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Visual reinforcement shapes eye movements in visual search
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We use eye movements to gain information about our
visual environment; this information can indirectly be
used to affect the environment. Whereas eye
movements are affected by explicit rewards such as
points or money, it is not clear whether the information
gained by finding a hidden target has a similar reward
value. Here we tested whether finding a visual target can
reinforce eye movements in visual search performed in a
noise background, which conforms to natural scene
statistics and contains a large number of possible target
locations. First we tested whether presenting the target
more often in one specific quadrant would modify eye
movement search behavior. Surprisingly, participants did
not learn to search for the target more often in high
probability areas. Presumably, participants could not
learn the reward structure of the environment. In two
subsequent experiments we used a gaze-contingent
display to gain full control over the reinforcement
schedule. The target was presented more often after
saccades into a specific quadrant or a specific direction.
The proportions of saccades meeting the reinforcement
criteria increased considerably, and participants matched
their search behavior to the relative reinforcement rates
of targets. Reinforcement learning seems to serve as the
mechanism to optimize search behavior with respect to
the statistics of the task.

Introduction

Visual search is a frequently used behavior that
includes many psychological aspects, such as visual
perception, attention, memory, learning, and decision
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making (Nakayama & Martini, 2011). Evidence drawn
from the literature about these processes shows that
low-level properties of the stimuli (Itti & Koch, 2000;
Parkhurst, Law, & Niebur, 2002; Wolfe, 2007) and
higher level factors interact to guide target selection
during visual search (Schiitz, Braun, & Gegenfurtner,
2011; Tatler, Hayhoe, Land, & Ballard, 2011). Among
the latter top-down influences, task demands, knowl-
edge about the visual properties of the stimuli and
statistical regularities of the environment have been
shown to contribute to search performance (see
Eckstein, 2011, for a review). The visual system also
takes into account its own properties when planning
fixations, for example the inhomogeneity of the retina
(Najemnik & Geisler, 2005, 2008). It is important to
understand how this knowledge about the environment
and the structure of the visual system is acquired. Here
we explore the hypothesis that the reward system,
which is generally implicated in the learning of
behaviors (Montague, Hyman, & Cohen, 2004) offers a
suitable way for implementing the learning process for
optimally deploying gaze during visual search tasks.
Several paradigms have been used to investigate the
influence of reward on eye movement behavior at
different stages of target selection. Both stimulus
salience and reward interact to determine the final eye
position when participants have to choose between two
(Chen, Mihalas, Niebur, & Stuphorn, 2013) or more
(Ackermann & Landy, 2013; Eckstein, Schoonveld,
Zhang, Mack, & Akbas, 2015; Navalpakkam, Koch,
Rangel, & Perona, 2010; Towal, Mormann, & Koch,
2013) items. In these studies saccadic choice is well
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described by models dynamically combining these two
factors.

However, there are several restrictions in these
previous studies. First, saccades were constrained by
few possible item locations in the displays. Moreover,
these displays were presented for short durations which
allowed participants to make only one or two saccades.
As a consequence, the tasks were more similar to a
selection task than to a free exploration of the
environment. Second, the nonvisual nature of saccades’
consequences also differentiates visual search as studied
in the aforementioned studies from visual search in a
natural environment. Whereas an explicit reinforce-
ment, such as points, monetary gains (Tatler et al.,
2011), or alimentary reward in monkeys (Hikosaka,
Nakamura, & Nakahara, 2006), allows researchers to
experimentally manipulate the consequences of eye
movements, such reinforcement does not happen in
everyday life after making a saccade. Instead, we gain
visual information that can indirectly be used to act
and get reward from our environment.

Indeed, theoretical models of human search behavior
assume that fixation locations are chosen to maximize
the information gain across successive eye movements
(Najemnik & Geisler, 2005, 2008) and to minimize the
uncertainty about the target location (Renninger,
Verghese, & Coughlan, 2007) or regions of task-
relevant information (Peterson & Eckstein, 2014). In
these models the visual information gain can be
conceptualized as a rewarding consequence, controlling
fixation locations. A few paradigms explicitly evaluated
the reinforcing value of visual consequences of sac-
cades. However they were simplistic in that observers
had to choose between only two visual stimuli
presented at predetermined locations (Berlyne, 1972;
Collins, 2012) or only investigated the very basic
aspects of saccades such as their latency, speed, and
amplitudes in monkeys (Dorris, Pare, & Munoz, 2000)
as well as in humans (Collins, 2012; Madelain, Paeye, &
Wallman, 2011; Montagnini & Chelazzi, 2005; Paeye &
Madelain, 2011; Schiitz, Kerzel, & Souto, 2014; Xu-
Wilson, Zee, & Shadmehr, 2009).

