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1 Introduction

Logic programming is commonly known as an alternative to the imperative programming paradigm. How-
ever, it has become clear more recently that it is also an important formalism for knowledge representation,
cf. [1]. As it turned out, a definition of negation in logic programs is nontrivial, and has become a key issue
of the research over the last decade. A large number of different semantics have been proposed in the past
(see e.g. [7]), of which the stable model semantics [13] and the well-founded semantics (WFS, for short)
[37] have received the main attention. The stable model semantics is closely related to well-known forms
of nonmonotonic reasoning such as default logic [30] and circumscription [26, 20]. In fact, normal logic
programs can be viewed as a fragment of Reiter’s default logic.

The definition of most nonmonotonic logic programming semantics, including the stable semantics and
the WFS, has been largely based on methods that assume propositional programs. For example, the stable
models of a logic program are defined as certain minimal Herbrand models of the ground instantiation of the
program. In addition, the Gelfond-Lifschitz transform, which plays a key role for both the stable semantics
and the WFS, works only on ground programs [36, 2]. Clearly, when our interest is in the computer imple-
mentation of these semantics, the requirement of ground instantiations of programs can quickly encounter
practical limitations. In addition, the representation of both stable and well-founded models using ground
atoms is also highly impractical. To see this, consider the following simple example.

Example 1 Let � be the following logic program:�������	��
�����������
�� ������������������
	
������� �!����
	
"�
This program, which is stratified, has a unique stable model that is also the well-founded model. It satisfies
all atoms of the form �����#�	�$
 , the single atom �����%� �!���&
	
 , as well as all atoms �&���#����
 where �(') � . Thus,
a non-ground representation of this stable model contains the following three constrained atoms:�����#����
"� � ) �*��&���#����
"� �+') �*������#���,
"� � ) �,-.� ) �!���&
0/
In contrast, were we to attempt to explicitly represent the stable model of this program using ground atoms,
then an infinite set is required. Indeed, in order to even perform the Gelfond-Lifschitz transform, it is
necessary to first “ground” out the above logic program, resulting in a propositional program containing
infinitely many clauses. 1
This example demonstrates, informally, that constraints may be used as the basis for compact representations
of stable models. Such a non-ground representation of the semantics of logic programs was due to Giorgio
Levi and his group’s work on S-semantics at Pisa – in particular, Turi [35] used it to reason about Clark
completions of logic programs. Following Turi’s lead, in this paper, we develop a formal theory of stable
and well-founded semantics based on non-ground computation and representation.

Our basic approach is as follows. A constrained interpretation 2�3 will be a set of constrained atoms –
atoms of the form �4��56
7�98 where 5 is a vector of variables and 8 is a first-order constraint expression
built from equality atoms. Given a normal logic program � and a constrained interpretation 2:3 , we will
translate � into a negation-free constraint logic program, ;=< � � � 2:3 
 , where the constraints are over the
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domain of terms. Then 2:3 is a (non-ground) stable model of � just in the case that it is “equivalent”
(in a sense made precise later in the paper) to the least constrained model (in the sense of Turi [35]) of;=< � � � 2:3 
 . We illustrate how the same technique can be used to define a non-ground representation of the
well-founded semantics.

The rest of the paper is organized as follows. The next section gives some preliminaries on constrained
interpretations, constraint logic programs, and the well-founded and stable semantics of normal logic pro-
grams. In Section 3, we present the constraint transformation and analyze its properties. After that, we
discuss some complexity issues that come up in this context. In Section 4, we present the concepts of
constrained non-ground stable and well-founded semantics, and then show that both of these “non-ground”
representations faithfully capture the stable and well-founded model semantics of logic programs, respect-
ively. Moreover, we discuss the complexity of reasoning from such non-ground representations. Section 5
tackles the problem of computing constrained non-ground stable models. It presents an algorithm which
builds on a procedure for computing the constrained non-ground well-founded semantics. This algorithm
is effective if the program is function-free; note that in presence of function symbols, existence of a stable
model is known to be undecidable [23]. Section 6 discusses the effects of our approach to implementation.
The final Section 7 reviews related work and concludes the paper.

2 Preliminaries and Previous Results

We assume familiarity with the basic concepts of logic programming and the standard notions of terms,
atoms etc; for a background, see Lloyd [21].

In the following, we assume that > is an arbitrary, but fixed language1 with equality (=) generated by a
finite signature ? of constant symbols �%� @A��BC�D/D/D/ , function symbols �E�GF%�D/D/D/ , and predicate symbols �H���:�D/D/D/ ,
as well as an infinite set Var of variable symbols �#���*�0IJ�D/D/D/ . We assume that ? contains at least one
constant. We shall not mention > explicitly when it is clear from context. A bold face version of a symbol
(e.g., 5 ) denotes a list of respective symbols, whose length is clear from the context.

As common in logic programming, we focus on Herbrand models of > . Throughout the rest of this paper,
all concepts (logical consequence, satisfiability etc) are based on Herbrand interpretations (for short, simply
interpretations). We denote by K the Herbrand pre-interpretation of > , i.e., the first-order structure where
the universe is the Herbrand universe of > , the predicate ) is interpreted as identity, the constants B are
interpreted by themselves ( BDL ) B ), and every function � is interpreted by the function ��L defined by� L ��M ND�D/D/D/A�	MPO&
 = �!��M L N �D/D/D/Q�	M LO 
 .
2.1 Well-Founded and Stable Semantics

A normal logic program (LP) is a set of clauses

�4���C
R�TS N -U/D/D/0-$S O -V�H�%����W N 
�-U/D/D/X-V�H�%����WZY[

where S=ND�D/D/D/Q��S\O%� and W]N^�D/D/D/^��W Y are atoms.2

1In general, _ is assumed fixed. However, when discussing complexity results, it is often useful to allow _ to vary, with a
program ` and a query defining the nonlogical (i.e. constant, function and predicate) symbols of the language.

2We allow here programs to be infinite for technical reasons, since we consider (partial) groundings of such programs. The
focus of our attention is on finite programs, however.
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Given a normal program � and an (Herbrand) interpretation a , the Gelfond-Lifschitz transformation,b*c � � � a 
 , of � with respect to a is the set of clausesb*c � � � a 
 = dQe �fSgN -U/D/D/0-VShOji the clause e �fS=N -U/D/D/0-$S\O�-V�H�%����WkNl
�-U/D/D/0-m�H�%����W Y 
 is a
ground instance of a clause in � such that d W#N^�D/D/D/Q��W Yon]p a ).q n .

Hence
b*c � � � a 
 is a logic program free of the non-monotonic negation ����� . Based on the Gelfond-

Lifschitz transformation, we associate with a normal logic program � an operator rts , mapping interpreta-
tions to interpretations, as follows: r�s � a 
 )vu wGx �zy|{�}X~ s&� � � 
0�
where the y -operator is the usual immediate consequence operator associated with positive logic programs
(cf. [21]). Then, a is a stable model of � [13] if and only if r*s � a 
 ) a .

Baral and Subrahmanian [2] proved that rRs is an anti-monotone operator, i.e, a N\� aD� implies r�s � aD� 
J�r�s � a Nl
 , and that the well-founded semantics (WFS) of � [37] is captured by the least fixpoint and the
greatest fixpoint of r �s in the following way.

Proposition 1 ([2]) Let � be a normal logic program and let e be a ground atom. Then,� e is true in the WFS of � iff e�� u wGx � r �s 
 .� e is false in the WFS of � iff e���#� w�x � r �s 
 . 1
We will revisit these properties later on. Equipped with these preliminaries, we proceed in Section 3 to

define a constraint-based version of the Gelfond-Lifschitz transform that works with normal constraint logic
programs, which are introduced in the next subsection.

2.2 Preliminaries on Turi’s work

The S-semantics is a family of “non-ground” semantics developed by the Pisa group [10]. This section
outlines the essential ideas behind the non-ground semantics of Turi [35], which have been further developed
by Gabbrielli and Levi [12].

2.2.1 constrained interpretations

Definition 1 An equational constraint (in > ) is any well-formed formula 8 built from atoms M�N ) M � , whereM N and M � are terms, using the logical connectives � , � , - and quantifiers � and � . 1
Free and bound occurrences of variables in a constraint 8 are defined as usual. We write 8*��5�
 to indicate

that all free variables of 8 are among the variables in 5 .
For notational convenience, we write MDNH') M � for � ��M0N ) M � 
 , and denote by �X�����^� resp. ���l�%� some proposi-

tional contradiction resp. tautology.

Definition 2 A solution for a constraint 8*��5�
 is a ground substitution � to the variables in 5 , such thatK i ) 8���56
 � , i.e., 8*��5�
 � is true in all Herbrand interpretations of > . A constraint is solvable, if it has some
solution � . 1
Example 2 Consider the constraint
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8m� � �#/��	�	����') �!���,
	
G-���� ') ��
	
 ��� I=�¡�!�¢I[
 ) ��
 .
This constraint is satisfiable in K for � ) d � � �!���&
 n . Therefore, � is a solution for 8 , and 8 is solvable. 1
Definition 3 Let � be an £ -ary predicate symbol, 5 ) ��N^�D/D/D/Q�	�,O be an £ -tuple of variables, and 8 be
a constraint. Then ����5�
6� 8 is called a constrained atom, where 8 is the constraint part. We define¤ ����5�
R�98|¥ as the following set of ground atoms:¤ ����5�
R�98|¥ ) d ����5�
 � i K i ) 8 � � � is a solution of 8 , and ���4��56
7�T8�
 � is ground n . 1
Example 3 For a binary predicate � , the expression ���������,
7�9�(') � is a constrained atom e ; assuming
that > contains three constant symbols �%� @A��B and no function symbols,

¤ e ¥ = d ������� @D
0�������%��B^
0�����¡@A��B^
0����¡@A���&
0�0�4��BA���&
0������BC� @D
 n / 1
For convenience, we omit a constraint part 8 if it is true on K . E.g., we write �&����
*� for �����$
R�9� ) � .

Definition 4 A constrained interpretation (c-interpretation) is a set 2:3 of constrained atoms. For a given
c-interpretation 2:3 , we let ¤ 2�3 ¥ ) ¦§ ~©¨ ��ª[«�¬Ql®

¤ ����5�
R�T8|¥¢�
which is the Herbrand interpretation naturally associated with 2�3 .

A constrained atom ����5�
R�98 is true in a c-interpretation 2:3 if
¤ ����5�
R�98¯¥|� ¤ 2�3 ¥ . 1

Example 4 Let 2�3 be the c-interpretation that contains the single constrained atom �����#����
R� . The con-
straint part of �4���#����
°� is empty; hence, any substitution is a solution. Therefore, for every language > ,���������,
!�f�+') � is true in 2�3 , since¤ ���������,
7�9�+') �o¥H� ¤ d �4���#����
R� n ¥ . 1

C-interpretations are ordered by a relation ± as follows.

Definition 5 For any c-interpretations 2:3 N and 2�37� define 2�3 N ±²2:3�� if and only if
¤ 2:3 N	¥|� ¤ 2�3*� ¥ . 1

Note that ± is reflexive and transitive, but not necessarily anti-symmetric. It induces an equivalence
relation ³ , where 2:3 N ³´2�3*� iff 2:3 N ±�2:3�� and 2:3*�µ±¶2�3 N . It is easily verified that 2�3 N ³·2�37� iff¤ 2�3 NG¥ ) ¤ 2�37� ¥ .

Equivalent c-interpretations are treated semantically indiscernible. Therefore, we implicitly assume that
constraints are standardized apart whenever needed.

Every finite c-interpretation is equivalent to a c-interpretation in which in all constraints are standard-
ized apart and where in addition each predicate � occurs in exactly one constrained atom; we call such
c-interpretations normal. Indeed, two constrained atoms e N , e\� with the same predicate � in the head can
be replaced by an equivalent single constrained atom. Therefore, every finite c-interpretation can be eas-
ily transformed into normal form; thus, we often assume that finite c-interpretations are in normal form.
Moreover, we sometimes refer in the rest of this paper to a c-interpretation 2�3 where, strictly speaking, the
equivalence class

¤ 2:3 ¥�¸ of 2�3 with respect to ³ is meant.
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2.2.2 constraint logic programs

A normal constraint logic program (CLP) � is a set of clauses of the form

e � 8�ilS N -U¹D¹D¹l-$S O -m�H�%����W N 
�-¶¹D¹D¹0-m�H�%����WZY[

where e and all S[º , W¼» are atoms, and e �½8 is a constrained atom. If � is free of the operator ����� , then� is positive. Typically, we deal with finite CLPs.

There is a natural correspondence between normal standard LPs and normal CLPs. Every clause of a
normal LP can be rewritten into an equivalent constrained clause of the form

����5�
!�T5 ) �\ilS N -¾/D/D/0-$S O -¼�����:��W N 
�-U/D/D/l-V�����:��WZY[

where 5 contains fresh variables; therefore, in abuse of notation, we sometimes view an normal LP � as
the normal CLP obtained by rewriting all rules.

Vice versa, with each normal CLP � , we associate a normal LP ��¿ which contains for each clause as
above from � all clauses � e �TSZN0-U¹D¹D¹l-ÀS\O:
 � where � is a solution of 8 .

