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Introduction

Inclination lemmas help to study dynamical systems in the neighborhood of
a saddle point. The content of the first version, the A-lemma of Palis [3, 4], may
be rephrased as follows. Suppose g: U — E is a C*-diffeomorphism in a finite-
dimensional space E with g(0) = 0 which is hyperbolic at x = 0, i.e. no eigen-
value of T= Dg(0) lies on the unit circle. Suppose also that g is normalized so
that the local stable and unstable manifolds of x = 0 are contained in the stable
and unstable linear spaces Q and P of T, respectively. Define the slope of a vector
te E with components pte P, 0 % gqte Q as s(t) = |pt|/|qt], and consider a
transversal H to P: Backward iterates H, = g ~*(H) converge to Q as k tends to
infinity, and slopes of tangent vectors t € T, H,, t * 0, tend to zero uniformly
with respect to x € H,.

It is not hard to extend Palis’ result to diffeomorphisms in arbitrary Banach
spaces, see [3] and Proposition 10.4 in [2]. Recently Hale and Lin [1] obtained
inclination lemmas also for maps which are not necessarily reversible.

With an application to functional differential equations in mind, we shall
consider this most general situation, too. The aim of the present note is to show
how one can improve uniform convergence for slopes of tangents by estimates
of the speed of convergence.

For C*-maps we derive geometric convergence

sup{s(?): 0+ te T.H,,xe H,} <const-p~*

for all k e N, with some § > 1, and in special cases, in particular for dim P = 1,
the much sharper pointwise estimate

{t, x) s(t) < const-|px]

forall te T H\{O}, xe H,, ke N — see Lemma 2.1.
Estimate (z, x) is the key to an investigation of stability in a nonlocal bifur-
cation problem which we now briefly describe. Consider a state variable on a



circle, with one attractive rest point and a delayed reaction to deviations. A
simple differential equation for such a system is y(t) = f(y(t — @)), or equiva-
lently

X(t) = of (x(t — 1))

where f: R — R is periodic, with zeros A < 0 < B, period B — A4, and with 0 < f
in (4, 0), f < 01in (0, B). Under additional hypotheses on f, there is a heteroclinic
solution from A4 to B at some critical parameter a, which bifurcates to solutions
representing periodic rotation around the circle, for o > a,. Existence was
proved in [7], but questions of uniqueness and stability for the bifurcating
“periodic solutions of the second kind” remained open.

Estimate (¢, x) makes it possible to give a positive answer. Details will be
found in [9]. '

For earlier results on nonlocal bifurcation, from homoclinic to periodic
solutions of ordinary differential equations in R”, we refer to Silnikov’s papers
[6, 5]. Lemma 3.3 in [5] on certain diffeomorphisms given by an O.D.E. appears
to be related to the somewhat later 2-lemma of Palis. Estimate (3.5) in [5] may
be compared to geometric convergence in Lemma 2.1 below.

Lemma 2.1 is stated in a way which yields uniform estimates also in case of
parameterized maps, convenient for the application to bifurcation problems. On
the other hand, it is restricted to a simplified situation where

a) slopes of tangents to the given set H are already small and
b) the linearized map T is an expansion on P and a contraction on Q.

These hypotheses will not present essential difficulties in applications but
have the advantage to allow a relatively short proof concentrated on the basic
estimates which lead to dominated convergence.

At the end we formulate a generalization of the result on geometric conver-
gence which holds without hypothesis a) and with b) replaced by the more
natural assumption that Dg(0) is hyperbolic, see Lemma 3.1. For reasons of
length we do not give a proof but refer to the preprint [8]. Lemma 3.1 will not
be used in the study of nonlocal bifurcation mentioned above.

Acknowledgement. The author wishes to thank Seminar fir Angewandte
Mathematik, ETH Zirich, for a pleasant stay which intensely furthered the
project [9] and as a part thereof, the present note.

