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Abstract

Understanding the phase structure of Quantum Chromodynamics (QCD) is still
one of the major goals in the theoretical and experimental research of matter under
extreme conditions. In this context, realistic spectral functions of vector and axial-
vector mesons are crucial for identifying signatures of possible phase transitions and
critical endpoints in the measured dilepton spectra.

In this thesis we calculate the spectral functions of the p and a; meson within the
Functional Renormalization Group (FRG) approach by using a recently proposed
analytic continuation procedure on the level of the flow equations. This is done
by employing low-energy effective two-flavor models for QCD in different exten-
sions in which we develop a new formalism to describe fluctuations due to massive
(axial-)vector mesons within the FRG. In particular, we study in-medium modifi-
cations of these spectral functions in different regions of the phase diagram within
the corresponding model where we focus on signatures for a chiral critical endpoint
and the restoration of chiral symmetry. Additionally, we calculate temperature- and
chemical-potential dependent electromagnetic spectral functions and present a new
procedure of solving analytically continued flow equations self-consistently. The fea-
sibility of this procedure is shown by calculating self-consistent spectral functions in
the O(4) model.

Zusammenfassung

Das Verstédndnis der Phasenstruktur der Quantenchromodynamik (QCD) ist im-
mernoch eines der Hauptziele in der theoretischen und experimentellen Erforschung
von Materie unter extremen Bedingungen. In diesem Zusammenhang sind realistis-
che Spektralfunktionen von Vektor- und Axial-Vektormesonen entscheidend fiir das
Identifizieren moglicher Phasentibergénge und kritischer Endpunkte in den gemesse-
nen Dileptonspektren.

In dieser Arbeit berechnen wir die Spektralfunktionen des p und a; Mesons
innerhalb der Funktionalen Renormierungsgruppe (FRG) mit Hilfe einer kiirzlich
vorgestellten Prozedur zur analytischen Fortsetzung auf Ebene der Flussgleichun-
gen. Hierbei benutzen wir effektive Niederenergie-Modelle fiir Zwei-Flavor-QCD
innerhalb verschiedener Erweiterungen, in welchen wir einen neuen Formalismus
zur Beschreibung von Fluktuationen durch massive (Axial-)Vektormesonen inner-
halb der FRG entwickeln. Insbesondere studieren wir mogliche Modifikationen in
diesen Spektralfunktionen in verschiedenen Bereichen des Phasendiagramms fiir das
entsprechende Modell, wobei wir unseren Fokus auf Signaturen fiir einen chiral-
kritischen Endpunkt und die Wiederherstellung chiraler Symmetrie legen. Zusét-
zlich berechnen wir elektromagnetische Spektralfunktionen in Abhéngigkeit von der
Temperatur und dem chemischen Potential und préasentieren eine neue Prozedur, um
analytisch fortgesetzte Flussgleichungen selbstkonsistent zu 16sen. Die Machbarkeit
dieser Prozedure wird anhand der Berechnung selbstkonsistenter Spektralfunktionen
im O(4) Modell gezeigt.
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Introduction

With nowadays state of knowledge, nature can be described by three fundamental
forces: the gravitational, the electroweak and the strong force. The latter two form
the widely accepted Standard Model of particle physics where it is the strong force
which is crucial for the description of matter under extreme conditions as observed
in compact stellar objects or expected in the early universe microseconds after the
Big Bang. Also the matter produced and studied in man-made relativistic heavy-ion
collision experiments can be described by the strong interaction.

The quantum field theoretical description of the strong force is called Quantum
Chromodynamics (QCD) and basically goes back to the 1950s and 1960s when it was
Gell-Mann [1,2] and Zweig [3] who proposed that baryons are bound states built
out of three constituents, called quarks. In order to describe the entire observed
hadron spectrum, e.g. the AT", an additional quantum number was introduced,
the color charge [4], according to which quarks appear in three different possible
states. In analogy to quantum electrodynamics (QED), the interaction of quarks
was then described within a SU(3) gauge theory [5] where the associated gauge
boson which mediates this interaction was called gluon. Since the SU(3) gauge
group is non-Abelian one direct consequence is that gluons also carry color charge
and thus interact among themselves.

It is the variety of theoretical features and consequences that makes QCD fasci-
nating and difficult to treat at the same time, from a theoretical as well as from
an experimental point of view. Here, one of the main features is the absence of
color charged objects in nature, called confinement. Consequently, quarks and glu-
ons only appear as colorless bound states at low energies, like in form of mesons or
baryons. The discovery of asymptotic freedom in 1973 by Gross, Wilczek [6] and
Politzer (7] revealed the second main feature of QCD. According to that, the in-
teraction strength of quarks and gluons becomes arbitrarily weak at high energies
resulting in essentially free particles. The scale-dependence of the QCD coupling «
reveals exactly these effects [8].

The understanding of a fundamental interaction also includes the knowledge of its
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Figure 1.1: Phase diagram of QCD in the plane of temperature and chemical poten-
tial. Figure by courtesy of D. Rischke.

behaviour at finite temperature and density. For the strong interaction the different
phases and properties expected from strong-interaction matter are usually illustrated
as a function of temperature and chemical potential in the QCD phase diagram, a
sketch of which is depicted in Fig.[I.1] Given its precise contours and features would
allow to understand many phenomena like the evolution of the early Universe which
would then correspond to trajectories through the phase diagram. Unfortunately,
due to the infamous sign problem the applicability of the non-perturbative ab-initio
approach of lattice QCD [9] is basically limited to the region of small chemical
potentials |[10,11]. Along the axis of vanishing chemical potential, lattice calculations
show a crossover transition from a hadron gas to the quark-gluon plasma (QGP)
phase with a crossover temperature of 7'~ 157 MeV |12]. The hadronic phase is
characterized by broken chiral symmetry and confined color states, whereas in the
quark-gluon plasma phase quarks and gluons are deconfined and chiral symmetry is
approximately restored in the light quark sector.

At intermediate and large densities various features and phases have been conjec-
tured so far [13-15]. At vanishing temperature and intermediate densities we have
the liquid-gas phase transition towards bound nuclear matter which represents a
first-order phase transition that ends in a second-order critical point at a tempera-
ture of approximately 15 MeV. At larger densities the chiral crossover transition is
expected to turn into a phase transition of first order where both transitions meet
in a chiral critical endpoint (CEP). Currently, a lot of effort is put into finding ex-
perimental evidence of this predicted endpoint. In the vicinity of this first-order line
there is also the conjecture of spatially modulated condensates, i.e. the existence
of inhomogeneous phases [16]. At very large densities one expects more exotic fea-
tures like color-superconducting phases characterized by Cooper pairing of quarks
in analogy to ordinary superconductivity [17,/18].

As lattice QCD is not applicable in these regions, the detailed theoretical ex-
ploration of the QCD phase diagram at finite chemical potential requires different
non-perturbative methods and a detailed understanding of the mechanisms of chiral
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symmetry breaking and confinement. Here, very promising are functional methods
such as Dyson-Schwinger equations (DSE) [19-25] or the Functional Renormalization
Group (FRG) (see Chapter [2)) which both are in principle applicable to the full QCD
phase diagram. Since tackling full QCD is very complicated, one often uses effective
models incorporating symmetries of QCD to get qualitative and also quantitative in-
sights. Throughout this work we will employ the Functional Renormalization Group
to mainly chiral symmetric two-flavor models for QCD (see Chapter [3)).

The experimental investigation of the QCD phase diagram requires very high
temperatures and/or densities and is therefore quite challenging. An overview of
the most important heavy-ion collision experiments aiming to probe the phase dia-
gram in specific regions is given in Fig. [I.I] Experiments at low densities and large
temperatures are performed at the Lagre Hadron Colloder (LHC) at CERN and
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
(BNL). Since in this region one has approximately the same number of particles
and antiparticles, these experiments are relevant for studying the QCD epoch of the
early Universe. Other experiments in the region at intermediate temperatures and
large densities are performed at the Japan Proton Accelerator Research Complex
(J-PARC), the Nuclotron-based Ion Collider fAcility (NICA) in Dubna and the Fa-
cility for Antiproton and Ion Research (FAIR) in Darmstadt. Here the questions of
the existence and location of a possible chiral critical endpoint become relevant.

In such collision experiments, electromagnetic probes like lepton pairs are the ideal
information carrier for the strong interaction as they escape the inner core of the
collision process almost untouched once they are produced. In this context, it is the
electromagnetic spectral function which links between the measured dilepton yields
and the theoretical access to understand and interpret the physical mechanisms.
Since vector mesons directly couple to these lepton pairs, the correct modelling of in-
medium (axial-)vector meson spectral functions, primary of the p meson, is crucial
for finding signatures for the restoration of chiral symmetry or a possible critical
endpoint in the measured spectra (see Chapter |5| for a more detailed introduction
on this topic).

The computation of real-time quantities like spectral functions or transport co-
efficients within Euclidean approaches to quantum field theory in general is very
difficult since one somehow has to perform an analytic continuation from Euclidean
space-time to the real-time framework. In practise, this analytic continuation proce-
dure is usually performed numerically on the basis of numerical, Euclidean datasets
using the maximum entropy method (MEM) [26(-28], Padé approximants [29] or
other numerical reconstruction methods [30]. As all these approaches rely to a high
degree on the quality of the numerical input data, a non-perturbative framework to
directly perform calculations in the real-time system would be very desirable. Here,
the Functional Renormalization Group provides an alternative and very promising
tool to carry out the analytic continuation in an analytic way without the neces-
sity of numerical reconstruction methods [31-33]. The applicability of this method
has been demonstrated in various recent studies [34-39], where mesonic and quark
spectral functions were calculated within low-energy effective models, recently even
self-consistently [40].

In this work, we follow the idea of these studies and aim at calculating p and ay
meson spectral functions within effective low-energy models for QCD. Therefore we
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1 Introduction

derive and solve flow equations for retarded (axial-)vector meson two-point functions
which are obtained by applying the FRG framework to an effective theory inspired
by the gauged linear sigma model (gL.SM) and an analytic continuation procedure
on the level of the flow equations. Here we consider different model extensions
and especially concentrate on the FRG formulation of fluctuations due to massive
(axial-)vector mesons. The related issue of defining covariant time-ordered products
for vector or in general tensor fields is known for a long time already and will
be resolved as part of the used effective theory by implementing the Stueckelberg
formalism for massive vector mesons. This ansatz is modelled in a way that at the
physical IR scale the associated modified Ward identity (mWI) is fulfilled and we
end up with a manifestly covariant and transverse vector meson Green function. In
order to investigate possible signatures for the restoration of chiral symmetry or a
chiral critical endpoint, we study the resulting p and a; meson spectral functions as
well as electromagnetic spectral functions at finite temperature and finite chemical
potential along the phase diagram of the corresponding effective model.

In an additional study, we present a numerical procedure of solving analytic con-
tinued flow equations self-consistently, even at finite temperature. This represents
an important technical step to resolve non-trivial structures in spectral functions
since in the usual truncation only the single-particle contributions of the particular
propagators contribute to the flow equations. To demonstrate the applicability of
this procedure we calculate the pion and sigma spectral functions in the O(4) model.

This thesis is organized as follows. In Chapter 2] we start by introducing the
Functional Renormalization Group as a non-perturbative method. Beginning with
a recapitulation of generating functionals and the derivation of the Wetterich equa-
tion, we will concentrate on flow equations for two-point functions including their
analytic continuation to real energies. We will also discuss numerical procedures
of solving flow equations. Basics of QCD and the quark-meson model as well as
the parity-doublet model as effective low-energy models will be discussed and intro-
duced in Chapter [3] Here we already present first results on the phase structure
of these models. In Chapter [f] we will then focus on the theoretical description of
(axial-)vector mesons by fundamental fields within effective theories and possible ex-
tensions. After a glimpse on the historic development we will introduce the gauged
linear sigma model with quarks where in particular we will discuss its treatment
within the FRG including the FRG formulation of fluctuating (axial-)vector mesons.
Results for temperature- and chemical-potential dependent p and a; meson spectral
functions as well as for electromagnetic spectral functions obtained within different
model settings will be presented and discussed in Chapter [f] In Chapter [] we then
introduce a numercial procedure for calculating spectral functions self-consistently.
As an example we will present results for mesonic spectral functions within the O(4)
model. We close this thesis by giving a summary and an outlook in Chapter [7}
The used notations and conventions are listed in App.[Al In App. [B] we give further
details on the derivation of flow equations including explicit expressions. Finally, in
App. [Clwe discuss further important properties of retarded two-point functions and
spectral functions.

As supplemental material we submit Mathematica notebooks in which all objects
and equations used within this dissertation are listed.
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While all results presented in this thesis are the original work of the author,
most of the results were achieved in collaboration with other authors. Results for
(axial-)vector meson spectral functions in Sec. were obtained in collaboration
with Fabian Rennecke, Ralf-Arno Tripolt, Lorenz von Smekal and Jochen Wambach,
published in [41,42]. Results for the parity-doublet model in Chapter |3} the formal-
ism of fluctuating (axial-)vector mesons in Sec. as well as spectral functions
presented in Sec. [5.2.2] and Sec. [5.2.3] were obtained in collaboration with Lorenz
von Smekal, results for electromagnetic spectral functions in Sec. together with
Ralf-Arno Tripolt, Naoto Tanji, Lorenz von Smekal and Jochen Wambach, pub-
lished in [43]. Finally, Chapter [] is based on the collaboration with Nils Strodhoff
and Lorenz von Smekal.
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The Functional Renormalization Group

The Functional Renormalization Group (FRG) provides a powerful tool addressing
in particular non-perturbative effects in statistical physics and quantum field theory,
see , for general reviews. The basic aim in this framework is to understand
and calculate macroscopic properties of physical systems from a given microscopic
theory where the applicability ranges from condensed matter physics and quan-
tum gravity [52-56] to QCD [57-60].

As central object, Wetterich, the pioneer of this approach, introduced the so-
called effective average action I'y, as generalization of the quantum effective action I'
. With the introduction of the scale parameter k, this effective average action
I'y, interpolates between a chosen bare classical action Sg = I'p given at a cutoff
scale A and the full quantum effective action I' = I'y_,g where all quantum and
thermal fluctuations are included. Technically this procedure follows the Wilsonian
approach to renormalization where quantum effects are included by integrating out
fluctuations momentum-shell by momentum-shell. This is achieved by introducing
the so-called regulator function Ry which suppresses low-momentum fluctuations
such that I'y only includes fluctuations with momenta larger than k.

The change of I'y, when changing the scale k is described by the Wetterich equation,
an exact flow equation which, together with the specification of the bare action at
the UV scale, can be used as definition of a quantum field theory. Since this equation
cannot be solved analytically in a closed form, one has to use truncations to approx-
imate the full solution numerically. Here, one advantage of the FRG framework is
the versatility of truncation schemes which can be constructed in a systematic way
guided by the concrete physical setup and the numerical stability.

We start this chapter by recapitulating the concept of generating functionals in
quantum field theory and by deriving the Wetterich equation in Sec. In Sec.
we will focus on two-point functions where we first discuss the Euclidean flow and
afterwards present the analytic continuation procedure towards flow equations for
retarded two-point functions. We close this chapter by discussing the numercial pro-
cedure for solving flow equations including possible truncation schemes in Sec.
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2 The Functional Renormalization Group

2.1 The Effective Average Action

2.1.1 Generating Functionals and Statistical Physics

We start this section by recapitulating the concept of generating functionals in Eu-
clidean quantum field theory, for simplicity we only consider a real scalar field the-
ory [46].

An efficient way of storing all information about a given quantum field theory is
to calculate the generating functional of all correlation functions

Z[J] = /Dcp e Slelt [ Je (2.1)

with S[p] being the classical action and J a so-called source term. The integral is

performed over all field configurations. By functional differentiation with respect to

the source term one has access to all correlation functions which are then defined as
1 o"Z|[J]

(o) elen)) = 701 5T 0w

In order to get rid of the disconnected Feynman diagrams one introduces the so-

called Schwinger functional W[J]| which is the generating functional providing all
connected Feynman diagrams, given by the logarithm of Z[J],

(2.2)

J=0

W[J]=InZ[J] =In (/ Dy e Sletf J%D) . (2.3)

An even more suited way of encoding the same information is to perform a Legendre
transformation of the Schwinger functional which is then called effective action T,
generating only one-particle irreducible Feynman diagrams,

I(g] = / Jo— W), (2.4)

where ¢ now represents the classical field given by the field-expectation value in the
presence of a source term,

Bla) = (p(@), = 5 (25)

The strength of a description in terms of generating functionals is the apparent
analogy to statistical physics [62]. In this analogy, the generating functional Z[J]
plays the role of the partition function describing a macroscopic system in statis-
tical mechanics, the Schwinger functional W[J] corresponds to the Helmholtz free
energy. The effective action as Legendre transform of W[J] can finally be identified
with the Gibbs free energy. Evaluating the effective action at a constant field ¢const
(independent of z) and using that ' is an extensive quantity in a thermodynamic
sense gives

F[¢C0nst] =U- Ueff((z)const) . (26)

The effective action is up to a volume factor U proportional to the so-called effective
potential Usg. Evaluated at its minimum, U.g can in the language of statistical
mechanics be identified with the grand potential per volume sometimes also called
the Landau free-energy density. From this, many thermodynamic quantities of the
theory like pressure, entropy density or particle densities can be read off.
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2.1 The Effective Average Action

2.1.2 The Wetterich Equation

The basic objects of the FRG are the effective average action I'y, as generalization of
the effective action introduced in the last section, Sec. and its exact flow equa-
tion, the Wetterich equation which will be derived in the following. For clarity and
simplicity we make this discussion with real, scalar bosonic fields, the generalization
to general (non-scalar) bosonic and fermionic fields is in principle straightforward
and will be addressed at the end of this section. As a last remark, from now on
the trace is always meant to be a trace over all internal indices together with an
integration over the internal momentum.

In order to construct 'y one first requires that at the UV cutoff scale k = A it
corresponds to the bare classical action and at the IR scale & — 0 one recovers the
full quantum effective action,

Cp=p = Sau, Fpso=T. (2.7)

Technically this can be achieved by inserting a k-dependent term into the definition
of the generating functionals,

Z0ld) = &) = [ D exp (=86 - asilel + [ Te). (2.8)

where the extra IR cutoff term is quadratic in the field and can be interpreted as
momentum and k-dependent mass term, more explicitly given as

D
ASilel = 5 [ i PO Ru(@ela). (2:9)

The regulator function R (q), which in general is matrix-valued, can in principle
be chosen arbitrarily but has to obey the following three properties such that the
requirements in Eq. (2.7) are fulfilled:

1. For ¢%/k* — 0 the regulator stays finite, implementing an IR regularization.

2. For k?/q? — 0 the regulator vanishes such that for k — 0 one recovers the full
quantum effective action I'.

3. For k — A — oo the regulator diverges. In this case one can use the saddle-
point approximation and I'y reduces to the classical action 5.

Typical regulators fulfilling these requirements are exponential ones or the one pro-
posed by Litim [63] called Litim regulator,
2
RPP(q) ~ e RFU™(q) ~ (2 - ) O(K* — ¢?). (210
k() ey T i) ~ (k7 = q7) Ok — ¢°) (2.10)

In Fig. it is illustrated how the regulator and its derivative implement the prop-
erties discussed above.
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2 The Functional Renormalization Group

Figure 2.1: Plot of a typical regulator function Rj serving as additional mass for
fluctuations with momentum smaller than k&, and of the peaked regulator
derivative 0; Ry = kO Ry, implementing the momentum-shell integration
(from [64]).

We can now study the k-trajectory of the generating functionals. For the modified
Schwinger functional Wy [.J] we obtain

OWilT) =~ [ Do (0u88,1e]) exp (=S¢l — ASelel + [ 7 )
= — (O ASH),

= - <;/(;lg3¢(—Q)8kRk(Q)w(Q)>J : (2.11)

where the expectation value of a functional A[y] in the presence of a source term J
is defined by

(Algl)y = 77 TH(Ale] ZL7). (212

With the definition of the connected propagator

(82w,
Grp) = <5J5J> (p) = (p(=p)¢(p)) ; — (p(=p)); (pP)),;

(o(=p)ed)); — S(—p)o(D), (2.13)

we can express Eq. in terms of this propagator which leads to
1 dPq
OWilT) =~ [ 5 OuRu@)Gala) + 6(-0)DTuo(a)

D
N _% / (;l7r)ql> (OrRi(0)Gr(q) + OuASklg]) - (2.14)

18



2.1 The Effective Average Action

At this point we come back to the scale-dependent version of the effective action,
defined via a modified Legendre transformation

Tld] = [ 76— WilJ] - ASulg] (2.15)
From the functional derivative of I'j, with respect to the field
oLle]

the functional derivative of the source is obtained by

o) _ OTk[d] r) = (T@ x
5oly) ~ So(m)sla) TV = (T3716] + Be) (2,9). (2.17)

Here we introduced the notation for the scale-dependent 1PI n-point functions,

6"k [¢)]
() ... 0¢(x1)
Performing the functional derivative of the field with respect to the source and
exploiting Eq. yields

0p(x) _ 6°WilJ]
8J(y) 8 (y)dJ(x)

which is the above defined connected propagator in position space. Finally we can

compare Eq. (2.17) and Eq. (2.19) to find the following,

(z1...7p) (2.18)

e

=Gz —v), (2.19)

6@ [ op, () d6(x)
=9 =570 = | 7 s 5
_ / Pz’ (TP[g] + Ry) (@, 2') Gz’ — ) (2.20)
= Gt = (07 [6]+ Ry (2.21)

Y

Figure 2.2: Schematic plot of the flow of the effective average action in theory space.
After specifying the initial form of I'y, the resulting effective action I'
is unique whereas the precise k-trajectory depends on the choice of the
regulator Ry (from [64]).
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2 The Functional Renormalization Group

The inverse of the k-dependent propagator GG is just given as the sum of the two-

point function Fl(f) and the regulator function Ry.

