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Abstract
Structural variations (SVs) are larger polymorphisms (> 50 bp in length), which con-

sist of insertions, deletions, inversions, duplications, and translocations. They can

have a strong impact on agronomical traits and play an important role in environ-

mental adaptation. The development of long-read sequencing technologies, including

Oxford Nanopore, allows for comprehensive SV discovery and characterization even

in complex polyploid crop genomes. However, many of the SV discovery pipeline

benchmarks do not include complex plant genome datasets. In this study, we bench-

marked insertion and deletion detection by popular long-read alignment-based SV

detection tools for crop plant genomes. We used real and simulated Oxford Nanopore

reads for two crops, allotetraploid Brassica napus (oilseed rape) and diploid Solanum
lycopersicum (tomato), and evaluated several read aligners and SV callers across 5×,

10×, and 20× coverages typically used in re-sequencing studies. We further vali-

dated our findings using maize and soybean datasets. Our benchmarks provide a

useful guide for designing Oxford Nanopore re-sequencing projects and SV discovery

pipelines for crop plants.

1 INTRODUCTION

Structural variations (SVs) are a major type of polymor-

phisms, which consist of insertions, deletions, inversions,

duplications, and translocations. SVs are larger polymor-

phisms (> 50 bp) compared with single nucleotide polymor-

phisms (SNPs) and small indels (insertions and deletions).

Copy number variations (CNVs) and presence/absence vari-

ations (PAVs) occur due to these genomic polymorphisms

(Alkan et al., 2011; Sedlazeck et al., 2018a). Insertions and

deletions are the most abundant type of SV (Alonge et al.,

Abbreviations: CNV, copy number variant; ONT, Oxford Nanopore

Technologies; PacBio, Pacific Biosciences; PAV, presence/absence variant;

SNP, single nucleotide polymorphism; SV, structural variant.
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2020; Fuentes et al., 2019; Goel et al., 2019), can have a strong

effect on crop traits, and have been shown to play a role in

domestication and environmental adaptation (Gill et al., 2021;

Tao et al., 2019; Yildiz et al., 2022; Zanini et al., 2022). Until

recently, the lack of high-quality reference assemblies and

the complex nature of often large, polyploid genomes made

comprehensive SV exploration challenging in crop genomic

research (Meyers & Levin, 2006; Yuan et al., 2021).

Development of long-read sequencing technologies such

as Oxford Nanopore Technologies (ONT) (Jain et al., 2016)

and Pacific Biosciences (PacBio) (Roberts et al., 2013) pro-

vided new opportunities for comprehensive SV discovery

in crop plants. The sequencing accuracy of these tech-

nologies is continuously improving. Currently, PacBio HiFi
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consensus reads exceed 99% accuracy (Wenger et al., 2019)

while ONT R10.3 raw reads accuracy exceeds 95% (Dela-

haye & Nicolas, 2021). The reduction in error rates facilitates

downstream applications, including the production of high-

quality genome assemblies, and SV detection. ONT sequenc-

ing in particular is being adopted in crop plant research for

large scale re-sequencing projects of tens to hundreds of indi-

viduals (Alonge et al., 2020; Chawla et al., 2021; Lemay et al.,

2022; Vollrath et al., 2021; Zhang et al., 2022). Despite the

constant decrease in sequencing error rate, long-read tech-

nologies require specialized computational approaches to take

advantage of them efficiently.

The two main approaches for SV discovery are de
novo assembly-based and read alignment-based. De novo
assembly-based approaches assemble reads into longer con-

tigs and identify SVs by aligning assemblies (Wenger et al.,

2019). Read alignment-based approaches directly align reads

to reference genomes to discover SVs. De novo assembly-

based methods perform better at finding larger variants (tens

to hundreds of kbp long; exceeding the length of individ-

ual reads) but require sufficient amount of data to produce

high-quality assemblies, which leads to substantial increase

in cost of the experiments for larger crop genomes. How-

ever, read alignment-based approaches can perform well even

at modest sequencing depths of 5× to 10× and use less

computational resources, but the discovered SVs are lim-

ited to differences with the reference genome which makes

this approach more suitable for larger re-sequencing projects

(Coster et al., 2021). Several algorithms were developed for

SV discovery from long-reads including Sniffles (Sedlazeck

et al., 2018b), NanoVar (Tham et al., 2019), SVIM (Heller

& Vingron, 2019), cuteSV (Jiang et al., 2020), and dysgu

(Cleal & Baird, 2022), which have been comprehensively

reviewed recently (Mahmoud et al., 2019; Yuan et al., 2021).

Additionally, several long-read aligners are available such

as minimap2 (Li, 2018), NGMLR (Sedlazeck et al., 2018a),

Vulcan (Fu et al., 2021), and lra (Ren & Chaisson, 2021).