1. Preliminaries

I. Let E be a Banach space. We begin with C2-maps §: U — E with

(U) 0eU, U< Eopen, §0)=0.



Let T:= D{(0) be an expansion-contraction. That is,
E = P @ Q with T-invariant subspaces P and Q, (1)
(@By) |Tgx|<algxl, Blpx|=|Tpx|=ylpx| forall xeE

with contants« < 1, f > 1,7 = . p and g denote the projections of E onto P and

Q given by (1).
In addition, we assume

gO0nP P, GgUNQ<=Q. @)

In applications, this can be arranged by a change of coordinates which uses local
stable and unstable manifolds.

For the remainder term R € C*(U, E),§ = T+ R, and for the partial deriva-
tives D, and D, with respect to the decomposition E = P @ Q, we find

(R) R(0)=0, DR(0)=0, RUNP)c P, RUN Q)<= Q,

D,qR(x)=0 forall xeUn P,
D,pR(x)=0 forall xeUnQ.

II. For applications of Lemma 2.1 to bifurcation problems where p and ¢
may depend on parameters it is convenient not to consider the map(s) § but
restrictions g to sets U < E with

(Uy UcUopen, 0cU, px +sqxeU, spx+qxeU for all

xeU and se]0,1].

Letc>0.Seto,:=a+c f:=f—c y:=y+cIf

(¢) |DpR(x)|£c¢ and |DgR(x)|<c¢ forall xeU,
then

@0 lqg(¥)] = o [gx]|, B.Ipx| = |pg(x)| =y, Ipx|] forall xeU.

Proof. For x € U, (U) implies that the straight line from x to px is contained
m U. We have |qg(x)| = |Tgx + qR(x)|, and |qR(x)| =|gR(x) — qR(px)|

Zclx — px|=clgx|, by (¢) and (U) and the mean value theorem. (o fy) now
shows the first inequality. The others follow in the same way.

Remark. Property (c) vields |D;jR(x)}| < c on U, for i,j € {p, q}.
III. Let m > 0, ¢ > 0 be given with

(m) |D(D,pR)(x)| <m forall xeU,
(¢, m) lpx| < ¢m forall xeU.

Then [DpR(x)| =m|px| ¢ forall xeU.



Proof. The straight line from x e U to gx is contained in U so that the
mean value theorem gives |D,pR(x)| = |D,pR(x) — D,pR(gx)| £ m|x — qx]
=m|px|.

IV. We shall consider tangents to preimages of some set H < U under g.
These preimages, and the set H itself, are not necessarily manifolds. A vector te E
is called tangent to a set S in E at a point x € S if there is a differentiable curve
¢:(—1,1) > E with ¢(0) = x, ¢((— 1, 1)) = Sand t = D¢(0) (1). TS denotes the
set of all tangents to S at x. As usual, the hypotheses S « W, v: W— E differen-
tiable, ¥ (S) = §', t e T, S altogether imply Dy/(x) t € Ty, S".

Preimages of a set S « E with respect to a mapy: W— E, Wc E, are
defined by Sy:= S, S, ,:= ¢~ 1(S,) for all ke N,.

Suppose that the C>-mapg: U — E and U < U satisfy (U), (1) and («fy) for
T=Dg0), 2), (U), (c) and 1 < B, =p —c. Let H < U and x e H,, the k-th
preimage with respect to g, k€ N. Then x; € H; for the k + 1 points given by
X,i= X, x;_1:=g(x;)) for j=k, ..., 1; and (g, ) yields

vl lpxe—;l £ IpxI £ BV px—;l  forall j=0,... k.

2. Dominated convergence for slopes of tangents

In order to formulate a result which yields uniform bounds in parameterized
problems with families of mapsg, we introduce the set B = R” of vectors
b=(xp,v,¢,mp,,p,) with a, B, y, c, m positive, p, and p, nonnegative and

B (@.+c=)a+2c<l<P—c(=Ph), Pi=p,.