We can now put all considerations together to finally obtain the flow equation for
the effective average action,

OTuld) = [ (@10~ 0L - 050
= —OpWi[J] — OLASk (4]

D
;/(sﬂ)qD Ok Ri(q) Gr(q)

% Tr {&Rk (F,(f) (9] + Rk)_l] : (2.22)

A schematic plot of the flow of T'y, described by Eq. (2.22) is illustrated in Fig.
In general, the field ¢(q) represents bosonic and fermionic Grassmann valued fields

with arbitrary substructures, generically indicated by ¢(q) = (B(q), F(q), F (—q))T
The corresponding two-point function and regulator in field space then look like

2
, Fl(c,)BB 0 (20) Ry BB(q) 0 0
I (g.p)=| 0 0 Tpp | Rl = 0 0 Ry, pr(a)
o 1@ 0 0 Ry pr(q) 0

Since the bosonic and the fermionic elements do not mix, the Wetterich equation,
Eq. (2.22)), decomposes into a bosonic and a fermionic part. With the relation

FI(CQ;F = _(Flizl)f“F)T we can rewrite Eq. (2.22)) as

1 —1 —1
Ol = 3 Tr [akR;@B (FI(CZJ)B’ + Rka) ] —Tr {8}€Rk7F (Fl(f,;«“ + Rk,F) ]

)

1 1
= 3 STr {&CR;@ (F](f) + Rk) } . (2.23)

Here one sometimes uses the notation STr which means a trace together with the
fermion factor -2. The usual diagrammatic representation of this equation is shown
in Fig. 23] Formally this equation has a one-loop structure but it is an exact
equation with fully dressed propagators in the loops.

/’.\
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1
I'y= =
ak k 2 . )

Figure 2.3: Diagrammatic form of the flow equation for the effective average action,
Eq. . The dashed blue line is associated with bosonic propaga-
tors, the solid black line with fermionic propagators, the crossed circles
represent regulator insertions O Ry.
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2.2 Flow Equations for Two-Point Functions

2.2 Flow Equations for Two-Point Functions

2.2.1 Euclidean Flow and Particle Masses

As already mentioned, all information about a quantum field theory is encoded in
the effective action I' or equivalently in its functional derivatives, the n-point vertex
functions ™). Flow equations for these n-point functions can be derived by taking n
functional derivatives of the Wetterich equation, Eq. , with respect to specific
fields. As our main goal is to compute spectral functions we will in the following
focus on flow equations for two-point functions.

Taking two functional derivatives of the Wetterich equation with respect to the
fields ¢; and ¢; we find the following general structure,

62 @)
5 =0
5165 () HI = Ol )

= STr { Dati(4) T4} (9, @) Deas(a =) T 1 (p,0) Degila)}

1
— ST { Du(@) T3}, 1 (9) Deanla) } - (2.24)

In this expression we applied momentum conservation such that I’,(:’) and I’l(;l) only
depend on the loop momentum ¢ and on the in- (and out-) going momentum p, the
momentum-dependent contribution is meant to be symmetrized in +p. Furthermore,
we used collection indices for particle species and internal structures like color or
isospin. The scale-dependent regulated Euclidean propagator in general is defined
by

_ (7® -

Dicija) = (T (a) + Ri(a)) - (2.25)
The structure of Eq. (2.24)) is shown in the usual diagrammatic form in Fig.[2.4] The
explicit form of the involved objects depends on the employed model, see App. [B]
for explicit expressions used in this work.

I ~ —~

NI =

Figure 2.4: Diagrammatic form of the structure of flow equations for two-point func-
tions. The left momentum-dependent loop involves three propagators
(solid internal lines) and two three-point vertices (black dots). The right
momentum-independent tadpole involves two propagators and one four-
point vertex.
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2 The Functional Renormalization Group

Euclidean masses and pole masses

From the Euclidean two-point function we can straightforwardly define the Euclidean
(curvature) mass as the momentum independent part of it, evaluated at the physical
point in field space ¢ = ¢y,

m3)? =T (p=0;6 = ¢) . (2.26)

This is the only mass definition which is accessible within the Euclidean framework
and can be seen as physical model-parameter rather than as physical mass. In a
simple O(4) symmetric model we have for example,

m2 = TERE(0) = 20, (2.27)
m2,, = TE07(0) = 2Uf + 462 UY (2.28)

with U] and U}/ being derivatives of the effective potential with respect to ¢?. This
relation of the zero-momentum limit of the Euclidean two-point functions to field-
derivatives of the effective potential is a non-trivial statement following from our
truncation scheme and reflects the thermodynamic consistency of the used ansatz,
cf. Sec.2.3.1]

The pole mass as physical mass is defined as the zero of the analytically continued
two-point function,

T E(imP 5=0)=0. (2.29)

While for stable particles this zero is located on the Minkowski axis corresponding
to a real mass mP, for resonances it lies on the unphysical or second Riemann sheet
and is consequently in general complex-valued.

Throughout this work we define the pole mass as zero crossing of the real part
of the retarded two-point function Ff)’R, which for stable particles agrees with the
physical pole mass and for unstable particles is a good approximation if the width of
the resonance, i.e. the imaginary part of I‘,(f)’R, is sufficiently small. In this case the
pole mass locates the position of the peak of the resonance, at least approximately,
whose width is given by the imaginary part of the zero of the retarded two-point

function F,(CQ)’R on the second Riemann sheet.

2.2.2 Analytic Continuation of Flow Equations

To extract physically valuable information like pole masses, decay widths or in gen-
eral real-time observables like spectral functions and transport coefficients from the
Euclidean FRG framework one has to perform an analytic continuation to Minkowski
space-time. This analytic continuation is a very general problem in mathematics and
theoretical physics and describes in its very general definition the extension of some
holomorphic function to a larger subset in the following way [65].

Let U and V be two open, arcwise connected sets in the complex plane with U C V

and f: U — C, F : V — C being holomorphic functions. If f(z) = F(z)Vz € U

then F' is called analytic continuation of f and is uniquely defined.
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2.2 Flow Equations for Two-Point Functions

In Euclidean approaches to quantum field theory one usually computes Euclidean
correlators on discrete, imaginary Euclidean frequencies ipg,. In this case, an an-
alytic continuation is in general not well defined since one only knows the function
at discrete points and the function usually is not unique such that there seem to be
infinite possibilities for a continuation. However, if the function is analytic off the
real axis and goes to zero if the argument approaches infinity it can be shown that
there exists a well-defined, unique analytic continuation (Baym-Mermin boundary
conditions) [66]. In practical calculations one usually performs this analytic continu-
ation procedure towards real frequencies numerically, for example with the maximum
entropy method (MEM) [26/-28] or Padé approximants [29].

In the FRG framework, however, it is possible to perform this analytic continu-
ation procedure with the correct boundary conditions analytically, on the level of
the flow equations. In the present case we want to allow the Euclidean two-point
function I'(?)F (ipo,n) to be evaluated at real continuous frequencies w in order to
obtain the retarded two-point function in Minkowski space-time, F(Q)’R(w). Here we
can use the simple one-loop structure of the FRG flow equations and let us guide
by finite temperature perturbation theory where this can be done well-defined and
on the level of the equations [67]. Transferred to FRG flow equations for two-point
functions these steps read [33}34]:

1. Exploit the periodicity of bosonic and fermionic occupation numbers with re-
spect to external imaginary bosonic or fermionic Matsubara frequencies,

nB(E + ipom) — nB(E) s nF(E + ip(),n) — nF(E) . (230)

2. Replace the discrete Euclidean frequency by a real, continuous frequency w,

T w, 5) = = lim T (g = —i(w +ie), 7). (2.31)

In this way we obtain flow equations for retarded two-point functions out of the
corresponding Euclidean ones discussed in Sec. [2.2.1] For the retarded propagator
DR(w) given as the inverse of the retarded two-point function one can then define
the so-called spectral density or spectral function p(w,p) as imaginary part of it [68],

p(w, F) = —%Im DR(w. 7) | (2.32)

or equivalently in terms of the real and imaginary part of the retarded two-point
function,

1 Im TR (w, p)
T (Re'@R(w, ﬁ)) (Im @R (w, ﬁ))

This spectral function will be the basic object in this work. It contains the whole
spectrum of a given theory including information like pole masses, decay widths
and possible decay channels and is therefore important for the calculation of various
observables like the shear-viscosity or other transport coefficients [69,/70]. Using

plw,B) = (2.33)
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p(w) p(w)

9 )

w=Mmy, w=m, w=2my,

Figure 2.5: Schematic spectral functions of a neutral pion: The spectral function of
a stable pion is given by a delta function concentrated at the pole mass
(left). For unstable pions the sharp delta peak gets a finite width and
height (right). Possible decays in other particles give rise to contributions
at larger frequencies.

the Lehmann spectral representation one also has access to all types of propagators
(retarded, advanced and Euclidean),

Df(w,p) = _/OO - p(w', 1), (2.34)

/
oo W —w — i€

DAw,f) = —/OO _ W ), (2.35)

oo W —w e

DEu ) = [ e el (236
0, = . w, . .
bo,p oo &+ ipo p

The spectral function has some important properties. It is antisymmetric in w
and symmetric in p),

p(w, *ﬁ) = ,O(U-),ﬁ) ) p(*wvﬁ) = *P(w,ﬁ) ) (2'37)
for physical particles it obeys the positivity condition
sgn(w) plw, 7) = 0, (2.39)

and it is normalized to one
o0
/ dw' W' p(W',p) =1. (2.39)
—o0

In Fig. a schematic representation of typical spectral functions is depicted. While
in a free theory the total spectral weight is concentrated on the pole mass of the
particle (left picture), interactions can modify the shape, leaving the integrated
weight constant (right picture). The spectral function of a free particle is thus given
by a delta peak concentrated on the pole mass of the particle,

p(w,p) =sgn(w) Z 6(w2 T m2) , (2.40)

with wavefunction renormalization Z. While in a free theory we have Z = 1, interac-
tions lead to a decrease of Z in favor of additional terms in the spectral function, for
example decay thresholds, which then receive fractions of the total spectral weight.
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2.3 Truncation Schemes and Numerics

2.3.1 The Derivative Expansion

In practice, the flow equation for the effective average action Eq. and its
functional derivatives Eq. can neither be solved analytically nor numerically
in a closed form. In the following we will discuss truncation schemes and numerical
methods towards an approximate solution. The first step is to make an ansatz for
the structure of the effective average action I'y,. Here, one possibility is an expansion
in terms of 1PI vertex functions '™, the so-called vertex expansion,

MDY % /d%1 o dPa, T (2, ) B) - () - (2.41)
n=0 """

Inserting this ansatz into the Wetterich equation, Eq. , one obtains flow equa-
tions for the vertex functions F,(j) resulting in an infinite tower of equations which
thus has to be truncated at finite order. This scheme is used for example in [71},72],
where an error estimate is possible by increasing the expansion order and look for
apparent convergence.

Another systematic truncation scheme is the so-called derivative expansion as
expansion in powers of derivatives or momenta in momentum space. For a scalar

field ¢ this ansatz has the form

Tulg] = [ a0 {Un(6) + 324(0) (000 + $%4(0) (0,67)" + 00N} (242

To lowest order of this ansatz, which is referred to as local potential approzrimation
(LPA), only the scale-dependent effective potential Uy and the kinetic term is taken
into account while the wave function renormalization Zj is set to one and Y}, is
set to zero. An extension of this simple truncation, for example by including field
independent Z,’s to dress the momentum dependent part, is called LPA’ in the
literature. The derivative expansion is suitable for describing critical phenomena
as usually the order parameters explicitly show up as variables. Considering the
O(n) model for example, already the LPA ansatz gives rather accurate results e.g.
for critical exponents [73]. Via model extensions towards the quark-meson model,
this LPA ansatz also provides first qualitative insights into the phase structure of
QCD [74,|75]. For this reason we will mainly use the LPA approximation in this
work.

Using the derivative expansion also results in an infinite tower of equations since
in the flow equation for Flgn) there always appear vertices up to T,(;H'Z). In order
to render this system of equations finite we will extract the k-dependent two-point
functions F,(f) as well as the vertex functions I‘f’) and F,(:l) from the LPA ansatz
in Eq. which gives a closed system of equations. More involved truncation
schemes are the expansion of vertex functions in external momenta [76}/77] or back-
coupled self-consistent solutions of Euclidean flow equations [78] and of analytic
continued flow equations towards the computation of self-consistent spectral func-
tions [40]. Here we refer to Chapter [6] where we come back to this issue and present
an alternative framework to calculate self-consistent spectral functions at finite tem-
perature.
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2 The Functional Renormalization Group

2.3.2 Numerical Procedure

With a given ansatz for the effective average action, the Wetterich equation pro-
vides a set of complicated, coupled differential equations which cannot be solved
analytically and hence requires numerical methods. Inserting the LPA ansatz for
the effective average action into the Wetterich equation gives a partial differential
equation for the effective potential as it depends on the momentum scale k, the field
invariant ¢?> = p and respective derivatives of the effective potential with respect
to p,

OkUx(p) = Flow [k, p, Uy (p), Uy (p)] - (2.43)

In the following we present two common techniques in order to solve these types of
equations, namely via a Taylor expansion or with the so-called grid method.

Taylor expansion

One possibility of solving Eq. (2.43) is to first make a Taylor expansion of the
effective potential in powers of the invariant p around an, in general k-dependent,
expansion point pg up to order N,

N
Uk(p) = Z
n=0

with scale-dependent expansion coefficients Ay ,,. With the constraint that the ex-
pansion point pg is the physical minimum, defined via

9
o
_1/2>

we find for the first expansion coefficient A\;, = ¢/(2p,'”). Here co accounts for
the explicit symmetry breaking in the case of a scalar field in the O(4) notation
¢ = (0,7)7. We now can make an expansion also for the flow of Uy in the same
manner,

Ak Cn
K () — ) (2.44)

=0, (2.45)
P=Pk

(Uk(p) — co)

n), -
Ur(p) = ivz M

n=0

and insert the ansatz from Eq. (2.44) to obtain flow equations for the expansion
coefficients Ay, ,,, given by

o= (2.4

DAk = UL (1) + A1k Ok - (2.47)

In this expression, 9,U ") (pr) denotes the n-th derivative of the Wetterich equation
with respect to p evaluated at pg, which for a large expansion order gets increasingly
complicated. However, one advantage of the Taylor method is the comparatively
small number of equations and the resulting numerical efficiency. On the other
hand, phenomena like first-order phase transitions are difficult to dissolve in this
approach as the order in the field is limited by the expansion order.

The Taylor expansion method is widely used in the FRG community [47,61] and
can of course also be applied to other scale dependent objects like wave function
renormalization factors Zj, two-point functions or vertex functions F,(cn) [38].
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2.3 Truncation Schemes and Numerics

Grid method

Another common method of solving partial differential equations like Eq. is
to discretize specific dependencies such that the original differential equation turns
into a set of coupled, ordinary differential equations, one for every discretization
point. The derivatives in these directions can then be performed numerically by
finite differences. In our case we discretize the effective potential Ug(p) in field
direction so that we obtain the following system of coupled differential equations,
each on a fixed field value p;,

Uy(p1) = Flow [k, p1, Uy (p1), Uy (p1)]
OUp(p2) = Flow [k, pa, Uy (p1), Uy (p2)]

OUk(pn) =Flow [k, pn, Up(pn), Uy (pn)] - (2.48)

Since in this method the full field-dependence of the effective potential is taken
into account, it is usually numerically more expensive in comparison to the Taylor
method where only the scale-dependent minimum pj is considered. This general
field-dependence is also the strength of the grid method as in principle interaction
terms of arbitrary high orders in the fields can be generated during the flow, in
contrast to a finite expansion order in the Taylor expansion scheme. Because for
this reason it is better suited to describe for example first order phase transitions
we will employ the grid method in this work.

Having set up a grid for Uy, with usually 60-100 gridpoints, one can gradually solve
the resulting coupled system of equations in k& with standard methods. Here one
should ensure that the flat region of Uy, including the k-dependent physical minimum
pok lies always within the covered grid domain, p1 < por < pn. After adding the
explicit symmetry breaking term co at the IR scale, the physical minimum py and
the Euclidean particle masses can be directly read off.

Flow equations for retarded two-point functions can then, after the analytic con-
tinuation procedure of their Euclidean counterparts (as described in Sec. , be
solved on the k-solution of the effective potential and possible other scale-dependent
objects like vector meson masses and wave-function renormalization factors. Here we
also use the grid method for solving the real and imaginary part of the retarded two-
point functions separately on fixed field values, typically the IR minimum pg 0.
From that, temperature- and chemical-potential dependent spectral functions can
be computed with Eq. . For more details concerning explicit flow equations,
the numerical procedure or parameter choices we refer to App. [B]

27






QCD and QCD-Effective Models

To gain insights into non-perturbative phenomena like chiral symmetry breaking
or the confinement-deconfinement transition, the construction of effective models
resembling symmetries and properties of QCD has a long tradition. Common to all
these models is to impose specific symmetries present in QCD and to restrict the
degrees of freedom in a certain way. The latter can be done e.g. by limiting the
number of quark flavors or by introducing effective degrees of freedom, for example
meson or baryon fields.

There are several models on the market which have also been investigated within
the FRG approach. The underlying model used in this work is the so-called quark-
meson model, a chirally symmetric low-energy model of QCD with two flavors
including the sigma meson and the pions as scalar mesons and quark-antiquark
fields as fermions which enables to study spontaneous chiral symmetry breaking,
see for previous FRG studies on this model. To describe the confinement-
deconfinement transition, the quark-meson model can be extended by means of in-
troducing a gauge field and a Polyakov loop potential, then called Polyakov-quark-
meson model, see .

A chirally invariant way of describing nucleons in such two-flavor models leads to
the concept of parity-doubling and the so-called parity-doublet model, see for
a general review and for a first FRG study. Here the difficulty is to ensure
the nucleons to have a finite mass in the chirally symmetric phase, in contrast to
fermions described by quark-meson-type models.

After recapitulating basics of QCD in Sec. we will introduce the quark-meson
model as well as the Polyakov extension and show first FRG results in Sec. [3:2] In
section Sec. we will then focus on the parity-doublet model. Here we will discuss
the idea of parity doubling and present FRG results also for this model.
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3.1 Basics of QCD

Quantum Chromodynamics (QCD) is the field theoretical description of quarks and
gluons, the fundamental degrees of freedom of the strong interaction. The corre-
sponding Lagrangian consists of a matter sector with Ny quark flavors with current
quark mass my, which is coupled to a gauge sector with non-Abelian gauge group
SU(3), related to N, = 3, the number of color charges,

Locp =Y Up (1D —me) vy — %FLZVF“W- (3.1)
f

Here, we introduced the covariant derivative D, = 8, — igT*Aj, and the gluon
field strength tensor Fj, = J,A7 — O, A} +g fabcAZAﬁ, with gauge coupling g,
the generators of the gauge group 7, the gluon fields Aj, being in the adjoint
representation of SU(3), and the SU(3) structure constants f.

As QCD is a gauge theory, its Lagrangian is invariant under local gauge transfor-
mations U(x) € SU(3),

P(z) = U(x)y(z), Ay(x) = Ulx) <Au(x) + ;%) Ul(z). (3.2)

The non-Abelian character of this gauge group also allow for gluonic self-interactions,
see for example [86] for a detailed introduction to Quantum Chromodynamics.

In the low-energy regime of QCD there are two prominent non-perturbative effects
on which we will focus in the following: chiral symmetry and confinement.

Chiral symmetry

For vanishing quark masses m; — 0, also called chiral limit, the QCD Lagrangian in
Eq. is invariant under the independent transformation of left- and right-handed
quark fields ¢y /p = %(1 + v5) ¢ of the form Uy /r /g with Ur/gr € U(Ny). The
resulting flavor symmetry U(Ny)r x U(Ny)r can be decomposed in the form

U(Ng)r x U(Ny)r =U(Q)y x SU(Ny)y x SU(Ny)a xU(1)a, (3.3)

where the indices V' and A refer to vector and axial-vector, relating to the Lorentz
transformation properties of the associated conserved currents.

The exact global symmetry U(1)y implies the conservation of baryon number
and is also realized for finite quark masses, the axial symmetry U(1)4 is broken by
quantization, referred to as azial anomaly [87]. The remaining chiral symmetry
SU(Nys)y x SU(Nyf)a is in the ground state spontaneously broken to SU(Ny)y
signaled by a non-vanishing chiral condensate (1)1)). The latter also gives rise to
N}% — 1 massless Goldstone bosons. One direct consequence of this spontaneous
chiral symmetry breaking is the absence of degenerate masses of parity partners in
the vacuum. Spontaneous chiral symmetry breaking also generates the largest part
of the hadron masses as the current quark masses, especially of up and down quarks,
are much smaller than their constituent ones.

Due to these finite current quark masses in QCD, chiral symmetry is also explicitly
broken. Here it can only be treated as approximative symmetry for Ny = 2, where
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the mass differences and the masses of up and down quarks itself are small compared
to the typical QCD scale Aqcp (cf. partially conserved axial current [88]). The pions
as associated Goldstone bosons are no longer massless and are therefore often called
pseudo-Goldstone bosons. The pion mass and its decay constant can be related with
the bare quark masses and the chiral condensate by the Gell-Mann-Oakes-Renner
relation [89].

Confinement

Another prominent phenomenon is the absence of colored states in the low-energy
regime of QCD, known as confinement. The emerging symmetry in the gauge sector
for static, thus infinitely heavy quarks is the so-called center symmetry. It describes
the invariance of the gauge sector of the QCD action with respect to transformations
of the form U(t+ 1/T,Z) = hU(t, %), with h € Z3 being in the center of the gauge
group SU(3). In contrast, the so-called Polyakov loop defined by

O(z) = ]\1ch1"C lP exp (i /05 dTA()([E))] , (3.4)

with P denoting the path ordering of the exponential, transforms non-trivially under
these Z3 transformation, namely ®'(x) = h®(z). It can further be shown that the
thermal expectation value of the Polyakov loop provides a connection to the free
energy of a static test quark,

Q) = (P(z)) ox exp (—Fy) . (3.5)

If color is confined and hence the free energy of a static test quark is infinitely large
we have &3 = 0, whereas for deconfined color sources with a finite free energy we
have &y > 0. The expectation value of the Polaykov loop defined in Eq. thus
serves as an order parameter for the confinement-deconfinement phase transition.
The same arguments hold for an antiquark where in this case the order parameter
is usually denoted by ®.

