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Abstract

Background: Schistosome parasites cause schistosomiasis, one of the most important infectious diseases worldwide. For
decades Praziquantel (PZQ) is the only drug widely used for controlling schistosomiasis. The absence of a vaccine and fear of
PZQ resistance have motivated the search for alternatives. Studies on protein kinases (PKs) demonstrated their importance
for diverse physiological processes in schistosomes. Among others two Abl tyrosine kinases, SmAbl1 and SmAbl2, were
identified in Schistosoma mansoni and shown to be transcribed in the gonads and the gastrodermis. SmAbl1 activity was
blocked by Imatinib, a known Abl-TK inhibitor used in human cancer therapy (Gleevec/Glivec). Imatinib exhibited dramatic
effects on the morphology and physiology of adult schistosomes in vitro causing the death of the parasites.

Methodology/Principal Findings: Here we show modeling data supporting the targeting of SmAbl1/2 by Imatinib. A
biochemical assay confirmed that SmAbl2 activity is also inhibited by Imatinib. Microarray analyses and qRT-PCR
experiments were done to unravel transcriptional processes influenced by Imatinib in adult schistosomes in vitro
demonstrating a wide influence on worm physiology. Surface-, muscle-, gut and gonad-associated processes were affected
as evidenced by the differential transcription of e.g. the gynecophoral canal protein gene GCP, paramyosin, titin,
hemoglobinase, and cathepsins. Furthermore, transcript levels of VAL-7 and egg formation-associated genes such as
tyrosinase 1, p14, and fs800-like were affected as well as those of signaling genes including a ribosomal protein S6 kinase
and a glutamate receptor. Finally, a comparative in silico analysis of the obtained microarray data sets and previous data
analyzing the effect of a TGFbR1 inhibitor on transcription provided first evidence for an association of TGFb and Abl kinase
signaling. Among others GCP and egg formation-associated genes were identified as common targets.

Conclusions/Significance: The data affirm broad negative effects of Imatinib on worm physiology substantiating the role of
PKs as interesting targets.
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Introduction

Schistosomiasis is an infectious disease of worldwide importance

caused by parasitic platyhelminthes of the class trematoda such as

Schistosoma haematobium, S. intercalatum, S. japonicum, S. mansoni, or S.

mekongi. About 780 million people are at risk of schistosomiasis,

and more than 240 million infections emerge annually requiring

treatment [1,2]. Adult schistosomes live in the abdominal veins of

their vertebrate hosts. Only if paired, females produce eggs, half of

which reach the gut lumen (e.g. S. mansoni) or the bladder (S.

haematobium), to be transported to the environment for continuing

the life-cycle. Gut invasion is accompanied by inflammatory
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processes. The remaining eggs migrate through the blood stream

and become trapped in spleen and liver tissue, where granulomas

are formed and fibrosis occurs, leading to hepatosplenomegaly and

liver cirrhosis [3,4]. The disease has a high socioeconomic impact

causing annual losses of 1.7 to 4.5 million disability adjusted life

years (DALYs) of humans living in endemic areas [5,6], but

tourists and travelers can also be affected [7]. Besides humans,

animals including cattle can get infected, too, which causes

economic losses [8–11].

Since there is no vaccine available yet, the main strategy to

control schistosomiasis is the regular use of drugs, of which three

have the potency to kill schistosomes. Of the drugs available today

Metrifonate is active against S. haematobium only and Oxamniquine

is active against S. mansoni only. In contrast to these limitations,

although its effectiveness against immature stages is limited

Praziquantel (PZQ) is effective against all important schistosome

species mainly affecting adults [12]. This and its low price have

promoted PZQ as the drug of choice, which is also used in large-

scale treatment programs today [13,14]. However, drug resistance

has been recognized as a potential problem since several studies

demonstrated PZQ resistance to be inducible in laboratory

settings, and field studies provided first indications for the

possibility of reduced PZQ efficacy [15–18]. Furthermore,

multidrug transporters were discovered in schistosomes, of which

one was shown to respond to a PZQ challenge [19]. With respect

to these facts it is commonly accepted that new drugs are required

urgently. To this end research on signal transduction processes in

S. mansoni has opened new perspectives.

Protein kinases (PKs) are highly conserved signal transduction

molecules in the animal kingdom and known to be involved in

diverse biological processes such as cell growth and differentiation

[20]. Thus PK deregulation can lead to cancer development [21–

22]. This prompted the search for inhibitors, and meanwhile a

number of anticancer drugs targeting PKs are approved for use in

humans [21–24]. Different studies elucidating principles of

schistosome development have shown that PKs play important

roles during parasite development [25–30]. Due to this, and to the

fact that schistosomes can be kept in culture, providing access to

adults ex vivo, several studies were conducted to investigate whether

anticancer drugs would negatively affect PK-controlled processes

in schistosomes and cause phenotypic consequences in adults.

Indeed, targeting a variety of different kinases using different drugs

with PK-inhibiting activities not only showed a negative influence

on the reproductive biology of parasites but also remarkable effects

on other physiological processes and/or survival in vitro [29–37].

Among the PKs studied in more detail were protein tyrosine

kinases (PTKs) such as Abl kinases, three of which exist in S.

mansoni. SmAbl1 and SmAbl2 exhibit high sequence similarities to

conserved Abl-kinases [38], whereas SmTK6 revealed a Src/Abl

hybrid character that was confirmed by structural and biochemical

studies [39]. Imatinib was used as an inhibitor to analyze Abl-PK

activities in adult S. mansoni [38,39]. Also known as Glivec

(Gleevec; Novartis) Imatinib is a small-molecule inhibitor acting as

a competitive antagonist of adenosine triphosphate (ATP) binding

to Abl-PK, which is applied successfully in human cancer therapy

[40]. Structural analyses revealed that the S. mansoni Abl-PKs

possess the majority of amino acid residues known from studies

with the human Abl-kinase to interact with Imatinib [38,41].

Furthermore, the Xenopus oocyte system was shown to be suitable

to test the catalytic activity of schistosome tyrosine kinases (TKs)

[31,39]. Thus it was demonstrated that SmAbl1-TK, SmTK6-

TK, and SmTK3-TK were able to induce 100% germinal vesicle

breakdown (GVBD) [39]. Using competitive GVBD assays it was

further demonstrated that Imatinib negatively influenced the

kinase activities of SmAbl1-TK (0% GVBD at 1 mM) and

SmTK6-TK (0% GVBD at 100 mM). Although the latter required

a 100-fold higher concentration compared to SmAbl1-TK, this

was explained by the unusual Src/Abl hybrid character of

SmTK6. Herbimycin A (Herb A), a Src-TK inhibitor, was not

able to fully reduce the GVBD-inducing activity of SmAbl1 (60%

GVDB at 10 mM) in contrast to SmTK6, whose activity was fully

suppressed at this concentration. The enzymatic activity of

SmTK3, a Src kinase used as control, was fully suppressed by

Herb A (0% GVBD at 0.01 mM) but revealed nearly no decrease

under the influence of Imatinib (still 90% GVBD at 100 mM),

confirming the specificity of these inhibitors [39].

