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Sven Schulz Zusammenfassung

Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem semilinearen parabolischen Anfangs-
Randwertproblem

U — yy = f(u), u(-,0) =up, u(0)=u(l)=0. (P)

Dieses Problem ist das einfachste Modell einer Warmeleitungs- oder Reaktions-
Diffusionsgleichung. Der von uns betrachtete superlineare Fall spielt insbesondere
bei der Modellierung von Verbrennungsprozessen eine Rolle, konkrete Anwen-
dungen finden sich in [Hen81, Kapitel 2]. Aus mathematischer Sicht induziert
(P) einen HalbfluB ¢ auf dem Zustandsraum H}([0,1]), an dessen dynamischen
Eigenschaften wir interessiert sind.

Aus technischer Sicht hat der HalbfluB ¢ sehr gute Eigenschaften: er ist kom-
pakt, besitzt eine Gradientenstruktur, und ist riickwértseindeutig (d.h. die Zeit-
1-Abbildung ist injektiv). Zudem ist, vereinfacht gesagt, die Zahl der Nullstellen
entlang Losungskurven monoton fallend ([Mat82]). Dieses zweite, diskrete Lyapu-
nov Funktional wurde von vielen Autoren genutzt, um weitere Eigenschaften des
Halbflusses zu beweisen. So schneiden sich stabile und instabile Mannigfaltig-
keiten transversal ([Hen85]), Nichtdegeneriertheit der Gleichgewichtslosungen ist
eine generische Eigenschaft ([BC84]), und im dissipativen Fall ist der globale
Attraktor des Flusses ein endlichdimensionaler C'-Graph. Im dissipativen Fall
wurde dariiberhinaus mit Hilfe der Transversalitidtseigenschaften und Conley In-
dex Methoden von Brunovsky und Fiedler ([BF88, BF89]) die Frage der Existenz
verbindender Orbits zwischen den Gleichgewichtslosungen vollstédndig gelost.

Im superlinearen Fall gibt es unendlich viele Gleichgewichtslosungen, und fiir
diesen Fall scheint es keine vergleichbaren Resultate iiber verbindende Orbits oder
Flussdquivalenz zu geben. Die zahlreichen Arbeiten iiber dieses und dhnliche su-
perlineare Probleme, z.B. von Marek Fila, Hiroshi Matano, Peter Polacik, Pavol
Quittner und anderen, befassen sich iiberwiegend mit Blow-Up Losungen. Uber
global beschrénkte Losungen scheint wenig bekannt zu sein. In der vorliegenden
Arbeit gelingt es uns, fiir eine sehr grofie Klasse von superlinearen Nichtlineari-
tdten genau anzugeben, welche Gleichgewichtslosungen durch heterokline Orbits
verbunden werden, und welche nicht. Fiir eine Teilklasse superlinearer Probleme
(diese enthélt den Modellfall f(u) = u|u|P oder auch f(u) = u|u|P — Au) konnen
wir beweisen, dafl bestimmte endlichdimensionale invariante Mengen A, o struk-
turell stabil sind (d.h. falls f und f ,nahe* beieinander liegen, so gibt es einen
Homoomorphismus Ay o — Ay e der Orbits auf Orbits abbildet, und die zeitli-
che Orientierung der Orbits erhélt). Die Mengen A, o enthalten auch Blow-Up
Losungen (d.h. unbeschriankte Losungen mit endlicher Existenzzeit), d.h. diese
partielle strukturelle Stabilitéit erstreckt sich auch auf das Blow-Up Verhalten.

Wir erhalten unsere Resultate auf folgende Weise: Eine superlineare Funktion
f wird ausserhalb eines kompakten Intervalls so abgeéndert, dafl ein dissipati-
ver Halbfluss entsteht. Da der Zustandsraum H} ([0, 1]) kompakt nach C°([0, 1])
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einbettet, stimmt dieser abgeéinderte Halbfluss auf einer Nullumgebung mit dem
urspriinglichen Flufl ¢ iiberein. Wird nun das Intervall vergroflert, auf dem f un-
verandert bleibt, so wichst auch diese Nullumgebung entsprechend, und es lassen
sich die Ergebnisse iiber den dissipativen Fall anwenden und auf ¢ iibertragen.
Diese Ergebnisse sind jedoch in der Mehrzahl nur fiir hyperbolische Halbfliis-
se richtig, was den skizzierten Ansatz technisch erschwert. Beim Abschneiden
der superlinearen Funktion entstehen im modifizierten Flufl notwendig zuséatzli-
che Gleichgewichtslosungen. Diese diirfen natiirlich nicht ausgeartet sein. Zudem
diirfen sie die Struktur der ,,Originalgleichgewichte nicht beeinflussen, um eine
Riickiibertragung der Ergebnisse auf den superlinearen Fall zu ermdoglichen. Fiir
das Resultat {iber strukturelle Stabilitét ist es dariiberhinaus notwendig, auch ste-
tige Familien von Funktionen so abzuschneiden, daff wiederum stetige Familien
von Funktionen entstehen. Auch die Position, ab der die Funktionen abgeédndert
werden, muf3 stetig variiert werden konnen.

Dies alles sicherzustellen ist der technische Kern dieser Arbeit (Kapitel 3).
Konkret werden die Nichtlinearititen, nach einem kurzen geglitteten Ubergang,
konstant fortgesetzt — damit erfiillen sie die Wachstumsbedingung fiir die Exis-
tenz eines globalen Attraktors. Dabei geht entscheidend ein, dafl die Gleichge-
wichtslosungen von (P) Losungen gewohnlicher Differentialgleichungen zweiter
Ordnung sind. Als zweidimensionales System konnen zur Analyse die Struktur
des Phasenraumes und Shooting-Curve Techniken verwendet werden. Mit Hilfe
solcher Shooting-Curve Methoden 148t sich insbesondere auch die Nichtdegene-
riertheit von Gleichgewichtslosungen charakterisieren. Einige weitere, spezielle
Hilfsmittel werden in Abschnitt 3.3.1 entwickelt. Zudem erfiillen die Ableitungen
dieser stationdren Losungen nach verschiedenen Gréflen lineare Differentialglei-
chungen zweiter Ordnung, auf die Sturmsche Vergleichssidtze angewandt werden
konnen.

Mit Hilfe dieser technischen Resultate konstruieren wir in Abschnitt 4.1 eine
Folge (¢,) dissipativer Halbfliisse, die jeweils eine wachsende Zahl von Gleich-
gewichten der superlinearen Gleichung enthalten. Aus [BF89] folgt leicht, dafl
unter den angegebenen Bedingungen fiir hinreichend grofie n verbindende Or-
bits beziiglich ¢, existieren. Es ist allerdings nicht klar, daf§ die verbindenden
Orbits komplett im unverdnderten Bereich des Halbflusses liegen, wenn dies fiir
die Endpunkte des Orbits gilt. Daher mufl noch sichergestellt werden, dafl die
gefundenen Verbindungen fiir n — oo nicht abreiflen. Dies gelingt mit Energiear-
gumenten und dadurch, dafl wir die Nullstellenzahl der zusétzlich entstehenden
Losungen in geeigneter Weise kontrollieren kénnen.

Um fiir ,, gleichméBig superlineare” f genauere Aussagen dariiber zu erhalten,
in welchem Sinne ¢ von ¢, approximiert wird, konstruieren wir nun eine stetige
Familie (¢y ), von dissipativen Halbfliissen, die fiir ganzzahlige v mit den vorher
Konstruierten iibereinstimmen. Somit existiert ein globaler Attraktor von ¢, und
es stellt sich die Frage, ob diese invariante Menge fiir v nahe bei 7 in ¢, erhalten
bleibt. Es stellt sich heraus, daf fiir v > n lokale Attraktoren von ¢, existieren,
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die stetig in v variieren, und fiir n = v mit dem globalen Attraktor {ibereinstim-
men. Dariiberhinaus sind die Fliisse auf diesen lokalen Attraktoren konjugiert,
mit anderen Worten: die Struktur bleibt fiir alle v > n erhalten, und wird durch
die mit wachsendem v nach und nach hinzukommenden energierreicheren Gleich-
gewichte nicht beeinflusst.

Mit diesen Resultaten erhilt man dann leicht die Konjugation zweier super-
linearer Fliisse auf n-dimensionalen invarianten Mengen, die durch Grenziiber-
gang aus den genannten lokalen Attraktoren entstehen. Diese Konstruktion lie-
fert {iberdies eine Interpretation von Blow-Up als Approximation von oo durch
eine wachsende Folge von (lokalen/globalen) Attraktoren: Die zusétzlich durch
das Abschneiden entstehenden Gleichgewichtslésungen variieren stetig in v, und
konvergieren in der H[l)—Norm gegen oo fiir v — 0.

Fiir die hervorragende Betreuung der Arbeit danke ich Herrn Thomas Bartsch,
ebenso danke ich Herrn Hans-Otto Walther fiir die Arbeit als Gutachter. Als Aus-
druck meiner Freude iiber viele Dinge, die wihrend der Arbeit an dieser Disser-
tation geschehen sind, widme ich diese Arbeit Alexandra, Anna-Katharina und
Nils.
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CHAPTER 1

Introduction

We are concerned with solutions of the onedimensional semilinear parabolic prob-
lem

U — Uyy = f (1), u(-,0) =up, u(0)=u(l)=0 (P)
on the unit interval with a smooth nonlinearity f. This problem is the simplest
model example of an heat or reaction-diffusion equation. With a superlinear
nonlinearity problems of that type appear in the theory of combustion. Several
applications are mentioned in [Hen81, Chapter 2]. This problem induces a differ-
entiable semiflow ¢ on H}([0,1]), the dynamics of which we want to investigate.
Definitions and details will be given in section 2.

A very important property of this problem is that, roughly speaking, the num-
ber of zeros is nonincreasing along solutions of (P). This was showed by Matano
([Mat82]). His result has been used by Angenent ([Ang86]) and Henry ([Hen85))
to show that stable and unstable manifold necessarily intersect transversally. It
has also been proved by Brunovsky and Chow ([BC84]) that nondegeneracy of
equilibrium solutions is a generic property. The semiflow has several nice fea-
tures (compactness, backward uniqueness, gradient structure) and finally the
equilibrium solutions are solutions of a twodimensional autonomous initial value
problem. The twodimensional flow resulting from this IVP can be examined by
phase-plane analysis and shooting curve techniques. So from a technical point of
view the problem (P) looks rather promising.

There has been a lot of work on the dynamics of ¢ in the dissipative case.
Under the growth condition lim supy, _, t=1f(t) < 7 the semiflow ¢ admits a
compact global attractor which is the union of the unstable manifolds of all equi-
librium (i.e. time-independent) solutions. This means that the essential dynamics
of ¢ can be described on a finite-dimensional invariant set, which happens to be
a smooth graph in our case ([Bru90]). This attractor is also the union of the equi-
librium solutions and the connecting, or heteroclinic, orbits between equilibria.
The question which equilibria are connected by heteroclinic orbits has been solved
completely by Brunovsky and Fiedler ([BF88],[BF89]) in the (generic) hyperbolic
case. They used the nonincrease of the zero-number and Conley Index argu-
ments, extending previous partial results ([CS80], [Hen81, §5.3],[Hen85]). For
dissipative Morse-Smale systems Oliva ([Oli02]) obtained a structural stability
result, showing that the flows on the attractors of two "close” Morse-Smale semi-
flows are conjugate. Lu ([Lu94]) transferred a classical result of Palis and Smale
([PS70]) to ¢ using the existence of an inertial manifold ([CL88]). He showed
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that two close semiflows are conjugate not only on the attractor, but also on an
open neighborhood of the attractor.

The problem (P) (and similar problems) with superlinear nonlinearity is a
very active field of research. Several people (e.g. Marek Fila, Hiroshi Matano,
Peter Polacik, Pavol Quittner and others) have proved results about blow-up
solutions. About the set of globally bounded solutions however, not much is
known. It is known that in this case infinitely many equilibrium solutions exist
(see eg. [Str80]), and trajectories either blow up in finite time or converge to one
of the equilibria. So we will consider both the set of globally bounded solutions
and the union of all unstable manifolds, and finite dimensional approximations
or subsets of these. Our first main results is to extend the results of Brunovsky
and Fiedler to give a complete description of the connecting orbit structure of a
very large class of superlinear nonlinearities in Theorem 4.2. Apparently there
is no similar result about connecting orbits for superlinear nonlinearities. The
second main result is the conjugacy of two close flows on certain finite dimensional
invariant sets, including a "stability of blow-up behaviour” result (Theorem 4.5).
Although we were not able to prove structural stability w.r.t. one of the infinite-
dimensional sets mentioned above, this result also seems to be completely new.
This approach could certainly be refined to investigate blow-up phenomena by
"dissipative approximation”, cf. section 4.3.

Technically we use a straightforward approach. Modifying a given superlinear
f outside a compact interval I we get a dissipative semiflow. Due to the com-
pactness of the embedding of the state space H}([0,1]) in the space of continuous
functions this modified semiflow coincides with the original one on an open ball in
X. Increasing I increases this ball, so we get an sequence of dissipative semiflows
@n. These @, necessarily contain equilibrium solutions that do not exist in ¢,
but we are able to make sure that these additional solutions are nondegenerate.
We apply the results on connecting orbits to these ¢, and are able to show, that
these connections w.r.t. ¢, persist as n — oo. For the structural stability results
we have to construct a continuous family ¢, of dissipative flows approximating
@. As v — oo the number of equilibria increases, so necessarily degenerate sta-
tionary solutions appear. By controlling the zero number of these solutions we
are able to apply results for global attractors to local attractors of ¢y.

The technical part, cutting of a family of superlinear functions appropriately,
will be done in chapter 3 after collecting everything we need to know about the
parabolic flow in chapter 2. These results will then be applied in chapter 4.

1.1 Notation

We will work mostly in standard Lebesgue- and Sobolev Spaces. Let L? =
L%([0,1]) be the space of [equivalence classes of] square integrable functions with

the usual norm ||ufly := ([ uz)%. The functions in L? with (weak) derivative in

3
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L? form the space H!, endowed with the norm |jul| = (|jul3 + Hux||%)% Our
basic space is X := H}, the completion of C=°([0,1]) (C* functions with compact
support) wrt. || -||. By Poincaré inequality (cf. section A.2), |[u||3 < 72 |luy||3

for u € X, implying
uxll3 < lul? < (14 72) [Jux 3.

Let H? be the space of functions in L? with first and second derivative also in
L%, and L® = L*([0,1]) the space of essentially bounded functions on [0, 1] with
||tt]|0 = esssup{u(x) : x € [0,1]}.

For € > 0 we denote by Uc(u#) (Be(u)) the open (closed) ball of radius €
around u — if it is clear from the context we do not denote the underlying set or
topology, usually it will be IR, an interval in R or X.

For a manifold A C X and x € A TyA is the tangent space of A in x.
Two manifolds A, B intersect transversally, A M B, if TyA + TyB = X for all
x € AN B. This implies that A N B is a submanifold of X, the dimension of
which is dim A — codim B if both numbers are finite. Two submanifolds A, B of
a manifold C C X intersect transversally in C, A M¢ B, if TyA + TxB = T,C for
every x € AN B. For manifolds we use the notation 0A := A\ A.

For x € X, B C X let dist(x,B) := infycp ||x —y[|. The mapping x
dist(x, B) is continuous. For A,B C X let (A, B) := sup, ., dist(x, B) (note
that (A, B) # 6(B, A) in general). We call a family (A;); of sets upper (lower)

t—to t—ty

semi-continuous at fg, if 6(A¢, Ay)) —— 0 ((5(At0,At) ey 0). We call it
continuous at ty if it is both upper and lower semi-continuous. Two smooth
submanifolds A, B are "e-close in the Cl-topology” if there is a C!-diffeomorphism
X : A — B such that || x —id||, <e.