As dynamical quarks break center symmetry explicitly, this symmetry as well as
the connection to confinement is only well-defined in the limit of infinitely heavy
quarks, analogously to the explicit chiral symmetry breaking discussed above. Con-
sequently, the phase transitions for finite temperature turn into smooth crossover
transitions in both cases.

3.2 Quark-Meson Model

3.2.1 Model Construction

The quark-meson model represents a bosonized low-energy effective model for QCD
with two quark flavors incorporating the chiral aspects of full QCD. As linear realiza-
tion of chiral symmetry it has its origin in the so-called linear sigma model [90-92].
Since the chiral phase transition of QCD with two flavors of massless quarks is ex-
pected to lie in the O(4) universality class as long as U(1)4 remains anomalously
broken at the transition in this limit [93,/94], these types of models can provide
qualitative insights into the corresponding critical phenomena also of full QCD.
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For Ny = 2 we have the up and down quark as fermions and the sigma meson
and three pions as scalar mesons with ¢ = 11 being the scalar iso-singlet and
7 = ipTys51) being the pseudo-scalar iso-triplet state usually denoted in the O(4)
notation ¢ = (o, ﬁ)T. By applying the chiral transformations

SUQ2)y : ¢ — €%y | SU(2) 4 : 9 — 1570y (3.6)

to these states, it turns out that only the combination p = ¢? = 02 + 72 is chirally
invariant. From that one can construct the following chirally invariant Lagrangian
of the quark-meson model (in Euclidean space-time)

Loy = (@ +h(o+i77ys)) 9 + %(au¢)2 + U(¢?). (3.7)

The first part contains the kinetic term for the quark-antiquark fields as well as the
coupling to the mesons via the Yukawa coupling h. Since the sigma meson is coupled
to a scalar combination of the quark-antiquark fields and the pions to a pseudo-scalar
one, this interaction term is also chirally invariant. Here, a finite expectation value
of the sigma field og = (o) serves as quark mass term, i.e. m, = hog, where from
the Goldberger-Treiman relation it follows that the vacuum value of og coincides
with the pion decay constant fr [88] (in the LPA truncation). We note that oy
as an order parameter for spontaneous chiral symmetry breaking in these types of
models is proportional to the chiral condensate <1Z¢> introduced in Sec.

The second part of Eq. consists of the usual kinetic term for bosonic fields
and an effective potential U(¢?) containing mesonic self-interaction terms of in prin-
ciple arbitrary order in the chirally invariant p. To exhibit spontaneous symmetry
breaking, this polynomial potential has to have its minimum at oy = f in the vac-
uum, cf. the so-called mexican hat potential |[88]. In order to also account for a
finite current quark mass one adds an explicitly symmetry breaking term co to the
Lagrangian in Eq. which is a bosonized version of the current quark mass term
mwﬁw in the QCD Lagrangian. This also results in a finite mass for the pions as
pseudo-Goldstone bosons where the parameter ¢ is usually chosen to reproduce the
physical pion mass.

Flow equation for the effective potential

To employ the quark-meson model within the FRG framework, we perform a deriva-
tive expansion to lowest order as an ansatz for the effective average action and include
the terms which are consistent with chiral symmetry. It follows that

Ty = /d4:r {0@ =m0 +h(o+i77%) ¥ + %(aqu)? +Uk(#%)}, (3.8)

where we introduced the quark chemical potential i in the standard way, temper-
ature is included via the Matsubara formalism, cf. App. [A] In this simple LPA
ansatz, the effective potential is the only scale-dependent quantity, see Sec. [2.3.1]
By inserting this ansatz into the Wetterich equation, Eq. , in combination with
a three-dimensional version of the Litim regulator, cf. App. one obtains the
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flow equation for the effective potential,

k! 1+2nB(Eak> 3 <1+2nB(E7rk))
Uy = : :
Wk 1272{ Eq i - Er
ANt N,
T (e (B = 1)~ me(Eop t ) | (39)

where np and np are bosonic and fermionic occupation numbers. The minus sign
in front of the fermionic part is crucial for generating a non-vanishing expectation
value og at intermediate scales.

In the numerical calculation we start with the following initial form of the effective
potential at the UV scale A = 1500 MeV,

Up=r(¢) = b1 ¢* + ba ¢* . (3.10)

The explicitly symmetry breaking term co does not contribute to the flow of Uy
and is therefore only added at the IR scale kg = 40 MeV, after solving the flow
equation. Here one can also read off the energies and the Euclidean masses of the
sigma meson, the pions, and the quark-antiquarks, which are defined as follows

E e =myy + k> =2Ui(p) +4pUf(p) + K, (3.11)
B2 =map+ k= 2Ug(p) + k°, (3.12)
Ej=mb, +k =h*p+ k. (3.13)

We note that these masses are in principle only meaningful as such when evaluated
at the physical minimum in field space p = o3.

The parameters listed in Tab. are chosen such that in the vacuum we have
a constituent quark mass of m, = 300 MeV and phenomenologically reasonable
values for the pion and sigma masses and the pion decay constant, identified with
the global minimum of the effective potential: m, = 140 MeV, m, = 557 MeV and
fr =00 =93.0 MeV [41].

3.2.2 Phase Structure: FRG Results

By solving the flow equation for the effective potential given in Eq. one can
compute the phase diagram of the quark-meson model within the LPA ansatz by
means of the temperature- and quark chemical-potential dependent chiral order
parameter, determined by the global minimum of the effective potential at the IR
scale, o9 = o0o(T, ). The phase diagram within this truncation is a well-known
result and basis for the calculation of spectral functions in later chapters.

In Fig. we see a contour plot of the chiral order parameter oy as a func-
tion of temperature T and quark chemical potential p. Once the vacuum value is

A[GeV] | b1 [GeV?] | by | c[GeV'] | A
15 | 08573 | 02 |1.8228107% 3.226

Table 3.1: Parameter set.
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Figure 3.1: Phase diagram of the quark-meson model as contour plot of the chiral
order parameter oo(T, 1) (a) and o¢ together with the Polyakov loops ®
and ®*, the order parameters for the confinement-deconfinement transi-
tion along the T-axis at u =0 MeV (b).

fixed to 00 vac = 93 MeV (Goldberger-Treiman relation), chiral symmetry gets grad-
ually restored by increasing the temperature and/or the chemical potential which
is signaled by a decreasing value of oo(T,p) (darker color in Fig. [3.1a). At low
temperature and large chemical potential, (Tcgp;pcep) ~ (10;298) MeV, we find
a critical endpoint (CEP) which represents a second-order phase transition (black
dot) dividing the broad crossover region from a first-order phase transition for even
lower temperatures 7' < 10 MeV.

For the analysis with spectral functions in later chapters we will mainly focus on
signatures for the restoration of chiral symmetry and for the CEP, i.e. we will study
spectral functions along the temperature-axis at vanishing chemical potential and
along the axis of the CEP as a function of chemical potential and fixed temperature,
here at T' = 10 MeV.

As a last point, we mention that the slope dT'/du of the first-order line in these
type of calculations is very different to the one obtained by mean-field calculations,
cf. [96]. This leads to unphysical results for example for the entropy density in the
regime to the right of this first-order line, see for further discussions on this
problem. However, there is evidence that an enhanced truncation scheme towards
LPA’ could resolve this issue [97].

3.2.3 Polyakov-Quark-Meson Model

Since the quark-meson model does not contain gluonic degrees of freedom it is not
able to describe the confinement phenomenon. The quark-meson model extended by
means of including a mean-field gluon field and a so-called Polyakov loop potential
U(P, d*) leads to the Polayakov-quark-meson model. The ansatz for the effective
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action is similar to Eq. (3.8) and reads
_ . 1 .
Do [ d'a{@ (B - w0+ hio+i773) & + 50,07 + (6 2,09}, (3.14)

with Qp(¢?, @, %) = Up(¢?) + Up (P, ®*). Taking merely the constant time compo-
nent of the gluon field into account and using the fact that we only have two degrees
of freedom, given by the Polyakov loops, we can always rotate in group space in a
way that only the diagonal Gell-Mann matrices A3 and Ag contribute. We therefore
have for the covariant derivative D,, = 0, —igT “Aﬁég with 7% being the Gell-Mann
matrices and a = 3,8 [98]. The minimum of the polynomial [99,|100] or logarith-
mic [101] Polyakov loop potential Uy (P, ®*) then defines the order parameters @
and ®*.

The flow equation of the effective potential {2, looks the same as in Eq. except
that the fermionic occupation numbers np(Ey  F ) are replaced by generalized ones
containing the Polyakov loops,

1+ e2BppsF)/TPH 4 20(By xFu)/T H*

Ni(Eyj 7 1) = (3.15)

1 + e3Ep o F)/T 4 32(Eyp knF1)/TPH 4 3e(EvwpFr)/TH*
In the limit of vanishing gluon fields and deconfined quarks/antiquarks ®,®* — 1
these generalized fermionic occupation numbers reduce to the usual ones and we
recover the quark-meson model. The order parameters xo = (o9, Pg, ®f}) in the
Polyakov-quark-meson model are then determined by solving the following equations
of motion,

8Qkao
do

_ an%O
0P

_ 8Qka0

!
o | =0 (3.16)

X0

X0 X0

In Fig. we see the normalised chiral order parameter and ®, ®* as a function
of temperature for vanishing chemical potential. At g =0 MeV the Polyakov loop
and its conjugate are degenerate, as expected. As o decreases strongly between
T =150 MeV and T' = 250 MeV, the Polyakov loops do just the opposite, increasing
strongly in this region until arriving in the deconfined phase for T' > 330 MeV. The
crossover transition in both cases happens approximately at the same temperature,
defined by the first temperature-derivative peak, T\ ~ 195 MeV and Ty ~ 183 MeV.

As it turned out, although the Polyakov-quark-meson model works well as sta-
tistical model describing confinement in thermodynamics, it is unable to describe
confinement in the sense of suppressing quark-antiquark thresholds in the decon-
fined phase of the phase diagram of the model, apparent for example in mesonic
spectral functions [95]. For that reason we will in this work partly stick with the
quark-meson model and later overcome the issue of unphysical quark thresholds by
replacing the quarks with nucleons within the parity-doublet model.

3.3 Modeling Nucleons: Parity-Doublet Model

3.3.1 Model Construction and the Idea of Parity Doubling

The question of how to describe baryons within effective models incorporating the
principle of chiral symmetry has a long history. Here, important work was done by
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Walecka who introduced a hadronic model consisting of nucleons, scalar mesons and
vector mesons [102] and by Lee and Wick who reformulated the model of Walecka
into a chirally invariant version [103]. The latter model is called chiral Walecka
model and basically equals the quark-meson model introduced in Sec. with
nucleon instead of quark fields. The problem here is that the baryonic degrees of
freedom become massless in the chirally restored phase as in these models their mass
is entirely generated by spontaneous chiral symmetry breaking in the chiral limit.

This issue can be resolved by including the parity partners of the nucleons in
a chirally invariant way, leading to parity-doublet models. Before introducing the
Lagrangian of such a model we discuss the chiral representations of quarks and
baryons [84}/104}/105].

Chiral representations for baryons

Let (Igr,Ir) be a representation of the chiral group SU(2)g ® SU(2)r with Ir and
I;, being the value of the isospin. The quark field with right- and left-handed com-
ponents in this notation is a direct sum of the fundamental representation, namely
)~ (%, 0) @ (0, %) The representation of a single baryon is given by a direct product
of three quarks and can be decomposed as [106]

@YY ~5((3,0) @ (0,3)] @ 3[(L3) ® (3, 1)] @ [(5.0) @ (0,3)]. (3.17)
The most natural choice for the representation of a nucleon is (3,0) & (0, 1) as this
transforms in the same way as a quark field.

If we now consider two baryon species with right- and left- handed components
V1,51 and vy, 1, both in the (%,0) @ (0, %) representation, there are two possible
assignments of the chiral transformations. In the naive assignment both baryons
transform in the exactly same way, in the mirror assignment, however, the second
baryon transforms in the opposite way, namely o, — Urts, and ¢o; — Ugria;
with Ur p € SU(2)r/g- In this mirror assignment, first introduced in [107], it is
possible to introduce a chirally invariant bare mass term to the Lagrangian giving
the baryons a mass, also in the chirally restored phase. This invariant mass term
reads

Lyt = mo,B (1;11#2 + 1521/11)
= mo,B (%Z)L«i/)z,z + ¢;l¢1,r + ] 1+ q;le[,ﬂ/)Q,r) : (3.18)

FRG treatment of the parity-doublet model

The Lagrangian of the parity-doublet model consists of a mesonic part, which is the
same as in the quark-meson model, cf. Eq. , and a fermionic part with two
species of mirror-assigned baryons N1 = 11 and Ny = 51 as degrees of freedom.
These baryonic fields are iso-doublets representing the nucleons (p,n) and their
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parity partners. The LPA ansatz for the effective average action then reads

Lo = [d'a{N (0= upro + n (0 +17735) N+
Ny (# = o + ha (0 — i77y5)) No+
_ : 1
mo,B (N175N2 - N275N1) + 5(3;@)2 + Uk(¢2)} . (3.19)

The first two parts of this ansatz represent the standard fermionic part including
a kinetic term, the baryon chemical potential up and the coupling to the mesonic
degrees of freedom where we note that the parity partner No has a minus sign in
the coupling to the pions. The third part is a chirally invariant mass term, giving
the nucleons the bare mass mg g, cf. Eq. . The remaining mesonic parts are
the same as in Eq. .

For the flow equation of the effective potential Uy we then obtain

K 1+2nB(EO'k‘) 3 (1+2nB(E7rk))
U, = : ’ 3.20
REE T 1002 { Eq i * Er " (320
AN
Y  (_(E E
TP EBM( (EBy i+ EBy i) +
Ep, xnr(E,k — 1) + Ep, k nr(EB,k — piB)+ (3.21)
Ep, xnr(EB, k + 1) + EB, k nr(EB, 1 + MB))} : (3.22)

As expected, the mesonic part is the same as in the pure quark-meson model, cf.
Eq. (3.9). For the fermionic part we introduced k-dependent particle energies for
the nucleon and its parity partner, given by

1
Eh = (252 + 2m3 5 + hiof + h3od + oo(hn — ha)y o3 (k1 + ho)? +4m2 )

1
By i = 5 (2K +2m3 s + hiog + 1305 — oo(hy — ha)\Jod (b + ha)? + dm ;) .
(3.23)
For the initial form of the effective potential at the UV scale A = 2500 MeV we chose
the same ansatz as for the quark-meson model, Eq. (3.10)).

The masses of the nucleon and its parity partner are given by the Eigenvalues of
the mass matrix

1
M= Mool o) (3.24)
—mo,BYs h200l

and are explicitly given by

1

mp, =5 <+(h1 — h2)oo + \/4”13,3 + (h1 + h2)203) ; (3.25)
1

mp, = 5 (~(hn = ha)oo + \J4m3 5 + (1 + ha)?03) . (3.26)

As expected for chiral partners, for 0 — 0 the two masses become degenerate to the
bare value mo p. We also note that for mgp = 0 the model reduces to a sum of
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AlGeV] | b1 [GeV?] | by | c[GeV'] | hi | hy | mop [GeV]
25 | 6016 | 02 |1.8028-107% 7.75033 | 14.1697 | 0.7

Table 3.2: Parameter set.

two quark-meson models with masses m1 = hiog and my = hoog where the particle
energies in Eq. reduce to E%,k = k% +m? and E%,k = k% +m3.

The parameters in this model, shown in Tab. were also chosen to reproduce
physically reasonable values for the particular Euclidean particle masses as well as
for the pion decay constant in the vacuum: mp; = 938.3 MeV, mp 2 = 1535.6 MeV,
my = 633.5 MeV, m, = 140.9 MeV and oy = 93.0 MeV.

3.3.2 Phase Structure: FRG Results

As discussed for the quark-meson model in Sec. we can also calculate a
phase diagram for the parity-doublet model by means of the temperature- and
baryon chemical-potential dependent chiral order parameter oy = oo(7, i) identified
with the global minimum of the effective potential at the IR scale. The resulting
phase diagram is shown in Fig. where we again fixed the vacuum value to
00,vac = 93 MeV. In addition to a chiral first-order line ending in a CEP, the parity
doublet model shows a second first-order line which ends in a CEP representing the
liquid-gas phase transition of nuclear matter.

Phenomenologically, the value of the in-medium condensate right to the liquid-gas
first-order line can be determined by relating the Feynman-Hellmann theorem [108]
and the Gell-Mann-Oakes-Renner relation resulting in a relation between the in-
medium condensate o(ng) and the saturation density of nuclear matter ng. With
ng =~ 0.16 fm ™3 this gives an in-medium condensate of &(ng) =~ 69 MeV [109}/110].
The phenomenologically correct location of the liquid-gas first-order line is fixed by
reproducing the binding energy of Ej ~ 16 MeV per nucleon in symmetric nuclear
matter. It is given by the difference between the nucleon mass and the location of the
first-order line, for the latter we hence obtain u% = 939 MeV — 16 MeV = 923 MeV.

In our FRG results, the position and the magnitude of this liquid-gas transition as
a function of baryon chemical potential at low temperatures strongly depend on the
scale-independent bare nucleon mass mg g. The chiral order parameter o as a func-
tion of baryon chemical potential at 7' =1 MeV for different values of mg g is shown
in Fig. The larger the value of mg g the more does the location of the disconti-
nuity move towards larger up, at the same time the magnitude of the transition gets
weaker resulting in a larger in-medium condensate. For mg g = 900 MeV the tran-
sition even disappears completely. In this calculation we fixed the masses of the nu-
cleon and its parity partner in the vacuum to mp, = 939 MeV and mp, = 1535 MeV
for all values of mg p (as in [85] we chose the N (1535) and not the N(1640) to be the
chiral partner), cf. App. [B|for further details concerning the numerical procedure.

Even with the inclusion of a repulsive mean-field w meson, which basically shifts
the liquid-gas transition to larger up but also lowers its magnitude (as described
in [85]), it was not possible to fix the correct binding energy and the correct in-
medium condensate simultaneously in the present LPA truncation. We therefore
chose mo,p = 700 MeV to be the best trade-off regarding the magnitude and loca-
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Figure 3.2: Phase diagram of the parity-doublet model as contour plot of the chiral

order parameter oo(7T, ) (a) and oy as a function of baryon chemical
potential pup at T'=1 MeV for different values of the bare baryon mass

mo’B (b)

tion of the first-order transition and consider the parity-doublet model as a purely
qualitative description of nuclear matter improving the phenomenology of spectral
functions, as will be discussed in later chapters.

With this setting (and without the mean-field w meson) we find the CEP for the
liquid-gas transition and the chiral transition at

(TY9; 49y ~ (8;883) MeV, (T ) ~ (67;924) MeV, (3.27)

indicated as black dots in Fig. [3.2a] As for the phase diagram of the quark-meson
model, the critical endpoints separate a broad crossover transition from a first or-
der phase transition for lower temperatures. With increasing temperature and/or
baryon chemical potential chiral symmetry gets successively restored, indicated by
a lowering of oo(7, ) and a darker color in Fig. As already discussed in
Sec. [3:2:2] we mention the issue of the curvature of the chiral first-order line which
seems to be inconsistent with the Clausius-Clapeyron relation

dl. _ _An
due  As’

(3.28)

Here, the change of the particle density An as well as of the entropy density (per
volume) As is expected to be positive since the entropy per particle increases in such
a transition. In contrast, from a gaseous to a liquid phase the entropy per particle is
expected to decrease and it therefore depends on the magnitude of the change in the
number density if the entropy density s decreases or increases. However, a possible
negative change As (seen in Fig. should not be larger than the entropy density
on the gaseous side which would then lead to regions of negative entropy density
beyond the critical line.
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Describing Vector Mesons

A phenomenologically important extension of the effective models introduced in
Chapter [3| is the inclusion of spin-l1-mesons, the vector and axial-vector mesons.
From an experimental point of view, vector mesons are interesting as they carry
the same quantum numbers as the photon and lepton pairs and therefore provide
detectable information about the inner structure of strong-interaction matter.

The history of vector mesons began along two different paths in physics, a theoret-
ical one pioneered by Sakurai @ and an experimental one driven by discrepancies
in form-factor measurements [112}/113], see [114-116] for general reviews. These two
seemingly different concepts could then be unified in terms of the concept of vec-
tor meson dominance (VMD) [117,[118]. According to Sakurai, vector mesons are
introduced as gauge bosons arising from a local gauge symmetry, which later was
extended to the full chiral symmetry group .

Apart from first studies of vector mesons within such effective models with the
FRG ,, an accepted theoretical description especially of fluctuations due
to (axial-)vector mesons is, up to now, still missing. To describe massive vectors
as fundamental fields in such effective models is known to be problematic
, if not impossible without the Higgs mechanism. However, in this chapter we
propose a formulation of fluctuating (axial-)vector mesons by means of the FRG
approach based on covariance and transversality of the single-particle contribution
to its propagator [123].

We begin by reviewing the history of vector mesons and the emerged concept of
vector meson dominance in Sec. In Sec. we present the gauged linear sigma
model with quarks as an effective model including vector and axial-vector mesons in
the spirit of VMD and discuss its treatment within the FRG. Here we also present
the formulation of massive vector mesons within the FRG framework and show first
results for the RG-flow of the Euclidean masses of the model. This model will
then be extended by including the electromagnetic field and by introducing baryon
degrees of freedom, as discussed in Sec.
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4.1 History and Vector Meson Dominance

The existence of vector mesons in experiments became first apparent during electro-
magnetic form factor measurements of the nucleon in electron-scattering experiments
in the 1950ies. Here, in 1957 Nambu introduced an iso-scalar vector meson p°, later
identified with the w-meson, as a three-pion resonance to explain the discrepancy
in the proton an neutron charge radii [112]. A few years later, in 1959, Frazer and
Fulco resolved the inconsistency of simultaneously explaining the value of the mag-
netic moments and the charge and momentum radii distributions by including a
strong pion-pion interaction in their dispersion-relation analysis [113]. This pion-
pion resonance was then identified with an iso-triplet vector meson, the p meson.

