with their low-

er log𝐾𝑂𝑊 of 3.25 and 2.88 [181]. Hence, the more polar photo-products exhibit a higher 

transport potential in soil-water systems [181]. However, studies haven shown that photoly-

sis on soil surfaces is not only determined by the photolysis itself but is a function of layer 

thickness and transport processes [182]. 

The excretion data described above showed that no parent drug and only minor amounts of 

an isomer of the parent drug with similar physicochemical properties are present in the urine 

of ALT-treated animals. But one can hypothesize that more polar metabolites, such as glucu-

ronides, are more likely to exhibit a low sorption to soil matrix and may leach faster into 

groundwater. However, it cannot be excluded that bacterial β-glucuronidases in soil render 

the parent drug and the photo-isomer after cleavage of the glucuronic acid moiety. 

In conclusion, the targeted investigation of real world urine samples from ALT-treated gilts 

showed that glucuronide conjugates of ALT and its photo-isomerization product (ALT-CAP) 

are main urinary metabolites of ALT in gilts. Furthermore, another isomerization product of 

ALT was observed at trace level, which to the best of my knowledge has not yet been de-

scribed in literature. The quantification of the ALT glucuronides was performed after enzy-

matic hydrolysis. The concentrations ranged from 1900 ng/mL to 4140 ng/mL, which is com-

parable to data reported for horses and worst-case calculations used for laboratory-scale 

sorption studies. The results showed further that it is crucial to adjust for the fluid balance of 

the animals at different time points in order to determine a concentration profile over time.  

4.2.2 Non-targeted LC-HRMS analysis 

Non-targeted LC-HRMS analysis was performed in order to investigate the potential of 

metabolomics workflows to (1) distinguish between ALT-treated gilts and non-medicated 

gilts and (2) to identify unknown metabolites of ALT. 

Data integrity  

In the course of data post-processing, the experimental data was filtered by removing all 

mass spectrometric features which were present in the reagent blank sample at an intensity 

of > 1.0 x 107 and features with RSD > 25% in QC samples (all samples pooled). This de-
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creased the total number of features from 7504 to 3497. The purpose of this step was to re-

move analytical noise and non-informative variables in the data set [134]. Variables with low 

repeatability are considered to be of low quality, since they may impede the identification of 

true biologically meaningful differences between the test groups since important biologically 

meaningful features could be lost in an abundance of analytical noise [183].   

Subsequently, data quality was checked by means of the RSD of the internal standard ALT-

d5 of the QC samples (all samples pooled) which were scattered throughout the analytical 

batch as well as the RSD of the internal standard ALT-d5 of all samples of the analytical 

batch. The RSD of ALT-d5 in the QC samples and in all samples were 4% and 12%, respec-

tively. Hence, the analytical method was considered robust. 

 

Multivariate statistical analysis of non-targeted data  

After data pretreatment, the experimental data was subjected to PCA. As illustrated in Fig-

ure 48, the PCA scores plot revealed differences between samples from non-medicated gilts 

(control) and ALT-treated gilts (positive samples). Sample preparation and data processing 

workflows were considered robust, since all QC samples coincided in the scores plot. For 

practical purposes, it is necessary to apply a statistically defined criterion by which one can 

distinguish the two test groups. 0.9-prediction ellipses with an 𝛼 error probability of 0.1 were 

employed. As can be seen in Figure 48 the prediction ellipses only overlapped slightly.  

 

Figure 48. Left: 2D-scores plot of PCA of LC-HRMS data of urine samples; blue: control samples 

(non-medicated gilts), magenta: positive samples (ALT-treated gilts); green cross: pooled QC sam-

ples, blue filled: control QC samples, magenta filled: positive QC samples; right: 2D-scores plot of 

PCA of LC-HRMS data of urine samples; blue: control samples (non-medicated gilts) with 0.9-

prediction ellipse, magenta: positive samples (ALT-treated gilts) with 0.9-prediction ellipse; PC: 

principal component with explained variance shown in brackets. 
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Metabolite and biomarker identification  

Univariate statistical tests were used for metabolite and biomarker identification. The results 

of the top 25 mass spectrometric features based on their level of significance (adjusted p-

value) are given in Table 19. All adjusted p-values of the top 25 features were highly signifi-

cant (𝑝-adj. < 3.1 x 10-9) and the mean fold changes ranged from 0.001 for analyte m/z 827.2521 

(@6.78 min) to 22,200 for analyte m/z 487.2328 (@6.16 min) which was identified at level 1 as 

ALT glucuronide. In order to visualize the results and aid pattern recognition a 2D heatmap 

was constructed (see Figure 49).  

 

Figure 49. 2D heatmap in order to visualize the top 25 significant features of Student’s t-test and to 

aid pattern recognition; 5 control gilts (A-E) and 3 ALT-treated gilts (A-C) at different sampling 

times (1–3, see Table 6) were clustered with dendograms at sample and analyte level. 
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Table 19. Top 25 significant features (m/z at retention time in min) with adduct determination, pro-

posed molecular formulas and level of identification (ID) confidence for annotation according to 

[94]).  
m/z at  reten-

tion time 

(min) 

Adduct Proposed   

elemental   

composition 

δ  

ppm 

ID 

Level 

Annotation 𝑝-adj. FC 

311.2003 

(@6.16) 

[M+H]+ C21H26O2 0.3 1 ALT caused by in-source 

fragmentation  

1.7 x 10-13 1390 

301.1072 

(@4.42) 

[M+H]+ C17H16O5 0.2 4 database hits for isoflavonone 

derivatives 

2.3 x 10-13 0.009 

487.2328 

(@6.16) 

[M+H]+ C27H34O8 0.9 1 ALT glucuronide 2.6 x 10-13 22200 

447.1287 

(@4.60) 

[M+H]+ C22H22O10 0.3 3 glucuronide of C16H14O4  (simi-

lar to isoflavone derivatives) 

9.8 x 10-12 0.020 

487.2329 

(@5.32) 

[M+H]+ C27H34O8 0.9 1 ALT-CAP glucuronide 1.0 x 10-11 4680 

271.0967 

(@4.60) 

[M+H]+ C16H14O4 0.5 3 similar to isoflavone deriva-

tives1 

2.7 x 10-11 0.012 

485.1422 

(@6.19) 

[M+H]+ C18H29O13P 0.1 4  2.7 x 10-11 0.131 

497.0693 

(@4.74) 

[M+H]+ C24H16O12 -4.5 4  2.7 x 10-11 0.014 

403.1389 

(@6.78) 

[M+H]+ C21H22O8 0.1 3 glucuronide of C15H14O2 (simi-

lar to stilbene derivative) 

3.5 x 10-11 0.055 

227.1066 

(@6.78) 

[M+H]+ C15H14O2 0.1 3 similar to stilbene derivative1 7.2 x 10-11 0.051 

491.1189 

(@3.22) 

[M+H]+ C23H22O12 0.2 4 glucuronide of C17H14O6 1.3 x 10-10 0.095 

213.0910  

(@4.55) 

[M+H]+ C14H12O2 0.2 4 database hits for stilbene 

derivative1 

1.4 x 10-10 0.014 

507.1842 

(@5.47) 

   5 unknown glucuronide  1.5 x 10-10 339 

827.2521 

(@6.78) 

   5  2.4 x 10-10 0.001 

389.1231 

(@4.55) 

[M+H]+ C20H20O8 -0.1 4 glucuronide of C14H12O2  3.7 x 10-10 0.013 

480.1868 

(@6.18) 

   5  3.7 x 10-10 0.098 

505.1684 

(@4.60) 

   5 unknown glucuronide  3.7 x 10-10 554 

425.1207 

(@6.79) 

   5  3.7 x 10-10 0.090 

237.1234 

(@5.79) 

[M+H]+ C12H16N2O3 0.3 4  4.1 x 10-10 0.001 

453.2095 

(@3.86) 

[M+H]+ C19H28N6O7 -0.7 4  7.6 x 10-10 10.5 

463.0872 

(@3.26) 

[M+H]+ C21H18O12  0.2 4 glucuronide of C15H10O6  9.2 x 10-10 0.112 

503.2278 

(@4.52) 

[M+H]+ C27H34O9 0.7 3 ALT-OH glucuronide 1.7 x 10-9 10.4 

299.0549 

(@4.73) 

[M+H]+ C16H10O6 -0.2 4 database hits for isoflavonoid 

derivatives 

2.5 x 10-9 0.010 

475.0874 

(@3.95) 

[M+H]+ C22H18O12 0.5 4 glucuronide of C16H10O6  2.6 x 10-9 0.012 

293.1896 

(@6.17) 

[M-H2O+H]+ C21H26O2 -1.3 1 ALT caused by in-source 

fragmentation 

3.1 x 10-9 159 

FC: fold change: positive fold changes indicate higher levels in ALT-treated gilts, 𝑝-adj.: multiple test corrected p-value based on 

the Benjamini Hochberg false discovery rate; 1in-source fragmentation of the respective glucuronide; ALT-CAP: cycloaddition 

product of ALT. 
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Eight of the top 25 significant features were increased in the medicated group and 5 of these 

8 increased features were identified as metabolites and in-source fragments of ALT metabo-

lites. The metabolite with the highest change was the glucuronide of ALT (m/z 487.2328 @ 

6.16 min), followed by the glucuronide of ALT-CAP (m/z 487.2329 @ 5.32 min). Based on the 

aligned retention time, the features m/z 311.2003 [M+H]+ and m/z 293.1896 [M-H2O+H]+ were 

identified as in-source fragments of ALT glucuronide. The mass spectrometric feature m/z 

503.2278 at 4.52 min was identified as glucuronide conjugate of a hydroxy-ALT at level 3 (see 

Figure 50). The characteristic fragments m/z 199.1101 and 159.0806 for ALT indicated that the 

hydroxyl group is positioned in ring D.  

 

Figure 50. Representative product ion spectrum of glucuronide conjugate of hydroxy-ALT (m/z 

503.2278 [M+H]+ @ 4.52 min) with proposal of product ion fragments. 

 

The mass spectrometric features m/z 507.1842 at 5.47 min m/z 505.1684 at 4.60 min could not 

be further identified except for a characteristic neutral loss of 176.0309 which corresponds to 

a loss of glucuronic acid. A sum formula of C19H28N6O7 was proposed for m/z 453.2095 (@3.86 

min) which was also increased in the medicated group.   

Interestingly, 17 of the 25 top significant features showed elevated intensities in the control 

group. Six features correspond to glucuronide conjugates given the characteristic neutral loss 

of 176.0309. The mass spectrometric features m/z 271.0967 at 4.60 min and m/z 227.1066 at 
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6.78 min produced mass spectral library hits for isoflavone derivatives (5,7-dihydroxy-3-(4-

hydroxyphenyl)-4H-chromen-4-one) and stilbene derivatives (4,4-prop-1-ene-1,2-

diyldiphenol), respectively, by the integrated library “mzCloud” of Compound Discoverer 

3.1. Further database hits in ChemSpider also suggest isoflavonoid derivatives. This may 

lead to the assumption that the metabolism of nutrients, i.e., phytoestrogens, is altered under 

ALT treatment. However, further studies are needed to support this hypothesis.  

Pathway mapping  

We additionally performed an “MS peak to pathway” mapping in MetaboAnalyst 4.0 to 

complement manual biomarker identification. This procedure applies the mummichog algo-

rithm to map mass spectrometric features to functional activities by leveraging the collective 

insights of metabolic pathways [144]. 1871 significant mass spectrometric features (𝑝-value 

< 1.0 x 10-3) were used for pathway analysis and 310 empirical compounds were annotated 

by “MS peaks to pathway”. The significant hits per pathway were checked manually for 

plausibility (chromatographic retention and adduct identification). The pathway enrichment 

factor is calculated as the ratio of the number of significant pathway hits and the expected 

number of randomly matched compound hits [134]. The significance of the pathway enrich-

ment is determined by the 𝑝-value of Fisher’s exact test (FET) [144]. In order to take the size 

of each pathway into account, an adjusted 𝑝-value per pathway is calculated based on per-

mutation-testing [144].   

Tryptophan metabolism (FET 𝑝-value: 0.003, adjusted 𝑝-value: 0.001, enrichment factor: 1.42) 

and leukotriene metabolism (FET 𝑝-value: 0.20, adjusted 𝑝-value: 0.003, enrichment factor: 

1.52) followed by C21-steroid hormone biosynthesis and metabolism (FET 𝑝-value: 0.23, ad-

justed 𝑝-value: 0.003, enrichment factor: 1.22) were the three most enriched pathways (see 

Figure 51). A second algorithm was applied using “Metabolika Pathways” in Compound 

Discoverer 3.1. This algorithm also revealed several mass spectrometric hits for the trypto-

phan metabolism and the C21-steroid biosynthesis. Hence, these two pathways were investi-

gated further. Significant hits that were independently found by both algorithms were high-

lighted in the pathways in Figure 52 and Figure 53. However, it is crucial to keep in mind 

that the pathway mapping is based on database hits only and no analytes were unambigu-

ously identified via reference standards. Nonetheless, it is noteworthy that non-targeted ex-

plorative methods suggest metabolic changes that can be explained by the mechanism of 

action of ALT.  
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Figure 51. Pathway mapping summary: all matched pathways are displayed as circles. The color 

and size of each circle corresponds to its Fisher’s exact test (FET) 𝒑-value and enrichment factor, 

respectively.  Small yellow circle represent non-significant hits, while larger, red circles represent 

significant pathway enrichments. 

 

Tryptophan is an essential amino acid for humans and pigs. It is involved in protein synthe-

sis and the synthesis of the neurotransmitter serotonin. An effect of the menstrual cycle on 

tryptophan as well as kynurenine (a degradation product of tryptophan) is described in 

women [184, 185]. In the follicular phase lower plasma levels of tryptophan as well as lower 

urinary kynurenine levels have been observed [184, 185]. ALT exhibits progestomimetic ac-

tions and blocks the menstrual cycle in the follicular phase. Hence, lower levels of degrada-

tion products of tryptophan in the ALT-treated group can reasonably be explained by ALT’s 

mode of action.  

Decreased levels of progesterone and other sex steroids can be explained by the progesto-

mimetic action of ALT, since it suppresses the secretion of the gonadotropins FSH and LH 

from the anterior pituitary via a negative feedback mechanism and thus inhibits the sex ster-

oid biosynthesis [51-53]. Furthermore, the samples were taken at the end of the ALT-

treatment, when luteolysis is progressed and endogenous progesterone levels are at their 

lowest levels [24].  