Considering the continued development and improvement in

read-alignment and SV detection algorithms and multitude of

their possible combinations, their combined performances in

SV detection demand realistic and up-to-date benchmarks to

guide the selection of SV discovery tools.

In this study, we hypothesized that certain combination(s)

of read aligners and SV discovery software will have superior

performance in datasets representing complex crop genomes.

We used real and simulated ONT reads for two crop plant

genomes and evaluated several mappers and SV callers across

coverages including 5×, 10×, and 20× typically utilized in

re-sequencing studies. We chose to perform benchmarking

on allotetraploid Brassica napus (oilseed rape) and diploid

Solanum lycopersicum (tomato) as these two species represent

different ploidy, have different SV profiles, and were already

studied using Oxford Nanopore Technology. We further val-

Core Ideas
∙ Structural variants (SVs) have strong impact on

crop traits and play an important role in environ-

mental adaptation.

∙ Long read based SV discovery tools have not been

comprehensively evaluated in crops.

∙ We benchmarked popular SV discovery tools using

real and simulated data for two contrasting crop

genomes.

∙ Our benchmarks provide a guide for choosing

insertion and deletion discovery tools for low to

medium sequencing coverage experiments.

idated our findings using maize and soybean datasets. Our

benchmarks provide a guide for choosing insertion and dele-

tion discovery tools for low to medium coverage sequencing

projects.

2 MATERIALS AND METHODS

2.1 Read aligners, SV callers, and
benchmarking datasets

The SV callers included in the study were selected using sev-

eral criteria: (1) citation count (adjusted by number of years

since publication and used as a proxy for popularity in the

research community); (2) publication date and maintenance

status (excluding older tools that were no longer maintained);

(3) ability to detect both insertion and deletion SVs from ONT

data. The benchmarking approach involved four long-read

aligners, including minimap2 (Li, 2018), NGMLR (Sedlazeck

et al., 2018a), lra (Ren & Chaisson, 2021), and Vulcan (Fu

et al., 2021) as well as five SV calling software namely Snif-

fles (v2) (Sedlazeck et al., 2018b), NanoVar (Tham et al.,

2019), SVIM (Heller & Vingron, 2019), cuteSV (Jiang et al.,

2020), and dysgu (Cleal & Baird, 2022). All aligners and SV

caller versions are provided in detail in (Table S1). Three

simulated datasets (Sim_ONT_Bn1, Sim_ONT_Bn2, and

Sim_ONT_Sl) and publicly available data, for B. napus and

S. lycopersicum genomes, were used. The real-world datasets

for whole genome Nanopore sequencing of B. napus cv. King

10 (accession number: SRR15731030) (Vollrath et al., 2021),

S. lycopersicum cv. M82 (accession number: SRR16966224)

(Alonge et al., 2021), Zea mays cv. Mo17 (accession number:

SRR15447413), and Glycine max cv. Maple Isle (accession

number: SRR15342671 and SRR15342672) were down-

loaded from NCBI Sequencing Read Archive. All but soybean

datasets were randomly subsampled to 5×, 10×, and 20×
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coverages using Rasusa (Hall, 2022) to test the effect of

sequencing depth on SV discovery.

2.2 Simulated dataset generation

For three simulated datasets (workflow for all simulations is

presented in (Figure S1), new haplotypes including SVs were

generated, and synthetic ONT reads were simulated using

VISOR v1.1 (Bolognini et al., 2020). For simulation one

(Sim_ONT_Bn1), 20,000 genomic intervals (mean: 750 bp,

SD: 500 bp) were randomly drawn from the B. napus genome

(Express 617 v1). A subset of 10,000 was denoted as dele-

tions. For the remaining 10,000, denoted as insertions, the

genomic start coordinate was retained, while the sequences

corresponding to the genomic intervals were extracted, ran-

domly re-assigned to the coordinates, and served as insertion

sequences at those coordinates (Figure S1).

Simulations two and three, denoted Sim_ONT_Bn2 and

Sim_ONT_Sl, were designed to reflect SVs found in real-

world datasets. For Sim_ONT_Bn2, the assembled B. napus
genomes Express 617 v1 (Lee et al., 2020) and Westar (Song

et al., 2020) were aligned using minimap2 v2.24. SVs were

detected using SVIM-asm v1.0.2 (Heller & Vingron, 2020).