From the theoretical side it was Sakurai in 1960 who changed the point of view in
the theoretical description of the strong interaction [111]. Guided from the success
of quantum electrodynamics (QED) and the generalization to local SU(2) gauge
invariance by Yang and Mills [124], he proposed to apply this local gauge principle
also in hadron physics. In this way, he introduced vector mesons as arising gauge
bosons by adopting a local SU(2) flavor symmetry, the issue of a vector meson
mass term breaking this gauge invariance was ignored at that time. This work
from Sakurai also was an important step in the development of the quark model in
1964 [2,/125] in which vector mesons are now identified as bound states of a quark-
antiquark pair with spin one. However, in effective low-energy models for QCD,
vector mesons are frequently still seen as gauge bosons quite in the spirit of Sakurai.

By generalizing the experimental findings described above and adopting the idea
of local quantum field theory, the concept of vector meson dominance (VMD) was
born [117,/118]. Phenomenologically, this concept means that the photon interacts
with a target hadron mainly via the exchange of a vector meson, i.e. the hadronic
contributions to the photon propagator consist of propagating vector mesons, illus-
trated in Fig.

On a formal level, VMD can be imprinted in a so-called current-field identity
(CFI) which basically says that within this concept the electromagnetic current is
given as linear combination of the vector meson fields, for the iso-vector component

1
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Figure 4.1: Tllustration of the decay of an off-shell photon into a pion pair in the
sense of VMD. The interaction between the photon and the pions is
mediated by a p meson as intermediate state of the propagating photon
(from [126]).
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given by [127]

m2

-em _ P
(’7“ )iso-vector o gp pu: (41)

with m, being the p meson mass and g, the coupling constant. The conservation
of the electromagnetic current then requires 9, 0" = 0, which is the Proca condition
and leads to a Lagrangian for massive spin-1 particles. The problem of loosing
gauge invariance and thus transversality of the associated Green function by a finite
bare mass in this formalism was ignored at that time as the focus was put on the
application of the gauge principle.

In order to construct an effective low-energy model for QCD including vector and
axial-vector mesons, the idea of local gauge invariance from Sakurai was extended to
the full chiral group SU(2)v x SU(2)4 [119] to also include the chiral partner of the
p meson, the a;(1260) meson. To construct a chiral Lagrangian within this setting
there are different approaches on the market. In a non-linear realization of chiral
symmetry there is the so-called Massive Yang-Mills Approach (MYM) [128] and the
formalism of Hidden Local Symmetry (HLS) [129/130]. A third variant is to impose a
local chiral symmetry within the linear sigma model introduced in Sec. which
is then called gauged linear sigma model (gLSM). As the formalism of local gauge
invariance does not include all interaction terms which are consistent with global
chiral symmetry and the same gauge coupling appears in all interaction terms, there
is also the possibility to relax the constraint of a local invariance and to only insist
on global chiral symmetry, as done for example in [120}/121,{131}/132].

In this work, however, we will follow the idea of VMD and impose a local chiral
symmetry on the linear sigma model with quarks and later with nucleons. As shown
for example in [121], the assumption of VMD to basically only have one coupling for
all interaction terms is a good first approximation. The issue of unphysical degrees
of freedom arising from a bare vector meson mass term in the Lagrangian will be
resolved by proposing an ansatz for the vector meson propagator within the FRG
framework in Sec. 41.2.2

4.2 Gauged Linear Sigma Model with Quarks: FRG
Treatment

4.2.1 Model Construction and Effective Average Action

Mesonic part of the Lagrangian

Starting point in constructing the mesonic part of the Lagrangian of the gauged
linear sigma model is the O(4) symmetric model with the mesonic field ¢ = (o, 7) "
being in the fundamental representation of O(4). Its Lagrangian simply reads

1
L= 5(0u0)" +U("), (4.2)
and is invariant under global O(4)-transformations of the form

6= Up, with U =dT+HIT" (4.3)
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As the Lie-algebra of O(4) has six dimensions we need six generators, i.e. six anti-
symmetric 4 x 4 matrices T and T'°. Here one usually chooses T as internal rotations
of the pion field and T as axial transformations rotating pions and the sigma field
into each other. Their explicit form is given by

—iegyr 0 5 O3x3  —i€;
(Ti)ji = ( 612'] O) ) (T7)jk = <ié'{r 0 Z) i (4.4)
These matrices obey the following commutation relations

[T, Ty) = ieiiTi, (17, T7) =ieinT, [T:T7] = e Ty, (4.5)

and their traces are given by
Te(To 1) = 200, Te(T2TP) = 200y, Tr(T,T7) =0. (4.6)

In order to see the equivalence of these transformations to the chiral transformations
one can use the isomorphism of O(4) = SU(2) x SU(2) and define new generators
as linear combination of the O(4) ones, given by

1 1
Tf=5(G-T)),  Tf= (L+T7). (4.7)

With this redefinition we now have two copies of SU(2) where the matrices T'- and
TR satisfy the SU(2) commutation relation separately,

[T, TH =ieanTy, [T T =0, [T T]] =ieuD) (4.8)

In the spirit of Sakurai and the concept of vector meson dominance, the next step
is to promote this chiral SU(2);, x SU(2)r symmetry to a gauge symmetry. The
transformation U in Eq. thus becomes a local one, U — U(z) with position-
dependent coefficients &@ = @(x) and § = B(z). To ensure the Lagrangian to be
invariant under this transformation we have to replace the standard derivative in

Eq. (4.2]) with a covariant one,

Oud = Dyuop = (0, —igVy) ¢, (4.9)

where g is the gauge coupling and V,, an element of the Lie-algebra given as linear
combination of the generators V,, = ﬁuf + (i’luf 5. Here, the prefactors can be
identified with the vector and axial-vector iso-triplets p,, and a1, as gauge bosons.
As usual in gauge theories, we also have to introduce a field-strength tensor which
in the present case reads

Vi = ; Dy, D] = 8,V — 8,V — ig[Vii, Vi . (4.10)

The mesonic part of the Lagrangian for the gauged linear sigma model finally
consists of the following parts

elsM = L,.0,—D, + Ly + Lywm. (4.11)

44



4.2 Gauged Linear Sigma Model with Quarks: FRG Treatment

The first one basically equals Eq. (4.2)) with the covariant derivative generating in-
teraction terms of the vector mesons to the scalar mesons. With explicitly symmetry
breaking term we obtain

Ly 8,—D, = %(D#qb)Q +U(¢%) —co
1 1
= 5(8u¢)2 - igVu¢8u¢ - §Q2VM¢VH¢ + U(d)Q) —co. (4,12)

The second part represents a bare mass term for the vector meson fields within the
Proca formalism, my, and reads

1
Loy = Zm%/Tr(VMV“) : (4.13)

As this term leads to a vector propagator where transversality is obtained only
on-shell and one therefore suffers from non-vanishing unphysical longitudinal contri-
butions in the loops, we will modify this ansatz in Sec. such that transversality
is recovered for k£ — 0. Finally, the Yang-Mills part of the Lagrangian reads

1
»CYM = gTI‘ {V/“,V‘LW}
1 1 1
= Tr {8(auvy - 0,V,)* — ZQQVMVV[VW V] — 5iga,yy[v,“ Vy]} . (4.14)

Here, the first term represents the standard kinetic term for gauge fields, the latter
terms represent self-interactions of the vector mesons and are non-vanishing due to
the non-Abelian gauge group.

These contributions expressed in terms of the physical fields g, and d;, can be

found in App.

Fermionic part of the Lagrangian

From the perspective of QCD, for decreasing energy scales the increasing strength
of the strong coupling «g leads to strong two-quark-two-antiquark correlations of
the form \;(¢Tie))? with effective coupling \; oc o and tensor structure T, cf. the
Nambu—Jona-Lasinio model (NJL). Here, divergent couplings \; signal the formation
of bound states or resonances in these quark-antiquark scattering channels.

Within this low-energy model we explicitly introduce the mesons as effective de-
grees of freedom which can be done by means of a Hubbard-Stratonovich transfor-
mation, and identifiy the scale of this bosonization to be the UV cutoff A in our FRG
framework. To describe the dynamical formation of mesons starting from QCD, one
can use the method of dynamical hadronization, done for example in [71,/121,|133].

After bosonizing the quark-antiquark sector, the fermionic part of the Lagrangian
reads [41]

.CgrsnM = (@ — wyo + hs (o +i77ys) + ihy (V70" + vuys7al)) ¥ . (4.15)

Beside the usual kinetic term and the inclusion of the quark chemical potential u
we have an interaction term to the scalar mesons via the Yukawa coupling hg and
an interaction term to the vector and axial-vector mesons via the Yukawa coupling

45



4 Describing Vector Mesons

hy. As we are only interested in qualitative features of this model, we do not take
into account the scale-dependence of these Yukawa couplings, we rather set hg = hy
which is a good approximation as shown in [121]. In a strict gauge symmetry the

coupling would have to be replaced by hy = ¢/2, cf. Sec.

Effective average action of the gLSM

Putting all contributions of the Lagrangian together we can write down an ansatz
for the effective average action of the gauged linear sigma model with quarks in the
LPA ansatz, given by

Ty = / d'z {zZ (@ — w0 + hs (0 + iT7ys) + ihy (v 7P" + yuys7al')) ¢
1 1
+ Uk(9%) = 0 + 5(0u0)” + T (Vo = V)"
—igV,90,¢ — 59 (Vi)™ + va’kTr (Vi)
1 1
= 9Vl Vol = 5190 Va [V, Vil } + Alr, (4.16)

On this level, the effective potential Uy and the vector meson bare mass m%,k are
the only scale-dependent quantities. In this work the gauge coupling g is kept scale-
independent which is a good approximation in order to capture the main relevant
features for the description of the p and a; meson in terms of spectral functions |121].

If chiral symmetry is spontaneously broken, the mesonic field acquires a non-
vanishing expectation value ¢g = (09,0)" which leads to an additional term in the
effective average action of the form

f/gao ar'-o,m. (4.17)

This is referred to as w-a; mizing in the literature and leads to off-diagonal elements
in the meson propagator. In this work we eliminate this mixing and thus diagonalize
the meson propagator by redefining the a; field in the following form,

— — goo -
al — al + m auﬂ' . (418)

All terms which arise due to this redefinition on the level of the effective average
action are summarized in AT'z,, in Eq. (4.16]). This shift of the ay field also generates
new momentum-dependent coupling terms in the vertex functions F,(cg) and Fgl) and
modifies the wavefunction renormalization factors of the sigma and the pions. For
explicit expressions for the relevant vertex functions we refer to App.

4.2.2 Vector Meson Propagators within the FRG

We will now address the question of how to describe massive spin-1 fields within an
effective theory which is known to be problematic [122,/123]. While in the Proca
formalism, adopted in Sec. transversality of the corresponding Green functions
is guaranteed only on-shell, taking the Stueckelberg limit in the Stueckelberg for-
malism produces spurious massless single-particle contributions in the vector Green
functions.
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4.2 Gauged Linear Sigma Model with Quarks: FRG Treatment

In this work we go a somewhat different way and describe fluctuations due to
(axial-)vector mesons within the FRG framework as single-particle contributions to
the corresponding conserved vector-current correlation functions. This discussion
can thereby be split into two parts. We start by giving a brief review regarding
covariant T-products based on [123] and will then discuss how to implement this idea
into the FRG framework in order to end up with a physically reasonable transverse
vector meson propagator in the limit £ — 0.

Covariant T-products

The issue of defining covariant time-ordered products of vector or higher-rank tensor
field operators is known for a long time already [134,/135]. In the following we
consider the simple case of a conserved U(1) current j, as done in [123]. Given such
a conserved current j,, the naive attempt of defining a T-product

(Tnaiv ju ()7 (0)) =0(z°) {(ju(2)30(0)) + 8(=2°) (ju(0)ju(x)) , (4.19)

does not result in a covariant quantity. One rather has to add an additional non-
covariant term 7, (z), called sea-gull term, to render this naive Tai-product co-
variant, denoted by Tioy,

(Teov ]u(fv)]l/(()» = (Thaiv Ju(x)]u(o» + Tuu(x) . (4.20)

Such an additional sea-gull term always has to appear if the corresponding equal-
time commutators between different current components contain a Schwinger term,
first encountered by Schwinger [136]. In the present case this equal-time commutator
reads

(o) ) Loy = 005 — ) [ s (421)

where p(s) is the spectral function of the current-current correlators. The require-
ment that Schwinger terms are canceled in the Ward identities then fixes the sea-gull
term uniquely [137] which is in the present case given by

p(s)

T (2) = i(gp0gu0 — ) 0" () /0 " ds —~ (4.22)

The explicit spectral representation of the causal Greens function with covariant
time-ordered product is then given by

. . . )0(3) / d4p —ik p2g/w — PuDv
Tcov v = - d P . . 4.2
(Teo Jula)j0)) = i [[as B2 [ it Bl (4.23)

For a semi-positive spectral function p(s), this expression is manifestly transverse
and covariant. In order to translate this spectral function of a U(1) current to the
spectral function of a vector field V,, we assume a first-order interaction of these
two, gvj,V*, and find the relation g%/p(s) = 52py(s). Using this relation, a massive
stable vector meson with mass my would contribute with strength Z to the spectral
function

4
p(s) :Z%é(s—m%)%ﬂ.. . (4.24)
v
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4 Describing Vector Mesons
Together with a current-field identity of the form

m2
Ju(z) = —LV,(@), (4.25)
gv

we arrive at a vector meson propagator Du
single-particle contribution of the form

, in Minkowski space-time which has a

Z
DY — _172]9 Jpw — Pubv - (4.26)

my, P2 — mv + ie

This propagator is purely transverse and does not have massless single-particle con-
tributions and therefore differs from the one obtained within Proca or Stueckelberg
approaches.

In the FRG, the introduction of a regulator function Ry (p) and the necessity of
ensuring the invertibility of the propagator in general gives rise to modified Ward
identities (mWT) [138]. We will therefore use an ansatz for fluctuating vector mesons
which contains additional longitudinal contributions that vanish in the limit £ — 0
such that we recover the propagator from Eq. at the IR scale. This ansatz
will be the subject of the following part.

FRG formulation of massive vector mesons

In order to implement the propagator for single-particle contributions of massive vec-
tor mesons into the FRG framework, we first write down the Euclidean counterpart
of Eq. (4.26]) in momentum space, see App. |A|for the used conventions,
Z  —p?
DiV(p) = — ———— 111, (p), 4.27
g (p) m%/ p2 + m%/ ;u/(p) ( )
with transverse projector sz(p) = (84 — pupv)/pP?. In the FRG calculations we
also need the corresponding two-point function given by the inverse of the Euclidean
propagator. We therefore add a Stueckelberg part to the effective average action
given in Eq. (4.16]), as done for example in [1204[132]. The part of the ansatz for the
effective average action which is quadratic in the vector fields is then given by

L3 T (V1) + M T 0,0 ). (4:28)

/# STV, — 0,V +

where then the corresponding LPA-like ansatz for the vector meson two-point func-
tion reads

T2 (p) =(p* + mi,) 1L, (p)
+ (e + mi ) 5, (), (4.29)

with Stueckelberg parameter A\, and longitudinal projector H/I;,, (p) = pupu /P>
Using this ansatz leads to non-vanishing unphysical longitudinal contributions of
the vector meson propagators inside the loops of the flow equations which eventually
gives rise to considerable negative contributions to the associated spectral functions.
To fix this issue, we go beyond the usual LPA truncation and include scale- and
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4.2 Gauged Linear Sigma Model with Quarks: FRG Treatment

momentum-dependent wavefunction renormalization factors ZF (p?) and ZE(p?) in
the ansatz for the Euclidean vector meson two-point function which then reads

T20(p) =ZE (1) (0 + mi ) TIL, (p)
+ X ZE(0) (P + mi /) IS, (p) - (4.30)

In order to ensure that the corresponding propagator is purely transverse at the IR
scale, i.e. that the following modified Ward identity is fulfilled

puD” 0 =0, (4.31)

we choose a Stueckelberg parameter \; that starts at some finite value at the UV
scale A and tends to zero in the limit £ — 0. In this way the longitudinal fluctuations
with mass m%/k /A diverge at the IR scale and hence decouple completely. More
explicitly, we choose

k2
=15 with =1 x =20, (4.32)

Ak
Moreover, we require the longitudinal wavefunction renormalization factor to cancel
the Stueckelberg parameter in front of the longitudinal term, which can be accom-
plished by setting

e ZE(0%) = Zi (), (4.33)

and assuming that this transverse wavefunction renormalization factor is indepen-
dent of \p. With this setting, the longitudinal and transverse part of the vector
meson two-point function coincide at the UV cutoff kK = A and we hence have a
two-point function that is proportional to 6,,. When lowering the scale k, the lon-
gitudinal fluctuations get heavier and heavier compared to the transverse ones and
finally switch themselves off automatically in the limit £ — 0. In this limit we are
left with a purely transverse vector meson propagator. In order to ensure that this
transverse part equals the desired single-particle contribution to the vector meson

propagator as given in Eq. (4.27)), we set
Zi (0°) = =Z; mi g /v° = —mi i /9, (4.34)

where we introduced the mass parameter mg j which for Z; <1 is expected to be
larger than the vector meson mass my,,. The ordering mg , > my, will be checked
explicitly in the numerical calculation in the next section, Sec. [£.2.3] However, at
the UV scale we start with the initial condition my,z = mgy which corresponds to
Z = 1. We finally obtain the following single-particle contribution to the Euclidean
vector meson propagator

php= 2w L gy )
’ mo i (0% +my) Mok (P2 + fzmizy)

In the limit & — 0 the Ward identity from Eq. (4.31) is recovered where the lon-
gitudinal part completely decouples. With the inclusion of the wavefunction renor-
malization factor from Eq. (4.34)) the transverse part of the propagator then has the
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4 Describing Vector Mesons

desired form as in Eq. . This treatment can be seen as an analogy to the LPA’
truncations for the (pseudo-)scalar sector in the literature.

At this point we note that the strength of the suppression of the longitudinal
fluctuations can be further influenced by choosing the Stueckelberg parameter at
the UV scale Ay in a different way compared to the rather natural choice of Ay = 1.
Especially in later calculations at finite temperature we scaled this initial value by a
factor of 5-10 in order to ensure that these longitudinal fluctuations are suppressed
also on all intermediate k-scales. However, we checked explicitly that the precise
value of Ay does not affect the results. More details like the inclusion of a regulator
function within this setting can be found in App. [B]

4.2.3 Flow of the Euclidean Particle Masses

We now want to present first results for the RG flow of the Euclidean particle masses
of the scalar mesons, the vector mesons and the quarks obtained by applying the
FRG framework to the above presented setting. These Euclidean masses represent
the basis for the calculation of spectral functions in Chapter

The masses of the scalar mesons and the quarks are obtained by solving the flow
equation for the effective potential of the quark-meson model given in Eq. and
are defined in Egs. . As we will see, the vector mesons decouple from the
flow as they are always heavier compared to the actual scale k and can therefore be
neglected in the Euclidean flow of the effective potential.

The Euclidean masses of the vector and axial-vector meson are in the present
framework defined as

2 2 2 2 2,2
My 1 = My, Mg, = My + 970 (4.36)

and can, together with the mass parameter mg, be computed by solving the par-
ticular flow equations obtained by projecting on the flow equation for the p meson
two-point function, cf. App. and see Fig. for the contributing terms.
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Figure 4.2: Flow of the Euclidean particle masses and of the mass parameter mg
as a function of the RG-scale k£ in the vacuum.
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4.3 Extensions of the Model

The resulting scale-dependent quantities are shown in Fig. Here we note
that in contrast to later calculations where only the IR scale is relevant, we used
a scale-dependent minimum in field space o¢g = 0¢} in this calculation in order to
interpret the k-dependent quantities on all intermediate scales. Starting at the UV
cutoff A = 1500 MeV where chiral symmetry is restored, the masses of the chiral
partners m-o and p-a; are degenerate, the quark mass has its very small current
value. Taking fluctuations into account by lowering the scale k, the mass parameter
mo,; immediately splits from its counterpart my and the relation mg; > my
stated in Sec. clearly holds during the complete flow.

By lowering the scale further, the fermionic fluctuations drive the minimum away
from zero towards the chirally broken phase with non-vanishing order parameter og.
This also leads to a mass splitting of the chiral partners and to a finite constituent
quark mass, starting at around k, ~ 700 MeV. The mass of the p meson remains
approximately constant during the complete flow, whereas the a; meson mass begins
to rise when chiral symmetry breaking sets in. We note that the vector meson masses
are always equal or larger than the RG scale and hence decouple from the Euclidean
flow, already observed in [121].

The initial parameter for the vector meson mass my = 1060.0 MeV and the value
of the gauge coupling g = 11.3 are in all calculations fixed to reproduce the phe-
nomenologically correct values of the p and a; meson pole masses, cf. Sec.
This results in the following values for the Euclidean quantities at the IR scale
k =40 MeV

op =93.0 MeV, m, =557.1 MeV,

my, = 140.4 MeV, my = 300.0 MeV,

m, = 868.1 MeV, m,, = 1363.1 MeV,

mg = 1294.3 MeV . (4.37)

The values for m,, m,, and mg can differ from these ones if we do not evaluate
their flow equations at the k-dependent minimum but at the IR minimum, as it will
be done to determine the IR-masses at finite temperature and chemical potential
serving as input for the computation of spectral functions in Sec.

4.3 Extensions of the Model

4.3.1 Introducing the Photon Field

In order to get access to the electromagnetic interaction within the gauged linear
sigma model, for example to calculate electromagnetic spectral functions and dilep-
ton rates, an important extension is the inclusion of the electromagnetic field A, to
this model.