Treating adult schistosomes with Imatinib in vitro led to dose-

and time-dependent effects such as reduced pairing stability, the

occurrence of bulges and swellings along the body and, finally, the

death of the worms. Microscopic analyses showed not only

morphological changes within the gonads of both genders, which

appeared disordered, defective in differentiation, and in part

apoptotic, but also a detachment and degradation of the

gastrodermis. Its complete collapse explained the observed death

of the parasites [38]. In a follow-up study it was shown that

Dasatinib and Nilotinib, second generation Abl-PK inhibitors of

high selectivity, were less effective compared to Imatinib in causing

severe or even lethal effects on adult schistosomes in vitro. Since

Dasatinib and Nilotinib were designed to be even more specific for

mutated forms of the human Abl-PK, it was concluded that the

more specialized the inhibitor for the human kinase is, the more

efficacy for the schistosome kinase gets lost [42].

Because in situ hybridizations detected various regions within

adult S. mansoni where these Abl- and Abl-like PKs of S. mansoni

were transcribed [36,38], pointing to different physiological

functions these kinases may be involved in, we were interested in

investigating the effects of Imatinib at the gene transcription level

in treated schistosomes. Besides confirming that Imatinib also

affected SmAbl2 kinase activity in a heterologous test system, a

transcriptome study was performed by microarray analyses and

Author Summary

Schistosomiasis is an infectious disease caused by schisto-
some parasites, affecting millions of people worldwide.
The pathogenic consequences of schistosomiasis are
caused by the eggs inducing severe organ inflammations.
Praziquantel is widely used to treat schistosomiasis;
however, there is fear of resistance developing. Research
in the last decades has provided strong evidence for the
importance of protein kinases controlling physiological
processes in schistosomes. Two Abl-kinases were discov-
ered, whose activities are blocked by Imatinib, an inhibitor
known as Gleevec/Glivec from human cancer therapy. In
vitro, Imatinib treatment led to dramatic effects on
morphology and physiology and to the death of adult
schistosomes. Besides modeling of the schistosome Abl-
kinases we investigated the effect of Imatinib on gene
expression in adult S. mansoni by performing transcrip-
tomics and discovered a wide influence on the transcrip-
tion of genes involved in surface-, muscle-, gut- and
gonad-associated processes. Comparative in silico analyses
with data from a previous study indicated a yet unknown
association of TGFb and Abl-kinase signaling in schisto-
somes. Among others the gynecophoral canal protein
gene GCP was identified as a common target. The data
obtained demonstrate a substantial influence of Imatinib
on physiological processes in adult schistosomes support-
ing the role of protein kinases as interesting targets.

Imatinib-Influenced Transcription in Schistosomes
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qRT-PCR verification experiments. Strong evidence was obtained

that gene transcription is widely influenced supporting the view

that a variety of physiological processes have been affected by this

Abl-PK inhibitor. This is in line with previous hypotheses

suggesting that PKs, due to their pleiotropic and fundamental

roles for schistosome biology, are substantiated targets for novel

strategies to treat schistosomiasis [42,43]. Furthermore, first

evidence was obtained that Abl-kinase activities could be part

of/or associated with transforming growth factor b (TGFb)

signaling in schistosomes.

Materials and Methods

Ethics statement
Experiments with hamsters were performed in accordance with

the European Convention for the Protection of Vertebrate

Animals used for Experimental and other Scientific Purposes

(ETS No 123; revised Appendix A) and were approved by the

Regional Council (Regierungspraesidium) Giessen (V54-19 c 20/

15 c GI 18/10).

Parasite stock
Biomphalaria glabrata as intermediate snail-host, and hamsters

(Mesocricetus auratus) as final host were used to maintain the parasite

cycle of S. mansoni [44]. Adult worms were isolated from hamsters

by hepatoportal perfusion 42 days post infection.

Homology modeling
Chemical Computing Group’s MOE 2011 (http://www.

chemcomp.com/) molecular modeling suite was used for the

homology modeling. The highly conserved catalytic tyrosine

domains [38] of human Abl1 (2HYY) and Abl2 (3GVU) were

used as templates for the model building of SmAbl1 and SmAbl2,

respectively. The two homologous sequences were aligned using

MOE’s kinase constraints, and the models were built using the

Amber99 force field with R-Field solvation. Crystallographic water

molecules in an H-bond network with the ligand Imatinib and the

ligand itself were used as ‘‘Environment for Induced Fit’’ during

model building. Intermediates were refined to medium using the

GB/VI scoring, while the final model was refined to Fine with an

RMS Gradient of 0.5.

Molecular Docking
Molecular Docking was carried out using Cambridge Crystal-

lographic Data Centre’s GOLD suite 2.5 (http://www.ccdc.cam.

ac.uk/). Imatinib was sketched in 2D and converted to 3D using

Molecular Networks’ CORINA (http://www.molecular-networks.

com/). Docking was performed using the Chemscore scoring

function with kinase parameters, and the binding site was defined

using the position of the Imatinib ligand as modeled in the SmAbl1

and SmAbl2 homology models. Parameters for the genetic

algorithm were set to auto. Water molecules used for the model

building were allowed to participate in the docking.

GVBD assays in Xenopus oocytes
Sequences of the tyrosine kinase (TK) domains of SmAbl1,

SmAbl2, SmTK6, and SmTK3 were obtained by PCR amplifi-

cation (primers used are given in Supplementary data S1) and

cloned into the plasmid pcDNA3.1B (Invitrogen), which contained

a T7 promoter for in vitro transcription. The resulting constructs

SmAbl1-TK, SmAbl2-TK, SmTK6-TK, and SmTK3-TK were

sequenced confirming intact open reading frames (ORFs). The

plasmid constructs were linearized by PmeI and cRNAs were

generated using the T7 mMessage mMachine Kit (Ambion, USA).

This way capped messenger RNAs (cRNAs) were synthesized in

vitro and analyzed as previously described [31,38], before they

were injected into stage VI oocytes of Xenopus laevis. To this end

each oocyte was injected with 60 ng cRNA in the equatorial plane,

followed by incubation in ND96 medium at 19uC. GVBD

(germinal vesicle breakdown) activity was determined according

to the appearance of a white spot at the animal pole 18 h following

injections. As shown before, this system was used successfully to

monitor schistosome kinase activities [31,38,39]. Here it was used

to investigate kinase activities under the influence of Imatinib

(Enzo Life Sciences; 170 mM stock solution in water), an Abl-

kinase inhibitor, or the Src kinase inhibitor Herbimycin A (Herb

A) as control (Tocris Bioscience; 10 mM stock solution in DMSO).

Pools of 10 oocytes each were injected with SmAbl1-TK, SmAbl2-

TK, SmTK3-TK, or SmTK6-TK cRNA and placed in ND96

containing different concentrations of Imatinib (0.01 mM to

100 mM final) or Herb A (0.0001 mM to 10 mM final). As negative

control, non-injected oocytes were used. As positive controls,

oocytes were incubated with the natural hormonal stimulus

progesterone leading to 100% GVBD without further manipula-

tion [45].