Overall, the picture emerges that eye movements for
visual search are optimal or close to optimal under
some conditions (Ackermann & Landy, 2013; Clarke,
Green, Chantler, & Hunt, 2016; Droll, Abbey, &
Eckstein, 2009; Eckstein et al., 2015; Najemnik &
Geisler, 2005, 2008), but not others (Morvan &
Maloney, 2012; Verghese, 2010). The reason for the
different outcomes is unclear at present. We wanted to
explore eye movement strategies in a relatively simple
paradigm, where correct target location is biased in one
particular region of the search display. Efficient search
should then also be biased toward this region, because
the visibility of the search target is increased in the close
vicinity to the fovea. Some previous studies have
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addressed this issue. The results indicate that the visual
system takes into account prior knowledge about the
statistical target distribution (Jiang, Swallow, Rose-
nbaum, & Herzig, 2013; Jones & Kaschak, 2012;
Peterson & Kramer, 2001). However, these studies used
simple displays with a small number of potential target
locations. In the extreme case, Chukoskie, Snider,
Mozer, Krauzlis, and Sejnowski (2013) used a single
invisible target, forcing the observers to use their prior
experience of reward exclusively. They used tones in
order to signal the observers that they “found” the
target—and no visual information. Once observers
figured out the correct location, they very quickly
saccade to that point, a behavior that departs from a
visually guided search task.

To circumvent these issues, we used a continuous
search display consisting of a 1/f random noise
background and Gabor targets with a well-defined
contrast. We will first show that the positional bias did
not have any effect on search strategies, most likely
because the reward structure of the task did not induce
reinforcement learning. In a second experiment, we
systematically controlled reinforcement rate in a gaze-
contingent paradigm, and found a tight coupling
between eye movement positional biases and rein-
forcement rate.

Materials and methods |

Participants

Six (five females, one male; aged 21 to 28 years),
seven (five females, two males; aged 21 to 30 years) and
six (three females, three males; aged 23 to 27 years)
participants took part in experiments | to 3, respec-
tively. They were students of the University of Giessen
and naive as to the purpose of the study. They had
normal or corrected-to-normal vision. They came to
the laboratory for several daily one-hour sessions (see
Table 1 in Appendix) during which several blocks of 50
trials (separated by 5-min breaks) were recorded.
Experiments were in accordance with the principles of
the Declaration of Helsinki and approved by the local
ethics committee LEK FBO06 at the University of
Giessen (proposal number 2009-0008). Participants
gave informed written consent prior to the experiment.
They received eight Euros per hour.

Experiment 1: Frequency biases
In this experiment participants were asked to look

for a Gabor patch in a circular 1/f noise background in
which we manipulated the likelihood of the target in
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different parts of the display. First we measured the
foveal contrast sensitivity of each participant with a
procedure adapted from the two-interval forced choice
paradigm implemented by Najemnik and Geisler (2005,
2008). We measured the detection accuracy only for the
center of the display and for the only background
contrast used in all our experiments. This preliminary
session consisted in 40 trials of a quest procedure (from
the Psychophysics Toolbox, Watson & Pelli, 1983). In
these trials participants were asked to fixate continually
the center of the display (within a 1.5° X 1.5° of visual
angle window). A first background noise texture was
displayed for 250 ms, followed by a gray screen. After
500 ms a second noise texture appeared for 250 ms.
Only one of the two background noise textures
contained a Gabor patch (whose contrast depended on
the quest procedure) at the central fixation location.
Participants judged which interval contained the target.
We fitted psychometric functions with a cumulative
Gaussian. We could then estimate and adjust the target
contrast for each participant individually to achieve a
given perceptual performance (¢’ between 1 and 4). The
target root-mean-square contrast varied between 0.05
and 0.12. Targets were presented from the beginning of
the trials at one of 104 homogeneously distributed
target locations. To induce learning they were located
in one of 30 possible locations of one quadrant (the
“rich quadrant™) four times more often than in all the
other 74 possible locations of the search display. Since
the rich quadrant also included all locations along the
vertical and horizontal midline the chance proportion
was not exactly 0.25, but 30/104, i.e., 0.288. Observers
were not informed about the manipulation of proba-
bility. The number of 50-trials blocks performed by the
participants (see Table 1 in Appendix) depended on the
time needed to reach a stable performance during three
consecutive blocks. Each trial ended when a target was
localized.

Experiments 2 and 3: Reinforcement procedures

In the two subsequent experiments we designed a
gaze-contingent paradigm in order to provide more
direct visual consequences—the target appearance—
after saccades meeting specific position (experiment 2)
or direction (experiment 3) criteria and according to
specific probabilities. Observers were not informed
about these reinforcement procedures.

We first measured baseline search behavior during 15
trials in which no target was presented. Each of these
trials was cancelled automatically after the execution of
ten saccades. Then the learning blocks began. No target
was visible at the beginning of each trial. Visual
reinforcement was provided on a saccade-to-saccade
basis, according to two concurrent schedules. In one of
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these schedules, saccades landing in one quadrant of
the background (experiment 2) or saccades with a
direction located in a specific 60° angle range (exper-
iment 3) were reinforced with a high probability—the
quadrants or angle ranges of this high-probability
reinforcement alternative were randomly assigned to
each participant. At the same time according to the
other reinforcement schedule, saccades in the three
other quadrants (experiment 2) or with other directions
(experiment 3) were reinforced with a low probability.
Table 1 (Appendix) presents these scheduled rein-
forcement probabilities and the rates of reinforcement
actually obtained by each participant (which depended
first on our ability to predict saccadic vectors and
second on the detection of the target by the partici-
pants). Depending on individual performance, the
probabilities of reinforcement could be modified during
the experiment, but the programmed ratio remained
constant. This was the case for Participant FR
(experiment 2): Given her quick learning pace (her
proportion of saccades landing in the highly reinforced
quadrant was above 80% during the two last blocks of
her first daily session), we decreased the reinforcement
rate in this quadrant from 0.8 to 0.4—and from 0.2 to
0.1 in the three other quadrants—for her second
session. Similarly, in experiment 3, the proportion of
saccades we programmed to reinforce according to
their direction decreased from 100% to 50% from the
second session of participant FL. Finally, following
two daily sessions, three participants in experiment 2
and one in experiment 3 performed a second experi-
mental condition: Unknown to them, the reinforcement
criteria were changed and another quadrant (experi-
ment 2) or another 60° angle range (experiment 3)
defined the high-probability reinforcement schedules.

