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Summary

We consider an integro-differential equation for the density n of a single species population where
the birth rate is constant and the death rate depends on the values of n in an interval of length
t—1>0. We prove the existence of a non-constant periodic solution under the conditions birth
rate b>n/2 and t— | small enough. The basic idea of proof (due to R. D. Nussbaum) is to employ a
theorem about non-ejective fixed points for a translation operator associated with the solutions of the
equation.

1. The growth rate of a single species population is governed by the birth and
death rates b and d, which depend on the population density n. Mathematically,
we have an equation aA=({b—d) n, with b and d depending on the function n. The
consideration of these equations with hereditary effects in b and 4 is motivated by
the fact that, without retardation, they would, in general, have no non-negative
oscillatory solution (e. g. the logistic equation 7 (t)=(b—d n(t)) n(t), with b and d
constant) — in contrast to the results of laboratory growth experiments (see e.g.

3
G. Dunkel ([1], 1968) proposed the retarded functional differential equation

r'z(t)=<b+j'tY’(n(t—a))dS(a))n(r) (1)

asa gréwth model for a single species population. In (1), the birth rate b is assumed
constant. The death rate at time ¢ is given by —| ¥ (n{t—a))dS (a), with 0<y<r,
7

S:Rg =R decreasing, S=0 on [r, ), S{y)>0, ¥Y>0 increasing. Here, S is a
fixed survival function (S (a) denotes the fraction of the population surviving to
age a). T is the maximum lifespan and y is the time required by the death rate
to react to changes in the population density. ¥ measures how much an increase
in # increases the death rate.

3

We are interested in the existence of a non-constant periodic solution of eq. (1)*.
First, let us write (1) in a mathematically convenient way: If there is exactly one

* A proof of existence was aiso announced by G. Dunkel in [1].



number n* € R™ with ¥ (n*)=5/S (y) (thus n* is the saturation level of the popu-
lation) then we set x (t):=n(t)/n* — 1 and obtain from (1)

T

£(0)=1 (¥ (r* x(t—a)+n*) = ¥ (1) dS (@) [x (1) + 1],

fy=1and ¥ (n)= ‘Ij (n*) n/n*, we arrive at
%(0)=—a | x(t—a)ds (@) [x(1)+1], @
1

with s(a):= —~S(a)/S (y) and «: =b.
We shall prove

Theorem 1: Let s:Rq — R be an increasing function with s= —1 on [0, 1], s<0
on(l,1),s=00n (7, o). If a>w/2 there is a constant ¢ € R™ such that forte (1,1 +¢)
eq. (2) has a non-constant differentiable periodic solution x on R with values in
(—1,é&"—1].

Corollary: Let y=1, §=8(1) on [0,1], >0 on (1,7) and S=0 on [, ). Ler
¥ (my="¥ (n*) m/n*, with n* the only positive solution of ¥ (m)=>b/S(1). If b>n/2
there is a constant ce€ R™ such that for te (1, 1+c¢), eq. (1) has a positive, non-
constant, periodic solution on R.

Proof: Set s(a):=—S(a)/S(1) and a:=b. If x is the solution of (2) guaranteed
by theorem 1, then n:=n* x + n* satisfies (1).

Proofs of the existence of non-irivial periodic solutions for nonlinear autonomous
differential delay equations (DDEs) are known since the thesis of G.S. Jones
(1962). He considered the equation

yO)=—a' yt=1) [y (©+1] ©)

which is a special case of (2) (set s:=—1 on [0,7) and y(t):=x(t¢), ¢ :=01).
R. B. Grafton (1969) and R. D. Nussbaum ({6], to appear) improved the method
of Jones. They treated other equations than (3) also. One common feature of these
DDEs is the fact that their right sides only invoive a finite number of time lags,
which are constant or depend on y in an explicit way. Obviously, eq. (2) is of a
more general type.

Our proof of theorem 1 follows the idea of Nussbaum [6] using a theorem about
non-ejective fixed points for a certain translation operator associated with eq. (2).
We employ the following theorem of W. A. Horn [4], which is essentially due to
F. E. Browder.

Theorem 2: Let A be an infinite dimensional closed convex subset of a Banach
space X. Let T:A— A be continuous and compact. Then T has a non-ejective
fixed point.