Thus, the CLP � can be views as a compact representation of the normal LP �Á¿ . In this line, we say that
a ground atom e is a logical consequence of � , if and only if e is a logical consequence of � ¿ .

Given any positive constraint logic program � , we associate with � an operator Â¾s (usually also denotedÃ s ) that maps c-interpretations to c-interpretations. In order to define this operator, we first define the notion
of a resolvent of a clause w.r.t. a c-interpretation.

SupposeÄ
) �4��56
7�98:Å7i��HNA����N0
G-U¹D¹D¹0-��%OÆ���^O�


is a clause and 2�3 is a c-interpretation. Without loss of generality, we assume that all clauses in 2�3ÈÇµd
Ä n

are (mutually) standardized apart. Then the resolvents of C with respect to 2�3 , denoted �ÊÉQË s � Ä � 2:3 
 , is the
set of all constraint atoms

����5�
!�98�Å|-²��5�N ) ��N0
G-[8�N%-U¹D¹D¹0-²��5kO ) �^O:
G-À8�O
where � º ��5 º 
R�T8 º is in 2�3 for each ÌÀ±²ÍR±Î£ ; if some � º does not occur in 2�3 , then �ÊÉAË s � Ä � 2�3 
 contains
the single constraint atom ����5�
R� �D�����D� where �D�����D� is any unsatisfiable constraint.

Now Â$s is defined as follows.

Definition 6 For any positive constraint logic program � and c-interpretation 2�3 , let

Â�s � 2�3 
 )ÐÏ�Ñ ¬Cs ��ÉAË s � Ä � 2�3 
0/ 1
If 2�3 and � are finite, then Âms � 2�3 
 is finite as well and can be normalized.

It is easy to see that ÂVs is monotone with respect to the ordering ± ; hence, it has a least fixpoint, which
we denote by u w�x � ÂVs 
 .
Proposition 2 Let � be a positive constraint logic program. Then,

1. if 2�3 N ±¾2:3 � then Â s � 2:3 N 
 ±ÒÂ s � 2:3 � 
 .
2. if 2�3 N ³ 2:3 � , then Â s � 2�3 N 
 ³ÓÂ s � 2�3 � 
 .
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3. Â$s has a least fixpoint with respect to ± , denoted by u w�x � ÂÔs 
 .
4. a ground atom e is a logical consequence of � if and only if ev� ¤ u w�x � ÂUs 
Õ¥ . 1

Proof. The proof of 1. is straightforward, and 2. is immediate by 1. part Part 3. is a simple consequence
of 1. and the well-known Knaster-Tarski Theorem that every monotone operator on a complete lattice has a
least fixpoint. Part 4. follows from the fact that the Í -th stage of ÂUs , Â ºs , is equivalent with the Í -th stagey ºsHÖ of the immediate consequence operator y s Ö (cf. [21]), i.e.,

¤ Â ºs ¥ ) y ºsHÖ , which is shown by an easy
induction. 1
Example 5 Consider the following program that represents the classical transitive closure computation on
a simple graph: � ) d É×�������,
7�T� ) �%�MX��������
!�fÉ×�������Ø
0�MX��������
!�9MX�����0I[
�-�MX�¢IJ���Ø
 n /
The iterative applications of the Âms operator are shown below (here, the result of ÂÔs is normalized):

Â Ns � q 
 ) d É×�������Ø
R�Ù� ) � n
Â �s � q 
 ) d É×�������Ø
R�Ù� ) ����MX�������,
7���� ) � N 
�-²��� ) � N 
�-²��� N ) �&
 n
ÂÓÚs � q 
 ) d É×�������Ø
R�Ù� ) ���MX��������
R�Ð�	��� ) �]Nl
�-Î��� ) �|N0
�-²���HN ) �&
	
 ��	��� ) � � 
�-Î�¢I ) � � 
�-²��� � ) �&
�-²�¢I ) � Ú 
�-²��� ) � Ú 
�-²��� Ú ) ��
	
 n

...

It is easy to verify that
¤ ÂÈÚs � q 
Õ¥ is equivalent to

¤ Â �s � q 
Õ¥ . Thus, Â �s � q 
 describes u wGx � Â$s 
 . By pushing
through equalities and straightforward simplification, we obtain that

u w�x � Â�s 
 ³�d É×�������Ø
R�T� ) ����MD���#����
R�T� ) � n / 1
An important issue that comes along with the use of constraints, as shown in the previous example, is
simplification of constraint expressions. A number of algebraic simplification rules for constraints in the
equality theory (i.e., term algebra) we use here are applicable, e.g., substitution of equals for equals, pushing
negations through conjunction and disjunctions, and, in case of a finite Herbrand universe, constructive
negation. More generally, any set of sound algebraic simplification rules may be used. By using such
methods, constraint parts in Âms � 2:3 
 as well as in arbitrary c-interpretations can be simplified such that
they occupy less space and are easier to read.

It is clear that sophisticated and highly compressive simplification of constraints requires some compu-
tational effort, and that with respect to our as well as other applications, the trade-off between the gain in
compression and the computation time and space spent for simplification has to be carefully deliberated.
The issue of proper constraint simplification is per se a highly relevant problem, and a thorough discussion
would lead for beyond the scope of this paper. However, we note that the elementary rules mentioned above
(substitution of equals for equals, pushing trough negation etc –which are computationally rather cheap)
may help to reduce the size of the Â ºs ’s substantially, and sometimes, even result in an exponential saving.
To see this, consider the example below.
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Example 6 Consider the program � :�|NQ���#����
��¶��� ) BANl
G-���� ) B � 
 , BAN^��B �[�$d �%� @ n ,�%ºG���#���Ø
!�·�%º�Û¯NQ���#�0I[
G-���ºzÛ¯NA�¢IJ���Ø
 , ÜZ±�Í×±²£ .

Here we have that Â O�Ý�Ns � q 
 ) Â Os � q 
 , and that the size of Â O�Ý�Ns � q 
 is exponential in £ . Note that

u w�x � Â$s 
 ³Ód �%º����#����
R���� ) BAN0
G-���� ) B � 
Þi�BANX��B �À�Vd �%� @ n � Ì[±ÎÍ7±²£ n ,

which has only linear size with respect to � . This representative can be obtained by applying the mentioned
simplifications to ÂVs . However, as discussed later, not always a small (i.e., polynomial size) representative
for u wGx � Â$s 
 can be found. 1
3 The Constraint-based Transformation

In this section, we present a non-ground version of the Gelfond-Lifschitz transformation which we use for
the definition of constrained non-ground stable models and well-founded semantics. The new transform-
ation, ;=< , takes as input a normal logic program � , a c-interpretation 2�3 , and returns a constraint logic
program, ;=< � � � 2�3 
 . The postulates for this program are the following properties.

(Desideratum 1) If

Ä
) e �½8���iXSZN�-U/D/D/0-$S\O is a clause in ;Z< � � � 2�3 
 and � is a solution of 8 , then

all ground instances of � e �fSZN�-¾/D/D/0-$S\O�
 � are contained in
b*c � � � ¤ 2�3 ¥�
 .

(Desideratum 2) If

Ä
is a clause in

b*c � � � ¤ 2�3 ¥�
 , then there is a clause

ÄZß
�V;=< � � � 2�3 
 of the form e �8�i S N -U/D/D/l-$S O such that for some solution � of 8 ,

Ä
is a ground instance of � e �½S N -U/D/D/l-$S O 
 � .

Thus in effect, ;=< � � � 2�3 
 is a constraint non-ground version of the Gelfond-Lifschitz transformation;
the grounding of the associated logic program ;=< � � � 2�3 
 ¿ coincides with

b�c � � ¤ 2:3 ¥�
 . ;=< � � � 2�3 
 can be
seen as partial deduction (unfolding).

Towards a definition of ;=< , we define the elimination of negated atoms from clauses with respect to a
c-interpretation.

Let

Ä
be the clause e �98µiXSgN -U¹D¹D¹0-$S\Ot-V�H�%����WkNl
�-U/D/D/X-V�H�%����W Y 


where W]N has the form �HNQ����Nl
 . The elimination of �H�%����W6Nl
 from

Ä
with respect to a normal c-interpretation2:3 is the set of clauses

e �98=-²��5�N ) �ÊN 
�- ��à N � 8%NQ��5�N à N 
mitSgN�-¾/D/D/0-ÀS\O�-V�����:��W � 
�-U/D/D/l-V�����×��W Y 
0�
where �|NQ��5�Nl
R�98�NQ��5�N à Nl
 is the unique constrained atom in 2:3 with ��N in the head; note that the implicit
existential quantifiers on à N in 8 N are turned into universal quantifiers.

The elimination of all negated literals from

Ä
with respect to 2�3 , denoted á c�âäã � Ä � 2�3 
 , is obtained by

iteratively eliminating ��������W�Nl
 ,. . . , �H�%����W Y 
 one after another.

Definition 7 Let � be a normal logic program and 2�3 be a normal c-interpretation. The constraint-based
transformation of � with respect to the normal c-interpretation 2�3 , ;=< � � � 2:3 
 , is the collection of clauses;=< � � � 2�3 
 ) d×á c:âäã � Ä � 2:3 
Ri Ä ��� n . 1
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In other words, we apply the negation elimination process to each clause in � , and place the resulting clauses
in ;Z< � � � 2�3 
 . Thus, ;Z< � � � 2�3 
 is a negation-free constraint logic program.

In case of arbitrary finite c-interpretations 2:3 , we first normalize 2:3 to a c-interpretation 2�3 ¿ and then
apply the transformation ;Z< � � � 2�3 ¿ 
 . Note that this does not yield a unique constraint program as normal-
ization is not unique; however, all resulting constraint programs are equivalent.

Example 7 Consider 2�3 ) d �4��� N ��� N 
R�9� N ') � N n and suppose � is the clause �����$
t�������:�������#���Ø
	
 .
Then the elimination of �H�%���������#����
	
 from this clause yields

�&���$
R����]N ) �$
G-����|N ) �Z
G- � ���]N|') �|N0
0�
which simplifies to

�&���$
R�9� ) �Ø/ (1)

Let us check that this rule as ;=< � � � 2�3 
 accurately captures the desiderata described earlier. The predicate� consists of all pairs ��MXN^�	M � 
 of elements in the Herbrand universe where MDN\') M � ; thus, � consists of the
entire Herbrand universe, i.e.,

b�c � � � ¤ 2:3 ¥�
 consists of all rules �&��M�
¼� where M is a ground term. This is
precisely captured by Rule 1, and the desiderata are thus clearly satisfied. 1
Example 8 Consider the program � consisting of the following clause

Ä
:

�4���]NX���HNl
Ð� �����:�������]NA�0I�Nl
	
�-V�����������¢ItNl
	

and the normal c-interpretation

2�3 ) d �4����Å�����ÅQ
R�½� ����� Ú 
R�9� Ú ) @E-$� Ú ') � Ú � �&��� � ��� � 
R���� � ') � � 
 � ��� � ) �&
 n /
The elimination of ���������&����NQ���HN 
	
 from

Ä
with respect to 2:3 yields the constrained clause

�4���]NX���HNl
Ð� ���]N ) � � 
�-²���|N ) � � 
�- � �	��� � ') � � 
 � ��� � ) ��
	
7iD�H�%���������|N0
	
0/
�4���]NX���HNl
Ð� ���]N ) � � 
�-²�¢I�N ) � � 
- � �	��� � ') � � 
 � ��� � ) �&
	
�-²�¢I N ) � Ú 
�- � � Ú � �	��� Ú ) @D
�-�� Ú ) � Ú 
0/

Pushing through negation and the resulting equalities �µN ) � � ) � � ) I�N ) � Ú , we get

�4���]NX���HNl
Ð� ���]N ) �|N0
�-²���]N|') ��
�- � � Ú �	���]NH') @D
 � ���]N ) � Ú 
	
0�
which simplifies to

�4���]NX���HNl
Ð� ���]N ) �|N0
�-²���]N|') ��
�-²���]N�') @D
0/ (2)

The pairs that are not in � are all ��Ml�	M	
 where M�') � ; furthermore, � does not contain the ground terms different
from @ , and @ only if it is not the single term in the Herbrand universe (which is true). Thus,

b*c � � � ¤ 2:3 ¥�

consists of all clauses ����Ml�	M	
Á� , where M is any ground term different from � and @ . However, this are
precisely the clauses ��������NQ���HN0
R�²
 � where � is a solution for the constraint part of rule 2. As ;=< � � � 2�3 

amounts to rule 2, the desiderata are clearly satisfied. 1
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In general, arbitrary c-interpretations can not be rewritten as normal c-interpretations. This may be re-
spected by generalizing the elimination of a negative goal ��������WµNl
 from the body of clause

Ä
with respect

to 2�3 as follows. If the predicate ��N occurs in finitely many constrained atoms of 2:3 , then replace them by
an equivalent single constraint atom � N ��5 N 
R�f8 N as obvious and eliminate ��������W N 
 as usual. In case that
infinitely many constrained atoms �4N^��5kºÕ
t��8�º , Í ) Ì �D/D/D/A� Í �D/D/D/ occur in 2�3 , the elimination of �H�%����W�Nl

yields all clauses

e �98=-²��5�N ) �ÊN 
�-Î��5#N ) � ¿ N 
VitSgN -U/D/D/0-ÀS\O�-m�H�%����W � 
�-U/D/D/0-V�����:��W Y 
l/
where � ¿ N is ground and the set of formulas

dC� �|NQ��� ¿ N 
0� � 5�N à NA��8�N^��5�N à Nl
!åæ�HN^��5�Nl
	
0��/D/D/Q� � 5kº à º���8�º	��5kº à º¢
Rå·�HN^��5kº¢
	
0�t/D/D/ n � (3)

is satisfiable in K . The elimination á c�âäã � Ä � 2:3 
 of all negative literals is then an infinite collection of rules;
thus, the program ;Z< � � � 2�3 
 may contain infinitely many rules if 2:3 is an arbitrary c-interpretation.