CHAPTER 2

The parabolic semiflow

2.1 Existence and basic properties

The equation (P) with a twice differentiable f generates a semiflow on the space
X (it is well-posed in X, cf. the following proposition). In fact many assertions
used in this work hold for f only C!. We will always assume f to be C? though
— if weaker assumptions are sufficient we will sometimes remark this explicitly.
We rewrite (P) in terms of operators to apply a general theory. Let A be the
Dirichlet realization of u +— u” in L?: A is defined on H? N X, self-adjoint and
< 0 ([CH98, Proposition 2.6.1]), so —A is a sectorial operator and generates an
analytic semigroup ([Hen81, Example 2 on p. 19; Theorem 1.3.4]). Let f : X3
u — fou € L?([0,1]) be the superposition operator induced by f (cf. Lemma
A.1). Then the following holds:

Proposition 2.1. For every ug € X there is a mazimal T™*(ug) € (0,00] such
that the Cauchy Problem

{u(t) + Au(t) = f(u) t>0
M(O) = Uy
has a solution

u € C(I", X)nCY(I*+,L3([0,1])) N C(I*, H3([0,1])),

where It = I (ug) := [0, T™%(ug)). These solutions induce a local continuous
semiflow ¢ on X. We set

Dt ={(tug) e Ry x X:t €I (up)}
and Dt =D\ ({0} x X). For any s > 0 we also set

Ds ={up € X:(s,up) €D}, Doo= () Ds.

s>0

So we can write
(pt : Dy 2 ug— @(tug) € X

and @ has the following additional properties:
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(1) If ||@(t, ug)| is uniformly bounded on I(ug) then T™*(uy) = oo.
(it) D is open in [0,00) X X and Ds is open in X for any s > 0.
(i4i) @ is continuous and C' in its second argument

(iv) @ is compact, meaning that for T € (0,00, V.C D1, 0< €1 <€ < T and

M(e)= |J otV), i=12

te [eirT)

boundedness of M(e1) (in X) implies boundedness of M(€>) in H?> and thus
(by Sobolev embedding) precompactness of M(€2) (in X). In particular this
implies that for uy € Do @([0,00),1g) is precompact if it is bounded.

(v) u is a classical (pointwise) solution of (P) on (0, T™*(ug)) x Q, i.e. it is
Clin (t,x) and C? in x.

(vi) For any t > 0 both @' and D¢ are injective.

Proof. All assertions are stated in Theorems A.3 and B.2 in [AB05]. The hy-
pothe§es of B.2 demand a polynomial bound on f’. Since in the one-dimensional
case f is C! uniformly on bounded sets due to the continuous embedding X «——

C([0,1]) (Lemma A.1), this restriction is not necessary. 0O
Now that we have a semiflow we can recall the following notions:

Remark 2.2. 1. Time independent solutions of (P), i.e. fixed points of ¢, are
called equilibria (equilibrium solutions, stationary solutions) of @. Let E denote
the set of equilibria. A solution v € E is hyperbolic or nondegenerate, if 0 is no
eigenvalue of the linear operator

Ly: H>NX — L2 : 1 gy + f(0(x))u.

L, is a densely defined self-adjoint operator and bounded from above (which
follows from the Kato-Rellich theorem, [RS75, Thm X.12], as L2 > u — f'(v) -
u € L? is bounded and symmetric), thus it generates an analytic semigroup e~ !,
see [Hen81, Theorem 1.3.2]. By [Wei76, Satz 8.26] the spectrum of L, consists
only of eigenvalues, and these are simple.

We call ¢ hyperbolic if all equilibria are hyperbolic. We call a set M C X
hyperbolic if all v € EN M are hyperbolic. For v € E let i(v) = |[{o(Ly) N
(0,00)}| < oo denote the Morse index of v.

2. Let v € E be hyperbolic, A1(v),A(v),... the eigenvalues of the operator
L, defined above with eigenvectors e1(v),ez(v),.... These eigenvectors form
a complete orthogonal system in L2. As e;(v) € X we can define XJ(v) =
span{ey,...,en} C X, X"(v) = cx(span{e,41,...}) and get closed subspaces
of X with X = Xj(v) ® X"(v). Let P/'(v), P"*(v) denote the corresponding
projections onto these subspaces.

6
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3. By the backward uniqueness for u € X there is a minimal T™" € [—o0,0] such
that ¢(-,u) is defined on

I(u) — (Tmin, TmaX).

00,0] and 7 (u) := q)li(u) denote the positive/negative
v (1) Uy~ (u) the orbit through u. For B C X let
)-

Let I~ (u) :=I(u)N(—
halforbit of u, vy(u)

7 H)(B) = Uyep v'*) (u

So we can extend the domain of definition of ¢ to
D={(t,up) e Rx X:tel(uy)}
and also extend the definition of Dy to negative times.

4. A set S C X is positively/negatively invariant if y*(S) C S,y (S) C S re-
spectively, and invariant if 7(S) = S. Clearly S is both positively and negatively
invariant if and only if it is invariant. We call S locally (positively /negatively)
invariant if for all x € S there is t > 0 such that ¢~ (x) C S (¢! (x) C S /
(=0 (x) C S respectively).

5. For B C X let

w(B):={u€X:3t, — coJu, € BNDy, : ¢"(u,) — u}
a(B):={u€X:3t, —»ocoJu, € BND_y,: ¢ "(uy) — u}

denote the w- and a-limit sets of B. If B C Dy N D_ these definitions are
equivalent to the usual formulas for semiflows defined for all times:

w(BNDw) = () J ¢ (BN De «(BND ) =[] Je¢ (BND o)

s>0t>s s>0t>s

If B = {u} then w(B) = @, a(B) = @ if T"™(u) < oo, T™(y) > —o0
respectively.

We write a(u) = a({u}), w(u) = w({u}). Often a(u),w(u) contain only a
single element (cf. Proposition 2.3 a)), in these cases we identify these sets with
their unique element.

6. Let for v € E

t—o0

WH(v) :={y € D_w: ¢ "(y) — v}

t—o0

W¥(0) :={y € Do : ¢'(y) — v}

denote the unstable and stable set of v, respectively.
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7. The energy functional
1 1
JiX >R, ue s} - /F(u(x))dx, F(u) = /f(v) do.
0
is C! on X and decreases strictly along non-constant solutions: For a solution u

1
% (u(t)) = —/u%dx <0,
0

so @ is a gradient-like semiflow.

8. If f is such that J is bounded from below and J(u) — oo as |[u]| — oo, then
we call ¢ a dissipative gradient-like semiflow.

9. We will shortly speak of the restriction ¢|p to a set M C X instead of the
restriction of ¢ to

D= {(x, t) e D:xe M, V0 (x) ¢ M}

Similarly we say that the semiflows ¢ and ¢ coincide on a set M when ¢|py = ¢|m
in the sense defined above.

10. If ¢ is another semiflow on X induced by (P) with nonlinearity g, then ay,
Jg, etc. bear the obvious meaning, for a family of semiflows @g we often write
«g, Jo etc. when there is no danger of confusion.

11. Let for i € {1,2} V; C X be open sets, {0} x V; C O; C Rj x V; open
such that for all x € V; the sets L' (x) := {t : (t,x) € O;} are relatively
open intervals in [0,00), and let ¢; : O; — V; be continuous semiflows. We call
these conjugate or equivalent if there is an homeomorphism h : V; — V; and a
continuous 7 : 01 — R{ with T(x,) : [1(x) — L(h(x)) bijective and increasing
for every x € V; and

h(gh(x)) = 93 (h(x)).

So h maps orbits of ¢ onto orbits of @y, preserving the sense of direction in time.

Proposition 2.3. a) Let u € X. If v (u) is bounded in X, then w(u) consists
of a single equilibrium solution. If v~ (u) is precompact in X, then a(u) is a
nonempty, compact, invariant and connected subset of E. If ¢ is hyperbolic a(u)
consists of a single element.

b) u € E is nondegenerate if and only if the spectrum of D' (u) is disjoint from
the unit circle for t > 0 (and many authors define nondegeneracy that way).

8
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c) For an hyperbolic u € E the sets W*(u), W*(u) are C1 submanifolds of X
with Aim(W*" (u)) = codim(W*(u)) = i(u).

d) Let f be C?, v € E hyperbolic, n :=i(v). Then with the notation from Remark
2.2 the following assertions hold:

T,W¥(v) = X7 (0v)
T,W*(v) = X"(0)

Pl(U) — v e e
lo*(u) =l x el

t
s .9 (u) v tooo e
Vu e W(v)3dk € {n,... }: lot(u) — ol x el g2

Vue W'(v)3k € {1,...,n}:

Proof. 1f " (u) is bounded it is precompact as ¢ is compact, so w(u) and
a(u) are nonempty, closed, invariant, connected and bounded by [Hal88, Lemmas
3.1.1,3.1.2]. Now J(y"(u)) is bounded, so there is a sequence t, — oo such that
%](qpt" (u)) = ||%q0t"(u)||% — 0, so w(u) (and similarly a(u)) contain at least
one equilibrium solution. By [Mat78, Theorem A] w(u) has at most one element.
If uy,up € a(u) choose sequences (sy)p, (tn)n with t, < s, < t,_1 for all n,
sp — —o0, t, — —oo and @' (u) — uy, @ (u) — uy. As J is strictly decreasing
along nonconstant solutions J(#1) = J(uz), which implies a(u) C E. Equilibria
are critical points of @, so they are isolated if ¢ is hyperbolic. This shows a).

To see b) we note that by [AB05, Theorem A.3] h(t) = D¢'(vp) is the mild
solution of ¥(t) — L,v(t) = 0, so Dg’(vg) = e Ltvy. Now there are subspaces
Y1, Y, of L%([0,1]) such that L2([0,1]) = Y; & Y, with dim(Y;) < oo, the Y;
being invariant w.r.t.. the restrictions L; of L, to Y; N D(Ly,) and (L) =
o(Ly) N (—00,0], o(Ly) = o(Ly) N (0,00) (see section 1.5 of [Hen81] for all this,
cf. also Remark 2.2 2). Now by construction ¢(Lp) is bounded away from 0, so
e~ 2! is strictly contracting for t > 0, and o(Ly) = {Aq,..., A}, so o(e 1) =
{e=™Mt, ..., e} and it follows that 0 € o(L,) <= 1€ o(D¢(u)).

c) This can be found in Henry [Hen85] in chapter 6. Theorem 6.1.9 in [Hen85]
though is false as stated, as simple counterexamples show (this Theorem is used
to globalize the local (un-)stable manifolds). A correct proof for this can be found
in Theorem 2.2 in [ABO05] in case of the stable manifold. The same modifications
can be done to prove the unstable case.

Alternatively one can use [Bru90], where unstable manifolds are shown to be
global Cl-graphs in the case lim SUP || —oo @ < 72, If this condition is not

satisfied choose R > 0 and 0 < § < 1 and make f constant outside [-R — 6, R +
0] with a smoothing on (—R — 6, —R) U (R, R+ ¢) to make the modified function
C?. Then W¥(v) NUR(0) is a C'-submanifold by [Bru90]. By letting R — oo the
assertion follows because X is compactly embedded in Cj.

d) follows from Theorem 2.1, Lemma 3.1 and Theorem 3.2 in [BF86]. O
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Definition 2.4. Let f € C2. If @ is hyperbolic, ¢' and D¢' are injective for all
t > 0, and for v,w € E the manifolds W"(v), W*(w) intersect transversally if
they intersect at all, we call ¢ a Morse-Smale semiflow.

For hyperbolic ¢ by [Hen85, Theorem 7] the stable and unstable manifolds
always intersect transversally for f & C?, so by Proposition 2.1 (vi) @ is Morse-
Smale if ¢ is hyperbolic.

2.2 Dissipative semiflows

Definition 2.5. a) A set B C X attracts a set C C X under ¢ if C C Do and
5(¢'(C),B) — 0 as t — oo.

b) We call ¢ dissipative if there is a bounded set B C X which attracts each
bounded set of X under ¢. In this case we will also call f dissipative.

c) An invariant set A is a global attractor if it is a mazimal compact invariant
set (i.e. it contains any compact invariant set) which attracts each bounded set
B C X. We will most of the time call global attractors just attractors.

d) A set A, is a local attractor if it is compact, invariant and there is an open
neighborhood U of A, such that A, attracts U.

So we are ready to define the set of "dissipative functions™

Proposition 2.6. Let

G;:i= {f ‘R — ]RCz,limsup@ < 7'(2}.

|u| —o0
Then for f € Gy the parabolic flow induced by (P) is dissipative and admits a
connected global attractor given by

t—o0

A=W'E)={y€D-w:9 '(y) — E}.
If f € G with
Ga:={f € Gy: all equilibria of ¢ are nondegenerate}

then E is finite and
A= W*(u).
ueE

This condition on f to be dissipative is the standard hypothesis, see for ex-
ample [Lu94, Bru90, BF89, BF88]. As references for a proof usually [Hen81] or

[Hal88] are given, where the condition on f is limsup @ < 0. The estimates

in the proof have to be sharpened somewhat in our case, we give a detailed proof
in appendix A.2.

10
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Remark 2.7. The bound on f is sharp: For @ — 712 the assertion may or

may not hold, but for lim sup flu) ( ) > 772 @ is not dissipative. From the proof of
Proposition 2.6 in section A.2 1t is easy to see that J(Ae;) — —o0 as A — oo, so
there cannot be a compact attractor.

We note the following corollary:
Corollary 2.8. For f € G ¢ is a (dissipative) Morse-Smale semiflow.
Lemma 2.9. Let f € Gy and Ay a local attractor of . Then Ay is stable, i.e.

YV D Ag open IV O W D Ag open: v, (W) C V. (2.1)

Proof. Ap is alocal attractor, so we can choose U D Ag open with (@' (U), Ag) —

0. In particular there is tg > 0 such that [fo®)(U) C V. Let € := dist(dV, Ag) >
0, ug € A, t € [0,tp]. By continuity of ¢ there is an open Uy, 3 1o such that
@' (Uyyt) C Ue(9'(ug)). By compactness of [0, tg] there is an open Uy, 3 1 such
that @0l (U,,) C Uc(Ap). By compactness of Ag there is an open U D W O Ay
such that @0fl(W) C U (Ag) C V. As ¢llo®) (W) C ¢lo®)(U) C V we have
proved (2.1). O

2.3 Non-dissipative semiflows

f()

Increasing L = limsup the flow ¢ gets "less and less dissipative™ If for

example 7121n% < lim # 7t?(n + 1)? there is a n-dimensional subspace X7 of
HY where J(u) — —o0 as |lu|| — oo while it is bounded from below on (X)=,
cf. section A.2. On the other hand a proof similar to the one of Proposition
3.10 b) shows that the number of sign changes and the Morse indices of stationary
solutions are bounded as long as L is finite (this "zero-number” and its connection
to the Morse index will be discussed in detail below).

We are primarily interested in definite superlinear flows, i.e. the case L = oo.
Now for the non-dissipative semiflow u € X may have an unbounded positive
halforbit existing only for a finite time. Basic tools for this case are a-priori
bounds and a ”"good” behavior of the energy functional, and to ensure these we
will have to impose stronger conditions than just L = co. We define the following
set of functions:

Gi={f R—RC*: IR>0,u>2:V|u| > R: f(u)u > pF(u),
F(iR)>0},

(2.2)

where F(u fo x)dx. In particular for f € G we have F(u) > C - |u|* for
lu| > R, and thus L = 0. The reason for considering f € G is the following
Lemma:

11
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Lemma 2.10 (Quittner). Let f € G.
a) Let5,Cy > 0. Then there exists a constant C = C(3,Cy) such that ||ug|| < Co
implies

19" (o) || < C for t € [0, T™*(ug) — ), (2:3)

where oo — 6 = 00.

b) The mapping X 3 ug — T™*(ugy) € (0,00] is continuous. If T™*(uy) < oo
then
J(¢'(ug)) — —o0 ast T T™%(uy). (2.4)

Remark 2.11. This Lemma also opens another way to tackle the connecting
orbit problem (cf. Definition 3.18). Together with some standard results it proves
that the sets J~'([a,b]) are "admissible” in the sense of Rybakowski ([Ryb87]),
which allows the application of his homotopy index theory.