To reduce the effect of using minimap2 for benchmarking

dataset generation, the SV locations were shifted by a ran-

domly selected number in the (−5000, 5000) interval. This

changed the exact SV site while maintaining the realistic

distribution of SV sizes and locations along the genome. A

random subset of 10,000 insertions and 10,000 deletions was

drawn from all SVs to create the benchmarking dataset. SNPs

discovered from short reads using bcftools v1.15.1 were also

included. The SVs and SNPs were provided to VISOR to gen-

erate a new haplotype, which in turn was used for Oxford

Nanopore read simulation. Sim_ONT_Sl was generated using

the same strategy as for Sim_ONT_Bn2 but designed to

reflect SVs of the S. lycopersicum genome. Heinz 1706

(Slycopersicum_691_SL4.0) and M82 (Alonge et al., 2021)

assemblies were used for whole genome alignments. Due to

smaller number of SVs, a random subset of 2500 insertions

and 2500 deletions were drawn from all SVs. For maize, we

used Zmays_493_APGv4 (B73) and ZmaysB84_681 (B84)

(Bornowski et al., 2021).

To test the effect of sequencing depth on SV discovery,

the datasets were simulated at 5×, 10×, and 20× coverage.

The simulations provided the objective truth sets, which could

be used to calculate SV precision, recall, and combined F1-

scores. Precision describes the proportion of correct positive

predictions among all positive predictions. It is calculated

by dividing the true positives by overall positives. Recall

describes the proportion of positive predictions made out of

all positive elements in the dataset. It is calculated by dividing

true positives by total number of relevant elements. F1-score

combines precision and recall by taking their harmonic mean.

Its value ranges from 0 to 1. F1-score close to 1 indicates high

precision and recall. Using two different strategies for gen-

erating simulated datasets will make it possible to minimize

analytical bias. If the same combination of tools performed

best on all simulated datasets, this will likely reflect true

superior performance.

2.3 Comparative analyses

Express 617 v1 for B. napus (Lee et al., 2020) and Slycoper-

sicum_691_SL4.0 for S. lycopersicum (Hosmani et al., 2019)

were used as reference sequences. Simulated datasets and

real subsampled reads at each coverage depth were aligned

to respective reference genomes. The SV call sets were fil-

tered using the following criteria: (1) number of minimum

supporting reads: 5×: 3, 10×: 5, and 20×: 8; (2) SV type:

INS or DEL (the most abundant SVs supported by all the

benchmarked tools); (3) minimum SV length: 50 bp; (4) SV

quality: SVs flagged as “PASS”; (5) genotype: homozygous

genotype for alternative allele (’1/1′). For simulated data, pre-

cision, recall, and F1-scores of the SVs were computed for

each combination of coverage depth, read aligner, and SV

caller using Truvari v3.0.0 (English et al., 2022). Compar-

isons between results from the same tool combination across

different coverages and different tool combinations across the

same coverages were performed using surpyvor v0.8.1 (Jef-

fares et al., 2017). For real datasets, where no truth sets were

available, we focused on within-dataset comparisons and how

those compared to the results from simulated data. All the

relevant commands for simulated data generation and SV dis-

covery are available in the Supporting Information. To ensure

that the datasets were comparable, soybean SV calls were

filtered using the same criteria as described in Lemay et al.

(2022).

3 RESULTS

3.1 Selecting the benchmarking datasets

We chose to focus on two crop plant species B. napus (oilseed

rape; genome size ∼1.1 Gbp) and S. lycopersicum (tomato;

genome size ∼900 Mbp) because they are both important

crops and their structural variation was previously studied

using Oxford Nanopore Technologies (Alonge et al., 2020;

Chawla et al., 2021). Whole Genome Alignment (WGA)-

based SV discovery also suggested that they have quite

different SV profiles with 38,666 SVs (Real_WGA_Bn,

mean size: 2068 bp, median size: 593 bp, 19,450

insertions and 19,216 deletions) discovered for B. napus and

7108 SVs (Real_WGA_Sl, mean size: 3029 bp, median size:
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F I G U R E 1 Graphical overview of the benchmarking workflow. SV, structural variant.

178 bp, 4159 insertions and 2949 deletions) discovered for S.
lycopersicum.

Two simulated B. napus haplotypes (Sim_ONT_Bn1 and

Sim_ONT_Bn2) and one simulated S. lycopersicum haplo-

type (Sim_ONT_Sl) were used to generate Oxford Nanopore

reads at 5×, 10×, and 20× to test the effect of sequencing

depth on SV discovery. The two publicly available real-

world datasets, from B. napus (38×) and S. lycopersicum
(68×), were subsampled with the same logic (Real_ONT_Bn,

Real_ONT_Sl). The available graphical representation of a

workflow for simulation and real data are shown in Figure 1.