In the remainder of this paper, we will focus for applications on finite c-interpretations, even if definitions
and results are formulated for general c-interpretations. Our main goal of computing the non-ground well-
founded/stable semantics, is only feasible in the finite case anyway. In particular, we can assume that all
c-interpretations are finite if the language has no function symbols, i.e., in case of function-free programs.
As discussed earlier, compact non-ground representations in his case are still highly relevant.

The next theorem states that ;=< � � � 2:3 
 meets the two desiderata required of the transformed program.

Theorem 1 Let � be a normal LP and 2:3 be a c-interpretation. Then, ;=< � � � 2:3 
 satisfies the desiderata
1 and 2, i.e., the following hold:

1. If

Ä
) e �ç8ki�S=N�-U/D/D/0-$S\O is a clause in ;=< � � � 2:3 
 and � is a solution of 8 , then all ground

instances of � e �TS=N�-U/D/D/0-$S\O:
 � are contained in
b*c � � � ¤ 2:3 ¥�
 .

2. If

Ä
is a clause in

b*c � � � ¤ 2�3 ¥�
 , then there is a clause

Ä ß
�$;=< � � � 2�3 
 of form e �98Ài©SgN%-U/D/D/0-$S\O

such that for some solution � of 8 ,

Ä
is a ground instance of � e �TSØN%-U¹D¹D¹l-VShO�
 � . 1

Proof. For part 1, let

Ä
) e �"8$i^S=N�-¾/D/D/0-$S\O be a clause from ;=< � � � 2:3 
 and let � be a solution

of 8 . Then, there exists a clause

Ä ß
of form

e �TSgN%-U¹D¹D¹l-$S\O*-o�H�%����WkNl
�-U¹D¹D¹l-m�H�%����W Y 

in � such that

Ä
) á c�âäã � Ä ß � 2�3 
 (resp.,

Ä
is among the clauses á c�âäã � Ä ß � 2:3 
 ). Consider the defin-

ition of 8 and let 8 ß
º ) �	��5Áº ) �Qº�
G- ��à º � 8:ºG��5kº à º¡
 � (resp., 8 ß

º ) �	��5kº ) �^º¢
G-���5kº ) � ¿º 
	
 � ). SinceK i ) 8 � , clearly K i ) r º . Hence, K i ) ��à º � 8:ºG��5kº à º¡
 � (resp., K i ) ��5kº ) � ¿º 
 � ). Consequently, the
constraint 8:º	��5kº à º¢
 � has no solution, and therefore the ground atom �|ºG���Qº¡
 � (which is an instance of SÀº )
is false in 2:3 (resp., the ground atom � º ��� º 
 � ) � º ��� ¿º 
 is false in 2�3 by (3)). Hence, every ground clause� e �fSoN�-¾¹D¹D¹0-$S\O�-V�����:��WkNl
�-U¹D¹D¹0-V��������W Y 
	
�è , where è is any ground substitution that extends � ,
has all its negative literals false in

¤ 2:3 ¥ . Therefore, the clause � e � S N -U¹D¹D¹l-$S O 
�è is in
b�c � � � ¤ 2:3 ¥�
 .

Consequently, every ground instance of the clause � e �TS�N%-U¹D¹D¹Ê-$S\O�
 � is in
b*c � � � ¤ 2�3 ¥�
 .

For part 2, let

Ä
be a clause in

b*c � � � 2�3 
 . Then there is a clause

Ä Å in � of the form e � S=N%-U¹D¹D¹-$S O -V��������W N 
�-¾¹D¹D¹l-V��������WZYÀ
 and a ground substitution è for the variable in

Ä Å such that W º è �� ¤ 2�3 ¥ ,



IFIG RR 9805 11

Í ) Ì �D/D/D/Q�	é and

Ä
) � e �TSgN%-U¹D¹D¹l-$S\O�
�è . Consider the clause

Ä¼ß
) e �98#i�SgN%-U/D/D/0-$S\O from the

collection á c�âäã � Ä ÅC� 2:3 
 , where the constraint 8 has form��5 ) ��
G-[8
ß
N -U¹D¹D¹l-[8

ß
Y (4)

and, by the elimination of �H�%����W�ºÕ
 , either 8 ß
º ) ��à º � 8:ºG��5kº à º¢
 , or 8 ß

º ) ��5kº ) M ¿º 
 where �%º	��� ¿º 
 ) WZº�è .
Since W º è �� ¤ 2:3 ¥ , we have K i ) ��5 º ) � º è%
Áå ��à º � 8 º ��5 º à º 
 or K i ) ��5 º ) � º è%
Øå ��5 º ) � ¿º 
 ,
respectively. By the form of 8 , the constraint 8Hè is clearly solvable; note that the free variables in 8Hè are5]5 N ¹D¹D¹ 5 O . Let ê be any solution of 8Hè , and let � be the restriction of è Çµê to the free variables in 8 .
Then, � is a solution of 8 , and clearly

Ä
is a ground instance of the clause � e �ÐSÁN�-U¹D¹D¹0-$S\O�
 � (apply��è Çkê 
¯ë � ). This proves part 2. 1

As ;=< � � � 2�3 
 is negation free, it follows that the operator ÂÔs is applicable; in particular, Âíì�î ~ s�� l®:�
has a least fixpoint w.r.t. ± . This is captured via the operator ï4ð�ñgs .

Definition 8 Let � be a normal logic program. The operator ï4ð�ñgs , which maps c-interpretations to c-
interpretations, is defined by

ï4ðØñhs � 2�3 
 )vu w�x � Â$ì�î ~ s�� l®�� 
0/ 1
As expected, ï4ð�ñ[s possesses all the nice properties of the ground r7s operator.

Lemma 1 Let � be a normal logic program, and let 2:3 be any c-interpretation. Then,
¤ ï4ðØñ=s � 2�3 
Õ¥ )r�s � ¤ 2�3 ¥�
 .

Proof. Theorem 1 implies that the ground instantiation of ;=< � � � 2:3 
 ¿ coincides with the programb*c � � � ¤ 2�3 ¥�
 . Let e be any ground atom. Then, e is true in ï�ðØñ s � 2:3 
 , iff e is true in u w�x � Âmì�î ~ s&� l®:� 
 , iffe is a logical consequence of ;=< � � � 2:3 
 ¿ , iff e is a logical consequence of
b�c � � � 2:3 
 , iff e���rRs � ¤ 2�3 ¥�
 .1

Theorem 2 Let � be a normal logic program. Then the following holds:

1. ï4ðØñhs is anti-monotone, i.e. 2:3 N ±¾2�37� implies that ï4ð�ñ[s � 2:3�� 
 ±Òï4ð�ñ\s � 2:3 N0
 .
2. If 2:3 N ³ 2�37� , then ï4ðØñ\s � 2:3 N 
 ³òï4ð�ñ\s � 2:37� 
 .
3. ï4ðØñ �s has a least and a greatest fixpoint. 1

Proof. Since r4s is anti-monotone [2], 2�3 N ±¾2�3*� implies by Lemma 1 that ï4ðØñ[s � 2�3*� 
 ³ór�s � ¤ 2:3�� ¥�
 ±r�s � ¤ 2�3 N	¥�
 ³(ï4ðØñhs � 2�3 Nl
 . This verifies part 1. Part 2 follows immediately from part 1. Since ï�ðØñ=s is
anti-monotone, ï4ðØñ �s is monotone. By the well-known Knaster-Tarski Theorem, every monotone operator
on a complete lattice has a least and greatest fixpoint. 1
3.1 A discussion of complexity issues

Before defining constrained non-ground stable models, we make some brief remarks on complexity issues.
Given � and 2�3 , ;=< � � � 2�3 
 can be computed in polynomial time. This is not possible for ï�ðØñ=s � 2:3 
 in

general, since u w�x � Â s 
 can be exponential even for a simple function-free program � . Example 6 contained
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an example of such a program. In that particular case, though, it was possible to use constraint simplification
in order to obtain a small (polynomial-sized) representative for u wGx � ÂUs 
 .

However, a small representative for u w�x � Âms 
 cannot always be constructed efficiently. The reason is that
deciding whether a ground atom �4����
 is derivable from � , may be reduced to deciding whether �4����
 is
in

¤ u wGx � Â�s 
Õ¥ , i.e., in
¤ 2�3 ¥ , which is in PSPACE in general (if the constraint part of the constrained atom������
R�f8 in 2�3 is known to be quantifier-free, then it is even in NP), as shown in the next theorem.

Furthermore, it is well-known in the folklore that the problem of deciding whether a ground atom follows
from a datalog program � is complete in EXPTIME (cf. [38]; for a background on complexity classes,
consult [15]). Thus, the computation of u wGx � Âís 
 must take more than polynomial time in general; otherwise,
we could solve an EXPTIME-complete problem in PSPACE (resp. in NP), which is strongly hypothesized
to be impossible. This remains valid even if a powerful oracle is available that solves PSPACE-complete
problems; indeed, an algorithm of this kind renders the problem in the complexity class ôhõ&ö0õQ÷�ø�ù , which
collapses with PSPACE. Therefore, by the results below, even if deciding truth of constrained atoms in c-
interpretations and deciding equivalence of c-interpretations are for free, the computation of u wGx � Â s 
 must
take more than polynomial time in general (under the assumptions of noncollapsing complexity classes).

Consider now the problem of deciding whether a constrained atom is true in a c-interpretation.
It is known that equational reasoning on K is decidable [5, 22]. As a consequence, it is decidable whether

a given constraint atom e (not necessarily ground) is true in a given finite c-interpretation 2�3 . However,
the complexity is tremendous; recent results on equational reasoning immediately imply that it is non-
elementary [39, 27],3 and thus among the hardest computable problems. Already in the function-free case,
the test is expensive, as follows from the next theorem.

Theorem 3 Suppose we assume that the language > is function-free. Given a constrained atom e )����5�
R�98 and a finite c-interpretation 2�3 , deciding whether e is true in 2�3 is

1. PSPACE-complete, if the language is the one generated by e and 2:3 , and ú § û Ý � -complete if in addi-
tion the quantifier depth in constraint parts is bounded by the constant üký þ ;

2. NP-complete, if e is a ground atom ����5�
��f5 ) � and all constraint parts in 2�3 are quantifier-free
(i.e., have implicit existential quantifiers);

3. solvable in polynomial time with a small (constant) number of NP-oracle calls and both NP and
coNP-hard, if the language is fixed4 and all constraint parts are existential. 1

Here ú s» are the problems solvable in coNP, if an oracle for problems in ? s»^Û¯N is available, where ? s N )ÿ ô , ? s� ) ÿ ô�� õ , etc (see [15] for definitions and discussion).
Proof. In order to test whether e is true in 2:3 , we have to check whether for every ground substitution �
for the free variables 5 à of 8 such that K i ) 8 � , there is a constrained atom ����5 ß 
�� 8 ß

in 2�3 such thatK i ) �	��5 ) 5 ß 
Rå ��à
ß 8 ß 
 � ;5 i.e., we have to check

K i ) � 5 à 5
ß
�:à

ß
/��	��5 ) 5

ß

G-[8�å98

ß

0/ (5)

3The results revise the belief in a previously announced result [17] that this problem is PSPACE-complete.
4Fixed language means here and in other complexity results that the predicates and constants are from fixed finite sets.
5Note that the free variables in the constraint part which appear not in the head have an implicit existential quantifier. If such

variables are excluded, the complexity decreases by one level to � ������ .
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It is well-known that evaluation of a given first-order formula on a given finite structure
	

is complete in
PSPACE (which is known as the combined complexity of first-order logic as a database query language
[38]), and PSPACE hard even if the signature contains only equality and the structure (i.e., the domain) is
fixed.Therefore, it follows immediately that our problem is complete in PSPACE if the language is the one
generated by e and 2�3 .

