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Deutsche Zusammenfassung

Eine der praktischen Methoden, um die Form der Daten zu untersuchen, ist die
Anwendung der topologischen Datenanalyse (TDA). Dieses aufstrebende Gebiet
befasst sich mit der Berechnung topologischer Invarianten und der Untersuchung
ihrer Stabilität unter kleinen Störungen. TDA liegt auf dem Gebiet der Daten-
analyse, algebraischen Topologie, Computergeometrie, Informatik und Statistik.
Ein leistungsfähiges Werkzeug der TDA ist die persistente Homologie (PH), die
auf algebraischer Topologie basiert und es uns ermöglicht, qualitative Merkmale
von Daten anhand komplexer Strukturen zu interpretieren.

Das Ziel dieser Arbeit ist es, die Homotopietypen von Vietoris-Rips-Komplexen
des Kreises statistisch zu belegen und die Homotopietypen von Vietoris-Rips-
Komplexen von platonischen Körpern, den fünf regulären Objekten, die die 2-
Sphäre repräsentieren, zu untersuchen.
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Introduction

In recent years, the vast amount of data we are drawn in necessitates the develop-
ment of new efficient data-processing tools. One of the practical methods to explore
the shape of data is applying topological data analysis (TDA). This emerging field
is concerned with computing topological invariants and studying their stability un-
der small perturbations. TDA lies in the fields of data analysis, algebraic topology,
computational geometry, computer science, and statistics. A powerful tool of TDA
is persistent homology (PH), which is based on algebraic topology, that enables us
to interpret qualitative features of data by complex structure. Persistent homol-
ogy has various applications on proteins [KNBNH16], nuclear collisions [HDP22],
robotics [VAB13], cancer [CMC�16], and many more. PH provides insight into
data sets representing finite metric spaces (point clouds), digital images with their
cubical structures (pixels), level sets of real-valued functions, and networks. When
studying point clouds, a thickening of it at different time scales is applied and the
role of PH is to analyze the evolution of the resulting topological features, namely
the number of connected components, holes, and voids.

We restrict our work to point clouds sampled from a metric space. When build-
ing the simplicial complex on a point cloud, we expect that the computed homology
of the simplicial complex approximates the homology of the space. This condi-
tion is guaranteed when dealing with Čech complexes due to the Nerve Theorem
[DW22, Chapter 2.2]. However, since we must check for higher order intersec-
tions of the balls in Čech complexes, homology computations turn out to be more
expensive than the ones of the Vietoris–Rips complexes, where the former is a
subcomplex of the latter, and with the Vietoris-Rips such a guarantee does not
always exist. However, Hausmann [H�95] and Latschev [Lat01] have proved that
for a small-scale parameter, Vietoris-Rips complexes recover the topology of the
original space.

The homotopy types of Vietoris–Rips complexes are fully known for very few
shapes like the circle [AA17], regular polygons on n-sides where n is an odd double
factorial, [ACJS18] and ellipses [AAR19]. One of the open problems is characteriz-
ing the homotopy types of Vietoris-Rips complexes of higher dimensional spheres
and tori [GFW17].
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The aim of this thesis is to provide statistical evidence of the homotopy types
of Vietoris-Rips complexes of the circle and investigate the homotopy types of
Vietoris-Rips complexes of Platonic solids, the five regular objects representing
the 2-sphere.
In Chapter 1, we present topological preliminaries and related theory. In Chapter
2, we apply statistical tools to approximate the first three homotopy types of
VRrpS1q, where r � 1

3
, 2
5
, and 3

7
. We provide three ways for generating point clouds

on the 2�sphere and present computational outcomes. In Chapter 3, we study
the homotopy types of Vietoris-Rips complexes of Platonic solids, with a focus
on the dodecahedron case. Finally, in Chapter 4, we provide some observations
on the homology of some higher-dimensional polytopes: the hypercubes and the
4-dimensional polytopes.
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Chapter 1

Topological Prerequisites

We start the exposition by providing an overview of the topological concepts we
use in this thesis. For further detailed explanations, we direct the reader to the
books [Zom09], [DW22], [Hat02], [EH22], and [KMM04].

Topological spaces that are equivalent to each other are called homeomor-
phic. However, it is not easy in general to show that two topological spaces are
homeomorphic. Therefore, a weaker notion that interprets the similarity between
topological spaces is known to be homotopy.

1.1 Homotopy

Definition 1.1.1. Let f1, f2 : X Ñ Y be two continuous maps between the
topological spaces X, Y . A continuous function F : X � r0, 1s Ñ Y is a homotopy
between f1 and f2 if F px, 0q � f1pxq and F px, 1q � f2pxq. Then f1 and f2 are
homotopic to each other and we write f1 � f2.

The second parameter of F is usually interpreted by time. Hence, F describes
a continuous deformation from f1 into f2 as time varies from 0 to 1.

Definition 1.1.2. Two topological spaces X and Y are homotopy equivalent if
there exist maps f : X Ñ Y and g : Y Ñ X such that f �g � idY and g �f � idX .

To state that two topological spaces are homeomorphic, f and g should be
inverses of each other. This condition is relaxed in the homotopy equivalence since
we require here that the composition of the two functions is homotopic to the
identity maps. Two homeomorphic spaces are necessarily homotopy equivalent,
but the converse is not true.

A topological space is said to be contractible if it is homotopy equivalent to a
point.
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Definition 1.1.3. Let X be a topological space, and U � X a subspace. Let
ι : U ãÑ X be the inclusion map. A continuous map f : X Ñ U is named

� a retraction if f |U� idU ;

� a deformation retraction if ι � f : X Ñ X is homotopic to the identity map
idX ,

� a strong deformation retraction if there exists a homotopy F : X�r0, 1s Ñ X
between ι�f and idX that is constant on U , i.e., F pu, tq � u, for all t P r0, 1s
and u P U .

If U is a deformation retract of X, then X and U are homotopy equivalent.

1.2 Simplicial Complexes

Since in this thesis, we are dealing with topological spaces that can be represented
discretely, it is convenient to present the building blocks of these spaces.

Definition 1.2.1. A k-simplex σ is the convex hull of pk�1q-affinely independent
points S � tv0, v1, . . . , vku, where the points of S are the vertices of the simplex
and k is its dimension.
For 0 ¤ k1 ¤ k, a k1-face τ of σ is a k1-simplex that is the convex hull of a non-
empty subset of S, where σ is a coface, and we write τ   σ.
When dim τ � dimpσq � 1, we call τ a facet and σ a cofacet, and we write τ   σ.

Figure 1.1: k-simplices, for 0 ¤ k ¤ 4.

Definition 1.2.2. A collection K of non-empty subsets of a given set S is an
abstract simplicial complex if every element σ P K has all of its non-empty subsets
σ1 � σ also in K.
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Definition 1.2.3. A geometric simplicial complex K is a finite set of simplices
such that

� K contains every face of each simplex in K.

� For any two simplices σ, τ P K, their intersection σ X τ is either the empty
set or a face of both σ and τ .

A geometric simplicial complex K in Rm is called a geometric realization of an
abstract simplicial complex K 1 if and only if there is an embedding e : V pK 1q Ñ Rm

that takes every k-simplex tv0, v1, . . . , vku in K 1 to a k-simplex in K that is the
convex hull of epv0q, epv1q, . . . , epvkq.

Definition 1.2.4. For any k ¥ 0, the k-skeleton of a simplicial complex K, de-
noted by Kpkq, is the maximal subcomplex formed by all simplices of dimension at
most k.

Definition 1.2.5. A simplicial complex K is a flag complex, if for each subset of
vertices S � tv0, ..., vku � Kp0q, if every pair of vertices in S is in the complex,
then S itself is in the complex too. Equivalently, the flag complex is the clique
complex of its graph.

a

b
c

d

e

Figure 1.2: A simplicial complex K with five vertices.

For example, the complex drawn in Figure 1.2 is a geometric realization of the
abstract complex with five vertices a, b, c, d, e, six 1-simplices ta, bu, ta, cu, ta, du, tb,
cu, tc, du, td, eu and one 2-simplex ta, b, cu. Its 1-skeleton consists of the five vertices
a, b, c, d, e and the six edges adjoining them.

Definition 1.2.6. Let pX, dq be a finite metric space. Given a real r ¡ 0, the
Vietoris-Rips complex V RrpXq is the abstract simplicial complex with the vertex
set X, where a finite subset F � X is the vertex set of a simplex σ if and only if
dpp, qq ¤ 2r for every pair of vertices in F .

What makes the Vietoris-Rips complex interesting to study is its interleaving
relation to the Čech complex, see for example [DW22, Proposition 2.2], and what
makes it easier to study is that V RrpXq is the clique complex of its 1-skeleton, i.e.
it is a flag complex.
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1.3 Homology of simplicial complexes

Definition 1.3.1. Given an abelian group M and a commutative ring R with
multiplicative identity 1, an R-Module M is an abelian group with an operation
R�M ÑM which satisfies the following properties for all r, r1 P R and x, y PM :

� r.px� yq � r.x� r.y;

� pr � r1qx � r.x� r1.x;

� 1.x � x;

� pr.r1q.x � r.pr1.xq.

Elements in an R-Module are added and multiplied with coefficients in R. If
R is replaced with a field F , M becomes a vector space.

In algebraic topology, the integral domain Z is considered in general for co-
efficients, whereas the field Z2 is usually considered for homology computations.
The latter, where a � �a, @a P Z2, imposes that the notion of the orientation of
simplicial complexes becomes irrelevant.

Definition 1.3.2. A k-chain c in a simplicial complex K is a formal sum of k-
simplices weighted with some coefficients, namely, c � Σqaqσq, where σq P K, aq P
Z, @q.

The set of k-chains of K along with the addition operator form an abelian
group pCkpKq,�q, called the k-th chain group of K. Consequently, we obtain the
module CkpKq.

Chain groups at different dimensions are related by a boundary homomorphism.

Definition 1.3.3. The boundary map Bk : CkpKq Ñ Ck�1pKq is a map from the
group of k-chains to the group of pk � 1q-chains. For a k-simplex σ � pv0, ..., vkq,
the boundary is a pk � 1q-chain, defined by:

Bkpσq �
ķ

i�0

p�1qipv0, . . . , pvi, . . . , vkq,
where pvi indicates that the vertex vi is omitted.

For a k-chain c � Σqaqσq, the boundary is a pk� 1q-chain, which is defined by:

Bkpcq � Bk
¸
q

aqσq �
¸
q

aqBkσq,
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Since the boundary of a vertex is 0 and Bk commutes with addition, the bound-
ary map is indeed a homomorphism. The boundary homomorphisms of K induce
the sequence:

...
Bk�1ÝÝÝÑ CkpKq BkÝÑ Ck�1pKq Bk�1ÝÝÝÑ Ck�2pKq Bk�2ÝÝÝÑ ...

which is called the chain complex of K, and denoted by C�pKq. For a shorter
notation, and when K is clear from the context, we can write C�.

Lemma 1.3.1. [Zom05, Theorem 4.3]
For k ¡ 0 and any k-chain c, Bk�1 � Bkpcq � 0.