These results illustrate the exceptional potential of non-targeted LC-HRMS analyses, since 

they render valuable information for metabolite and biomarker discovery. One major ad-
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vantage of the described approach is that real world samples could be used which were tak-

en non-invasively and under realistic conditions for ALT application. Thus, metabolomics 

can be a powerful tool in the context of the principle of the 3Rs (Replacement, Reduction and 

Refinement) for an ethical use of animal testing. The comprehensive analysis of metabolites 

may partly replace more invasive animal testing by giving insights in changes of the metabo-

lome of the animal. 

In conclusion, the non-targeted analysis of real world urine samples showed a clear separa-

tion of ALT-treated gilts and control animals. ALT glucuronides and their in-source frag-

mentation products were in the top 25 significant hits in order to distinguish the two test 

groups. Furthermore, a hydroxylated ALT glucuronide could be identified at level 3 via its 

product ion scan. In the control group, several mass spectrometric hits were significantly 

increased. Database and mass spectrometric library hits suggested that isoflavonoid deriva-

tives and stilbene derivatives were increased in the control group. This may imply that the 

metabolism of nutrients, i.e., phytoestrogens, is altered under ALT treatment. However, fur-

ther studies are needed to support this hypothesis. Pathway analysis showed differences in 

tryptophan degradation and C21-steroid biosynthesis. These changes can be explained by 

the mechanism of action of the hormonally active substance ALT. 
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Figure 52. C21-steroid biosynthesis with assigned mass spectrometric hits based on database hits; trian-

gle indicates significant decrease, square indicates hits without significant increase or decrease, 𝒑-adj.: 

multiple test corrected p-value based on the Benjamini Hochberg false discovery rate. 
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Figure 53. Tryptophan degradation with assigned mass spectrometric hits based on database hits; triangle indicates significant decrease or increase, 

square indicates hits without significant increase or decrease, 𝒑-adj.: multiple test corrected 𝒑-value based on the Benjamini Hochberg false discovery 

rate. 
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Table S1. Overview of cited residue studies for ALT in gilts in the course of the European and 

American drug administration.  

Study (dosing) Withdrawal 

(days) 

Analyte Liver   

(ppb) 

Kidney 

(ppb) 

Muscle 

(ppb) 

Fat 

(ppb) 

A (20 mg/d 18 days) 

[64]  

  

  

  

0 (6 hours) Total residue 

concentration of 

radio-labeled 

ALT 

 

 

 

476 210 <2 <2 

5 105 23 <2 <2 

10 n.a. n.a. <2 <2 

15 54 <15 <2 <2 

30 <30 <15 <2 <2 

60 <30 <15 <2 <2 

179 <30 <15 <2 <2 

B (20 mg/d 18 days) 

[65] 

  

15 Total residue 

concentration of 

radio-labeled 

ALT 

60.3 15.7 5.2 2.5 

30 26.1 5.7 1.8 1.4 

60 15.6 1.9 <1 <1 

179 10.1 <1 <1 <1 

C (20 mg/d 18 days) 0 (4.5hours) ALT 196 11.6 6.7 58.7 

[28] 7   0.74 0.26 n.a. n.a. 

  15   0.25 n.a. n.a. n.a. 

D (20 mg/d 18 days) 

[28] 

0 (4.5 hours) Total residue 

concentration of 

radio-labeled 

ALT 

1444 372 30 91 

7 122 75 7 4 

15 62 12 4 2 

E (20 mg/d 18 days) 1 ALT 85.37 9.16 4.7 55.27 

[28] 7   < 1.25 < 1.25 < 1.25 < 1.25 

 14   < 1.25 < 1.25 < 1.25 < 1.25 

  21   < 1.25 < 1.25 < 1.25 < 1.25 

F (20 mg/d 18 days) 7 ALT 1.045–2.519 n.a. n.a. n.a. 

[28] 14   0.639–1.471 n.a. n.a. n.a. 

  21   < 0.229 n.a. n.a. n.a. 

G (20 mg/d 7 days) 

[65]  

1 Total residue 

concentration of 

radio-labeled 

ALT  

  

  

  

432 122 11 33 

2 172 96 20 14 

3 190 77 10 6 

  5 105 39 8 6 

  7 46 24 4 <LOD 

  10 48 22 3 <LOD 

 15 36 12 4 <LOD 

H (20 mg/d 18 days) 0 (6 hours) ALT 241 41 41 137 

[68] 1  73 20 6 34 

 5  3 <LOD <LOD <LOD 

 10  <LOD <LOD <LOD <LOD 

 20  <LOD <LOD <LOD <LOD 

LOD: limit of detection; n.a.: not available. 
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Table S2. Analyte spectrum detected in the positive porcine samples used for PCA, multiple find-

ings of analytes per sample listed. 

 Muscle samples  Kidney samples 

Substance group 

> MRL > MRL, 

< 𝐶𝐶𝛼 

< MRLa  > MRL > MRL,  

< 𝐶𝐶𝛼 

< MRLa 

Aminoglycosides        

Dihydrostreptomycin     2   

Spectinomycin       1 

β-lactam antibiotics        

Ampicillin     2    1   

Benzylpenicillin 1  2  2   

Macrolides        

Tilmicosin 1    1   

Tulathromycin 1      1 

Quinolones        

Marbofloxacin 1    1   

Sulfonamides/ 

Diaminopyrimidines 

       

Sulfamethazine 3    1  2 

Trimethoprim 2  1    2 

Tetracyclines        

Chlortetracycline 2  1  1  2 

Doxycycline 5  2  3  3 

Oxytetracycline 5 1   6   

Tetracycline   1     
MRL: maximum residue limit, 𝐶𝐶𝛼: decision limit at and above which it can be concluded with an error probability of 𝛼 

(𝛼 = 0.05) that MRL is exceeded, asamples with findings below MRL in muscle samples were considered as positive samples 

(drug-treated, infected animals), since MRL was exceeded in kidney samples of the respective animals or vice versa. 
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Table S3. Analyte spectrum detected in the positive bovine samples used for PCA, multiple find-

ings of analytes per sample listed. 

 Muscle samples  Kidney samples 

Substance group 

> MRL > MRL, 

< 𝐶𝐶𝛼 

< MRLa  > MRL > MRL,  

< 𝐶𝐶𝛼 

< MRLa 

Aminoglycosides        

Dihydrostreptomycin       1 

Kanamycin       1 

β-lactam antibiotics        

Amoxicillin     1  1  2   

Benzylpenicillin   8  8   

Corticosteroids        

Dexamethasone 2  2  4   

Macrolides        

Tulathromycin 1    1   

Tetracyclines        

Oxytetracycline 1     1  

Tetracycline 2      1 

Quinolones        

Sum of enrofloxacin / 

ciprofloxacin 

  1  1   

Marbofloxacin   1  1   
MRL: maximum residue limit, 𝐶𝐶𝛼: decision limit at and above which it can be concluded with an error probability of 𝛼 

(𝛼 = 0.05) that MRL is exceeded, asamples with findings below MRL in muscle samples were considered as positive samples 

(drug-treated animals), since MRL was exceeded in kidney samples of the respective animals or vice versa. 
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Table S4. Spiking level of QC samples for muscle and kidney samples. 

Analyte Muscle samples 

(µg/kg) 

Kidney samples 

(µg/kg) 

Cephalosporins    

Cefalexin 200 1000 

Cefapirin 50 100 

Ceftiofur 1000 6000 

Cefquinome 50 200 

Desacetylcefapirin 50 100 

Desfuroylceftiofur 1000 6000 

Coccidiostats 

Halofuginone 10 30 

Corticosteroids 

Betamethasone 0.75 0.75 

methylprednisolone 10 10 

Prednisolone 4 4 

Diaminopyrimidines 

Trimethoprim 100 100 

Lincosamides 

Lincomycin 100 1500 

Pirlimycin 100 400 

Macrolides 

3-O-Acetyltylosina 50 50 

Azithromycin 20 20 

Erythromycin 200 200 

Gamithromycin 100 100 

Josamycin 20 20 

Oleandomycin 20 20 

Spiramycin 200 600 

Tildipirosin 1200 10 000 

Tilmicosin 50 1000 

Tulathromycin 600 6000 

Tylosin 100 100 

Tylvalosin 50 50 

Pleuromutilins 

8-α-Hydroxymutilinb 100 100 

Tiamulin 100 100 

Valnemulin 50 100 

Quinolones 

Ciprofloxacin 100 200 

Danofloxacin 200 400 

Difloxacin 400 800 

Enrofloxacin 100 200 

Flumequine 200 1500 

Marbofloxacin 150 150 

Nalidixic acid 40 40 

Oxolinic acid 100 150 
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Analyte Muscle samples 

(µg/kg) 

Kidney samples 

(µg/kg) 

Sarafloxacin 20 20 

Sulfonamides 

Dapsone 20 20 

Sulfachlorpyrazine 100 100 

Sulfachlorpyridazine 100 100 

Sulfadiazine 100 100 

Sulfadimethoxine 100 100 

Sulfadoxine 100 100 

Sulfamerazine 100 100 

Sulfamethazine 100 100 

Sulfamethoxazole 100 100 

Sulfamethoxypyridazine 100 100 

Sulfanilamide 100 100 

Sulfaquinoxaline 100 100 

Sulfathiazole 100 100 

Tetracyclines 

Chlortetracycline 100 600 

Doxycycline 100 600 

Oxytetracycline 100 600 

Tetracycline 100 600 

β-lactam antibiotics 

Ampicillin 50 50 

Benzylpenicillin 50 50 

Cloxacillin 300 300 

Dicloxacillin 300 300 

Nafcillin 300 300 

Oxacillin 300 300 

Phenoxymethylpenicillin 25 25 

internal standards 

Amoxicillin-d4 100 100 

Benzylpenicillin-d7 100 100 

Demeclocycline 100 100 

Enrofloxacin-d5 100 100 

Oxolinic acid-d5 100 100 

Roxithromycin 100 100 

Sarafloxacin-d8 100 100 

Sulfadimethoxine-d6 100 100 

Sulfadoxine-d3 100 100 
a: marker residue for tylvalosin, b: marker residue for tiamulin. 
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Table S5. Parameters used for data processing in MZmine 2 for muscle samples. 

Parameters Q-Orbitrap Focus Q-TOF X500R 

Crop filtering   

  Time (min) 0.5–12.5 0.5–12.5 

  MS Level 1 1 

  Spectrum type Centroid Centroid 

  m/z range 75-1055 75-1055 

Mass detection   

  MS Level 1 1 

  Polarity Positive Positive 

  Noise level 1.0 x 105 1.0 x 103 

Chromatogram builder   

  Minimum time span (min) 0.05–1.5 0.05–1.5 

  Minimum height 5.0 x 105 5.0 x 103 

  m/z tolerance (Da or ppm) 0.002 or 5 0.01 or 25 

Smoothing 15 15 

Chromatogram deconvolution (Noise amplitude algorithm) 

  Minimum peak height 5.0 x 105 5.0 x 103 

  Peak duration range (min) 0.05–1.5 0.05–1.5 

  Amplitude of noise  1.0 x 105 1.0 x 103 

Isotope filtering   

  m/z tolerance (Da or ppm) 0.002 or 5 0.01 or 25 

  Retention time tolerance (min) 0.01 0.01 

  Monotonic shape  Yes Yes 

  Maximum charge 3 3 

  Representative isotope Lowest m/z Lowest m/z 

Alignment (join aligner)   

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Weight for m/z (%) 10 10 

  Retention time tolerance (min) 0.2 0.2 

  Weight for RT (%) 10 10 

  Require same charge state Yes Yes 

  Compare isotope pattern 

    Isotope m/z tolerance (Da or ppm) 

    Minimum absolute intensity 

    Minimum score (%) 

Yes 

0.005 or 10 

5.0 x 103 

65 

Yes 

0.02 or 50 

5.0 x 102 

65 

Gap filling (Peak finder algorithm) 

  Intensity tolerance (%) 20 20 

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Retention time tolerance (min) 0.05 0.05 

  Retention time correction Yes Yes 

Duplicate filtering   

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Retention time tolerance (min) 0.2 0.2 

Row filtering   

  Minimum peaks in a row 5 5 

Post-processing   

  Background correction > 1.0 x 107 > 1.0 x 106 
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Table S6. Parameters used for data processing in MZmine 2 for kidney samples. 

Parameters Q-Orbitrap Focus Q-TOF X500R 

Crop filtering   

  Time (min) 0.5–12.5 0.5–12.5 

  MS Level 1 1 

  Spectrum type Centroid Centroid 

  m/z range 75–1055 75–1055 

Mass detection   

  MS Level 1 1 

  Polarity Positive Positive 

  Noise level 1.0 x 105 1.0 x 103 

Chromatogram builder   

  Minimum time span (min) 0.05–1.5 0.05–1.5 

  Minimum height 3.0 x 105 5.0 x 103 

  m/z tolerance (Da or ppm) 0.002 or 5 0.01 or 25 

Smoothing 15 15 

Chromatogram deconvolution (Noise amplitude algorithm) 

  Minimum peak height 3.0 x 105 5.0 x 103 

  Peak duration range (min) 0.05–1.5 0.05–1.5 

  Amplitude of noise  1.0 x 105 1.0 x 103 

Isotope filtering   

  m/z tolerance (Da or ppm) 0.002 or 5 0.01 or 25 

  Retention time tolerance (min) 0.01 0.01 

  Monotonic shape  Yes Yes 

  Maximum charge 3 3 

  Representative isotope Lowest m/z Lowest m/z 

Alignment (join aligner)   

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Weight for m/z (%) 10 10 

  Retention time tolerance (min) 0.2 0.2 

  Weight for RT (%) 10 10 

  Require same charge state Yes Yes 

  Compare isotope pattern 

    Isotope m/z tolerance (Da or ppm) 

    Minimum absolute intensity 

    Minimum score (%) 

Yes 

0.005 or 10 

5.0 x 103 

65 

Yes 

0.02 or 50 

5.0 x 102 

65 

Gap filling (Peak finder algorithm) 

  Intensity tolerance (%) 20 20 

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Retention time tolerance (min) 0.05 0.05 

  Retention time correction Yes Yes 

Duplicate filtering   

  m/z tolerance (Da or ppm) 0.005 or 10 0.02 or 50 

  Retention time tolerance (min) 0.2 0.2 

Row filtering   

  Minimum peaks in a row 5 5 

Post-processing   

  Background correction > 1.0 x 107 > 1.0 x 106 
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Table S7. Comparison of Q-Orbitrap and Q-TOF data regarding significant analytes (m/z at reten-

tion time in min) responsible for the difference between positive and control porcine muscle sam-

ples, 20 out of the top 25 Q-Orbitrap hits were found in Q-TOF data; positive fold changes indicate 

higher levels in positive samples compared to control samples. 