For the case where the quantifier depth is bounded by the constant ü#ýÒþ , we note that the formula in (5)
has no free variables and its quantifier depth is bounded by ü�
6Ü , where the leading quantifier is universal; it
is easy to show by induction on the quantifier depth that evaluating such a formula on K lies in ú sû Ý � , which
verifies the membership part. Moreover, since evaluating first-order sentences from the first-order prenex
class ú Åû

over equality, ükýÓÌ , on an even fixed finite structure
	

is complete for ú sû [38], it suffices for the
hardness part to observe that for any such sentence � from ú Åû Ý � , a predicate � and formulas 8 and 8 ß

of
quantifier depth ü can be easily constructed such that (5) amounts to

	 i ) � . This proves part 1.
For part 2, we observe that the formula in (5) obviously reduces to the purely existential first-order formula8 ß ¤ 5 ß

� �^¥ , for which the test is NP-complete.
To verify part 3, we note that if the language is fixed, the universal quantifiers � 5]5 ß

in (5) amount to a
constant number of ground substitutions � , for which, as by the hypothesis à and à

ß
are void, we have to

check K i ) � 8 �6� 8 ß
� ; the latter holds if and only if either K i ) � 8 � or K i ) 8 ß

� . Each such check is
possible with an NP oracle; hence, overall a constant number of NP oracle calls suffices. Clearly, for proper8 resp. 8

ß
, it follows that the problem is hard for coNP resp. NP. 1

In part 2 of the theorem, it is even possible to allow function symbols in the language, without increasing
the complexity. This follows from the (as far as we know unpublished) result that the existential fragment of
the theory of term algebras is NP-complete. This result and recent algorithms [40] can be exploited to decide
the truth a ground atom in a finite c-interpretation 2�3 in which no quantifiers occur (except for implicit
quantifiers) by a nondeterministic algorithm in polynomial time, even if function symbols are present. Thus,
compared to the function-free case, there is somewhat surprisingly no increase in complexity. A similar
remark applies on other results below.

The complexity of deciding equivalence of two c-interpretations is similar. Since truth of a constrained
atom in a c-interpretation is decidable, clearly also the complexity of deciding equivalence of two given
finite c-interpretations is decidable. The complexity increase over the former problem is negligible; in the
function-free case, the complexity is of the same order.

Theorem 4 Suppose the language is function-free, and 2�3 N , 2:3*� are two finite c-interpretations. Deciding
whether 2�3 N ³ 2�37� is

1. PSPACE-complete, if the language is the one generated by e and 2�3 , and ú § û Ý � -complete if in addi-
tion the quantifier depth in constraint parts is bounded by the constant ükýÎþ ; and

2. solvable in polynomial time with a constant number of NP-oracle calls and NP/coNP-hard, if the
language is fixed and all constraint parts are existential. 1

Proof. Clearly, 2�3 N ³È2�37� holds if and only if every constrained atom e in 2:3 N (resp., 2�3�� ) is true in2&� (resp., 2�3 N ). Hence this problem reduces to a linear number of tests ( i 2�3 NAi + i 2�37� i many) whether a
constrained atom e is true in a c-interpretation 2�3 . From Theorem 3 and the fact that PSPACE and ú sû Ý�N
are closed under conjunction, the membership part of 1. follows. For the membership part of 2., observe
that 2�3 N , 2�3 � can be easily normalized, and then only a constant number of tests as described remains.
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For the hardness parts, observe that in the hardness proofs in Theorem 3, the formula 8 in 1. and 2. resp.8 / 8
ß
in 3. can be chosen to be a tautology resp. a tautology/falsity, such that

¤ ����5�
R�T8|¥ ) d �����C
hiC� ��K n
resp.

¤ ����5�
°��8¯¥ ) d �����C
Ài×� �$K n /
¤ ����5�
°��8 ß ¥ ) d ������
\i�� �$K n . Thus, for 2:3 N ) ¤ ����5�
°��8¯¥ and2:3 � ) ¤ ����5�
R�98 ß ¥ , one of the inclusions 2:3 N ±²2:3 � or 2�3 � ±¾2�3 N is satisfied, and truth of ����5�
R�T8 in2:3�� amounts to 2:3 N ³ 2:3*� . 1

The results in Theorems 3–4 imply that important problems on c-interpretations are intractable even ifü ) þ , i.e., no quantifiers occur in constraint parts 8 ; here, however, still implicit existential quantifiers are
possible.

For the important case that all variables in the constraint part 8 are from the head, the complexities of
the problems are not that drastic. In particular, the complexity results in parts 2. and 3. are lowered to
polynomial time, i.e., the problems are efficiently solvable.

If we contrast the above complexity results with the constraint based transformation, we can see that
intuitively each level of negation in the original program � adds one quantifier alternation to constraint
parts and thus one level of complexity in the polynomial hierarchy; if the program is free of nonmonotonic
negation ����� , then the complexity is at the first level ( ú s N ); if there is one level of negation, it is at the
second ( ú s� ); and so on. In fact, this intuition is supported by the proof of Theorem 7 below.

Intuitively, a c-interpretation for representing a set of ground atoms can be more compact (i.e., requires less
space) if quantifiers and variables in the constraint parts that do not occur in the heads are allowed. On the
other hand, a more compact representation may need more time (measured in the size of the representation)
for eliciting the represented ground facts. Thus, constrained interpretations/models save space (and can
often represent infinite sets of ground atoms in a finite way) but it may be slower to answer queries when
compared to a completely instantiated ground stable model (though the latter may be infinite and hence such
a storage scheme would be un-implementable – or, even in the function-free case, it may require so much
storage so as to exhaust available memory). Section 6 analyses the trade-offs in different representations of
stable models.

4 Constrained Non-Ground Stable Models

In this section, we present the concept of non-ground stable model. It relies on the constraint-based trans-
formation of logic programs.

Definition 9 A c-interpretation 2�3 is a constrained non-ground (CNG) stable model of � if and only if2:3¾³ u wGx � Â ì�î ~ s&� l®:� 
 ) ï�ðØñ s � 2�3 
 . 1
Two simple examples of non-ground stable models are given below. Henceforth, we mean by “stable

models” the ground stable models of Gelfond and Lifschitz. The phrase “constrained non-ground stable
model” then refers to c-interpretations that are stable in the above sense.

Example 9 For the program of Example 1, the c-interpretation

2�3 ) d ���������Ø
!�9� ) �7� �&�������,
7�9�+') �*� �����#����
R�T� ) �t-$� ) �!����
 n
is a CNG-stable model. 1
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Example 10 Consider the program � :

������
"� ���������&����
 
0� �&���$
"� �����$
 Ë�� þ � �!� þ 
	
"��&����
"� �������������$
�
0� �&���$
"� �&����

This program has uncountably many ground stable models. Each of them is a CNG-stable model. The
c-interpretation 2:3 ) d �����$
À� , �&���$
À� , Ë:���#����
[� � ) þ -$� ) �!� þ 
 n , however, is a CNG-stable
model which is a compact representation of the ground stable model that makes all atoms for � and � true,
as well as Ë:� þ � �!� þ 
	
 . 1

The above example brings up an interesting question about representations: Given two different c-interpre-
tations 2�3 N and 2:3�� such that 2:3 N ³j2�37� , is it possible that one of these could be CNG-stable, while the
other is not? The following result, which follows from Theorem 2, shows that this cannot occur.

Proposition 3 Let � be a logic program and 2:3 N , 2�37� c-interpretations such that 2�3 N ³ò2�3*� . Then, 2:3 N
is a CNG-stable model of � iff 2�3�� is a CNG-stable model of � .

As a consequence, the notion of CNG-stable models generalizes the notion of a ground stable model.

Theorem 5 Let � be a normal logic program. Then the following holds.

1. If a is a ground stable model, then the set d ����5�
R�T5 ) �=i �4���C
 ��a n is a CNG-stable model.

2. If 2:3 is a CNG-stable model, then
¤ 2:3 ¥ is a ground stable model.

Proof. Part 1: Since a is a stable model, it holds a ) r7s � a 
 . By Lemma 1, we have r4s � a 
 )¤ ï4ð�ñ\s � 2:3 
Õ¥ for any 2:3 such that
¤ 2�3 ¥ ) a . Hence, 2:3 ³´ï4ðØñ¼s � 2�3 
 . This means a (seen as a CNG

interpretation) is a CNG stable model of � .
Part 2: If 2�3Ô³òï4ðØñ[s � 2:3 
 , then

¤ 2:3 ¥ ) ï4ð�ñ[s � 2�3 
 ) r�s � ¤ 2�3 ¥�
 by Lemma 1. Hence,
¤ 2:3 ¥ is a ground

stable model of � . 1
4.1 Constrained Non-Ground Well-Founded Semantics

In this section, we show how the operator ï4ð�ños may be used to define a non-ground version of the
well-founded semantics of � . Specifically, such a semantics can be characterized by u w�x � ï4ð�ñ �s 
 and� wGx � ï4ð�ñ �s 
 .

We proceed to define the constrained non-ground well-founded semantics (CNG-WFS) as follows.

Definition 10 Let e ) �����C
 be an atom (not necessarily ground) and let � be a normal logic program.
Then,

� Í 
 e is true according to the CNG-WFS of � , iff ����5�
!�f5 ) � is true in u w�x � ï4ðØñ �s 
 .
� Í¢Í 
 e is false according to the CNG-WFS of � , iff ����5�
R�T5 ) � is true in � wGx � ï�ðØñ �s 
 (i.e., each ground

atom e
ß

in
¤ ����5�
��½5 ) �D¥ is false in � w�x � ï4ð�ñ �s 
 ); equivalently, each constrained atom ����5�
*�½8

in � wGx � ï4ðØñ �s 
 with atom � in the head is true in the c-interpretation
¤ ����5�
�� ��à$� ��5 ) �C
Õ¥ , where5 à are the free variables of 5 ) � .
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� Í¢Í¢Í 
 e is unknown according to the CNG-WFS of � iff e is neither true nor false according to the CNG-
WFS of � . 1

Note that in the case where u wGx � ï4ð�ñ �s 
 is normal, truth of e according to CNG-WFS amounts to

K i ) � 5 à 5#N �:à ND/��	��5 ) �C
G-Ø��5 ) 5#Nl
!åf8%N0
0� (6)

where e is rewritten to ����5�
7� 5 ) � and 5 à are the free variables of 5 ) � , and ����5mN 
��½8%NQ��5�N^� à Nl

is the unique constrained atom in u w�x � ï�ðØñ �s 
 with � in the head (if no such atom exists, e is clearly not true
according to CNG-WFS). Similarly, falsity of e according to CNG-WFS amounts to

K i ) � 5 à 5 º à º /��	��5 ) �C
G-���5 ) 5 º 
!å � 8 º 
0� (7)

for all constraint atoms �4��56
7�T8&ºG��5kºG� à º¡
 in � w�x � ï4ð�ñ �s 
 with � in the head (if no such atom exists, thene is clearly false according to the CNG-WFS).

The above formulation possesses important implications for query processing from a normal logic pro-
gram � under the well-founded semantics. It suggests the following procedure. At compile-time, u w�x � ï4ðØñ �s 

and � wGx � ï4ð�ñ �s 
 (or � wGx � ï4ð�ñ �s 
 ) may be pre-computed and stored. This is in particular feasible if these c-
interpretations are finite (e.g., in case of a function-free program � ); they can be normalized and simplified
by equivalence preserving transformations. Then at run-time, when a query e ) ������
 is posed, equational
reasoning on K can be performed for checking which of the three conditions (i.e. true, false, unknown) is
satisfied.

The following theorem shows that this procedure is actually sound, by stating that the CNG-WFS is an
accurate non-ground representation of the well-founded semantics.

Theorem 6 Let � be a normal logic program. Then, a (possibly non-ground) atom e is true (resp. false) in
the CNG-WFS of � iff all ground instances of e are true (resp. false) in the ground WFS of � . 1
Proof. Let 2�3 be any c-interpretation. An easy induction on Í using Lemma 1 shows that for every Í7ýÓÌ ,¤ ï�ðØñ º � 2�3 
Õ¥ ) r ºs � ¤ 2�3 ¥�
 .

As a consequence,
¤ u wGx � ï4ðØñ �s 
Õ¥ )9u wGx � r �s 
 . Therefore, e is true according to the CNG well-founded

semantics of � , iff each ground instance of e is true in u w�x � ï�ðØñ �s 
 , iff each ground instance of e is true
according to the well-founded semantics of � .

Similarly, it follows that
¤ � wGx � ï4ðØñ �s 
Õ¥ ) � wGx � r �s 
 . Note that � w�x � ï4ð�ñ �s 
 is the fixpoint of the possibly

transfinite sequence  Å )�� , �� ) ï�ðØñ �s � Ï���� �  � 
 , for every ordinal ���Îþ , where �Î) d ����5�
*�½i0� �> n is the c-interpretation equivalent to the Herbrand base.
Therefore, an atom e of form �����C
 is false according to the CNG well-founded semantics of � , iff �4��56
!�5 ) � is true in � w�x � ï4ð�ñ �s 
 , iff each ground atom in

¤ ����5�
°�Ð5 ) �^¥ is false in � w�x � ï4ð�ñ �s 
 , iff for each
ground instance e

ß
of e , e

ß
��#� w�x � r �s 
 . 1

The following theorem tells us the complexity of answering a query using the CNG-WFS model of a
function-free logic program. The results are similar to the ones for deciding truth of a constraint atom in
a c-interpretation (Theorem 3). However, there is a small subtlety which must not be overlooked. While
in Theorem 3 the c-interpretation is arbitrary, in the present theorem it must represent u wGx � ï4ðØñ �s 
 resp.� w�x � ï�ðØñ �s 
 of some logic program � . In fact, we assume in the hardness parts that u wGx � ï4ð�ñ �s 
 and� w�x � ï�ðØñ �s 
 are given by representatives that can be obtained by following the standard fixpoint construc-
tion. Thus, in effect, this result strengthens Theorem 3.
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Theorem 7 Suppose we are given as input u wGx � ï4ð�ñ �s 
 , � wGx � ï4ðØñ �s 
 for a function-free program � and an
atom e (not necessarily ground). Then, determining whether e is true (resp., false) in the CNG-WFS of �
is

1. PSPACE-complete, if the language > is given by � ;

2. NP-complete (resp., coNP-complete), if e is ground and all constraint parts in u wGx � ï4ðØñ �s 
 (resp., in� wGx � ï4ðØñ �s 
 ) are existential, regardless of a fixed language > ;

3. solvable in polynomial time with constantly many NP-oracle calls and both NP and coNP-hard, if the
language > is fixed and all constraint parts in u w�x � ï4ðØñ �s 
 (resp., in � wGx � ï4ð�ñ �s 
 ) are existential.