3.2 Characteristics of structural variant
truth sets

The SVs supplied to VISOR to generate Sim_ONT_Bn1,

Sim_ONT_Bn2, and Sim_ONT_Sl haplotypes served as three

truth sets for our comparisons. The truth sets included dele-

tions and insertions. The length distribution of truth set SVs

is presented in Figure 2. Sim_ONT_Bn1 is unbiased in terms

of the bioinformatics tools used, as the regions representing

SVs were entirely randomly drawn from the B. napus genome.

For any simulated dataset to reflect realistic SV distribution,

SVs have to be discovered first and provided to the simulation

software. Any relationship between tools used for SV iden-

tification for long-read dataset simulation and tools used for

SV detection from these simulated reads (for example use of

similar/same mapping algorithm) can result in inflated per-

formance and biased results. However, Sim_ONT_Bn1 does

not reflect realistic SV length and genomic distribution. To

mitigate that, Sim_ONT_Bn2 and Sim_ONT_Sl were created

using SVs derived from real-world datasets. The two simu-

lation strategies are complementary and should allow both

unbiased and realistic assessment of SV calls. The median

(mean) sizes (bp) for insertions and deletions were 800

(834) and 795 (825) for Sim_ONT_Bn1, 629 (1959) and 594

(1904) for Sim_ONT_Bn2 and 162 (3178) and 165 (2477) for

Sim_ONT_Sl. Overall, the Sim_ONT_Bn2 and Sim_ONT_Sl

truth sets had a wider range of insertion and deletion sizes.
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F I G U R E 2 Size distribution of the real-world structural variants (SVs) and SVs from three benchmarking datasets.

They were more reflective of true biological variation, making

them more realistic than the Sim_ONT_Bn1 truth set.

3.3 Performance of long read aligners

Subsampled S. lycopersicum, B. napus, and simulated reads

were aligned using lra, minimap2, Vulcan, and NGMLR to

the Slycopersicum_691_SL4.0, and Express 617 v1 refer-

ence genomes. Mapping statistics and run times of alignment

against relevant reference genomes with different coverages

of Sim_ONT_Bn1, Sim_ONT_Bn2, Sim_ONT_Sl, B. napus
(Real_ONT_Bn), and S. lycopersicum (Real_ONT_Sl) real-

world datasets are given in Table S2. Minimap2 had the

shortest run time across all coverages. Conversely, NGMLR

had the longest run time and also the lowest mapping rate.

Figure 3 shows mapping runtime (h:mm:ss or m:ss) for

both simulation and real-world datasets with eight CPUs.

Real_ONT_Bn dataset with 20× coverage was aligned ∼220 h

by NGMLR and ∼119 h by Vulcan, compared to ∼4 h

by minimap2 and ∼5 h by lra. Therefore, minimap2 and

lra provided a greater speed advantage than NGMLR and

Vulcan. The run times increased with the higher coverages

(Figure 3). Processing of real data took substantially longer

than processing of simulated data. Moreover, Vulcan and

minimap2 produced the highest proportion of mapped reads

in Real_ONT_Bn (> 96%), Real_ONT_Sl (96%−98%), and

all simulated data (> 98%) (Table S2). NGMLR reported

the lowest proportion of mapped reads for Real_ONT_Bn

(∼81%) and Real_ONT_Sl (∼76%), while lra and NGMLR

resulted in similar statistics (96%−97%) for Sim_ONT_Bn1,

Sim_ONT_Bn2, and Sim_ONT_Sl at each coverage. The

combination of fast run time, good mapping rate, and

the SV calling results presented below suggest that min-

imap2 is the top-performing aligner for simulated and real

reads.

3.4 Performance of SV callers on simulated
data

3.4.1 Performance using Sim_ONT_Bn1 as
benchmark

We calculated the precision, recall, and F1-score of the SVs

generated using different mapper and SV caller combina-

tions using the Sim_ONT_Bn1 truth set. Table S3 shows

comparison of the precision, recall, and F1-scores for all

mapper/SV caller combinations at the 5×, 10×, and 20× cov-

erages. Each aligner/SV caller combination was evaluated

with respect to total SVs, deletions, and insertions. Figure 4

presents the corresponding F1-scores at 5× to 20× cover-

ages. CuteSV after minimap2 alignment reached the highest

F1-scores 5×:∼0.90, 10×:∼0.97, and 20×:∼0.99 for total

SVs, 5×:∼0.91, 10×:∼0.97, and 20×:∼0.99 for deletions,

and 5×:∼0.89, 10×:∼0.96, and 20×:∼0.99 for insertions.

At the lower end of coverage (5×), the combination of

minimap2/cuteSV provided a better advantage when com-

pared to other mapper/SV caller combinations, especially

in capturing insertions. Minimap2/Sniffles2 had second-best

F1-scores (Figure 4). SVs detection by NanoVar was obtained

directly from reads as NanoVar has its own internal mapping
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F I G U R E 3 Read aligner run time (h:mm:ss or m:ss) for both simulation and real-world datasets with 5×, 10×, and 20× coverages (8 CPU).