Schistosome in vitro-culture and inhibitor treatments
Perfusion was done with M199 medium (Gibco). Paired adult

worms were collected using fine tweezers and washed with M199

medium (2x). Subsequently, they were maintained in culture in

M199 supplemented with FCS (Gibco; 10%), HEPES (Sigma;

1 M, 1%), and antibiotic/antimycotic mixture (Sigma; 1%) at

37uC and 5% CO2 [36,38]. Inhibitor treatment was performed for

24 h or 48 h with 50 mM Imatinib (Imatinib mesylate,

C29H31N7O?CH3SO3H, dissolved in water; Enzo Life Sciences)

as previously described [38]. Control couples were kept in culture

for 24 h or 48 h without inhibitor addition but otherwise treated

using the same conditions. During the treatment periods, pairing

stability and vitality were checked regularly. We defined pairing

stability of couples when males kept their female partners within

the gynecophoral canal while being sucked with their ventral

suckers to the Petri dish. When couples separated, or when males

stopped sucking to the Petri dish and/or lay on the side (a sign of

decreasing vitality), the appropriate worms were not used for

experiments and removed. After completion of treatment, the

couples (inhibitor-treated and control) were carefully separated

using featherweight tweezers, immediately shock-frozen in liquid

nitrogen, and stored at 280uC.

RNA isolation and microarray experiments
Trizol (Invitrogen) was used to extract RNA from treated or

control worms (combined sexes in both cases) followed by a

DNAse digestion (RNAeasy kit; Qiagen). The quality of RNA was

checked by microfluidic electrophoresis (Bioanalyzer; Agilent

Technologies). For microarray experiments a S. mansoni custom-

designed oligonucleotide platform (60-mers) was used containing

44,000 probes representing nearly the complete S. mansoni and S.

japonicum transcriptome (Agilent Technologies; [46,47]). All

associated information (probes, annotation) is available at Gene

Expression Omnibus (GEO) under the accession number

GPL8606.

For the microarray experiments RNA from treated and control

males and females (300 ng each for biological replicates) was used

for cDNA amplification followed by Cy3 and Cy5 labelling during

in vitro transcription (Quick Amp Labelling Kit, two colors; Agilent

Technologies). Dye-swap approaches were done as internal

technical replications for each sample. Three microarray hybrid-

izations were performed for each sample (inhibitor treatment for
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24 and 48 h as well as control), which included two technical

replicates for each of the three biological replicates. As probe for

hybridization, 825 ng cRNA of each labelled inhibitor sample was

used and combined with a control sample labelled with the

opposite dye. Hybridization was done at 65uC for 17 h with

rotation followed by slide washing (according to the Agilent

manual) and scanning (Gene Pix 4000B Scanner; Molecular

Devices). Raw data were acquired using the Feature Extraction

software (Agilent Technologies). They are available under GEO

study number GSE53154. For subsequent data analyses, genes

were considered as transcribed only if the corresponding probe

had a signal significantly higher than background (using default

parameters from the Feature Extraction software and considering

the ‘‘IsPosAndSig’’ result from the output). In addition, signals of a

probe had to occur in at least 75% of all replicates and in at least

one of the two conditions (inhibitor-treated or control) indepen-

dent of the length of cultivation (24/48 h treatment versus 24/

48 h untreated control). The quality of the microarray expression

data was assessed by the overall Pearson correlation among

technical replicates, which was found to be in the range of 0.93 to

0.99 (average 0.98). LOWESS algorithm was used for normalisa-

tion of intensities [48], and the log2ratios were calculated between

inhibitor-treated and control groups. Finally, the filtered data were

analysed on the basis of the updated genome annotation to

eliminate redundancy of the probes per gene [49,50]. Inspection of

box plots revealed that intensities from both dye channels of all

technical and biological replicates were in a similar range, showing

that no additional normalization steps were necessary.

SAM (Significance Analysis of Microarrays) was used [51] to

detect genes with a significant change in transcript level. Data sets

for the two treatment periods (24 h and 48 h) were analysed by

one-class analysis, in which transcripts were evaluated that showed

the same direction of regulation for both time points (sustained

regulation direction). Here, genes with a q-value #0.01 were

considered as significantly differentially transcribed between the

inhibitor-treated and the control worm populations comprising

protein-coding genes and putative antisense-oriented oligonucle-

otide probes (labelled as ‘‘to be used in analysis = YES’’ in the

updated annotation of the array [49,50]). Spotfire was used for

hierarchical clustering [52]. For first functional analyses of

differentially transcribed protein-coding genes, Gene Ontology

(GO) enrichment analysis was performed [53] using the software

tool Ontologizer [54]. Parent-child union [55] was used to detect

categories containing enriched genes, and the p-value was adjusted

according to Benjamini-Hochberg (BH) correction [56]. For

identifying potential candidates for further analyses and their

putative involvement in hypothesized pathways, Ingenuity Path-

way Analyses (IPA; http://www.ingenuity.com; [57]) were

performed in addition, as described before [47]. IPA provides

curated information from the literature for human, mouse and rat

models about canonical pathways, regulated molecular networks,

including signal transduction cascades (of which some are involved

in human cancer or other diseases), and regulated transcription

factors and their putative targets. To use this tool all S. mansoni

genes were annotated with the corresponding human homolog

and uploaded to IPA along with their corresponding microarray

transcription measurements.

The validity of the obtained results of qRT-PCRs (see below)

and microarrays was determined by Spearman’s rank correlation

coefficient (rs) [58].

Quantitative RT-PCR experiments
The reliability of the transcriptional changes detected by

microarray analyses was tested by quantitative RT-PCR

(qRT-PCR) analyses of a number of genes. RNAs of inhibitor-

treated or control couples were isolated by TriFast (PeqLab), and

1 mg each was reverse transcribed (QuantiTect Reverse Tran-

scription kit; Qiagen). Following cDNA dilution 1:20, qRT-PCRs

were done using Rotor Gene Q (Qiagen). Amplification rates were

determined by SYBRGreen incorporation (PerfeCTa SYBR

Green Super Mix; Quanta). Melting point analyses were done to

distinguish between the specific amplification product and

unspecific primer-dimer formation following each qRT-PCR

analysis. For primer design, the software Primer 3 Plus was used

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.

cgi). The expected amplification products were between 140–

160 bp in size. Primers were designed flanking predicted introns to

be able to differentiate between cDNA and genomic DNA, and

melting points were between 59uC–62uC depending on sequence

composition. A list of all primers used, which were commercially

synthesised by Biolegio (Netherlands), is shown in Supplementary

data S1.

Standard reference genes normally used for relative quantifica-

tion analyses such as a-tubulin, actin, Cu/Zn SOD (superoxide

dismutase), or histone showed regulation following inhibitor

treatment. Therefore, absolute quantification was performed on

the basis of standard curves generated by purified PCR products

(used in dilution series) [59]. Fold changes are given where

appropriate. As a basis for comparing microarray and qRT-PCR

results, log2ratios (treated/control) were calculated as described

before [47,60]. The efficiency of each qRT-PCR was evaluated to

be between 90–100%. Spearman’s rank correlation coefficient (rs)

was assessed to validate the ratios obtained from qRT-PCRs and

microarrays [58,61,62].

In silico analyses
In addition to those already mentioned, the following public

domain tools were used: SchistoDB (http://www.schistodb.net; [63]),

BLASTx (http://www.ncbi.nlm.nih.gov/BLAST), the Welcome

Trust Sanger Institute S. mansoni OmniBlast (http://www.sanger.ac.

uk/cgi-bin/blast/submitblast/s_mansoni/omni), BLAST (http://

blast.ncbi.nlm.nih.gov/), and Gene Cards, which is a database of

human genes providing concise genome-related information on all

known and predicted human genes, to authenticate IPA-identified

gene acronyms (http://www.genecards.org).