Proof. See appendix. 1
As before, if all variables in the constraint parts are from the variables in the head, then the complexity

decreases. In particular, the problems 2. and 3. are polynomial in this case. Thus, if we represent u wGx � ï4ð�ñ �s 

and � wGx � ï4ðØñ �s 
 by c-interpretations of this form (which are computed in the precompilation phase), all
ground queries in CNG-WFS can be answered efficiently. As in the case of CNG-stable models, using this
form we can gain an exponential reduction in the space needed for storing the well-founded model while we
stay within the same order of time for query answering.

We remark that we get the same complexity results for determining truth resp. falsity of an atom in a given
CNG stable model, if we assume that CNG stable models are computed by first computing the CNG-well-
founded semantics, i.e., u w�x � ï4ð�ñ �s 
 and � w�x � ï�ðØñ �s 
 and then extending this “partial” model if needed to a
“total” CNG stable model of the program. This is an easy consequence of the fact that the program of the
reduction in the proof of the previous theorem is stratified, and hence its well-founded model coincides with
its unique total stable model, which means that u wGx � ï4ð�ñ �s 
 is a CNG-stable model.

5 Algorithms

In this section, we present an algorithm for computing the CNG-stable models of a normal logic program.
The algorithm, which builds on the CNG well-founded semantics, is effective for function-free programs.
It is a generalization of an algorithm for computing the stable models of a ground logic program [34].
However, this generalization is not immediate, and is more complex than the algorithm for the ground case.
Additional machinery is needed to make it work.

5.1 Computing the CNG Well-Founded Semantics

In this section, we present a procedure that has the following steps:

1. Pruned Non-Ground Fitting Semantics Computation: It is well known that Fitting’s Kripke-Kleene se-
mantics for logic programs [11] approximates the well-founded semantics (cf. [34]). In our first step, we
use a non-ground version �Js of Fitting’s operator [11] that iteratively computes not only an interpreta-
tion, but also simplifies the program � . The least fixpoint of this operator, u wGx � � s 
 ) �������:�� !����
 satisfies¤ �����^¥H� ¤ u w�x � r#"$ �s 
Õ¥ and

¤  !���A¥|� ¤ � w�x � r#"$ �s 
Õ¥ , i.e., approximates the CNG-WFS.

2. After that, we are left with a set of rules that only involve atoms which are “unknown” according to
Fitting’s semantics. We will then compute the alternating fixpoint associated with these atoms, again in an
incremental way; as in the preceding step, the program will continue to be pruned.
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3. The end result of the above two phases has two parts – the first part is the well-founded semantics, while
the second is a logic program all of whose atoms evaluate to unknown according to the WFS. This latter
logic program will later be used in Section 5.2 to compute CNG-stable models.

The above reasoning is captured by the operator �\s defined below, which maps pairs ���Á�� Á
 of normal c-
interpretations to pairs of normal c-interpretations. A pair ���Á�� Ø
 of c-interpretations is said to be consistent
iff

¤ �¼¥ p ¤  Z¥ )æq . Intuitively, a consistent ���Ø�� Á
 pair represents a 3-valued interpretation – atoms that
are in

¤ �o¥ are true, while those in
¤  Z¥ are false. Recall that Fitting’s operator [11] assigns on a 3-valued

interpretation a true to a ground atom e if there is some rule whose head is e and whose body is true in a ,
false if every rule with e in the head has a false body in a , and unknown otherwise.

In what follows, let %×�¡� � � ���Æ
 denote the collection of all clauses in program � with predicate � in the
head.

Definition 11 Let � be any constraint logic program. We associate with � an operator �¼s that maps pairs���Ø�� Á
 of normal c-interpretations into pairs ��� ß �� ß 
 of normal c-interpretations as follows:
�
ß

= d ����5�
R�& Ø-[8 i the clause ����5�
R�' ÓiG- ûº)(�N �^ºG���^º¢
�- Y»*( û Ý�N �H�%����� »Ê���l»A
	
 is in � ,8 has the form 8 ) - Y+ (�N �	��5 + ) � + 
�-, + 
 , and� º ��� º 
!�- º � �Á� Ì¼±²ÍR± ü , and � » ��� » 
R�- » �  6� ü�.0/�± é n ,

i.e., for each clause in � with � in the head, we plug in for the positive (resp. negative) literals in the body
the constraints under which they are true (resp., false), and, as usual, normalize the result;
 

ß
= d ����5�
	�98�N0-U¹D¹D¹0-[8�1Ôi %×��� � � ���Æ
 ) d

Ä NX�D/D/D/A� Ä 1 n and each clause

Ä º has the form
Ä º ��5 º � à º ��2 º 
 ) ����5 º 
R�- º ��5 º � à º 
¯iG- û

+ (�N � + ��� + 
�- Y+ ( û Ý�N ��������� + ��� + 
	

where 2 º variables in the body of

Ä º not from 5 º à º , and8 º ) ¤ ��à º 2 º /�� �  º �43 Yº5(�N � 5 +768+ /��	��� + ) 5 + 
G-#9 + ��5 + � 6:+ 
	
	
Õ¥¢�
where � + ��5 + 
!�;9 + ��5 + � 6:+ 
 �  6� ÌÆ±�<E±kü , and � + ��5 + 
!�=9 + ��5 + � 68+ 
 � �Ø� ü>.�<Æ± é n ,

i.e., for each predicate � , a single constraint atom exists whose body is the conjunction of constraints8 N �D/D/D/^�	8 1 , one for each clause in � with � in the head; 8 º says that for 5 , either  º must be unsatis-
fiable, or regardless of the instantiation of the variables in à º?2!º , some literal in the body must be false.1

The c-interpretations �
ß

and  
ß

can be simplified by taking into account solvability conditions on  Ø-[8
and 8�N -U¹D¹D¹X-[8�1 , respectively, and by applying equivalence preserving transformations (pushing through
equalities, etc). For simplicity, we refrain from incorporating such simplifications in the definition.

We remark that non-ground versions of � s have been extensively used in work on constructive negation,
e.g. [32, 33].

We extend the order ± on c-interpretations to pairs ���Á�� Á
 of c-interpretations componentwise, i.e.,��� N �� N 
 ± ��� � �� � 
 iff � N ± � � and  N ±  � ; thus, ± is a complete partial order on the pairs ���Á�� Á
 .
One can check that �°s , is indeed a non-ground version of Fitting’s operator. If the operator is properly

extended to arbitrary c-interpretations (e.g., by resorting to ground interpretations), then it is monotonic
w.r.t. ± and thus has a least fixed-point, u wGx � �hs 
 ) �������×�� !���Ê
 . Note that in case of function-free programs,
we can always operate with normal (finite) c-interpretations and in particular, both �@��� and  !��� are normal
(finite) c-interpretations.
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Example 11 Consider the following logic program � :

�����&
Ð� / � Ì 
�����$
Ð� �����,
�-V���������&�������Ø
	
0/ � Ü 
����������
Ð� ���������4����
	
0/ �BAÊ

The powers � º s � q � q 
 ) ����º��� Jº¢
 are as follows (we simplify c-interpretations for readability):

� Ås �C�&Å )  ÞÅ ).q .

� Ns �C�EN ³Ód �����$
7�9� ) �����&���#����
R� �X�����D� n ;

The atom for clause � Ì 
 according to y ß
has a solvable constraint ( � ) � ), while the atoms for � Ü 


and �BAÊ
 have not.
 ÀN ³vd ������
*� �X�����^� ���&���#����
!� �D�����D� n ³  ÞÅ ;
since � Å )  Å )�q , the clause � Ü 
 contributes an unsatisfiable conjunct in the constraint of the
constrained atom for predicate � according to  

ß
, which can be thus simplified to false. Similarly,

the constraint atom for predicate � has an unsatisfiable constraint (literally, �&�������,
�� �°���0�%�o�� �
ß / ¤ ��� ß

) �$
G- �X�����^� ¥ ).

� �s �C� �Þ³Ód �����$
7�9� ) �����&���#����
R� �X�����D� n ³ �EN ;
clause � Ì 
 contributes the same solvable constraint as in ��N , while � Ü 
 and �BAÊ
 due to  ¼N ³  ÞÅ ³ q
only contribute unsatisfiable constraints.
 �Þ³vd ������
*� �X�����^� ���&���#����
!�9� ) � n ;

Since no ground atom of � is true in  gN and no ground atom of � is true in �|N , the clause � Ü 
 contributes
an unsolvable conjunct in the constraint atom for � (literally, � �*/�� �t���l���°��� ��N ¤ ���]N ) �,
G- �X�����^� ¥ �� � � ��� � ¤ ��� � ) �$
G-���� � ) �Z
G- �X�����D� ¥ ), and thus the constraint in the body of the constraint atom for� in  � simplifies to false.

Since ������
 is true in �¯N for � ) � , the constraint in the constraint atom for � in  � amounts to� ) � (literally, it is �t���0�%�t��� ��N ¤ ���]N ) ��
G-Ø��� ) ��
Õ¥ ).
� Ús �C� Ú ³Ód �����$
7�9� ) �����&���#����
R� �X�����D� n ³ � � ;

here, clause � Ü 
 contributes besides � Ì 
 a solvable constraint for � , which amounts to � ) � , and thus
to the same as the constraint from � Ì 
 . The constraint for � is as in � � false, as  ¼N and  � coincide on
predicate � .
 Ú ³vd ������
*� �X�����^� ���&���#����
!�9� ) � n ³  � ;

indeed, the relevant parts of  � and � � for the constraint atoms of � and � coincide with those of  ZN
and � N , respectively.

Thus, ��� Ú �� Ú 
 ³ ��� � �� � 
 , and hence u wGx � �°s 
 ) ��� Ú �� Ú 
 is the least fixpoint of the operator �Þs .

If we assume that the language consists of the constants � and @ , this means that ������
 is true and �&���%���&

and �&���%� @D
 are false, while the value of the other ground atoms is unknown. This is precisely the result of
Fitting’s semantics applied to the program � . 1
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As mentioned above, by unraveling the definitions it can be checked that �[s is a non-ground version of
Fittings operator. Since Fitting’s semantics approximates the ground well-founded semantics (see e.g. [34]),
and since u wGx � ï4ðØñ �s 
 and � wGx � ï4ðØñ �s 
 are non-ground representations for the atoms which are true and
false in the ground well-founded semantics of � (Theorem 6), respectively, we obtain the following lemma.

Lemma 2 Let � be any normal logic program. Then,

� Í 
 ¤ �����^¥�� ¤ u wGx � r#"$ �s 
Õ¥ , and

� Í¢Í 
 ¤  !���A¥H� ¤ � wGx � r#"$ �s 
Õ¥ . 1
Using the non-ground version of Fitting’s operator, the constrained non-ground well-founded semantics

may now be computed in the following way.

ALGORITHM CNGWFS � � 

Input: A normal logic program � .
Output: � ,  such that

¤ �¼¥ ) ¤ u wGx � ï4ð�ñ �s 
Õ¥ , ¤  Z¥ ) ¤ � wGx � ï4ð�ñ �s 
P¥ , simplification �=¿ of program � .

Step 1. Compute u w�x � �°s 
 ) ���������� !���Ê
 and set ����ÅC�� ÞÅQ
 ) �������×�� !���Ê
 .
Step 2. Í ) þ ; � Å ) � .

Step 3. For each rule D of the form ����5�
R�98�ilSFEHGJI in � º , do the following:

1. If ����5µN 
6� 8%NQ��5�N^� à Nl
 � ��º and K i )LK�M#NOMFPRQHN�PTSUSVMXWYMFP[Z?\^]_SVMa`?NbZ�cd]ePTSVMOPf`?N�P[Z , then
eliminate D from � º .

2. If ����5 � 
�� 8 � ��5 � � à � 
 �  º and K i )gK�MhNiMij*QHNOjkSUSVMlWmMhj�Zn\^]_SoMb`UN�Z#cp]qjkSVMhjk`?NOj*ZUZ , then
eliminate D from � º .

3. Otherwise, replace 8 in D by
]r\�SUSVMsWiMFP[Z?\�K�NFP�t uv]ePRZ?\�S?SoMsWiMhjfZn\�K�Nijftwuv]qj*Z .
Let � ºäÝ�N denote the resulting program.