Q-Orbitrap data  Q-TOF data 

m/z (@min) 𝑝-adj. FC  m/z (@min) 𝑝-adj. FC 

393.2239 (@8.55) 5.8 x 10-15 76.7  393.226 (@8.35) 6.0 x 10-17 23.3 

320.1599 (@2.09) 2.1 x 10-14 3.7  320.161 (@1.99) 1.1 x 10-14 3.0 

375.2133 (@8.93) 2.7 x 10-14 62.3  375.211(@8.90) 4.6 x 10-9 6.1 

570.3394 (@6.75) 4.0 x 10-14 37.5  570.342(@6.52) 3.4 x 10-17 21.6 

348.2737 (@8.81) 4.0 x 10-14 12.0  348.275 (@8.64) 1.5 x 10-15 7.5 

404.2637 (@7.10) 5.2 x 10-14 68.1  n.d.   

386.2529 (@8.23) 1.4 x 10-13 76.3  n.d.   

480.1642 (@1.19) 1.4 x 10-13 56.3  480.166 (@1.13) 1.1 x 10-6 36.1 

335.2209 (@8.54) 2.4 x 10-13 97.7  335.222 (@8.34) 3.4 x 10-17 20.4 

552.3286 (@7.64) 2.4 x 10-13 66.6  552.310 (@7.11) 2.5 x 10-15 108.4 

375.2136 (@11.14) 4.9 x 10-13 117.2  375.216 (@10.99) 8.2 x 10-17 101.3 

391.2083 (@8.18) 9.9 x 10-13 17.4  391.213 (@8.08) 8.6 x 10-15 28.9 

372.2738 (@9.64) 2.2 x 10-12 41.6  n.d.   

534.3184 (@10.20) 2.2 x 10-12 109.9  534.321 (@9.98) 2.0 x 10-15 31.4 

506.1800 (@3.94) 2.2 x 10-12 36.5  506.182 (@3.71) 1.6 x 10-12 12.9 

388.2686 (@8.19) 2.5 x 10-12 163.6  n.d.   

173.117 (@8.87) 2.7 x 10-12 22.1  173.118 (@8.65) 2.9 x 10-12 10.8 

170.081 (@1.57) 2.9 x 10-12 14.4  n.d.   

204.1050 (@4.95) 2.9 x 10-12 13.1  204.105 (@4.81) 2.8 x 10-13 12.3 

536.3337 (@9.99) 5.0 x 10-12 58.2  536.336 (@9.65) 4.9 x 10-10 47.7 

301.2157 (@9.63) 5.0 x 10-12 61.8  301.216 (@9.45) 3.4 x 10-17 60.0 

552.3288 (@8.87) 1.4 x 10-11 404.8  552.329 (@8.57) 3.5 x 10-16 434.7 

394.2275 (@8.55) 2.0 x 10-11 6.8  394.226 (@8.21) 2.2 x 10-9 2.5 

1004.4665 (@6.13) 2.2 x 10-11 0.3  1004.471 (@5.95) 3.1 x 10-9 0.2 

335.2209 (@9.69) 3.9 x 10-11 21.6  335.222 (@9.54) 3.4 x 10-17 4.0 

FC: fold change, 𝑝-adj.: multiple test corrected 𝑝-value based on the Benjamini Hochberg false discovery rate, n.d.: not detected. 
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Table S8. Mean peak areas of spiked analytes at MRL level with relative standard deviation (RSD) 

in bovine muscle QC samples before and after normalization by sum of all peaks (𝒏 = 4). 

Analyte Q-Orbitrap  Q-TOF 

 Mean RSD be-

fore norm. 

RSD after 

norm.  

 Mean RSD be-

fore norm. 

RSD after 

norm.  

 (a.u. x 107) (%) (%)  (a.u. x 104) (%) (%) 

Cephalosporins      

Cefalexin 1.56 29.58 9.45 
 

15.48 10.10 4.93 

Cefapirin 0.35 46.23 17.01 
 

9.51 8.97 6.35 

Ceftiofur 9.84 33.66 15.18 
 

15.27 23.18 8.58 

Cefquinome 1.47 33.69 15.83 
 

2.10 23.39 10.80 

Desacetylcefapirin 0.65 33.30 15.97 
 

7.96 13.15 3.60 

Desfuroylceftiofur 0.34 47.72 31.01 
 

17.47 33.74 19.36 

Coccidiostats       

Halofuginone n.d.    n.d.   

Corticosteroids       

Betamethasone 0.32 14.42 20.08 
 

n.d. 
 

 

Methylprednisolone n.d. 
   

n.d. 
 

 

Prednisolone n.d. 
   

n.d. 
 

 

Diaminopyrimidines       

Trimethoprim 12.22 33.17 18.94 
 

34.95 22.79 7.99 

Lincosamides     
  

Lincomycin 8.07 39.48 10.29 
 

72.35 17.44 3.30 

Pirlimycin 5.62 25.47 17.48 
 

59.68 19.23 4.94 

Macrolides      
  

3-O-Acetyltylosina 1.63 27.54 15.61 
 

24.31 30.90 16.15 

Azithromycin n.d. 
   

12.06 29.98 15.67 

Erythromycin 0.05 13.40 26.24 
 

12.90 38.95 28.09 

Gamithromycin 2.91 54.10 24.50 
 

41.92 36.57 21.29 

Josamycin 1.93 21.30 19.42 
 

34.60 27.08 12.45 

Oleandomycin 0.91 26.96 31.74 
 

11.69 28.12 14.72 

Spiramycin 3.96 18.26 19.74 
 

40.03 31.48 16.34 

Tildipirosin 28.74 32.93 9.92 
 

274.03 14.30 6.48 

Tilmicosin 2.54 25.38 30.64 
 

17.86 40.84 25.51 

Tulathromycin 7.12 21.96 15.95 
 

94.44 19.33 5.91 

Tylosin 6.31 30.78 11.86 
 

89.98 30.11 15.12 

Tylvalosin 2.21 24.05 21.58 
 

38.81 26.42 12.31 

Pleuromutilins     
  

8-α-Hydroxymutilinb n.d. 
   

n.d. 
  

Tiamulin 18.23 27.23 11.86 
 

18.89 23.13 8.59 

Valnemulin 5.56 29.33 7.98 
 

n.d. 
  

Quinolones 
       

Ciprofloxacin 3.35 34.12 20.59 
 

27.06 18.55 6.06 

Danofloxacin 15.69 42.58 19.31 
 

59.27 16.17 7.83 

Difloxacin 33.15 49.66 20.02 
 

156.06 17.32 2.50 

Enrofloxacin 7.50 25.71 10.90 
 

34.75 23.69 9.57 

Flumequine n.d. 
   

43.42 22.52 7.97 
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Analyte Q-Orbitrap  Q-TOF 

 Mean RSD be-

fore norm. 

RSD after 

norm.  

 Mean RSD be-

fore norm. 

RSD after 

norm.  

 (a.u. x 107) (%) (%)  (a.u. x 104) (%) (%) 

Marbofloxacin 8.24 49.99 21.22 
 

51.86 13.49 2.64 

Nalidixic Acid 9.59 27.51 4.81 
 

9.87 35.65 22.43 

Oxolinic Acid 10.77 51.14 23.65 
 

20.20 30.12 15.36 

Sarafloxacin 0.32 55.06 33.10 
 

4.77 30.75 18.17 

Sulfonamides     
  

Dapsone 0.11 56.12 29.48 
 

n.d. 
  

Sulfachlorpyrazine n.d. 
   

4.28 26.42 12.00 

Sulfachlorpyridazine 1.17 36.27 9.53 
 

4.58 21.42 7.79 

Sulfadiazine 1.03 44.12 14.31 
 

5.38 16.73 3.55 

Sulfadimethoxine 7.62 45.46 21.74 
 

18.19 24.81 12.12 

Sulfadoxine 4.85 31.24 8.07 
 

16.53 27.95 14.61 

Sulfamerazine 2.30 22.96 12.31 
 

13.31 19.55 7.11 

Sulfamethazine 5.89 43.52 27.76 
 

18.28 27.34 14.73 

Sulfamethoxazole 1.23 12.00 44.38 
 

8.11 25.58 10.97 

Sulfamethoxypyridazine 3.14 46.00 21.73 
 

11.51 22.64 9.46 

Sulfanilamide n.d. 
   

n.d. 
  

Sulfaquinoxaline 2.71 40.79 17.21 
 

8.51 22.27 8.78 

Sulfathiazole 0.70 50.03 21.28 
 

5.48 10.22 5.56 

Tetracyclines     
  

Chlortetracycline 0.84 36.45 20.77 
 

13.90 21.95 7.82 

Doxycycline 1.72 18.23 18.81 
 

20.98 30.58 16.39 

Oxytetracycline 0.99 46.83 17.05 
 

22.83 14.71 1.27 

Tetracycline 1.99 43.16 43.36 
 

22.60 21.14 7.24 

β-Lactam antibiotics     
  

Ampicillin 0.82 40.44 15.47 
 

12.70 10.31 6.00 

Benzylpenicillin n.d. 
   

n.d. 
  

Cloxacillin 0.13 19.20 43.58 
 

30.89 21.02 6.45 

Dicloxacillin n.d. 
   

17.08 25.02 11.18 

Nafcillin 3.57 34.41 16.59 
 

30.34 33.12 18.63 

Oxacillin 0.15 40.17 21.99 
 

37.27 20.48 6.16 

Phenoxymethylpenicillin n.d. 
   

n.d. 
  

Internal standards     
  

Amoxicillin-d4 n.d. 
   

n.d. 
  

Benzylpenicillin-d7 5.62 35.09 29.24 
 

n.d. 
  

Demeclocycline 0.90 58.65 28.66 
 

12.03 21.80 7.05 

Enrofloxacin-d5 7.10 28.23 20.10 
 

29.79 18.69 7.52 

Oxolinic Acid-d5 13.29 35.26 8.99 
 

25.41 27.19 12.86 

Roxithromycin 6.59 25.94 16.08 
 

11.56 10.42 16.45 

Sarafloxacin-d8 1.05 25.14 17.37 
 

26.80 21.77 6.79 

Sulfadimethoxine-d6 5.62 38.04 15.26 
 

19.47 25.64 12.29 

Sulfadoxine-d3 5.71 30.00 5.60 
 

20.12 29.46 15.31 

n.d.: not detected; a: marker residue for tylvalosin, b: marker residue for tiamulin 
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Table S9. Mean peak areas of spiked analytes at MRL level with measurement uncertainty (MU) 

and relative standard deviation (RSD) in porcine kidney QC samples (𝒏 = 8).  

Analyte Q-Orbitrap 
 

Q-TOF 

 
Mean MU RSD  

 
Mean MU RSD  

 
(a.u. x 107) (a.u. x 107) (%) 

 
(a.u. x 105) (a.u. x 105) (%) 

Cephalosporins 
     

Cefalexin 17.56 1.57 10.97 
 

2.97 0.32 13.31 

Cefapirin 1.68 0.09 6.34 
 

0.92 0.08 11.09 

Ceftiofur 219.35 17.34 9.70 
 

65.05 7.03 13.25 

Cefquinome 0.66 0.09 16.82 
 

0.33 0.02 8.24 

Desacetylcefapirin 1.50 0.25 20.29 
 

0.64 0.08 14.91 

Desfuroylceftiofur 5.58 1.15 25.35 
 

6.74 0.85 15.49 

Coccidiostats 
      

Halofuginone 0.30 0.03 12.57 
 

n.d. 
  

Corticosteroids 
      

Betamethasone n.d. 
   

n.d. 
  

Methylprednisolone n.d. 
   

n.d. 
  

Prednisolone n.d. 
   

1.61 0.23 17.61 

Diaminopyrimidines 
      

Trimethoprim 16.34 1.15 8.61 
 

1.94 0.37 23.59 

Lincosamides 
      

Lincomycin 81.18 26.43 39.94 
 

39.25 3.07 9.59 

Pirlimycin 22.11 2.10 11.65 
 

n.d. 
  

Macrolides 
       

3-O-Acetyltylosina 1.37 0.1 8.70 
 

2.02 0.39 23.39 

Azithromycin 1.70 0.18 13.28 
 

0.68 0.20 35.35 

Erythromycin 1.50 0.79 64.50 
 

0.63 0.22 42.59 

Gamithromycin 2.55 0.28 15.12 
 

n.d. 
  

Josamycin 1.90 0.13 8.62 
 

3.25 0.56 21.27 

Oleandomycin n.d. 
   

0.30 0.14 55.59 

Spiramycin 5.93 0.47 9.72 
 

5.70 1.25 26.87 

Tildipirosin 105.12 6.23 7.27 
 

87.01 8.23 11.60 

Tilmicosin 64.84 2.03 3.84 
 

42.38 10.54 30.50 

Tulathromycin 46.07 2.47 6.59 
 

0.83 0.20 29.87 

Tylosin n.d. 
   

8.75 1.72 24.07 

Tylvalosin 1.58 0.12 9.10 
 

3.27 0.49 18.47 

Pleuromutilins 
      

8-α-Hydroxymutilinb n.d. 
   

n.d. 
  

Tiamulin 25.92 1.21 5.73 
 

17.38 3.13 22.07 

Valnemulin 6.27 0.40 7.78 
 

8.03 1.46 22.27 

Quinolones 
       

Ciprofloxacin 10.81 0.59 6.67 
 

n.d. 
  

Danofloxacin 41.42 2.99 8.87 
 

9.46 1.31 16.99 

Difloxacin 71.33 8.20 14.09 
 

19.47 3.19 20.11 

Enrofloxacin 21.47 0.97 5.56 
 

5.58 0.86 18.99 

Flumequine 303.39 13.94 5.64 
 

29.26 4.48 18.80 

Marbofloxacin 11.32 2.19 23.71 
 

3.42 0.46 16.49 
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Analyte Q-Orbitrap 
 

Q-TOF 

 
Mean MU RSD  

 
Mean MU RSD  

 
(a.u. x 107) (a.u. x 107) (%) 

 
(a.u. x 105) (a.u. x 105) (%) 

Nalidixic Acid 18.57 0.88 5.81 
 

1.50 0.26 20.99 

Oxolinic Acid 64.88 7.04 13.31 
 

2.67 0.61 27.97 

Sarafloxacin 0.79 0.16 24.10 
 

0.29 0.04 15.55 

Sulfonamides 
      

Dapsone n.d. 
   

n.d. 
  