Proof. This Lemma is Theorem 6.1 in [Qui03], we have to verify the following
four conditions (stated here for an autonomous f): There exist nondecreasing
functions dp, dy4 : R™ — R™ and constants dy,e >0,y >2,a; >0 (i =1,...,4)
such that

[f(u)] < da(fu]) + a (2.5)

F(u) > dy[u]***€ —a (2.6)

fQu)u = pF(u) —as (2.7)

|f(u) — f(0)] < (ag +dyg(Ju| + [v]))[u — o], (2.8)

For autonomous f (2.5) is always satisfied. As f is locally Lipschitz continuous
(2.8) is also clear. Condition (2.7) follows by taking y, R from the definition of G
and

az :=min{ f(u)u — uF(u) : |u| < R}.

Similarly it is enough to show
V|u| > R: F(u) > dq|ul|*T2

to verify (2.6). Let € := VT_Z >0, wlo.g. u>0. Now

<Ll,:z(fz)e>’ _ #(f(u)u— (2+2€)F(u)) >0,

=H
i.e. foru > R (W) ®)
F(u) _ F(R 2in
e 2 avee o Flu) 2 di™
——

=:d1>0

12
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Again we will restrict ourselves to nondegenerate equilibria and most of the
time to a subset of "uniformly superlinear” functions:

G :={f € G: All equilibria of (P) are nondegenerate }
F={feG:Yu#0:f'(u)u*> f(u)u, f(0) #Kk*n? for k € N}

We shall prove that F C G (Corollary 3.12) which is good, as F is a common
class of superlinear functions and contains the model case u|u|P~1 (p > 2). One
also easily verifies the following

Lemma 2.12. Let f € F, then f(0) = 0. If f/(0) > 0 then f'(x) > 0 for all
x # 0, if f/(0) < 0 then f has precisely one positive and one negative zero.

The nondegeneracy condition in the definitions of G; and G is not easily veri-
fied, except in the special case F C G. But it has been proved that nondegeneracy
is a generic condition. To make this precise we fix the topology used:

Definition 2.13. We will use two different topologies on the space C2 = C%(RR)
of all twice differentiable functions (cf. [Hir76, Chapter 2.1}).
a) The weak topology is the topology induced by the metric

o = 2_n|f_8|n
We) = Lz,

where |f|, is the standard C2-Norm on C?([—n,n]). This is the topology of C2-

convergence on compact sets, let C2, denote C? endowed with the weak topology.
We will also sometimes use the weak topology on CL.

b) Now let K; C R compact for all i € IN such that for all x € R there is an
K; © x and an open neighborhood Uy 3 x which intersects only finitely many K;.
Let further {€;};en be a family of positive numbers and f € C2. Then the set

{geC?:Vie NVke {0,1,2}Vx € K; : | f®) (x) — g (x)| < &}

is an open neighborhood of f in the strong topology. The sets of this type form
a base for the strong topology (or Whitney topology/ fine topology-) , i.e. strong-
open sets are unions of sets of the above type. We write C2 for C? endowed with
this topology.

Remark 2.14. The strong topology is not metrizable. For f € C2
Ue (f) :=={g€C?*: k€ {0,1,2}Vx e R: [g®)(x) — fF(x)] < €} C Ups 4,

is an open set in C2. It is easily verified that the weak topology is strictly weaker
than the strong one, that means that open sets in CDZU are also open in CSZ, but
Uz (f) is not an open set in C2, for any € > 0.

13
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Now we can formulate precisely in which sense hyperbolicity of equilibria is a
generic property of f € G;UG:

Proposition 2.15. G;, G are open in C2, and Gy, G are residual subsets w.r.t.
the strong topology (i.e. countable intersections of strong-open subsets) of G4, G
respectively. This implies that G3 C Gz, G C G are dense subsets.

Proof. We first prove that G is open. Let f € G, R asin (2.2) and g € Uez (f)
for
0 < € < min <{|f(u)| u| > R} u{@@})

(this minimum is strictly positive by (2.2). Fix ay,dq, €’ as in (2.6), pick some
#' € (2,u) and let u > R. Then

V

gl —W'Gw) > (Fu) —yu—p' [ f(x) +edx
0

—~
[\V]

2

Vv

(e 10F(0) e+ 1)
u (=) — e +1)| = (n = W)

—~
[\]

.6

Vv

so we can choose R’ > R such that g(u)u > p'G(u) for u > R’ and analogously
for u < —R’. By choice of € we also get

o
G(R') > F(R) — eR + /f(x) Cedx>0
R

and similarly G(—R’) > 0, thus ¢ € G and § is open.

By [BC84] the set of hyperbolic f € C? is a residual subset of C2. By [Hir76,
Theorem 4.4] residual subsets are dense in C2. But G is an open subset of C2, so
G is an residual subset of (and thus dense in) G. This implies in particular that
for any f € G and any € > 0 there exists g € Ue (f)NG.

Similarly for f € G, one easily checks Ue (f) C G, (for arbitrary € > 0 in

fact), and as above it follows that G, is a residual subset of Gd. O

14



CHAPTER 3

Technical results

3.1 The zero number

Definition 3.1. For u € C([0,1]) let z(u) be the number of strict sign changes
of uin (0,1), i.e.

z(u) :=sup ({0} U{k € N:3xy,...,x41 € (0,1), 01 < xp < -+ < x,
u(x;) - u(xipq) < 0forall 1 <i<k}).

We call z(u) the zero number of u.

The zero number is a "discrete Lyapunov functional” for scalar equations:

Proposition 3.2. a) Let f € C? with f(0) = 0, u € X, then z(¢'(u)) is non-
INCTeasing.

b) If z(¢' (1)) is constant on an interval Iy C I(u), then (¢'(u))x(0) # O for
t e ly.

c) If z(u) < oo then the set of times t € 1(u) for which @'(u) has only simple
zeros is open dense in I(u).

d) If f € C?>, v € E and u is a solution of (P) defined on an interval I, then
w(t) := u(t) — v satisfies the nonautonomous equation Wy — Wyxy = g(w, x) on

I with ¢(y,x) := f(y +v(x)) — f(v(x)). We have g(0,-) = 0, z(w(t)) is non-

increasing and w has only simple zeros on an open dense subset of I.
e) If f € C?> and v € E is hyperbolic, then i(v) € {z(v),z(v) +1}.

Proof. a) is proved in Lemma 1.1 of [BF86] for f bounded in C!. This can easily
be transferred to general f € C? by modifying f outside a compact interval, cf.
section 3.3. Assertions b), ¢) are Lemmas 7.4, 7.3 respectively of [BF88]|, proved
there for limsupy, ., f(u)/u < co. As above the assertion follows also for

fe C?. Statement d) is easily checked by a direct calculation together with the
Lemmas in [BF86, BF88] cited above. These can be applied also in this non-

autonomous case, because g satisfies the growth condition lim SUP || 00 &tx) <

72 uniformly in x.
e) is Lemma 5.1 in [BF88]. O

15
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Proposition 3.2 together with 2.3 d) immediately yields the following:

Corollary 3.3. Let f € C?, v € E hyperbolic, then z(u —v) < i(v) for u €
W (v) and z(u — v) > i(v) for u € W*(v).

Lemma 3.4. Let f € G4, v,w € E, v # w and |v'(0)] > |w'(0)|. Then
z(v — w) = z(v) and all zeros of v — w are simple.

Proof. The assertion z(v — w) = z(v) is Lemma 4.2 in [BF88]. The zeros of
v — w are simple by Proposition 3.2 d), c). O

3.2 The T-Map and stationary solutions

To get a first idea of the dynamics of the parabolic semiflow we locate the sta-
tionary or equilibrium solutions of (P). Equilibria of (P) are solutions of

— = f(u)  u(0) = u(1) =0, (E)
to find these we examine solutions of the initial value problem
—u"(t,y) = f(u(t)),  u(0)=0, u'(0)=7y (IVP)

("= 4) and try to find 7 s.t. u(1,77) = 0. Throughout this section we will use
some comparison results about second order ODE. The following is taken from
[Har64, Section XI.3]. We consider the equations

—u" =q1(t) - u
—u" =qo(t) - u

with g1,42 € C([0,1]). We call (3.1) a Sturm magjorant of (3.2) if g1 < g2, and a
strict Sturm majorant if in addition g1 (t) < g(t) for some t € (0,1).

Theorem 3.5. a) (Sturm Comparison Theorem) Let (3.1) be a Sturm ma-
jorant for (3.2) and uy be a solution of (3.1) with exactly n > 1 zeros t1 < tp <
cor <ty in (0,1]. Let up £ 0 be a solution of (3.2) satisfying

W,(0) _ u)(0)
10 = 100)

(3.3)

(% = o0 if u;(0) =0). Then uy has at least n zeros in (0,1].

If either (3.1) is a strict Sturm magjorant for (3.2) or (3.3) holds with strict
inequality, then up has at least n zeros in (0,1).

b) (Sturm Separation Theorem) If uy,uy are linearly independent solutions
of (3.1), then the zeros of uy separate and are separated by those of u;.

16
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For superlinear f there are infinitely many stationary solutions.

Theorem 3.6 (Struwe). For any f € C? with %x) — 00 as |x| — oo there are
infinitely many solutions to (E). For any sequence (uy )i of distinct solutions with

up.(0)| — oo we have z(uy) 2 .

Proof. The first assertion is a special case of Theorem 1 in Struwe ([Str80]), the
assertion about z(uy) is stated in the proof of that Theorem. O

Unless stated otherwise in this section u(-,7, f) will denote a solution to
(IVP).

Definition 3.7. a) For f : R — R locally Lipschitz, # € R let u(-,5) =
u(-,1, f) be the solution of the equation (IVP).

b) Let (for given locally Lipschitz continuous f) D = Dy be the set of all 7 € R,
for which u(x,7, f) = 0 for some x > 0 and define

Tf=T:D—R, n—inf{x > 0:u(x,n, f) =0}. (3.4)

Remark 3.8. We can write (IVP) as the twodimensional system
u' =0
o' = ~f)

with initial values #(0) = 0 and v(0) = 5. The corresponding vectorfield
V(u,v) = (v,—f(u)) is antisymmetric w.r.t. the w-axis, ie. V(u,—v) =
(—v, —f(u)). This simple observation has some important consequences: Or-
bits of (SYS) are symmetric w.r.t. the u-axis, in particular for 5 € D

(SYS)

W' (T(n),m) = =1 (3.5)

o(T90) <o

neD < t>0:u'(ty) =0,

and

We also see

and that u(t,n7) is a (T(n) + T(—n))-periodic solution if #, —y € D. For such
a periodic solution we have u(T(t) +t,17) = u(t,—n). The system (SYS) also
has a first integral E(u,v) = 0% + F(u) with F(u) := fou f(t)dt (which makes
it easy to see the v-symmetry of orbits).

By means of the function T equilibrium solutions of (P) and nondegeneracy
of these solutions can be characterized as follows:

17
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Proposition 3.9. Let f C?, 71 # 0, Ds:= DN —D.
a) If f :R — R is C¥, k € N, then D\ {0} is open and T is C*+2 in D\ {0}.
Forn € D\ {0} we have

b) A solution u(-,19) of (IVP) is a nonnegative (or non-positive) equilibrium
solution of (P) if and only if T(no) = 1, and nondegenerate if and only if
T/(ﬂo) 7§ 0.

c) A solution u(-,1o) of (IVP) is an equilibrium solution of (P) withn = 2k+1
zeroes if and only if the function

T . n— (k+1)T(n)+ (k+1)T(—n)

attains the value 1 at 19, and is nondegenerate if and only if this function has
non-vanishing derivative at 1.

In this case u(T(no) + -, m0) = u(-, —no) 1is also an equilibrium solution with n
zeros.

d) A solution u(-,1m9) of (IVP) is an equilibrium solution of (P) with n = 2k
zeroes if and only if the function

T .y — (k+1)T(y) + kT(—7)

attains the value 1 at 19, and is nondegenerate if and only if this function has
non-vanishing derivative at no. (Of course b) is just a special case of d) stated
explicitly for clarity).

Proof.
a) (cf. Brunovsky-Chow [BC84, Thm 2.3]) Fix 9 € D\ {0} and Ty = T(no).
We have u'(Ty,10) = —1o # 0 by (3.5), and solutions to (IVP) are CK+2 if f
is C*. By the Implicit Function Theorem there exists a unique C¥*2 function
T defined in a neighborhood of 79 such that for (&,7) close to (Tp,#0) we have
u(g,n) = 0 if and only if § = T(y). By the continuous dependence Theorem
T and T are identical in a small neighborhood of 9. So D\ {0} is open and
T is C¥*2 on D\ {0}. The formula for T'(57) is obtained by differentiating the
identity u(T(n),n) = 0 and (3.5).

The assertion about u(-,—#) in ¢) is clear, cf. Remark 3.8. The other
assertions are Theorems 2.5 to 2.7 in [BC84]. O

Proposition 3.10. a) Let f, fy € C!, fp — f in CL, 1 € R, 1y € Dy, e — 17
Ty (17x) — 0.

18
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b) If f is C', f(0) =0, then

lim T(y) = {"'f'(o)_

N|—

>0
<0.

—~~
o O
~— —

f/
f/

n—0 00
c)If f € FithenD =R, T'(y) <0 forn >0, T'(n) >0 fory <0 and
T(n) — 0 for || — oo.

d) If f € G then there exists fj > 0 such that R\ (—7,7) C D.

Remark 3.11. In general T is discontinuous at 0, cf. Proposition 3.10 b) where
T(0) = 0.

Proof.
a) First consider 7 € D¢\ {0}, w.l.o.g. assume 77 > 0. We have

u(-, o fi) =2l f)

uniformly on compact intervals, and the same is true for u’, uy,. 0 < T¢(1) < oo
then

V1l>>e€e>03ke €e N: k> ke
= u(t/ Uk’fk)“e,Tf(iy)—e] >0A u(Tf(U) +€ Uklfk) <0,

and because of u/(0,7,f) = n # 0 and u/'(-, n, fx) — (-, 1, f) uniformly on
a neighborhood of 0 we have Ty, (x) € (Tf(n7) — €, Tf(17) +€). Now T}k(ﬂk) —

TJ’,(U) follows from 3.9 a) and the differentiable dependence theorem.
Ity & D I then

Vn e NIk € N:k > k. = Vx € E,n} cu(x, ng, fr) #0,

this implies Ty (17x) — oo as above.
b) Again w.l.o.g. let 7 > 0 and

flu(xn))
_ _ ) Tty W) #0
q1(x) = q1(x,77) {f/(o)q u(x,1) =0,

so u(-, 1) solves the homogeneous linear equation

—v" =q1(-,1) - 0. (3.6)
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Case 1: f'(0) > 0. Let v1(x) = sin (y/f'(0) + €-x), v2(x) = sin (1/f'(0) — -
x) be solutions of the equations

—o" = (f'(0) + €)v (3.7)

and
o = (£(0) — )0 (3.5)

respectively for some 0 < € < f'(0). We have

(f'(0) —e)x < qu(x,1) < (f/(0) +e)x

uniformly for 1 < 7. sufficiently small and x < f’7(TO)—e’ so by the Sturm
Comparison Theorem we have
T T
- > T(n) - ,
f(0) —e f(0) +e

and the assertion follows.
Case 2: f'(0) < 0. Let m := lim,omaxu(-,77) > 0. If m = 0 (which is
possible if f/(0) = 0) let v be the solution of —v” = €v; analogous to case 1 we

—0
conclude % < T(n) uniformly in 7 small, so T(#) T .
Now consider the case m > 0. As maxu(-,17) = u(3T(y),n) we have

u <%T(;7),;7) =0, (3.9)

Now suppose liminf,, o T(#7) = To < oo then there exists a sequence (77 ) with

e k—o0 0 such that T(ﬂk) — Ty as k — oo. By the continuous dependence
Theorem follows

1 k—o0
u <§T(’7k)/’7k) —0

which contradicts (3.9).

c) We use the interpretation of (IVP) as (SYS) and the first integral E(u,v) =
102 + F(u), ie. E(u(t)) is constant along solutions. Fix y > 0. From the
definition of F and Lemma 2.12 we see the existence of n_1 < 0 < nj such that
F(n_1) =F(ny) =0, F(u)u < 0on [n_1,m], F(u)u > 0on R\ [n_1,n1] and
F strictly decreasing on (—oo,n_1] and strictly increasing on [n_1,00). So there
exist precisely two u_1 < n_1 < ny < uq with F(u_q) = F(uy) = %172. Thus
the only possible intersections with the axes of the (connected component of the)
level curves C(7) of E through (0,%) are (0,%7), (1+1,0). Furthermore C(7)
is bounded away from 0, and f # 0 on R\ [n_1,11], so there are no critical
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points of E on C(7), thus C(#) by the implicit function is a smooth curve which
coincides with the trajectory through (0,7). It has to be compact, because it is
bounded, and as it can intersect the v-axis only in (0, £#) it has to be a closed
curve round the origin. This implies £ € D. 0 € D follows by f(0) = 0.