Proof. We know,

Bkrv0, v1, ..., vks � Σip�1qirv0, ..., pvi, ..., vks.
We have to compute, Bk�1 � Bkrv0, v1, ..., vks, which equals

Σip�1qi
�

Σ0¤j ip�1qjrv0, ..., pvj, ..., pvi, ..., vks�Σi¤j¤pk�1qp�1qjrv0, ..., pvi, ...,yvj�1, ..., vks
�

replacing each j � 1 with n in the second term, we get,

Σip�1qi
�

Σ0¤j ip�1qjrv0, ..., pvj, ..., pvi, ..., vks�Σi n¤kp�1qn�1rv0, ..., pvi, ..., pvn, ..., vks�,
by summing,

Σip�1qi
�

Σ0¤j ip�1qjrv0, ..., pvj, ..., pvi, ..., vks �Σi n¤kp�1qnrv0, ..., pvi, ..., pvn, ..., vks�

these two summands have opposite signs, so they cancel each other.

Definition 1.3.4. A k-chain c is a k-cycle if Bkc � 0. The collection of cycles
forms the k-th cycle group, defined by, Zk � ker Bk. Consequently, ZkpKq is also
a module.

The set of k-chains, that can be obtained by applying the boundary operator Bk
on k-chains, forms the k-th boundary group, and is defined by, Bk � im Bk�1pCkq.
Similarly, we obtain the module BkpKq.

Zk and Bk are subgroups of Ck. By Lemma 1.3.1, it follows that Bk is a
subgroup of Zk.
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Definition 1.3.5. For k ¥ 0, the k-th homology group of K is the quotient group
Hk, where,

Hk � Zk{Bk � ker Bk{ im Bk�1.

In Figure 1.2, considering the 1-cycles of K:

x � ta, cu � tc, du � td, au
y � ta, bu � tb, cu � tc, du � td, au

y � x � ta, bu � tb, cu � tc, au

is a 1-boundary. Since x and y differ by one boundary, they are homologous
cycles, which are obviously homotopic. Note that each element of Hk consists of
homologous cycles.

When Z2 is the considered field for coefficients, Hk is a vector space and its
dimension is known to be the k-th Betti number, denoted by βk, where,

βk :� dimpHkq � dimpZkq � dimpBkq

Informally, βk refers to the number of k-dimensional holes of K, where

� β0 is the number of connected components,

� β1 is the number of one-dimensional holes, ”circular”, and

� β2 is the number of one-dimensional voids, ”cavities”.

For instance, the Torus has β0 � 1, β1 � 2, and β2 � 1, and the Sphere S2 has
β0 � 1, β1 � 0, and β2 � 1.

In general, homology groups are more computable than homotopy groups, and
Hurewicz’s theorem provides a relationship between the two:

Theorem 1.3.2. [Hat02, Theorem 4.32] If a space X is pn� 1q-connected, n ¥ 2,
then H̃ipXq � 0 for i   n and πnpXq � HnpXq. If a pair pX,Aq is pn � 1q-
connected, n ¥ 2, with A simply connected and nonempty, then HipX,Aq � 0 for
i   n and πnpX,Aq � HnpX,Aq .

1.4 Persistent homology

In this section, we introduce maps between simplicial complexes and their induced
maps on homology groups. The main reference for this subsection is [DW22,
Chapter 3] and [Cho17, Chapter 2].
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Definition 1.4.1. Let K1 and K2 be two simplicial complexes and f̂ : K
p0q
1 Ñ

K
p0q
2 . If for each v P K, there exists some vertex f̂pvq P K2, then f̂ is called a

vertex map.
If for each simplex σ � pv0, ..., vkq P K1, the set tf̂pv0q, ..., f̂pvkqu spans a simplex
in K2, then the linear extension of the vertex map to simplices of K1, f : K1 Ñ K2,
is called the simplicial map.

Simplicial maps are continuous, and they induce chain maps.

Definition 1.4.2. Let K1 and K2 be two simplicial complexes. A chain map is a
family of homomorphisms f# : CkpK1q Ñ CkpK2q between chain complexes of K1

and K2, which satisfy f# � Bk,K1 � Bk,K2 � f#, for each k. For each simplex σ P K1,

f#pσq �
"

fpσq dimpfpσqq � k
0 otherwise

Chain maps satisfy the two properties of functorality:

� The identity simplicial map on K induces the identity chain map on CkpKq.
� If f1 : K1 Ñ K2, f2 : K2 Ñ K3 are simplicial maps between the simplicial

complexes K1, K2, and K3, then pf2 � f1q# � pf2q# � pf1q#.

Hence, pCk,#q is a functor from the category of simplicial complexes and sim-
plicial maps to the category of chain complexes and chain maps.

In a similar fashion, we see that chain maps induce homomorphisms between
the respective homology groups, namely, f� : HkpK1q Ñ HkpK2q.

Analogously, pHk, �q is a homology functor from the category of simplicial com-
plexes and simplicial maps to the category of abelian groups and homomorphisms.

Definition 1.4.3. A filtration F � FpKq over a simplicial complex K is a nested
sequence of its subcomplexes

F : H � K0 ãÑ K1 ãÑ ... ãÑ Kn � K

F is called simplex-wise if either KizKi�1 is empty or a single simplex for every
i P r1, ns.

An example of a simplicial filtration is the Vietoris-Rips complexes. For any
two scales 0 ¤ ai ¤ aj, we have VRaipXq � VRajpXq, which gives a filtration
pVRapXqqa¥0 over the range of scales r0,8q.

The inclusions in a simplicial filtration are the simplicial maps, and as we men-
tioned earlier, since the simplicial complexes pKaqaPI , where I � R is an index set,
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together with the composition of simplicial maps tfai,ajuai¤ajPI form a category.
Hence, applying the homology functor induces vector spaces pHkpKaqqaPI con-
nected with linear maps f i,j

� : HkpKaiq Ñ HkpKajq. Hence, we obtain a sequence
of persistent modules.

Definition 1.4.4. Let F be a filtration, the k-th persistent homology groups are
the images of the homomorphisms: H i,j

k � H
ai,aj
k � im f i,j

k , for 0 ¤ ai ¤ aj ¤ n.
The k-th persistent Betti numbers are the dimensions of the vector spaces H i,j

k ,
βi,j
k � β

ai,aj
k � dimpH i,j

k q.

Definition 1.4.5. A non-trivial k-th homology class z P HkpKaq is born at
Ki, i ¤ a if z P H i,a

k , but z R H i�1,a
k .

A non-trivial k-th homology class z P HkpKaq dies entering Kj, a   j , if ha,j�1
k pzq �

0, (non-trivial) but ha,j
k pzq � 0. We say that z persists for the range of scale ri, js,

i is the birth value of z and j is its death value.

The lifetime intervals are called barcodes. They summarize the topological
persistence of a filtration. Another visualization tool for the lifetime of a class is
the persistence diagrams. However, in this thesis, we restrict ourselves to using
barcodes as a representation tool.

Example 1.4.1. In this example, we build a hexagon, where at a filtration value
0, the 0-simplices [a], [b], [c], [d], [e], and [f] appear. At value 1, the 1-simplices
[a,b], [c,d], [d,e], [e,f], and [f,a] appear. At value 2, [b,c] appears. At value 3, [a,c]
appears; finally, at value 4, the 2-simplex [a,b,c] appears. We compute its homol-
ogy using JavaPlex package [ATVJ14] and we get the following barcodes and their
representative cycles:

Dimension: 0
r0, 1q: [b] - [a]
r0, 1q: [d] - [c]
r0, 1q: [e] - [d]
r0, 1q: [f] - [e]
r0, 1q: [c] - [a]
r0,8q: [a]

Dimension: 1
r3, 4q: [b,c] + [a,b] - [a,c]
r2,8q: [d,e] + [b,c] + [a,f] + [e,f] + [a,b] + [c,d]

10



The birth of six barcodes in dimension 0 states that we have six 0-simplices,
the long barcode represents that we have one connected component. In dimension
1, we have a hole that is created at value 3 and destroyed at value 4, whereas the
second hole is created at value 2 and lasts to infinity.

Example 1.4.2. In this example, we build the Vietoris-Rips complex on the ver-
tices of a hexagon and compute its homology up to dimension 2. We get the
following barcodes:

Dimension: 0
r0,8q
r0, 1q
r0, 1q
r0, 1q
r0, 1q
r0, 1q

Dimension: 1
r1, 1.732q

Dimension: 2
r1.732, 2q

11



Analogously, the birth of six barcodes in dimension 0 states that we have six
0-simplices, where the long barcode means that we have one connected component.
The other five barcodes die by the birth of the shortest 1-simplices, which creates
the first-dimensional hole that lasts until the birth of the 1-simplices connecting
two non-adjacent vertices, which in turn creates a second-dimensional hole lasting
until the birth of the longest 1-simplices. We reach the closing radius where the
whole simplicial complex becomes filled and contracts to a point.

For another example on JavaPlex, see [AT�11].

1.5 Acyclic matching

Discrete Morse Theory has been developed by Robin Forman as a tool to investi-
gate the homotopy types of simplicial complexes [For02]. The theory aims to pair
faces in a simplicial complex to give rise to a sequence of collapses that yields a
homotopy equivalent complex.

Definition 1.5.1. Following [Koz08, Chapter 6], If K is a simplicial complex, and
σ, τ P K where

� τ is a face of σ, and

� σ is a maximal simplex such that no other maximal simplex contains τ ,

then a simplicial collapse of K is the removal of all simplices γ such that τ � γ � σ.
When τ is a facet of σ, it is called an elementary collapse.

12



Proposition 1.5.1. [Koz08, Proposition 6.14] A sequence of collapses yields a
strong deformation retraction, in particular, a homotopy equivalence.

We introduce some combinatorial concepts that encode the simplicial structure
which helps in following the collapsing sequences.

Definition 1.5.2. Let K be an arbitrary abstract simplicial complex. The face
poset of K is a partially ordered set, denoted by F pKq, and defined such that:

� the elements of F pKq are all the simplices of K, including the empty one,

� the partial order is given by the inclusion relation on the simplices, i.e., we
write τ ¤ σ as components of F pKq if and only if τ � σ as simplices.

Matching is the combinatorial notion for the face posets corresponding to ele-
mentary simplicial collapses.

When considering the set of vertices of a partially ordered set P as the set of
vertices of that graph, and connecting two elements by an edge if and only if one
of these elements is a facet of the other, one obtains a graph known to be the
underlying graph of the Hasse diagram of P .

Definition 1.5.3. A partial matching in a poset P is a partial matching in the
underlying graph of the Hasse diagram of P . Formally, it is a subset M � P � P
such that

� if pa, bq PM implies a   b,

� each a P P belongs to at most one element in M .

A partial matching on P is called acyclic if there does not exist a cycle

a1 ¡ b1   a2 ¡ b2   ...   an ¡ bn   a1

with n ¤ 2, and all ai, bi P P being distinct.

From this definition, and particularly when P � F pKq, we can see that the
matched simplices are the facets or the cofacets, and the unmatched simplices are
the critical ones. We impose the notion of orientation on the edges of the Hasse
diagram such that the edges of the matched simplices are directed upwards, and
a non-matching edge is directed downwards. A vertex without a matching edge is
critical. Furthermore, the matching is acyclic if the diagram has no directed cycles.
The proof of acyclicity of the graph can be restricted to adjacent dimensions due
to the second condition of Definition 1.5.3.
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a

b

c

d

Figure 1.3: The vertex a is critical, whereas (d,c) is a matched pair.