A point x4 € A is called an ejective fixed point of T, if T (xq)=x, and if there is
a neighborhood U of x, with (¥ xe U ~{xg} 3 n,e N: T™(x) ¢ U).

To apply theorem 2, let X denote the space of real-valued continuous functions on
[—170], with sup-norm. We set A:={feX|—-1</f<0, f increasing on
[—(r—1),0], f(0)=0}. A is closed, convex and of infinite dimension. If fe X,



f(0)> —1, there exists an unique function x;:[ -1, ©0)—R satisfying (2) on R™
and x;|[—1,0]=1.

In section 2, we show that, for every fe A—{0}, x, has a first zero z, after the
first local minimum m, on R™ with x, (m) <0, We define the “variable translation
operator” T by T(0):=0, T(f)(r):=x;(z;+r) for re[—1,0], fe A-{0}, and,
under the hypotheses t—1 <(« ¢*")™!, a>n/2, s as in theorem 1, we prove

Lemma 3: The operator T:A—X is continuous and compact. We have T (A)< A
and T (f)> —1o0n A.

Here, the condition on z could be replaced by x> 1. “s<0 on (1, )" is needed to
show that the definition of T on 4 — {0} makes sense (see the proof of lemma 1).
The smallness condition on t—1 gives T(A)< A.

Now, if 0e 4 (the only constant function in A) is an ejective fixed point of T for
a2>m/2 and t— | <c with a positive constant ¢, theorem 1 follows from theorem 2
by the autonomy of eq. (2) and by the uniqueness of the initial vaiue probiem
mentioned above.

Section 3 contains the remaining proof of the ejectivity of 0. Here, the assumption
x> /2 becomes essential. If «> n/2, there is a complex number 4 with positive real
part satisfying the characteristic equation i+ae™*=0 of the linear DDE
2(t)=—az(t—1). E. M. Wright ([7], 1955) used this fact to derive an instability
theorem for the nonlinear equation (3). Wright’s method would be sufficient for
proving ejectivity of 0 € 4 in the case of eq. (3) but is not in the more general case
of eq. (2). We only obtain the result of lemma 5. The main tool for deriving the
ejectivity of 0e A4 (stated in lemma 8) from lemma 5 is the extimate
|x(m)|<cs|x(m;,,)| (lemma 6) concerning successive extrema of a solution x
of (2) with initial value x| [ -7, 0] in 4 —{0}. The proof of lemma 6 requires only
elementary tools, but is rather lengthy. To obtain lemma 8, we also have to impose
new bounds on the size of 7— 1.

2. We make the general assumptions 1€ R, t>1, a>n/2, s:Rg = R increasing
withs=~10on[0,1],s<0on (1, r)and s=0 on [z, cc). First, we have

Theorem 3: For all fe X with f(0)> —1 there exists exactly one continuous
function x;:[—1t, ©)—R, differentiable on R*, with x,|[—1,0]=f and satis-
fying (2) on R*. We have x,> —1 on R. On compact sets, x depends continuously
on f-

V(geX:g(0)>-1)VteR; ¥e>036>0V(feX:f(0)>-1):

N f-gll<d =[Sux>]l Xy (r)—=x,(r)] <e.
~t.t

Proof: With fe X, f(0)> —~ 1, eq. (2) is an inhomogeneous linear ordinary

differential equation on [0, 1). Hence theorem 3 can be proved by solving ordinary

differential equations on [0, 1), [, 2), and so on. From f(0)> —1 we obtain

tl2r220=>xf(t1)+1=(xf(t2)+1)exp<—-a fl j’r xf(t’--a)ds(a)dt’). (4)
1

(4) implies x,> ~ 1 on R{.



To show that the definition of T given in section | makes sense we have to
examine the zeros and the local extrema of solutions x, with fe 4 —{0}. This
is done in the next two lemmas, -

Lemma 1: For fe A—{0},
i) x; has a first local maximum M in [1, 1] withO<x, (M ) <e&** —~1,
if) x, decreaseson[M M +1],
i) if ©<2, there is a first zero Z, of x; in (M, M+ t+1], and x, decreases on
M, Z]
iv) t—=1<(ae®) ™" implies Z, >M ;+1t—1,
v) Z; >t and x; decreasing on [M ;, Z ;+1].