Results

Homology modeling revealed structural conformity
between human and schistosome Abl-kinases

On the basis of their human counterparts, homology models of

the S. mansoni Abl kinase 1 and 2 were created which corresponded

well with the protein template structures 2HYY (human Abl 1) and

3GVU (human Abl 2). The ten highest scoring docking poses of

Imatinib in the homology model of SmAbl2 were found in good

structural agreement with the crystal structure pose of Imatinib in

the human Abl2 crystal structure (Figure 1 A; SmAbl1 data not

shown). The highest scoring docking pose is virtually identical to

the crystal structure pose (Figure 1 B). While human Abl2 forms

seven directed interactions with Imatinib (Figure 2), for the

SmAbl2 homology model four directed interactions were detected

(Figure 1 C, Figure 2). Two out of the four SmAbl2 interactions

are shared with the human Abl2 interactions (Figure 2). For

SmAbl1 the situation was similar. Key residues involved in direct

interactions with Imatinib in the human Abl proteins were found

to be conserved for all four protein sequences. Four out of the six

directed interactions were also detected for the SmAbl1 homology

model. In contrast to human Abl 1, one of these residues (D568)
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did not interact directly with Imatinib; however, it did via an H-

bond network involving a water molecule. Since we docked

Imatinib to homology models, the recovery of individual directed

interactions should not be overstated. Although we docked

Imatinib to homology models, the data clearly indicated that

Imatinib is able to bind both SmAbl1 and SmAbl2.

S. mansoni Abl-TK activities are inhibited by Imatinib
An inhibitor swap-like approach [38] was used to test the

enzymatic activity of SmAbl2, for its susceptibility towards

Imatinib and Herb A. To this end, cRNA encoding the TK

domain of SmAbl2 (SmAbl2-TK) was injected into Xenopus oocytes

under selection conditions using different inhibitor concentrations.

GVDB was monitored as read out, and the results compared to

SmAbl1, SmTK6 and SmTK3 [38]. Under Herb A selection,

SmAbl2-TK induced 100% GVBD at 1 mM and still 90% GVBD

at 10 mM (Figure 3). The Src-TK SmTK3 and the Src/Abl-hybrid

TK SmTK6 were completely inhibited by Herb A inducing

GVBD at concentrations of 0.01 mM (SmTK3), or 10 mM

(SmTK6) [39]. Using Imatinib, however, SmAbl2-TK enzymatic

activity was reduced to 70% GVBD-inducing capacity at 0.01 mM

and completely suppressed GVBD at 0.1 mM. At the latter

concentration still 90% GVBD was observed for SmAbl1-TK,

whose activity was completely suppressed using 1 mM Imatinib

(Figure 3). These results showed that Imatinib effectively inhibits

both Abl kinases of S. mansoni, which is supported by the modeling

data presented above.

Transcriptome analyses of inhibitor-treated adults
exhibited wide-ranging transcriptional changes

Based on our previous findings of remarkable effects of Imatinib

on morphology, physiology, and survival of adult S. mansoni in vitro

[38,42], we focused on the elucidation of molecular effects induced

by this inhibitor. To this end, a large-scale transcriptional analysis

was performed using a microarray platform representing nearly

the complete S. mansoni and S. japonicum transcriptomes [46,47].

Since in previous experiments treatment with 50 mM Imatinib

showed slight effects after 24 h and strong effects after 48 h

treatment [38], we anticipated that these treatment profiles

represented starting (24 h) and peak points (48 h) of the effects

induced, thus being interesting for analysis. Therefore, the 50 mM

concentration and both time points were chosen for comparative

Figure 1. Homology models of human and schistosome Abl kinases. Panels A to C: Structural comparisons of the molecular docking
solutions of the SmAbl2 homology model versus the human Abl2 crystal structure (3GVU). Both protein structures are shown in ribbon
representation, the SmAbl2 homology model is colored yellow, while the human Abl2 crystal structure is colored red. A: Structural superposition of
the two protein structures. The ten highest scoring docking solutions for Imatinib in the SmAbl2 homology model were depicted in stick
representation in atom color, the crystal structure pose of Imatinib in the human Abl2 crystal structure is depicted in ball-and-stick representation
colored red. Hydrogen atoms were omitted for visibility reasons in the depiction. The RMSD value of the template and the model structure resulted in
a Ca RMSD (root-mean-square deviation) value of 0.765 Å of the corresponding 245 amino acid residues. B: Close-up view of the binding sites of the
two protein structures. The top-scored pose of Imatinib in the SmAbl2 homology model was depicted in stick representation with light-grey carbon
atoms, the crystal structure pose of Imatinib in human Abl2 was depicted in stick representation with dark grey carbon atoms. C: Close-up view of the
binding site of SmAbl2 homology model. Imatinib engages in four directed interactions to surrounding amino acid residues, depicted by light blue
dashed lines.
doi:10.1371/journal.pntd.0002923.g001
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transcriptomics. Based on the results of the GVBD assays it was

anticipated that 50 mM Imatinib would not induce potential off-

target effects through co-influencing Src kinases such as SmTK3

since its inhibition will not occur using this inhibitor concentration

[39; this study]. With this set-up, the expectation was to find genes

differing in their transcript levels under inhibitor influence. It was

hypothesized that transcript levels of genes strongly regulated by

signaling pathways including SmAbl1/2-kinases would show a

continuous tendency of regulation during the treatment period of

48 h representing sustained transcriptional changes.

Following microarray hybridization and data evaluation a one-

class statistical analysis was performed that revealed sustained

transcriptional changes of 1429 significantly differentially transcribed

genes which were up-regulated following Imatinib-treatment. Of

these, 1094 were protein-coding genes (Supplementary data S2, S3).

The remaining transcripts represented antisense RNAs, intronic and

UTR sequences. Among the protein-coding genes were candidates

coding for serine/threonine PKs, PTKs, proteins with female-

preferential or -specific functions such as egg synthesis, transcription

factors, muscle-associated proteins, small GTPases, heat-shock

proteins, and signal transduction/associated proteins (Supplemen-

tary data S4). Furthermore, 939 protein-coding genes were found to

be significantly down-regulated. These genes potentially code for

cathepsins, lipoproteins, VAL(venome allergen-like) proteins, gluta-

mate receptors and further transporters, the gynecophoral canal

protein (GCP), motor and/or muscle proteins, drug efflux proteins,

transmembrane receptors, calmodulin and other calcium binding

proteins, histones, spermatogenesis-/testis-associated proteins, a

morphogen-binding protein, signal transduction (-associated) pro-

teins, and a cell adhesion protein (Supplementary data S5).

GO analyses of differentially transcribed genes revealed

ontology categories enriched with genes being up- or down-

regulated (BH adjusted p-value #0.05; threshold = 0.1). Examples

of GO categories represented in the up-regulated genes were: gene

expression and transcription (Biological process), myosin complex

(Cellular compenent), kinase activity and transcription factor

activity (Molecular Function) (Supplementary data S4, S6). Within

the data set of down-regulated genes, GO categories were found

for enriched genes coding for functions such as e.g. transmem-

brane transport or cell surface receptor-linked signalling pathways

(Biological process), membrane and microtubule-cytoskeleton/

associated complex (Cellular component), and signal transducer

activity, transporter activity or cysteine-type endopeptidase activity

(Molecular function) (Supplementary data S5, S7).