Step 4.  JºäÝ�N )  Jº Çd ����5�
7� ��à�� 8���5�� à 
!i����5�
!�T8���5�� à 
 �µï4ðØñhsqx ��� ����º¡
 n Çd ����5�
7� i%� does not occur in ï4ð�ñ sqx ��� ��� º 
 n and normalize  ÞºäÝ�N .
Step 5. ��ºäÝ�N ) ��º Çï4ð�ñ[sqx ��� � d ����5�
R� ��à$� 8*��5µ� à 
!i����5�
R�98���5�� à 
 �  º n Çd ����5�
R�òi0� occurs not in  Þº n 
 and normalize � ºäÝ�N .
Step 6. If

¤  Jº�¥ ) ¤  JºäÝ�N	¥ and
¤ �&º�¥ ) ¤ ��ºäÝ�NG¥ , then halt and return ����º��� JºG� � ºäÝ�Nl
 . Otherwise, Í � ) Íy
vÌ .

Goto Step 3. 1
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We note that this procedure does not terminate on every input. In particular, Step 1. may involve an infinite
computation. However, it will always terminate if the program � is function-free. As we focus on this case,
the algorithm is thus effective for our purposes.

Example 12 Reconsider the logic program � from Example 11:�����&
Ð� � � Ì 
�����$
Ð� �����,
�-V���������&�������Ø
	
0� � Ü 
����������
Ð� ���������4����
	
0/ �BAÊ

Let us assume that the language > has two constants �%� @ ( @ could be provided e.g. by an additional dummy
rule, which we avoid for simplicity).

The working of the algorithm CNGWFS is now as follows (some of the constraints are simplified in the
presentation below):

1. In Step 1 of the algorithm, ���z���×�� !����
 are computed to be:

����� ) d �����$
7�9� ) ���#�&���#����
!� �D�����D� nJ{ !��� ) d �����$
7� �D�����D� �#�&�������Z
R�T� ) � n /
We set ��Å ) ����� and  ÞÅ )  !��� and � Å ) � .

2. Rule (1): Part (1) of Step 3 applies and we eliminate rule (1) from � .

3. Rule (2): Part (3) of Step 3 applies, and the rule is replaced by the rule

������
7�9�(') �ZiÕ�����,
G-¼���������&�������Ø
	
0/
4. Rule (3): Again Part (3) of Step 3 applies, and the rule is replaced by the new rule:

�&���#����
�� � ') �,iX�H�%����������
	
0/
5. In Step 4,  ¼N is set to  hÅ .
6. In Step 5, �ÆN is set to ��Å .
7. The algorithm halts in Step 6 as �|N ) �&Å and  ¼N )  ÞÅ . It returns: �ÆN ) d �����$
Z� � ) � n and ÀN ) d ���������Ø
!�9� ) � n and � N contains������
7� � ') �,iP�����,
�-V�H�%�����&���#����
	
0�Ð� Ü

ß 
�&�������,
7� � ') �,iD�H�%���������$
	
 . �BA ß 

1

The following theorem states the correctness of the algorithm for the case function-free programs. We
omit the proof of this result, which can be proceed along the lines of the the proof of the similar algorithm
in the ground case, which can be found in [34].

Theorem 8 Let � be any function-free logic program. Then, the call of CNGWFS � � 
 effectively computes
a triple ���Á�� ]� � ¿ 
 such that

¤ �¼¥ ) ¤ u wGx � ï4ðØñ �s 
Õ¥ , ¤  =¥ ) ¤ � wGx � ï4ðØñ �s 
Õ¥ , and the programs � ¿ Ç y and �
have the same ground stable models. 1
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5.2 Computing constrained non-ground stable models

In this section, we describe how to compute all stable models of a normal logic program using the con-
straint based approach. The basic idea is to first compute the well-founded semantics using the CNGWFS
algorithm given above. This algorithm then outputs a triple ���Eº��� Jº�� � ºäÝ�NX
 . All atoms in

¤ ��º�¥ (resp.
¤  Þºz¥ ) are

true (resp. false) in all stable models of � . We proceed by looking at atoms that are not in
¤ � º ¥ Ç ¤  º ¥ and

adopt a branch and bound procedure that searches an (abstract) tree called |�| -tree � � 
 . Prior to describing
|�| -tree � � 
 , we need some definitions.

Definition 12 Let ���Ø�� Á
 be a consistent pair of c-interpretations. Then the unknown set } �zyÞ� r 
 generated
by �zyÞ� r 
 is

} �zyÞ� r 
 ) d �4��56
*���5 ) 5�Nl
�- ��à N � 8�N^��5�N à Nl
�-²��5 ) 5 � 
�- ��à6�^� 8 � ��5 �Xà6� 
Ôi����5�N0
R�98�N � �Ø�%����5 � 
R�T8 �\�  n /
Example 13 Suppose we return to the program � of Example 12 and consider the sets �4ND�� ÀN returned as a
consequence of the CNGWFS algorithm. In that case, after simplification, we have } ���4N^�� ÀNl
 = d ������
t��(') � { ����������
!�9�(') � n / 1

We next define the concept of modification of a program by an assumption

Ä
e ) ����5�
R�98 . Intuitively,

if

Ä
e is assumed true, then in the ground instantiation of the program � , all literals involving a ground

atom �4���C
 such that �4���C
 is contained in
¤ Ä e ¥ are eliminated from rule bodies, by deleting every positive

occurrence of such a literal and by replacing every negative occurrence with false. The modification by
assuming

Ä
e is false is symmetric.

Definition 13 Let

Ä
) e �' Ói�SFEHGJI be a clause, and let �4��56
7�98*��5 à 
 be a constraint atom. Then the

modification of

Ä
assuming ����5�
t� 8 is true is the following set of clauses ~ Ý � Ä ������5�
°� 8�
 . Suppose

the positive atoms in SFEHGJI involving � are e º ) �4��� º 
 , Í ) Ì �D/D/D/A�	é , and the negative atoms involving �
are S°» ) �H�%��������� ß» 
	
 , / ) Ì �D/D/D/A� £ . Set ~ ÝÅ ) d

Ä n , and execute the following two steps:

Step 1. For each positive �����Cº¡
 , Í ) Ì �D/D/D/Q�	é construct ~ ÝºäÝ�N from ~ Ýº by adding for each clause

Ä ß
)e

ß �' 
ß iXSFEHGJI ß in ~ Ýº the clause

e
ß
�- 

ß
-²���^º ) 5�
�-�8µiXSFEHGJI

ß
ë������^º¢
0�

where SFEHGJI ß ëH�4���^º¡
 is SOEHGeI ß with �����Qº¡
 removed;

Step 2. For each negative literal �����:������� ß» 
	
 , / ) Ì �D/D/D/Q� £ construct ~ ÝY Ý&» from ~ ÝY Ý&»DÛ¯N by replacing
the constraint of every clause

Äoß
) e

ß �  
ß i�SFEHGJI ß occurring in ~ ÝY Ý&»^Û¯N with the constraint 

ß - � 5 à ¤ ��� ß» ) 5�
>� � 8*��5µ� à 
Õ¥ .
Then, let ~ Ý � Ä ������5�
7�98�
 ) ~ ÝY ÝEO .
Let � be any normal logic program. Then, the modification of � assuming ����5�
R�T8 is true, denoted by

~ Ý � � ������5�
R�T84
 , is

~ Ý � � ������5�
R�T8�
 ) ¦Ñ ¬�s ~
Ý � Ä ������5�
7�98�
0/

The notion of modification of a clause

Ä
(resp. program � ) by assuming �4��56
o�ç8 is false, denoted by

~ Û � Ä ������5�
7�984
 (resp. ~ Û � � ������5�
7�984
 ), is symmetric. 1
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Remark. A more restrict definition of the modification of a clause, which strengthens the constraints of the
clauses from ~ Ýº included in ~ Ýº Ý�N , is possible, but omitted for simplicity.

Example 14 Suppose � is as discussed in Examples 12 and 13. Then the modification of clause (2’) by
assuming the constrained atom

Ä
e ) ����� ß 
R�9� ß ') � to be true yields

~ Ý � Ü
ß � Ä e 
 ) d �����$
R�9� ') �ZiÕ�4���Z
�-V���������&���#����
	
0������$
R�9� ') ��-Î��� ) � ß 
�-²��� ß ') �&
RiX���������&���#���Ø
	
 n /

for the clause �BA ß 
 ) ����������
R�9�+') �ZiD�����:��������
	
 , we obtain

~ Ý �BA ß � Ä e 
 ) d �&���#���Ø
!�9� ') �t- � �
ß /���� ) � ß

� � ��� ß ') ��
	
7iX�H�%����������
	
 n
) d n /

1
Definition 14 A constraint splitting strategy, ��� , is any mapping from satisfiable constrained atoms to pairs
of satisfiable constrained atoms such that

��� ���4��56
��T84
 ) ������5�
R�T8 N ������5�
R�98 � 
 ,
where 8�N ) 8 � ) 8 if

¤ e � 8¯¥ contains a single ground atom, and otherwise  N ) ¤ ����5�
=� 8�N	¥ and
À� ) ¤ �4��56
7�98 � ¥ satisfy � Í 
  N p ¼� ).q , and � Í¢Í 
  N Ç4¼� ) ¤ ����5�
R�98¯¥ . 1

In general, there are many different constraint splitting strategies that may be applied. Two examples are
(others exist, but are not discussed here).

1. If e �T8 is a constraint, and 8 ) 8 N � 8 � where 8 N and 8 � are satisfiable but incomparable, then this
constrained atom may be split into: e �98 � and e �98�N�- � 8 � .

2. If e �98 is a satisfiable constraint such that
¤ e �98|¥ contains more than one atom, and � is a solution

of 8 , then, in abuse of notation, e �T8g- �4� and e � � represents a splitting.

Example 15 Let � be the program of Example 13, and consider the constrained atom e ) ������
R�f�+') �
contained in } ���¯NX�� ÀNl
 . We notice that � ) d � ) @ n is the only solution of the constraint �æ') � over the
Herbrand universe consisting just of the constants ��� @ . Thus, any ��� returns � e � e 
 . If there were additional
constants, one possible way to split e , following the second strategy from above, is into the following two
constraints:������
R�T� ) @ and �����$
R�9�(') ��-$�(') @ . 1
Definition 15 A split selection strategy,

ÃRÃ7Ã
is a mapping from the natural numbers to constraint splitting

strategies, (i.e.
ÃRÃRÃ � Í 
 is a constraint splitting strategy) which satisfies the following property: Supposee �T8 is any constrained atom, where 8 is solvable. Then, there exists an integer Í , such that

ÃRÃ7Ã � Í 
X� e �8�
 ) � e �f8%ND� e �98 � 
 , and
¤ e �98�NG¥ contains a single ground atom; such an Í is called basic for e �98 .1

What a split selection strategy does is to look at a counter Í and choose a constraint splitting strategy.
However, split selection strategies are “converging” in the sense that eventually, a single ground atom is
chosen. Notice that if we choose the second splitting strategy from above, then Í ) Ì can be basic for every
proper e �T8 .
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Definition 16 Associated with any logic program � , and any split selection strategy
Ã7ÃRÃ

, is a tree, called
|�| -tree � � � ÃRÃ7Ã 
 constructively defined as follows:

Each node " is labeled with a quadruple � � �R�Á�� 6� } 
 , where � is a program, y and r are c-interpretations
describing true and false atoms, respectively, and � ) } ���Á�� Ø
 is the unknown set generated by them. "
is a success node if

¤ �¼¥ Ç ¤  =¥ ) S�� , is a failure node if
¤ �o¥ p ¤  Z¥Ê')6q , and an open node otherwise.

1. The root " Å of |�| -tree � � 
 is labeled with � � Å �R� Å �� Å � � Å 
 where ��� Å �� Å � � Å 
 is the result of the call
CNGWFS � � 
 and � Å ) } ���&Å��� ÞÅQ
 .

2. For each open node " ) � �y� �R� � �� � � �>� 
 , nondeterministically pick a constrained atom e �T8 in ��� .
The node " has children, " NX� "=� � . . . as follows:

Each child " º has label � � ºG�R��º��� JºG� � º¢
 , where � º is a program and �&ºÕ�� Jº , and � º are c-interpretations
obtained as follows. Let � Ýº be the program �y� modified by adopting the assumption � º (described below)
and augmented by � � , and let ��� ¿º �� ¿º � � ¿º 
 be the result of

Ä
",gÂÓr Ã � � Ýº 
 . Then,� � º ) �o¿º ;�Y� º ) � � Ç � ¿º ;�0 º )  � Ç  ¿º ;� � º ) } ��� º �� º 
 .

The assumptions � º are as follows:� � N is that e �98 is false;� �k� is that e �98 is true;� for odd integers Í ) Ü�ü�
¾Ì#�ÎÜ , � º is that e �98 û is false, where 8 û appears in
Ã7ÃRÃ � ü 
X� e �98�
 )� e �98 û � e �- û 
 , and� for even integers Í ) Ü�ü�
$Ü�� Ü , � º is that e �98 û is true, where 8 û appears in
Ã7ÃRÃ � ü 
X� e �98�
 )� e �98 û � e �- û 
 . 1

Note that this tree is potentially infinitely branching. However, due to the assumption on the split selec-
tion strategy, in the actual procedure for computing the non-ground stable models, finite branching suffices
(exploiting that at some point,

ÃRÃRÃ � ü 
X� e �984
 ) must yield a single ground atom).
Before proceeding any further, let us take a quick example to see what a |�| -tree may look like.