Proof: Let fe A—~{0}. We write x, M, Z instead of x, M, Z .

) f<0 and x> —1 on Ry imply by (2) that x increases on [0,1]. f#0, s<0
on [1,7) and x{0)=0 give x (1)>0. If x has no local maximum in [1, z], then
x=0 on [0, 7], hence, by (2), <0 on [z, 7+1]. With x=0 on (0, 1], we obtain a
local maximum of x in [1, r], which is a contradiction. Formula (4) and f> —1

imply x (M)+ 1 <exp (—-a g 9' inf fds (a)dt’)se“‘.

il) x is increasing on [—(t—1), M]. Hence x(t=.})=x(M—".) on [1,1] for
te[M,M+1]. Then, x> —1 on Ry and M e [1, 7] give for these r:

$()=—a | x(t—=a)ds(@[x(O)+1]<—2 | x(M—a)ds(a)[x(5)+1]=0,

1 i

since X (M)=0and x> ~1 on Ry imply —« | x (M —a)ds(a)=0, by (2).

i
iti) Let us assume x>0 on [M, M +7+1]. Then x decreases on [t, M +1+1]
(compare proof of 1)). From ii), 2>t and M >1 we see that x is decreasing on
[M, 1], hence x is decreasing on [M,M+t+1]. With e:=x(M+1)>0 and
te[M+1, M+1+1] we obtain
(0 [x()+1]=~a | x(t—a)ds(a)
1

<—a | infx|[M,M+7]ds(a)=—as,

1
since(te (M+t,M+1t+1]ras(l,t]=t—ae[M, M+7].

For these t, x (t)>0 and | <a imply x (t)< —& Hence

M+e+1
X(M+t+D)=x(M+1)= | x(Ddr<—g=—-x(M+1),
. . M+t

x (M +1t+1)<0, contradiction.

Proof of “x decreasing on {M, Z]": If Z> M + 1 (> 1), then x>0 on [0, Z] implies
x<0on [, Z], by (2). Now ii) gives the assertion.

iv) Fromt— 1 <(x ¢**)” ' we have r <2, henceiii) holds. Let usassume Z - M <t - 1.
Then (0 - x(M)W(Z ~-M)< —x(M)/(t— 1), hence Ite[M, Z]:x(t)< —x(M)j(t—1).



On the other hand x (f) = —afsupx| [0,Z]ds(a) [x()+1]=—ax (M) [x()+1],

1
since part iii) implies x (M)=sup x| [0, Z]=sup x | [~z Z]. By i), we arrive at
% ()= —ax (M) e*. We get —(t—1)"!2x(t)/x (M)= —a €™, contradiction.
v) We have Z>M+71—1>1. x> ~1 on Ry, x>0 on [0,Z] and Z27 and (2)
imply x<0on[Z,Z+1].

Lemma 2: Lett—1<(xe*)”'. Forall fe A—{0},
{) thereisa first local minimumm,of x,in[Z +1,Z,;+1]. Wehavex, (mp)<0Oand
ii) exp(—at(e*=1)—1<x,(my),

iii) there exists a first zero z; of x; on [my, ©). z; is bounded independent from
f eA- {0}7
iv) x,increaseson[m, z;]. We have z;>m;+1— L.

Proof:Let fe A—{0}. Wewrite M, Z,m, z, x instead of M, Z;,my, 2, X .
i) is proved like part i) of lemma 1.

ii) Since Z >, we can use formula (4) with t, & [Z, Z+1]and t;:=Z 1o derive the
desired estimate from (¢ & [0, Z +1— 1] = x (t) <&**—1). The implication is a result
of lemma 1.

iii) We may assume x<Oon [m, m+1+1].

a) x increases on [m, m+ 1]. Proof: x is decreasing on [M, m]=[M, Z] v [Z,m]>
s[m—rt,m]. Hence x(t—a)<x(m—a) for te{m,m+1] and ae [1,7]. For these
t,eq.(2) and x> —1 on Ry imply
S OxO+1]= -2 | x(—a)ds@=—a | x(m—a)ds(a)=0,
1 1
hence x (t)=0.
bym=Z+1land2>tgivem+1~—1>2.