For b e B given we set B,:= (8, + 1)/2e (1, B,) and

5:=min{c, g:;i,ﬁ:;i‘[ﬁc—ﬁc]}>0.

Lemma 2.1. Let b € B. There is a constant ¢, > 0 such that for all C*-maps §:
U - E and all sets U < U with (U), (1) and («fy) for T= D§(0), (2), (U), (c), (m),
(¢, m) and for every set H < U with

(P) pl é |Px| §P2
(@) gt +0 and s() gc‘} for all xe H, te T,H\{0},

we have:

(B, k) Py * S |pxl £ pyBt,
(t7 ﬁc) qt :i: 0 and S(t) é Cbﬁc_k>



and in case
() O0<p; and (x+3¢)y,/B =1,
(t,x) qt=0 and s(t) =c,|px]
for all preimages H;, k € N,, of H under g, and all xe H,, t € T.H,\{0}.

Remarks. Conditions (1) and (2 fy) say that E = P @ Q, with T= Dg(0) an
expansion on P and a contraction on Q. Condition (2) means that § is normal-
ized, with local stable and unstable manifolds contained in Q and P, respectively.

Typical applications will start with maps §: U — E which are glven and
satisfy 5(0) = 0, (1), (xBy), « <1 < B <7, and (2) with U instead of U. Then a
small constant ¢ > 0 is chosen so that (B) holds. It is now easy to find a constant
m and neighborhoods U, U of 0 so that the remaining conditions in Lemma 2.1
ong:=§| Uand U, U are satisfied for all vectors (, B, v, ¢, m, +, +) € B. In this
sense conditions (c), (m), (¢, m), (U) are not restrictive.

Inequality (p) and ((¢)) express a weak kind of transversality of H and P.
We do not assume that H is smooth, and we do not exclude cases with
dimH < dimQ, Hn Q % 0, H n P = {0}. However, hypothesis ((¢)) requires
that slopes of tangent vectors to H are “sufficiently small”.

Part IV of section 1 shows that (¢, x) is a better estimate than (¢, f,).

Inequahty (%) is easily verified in applications with dimP =1: If a

—mzlpg U—Eis glven with §(0) =0, (1) and (2fy), x <1 < B <y, and (2)
with U instead of U then dimP =1 allows to choose f =1y, and we have
ay/f = o < 1 so that () holds for small c.

Finally, note that without hypothesis p, > 0 estimate (¢, x) will not be true:
Consider b € B with (x), a direct sum E = P @ Q of nontrivial Banach spaces,
H:=(—¢¢twithteE 0<el|pt|Sp,, qt +0=*pt,s@t)<c Thente T, H,,
0<s(t), p0=0.

Proof of Lemma 2.1. Let be B and g, U and H be given, satisfying the
hypotheses of Lemma 2.1. We consider the restricted mapg: U — E and preim-
ages H; of H < U under g. Part IV of section 1 implies (p, k).

I Let xe U, te E. Set u:= Dg(x) t. Part IIT of section 1 yields

lpu| = |pDg(x) t| = |Tpt + DpR(x) [pt + qt]| = B |pt| — c|pt| — € |q¢]
= B, |ptl — ¢ lqt].
In addition,
lqu| < --- Z o, |qt] + ¢ |pt].

II. We show

(4, qt=+0 and s(t) < C"Z"(‘, B. ¢ for all ke N,, xe Hy, te T.H,\{0}.



II.1. Hypothesis (()) gives (4,).

II.2. Suppose (4,) for some ke N,. Let xe H,,,, te T .H,,\{0}. Set
u:=Dg(x)te T, H,. ‘

I1.2.1. Proof of gt #+0: Assume gqt=0. By I, |[puj= f,.|pt|—0>0.
From (A4,), qu+0. Again by I, 0 <|qu] <« |qt| + ¢ |pt] = ¢ |pt|. Hence
l<BjesswyseXopisc/l —B ") =2¢(B.+ 1)) —1) which contra-
dicts ¢ < (B, — 1)/(B. + 1).