We only prove T'() < 0 for n > 0 — the assertion for 7 < 0 follows
analogously (consider — f(—x) instead of f(x)). Now let (u)n be a sequence
of distinct solutions with u,(1) = 0 and |u),(0)] — oco. By Theorem 3.6 such
a sequence exists and we have z(u,) — oo, which means by Proposition 3.9
T(z()+1) (4! (0)) = 1. This implies T(|ul,(0)|) — 0, so T(5) — 0 as |5| — 0.

By Proposition 3.9 a) it is sufficient to show u,(T(n),17) < 0. Let g1 be
defined as in the proof of b). By the differentiable dependence of the solution on
the initial value we have

(1) = (e, n))g (3, 1)
uy(0,7) =0
uy (0,17) =1,

The same equation is, with different initial values, also solved by u’, so by the
Sturm Separation Theorem the zeroes of u; separate and are separated by those

of u’. But clearly —3T(—7), 3T(y7), T(n) + 3T(—n) are consecutive zeroes of
u" and u'(0,7) = 0, so the smallest positive zero N of u; lies in the interval

(3T(y), T(y) + 3T(—n)) (and is the only zero of u, in this interval). From
uy (0,17) = 1 we conclude that uy is positive on (0, N) and negative on (N, T(1) +

1T(—n)). It remains to show N < T(1).
The derivative u'(+, %) solves the linear equation

—v" =gq-0 (3.10)

with
72(x) = q2(x,17) == f'(u(x, 1)),

and %u) < f'(u) (for u # 0 and f € F) is just the condition for (3.6) to be
a strict Sturm majorant of (3.10) on the interval [0, T(r)], so again by Sturm
Comparison u, has a zero in (0, T(17)), which means N < T().

d) By (2.6) there exists K > 0 and n_; < 0 < ny such that F(n_;) = F(n;) =K
and F strictly monotone on R\ [n_1,11]. Take 7 > 77 := /2K and proceed as
in c).

0

The Propositions 3.10 and 3.9 together with Remark 3.8 immediately yield a
complete description of the equilibrium solutions of (P) in the case f € F. For
f € G the general structure of equilibria can be described.
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Corollary 3.12. a) For f € G we write the set of nontrivial equilibrium solu-
tions as {uy : k € Z\ {0}} ordered by their initial slope, i.e. u/—(k+1)(0) <
u' 1 (0) <0 < u(0) < up,1(0). If z(uy) is odd by Remark 3.8 there exists a
1 € Z such that z(u;) = z(ug) and uj(0) = —u;(0).

I [4](0), 4], (0)] € Dy \ {0}, then 2(ur.1) € {z(m) — 1, 2(up) 2() +1}. I
z(uy) = n, there exists | € Z with z(u;) = n+ 1.

b) For every f € F and integer n > i(0) the equation (P) has precisely two
solutions Uy, u_, with n — 1 zeros. These are nondegenerate with i(Ui,) = n,
u,(0) > 0 > u",(0), and there are no other nontrivial solutions of (P). In

particular F C G.

Proof. First let f € G, then all equilibria are nondegenerate. So the set {v'(0) :
v € E} has no accumulation point in R, and we can order the equilibria as
stated. Let [1](0),u) 4(0)] C Ds\ {0}, n := z(u;). Then T"""D(u}(0)) <
TM W) (0)) = 1 < TUD()(0)). Suppose m := z(u;y1) > n+ 1, then
T(”+1)(uf+1(0)) < T(m)(u;H(O)) = 1, so there exists a 77 € (u7(0),u; 4(0))
with T+ () = 1. This means there is an equilibrium solution of (P) "be-
tween” u; and u;, 1, which is impossible. For m < n — 1 the contradiction follows
analogously.

Now let 79 := inf{y > 0 : [57,00) C Ds}. If u;(0) € (—o0,79) U (179, 0),
and w.l.o.g. k > 0, there has to be a I > k with z(u;) = n + 1 by the assertion
proved above, because z(u;) — 00 as m — oo. If u; (0) € [0, 10], then 179 > 0

and either 79 € R\ D or —1i9p € R\ D. So T(n) o, or T(y) nT—1o 0.

either way for any m > 2 T(") () Jrlbmo, o by Proposition 3.10 a). Theorem

3.6 implies liminf),| . T(m)(iy) = 0, so in this case for any m > 2 there are
at least two equilibrium solutions with m zeros. The remaining assertion follows
from Remark 3.8.

For f € F uniqueness and nondegeneracy of the solutions with n zeros fol-
low from Proposition 3.10 ¢). If f/(0) < 72 then limy o T(5) > 1 by Propo-
sition 3.10 b), so there is a positive and a negative equilibrium. If f/(0) €
(K27%, (k +1)?7?), then lim, o T(17) € (ﬁ, 1). and i(0) = k. This means

lim T () > 1 > lim T*V (3),
=0 171—0

so the nontrivial solutions have at least k +1 = i(0) + 1 zeros. O

Remark 3.13. For f € G and an equilibrium u; of course the relation i(uy) €
{z(ug),z(ug) + 1} from Proposition 3.2 e) still holds, but in general there is no
relation between k and i(uy) or z(uy).
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3.3 The cutoff function

Given f € G we will construct a function f € G4 such that f = f on a compact
interval [~M~, MT]. Outside the interval [-M~ —a_, M+ +a,] f will be con-
stant, and in the remaining two gaps we choose a simple construction to make f
C?. While doing all this we have to control the function T associated with f.

To be more precise we can find
1, (0), =1’ (0) <11 <1431 (0), —u’ ;1 1(0)

and get M := maxu(-, 11, f), M~ := —minu(-, —n1, f). We will find a 73
(choosing appropriate a,,a_) s.t. T’ has no zeroes outside [—731,131]. On
(—n31, —11) and (171,731) we will be able to control the values of T to make
sure u(1,7, f) # 0 for 77 in these intervals. Note that it is crucial to have these
intervals symmetric w.r.t. 0 as we have to sum up multiples of T and T(—-) to
make assertions about sign changing solutions. See Figure 3.1 for a schematic
picture of the phase-plane in case of the modified function.

Figure 3.1: phase-space diagram for modified function

As f will be defined piecewise we will first derive properties of equations with
constant right hand side and of those with the "bridge function” ¢ (in 3.3.2 defined
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on [0, a] for simplicity as the problem is autonomous) as right hand side. Then we
have to glue together the results for individual parts of trajectories w.r.t. f . For
these right hand sides we will not only investigate the corresponding functions
Ta, Ty, but for the bridge functions we also have to look at trajectories which
reach a in finite time, and thus do not become 0 again. Tools for tackling these
problems will be derived in the next section. By Remark 3.8 it is sufficient to do
most computations for 7 > 0 only, the case 1 < 0 follows analogously.

The final construction will still be more complicated, as we will have to cut
off functions fp depending on an additional parameter (with #1 also depending
on 6 continuously) in a continuous way (i.e. 0 — f € G and also 8 — fy € G4
will be continuous). The reason for this will become clear in the applications (cf.
Proposition 4.4). So we state our cutoff Proposition, the main technical result of
this work. For v,w € Eg (the set of equilibria for the right hand side fg) we write
v<w:<= v'(0) <w(0)and |v|] < |w|: <= [v'(0)] < |w'(0)| to shorten
notation.

Proposition 3.14. Let fg € G for 0 € [0,1] such that
0,120 fp€ G CC2
is continuous, n € N, m € {n,n+1}. Define
Dy:={neR:3t>0:u(tn,fy) =0}
To: Dy >n—inf{t >0:u(t,y, fo)) =0} € R
and let uy g be the k-th nontrivial solution of
—u" = fo(u),  u(0) =u(l)=0

(cf. Corollary 3.12). Suppose z(Uy11) > z(uUy) and there exists a continuous
71 :10,1] — R such that 51(0) € Dy for all 6 € [0,1] and

max{u, o(0), =1’ 5(0)} < 71(8) < min{uy,1(0), —ul 1) 6(0)},

T(gn)(iﬂl (9)) <1< ngm'H) (j:rll(e)) (3.11)

Then for each 0 € [0,1] there exists fg € G, uniquely determined by fg and
71(0), such that the mapping

[0,1]99»—>f9€QdCCSZ

is continuous and fo = fg on [—M(8), M(0)] with [0,1] > 8 — M(6) € (0,0)
continuous and M(0) uniquely determined by fg and 11(68). Consequently ¢y and
@y coincide on {u € X : ||ullo < M(0). If fg = f for all 0 then M(0) is
increasing if 11(0) is increasing, and if n — oo both 71(0) — oo and M () — oo
uniformly in 0.
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For the set Eg of stationary solutions of (P) with r.h.s. fg we have

Eg={ugg: k| <n}U{igg:1<]k] <n}URy
iy g nondegenerate, i(ilxp) = z(fxg) = k| — 1, ﬁ/—|k\(0) <0< ﬁfk\(o)
veERy=n+1<z(v) <m.

The mappings 0 — uyg and 0 — g are continuous for any k and

A< <l p<U_p< - <UJ<0<U < - < Uy <ilp < - <1l

(
0 < |uwr| < <|uan| < |idan| < -+ < |iit1], (3.13)

The proof will fill the rest of section 3.3. We will first introduce some phase-
plane analysis tools. Next we will define the "bridge function” ¢ and compute
several properties of the flow induced by g. Finally in 3.3.3 we will put everything
together to define fg and prove Proposition 3.14.

3.3.1 Phase-plane analysis tools

Lemma 3.15. Leta >0, f : R — R C!. Let u(-,57) denote the solution of the
initial value problem (IVP) and D :={n >0:3t > 0:u(t,y) =a}. Fory € D
let

T(n) :==1inf{t > 0: u(t,y) =a} < o0
() :=u'(x(n), m)-

Then T, are continuous on D, T is C> and ¥ is C> on D, and the following
assertions hold:

(i) D is an unbounded subinterval of (0,00), let 170 :=inf D. If f[(g 5 > O then
D is closed and ¥(D) = [0, 00).

(i) Let F(x) == [y f(t)dt, then

Vi € D:y(i7) = \/n* —2F(a),

in particular if Y(no) = 0 then

Vi€ D (i) = /1% — 13
If flioa > 0 then /() = 55 > 1.

(iii) We have T <0 and () — 0, T/ (1) — 0 as § — oo. The derivative of T
i8

up(t(n),m)  —uy(t(n),1n)
1 wn)

25



3. Technical results Sven Schulz

(iv) The derivative uy of u w.r.t. the initial value 1 satisfies
vt e (0,7(n)] = uy(t,n) >0

and

0= —f(a)uy (t(),m) —uy (x(1), 1) (n) + 1.

(v) Let fr € CY, fr — f in CL, T, ¥, Dy be defined for f as T, ¢, D for f.
If g — 1 € D, then iy € Dy for k large, and

() = t(n), i) — %)
ffﬂk c Dk, Mk — Mo € D, then

T (11x) — T(10)-

Proof. Setting M > max{|f(«)| : 0 < a < a}, we first show that [v/2aM, 00) C
D. Let V(a,B) = (B, —f(a)) the vectorfield of (SYS), and define for 1 > v/2aM
the functions

g+ [0,a] — [0, ), 0H—>17+¢x%

¢:[0,a] — [0,00), ® — /7% —2aM.

We will show that trajectories of (SYS) can leave the set

Cln) ={(wp):0<a<ad(a) <p<C(a)}

through {a} x (¢(a),{(a)) only. This implies that the trajectory through (0, #)
reaches the set {a} x R, which happens in finite time as (a,0) is the only possible
zero of V in C(y). Thus € D. We calculate

/ _ v / _ —M
O O
Vi £(w) = (g +ald) (1 -/ )

’ M
A+ e

Vi, g(a)) =/17* —2aM - (1%) .

Now
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so a trajectory being in A(n := graph ¢ at some time will be in C(n) immediately
afterwards. Similarly

) M
ViZ=2aM = \/yF —2aM’

so a trajectories being in graph¢ at some time will also be in ¢ (17) immediately
afterwards. This proves 7 € D.

If D 37 < 7 then the trajectory trough (0,#) stays between the trajectory
through (0,7) and A(%), so 7 € D and D is an interval.

Let 7 € D, so u'(t(n),1) > 0 and consider

U:(t,n) — u(ty) —a.

Then U is C3, U(t(y),n) = 0 and U(t(n),1) = u/(t(y),7) > 0. So by the
implicit function theorem there is a § > 0 such that T |(,7_(5,,7 +o) 18 C3. Thus T is

C3 and ¢ is C? because u’ is C2. We will prove the continuity of T on D below
after we have shown 7/ < 0.
Let n € D, t € [0,7(17)]. The functions u’, u, solve the initial value problems

u(t,g) = —f(utn)-u'(t,y)  u'(O,n) =y u"(0,n)=—£(0)
wy (t,) = —f'(u(t,n)) -uy(t,y)  uy(0,m) =0  uy(0,77) =1

respectively. Multiplying the first equation by u,, the second by u’ and subtract-
ing the results we obtain

u" (&, 1)y (£, 17) =y (8, )u' (,7) = 0.
Integrating this from 0 to t < 7(r) yields
0= u"(t,1)uy(t, 1) — uy (t,m)u'(t,17) + 1, (3.14)
ie. for t =1(n)

0 = —f(a)uy(t(n),m) =y (x(m), M) (1) + 1. (3.15)

One easily checks

& (30w Fut)) o

SO

Vit (u’(t,iy))2 + F(u(t,n)) = %172 (3.16)

which yields ¢(17)? + 2F(a) = 52, so ¥(n) = /7?2 — 2F(a). If ¥(179) = 0 then

ng = 2F(a) and () = \/n? — 13

—_ N =
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Differentiating a = u(7(n),n) w.r.t.  yields

0=u'(t(n),n) 7' (n) + uy(t(n), 7). (3.17)
———

=9(1)

The function (-, 77) has no zero in [0, T(77)), so by the Sturm Separation Theorem
uy (-, 1) cannot have a zero in (0, 7(17)]. By (3.17) we have

() = ————F5—5, (3.18)

and by (3.14) for 0 < t < 1(1)

_ 7
u'(t, 1)

uy(t, 1) = 0= uy(t,n) >0,

i.e. uy(t,n) > 0on (0,7(n)] by the initial values. So 7'(17) < 0 by (3.18).

Now we prove the continuity of T on D. Suppose 179 € D and let 19 :=
lim, |, T(17) € (0,00]. First suppose 19 = co. In this case u(-,7) — u(-, 7o)
uniformly on [0,1] as 7 | 179 for any n € IN. Now n < t(#) for # sufficiently close
to 770, consequently u(-,70)|[,, < a. This implies T(10) = o0, which contradicts
o € D. Next suppose 1y < oo, again fix n € IN. Then u(-, 1) — u(-, 1)
uniformly on [0, 79 — 1], so u(t,70) < afor 0 <t < 19— 1], ie. 7(10) > 70. But
u(t(n),n) — u(t, o) = a by continuous dependence. This implies T(79) < Tp,
so T is continuous in 7.

Let 7 > 19 and fo € [0,7(17)] such that u’(to,n7) = minu'(-,17)|j0-(y = 0
By (3.16) this means F(u(to,77)) = maxF|j, =: C, so

min v’ (-, 7)ljoc(p) = /7> — 2C

for any # € D. So we can estimate

()
a= / u'(t,n)dt > 7(17)\/172 —2C
0
thus
a 1—00
0.
(1) ma—Te
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Now for t < (1) and M > max{|f'(x)| : x € [0,a]} we compute

0 < uy(tn) :/ 1/f’(u(r,17))u,7(r,17)dr) ds
0 0

t s
_t+// ) drds
0

>0
< () + M) [ wy(r,p)
0

By Gronwall’s inequality

0 <uy(t,n) < t(n)-exp Mr(n)/lds) 0,

so T/(17) — 0 as 7 — oo by (3.18) (note that (1) — oo as § — o).