Using IPA, the following five networks were identified, which

were enriched with proteins coded by differentially transcribed

genes involved in the following functions: (1) Protein Degrada-

tion, Protein Synthesis, Tumor Morphology (adjusted p-value

10280), (2) RNA Post-Transcriptional Modification, DNA Rep-

lication, Recombination, and Repair, Cellular Assembly and

Organization (adjusted p-value 10269), (3) Post-Translational

Modification, Protein Folding, Carbohydrate Metabolism (adjusted

p-value 10260), (4) Developmental Disorder, Gene Expression,

Genetic Disorder (adjusted p-value 10240), and (5) Carbohydrate

Metabolism, Drug Metabolism, Lipid Metabolism (adjusted p-value

10239) (Supplementary data S8). Among the molecules with the

largest fold-changes of transcription was a potential pseudo-

glutamine synthetase (LGSN) strongly (about 9-fold) up-regulat-

ed, which in the human system is reported to have a chaperone

function for the reorganization of intermediate filaments acting as

a component of the cytoskeleton [64]. Amongst the strongly

down-regulated (about 8 to 11-fold) transcripts were those

encoding peptidases such as cathepsins (CatK, CatS, CatL),

which are members of the peptidase C1 protein family and

known in humans to participate in protein processing during

immunological processes and several disease-associated patholo-

gies [65,66]. In summary, a number of processes were highlighted

by both GO analyses and IPA that were influenced by inhibitor

treatment pointing to candidate genes such as cathepsins for

further analyses.

Figure 2. Alignment of the TK domains of human and schistosome Abl kinases. Alignment: Structural alignment of the binding sites of
human (HsAbl1, HsAbl2) and S. mansoni (SmAbl1, SmAbl2) Abl kinases focused on the highly conserved catalytic tyrosine domain [37]. Amino acid
residues partnering in directional interactions with Imatinib are highlighted ocher and red for SmAbl1/2 and HsAbl1/2, respectively. Amino acids
D568 and K457 of SmAbl1 are colored light teal, because they are not direct interaction partners to Imatinib but utilize a water molecule.
doi:10.1371/journal.pntd.0002923.g002
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Confirmation of selected differentially transcribed genes
by quantitative RT-PCR

The selection of candidates for qRT-PCR experiments to verify

differential transcription was based on GO and IPA results, but

also on literature studies including the Imatinib-induced pheno-

types in adults obtained previously (negative effects on pairing-

stability, oogenesis and spermatogenesis, integrity of the gastro-

dermis, and locomotion [38,42]). Since GO and IPA analyses

indicated influences of Imatinib treatment on endopeptidase

activity and cathepsins, respectively, we chose cathepsin K

(Smp_139240) and cathepsin B (Smp_085180). The latter was

already shown to be active in the gut [67]. This applies also to the

selected hemoglobinase (Smp_075800), which was localized to the

gut [68]. Venom allergen-like proteins (VALs) of platyhelminths

are members of the SCP/TAPS (Sperm-Coating Protein/Tpx-1/

Ag5/PR-1/Sc7) protein superfamily and hypothesized to play not

only roles in spermatogenesis but also beyond [69], which led to

the choice of VAL7 (Smp_070240). The metabotropic glutamate

receptor (Smp_128940; [70]) was selected as a representative for

cell surface receptors and its potential role in the nervous system of

adult male and female schistosomes [71]. Finally, GCP was

included due to its hypothesized role in male-female interaction

[72]. The results of the qRT-PCR experiments, which were

performed with the RNA of schistosome couples following 48 h

Imatinib treatment, confirmed in each case the down-regulation of

these transcripts (Figure 4).

Since the GO analysis of up-regulated genes pointed to

muscular activities (myosin complex within the ontology cellular

component) but also to signal transduction (kinase activity within

the ontology molecular function), further candidates were selected

for qRT-PCR. Among these were paramyosin (Smp_129550) and

titin (Smp_105020), both proteins involved in muscle activity

[73,74], and a ribosomal protein S6 kinase (Smp_017900) due to

its potential role as a MAPK-activated PK in signalling processes

controlling diverse processes including survival [75,76]. Further-

more, HSP70 (Smp_106930) was chosen due to its known roles in

stress response and signal transduction processes, but also as egg-

shell component in schistosomes [77–79]. The results of the qRT-

PCR analyses confirmed up-regulation in each case (Figure 5).

Unexpectedly, a manual data screen indicated that a number of

egg production-related genes were significantly up-regulated

following Imatinib treatment such as the egg-shell precursor

proteins p14 (Smp_131110; [80]), fs800-like (Smp_000270; [79]),

a predicted egg-shell precursor protein (Smp-000430; [47]), and

the eggshell protein cross-linking tyrosinase SmTYR1 (Smp_

050270; [81]). Also for these genes, qRT-PCR confirmed up-

regulation following Imatinib treatment (Figure 5).

The results obtained for the qRT-PCR analyses of all studied

genes significantly correlated to the microarray data according to

Spearman’s Correlation Coefficient (rs = 0.784, p,0.001; [58]).

Extended analyses indicated that Imatinib treatment can lead to

a sustained effect on specific genes. By qRT-PCR analyses of RNA

of couples treated with Imatinib for 24 h or 48 h, the amounts of

gene transcripts increased or decreased over time as demonstrated

exemplary by the analyses of three genes. Compared to 24 h

treatment higher transcript levels were determined for the

ribosomal S6 kinase after 48 h (Supplementary data S9), whereas

transcript levels declined for hemoglobinase and GCP from 24 h

to 48 h (Supplementary data S10, S11).

Merging microarray data sets of Imatinib and TRIKI
treatments of adult schistosomes provided first evidence
for a TGFb-pathway contribution

Since the couples used for these analyses were separated before

freezing, we checked whether pairing had an influence on the

transcription of the GCP gene, which was hypothesized before to

be a target of a TGFb-pathway but also a male factor contributing

to pairing-dependent female maturation [72,82,83]. A qRT-PCR

analysis using actin as reference gene showed that the status of

pairing had no significant influence on the GCP transcript level,

since there was no significant difference in transcript levels

comparing males with and without pairing experience or males

separated from their female partners (Supplementary data S12).

This finding is also supported by results of a recent study

comparing the transcriptomes of pairing-experienced males versus

naı̈ve males using microarrays, SuperSAGE and also qRT-PCR,

in which no evidence for an influence of pairing on GCP

expression was found [84]. Thus the decrease of the GCP

transcript level following Imatinib treatment represented an

inhibitor-specific effect.