I12.2. In case u=0, we find 0= |pu|l= B, |pt| —Clqt], s(t) <¢/B,
scygt B

I1.2.3. In case u + 0, (4;) gives qu =+ 0 and s@w) < ¢YEB < ¢/l —B.Y)
=¢(B, + 1)/(B, — 1). From I we obtain ‘

(B — cs)) s()) = € + a,s(u).

Hence

(/sc —cé ﬁ—J“—i) s(t) < & + s(u).
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The definition of ¢ implies
B.s(®) < ¢ + s(u).

Using (4,), we get the desired estimate for (4, ).

ITI. Note that II implies gt =0 and s(f)<1 for all ke N,, xe H,
te T, H\{0}.

IV.IfxeU,0+teE Dg(x)t=0, gt + 0 then s(t) < mp. " |px|.

Proof. An estimate as in I yields 0= |pDg(x)t| =, |pt| —
IDpR(x) qt| = B, |pt] — m|px| |q¢], with III (section 1).

V.IfkeN,xeH,,0+teT,H, 0% Dg(x)t =:u then gt + 0 % qu and

o, + ¢ m

s(t) £ = su) +

B. B.

Proof. We obtain ue T, H,_\{0}. By III, qu 0, gt % 0, s(t) = 1. Es-
timates as in I give |pul| = B, |pt] — m|px|iqt|, |qu| = o, |qt| + ¢ |pt|. Hence

lpx|.

st 2 B (o e s@) 2 s~ mipxi

VI. We show s(t) < &, 8,7*, with

2m 1
8. 21T @+ 200

VI1. Note gt # 0 and s(t) £ ¢ < 1 < ¢, for all xe H, t e T_H\{0}.

=1+ forall ke Nys xe H,, te T,H\{0}.



VI2.1. Let ke N, xe H,, 0 = te T H,. Consider the points and tangent
vectors defined by x,:= x, x;_ ;1= g(x), ty:=1,t,_:= Dg(x) t;fori=k, ..., 1.
Then x;e H; and t;e T_ H, fori=k,...,0. By III, gt & 0.

VI22. Assume t; +0fori=kk—1,....,k—j=0with1 £j<k jeN.
Then qt; #+ 0 for these indices, see ITI. We prove

(Sl) S(tk~j+1) é ﬁc_l[(ac + C)l S(tk—j) +m Ipxk—j+1| Zl()*l (ac + C)K]

fori=1,...,j:
. Lt
Fori=1,Vgivess(t;_;,,) < z 5 s(ty—;) + ﬁﬂ |pXy—;+11 1. Suppose (S,) holds
for someze {1,...,j — 1}. Part V gives
% + ¢ m
S(tk—j+z+1)§ B S(tk—j+l)+’ﬁ“ [ka—j+z+1|
o, + C m .
= 3 St jra) + B. Bt lpxi—j41l  (IV, section 1)

= :Bc_l_l(o‘c + C)H—ls(tk—j) + B m |ka~j+1l

X X e + O+ mBT T pxy g | (with (4)

=B Do, + ot S(tk—j) +m ,pxk—j+1l Zbﬂ“l(“c + o).

VI.2.3. Suppose t; # 0 for all i =k, ..., 0. Then V1.2.2 with j = k and (S))
imply
1
s(t) < BF [1 c+mpBtp,

1— (o, +0)

] é 5b ﬂc_k

(with o + 2¢ < 1, |px,| < BV |pxol, Xo € H, s(tg)) £ ¢ S ¢ < 1),
VI.2.4. Suppose there exists je {0, ...,k — 1} with ¢, = 0fori=k,...,k —j
and with t,_;_; = 0. By IV, s(t,_ ) = mf. " |px,_;|. In case 1 <, (S;) implies

s(t) = ﬁc_j[(ac + C)j S(tkfj) +m fpxk—j+1| Z{)fl(“c + )]