The reads were simulated with a mean length of 15,000 bp. Unplaced contigs were not included in simulations, which may reduce run time for

simulated reads. Read-world reads had higher N50 (∼29 Kbp for B. napus and ∼42 Kbp for S. lycopersicum) compared to simulated data (∼22 Kbp).

In addition, B. napus real world data could contain non-reciprocal homeologous exchanges (HEs) uncounted for in simulations. Higher N50 and

presence of HEs could increase run time for real-world data.

algorithm; therefore, the precision, recall, and F1-scores for

different aligners are not included.

We also compared the total number of SVs, insertions, and

deletions for all tested aligner/SV caller combinations. Table

S4 summarizes the number of SVs found at 5×, 10×, and

20× coverages. There were more discovered deletions than

insertions regardless of coverage. The combinations of min-

imap2/cuteSV and minimap2/Sniffles2 detected the highest

number of SVs at each coverage. We also analyzed how many

of the SVs overlapped across different coverages while using

the same tool combination and how many of the SVs over-

lapped across different tool combinations within the same

coverage. Data S1 shows the number of overlapping and

unique SVs across coverages. Minimap2/cuteSV combination

had the highest number of overlapping SVs. It also resulted

in the highest proportion of overlapping SVs; 76.99% for all

SVs, 79.19% for deletions, and 74.79% for insertions, while

the minimap2/Sniffles2 combination (second best accord-

ing to F1-scores) had the second highest percentage overlap;

75.35% for all SVs, 78.35% for deletions, and 72.33% for

insertions (Table S5). In addition, we performed comparisons

across different tool combinations within the same cover-

age. Data S2 displays the overlap, including the intersection

sizes between SV calls and the Sim_ONT_Bn1 truth set. The

highest number of overlapping SVs was found at 20x cover-

age, following minimap2 aligner. Our Sim_ONT_Bn1 results

suggest that the combination of cuteSV and Sniffles2 with

minimap2 alignment gave the best results achieving high F1-

scores and capturing the highest number of overlapping SVs

across coverages.

3.4.2 Performance using Sim_ONT_Bn2 as
benchmark

While Sim_ONT_Bn1 represents relatively short SVs ran-

domly distributed along the genome, Sim_ONT_Bn2 reflects

true biological variation in B. napus. Table S6 presents

comparison of the precision, recall, and F1-scores for all

mapper/SV caller combinations at the 5×, 10×, and 20×
coverages. Figure 5 presents the F1-scores of SVs (total,

insertions, and deletions) obtained using different combi-

nations of aligners and variant callers across coverages.

CuteSV following minimap2 alignment again was the top

performing combination with the highest overall F1-score

values 5×:∼0.87, 10×:∼0.93, and 20×:∼0.96 for total SVs,

5×:∼0.90, 10×:∼0.96, and 20×:∼0.98 for deletions, and

5×:∼0.83, 10×:∼0.90, and 20×:∼0.94 for insertions. Espe-

cially, at low 5× coverage, this combination performed

better than others. Minimap2/Sniffles2 had the second

highest F1-scores at 20× coverage as in Sim_ONT_Bn1.

However, minimap2/dysgu F1-score for insertions at 5×
and 10× was higher than Sniffles2 after the minimap2

alignment.

 19403372, 2023, 2, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/tpg2.20314 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [13/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



YILDIZ ET AL. 7 of 13The Plant Genome

F I G U R E 4 F1-scores of Sim_ONT_Bn1 including total structural variants (SVs), deletions, and insertions at 5×, 10×, and 20× coverages for

different combinations of read aligners and SV callers.

F I G U R E 5 F1-scores of Sim_ONT_Bn2 including total structural variants (SVs), deletions, and insertions at 5×, 10×, and 20× coverages for

different combinations of read aligners and SV callers.

In addition, the total number of SVs, the total number of

insertions, and deletions for all combinations of tested align-

ers and SV callers were compared. Table S7 summarizes the

total number of SVs detected at 5×, 10×, and 20× cover-

ages. Minimap2/cuteSV found the highest number of SVs

at each coverage like in Sim_ONT_Bn1. Again, more dele-

tions than insertions were found for all aligner and SV caller

combinations across different coverages. We also analyzed

how many of the SVs overlapped across different coverages

while using the same tool combination and how many of the

SVs overlapped across different tool combinations within the

same coverage. Data S3 lists the number of overlapping SVs
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F I G U R E 6 F1-scores of Sim_ONT_Sl including total structural variants (SVs), deletions, and insertions at 5×, 10×, and 20× coverages for

different combinations of read aligners and SV callers.

across different coverages using the same tool combination.