Figure 3. GVBD assays confirming SmAbl2 inhibition by
Imatinib. Results of the GVBD assays performed in Xenopus oocytes
to analyze schistosome-kinase activities under inhibitor influence.
Herbimycin A completely inhibited SmTK3 TK enzymatic activity (circles,
black) even at 0.01 mM, whereas 10 mM was needed to stop inhibit
SmTK6 (squares, grey)-induced GVBD [38]. At this concentration the
GVDB-inducing TK activities of SmAbl1 (rhombus, grey) and SmAbl2
(triangle, black) were reduced by only 40% or 10%, respectively.
Imatinib completely inhibited GVBD induced by the TK activities of
SmAbl1 (at 1 mM) or SmAbl2 (at 0.1 mM), whereas SmTK6-induced GVBD
was stopped at 100 mM, a concentration that reduced SmTK3 TK-
induced GVBD by only 10% [38].
doi:10.1371/journal.pntd.0002923.g003

Imatinib-Influenced Transcription in Schistosomes

PLOS Neglected Tropical Diseases | www.plosntds.org 7 June 2014 | Volume 8 | Issue 6 | e2923



Recent years have provided compelling evidence for a

prominent role of TGFb signalling in schistosome biology

[27,47,84,85,86]. Results of a previous study suggested GCP to

be part of TGFb signalling pathways [82]. Furthermore, the effect

of a specific TbRI kinase-inhibitor (TRIKI) was investigated in

schistosomes. In vitro-culture experiments with couples provided

first evidence for a role of the TGFb pathway during the

regulation of mitotic activity and egg production [26]. Subse-

quently, it was shown by microarray analysis using the same

technical platform that genes contributing to these processes, such

as egg shell-forming genes, were slightly up-regulated upon TRIKI

treatment [47]. Analysing the microarray data following Imatinib

treatment in the present study we observed that a number of

specific genes were differentially regulated that had shown up in

the previous analysis as well. Since there is evidence from the

literature that Abl-kinases can be part of TGFb signalling

pathways [87,88] we investigated whether this may apply for

schistosomes as well and compared both data sets in a merging

Figure 4. qRT-PCR experiments verifying the down-regulation of genes following Imatinib treatment. Comparative qRT-PCR analyses of
genes identified by microarray analyses to be down-regulated in schistosome couples 48 h following Imatinib (50 mM) treatment. The selected genes
encode the gynecophoral canal protein GCP (Smp_212710; [72,82,83]), the metabotropic glutamate receptor (met. glut. receptor; Smp_128940; [70]),
hemoglobinase (Smp_075800), the venom allergen-like protein VAL7 (Smp_070240), cathepsin S (Smp_139240), and cathepsin B (Smp_085180; [67]).
Log2ratios (treated/control) are given for all biological replicates comparing the results of three independent biological replicates using qRT-PCR
(dark gray-shaded columns; numbered 1–3) with the results of three independent microarray analyses (light grey-shaded and white columns;
numbered 4–6).
doi:10.1371/journal.pntd.0002923.g004

Figure 5. qRT-PCR experiments verifying the up-regulation of genes following Imatinib treatment. Comparative qRT-PCR analyses of
genes identified by microarray analyses to be up-regulated in schistosome couples 48 h following Imatinib (50 mM) treatment. The selected genes
encode a predicted egg-shell precursor protein (Smp-000430; [47]), a ribosomal protein S6 kinase (rib. protein S6 kinase; Smp_017900), paramyosin
(Smp_129550; [73]), HSP70 (Smp_106930; [77,78]), fs800-like (Smp_000270; [79]), titin (Smp_105020), p14 (Smp_131110; [80]), and the tyrosinase 1
(SmTYR1; Smp_050270; [81]). Log2ratios (treated/control) are given for all biological replicates comparing the results of three independent biological
replicates using qRT-PCR (dark gray-shaded columns; numbered 1–3) with the results of three independent microarray analyses (light grey-shaded
and white columns; numbered 4–6).
doi:10.1371/journal.pntd.0002923.g005
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analysis. To this end the Imatinib data set of this study and the

TRIKI data set of the previous microarray study [47] were

compared using a significance q-value of #0.05 to identify a

comprehensive set of differentially transcribed genes found in

common in the two conditions. This approach identified 6754

differentially transcribed protein-coding genes in total, of which

1800 were common in both data sets. The merging analyses finally

indicated that out of 2339 genes found in this study to be down-

regulated upon Imatinib treatment, 900 matched those differen-

tially (up- and down-) regulated upon TRIKI treatment. Out of

these 480 were up-regulated and 420 down-regulated by TRIKI.

Furthermore, out of 2616 genes found in this study to be up-

regulated upon Imatinib treatment, 900 corresponded to those

differentially regulated by TRIKI. Out of these 822 were up-

regulated and 78 down-regulated by TRIKI. By definition, no

gene was found within the intersection of Imatinib up- and down-

regulated genes (Figure 6; Supplementary data S13, S14).

Discussion

Based on our previous results on the physiology and morphol-

ogy of adult schistosomes treated by Imatinib [38], our present

study aimed at identifying transcriptional processes influenced by

this inhibitor. To confirm that Imatinib targets not only the Abl

kinase SmAbl1 as shown by biochemical analyses before [39], we

investigated its inhibitor effect on SmAbl2. SmAbl1 and SmAbl2

are the only true Abl-kinases present within the genome of S.

mansoni [50] in contrast to SmTK6 which represents a Src/Abl

hybrid kinase being less susceptible to Imatinib [39; this study]. By

competitive GVBD assays in Xenopus oocytes expressing these

kinases we determined specific effects of Imatinib on both Abl1

and Abl2 kinases. Although their susceptibilities differed by a

factor of 10, the results obtained in this and the previous study [39]

clearly confirmed their target roles, but also that Src-like and true

Src kinases such as SmTK3 are not affected at the Abl-effective

concentrations of Imatinib, which reduced the probability of off-

target effects. These experimental data were well supported by the

modeling and docking data generated confirming that Imatinib is

able to bind to both schistosome Abl kinases.

With regard to results of the in vitro study showing increasing

physiological and morphological effects between 24 h and 48 h

treatment using 50 mM Imatinib [38], we performed transcrip-

tional profiling for these time-points to get a broader view of

molecular processes potentially affected by Imatinib. Microarray

and subsequent bioinformatics analyses revealed a broad spectrum

of genes being differentially regulated following inhibitor treat-

ment. The transcription of genes involved in male-female

interaction, gut physiology, muscle activities, and egg production

were among those highlighted by the analyses. For qRT-PCR

verification a number of genes were selected with regard to GO

and IPA results but also to the phenotypes obtained in the

preceding in vitro study, which comprised reduced pairing stability

(i), reduced sizes of the gonads of both genders combined with

disturbed spermatocyte/oocyte differentiation (ii), a degradation of

the gastrodermis (iii), and tremor-like movements pointing to

altered locomotion activity (iv) [38]. In each case qRT-PCR and

microarray results correspondingly showed sustained transcrip-

tional changes and reduced transcript levels in each case for (i)

GCP, a fascicle I-like cell adhesion molecule hypothesized to be

involved in male-female interaction [72,83], (ii) VAL-7, a member

of the sperm-coating protein SCP/TAPS superfamily [89,90] that

was found in S. mansoni to be expressed in the esophageal gland in

larvae, and adult males and females [91], (iii) a hemoglobinase and

the cathepsins B and S, of which hemoglobinase and cathepsin B

were already shown to be active in the gut [67,92–94], (iv) as well

as a metabotropic glutamate receptor. Interestingly, previous

studies indicated that Abl kinases regulated lysosome functions,

especially autophagy by organizing the localization and activity of

lysosomes, glycosidases and cathepsins, suggesting that Abl is

involved in processes regulating digestion and removal of self- and

foreign material [95,96]. Metabotropic glutamate receptors have

been discussed in the context of seizure-like behavior, defined as

paroxysms resulting in disruption of normal locomotor-system

activity in planaria [97]. Whether this tremor-like phenotype in

schistosomes (iv) is also accompanied by higher transcript levels

detected for the muscle protein genes paramyosin and titin, of

which the latter determines muscle elasticity, stability, and

contraction velocity [98], remains unclear at this stage. In

contrast, the up-regulation of the stress protein gene HSP70

following inhibitor treatment meets the expectations as well as

higher transcript levels of the ribosomal S6 kinase, a signaling

molecule involved in cell growth, proliferation, but also survival

[99]. Thus the differential regulation of these genes corresponded

well to the phenotypes observed in vitro. Furthermore, a

comparison of both time-points used for the analysis (24 h/48 h)

showed strong and sustained transcriptional changes by micro-

arrays but also on the basis of qRT-PCRs of selected candidate

genes, which indicated an enduring influence of the Abl kinase

pathway on these genes.