Sulfachlorpyrazine n.d. 
   

0.44 0.10 27.68 

Sulfachlorpyridazine 1.14 0.34 36.07 
 

n.d. 
  

Sulfadiazine 1.92 0.23 14.64 
 

0.39 0.06 19.21 

Sulfadimethoxine 13.04 1.09 10.25 
 

2.07 0.45 26.82 

Sulfadoxine 10.54 0.68 7.97 
 

1.41 0.29 25.18 

Sulfamerazine 4.36 0.45 12.61 
 

0.51 0.09 21.82 

Sulfamethazine 8.29 0.65 9.60 
 

1.21 0.19 19.45 

Sulfamethoxazole 2.28 0.53 28.50 
 

0.61 0.15 29.84 

Sulfamethoxypyridazine 3.66 0.50 16.79 
 

0.58 0.14 30.20 

Sulfanilamide n.d. 
 

  
 

0.11 0.02 23.24 

Sulfaquinoxaline 7.29 1.03 17.32 
 

1.05 0.20 23.93 

Sulfathiazole 1.38 0.29 25.31 
 

n.d. 
  

Tetracyclines 
      

Chlortetracycline 10.57 2.48 28.79 
 

5.10 0.99 23.78 

Doxycycline 22.01 1.19 6.61 
 

13.82 2.13 18.89 

Oxytetracycline 14.38 2.22 18.95 
 

7.46 0.86 14.20 

Tetracycline 13.59 1.04 9.40 
 

0.17 0.05 37.09 

β-Lactam antibiotics 
      

Ampicillin 1.23 0.16 16.18 
 

0.73 0.08 12.88 

Benzylpenicillin n.d. 
   

0.08 0.04 59.37 

Cloxacillin n.d. 
   

3.17 0.44 16.87 

Dicloxacillin n.d. 
   

2.23 0.23 12.78 

Nafcillin 9.37 1.06 13.84 
 

2.56 0.67 31.98 

Oxacillin n.d. 
   

3.89 0.59 18.60 

Phenoxymethylpenicillin n.d. 
   

0.06 0.02 45.24 

Internal standards 
      

Amoxicillin-d4 0.32 0.04 15.89 
 

2.23 0.44 24.00 

Benzylpenicillin-d7 0.29 0.11 48.29 
 

1.71 0.34 24.74 

Demeclocycline 1.41 0.12 10.71 
 

2.31 0.49 26.04 

Enrofloxacin-d5 8.70 0.37 5.22 
 

0.15 0.06 46.38 

Oxolinic Acid-d5 42.02 3.75 10.96 
 

2.54 0.43 20.55 

Roxithromycin 9.27 0.52 6.87 
 

0.24 0.05 23.59 

Sarafloxacin-d8 4.89 0.24 5.93 
 

3.42 0.68 24.44 

Sulfadimethoxine-d6 1.35 0.19 17.12 
 

0.95 0.11 14.49 

Sulfadoxine-d3 13.41 0.65 5.96 
 

10.70 1.64 18.75 

n.d.: not detected; a: marker residue for tylvalosin, b: marker residue for tiamulin 
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Table S10. Mean peak areas of spiked analytes at MRL level in bovine kidney QC samples. For Q-

Orbitrap data with measurement uncertainty (MU) and relative standard deviation (RSD) are given 

and for Q-TOF data RSD before and after normalization by sum of all peaks are given (𝒏 = 4). 

Analyte Q-Orbitrap 
 

Q-TOF 

 
Mean MU RSD 

 
Mean 

RSD be-

fore norm. 

RSD after 

norm. 

 
(a.u. x 107) (a.u. x 107) (%) 

 
(a.u. x 105) (%) (%) 

Cephalosporins 
     

Cefalexin 27.42 4.07 8.07 
 

33.28 31.70 6.42 

Cefapirin 1.66 0.08 2.65 
 

6.14 25.62 12.57 

Ceftiofur 8.83 0.58 3.55 
 

32.86 35.88 5.11 

Cefquinome 0.89 0.13 7.70 
 

2.34 8.76 34.32 

Desacetylcefapirin 2.02 0.47 12.54 
 

6.32 21.79 16.88 

Desfuroylceftiofur 24.50 6.18 13.73 
 

99.18 45.20 6.47 

Coccidiostats 
      

Halofuginone 0.32 0.09 14.99 
 

0.82 41.36 11.50 

Corticosteroids 
      

Betamethasone n.d. 
   

n.d. 
  

Methylprednisolone n.d. 
   

0.72 46.39 7.95 

Prednisolone 0.19 0.10 28.04 
 

5.65 17.62 18.87 

Diaminopyrimidines 
      

Trimethoprim 17.32 1.56 4.90 
 

13.45 22.52 15.35 

Lincosamides 
      

Lincomycin 106.44 7.04 3.60 
 

n.d. 
  

Pirlimycin 28.23 0.24 0.47 
 

77.36 36.04 7.33 

Macrolides 
       

3-O-Acetyltylosina 1.48 0.11 4.08 
 

0.54 61.51 27.33 

Azithromycin 2.00 0.63 17.07 
 

2.17 40.76 6.42 

Erythromycin 0.34 0.09 14.95 
 

4.13 44.90 7.72 

Gamithromycin 2.56 0.17 3.60 
 

9.03 54.93 15.62 

Josamycin 2.33 0.06 1.40 
 

14.90 35.43 4.15 

Oleandomycin 0.61 0.18 16.19 
 

2.11 57.60 17.95 

Spiramycin 3.53 0.65 10.03 
 

14.58 60.87 21.62 

Tildipirosin 1.53 0.35 7.42 
 

536.99 31.17 6.96 

Tilmicosin 61.95 1.35 1.19 
 

144.47 62.05 22.12 

Tulathromycin 56.00 5.25 5.10 
 

2.54 42.59 7.67 

Tylosin 7.44 0.25 1.83 
 

31.72 41.46 3.41 

Tylvalosin 2.01 0.23 6.32 
 

17.19 37.57 11.79 

Pleuromutilins 
      

8-α-Hydroxymutilinb n.d. 
   

n.d. 
  

Tiamulin 28.63 1.98 3.76 
 

82.89 34.18 4.34 

Valnemulin 6.16 0.62 5.47 
 

34.18 35.18 4.22 

Quinolones 
       

Ciprofloxacin 11.55 1.82 8.57 
 

14.57 36.09 6.07 

Danofloxacin 38.22 6.58 9.36 
 

53.52 27.55 10.55 

Difloxacin 90.58 4.67 2.80 
 

87.27 31.44 8.46 

Enrofloxacin 17.53 2.64 8.20 
 

23.84 29.44 8.12 
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Analyte Q-Orbitrap 
 

Q-TOF 

 
Mean MU RSD 

 
Mean 

RSD be-

fore norm. 

RSD after 

norm. 

 
(a.u. x 107) (a.u. x 107) (%) 

 
(a.u. x 105) (%) (%) 

Flumequine 293.87 3.07 0.57 
 

146.56 25.67 10.71 

Marbofloxacin 11.72 1.51 7.00 
 

20.44 26.02 11.88 

Nalidixic Acid 20.56 1.47 3.90 
 

7.45 27.36 11.30 

Oxolinic Acid 36.80 0.99 1.46 
 

12.94 26.76 13.40 

Sarafloxacin 1.02 0.31 16.80 
 

2.02 29.00 13.47 

Sulfonamides 
      

Dapsone 0.38 0.07 9.79 
 

0.16 32.00 36.37 

Sulfachlorpyrazine 0.13 0.04 18.24 
 

2.03 15.94 19.94 

Sulfachlorpyridazine 1.01 0.53 28.70 
 

0.86 36.79 12.98 

Sulfadiazine 2.63 0.22 4.48 
 

3.10 31.04 21.61 

Sulfadimethoxine 12.16 0.83 3.73 
 

8.72 33.54 3.95 

Sulfadoxine 10.23 1.49 7.95 
 

5.44 26.27 12.02 

Sulfamerazine 5.57 0.12 1.21 
 

3.88 32.68 11.22 

Sulfamethazine 8.67 1.19 7.49 
 

4.76 38.19 7.20 

Sulfamethoxazole 2.48 0.23 5.03 
 

2.69 20.92 20.35 

Sulfamethoxypyridazine 5.17 0.12 1.28 
 

2.72 26.47 15.36 

Sulfanilamide n.d. 
   

0.70 51.47 22.32 

Sulfaquinoxaline 4.00 0.35 4.74 
 

3.25 34.73 15.33 

Sulfathiazole 1.97 0.22 6.07 
 

1.70 22.91 18.63 

Tetracyclines 
      

Chlortetracycline 12.44 0.54 2.38 
 

25.05 38.73 4.67 

Doxycycline 23.28 6.18 14.46 
 

50.42 39.05 11.11 

Oxytetracycline 13.93 0.90 3.50 
 

47.01 31.82 5.99 

Tetracycline 15.25 1.84 6.58 
 

30.50 37.27 1.16 

β-Lactam antibiotics 
      

Ampicillin 1.68 0.07 2.25 
 

5.29 23.71 12.97 

Benzylpenicillin n.d. 
   

n.d. 
  

Cloxacillin n.d. 
   

19.31 27.99 10.47 

Dicloxacillin n.d. 
   

11.74 24.72 16.15 

Nafcillin 3.68 1.05 15.54 
 

n.d. 
  

Oxacillin n.d. 
   

23.16 26.16 10.15 

Phenoxymethylpenicillin n.d. 
   

0.66 26.02 10.73 

Internal standards 
      

Amoxicillin-d4 0.18 0.03 9.08 
 

n.d. 
  

Benzylpenicillin-d7 n.d. 
   

1.65 39.14 11.39 

Demeclocycline 1.34 0.54 21.83 
 

3.20 33.05 16.91 

Enrofloxacin-d5 7.31 1.03 7.66 
 

12.25 27.95 9.84 

Oxolinic Acid-d5 29.79 1.75 3.19 
 

11.52 29.72 11.70 

Roxithromycin 9.68 0.51 2.88 
 

56.08 40.21 3.53 

Sarafloxacin-d8 4.45 0.28 3.48 
 

7.39 28.70 15.03 

Sulfadimethoxine-d6 13.85 1.50 5.90 
 

9.44 32.98 4.41 

Sulfadoxine-d3 12.56 1.15 4.96 
 

6.07 34.52 10.64 

n.d.: not detected; a: marker residue for tylvalosin, b: marker residue for tiamulin 
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7 Appendix B: Figures 

 

 
Figure S1. A: nomenclature for fragment ions according to [186, 187]. If the charge is retained on the 

N-terminus one distinguishes a-,b- or c-fragments, whereas x-, y- and z-fragments are observed if 

the charge is retained on the C-terminus. The subscript indicates the number of peptides of the 

fragment [140]. B: immonium ions can be formed by a combination of a type a and type y cleavage. 

They are labeled with the one letter code for the amino acid [140]. C: example for an immonium 

related ion of lysine with m/z 84. D: example for an immonium related ion of lysine with m/z 129.  
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8 Appendix C: Supplementary data 

8.1 Identification of transformation products and metabolites of ALT 

8.1.1 Photo-isomerization products of ALT 

LC-HRMS data acquisition    

In order to identify light-induced elimination products of ALT, a full scan with a resolving 

power of 70,000 (FWHM at m/z of 200) in the range of m/z 50–750 was carried out. Data-

dependent fragmentation was performed with a resolving power of 17,500 (FWHM at m/z of 

200) using a collision energy of 35 eV. Mass tolerance was set to 5 ppm. All other LC-MS/MS 

conditions were identical to the quantitative method (see Section 3.2.2.2). Xcalibur software 

was used for qualitative analysis (Thermo Scientific, Idstein Germany). In order to identify 

photo-products, full MS data was processed using MZmine 2 [120]. Raw files were converted 

to mzXML format, imported into MZmine 2 and chromatograms were crop filtered (1-13 

min). Masses were detected with centroid algorithm at a noise level of 1.0 x 107. Chromato-

gram building was carried out with minimum time span of 0.1 min, minimum height of 

2.0 x 107 and mass accuracy 0.005 Da. Chromatograms were smoothed (filter width 15). For 

peak chromatogram deconvolution Wavelets (XCMS) algorithm was used. Signal to noise 

threshold was set to 20, wavelet scales were set to the range of 0.1–10, 0.05–2.00 time span 

was chosen for peak duration. Peaks were aligned with the RANSAC aligner with 0.01 m/z 

mass accuracy and 0.2 min time tolerance (10% relative retention time tolerance), 100,000 

iterations, number of points was set to 20 and a threshold of 0.1 min was chosen. Gap filling 

was performed with 2% tolerance at 0.01 m/z mass accuracy and 0.1 min (retention time) tol-

erance.  

 

NMR data acquisition   

1H NMR data acquisition was performed by Svenja Wenig (CVUA Karlsruhe). Data evalua-

tion was performed by myself. Text section regarding NMR data acquisition was provided 

by Svenja Wenig. 

1H NMR spectra were acquired using a Bruker Avance III HD Ascend 400 spectrometer 

(BrukerBiospin, Rheinstetten, Germany) equipped with a 5-mm broadband observe (BBO) 

and broadband inverse (BBI) probe with Z-gradient coils, using a Bruker Automatic Sample 

Changer (Sample Xpress). Chemical shifts were reported in ppm in reference to the solvent 
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signal of CD3OD at δ1H 3.35 and δ13C 49.3. Assignments for ALT and the resulting photo-

product were carried out using 1H, 1H JRES,  13C, 13C DEPT90 and 13C DEPT135, 1H-1H COSY, 

1H-13C HSQC, 1H-13C HMBC, and 1H-1H TOCSY spectra.  