Under the assumptions of (v) we get T(17x) — T(#7) in both cases, analogously
to the proof of Proposition 3.10 a). Let 7 — 1 € D, then there is a § > 0 such
that I := [ —J,n + 6] C D. By continuous dependence and compactness of I

Jde > 0Vij € I: u(t(ij) +€,7) > a.

Also by continuous dependence for k large enough u(t(77) +€,1) > a for all
7 € I, which means I C Dj. But then 7 € [ ¢ Dy for all k large enough. Now
Tk(iyk) — 7/(#7) is a consequence of (iii) and the continuous dependence theorem,
so we have proved (v).

Finally consider the special case f |[01a} > (. For any # € D we have

()
wlr) =n+ [ —Fu(t)n)dt <y —min flip - 7(7)
0

=) U
=T < min f (g 4 : min fq

(In particular () < n = ¥'(y) = ﬁ > 1.) That means T is bounded

on (1o, 1o + 1], thus 179 € D by the continuous dependence Theorem. But this
implies ¥(1709) = 0, otherwise T would be defined on a neighborhood of 79 by the

implicit function theorem. From 0 = 9(179) = /73 — 2F(a) we get 3 = 2F(a),
which yields the formula for 1. O
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Lemma 3.16. In addition to the hypotheses of Lemma 3.15 let 0 < m < f|[oﬂ] <

M. Then v/2am < 1y < v/2aM and T(n) < oo for 0 < n < ng. We further get

the following estimates:

7 /s
g > . > 1L <pn<
oy > maxu(-,n) > Wi 0<n <1 (3.19)
_ 2 _
w(y) < TV 2ol 7 > V2aM (3.20)
_ /2 _
T(n) > 1 Zn 2am nebD (3.21)
¥(n) = \/17* —2aM n > v2aM (3.22)
P(n) < \/n?*—2am neb (3.23)
21 21
— > > = <7n <mnp. .
=Tl 2 3 0<7 <m0 (3.24)
Proof. The functions v(t,n) := —22 +yt, w(t, i) := —542 + nt satisfy the
i.v.p. (IVP) with right hand sides m, M respectively. We easily compute

2 1 ) 172

) =o (L ) 2 /R
maxv(’”)_v<m”7> 2m’ M) T oM

As in the proof of Lemma 3.15 we see 7 € D for 1 > +/2aM, that is v/2aM > 7.
For 7 > 19 and t € [0, T(#9)] or for 7 < 5o and t € [0, T(17)] we get

maxw(-, 1) =w <

t

W (t) =0 — [ Fluls,m)ds < —tm =6,
0

ie. a =u(t(no),n0) < v(t(no),no). As maxv(-,v/2am) = a and maxv(-,7)
increases in # this implies 79 > v/ 2am.

Similarly for 7 < 5o we get v(T(#n),1) >0 > w(T(n),n) and v(t,n) > 0 for
t < T(n), thus follows (3.24). Also

T maxo(-,17) = v (%T(n),ﬂ) > u GT(ﬂM) = maxu(-, 1)

2m
and as 1y < 3T(n) by (3.24)
2
T () <u(L ) < :
oni = © () < () < maxaC),
thus follows (3.19).

(3.22) and (3.23) are direct consequences of Lemma 3.15 (ii).

To see (3.20) let 7 > +/2aM,0 < t < 7(n), thena = u(7w(y),n) > w(t(y),n)

Lo . n—/n?—2aM
and u(t,n) > w(t,y) for all t < (1) which implies () < —5r—

min{t > 0: w(t,n) = a} by an direct calculation. (3.21) follows analogously. [
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3.3.2 The bridge function
Let c1,c20 € R, 0 < dy < dq, a > 0 and define the auxiliary functions

xp(-2=) |x| <1
c:R — (0,00), o(x) := eXplye

0 x| > 1
p:R—R, p(x) == %zxz-l—clx-i—(dl—dz).

By a straightforward calculation ¢ is C* and

5 443
o' (x) = o(x) - H
4 44202 3 2 2 5 43v2
o(x) = o(x) - x - x(2x* —4x?)* + (10x 12(3;)2(i 1)41) 4(2x° —4x°)(x 1),
c(0)=1, d0)=c"(0)=0 oc(1)=0c(1)=c¢"(1)=0
||U||00 =1, 0J|(0/1) < 0.
Define

g(x) =g(x,a) = g(x;a,¢1,c0,d1,dp) := p(x)a(—) + ds.
Then g is C? in (x,a) and the mapping
(a,c1,c0,d1,d2) — g(+;a,¢1,c0,d1,d2) € C2

is continuous (g(x) = dp for |x| > a). We calculate

X x\ 1
¢'(x,a) = (cox —|—c1)a<5> + p(x)a’(;)a
Xy, 2 Xy, p(x) g(x
¢"(x,a) = cza(;) + E(sz + cﬂa’(;) + a—zaﬂ(ﬁ)
§0,0) =di, g0a)=ct, g'0a) =0
¢(a,a) =dy, ¢'(a,a) =0, ¢"(a,a) =0
o d B L /XN X
ga(x,a) == -g(x,0) = —p(x)o’ (2) .
Let
ag = ap(c1,c2,d1,dn) =
di—dy di—dy  [dq]|0 ]| d1]l0" |0 1 (3.25)
2lca] " 4fcq]| ] ol " el T
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S0 ag is a continuous function in all variables. Let 0 < x < a < ap, then from
(3.25) we get the estimates

p() — (d — dy)| < 12 g ey < B2

[p'(x) -a| < |eala® + [erla < 2d1]0" oo,
which yield

0<d1—d2

< p(x) < 3(dy —do)
dy < g(x,a) = p(x)o(2) +da < 3(dy — d) +da < 24,

"(x)-a 0’ || oo
/) < AL 1]

/ /
< (2d1 + 5(d1 — da)) “UaHoo < 4d1”; ||°°-
Let G(a) := [, g(t,a)dt. On [0,a] by the above estimates we have p > 0 so
g2 >0 and
a

d

2 Gla) = g(a,a)+/ga(x,a)dx >0
da N——

=d,>0 O

and G(a) < 2ady — 0 as a — 0. Define analogously to section 3.3.1 functions
To(+,a), Yo (-, a) (with f replaced by g(+,a) — the reason for the strange indices
will become clear in section 3.3.3) defined on [f22(a),0) and a function Tp, as
in section 3.2. By Lemma 3.15 we have

¥a(17,a) = \/n* —2G(a),
x(a) = 4/2G(a) — 0 (a — 0) (3.26)
N2 (a) > 0.

By Lemma 3.16 and g(x) > d, we have for 0 < 5 < #p(a)

Tou(n) < 2—;7 < 21722((1) < 2 v2ady — 0asa — 0.
’ d2 dz dz

For 17 > #po(a) we derive

T2(1,a) < ™2(n2(a),a) = %TZ,u(UZZ(a)) < dlz\/ 2ad; — 0 (a — 0). (3.27)
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We derive another estimate on Toy. Let 7733 > 0,77 > 1132(a) := (¥ (-,a)) 1 (n33) =
N3 +2G(a) and t € [0, 2(y,a)]. We have u/(t,17,a) > Pxn(n,a) > 133 be-
cause ¢ > 0, thus

0> To(n,a) 13 = To(n,0) < ;7; (3.28)

With this we estimate ©),(17,a) = %Tzz (n,a) for y > y3p(a). By Lemma 3.15

_“71(722(’7z‘1)r’7) > —un(Tzz(U,ﬂ),U)
(7, a) - 1733 '

™ (1,a) =

So next we estimate u,. As uy, u' satisfy the same linear equation u,(-,1,a)
cannot have a zero in (0, To2(77,a)] by Sturm comparison. Let t € (0, T2 (7, a)]:

t s

y(t1,a —t—//g’ r17 un(riy,)drds
00 4d1||17’||oo >o
4dy[0"]eo

<t+

t
Tzz(iy,a)-/u,?(r,iy,a) dr.
0

< 4
— 133

By Gronwall’s inequality:

/ ; ; /
uy(t,n,a) <t+ 74611”0 e /S - exp /74611“0 o dr| ds
133 " J 1733

4d1 |0’ || oo {4d1||‘7’||oot} £
<t+ exp 2
133 133 2

133 13

2
N33
SO

a 2d1a2||(7 [l oo (3.29)

™ (1,8) 2 =

4ad1ua'||oo] =0,
’733 ’733 ’7%3

3.3.3 Proof of the cutoff-proposition
Figure 3.2 shows (part of) the values defined below in the phase-plane.
We write n = ky +k_, m+1 = I +1_ with (kp —k_),(I+ —1_) €

{0,1}. Then we have Ty" () =k To() +k-To(—y), T," () = 1 Ty () +
I_Ty(—n) (cf. Proposition 3.9), and similar decompositions exist for all T-maps.
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131

W(n31) =132
121

1722
m

P2(133) =133

|| ] >
Mt 4+a, u

Figure 3.2: more detailed phase-space diagram for cut-off function, 6’s omitted

By the hypothesis (0, u) — fp(u) and (6,u) — fz(u) are continuous. By the
continuous dependence Theorem

u(t,m, fe))
t,n,0) —
(t:1,6) (u’(t,n,fe)
is continuous, and as uy, satisfies the equation —u; = f'(u)uy also (t,1,0) —
uy(t, 1, fo) is continuous. Finally by Proposition 3.10 a) the functions (6,%) —

To(1), (6,1) — Ty(n) are continuous.
Define for 6 € [0,1]

M™(0) := maxu(-,171(8), fo)
M_(Q) = —minu(-,m(@), 9)
M(6) := min{M™(8), M~ (6)},

which by a look on the phase plane implies

fo(MT(0)) > 0> fo(—M(0)).
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Let for all k € Z, o(k,0) := u; 4(0) be the initial slope of the k-th stationary
solution w.r.t. fg. Let for y € [71(0), )

Ta0(n) = inf{t > 0+ u(t, 7, 0) > M (6)}
¥41(17,0) := u(t4a,0,1,6)
T_1 o(n) :==1inf{t > 0: —u(t,—n,0) > M ()}
~1(17,0) := —u(t_16,—17,0).
Then by Lemma 3.15 (v) the functions (0,7) — Tx16(n) and (6,1) — T4 4(17)

are continuous on {(0,7) : 0 € [0,1], || > n1(6)}.
We construct continuous functions €1,€; : [0,1] — (0,00) such that for all
6 € [0,1] the following estimates hold:

TS (171(6)) + ne1 (6) < 1

o (3.30)
Ty ' (=m1(0)) +ne(0) <1,
VO € [0,1]Vn € [11(0),11(0) + €2(0)] :
112741,6(17) + 1-2T_1,5(y7) > 1 (3.31)
y 2111(0)
0< 17(T—|—19( ) ﬂf@)—f(M+( )) (332)
2171(6) '

0 < —uy(t-10(17), =1, fo) < ~fo(—M-(8))

We have to justify (3.30)-(3.32). By (3.11) we can take

1 . n
e1(6) == 5-min {1—1," (1 (0)),1 = T," (=11(6)) |
to satisfy (3.30). By (3.11) we have

T3 (1(6)) = 21,0 (71(0)) + 21T 1,6(1(0)) > 1.

By Lemma 3.15 (iv) we have 0 < uy(t41,9(17),1, fo) for all . > #1(6), and
also

fo(MT(0)) - uy(T11,0(1),11(0), fo) = m ()

" (6) 21(6) (3.33)
=y (T41,0(71(0)),11(0), fo) = fo (M+(9)) = fe(Ml“L(e))’

and similarly

2171(0)

—uy(T-10(71(0), —11(0). fo) < —= "3 =y
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To get €, note that by (3.11) we have

T (11(0)) = 214 Ta1,0 (11 (0)) +21-T_1,4(1m (6)) > 1,

and for 6 fixed 17 +— 211741 9(1) +21_T_19(77) is strictly decreasing by Lemma
(iii). So for 6 € [0,1] there is a unique &(0) such that

(n+1)
20, T19(n1(0) +&(0)) +21-T_16(m1(0) +&(0)) = Ty (’721(9)) + 1’

and 6 — &(0) is continuous.
Now define

C(0) = max { uy (Ts1,001), 1, fo), 1 (10(=1), 1, fo)l 7 € [ (6), 371(0)] }

>0

€>(0) := max {0 <e< %171(9) cP1(m1(0) +€,0) < 2C(0)

7(6)

Then & is continuous because 6 — 2C(9) is continuous, and 4 & P11(-,0) > 0. By

Lemma 3.15 (iv) we have 0 < uy(71,9(171(0)), 7, fp) for all 7 > #1(6), and for
1 (0) <n < m(0) + &(0)

n—uy(T,e(n), 1, fo) - P+1(1,0)
uy(t,0(n), 1, fo) = ! fe(MJr( ]
IO +CO+IF  200)

STORME®) M)
Similarly for 71(0) <5 < 11(0) + &(0)

—uy(T-1,0(11(8), —

so taking €, := min{é&,, &} (3.31),(3.32) hold.
Further define

dir(6) = Jw >0, d,0):= _ff’(_éw(@)) >0

#733(0) := min { €1(0) .fiéMJr(Q)),ez(Q)z —61(9)f91(6—M_(6)) } > 0.

(3.34)
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Now define bridge functions g14(-,a4), g§_o(-,a_) as 111 section 3.3.2 with pa-
rametersd(0),d2(0)asabore, d310) 1= (M (0).d1(0) 1= (M (0)
c41(0) = fg(MT(0)), c12(6) == ff (M7 (0)), c-1(6) := _fg( (0)), c-2(8) =
—fi (=M~ (8)). Also define 17422 (a+), T+22(+,a+), P+22(+, a+) as in section 3.3.2.
With this we can define

(fo(x) € [-M~(0), M* ()]

) §+o(x —M™(9)) € [M*(0), M+(9) +ai]
Jo(x) i=§ —g-o(—x =M~ (0)) x€[-M (0) —a_,—M (6)]
d+2(9) x> M+ (9) + a4
| —d-2(0) M~ (0) —a_,

where a4 < a%(0), a— < a% (0) and a9 () are defined as in (3.25). By construc-
tion of ¢g1g the mapping 6 — fy € C§ is continuous if we choose a+ depending
continuously on 6 — we will do this in (3.35), (3.36).

Defining G1g¢(a fo Qrg(t,ax)dt we get from (3.26)

N4+22(0,a4) = \/2G+9 at)
17 22 9 a_ \/

d
d’7+2z(9ﬂ+)>0 d’? 2(0,a-) >0

ay = maxu(,174122(0,a+),8+6)
a_ =maxu(-,n-2(0,a_),8_9).

We calculate (Lemma 3.15 (ii))

n121(0,a+) = (P11(-,0) ") (222(6,a+))

= \/771 )2+ 112(0,a+)?,
Ni32(0,0+) == (Y120(-,0,a+) ") (133(6))

= \/7733 )2+ 1+20(0,a+)?,
n31(6,a+) == (P41(-,0)" )(Uﬂz(@zai))

= \/771 2+ 1733(0)% 4+ 17,,(0, a4 ).
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With this notation we fix our final a (6) in two steps. First define

._ 2n42(0,a) _ €1(6)
ai(e)._max{o@gu(e). éfi(e) < 14 ,

1 0 2002 e (4ad 1 (0)]0 ]l
Z + ex 7
Fo(MT(8)) = 73 (0) e P 3

1431(6,a) < 11(6) +€2(9)},
(3.35)

and al (0) analogously. By (3.26) al. are continuous. Now

(3.36)

With these values fixed we suppress the dependence on a4+ in the remainder of
the proof. Again by (3.26) 6 — a4 (0) are continuous. By (3.36) we have

131 (9) = H431 (9) = —1-31 (9) for all 0 € [0,1]

and

1+21(0) < 1731(0) < 171(0) +€2(0).

By Proposition 3.9 it remains to show the following

Claim 1: For all 6 € [0,1] T satisfies

a) Tp(n) = Tp(n) for € [=11(0), 11 (8)].

b) 75 () <1< T V() for n € [11(8), y31(8)] U [—1131.(6), —1 (0)].
c) Tg(ny) > 0> Ty(—n) for n > 131(6).