Compared to transcriptome studies in S. mansoni or S. japonicum

after exposure to PZQ in vitro [100,101] or in vivo [102], a number

of differences can be noted that indicate dissimilar processes

affected by this established drug and Imatinib. Using a recent in

vivo model of S. japonicum PZQ led to an up-regulation among

others of genes associated with muscle function, lipid and ion

regulation, and drug resistance in treated males [102]. In females,

fewer genes seemed to be affected (up-regulated), examples are

involved in pathogen defense, general detoxification, drug

resistance and calcium regulation [102]. Similar findings were

Figure 6. Venn diagram of genes down- or up-regulated
following Imatinib or TRIKI treatment. Merging analyses repre-
sented by a Venn diagram of the intersections of significant
differentially transcribed down- or up-regulated genes following
Imatinib treatment with those differentially (up- and down-) regulated
upon TRIKI treatment [47]. The direction of regulation following
Imatinib treatment (down/up) is shown within the header. Given
numbers correlate with the numbers of significant differentially
transcribed genes for these data sets (see text). The overlapping
regions of the circles contain the corresponding differentially tran-
scribed genes in these data sets.
doi:10.1371/journal.pntd.0002923.g006
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made in in vitro studies with adult S. mansoni showing that genes

encoding multiple drug transporter as well as calcium regulation,

stress and apoptosis-related proteins were up-regulated [101]. In

contrast to these findings we observed a down-regulation of genes

coding for lipoproteins, motor and/or muscle proteins, drug efflux

proteins, calmodulin and other calcium binding proteins in S.

mansoni couples following Imatinib treatment. With respect to

apoptosis-related genes the picture is puzzling since there much

variation within all PZQ and Imatinib data sets and little

correspondence among these different data. This justifies no

precise conclusion on the participation of defined apoptosis-related

signaling processes in the primary effects on schistosomes caused

by these drugs.

Surprisingly, we also identified genes to be up-regulated that

contribute to egg formation such as p14, fs800-like, a predicted

egg-shell precursor protein gene, and tyrosinase 1, a gene involved

in final egg-shell synthesis [79,81]. This was unexpected since we

observed reduced egg production in Imatinib-treated schistosome

couples. However, egg production is a complex process and may

be influenced by further genes of which some, yet unknown to be

important for this process, may be down-regulated by Imatinib,

while the known egg-formation genes might be up-regulated to

compensate for the overall reduced egg output in Imatinib-treated

schistosomes.

Conspicuously, the higher transcript levels of these egg

formation-related genes resembled the results obtained in a

recent microarray study where the effect of TRIKI, a TGFbRI-

kinase inhibitor, was investigated on transcriptional profiles in

adult schistosome couples in vitro. TRIKI led to an increase of

transcript levels of the same egg formation-related genes in paired

females in contrast to Herb A, a Src kinase inhibitor, which

reduced the transcript levels of these genes. From this it was

concluded that a TGFb and a Src kinase pathway cooperatively

control egg formation processes in a balanced manner in

schistosomes assigning repressing (TGFb/TGFbRI-pathway)

and inducing (Src-pathway) tasks [47]. This and the finding of

GCP and egg formation-associated genes as common target

molecules of TGFb [82] as well as SmAbl1/2-influenced

molecular processes [this study], prompted us to evaluate the

TRIKI-related against the Imatinib-related microarray data sets.

Comparing the total amounts of differentially transcribed genes

about 27% (1800 out of 6754) were present in both data sets, of

which about 50% (900 or 900 out of 1800) were differentially

regulated and about 70% (420 and 822 out of 1800) in the same

direction. Thus many genes significantly differentially transcribed

upon TRIKI- and Imatinib treatment overlapped. This clearly

indicates a potential association of TGFbRI-mediated and Abl

kinase-containing pathways in schistosomes. Beyond the fact that

egg formation-associated genes such as fs800-like, p14, egg shell

precursor, and tyrosinase 1 [47; this study] as well as GCP

became noticeable as common targets, SmAbl1/2 transcripts and

TGFbRI-transcripts were found in the same tissues by in situ

hybridization, mainly in the gonads [38,103]. In conclusion, it

appears very likely that the schistosome Abl kinase(s) are among

other possibilities members of signalling pathways induced by

TGFb. Such a molecular connection has been shown before,

demonstrating c-Abl as a Smad-independent component of

TGFb signaling pathways and mediator of TGFb-driven

proliferation in human fibroblasts [87,104,105].

Our previous in vitro studies exhibited strong effects of Imatinib

on schistosome morphology, physiology and survival in vitro

suggesting that this compound may be one of the candidates for

the design of alternative strategies to fight schistosomiasis

[38,42,43]. This was confirmed by an independent approach

recently, which reproduced similar phenotypes in vitro, although a

first in vivo experiment failed [106]. Nonetheless, the data obtained

in this study support the conclusion that Imatinib exerts broad

negative effects on worm physiology substantiating the hypothe-

sized role of PKs as potential targets [25,28,36,42,43]. In this

respect it was encouraging to note that according to our

microarray analysis also multidrug resistance (MDR) genes

(Smp_089200, Smp_151290) were among the significantly

down-regulated genes following Imatinib treatment. Thus they

may represent additional targets of Abl-kinase-containing path-

ways. Future studies could also aim at analyzing the molecular

networks controlling the expression of such MDR genes and their

substrate specificities in more detail. Depending on the substrates

transported by these MDRs, and with respect to treatment strategy

and efficacy, the suppression of MDR genes as an additional

consequence of inhibitor application would represent a potential

side effect that is most welcome.

Supporting Information

Data S1 List of primers used for qRT-PCRs. Smp numbers of

the target genes, primer sequences (f = forward, r = reverse), and

annealing temperatures (Tm) used are given.

(DOCX)

Data S2 Hierarchical clustering of differentially transcribed

genes (q = 0.1%) following Imatinib treatment. Summarized are

three biological replicates for each time point analysed (24 h, 1–3;

48 h, 1–3). Genes with repressed transcription (down-regulated)

are colored in green, and genes with enhanced transcription (up-

regulated) in red.

(TIF)

Data S3 List of all significantly differentially transcribed genes

following Imatinib treatments (24 h and 48 h; q = 0.1%) according

to the one-class analysis. This list is subdivided in up- and down-

regulated genes.

(XLSX)

Data S4 List of selected genes up-regulated after Imatinib

treatment (q = 0.1%). Besides the Gene ID number, relative

transcript ratios are given for both time-points (24 h and 48 h) as

well as annotations and functional categories.