¢) x increases on [m, m+ 1+ 1]. Proof:
te[m+1m+t+i]aaell,t]=>t—aemn+1 —tm+t]c[Zm+t]=x(t—a)<0.

Hence x (t)= -« jr x (t—a)ds(a)[x(t)+1]=0. Now a) implies the assertion.
d)x(m+1)< -(11—2/7:). Proof: For t e [m+1, m+ 7+ 1], ¢) implies
$(t)= —2 | x(t—a)ds(a) [x (O)+1]= =2 x (m+1) [x(m+o)+1],

since 02 x(m+1)=x(t—a)forae[l,t]and D<x(m+1)+1<x(t)+1.

We obtain
m+ct+1
x(m+r+D)=x(m+o)= | x(Ndrz—-ax(m+o)lxm+o+1].

Now, x (m+1)= — (1 —2/=) implies
x(m+1+)=x(m+1)= —1/2. x(m+1)-2/m, x(m+1+1)20,

which is a contradiction.



e) Set mi=sup {t{=m| x< —(1—=2/n) on [m, t]}. Then w0 >m>m+1, by d). For
te[m+1,m), we set t,:=t, t;:=m+7 and use formula (4): Estimating the factor
x(m+1)+1 by exp(—~=xt(e**~1)) and the integrand by —(1-2/n). we get
x()+1zexp (—at(e¥—1) exp (t—m—1) a (l—2/n)) and, by m<Z+1,
ZsM+t+1, Mg :

Jmzx(t)+lzexp(—at(e—1))exp(t—4t—1)a(l—2/n).

We see: m is bounded by a constant depending on « and t only. Using an
argument as in the proof of d) (replace m+t by /) we obtain a first zero of x in
[m, m+1].

iv) Proceeding as in part a) of the proof of iii) we infer x>0 on [m,m+1]. If
z>m+1, the proofs of b) and c) (with m+1t+ 1 replaced by z) show x>0 on
[m+ 1, z]. The relation m+t— 1 < z follows as in the proof of part iv) of lemma 1:

m+t—i2z=(3te[m, z]:x ()= —x (m)/(r - 1)).

On the other hand x(f)< —a x (m) [x (t)+ 1] < —a x (m), therefore a>(t—1)"%,
xe**=(t—1)" !, which is a contradiction.

Fig. 1

Proof of lemma 3: Lemma 2 shows that the definition of the operator 7T on 4
makes sense. T(A)<=A4 follows from Z,+1<m, m;+1~-1<z;, x; increasing
on [my, z,] (for fe A—{0}), and from T(f)> —1 on 4 (part ii) of lemma 2).

T is compact: On [z,—7, z,], x; and x, (by eq. (2)) are bounded independent
from fe A—{0} (lemma 2 and lemma ). Ascoli’s theorem implies the assertion.

T is continuous in 0 € 4 because on A — {0} z, is bounded and because theorem !
holds.

We prove the continuity of Tin fe A—{0}. If ge 4 — {0} we have
WT(H—Tgi =[S_UPO]1 Xp(zp+r)=x5(z,+ 1)

<sup | xf(zf-i-r)—xg(zf-%-r)lﬁ-sup | xg(z,<+r)—xg(zg+r)|.
[-¢.0] {(—e 01



By the boundedness of X, the second term is less than

zftr

[ %,(ndt

zg+r

sup
[=1,0]

Hence our assertion follows from theorem | and from the continuity of the
mapping N: 4—{0} 3 fr>z,€ R™. Proof of the continuity of N:

a) fe A= {0} =%, (Z;)<0Ax;(z;)>0. Proof: We set x:=x,, M:=M, Z:=Z,,

SCO |Zf"'zgl

m:=m,, z:=z,. First, let us assume X (Z)=0. Then f x(Z —a)ds(a)=0. Therefore,

i
Z—t<M(byx|[M,Z2)>0)and x=0on [0,Z—1] (by 0<Z—17,x=>00n [0, Z],
x>0 on (0, M]).