Proposition 1.5.2. [Koz21, Theorem 10.9] Assume K is an abstract simplicial
complex, and assume K 1 is a simplicial subcomplex of K, such that KzK 1 is finite.
The following statements are equivalent:

1. there exists a sequence of elementary collapses leading from K to K 1;

2. there exists a complete acyclic matching on the set of all simplices of K which
are not contained in K 1.

In this chapter, we provided the basic topological concepts used in this thesis.
We defined the notion of homotopy between topological spaces. We presented the
fundamental concept of simplicial complexes and the homology carried by such
structures and pointed Hurewicz’s theorem that relates homotopy to homology.
Later in section 1.4, we defined the concept of persistent homology which represents
the topological information carried by special collections of simplicial complexes.
We defined a filtration and provided the Vietoris-Rips complex as an important
example of it. In section 1.5, we explained the concept of acyclic matching and
expressed an equivalence relation between the existence of an acyclic matching and
the existence of a sequence of simplicial collapses.
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Chapter 2

Homology computations of
Vietoris-Rips complexes

The aim of this thesis was to characterize the homotopy types that Vietoris-Rips
complex VRrpS2q of the 2-Sphere can obtain when the radius r ranges over r0,8q.
Our methodology was mainly experimental; knowing that the homotopy types of
the Vietoris-Rips complex of the circle are fully classified [AA17], we started com-
puting the homology of finite point-clouds representing the circle and comparing
the computational outcome with theory to acquire evidence of how good the ap-
proximations are. On the circle, we have an accordance described by very good
approximations. The next step was investigating the behavior of the Vietoris-Rips
complex of the 2-Sphere and deducing theoretical statements from experimental
observations. However, due to the exponential growth of the sizes of the sim-
plices, PCs or even High-Performance Clusters (HPC) were unable to handle such
computations. Even for a small to medium-sized point cloud on the 2-Sphere,
we could not compute all the homology types of its Vietoris-Rips complex due to
the extensive memory consumption. In the coming two sections, we present the
experimental approach, first on the circle and later on the 2-sphere.

2.1 Vietoris-Rips of the 1-Sphere

In this section, we first explain the routine of producing point clouds representing
the circle, and later, we try to approximate the first three obtainable death values
of VRrpS1q depending on two approaches: Monte-Carlo simulations leading to
estimating confidence intervals and fitting regression models.
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2.1.1 Point-clouds approximating the 1-Sphere

The generating mechanism for finite point clouds representing the circle depends
on polar parameters. Let n be the size of the point cloud, the angle θ1, θ2, ..., θn P
r0, 2πs can be a random sample coming from distributions like uniform, normal, or
wrapped normal, etc. The second parameter is the radius of the circle r11, r

1
2, ..., r

1
n,

which whenever it is fixed, the point cloud lies exactly on the circumference of
the circle S1

r1 . Obviously, r1 itself can also be a random variable coming from a
distribution of positive support, like the log-normal, and the exponential distri-
bution. In the case where r1 is a random variable, the generated point-cloud is
”jittered” around the circumference, approximating the shape of a circle. This
results in clustering, where one might identify the radius of clusters and compare
the homology of an original point cloud with its cluster-free version. For such a
comparison, one might apply the greedy permutation technique, see for instance
[CJS15] and [TSBO18].

The following examples are of point clouds approximating S1 with their zeroth
and first-dimensional barcodes.

Example 2.1.1. A point-cloud of size 300 where θ1, θ2, ..., θn � Up0, 2πq and
r11, r

1
2, ..., r

1
n � Lognormalplog p 1

2π
q, 0.1q with its corresponding zero and one di-

mensional barcodes.

Figure 2.1: Lognormal distribution of the radius parameter r1.

Example 2.1.2. A point-cloud of size 300 where θ1, θ2, ..., θn � Up0, 2πq and
r11, r

1
2, ..., r

1
n � Exppλ � 10q and its corresponding zero and one dimensional bar-

codes.
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Figure 2.2: Exponential distribution of the radius parameter r1.

Example 2.1.3. A point-cloud of size 300 consisting of two arcs where θ1, θ2, ..., θn �
Up0, 2πq, and r11, r

1
2, ..., r

1
n � Lognormalplog p 1

2π
q, 0.1q. The arc of the smaller cir-

cle is of 225 points of radii r176, r
1
77, ..., r

1
300 and the arc of the larger circle is of 75

points with radius r1i � r11 � 0.2, where i P t1, 2, ..., 75u. The two long bars in dim
1 indicate the shape of two 1-spheres.

Figure 2.3
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2.1.2 Approximating the death values of Vietoris-Rips com-
plexes on the circle

It is proved that the Vietoris–Rips complex of the circle VRrpS1q obtains the
homotopy types of the circle, the 3-sphere, the 5-sphere, the 7-sphere, etc., until
finally it is contractible [AA17]. The death values, with respect to the geodesic
metric given a circle of a unit circumference, are identified to be 1

3
, 2
5
, 3
7
, etc. Since

the ‘Ripser’ code computes the homology using the Euclidean metric [Bau21], we
need to interpret these distances with respect to the Euclidean metric.
To obtain the Euclidean distance between two points on an arc, suppose

x1 � pr cospθ1q, r sinpθ1qq
x2 � pr cospθ2q, r sinpθ2qq

then,
d � r

a
pcospθ1q � cospθ2qq2 � psinpθ1q � sinpθ2qq2

can be simplified to

d � 2r sinpθ1 � θ2
2

q
using the fact that

cosp2xq � 1� 2 sin2pxq

2.1.2.1 Monte-Carlo simulations

Identifying the homotopy types of Vietoris-Rips complexes of the 2-Sphere is not
easy. That is why one can start by trying to compute the homology first, which
can be done by applying an experimental approach. To do so, we first start with
the Vietoris-Rips complexes of the circle, whose homotopy types are all known.
We do homology computations to investigate how the experimental outcomes ap-
proximate the true known theoretical death values. We later apply computations
to predict the homology of Vietoris-Rips of the 2-Sphere. To experiment on the
circle, we do Monte-Carlo simulations and apply inferential statistics to get ap-
proximations of the first three death values of Vietoris-Rips complexes of the circle
of a unit circumference, i.e. the radius r1 � 1

2π
in a Euclidean metric. The finite

point clouds were generated in two ways:

� Equidistantly distributed point-clouds, where the n-angles are equally divid-
ing the interval r0, 2πs, and the corresponding Cartesian coordinates on a
circle were computed, which results in a regular n-gon. The death values
of homology classes of such point clouds are the blue dots in the coming
simulation figures. See Figure 2.5, 2.6, and 2.7.
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� Randomly, identically and independently distributed, point-clouds generated
by taking a sample α1, . . . , αn i.i.d. � Up0, 2πq and obtaining the Cartesian
coordinates. The death values of the homology of such point clouds are the
grey squares in the coming simulation figures. See Figure 2.5, 2.6, and 2.7.

Figure 2.4: A 40-gon and its corresponding homology up to dim 6

Figure 2.4 is an example of a point cloud of 40 vertices equidistantly distributed
around the circle of a unit circumference (right), and its corresponding barcodes
computed up to dim 5 (left). Each odd dimension has one barcode, and the 7
bars we notice at dimension 4 will disappear once the size of the point cloud is
increased.
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First dimensional death value

Figure 2.5: Monte-Carlo simulation of the first-dimensional death value.

Figure 2.5 illustrates the first death value of point clouds of sizes ranging from
30 to 59, with a Monte-Carlo simulation of size M � 100. i.e., for each n, we
generated 100 point clouds that are randomly uniformly distributed on the circle
of a unit circumference, and we represent its first-dimensional value with a grey
square. Secondly, and for each n, we generate an equidistantly distributed point
cloud and represent its first-dimensional value with a blue point.

We know from theory that the first-dimensional death value for a circle of a
unit circumference equipped with a geodesic metric is 1

3
, which corresponds to

2r sinpπ
3
q � 0.27566444771

in a Euclidean metric.

The first-dimensional death value is proven to be the edge length of an equi-
lateral triangle inscribed in a circle, see [AA17]. In other words, having three
equidistant points on the circle guarantees that we reach the minimum value that
kills the first homology. Figure 2.5 clearly states that whenever the size of the
equidistantly distributed point cloud is divisible by 3, the first death value hits the
known theoretical value. Knowing that the smallest size of a point cloud that pro-
duces a first-dimensional homology barcode is 4, one obtains the exact death value
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by fixing three equidistant points on the circle, and the fourth point can be ran-
domly chosen. In conclusion, we do not need to have an equidistantly distributed
point cloud of size divisible by 3, it is enough to have 3 equidistant points in any
point cloud on the circle to capture the exact death value of the first dimension.
It can also be seen that the simulation results for the 1-sphere allow in principle
to estimate the upper bound for the theoretical death values.

Third dimensional death value

Figure 2.6: Monte-Carlo simulation of the third-dimensional death value.

Figure 2.6 illustrates the third-dimensional death value of point-clouds of size
ranging from 55 to 64, with a Monte-Carlo simulation of size M � 86.

A similar approach has been conducted for the third-dimensional death value,
2
5

on a geodesic metric, which is equivalent to

2r sinp2π
5
q � 0.30273069145

in a Euclidean metric.

The third-dimensional death value is the diagonal length of a pentagon in-
scribed in a circle, see [AA17]. The same observation is valid here as well; we need
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five equidistant points to reach the minimum value that is able to kill the third
homology. Hence, the outcome reveals that whenever the size of the equidistantly
distributed point cloud is divisible by 5, the third death hits the known theoretical
value. In other words, whenever our point cloud contains a pentagon, we get the
exact third-dimensional death value.

Fifth dimensional death value

Figure 2.7: Monte-Carlo simulation of the fifth-dimensional death value.

Figure 2.7 illustrates the fifth death value of point clouds of size ranging from 90
to 109, with a Monte-Carlo simulation of size M � 50.

Similarly, the fifth dimensional death value, 3
7

on a geodesic metric is equivalent
to

2r sinp3π
7
q � 0.3103292

in a Euclidean metric.
The fifth-dimensional death value is the diagonal length of the longer diagonal

of a heptagon inscribed in a circle, see [AA17]. The same observation is valid
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here as well; we need seven equidistant points to reach the minimum value that
is able to kill the fifth homology. Hence, the outcome reveals that whenever the
size of the equidistantly distributed point cloud is divisible by 7, the fifth death
hits the known theoretical value. In other words, whenever a point cloud obtains
a heptagon, the exact fifth-dimensional death value is capturable.

Remark. Previous boxplots in Figure 2.5 reveal an asymmetric distribution that
is skewed to the right.

As a next step, one can try to fit a distribution for each sample of a fixed size of
a point cloud. The most suitable candidate of a predefined set of distributions was
always suggested to be a beta distribution of different shape parameters α and β.
But these two parameters were not both of large values to allow of a convergence
of a beta distribution to a normal one. One can see this in the following case.