In the phenomenological vector meson dominance model of Sakurai, the photon
field couples only to the charge neutral third component of the iso-triplet p, accom-
plished by the following additional term in the Lagrangian,

em2

Sakurai __ P 3
LSakurai — —TpMA“. (4.38)
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4 Describing Vector Mesons

Note that in this model, interactions between the photon and charged particles
are not considered. Obviously, this interaction term is not invariant under U(1)
gauge transformations. In contrast, Kroll, Lee and Zumino (KLZ) [127] proposed
an approach where the photon couples to the charged pion components within the
idea of U(1) gauge invariance, i.e. by extending the covariant derivative in Eq.
in the form

L5V = (D, — ieA,Ts) 7. (4.39)
The interaction of the photon field to the p meson is in the KLZ model introduced
via the field strength tensors of these two,

KLz _ € 3 v
EW ——%pWF“ , (4.40)

with F,, = 0,A, — 0, A, being the electromagnetic field strength tensor and pf’w the

third component of the p field strength tensor, defined via V,,, = pj, - T+ an T5.
If we also define a covariant derivative for the quark fields in the spirit of KLZ,

Dyt = (O — 1eAuQ) ¥, (4.41)

with electromagnetic coupling e and charge matrix @), which for Ny = 2 is given by
Q = diag(2/3,—1/3), one can show that the equivalence of the v-p-interaction term
in the KLLZ model to the one in the VMD model of Sakurai is guaranteed only if
hy = g/2 in our ansatz given in Eq. .

However, in this first attempt to describe the electromagnetic coupling to the
gauged linear sigma model we only implement this interaction in the sense of VMD
as qualitative feature and not in a strict field theoretical verification. We therefore
simply replace the derivatives J,, in the ansatz in Eq. by covariant ones, as
done for example in [132]. Additionally to Eq. we therefore have

D,¢ = (0, —ieA,T3) ¢, (4.42)
for the scalar sector and
D,V, =0,V, —ieA,[T3,V,], (4.43)

for the vector mesons. The photon thus only couples to the charged particles, i.e.
the first two components of 7', g and d;.

Putting everything together, the effective average action of the gauged linear sigma
model with quarks and photon-coupling reads [43]

Iy = /d4${1z (DD — w0 + hs (0 +iT7ys) + ihy (VT + yuys7ar)) ¢

1 , 1 L1
+Uk(#%) = co+ 5 (D~ igV,)ol* + ST (Vi V) + Tt Tr (VY } ,
(4.44)

with modified field strength tensor V,, = D,V,, — D, V,, —ig [V}, V,]. As we are only
interested in the electromagnetic interaction with the other particles in the model,
we omit the field strength tensor for the photon field in this ansatz.

Within this extended model we have non-vanishing %, and T®  vertices

ﬂ'ﬂAu‘ WLA;L
which enables us to compute electromagnetic two-point functions and the corre-
sponding spectral functions, done in [43] and Sec. More explicit expressions

among other things for these vertices are listed in App. [B-2
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4.3 Extensions of the Model

4.3.2 Gauged Linear Sigma Model with Nucleons

Another phenomenological improvement of the gL.SM is the inclusion of baryon de-
grees of freedom. On the one hand this would enable to describe phenomenologically
important vector meson-nucleon scattering processes, on the other hand, by replac-
ing the quark fields with nucleon fields one could bypass the problem of unphysical
quark-antiquark decay thresholds in the vacuum seen in mesonic spectral functions
in quark-meson-type models and already discussed in Sec. In this way we end
up with a purely hadronic low-energy model where now all degrees of freedom and
the associated processes are physically realized in the hadronic phase.

The ansatz for the effective average action of the gLSM with nucleons follows by
replacing the quark-antiquark fields in Eq. with fields for the nucleon and
its parity partner as done for the scalar sector within the parity-doublet model in
Sec. B3] With an additional chirally invariant mass term for the nucleons it follows

Ty = / d*x 1\71 (@ — w0 + hsi (0 +i77ys) + ihva (V70" + yus7al’)) N

+Ns (§ — pryo + hso (o — iF7ys) + ihva (v, 79" — uv57aL")) No

+mop (N1’75N2 — NysN1 )

+Uk(¢2)—ca+ (qu) +1Tr(av D,V,)?

—igV,00,0 — g% (Vu9)® + kaTr (V.V,) + M Tr (9,VH)?
1
- Zg2vuvy[v,“ V] — §ig('3MV,,[Vu, Vi} + AT, - (4.45)

We note the minus in the coupling of the parity partner Ny to the pseudo-scalar and

axial-vector mesons 7 and aj. From this ansatz we can extract the vertices FEVBV

and Fg\?i\ml which then give new contributions to the flow equations for the p and
a1 two-point functions. In the spectral functions these contributions give rise to a
decay in nucleon pairs and to in-medium scattering processes, cf. Sec.
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Towards Realistic Vector Meson Spectral
Functions

To explore the low-energy features of QCD in experiments, one possible way is
to study the spectral properties of real and virtual photons emitted in heavy-ion
collisions. Since they only interact electromagnetically, their measured spectrum
provides undisturbed information about the space-time history of the inner structure
of the fireball created in such collisions.

Due to the direct coupling of the p, w and ¢ meson to such lepton pairs, the
invariant mass of the dileptons reflects the mass distribution of the vector mesons at
the moment of its decay. Given the in-medium spectral functions of the light vector
mesons one could therefore reconstruct the dilepton rate and look for signatures
for the restoration of chiral symmetry or the existence of a critical endpoint in the
resulting spectra. Prerequisite for this is the phenomenologically correct description
of the vector meson spectral functions at finite temperature and chemical potential,
where the p meson plays a central role as it provides the dominant contribution.

In this chapter we now present results for the p and a; meson spectral functions
obtained by applying the FRG framework to effecive models introduced in Chapter [3]
and Chapter [4 using analytically continued flow equations as discussed in Sec. [2.2.2]
Here, the results at finite temperature and chemical potential will enable us to study
modifications and resulting signatures for the restoration of chiral symmetry and for
the CEP in the used models.

We start this chapter by a brief overview concerning vector mesons, spectral func-
tions and the connection to the QCD phase diagram in Sec. In Sec. [5.2] we
present results for vector and axial-vector spectral functions at finite temperature
and chemical potential as obtained in different model settings. Results for electro-
magnetic spectral functions are shown and discussed in Sec. [5.3}
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5 Towards Realistic Vector Meson Spectral Functions

5.1 Introduction

Electromagnetic probes like real photons and dileptons turned out to be the ideal
information carrier providing direct insights into strong-interaction matter in exper-
iments. Since their mean free path is much larger than the typical size of the systems
created in heavy-ion collisions, once produced they escape the fireball essentially un-
affected and therefore carry unique information on the spectral properties of the hot
and dense QCD medium. The natural candidates for this in-medium spectroscopy
are the vector mesons which couple directly to the electromagnetic current and are
for this reason expected to contribute significantly to the measured spectra. In the
low-energy region with invariant dilepton mass M; < 1 GeV, which is substantial
to study spontaneous chiral symmetry breaking, the relevant vector mesons are the
light ones, p(770), w(782) and the ¢(1020) meson.

However, photons and dileptons are emitted continuously during all stages of such
a collision process [116]. The earlier they are produced, the heavier the invariant
mass of the emitted dileptons is on average. All relevant sources of dileptons are
illustrated in the sketch shown in Fig. Chronologically, the first source of dilep-
tons in a heavy-ion collision is through Bremsstrahlung of the approaching colliding
nuclei. Once these nuclei touch and overlap, processes like the Drell-Yan annihila-
tion process, where a quark from one nucleon annihilates with an antiquark from
the other one forming a lepton pair, dominate for Mj; = 3 GeV. In the following
thermalization process towards the quark-gluon-plasma (QGP) phase, the main con-
tribution of dileptons comes from quark-antiquark annihilation processes and weak
decays of the open-charm mesons D and D. In the next stages, the system more
and more expands and cools down, the QGP successively turns into a hadron gas
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Figure 5.1: Sketch of the elektron-positron mass distribution from proton-proton
collisions [139] (a) and comparison of NAG60 data to theoretical
calculations of dimuon invariant-mass spectra from Indium-Indium
collisions [140] (b).
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5.1 Introduction

where now dileptons are mainly produced via hadronic interactions among them-
selves. Here the main contribution comes through the formation of light vector
mesons which directly decay into dileptons, indicated by the peaks at low invariant
masses in Fig. During the freezeout stage the dominant dilepton sources are
Dalitz decays of 7°, 1 or w mesons.

In experiments, only the full space-time integrated spectra of the entire history of
the fireball is accessible. In Fig.[5.1b] we see an example of such a dilepton spectrum,
in this case dimuons from In-In collisions, measured at the SPS [141}/142]. In these
spectra one hopes to find evidences for both, the confinement-deconfinement phase
transition as well as for chiral symmetry restoration. While the suppression of
heavy quarkonium states like J/U could signal deconfinement [143,144], in-medium
modifications of the light vector mesons could provide evidences for the restoration
of chiral symmetry [145-147]. In this context, Brown and Rho suggested a dropping
p mass as a consequence of chiral symmetry restoration [148| in order to explain the
measured enhancement of the dilepton yield at invariant masses significantly below
the p mass [149]. Another explanation for this enhancement is a broadening or
melting of the p spectral function due to in-medium scattering effects, which seems
to be the favoured scenario [150,151]. Another interesting question is how a possible
critical endpoint would manifest itself in the vector meson spectral function and in
the resulting dilepton spectra.

On a more formal level, the production rate of dileptons at four-momentum ¢ can
in general be expressed in terms of the electromagnetic spectral function Im IT£Y
and is to leading order in the electromagnetic coupling aey, given by [86,147,/152]

legl agm B uy
Jcdlg ~ 300 f2(q0; T) gy I 145 (M, q; 5, T) - (5.1)

Here, fB denotes the Bose-Einstein distribution and g3 = M? + ¢? the energy of the
lepton pair. The effects of the strong interaction are encoded in the electromagnetic
spectral function which is defined as imaginary part of the retarded current-current
correlation function,

() = i [ dw e ao) (g (2) 57 (0), (52)

T

For low invariant masses M < 1 GeV, the electromagnetic current can within the
vector meson dominance model be expressed in a hadronic basis, i.e. in terms of the

light vector meson fields (CFI), cf. Sec.

2

2 2
. m m m¢
gt = Lo+ —Fwu+ "o (5.3)
g™ g g

In this sense, also the electromagnetic spectral function can be expressed in terms
of the vector meson spectral functions [147],

1 2
ImIle, ~Im D, + §Im D, + §Im Dy, (5.4)

where the p spectral function provides the dominant contribution.
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5 Towards Realistic Vector Meson Spectral Functions

A more convenient way of calculating the dilepton rate in the present framework
is the usage of the Weldon formula [153],

dN$ a 2m?2 4m? 2

In this form, the dilepton production rate can be calculated in terms of the electro-
magnetic spectral function which can be decomposed in a part parallel and a part
vertical to the heat bath [43].

With given realistic electromagnetic or vector meson spectral functions at finite
temperature and chemical potential one thus has access to the associated dilepton
rate and with transport simulations in principle also to the full integrated spectra and
can draw conclusions how critical phenomena could manifest itself in the measured
spectra. As the underlying signatures are visible in the in-medium spectral functions,
we will in the following section present results for the T- and p-dependent p and ay
meson spectral functions obtained within basically three different settings, related
to the used model and truncation.

5.2 Vector Meson Spectral Functions: Results

5.2.1 With Scalar Mesons and Quarks

In this first setting we solve the flow equation for the effective potential in the
quark-meson model, Eq. , and then employ the Proca ansatz within the gLLSM,
Eq. , where in this first truncation we only implement (pseudo-)scalar mesons
and quarks as fluctuating fields in the flow equations for F,(f). From the resulting
relevant parts of the ansatz we can then extract the flow equation for the vector

meson mass m%ﬂk, an UV ansatz for the retarded vector meson two-point functions
and the vertices I'® and T'®, see [41] for this setting and App. [B| for explicit
expressions. With this input we then solve the analytically continued flow equations
for the retarded p and a; two-point functions and finally compute the respective
temperature- and chemical-potential dependent spectral functions, cf. Sec. [2.2.2]
The diagrammatic form of the flow equations for the p and a; two-point functions
within this setting is illustrated in Fig. On this level we can already identify
which decay and capture processes can occur. For an off-shell p meson we have the
processes

P+, P T, (5.6)
and for an off-shell a; meson

ai =Y+, af s7Tto,

ai+m—o, aj+o—m. (5.7)

The particular processes are only possible if the energy constraints are fulfilled,
namely for a decay process w > E, + Eg and for a capture process w + F, > Eg,
with w being the total energy of an off-shell particle and E, /3 the energy of the
involved particles.
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Figure 5.2: Flow equations for the p and a; two-point functions in diagrammatic
form. Vertices are indicated by black dots, regulator insertions by crossed
circles. The color of the lines and regulators represents the type of field:
blue for scalar mesons, gray for quark-antiquarks and purple for vector
mesons.

T- and p-dependent Euclidean masses

We start by discussing the temperature- and chemical-potential dependent Euclidean
particle masses which serve as input for the computation of the spectral functions.

The masses of the sigma meson, the pions and the quarks are obtained by solving
the flow equation of the effective potential which is done within the setting discussed
in Sec. [3.2.1] There we have the following values in the vacuum: m, = 140 MeV,
me = 557 MeV and o9 = 93 MeV. The initial value for my z = 1450 MeV as well
as for the scale-independent gauge coupling g = 11.4 are chosen to reproduce the
physical vacuum-pole masses of the p and a; meson reasonably well in the vacuum:
mb = 789.3 MeV and mf = 1274.7 MeV. The resulting Euclidean masses are
m, = 1298.3 MeV and m,, = 1676.3 MeV. This huge discrepancy could be reduced
for example by including wavefunction renormalization factors. However, there is no
a priori reason for the two masses to agree, the Euclidean masses should rather be
seen as parameters to fix the physical ones as they have no direct physical meaning.

In Fig. we see the Euclidean masses of all particles as a function of temper-

u=0MeV T =10 MeV

| 500_&__‘ - &
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Figure 5.3: Euclidean masses of all particles as a function of temperature at
1 =0 MeV (a) and as a function of chemical potential across the CEP
at T'= 10 MeV (b).

99



5 Towards Realistic Vector Meson Spectral Functions

ature at vanishing quark chemical potential. Starting in the chirally broken phase
with the vacuum values listed above, the masses of the chiral partners are split
while the quark mass has its constituent value. By increasing the temperature we
see a smooth behaviour of all masses towards the phase where chiral symmetry is
restored, as expected for this chiral crossover transition. This phase is characterized
by an almost vanishing quark mass and degenerate masses for the chiral partners m-o
and p-a; which sets in at around 7} ~ 185 MeV. The p mass remains almost con-
stant with increasing temperature, the a; mass slightly drops when chiral symmetry
restoration sets in.

The chemical-potential dependent Euclidean masses for the same particles are
shown in Fig. [5.3b as a function of chemical potential across the CEP of the quark-
meson model, located at (Tcgp; pcrp) ~ (10;298) MeV. The masses do not change
over a wide range of chemical potential as expected from the Silver Blaze property
[154]. Close to the CEP, the sigma mass as critical mode drops significantly and
should become exactly massless when hitting the CEP precisely. In addition, the
chiral condensate drops and so do the vector meson masses and the quark mass.
At large chemical potentials beyond the CEP, the masses of the chiral partners
coincide again and the quarks become almost massless, similar to the case of high
temperature and vanishing chemical potential.

Real and imaginary part of I'2):2
As the real and imaginary parts of I'? are solved separately we now present results
for these parts and their compositions.

In Fig. we see the real parts of the p and a; retarded two-point functions in
the vacuum. As this is not a quantitative study, we estimate the pole masses of the
particles by the zeros of these real parts, which is a good approximation if the width
of the resonance, i.e. the imaginary part of T is sufficiently small. For a more
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Figure 5.4: Real (a) and imaginary (b) part of the retarded two-point functions of
the p (blue) and a; meson (dashed red) as a function of external energy
w at T'= p = 0 MeV. The imaginary part is splitted into the fermionic
contributions (upper light dashed lines) and the mesonic contributions
(lower light dashed lines).
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precise determination of these pole masses one has to study the analytic structure
of T(®% and look for poles on the second Riemann sheet, see for example [155).

The imaginary parts of T'®2 shown in Fig. are non-vanishing if a pro-
cess becomes energetically possible. For the p meson the imaginary part begins at
w = 2m; ~ 280 MeV, for the a; meson at w = 2my, =~ 600 MeV. To see how the par-
ticular processes contribute to the full imaginary part, these different contributions
are plotted separately in Fig. As we see, for both particles the imaginary part
related to the quark-antiquark decay clearly dominates over the mesonic decay pro-
cesses, even in the vacuum where physically this process should not be possible at
all. However, this decay process is naturally present in the current setting as there is
no mechanism which describes confinement. It therefore needs further investigations
of how to suppress or even disable such quark-antiquark processes in the confined
phase of the phase diagram.

In-medium spectral functions

We now discuss the in-medium p and a; meson spectral functions at vanishing exter-
nal spatial momentum as a function of external frequency w, shown in logarithmic
scales in Fig. [5.9

In the vacuum, the p* — 7 + 7 decay gives rise to non-vanishing values in the
p spectral function for w 2> 280 MeV. A further increase can be seen starting at
w =~ 600 MeV related to the decay into a quark-antiquark pair. The a; spectral
function begins to rise at w ~ 600 MeV, when a decay into a quark-antiquark be-
comes energetically possible, it further increases due to the mesonic decay channel
a] — m+ o. The large contribution of the quark-antiquark decay channel leads to
a broad structure of both spectral functions.

By increasing the temperature (left column in Fig. , the a1 meson can capture
a pion from the heat bath forming a sigma meson, a] + @ — o. This process is
possible when w = E; ; — E i, i.e. if the difference of the scale-dependent energies
equals the external frequency w and is therefore bounded by w < m, —m, giving rise
to an increase of the a; spectral function in this w-region. On scales where the differ-
ence E,; — Er j, flows through an (approximate) saddle point, the spectral function
develops a pronounced peak analogous to a van Hove singularity in the density of
states in the electronic band-structure of solids. This effect can be seen in the a;
spectral function on the left side in Fig. [5.5]for 7' = 100 MeV and 7' = 150 MeV. As
with a further increase of the temperature the difference of the sigma and the pion
mass tends to zero, cf. Fig. this capture-threshold moves to smaller energies.

For temperatures above the crossover, the quark mass and the related quark-
antiquark decay threshold drops significantly, the masses of the chiral partners m-o
and p-a; become more and more degenerate. This also leads to the degeneracy
of the mesonic decay processes p* — 7 + m and a] — 7 + 0. Furthermore, the
quarks become the lightest degrees of freedom and give the dominant contribution
to both spectral functions. All these effects lead to a strong broadening and finally
a complete degeneration of the p and a; meson spectral functions which can be
directly linked to the restoration of chiral symmetry.

The chemical-potential dependent spectral functions of the p and a; meson at
T =10 MeV are shown on the right side in Fig. As expected from the Silver
Blaze property, both spectral functions remain almost unchanged from p = 0 MeV to

61



5 Towards Realistic Vector Meson Spectral Functions

T =10 MeV, p = 290 MeV

T=0MeV, y=0MeV
L =P 1L P 4
- a - a
0.100¢ 0.100F
T 8
3 0.010: 2 0.010
S, 72 O,
a / a {
0.001¢ /] 0.001 1 4
1 1
1 1
I I
10741 1 1074 ! |
] 1
1 1
] 1
1075 1 105 i
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
w [MeV] w [MeV]
T =100 MeV, py =0 MeV T =10 MeV, y = 297.4 MeV
1 =P 1L
-
0.100+ 0.100+
'R &«
2 0.010; / > 0010
8 ; / )
Q Hl ,' Q
0.001+ i ! 0.001+
1 ]
1
AN I
a1}
i — "1 ! 10741
V2 I
1 ]
7 1
1075, ; 105
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
w [MeV] w [MeV]
T =150 MeV, p =0 MeV T =10 MeV, p = 297.95 MeV
1L
0.100+
/ 3 0.010:
4 O,
I’ Q
1 L
S 0.001
I
I 1
i 10 i
1 []
] ]
1 1
H 1 1075 L
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

w [MeV] w [MeV]

T =50 MeV, p =600 MeV

T = 300 MeV, i = 0 MeV

1400

0 200

Figure 5.5:

62

400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200
w [MeV]

w [MeV]

Spectral functions of the p (blue) and a; meson (dashed red) as a function
of external frequency w for increasing temperature at © = 0 MeV (left
column) and for increasing chemical potential along the axis of the CEP

at T'= 10 MeV (right column).



5.2 Vector Meson Spectral Functions: Results

=0 MeV
20 ‘ k=P u =0 MeV
[ 14
p— 00
T=0 MeV R S————
- ! 1200 =~
1.5 1 Sso
b _/v
L S 800
& 1.0 é
a 600
[ T=150 MeV 00 pm—
05 A
[ 200 = mj
t 0
0.0 - 0 50 100 150 200 250 300
0 200 400 600 800 1000 1200 1400
T [MeV]
w [MeV]
(a) (b)

Figure 5.6: Spectral functions of the p (blue) and a; meson (dashed red) at
T =0 MeV (darker color) and 7' = 150 MeV (lighter color) for
=0 MeV without quark-antiquark decay channel plotted in linear
scales (a) and temperature-dependent pole masses of the p (blue) and a;
meson (dashed red) (b).

values close to the CEP, already mentioned for the associated py-dependent Fuclidean
masses. However, from pu = 297.4 MeV on we observe sensitive modifications in
the a1 spectral function induced by the dropping sigma mass near the CEP. As a
consequence, the threshold of the process a] — 7 + o moves significantly towards
lower energies and should be located at the pion mass when hitting the CEP exactly,
which is difficult in a numerical calculation. On the other hand, the p spectral
function shows only small p-induced modifications. At large chemical potential we
again see full degeneracy of the p and the a; spectral functions. Here we note that we
choose T'= 50 MeV and p = 600 MeV to avoid the thermodynamically problematic
regime on the right side of the first order line, already discussed in Sec. [3.2.2]

In Fig. we again see the temperature-induced effects on the p and a; spectral
functions plotted in linear scales, where in this plot the imaginary parts of the quark-
antiquark decays were disabled by hand. With increasing temperature, the peaks of
both spectral functions move to each other and at the same time strongly broaden.
This can also be observed by looking at the T-dependent pole masses, shown in
Fig. which basically equal the position of the peaks in the spectral functions.
Starting with the vacuum values m# = 789.3 MeV and m} = 1274.7 MeV, both pole
masses slightly move to each other until they become degenerate at T =~ 200 MeV,
as a consequence of chiral symmetry restoration. Our results are thus consistent
with the melting-p-scenario, where the p mass remains almost constant and the a;
mass shifts towards the mass of the p meson [147}156].