Setting t*:=sup {te Ry | x=0 on [0, ]}, t**:=sup {te R* | x>0 on (0, £]}, we
have t*+1<t** M<t**, Z—t<t* Hence Z-1<gt*+r—1<r*+1<**,
[Z-1,Z-1]<[0, t**].
On the other hand 3fe(r,Z):x(1)<0. Hence 0<i-t<Z—1, i-1<Z~1,
lfr x(t—a)ds(a)>0.
x increasing on [0, t**] and {Z —1, Z — 1] < [0, t**] give

fx(z—a)ds(a)zf x(f—a)ds(a)>0, % (Z)<0,
which is a corlltradiction. Now1 suppose X (z)=0. As before we obtain
_f x(z—a)ds(a)=0, z—t<m, x=0 on [Z,z—1]. We have Z <z—1 (lemma 2).
i—Ience X (Z)=0, contradiction.

b) Now let fe A—{0}, 0<e<1/2. For every ¢ >0 let C(¢') denote the connected
component of {t € R™ | | x(t)| <¢'} containing Z ,, ¢ (¢) the connected component
containing z,. If & <min {x, (M), —x,(m;), x; (z,+ 1)}, the set

{teR™ | |x,(0)|<e}n[M,,z;+1]
decomposes into the two disjoint open sets C (&') and ¢ (¢'). Part a) implies:
3¢ €(0, min {x (M), —x,(m), x;(z; + 1)}):
ClEe{teR||t=Z |<e}rc(e)={teR |{t—z,|<e}.

e

I T

Fig. 2



By theorem | there is a 6 >0 (depending on f and ¢') with
ged—{0}allf=gll<d= sup |x;()=x,(0)|<e. (3)

[z zp+ 1]

¢) The continuity of N will follow if we can prove that z,ec(¢) for ge A—{0},
Hf=gll<é.

d) For such g, we have:
X, O)=0nte[Mpz,+1] = | x, () |<&Ate My, z;+1]=teC()uc(e).

¢) x, has zeros in C (&) and in ¢ (&'). Proof:
M <t<infC(g)vsupc(e)<r<z,+1 = x,(t)z¢€ = x, (1)>0, by (5).
sup C(e)<st<infc (&) = x, ()< —¢ = x, (1) <0, by (5).

f) Z,eC(¢). Proof: Z, is the first zero of x, on (M, ). If M, <M, Z is the
ﬁrst zero of x, after M , since x, increases on [O M,] and x (M;)>0 (compare e)).
In the other case we have by M,<M <t<Z, that Z is the first zero om
(M, «). d)and e) imply Z, € C (¢).

g) z,€c(&). Proof: By a) we have x<0 on (Z,, Z,+1). Then z, is the first zero of
X, on (Z,, o). ¢ (¢') contains a zero z of x, with z>Z (by €) and f)). Hence z,<z
and z,€ C (&) c (&) (by d)). z,> Z,+t and (diameter C ( N)<2e<timplyz, ¢ C (&)

3. In the following, we assume that the hypotheses of lemma 3 are fuifilled.
For 0 € A to be an ejective fixed point of T, it is sufficient to show:
3e>07fed—{0} In(NeN:|| T"D(NHlze.

We shall derive this result in a finite sequence of lemmas under a smallness
condition on T— 1.

Let fe A—{0}. Proceeding as in lemma | and lemma 2, we obtain a sequence of
zeros z; and a sequence of local extrema m; of x:=x, with the properties
zO:=0,zl:=Zf,22:=zf,m1=Mf,m2:=mf, (6)
je N odd = (x decreasing on [m;, m;..,]) A (x increasing on [m; . ;, m;4;1), (7)
jeN odd =0<x(m)<e’™ 1,
jeN even = exp (—at (¥ —1))—1<x(m)<0, ®
jeNodd=z;<m;+t+1,

jeNeven= z;<m;+c(«, 1), withc(a, )€ R independent from fe A — {0}andjeN,
(9
VjeNu{0b:imy elz;+ 1 z;+7],
VjeNmj+r—1<z,. (10)
We start with

Lemma 4: a>7n/2=(3LeC:Re A>0n0<Imi<nai+ae *=0)

A proof can be found in [7].



Lemma 5: If A is a solution of i+xe”*=0 with Re A>0 and 0<Im i<, there
are constants ¢, € R™, ¢, € R™ such that for all integers j=3 the following estimate
holds:

erlx(m)<(sup{x () +cp(t=1) sup |x ()], (11

tzm; tzmj 2
where ¢, and ¢, depend on «, Re 4, Im 4 only.