1H NMR spectra were acquired at 400.13 MHz using the standard pulse program noe-

sygppr1d (1D NMR spectra) with presaturation of the water signal. 13C NMR experiments as 

well as the 13C distortionless enhancement by polarization transfer (DEPT) experiments were 

performed at 100.6 MHz. The DEPT90 and DEPT135 spectra were acquired using the pulse 

programs dept90 and dept135 with the following parameters: number of scans 2048, 64k 

data points, spectral width 20161.291 Hz, transmitter frequency offset (observe nucleus 13C) 

9055.15 Hz, transmitter frequency offset (second nucleus 1H) 2000.65 Hz. The CH coupling 

constant (CNST2) used was 145 Hz. Two-dimensional 1H-1H COSY (correlation spectrosco-

py) spectra were acquired using the pulse program cosygpmfphpp with the following pa-

rameters: number of scans 64, size of fid 2048 and 256 in f2 and f1, respectively, sweep width 

8802.818 Hz, and transmitter offset frequency 1800.59 Hz. Two-dimensional inverse-detected 

1H-13C heteronuclear correlation (HSQC, heteronuclear single quantum correlation) NMR 

spectra were acquired using the pulse program hsqcedetgpsisp2.3 with the following pa-

rameters: number of scans 64, number of dummy scans 32, size of fid 2048 and 256 in f2 and 

f1 dimensions, respectively, sweep width 4401.409 Hz and 20161.291 Hz in 1H and 13C di-

mensions, respectively, and transmitter offset frequency 1800.59 Hz and 9055.15 Hz in 1H 

and 13C dimensions, respectively. The HMBC (heteronuclear multiple bond correlation) 

NMR spectra were acquired using the pulse program hmbcgplpndqf with the following 

parameters: number of scans 64, number of dummy scans 16, size of fid 2048 and 128 in 1H 

and 13C dimensions, respectively, sweep width 4401.409 Hz and 20161.291 Hz in 1H and 13C 

dimensions, respectively, and transmitter offset frequency 1800.59 Hz and 9055.15 Hz in 1H 

and 13C dimensions, respectively. The 1H-1H TOCSY (total correlation spectroscopy) NMR 

spectra were acquired using the pulse program mlevphpp with the following parameters: 

number of scans 32, number of dummy scans 16, size of fid 2048 and 128 in f2 and f1, respec-

tively, sweep width 8802.818 Hz and 20161.291 Hz and transmitter offset frequency 

1800.59 Hz.  
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Synthesis of the primary photo-isomerization product of ALT  

An aqueous solution of ALT (0.25 ng/mL) was prepared and stored at room temperature 

with light exposure to facilitate the photo-isomerization process (𝑛 = 20). Reaction progress 

was checked via LC-HRMS. After complete photo-isomerization the aqueous solutions were 

extracted with 20 mL MTBE, centrifuged (10 min, ∼2,500 × g) and the supernatants were 

transferred to new reaction tubes. The process was repeated and the extracts combined. The 

extracts were dried in vacuo (120 min, 55 °C, 1 mbar) and reconstituted in 1 mL methanol-d4. 

Identification 

In order to identify the isomerization product observed under light exposure in the stability 

tests, an aqueous solution of ALT was stored at room temperature with light exposure. After 

14 days ALT was almost completely isomerized to its primary photo-isomer. The peak area 

of the photo-isomer was 91% of the sum of peak areas in the extracted ion chromatogram of 

m/z 311.2006 (see Figure S2).  

 

 
Figure S2. Extracted ion chromatogram of ALT (@ 7.69 min) and its primary photo-product (@ 

7.32 min) after storage of ALT solution over 14 days at room temperature with light exposure (m/z 

311.2006 [M+H]+).   

 

In order to identify the primary photo-isomer extensive NMR analysis was performed.   

The two doublets (6.59 ppm, 6.49 ppm; J = 10.08 Hz) of the endocyclic olefin group in ring C 

as well as the singlet (5.79 ppm) of the olefin in ring A and the signals of the vinyl group 

(6.01 ppm (m), 5.14 ppm (d; J = 10.28 Hz), 5.09 ppm (d; J = 17.16 Hz)) were the most charac-

teristic 1H NMR resonances of ALT. The corresponding carbons showed signals with chemi-

cal shifts of 118.6 to 144.0 ppm in the 13C NMR spectrum (see Table S11).   
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However, the 1H NMR spectrum of the photo-isomer only showed a singlet at 5.69 ppm at-

tributable to the olefin group in ring A and new signals in the alkane region (3.60 ppm, 2.77 

ppm, 2.89 ppm, 3.08 ppm and 1.60 ppm, (see  Figure S3). Furthermore, DEPT135 and 

DEPT90 data only showed one signal of a CH carbon in the alkene region at 122.15 ppm (see 

Figure S4 and Table S12). This indicated the loss of the endocyclic olefin and vinyl group, 

resulting from an intramolecular photochemical [2+2] cycloaddition to form a new cyclobu-

tane and cyclopentane ring (see Figure S5). Hereafter, the primary photo-product is referred 

to as ALT cycloaddition product (ALT-CAP) [87]. The phase-sensitive 1H-13C HSQC (hetero-

nuclear single quantum correlation) was used to assign the relationship between the signals 

of CH2/CH/CH3 groups and the signals of their respective protons (see Figure S6). Further-

more, two-dimensional data obtained from 1H-13C HMBC, 1H-1H COSY and 1H-1H TOCSY 

helped to verify the structure of the molecule. 1H-13C HMBC provides information on corre-

lation between protons and carbons separated by two or three bonds [188]. 1H-1H COSY in-

dicates the coupling of two protons within a small number of chemical bonds, whereas 1H-1H 

TOCSY reveals correlations in larger interconnected spin systems [188]. The network of spin 

couplings in the new cyclobutane ring is shown in the 1H-1H TOCSY spectrum (see Figure 

S7). 

All described observations are consistent with the environmental photochemistry of ALT 

already described in the literature [87]. 

 

 
Figure S3. 1H-NMR spectrum of ALT (blue) and mixture of ALT photo-products (red) in methanol-

d4. 
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Figure S4. DEPT135 spectrum of ALT (blue) and mixture of ALT photo-products (red) in methanol-

d4. 

 

Figure S5. Proposed pathway of the photo-isomerization of ALT via [2+2] cycloaddition to form the 

primary photo-product ALT-CAP (modified from [87]); green shaded bonds belong to a network of 

spin couplings according to 1H-1H TOCSY data.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. 1H-13C HSQC spectrum of altrenogest primary photo-product ALT-CAP in methanol-

d4 with structural assignments according to Figure S5; section from 0.5 ppm to 4.0 ppm. 
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Figure S7. 1H-1H TOCSY spectrum of ALT (blue) and its primary photo-product (ALT-CAP, red) in 

methanol-d4; section from 0.5 ppm to 4.0 ppm. The spin coupling network of the new cyclobutane 

ring in the primary photo-product can be confirmed by the spin couplings of the protons at 

3.60 ppm and 3.08 ppm with 2.89, 2.77, 2.27, 2.13, 1.60 ppm. 
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Table S11. NMR data for ALT in methanol-d4 with structural assignments. 
  δ1Ha,d δ13Cb,d DEPT135/DEPT90 COSY/(TOCSY) HSQC HMBC  

(2/4-bond (H-C) 

HMBC  

(3-bond (H-C) 

A 6.59 (d, J = 10.08 Hz) 125.1 CH B B qC3 qCH3, C(K),qC2 

B 6.49 (d, J = 10.08 Hz) 144.0 CH A A qCH3 qC3 

C 6.01 (m) 136.4 CH E,F,N,O 
   

D 5.79 (s) 123.9 CH I,J,(Q,V,K,R,P,T,S,U) 
 

C(L,M) C(I,J),qC2 

E 5.14 (d, Jcis = 10.28)c 118.6 CH2 C,F,N,O 
  

C(N,O) 

F 5.09 (d, Jtrans = 17.16)c 118.6 CH2 C,E,N,O 
  

C(N,O) 

G 2.89 (m) 25.4 CH2 H,L,M H,L,M C(L,M),qC1 qC2 

H 2.89 (m) 25.4 CH2 G,L,M G,L,M C(L,M),qC1 qC2 

I 2.67 (m) 32.9 CH2 D,J,Q,V,(K,R,P,T,S,U) 
 

C(Q,V),qC1 K,C(D) 

J 2.67 (m) 32.9 CH2 D,I,Q,V,(K,R,P,T,S,U) 
 

C(Q,V),qC1 K,C(D) 

K 2.56 (m) 40.1 CH Q,V,R, (D,I,J,P,T,S,U) 
   

L 2.48 (t, J = 7.32 Hz)c 37.8 CH2 G,H,M G,H,M C(G,H),qC2 
 

M 2.48 (t, J = 7.32 Hz)c 37.8 CH2 G,H,L G,H,L C(G,H),qC2 
 

N 2.41 (m) 44.2 CH2 C,O,E,F 
 

qOH, C(C) C(E,F) 

O 2.13 (m) 44.2 CH2 C,N,E,F 
 

C[C],qOH C(E,F) 

P 2.05 (m) 34.7 CH2 U,T, (D,I,J,Q,V,K,R,S) 
 

C(N,O),C(S,U) qOH ,qCH3 

Q 1.99 (m) 28.67 CH2 I,J,V,K,R,(D,P,T,S,U) 
  

qC1,qC3 

R 1.78 (m) 49.9 CH K,P,T,S,U(D,I,J,P,T,Q,V) 
 

C(K),qCH3 qC3,C(W) 

S 1.72 (m) 24.31 CH2 U,T,P, (D,I,J,Q,V,K,R) 
 

qOH qCH3 

T 1.68 (m) 34.7 CH2 P,U,(D,I,J,Q,V,K,R,S) 
 

C(R),C(S,U) qOH 

U 1.55 (m) 24.31 CH2 P,T, (D,I,J,Q,V,K,R,S) 
 

C(P,T),C(K) C(R) 

V 1.34 (m) 28.67 CH2 Q,I,J,K(R,D,P,T,S,U) 
 

C(I,J),C(K) 
 

W 1.05 (s) 17.6 CH3 
  

qCH3 qOH,C(B) 

qC=O 
       

qC1 
 

160.4 

     
qC2 

 
128.2 

     
qC3 

 
144.9 

     
qCH3 

 
50.9 

   
B,CH3 A 

qOH 
 

82.9 
     

a400.13 MHz, b100.6 MHz, cassigned using 1H-1H JRES data, dassigned using 1H-13C HSQC data. 
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Table S12. NMR data for the photo-isomer of ALT ([2+2] cycloaddition product; ALT-CAP) in methanol-d4 with structural assignments. 
 δ1Ha,c δ13Cb,c DEPT135/DEPT90 COSY/(TOCSY) HSQC HMBC  

(2/4-bond (H-C) 

HMBC  

(3-bond (H-C) 

A 3.60 (m) 32.46 CH E,F,B, (C,N,O) E qC3,C(B) qC2,qCH3,C(K) 

B 2.77 (m) 49.6 CH A,C, (E,F,N,O) C C(W),qCH3,C(C) C[R],C(E,F) 

C 2.89 (m) 34.54 CH B,E,F,N,O,(A) B C(B) qCH3,C(A) 

D 5.69 (s) 122.15 CH J,I, (Q,V,K,R,P,T,S,U) 
  

qC2, C(G,H), C(I,J) 

E 3.08 (m) 42.13 CH2 A,C,F, (B,N,O) A 
 

C(B),qC3,C(O,N) 

F 1.6 (m) 42.13 CH2 A,C,E, (B,N,O) 
 

C(A), C(C) qC3,C(N,O) 

G 2.48 (m) 37.61 CH2 H,L,M 
 

C(L,M) qC2 

H 2.4 (m) 37.61 CH2 G,L,M 
 

C(L,M) qC2 

I 2.61 (m) 32.63 CH2 D,J,Q,V, (K,R,P,T,S,U) 
 

C(D),C(K) 
 

J 2.61 (m) 32.63 CH2 D,I,Q,V, (K,R,P,T,S,U) 
 

C(D),C(K) 
 

K 2.39 (m) 39.17 CH Q,R,V, (D,I,J,P,T,S,U) R 
 

qC2 

L 2.48 (m) 25.78 CH2 G,H,M 
 

C(G,H) 
 

M 2.78 (m) 25.78 CH2 G,H,L 
 

qC2,C(G,H) qC1 

N 2.27 (m) 53.54 CH2 C,O 
 

qOH,C(C) qCH3,C(E,F),C(S,U) 

O 2.13 (m) 53.54 CH2 C,N 
 

qOH, C(C) C(B) 

P 2.22 (m) 36.86 CH2 R,T,S,U, (D,I,J,Q,V,K) 
  

qOH,qCH3 

Q 1.94 (m) 29.62 CH2 I,J,Q, (D,K,R,P,T,S,U) 
  

qC1,qC3 

R 2.28 (m) 47.28 CH K,P,T, (D,I,J,Q,V,S,U) K qCH3 qOH,C(S,U) 

S 1.78 (m) 25.22 CH2 P,T,U, (D,I,J,Q,V,K,R) 
 

qOH,C(P,T) C[R] 

T 1.78 (m) 36.86 CH2 P,R,S,U, (D,I,J,Q,V,K) 
  

qCH3,qOH 

U 1.78 (m) 25.22 CH2 P,T,S, (D,I,J,Q,V,K,R) 
 

qOH qCH3 

V 1.29 (m) 29.62 CH2 I,J,V,K, (D,R,P,T,S,U) 
 

qC1 C(K),C(I,J) 

W 0.96 (s) 13.29 CH3 
  

qCH3 qOH,C(B) 

qC=O 
       

qC1 
 

161.1 
   

I,J L,M,Q,V 

qC2 
 

126.7 
   

D,A,L,M,K 
 

qC3 
 

156.1 
   

A,K L,M,V,E 

qCH3 
 

54.6 
   

B,W A,C,N,U,S,T 

qOH 
 

95.6 
   

N,O,S,U,W 
 

a400.13 MHz, b100.6 MHz, cassigned using 1H-13C HSQC data.
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Detection of secondary photo-products of ALT  

The most abundant NMR signals can be explained by the formation of the primary photo-

product ALT-CAP. However, other 1H NMR and 13C NMR signals of lower intensity were 

also detected. New signals with chemical shifts in the range of conjugated double bonds (7–

8 ppm) and in the range of alcohols (4.5–5.5 ppm) were observed.  

Therefore, full MS data of the photo-product mixture of ALT was checked for further charac-

teristic m/z signals of possible photo-products. Data processing using MZmine 2 revealed, 

that the five following m/z ratios were the most abundant: 327.1951 (@ 6.19 min), 304.2607 (@ 

9.93 min), 282.2788 (@ 9.93 min), 226.9513 (@ 1.75 min), 202.1800 (@ 1.76 min). However, in 

comparison to blank and standard solutions only the m/z ratio 327.1951 was uniquely detect-

ed in the photo-isomerization product mixture. 