5.2.2 Fluctuating Vector Mesons

We now improve the setting from Sec. by including fluctuating (axial-)vector

mesons in the flow of Fl(f). Therefore we use the formalism discussed in Sec.
namely the ansatz from Eq. (4.16)) together with the Stueckelberg part given in
Eq. (4.28), and will as in the previous setting neglect vector meson self-interactions
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Figure 5.7: Flow equations for the p and a; two-point functions in diagrammatic
form. Vertices are indicated by black dots, regulator insertions by crossed
circles. The color of the lines and regulators represents the type of field:
blue for scalar mesons, gray for quark-antiquarks and purple for vector
mesons.

maintaining only the Abelian part of the gL.SM ansatz. This results in non-vanishing
Fg:?,m and F((ﬁ)alg vertices and the vector meson propagator given in Eq. 1D
While we use the same input from the effective potential as above, we now have
new flow equations for the vector meson mass m%/ ;. and for mg, i as new k-dependent
quantity. The diagrammatic form of the flow equations for the p and a; two-point
functions is shown in Fig. [5.7] Possible processes for an off-shell p meson are now
P, pt T,

pf—=a+mw, pr+m—ar, pfta—m, (5.8)
and for an off-shell a; meson

ai > Y+,

) >7m+o, a+m—0o, a+o—m7,

g p+m, at+m—p, atpom,

ai—~a+o, aj+o0c—a1, aj+a —o. (5.9)

Due to the new vertices, we thus have decay channels involving the p and a; meson,
p* — a1+ m, a] = p+mand a] — a1 + o as well as related capture processes, now
also for the p meson.

T- and p-dependent Euclidean masses

The temperature and chemical-potential dependent Euclidean particle masses within
this setting are shown in Fig. 5.8 As the input from the effective potential is
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Figure 5.8: Euclidean masses of all particles as a function of temperature at
=0 MeV (a) and as a function of chemical potential across the CEP
at T'= 10 MeV (b).

the same as in Sec. only the vector meson masses m, and mg, change in
comparison to Fig. In this calculation, we again fixed the initial value of
my,an = mo = 1060.0 MeV and g = 11.3 to reproduce reasonable values for the
p and a; pole masses: mf) = 776.3 MeV and mf = 1242.6 MeV. This results in Eu-
clidean vector meson masses in this case of m, = 1408.1 MeV and m,, = 1785.3 MeV,
which are even larger than in the previous setting.

The T- and p-dependence of these masses is similar to Fig. Starting in the
vacuum, the masses of the p and a; meson are split. By increasing the temperature
both masses drop and become degenerate for T" 2 230 MeV as a consequence of
the restoration of chiral symmetry, as can be seen in Fig. As a difference, the
slope of the masses in this case is more enhanced than in Fig. As a function
of p1, the masses m, and mg, do not change until p-values close to the CEP, where
both masses significantly drop and for very large chemical potentials again become
degenerate.

In this setting it seems to make a huge difference if the flow equations for m
and my are evaluated at the k-dependent minimum in field space og, as plotted
in Fig. FILZI, or at the minimum at the IR scale oqj,;, as done in Fig. @ even for
their values at the IR scale. Although the values for the Euclidean masses in Fig.
are closer to the physical ones, we here use the grid method and evaluate these flow

equations as well as the flow equations for F,(f) as usual at a fixed value in field space

g = 0'07]€IR.

In-medium spectral functions

Before discussing the in-medium modifications of the p and a; spectral functions
in this setting, we look at the imaginary parts of the respective processes listed
in Eq. and Eq. separately, shown in Fig. As the capture processes
become only possible and thus visible at finite temperature, we choose T' = 150 MeV
and p = 0 MeV for this plot.

For the p meson, Fig. we have the decay into a quark-antiquark, the decay
into two pions and as new decay process the decay into an a;-m-pair. Additionally
the p can capture a pion from the heat bath forming an a; meson. This process gives
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Figure 5.9: Imaginary part of T®:# divided into the different capture and decay
processes at T = 150 MeV and p = 0 MeV separately for the p meson
(a) and the a; meson (b).

rise to an increase of the imaginary part for lower frequencies and is energetically
bounded by w = mg, — my. For the a; meson, Fig. we have as new processes
the decay into a p-m pair and into an a;-o pair. Here also the related in-medium
capture processes are possible, i.e. the capture of pion and of a sigma meson.

The resulting p and a; spectral functions at finite temperature and chemical poten-
tial are shown in Fig.[5.10] For T' = p = 0 MeV, the picture is quite similar to the one
found in Fig. [5.5] except the additional decay thresholds at large frequencies. Here
only the threshold w = m, + m; ~ 1549 MeV is visible in the a; spectral function
whereas the thresholds w = mg, + m; =~ 1926 MeV and w = mg, + my, ~ 2342 MeV
lie outside the considered energy region with the used UV-cutoff A = 1500 MeV.

With increasing temperature (left column in Fig. , the p and a; can capture
particles from the heat bath, giving rise to an increase of both spectral functions
in the low frequency domain. For the p meson we have the process p* + 1™ — aq,
for the a; we have the processes a] + ™ — 0, a] +7 — p and a] + 0 — a;
contributing to the full imaginary part in this region, see Fig. for the thresholds
of the particular processes. In the a; spectral function we again see a pronounced
peak at "= 100 MeV and T' = 150 MeV which is analogue to a van Hove singularity
and has already been discussed in Sec. As the masses of the vector mesons
decrease with increasing temperature, the thresholds for the new decay processes
move towards smaller frequencies, like for the process p* — a1 + 7, at T = 150 MeV
located at w = mgq, +m; ~ 1530 MeV. At T = 300 MeV the masses of the chiral
partners are fully degenerate and the quarks become the lightest degrees of freedom
which both leads to a complete degeneracy and broadening of the p and a; spectral
functions, analogous to the high-temperature case in Fig. [5.5

The chemical-potential dependent spectral functions on the right side of Fig. [5.10]
are qualitative similar to the ones found in Fig. [5.5] Both spectral functions do
not change up to p-values near the CEP, which is expected from the Silver Blaze
property also in this case. At p = 297.4 MeV and p = 297.95 MeV we see the effect
of the dropping sigma mass in the significant lowering of the threshold for the decay
channel aj — o+ 7, where the structure of the resulting plateau is slightly different
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Figure 5.11: Flow equations for the p and a; two-point functions in diagrammatic
form. Vertices are indicated by black dots, regulator insertions by
crossed circles. The color of the lines and regulators represents the
type of field: blue for scalar mesons, black for all combinations of the
nucleons N7 and Ny and purple for vector mesons.

compared to the same case in Fig. At the same time the threshold for a7 — p+
gets slightly more enhanced while the p spectral function does not really change
at all. Overall, the only clear signature for the CEP is encoded in the dropping
threshold in the a; spectral function. For large chemical potential we again see full
degeneracy of both spectral functions reflecting the restoration of chiral symmetry.

5.2.3 Spectral Functions with Nucleons

In this section we now modify the ansatz used in the setting in Sec. by replacing
the quark fields with fields for the nucleon Ny, N7 and its parity partner No, No. We
then obtain a purely hadronic effective low-energy model, cf. Sec. where the
quarks and the associated unphysical decay processes in the hadronic phase are now
absent.

Technically we therefore first solve the flow equation for the effective potential of
the parity-doublet model, which was discussed in Sec. and on this input the
flow equations for m{,, m3 and finally for the p and a; two-point functions which
are illustrated in diagrammatic form in Fig.[5.11] Possible processes for the p meson
in this setting are now

p* > N+N, p+N,N— N,N,
P4,

pr—=ar+m, pt4m—a, pf+a — . (5.10)
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For the a; meson we have the processes

ai N+ N, a4+ N,N—N,N,

aij—>7m+o, aj+m—o0, aj+o—m,
ai = p+m, ai+mT—=p, aj +p—m,
ai > a1+o, aj+o—a, aj +a; — o, (5.11)

where the vector meson-nucleon processes as new ones compared to the previous
setting are meant to hold for various combinations of N; and Ny, namely V* —
N1, Ny + Nl, Ny and V* — No, N1 + Nl,Ng as decay processes and V* 4 ]\71,N1 —
Ny, Ny and V*+ Ny, Ny — Ny, Nj as in-medium capture processes with V € {p, a;}.

T- and p-dependent Euclidean masses

As in the previous settings in Sec. and Sec. we fix the parameters for the
effective potential to reproduce physical reasonable vacuum-values for the masses of
the scalar mesons /0 and the fermions, in this case the nucleon Ny and its parity
partner No. Since in the vacuum there are no baryons, one in principle has to fix
their masses at T = 0 MeV close to a up related to the onset of nuclear matter.
Due to the Silver Blaze property we do not expect a significant change of these
masses from g = 0 MeV to this onset-point and we therefore fix all masses together
at T' = p = 0 MeV. The parameters g = 7.4 and my s = 2035.0 MeV are fixed to
reproduce the phenomenological correct pole masses, resulting in mb = 774.1 MeV
and mp = 1262.4 MeV. The corresponding Euclidean masses in the vacuum then
have the following values

oo =93.0 MeV, me = 633.5 MeV ,
my = 140.9 MeV, mp, =938.3 MeV,
mp, = 1535.6 MeV, m, =808.5 MeV,
mg, = 1062.0 MeV . (5.12)

Their temperature dependence at ;= 0 MeV is shown in Fig. As expected
from a crossover, all masses change very smoothly. While the masses of the p meson
and the nucleon N; remain almost constant, the masses of their parity partners
a1 and Ns decrease with increasing temperature which leads to a successive mass
degeneracy for large temperatures. The masses of the scalar mesons 7 and ¢ behave
similar to the ones already obtained in the quark-meson model calculations. At
T = 500 MeV, the masses of the chiral partners p-a1, N1-N2 and 7-0 become (almost)
completely degenerate.

The Euclidean masses as a function of baryon chemical potential across the chiral
CEP at T = 67 MeV are shown in Fig. As this critical endpoint is located
at larger T' compared to the previous settings, especially the masses of the sigma
meson and the N slightly decrease from up = 800 MeV to values close to the CEP.
As already discussed in the previous sections, at the CEP the sigma mass and the
chiral order parameter drop significantly, leading also to a drop of the other masses.
For very large up we again see full degeneracy of the masses of the chiral partners.

69



5 Towards Realistic Vector Meson Spectral Functions

p =0 MeV T =67 MeV
1500/ 1500

1000 1000

[MeV]
MeV]

0 . V
0 100 200 300 400 500 800 850 900 950 1000
T [MeV] He [MeV]
(a) (b)

Figure 5.12: Euclidean masses of all particles as a function of temperature at
i =0 MeV (a) and as a function of chemical potential across the chi-
ral CEP which is located at around T = 67 MeV and pu = 925 MeV
(vertical red line) (b).

In-medium spectral functions

Spectral functions for the p and a; meson within this hadronic model are shown for
different combinations of 7" and up in Fig. [5.13

Due to the absence of the quark-antiquark decay channel in this model, both
spectral functions are less broad in the vacuum compared to the previous settings
but show an enhanced peak located at the particular pole mass. In both cases,
decays into scalar mesons p* — 7™+ 7m and a] — 7 + o are the most dominant
processes in the vacuum which also determine the start-thresholds in both spectral
functions. For the p we also have the decay p* — a; + 7 located at w ~ 1200 MeV,
which is quite weak and not really visible. The baryonic decay p* — N; + N; located
at w = 2mp, ~ 1877 MeV gives rise to a pronounced threshold. In the a; spectral
function this threshold is only poorly visible but instead the threshold a7 — N + N,
at large frequencies w = mp, + mp, ~ 2474 MeV can be clearly identified. The other
decay channels a] — p+m and a] — a1 + o do not contribute strongly and therefore
are only barely visible in the a; spectral function.

With increasing temperature (left column in Fig. the typical in-medium
capture processes for the p and the a; meson become possible. At T'= 100 MeV
the a1 spectral function already shows a pronounced plateau, where in this region
all capture processes including the nucleon-scattering process a; + N1, Ny — Na, Ny
are energetically possible and therefore contribute to the imaginary part of T(2)-E.
Here the left peak can be related to the process aj + m — o, the right one to the
capture of a pion forming a p meson which also marks the right border of this plateau
at w =m, — my =~ 660 MeV. For T' = 200 MeV this capture region gets even more
enhanced where now the capture of nucleons provides the main contributions for
low frequencies, w < mp, — mp, ~ 464 MeV. The peak next to this plateau is again
related to the capture process aj+m — p. In the p spectral function the contributions
of the decay into a pion pair suppresses the other capture-thresholds p* + m — a1
and p* + ]\71, N1 — No, N, such that we only see small temperature effects. In both
spectral functions the baryonic decay thresholds lower as their masses decrease with
increasing temperature, cf. Fig.
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Figure 5.13: Spectral functions of the p (blue) and a; meson (dashed red) as a func-

tion of external frequency w for increasing temperature at y = 0 MeV

(left column) and for increasing chemical potential towards the chiral

CEP at T'= 67 MeV (right column).
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Along the axis of the chiral critical endpoint at T'= 67 MeV (right column in
Fig. we see that already at 4 = 0 MeV in-medium processes become possible.
By cranking up the baryon chemical potential, the contribution from the capture of
a N7 forming a Na nucleon gets larger and larger, as can bee seen as enhanced bump
and spike in both spectral functions at g = 800 MeV around w ~ 555 MeV. Close
to the CEP at pu = 924 MeV this effect gets even stronger forming almost a peak
structure in both cases. As here the sigma mass abruptly lowers, cf. Fig. the
threshold aj — m 4+ 0 moves towards lower frequencies leading to a broadening of
the ay spectral function.

Overall, the inclusion of baryon degrees of freedom leads to much sharper spec-
tral functions as the contributions of the quark-antiquark decays, especially in the
hadronic phase at low T and up, are gone. The additional physical baryon-scattering
processes in the medium contribute significantly to the imaginary part of I'®) espe-
cially for large pp near the chiral CEP. As in this calculation we suffered for example
from non-monotonic behaviour of the k-dependent energy difference E, — Er . at
some T-pup combinations (which are not shown in Fig. leading to unphysi-
cal capture thresholds, and in the present truncation we were not able to describe
nuclear matter phenomenologically correct, cf. Sec. [3.3.2] a phenomenologically
enhanced qualitative and quantitative study has to be postponed to future studies.

5.3 Electromagnetic Spectral Functions

5.3.1 Rho-Photon Mixing and FRG Setup

Beside the computation of vector meson spectral functions and the usage of VMD-
relations like given in Eq. one can also directly compute the in-medium elec-
tromagnetic spectral function to get access to the dilepton rate.

In this section we will use the model extension described in Sec. [4£.3.1] to include
the photon field A, and associated vertices I'® and I'® into our FRG setup in order
to compute electromagnetic two-point functions and the related spectral functions.
Technically we therefore go a step back and use a setting similar to the one in
Sec. i.e. input from the effective potential of the quark-meson model and only
(pseudo-)scalar mesons and quarks as fluctuating fields in the flow equations for
Ff) and m%,k The parameters here are the same as in Sec. [3.2.1] and Sec. [5.2.1
Due to the A, field in the ansatz for I'; we now have new non-vanishing vertices

Fg A Fi(/i)p A FS:Q Ap and ngz A4> giving rise to new diagrams, see App. [B.2|for explicit
expressions.
Since on the level of I'® the p meson and the photon mix, the physical two-point

functions are obtained by diagonalizing the following 2 x 2 matrix

(2) (2) ) ) =(2)

r r diagonalise Tr 0

(F%1 F%) g ( SA f@))’ (513)
pA pp PP

where the physical electromagnetic two-point function I’ 5421)4 is given by

= (2 1 2 2 2)\2 2) (2
e :Q{Fg+pg&_¢<rg,p>_r;;) +4rggrgg}. (5.14)
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Figure 5.14: Diagrammatic representation of the flow equations for the bare rho, the
bare photon and the the mixed rho-photon two-point function.

The flow equations for the bare p meson, the bare photon and the mixed rho-photon
two-point function are illustrated in Fig. [.14] By solving these flow equations
separately one can then with Eq. compute the physical photon two-point
function and based on that the associated electromagnetic spectral function.

In order to get physical insights into this expression for T’ 54221 we can expand the
particular two-point functions in powers of the electromagnetic coupling e = %.
The self-energy parts of the bare two-point functions are of the following orders,

r?=0(?, rHh=06), TIY=r%=0(¢g), (5.15)

with g being the gauge coupling. By a Taylor expansion in e we find for the photon
two-point function

2 @ T
Lpp
| ———
C?(ez)

The first correction term from the rho-photon mixing is of the same order in e as
the bare photon two-point function. Physically, this second term represents the p
contribution to the photon two-point function which reflects the idea of vector meson
dominance.

5.3.2 Electromagnetic Spectral Functions: Results

We now discuss results for the in-medium electromagnetic spectral functions, which
are obtained by the real and imaginary part of the physical two-point function f(ﬁl.
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5 Towards Realistic Vector Meson Spectral Functions
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Figure 5.15: Spectral functions of the bare p meson (blue), the bare photon (dashed
red) and the full photon (dashed yellow) as a function of external fre-
quency w for increasing temperature at p = 0 MeV (left column) and
for increasing chemical potential towards the CEP along T' = 10 MeV
(right column).
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5.3 Electromagnetic Spectral Functions

In Fig. [5.15| we see the bare p spectral function, the bare photon spectral function
and the full photon spectral function at different combinations of temperature and
quark-chemical potential.

In the present truncation, the p and the photon can only decay into two pions
and a quark-antiquark pair. The particular thresholds in the vacuum are located at
w = 2m,; ~ 280 MeV and w = 2m,, =~ 600 MeV, see Fig. for the related input-
masses. The bare p spectral function is thereby in all T-py-cases the same as in
Fig. [5.5l With increasing temperature (left column in Fig. the quarks get
lighter and the pions heavier leading to the typical broadening of the spectral func-
tions already observed in Sec. and Fig. Since the photon-pion coupling is
much smaller than the rho-pion coupling (e < g), the bare photon spectral function
becomes more flat compared to the bare rho one, especially at T" = 300 MeV, while
the physical photon spectral function is a mixture of both bare spectral functions.

Close to the CEP (right column in Fig. , we only see small modifications in
the pion threshold in all spectral functions while their principle vacuum structure
basically remains unchanged.

The fact that we do not observe clear signatures for the critical endpoint in the
electromagnetic spectral function is no surprise as neither the p spectral function nor
the bare photon spectral function contain processes which would show up for example
a dropping sigma threshold close to the CEP. In our truncation, the propagators
in the loops are sharp, representing only the single-particle contributions and one
therefore would need a sigma propagator in the loops of the flow equations for I‘f)
which, however, is absent for the bare p and bare photon two-point functions.

In order to make the critical endpoint of the model visible in the electromagnetic
spectral function we would have to improve the current truncation for example by
inserting full a; propagators inside the loops. In this way, signatures for critical
physics could show up in the p spectral function via processes like p* — 7 + ay.
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Self-Consistent Solutions of Flow Equations

In the previous chapter we saw that the FRG is an appropriate tool to compute
meaningful (axial-)vector meson and electromagnetic spectral functions, also in the
vicinity of phase transitions and critical endpoints. A central issue in the trunca-
tion usually employed in these calculations is the usage of propagators which only
describe the single-particle contribution of the particular fields, and not the fully
dressed propagators containing the full spectral properties. Unfortunately, this is
necessary to ensure the location of thresholds to be determined by the physical
pole masses as well as to resolve non-trivial structures in the spectral functions, for
example n-particle thresholds.

From the perspective of the FRG, this turns out to be very difficult from a tech-
nical point of view as the necessary analytic continuation procedure avoids a simple
iteration scheme. However, in this chapter we present a numcerical procedure to
compute self-consistent spectral functions using the Kéllén—Lehmann spectral rep-
resentation which also allows for a straightforward generalization to finite tempera-
ture. To demonstrate the feasibility of this procedure we compute spectral functions
of the pion and the sigma meson within the O(4)-symmetric model. This approach
was driven by a first FRG study on self-consistent spectral functions in the vacuum
in which the formalism is very difficult to apply at finite temperature .

The used O(n)-symmetric model represents a simple effective low-energy model
for QCD and plays also an important role in condensed matter physics. Therefore
it has been the subject of various FRG studies .

After discussing the basic idea in Sec. we present the numerical procedure,
first for the Euclidean system and then for the Minkowski system in Sec. [6.1.2]
Results are then shown for first checks on the reconstruction method in Sec. [6.1.1]
and finally for spectral functions in the O(4) model in Sec.
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6 Self-Consistent Solutions of Flow Equations

6.1 Basic Idea and Numerical Setting

6.1.1 Introduction

Starting point is the O(4)-symmetric model and its flow equations for the pion
and sigma meson two-point functions, illustrated in Fig. [6.1] The idea of solving
FRG flow equations self-consistently is to reinsert the k-dependent two-point func-
tions calculated in every k-step on the left side as new input into the loops on the
right side of the equations for F,(f). Compared to the previous truncation where we
extracted the k-dependent two-point functions on the right side of the equations
always from the ansatz of the effective average action, this would end up in a com-
pletely backcoupled solution. While this is in principle straightforwardly possible
for the Euclidean system [78|, a backcoupled solution within the real-time formalism
requires a closer consideration.