Proof: We follow Nussbaum’s proof of lemma 4.4 in [6] (which is a variant of
Wright’s proof of theorem 3 in [7]). Let 4 as in lemma 4. Consider a local
extremum m:=m; (with j>3) of x. An integration by parts yields

[ xe*dr=i | xe=dr—x(mye (12)

With 4 (t):=x(t—- D)= | x(t—a)ds(a), eq. (2) gives
1

j Xe Mdt=—n j [x(t=D=d4®)] [x(t)+1] e *dt
—-—aj (t=1)e “dt-aj x(t=1) (t)e‘“dH—ajA (O)+1]e *dt.
Setting

R(m)i=—a | x(t=D)x (e *de+a | d(0)[x(®)+1]e *dr

m

we obtain

[ e #dt=R(m—x ] x(t—1)e~"dt=R (m)—xe™ | xe dt.
m m=1

Equati”;)n (12) gives
R(m)~qe™* T xe Mdt=4 T xe *Mdt—x(m)e

With i+ae™*=0: " "
R(m)= —4 Tlx e~ dr—x(m)e *", (13)

We have

m m
—i | xeMdt=x(me tm—x(m—1)e MV %e tds.

m=1 m—1
Substitution in (13) and multiplication of the resulting equation by exp (4 (m—1/2))
YICldS

- et? ] %(t)exp(—A(t+1/2—m))dt=R (m)exp (L (m—1/2)). (14)
The real part of the left side of (14) is
I:= —x(m—1) e®**? cos (Im A/2)

~ %) exp(=Re A (t=m+1/2) cos (Im A (t—m+ 1/2)) dt

We look for a lower estimate of [:

a) If te[m—1,m], (1) and x {m—1) have the same sign. Proot: If x (m)=x(m))
is a local minimum we have m;—1>z;_, and £<0 on [z;_,,m;]. Same proof,
if x (m) is a local maximum.
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b)te[m~1,m},Rei>0and0<Imi<nimplycos(Imi(t—m+1/2))>cos(Imi/2)>0
and exp (—Re A(t—m+1,2))zexp(—Re 42).

From a) and b) we infer
| 11>} x(m—1)e?#¥? cos (Im 4/2)+ e~ ®¢*2 cos (Im 4/2) (x (m)—x (m— 1)) |
={x(m—1)cos (Im 4/2) (R % —e " Re 42y L x (m) e "R 42 cos (Im 1/2)|.
x{m)x(m—1)=0and eR"*"2>e"R°“2; therefore
|12 x (m)| e=®*2 cos (Im 4/2). (15)
Estimate of the real part of the right side of (14):
‘ | Re {exp (4 (m—1/2)) R (m)) |
<|-a j (t—=1)x(t) Re exp(—A(t—m+1/2))dt|
+a 39 [x t—l)-—jr x(t—a)ds(a)] [x(t)+1] Re exp(—i(t—m+1/2))dt|.

1
Since m=m;>z;_, +1,| x| increasing on {z;_, m;], the first term is majorized by

a(sup | x (£)]) f i Re exp(—l(t.—m+1/2))| de. (16)

Second term: The mean value theorem for Lebesgue-Stieltjes-integrals and the
properties of s imply
x(t—-1)— fx(t—a)ds(a):x(lw —x(t), with re[t-t.t—1],
hence by the usuai mean value theorem and by (2m=m,, j=3:
L=x ) (t—-1-1t), with " e[, t~1].
By (2)and by O<x + 1 ge*:

X (") |<xe®™  sup  [x(n]
reft’ =zt = 1]
Using 0<x+1<é* and 0<t—1-¢<7—1, we can now estimate the second
term by

(t—1) sup |x(0)fa? 2‘"f | Re exp (—A(t—m+1/2)){dt. (17

tZ2m=2t

The remaining integral is less than (Re 1) ™! e7Re#2,

From (14)—(17) we infer:

e~Re42 cos (Im A/2) | x (m)| <a (Re A)~! e RH2 (sup | x (1)])* +

tzm
(t=1)a?e***(Red) ' e ®¥2 sup |x(1)].
tzm—2t
Now the assertion of lemma 35 follows from
m—=2t=m;—2t2m;_, and t<2.