. _ 1
=B’ l:mﬂc ! |pxi_ il + mipx,_ ;| m}

By IV (section 1), the last term is majorized by

) . . 1
B I:mﬁcl BEP pxol + mB* I |px, | mj‘
:I é gbﬁcuk'

<" I:mﬁ[lpz +mBp, [—



In case j = 0 we use IV and find

s < mpB, px| SmpPB 1B *p, (with IV, section 1)

é 5b ﬁc_k'

VII. We prepare the proof of (¢, x). Set ¢, := ¢/m, ¢,:= f,c; > ¢;. Claim:
keN,xeH,,0+teT.H,O0=*Dg(x)t=:u,qu=+0 and

lpg(x)| < cy5(u)
imply gt = 0 and

o, + 2¢

s(t) =

s(u).

Proof. We have 0 + ue T, H,_,. By II, gt # 0. Use V and

B:lpx| = [pg(¥)| = ¢y () = B.(c/m) s(u).

VIIIL. Suppose b € Bsatisfies (*)and p; > 0.Letk € Ny, x € H,,t € T, H,\{0}.

VIL1. Ifk=0then gt + 0 and s() £ ¢ < ¢p; ! |px].

VIIL.2. Assume k € N. We consider sequences of points x; € H; and tangent
vectors t; T.H;,i=k, ...,0,asin VL.2.1. Because of III, qt, = gt + 0.

VIII.2.1. Suppose there exists je{l,...,k} such that for all ie
{ky....,k—j+13},

t;+=0 and |px;| < c,s(f)

while t,_; %+ 0 and ¢, s(t, ) < |px,—_;|. Then s(t,) < c3 |px;| where

osc—l—cl_l_m
Cyi= —+ =9,
T G BT

Proof. (By 111, gt; 0, and s(z;) is defined, for i =k, ...,k —j) Ifj =1 then

s(ty) < (o + ¢) B s(te—y) + mPBT | pxi (see V)
< (o +¢) B test Ipx—y | +mpBot [px|  (hypothesis for g )
< (o, 40 Brtes v lpxil + mBTt Ipx,]  (with IV, section 1)
< c3lpxid ‘ (with 1 <7y,/B,).

If j=2 (and k22) then [pq(x)| = |px;_ 1| = cy5(t;i-y) = c25(Dglx) 1) for
i=k, ...,k —j+ 2, and VII implies

s(t) = <O€c ; 2C>j_1 S(tk—j+ -

c




By V,
S(Ik‘j+1) (2. + ¢) ﬁcAl S(tk—j) + mﬁc_l |ka~j+1|

(e + ) Bl eyt +mB ) Ipx,—
(with (g, ¢), hypothesis for i = k — j)
(

<(..)ylpx,] (with IV, section 1).

A 1IA

Together,
S(tk) é () yc [(ac + 20) ?cﬁcA I]JIA1 |pxkla

and (*) implies the assertion.
VIIL.2.2. The case t,_; = 0: Part IIl and ¢, = O give gt, + 0. Part IV yields

s(t) s mp.t |px|.
VII1.2.3. In case t,_, + 0 and s(t) < ¢, * |px] there is nothing to prove.
VIIL.24. If t; #+ 0 (and gt; = 0) and |px;| < ¢, s(t;) for i =k, ..., 0 then VII
implies s(z) = s(t,) < (o, + 2¢)/B)* s(t,). With

s(te) £ € S epytpxol £ epy vk Ipx] IV, section 1),
we obtain
s(t) S epy o 4+ 2¢) v /BSF |px| S éprtipxl (with (%)).

VIIL2.5. Suppose t,_; + 0 and |px,| < ¢, 5(t,), and that there is a smallest
integer j € {1, ..., k} such that the statement “z,_; & O and qt,_; + O and |px, _|
= ¢y 8t y)” is false.

VII1.2.5.1. Suppose in addition f,_; = 0. We have

s(t) < (e + 2¢)/BY " s(ti—;41)  (see VII)
and
Ste—js ) EmP pxp_jiq|  (see IV).