Minimap2/cuteSV combination had the highest number of

overlapping SVs. It also had the highest proportion of over-

lapping SVs; 73.95% for all SVs, 80.05% for deletions, and

67.44% for insertions. The minimap2/dysgu combination was

second best detecting 73.23% for all SVs, and 67.28% for

insertions. Minimap2/Sniffles2 combination was the second

best for deletions with 79.14% overlap (Table S5). Data S4

displays overlap between results from different SV callers

within the same coverage after each aligner, including the

intersection with the Sim_ONT_Bn2 truth set. The highest

number of overlapping SVs was found at 20x coverage, fol-

lowing minimap2 aligner. Overall, in Sim_ONT_Bn2, the

combination of cuteSV after minimap2 alignment gave the

best results both in terms of F1-Scores and concordance

across coverages.

3.4.3 Performance using Sim_ONT_Sl as
benchmark

Sim_ONT_Sl represents the true biological variation of S.
lycopersicum. Table S8 presents comparison of the precision,

recall, and F1-scores for all mapper/SV caller combinations at

the 5×, 10×, and 20× coverages. Figure 6 shows the F1-score

of SVs (total, insertions, and deletions) identified using com-

binations of the different aligners and variant callers. CuteSV

and Sniffles2 with minimap2 alignment were top perform-

ers with the highest F1-score values (5×:∼0.85, 10×:∼0.92,

and 20×:∼0.94) for total SVs, (5×:∼0.88, 10×:∼0.95, and

20×:∼0.97) for deletions, and (5×:∼0.81, 10×:∼0.88, and

20×:∼0.91) for insertions. Lra/Sniffles2 combination had the

best F1-score for insertions for each coverage.

In addition, the total number of SVs, the total number

of insertions, and deletions for all tested aligner/SV caller

combinations were compared. Table S9 summarizes the total

number of SVs at 5×, 10×, and 20× coverages. Again, more

deletions than insertions were found for all aligner and SV

caller combinations across coverages like in the previous sim-

ulated datasets. The number of SVs overlapping across cover-

ages while using the same tool combination and the number

of SVs overlapping across different tool combinations but

within the same coverage were also calculated. Data S5 shows

the number of overlapping SVs across different coverages

using the same tool combination. Minimap2/dysgu combina-

tion had the highest number of overlapping SVs. However,

minimap2/cuteSV combination found the highest proportion

of overlap; 73.49% for all SVs, 77.52% for deletions, and

68.98% for insertions, while the minimap2/Sniffles2 combi-

nation was second best detecting 72.73% for all SVs, 76.32%

for deletions, and 68.72% for insertions (Figure 7 and Table

S5). Although minimap2/dysgu found the highest number

of SVs at each coverage in Sim_ONT_Sl, the proportion

of overlapped SVs was reported as 68.82%. Data S6 dis-

plays overlap between results from different SV callers within

the same coverage after each aligner, including the inter-

section with Sim_ONT_Sl truth set. The highest number of

overlapping SVs was found at 20x coverage, following min-

imap2 aligner. Overall, in Sim_ONT_Sl, the combination of

cuteSV and Sniffles2 after minimap2 alignment gave the best
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F I G U R E 7 Proportion of overlapped structural variant (SVs) (%), across 5×, 10×, and 20× coverages for simulated and real-world datasets.

results both in terms of F1-Scores and concordance across

coverages.

3.5 Performance of SV callers on
real-world data

While tool performance on simulated data provides a use-

ful guide, real-world datasets usually provide additional

unaccounted-for complexity and challenges. After finding the

best combinations in simulated data, we investigated whether

the pattern would be similar in real-world datasets. Since for

the real-world data we do not have an objective truth set,

they were only evaluated from two perspectives which are

the congruence of results when using the same tool combina-

tion across different coverages and when using different tool

combinations within the same coverage.

3.5.1 Performance on B. napus real-world
ONT data

B. napus ONT real dataset (Real_ONT_Bn) was evaluated

using the above-described strategy. Table S10 shows the

number of SVs from all tested combinations at different

coverages in B. napus. The minimap2/cuteSV and min-

imap2/dysgu combinations within all coverages captured the

highest number of total SVs, deletions, and insertions. Over-

all, a higher number of deletions than insertions was detected

for all aligner and SV caller combinations at different cov-

erages. The number of overlapped SVs across coverages

for the same SVs caller/aligner combinations was calculated

(Data S7). Minimap2/cuteSV combination found the high-

est proportion of overlapping SVs discovered at different

coverages using the same combination of tools (51.53% of

total SVs, 54.52% of deletions, and 47.91% of insertions),

while the minimap2/Sniffles2 combination was second best,

detecting overlap of 50.1% for all SVs, 54.56% for dele-

tions, and 44.92% for insertions across coverages (Figure 7).