Proof a) is clear. We prove b), ¢) w.l.o.g. only in the case 7 > 0. First let
N € [11(0),7421(0)]. Let Ty,p be the T-map induced by the bridge function

8+6-
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We have

I () =2k Tiap(y) +k_ 27 1(7)
N—— N—_——

<t41,6(11(8)) <To(—11(0))
thki  Top(pi1(n,6)) +k-Ta o(p-1(1,0))
%/_/ (- ~ /
<n12(0) <o)

7

~

Lemnéa‘ 3. 15271+22( )(3 35) ¢ 1(0)
- A p(0)

<k: To(1(0)) + k-T(=11(0)) + €1 (6)

" n (3.30)
=13" (1 (9)) + 3e1(8) <

(3.35)
and as 17421(0) <n31(0) < 11(0) +€2(0) by (3.31) we have

T () > 21,0 0(0) + 21 T_1() > 1

Now let 77 € [17421(0),%31(0)] and T, (9) De the T-map related to the constant

right-hand side d4,(6) — by Lemma 3.16 T 0) (n) = dilz%)' We calculate

“’1’1)

o r) =2k Ty0(n) + 2K T ()

<T1y") o (®)
k2 T ($11000) R 2T 20(P-10(1))
(

gr+zz,ezz+zz(9)) <T, o(n- zz( )<?
ke Ta, o) ($r21607)) + k- T4 o) ($—21,6(17))
<133(0) <2;3r3(9>
—=d_»(0)
(n) n 21133(0) 21733(6)
< n
<Ty" (1 (0)) + ger(®) + ke g H k-
1), 3.30
% +Z€1(9)+3§n€1(9)(<)1'

As above we also have Ty(17)"+1) > 1, so we have proved b). Finally let 1 >
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131(6). We get

To() = 2741 (17) + 2T 0 (P11,0 (1)) ¥ 1,5 (1)
+ T4 o) $121007)) - $i010(7)
———

-~

:d:i(G) =Y 00 (Y 11,6(1) P 1 (1)
3.15 (iii) —2ou (T (
1(T110(1), 1, fo)
=9l 16(1) v + 27/+22,9(1/J+1,9(’7))1
) (3.32) M . (329, (3'3;; -2
: 477 (0)
> R 0o e
W e Wra(n)
5 A\ 1,0
d+2(9) +22,0 Y o\ /)
Lem 3.15 (ii)
> 1
> 0.

This proves the claim and concludes the proof of the Proposition.

3.4 Local attractors and linearization

First we note that we can linearize ¢ locally at nondegenerate equilibria. This is
the Hartman-Grobman Theorem, proved for scalar parabolic PDE in [Lu91]:

Theorem 3.17 (Lu). If v € E is hyperbolic, then there exist neighborhoods V
of v and U of 0 in X, and a homeomorphism ® : V. — U such that if u(t,x)
is a solution of (P) and u(t,-) € V, then ®(u(t, x)) is a solution of the linear
equation

wy=L,w  w(0)=w(l)=0. (3.37)

Ifw(t, x) is a solution of (3.37) and w(t, ) € U, then ® 1 (w(t,x)) is a solution
of (P).

Definition 3.18. a) Let f € C?, v,w € E. If there is u € X such that a(u) = v
and w(u) = w then y(u) is called a connecting orbit from v to w and we say
that v connects to w w.r.t. @, v \,Yw (and we often omit ¢). The union of all
connecting orbits from v to w is the connecting set Cy(v,w) (which of course
may be empty if v X,? w). In particular v \\¥ v and C(v,v) = {v}.

b) If vg \P v1 \\7... \\? v; then we call (vg, ..., v;) a connecting chain from v
to Ok

In working with connecting orbits the following Lemma is fundamental:
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Lemma 3.19 (Global A-Lemma). Let f € C?, v € E hyperbolic. Let N be an
p-invariant submanifold of X having a point q of transversal intersection with
W¢(v). Let B* be an embedded open disc in W*(v) centered at v. Then, given
€ > 0, there exists a submanifold of N e-close to B* in the C1-sense.

Proof. This is Proposition 6.2.10 in [HMO02]. It is formulated there in the
general context of dissipative flows, but only the smoothness of the time-one-map

is used in the proof to apply a local-A-Lemma for smooth maps (Proposition 6.1.6
in [HMO02]). O

Now we define a useful short-hand term:

Definition 3.20. Let v € E be hyperbolic, U a neighborhood of v. A set
S :=dU(v) N W¥(v) is a fundamental domain for v if all orbits in W*(v) have
precisely one point of intersection with S, and the Hartman-Grobman Theorem
can be applied on U(v). Clearly there always exists a fundamental domain.

Proposition 3.21. Let f € C%, v,w,d € E be hyperbolic. Then
a) C(v,w) is an (i(v) — i(w))-dimensional C'-submanifold of X.

b) Let v \? 3\ Yw. Then
Vuqy € C(v,9)Vup € C(3,w)Ve > 03ug € C(v,w) : y(up) C Ue(y(u1) Uy(uz)).

In particular v\, w.

c) The sets OWH(v), W4 (v) are @-invariant. If C(v,w) is hyperbolic then

IC(v,w)= |J C(ov1,02).
i=12,v;cE
o\ o, \w

Proof. This is proved for f € G; in Lemma 3.4 in [BF89]. We will give a
detailed proof for our case, as ¢ may have degenerate equilibria and orbits maybe
unbounded.

a) By definition C(v,w) = W"(v) N W*(w), this intersection is transversal
by [Hen85, Theorem 7]. By Proposition 2.3 ¢) W¥(v) is an i(v)-dimensional
submanifold of X and W?(w) is an i(w)-codimensional submanifold of X, so the
assertion follows.

b) Let u; € C(v,9), up € C(9,w), n := i(d), € > 0. Choose open neigh-
borhoods U(7) C Ue(7), U(v) C Ue(v), U(w) C Ue(w) such that ¢ can be
linearized on these sets as in Theorem 3.17 and that trajectories leaving one of
these neighborhoods never return to it. Let B be an open disc in W*(3) N U(v),
we can assume without loss that u; € U(3) and up € B. Let Ng C W*(v) N U(9)
be an n-dimensional open disc centered at 1y, Ng C W¥(v) NU(?), nowhere tan-
gent to ¢ and W*(3) M Ny, W(5) "Ny = {u1}. Then N := y(Np) is a
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(n 4 1)-dimensional submanifold of W*(v), and by construction it is ¢-invariant
and transversal to W*(%). Note that W*(w) M W" (%) (so W*(w) M B).

Now the global A-Lemma assures the existence of a sequence of n-dimensional
submanifolds By of N converging to B in the Cl-topology, i.e. there are Yr: B —
By C N C! with ||y —id |1 — 0. Now we apply Lemma A.2 with M; =
BNUs (u2), 0 — 0, My = W8 (w), ¢ = g|pm, and see that for k large enough
By N W?8(w) # @, so there is a sequence of points wy € B N W% (w) C C(v, w)
with wy — up. In particular C(v, w) # @.

Let @y := y(wg) N Np, without loss @ — @y € Ny C W¥(v). Clearly
dist(9, y(wy)) = dist(d, y(wy)) — 0, so there are t; — oo such that @ (@y) —
0. Suppose Wy ¢ W*(7). Then by the linearization on U(?) there exists a ty > 0
such that J(@™(@g)) < J(0), so for k large J(¢' (@) < J(7), which contradicts
@' (wy) — 0. By construction of N we have @g € y(uy), so @y = uy.

Choose t~ < 0 < t such that @' (u1) € U(v), ¢! (up) € U(w). Now
(-, @) — ¢(-,u1), ¢(-,wx) — @(-,up) uniformly on [t,0], [0,#T] respectively.
So for k large enough ¢! (@) € U(v), ¢! (wr) € U(w) and @~ (@) c
Ue(y (1)), ¢l N(wy) C Ue(y(u2)). As U(v) UU(0) UU(w) C Ue(y(ur) U
7(uz)) the assertion follows.

c¢) Now let C(v, w) be hyperbolic. 72": Let v; € E,; v\ v; \\Yw,i=1,2 and
u € C(vq,v3). Then v; € W¥(v), so they are hyperbolic. By b) C(v,v;) U {v;} U
C(v;,w) C 0C(v,w). Another application of b) yields C(vq,v;) C dC(v1,w) C
dC(v,w), in particular u € C(v, w).
"C” Let u € dC(v,w). First suppose u € E, then it is hyperbolic by the
hypothesis. Choose € > 0 such that Ue(u) NE = {u}, let uy € C(v,w)N

Ue(u) with e — u. Let = := inf{t > 0 : |l " (ux) —u| = €}, £ =
inf{t > 0 : ||o'(w) —ul = e}, uy = ¢ % (wy), u := @' (). The set
{it € C(v,w),||ii —v| = €} is compact, so w.lo.g. uki — ut € C(v,w),

|u® — u|| = €. By the g-invariance of C(v,w) and the hyperbolicity assumption

we have a(u®),w(ut) € W¥(v), and by construction a(u®) = w(u~) = u.
Proceeding inductively we get a connecting chain from v to w containing u. By

b) v\ u\,* w.
Now let u ¢ E, then vy := a(u), v, := w(u) € dC(v,w) are hyperbolic and
o\ o \w. O

An important technical property of local attractors needed below is their
upper semicontinuity w.r.t. to a parameter:

Lemma 3.22. Let Iy C [0,00), vo € Iy. For eachv € Iy let f, € Gg, v — f, €
C2 continuous. Suppose Ag is a local attractor w.r.t. @uy, then there is a h > 0
and Ay C N1 C X open such that for |[v—vy| < h the semiflow ¢, has a compact
local attractor A, which attracts Ny. Moreover §(AV,AVO) — 0 asv — .

The proof is rather technical and stated in section A.3.
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Theorem 3.23. Let f € Gy, Ao be a hyperbolic local attractor, v € Eg :=
EN Ay, n := max{i(w) : w € Ep}. Then there is an open neighborhood
U of P}(v)Ap in X}(v) and a Cl-function h : U — X"(v) such that Ay C
graph(h) =: N, and N is positively and locally negatively invariant.

Proof. The assertion has been proved by Brunovsky ([Bru90]) for the hyperbolic
global attractor of a dissipative flow. This proof can be modified in a straightfor-
ward way to prove Theorem 3.23. We will not repeat the whole proof here but
list the main steps and how the arguments carry over to our situation.

Step 1 First ([Bru90, §3 up to Proposition 3.3]) Ap is shown to be the graph
of a function h by showing that z(v; — vp) < n for all v1,v; € Ap, using the
general fact from Sturm-Liouville theory that z(v —w) > nif v —w € X"\ {0}.
In [Bru90, Lemma 3.1] it is shown that z(v; — v3) < max{i(v) : v € E} for
f € G4. We can prove in an identical way that z(v; — vp) < n for v1,vp € Ep,
but only for f € G;. For f € G4 we can choose fx € G4 with fx — f in C2 by
Proposition 2.15. By Lemma 3.22 for k large enough ¢y admits a local attractor
Ay such that 8( Ay, Ag) — 0. Let Ex := {u € Ay : u is an equilibrium of ¢y},
then max{ix(v) : v € Ex} < n for almost all k. If not then w.l.o.g.

Vk € Nduv, € Ej : ik(vk) > n.

We can assume v — 09 € Ay, and for t € R we have ¢'(vg) = limy_q, ¢4 (v%) =
v, 80 vy € Eg. Now i(vg) < n, and by the phase-plane analysis (Propositions
3.10 a) and 3.12) we get ix(vx) < n. So choosing v1, v, € Eg and vllc,vlﬁ € Ej with
vi.‘ — v; in C! (by the implicit function theorem) analogously to [Bru90, Lemma
3.1] we get z(vf — v8) < n. By Proposition 3.2 d), b) v — v has only simple
zeros, 50 z(v] — v2) = limy_o, 2(vh — 08) < n.

The rest of this step ([Bru90, Lemma 3.2, Proposition 3.3]) can be proved exactly
as in [Bru90].

Step 2 Now the map h is shown to be Lipschitz continuous ([Bru90, Lemma
3.5, Corollary 3.6]). To get this the existence of a C! inertial manifold is used.
This existence is proved by Chow and Lu ([CL88]) for f € Gy, i.e. without any
hyperbolicity assumption. The following indirect proof of existence of a Lipschitz
constant then can be repeated without any changes in our case.

Step 3 Finally (pp 308-312) the map & is extended to be C! on a neighborhood of
Pj'(v).A. This extension procedure is done in a finite-dimensional setting by the
inertial manifold. It is done inductively, starting with the sources and working
downwards to the sinks. As mentioned the finite dimensional reduction works
without hyperbolicity assumption. The induction can be started at "sources w.r.t.
Ap”, and as E \ Ey has to be bounded away from Ay (otherwise they would
accumulate in the compact global attractor of ¢, and thus there was a degenerate
equilibrium in Ag) it can proceed to the sinks within Ey without change of the
proof.
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O

Corollary 3.24. Let Ay be a hyperbolic local attractor, N as stated in Theorem
3.23, v € ENAg, n =dim(Ag). Then @|pr is locally conjugate at v to the linear
flow induced by

= L"v), u(0)=u(l)=0
(v

on X} (v) with L} (v) € L(X](v)) being the restriction of Ly.

Proof. By Theorem 3.23 @|y is conjugate to it’s projection onto X} (v). But
this finite-dimensional flow can be linearized at hyperbolic equilibria as stated by
the Hartman-Grobman Theorem ([Pug69]). O
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CHAPTER 4

Applications of cut-off

4.1 Connecting orbits

Brunovsky and Fiedler ([BF88|, [BF89]) gave a complete description of the con-
necting orbit structure in the dissipative case. The following assertion is Theorem
1.3 in [BF89]:

Theorem 4.1 (Brunovsky-Fiedler). Let f € G4, then a given v € E connects
precisely to those w € E for which i(w) < i(v) and for which there is no @ with
@' (0) between v'(0) and w'(0) satisfying z(v — @) < z(w — D).

We will be able to show the following result:

Theorem 4.2. The conclusions of Theorem 4.1 are true for f € G. For f € F
and v, w € E this means

o\fw << i(v) > i(w).

Proof. We start with the case f € F. Let v,w € E, N := max{i(v),i(w)}.

We want to apply Proposition 3.14 with fy = f, n = m > i(0) and a constant

11 = 11(0). Now either z(uy ) or z(u,41) is odd, so by Remark 3.8 we have either
/

u,(0) = —u’ ,(0) or u;, 1(0) = —u’_(n+1)(0), consequently we can choose

m € (max{u}(0), —,(0)}, min{u1(0), ~u' 1) (0)})

By Proposition 3.10¢) T'(57) < 0 < T'(—#) for ally > 0, so T (y7), T+ (1) <
0 < T/ (—y), T(+1/(—p), so the conditions (3.11) are satisfied. This gives us
a sequence of f, € G; and associated hyperbolic parabolic semiflows ¢, on X.
The set of equilibria of ¢, is

En={ux € E: k| <n}U{i,:1< k| <nl

where iy, is nondegenerate, i(ily,) = z(ily,) = |k|. By Proposition 3.14 we
have v,w € E, for all n > N. We also fix for each n € IN a maximal M(n) such
that ¢, = @ on {u € X : ||ul|e < M(n)}, clearly M(n) —= oo

Define an, wn, Wi, Jn, Tn for ¢n / fu as for ¢ / f. Let A, be the global
attractor of @y, then A, is a n-dimensional graph (cf. [Bru90]), so @u|.4, is a
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finite dimensional flow. For B C A, let int, B and 9,,B denote the interior and
the boundary of B relative to A, respectively.

By Lemma 2.10 b) T™*(14) = oo if J(¢T (up)) is bounded from below, and
by Lemma 2.10 a) this implies that in this case ||¢(u)]| is uniformly bounded
for all t > 0.

Suppose first i(v) > i(w), then we have

Vn>N:o\""w

This follows from Theorem 4.1 and will be proved separately in Corollary 4.3.
We will show that this already implies v \ ¢ w.