A secondary photo-product with the precursor mass of m/z 327.1963 ([M+H]+) was reported 

before [87]. It is described as a result from a photo-hydration process of ALT-CAP, which 

reverts back to ALT-CAP in the dark [87]. However, the addition of water to ALT-CAP (m/z 

311.2006 ([M+H]+), as described by the authors, leads to a precursor mass of m/z 329.2111 

([M+H]+). Therefore, the observed m/z ratio does not concur with the proposed molecule 

structure, but with oxygenated species of ALT-CAP. 

In the extracted ion chromatogram of the m/z 327.1951 at least three peaks were observed 

(see Figure S8, top). The product ion spectrum of the peak at 6.0 min is shown Figure S8 (bot-

tom). Some fragments can be explained by the basic chemical structure of ALT-CAP, but the 

exact position of the hydroxyl group cannot be determined. Thus, it is proposed that the oxi-

dation of the primary photo-product (ALT-CAP) results in various secondary photo-

products of minor concentrations. The earlier retention time relative to ALT and its primary 

photo-product is in line with the presence of more polar functional groups resulting from 

oxidation, i.e., hydroxylated products.  

The reaction process could be explained by a free radical chain reaction with hydroperoxide 

intermediates. The presence of hydrogen peroxide in aqueous solutions under ultraviolet 

radiation is well described [189, 190]. The formation of hydrogen peroxide involves OH•, 

HO2• free radicals and the superoxide anion O2•- , which can be formed via photochemical 

reduction of oxygen by natural humic materials [189, 190]. These free radicals are capable of 

oxidizing a wide spectrum of organic compounds [190].  
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Figure S8. Top: extracted ion chromatogram of the secondary photo-isomerization products of ALT 

(m/z 327.1951 [M+H]+); bottom: product ion spectrum of secondary photo-product of ALT-CAP (@ 

6.0 min; m/z 327.1951 [M+H]+) with proposal of fragmentation products. 

 

 

In conclusion, the peak observed at 7.3 min was identified as primary photo-product ALT-

CAP. Besides the primary photo-product several minor secondary hydroxylated products of 

ALT-CAP were observed. 
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8.1.2 ALT glucuronides 

LC-HRMS data acquisition    

In order to identify the ALT glucuronides, a full scan with a resolving power of 70,000 

(FWHM at m/z of 200) in the range of m/z 50–750 was carried out. Data-dependent fragmen-

tation was performed with a resolving power of 17,500 (FWHM at m/z of 200) using a colli-

sion energy of 35 eV. Mass tolerance was set to 5 ppm. All other LC-HRMS conditions were 

identical to the quantitative method (see Section 3.2.2.2). Xcalibur software was used for 

qualitative analysis (Thermo Scientific, Idstein Germany). 

Synthesis of ALT glucuronides  

Synthesis was performed according to [176]. In brief, ALT (500 µg, 1.6 µmol), uridine 5´-

diphosphoglucuronic acid (UDA) (1 mg, 1.7 µmol) and S9 rat liver fractions (500 µg protein) 

were incubated in 50 mM Tris–HCl buffer (pH 7.4) with 10 mM MgCl2 at 37 °C overnight (18 

h) in a final reaction volume of 500 µL. 1.0 mL of  methanol (-20°C) was added to stop the 

reaction and the sample was centrifuged (21,500 x g, 5 min, 5°C) for protein precipitation. 

The supernatant was evaporated to dryness at a temperature of 50°C under nitrogen gas 

flow, reconstituted in 0.5 mL methanol/water (60:40 (v/v)) and filtered (0.45 µm filter) prior 

to LC-HRMS analysis for reaction monitoring. 

Synthesis of ALT glucuronides was confirmed by LC-HRMS analysis. The extracted ion 

chromatogram with the accurate mass of m/z 487.2327 showed two peaks at 5.3 min and 6.2 

min corresponding to the glucuronides of the photo-isomer ALT-CAP and of ALT, respec-

tively (see Figure S9). The earlier retention time of the more polar glucuronides compared to 

the parent molecule (7.3 and 7.6 min) is consistent with a reversed phase retention mecha-

nism. Product ion spectra obtained with a collision energy of 35 eV showed characteristic 

fragments of ALT and the characteristic neutral loss of 176.0309 Da for the glucuronic acid 

moiety was observed. Yield of the reaction could not be assessed because the product could 

not be purified in sufficient yield for NMR analysis. ALT is poorly soluble in water, but the 

in vitro synthesis with the help of the enzymatic activity of S9 rat liver fractions can only be 

performed in aqueous buffer. However, the mass spectrometric data is very helpful for the 

identification of glucuronic acid conjugation products of ALT. 
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Figure S9. A: extracted ion chromatogram (m/z 311.2006) of ALT isomers (@ 7.31 min (ALT-CAP) 

and 7.68 min (ALT)); B: extracted ion chromatogram (m/z 487.2327) of ALT-CAP glucuronide 

(@ 5.29 min) and  ALT glucuronide (@ 6.21 min); C/D: product ion spectrum of ALT glucuronide 

(precursor ion m/z 487.2327; [M+H]+ @ 6.21 min (C) and 5.29 min (D)) following incubation of S9 rat 

liver fractions with ALT. 
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8.1.3 ALT sulfate 

LC-HRMS data acquisition for the identification of ALT sulfate  

In order to identify ALT sulfate, a full scan with a resolving power of 70,000 (FWHM at m/z 

of 200) in the range of m/z 50–750 was carried out in negative ion mode. Data-dependent 

fragmentation was performed with a resolving power of 17,500 (FWHM at m/z of 200) using 

a collision energy of 35 eV. Mass tolerance was set to 5 ppm. All other LC-HRMS conditions 

were identical to the quantitative method (see Section 3.2.2.2). Xcalibur software was used 

for qualitative analysis (Thermo Scientific, Idstein Germany). 

Synthesis of ALT sulfate   

The sulfate conjugate of ALT was synthesized by dicyclohexylcarbodiimide-mediated sul-

fation under mild conditions [191].   

 

 
Figure S10. Reaction mechanism of sulfation of ALT; modified according to [191]. 

 

In brief, ALT (31 mg, 0.1 mmol), dissolved in 1.2 mL dimethylformamide (DMF), was added 

to N,N’-dicyclohexylcarbodiimide (103 mg, 0.5 mmol), dissolved in 1.6 mL DMF in an ice 

bath. After the addition of H2SO4 (1.8 µL, 0.15 mmol) the reaction mixture was diluted in 

1.2 mL DMF, kept at 0°C and occasionally shaken for 15 min. After centrifugation (10 min, 

2,500 x g) to separate the precipitated dicyclohexylurea from the reaction mixture, an aliquot 

of the supernatant was diluted with methanol (50:50 (v/v)) for further clean-up. The solution 

was transferred to a SPE cartridge (OASIS WAX®, 6 mL, 200 mg, purchased from Waters, 

Eschborn, Germany), preconditioned with 4 mL of methanol and 4 mL of methanol/DMF 

(50:50 (v/v)). After a washing step with 4 mL of methanol and 4 mL of a mixture of 2% 

HCOOH in methanol and 1 min drying in vacuo, the analyte was eluted with 4 mL of 5% 

NH4OH in methanol. The eluates were collected, combined and evaporated to dryness at a 
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temperature of 50°C under nitrogen gas flow. The synthesis product was reconstituted in 

0.5 mL methanol/water (60:40 (v/v)) with 1% HCOOH and filtered (0.45 µm filter). After di-

lution by factor 1000 the samples were transferred to a HPLC vial prior to LC-HRMS analysis 

for reaction monitoring. 

Synthesis of ALT sulfate was confirmed by LC-HRMS analysis. The extracted ion chromato-

gram of the accurate mass of m/z 389.1433 showed a peak at 3.83 min, which was assigned to 

ALT sulfate. A slight fronting of the peak was observed. Furthermore, a small peak at 2.86 

min was observed. Hence, a weak isomerization cannot be excluded. However, a pro-

nounced isomerization of ALT did not occur since the synthesis was performed in organic 

solvents and a pronounced photo-isomerization is mainly observed in aqueous solutions.  

The earlier retention time of the more polar sulfate compared to the parent drug (7.67 min) is 

consistent with a reversed phase retention mechanism. Product ion spectra obtained with a 

collision energy of 35 eV showed characteristic fragments of ALT sulfate [69].  The fragment 

with the m/z 96.9590 was observed as main fragment, which corresponds to the mass-to-

charge ratio of HSO4-. Further characteristic ions were detected at minor intensities.  

Unfortunately, the stability of ALT sulfate was very low in organic and aqueous solutions 

leading to an elimination of ALT sulfate in 2–4 hours. Thus, it was not possible to synthesize 

a purified product in good yield. However, the mass spectrometric data is very valuable for 

the identification of sulfate conjugation products of ALT. 
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Figure S11. Top: extracted ion chromatogram of ALT sulfate (m/z 389.1433); bottom: product ion 

spectrum of peak eluting at 3.83 min (precursor ion m/z 389.1433; [M-H]-) with characteristic frag-

ments of ALT sulfate. 
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8.2 Method validation for quantitative 1H NMR determination of 

creatinine in urine   

The 1H NMR spectrum of creatinine shows two characteristic resonances, i.e., a singlet with a 

chemical shift of δ = 3.05 ppm corresponding to the methyl group and a singlet at δ = 

4.06 ppm (CH2 group) relative to referencing substance TSP. The ratio of the integrals is 3:2 

corresponds to the number of protons responsible for the signals. 

 

Figure S12. Left: 1H NMR spectrum of creatinine standard at a concentration of 5 mg/mL. Right: 

representative urine 1H NMR spectrum. 

 

Decision limit, detection limit and determination limit under repeatability conditions accord-

ing to DIN 32645 were calculated by regressing measured values on actual values. A urine 

sample was spiked with creatinine in the concentration range from 0.05–1 mg/mL and creati-

nine was quantified via standard addition. The creatinine concentration of the urine sample 

was added to the spiking concentration and the sum was taken as actual value. The external 

calibration curve ranged from 0.05–10 mg/mL creatinine to cover the working range. Recov-

ery was calculated on a function of concentration and was about 90% in the working range. 

Quantification of creatinine in urine samples was performed via external calibration using 

signal at δ = 3.05 ppm. 

Linearity of the method was confirmed via external standards in the range of 0.05 to 10 

mg/mL creatinine (see Figure S13). The decision limit and the determination limit were 

0.03 mg/mL and 0.1 mg/mL, respectively. The measurement uncertainty of results corrected 

for recovery was below 2% within the working range.   

H2C N

H
NO

NH

CH3

δCH3= 3.05
∫CH3= 3

δCH2= 4.06
∫CH2= 2

TSP

Creatinine

Creatinine

TSP
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Figure S13. Left: external calibration curve covering the working range from 0.05 mg/mL to 

10 mg/mL. Right: OLS regression to determine decision limit, detection limit and determination 

limit according to DIN 32645, blue line: prediction band (PI: 𝒑 = 0.95).  

 

Table S13. Performance characteristics according to DIN 32645. 

 Creatinine (mg/mL) 

DIN 32645 Decision limit  Detection limit  Determination limit 

 0.03 0.06 0.1 
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9 Appendix D: Instrumentation, materials and chemicals 

9.1 Instrumentation 

9.1.1 Liquid chromatography high resolution mass spectrometry 

UHPLC-Q-Orbitrap: 

Dionex Ultimate 3000 RS UHPLC (Thermo Scientific, Idstein, Germany) consisting RS binary 

pump, WPS-3000 RS autosampler and TCC-3000 RS column compartment coupled with Q-

Orbitrap Q Exactive Focus (Thermo Scientific, Idstein, Germany) equipped with a heated 

electrospray (HESI-II) source. 

 

Column (project 1): Phenomenex Luna Omega C18 polar column (1.6 µm, 100 Å, 100 × 2.1 

mm; Phenomenex, Aschaffenburg, Germany).  

Column (project 2): Phenomenex Prodigy C18 column (5 µ, ODS (3), 100 Å, 150 mm x 3 mm; 

Phenomenex, Aschaffenburg Germany). 

 

UHPLC-Q-TOF: 

Agilent 1290 Infinity UHPLC system, consisting of a G4220A binary pump, G4226A au-

tosampler and G1316C thermostated column compartment (Agilent Technologies, Wald-

bronn, Germany) coupled with X500R QTOF (Sciex, Darmstadt, Germany) mass spectrome-

ter equipped with a Turbo V source operating in positive electrospray ionization (ESI) mode. 

Column: Phenomenex Luna Omega C18 polar column (1.6 µm, 100 Å, 100 × 2.1 mm; Phe-

nomenex, Aschaffenburg, Germany). 

9.1.2 Liquid chromatography (semi–preparative) 

Agilent 1100 Infinity HPLC system, consisting of a G1379A degasser, G1312A binary pump, 

G1313A autosampler, G1353A diode array detector with an G1364A fraction collector (Ag-

ilent Technologies, Waldbronn, Germany). 

Column: Phenomenex Luna Omega C18 polar column (1.6 µm, 100 Å, 100 × 2.1 mm; Phe-

nomenex, Aschaffenburg, Germany). 
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9.1.3 Nuclear magnetic resonance (NMR) spectroscopy 

Bruker Avance III HD Ascend 400 spectrometer (BrukerBiospin, Rheinstetten, Germany) 

equipped with a 5-mm broadband observe (BBO) and broadband inverse (BBI) probe with Z-

gradient coils, using a Bruker Automatic Sample Changer (Sample Xpress). 1H NMR spectra 

were acquired at 400.13 MHz.  