Example 16 Suppose we return to program � of Examples 12–15. For the Herbrand universe of two
constants � and @ , � has two ground stable models: � N ) d �����&
0�����¡@A���&
0�×�&�¡@A� @X
 n and �Ô� ) d �����&
0�����¡@D
 n .

The root of any |�| -tree � � � ÃRÃ7Ã 
 is labeled with the quadruple " N ) � � N^�R�EN^�� ÀN^� � Nl
 where � N^�R�END�� ÀN
are as described in the preceding examples, and � N ) } ���END�� ÀNX
 as described in Example 13. Suppose we
pick the constraint ������
7�9�(') � from � N and generate the children "

ß
N � "

ß
� �D/D/D/ of " N . The first child, "

ß
N ,

is generated according to the assumption that ����� ß 
J�Ð� ß ') � is false. After simplifications, the program� ÝN is: �4����
"� �(') �t-$� ) �,iÕ�����Z
�-m�H�%�����&���#���Ø
	
0/�&���#����
Ð� �(') �,iX�������������$
	
0/�&���#����
Ð� �(') ��/�4����
"� � ) ��/
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(The last clause is from �¯N ).
Ä
",gÂÓr Ã � � ÝN 
 returns � �g¿N �R� ¿� �� ¿� 
 where � ¿N ) d ������
µ� � ) ����&���#����
7�½��') � n and  ¿N ) d �4����
��f�¶') �%���&���#����
7�½� ) � n . Notice that �

ß
N ) � ¿N ,  

ß
N )  ¿N , and

�
ß
N )òq ; hence, "

ß
N is a success node.

The second child, "
ß
� , is generated by assuming ����� ß 
h�"� ') � is true. After simplifications, program� Ý� is: �4����
"� �+') �t- iP�����,
�-V���������&�������,
	
0/�4����
"� �+') �t-$� ') �Zi^�H�%�����&���#����
	
0/�4����
"� � ) ��/

Applying CNGWFS � � Ý� 
 , we get � � ) d �4����
,� MP�H�ÆÉ n and  � ) d �&���#����
Z� M��H�EÉ n . Also "
ß
� is a

success node. 1
Our basic algorithm builds the tree |�| -tree � � � ÃRÃ7Ã 
 , and uses the following simple operation children � " �Ä
e � ü 
 for generating the children of a node " :

children � " � Ä e � ü 
 : Given a node " , a constrained atom

Ä
e ) e � 8 , and and integer ü.ý þ , the

children " � û Ý�N and " � û Ý � of the node " as above are generated and returned. Moreover, a flag basic
is set to true if

¤ Ä e ¥ contains a single atom or ü is basic for

Ä
e .

Notice that the split selection strategy
ÃRÃRÃ

is here implicit, and that children must report basic true after
a finite number of calls children � " � Ä e � ü 
 , ü ) þ � Ì �D/D/D/
An algorithm for stable model computation will now work as follows:

ALGORITHM CNGSTABLE � � 
 :
Input: A logic program � .
Output: Collection

Ã
of all6 CNG-stable models of � .

Step 1. Construct the root " Å ) � � Å��R�&ÅC�� ÞÅ�� � Å^
 .
If � Å )òq , then set

Ã ) � Å and halt; otherwise, initialize list ���^������� to " Å .
Step 2. Set

Ã ).q . (* Solution collection is now empty *)

Step 3. Pick a node " ) � ��� �R� � �� � � �>� 
 in list Active;

Step 4. if " has no pair <k� ) � Ä e � ü 
 of an constrained atom

Ä
e and an integer ü attached, then setü ) þ , select a constrained atom

Ä
e ) ����5�
[�8 from � � , and attach < � ) � Ä e � ü 
 to " , else

update ü to ü#
óÌ .

Step 5. Execute children � " � Ä e � ü 
 , and let " N ) � � N^�R�EN^�� ÀN^� � Nl
 and "=� ) � ��� �R� � �� � � �*� 
 be the
nodes that are returned.

If basic = true, then remove " from list Active.

Step 6. For " » where / ) Ì � Ü do the following:

1. If
¤ � » ¥¢� Ç ¤  » ¥ ) S � and

¤ � » ¥ p ¤  » ¥ ).q , then label " » as a success node and insert � » into
Ã

.

6The algorithm may be easily modified to compute a single CNG-stable model of ` , instead of all by halting the first time an
insertion into � is made.
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2. If
¤ �×»l¥ p ¤  *»D¥Ê')6q , then label " » as a failure node.

3. If neither of the previous two cases applies, then " » is labeled open and is added to Active.

Step 7. If ���^������� ')6q , then goto Step 3. 1
In the above algorithm, Steps 3 and 4 are nondeterministic, and various heuristics may be used to choose

" and ����5�
R�T8 .
For Step 3, we might use e.g. a depth-first or breadth-first strategy, or based on some weighting function,

a greedy strategy; for Step 4, one could implement exhaustion of a predicate �7N , followed by exhaustion of� � etc, where the order of processing is determined by some criterion, possibly based on a heuristics for the
“intricacy” of a predicate estimated from the structure of the constraints in the c-interpretations. Different
such strategies are imaginable. Notice that in a previous version of this paper, a fixed randomized constraint
splitting strategy was applied.

Example 17 We continue the example from above. In Step 1, the list Active is initialized with the node
" N from Example 12, which is chosen in Step 3. Suppose the constrained atom

Ä
e ) ����� ß 
\� � ß ') �

is chosen in Step 4; then, � Ä e � þ 
 is attached to " N , and in Step 5 the children "
ß
N and "

ß
� of " N as in

Example 12 are generated. If the Herbrand universe consists of � and @ , then basic is set true, and thus node
" N is removed from Active.

In Step 6, condition 1. applies to both "
ß
N and "

ß
� , which are labeled as success nodes and inserted intoÃ

. Since in Step 7 the list Active is empty, the algorithm terminates and outputs
Ã

with two CNG-stable
models: 3 N ) d ������
h�Ð� ) �%�Ê�&���#����
J�"�´') � n and 3|� ) d �����$
Þ�ÐM��H�EÉ n . They amount to the two
ground stable models of the program � . 1
Theorem 9 Let � be a function-free logic program. Then, assuming a proper split selection strategy, al-
gorithm CNGSTABLE � � 
 computes all stable models of � and halts in finite time.

In order to see that the claimed results holds, observe that the tree which is generated by CNGSTABLE � � 

is finitely branching. Moreover, by the properties of a splitting strategy, the set of undefined atoms at node
" is always a proper superset of the set of undefined atoms at any of its children; hence, every branch in
the tree is finite, and thus, by König’s Lemma, the tree is finite. It remains thus to argue that the output is
indeed a collection of all stable models of � . This can be established by a generalization of the arguments
in [34] for the ground case, taking into account that each node " has two children which correspond to the
assumption that a ground atom �����C
 is true and false, respectively (which guarantees completeness), and that
the generation of an open or success node corresponds to a contracted sequence of respective generations in
the ground case.

Notice that, in general,
Ã

contains several equivalent CNG-stable models. The above algorithm can be
enhanced by pruning techniques, in which the generation of subtrees which do not contribute any CNG
stable model or not one inequivalent from already computed ones is reduced. For example, if two nodes
" ) � � �R�Á�� 6� � 
 and "

ß
) � �

ß �R� ß �� ß � �
ß 
 satisfy

¤ �o¥7� ¤ � ß ¥ and
¤ r ¥R� ¤  ß ¥ , then only node " needs

to be considered further; if
¤ �o¥�� ¤ 2:3 ¥ (resp.

¤  Z¥�� ¤ 2:3 ¥ ) for some CNG-stable model 2�3 in
Ã

, then node
" need not be considered further.

6 Effect on Actual Implementations

The techniques presented here give us now four possible approaches to computing the stable model and the
well-founded semantics of logic programs. We analyze the pros and cons of these approaches and discuss
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under which conditions a given approach is more appropriate. The discussion focuses on stable models, but
with the understanding that similar comments apply to well-founded semantics.

The Classical Approach. Here, elementary syntax checking is performed at compile-time, and all com-
putations are performed during run-time using any (sound and complete) deduction technique such as resol-
ution.

Advantages. The advantage is, clearly, that compilation is very fast, as no precomputation is required. In
addition, no space is utilized in storing models.

Disadvantages. Currently, there exist almost no procedures for run-time query evaluation under stable
semantics (the best known ones work in the case of locally stratified programs). Even if such a procedure
were to exist, they will necessarily be very slow.

Full Ground Pre-Computation. In this approach, all stable models (or as many as are desired) are pre-
computed at compile time, and stored as sets of ground atoms.

Advantages. Run-time query evaluation using this approach is very, very fast, and boils down to simple
retrieval from a relational DBMS. Moreover, it facilitates executing queries such as aggregates, that can be
difficult to execute under the classical approach.

Disadvantages. Compilation takes longer than in the classical case, and in many cases, it may be infeasible
to store ground stable models – even in the Datalog case, the stable models may be too large to fit into
memory.

Pre-Computations of NG-stable Models. In [14], Gottlob et al. showed how sets of atoms (non-ground
but without constrains) can be used to represent stable models. These are called NG-stable models and can
be pre-computed and stored, just as in the case of ground stable models.

Relative Advantages. The advantage of this approach is that run-time query evaluation is faster than in the
classical approach, where all deduction is performed during run-time, but is slower than the Full Ground Pre-
Computation approach. This is because checking whether an atom e is true in an NG-stable model requires
determining whether an atom exists in that model that subsumes e ; subsumptions being more expensive
than membership checks, hence the Full Ground Pre-Computation approach is more advantageous from this
point of view. This point is particularly relevant when indexing techniques are considered, which enable
rapid location of “candidate” atoms.

Relative Disadvantages. With respect to compilation, NG-stable models are obviously more efficiently
stored than completely ground stable models. In the latter case, even when dealing with Datalog programs,
just the process of grounding out the program before the start of the full ground pre-computation may cause
us to run out of memory. Of course, the classical approach is still better from the point of view of compilation
time.

Pre-Computations of CNG-stable Models. Finally, the CNG-stable models approach described in this
paper may be precomputed and stored.

Relative Advantages. From the point of time requirements for compilation, the new technique is more
feasible than either the Full Ground Pre-Computation approach (due to memory limitation), or the Pre-
Computation of NG-stable models approach. The CNG-stable model transform, ;=< � � � 2�3 
 , is often faster
than the NG-stable model transform because (1) sets of ground atoms can always be represented more
compactly using constraints than just using atoms (after all, in the worst case, atoms may be viewed as
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Table 1: Comparison of approaches to computing stable models

Criterion Best 2nd Best 3rd Best Worst

Ease of Classical CNG Stable Mod. NG-Stable Mod. Full Ground
Compilation
Storage Classical CNG Stable Mod. NG-Stable Mod. Full Ground
Requirements
Run-Time Query Full Ground NG-Stable Mod. CNG Stable Mod. Classical
Execution

constrained atoms with an empty/nonempty constraint). Often the constraint representation is much more
compact (cf. Example 18). (2) Computing ;=< � � � 2�3 
 is quite easy – the time taken for the computation is
proportional to the product of the number of negated atoms occurring in � , and the number of constrained
atoms in 2:3 – in contrast, the NG-stable models approach constructs a complex tree and performs an ex-
pensive operation called anticover computation (a detailed discussion of this is omitted for space reasons).
Furthermore, CNG-stable models computed by Algorithm CNGSTABLE always require less (or, in the
worst case equal space), than both NG-stable models as well as fully grounded stable models. Hence the
demand for storage using CNG-stable models is usually more moderate than the NG-stable model or fully
grounded approaches.

Relative Disadvantages. As for run-time query processing, this approach is slower than the NG-stable
models because it may be necessary to check for solvability of very large and complicated constraints. With
the NG-stable models, the only check required is subsumption.

Table 1 summarizes this discussion. If one examines this table, then we notice that the Classical Approach
and the Full Grounding represent extremes – they are best for some things, and truly awful in others. In
contrast, CNG (and NG) stable models represent intermediate approaches that adopt a “middle ground”.
The relative advantages of CNG vs. NG are listed above.

There are (at least) four groups – Constantini [6], Leone et al. [19, 18], Subrahmanian et al. [34], and
Sacca and Zaniolo [31], who have studied methods for computing stable models based on first computing
the well-founded semantics. In all these approaches, the well-founded model is first computed by a ground
fixpoint computation – using the techniques of this paper, this can be replaced by the non-ground fixpoint
computation using the operator ï�ðØñ �s that characterizes WFS. Furthermore, all the above approaches then
compute stable models using some sort of non-deterministic search – e.g. Sacca and Zaniolo use explicit
“choice” operators in clause bodies, while the others use a search strategy, e.g. branch and bound to “guess”
the truth values of atoms that are assigned “unknown” in the well-founded model, and then search to see
if this guess can be “verified”. Non-ground versions of such non-deterministic search operators are defined
by Constantini [6] as well as by Leone et al. [19, 18] and they can be used as the basis for a non-ground
computation as well.

7 Related Work and Conclusion

To our knowledge, the only technique that currently presents a non-ground representation of the stable and
well-founded semantics is the work of Gottlob et al. [14]. The work in [16] is related, but addresses only
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definite logic programs. Dix and Stolzenburg have recently presented work on non-ground representation
of disjunctive logic programs a well, focusing on the D-WFS semantics [9].