For instance, consider generating 100 point clouds each of size 60 representing
S1, and computing the third-dimensional homology of VRrpS1q, then considering
the collected death values as a sample. For fitting a distribution to this obtained
data set, we observe its empirical distribution, which is a useful tool in guessing
the best distribution candidate in the case of the absence of knowledge of the
underlying stochastic process that governs this data set.

Plotting its empirical density and cumulative distribution we get:
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Figure 2.8: Histogram and CDF plots of an empirical distribution for the random sample
of 100 third-dimensional death values.

In addition to empirical plots, descriptive statistics may help to choose candi-
dates to describe a distribution among a set of parametric distributions. Useful
tools for this purpose are the skewness and kurtosis notions, where the former is
a measure of symmetry or asymmetry of data distribution, and the latter mea-
sures whether data is heavy-tailed or light-tailed relative to a normal distribution.
Therefore, for fitting a distribution for our sample, it is efficient to consider the
Cullen and Frey graph. On this graph, values for common distributions are dis-
played to help us choose a distribution to fi

t to our data. For distributions like normal, uniform, logistic, or exponential,
there is only one possible value for the skewness and the kurtosis and these are
represented by points on the graph. For other distributions, areas of possible
values are represented by either lines as for gamma and lognormal distributions,
or by larger areas like the beta distribution. Skewness and kurtosis are known
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to be sensitive to outliers and to take into consideration the uncertainty of the
estimated values of kurtosis and skewness from data, we perform a nonparametric
bootstrap procedure, i.e., by random sampling with replacement from the original
data, which is represented in the graph as the yellow area. For further insight, we
direct the reader to [DMD15] and [DMDP�15].

Figure 2.9: kewness-kurtosis plot for the random sample of size 100.

One can see that the estimated skewness is 0.132, and since it is a non-zero, it
reveals a lack of symmetry in the empirical distribution. The estimated kurtosis is
2.687, which quantifies the weight of tails in comparison to the normal distribution
which has a kurtosis value of 3.

The graph suggests that a beta distribution is an appropriate one. We tried to
fit a normal and gamma distribution and compared the values of AIC and BIC of
each distribution. We noticed that the beta distribution is the one that yields the
minimum AIC and BIC values. For more on AIC and BIC, we direct the reader
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to [AB04].
Given this, we get that our sample X � Bp723454.2, 1659516q, with an expected
death value

ErXs � α

α � β
� 0.3035935

Since we have a considerably large sample size, the central limit theorem ap-
plies, which results in the distribution of the sample mean being approximately
normal. Therefore, we can consider having a student confidence interval for the
death value µ we want to approximate.
For this example, we get the confidence interval r0.3035148, 0.3036721s. Note that
the first-dimensional death value is known from theory to be 0.30273. The confi-
dence interval indicates that the value we are trying to estimate has 0.3035148 as
an upper bound. Estimating the first-dimensional death value is about estimating
the infimum/minimum of a compact distribution support in R, i.e., the edge of a
parameter space, which is known to be a difficult problem.

2.1.2.2 Fitting regression models to approximate the death values

A second method to approximate the death values of dimensions 1, 3, and 5 of the
circle is fitting a regression model for the simulations in Figures 2.5, 2.6, and 2.7.
For each simulation, we first fit a linear regression model for the whole samples,
we then divide the equidistantly distributed point clouds (blue dots) to different
subsets and we fit a linear regression model for each layer. For a deeper insight
into linear regression, we direct the reader to see [SL03].

Regression model for the first dimensional death value

Fitting a regression model for the obtained data of Figure 2.5, where n is the size
of the point cloud and the response variable is the death value. One starts with the
natural expression Death � n, and try other linear transformations or polynomial
forms, and finally get that a rational model of the form:

Death � 0.27720908� 0.05813695
1

n

is a good fit with the highest obtained Adjusted R-squared value equals 0.3764.

Grouping the obtained death values coming from equidistantly distributed
point clouds into 3 samples and fitting regression models for each sample yields:
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Death �

$''''&''''%
0.27566444771 n � 0 pmod3q

0.2760303� 0.3017427 1
n

n � 1 pmod3q

0.2757500� 0.1590706 1
n

n � 2 pmod3q
Where the second two models fulfill perfect fitting because the value of the Ad-
justed R-squared equals 1.

Regression model for the third-dimensional death value

Implementing a similar approach to data of Figure 2.6, a general model is obtained:

Death � 0.304352935� 0.002930902
1

n
with an Adjusted R-squared of value 0.02606.

Grouping the obtained death values coming from equidistantly distributed
point clouds into 5 samples and fitting regression models for each sample yields:

Death �

$''''''''''''''&''''''''''''''%

0.30273069145 n � 0 pmod5q

0.3028778� 0.1675509 1
n

n � 1 pmod5q

0.30274644� 0.05985787 1
n

n � 2 pmod5q

0.3029946� 0.2153477 1
n

n � 3 pmod5q

0.3027943� 0.1157954 1
n

n � 4 pmod5q

The last four models are of a perfect fit as well since the Adjusted R-squared value
is 1.

For instance, if we have a point-cloud of size 100003, substituting this in the
general model gives Death � 0.304353, and when we substitute it in the fourth
branch where n � 3pmod5q, we get Death � 0.3029968, which is closer to the true
value 0.30273069145.

Regression model for the fifth-dimensional death value

A general model of the simulation in Figure 2.7 given by:

Death � 0.3100055� 0.1234374
1

n
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is a good fit with an Adjusted R-squared of value 0.061.
Grouping the obtained death values coming from equidistantly distributed

point clouds into 7 samples and fitting regression models for each sample yields:

Death �

$''''''''''''''''''''''&''''''''''''''''''''''%

0.311028 n � 0 pmod7q

0.311573� 0.022637 1
n

n � 1 pmod7q

0.3103� 0.03056 1
n

n � 2 pmod7q

0.3104� 0.1428 1
n

n � 3 pmod7q

0.3103� 0.06141 1
n

n � 4 pmod7q

0.3104� 0.1681 1
n

n � 5 pmod7q

0.31159� 0.51765 1
n

n � 6 pmod7q

Where the models, where n � 2, 3, 4 and 5, fulfill a perfect fit since the Adjusted
R-squared is 1.

Remark. The winding fraction of a cyclic graph
ÝÑ
G is

wfpÝÑGq � sup tk
n

: there exists a cyclic homomorphism
ÝÑ
Gk

n Ñ ÝÑ
Gu,

ÝÑ
Gk

n is a Vietoris–Rips graph of the vertex set of a regular n-gon, where

ÝÑ
Gk

n � ÝÑ
VRpt0, 1

n
, ...,

n� 1

n
u; k
n
q

For further explanation about the winding fraction, we direct the reader to
the articles [AAM17] and [AA17]. The winding Fraction appears in the regression
models in the intercept term. Expressing the coefficient term with the winding
fraction might also be possible.

Deathk � 2r sinpwfpkqq � coef.
1

n
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2.2 Vietoris-Rips of the 2-Sphere

In this section, we compute the homology of the Vietoris-Rips complexes of the
2-Sphere. We first explain the generating mechanism of the point clouds, we then
present some computational outcomes of different Thomson solids, and later we
try to estimate the death value of dimension 3.

2.2.1 Point-clouds approximating the 2-Sphere

We present three ways for generating a point cloud on the sphere S2. The first two
methods produce point clouds that are somehow 2evenly2 distributed, whereas the
third method induces random samples of the uniform distribution on S2.

� Point-clouds coming from the Thomson Problem, which is concerned in
determining the minimum electrostatic potential energy configuration of
n�electrons constrained to the surface of a unit sphere that repel each other
with a force given by Coulomb’s law.

Figure 2.10: Thomson solid of 51 vertices and its corresponding homology up to dim 8

� Point-clouds coming from mapping the Fibonacci lattice (aka Golden Spiral,
aka Fibonacci Sphere) onto the surface of a sphere, where the Fibonacci
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lattice evenly distributes points inside a unit square r0, 1q2, and to produce
the Fibonacci spiral, aka the Golden Spiral, one simply maps this point
distribution from the unit square to the sphere by the cylindrical equal-area
projection:

px, yq Ñ pθ, ϕq : p2πx, arccos p1� 2yqq

pθ, ϕq Ñ px, y, zq : pcos θ sinϕ, cosϕ sin θ, cosϕq

where θ P r0, 2πs is longitude, and ϕ P r0, πs is the angel from North pole.

Figure 2.11: Fibonacci Sphere of size 300 and its corresponding homology up to dim 4.

Uniform Distribution

� Point-clouds coming from uniformly distributed points on a unit sphere. One
of the ways to obtain such a sample is to generate three standard normally
distributed numbers X, Y , and Z to form a vector V � rX, Y, Zs. Intuitively,
this vector will have a uniformly random orientation in space but will not lie
on the sphere. By normalizing the vector V :� V

}V } , one obtains the desired
sample.
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Figure 2.12: A uniform point-cloud of size 100 its corresponding homology up to dim 3

One may also inscribe polyhedra like Catalan or Archimedean solids in the unit
sphere and compute their homology. The following figure represents the barcodes
of a disdyakis triacontahedron, which has the highest sphericity of approximately
0.9857.

Figure 2.13: The first eight barcodes of the disdyakis triacontahedron inscribed in a unit
sphere.
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2.2.2 Computational outcomes

All computations were done on JustHPC, a Linux high-performance cluster of
University of Giessen, using Ripser C++ code with robin-hood-hashing.

We acknowledge computational resources provided by the HPC Core Facility
and the HRZ of the Justus-Liebig-University Giessen. We also thank Dr. Marcel
Giar from the administration team of JustHPC for his technical support in run-
ning the computations.

JustHPC has 5 partitions:

� serial, single, debug, and regular: each one of them has 248 available nodes
with a node configuration of 24 cores, 192 GiB RAM, � 750 GiB temporary
HDD space.

� bigmem has 4 available nodes with a node configuration of 48 cores, 1.5 TB
RAM, � 6 TB temporary HDD space.

On all except the ‘debug‘ partition, one may choose among three so-called
qualities of service. These modify the maximum allowable runtime of the jobs and
their priority. The three length options are:

� short, with a time limit of 12 hours and max. 12 nodes per job.

� normal, with a time limit of 5 days and max. 2 nodes.

� bigmem with an unlimited time.

The following summarized computations were done using a single short parti-
tion, except for Thomson 100 and 1500, they were assigned to the bigmem parti-
tion.

The following tables represent the minimum and the maximum value of each
birth and death of computed persistent homology of Thomson solids of different
sizes. The radius r ranges in r0, 2s and the closing radius is the value where the
Vietoris-Rips complex becomes contractible to a point.
The plot of the barcodes of each table is given in Appendix A.
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Thomson 35

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.5697090 0.6353726
1 0.6050468 0.6407641 0.6343331 0.8217621
2 0.8217621 0.8217621 1.7241240 1.7241240
3 1.7241240 1.7586649 1.7611883 1.8181563
4 1.7805049 1.8082616 1.8001861 1.8288708
5 1.8001861 1.8458177 1.8354526 1.8499196
6 1.8387538 1.8534091 1.8510235 1.8602050
7 1.8602050 1.8636544 1.8625656 1.8644397
8 1.8664440 1.8702658 1.8708964 1.8819435
9 1.8819435 1.9252281 1.9173999 1.9303325
10 1.9303325 1.9303325 1.9308187 1.9308187
11 1.9393601 1.9393601 1.9542417 1.9542417
12 1.9542417 1.9542417 1.9551034 1.9551034
15 1.9632013 1.9632013 1.9722432 1.9722432

Table 2.1: Thomson 35 and its corresponding homology up to dim. 15.
The closing radius: 1.9722432.
Memory consumption: 1.49 GB
Time consumption: 00:03:19.