9.1.4 General laboratory equipment 

Analytical balance: Satorius Cubis MSA225P-1CE-DI (Satorius, Göttin-

gen, Germany) 

Centrifuges: Mikro 200R (Hettich, Tuttlingen, Germany) 

 Rotina 380 (Hettich, Tuttlingen, Germany) 

Folded filters: MN 615 ¼ (Macherey-Nagel, Düren, Germany) 

Funnel: Various sizes (VWR, Darmstadt, Germany) 

HPLC-Vials: WE1905 (Ziemer, Langerwehe, Germany) 

Laboratory scale: Satorius BP 4100S (Satorius, Göttingen, Germany) 

pH-meter: InoLab pH 7110 (Xylem Analytics, Weilheim, 

Germany) 

Piston pipette for different volumes: Various models (Eppendorf, Hamburg, Germany) 

Sample concentrator: DRI Block Heater Digital DB-3D (Techne, Staf-

fordshire, UK) 

Shaking machine: Universalschüttler SM30B (Edmund Bühler, Bo-

delshausen, Germany) 

Shaking water bath: Julabo SW 22 (Julabo, Seelbach, Germany) 

SPE vacuum manifold system: J.T. Baker SPE 24G (VWR, Darmstadt, Germany) 

Test tubes: 1,5 mL, 15 mL and 50 mL (Sarstedt, Nümbrecht, 

Germany) 

Test tube shaker: Hei-Mix Multi-Reax (Heidolph, Schwabach, Ger-

many) 

Thermoshaker: Thermomixer comfort (Eppendorf, Hamburg, 

Germany) 

Ultrasonic bath: Sonorex RK162 (Bandelin, Berlin, Germany) 

Vacuum centrifuge: RVC 2-33IR (Christ, Osterrode am Harz, Germany) 
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9.2 Chemicals 

All chemicals and solvents used were of highest analytical grade and purchased from Merck 

(Darmstadt, Germany). Water with a resistance of >18.0 MΩ/cm was prepared in-house by 

an arium pro VF Ultrapure Water System (Satorius, Göttingen, Germany). All analytical 

standards of veterinary drugs were purchased from Sigma-Aldrich (Steinheim, Germany), 

LGC (Wesel, Germany), and Biozol (Eching, Germany) or were provided by the German Na-

tional Reference Laboratory for veterinary drug residue analysis (Berlin, Germany). Lyso-

phosphatidylcholine 17:0 was supplied by Sigma-Aldrich (Steinheim, Germany) and tripep-

tide prolylphenylalanylglycine (PFG) was custom-synthesized with a purity >98% (trifluoro-

acetate salt) by BioCat GmbH (Heidelberg, Germany).  

S9 liver fractions from male rat (Sprague-Dawley) were purchased from Sigma Aldrich 

(Steinheim, Germany). 

 

Stock solutions were prepared as follows: 

- cephalosporines, β-lactam antibiotics and tetracyclines at a concentration of 

200 µg/mL in methanol, 

- corticosteroids and halofuginone at a concentration of 100 µg/mL in methanol, 

- quinolones at a concentration of 100 µg/mL in acetonitrile:methanol (1:1 (v/v)),  

- sulfonamides/trimethoprim at a concentration of 100 µg/mL in acetonitrile and 

- lincosamides, macrolides, pleuromutilins and internal standards at a concentration of 

1000 µg/mL in methanol. 

 

Mix standards were prepared by dilution with water/methanol (90:10 (v/v)). 

 

Stock solutions of altrenogest and altrenogest-d5 were prepared at a concentration of 

100 µg/mL in methanol. All standard solutions were stored at 4°C. 
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9.3 Buffers and solutions 

Acetonitril (0.1% formic acid): 1 L acetonitrile + 1 mL formic acid 

Ammonium formate buffer  

(50 mM, pH 2.6): 

1.57 g ammonium formate dissolved in 500 mL 

water, pH adjusted to pH 2.6 with formic acid 

EDTA-McIlvaine buffer: 31.5 g citric acid + 35.6 g Na2HPO4 x H2O + 93 g 

titriplex III dissolved in water, pH was adjusted to 

pH 4 with phosphoric acid 

Dipotassium phosphate buffer           

(1.5 M, pH 7.4) in D2O containing          

5 mM TSP: 

40.827 g K2HPO4, 39 mg NaN3 and 200 mg trime-

thylsilylpropanoic acid-2,2,3,3-d4 (TSP) dissolved 

in 200 mL D2O, pH adjusted to 7.4 with KOH 

Magnesium chloride buffer (150 mM): 3.05 g MgCl2 ·6H2O dissolved in 100 mL water 

Methanol (0.1% formic acid): 1 L methanol + 1 mL formic acid 

Sodium acetate buffer (50 mM, pH 4.8): 4.1 g sodium acetate dissolved in 1 L of water, pH 

adjusted to pH 4.8 with acetic acid 

Tris-HCl buffer (50mM, pH 7.4): 5 mL Tris-HCl buffer (1M, pH 7.4) + 95 mL water 

Water (0.1% formic acid): 1 L water + 1 mL formic acid 
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10 Appendix E: MATLAB codes 

10.1 Exemplary code for PCA with subsequent QDA , Monte Carlo 

cross-validation and PLS-DA  

 

clear 

clc 

 

P = readmatrix('data.txt'); 

yQDA = readmatrix('y.txt'); 

 

T = P(:,2:71); 

 

min = min(min(T)); 

min = min/2; 

 

n = length(P); 

 

%Replace 0 by half of minimum 

 

for j = 1:70 

    for i = 1:n 

        if T(i, j)> 0         

            T(i,j)= T(i,j); 

            else T(i,j)= min; 

        end 

    end 

end 

 

% Normalization by the sum of all peaks 

SumPeaks = sum(T); 

 

NormT2 = T./SumPeaks; 

 

% Log-transform data 

logNormT = log(NormT2); 

 

% Transpose data 

X = logNormT'; 

 

% Standardize data 

m = mean(X); 

s = std(X); 

 

for j = 1:70 

    for i = 1:n 

       Xstd (j , i) = (X(j , i) - m(1 , i))/s(1 , i);             

    end 

end 
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%PCA  

[coeff,score,latent] = pca(Xstd); 

varXstd = var(Xstd); 

sumvarXstd = sum(varXstd); 

explained = latent/sumvarXstd*100; 

 

%scores of control samples 

x1 = [score([1,2,4:18,24,31,33:36,38:51,58,65,69,70], 1)]; 

x2 = [score([1,2,4:18,24,31,33:36,38:51,58,65,69,70], 2)];  

x3 = [score([1,2,4:18,24,31,33:36,38:51,58,65,69,70], 3)];  

 

%scores of positive samples 

y1 = [score([3,19:23,25:30,32,37,52:57,59:64,66:68], 1)]; 

y2 = [score([3,19:23,25:30,32,37,52:57,59:64,66:68], 2)]; 

y3 = [score([3,19:23,25:30,32,37,52:57,59:64,66:68], 3)]; 

 

%scores of spiked QC samples 

a1 = [score([1,9,24,33,35,43,58,69], 1)]; 

a2 = [score([1,9,24,33,35,43,58,69], 2)]; 

a3 = [score([1,9,24,33,35,43,58,69], 3)]; 

 

%scores of control QC samples 

b1 = [score([2,15,31,34,49,65,70], 1)]; 

b2 = [score([2,15,31,34,49,65,70], 2)]; 

b3 = [score([2,15,31,34,49,65,70], 3)]; 

 

%scores of positive QC samples 

c1 = [score([3,32,37,68], 1)]; 

c2 = [score([3,32,37,68], 2)]; 

c3 = [score([3,32,37,68], 3)]; 

 

% scores plot  

 

figure(1) 

scatter3(x1, x2, x3, 'bo') 

hold on 

scatter3(y1, y2,y3,'mo') 

hold on 

scatter3(a1, a2,a3,'b+') 

hold on 

scatter3(b1, b2,b3, 'bo', 'filled') 

hold on 

scatter3(c1, c2,c3,'mo', 'filled') 

grid on 

xlabel('PC1 (12.8%)'); 

ylabel('PC2 (11.3%)'); 

zlabel('PC3 (4.5%)') 

title ('PCA'); 

 

%% QDA  

% Classification: negative (0) and positive (1) 

 

y = yQDA(:,1); 

 

Negative = yQDA([1,2,4:18,24,31,33:36,38:51,58,65,69,70],1);  
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Positive = yQDA([3,19:23,25:30,32,37,52:57,59:64,66:68],1);  

 

for i = 1:length(Negative(:,1)) 

    assign_Negative (i,1) = 0; 

end 

 

for i = 1:length(Positive(:,1)) 

    assign_Positive (i,1) = 1; 

end 

 

scores_Negative = score([1,2,4:18,24,31,33:36,38:51,58,65,69,70], 

[1:3]); 

 

scores_Positive = score([3,19:23,25:30,32,37,52:57,59:64,66:68], 

[1:3]); 

 

obj_NegPos = fitcdiscr([scores_Negative ; scores_Positive], [as-

sign_Negative ; assign_Positive], 'DiscrimType', 'quadratic'); 

 

% 10 fold CV 

 

cvmodel = crossval(obj_NegPos , 'Kfold' , 10); 

  

NMC = kfoldLoss(cvmodel, 'mode', 'individual') 

 

 

%% Monte Carlo cross-validation 

 

for a = 1:5000 

 

z = 10; %test set 

N = 5000; %repetitions 

    

r = randperm(70, z);  

 

NegativeX = X([1,2,4:18,24,31,33:36,38:51,58,65,69,70],:);  

PositiveX = X([3,19:23,25:30,32,37,52:57,59:64,66:68],:);  

 

X_sort = [NegativeX;PositiveX];  

X_training = X_sort; 

X_training(r,:)=[];  

 

NegativeY = yQDA([1,2,4:18,24,31,33:36,38:51,58,65,69,70],1);  

PositiveY = yQDA([3,19:23,25:30,32,37,52:57,59:64,66:68],1);  

 

yQDA_sort = [NegativeY;PositiveY]; 

y_training = yQDA_sort; 

y_training(r,:)=[];  

 

%Standardization of training set 

 

mCV = mean(X_training); 

sCV = std(X_training); 

 

for j = 1:60 

    for i = 1:n 
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       XStd_training (j , i) = (X_training(j , i) - mCV(1 , 

i))/sCV(1 , i);             

    end 

end 

 

[coeffCV,scoreCV,latentCV] = pca(XStd_training); 

 

 

for j = 1:z 

    for i = 1:n 

       XStd_Test (j , i) = (X_sort(r(j) , i) - mCV(1 , i))/sCV(1 , 

i);             

    end 

end 

 

Scores_Test = XStd_Test*coeffCV; 

Scores_Test = Scores_Test(:,[1:3]);  

 

idx0 = y_training == 0; 

out0 = sum(idx0(:)); 

 

assign_Negative2 = [];  

 

for b = 1:out0 

   assign_Negative2(b,1) = 0; 

end 

 

idx1 = y_training == 1; 

out1 = sum(idx1(:)); 

 

assign_Positive2 = []; 

 

for c = 1:out1 

   assign_Positive2(c,1) = 1; 

end 

 

for d = 1:out0 

   scoresTraining_Negative = scoreCV([1:d], [1:3]); 

end 

 

for e = out0+1 

    scoresTraining_Positive = scoreCV([e:end], [1:3]); 

end 

 

obj_NegPosCV = fitcdiscr([scoresTraining_Negative ; scoresTrain-

ing_Positive], [assign_Negative2 ; assign_Positive2], 'DiscrimType', 

'quadratic'); 

 

Classification = predict(obj_NegPosCV, Scores_Test); 

 

for k = 1:z 

    ClassificationCV(a,k)= Classification(k,:); 

end 

 

for k = 1:z 
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    if (ClassificationCV(a,k) == 0) && (yQDA_sort(r(k),1) == 0) 

        tnPLS(a,k)=1; 

        tpPLS(a,k)=0; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=0; 

    elseif (ClassificationCV(a,k) == 1) && (yQDA_sort(r(k),1) == 1) 

        tnPLS(a,k)=0; 

        tpPLS(a,k)=1; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=0;       

    elseif (ClassificationCV(a,k) == 1) && (yQDA_sort(r(k),1) == 0) 

        tnPLS(a,k)=0; 

        tpPLS(a,k)=0; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=1; 

    elseif (ClassificationCV(a,k) == 0) && (yQDA_sort(r(k),1) == 1) 

        tnPLS(a,k)=0; 

        tpPLS(a,k)=0; 

        fnPLS(a,k)=1;   

        fpPLS(a,k)=0;      

    end 

 

end 

 

end 

 

% Visualization of cross-validation 

 

tnPLS = sum(sum(tnPLS)); 

fpPLS = sum(sum(fpPLS)); 

tpPLS = sum(sum(tpPLS)); 

fnPLS = sum(sum(fnPLS)); 

 

rate(1,1) = tnPLS/(tnPLS + fpPLS); %Specificity 

rate(2,1) = fpPLS/(tnPLS + fpPLS); %1-Specificity 

rate(3,1) = tpPLS/(tpPLS + fnPLS); %Sensitivity 

rate(4,1) = fnPLS/(tpPLS + fnPLS); %1-Sensitivity 

 

 

figure(2) 

bar(rate, 'FaceColor',[0 .5 .5],'EdgeColor',[0 .9 

.9],'LineWidth',1.5) 

labels = {'true negative', 'false positive', 'true positive', 'false 

negative'}; 

xt = get(gca, 'XTick'); 

text(xt, rate, labels, 'HorizontalAlignment','center', 'VerticalA-

lignment','bottom') 

 

%% PLS-DA 

 

[XL,YL,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(Xstd,y,2); 

 

% Scores plot  

x1PLS = XS([1,2,4:18,24,31,33:36,38:51,58,65,69,70],1); 

x2PLS = XS([1,2,4:18,24,31,33:36,38:51,58,65,69,70],2); 
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y1PLS = XS([3,19:23,25:30,32,37,52:57,59:64,66:68],1); 

y2PLS = XS([3,19:23,25:30,32,37,52:57,59:64,66:68],2); 

 

%spiked QC samples 

a1PLS = XS([1,9,24,33,35,43,58,69], 1); 

a2PLS = XS([1,9,24,33,35,43,58,69], 2); 

 

%control QC samples 

b1PLS = XS([2,15,31,34,36,49,65,70], 1); 

b2PLS = XS([2,15,31,34,36,49,65,70], 2); 

 

%positive QC samples 

c1PLS = XS([3,32,37,68], 1); 

c2PLS = XS([3,32,37,68], 2); 

 

 

figure(3); % PLS-DA scores plot 

scatter(x1PLS,x2PLS,'bo'); 

hold on 

scatter(y1PLS,y2PLS,'mo'); 

hold on 

scatter(a1PLS,a2PLS,'bo', 'filled'); 

hold on 

scatter(b1PLS,b2PLS,'b+'); 

hold on 

scatter(c1PLS,c2PLS,'mo', 'filled'); 

hold off 

xlabel('Component 1'); 

ylabel('Component 2'); 

title('PLS-DA'); 

lgd = legend({'control','positive'}); 