With 1V {section 1), !
s(t) = s(t) S mpB (o, + 2¢) v /BY " pxl S mBT Ipx|  (see (¥)).

VIIL.2.5.2. Suppose t,_; # 0. Then g, _; + 0, by I11. It follows that ¢, s(t, _ )
< |px;—;|. This allows to use VIIL.2.1:

s(ty) = e3 | pxgl.
VIIL.2.6. Altogether,
s(t) = ¢ [px|

with é, =cp* +mB, ' + ¢! +c;.



3. A result for hyperbolic maps

A C! —mapg: V— E on an open set V in a Banach space E with g(0) =0
is called hyperbolic (at x = 0) if ¢ 1 S* = @ for the spectrum ¢ of T= Dg(0).
Then E =P @ Q with closed T-invariant subspaces P and Q so that the
induced maps T,: P - P, T,:Q — Q have spectra op:= {z€o:|z[>1} and
0g:= {zeo:|z| <1}, respectively. Let p and g denote the projections onto P
and Q defined by the decomposition of E.

Lemma 3.1. Let a C?-mapg: V— E be given, hyperbolic at x =0 with
op*+0+0y and g(Vn P)c P, g(Vn Q) = Q. Then there exist open neigh-
borhoods Wc U cV of x =0 with the following property. For every
C!-submanifold H =« W with H n P = {x,}, with T, H @ P = E and such that

(H) for every & > 0 there exists 6 > 0 with |px — x| <
for all x e H with |gx| < 0,

there are constants é > 0, he (0, 1) and an integer /€ N such that for every
preimage H, of H under the restriction g| U with k = |,

lpx| < &- K,

gt +0 and s()<¢-hF

for all x e H,, t € T, H\{0}.

For a proof, see [8]. Hypothesis (H) is satisfied whenever H is the graph of
a C*-map of an open subset of Q into P. Note that the unstable space may be
infinite-dimensional, and that H n Q + @ or x, = 0 are allowed.
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Summary

Inclination lemmas (1-lemmas) serve as tools for the investigation of dynamical systems in the
neighborhood of saddle points. They assert convergence of inclinations (slopes of tangents) when
the system shifts a given transversal to the stable or unstable manifold towards equilibrium.

We derive estimates of the speed of this convergence, for preimages g “(H), k€N, of a
transversal H to the unstable manifold. g is assumed to be a C*-map in a Banach space, not
necessarily reversible, with a saddle point x = 0 and already normalized so that local stable and
unstable manifolds are contained in linear spaces.

The estimates are needed particularly in a study of nonlocal bifurcation — from heteroclinic to
periodic solutions of the second kind — for parameterized functional differential equations

X)) =ah{x(t— 1))

which describe phase-locked loops

Zusammenfassung

Neigungslemmata (1-Lemmata) dienen zur Untersuchung dynamischer Systeme in der Néhe
von Sattelpunkten. Sie garantieren Konvergenz von Neigungen (Tangentensteigungen), wenn das
System gegebene Transversalen zur stabilen oder instabilen Mannigfaltigkeit zum Gleichgewicht hin
transportiert.

Wir leiten Abschitzungen der Geschwindigkeit dieser Konvergenz her, fiir Urbilder g ~*(H),
k € N, einer Transversalen H zur instabilen Mannigfaltigkeit. g ist dabei eine C2-Abbildung in einem
Banachraum, nicht notwendig umkehrbar, mit Sattelpunkt x = 0 und schon normalisiert, so dalBl
lokale stabile und instabile Mannigfaltigkeit in linearen Rdumen liegen. Die Abschitzungen werden
insbesondere zu einer Untersuchung nichtlokaler Verzweigung — von heteroklinen zu periodischen
Losungen zweiter Art — fiir parametrisierte Funktionaldifferentialgleichungen

x(@) = ah(x(t —1))

bendtigt, die PLL-Schaltungen beschreiben.