Although the minimap2/dysgu combination found more SVs,

the percentage of intersecting SV was low. NanoVar detected

the lowest proportion of overlapping SVs across coverages

(19.04% of total SVs, 25.07% of deletions, and 10.21% of

insertions) and discovered more unique SVs. Surprisingly we

noticed a high proportion of heterozygous genotypes (0/1) in

SV calling results for Real_ONT_Bn, considering that the

data represented a highly inbred elite line (Vollrath et al.,

2021). Tables S11 and S12 show the number of SVs geno-

typed as homozygous and heterozygous in simulated and

real-world data, respectively. As our SV filtering required

the genotypes to be homozygous for the alternative allele

(1/1), these heterozygous calls were removed prior to analysis.

We also investigated the overlap in SV calls across different

tool combinations within the same coverage (Data S8). We

observed that a substantial proportion of deletions and inser-

tions were shared by most SV callers, with the largest number

of overlapping SVs at 20×, following minimap2 alignment.

3.5.2 Performance on S. lycopersicum
real-world ONT data

We performed a similar evaluation for the real-world dataset

of Solanum lycopersicum (Real_ONT_Sl). Table S13 shows
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the number of SVs found from all tested combinations at

different coverages. The minimap2/dysgu combinations at

5×, 10×, and 20× captured the most SVs. Additionally,

for S. lycopersicum all tool combinations with the excep-

tion of NanoVar found more insertions than deletions at

each coverage. We also calculated the number of overlap-

ping SVs while using the same tool combination across

different coverages (Data S9). Minimap2/cuteSV combina-

tion found the highest proportion of overlapping SVs; 49.34%

for all SVs, 49.63% for deletions, and 49.16% for insertions,

while the minimap2/Sniffles2 combination detected 47.80%

for all SVs, 49.41% for deletions, and 46.61% for insertions.

Even though the minimap2/dysgu combination found more

SVs, the percentage of common SVs (40.82%) was low like

Real_ONT_Bn data. NanoVar again detected the lowest pro-

portion of overlapping SVs (21.57% for all SVs, 31.20% for

deletions, and 12.16% for insertions), and it discovered more

unique SVs like for the Real_ONT_Bn dataset (Table S14 and

Figure 7). Again, we also tested overlaps between SV calls

within the same coverage, but across different tool combina-

tions (Data S10). The largest number of overlapping SVs was

found at 20×, following minimap2 alignment.

3.5.3 Performance of Minimap2 and
cuteSV/Sniffles2 combination in other crops

To assess whether our observations are robust for other

crops, we performed similar benchmarking analysis for maize

and compared already published SV calls in soybean, dis-

covered using a combination of NGMLR and Sniffles1,

with our results obtained from minimap2/cuteSV and min-

imap2/Sniffles2 combinations (Lemay et al., 2022). For maize

simulated data, we found that the combination of min-

imap2/cuteSV had the best performance for deletions while

the combination of minimap2/dysgu had the best perfor-

mance for insertions (Figures S2 and S3). However, as for

B. napus and S. lycopersicum, minimap2/cuteSV combination

had much higher overlap across coverages in real world data

(Figure S4). For soybean, we found that minimap2/cuteSV

and minimap2/Sniffles discovered over 3500 new SVs, while

recovering a vast majority of existing calls (Figures S5–S9).

3.5.4 The Unique features of real-world
datasets

We found a surprisingly high proportion of heterozygous calls

in the real-world datasets given the highly inbred nature of

the material used for sequencing. A high proportion of those

is therefore likely SV discovery/genotyping errors. More het-

erozygous calls were found in the B. napus than in the S.
lycopersicum dataset. B. napus is an allotetraploid species,

which undergoes reciprocal and non-reciprocal homeologous

exchanges (HEs; exchanges of large corresponding chromo-

some segments between subgenomes). Non-reciprocal HEs

could potentially cause erroneous SV calls if there are HE

present in the reference, but absent in the sample. As a

result, reads will have no corresponding mapping location

and may be mis-mapped. To test such a scenario, we used

the Sim_ONT_Bn2 dataset (20×, minimap2 for mapping, and

cuteSV for SV detection) and two versions of the modified

Express 617 reference. In the first version, we replaced chro-

mosome A01 by C01 (two C01 chromosomes and no A01).

In the second version, we replaced chromosome C01 by A01

(two A01 chromosomes and no C01). In both cases, the use

of the modified reference resulted in an increased number of

heterozygous (162.3% for reference with A01 missing, and

237.1% for reference with C01 missing), but not homozy-

gous calls across all chromosomes (Figure 8), suggesting

the non-reciprocal HEs can contribute to produce erroneous

heterozygous calls.