The numerical procedure which we apply proceeds as follows. At first we solve
the Euclidean system consisting of the equations for Ff}w Fl(fl)c and the equation for

the effective potential Uy. The vertices F,(f) and F,(C4) are then extracted momentum

independently from the effective potential. While doing this, we store the k-flow of all
Fuclidean quantities, namely the Euclidean masses, the vertices and the momentum
independent tadpoles. Using this Euclidean input, we solve the Minkowski system
consisting only of the momentum-dependent diagrams in a self-consistent way. The
Minkowski system is obtained from the Euclidean counterpart by using the usual
analytic continuation procedure (as we use a three-dimensional regulator) and the
spectral representation for Euclidean regulated propagators. To get rid of the full
field-dependent equations, we use a truncation to only obtain two-point functions
and spectral functions at the physical minimum oy.
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Figure 6.1: Flow equations for the 7 and o two-point functions within the O(4)
model in a diagrammatic form.
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6.1 Basic Idea and Numerical Setting

6.1.2 Numerical Procedure

Euclidean system

In the Euclidean system we have to deal with the following system of equations,

kU] = Flow (Ry, [0, 02 F)
T2 16 = d0ipo, 7] = Flow (R, T} P,E;‘*),r,fj;’f,r,fgﬂ)‘qb:%,
Oy 16 = d0ipo, 5] = Flow (R, T} F,E;4),F,(€277)r’E,F,E;27();E)‘¢:¢O. (6.1)

The flow of the effective potential is solved on a grid in field-direction, whereas the
flow equations of the two-point functions I'}; (2 ) and I‘(Q) are evaluated at the phys-
ical minimum at the IR scale gg. To backeouple field- dependent two-point functions
into the flow of the effective potential, we assume the following decomposition in
order to obtain these field-dependent two-point functions,

T@2(g,p] = T®F[go, p] — T (g0, 0] + mi[g] . (6.2)

We hence separate the full two-point function into a field-independent but momen-
tum dependent part and a field-dependent but momentum independent part which
is identified with the Euclidean mass extracted from the effective potential. This
separation-ansatz seems rather natural when coming from the usual LPA or LPA’
truncation but of course contains fully backcoupled objects. How good this trunca-
tion is, compared to the full field-dependent solution, has to be checked in future
comparative studies.

In the evaluation of the right side of the flow equations for F;CQ)’E we have to
deal with a Matsubara sum over bosonic Matsubara frequencies qo, and a three
dimensional integral over the spatial components of the loop momentum ¢§. The
expression for a momentum dependent diagram is then given by (and analogously
for the tadpoles)

2 2
o) =Y [ @7 (19) 0Ru@) (DF (@0 @) DE (g0 = p0,7£ 7). (63)

where the regulated Euclidean propagator is related to the two-point function as
usual by DF = D8 = (F,E?)’E + Ri)t

Since the Matsubara sum as well as the spatial integral cannot be performed
analytically, we set up a grid for the Euclidean two-point functions in py and |p]
direction and solve all expressions like in Eq. at every scale k on every gridpoint
(pos, [P]j)- In the numerical calculation we sum over a finite number of Matsubara
modes and extrapolate if the momenta jump off the grid. We checked explicitly
that the number of Matsubara modes we included (nmax ~ £100) and the concrete
extrapolation procedure does not affect the results. As inital form at the UV scale
A =500 MeV we set

U] = ad®+bo,
T 60; po, ] = p3 + B2+ m2 z[0]
FC(T?{EW(J;pO,ﬂ =p5+P>+ mg’A[%] , (6.4)
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6 Self-Consistent Solutions of Flow Equations

where as usual, we add the explicit symmetry breaking term co only at the IR
scale. The parameters a, b and ¢ are chosen to reproduce physical reasonable
values for op and the (pole) masses m? and mf in the vacuum, cf. Sec.
a=—T7.46-10* MeV?2, b = 3.65, ¢ = 1.75 - 10% MeV®. As regulator function we use
the standard three-dimensional Litim regulator.

Minkowski system

In order to construct an analytically continued system of equations for retarded
two-point functions @2 we use the Kéllén-Lehmann spectral representation for
the scale-dependent regulated Euclidean propagators, which reads

5Reg po,ﬁ) / ’ﬁ) / /QJr T2 2 Pk( uﬁ)' (6-5>

The existence of a spectral representation just follows from Cauchy’s integral theo-
rem and the use of a three-dimensional regulator function.

After replacing the propagators with this representation, the loop functions on
the right side of the flow equations have the following form (see Eq. for the
Euclidean counterpart)

wi,w2,wW3

2
Ti(po ) =3 / 437 / dwrdinduos (T)" 0 Ru(@) (6.6)

8 wiwaws pk,1 (w1, @) pr,2(wW2, @) pr,3(wW3, ¢ — D)
(w2 +a2,) (w8 +aBn) (@3 + (o — q00)?)

, (6.7)

which obviously still involves a spatial momentum integration. If we use an O(4)
approximation of the form py (w,p) = px (x/wQ +ﬁ2,0) = pr(vVw? + p?), we can
shift the non-trivial spatial momentum dependence in the first argument and trivially
carry out the spatial momentum integration. We are hence left with w-integrals for
every propagator involved in the loops on the right side of the flow equations which
have to be performed in every integration step. Note that this O(4) approximation
is strictly speaking only valid at vanishing temperature for a regulator that does not
break O(4) invariance, i.e. not for the three-dimensional regulator considered here,
while it is in any case just an approximation at finite temperature. We use this
approximation here to reduce the number of momentum arguments that have to be
taken into account to resolve the momentum dependence of the two-point function.

In these expressions we can then perform the Matsubara sum analytically and
simply apply the standard analytic continuation procedure described in Sec. [2.2:2]
The Euclidean system then turns into a Minkowski system with flow equations for
the real and imaginary parts of the retarded two-point functions,

OkRe TN 603 w] = Flow (Rkar(3)[¢0] 60li Pk pok)
gIm T [¢o, = Flow (R, T} D 160l; ok o)
OReT’ )R[ = Flow Ry, T} [60l, T [60ls ot Pk ) -
gIm T [¢0, — Flow (Rk,l“ D1ol; P pgk) (6.8)
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6.2 Selt-Consistent Spectral Functions: Results

The k-dependent spectral function pi can be computed at every scale k as

2),R
pr(w) = = tm () (6.9)
2 2 .
& (Re F,?)’R(w) — k2) + (Im F,&Q)’R(w))

for the pion and sigma meson respectively. The shifted real part is due to the
inclusion of the Litim regulator and the continuation procedure, where we have a
global minus sign.

To reduce the numerical effort, we further consider the combination

(DD)kE,Reg,eﬂ(po,m — D§7Reg(p07m . D]?,Reg<p0,ﬁ.) , (610)

for which we also assume a spectral representation and whose spectral function
then reads (again for three-dimensional flat regulator and vanishing spatial external
momentum )

) L 2 TP (w) (ReT(w) - k2)
w) = ——

i ((Re P w) k) 4 (mr}f’ﬁ(w))z) |

We note that the existence of a spectral representation of such a combination is
a priori not clear if the involved propagators have a non-trivial structure. The
consequences of this assumption have to be tested in future studies.

However, in this way we can reduce the three-dimensional w-integrals in Eq.
to two-dimensional ones. A general momentum-dependent loop function Ji(pg) at
T =0 MeV (for simplicity) then reads

(6.11)

10k (w1 + w2) p§(w1) pr(w2)
1572 ((w1 + wo)? —I—p%) .

In the numerical calculation, the system of equations given in Eq. is solved on
a grid in frequency-direction w; whereby the two-dimensional frequency-integrals can
be solved numerically in every k-step. The cutoff for these frequency-integrals A,
determines the size of the w-grid and is chosen to be much larger than the RG cutoff
scale A, where we extrapolate the spectral functions for w > A, with p(w) o 1/w?
and checked explicitly that the results do not depend on the precise value of the
cutoff, see Fig. The initial conditions for the real and imaginary parts of the
two-point functions at the UV-scale A are chosen to be

Jk(p(]) = / dwldWQ (6.12)
w1,w2

r gkR[%M = (w+ie)® —m2 \[¢o], (6.13)
P& g0sw] = (w + i) = m2 o] (6.14)

where € is kept as a small parameter and the Euclidean masses mfr Al¢o] and mf_} Aloo]
are extracted from the effective potential.

6.2 Self-Consistent Spectral Functions: Results

6.2.1 Reconstructing Propagators: First Checks

In a first step, the reconstruction procedure of propagators used in the Minkowski
framework is tested. Therefore we compare Euclidean propagators obtained as in-
verse from the solution of the Euclidean system to those ones obtained by calculating
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Figure 6.2: Comparison of the resulting Euclidean pion propagators obtained by two
different calculation methods, for the LPA truncation (blue) and the full
self-consistent framework (red) (see text for details) (a) and vacuum-
spectral function within a O(1) model for different values for e (shown
in units of MeV) (b).

the spectral function via solving the Minkowski system and using the spectral rep-
resentation from Eq. . The relative difference in comparison to a reference
propagator (here the one obtained from the Euclidean system) as a function of dis-
crete Euclidean frequency pg is shown in Fig. once for the LPA truncation and
once for the full self-consistent solution, in both cases for the pion propagator at the
IR scale.

The reconstruction of LPA propagators seems to work very well since the deviation
here is 1% at most (blue dots in Fig. . As possibly expected, the reconstruction
of the full backcoupled propagators is not as good as in the LPA case since of course
we have non-trivial effects in the k-dependent spectral functions in this system what
makes this calculation also numerically much more involved. The deviation in this
calculation of around 8% at most is quite acceptable though (red dots in Fig. .
In both cases the most precise reconstruction can be made at the lowest Matsubara
frequency pg = 0 MeV.

As a next check we calculate the spectral function of a simple O(1) = Zg model
with only one scalar field o within the self-consistent framework, plotted for different
values for the e-parameter in Fig. In this setting, the off-shell o* can in principle
decay into multiple sigma fields which thresholds are indicated with vertical red
lines in Fig. 6.2b| (my, 2m,, 3m,). While the inclusion of only the single-particle
contributions of the full propagators leads to decay processes of the form A* — B+C
(as done in Chapter [5)), a self-consistent solution contains in principle all possible n-
particle thresholds. Once a threshold appears in the k-dependent spectral function,
it gets backcoupled to thresholds appearing in the next k-step. In Fig. [6.2]] we see
a little bump exactly located at 3m,, which signals that the first non-trivial process
0% — 3o is included in this self-consistent calculation. How large the contribution of
this specific process to the imaginary part of I'®:f actually is cannot be answered
within this purely numerical procedure and has to be studied in future comparable
projects.

82



6.2 Selt-Consistent Spectral Functions: Results

T =10 MeV T =10 MeV
1000F T ‘ . .
100; SN
1F \
10 _ ——
g g
2 2 0.100-
8 1 go.
& S
0.100
0010+
0.010
0A001| ‘ ‘ ‘ ] 0.001
0 200 400 600 800 0 200 400 600 800
w [MeV] w [MeV]
(a) (b)

Figure 6.3: Spectral functions of the pion (a) and sigma meson (b) as a function of
external frequency w at T'= 10 MeV for different values of € (shown in
units of MeV).

6.2.2 Spectral Functions in the O(4) Model

After having tested the reconstruction procedure on a more basic level, we now
present results for self-consistent spectral functions for the pion and sigma meson
within the O(4) model. We therefore proceed exactly as described in Sec. where
the parameters for the effective potential at the UV scale from Eq. and for the
explicit symmetry breaking term are chosen to reproduce physical reasonable values
for the pion and sigma pole masses, which are again identified with the zero crossing
of the real part of I'®E. The resulting minimum o and the pole masses together
with the corresponding Euclidean masses extracted from the effective potential are
listed in Tab. While for the pion the pole and Euclidean mass almost agree,
the difference is larger for the sigma masses. This is not surprising as especially for
heavier and not so well isolated bound states and resonances there is no a priori
reason for them to agree.

The pion and sigma meson spectral functions at 7' = 10 MeV for different values
of the e-parameter (from the analytic continuation procedure) are shown in Fig. 6.3
The vertical red lines in Fig. indicate the position of the pion pole mass and the
location of the first non-trivial three-particle threshold at w = 3m% ~ 406.5 MeV.
We see that for smaller e-values the pion spectral function develops a threshold
exactly at this position, signaling that the sigma propagator in the loops in Fig.
now basically is the two-pion resonance from Fig. [6.3D] giving rise to the process
7™ — o + m ~ 3w. However, this process is the only non-trivial which is energetically
possible in the considered w-window. The sigma meson spectral function shows the

E E
s Mg

93.0 MeV  135.5 MeV  353.7 MeV  137.4 MeV  429.6 MeV

00 mb mP m

Table 6.1: Values for o9 = f, the Euclidean masses and the corresponding pole
masses in the vacuum at T = 10 MeV.
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Figure 6.4: Spectral functions of the pion and sigma meson as a function of exter-
nal frequency w for different values of the frequency-cutoff A, (a) for
A, =800 MeV and € = 1 MeV as final setting (b).

usual pronounced two-pion threshold which location is now determined by two times
the pion pole mass (vertical red line in Fig. [6.3b)).

In order to test the dependency on the cutoff of the frequency-integrals, cf. the
Minkowski system in Sec. [6.1] both spectral functions for ¢ = 1 MeV and different
values for this cutoff, denoted by A, are shown in Fig. [6.4al As we see, all curves
lie on top of each other which shows that the results do not depend on the concrete
value of A,,. However, as final configuration we chose A, = 800 MeV and e = 1 MeV,
plotted for T'= 10 MeV in Fig.

Pion and sigma spectral functions for 7' = 100 MeV and 1" = 800 MeV are shown
in Fig. At T =100 MeV, possible capture processes lead to a broadening of the
peak in the pion spectral function as well as of the whole sigma spectral function due
to which the decay threshold in the pion spectral function can only barely be iden-
tified. The pole mass of the pion slightly decreases to a value of mf = 119.7 MeV,
the sigma meson pole mass stays almost constant and has at 7' = 100 MeV a value
of mP = 355 MeV. By increasing the temperature further to 7' = 800 MeV, the pole
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1000 1000
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Figure 6.5: Spectral functions of the pion (blue) and sigma meson (red) as a function
of external frequency w at T'= 100 MeV (a) and 7" = 800 MeV (b).
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6.2 Selt-Consistent Spectral Functions: Results

masses are mf = 270 MeV and m¥ = 291 MeV whereby both spectral functions now
form a more enhanced peak and tend to degenerate completely.

Although this purely numerical procedure of solving Euclidean and real-time flow
equations self-consistently works, an important next step would be to perform an
€ = 0-calculation and to study the specific trivial and non-trivial processes isolated
such that for example their strength and visibility can be estimated.
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Summary and Outlook

The main topic of this thesis was the computation of (axial-)vector meson spectral
functions at finite temperature and chemical potential within the non-perturbative
functional renormalization group approach. Here we used a recently proposed ana-
lytic continuation procedure on the level of the flow equations in order to get access
to spectral functions as real-time quantities. These computations were performed
on the basis of low-energy effective models for QCD aiming at a qualitative de-
scription of the hadronic sector of QCD and the associated interactions involving
the (axial-)vector mesons. Additionally to that, we computed in-medium electro-
magnetic spectral functions and presented first results for self-consistent spectral
functions within a simple O(4) model. In this chapter we now want to summarize
the main results obtained in these calculations and discuss possible next steps for
future studies.

Starting point was the quark-meson model together with the parity-doublet model
as low-energy effective models for two-flavor QCD incorporating the concept of chiral
symmetry, discussed and presented in Chapter [3] There we focused on the phase
structure of these models where in the quark-meson model we found the typical
structure of a chiral critical endpoint at low temperatures and large quark chemical
potentials dividing a crossover transition for larger temperatures from a first order
phase transition for 7' < 10 MeV. The inclusion of the nucleon and its parity partner
as baryon degrees of freedom within the parity-doublet model allowed for a modelling
of the liquid-gas phase transition, in addition to the chiral transition. Here it turned
out that with the used LPA truncation it is not able to fix the phenomenologically
correct value for the binding energy and for the saturation density simultaneously.
Consequently, this model was rather used in a qualitative sense serving as a purely
hadronic effective model. The phenomenologically correct description of nuclear
matter in a quantitative sense has to be postponed to future projects. Here, a
mean-field omega meson together with an improved truncation towards LPA’ could
be used to shift the phase transition to the correct location.

In Chapter [4| we then concentrated on the theoretical description of (axial-)vector
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7 Summary and Outlook

mesons by fundamental fields in an effective theory. Here, the p and a; meson were
introduced in the spirit of Sakurai, i.e. as gauge bosons arising from a local SU(2) x
SU(2) gauge symmetry. An additional Yukawa-type interaction to quark-antiquark
fields then lead us to the so-called gauged linear sigma model with quarks. When
describing fluctuations due to massive (axial-)vector mesons, this formalism had to
be extended as here the known problems of ensuring transversality and convariance
of the associated time-ordered product arise. The FRG formulation of the single-
particle contribution of a vector meson propagator fulfilling these requirements and
also the associated (modified) Ward identity described in Sec. represents one
main result of this work. In order to also account for an electromagnetic interaction
and a coupling to baryon degrees of freedom, the gauged linear sigma model was
finally extended by an additional U(1) gauge symmetry and by means of the parity-
doublet model, respectively.

The main results for (axial-)vector meson and electromagnetic spectral functions
along the phase diagram of the respective models were presented in Chapter
Within the first setting in Sec. the possible processes for the p meson were
p* — w47 and p* — 1+ whereas for the a; meson we had the processes ai = m+o,
ai+71— o, a+0 — mand af — ¢ + 1. With increasing temperature and/or
quark chemical potential we observed various modifications in the p and a; meson
spectral functions. Along the temperature axis at p = 0 MeV, the main effects were
a broadening or melting of both spectral functions and a complete degeneracy at
large temperature which could be connected to the restoration of chiral symmetry
as the associated order parameter was obtained within the same framework. This
behavior could also be seen in the temperature-dependent Euclidean masses and the
pole masses of the p and a; meson. Close to the critical endpoint of the quark-meson
model, the dropping sigma mass lead to sensitive modifications in the a; spectral
function, namely the abrupt lowering of the threshold of the process a] — 7+ o
which could be clearly identified as signature for the CEP of the model.

The developed formalism of describing fluctuating (axial-)vector mesons then al-
lowed to include additional processes involving (axial-)vector mesons, p* — a3 + 7
and p*+m/a1 — ai/m for the p meson and aj — p+m, aj+7/p — p/7,a] = a1+0o
and a} + o/a; — a1 /o for the a; meson. These additional processes lead to more
involved structures in the in-medium spectral functions as we have more possible
capture processes at finite temperature in this setting. However, the overall in-
medium-induced effects are similar to the previous setting, namely a broadening and
successive degeneracy with increasing temperature and a dropping 7 + ¢ threshold
in the a; spectral function in the region close to the CEP.

This setting was in Sec. extended by means of replacing the quark-antiquark
degrees of freedom with fields for the nucleon and its parity partner. In this way,
unphysical quark-antiquark thresholds in the hadronic phase, present in the p and a;
spectral functions in the previous settings, could be removed whereby all processes
including the new ones, namely p* =+ N + N, p* + N, N — N,N and a} =+ N + N,
aj + N,N — N, N, are physically realized in the hadronic phase of the phase
diagram. The absence of the quark thresholds lead to more peaked p and a; spectral
functions where we also saw new decay thresholds at large frequencies and new
contributions at intermediate frequencies related to in-medium vector meson-nucleon
scattering processes. Close to the chiral critical endpoint we observed a broadening
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of the aq spectral function. The lowering of the m 4+ ¢ threshold in the a; spectral
function was covered by increasing capture-contributions related to the process aj +
N,N — N,N.

As last result in this main chapter we presented electromagnetic spectral functions
at finite temperature and chemical potential. Here, the physical electromagnetic
two-point function is given as mixture of the bare p, the p-photon and the bare
photon two-point function in which we in a first step implemented only the decay
processes 7 + 7 and 1) + 1. In the temperature and chemical-potential dependent
electromagnetic spectral functions we observed a broadening with increasing tem-
perature, in the region of the chiral CEP we only saw small modifications. This
could be explained by a shortcoming of the used ansatz and truncation since we
would need a dressed a; propagator in the p two-point function in order to identify
signatures at the CEP which are induced by a dropping sigma mass.

The numerical framework of computing self-consistent spectral functions presented
in Chapter [6] can be seen as the third main result of this work. The idea here was to
reinsert full k-dependent propagators into the loops on the right side of the equations
using the spectral representation for regulated Euclidean propagators. We showed
that this reconstruction procedure, with a deviation of 8% at most, works quite
well. As an example we computed pion and sigma spectral functions within the
O(4) model where we could identify a first non-trivial decay threshold in the pion
spectral function related to the process 7 — o + 7 ~ 3w. One advantage of this
approach is the straightforward generalization to finite temperature. Here we saw
that the pion-peak got broader and both spectral functions tended to degenerate
completely at 7' = 800 MeV.