Thomson 40

Thomson 40 is the largest size of a point cloud that we were able to compute
all its homology.
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Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.549871 0.585176
1 0.563330 0.585176 0.624521 0.659573
2 0.659573 0.659573 1.632990 1.632990
3 1.731070 1.731320 1.763160 1.789470
4 1.789470 1.789470 1.789470 1.789470
5 1.731070 1.789470 1.763160 1.813910
6 1.798660 1.813910 1.813910 1.887530
7 1.813910 1.887530 1.840520 1.887530
8 1.887530 1.887530 1.900370 1.900370
9 1.900370 1.900370 1.942700 1.942700
12 1.942700 1.942700 1.960580 1.960580
17 1.960580 1.960580 1.966080 1.966080

Table 2.2: Thomson 40 and its corresponding homology up to dim. 17.
The closing radius: 1.96608.
Memory consumption: 23.6 GB.
Time consumption: 00:57:49.

Thomson 50

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.495882 0.545191
1 0.504665 0.558085 0.545191 0.615537
2 0.615537 0.615537 1.639110 1.639110
3 1.639110 1.721920 1.724280 1.780980
4 1.724280 1.780980 1.788100 1.796330
5 1.796330 1.796330 1.850080 1.850080
6 1.788100 1.850080 1.847590 1.868500
7 1.857340 1.868500 1.866730 1.868500
8 1.868500 1.868500 1.872970 1.872970
9 1.872970 1.872970 1.876670 1.924260
10 1.924260 1.924260 1.932660 1.932660

Table 2.3: Thomson 50 and its corresponding homology up to dim. 10.
The closing radius: 1.98148.
Memory consumption: 137.29 GB.
Time consumption: 02:29:57.

34



Thomson 65

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.424812 0.458688
1 0.442157 0.478691 0.483655 0.616187
2 0.616187 0.616187 1.691610 1.691610
3 1.691610 1.734110 1.722040 1.737280
4 1.734010 1.767790 1.737790 1.768900
5 1.754350 1.785240 1.761560 1.788680
6 1.787940 1.811480 1.797110 1.829220
7 1.819820 1.852420 1.826000 1.854750

Table 2.4: Thomson 65 and its corresponding homology up to dim. 7.
The closing radius: 1.98142.
Memory consumption: 7.37 GB.
Time consumption: 00:17:56.

Thomson 100

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.352396 0.383677
1 0.357705 0.383677 0.390532 0.482218
2 0.482218 0.482218 1.632990 1.632990
3 1.636730 1.705430 1.687960 1.751330
4 1.702780 1.731560 1.710920 1.754280
5 1.705440 1.773650 1.745810 1.777130
6 1.767640 1.802620 1.778700 1.819400

Table 2.5: Thomson 100 and its corresponding homology up to dim. 6.
The closing radius: 1.98786.
Memory consumption: 702.18 GB.
Time consumption: 04:17:21.
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Thomson 150

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.285337 0.304685
1 0.295609 0.314781 0.316185 0.382101
2 0.382101 0.382101 1.663030 1.663030
3 1.663030 1.699040 1.663030 1.718270
4 1.683620 1.726580 1.721740 1.767070
5 1.683620 1.769160 1.755450 1.781500

Table 2.6: Thomson 150 and its corresponding homology up to dim. 5.
The closing radius: 1.99408
Memory consumption: 12.71 GB.
Time consumption: 01:09:31.

Thomson 400

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.175495 0.188676
1 0.184148 0.193075 0.195073 0.214212
2 0.214212 0.214212 1.632990 1.632990
3 1.637600 1.684280 1.668550 1.717450
4 1.679850 1.717450 1.686580 1.717450

Table 2.7: Thomson 400 and its corresponding homology up to dim. 4.
The closing radius: 1.99704
Memory consumption: 143.77 GB.
Time consumption: 00:43:14.
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Thomson 1500

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.0884814 0.0984626
1 0.0904052 0.100609 0.0988558 0.1221700
2 0.1221710 0.122171 1.6356000 1.6356000
3 1.6356000 1.662170 1.6460900 1.6716600

Table 2.8: Thomson 1500 and its corresponding homology up to dim. 3.
The closing radius: 1.99915
Memory consumption: 252.11 GB.
Time consumption: 15:32:41.

Rhombic triacontahedron
It is a Catalan solid of 32 vertices that includes the arrangement of four Platonic

solids. It contains ten tetrahedra, five cubes, an icosahedron, and a dodecahedron.
The centers of the faces contain five octahedra.

Dimension min. birth max.
birth

min.
death

max.
death

0 0 0 0.640852 0.640852
1 0.640852 0.640852 0.713644 0.713644
2 0.713644 0.713644 1.632990 1.632990
3 1.632990 1.701300 1.868340 1.868340
5 1.701300 1.868340 1.894550 1.894550
8 1.894550 1.894550 1.894550 1.894550
9 1.868340 1.894550 1.894550 1.894550
15 1.894550 1.894550 2 2

Table 2.9: Rhombic triacontahedron and its homology up to dim. 15.
The closing radius: 2
Memory consumption: 17.22 GB.
Time consumption: 00:32:00.

Its barcodes are plotted in A.1 as well.

� Computing homology of Thomson 32 yields the same results obtained from
the rhombic triacontahedron.

� Computing homology for point clouds consisting of an inscribed icosahedron
with a set of points that are randomly uniformly generated always give the
fifth birth value to be 1.701302.
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� Computing homology for point clouds consisting of an inscribed dodecahe-
dron with a set of points that are randomly uniformly generated always give
the ninth birth value to be 1.8683447.

In Section 2.1.2.1 we have concluded that the first-dimensional death value of
VRpS1q is capturable once the point-cloud has an inscribed equilateral triangle,
and the third-dimensional death value is also capturable if the point-cloud has an
inscribed pentagon. Similarly, for the fifth-dimensional death value to be obtained,
a heptagon is required to be inscribed. In a generalized scope, it is proven that an
inscribed regular n-gon in a point cloud approximating the circle kills the (n-2)th-
dimensional homology, where 3 ¤ n.
For VRpS2q, we see in detail in Chapter 3 that the platonic solids play a major
role in identifying the homology of the 2-Sphere. From the computations listed
above, we observe that the value 1.1701302 is the birth of the fifth-dimensional
homology of VRrpS2q, and that the value 1.8683447 is the birth of the ninth-
dimensional homology of VRrpS2q. Similar observations in the 2-Sphere case are
also valid: generating random point clouds that have an inscribed icosahedron
fixes the birth of the fifth-dimensional homology, and generating random point
clouds that have an inscribed dodecahedron fixes the birth of the ninth-dimensional
homology. Therefore, we conjecture the following:

Conjecture 2.2.1. � The birth value of the fifth-dimensional homology of
VRpS2q is 1.701302, which is the length of the face diagonal of an inscribed
icosahedron in a unit sphere. See Table 3.3.

� The birth value of the ninth-dimensional homology of VRpS2q is 1.8683447,
which is the length of the medium space diagonal of an inscribed dodecahe-
dron in a unit sphere. See Table 3.3.

Note that a point cloud of a small size, like Thomson 40 for instance, is able to
catch the exact second-dimensional death value. Thomson 100 with its fifth min.
birth shows a value that asserts our conjecture.

2.2.3 Approximating the third dimensional death values

It has been proved that the second-dimensional death value is the diameter of a
3-simplex, which equals 1.632993 in Euclidean metric when inscribed in a unit
sphere [LMO20, Theorem 10]. In order to be able to approximate the death value
of dimension 3 of Vietoris-Rips complexes of S2, we consider Thomson solids of
sizes varying between 60 to 1500, compute the homology of each solid up to dim
3, and consider that each sample consists of the length of the third-dimensional
barcodes. In a similar fashion to circle samples, we get that a beta distribution
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is the most appropriate one. We fit a beta distribution and compute its expected
mean value. The following table summarizes the results:

Thomson Sample Size Expected Mean
60 15 0.027581758
70 15 0.018573078
80 43 0.022211692
90 28 0.031210385
100 36 0.018402231
110 55 0.024939617
120 93 0.036498791
150 93 0.012059799
200 182 0.017035564
250 237 0.013924825
300 298 0.011999938
350 338 0.010995290
400 498 0.017907976
500 606 0.010101854
1500 4122 0.007226794

We get a 95%�Student’s Confidence Interval for the length of the 3-dimensional
barcode

r0.01406937, 0.02335324s
Hence, the third-dimensional death value is expected to lie in the interval

r1.647063, 1.656346s

We anticipated the vanishment of the expected mean, as it is conjectured in
[AAF18, Remark 5.6, and Conjecture 5.7]. Although the death value decreases by
the increase of the sample size, the chosen point clouds seem to be insufficient to
indicate evidence that the third-dimensional bars are all noise. Due to computa-
tional limitations, we were restricted to point clouds of such small sizes.

We have seen in this chapter to which extent are computational outcomes of
homology in the circle case coincide with the theoretical results. We attempted
to transfer the previous findings to the 2-Sphere case by computing the homology
of point clouds approximating the 2-Sphere, and we conjectured about the birth
values of the fifth and ninth homology of VRpS2q.
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Chapter 3

Homotopy types of Vietoris Rips
complexes of Platonic Solids

We have seen that the regular n-gons, where n is odd, played a vital role in
identifying the homotopy types of the circle. In this chapter, we will observe that
Platonic solids play an important role in identifying the homology of the 2-Sphere.
This chapter is joint work with Prof. Stefan Witzel and the Ph.D. student Thomas
Titz-Mite and is based on the article [SMW23b].

3.1 Cross-Polytopes and their boundaries

Definition 3.1.1. An n-cross-polytope is a regular, convex polytope that exists
in an n-dimensional Euclidean space, [Cox73]. It has 2n-vertices of permutations
of the coordinates p�1, 0, 0, ..., 0q with an edge length

?
2, and bounded by (cells

consists of) 2n simplices of dimension pn�1q. The number of k-simplices contained
in an n-cross-polytope is

�
n

k�1

�
2k�1.

Cross-polytopes are one of the three regular polytope families, the other two
being the hypercubes and the simplices.
An n-dimensional polytope has topologically the pn� 1q-sphere as its boundary.
To avoid ambiguity, it might be worth mentioning that, in many references, an
n-cross-polytope would be denoted by βn, which is the same notion used to refer
to the betti numbers.
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Cross-
Polytope

Name Vertices Boundary

β0 Point 1 ϕ
β1 Line 2 S0

β2 Square 4 S1

β3 Octahedron 6 S2

β4 16-Cell 8 S3

β5 Pentacross 10 S4

Table 3.1: The first five cross-polytopes, their names, number of vertices, and their
boundary spheres.