4 DISCUSSION

Many of the SV detection tools are benchmarked primarily

on human/animal datasets (Bolognini & Magi, 2021; Coster

et al., 2019; Dierckxsens et al., 2021; Jiang et al., 2020, 2021;

Zhou et al., 2019); however, the complexity and different

SV profiles of crop plant genomes might bring unique chal-

lenges. Therefore, to guide the design of large-scale long-read

re-sequencing studies, this study performed comprehensive

benchmarking of popular SV calling tools with a focus on tool

performance at lower sequencing coverage. For this purpose,

we designed two data simulation strategies representing both

unbiased and realistic benchmarking datasets reflecting struc-

tural variation for two major crops, oilseed rape (B. napus) and

tomato (S. lycopersicum). We further validated our findings

using maize and soybean datasets.

Four long-read aligners (minimap2, NGMLR, lra, and Vul-

can) and five SV callers (Sniffles2, SVIM, cuteSV, dysgu, and

NanoVar) were tested to detect SVs, particularly deletions and

insertions. Our analysis focused on deletions and insertions

as they are by far the most abundant SV types. Alignment

time varied widely between the four aligners, while differ-

ences in the proportion of mapped reads were moderate. As

expected, higher sequencing coverage and reference genome

size length increased the run time of the mapping algorithms.

The real-world datasets required more time at the same cover-

age, which most likely reflected several factors: exclusion of

unplaced contigs from simulations, higher N50 of real world

reads, potential presence of homeologous exchanges in B.
napus dataset, and additional complexity not captured in sim-

ulations. Overall, the results found minimap2 to be the best

performing aligner for SV calling applications, which also
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F I G U R E 8 The effect of non-reciprocal homeologous exchanges on structural variant (SV) discovery. Nonreciprocal homeologous exchanges

were simulated by replacing chromosome A01 by C01 and C01 by A01.

had the fastest run time and the most mapped bases. Recent

benchmarking studies on human data also recommended min-

imap2 among tested aligners such as GraphMap, LAST, and

NGMLR (Bolognini & Magi, 2021; Coster et al., 2019; Zhou

et al., 2019).

We found that similar tool combinations (especially

cuteSV, followed closely by Sniffles2 and dysgu after min-

imap2 alignment) had superior performance across all the

simulated datasets. The findings are in line with a recent study

reporting that cuteSV performed better than other tested SV

tools such as Sniffles1, SVIM, and pbsv for precision and

recall at both SV calling and genotyping in human datasets

(Bolognini & Magi, 2021). Increasing coverage improved

recall and F1-scores for all tested SVs calling combina-

tions, confirming that the probability of detecting quality SVs

increases with more sequencing coverage (Jiang et al., 2021).

However, even at low coverages (5×) using cuteSV, Sniffles2,

and dysgu for SV detection from reads aligned by minimap2

achieved > 0.8 F1-scores on simulated datasets, suggesting

that Oxford Nanopore technology might be suitable for large-

scale low coverage re-sequencing projects. While the lack of

objective truth sets for real-world datasets precludes similar

comparisons, the results revealed that tool combinations with

best performance for simulated datasets also had the most

consistent outcome across the range of coverages.

The criteria for filtering SV in this study were quite strin-

gent, including retaining only SV genotyped as homozygous

for alternative allele (1/1). While in simulated datasets the

number of SV genotyped as heterozygous was relatively low,

the proportion was much higher for real-world datasets, espe-

cially in B. napus. We found that in B. napus, the presence

of homeologous exchanges will likely contribute to the erro-

neous discovery of heterozygous SV. B. napus is well known

to harbor wide-spread nonreciprocal homeologous chromo-

somal exchanges even extending to whole chromosomes, for

example, for chromosomes A01 and C01 as simulated here

(Udall et al., 2005). The finding underlies the importance

of species-specific consideration when interpreting SV dis-

covery results. The presence of HEs likely explains only a

proportion of the observed heterozygous calls and other fac-

tors need to be considered as well, including other sources of

mis-mappings, genotyping errors, and residual heterozygosity

in samples.

In conclusion, we found that for homozygous/inbred geno-

types often used in crop studies, a substantial proportion of

SVs can be discovered/genotyped at coverages as low as 5×,

making Oxford Nanopore technology a suitable option for

larger-scale re-sequencing studies. At this time, following our

benchmarks, we recommend using the minimap2 aligner in

combination with either cuteSV or Sniffles2, as it achieves

good precision and recall at insertion and deletion calling and

found the highest overlap between SVs across coverages.
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