Now choose N’ > N such that M(N’) > ||v||«, then there exists € > 0 such
that on B := Be(v) N Ay all ¢, coincide for n > N’ by the embedding X «— C°.
Thus exist u, € dn/B with ay(uy) = v, wy(uy) = w, and || ¢!, (uy)]|ee < M(N')
for t < 0. dn/B is compact, so w.l.o.g. there exists uy € dnB such that u, — ug.
We have ¢'(u,) — ¢'(ug) uniformly on [—R,0] for any R > 0, so ¢(ug) — v
as t — —oo.

Claim 1: J(¢'(ug)) > J(w) for all t € (—oo, T™8(1g)).

Proof Suppose 3tg € (0, T™(ug)) : J(¢'(up)) < J(w). Then IK > 0 with
l¢'(19)||eo < K for all 0 < t < ty. Choose Nx € N with M(Ng) > K, so that

Vn > NKVO <t<tp: qofq(uo) = (pt(uo).

Define tg,, := inf{t > 0: ¢! (uy) # ¢'(uy)} >0 for n > Ng.

Now there exists Ny > Nk such that for all n > Ng : fg, > to. To see this
assume on the contrary that Vn € N : ¢y, < tg, w.lo.g. o, — toe € [0, fo]. By
the continuous dependence Theorem we get qoflo’” () = @lon(uy) — @ (up),
but ||(p£,°’"(un)||oo > M(n) — oo by construction, so ||@™n(u,)|| — oo which
contradicts tg e < tg < T™MX.

So for n > Nj we have ¢!, (1,) = ¢'(u,) for all 0 < t < tg, again by continuous
dependence @i (11,) — @ (ug), ie. Ju(@(1n)) = J(@"(uy)) < J(w) = Ju(w)
for n large enough. This contradicts w = wy(uy), so (¢! (ug)) > J(w) for all
t € [0, T™*(up)) and the claim is proved.

This implies T™**(1y) = oo and we get w(ug) = v1 € E with J(v) > J(vq1) >
J(w). If v1 = w the proof is complete, so assume vy # w.

Choose N7 > N’ such that ¢§\,1(u0) = ¢'(ug) for all t € R, €; > 0 such
that @n, = @ on By = Be, (v1) N Apy, and that by Corollary 3.24 ¢n;, |1§1 is orbit
equivalent to its linearization at v1. Then by this linearization and the gradient
structure of ¢y, we can find a closed By C B; such that any trajectory leaving
By mnever reenters By and that vy € inty, Bj.
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Sven Schulz 4.1. Connecting orbits

Now choose ty > 0 such that ¢ (ug) € inty, B1. As above by the continuous
dependence ¢f (u,) — @'(ug) uniformly on [0,ty], more precisely for n large
¢! (1) |lo < M(Ny) on [0,t0], so @, (uy) = ¢'(uy) for all t € (—oo,t] and
@' (u,) € inty, By. For such n we can define

H = sup{t > 0: ¢, (u,) € B1} < o0

and o
) = o (1) € 0, By

(Clearly || ¢! (un Moo < M(Ny) for all t < 0 and @f(uy, a )) — vast — —o0).
Wlog ul) — ull) € ay,By.

Claim 2: ¢! (ul")) === o

Proof By similar arguments as above we see that there exist f, > 0 such that

gof"(un) — v71. For n large enough qofﬂ(un) € inty, By, s0s, 1= F; — tﬁll) <0. Ifs,

was bounded then w.l.o.g. s, — sop < 0, then (pSO(uél)) = limy—c ¢S”(u,(11))

which contradicts v1 € E, so s, is unbounded.

We can assume s,11 < Sy, so by the definition of By and by ¢° (u,gl)) € Bj for all
n we have (pS"(uﬁk) € By for all n,k, thus (psn(u(()l)) = limy_ . qosﬂ(u,(cl)) € By
which implies q)t(u(()l)) € By for all t <0, this proves the claim.

(1 (1)

We can now inductively repeat the same arguments with u, ’, u; * instead of
un, up and find a sequence vy, vy, - € E with J(v) > J(v1) > J(vp) > .... As
{6 € E:J(v) > J(0) > J(w)} is finite there is a k € IN such that v = w.

Similar as above ¢, (u,gk_l)) can be bounded uniformly on [0, o) for large n. So
we find that for n large enough || @, (uy)|lec < M(Ng) for all t € R. In other
words: For n large enough we have ¢ (u,) = ¢! (uy,) for any t € R.

Now assume v \*w and fix ug € X with a(ug) = v, w(uo) = w. Let
C > ||7(ug)]|eo and n € IN such that M(n) > C. Then ay,(uy) = v, w(ug) =
that is v \\#" w. But by Theorem 4.1 this is only possible if i(v) i(w). Thls

completes the proof in the case f € F.

In the case f € G the proof proceeds exactly as the proof of the case f € F,
except that we do not cut off f above every pair of solutions.
All equilibria are nondegenerate, so we can write

E:{{uk:kEZ\{O}} 0¢E
{up ke Z} 0€E

with ', 11 (0) < ' (0) < 0 < u}(0) < uf, (0) for all k € N.

47



4. Applications of cut-off Sven Schulz

By the relation T < T("+1) for all n € N we have
Vk e Z\{0,1} : |z(uy) — z(ur_1)| € {0,1} (4.1)
(cf. Corollary 3.12). By Theorem 3.6 we also have
z(ug) — oo as |k| — oo. (4.2)
Define

ny :=min{n € N : n odd , 3k : z(ily) = n}
kp :=max{k € N:z(uy) =n+2(n—1)} forn € N
k_y:=-—-max{k e N:z(u_y) =n;+2(n—1)} for n € N.

Then for n € N ky41 > kn +2, z(uy,) = z(ux_,) odd, and uy_(0) = —uy_ (0).
By construction T"20=1)(y) < 1 for y > ug (0), so choosing 171 > uy (0)
close enough to u,’(n (0) this 17 satisfies (3.11). Now apply Proposition 3.14 with
fi =1 = ky, 11 as above and fy = f.

The rest of the proof can be done in the same way as for f € F: If i(w) <
i(v) and no @ € E with @'(0) between v'(0) and w’(0) satisfies z(v — @) <
z(w — @) then v \ P w for all n large enough. As above this implies v \,¥ w.

If v\\Yw then v\% w for some n, so the given conditions are satisfied by
Theorem 4.1. O

In the case f € F the connecting orbits w.r.t. ¢, can easily be described in
an explicit form:

Corollary 4.3. Let f € F. Forv € Ey let O, (v) :={w € E, : v\ w} \ {v}.
Let ko :=i(0) + 1, then we have the following result:

0, (0) ={d : [k| <ko}
Oy (uge)={uy, dy = |1] < |k|} U {ili }
for all k € {£ky, ..., £n}
O (i) ={d; - |I| < |k|}
for allk € {£1,...,£n}.

Proof. Forv,w € E, we write v < w: <= v'(0) < @'(0) and |v| < |w| : <=
|/ (0)] < |w’(0)| to shorten notation. With this notation we have

g < <fyg <o <o <Upy <O <upy < o0 <y < ily <o <y,

0 < |tgry| <+ < |utn| < |fizn] <+ <|id41],
i(iiy) = |k| — 1, i(ur) = |k| by Corollary 3.12 and Proposition 3.14.
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Let v,w € E,, v # w, first consider v < w. We want to find out in which
cases we have v \\#" w. We need to consider only w with i(v) > i(w), since this
condition is necessary.

Case 1: v =1i_y for k € {1,...,n}, then
k—=1=i(v) >i(w) <= we {u__g),..., ug2} U{dg_1,..., 01}
Ifwe {u_(k_z),. . .,uk_z} then

20 —ug) T 2(0) =k —1=2(u_) = 2(u_ —w),
so u_y blocks the connection and we have v X " w. If w € {i_q,...,#1} and
W € E, with v < @ < w, then |w| > |v| > |®|. Thus

z(v—w) =z(v) =k—1>z(w) = z(w — D)
and v \?" w.
Case 2: v =u_y, k € {ko,...,n}, then

k=i(v) >i(w) <=
w € {u_(k_l),. . .,u_kO,O,ukO,. . .,uk_l} U {ﬁk} U {ﬁk—lr' . .,121}.

fwe {u_x_1),. U1y 0ugy, ..., up1}, then [v| > [@] for v < @ < w, s0
z(v —w) = z(v) = k—1, and as both z(w),z(®) < k—2 we get v \ " w. If
w = # then uy blocks the connection: |z(v —ug)| =k —1 = z(w) = z(w — uy),
so v A" w.

If finally w € {ix_1,...,%1} then for v < @ < w we have |w| > |®@|, so
z(w — ) = z(w) < k—2. Now either |@| > |v| or |@| < |v|. In the first case
z(v — W) = z(@) > z(w) = z(w — @), the latter case yields z(v — @) = z(v) =
k — 1; either way we get v \ /9" w.

Case 3: v > 0, then i(v) > i(w) <= w € {h: k—1 < i(v)}. For all
v < W< w we have z(v — @) = z(@) > z(w) = z(w — @), so v \," w.
For w > v we analogously get symmetric results, so the assertion follows. [

4.2 Continuous approximation of f

With the help of Proposition 3.14 and the connecting orbit structure we can
approximate f with a continuum of dissipative functions f, and obtain a more
detailed picture of the dynamics of ¢, including blow-up behavior.
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Proposition 4.4. Let f € F, i(0) =: ko, E = {0, uy(xy41),--- }- Then there

exists a continuous mapping [ko,00) > vi— f, € G5 C C such that the following
assertions hold:

(i) Forthe set E, of stationary solutions of the dissipative flows ¢, the following
holds: Letn € N, n > ko, v € [n,n+ 1), then
EV — {U E E . Z(U) S n}U{ﬁillv,. . .,ﬁin’y}URy,

all u € E, \ Ry are hyperbolic, the mapping [|k|,00) > v — iy, € X is
continuous for allk € Z\ {0}, Ry = @ and z(v) = n+1 forv € Ry,
€ (n,n+1). Define the following invariant sets:

A = U W"(v) B ={uecA:T"*(u) =oco}
veE
A, =W"(E)) B, ={ueA,:a,(u),w,(u)€E}

Apy ={ue A, z(a(u)) <n} Bpy :=A,,NB,
Apeo i={u € A:z(a(u)) <n} Bpeo:=AneNB

(i1) Ay is a n-dimensional local attractor of ¢y.

(iii) Forn > ko and v > n the semiflows @u|a, and @y|4,, are conjugate, i.e.
there is a homeomorphism hy, : Ay — Auy mapping orbits onto orbits
and preserving the sense of direction in time. The mapping v +— hy, €
CY( Ay, X) is continuous.

(iv) YVn € NIN € NYv > N : B,y = By and ¢, ¢, coincide on By .

(v) Let My := max{M € (0,0) : f, = f on (=M, M)}, then E,, = {u €
Any vy ()|l < My} C Apeo is ascending in v with Uys, Eny = An,co-

(vi) Let v,w € E, v > n := i(v). Then the connecting manifold Cy,(v,w) is
connected.

V—00

(vit) Jy(ilg,) —— —oo for allk € Z\ {0}.
(viii) Vn > ko3U C X7(0) open 3g: U — X"(0) C! : Byoo C Aneo C graphg.

Proof. (i) is a direct application of Proposition 3.14 together with Proposi-
tion 3.10 c¢). As shown in the proof of 4.2 (case f € F) for k > ko there are
max{ |1/, (0)]} < a < min{|u’i(k+1) (0)|} — we choose ay := 5 (max{|u/,, (0)|} +
min{|u/_ (k+1) (0)]}) for uniqueness and continuous dependence on f. Let 171 (6) :=
(1-— O)ak + 6ak+1 and apply Proposition 3.14 with this 77 and constant f. We
obtain a continuum fy and set f, := fy +

(ii): We use that for any t > 0 gov is a continuous mapping from X to
C! = C'([0,1]). To see this choose a sequence (wy); in X with wy — w € X.
{wy : k € N} is bounded in X, so {¢! (w;) : k € N} is bounded in H? by
Proposition 2.1 (iv). By Sobolev embedding { ¢! (wy) : k € N} is precompact in
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Cl. Thus any subsequence of (¢! (w)) has a subsequence (¢! (wy,)) such that
¢! (wy,) — @||c1 — 0. This implies ¢!, (wx) — @ in X, so @ = ¢}, (w) and it
follows that | ¢! (wy) — ¢!, (w)||; — 0.
Define
Z":={ue X:3tec(0,1):z(¢\(u)) <n}.

Then Z! is open: Let w € Z!", t € (0,1) such that z(¢!(w)) < n and all zeros
of ¢! (w) are simple (Proposition 3.2 ¢)). There is a neighborhood U of ¢f,(w) in
C! such that z|;; < n. By the continuity of ¢!, : X — C! the set (¢f)~1(U) C Z7
is an open neighborhood of w in X, so Z is open. Next choose ¢ € R\ ], 1(E,)
with ¢ > max J,(Auy) and let U := Z" N ], 1((—o0,c)). Then U is positively
invariant, open and bounded because ¢, is a dissipative gradient-like semiflow
and [, is continuous. Given v € E, choose w; € U with w, — v. There exist

t, such that z(¢lf) < n, we can assume f, — 1 by Proposition 3.2 ¢). Then

1 —
ol (wy) <, @ (v) = v, s0 z(v) < n and we have proved UNE, C Ay, NE,.
The other inclusion is trivial.
Suppose A, does not attract U. Then
Je > 0,ty, — 00, wy, € U : dist(el (wp), Any) > €.

But A, does attract U, so w.l.o.g. @i (wy) — wy € (A, \ An,) NU. Choosing
sk — —oo such that ||y (wy) — a(wp)|| < + and an appropriate subsequence of
(tm)m we get

tmk +Sk

Pv (wmk) - ‘X(wO) € (Av \ An,v) NUNE, =Q,

which is impossible as wg € A,.

(iii) In [Oli02] it is proved that for functions f,g € G, being close in the
weak topology there is a homeomorphism .Af — A mapping orbits onto orbits
and preserving sense of direction in time. The proof can be repeated unchanged
for local attractors, which yields the stated result. The only properties of the
attractor used in the proof are it’s compactness and invariance and upper semi-
continuity (i.e. 5(Ag, Af) — 0 as g — f), maximality of the compact invariant
set is not used. The properties of the flow, in particular the existence of a partial
order structure on the set of equilibria induced by v \,? w, are all satisfied and
stated in section 2. The upper semicontinuity of local attractors has been proved
in Lemma 3.22. The continuity statement follows from the construction of the
homeomorphisms in [Oli02] by invariant foliations varying smoothly in f € Gj.

(iv): By NE is finite, so by Lemma 2.10 B, o is bounded in X, thus it is
bounded in C°. Defining M, as in (v) clearly My > || By || for v large enough,
which implies By o C By, for v large enough. The other inclusion follows from
the proof of Theorem 4.2 (case f € F).

(v) is clear because M, is nondecreasing by construction of f,.
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(vi): We can assume without loss that dim(C, (v, w)) > 0. By (iii) Cy (v, w)

is homeomorphic to C, (v, w), so it is enough to show that C, (v, w) is connected.

Recall that by Theorem 3.23 for k € IN there are open Uy C XF(uy) and

continuously differentiable gi : Ux — X¥(ug) such that Ay C Ny = graph(gx)
and N is positively and locally negatively invariant w.r.t. ¢x.

In the case i(w) = n — 1 the restricted flow @y |y, is locally at w conjugate
to a linear flow with a one-dimensional stable manifold (cf. Corollary 3.24). So
by this linearization we see that there are precisely two orbits converging to w in
N,,. But in this case u, \, w and u_, \, w, so the assertion follows.

Now consider the case n —i(w) = k > 1. Again linearize @,|yr, in a neigh-
borhood U C N, of w. By Proposition 3.21

U = (Ay_1,3 U Cp(tt, w) U Cy(ti—p, w)) N UL (4.3)

By Theorem 3.23 A,_1,NU =N,_1NU is a Cl-hypersurface in U (decreas-
ing U if necessary), more precisely a graph over Pf_l(w)ll. By Proposition
2.3 d) Wi(w) is locally a graph over PI®)(w)U, so W5 (w) My Ay_1,, and
(UNW;(w)) \ Ap—1, has exactly two connected components. By (4.3) (U N
W (w)) \ An—1n = (Cu(ttn, w) UC, (ti—p, w)) MU, so Cp(tty, w) NU, Cp(t—y, w) N
U are connected. This proves (vi).