3.2 Regular Polyhedra in three-dimensional Eu-

clidean space

The five convex, regular polyhedra in a three-dimensional Euclidean space are:
Tetrahedron, Cube, Octahedron, Dodecahedron, and Icosahedron.
In this section, we study the homology of Vietoris-Rips complexes VRr :� VR¤pP p0q; rq
of each polyhedron.
We will consider a platonic solid P , that has the vertex set P p0q and let m,n, v, f, k
denote its fundamental invariants, where the numbers m and n are the vertices
around a facet and the facets around a vertex, respectively. The numbers v and f
are the numbers of vertices and facets respectively. The number k is the diameter
of the edge graph.
We provide the three combinatorial, Euclidean, and spherical distances of each
polyhedron. However, we consider the combinatorial distance since we will be
dealing with the edge graph of the polytope.

Polytope m n v f k
Tetrahedron 3 3 4 4 1
Cube 4 3 8 6 3
Octahedron 3 4 6 8 2
Dodecahedron 5 3 20 12 5
Icosahedron 3 5 12 20 3

Table 3.2: Basic combinatorics of the platonic solids.
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Polytope combina-
torial

Euclidean spherical

Tetrahedron 1
b

8
3
� 1.632993 arccosp�1

3
q

Cube
1

b
4
3
� 1.154701 arccosp1

3
q

2
b

8
3
� 1.632993 arccosp�1

3
q

3 2 π � arccosp�1q
Octahedron

1
?

2 � 1.414214 π
2
� arccosp0q

2 2 π

Dodecahedron

1 2?
3ϕ
� 0.7136442 arccosp�1�ϕ4

3ϕ2 q
2

b
4
3
� 1.154701 arccosp1

3
q

3
b

8
3
� 1.6329932 arccosp�1

3
q

4 2ϕ?
3
� 1.8683447 arccosp1�ϕ4

3ϕ2 q
5 2 π

Icosahedron
1

b
4

ϕ
?
5
� 1.051462 arccosp 1?

5
q

2
b

4ϕ?
5
� 1.701302 arccosp� 1?

5
q

3 2 π

Table 3.3: The combinatorial, Euclidean, and spherical distances, respectively. Eu-
clidean and spherical distance refer to the polytope inscribed in the unit

sphere, where ϕ � 1�?5
2 is the golden ratio.

The following are the barcodes of the platonic solids inscribed in a unit sphere.

Figure 3.1: Barcodes of a regular tetrahedron inscribed in a unit sphere.
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Figure 3.2: Barcodes of a cube, (left), and an octahedron, (right), inscribed in a unit
sphere.

The 5 copies of barcodes in the first dimension of the cube represent the number
of its faces, it has 6 faces but we see only 5 copies since the sixth face can be written
as a linear combination of the other 5 ones.

Figure 3.3: Barcodes of a dodecahedron, (left), and an icosahedron, (right), inscribed in
a unit sphere.

Similarly, the 11 copies of barcodes in the first dimension of the dodecahedron
represent the number of its faces. It has 12 faces, and we notice only 11 copies
because the twelfth face can be written as a linear combination of the other 11
faces.
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Note that there is supposed to be a long zero-dimensional barcode that persists
to infinity r0,8q. However, the ‘TDAstats’ package, which is used in plotting
persistent barcodes, omits it [WWDS18].
If each Vietoris-Rips is a wedge sum of spheres, then the homology computations
tell us how many wedges in each dimension we will get. The following theorem
tells us that this is indeed the case.

Theorem 3.2.1. (joint with Witzel, Titz-Mite)
If P p0q is the vertex set of a platonic solid P and δ1, . . . , δk are the occurring

distances between elements of P p0q then the homotopy type of VRrpP p0qq is given
as follows. If r ¤ 0 then VRrpP p0qq � H, if r ¡ δk then VRrpP p0qq � �, otherwise:

1. If P is a tetrahedron then

VRrpP p0qq �
!�3 S0 0   r ¤ δ1

2. If P is an octahedron then

VRrpP p0qq �
#�5 S0 0   r ¤ δ1

S2 δ1   r ¤ δ2

3. If P is a cube then

VRrpP p0qq �

$'&'%
�7 S0 0   r ¤ δ1�5 S1 δ1   r ¤ δ2

S3 δ2   r ¤ δ3

4. If P is an icosahedron then

VRrpP p0qq �

$'&'%
�11 S0 0   r ¤ δ1

S2 δ1   r ¤ δ2

S5 δ2   r ¤ δ3

5. If P is a dodecahedron then

VRrpP p0qq �

$''''''&''''''%

�19 S0 0   r ¤ δ1�11 S1 δ1   r ¤ δ2

S2 δ2   r ¤ δ3�9 S3 δ3   r ¤ δ4

S9 δ4   r ¤ δ5
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To prove this main theorem, we need the following lemmas and propositions.
For simplicity, we write VRr instead of VRrpP p0qq.

The first lemma interprets the zero-dimensional barcodes.

Lemma 3.2.2. If 0   r ¤ 1 then VRrpP p0qq is the discrete set of v vertices, so it
is
�v�1 S0.

The next lemma interprets the highest dimensional barcode.

Lemma 3.2.3. If P � �P (so if P is not the regular simplex) and if k�1   r ¤ k
then VRr � Sv{2�1.

Proof. For x P P p0q the only point at distance k from x is �x. So, a face of the
full simplex on P p0q is in VRr unless it has two opposite vertices. Hence, VRr

is the boundary of the v{2-dimensional cross-polytope, which, as we have stated
previously, has Sv{2�1 as its boundary sphere. Consequently, VRr is homeomorphic
to Sv{2�1.

The following lemma interprets the two-dimensional barcode of the octahedron
and the icosahedron.

Lemma 3.2.4. If m � 3, 1   k and 1   r ¤ 2 then VRr � P p2q, so in particular
VRr � S2.

In the case of a cube or a dodecahedron, note that the combinatorial diameter
of a facet is 2. This following lemma interprets the one-dimensional barcodes of
the cube and the dodecahedron.

Lemma 3.2.5. If m ¡ 3 and 1   r ¤ 2 then VRr � P p1q, so in particular
VRr �

�f�1 S1.

Lemma 3.2.6. If n � 3, m � 5, and 2   r ¤ 3 then VRr � S2. In particular, ev-
ery triangulation of P p2q without added vertices arises a strong deformation retract
of VRr.

Proof. There are 3- and 4-simplices that are maximal in VRr. The 3-simplex
σx consists of a vertex x and its 3 adjacent vertices. Applying an elementary
simplicial collapse on σx onto σxztxu represents a deformation retraction of VRr,
where σxztxu is a subcomplex of simplices, that belong to facets of P .

A 4-simplix in VRr is σF , where F is a facet of the dodecahedron. If SF is any
triangulation of F , then each vertex v P F is adjacent to any other vertices of F .
We impose a matching on the facets of σF that are not in the triangulation SF by
pairing a facet τ , where v P τ , with the facet τztvu. This matching is acyclic since
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if τ is matched with γ then v P γ but v R τ . However, if τ and γ are unmatched,
then v P τ , and v P γ. Hence, a cycle cannot evolve. Applying Proposition 1.5.2
and Proposition 1.5.1 completes the proof.

The last and the most interesting case is when P is the dodecahedron and
3   r ¤ 4. For this case, we need the following:

Lemma 3.2.7. The complex VRr has 10 tetrahedra τ1, . . . , τ10 such that any two
of its vertices have distance 3.

These are well-known: under the action of the rotation group of the dodeca-
hedron they fall into two orbits and the action on each orbit witnesses that the
rotation group is A5.

Notation: to specify the types of the simplices, i.e., the orbits, we draw the
edge graph of the dodecahedron with a colored set of vertices, it represents all the
simplices we acquire by having an embedding of the set of colored vertices into a
full subgraph.

1

2 3

4
5

6

7

8

9

10

11

1213

14

15

16
17

18
19

20

Figure 3.4: The edge graph of the Dodecahedron.

The type of the considered tetrahedra in Lemma 3.2.7 is obtained by coloring
the simplex r5, 8, 12, 19s for instance, or the simplex r6, 13, 17, 20s, etc.
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Figure 3.5: One of the 10 tetrahedra, [ 5, 8, 12, 19].

Tailoring Proposition 1.5.2 on the dodecahedron, we state the following:

Proposition 3.2.8. There is a strong deformation retraction of VR¤3 ztτ1, . . . , τ10u
to VR¤2. More precisely there is a partial acyclic matching on the simplices of
VR¤3 of diameter 3 whose only critical simplices are τ1, . . . , τ10.

Proof. To prove the proposition we need to induce a partial matching on all the
simplices of diameter 3 except for the tetrahedra, τ1, . . . , τ10, and prove that this
matching is acyclic. In general, there are 34 unoriented simplices of diameter 3,
(excluding τ1, . . . , τ10), and they are 2-, 3-, 4-, 5- and 6-simplices, see [SMW23a]
and Appendix B. We impose an orientation on the edges of the dodecahedron.
Whenever we plot a graph, it represents the class of a simplex. When we draw
an edge orientation, then the simplex drawn in this graph is identified with the
dodecahedron graph in a way that the edge orientation of the simplex matches the
edge orientation of the dodecahedron graph. This process of picking an orientation
on the edge of a simplex and matching it in a one-to-one correspondence always
happens when some simplex that has symmetry is matched with a simplex that
does not have symmetry. For more explanation, consider the following example:
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Simplex 7 Simplex 14.1

Simplex 14.2

Figure 3.6: An example of a matching.

The two simplices on the right-hand side have a different edge orientation. We
choose to match Simplex 14.1 with Simplex 7, and Simplex 14.2 is considered as
one of the facets of Simplex 7. Since the matched simplices can be written as pairs,
we express this matching by writing (Simplex 14.1, Simplex 7), or by specifying
the simplices with their numbered vertices ([5,7,13,14,16], [5,7,13,14,15,16]). The
latter notation is used in defining the following matching:
Note that each plot represents two paired simplices, where the first element is the
simplex without the green vertex, and the second element is the simplex of all
colored vertices (red and green).

� Matching simplices with C3 and C2 symmetry:
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pr5, 7, 8, 12, 13, 15s, r5, 7, 8, 12, 13, 14, 15sq

pr5, 12, 13, 14, 16s, r5, 12, 13, 14, 15, 16sq

pr5, 8, 12s, r5, 8, 12, 14sq

pr5, 12, 13s, r5, 12, 13, 15sq
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� Matching simplices with broken C2 symmetry:

pr5, 7, 12, 13, 15, 16s, r5, 7, 12, 13, 14, 15, 16sq

pr5, 7, 13, 14, 16s, r5, 7, 13, 14, 15, 16sq

pr5, 7, 13, 16s, r5, 7, 13, 15, 16sq

pr5, 7, 12, 14s, r5, 7, 12, 14, 15sq

pr5, 7, 12, 13, 16s, r5, 7, 12, 13, 14, 16sq

pr5, 13, 15s, r5, 13, 14, 15sq

pr5, 7, 12s, r5, 7, 12, 15sq

pr5, 13s, r5, 13, 14sq
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� Matching simplices with trivial stabilizer:

pr5, 7, 12, 15, 16s, r5, 7, 12, 14, 15, 16sq

pr5, 7, 8, 12, 15s, r5, 7, 8, 12, 14, 15sq

pr5, 12, 13, 16s, r5, 12, 13, 15, 16sq

pr5, 12, 14, 16s, r5, 12, 14, 15, 16sq

pr5, 7, 12, 13s, r5, 7, 12, 13, 15sq

pr5, 8, 12, 15s, r5, 8, 12, 14, 15sq

pr5, 12, 14s, r5, 12, 14, 15sq
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Finally, we are left to prove that the presented matching is indeed acyclic.
Therefore, it is sufficient to show that the simplices in adjacent dimensions of the
Hasse diagram of our underlying graph can be particularly ordered in such a way
that arrows are all pointing in one direction. We will work on adjacent dimensions,
starting from the highest, and keeping in mind that the red arrows (Ñ) will always
present the matching, then the black arrows are obviously indicating that there
is no matching, they are actually resulting from applying the boundary operator.
We will be able to divide each adjacent dimension into different layers.
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4.1

8 2

1

6

5

7

3

4.2

I II III

Figure 3.8: The directed graph G1, for the acyclic matching from Figure 3.7 and its
decomposition into three layers I, II, and III.
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Figure 3.16: The directed graph G5, for the acyclic matching from Figure 3.15 and its
decomposition into three layers I, II, and III.