Eye movement recording

Eye movements were recorded with a video-based
eye tracker (EyeLink 1000; SR Research, Kanata,
Ontario, Canada) and were sampled at 1000 Hz. For
offline analysis, we used the Eyelink parser to identify
saccades’ onset and offset, using 30° of visual angle per
second (°/s) velocity and 8000°/s* acceleration thresh-
olds.

Presenting the target right at the end of a saccade
requires knowledge of the landing position while the
saccade is still in midflight. We used the stereotyped
relationship between saccadic amplitude, peak velocity,
and duration (Bahill, Clark, & Stark, 1975) to make
this prediction (Figure 1A).

First, we predicted the saccadic peak velocity. Each
millisecond, a buffer of 50 eye velocity samples was
updated, and the corresponding velocity trace was
fitted with a Gaussian (gray curve in the example
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Figure 1. Saccade endpoint prediction: (A) Example of the last
30 ms out of the 50 stored in the buffer used to predict a
saccadic peak velocity. Each millisecond, this buffer was
updated and the velocity trace was fitted with a Gaussian (gray
curve). The predicted peak velocity was computed from this fit
as soon as its maximum exceeded 150°/s while the standard
deviation remained below 20 (as illustrated here). The predicted
landing position was used to present the target in the noisy
background (inset) at saccade offset after a saccade met the
reinforcement criteria. (B) Histogram of the prediction error
along the movement trajectory (blue) and orthogonal to the
movement direction (red).

presented in Figure 1 A; the black symbols correspond
to the last 30 samples obtained at the time a landing
position was predicted). Once the maximum of the
Gaussian was larger than 150°/s and the standard
deviation smaller than 20, the peak velocity was
determined. In addition the mean of the Gaussian had
to be located within —10 to 2 ms relative to the current
sample. With these criteria the online detection rate of
saccades was between 29% for saccades with ampli-
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tudes of 2° and 57% for saccades with amplitudes of 9°.
Although the detection rate was higher for saccades
with larger amplitudes, saccade amplitudes did not
increase over the course of experiment 2, first trials: M
=3.4° SD =0.7°% last trials: M =2.7°, SD = 0.6 1(6) =
1.82; p=0.119; or experiment 3, first trials: M = 3.4°,
SD =0.9% last trials: M =3.2°, SD=0.6" 1(5)=0.83; p
= 0.446.

If the above mentioned criteria were met, the saccade
amplitude was predicted with the following formula,
using the maximum (max), the mean, and the standard
deviation (SD) of the Gaussian fit:

—1.32 + max X 0.16 + SD X< 0.01 + mean X 0.04

+ Llog X 1.06 (1)
max

These values have been optimized in advance using
offline measurements of saccade trajectories. The
saccade direction was predicted as the average direction
between the onset and the peak of the saccade. If the
estimated vector of the current saccade met the
reinforcement criteria, the target appeared at the
predicted landing position.

We were able to present the target with a median
delay of 5 ms in experiment 2 and three ms in
experiment 3 after saccade offset and with a median
distance of respectively 1.09° and 1.36° from the actual
eye landing positions (Figure 1B). While saccade
direction was estimated accurately, saccade amplitude
was slightly underestimated (median =—0.44°). For the
vast majority of trials the prediction error was small, so
that the target was presented in the foveal region of the
retina with the highest acuity and sensitivity.

Stimuli and experimental procedure

Stimuli were generated using the Psychophysics
Toolbox (Kleiner, Brainard, & Pelli, 2007) for Matlab
and displayed on a video monitor (Samsung, driven at
120 Hz). The participants were seated in a dark room,
and their heads were stabilized by a chin and forehead
rest at 80 cm from the screen. We used stimuli
analogous to those of Najemnik and Geisler (2005,
2008). The search target was a sine-wave grating of 6
cycles/®, tilted 45° to the right. In the gaze-contingent
paradigms, the target contrast was fixed with a root-
mean-square of 0.30 (see inset in Figure 1A). It was
displayed on a 0.07 root-mean-square contrast back-
ground, a circular region 15° in diameter filled with 1/f
noise at a mean luminance of 46 cd/mz, a condition
which resembles the spatial statistics of natural scenes.

At the beginning of each experiment, participants
were given the instruction “to look for the Gabor patch
in the circular gray background,” and they could freely
explore an example of the display containing an
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embedded target. Prior to each block (consisting of 50
trials), a 9-point-grid calibration procedure was ap-
plied. Then a fixation cross (0.5° X 0.5°, line width 2
pixels, either black or white) appeared at the center of
the screen, and the participant pressed one of the
buttons of a joystick to begin the trial, which
extinguished the fixation cross. As soon as participants
detected the target, they pressed a second joystick
button, and a large white “plus” appeared (line width 3
pixels), which covered the whole screen and whose
center was moving along with the measured eye
position. The participants indicated the target location
by looking at the target (which brought the cross center
on the target) and pressing the first joystick button.