(vii): Let k € Z\ {0}, wlo.g. k >0, S a fundamental domain for u; € E
w.r.t. ¢, for all v > k. Choose a sequence v, > k, v, — oo, then

vn E ]Nalvn E S : an (vn) = ﬁk,Vn'
W.lo.g. v, — v ES.
Claim 1: T™¥(v) < oo

Proof Suppose not, then w(v) = w € E with z(w) = i(w) —1 < i(uy) —1 =
z(uy). Choose N € N with My, > ||C(ug, w)| e, so for all n > N we have
¥(v) = Yy, (v). Further there is an open neighborhood U of w in Ay, such
that ||U|e < My, and z|yy = z(w) < z(v). This is because Ay, is (part of) a
smooth graph over the finite-dimensional Xj (v), where the X— and C!— norms
are equivalent. There is also a finite T > 0 such that ¢f(v) € U for all t > T.
So we can conclude for n > N large enough

o1 (0,) = gl

which contradicts @}, (vy) — i, as t — oo and the claim is proved.

T (vn) € ANy 2(9, (o) = 2(w) < 2(ux) = 2(ilgy,),

|—o00

Now let t, := T™*(v) — L > 0 for nn large enough. Then as above ¢y (v;) ——

n—oo

@' (v), in particular Jy, (qof,’l' (v1)) o, J(¢'"(v)) —— —oo. But for all t we have
Ju (k) < Ty, (qof,l (v1)), so the assertion is proved.
(viii): This is a direct corollary of Theorem 3.23 and (v).
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4.3 Orbit equivalence and blow-up

For f € F we are now able to transfer global stability results from the dissipative
case. We can prove the stability of n-dimensional subsets of the flow, namely
the sets A, in the following theorem. Note that these sets include blow-up
trajectories, so we can show some kind of stability of blow-up phenomena. One
more step in this direction is Corollary 4.6, where we show the existence of blow-
up trajectories with certain properties.

Theorem 4.5. Let f € F, n > i(0). We use the notation and the dissipative
flows introduced in Proposition 4.4. Choose 0 € R from the same connected
component of R\ {k?7% : k € N} that f'(0) lies in, and define f(x) := x>+ ox.
Then f € F and the flows ¢vla,, and ¢v| 5 =~ are conjugate for any v € [n, o0),
as well as the flows ¢|a,., and §| g, . ,

Proof. We will first prove the assertion for v € [n,00). By Proposition 4.4 (iii)
it is enough to show it for v = n. For 6 € [0,1], x € R define

ho(x) = h(6,x) :== (1—0)f(x) +0f(x).
Then

Hy(x)-x® = (1—0)f (x)x* + 0 (x)x* > hg(x)x,
1y(0) = (1—6)f(0) + 60 ¢ {K*n*: k € N}.

Similarly we check hy € G, so hg € F for all § € [0,1] (in particular f €
F) — let @y denote the associated parabolic flow. By construction ig(0) is
independent of 0. We write the set of equilibria of @g as {0, g +(i(0)41),-- - }-
By the continuous dependence Theorem 6 +— ”é,l(o) is a continuous function
for all |I| > i(0) +1. So we can define a continuous function by #; : [0,1] —
R, 71(0) := %(max{ué,in(O)} + min{u’eli(nﬂ)(O)}) as in the hypotheses of
Proposition 3.14. Then by construction ¢g, = ¢, and @1, = ¢y.

Applying Proposition 3.14 (again with m = n) we get a continuum of functions
hg € G; with hg = fn, h1 = fn Again @y, is a dissipative Morse-Smale semiflow
for any 6 € [0,1], so by Oliva [O1i02] @n|4,, ~ @nl 1, -

Now choose N 3 v > 1 so large that My, > ||Byeo||eo and J,,(v) < —1 for any
v € E,y \ E by Proposition 4.4 (vii) and ¢ € (—1,0) such that ¢ € J,(E,). Let
A=AW):={u€ A, : J,(u) > c}, by the connecting orbit structure and the
choice of v and ¢ we have AN Ey = {0,u4()41,---,U+n}, A is locally positive
and globally negatively invariant w.r.t. ¢, and

n
U W) UWE(0) D A D By
k=i(0)+1
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So there is a T > 0 such that for B := @, T(A) we have ||B|l < M,, thus
Ao O B D Byeo. By construction of B for u € 0B we have y(u) NoB = {u},
and by Lemma 2.10 the mapping X 3 u — Ty***(u) is continuous. This means
that the mappings

T: Apneo \ A — [0,00), T(u) ;= inf{t > 0: ¢ '(u) €9A}
g:Ane \ A — 04, g(u) = qo_T(“)(u)

are continuous. So we can finally define 1 : Ay 0o — Ap o by

ho(u) ueA

h(u) =< _ N —
BTy (ho(g()) - 758 ho(8(w) ) 0 € Aweo\ A

This mapping is a homeomorphism A, — Ay mapping orbits onto orbits

and preserving sense of direction in time, as is easily verified. O

Corollary 4.6. Let f € F, n >i(0), 1 € Z, |l| € {i(0) +1,...n}. Then (with
the notation from Proposition 4.4) there is a vg € Ayeo with ¢'(vg) — oo as
t — T™%(vg) and z(u) = |I| — 1, sign(u/(0)) = sign(l) for all u € y(vo).

Proof. We will consider the case I > 0, the second case follows analogously.
Choose € > 0 and N > n such that

Vk > N : qok‘ue( U (1) N W" (1) is closed.

)N Aneo qo‘Ue(ul)ﬂAn,oo’

Then t

Vk > N 3vg € oUe () "W (uy) = @p(vg) — iy

by Proposition 4.4 and Corollary 4.3. W.lo.g. vy — v € 9Be(un) N W"(uy).
Let tg € I(vg) = {t € I(vg) : ¢'(vp) has only simple zeros}, then

2(9"(00)) = lim z (9 (o)) =1 -1

(z(¢4(vg)) = 1 —1 for all t because yx(vx) connects two equilibria with I — 1
zeros). By Proposition 3.2 ¢) I(vg) is dense in I(vp), so z(¢!(vg)) = [ — 1 for all
t € I(vg). But {v € E:z(v) =1—1} = {uy, u_;} by Corollary 3.12, a(vg) = u;
by construction, and u; )X,* #_; by Theorem 4.2. This means w(vg) = @, so by
Proposition 2.3 a) ||7™ (vg)|| is unbounded. For u € y(vg) we have u’(0) > 0 by
Proposition 3.2 b) because u;(0) > 0. O

Remark 4.7. A more detailed analysis of the properties of A « could lead to
a better understanding of blow-up phenomena. It could be a first goal to prove
that PJ'(v).Ane = X. We were only able to prove P} (v)ily,, — oo, which implies
P (v)iiy,y — oo if f is odd.
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APPENDIX A
Some technical proofs

A.1 The superposition operator f

Lemma A.1. For f C! the operator f: X — L2([0,1]) is continuously differen-
tiable uniformly on bounded sets.

Proof. We have to prove that X 3 v — f'(u)v € L? is the Gateaux - derivative
of f in u, and that the mapping

X3ouw— (Xav»—>f’(u)v€ L2) € L(X,L?)

is uniformly continuous on bounded sets. First let u,v € X, t € R and x € [0,1].
Then if v(x) # 0

Fl) +100)) = F000) 0

t
— U(X) <f(u(x) + tz;g‘zc))cg —f(u(x)) —f'(u(x))) ‘
< ol - max {|f(2) = £1(E)] : 1] < llulleo, & = 2] < tlofleo}
=% 0.

The inequality above obviously holds for v(x) = 0 as well, so we have shown

(u() +to(-)) — f(u()
! NI pru() o)
in C°([0,1]). This implies L?-convergence.
By the Sobolev embedding Theorem ([Ada75]) there is a constant C > 0 such
that |[ulleo < C||lu|| for all u € X. Let u,w,v € X, ||v|| =1, w € Uy(u) and M’
the Lipschitz constant of f’ on [— |||l — C, ||tt||ec + C]:

1

If' (wyo — f'(w)oll = / (' (u(x)) = f'(w(x)))o(x))* dx
0
1

< /M’2|u(x) —w(x)2v(x)?dx < M?C?|ju — w|3 < M?C?||lu — w|,
0
so this mapping is (Lipschitz) continuous uniformly on bounded sets. O
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A.2 A class of dissipative functions

Proof of Proposition 2.6. The assertion follows by Theorem 3.8.5 in [Hal88|,
if ¢ is a dissipative gradient-like semiflow, E is bounded, and ¢ is asymptotically
smooth, which means that for any nonempty, closed, bounded and positive inva-
riant set B C X there is a compact set K which attracts B.

By [Hal88, Corollary 3.2.2] asymptotical smoothness follows from the com-
pactness of the flow (Proposition 2.1 (iv)), and as ¢ is gradient-like it remains
to show boundedness of E, boundedness of | from below, and J(u#) — oo as
[[u]] — co.

X has an orthogonal base of eigenfunctions ey, e, ... of — % to the eigenvalues

72,2272, ... such that u = Y0 ey, u)ey for u € X. So

1 1 oo
il = [ (—ucyudz = | (2<ek,u>k2n2ek> 1w dx

1
> nz/uzdx = 71%||ul|3,
0

which is of course just Poincarés inequality implying ||u||> < (14 772)|juy|3.

Now by the condition on f there is a § > 0 such that lim SUP || o @ < ?—34.
For s > 0 we obtain

E(s) - %(nz —o) = [ [@ e 5)} bdt < Gy,

A similar estimate holds for s < 0, so

3Cs > 0Vs € R : F(s) < =(m? — 8)s? + C;,

N[ =

and we get the estimate

1
1 1 1
Ju) = llwcl = [ F(w)dx = Sl - 5022 = )lJull3 - Cs
0

J 2 4 2
> — —C5 > ——+ — Cs.
> 2 lunl = Ca 2 gyl —
So J is bounded from below and J(u) Jullzee, o

To see that E is bounded let u € E, so —uyy = f(u) which is equivalent to
1

1
VvEX:/uxvxdxz/f(u)vdx.
0 0
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By the conditions on f there are constants M, > 0 such that ) ( ) < 72— 5 for
all [s| > M, and setting v = u in the equation above we get

1 1
sl = [sax = [ fudz = [ fudx+ [ fupudx
0 0 {|ul<M} {Jul>M}
! 2
SMmaxf“_ —i—/ d)u dx<K—|— ||ux||2,
—K 0
SO 1!:[7!4 < '3 < K” and E is bounded. ]

A.3 Upper semicontinuity of local attractors

Proof of Lemma 3.22. We have to verify the assumptions of Theorem 2.4
in [HLR88] where all assertions of Lemma 3.22 are proved. First choose any
open bounded neighborhood Ay C U C X, v € Iy and a compact interval I =
[t=,¢%] C (0,00). Choose &y > 0 such that Ups,(Ag) C U, open sets NF D Ay
such that 7, (NF) C Uy, (Ao), Na := Uy (Anu,), N3 := Ung, (An,) (note that
4k 2
Ay ist stable by Lemma 2.9). Then clearly N{‘ C Np C U (N2) € N3 C U, and
the following three conditions are easily verified:
1. Vk € NVt > 0: ¢!, (Nf) C Na.

2. Fk € N, tg > 0ho > 0,V0 < t < tgV|v —vp| < ho : ¢',(NF) C Ny
(If not, then

>,

0

1
Wk € N30 < fi < - Juy € By (v0) Ju € NE - dist(gif (uy), Ag) > >

But uk€U50(Ao) sow.lo.g. ux — u € Ay thus Hgovk(uk)—uH —0< 70

a contradlctlon)
3. Vv —vo| < 1Vu € Uy, (N2)3t = tHu,v) > 0: o (1) € N5,

Fix k € N as given by 2 and let Ny := N{‘.
Next we have to verify a certain continuity of ¢, w.r.t. v. We use the variation-
of-constants formula

gh(u) = At [ e AL (g3 () ds (A1)
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([Hen81, Lemma 3.3.2]), where A is the Dirichlet realization of —A in L? and
e~ 4! is the analytic semigroup induced by A (cf. section 2.1). We also use the
fractional powers A* of A for 0 < a < 1 with domains X* = D(A%) with the

graph norms ||ully = ||A%ul|;2. We have X = L2, X! = H>N X and Xz =X

with || - || and || - |1 being equivalent norms (see [Hen81], section 1.4.). In this
proof we will write || - ||;2 instead of || - || to distinguish it clearly from the graph
norms.

By the assumptions on f,, there is a constant C(U) such that
sup {1 fi, (t) = fu(t)| : v € By(vo), [t| < sup{|lulleo : u € U}}
< C(U)-0(1) ash — 0.
This means that for any 0 < t < t* and any uy € U with (pLO’t},(pL%’ﬂ C u we
have

I} 1t0) = @ty (o) | < C- [ AR A (£, (93 (10)) ~ f (93, (10)) 2
0

Nl—

< C [t =52 (1fun(0h(10)) — fu 5, (10)) 1,7+
0
£ (@5 (10) = fuo (95 (u0)) I, ) ds

< [C-(t—s)"2-(CU) - ||} (10) — 5, (uo)|| + C(U) - 0(1))

o

t
_1
< C(h, L U) -o(1) +/C(U)(f — )" 2| @y (uo) — @y, (uo)| ds as b | 0.
0
By Gronwall’s inequality

9y (10) — @i, (110) || < C(h, I, U) -0(1) as h | 0,

which in the notation of [HLR88| means that "¢, conditionally approximates ¢y,
on U on compact sets of [0,00)”.
Also, as proved in section A.2, all ¢, are asymptotically smooth, so the as-
sumptions of Theorem 2.4 in [HLR&8| are satisfied.
O

A .4 Persistence of transversal intersections

Lemma A.2. Let X be a Banach space, My, My Cl-submanifolds of X, dim M; <
oo, codim My < oo, MM My, ug € C:= M NMp, p: U := Ue(uo) NM; — X

continuous.
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Then there is an €' > 0 such that p(U) N My # D if || —id ||po < €.

Proof. Case 1: dim M; = codim M. Then we can assume without loss C =
{up}, and also ug = 0. Let X; = ToM;, i = 1,2, then X = X1 @ X», let P; be the
projections onto X; along X3_;. For 6 > 0 small enough there are C!-functions

g Us(0,X;) — X34, i=1,2
and an open neighborhood Us C U, of 0 such that
M;NUs = graphg;.
Define

hi:Us(0,Xy) — X, x1 — (x1,81(x1))
hy : Us — X, (x1,x2) — (x1 — §2(x2), x2).

Now choose U5 C Uy open such that (Uj5) C U; for all ¢ with || —id ||c0 < %,
and let Uy := hy *(U}) C Xp. Define

f¢:U1 —>X1, flp:PthzOl/JOhl,
then

fu(x) =0 < hyopoh(x) € X,
= Pi(pom(x)) = g(Po(¢ o h(x))
= ¢(@@) € MyNUs = (M) "M, # @,
eM,

so it is sufficient to prove that fy has a zero in Uy if ||¢p —id ||¢o is small enough.
We want to prove this using the Brouwer degree. Let

fid . U1 — Xl/ fid = P1 O]’leidO]’ll = id—gzogl,
then
fid(x) =0 < I th(x) € Xy <— Pl(hl(x)) = gz(Pz(hl(x)))
< hi(x) € My <= h(x) =0
——
eM;y

<— x=0.

We have
Dfia(0) = id —Dg2(81(0)) o Dg1(0) = id,
=0
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so deg(fiq,U1,0) = 1.
Now there is an 0 < €’ < § such that 0 ¢ f,(9Uy) if || —id [|co < €', so for
such ¢
deg(fy,Us,0) = deg(fiq, U1,0) = 1.

This implies 0 € fy(Uy).

Case 2: dimM; > codim M, again let w.l.o.g. ug = 0. Replace My
by My := (ToC)* N M; (and decrease € if necessary to make this intersection
transversal). Then dim M; = codimy;, C = codim M, because C C M; and
dim C = dim M; — codim Mj.

Now apply case 1, and the assertion follows. O
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