We excluded the 10 tetrahedra and defined a partial matching on all the left
simplices of diameter 3. We proved that this matching is acyclic. Since these 10
tetrahedra were not matched, they are the critical simplices of diameter 3. Hence,
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we get a strong deformation retraction of VR¤ 3ztτ1, . . . , τ10u to VR¤2, and that
completes the proof.

To prove Theorem 3.2.1 it remains to show that the map

Bτi � S2 Ñ S2 � VR¤3 ztτ1, . . . , τ10u

along which τi is glued in is a homotopy equivalence. To study this map, we have to
homotope it along the deformation retraction that is described in Proposition 3.2.8.
Theorem 1.3.2 states that there is an isomorphism between π2pXq and H2pXq, if
the space X is 1-connected. Therefore, it is sufficient to show:

Proposition 3.2.9. For each i the homology class rBτis generates

H2pVR¤3 ztτ1, . . . , τ10uq � H2pVR¤2q � Z.

Proof. To compute the homology with coefficients of an integral domain, the ori-
ented simplices should be considered. It is worth mentioning that if we permute
the numbers of a simplex by an even permutation, we get the same simplex, and
if we apply an odd permutation, we get a simplex with an opposite orientation.

Without loss of generality, one of the critical simplices of Proposition 3.2.8,
tτ1, . . . , τ10u, namely r6, 13, 17, 20s, has r13, 6, 17s as one of its facets. We want to
figure out how these facets are mapped under the deformation retraction. From
the previously defined matching, we know that a 2-simplex, namely r13, 6, 17s
is matched with r6, 13, 17, 15s. Consequently, to identify the image of r13, 6, 17s
under the deformation retraction we compute the boundary of the 3-simplex,
r6, 13, 17, 15s,

4
5

6

7

1213

14

15

16

17
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Thus,

Br13, 6, 17, 15s � r13, 6, 17s � r13, 6, 15s � r13, 17, 15s � r6, 17, 15s

r13, 6, 17s � r13, 6, 15s � r13, 15, 17s � r6, 17, 15s (*)

Each simplex on the right-hand side has the edge lengths 2,2,3. We will try to
write each of them as a linear combination of simplices of a maximum edge length
2.

For the simplex [13,6,15]:

Br13, 6, 15, 14s � r13, 6, 15s � r6, 14, 13s � r13, 15, 14s � r6, 15, 14s

r13, 6, 15s � r6, 14, 13s � r14, 15, 13s � r6, 15, 14s

For the simplex [13,15,17]:

Br13, 15, 17, 16s � r13, 15, 17s � r13, 15, 16s � r13, 17, 16s � r15, 17, 16s

r13, 15, 17s � r16, 13, 15s � r16, 17, 13s � r15, 17, 16s

For the simplex [6,17,15]:

Br6, 17, 15, 5s � r6, 17, 15s � r6, 17, 5s � r6, 15, 5s � r17, 15, 5s

r6, 17, 15s � r6, 17, 5s � r6, 5, 15s � r17, 15, 5s

Substituting in (*) we get,

r13, 6, 17s � r6, 14, 13s � r14, 15, 13s � r6, 15, 14s
� r16, 13, 15s � r16, 17, 13s � r15, 17, 16s
� r6, 17, 5s � r6, 15, 5s � r17, 15, 5s

Ordering the terms:

r13, 6, 17s � r6, 15, 14s � r15, 17, 16s � r6, 5, 15s
� r14, 15, 13s � r16, 13, 15s � r17, 15, 5s
� r6, 14, 13s � r16, 17, 13s � r6, 17, 5s

The summands of the first two rows are in VR¤2.
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Which can be illustrated as:
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We get similar outcomes for the simplex [17,20,13],
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As well as the simplex [13,20,6],
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Finally the simplex [17,6,20],

1
2

6

5

1817

4

3

19

20

The full boundary of each of the four simplices spans the fundamental class of
triangulation of the dodecahedron.
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Figure 3.17: Triangulation of the dodecahedron, a tessellation of the 2-Sphere.

When the simplex r13, 14, 7, 6s has the orientation 14 Ñ 7, we get:

Br13, 14, 7, 6s � r13, 14, 7s � r14, 7, 6s � r13, 7, 6s � r13, 14, 6s (**)

The simplex [13,7,6] is matched with a facet, so it does not contribute to the
second homology.
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Figure 3.18: Triangulation of the dodecahedron, a tessellation of the 2-Sphere.

From (**) we get,

r13, 14, 6s � r14, 7, 6s � r13, 14, 7s � r14, 7, 6s

Note that each critical simplex has four facets of type r6, 13, 7s. Although we
do not know if a simplex of type r6, 13, 7s retracts to simplices of type [13,14,7]
or [14,7,6] and has [13,14,7] in its retraction image or not, the sum of the four
facets will have [13,14,7] + [14,7,6] in its retraction image, consequently, [13,14,6]
+ [14,7,6]. Hence, the boundary of a critical simplex τi retracts to the sum of the
four facets, which gives a complete tessellation for the 2-sphere.

In this chapter, we have introduced the concept of cross-polytopes and stated
that an n-dimensional cross-polytope has the sphere Sn�1 as its boundary sphere.
We computed the homology of Platonic solids and interpreted them, with a focus
on the dodecahedron case. In the dodecahedron, we proved the existence of a
strong deformation retraction from VR¤3 ztτ1, . . . , τ10u onto VR¤2, to do so, we
identified a partial matching on VR¤3 ztτ1, . . . , τ10u and proved its acyclicity. We
later proved that for each i, the homology class rBτis, generates

H2pVR¤3 ztτ1, . . . , τ10uq � H2pVR¤2q � Z.
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Chapter 4

Homology of some n-polytopes

In this chapter, we provide computational outcomes for some hypercubes and 4-
Polytopes. The following tables summarize the non-zero homology and the blank
lines in the third column indicate that we were able to compute the homology up
to a certain dimension but not higher due to the extensive memory consumption.

4.1 The Hypercubes

We compute the homology of some hypercubes. For the identified homotopy types,
see [AA22].

n-Cube Vertices Homology
2-Cube 4 H0pV R0pQ2q;Zq � pZq3

H1pV R1pQ2q;Zq � Z
H0pV R0pQ3q;Zq � pZq7

3-Cube 8 H1pV R1pQ3q;Zq � pZq5
H3pV R2pQ3q;Zq � Z
H0pV R0pQ4q;Zq � pZq15

4-Cube 16 H1pV R1pQ4q;Zq � pZq17
H3pV R2pQ4q;Zq � pZq9
H7pV R4pQ4q;Zq � Z
H0pV R0pQ5q;Zq � pZq31
H1pV R1pQ5q;Zq � pZq49

5-Cube 32 H3pV R2pQ5q;Zq � pZq49
H4pV R3pQ5q;Zq � Z
H7pV R3pQ5q;Zq � pZq10
H15pV R4pQ5q;Zq � Z
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H0pV R0pQ6q;Zq � pZq63
H1pV R2pQ6q;Zq � pZq129
H3pV R3pQ6q;Zq � pZq209

6-Cube 64 H4pV R4pQ6q;Zq � pZq11
H7pV R3pQ6q;Zq � pZq60
H7pV R4pQ6q;Zq � pZq239

H31pV R5pQ6q;Zq � Z
H0pV R0pQ7q;Zq � pZq127
H1pV R1pQ7q;Zq � pZq321

7-Cube 128 H2pV R3pQ7q;Zq � pZq769
H4pV R3pQ7q;Zq � pZq71

H63pV R6pQ7q;Zq � Z

Computations of the 6-Cube were doable on HPC only up to dimension 7,
and the cross-polytope property tells us that S31 should appear in the last range.
Hence HipV RkpQ6q;Zq is unknown for 8 ¤ i ¤ 30. Similarly, only the first 4
dimensions of the homology computations of the 7-Cube were doable on HPC.
Hence, HipV RkpQ7q;Zq is also unknown for 5 ¤ i ¤ 62.

4.1.1 The Tesseract

The 4-Cube, known as the tesseract, has 24 faces and 8 cubes (cells). Its barcodes
are illustrated in the following figure:

Figure 4.1: Barcodes of the tesseract.
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To interpret the 9 wedges of S3; we start first from the 3-Cube case:
There are three kinds of tetrahedra of diameter 2 in the 3-Cube:

� a vertex and its neighbors (there are 8 ones in the 3-Cube),

� the faces (there are 6 ones in the 3-Cube), and

� vertices of a pairwise-distance 2 (they are 2 ones in the 3-Cube)

Figure 4.2: The first, second, and third kind of a tetrahedron in a cube.

Analogously to the dodecahedron case in Chapter 3, if we remove the two
tetrahedra of the third kind, the remaining complex deformation retracts onto the
boundary of the cube which is a 2-sphere. The tetrahedra of the first kind can
be matched away from their center, and the tetrahedra of the second kind can
be matched to either triangulation of the face. Hence, the complex is a 2-sphere
with two 3-simplices glued in. The first 3-simplex fills the 2-sphere, the second
tetrahedron creates a 3-sphere.

Regarding the 4-Cube; the 2-Skeleton consists of the boundary of its eight 3-
Cubes. Therefore, it is a wedge of seven 2-Spheres. Into these seven 2-Spheres if
we glue the 3-Simplices of the third kind, there are 16 � 8 � 2, of them in the
4-Cube. The first of these fill in 2-Spheres while the remaining create 3-Spheres.
Hence, we get 16� 7 � 9 wedges of 3-Spheres.

71



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 4.3: The tesseract.
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4.2 4-Polytopes

Another interesting family to investigate its homology is the 4-Polytopes, the four-
dimensional analogs of the Platonic solids. In the following table, we provide the
computational outcome.

4-Polytope Vertices Diameter Homology
H2pV R1pC24q;Zq � pZq23

24-Cell 24 4 H3pV R2pC24q;Zq � Z
H11pV R3pC24q;Zq � Z

600-Cell 120 8 H3pV R1pC600q;Zq � Z

H59pV R7pC600q;Zq � Z
H1pV R1pC120q;Zq � pZq601
H2pV R2pC120q;Zq � pZq119

120-Cell 600 15 H3pV R3pC120q;Zq � pZq1080
H3pV R3pC120q;Zq � Z

H299pV R15pC120q;Zq � Z

For the 600-cell, only homology up to dimension 4 was computable. Hence,
HipV RkpC600q;Zq is unknown, where 5 ¤ i ¤ 58 and 42 ¤ k ¤ 6. As well for the
120-cell, only homology up to dimension 3 was obtainable. HipV RkpC120q;Zq is
unknown, where 4 ¤ i ¤ 298 and 4 ¤ k ¤ 14.