 

 

%% Monte Carlo cross-validation 

 

for a = 1:5000 

 

z = 10; %test set 

N = 5000; %repetitions 

 

     

r = randperm(70, z);  

 

 

X_training = X;  

X_training(r,:)=[];  

 

y_training = y;  

y_training(r,:)=[];  

 

%Standardization of training set 

 

m = mean(X_training); 

s = std(X_training); 

 

for j = 1:60 
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    for i = 1:n 

       XStd_training (j , i) = (X_training(j , i) - m(1 , i))/s(1 , 

i);             

    end 

end 

 

 

[P,q,Scores,mu,BETA] = plsregress(XStd_training, y_training, 2); 

 

 

 

for j = 1:z 

    for i = 1:n 

       XStd_Test (j , i) = (X(r(j) , i) - m(1 , i))/s(1 , i);             

    end 

end 

 

for j=1:z 

    L(j,1) = 1 ; 

end 

 

XSi = [L,XStd_Test]; 

 

for k = 1:z 

YM(a,k) = XSi(k,:)*BETA; 

end 

 

% Discriminant analysis 

 

for k = 1:z 

if YM(a,k) > 0.5 

   YMT(a,k) = 1; 

else YMT(a,k) = 0;  

end 

end 

 

 

for k = 1:z 

     

    if (YMT(a,k) == 0) && (y(r(k),1) == 0) 

        tnPLS(a,k)=1; 

        tpPLS(a,k)=0; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=0; 

    elseif (YMT(a,k) == 1) && (y(r(k),1) == 1) 

        tnPLS(a,k)=0; 

        tpPLS(a,k)=1; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=0;       

    elseif (YMT(a,k) == 1) && (y(r(k),1) == 0) 

        tnPLS(a,k)=0; 

        tpPLS(a,k)=0; 

        fnPLS(a,k)=0; 

        fpPLS(a,k)=1; 

    elseif (YMT(a,k) == 0) && (y(r(k),1) == 1) 

        tnPLS(a,k)=0; 
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        tpPLS(a,k)=0; 

        fnPLS(a,k)=1;   

        fpPLS(a,k)=0;      

    end 

 

end 

 

% Test for over-fitting 

for k = 1:z  

    for j = 1:z 

    SRes(a,k) = (y(r(j)) - YM(a,k)).^2; 

    end 

end 

 

end 

 

SSRes = sum(SRes); 

SSRes = sum(SSRes); 

 

MSE_CV = SSRes/(z*N) 

 

if MSE(2,3) < MSE_CV 

    OF = {'yes'} 

   else OF = {'no'} 

end 

 

% Visualization of cross-validation 

 

tnPLS = sum(sum(tnPLS)); 

fpPLS = sum(sum(fpPLS)); 

tpPLS = sum(sum(tpPLS)); 

fnPLS = sum(sum(fnPLS)); 

 

rate(1,1) = tnPLS/(tnPLS + fpPLS); %Spezificity 

rate(2,1) = fpPLS/(tnPLS + fpPLS); %1-Spezificity 

rate(3,1) = tpPLS/(tpPLS + fnPLS); %Sensitivity 

rate(4,1) = fnPLS/(tpPLS + fnPLS); %1-Sensitiviy 

 

figure(4) 

bar(rate, 'FaceColor',[0 .5 .5],'EdgeColor',[0 .9 

.9],'LineWidth',1.5) 

labels = {'true negative', 'false positive', 'true positive', 'false 

negative'}; 

xt = get(gca, 'XTick'); 

text(xt, rate, labels, 'HorizontalAlignment','center', 'VerticalA-

lignment','bottom') 

 

10.2 Exemplary code for batch normalization based on QC samples  

clear 

clc 

 

P = readmatrix('data.txt'); 

yQDA = readmatrix('y.txt'); 
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u = readmatrix('Factor.txt'); %Mean values of all variables from QC 

samples from day 2 of measurement divided by mean values of all var-

iables from QC samples from day 1 

 

n = length(P); 

 

T = P(:,2:71); 

 

min = min(min(T)); 

min = min/2; 

 

n = length(P); 

 

%Replace 0 by half of minimum 

 

for j = 1:70 

    for i = 1:n 

        if T(i, j)> 0         

            T(i,j)= T(i,j); 

            else T(i,j)= min; 

        end 

    end 

end 

 

 

 

%% Normalization based on QC samples 

 

 

for j = 1:70 

    for i = 1:n 

       SkalT_QC (i , j) = (T(i , j)/ u(i , 1));             

    end 

end 

 

SkalT2 =[T(:,[1:34]), SkalT_QC(:,[35:70])]; 

 

SumPeaks2 = sum(SkalT2); 

 

for j = 1:70 

    for i = 1:n 

       NormSkalT2 (i , j) = (SkalT2(i , j)/SumPeaks2(1 , j));             

    end 

end 

 

 

% Log-transform data 

logNormSkalT2 = log(NormSkalT2); 

 

% Transpose data 

X2 = logNormSkalT2'; 

 

% Standardize data 

m2 = mean(X2); 

s2 = std(X2); 
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for j = 1:70 

    for i = 1:n 

       Xstd2 (j , i) = (X2(j , i) - m2(1 , i))/s2(1 , i);             

    end 

end 

 

 

% PCA  

[coeff,score,latent] = pca(Xstd2); 

varXstd = var(Xstd2); 

sumvarXstd = sum(varXstd); 

explained = latent/sumvarXstd*100; 

 

 

% negative samples 

x1 = [score([1,2,4:18,24,31,33:36,38:51,59,66,69,70], 1)]; 

x2 = [score([1,2,4:18,24,31,33:36,38:51,59,66,69,70], 2)];  

 

 

% positive sammples 

y1 = [score([3,19:23,25:30,32,37,52:58,60:65,67:68], 1)]; 

y2 = [score([3,19:23,25:30,32,37,52:58,60:65,67:68], 2)]; 

 

 

% spiked QC samples 

a1 = [score([1,9,24,33,35,43,59,69], 1)]; 

a2 = [score([1,9,24,33,35,43,59,69], 2)]; 

 

 

% negative QC samples 

b1 = [score([2,15,31,34,36,49,66,70], 1)]; 

b2 = [score([2,15,31,34,36,49,66,70], 2)]; 

 

 

% positive QC samples 

c1 = [score([3,32,37,53,68], 1)]; 

c2 = [score([3,32,37,53,68], 2)]; 

 

 

% Scores plot  

 

figure(1) 

scatter(x1, x2, 'bo') 

hold on 

scatter(y1, y2,'mo') 

hold on 

scatter(a1, a2,'bo', 'filled') 

hold on 

scatter(b1, b2,'b+') 

hold on 

scatter(c1, c2,'mo', 'filled') 

grid on 

xlabel('PC1 (12.2%)'); 

ylabel('PC2 (6.1%)'); 

title ('PCA'); 
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10.3 Exemplary code for normalization based on correction curve 

fitted to the QC samples 

clear 

clc 

 

% Quadratic regression 

 

P2 = readmatrix('QC_samples.txt'); 

n = length(P2); 

 

T = P2(:,[2:end]); 

 

min = min(min(T)); 

min = min/2; 

 

% Replace 0 by min/2 

for i = 1:n 

    for j = 1:13 

        if P2(i, j)> 0         

            P2(i, j)= P2(i, j); 

            else P2(i, j)= min; 

        end 

    end 

end 

 

y2 = P2(:, [2:end]); 

y2 = y2'; 

 

X2 = readmatrix('Regression_x.txt'); % run number 

 

QC_spiked = y2([1:4],:); 

X_QC_spiked = X2([1:4],:); 

 

QC_negative = y2([5:8],:); 

X_negative = X2([5:8],:); 

 

QC_positive = y2([9:12],:); 

X_positive = X2([9:12],:); 

 

X_QC_spiked = X_QC_spiked(:,2); 

 

X_negative = X_negative(:,2); 

 

X_positive = X_positive(:,2); 

 

 

for i=1:n 

 

p_QCspiked (:,i) = polyfit(X_QC_spiked,QC_spiked(:,i),2); 

 

end 

 

 

for i=1:n 
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p_QCnegative(:,i) = polyfit(X_negative,QC_negative(:,i),2); 

 

end 

 

 

for i=1:n 

 

p_QCpositive(:,i) = polyfit(X_positive,QC_positive(:,i),2); 

 

end 

 

 

% Matrix of coefficient 

 

QM_Coeff1 = [p_QCspiked(1,:);p_QCnegative(1,:); p_QCpositive(1,:)]; 

 

mean_Coeff1 = mean(QM_Coeff1); 

 

QM_Coeff2 = [p_QCspiked(2,:);p_QCnegative(2,:); p_QCpositive(2,:)]; 

 

mean_Coeff2 = mean(QM_Coeff2); 

 

QM_Coeff3 = [p_QCspiked(3,:);p_QCnegative(3,:); p_QCpositive(3,:)]; 

 

mean_Coeff3 = mean(QM_Coeff3); 

 

p_QCtotal = [mean_Coeff1;mean_Coeff2;mean_Coeff3]; 

 

 

Xkor = [1:44]; 

 

for i=1:n 

    for j = 1:44 

    ykor(i,j) = polyval(p_QCtotal(:,i),Xkor(:,j)); 

    end 

end 

 

min = min(min(ykor)); 

min = min/2; 

 

% replace 0 by min/2 

 

for j = 1:44 

    for i = 1:n 

        if ykor(i, j)> 0         

            ykor(i,j)= ykor(i,j); 

            else ykor(i,j)= min; 

        end 

    end 

end 

 

 

%% Normalization based on coefficient 

 

R = readmatrix('data.txt'); % in Excel alle 0 replaced by min/2 
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yQDA = readmatrix('y.txt'); 

 

n = length(R); 

 

R = R(:,2:45); 

 

for i = 1:n 

    for j = 1:44 

        Rkor(i,j) = (R(i,j)/ykor(i,j)); 

    end     

end 

 

Rkor1 = Rkor; 

Rkor1(:,23) = []; % Delete since samples was contaminated 

 

% Log-transform data 

logNormRkor = log(Rkor1); 

 

%Transpose data 

X = logNormRkor'; 

 

%Standardize data 

m = mean(X); 

s = std(X); 

 

for j = 1:43 

    for i = 1:n 

       Xstd (j , i) = (X(j , i) - m(1 , i))/s(1 , i);             

    end 

end 

 

 

%PCA  

[coeff,score,latent] = pca(Xstd); 

varXstd = var(Xstd); 

sumvarXstd = sum(varXstd); 

explained = latent/sumvarXstd*100; 

 

% negative samples 

x1 = [score([1,2,4:16,18,20:22,24,31,42,43], 1)]; 

x2 = [score([1,2,4:16,18,20:22,24,31,42,43], 2)];  

  

 

% positive samples 

y1 = [score([3,19,23,25:30,32:41], 1)]; 

y2 = [score([3,19,23,25:30,32:41], 2)]; 

 

 

% spiked QC samples 

a1 = [score([1,9,24,42], 1)]; 

a2 = [score([1,9,24,42], 2)]; 

 

 

% negative QC samples 

b1 = [score([2,15,31,43], 1)]; 

b2 = [score([2,15,31,43], 2)]; 
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% positive QC samples 

c1 = [score([3,19,38,41], 1)]; 

c2 = [score([3,19,38,41], 2)]; 

 

 

% Scores plot 

 

figure(1) 

scatter(x1, x2, 'bo') 

hold on 

scatter(y1, y2,'mo') 

hold on 

scatter(a1, a2,'b+') 

hold on 

scatter(b1, b2, 'bo', 'filled') 

hold on 

scatter(c1, c2,'mo', 'filled') 

grid on 

xlabel('PC1 (21.8%)'); 

ylabel('PC2 (17.8%)'); 

title ('PCA'); 
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Abbreviations Explanation 
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CCα Decision limit according to Commission Decision 2002/657/EC 

CCβ Detection capability according to Commission Decision 2002/657/EC 

CD Commission decision 

CE Collision energy 

CL Decision limit according to DIN 32645 

COSY Correlation spectroscopy 

COX cyclooxygenase 

CVMP Committee for Medicinal Products for Veterinary Use 

DC Direct current 

DEPT Distortionless enhancement by polarization transfer 

DoE Design of experiments 

DP Declustering potential 

EMA European Medicines Agency 

FDA Food and Drug Administration 

FET Fisher’s exact test 

FFT Fast Fourier Transformation 

FSH Follicle-stimulating hormone 

FWHM Full width at half maximum 

GnRH Gonadotropin-releasing hormone 

HCD Higher energy collisional dissociation 

H-ESI Heated electro spray ionization 

HMBC Heteronuclear multiple bond correlation 

HMDB Humane Metabolome Database 

HPLC High performance liquid chromatography 

HSQC Heteronuclear single quantum correlation 

IDA Information dependent acquisition 

ID ratio Identification ratios 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LC-HRMS Liquid chromatography coupled with high resolution mass spectrometry 

LDA Linear discriminant analysis 
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List of abbreviations 199  

Abbreviations Explanation 

MSEP Mean square error of prediction 

MU Measurement uncertainty 

NMC Number of missclassifications 

NMR Nuclear magnetic resonance 

NOAEL No observed adverse effect level 

NRCP National residue control plan 

NSAIDs Non-steroidal anti-inflammatory drugs 

OLS Ordinary least-squares regression 

Q Quadrupole 

QC Quality control 

QDA Quadratic discriminant analysis 

QqQ Triple quadrupole mass spectrometer 

PC Principal component 

PCA Principal components analysis 

PEC Predicted environmental concentration 

PFG Prolylphenylalanylglycine 

PLS-DA Partial least squares-discriminant analysis 

PNEC Predicted no effect concentration 

PRESS Predicted residual sum of squares 

PRM Parallel reaction monitoring 

RF Radiofrequency 

ROC Receiver Operating Characteristic 

RSD Relative standard deviation 

SDr Standard deviation of repeatability 

SDwiR Standard deviation of within-laboratory reproducibility 

SIM Selected ion monitoring 

SPE Solid phase extraction 

TOCSY Total correlation spectroscopy 

TOF Time-of-flight 

UCr Urinary creatinine 

UHPLC Ultra high performance liquid chromatography 

UNEP United Nations Environment Programme 

VICH Veterinary International Conference on Harmonization 

WHO World Health Organization 

WWTP Waste water treatment plant 
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