Lemma 6: [f t—1<(dae*)" !, there is a constant cy € R™, depending only on =,
such that forallje N



(myl<cs|x(m;)i. A (18)
Proof: Letd:=(a &*") ™.

a) Wehave|x(t)[=21/2-| x(m;)| on [mj, m;+d/2]. Proof: If m;is a local minimum
andifz;_, e[t—1,t—1], t€[m;, m;+1], we get from (2)

0<x(t)=—a[x(t)+1] I:tﬂj x(t—a)ds(a)+ j'r x(t—a)ds(a)].
1

t=zj—
The second integral is non-negative since ae[t—z;_,,7] and t=m; imply
t—aelz;o;—t,z;-,]<[z;-,2;-,], hence x (t-a)=0.
Therefore,
O<x (g —alx(t +1] f lx(t—a)ds(a)_<_—oze‘“infx|[zj_l,mj:l=—d'lx(mj).
Ifz;_, <t—tweeasily getlthe same result. ‘
Then, forte[m,m j+d/2][,

x(@=x(m)={ x(r)dr<(t—m)(=1/d)x(m)< —x(m)2,

x(O)<x(m)/2<0,|x(m)l/2<| x ()]
If m; is a local maximum the same method yields 0= %> —x (m;)/d on [m;, m;+ 1],
which in turn implies a).
b) On [m;+1, m;+1+d/4], we have | X(t){=c,|x(m))|, with ¢, depending only on a.
Proof: te[m;+t,mj+t+d/4]={t—1,t—1]c[m,m+1—-1+d/4]<[m, ]+d/2]
since T — 1 <d/4.a) implies {m;, m;+d/2]<[m}, z;). On [m,, z;), x does not change its

sign. Hence, since | x | decreases on [m;, z;], | X (¢)| =« [x (£)+ 1]] f a)ds(a)l
=a{x{t)+1] jflx(t—a)lds(a)Za[x(t)+ l]lx(t——l)IZacexp(—-ar(e”— D) x(m 2.

L
(Since t— 1 <m;+d/2, we can apply a).) Set ¢c,: =a exp (=2 2 (¢** = 1))/2.
c) Now we are able to estimate | x (m;)| by | x (m;..,)|. Remark: m;, , >m;+t+d/4,
because m;,., =m;+1, and m;, , € [m;+1, m;+t+d/4] would imply | x(m;, )| >0
(with b)), contradiction.
d) Suppose z;<m;+t+d/8. Then

mj+

| x(m;. ) ft Ydr

by b).

mj+e+d/4
= j VxMdrz | 1% drzde,|x(m)l/8, (19)

mj+t+d/8

16*



e) Suppose z;=m;+t+d/8. We have [m, m;+t+d/16]<=[m;,z), | x| decreases
onf{m,z] Forte[m,m;+t+d/16] we obtain using b)

xOI2lx(m+14d/16)|=| | smdrl= | |x@)idr
mij+e+d 16 mi+t+d/lé
’ (20)
mj+e+di8
> [X(rldr=dc, |x(m)|/16.
my+e+d/16

Case I: z;<m;+t+ 1. We estimate | X| on [z, z,+d/16]: For these t. m;<r—7<
<t—=l£m<-+-r+d/16<7 {20) irhplies e =alx)+13] f X{t—=w) ds (a)]

1
=2[x(t)+1] j |x(t—a)lds(ayzxexp(—2tie™ = D)dey| x(m)|/16 2 d c}|x(m))|/8.

Hence
‘ mis mikt
Ix(mp, )i=| | x(dri= | |x()dr
z;+4/16 ' N (21

> | |x(Midrzd®ci|x(m)|/128.