Behavior analysis

We had to determine for each trial, which saccade
was actually being rewarded, i.e., which saccade led to
target detection by the participant. Indeed, in the
frequency biases experiment, participants could have
looked at locations close to the target without noticing
it. In the gaze-contingent paradigm, they might also
have missed the target when it was first presented. We
only considered saccades that ended after the target
presentation and before the first button press, which
indicated that the participant found the target. If more
than one saccade satisfied these criteria (83% of trials in
experiment 1, 52% of trials in experiment 2, and 62% of
trials in experiment 3), we calculated for each potential
saccade the distance to the target and how much it
reduced this distance. Saccades were only considered if
the distance to the target location was below 2° after
this or after the following saccade and if the saccade
reduced the distance by at least 2°. The first saccade
that satisfied these criteria was selected as the rewarded
saccade. The results were qualitatively similar if only
the last matching saccade was selected. In more than
half of the trials (56% of trials in experiment 1, 66% of
trials in experiment 2, and 64% of trials in experiment
3), only one saccade matched these criteria.

To describe the modifications in visual search
behavior, we assessed the changes in the proportion of
saccades landing in the rich quadrant (experiments 1
and 2) or the proportion of saccades whose direction
was located in the frequently reinforced angle range
(experiment 3). These proportions were computed for
each participant and for each trial over a moving
window of 40 trials as well as over specific blocks of
trials: baseline trials, the last 100 trials of each
experimental condition. Paired 1 tests were used to
compare baseline and final trials across all participants
and chi-square (y°) tests were used to compare baseline
and final trials for individual participants. A signifi-
cance criterion of 0.05 was used for all statistical tests.
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To analyze the relationship between eye movements
and targets’ detection, we used the generalized match-
ing equation proposed by Baum (1974) to formalize the
relationship between behavior and reinforcement:

log (:—;) = s X log (%;) + b. (2)

Here, S corresponds to the number of saccades made
in the rich quadrant or in the frequently reinforced
direction (“F”’) and in the other areas or directions
(*O™). R is the number of reinforcers received (i.e.,
targets detected) after saccades meeting the high- and
low-probability reinforcement criteria. In this linear
equation, a slope of s = | indicates that relative
response rates will perfectly match relative reinforce-
ment rates produced by this behavior. The intercept b
gives a measure of the preference for one response,
independently of the reinforcement rates. We fitted the
data obtained over the last 100 saccades of each
experimental condition.

A matching analysis was also used to disentangle the
effects of our two reinforcement procedures. We
reanalyzed the data obtained in the quadrant experi-
ment in terms of saccadic directions. Reciprocally, we
reanalyzed the data of the direction experiment in terms
of locations. For example, in the latter experiment, a
saccade starting from the screen center and made in a
10 o’clock direction would be coded as landing in the
upper left background’s pie-shaped sector, whereas a
saccade with the same vector but starting from the
bottom of the background would be coded as landing
in a sector situated below the horizontal median line.
We assumed that the rich pie-shaped sector of the
search display corresponded to the frequently rein-
forced angle bin.

We wanted to explore the effect of positional biases
of the search target on eye movement strategies in
unconstrained visual search. If observers adapt their
eye movements to these biases, they should have more
fixations in the biased quadrant.

Experiment 1: Frequency biases

In this conventional, nongaze contingent, visual
search task, one of the quadrants of the display
contained the target four times more often than the
others. Participants made 6 (SD = 1.82) saccades per
trial on average, which shows that the target could not
be easily detected in the periphery.
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Figure 2. Results of the frequency biases experiment. Propor-
tions of saccades made in the high target probability quadrant
for all participants. These proportions were computed over the
first 100 trials and plotted against these proportions computed
over the last 100 trials. Horizontal and vertical lines: chance
proportions.

Figure 2 shows that observers overall exhibit a slight
bias towards the rich quadrant. However, this bias did
not change between the first (M =42%; SD =11%) and
last 100 trials (M = 35%; SD = 5%), indicating that the
bias was constant over the course of the experiment,
{(5)=1.14, p = 0.305. There was also no change if we
considered only the first saccades in each trial; first
trials: M = 53%, SD = 24%:; last trials: M = 54%, SD =
21%; t(5) = 0.25; p =0.810. For each two of our
subjects, the bias increased significantly, decreased
significantly, or remained constant (individual #* tests).
Thus, observers seem to be unable to acquire useful
information about the inhomogeneity of the reward
landscape over the course of the experiment. The
general bias towards the rich quadrant was most likely
due to the visual signal that made the search target
visible when the eyes were in the vicinity.

To understand why observers failed to exploit the
statistics of the environment, we looked at the
relationship between the reinforcement history and the
selection of saccade target locations. Indeed, in learning
experiments, participants often closely match rein-
forcement rates in their behavior (Herrnstein, 1961). In
this first experiment, the reward was pre determined
because the target was present in the display indepen-
dently of observer’s eye movements. Participants’
failure to modify their search behavior might be due to
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the fact that the statistical bias we introduced in our
display was too small.

