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S1. Transformability of Individual Circuit Elements  

Circuit models usually consist of different combinations of resistors R, capacitors C, or even inductors 

L. In electrical engineering, transport processes of charge carriers are usually represented by a parallel 

connection of a resistor with a capacitor forming a so-called RC-element. For example, in case of spatially 

inhomogeneous samples such as ceramics consisting of sintered grains, one distinguishes at least two 

transport processes, i.e., transport in the volume of the grain and across grain boundaries. Such an 

inhomogeneous sample can then be divided into voxels representing mesoscopic regions, which are 

either grain-like or grain-boundary like. This discretization of the sample morphology can then be 

translated into an impedance network of mesoscopic RC-elements which, on the one hand, reflects the 

materials parameters assigned to the microscopic transport processes and, on the other hand, the 

morphology of the sample. 

Physical-based macroscopic equivalent circuit models for describing experimental impedance spectra 

usually consist of a few circuit elements connected in series or in parallel. They are one-dimensional 

(1D) as the macroscopic circuit elements only refer to the microscopic transport processes. Their mostly 

serial interconnection cannot or only crudely account for the sample morphology and microstructure. 

Nevertheless, it is argued that information about the microscopic processes may be extracted when fitted 

to experimental impedance data. In particular, this is assumed for the characteristic time constants of the 

transport processes. This assumption is motivated by the following consideration. The time dependence 

of a transport process described by an RC-element in a homogeneous sample of length L and cross section 

A is solely determined by its microscopic transport parameters, i.e., specific resistivity  and relative 

permittivity r, because 𝑅 = 𝜌
𝐿

𝐴
 and 𝐶 = 𝜀0𝜀r

𝐴

𝐿
 as it holds 𝜏 = 𝑅𝐶 = 𝜌𝜀0𝜀r.  

However, the question remains to which extend this assumption holds in case of inhomogeneous samples 

which consist of a network of RC-elements corresponding to different transport processes which are 

connected in a way fully reflecting the sample’s morphology. For example, mesoscopic electrical 

network models may be three-dimensional (3D) and may consist of several million local equivalent 

circuit elements. In what follows, we will clarify this point. 

 An impedance Zi can generally be expressed as  

𝑍(𝜔) = |𝑍| ⋅ 𝑒𝑖⋅(𝜑+𝜔𝑡), (S1) 

where t, ω, 𝜑, and |Z| describe the time, the angular frequency, the phase angle and the absolute value of 

the impedance, respectively. The impedance for a fixed angular frequency is fully described by its 

amplitude |Z| acting as a scaling factor and the phase angle between the real (Z′) and imaginary (Z′′) part. 

For simplicity and without loss of generality, we will omit the frequency-dependent part eiωt in what 

follows. In a first step, we consider the series and parallel connection of two arbitrary impedances 

Za = |Za|∙ e
iα and Zb = |Zb|∙ e

iβ, respectively. The total impedance can be described as 

𝑍tot
serial = 𝑍𝑎 + 𝑍𝑏 = {

(|𝑍𝑎| + |𝑍𝑏|) ⋅ 𝑒
𝑖⋅𝛼 , if 𝛼 = 𝛽

|𝑍𝑎| ⋅ 𝑒
𝑖⋅𝛼 + |𝑍𝑏| ⋅ 𝑒

𝑖⋅𝛽 , else
 (S2) 
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𝑍tot
parallel

= (𝑍𝑎
−1 + 𝑍𝑏

−1)−1 =

{
 
 

 
 (

|𝑍𝑎| ⋅ |𝑍𝑏|

|𝑍𝑎| + |𝑍𝑏|
) ⋅ 𝑒𝑖⋅𝛼 , if 𝛼 = 𝛽

(
|𝑍𝑎|

2 ⋅ |𝑍𝑏| ⋅ 𝑒
𝑖⋅𝛽 + |𝑍𝑏|

2 ⋅ |𝑍𝑎| ⋅ 𝑒
𝑖⋅𝛼

|𝑍𝑎|2 + |𝑍𝑏|2 + 2|𝑍𝑎||𝑍𝑏| cos(𝛽 − 𝛼)
) , else

 (S3) 

The results indicate that the impedances Za and Zb can be transformed into an equivalent circuit with a 

single impedance of the form Ztot = |Ztot| e
i with  =  only if α = β. In this case, the phase information 

is preserved during the transformation step. Interestingly, although the parallel circuit for α ≠ β can be 

replaced by a serial circuit, the information about the original phase (α, β) is lost during the 

transformation step, since the individual prefactors depend on both phases. 