]

Case II: z;>m;+1+ L. This case is only possible if m; is a local minimum. We
set my:=sup {t2m;| x< —(1-2/m) on [m;t]}. The proof of lemma 2 gives
m;>m;+t and z;e[m;,m;+1]. We argue as before: x increases on [m,m,],
hence for ¢ € [, m; + 1]

()2 =—alx(t)+1]x{t-)=aexp(—at(e® = 1) (1 =2/n)

(22)
2264(1‘2/71’)
Ifz;<m;+1/2, we get
Mj+1 z +l/2
Y (23)
>cy{l—2/m) | x(m j)i, since | x (m)|<1.
Now suppose z;>m;+ 1/2. Then
telm,mi+1/4]= ~x ()= ~x (m;+ 1/4)= j'j x(r)dr
M+ L ,
w12 (24)
2 | X(ndrzc,(1-2/m)/2, by (22).

w14
Forte[z,z;+1/4]wehave [t —r, t— 1] [m;, m;+ /4], hence x() = —x [x(6)+1].
x (¢t—1)(since x increases on [m;, z;]) and x () =z exp{—at(e* ~ 1)) ¢, (1 =2/m)/2,
by (24).



Finally, we arrive at

mj+ z,+1/4
x(m)= [ x(rdr> j' x(r)dr=ci (1 -2/n)/4
N N (25)

2ci (1=2/m) | x (m)l/4.

f) The estimate (18) follows from (19), (21), (23), (25) if we replace d by (« ¢*%)™!
in these estimates.

We want to transform the inequalities (11) and (18) into an estimate concerning
an iterate of the operator 7. To do this we need the following lemma.

Lemma 7: For the integers j =3, we have

1) jodd=x(m)<ate™ || TV"V2(f)],

i) jeven = |x(m){<(ate™)? || TV 22 (f)].
Proof:i) x (m J)lsalocalmaxxmumandequalsj' [L+x(0)](—2) [ x(t—a)ds(a)dt.

=t 1
tefz;-;,m;] and x=0 on [z;_,, m;] imply
x(t—a)ds(@)< ~ | infx|[z_, 7 z-,]ds(a)
1 .

=—infx|[z;-, =7 z;- =l TV""2 (N,

since the iterates of T are given by the restrictions of x to [z;—1, z;], with j even.
Therefore

T

——

x(m)< j'Jie" I TU- D2 di<at e || TYVTD2 ().

Sr-
if) Now x (m}) is a local minimum. Proceeding as in the proof of i), we obtain for
te[7j 1 j] B
~ | x(t—a)yds(@)= —sup x| [z;-, ~1,z;- 1= —x (m;_ ),
1

hence
jm’[ (0)+ 1](= ) x(c — a)ds(a)dt = — aze™x(m,_ ) > —(@re™ | TV P2(f),
-1 1
by 1)

Lemma 8: There is a constant ¢>0 such that for t—1<c, 0€ A is an ejective
fixed point of the operator T.

Proof

a) Consider je N. Let 1—-1<(4«¢*)”!. From lemma 6 we infer sup!x(s)]
. t>m

<c3 sup I x(t)|. Proof: tzm;=te[m,m;.,Jvizm;, te[m,m,,] =>1 x ()]

tzmj

<max {| x( my)ls 1 x (my. )11 x(m )|} By (18), [ x (D) S c3 | x(my. o)l S c3sup ] x (2.
(Obviously ¢; can be chosen>1.) tzmisg

b) Now consider a zero z, of x with k>3. Set 5:=sug | x(t)]. We have 6>0

(see (8)). There is a m;>z, with j>3 and | x (m}|> /2. (j depends on x, hence
on f.)



By lemma 5 we have, using a),

€1 0/2K3% +¢c,(t—1) sup | x(0)j<d*+cie,(1=1)0.

If in addition t—~ 1 <¢,/2 ¢, 3, we obtain
0<(c,/2=(zt=1c,3)<o<2 x(m)|<2at e || TV ()Y,

if j is odd, or €2 (axte®™? || TV-22(f)}}, if j is even. The constants c,, ¢;, C3
depend only on a.

Setting c:=min {c,/2 ¢, ¢3, 1/4 2 ¢**} and s:=(c,/2~(t—1) ¢, c3)/2 (2 T €*")?, we
obtainfort—1<e¢

3e>0Vfed- 0 In(HeN:|| TV (NHil=e

Notations: By R, R™, Ry we mean the real, positive real and non-negative real
numbers respectively. N, N, denote the positive or non-negative integers. A dot —
like in x (t) — indicates differentiation. If x is a function from the interval [ — t, )
into R and if g, b]< [ —71, o), then x| [a, b] is the function [a,b]3t—~x(t)eR.
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