Despite the particular target bias of 4:1 we had
chosen, the reward ratios—i.e., the number of rewarded
saccades in the rich quadrant versus those in the lean
quadrants—were rather uniform and low; and this was
reflected in the saccade ratios—i.e., the number of all
saccades in the rich quadrant versus those in the lean
quadrants (Figure 3A). In other words, in this
conventional search task, the large number of possible
target locations made it difficult for the observers to
learn the reward structure of the environment. Since the
target locations were deterministic, we can estimate the
theoretical reward ratios for different biases towards
the rich quadrant, assuming that target detection is
homogeneous across the search display and that targets
are predominantly detected by saccades landing in the
same quadrant. This analysis of the theoretically
possible reward ratios (Figure 3B) reveals that huge
biases and a large number of trials would be necessary
to create high reward ratios. In previous studies, this
problem did not arise because of the very limited
number of distinct potential target locations, which
allow high reward ratios even with smaller target biases
and less repetitions.

Experiment 2: Reinforcement of saccade landing
positions

Our first experiment aimed at testing whether the
visual system would modify its search behavior if one
part of the display contained significantly more often
the target. Surprisingly, we found that participants did
not search more often in the biased area. We argue that
the ratio of target detection in the rich quadrant and
the lean quadrants was too low to modify search
behavior. We address this issue here by introducing a
gaze-contingent search display. The search target was
displayed at the landing position of the saccade, when
saccades were predicted to land in the reinforced
quadrant. This procedure gives us complete control
over the reinforcement schedule, despite the complexity
of the stimulus and the task.

According to the visual reinforcement procedure, the
target was presented after saccades landing in a specific
quadrant (the “rich quadrant™) four times more often
than after saccades made in the other quadrants.

Figure 4A shows data from a representative partic-
ipant. Over the course of the experiment, the percent-
age of saccades landing in the rich quadrant increased
from the baseline at 20% to 60%. Following the
modification of the reinforcement criteria and the
specification of a new rich quadrant, the proportions of
saccades landing in this new rich quadrant increased
from 11% to 86%. At the same time they decreased in
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Figure 3. Matching analysis. (A) Log ratio of saccades made in
the high target probability quadrant and low target probability
quadrants plotted against the log ratio of number of saccades
that led to target detection in these areas. Each data point
represents data of one observer obtained over the last 100
trials. Red line: best fit line according to the generalized
matching equation (Baum, 1974). The line is solid in the range
of measured reward ratios and dashed outside this range. Black
diagonal line: perfect matching. Black horizontal line: theoret-
ical saccade ratio if saccades were equally distributed. Black
vertical line: theoretical reward ratio given all possible target
locations. (B) Analysis of theoretically possible reward ratios
(black) and resulting trial numbers (green) as a function of how
often targets were repeated in the rich quadrant. The vertical
line represents the empirically tested factor of 4. The
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the previously rich quadrant down to 3%. Thus,
reinforcement of saccades landing in a certain quadrant
led to an overall increase of saccades landing in that
quadrant.

Figure 4B summarizes the results obtained for all
seven participants of this experiment. All of them
except one modified their search behavior and looked
preferentially for the target in the quadrant where
saccades were most frequently followed by a target
presentation. The proportion of saccades landing in
this quadrant nearly tripled, increasing from 21% (SD
4%) to 60% (SD 23%) on average between the baseline
trials and the end of the first condition. The increase
was significant for the whole group of participants, #(6)
=5.01, p=0.002, as well as for six out of the seven
individual participants, ¥>(1) tests, all p < 0.001. A
similar increase from 13% (SD 11%) to 76% (SD 37%)
was present if we considered only the first saccade in
each trial, 7(6) =5.48, p=10.002. One participant did not
show any signs of learning (but see matching analysis
below). For the three participants who performed a
second condition with another rich quadrant, the
proportion increased from 4% (SD = 6%) to 63% (SD =
33%) on average, individual %*(1) tests, all p < 0.001.
This indicates that gaze-contingent reinforcement is
very effective in changing visual search behavior.

It is notable in Figure 4B that there were substantial
interindividual differences in the proportion of sac-
cades to the rich quadrant, ranging from 13% (the
participant who did not learn) to 89%. One possible
reason is that due to the individual learning history the
actual reinforcement rates were different for the
individual participants (see Table 1 in Appendix).
Another potential cause for differences is that our
algorithm did not perfectly detect saccades, thereby
slightly affecting the actual reinforcement rates.

[t is instructive to use the matching equation as a
model to study the relation between saccade landing
positions and detected targets. The model fit (red line in
Figure 5) accounted remarkably well for the data (R*> =
0.94). The slope of the regression line was close to unity
(1.21; 95% CI [0.97; 1.45]), indicating that matching
was observed across participants. The analysis also
points to a bias towards the quadrants associated with
a low probability of reinforcement, since the intercept

calculations are based on 104 target locations overall and 30
target locations in the rich quadrant. Each target in the low-
probability quadrants is shown once, and the factor specifies
how often targets in the rich quadrant are shown. This
prediction requires the assumption that target detection is
homogeneous across the search display, i.e., identical for rich
and lean quadrants and that targets are detected only by
saccades landing in the same guadrant.
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Figure 4. Location experiment. (A) Individual results: evolution
of the proportion of saccades meeting the criteria of the high-
probability reinforcement schedules for participant CO. For each
trial, this proportion was computed over a moving window
encompassing 40 trials. Horizontal line: chance proportion. In
both conditions we programmed to reinforce 40% of the
saccades landing in a specific rich quadrant versus 10% of the
saccades landing in the three other quadrants. The open square
and the gray curve correspond to the quadrant initially
reinforced, the filled square and the black curve to the quadrant
reinforced after the change in the reinforcement schedule. (B)
Global results: Proportions of saccades meeting the criteria of
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of the line was significantly below zero (—1.10; 95% CI
[-1.45; —0.75)).