From a technical point of view, an important next step is to transfer this idea
of self-consistent solutions of analytically continued flow equations also to (axial-
)vector meson spectral functions as this is needed to identify non-trivial structures,
for example signatures for critical physics in the electromagnetic spectral function
via fully backcoupled a; propagators. Beside further phenomenological extensions of
the used hadronic model, for example towards a quantitative description of nuclear
matter or via the inclusion of Delta resonances, a future aim is to integrate realistic
spectral functions into transport approaches in order to calculate dilepton spectra
and to study how critical physics like phase transitions or a critical endpoint could
manifest itself in these spectra. This analysis could finally give hints to specify
features of the QCD phase diagram from actual measured electromagnetic spectra
in heavy-ion collisions.
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Notations and Conventions

Dirac algebra

In the derivation and calculation of FRG flow equations in Euclidean space-time we
use the chiral representation of Euclidean gamma matrices,

0 1 , 0 iot
0= - . Al
¥ (]1 0) , (_ig, 0) ; (A1)

where the Pauli matrices o’ are given by

01:<0 1), 01=<(_) _i>, 01:<1 O). (A.2)
10 i 0 0 -1

These gamma matrices are hermitian and obey the Euclidean Clifford algebra,

") =251 (A.3)
Additionally we define
1T 0
5 0.1.2.3
= = . A4
V=77 (o —]1) (A.4)

Matsubara Sum and integrals

For integrations we define the shorthand notations

/pz/(;l;p;zl, /xz/d‘lx. (A.5)

In Euclidean space-time, finite temperature is introduced via

/(Zdjgél — %::T%/(ngg, (A.6)

where the sum runs over discrete bosonic and fermionic Matsubara modes

pgn =2nrT, pOF’n =2(n+ 1)nT. (A.7)
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A Notations and Conventions

Fourier transform and functional calculus

For Fourier transformations of bosonic and fermionic fields we use the conventions

aozéwmw% o) = [ olaye ", (A8)
= [v@er, w) = [ e, (A.9)

o) = [ by wmzéw@wm. (A.10)

Analogously, the Fourier transformation of two-point functions is defined as (here
for a bosonic two-point function, as example)

//1"¢7 5 (@ y)e —ipx o —ipy (A.11)

The basic functional derivative is given by

0da(z) 4
= 8y 0 (z — 1), A2
e = b (e =) (A.12)
where useful representations of the Dirac delta function are
[ e — @mytsp 4 ), (A.13)
/ Pte’) — 54) (5 4 o) | (A.14)
P

The following small calculation is useful for the derivation of flow equations,

5 L 0¢a(@)
S 0o = Ougg

= 9,6 (2 — 2')0w = u / (ip)e?@=) . (A.15)

p

Euclidean and Minkowski space-time

Throughout this work we use the notation pg as zeroth component of Euclidean
momenta and w as zeroth component in Minkowski space-time. These two are
related to each other by

po — —iw. (A.16)
For a four-vector we therefore have
Py =pg+ 0> — —piy = —(w? —p?), (A.17)

where a four-vector without explicit index is always meant to be an Euclidean one.
With the definition of an additional global minus sign we obtain the (free) retarded
propagator out of the Euclidean one as (here for a scalar field)

1
P+ p? +m?

1
(w+i€)2 —p2—m

—  DEw,p) = (A.18)

DE(p(]vﬁ): 2
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For the transverse part of the single-particle contribution of the massive vector meson
propagator discussed in Sec. we have for the zeroth and the spatial components,
respectively

1 p# doo — Popo RV 1 P goo — w?
DEV = — PECO PO pRV, 5= — LM ,
00 (p0>17) m2 p% +m2 00 ( ﬁ) m2 (w—i—ie)2 _ﬁ2 —m2
(A.19)
125.._.. 1 2 .
E\V _ Pg %ij — DiPj RV _ Pir Gijg — PiDy
Dy wo0) === p e 7 Pyt @l = g
(A.20)

with the metric tensor defined as in [123], g, = diag(1,—1,—1,—1). In the actual
calculation we first project on the transverse part via Euclidean projectors in Eu-
clidean space-time and after this we perform the analytic continuation to obtain the
retarded two-point function and propagator, respectively. The Euclidean projectors
are given by

O — Dup
T _ Ow wPv
H,u,y(p) - 2

PuPv
5 ;T (p) = 2457 (A.21)

p2

Useful relations for Dirac delta functions

The following relations are useful for performing the limit ¢ — 0 in the imaginary
part of retarded two-point functions, discussed in App. [C]

o(z) = lim %ﬁ : 0'(w) = —lim i(@ii?)? : (A.22)
v b s () = 1 §'(k— ko)
) =X Gy ko) YD =X s Tt (A
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Derivation of Flow Equations

In this appendix we discuss details concerning the derivation of flow equations within
the FRG framework. We will first list all objects which enter the flow equations and
will then discuss how to derive flow equations for the specific k-dependent quantities.

B.1 Regulators and Euclidean Propagators

Regulator functions

Throughout this work we use sharp, three-dimensional Litim regulators which
allow for an analytic evaluation of Matsubara sums. More explicitly, we employ
the following regulator functions for (pseudo-)scalar mesons, (axial-)vector mesons,
quark-antiquarks and nucleons,

Rojni (p) = (K = 5%) O(K — 17) (B.1)
2
—m

Ry i) = — % (0 = ) TIEH () 00 — 7). (B.2)

Ry (p) =ip(\/k*/p*-1)© (k2 —172) , (B.3)
Ry (p) = —if(\/k?/p2 1) 0 (k¥ - 5?) . (B.4)

We note that the minus sign in Eq. (B.3|) compared to Eq. (B.4)) is due to a different
definition of the corresponding two-point function, which does not matter in the
calculations in this work as we only have pure fermion loops in the flow equations.

Euclidean regulated propagators

The Euclidean regulated propagators, in general defined by

E _ (1@ -1 .
Dy 1 (p) = (Fa,k(p) + Rayk(p)) , with «a€{o,7 p,a1,¥,N}, (B.5)
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B Derivation of Flow Equations

are explicitly given as

ok —7*)  O(F k)

Dy i (0) “Er Rl R am (B.6)
2 =2 2 2
st =2 (i TR0 )
+ 8 ) ( )+ Q‘fnﬁxp)) . ®)
0,k pT My ke PTG,k
Df(p) = w f((p]f - i]j;) e (mw — ivo(po + ip) — i W) , (B.8)
il (my — ivo(po + ip) — if) . (B.9)

m3, + (po + ip)? + p*

For the nucleon propagator we only show a more general expression as it is non-
diagonal in field space and therefore a more complicated and lengthy expression,

~1
—ip — + hio mo.BYs
DE - 1§ —okB ) +1R . (B.10
Nk (P) K N i o + hao Nk(p) (B.10)

Euclidean particle energies and masses

The k-dependent Euclidean particle masses appearing in these propagators are de-
fined as

myy = 2UL(65) + 465 UL (65) (B.11)
may = 2Uk(e}), (B.12)
Mok =My, (B.13)
Mma, k= mig+ 9705, (B.14)
mi,y = Emay AR (B.15)
Mgy ke = E Mg, 5 A /K (B.16)
myy = h’65, (B.17)

where ¢g is meant to be the global minimum of the effective potential Uy, and U},
U}/ the first and second derivative with respect to the chirally invariant ¢?. The
longitudinal masses my , 1 and my q, x contain a dimensionless scaling factor § which
is usually chosen to be 5-10, cf. Sec.[£.2.2] The associated Euclidean particle energies
are defined by

EZ,=m, +k*, with a€{ompa1,9,N}. (B.18)

The masses of the nucleon and its parity partner are given by

1 2
mip, k= 5 (+0 = ha)oo + \J4m3 s + (1 + ha)?03) (B.19)
1 2
szg,k =5 (—(hl — ha)og + \/4m873 + (h1 + hz)%&) , (B.20)
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B.2 Explicit Expressions for Vertex Functions

whereby the corresponding energies read

1
Eél,k = 5(2]@2 + 2m(2),B + hiog + hiog

+ 00(h1 — ha)y[o3 (h1 + ha)? + 4m2 1), (B.21)

E]282,k = (% + 2m0 B + hiog + h3op

— oo(h1 — ha)\Jod(h1 + ha)? +4m2 ) (B.22)

B.2 Explicit Expressions for Vertex Functions

The vertex functions F?) and I’ ,(:l) are in our setting obtained by taking three and
four functional derivatives of the ansatz for the effective average action with respect
to the respective fields. Therefore we first express the different parts of the ansatz
from Eq. explicitly in terms of the fields,

TV = Db [ + (@] (B.23)
—igV, 60,0 = g[(7" x 7) 0,7 — 0d@l0,7 + @'7,0] (B.24)
—SPVuVuo = 50 (7 o)+ @) (5.25)
STV Vi Vil = g[8, (7" x 7 + @ x ) (B.26)

L0, (P X @ x )], (B.27
LTV Vi) = 102 (7 % 7t < a)P 4 (7 x af + < 7)) L (B2)

An obvious term which is only consistent with global chiral symmetry and included
for example in [121,|132] is given by

—IPTVV = 5 [(7 4 0?) (0 + @)?)] (1.29)

In the present work we neglect the non-Abelian interaction terms Eq. and
Eq. which would give rise to vector meson self-interactions. In the Euclidean
flow these terms are suppressed due to the large masses. In the spectral functions
they would only contribute at large frequencies and therefore play no decisive role
in the qualitative study of spectral functions.
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B Derivation of Flow Equations

(4)

The explicit expressions for the relevant vertex functions I‘f’) and I'}“read

(3) . |

FWPM = thyy'ni, (B.30)
(3) s 5_

Lpatt = ihy 957 (B.31)

2 12

3 : g-¢

rt k>ﬂjp¢7k (qwqm-) = —igeijr(dh, — q#j)(l - mgli) : (B.32)
) 9>%%

Fo’ﬂ'jai“k(q(f’ Q7Tj) 1951] |:qg + qﬂ-] (mal ) — 1)} R (B33)
3 v

F((fa)ll’yja‘l"i,k = 26°$06"" 6 » (B.34)
3 v

Ffrk)p zzl ik = _92¢05M €ijk » (B35)

Ff:grkpvp 2 = g®0" (2801 — Oidji — 6udjk) (B.36)
4 17

CO o =020 Gudi+ Gad) (B.37)

I = 2¢°6;;0" . (B.38)

v I3
”U‘Zl,jal,wk

From the model extensions discussed in Sec. and Sec. we get following
additional vertices

FS’R& e = —ier"Q, (B.39)

Lot i = iy i, (8.0

Fﬁﬂwﬂk = iha, V"7, (B.41)

r 7(5;)”,4% (qm-, qwj) = —leegjn(qy, — Q#j)(l - g?i) ; (B.42)
at,

Fgé)friA'fAu,k = 2e6"” (bij — di3d;3) (B.43)

L ey Ak = egd"” (20:30); — 03k0i5 — G3j0ik) (B.44)

with charge matrix @ = diag(2/3,—1/3) and nucleon coupling matrices given by
h, = diag(hi, h2) and h,, = diag(h1, —h2).
The vertices used in the O(4) model in Chapter |§| are given by

Fgr?;)mak = 4¢0d; ;U (B.45)
r® . =1200Uf + 863U, (B.46)
T ok = AUY (83300 + Sixdjo + Sude) (B.AT)
r' . =120f +4803UY + 1665UL" (B.48)
Fgri)moo,k = 0ij <4Uk + 8¢0Uk ) ) (B.49)

with U, ,gn) being the n-th derivative of the effective potential with respect to ¢2,
evaluated at ¢3.
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B.3 On the Derivation of Flow Equations

B.3 On the Derivation of Flow Equations

Effective potential

The flow equation of the effective potential in the quark-meson model presented in

Sec. is computed as follows,
1 -1
8kUk = §STI' |:8]€Rk (Ff) + Rk) :|

1 -1 —1
= §TI‘ {8kRk,B (F,(j)B + Rk,B) } —Tr {8kRk7F (F,(j%y + Rk,F) }

1 3
:z:2k + Ok* - q?
(qg +EZ, 4+ Eﬁk) ( )

q
4
— NN, I . Ok — 7%). B.50
f - (q0+1ﬂ)2+Ei ( Q) ( )

In these expressions, the integration over the internal three-momentum as well as
the Matsubara sum can be performed analytically which allows for an expression in
terms of bosonic and fermionic occupation numbers, see [160,(161] for the analytic
evaluation of Matsubara sums. We end up with the flow equation already given in

Eq. (3.9),

K 1+ 2nB(EU,k:) 3 (1 +2 nB(Ew,k))
Ol = 127T2{ Ea,k * E7r,k:
4NN,
S e B =) = e (Bt ) | (B5)

where the bosonic and fermionic occupation numbers are defined as

1 1

np(E) = BT 1’ np(E) = BT 11 (B.52)
In the flow equation for the effective potential of the parity-doublet model pre-
sented in Sec. only the fermionic contribution changes as in this case we have

the nucleon propagator instead of the quark propagator. We therefore obtain

(OUk)p = = Tr { DR 1(p) s R (p) | (B.53)
k4 ANy

— —(E E B.54

1272 Ep, ik EBy i (= (Bpyi+ Epas) ( )

+ Egyknr(Ep k — 1) + Ep x nr(EBy ke — 1t) (B.55)

+ Eg, knr(Epy k + 1) + Eg, knr(Epy i + 1)) - (B.56)

Vector meson two-point functions

Flow equations for Euclidean two-point functions have the general form as discussed
in Sec. and more explicitly given in Eq. . The specific contributions to the
p and a; two-point functions related to the different model-settings are illustrated
diagrammatically in Fig. Fig. and Fig. In order to extract the physical
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B Derivation of Flow Equations

transverse part of these two-point functions, we project the flow equations by using
the transverse projector. This transverse projector can further be decomposed into
a part parallel and a part vertical to the heat bath,

(2),L 1 .1 2) i
L pei® = g @) (9T, ) (B.57)
DN T, (2) i
E);ng/ahk(p) = (N]% Y Tr [Hu l(p) <8ka/ah (p))w} , (B.58)
wherei,j €1,..., (Nf2 — 1) are adjoint flavor indices. The three dimensional vertical
and four dimensional parallel projection operators are defined by
0 ifu=20 =0
I, (p) = L e (B.59)
Our — %2” else
HT’”(p) —5 PubPv e (p) (B.60)
w \P) = O = 7 3 w\P) > .
with Dup
T T,L T, _ v
H,u,l/(p) = H,uy (p) + H,ul/”(p) - 6!“/ - MT (B61)

p
For vanishing external spatial momentum, p'= 0, the vertical and parallel parts of
the flow equations coincide,

3kF£2/)cif,k(P0) = oI’ ,(o/),lﬂ' 1 (Po)- (B.62)

Since the flow equations 8kI‘;2/)al (p) can become quite complicated and lengthy,

depending on the model-setting, we refrain from listing them in an explicit form in
this work. However, for the first setting in Sec. the explicit loop functions can
be found in [41].

Projections: vector meson mass and wavefunction renormalizations

The Euclidean vector meson mass in the first setting in Sec. and for the elec-
tromagnetic spectral functions in Sec. [5.3]is defined by the momentum independent
part of the vector meson two-point function in the LPA Proca ansatz which is given

by
2
) = (p* +mi) 1L, (p). (B.63)

The flow equation for m%/k can thus be obtained by

2 _ 1 T,L (2) 7 _
Iemyy = m}){}% Tr {H (p) (8 Lk i (P ))M} akmpka (B.64)

where the contributions to the flow of I‘S,)c are illustrated in Fig. and Fig. |5.14
respectively.

In the second and third setting in Sec. and Sec. the transverse part of
the vector meson two-point function is given by

2
2 —My i
I = 7072 +miy) I, (p) (B.65)
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B.3 On the Derivation of Flow Equations

Here we have to modify the prescription of extracting the vector meson mass m%/v’k
from the flow of the two-point function. We start with the mass parameter m%’ i for
which the flow equation can be defined as follows,

1 . 0
1m
3(N7 —1) p=09 5]

ij
O3y = TG (AIRw)) | @)

vo
For the momentum derivative of the projected and traced flow equation we proceed
as follows. We first take the limit pg — 0 and then perform the derivative with
respect to |p]?. After setting [p]? to zero, we can finally integrate the spatial three-
momentum and afterwards perform the Matsubara sum. After the integration we
use 0;,0(z) = d(z) and deal with terms that are proportional to O(z)d(x) by defining
0(0)=1/2.

In contrast, for defining the flow of wavefunction renormalization factors for
(pseudo-)scalar mesons Z, appearing in the combination

% ~ 7, p?, (B.67)

we perform two separate derivatives each with respect to |p], divided by 2. After the
first |p]-derivative we use the fact that all terms proportional to the ¢ distribution
vanish. We then can proceed as for the flow for mak. The flow for the wavefunction
renormalization factor of the pion can then for example be obtained by

82

1
OnZnt = li
k4 k 2(N}%—1)pl_>njéa|]ﬂ2

1| (%) (B:68)

We are left with the flow equation for the vector meson mass m%/  from Eq. (B.65).
For that we use the fact that the flow of the product of m%/ . and mg?k vanishes,

1 ]
2 2\ _ . 2T (2) _
O (mv,k mO,k) = T3V Lirg Ty {p 1L, (p) Ok (Fp,k(p))w} 0. (B.69)
From that we obtain the following flow equation for m%/ o
mi,
8km%/7k, = 8km,2),k = ——mQ’ 8kmak. (B.70)

0,k

All flow equations are traced and manipulated using the Mathematica packages
DoFun [162] and FormTracer |163|. For the numerical implementation we mainly
used the GNU Scientific Library (GSL) whereas for higher dimensional integrations
we used the C package Cubature.

Explicit expressions for all flow equations and the involved objects used in this
work can be found in the Mathematica file flow equations cj.nb which is handed
out within this dissertation.
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Properties of Retarded Two-Point Functions and
Spectral Functions

In this appendix we discuss further important properties of retarded two-point func-
tions and spectral functions.

On the definition of vector meson spectral functions

In order to extract spectral functions from analytically continued FRG flow equations
we need the imaginary part of retarded (axial-)vector meson propagators. Therefore
we have to convince ourselves that this can be done as one would naively expect,
also in the presence of Schwinger and seagull terms, cf. Sec.[1.2.2]

The vector meson spectral function py (s) is basically defined via the commutator
of the vector field V), as

o0 2 0,0,
@ Vo) = = [ as Z28) (g4 2%V iae, (o)
0 mV S
with the invariant delta function
iA(z;m?) = / e(po) 278 (p® — m2)e P . (C.2)
P
Its Fourier transformation is given by
ipz 2 p2pV(p2) 2
/e (Vi(x), Vo (0)) = —2me(po)O(p )T (p v —pupl,) . (C.3)
z 1%

By expressing the invariant delta function through the imaginary part of the retarded
Green function,

iA(z;m?) = —2Tm Ag(z;m?), (C.4)

103



C Properties of Retarded Two-Point Functions and Spectral Functions

we can write
(p0)OW )y (0”) (P9 — Py ) =

1 e p pl/> -1
- d 2 _ Fp I ,
T /0 sS pV(S) (g,uu s m (po + 16)2 —ﬁ2 — s

where we canceled the factor m%, on both sides. Since the Fourier transform of
Im Ag(x;m?) has support only at p> = m? we can trade powers of p? for matching
powers of s, leading to

(C.5)

(p0)O () v (7?) (g,w - p;f;”) _

1 & 2 v 1
— ZIm / ds pvis) _p g.# p,ip ) (C.6)
T 0 s (po+ie)?2—p2—s

From this expression we see that we can safely extract the spectral function from
the transversally projected retarded (axial-)vector meson propagator with spectral
representation as in Eq. , i.e. for the transverse part of the full Feynman
propagator of the form

0o 2 _
DV :_./ P pv(S)/ ipe_ P Gpy —PubV o
'U«l/(p) 1 0 S S pe (po-i-iG)Q—ﬁQ—S ( )

Analytic imaginary parts of retarded two-point functions

For the imaginary parts of the retarded two-point functions involved in the spectral
functions in Chapter [5| it is possible to perform the limit ¢ — 0 in the definition of
the retarded two-point function in Eq. analytically.

Therefore the first step is to express the imaginary part of the loop functions in
the flow equations for F,(CQ)’R in terms of Dirac delta functions and its derivatives

respectively using Dirac-Sokhotsky identities,

. 1

lgrg)lm (w—l—ie—Ea:I:EB) — —7é(w — By £ Eg), (C.8)
1

limI "(w—E, £ Ej). .

o ((w+ie—EaiE5)2> - mw 2 (C.9)

As the particle energies F, and Ejg are k-dependent quantities, these delta functions
together with the k-integral collapse to the k = kg values which are determined by

W — Ea,k + E’/&]C =0. (010)

The integrated flow equations for the imaginary part of F,(f)’R then reduce to the

following form,

kir KIR
/k dk &, ImI">) = /k dk (f(k)5(k — ko) + g(k)d' (k — ko))
= — f(ko) + ¢’ (ko) - (C.11)

The used relations for delta functions and derivatives can be found in App. [A]
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Initial form of retarded two-point functions

In order to calculate spectral functions we first solve the real and imaginary parts
of the retarded two-point functions separately. The retarded two-point functions
are obtained from their Euclidean counterparts by applying the analytic continua-
tion procedure described in Sec. For the calculation in Sec. [5.2.1] we use the
following ansatz at the UV scale A = 1500 MeV,

T w,§) = (w+i€)? — p2 —m?2 (C.12)
I w,p) = (w+ie)? =% —m2, 5. (C.13)

While for the imaginary part we perform the limit e — 0 explicitly, c¢f. App. [C]
we use a small value e = 0.1 MeV or ¢ =1 MeV for the real part which is almost
independent of this ¢ parameter. In the computation of electromagnetic two-point
functions and spectral functions in Sec. [5.3 we use following ansatz,

2),R . "
PO w,p) = (w+ie)? —§% —m2 (C.14)
TR (@, 5) = (w+ie)? — 57, (C.15)
R
PN (w.5) =0, (C.16)

In contrast, in the calculation with fluctuating (axial-)vector mesons in Sec.
and Sec. we have used the following ansatz for the real and imaginary part,

2
2),R myk
PO w) =m3 (14 P—: _'”iw)Q) , (C.17)
TRy — 2 Mg, C
ai,A (w) =Mok (1 + (6 _ iw)g) . ( 18)

Interpretation of loop functions

Expressing the loop functions in terms of Dirac delta functions and bosonic/fermionic
occupation numbers allows for an easy interpretation related to the specific physical
processes. These processes can thereby be divided into three different categories:
vacuum processes, capture processes and particle-hole processes.

The vacuum processes w — E,+FEg and E,+ Eg — w are associated to statistical
weight factors of the form (1 4+ np(Es) + np(E£3)), where the delta functions in the
imaginary part are given by

(S(W — Ean — E@k) , (5(0) + Ea,k + E,B,k) . (0.19)

Capture processes like w+E, — Eg and w+Eg — E, are only possible at finite tem-
perature and give rise to statistical weight factors of the form (£ng(E,) F np(Eq))-
The associated delta functions are given by

(S(Ld + Ea,k: — E57k) R 5((,0 — E%k + E,B,k) . (0.20)

Finally, particle-hole processes are proportional to the derivative of the occupation
number, e.g. nz(Ey).
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