(DOCX)

Data S5 List of selected genes down-regulated after Imatinib

treatment (q = 0.1%). Besides the Gene ID number, relative

transcript ratios are given for both time-points (24 h and 48 h) as

well as annotations and functional categories.

(DOCX)

Data S6 Gene Ontology (GO) categories are listed enriched with

significantly differentially transcribed genes (BH adjusted p-value

#0.05; threshold = 0.1) up-regulated following Imatinib treat-

ment.

(XLSX)

Data S7 Gene Ontology (GO) categories are listed enriched with

significantly differentially transcribed genes (BH adjusted p-value

#0.05; threshold = 0.1) down-regulated following Imatinib

treatment.

(XLSX)

Data S8 Summary of the IPA analysis [57] containing lists of

networks, biological functions, canonical pathways, and the top

molecules being down- and up-regulated based on the relative fold

changes of expression.

(XLSX)
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Data S9 Summary of the qRT-PCR and microarray analyses

which show the sustained effect of Imatinib treatment (24 h or

48 h) on the transcript level of the ribosomal S6-kinase gene.

Log2ratios (treated/control) are comparing the results of three

independent biological replicates using qRT-PCR (24 h and 48 h,

columns 1–3, light gray) with the results of three independent

microarray analyses (24 h and 48 h, columns 4–6, dark gray).

(TIF)

Data S10 Summary of the qRT-PCR and microarray analyses

which show the sustained effect of Imatinib treatment (24 h or

48 h) on the transcript level of the hemoglobinase gene. Log2ratios

(treated/control) are given comparing the results of three

independent biological replicates using qRT-PCR (24 h and

48 h, columns 1–3, light gray) with the results of three

independent microarray analyses (24 h and 48 h, columns 4–6,

dark gray).

(TIF)

Data S11 Summary of the qRT-PCR and microarray analyses

which show the sustained effect of Imatinib treatment (24 h or

48 h) on the transcript level of the GCP gene. Log2ratios (treated/

control) are given comparing the results of three independent

biological replicates using qRT-PCR (24 h and 48 h, columns 1–

3, light gray) with the results of three independent microarray

analyses (24 h and 48 h, columns 4–6, dark gray).

(TIF)

Data S12 Result of the transcript level of GCP determined by

qRT-PCR with RNA from males cultured in vitro, which either

have never been paired with a female (1), or were separated from a

female for five days (2), or were kept in culture paired with females

(3) before they were separated to perform the analysis (n = 3). Actin

transcript levels were determined as reference in each case.

(TIF)

Data S13 List of genes identified in the merging analysis to be

down-regulated after Imatinib treatment and differentially regu-

lated (up or down) following TRIKI treatment. Besides the Gene

ID number, relative transcript ratios are given for both time-points

(24 h and 48 h) as well as annotations and functional categories.

(XLSX)

Data S14 List of genes identified in the merging analysis to be

up-regulated after Imatinib treatment and differentially regulated

(up or down) following TRIKI treatment. Besides the Gene ID

number, relative transcript ratios are given for both time-points

(24 h and 48 h) as well as annotations and functional categories.

(XLSX)
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54. Robinson PN, Wollstein A, Böhme U, Beattie B (2004) Ontologizing gene-
expression microarray data: characterizing clusters with Gene Ontology.

Bioinformatics 20: 979–981.

55. Grossmann S, Bauer S, Robinson PN, Vingron M (2007) Improved detection

of overrepresentation of Gene-Ontology annotations with parent child analysis.

Bioinformatics 23: 3024–3031.

56. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false

discovery rate in behavior genetics research. Behav Brain Res 125: 279–284.

57. Thomas S, Bonchev D (2010) A survey of current software for network analysis

in molecular biology. Human Gen 4: 353–360.

58. Myers JL, Well AD (2003)Research Design and Statistical Analysis (2nd ed).

Lawrence Erlbaum Associates. 749 p.

59. Dorak MT (2008) Real-time PCR. Taylor & Francis, pp. 58–62.

60. Yun JJ, Heisler LE, Hwang II, Wilkins O, Lau SK, et al. (2006) Genomic DNA

functions as a universal external standard in quantitative real-time PCR. Nucl
Acids Res 34: e85. Erratum in: Nucl Acids Res 34: 6718.

61. Sokal RR, Rohlf FJ (1994) Biometry: The principles and practice of statistics in
biological research. 3rd edition. W.H. Freeman, New York. 880p.

62. Wu AW, Gu J, Li ZF, Ji JF, Xu GW (2004) COX-2 expression and tumor
angiogenesis in colorectal cancer. World J Gastroent 10: 2323-2326.

63. Zerlotini A, Heiges M, Wang H, Moraes RL, Dominitini AJ, et al. (2009)

SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res.
37(Database issue): D579–582. Available: http://schistocyc.schistodb.net.

64. Grassi F, Moretto N, Rivetti C, Cellai S, Betti M, et al. (2006) Structural and

functional properties of lengsin, a pseudo-glutamine synthetase in the
transparent human lens. Biochem Biophys Res Commun 350(2): 424–429.

65. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, et al. (2007) Emerging

roles of cysteine cathepsins in disease and their potential as drug targets. Curr
Pharm Des 13(4): 387–403.

66. Pietschmann P, Foger-Samwald U, Sipos W, Rauner M (2013) The role of

cathepsins in osteoimmunology. Crit Rev Eukaryot Gene Expr 23(1): 11–26.

67. Sajid M, McKerrow JH, Hansell E, Mathieu MA, Lucas KD, et al. (2003)

Functional expression and characterization of Schistosoma mansoni cathepsin B

and its trans-activation by an endogenous asparaginyl endopeptidase. Mol
Biochem Parasitol 131(1): 65–75.

68. el Meanawy MA, Aji T, Phillips NF, Davis RE, Salata RA, et al. (1990)

Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence
and gene expression in developing parasites. Am J Trop Med Hyg 43(1): 67–78.

69. Chalmers IW, Hoffmann KF (2012) Platyhelminth Venom Allergen-Like
(VAL) proteins: revealing structural diversity, class-specific features and

biological associations across the phylum. Parasitology 139(10): 1231–1245.

70. Zamanian M, Kimber MJ, McVeigh P, Carlson SA, Maule AG, et al. (2011)
The repertoire of G protein-coupled receptors in the human parasite Schistosoma

mansoni and the model organism Schmidtea mediterranea. BMC Genomics 12: 596.

71. Taman A, Ribeiro P (2011) Glutamate-mediated signaling in Schistosoma

mansoni: a novel glutamate receptor is expressed in neurons and the female

reproductive tract. Mol Biochem Parasitol 176(1): 42–50.

72. Cheng G, Fu Z, Lin J, Shi Y, Zhou Y, et al. (2009) In vitro and in vivo evaluation
of small interference RNA-mediated gynaecophoral canal protein silencing in

Schistosoma japonicum. J Gene Med 11(5): 412–421.

73. Gobert GN, McManus DP (2005) Update on paramyosin in parasitic worms.
Parasitol Int 54(2): 101–107.

74. Labeit S, Kolmerer B (1995) "Titins: giant proteins in charge of muscle

ultrastructure and elasticity". Science 270 (5234): 293–296.
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