Curiously, the search strategy of one participant
(MA) could not be modified by our reinforcement
procedure, even after more than 500 trials and despite
an actual reinforcement rate in the rich quadrant three
times higher than in the other quadrants (see Table 1 in
Appendix). We observed that this participant perse-
vered in the same strategy consisting in scanning the
search background in successive horizontal lines in the
reading direction, starting from the upper-left corner.
The application of such a rigid search-strategy led to an
extremely low reward ratio, which impeded the learning
of reinforcement contingencies. This is illustrated in
Figure 5: The data point from this observer, at the
bottom of the figure, is located on the best fit according
to the matching equation.

These results show that direct visual consequences
do not only lead to changes in search behavior. It is the
individual reinforcement history that determines the
rate of change. In contrast to the first experiment, our
gaze-contingent paradigm allows achieving sufficiently
high reinforcement rates to effectively modify the
observers’ eye movements.

Experiment 3: Reinforcement of saccade
directions

In this experiment we probed the extent of control
we can exert on visual search behavior by using a visual
reinforcing consequence. We tested whether finding the
search target could reinforce saccade directions rather
than landing positions. Then we performed two
matching analyses to determine whether the search
behavior effectively followed a reinforcement schedule
of saccade directions or if it was still controlled by the
reinforcement of specific landing positions. In this
experiment the rich schedule consisted in presenting the
target after 50% or 100% of the saccades moving at an
angle falling in a specific 60° range, whereas no
reinforcement was programmed for saccades in other
directions.

Figure 6A shows data from one individual and
Figure 6B from all six participants. During baseline on

Fr

the high-probability reinforcement schedules for all partici-
pants. These proportions were computed over baseline trials
(for the first experimental conditions) or over the last 100 trials
of the previous condition (for the second experimental
conditions), and plotted against these proportions computed
over the last 100 trials of each condition. Horizontal and vertical
lines: chance proportions. Open symbols represent the first
experimental condition, filled symbols the second experimental
condition. Data from participant CO are indicated by circles.
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reinforcement schedule. Other conventions are the same as in
Figure 3A.

average 14% (SD =4) of observers’ saccades were made
in the frequently reinforced direction. This overall
proportion reached 32% (SD = 9) at the end of the first
experimental condition. The increase was significant for
the whole group of participants, #(5) = 6.51, p =0.001,
as well as for all of the six individual participants,
individual ¥*(1) tests, all p < 0.001. A similar increase
from 9% (SD 13%) to 49% (SD 39%) was present if we
considered only the first saccade in each trial, #(5) =
2.75, p = 0.040.

In this experiment, the proportion of saccades in the
reinforced direction varied substantially between 22%
and 46%, with reinforcement rates also varying
between participants (Table 1 in Appendix). We
performed the same data analysis using the generalized
matching equation (Baum, 1974). We found that the
data of experiment 3 were not very well described by
the equation, when ratios of responses and reinforcers
were calculated in terms of saccade direction (blue
symbols in Figure 7; R? = 0.18). One potential reason
for this weak correlation between saccadic directions
and targets presented contingently on this property
might be that participants associated the detection of a
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target not with the direction of the saccade, but with a
specific location.

We performed a second matching analysis to
examine this possibility. We reanalyzed the data of this
third experiment in terms of saccade landing positions
using the same equation (red data in Figure 7). The
quality of the model fit substantially increased (R* =
0.95) and the slope (0.81, 95% CI [0.60; 1.01]) was close
to unity. As in the previous experiment, we observed a
significant bias towards the areas of the search display
associated with a low probability of seeing a target
(—=0.71; 95% CI [-0.87; —0.55]). Interestingly, reanalyz-
ing the data of the position experiment in terms of
directions resulted in a weak relationship (R* = 0.30)
between saccade directions and reinforcement. These
results suggest that it was indeed the location of the
search target that was most relevant for successful
learning in both experiments.

Our results show that finding a search target at a
particular location increases the probability that
observers make saccades to that region in a future
search. The act of finding the target, without any
monetary or other reward associated with it, serves as a
reward during visual search. Whereas it is neither
possible nor desirable to control eye movements of
observers while they perform the task, our gaze-
contingent target presentation paradigm allowed us to
fully control the reinforcement schedule. Our results
provide direct evidence that complex eye movement
behavior is sensitive to reinforcement by visual
information gain, as hypothesized by earlier investiga-
tors (Clarke et al., 2016; Jiang et al., 2013).