The 23 copies of the second-dimensional barcodes of the e24-cell represent the
24 octahedra that the 24-cell consists of. The existence of the third-dimensional
barcode is because it is a 4-polytope, similar to the existence of the first-dimensional
barcode in the circle and the second-dimensional barcode in the 2-sphere. The
eleventh-dimensional barcode is coming from the cross-polytope property.

Similarly for the 120-cell, the 119 copies of barcodes in dimension 2 are a result
of the fact that the 120-cell consists of 120 dodecahedrons and each one of them
produces one barcode, the last missed copy can be written as a linear combination
of the 119 copies.

Further computations and interpretations are indeed needed for the two inter-
esting types: hypercubes and 4-polytopes.

73





Open questions and further
research

Chapter 2

– For the 2-Sphere, prove computationally that H3pV RrpXqq � 0, when
r exceeds the diameter of a 3-simplex (see Section 2.2.3).

– Prove Conjecture 2.2.1 (see Table 3.3).

Chapter 3

– Prove conjecture 5.7 of [AlAC�] (see Theorem 5.4 and Remark 5.5, 5.6
in the same reference).

– Determine the homology and then characterize the homotopy types
of VRrpS2q and ČrpS2q for larger values of r (check the interleaving
property of the two complexes and Theorem 1.3.2).

– Try to do the same for Vietoris-Rips complexes of higher dimensional
spheres of a larger scale r.

– Investigate the homotopy types of VRrpT nq and ČrpT nq when r gets
larger, and where T n � pS1qn is an n�dimensional Torus.

Chapter 4

– Complete the homology computations of the hypercubes and 4-Polytopes
tables (see Section 4.1 and 4.2).

– Determine the homotopy types of the hypercubes and the 4-Polytopes.

– Specify the homotopy types of Catalan solids.

– Specify the homotopy types of Archemidean solids.
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Appendix A

Barcodes

The following plots represent barcodes of the rhombic triacontahedron and differ-
ent Thomson solids. These outcomes were summarised in Section 2.2.2.

Figure A.1: Barcodes of Rhombic triacontahedron.
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(a) Thomson 35 (b) Thomson 40

(c) Thomson 50 (d) Thomson 65
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(a) Thomson 100 (b) Thomson 150

(c) Thomson 400 (d) Thomson 1500
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Appendix B

Simplices and their facets

These facets were determined thanks to the gap code written by Thomas Titz-Mite.
See [SMW23a].

6-Simplices and their facets

Simplex 1

Simplex 1

Simplex 3 Simplex 4.2Simplex 4.1 Simplex 6 Simplex 7

Figure B.1: Simplex 1 and its facets. Simplex 1 is matched with Simplex 4.1.
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Simplex 2

Simplex 2

Simplex 5 Simplex 6 Simplex 8

Figure B.2: Simplex 2 and its facets. Simplex 2 is matched with Simplex 8.

5-Simplices and their facets

Simplex 3

Simplex 3

Simplex 10 Simplex 11 Simplex 18

Figure B.3: Simplex 3 and its facets. Simplex 3 is matched with Simplex 18.

86



Simplex 4.1

Simplex 4.1

Simplex 9 Simplex 10 Simplex 12 Simplex 14.1 Simplex 14.2 Simplex 17 Simplex 18

Figure B.4: Simplex 4.1 and its facets.

Simplex 4.2

Simplex 4.2

Simplex 9 Simplex 10 Simplex 12 Simplex 14.1 Simplex 14.2 Simplex 17 Simplex 18

Figure B.5: Simplex 4.2 and its facets. Simplex 4.2 is matched with Simplex 9.
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Simplex 5

Simplex 5

Simplex 10 Simplex 12 Simplex 13 Simplex 15 Simplex 16

Figure B.6: Simplex 5 and its facets. Simplex 5 is matched with Simplex 13.

Simplex 6

Simplex 6

Simplex 10 Simplex 11 Simplex 12 Simplex 16 Simplex 17

Figure B.7: Simplex 6 and its facets. Simplex 6 is matched with Simplex 12.
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Simplex 7

Simplex 7

Simplex 11 Simplex 14.1 Simplex 14.2

Figure B.8: Simplex 7 and its facets. Simplex 7 is matched with Simplex 14.1.

Simplex 8

Simplex 8

Simplex 13 Simplex 17

Figure B.9: Simplex 8 and its facets.
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4-Simplices and their facets

Simplex 9

Simplex 9

Simplex 22 Simplex 26 Simplex 28

Figure B.10: Simplex 9 and its facets.

Simplex 10

Simplex 10

Simplex 20 Simplex 21 Simplex 22 Simplex 23

Figure B.11: Simplex 10 and its facets. Simplix 10 is matched with Simplex 22.
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Simplex 11

Simplex 11

Simplex 21 Simplex 23 Simplex 27

Figure B.12: Simplex 11 and its facets. Simplix 11 is matched with Simplex 27.

Simplex 12

Simplex 12

Simplex 21 Simplex 22 Simplex 23 Simplex 24.2Simplex 24.1 Simplex 26

Figure B.13: Simplex 12 and its facets.
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Simplex 13

Simplex 13

Simplex 20 Simplex 24.2Simplex 24.1 Simplex 25 Simplex 26

Figure B.14: Simplex 13 and its facets.
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Simplex 14.1

Simplex 14.1

Simplex 23 Simplex 27 Simplex 28

Figure B.15: Simplex 14.1 and its facets.

Simplex 14.2

Simplex 14.2

Simplex 23 Simplex 27 Simplex 28

Figure B.16: Simplex 14.2 and its facets. Simplix 14.1 is matched with Simplex 28.
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Simplex 15

Simplex 15

Simplex 19 Simplex 22 Simplex 23 Simplex 24.2Simplex 24.1 Simplex 25

Figure B.17: Simplex 15 and its facets. Simplix 15 is matched with Simplex 25.

Simplex 16

Simplex 16

Simplex 20 Simplex 24.2Simplex 24.1

Figure B.18: Simplex 16 and its facets. Simplix 16 is matched with Simplex 24.1.
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Simplex 17

Simplex 17

Simplex 20 Simplex 24.2Simplex 24.1 Simplex 26 Simplex 27

Figure B.19: Simplex 17 and its facets. Simplix 17 is matched with Simplex 26.

Simplex 18

Simplex 18

Simplex 22 Simplex 27

Figure B.20: Simplex 18 and its facets.

95



3-Simplices and their facets

Simplex 19

Simplex 19

Simplex 29 Simplex 33

Figure B.21: Simplex 19 and its facets. Simplix 19 is matched with Simplex 33.

Simplex 20

Simplex 20

Simplex 30 Simplex 31.1 Simplex 31.2

Figure B.22: Simplex 20 and its facets. Simplix 20 is matched with Simplex 30.
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Simplex 21

Simplex 21

Simplex 31.1 Simplex 31.2

Figure B.23: Simplex 21 and its facets. Simplix 21 is matched with Simplex 31.1

Simplex 22

Simplex 22

Simplex 29 Simplex 30 Simplex 31.1 Simplex 31.2

Figure B.24: Simplex 22 and its facets.
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Simplex 23

Simplex 23

Simplex 29 Simplex 31.1 Simplex 31.2

Figure B.25: Simplex 23 and its facets. Simplix 23 is matched with Simplex 29.
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Simplex 24.1

Simplex 24.1

Simplex 29 Simplex 31.1 Simplex 31.2 Simplex 32

Figure B.26: Simplex 24.1 and its facets.

Simplex 24.2

Simplex 24.2

Simplex 29 Simplex 31.1 Simplex 31.2 Simplex 32

Figure B.27: Simplex 24.1 and its facets. Simplix 24.2 is matched with Simplex 32.
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Simplex 25

Simplex 25

Simplex 30 Simplex 31.1 Simplex 31.2 Simplex 32 Simplex 33

Figure B.28: Simplex 25 and its facets.

Simplex 26

Simplex 26

Simplex 29 Simplex 30 Simplex 31.1 Simplex 31.2 Simplex 32

Figure B.29: Simplex 26 and its facets.
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Simplex 27

Simplex 27

Simplex 29 Simplex 31.1 Simplex 31.2

Figure B.30: Simplex 27 and its facets.

Simplex 28

Simplex 28

Simplex 29

Figure B.31: Simplex 28 and its facet.
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2-Simplices and their facets

Simplex 29

Simplex 29

Simplex 34

Figure B.32: Simplex 29 and its facet.

Simplex 30

Simplex 30

Simplex 34

Figure B.33: Simplex 30 and its facet.
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Simplex 31.1

Simplex 31.1

Simplex 34

Figure B.34: Simplex 31.1 and its facet.

Simplex 31.2

Simplex 31.2

Simplex 34

Figure B.35: Simplex 31.2 and its facet. Simplex 31.1 is matched with Simplex 34
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Simplex 32

Simplex 32

Simplex 34

Figure B.36: Simplex 32 and its facet.

Simplex 33

Simplex 33

Simplex 34

Figure B.37: Simplex 33 and its facet.
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An illustration of the complete Hasse diagram of the simplices, where each
number in a node refers to the simplex that has the same number.

1 2

3 4.1 4.2 5 6 7 8

10 18 11 9 13 12 14.1 14.2 15 16 17

22 20 27 21 23 19 24.2 28 25 24.1 26

30 31.2 31.1 29 33 32

34

Figure B.38: The Hasse Diagram of the numbered simplices of the dodecahedron with
the matching.
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führten und in der Dissertation erwähnten Untersuchungen habe ich die Grunds-
ätze guter wissenschaftlicher Praxis, wie sie in der ”Satzung der Justus-Liebig-
Universität Gießen zur Sicherung guter wissenschaftlicher Praxis” niedergelegt
sind, eingehalten.

Gießen, Juni.2023

Nada Saleh


	Acknowledgement
	Deutsche Zusammenfassung
	Topological Prerequisites
	Homotopy
	Simplicial Complexes
	Homology of simplicial complexes
	Persistent homology
	Acyclic matching

	Homology computations of Vietoris-Rips complexes
	Vietoris-Rips of the 1-Sphere
	Point-clouds approximating the 1-Sphere
	Approximating the death values of Vietoris-Rips complexes on the circle
	Monte-Carlo simulations
	Fitting regression models to approximate the death values


	Vietoris-Rips of the 2-Sphere
	Point-clouds approximating the 2-Sphere
	Computational outcomes
	Approximating the third dimensional death values


	Homotopy types of Vietoris Rips complexes of Platonic Solids
	Cross-Polytopes and their boundaries
	Regular Polyhedra in three-dimensional Euclidean space

	Homology of some n-polytopes
	The Hypercubes
	The Tesseract

	4-Polytopes

	Bibliography
	Barcodes
	Simplices and their facets
	Selbstständigkeitserklärung