Secondly, we increase the complexity of the system by considering the parallel connection of two 

different transport paths typically observed in experiments. We assume that each serial path is described 

by two impedances that differ in amplitude and phase angle, but we assume that the same phase angles 

α and β are involved in both serial paths. The total impedance can be expressed as 

𝑍tot = (
1

𝑍a1 + 𝑍b1
+

1

𝑍a2 + 𝑍b2
)
−1

=
(|𝑍a1| ⋅ 𝑒

𝑖⋅𝛼 + |𝑍b1| ⋅ 𝑒
𝑖⋅𝛽) ⋅ (|𝑍a2| ⋅ 𝑒

𝑖⋅𝛼 + |𝑍b2| ⋅ 𝑒
𝑖⋅𝛽)

(|𝑍a1| + |𝑍a2|) ⋅ 𝑒𝑖⋅𝛼 + (|𝑍b1| + |𝑍b2|) ⋅ 𝑒𝑖⋅𝛽
 (S4) 

It is of particular interest to investigate whether the superposition of the individual impedances contains 

parts showing the pure phase angles α and β. For this purpose, we rearrange equation (S4) and indeed 

identify parts that contain exclusively the phase information either of α or β: 

𝑍tot =
|𝑍a1| ⋅ |𝑍a2|

|𝑍a1|+|𝑍a2|
⋅ 𝑒𝑖⋅𝛼 +

|𝑍b1| ⋅ |𝑍b2|

|𝑍b1|+|𝑍b2|
⋅ 𝑒𝑖⋅𝛽 

+
(|𝑍a1|⋅ |𝑍b2| − |𝑍a2|⋅ |𝑍b1|)

2 ⋅ 𝑒𝑖⋅(𝛼+𝛽)

(|𝑍a1| + |𝑍a2|) ⋅ (|𝑍b1| + |𝑍b2|) ⋅ ((|𝑍a1| + |𝑍a2|) ⋅ 𝑒𝑖⋅𝛼 + (|𝑍b1| + |𝑍b2|) ⋅ 𝑒𝑖⋅𝛽)
 

(S5) 

The expression consists now of three terms, one with the phase information α, one with the phase 

information β, and one mixed contribution. The effective amplitudes of both “pure” terms result from a 

parallel connection of the absolute impedances |Zi| with identical phases. The third (mixed) term can be 

rearranged similar to equation (S3) in order to obtain a real prefactor: 

The structure of this expression and thus the conclusions derived from it are comparable to the 

“asymmetric” (with respect to the phases involved) parallel circuit of two RC-elements in the lower 

expression of equation (S3). 

𝑍mix =
(|𝑍a1|⋅ |𝑍b2| − |𝑍a2|⋅ |𝑍b1|)

2 ⋅ 𝑒𝑖⋅(𝛼+𝛽)

(|𝑍a1| + |𝑍a2|) ⋅ (|𝑍b1| + |𝑍b2|) ⋅ ((|𝑍a1| + |𝑍a2|) ⋅ 𝑒𝑖⋅𝛼 + (|𝑍b1| + |𝑍b2|) ⋅ 𝑒𝑖⋅𝛽)
 (S6) 

with 𝜉 = |𝑍a1|⋅ |𝑍b2|;  𝜇 = |𝑍a2|⋅ |𝑍b1|;  𝛿 = (|𝑍a1| + |𝑍a2|);  𝛾 = (|𝑍b1| + |𝑍b2|)  

 =
(𝜉−𝜇)2⋅𝑒𝑖⋅(𝛼+𝛽)

𝛿𝛾⋅(𝛿⋅𝑒𝑖⋅𝛼+𝛾⋅𝑒𝑖⋅𝛽)
=

(𝜉−𝜇)2⋅(𝛾𝑒𝑖⋅𝛼+𝛿𝑒𝑖⋅𝛽)

𝛿3𝛾+𝛿𝛾3+2⋅𝛿2𝛾2⋅cos(𝛽−𝛼))
 (S7) 
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Overall, this example illustrates that the phase information of the constituents of the serial circuits is 

always part of the superimposed (phase of the) total impedance if the transport process a and b occur in 

both serial paths. If this is not the case, e.g., |Za1| = 0, the pure phase information α is lost, since the 

corresponding prefactor in equation (S5) becomes zero. 