The strength of our gaze-contingent paradigm lies in
the control of the feedback function, namely, the
relationship between responses (saccades) and their
reinforcing consequences (finding the target). That is,
we were able to determine the number of saccades
participants had to make in one specific area or in one
direction before detecting the target. This control
differentiates our experiments not only from the studies
on visual search conducted within the information
theory framework mentioned previously (Najemnik &
Geisler, 2005, 2008; Renninger et al., 2007), but also
from studies on the emergence of attentional biases in
space (Chun & Turk-Browne, 2008; Jiang et al., 2013;
Jones & Kaschak, 2012; Kabata & Matsumoto, 2012;
Peterson & Kramer, 2001; Walthew & Gilchrist, 2006).
The latter investigated how people learn to prioritize
important locations (those which are more likely to
contain the target) from experience, based on regular-
ities in the environment. Typically target location
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Figure 6. Results of the direction experiment. (A) Evolution of
the proportion of saccades meeting the criteria of the high-
probability reinforcement schedules for participant FL. During
the first daily session we programmed to reinforce 100% of the
saccades located within a specific 60° range of angles. During
the second session, the reinforcement rate was cut in half and
then remained constant until the end of the experiment, even
during the second condition following the change of reinforced
angle range. No reinforcement for other saccades was
programmed in this experiment. For this participant, the
proportion of saccades moving at an angle contained in the
reinforced range increased following our procedure, from 14%

towards the specific task-relevant region (Peterson &
Eckstein, 2014). It would be worthwhile to use our
gaze-contingent paradigm first to examine whether the
direct manipulation of reward led to an optimal search
strategy and, second, to compare the learning rate with
an ideal observer that takes into account the statistics
of the task.

=
to 55% during the first experimental condition and from 4% to
32% during the second condition. (B) Global results. Proportions
of saccades meeting the criteria of the high-probability
reinforcement schedules for all participants. Conventions are
the same as in Figure 4.
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It should be noted that our gaze-contingent para-
digms of experiments 2 and 3 and the manipulation of
the target location probability in experiment | also
differed with respect to the sensory evidence present
when the search is initiated. In the latter case, a task-
related visual signal was present from the beginning of
the trials. In the reinforcement paradigms, there was
only sensory noise. In statistical decision theory,
reward and prior knowledge about probability distri-
butions associated with world states are central to
understanding motor control, but uncertainty also
plays a major role (e.g., Glimcher, 2003; Shadmehr,
2009; Trommershauser, Glimcher, & Gegenfurtner,
2009; Trommershduser, Maloney, & Landy, 2008). In
visual search paradigms, it has been shown that
observers optimally combine prior spatial beliefs about
where the target may occur with current sensory
evidence (Eckstein, Drescher, & Shimozaki, 2006;
Torralba, Oliva, Castelhano, & Henderson, 2006;
Vincent, 2011). Similarly, participants might have
attributed more weight to top-down information in our
reinforcement paradigms than in the frequency exper-
iment. This difference might have contributed to the
discrepancy observed in the results. In the future, the
elaboration of a dynamic model of visual search
learning should also take into account the influence of
visual factors such as target contrast and the visibility
of the target at different eccentricities. However, this is
beyond the scope of the present study, and further
experiments are necessary to manipulate these factors
systematically.

In contrast to these earlier experiments with a small
limited number of target locations, we did not find a
modification in eye movement strategy when we only
changed biases in the occurrence of stimuli in different
regions. The major difference to these experiments is
that the search target could occur at a very large
number of possible locations in our case. In the
aforementioned studies on attentional biases, the visual
system has to take into account only a small number of
spatially distinct alternatives. Even though perfor-
mance in forced-choice paradigms involving few
locations can be used to predict results obtained with
many locations (Burgess & Ghandeharian, 1984), these
tasks are not equivalent to free localization tasks
which, for instance, do not require the maintenance of
a detection criterion from trial to trial (Abbey &
Eckstein, 2014). The differing outcome in our case
additionally emphasizes that the results of such
paradigms cannot be readily transferred to realistic
search conditions with many potential target locations.
In this case it would simply take a very long time to
acquire a statistical bias. By providing reinforcement
contingently on saccadic eye movements, we were able
to quickly induce modifications in search strategies,
thereby demonstrating the control of saccadic eye
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movements by their own visual consequences—even in
complex search situations.

In the brain, the coding of saccades does not follow
world coordinates, but they are determined by retinal
direction and amplitude (Lee, Rohrer, & Sparks, 1988;
Wurtz & Albano, 1980). Due to the geometry of our
search display, angular position and movement direc-
tion of saccades were correlated in experiment 2,
circular correlation coefficient, 1(45322) =049, p <
0.001. It might have been possible that the learning of
saccadic consequences occurred for direction and
amplitude, rather than for position on the screen.
However, the matching analyses showed that partici-
pants matched the relative frequency of their saccades
made towards a specific area of the screen to the
relative number of targets seen in these areas. This was
true regardless of whether this visual consequence was
contingent on landing positions (experiment 2, Figure
5) or on saccade directions (experiment 3, Figure 7).
Presumably, compared to the relation between target
detection and saccadic direction, the relation between
target location and gaze allocation during visual search
reflects a more natural contingency that observers have
learned for years.

Despite the observed matching behavior, the partic-
ipants did not favor the highly reinforced areas of the
search display as much as they should have, based on
the experienced reinforcement. This is shown by the
nonzero intercept of the matching equation fit in
Figures 5 and 7. Several hypotheses can be put forward
to explain this bias in favor of the areas associated with
a lower probability of reinforcement. First, in our
paradigm these regions represent a much larger area
than the rich quadrant, and there might be a natural
tendency for eye movements to distribute within the
whole search region. Second, perceived reinforcement
could be weaker than the scheduled reinforcement,
because we cannot always be certain to which saccade
the observers attributed target detection. Third, par-
ticipants might prefer exploration rather than maxi-
mum exploitation. The exploration-exploitation trade-
off is a concept often used in the reinforcement learning
approach of machine learning (Sutton & Barto, 1998).
Exploration offers an advantage in changing environ-
ments because it allows detecting new sources of
reinforcement for further exploitation. In our experi-
ment, participants might check if a target could be
present in the low reinforcement quadrants in order to
avoid missing it or to confirm that the reinforcement
rates did not change.

The fact that human observers match relative
saccade rates to relative visual reinforcement rates is
consistent with a vast number of behavioral studies on
the matching law, which describes how individuals tend
to respond in proportion to the expected value of
behavioral consequences (Herrnstein, 1961; Poling,
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Edwards, Weeden, & Foster, 2011). These studies were
conducted in many different species with animals
activating keys or levers associated with various
reinforcement rates, in order to investigate how
different organisms optimize their decisions in proba-
bilistic environments. Our study is the first one
reporting matching behavior in a human sensorimotor
system in the context of an unconstrained visual search
task.

In primates, a linear relationship between the
frequency of saccades made towards specific targets
and the relative probability of alimentary reward
signaled by these targets has been found (Sugrue,
Corrado, & Newsome, 2004). In such neurophysiolog-
ical studies eye movements were investigated, but
mainly used as a way to express binary decisions.
Contrary to our visual search paradigm, these choices
were not spatially extended, and were merely used to
investigate neural processes underlying target selection.
Indeed, neural activity changes correlating with ali-
mentary reward have been observed in the basal
ganglia (Hikosaka et al., 2006), specifically in the
caudate nucleus (Lauwereyns, Watanabe, Coe, &
Hikosaka, 2002) and the substantia nigra pars reticu-
late (Sato & Hikosaka, 2002), as well as the superior
colliculus (Ikeda & Hikosaka, 2003). It has also been
found that dopaminergic neurons in the brainstem and
the frontal eye field (Soltani, Noudoost, & Moore,
2013) contribute to saccadic target selection. Moreover
a growing body of evidence suggests that cholinergic
and serotoninergic brainstem neurons might encode the
predicted and actual reward value associated with
saccadic targets (see Okada, Nakamura, & Kobayashi,
2011, for a review). According to these studies, the
reward system could constitute a neural basis for
learning eye movement behavior. This system might
also be involved in learning a complex visual search
task.

Conclusion

Visual search, and human actions in general, have
been frequently characterized as being optimal (e.g.,
Eckstein et al., 2015; Najemnik & Geisler, 2005, 2008;
Wolpert & Ghahramani, 2000) or at least near optimal
(Ackermann & Landy, 2013; Droll et al., 2009). It has
been unclear how observers would acquire such
optimality, faced with the interactions of many
complex constraints, like their own motor variability or
differences in target visibility. Our results show that
finding a visual target can serve as a direct reward, and
reinforcement learning can serve as the mechanism to
optimize eye movement strategies. This way, rein-
forcement learning could form the basis of intelligent
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behavior without requiring prior knowledge or exten-
sive computations. Using our new gaze-contingent
reward paradigm, we could show why we look more
often in specific locations when we search for particular
items. Researchers being able to modify search
behavior rapidly also has the potential to be useful in
training novice searchers in new and unfamiliar
environments.

Keywords: reinforcement learning, eye movements,
visual search, matching analysis
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Condition 1: Learned quadrant Condition 2: Relearned quadrant
Nb of Number Mean nb Program Obtained Number Mean nb Program Obtained
Participant sess of trials  sac per ftrial reinft ratio  reinft ratio  of trials  sac per trial  reinft ratio  reinft ratio
Experiment 1
Kl 10 1363 3.5 0.69 : 0.36
MK 5 849 6.7 0.23:0.21
Ju 5 1329 5.8 0:23::0:15
AH 3 954 6.3 0.30:0.21
Mi 4 773 9.1 0.22 : 0.13
SO 5 955 5.6 0.27 : 0.15
Experiment 2
MA 4 584 18.5 0.4:0.1 0.19 : 0.06
RO 5 991 7.3 0.8:0.2 0.36 : 0.13
FR 4 296 4.4 08:02 0.33:0.17 494 8.1 04:01 0.18 : 0.10
AK 4 1089 6.4 04:01 0.15:0.10
co 3 495 7.4 04:01 0.23 : 0.07 299 8.4 04:01 0.17 : 0.07
CA 4 892 114 04:01 0.15 : 0.08
MO 5 497 9.9 04:01 0.16 : 0.09 691 10 0.4:0.1 0.21 : 0.06
Experiment 3
DE 5 1167 13.7 1:0 0.19:0.11
FL 4 199 5.7 1:0 033:0.14 496 11.6 05:0 0.18 : 0.06
JA 1 288 6.4 1:0 0.32 : 0.18
AN 4 885 10.2 05:0 0.15 : 0.09
RB 8 955 26.7 05:0 0.09 : 0.06
VP 8 1380 15.9 05:0 0.16 : 0.07

Table 1. Total number of trials, mean number of saccades per trial, programmed and obtained ratios of reinforcement per condition,
for each participant of each experiments. Notes: The first and second numbers in the reinforcement ratio columns refer to the high-
probability and low-probability reinforcement schedules, respectively. Nb of sess: Number of one-hour daily sessions; Nb sac: Number
of saccades; Program reinft ratio: Programmed reinforcement ratio; Obtained reinft ratio: Ratio of reinforcement actually obtained by
the participants.
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