Though [14] and this paper have the same goal, viz. that of developing non-ground representations of
stable and well-founded semantics, they achieve these goals in quite different ways. There are two key
differences: First, [14] considers the so-called S-interpretations, due to Falaschi et al. [10] – these are sets
of atoms that are not necessarily ground. Thus, sets of atoms are stable models, not sets of constrained
atoms. Secondly, [14] presents a way of constructing a set of clauses based on transforming the program� with respect to a set of atoms. The resulting set of clauses generated by this transformation may be
significantly larger than � itself, and indeed, much larger than the CNG-stable models proposed here. To
see this, consider the following example.

Example 18 Let � be the logic program:�����#�	�$
����������
!�f�H�%�������������Ø
	
�&����� �!���&
	

In the [14] framework, we need to find a way of representing the set of all atoms �&���#����
 with �(') �
without using constraints, a non-obvious task. In contrast, the c-interpretation

2�3 ) d �4���#����
R�9� ) �*� �&���#����
!�9� ') �7� �&��������
!�9� ) ��-$� ) �!���&
 n
is a CNG-stable model that uses a compact representation. 1

It turns out that each NG-stable model can be viewed as a CNG-stable model since an atom �����C
 can be
written equivalently as the constrained atom ����5�
R�T5 ) � . Given any NG-stable model

Ã a , the construc-
tion in Algorithm 1 gives us a CNG-stable model that is equivalent, but more succinctly represented.

Other related work includes the work of McCain and Turner [25] who study how stable model semantics
changes when the underlying language changes. This has a surface similarity to our work, but they do not
attempt to develop non-ground representations of stable and well-founded semantics.

There is now a growing body of literature on computing stable models, but they are restricted mostly to the
propositional (or ground) case [34, 3, 6, 8, 19, 18, 31]. The methods in these papers develop representations
of non-ground stable models that can be computed by some procedure, though such a procedure has not
been explicitly described.

The S-semantics group in Pisa has studied non-ground representations of logic programming semantics
[10, 12, 35]. Fortunately for us, they did not develop non-ground versions of the stable and well-founded
semantics, which is what we do in this paper. Work by Marek, Nerode and Remmel [24] considers constraint
models that are related to CNG-stable models. However, the framework is different, and algorithms are not
addressed. Pollett and Remmel [28] consider logic programs with quantified Boolean formulas constraints,
aiming at a more compact programming language rather than model representation. Query evaluation under
der WFS using SLG resolution [4], implemented in the XSB system [29], is somewhat less related to our
work, as it is a top down approach and, moreover, aims at answering a goal rather than representing the
well-founded model. It can be used to compute a residual program for query evaluation under stable model
semantics [29].

Almost all works on the study of the stable and well-founded semantics assume that these models are
composed of ground atoms, and that programs are “grounded out” when attempting to perform the Gelfond-
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Lifschitz transform. This assumption is very useful for articulating the declarative semantics of logic pro-
grams with negation, and in explaining the intuitions behind the transformations and stability criteria. How-
ever, in practice, the approach of grounding programs is prohibitively expensive – when function symbols
are present, it may be impossible, and even in the Datalog case, memory requirements may make it in-
feasible. For instance, to instantiate a clause containing 4 variables in say a personnel database describing
10,000 employees of a company, instantiation of this clause alone would lead to � ÌDþ�þ�þ�þ�� 
 ) ÌDþ N?� instances.

In this paper, we have proposed a method based on constrained interpretations to represent the stable and
well-founded semantics in a non-ground manner. Constrained interpretations can often capture infinite sets
of ground atoms in a finite way. We have described a non-ground version of the Gelfond-Lifschitz transform
that utilizes these constraints to avoid grounding the program, even partially. Thus, the use of constraints
facilitates: (1) representing in a succinct, non-ground way, a ground stable model (or models) and (2)
performing the Gelfond-Lifschitz transform in a sound, complete, and non-ground way, thus avoiding the
expensive grounding step in entirety.

In addition, we have derived complexity results on the efficiency of this approach, and have discussed
how, and under what circumstances, four possible approaches to computing stable models may shape up
relative to one another.

Several problems remain for further work. One concerns the structure of c-interpretations that are obtained
as non-ground representatives of the stable models resp. the well-founded model of a normal logic program.
In this context, it is an interesting issue to investigate classes of programs which under a predetermined set of
simplification methods for constraints give rise to c-interpretation where the quantifier-depth is below a given
limit. Another issue is using a more expressive logic than first-order logic for non-ground representation. In
particular, an enrichment by generalized quantifiers such as a (possibly restricted) fixpoint operator might be
useful for allowing to express predicate extensions which are not finitely representable in first-order logic.
This requires further investigation.
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Appendix

Theorem 7 Suppose we are given as input u wGx � ï4ðØñ �s 
 , � w�x � ï4ð�ñ �s 
 for a function-free program � and an
atom e (not necessarily ground). Then, determining whether e is true (resp., false) in the CNG-WFS of �
is

1. PSPACE-complete, if the language > is given by � ;

2. NP-complete (resp., coNP-complete), if e is ground and all constraint parts in u wGx � ï4ð�ñ �s 
 (resp., in� wGx � ï4ðØñ �s 
 ) are existential, regardless of a fixed language > ;

3. solvable in polynomial time with constantly many NP-oracle calls and both NP and coNP-hard, if the
language > is fixed and all constraint parts in u wGx � ï4ð�ñ �s 
 (resp., in � w�x � ï�ðØñ �s 
 ) are existential.
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Proof. The upper bounds (i.e., membership parts) for deciding truth of e follow immediately from
Theorem 3. The upper bounds for falsity of e can be derived similarly; note that the equational reasoning
problems for truth (line (6)) and falsity (line (7)) are very similar.

It remains to establish the lower bounds (i.e., the hardness parts). For that, we have to show that there
are least resp. greatest fixpoints obtained by the natural computation from logic programs on which the
inference problem is hard.

For part 1, we describe an encoding of evaluating quantified Boolean formulas

� 5#N � 5 �D� 5 Ú ¹D¹D¹ � 5kOe�k��5#NA��5 � �D/D/D/A��5ÁO&
 (8)

into our reasoning problem. Here the quantifier blocks alternate and r is a Boolean CNF formula on
variables 5 N �D/D/D/Q�¯5 O where each clause has size 3. Evaluating arbitrary such formulas is complete in
PSPACE, and complete for ? sO if £ is fixed (cf. [15]).

We build from formula (8) a stratified program � as follows.
The formula � ):� Yº5(�N

Ä º , where

Ä º )�� º � � � º5� � � º)� is represented by a predicate � with the same
variables and defined by

É���5�N^�D/D/D/^��5kO&
!�TB��	���]N � ��BAN � �	�]NU�C��BANU�C�	�]N?�A��BAN?�Q
�-U¹D¹D¹X-$B��	��� Y � ��B Y � �	� Y �C��B Y �A�	� Y ����B Y �Q

where the atoms B��G��¹D¹D¹ 
 encode the clauses

Ä º and each BXº�� is either þ or Ì ; the predicate B�� is defined by the
rules B��	���HN^�0I�N^��� � �0I � ��� Ú �0I Ú 
&���HN ) I�NB��	���HN^�0I�N^��� � �0I � ��� Ú �0I Ú 
&��� � ) I �B��	���HN^�0I�N^��� � �0I � ��� Ú �0I Ú 
&��� Ú ) I Ú
using constants þ and Ì , where � º is the variable of the Í ’th literal in the clause and � º represents it’s polarity,
where þ means negative occurrence of �Áº and Ì positive. For example, the clause

Ä
) ��N �#� � � � � � is

represented by the atom B��	����N^� Ì �	� � � þ �	� � � Ì 
 .7
The quantifiers in front of r are encoded by using predicates � º , ÌÁ±�Í[±È£ , and � » , ÌØ±�/µ±v£s�.Ì as

follows.

�|NQ��5�N^�D/D/D/Q��5kO×Û¯N0
"� É×��5�N^�D/D/D/Q��5kO&
��NQ��5�N^�D/D/D/Q��5kO×Û¯N0
"� �H�%�	�|NQ��5�N^�D/D/D/^��5kO×Û¯Nl
� � ��5�N^�D/D/D/Q��5kO×Û � 
"� ��NQ��5�N^�D/D/D/^��5kO×Û¯Nl
� � ��5�N^�D/D/D/Q��5kO×Û � 
"� �H�%�	� � ��5�N^�D/D/D/^��5kO×Û � 

...�^ºG��5�N^�D/D/D/^��5kO�Û�º¡
"� �H�%�	�%º	��5�N^�D/D/D/^��5kO×Û�º¢
��º Ý�NQ��5�ND�D/D/D/Q��5 O�Û ~ ºäÝ�N � 
"� �Dº	��5#ND�D/D/D/A��5ÁO�Û�º¢

...�DO�Û¯NQ��5#N0
"� �H�%�	�%O�Û¯NQ��5#N0
�%O � �H�%�Q�DO�Û¯ND��5�Nl


7Alternatively, we could represent clauses by 3-ary predicates for the possible types of a clauses of length 3.
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Notice that the program � is stratified, and hence its well-founded model is total [37]. Consequently, every
ground atom is either true or false according to the CNG well-founded semantics of � .

Consider the atom �EO . Clearly, this atom is true precisely if there is some tuple   N for 5µN such that�DO×Û¯NQ�   Nl
 is true, i.e., � 5�NX/ �^O×Û¯NQ��5�Nl
 is true. On the other hand, �QO�Û¯NQ�   Nl
 is true if ��O×Û¯N^�   NX
 is false; the
latter holds precisely if for every tuple  �� , �DO�Û � �   N^�  Ê� 
 is false; this amounts to truth of � 5 � / � �^O×Û � �   N^��5 � 
 ,
or equivalently, truth of � 5 � / ��O×Û � �   NQ��5 � 
 . Thus, ��O is true iff � 5µN � 5 � / �%O×Û � ��5�N^��5 � 
 is true. Continuing
this argument, we obtain that � O is true if, and only if, � 5 N � 5 � ¹D¹D¹ � 5 O /�É���5 N �D/D/D/Q��5 O 
 is true; since it is
easily seen that the predicate � appropriately encodes � , this means that ��O is true in the CNG well-founded
semantics precisely if the formula (8) is true.

On the other hand, since � is stratified, � O is false in the CNG well-founded semantics of � if and only if
the formula (8) is not true.

To establish the result of part 1, it thus remains to show that u w�x � ï4ð�ñ �s 
 resp. � w�x � ï4ð�ñ �s 
 according to
the straightforward computation, can be constructed from formula (8) in polynomial time.

For this, let us see first see how the computation of ï�ðØñ ºs � q 
 proceeds.

1. ï4ð�ñ\s � q 
 )9u w�x � Â ì�î ~ s�� ¡ 
 : The constraint transformation ;=< � � � q 
 contains all positive clauses
from � , and in addition all clauses�Dº	��5�N^�D/D/D/^��5kO×Û�ºÕ
!� � Ì¼±²ÍR±²£4�ÎÌ /
The least fixpoint of Âmì�î ~ s�� ¡�� amounts to the c-interpretation

2:3 N ) d �|NQ��5�N^�D/D/D/^��5kO�
!�98*��5�N^�D/D/D/Q��5kO�
0�B��	��� N �D/D/D/Q�0I Ú 
R�T� N ) I N � � � ) I � � � Ú ) I Ú n Çd �%º	��5�ND�D/D/D/Q��5kO×Û�º¢
R� � � »×��5#N^�D/D/D/Q��5ÁO�Û�»A
7��i Ì#.²ÍR±²£ � Ì[±0/Ø±²£4�ÎÌ n �
where 8���5�N^�D/D/D/Q��5kO&
 is a constraint which is equivalent to r .

2. ï4ð�ñ �s � q 
 ) ï4ðØñhs � ï4ð�ñ\s � q 
	
 )fu w�x � Â ì�î ~ s�� ¢e£¥¤ � ~ ¡��z� 
 : The constraint transformation ;=< � � �
ï4ðØñ s � q 
	
 contains all positive clauses of � and in addition the constrained atom

��NQ��5#ND�D/D/D/A��5ÁO�Û¯Nl
!� O�Û¯N¦º5(�N ��5
ß
º ) 5Áº¢
�§$� � 5ÁO�/ �¥¨ Å^


where ¨ Å ) 8 ¤ 5�N � 5
ß
N � . . . , 5kO�Û¯N � 5

ß
O×Û¯N ¥ is an alphabetic variant of 8 . The body of this constrained

atom, which we denote by ¨ N , amounts to the formula � 5 O / � �k��5 N �D/D/D/^��5 O 
 . The least fixpoint ofÂ ì�î ~ s&� ¢e£y¤ � ~ ¡���� amounts to the c-interpretation

2:3 N ) d � N ��5 N �D/D/D/A��5 O 
R�987�B��	���HN^�D/D/D/Q�0I Ú 
!�f�HN ) I�N � � � ) I �7� � Ú ) I Ú ���NQ��5#N^�D/D/D/A��5kO×Û¯Nl
!� ¨ N^�� � ��5�N^�D/D/D/^��5kO×Û � 
7� ¨ N n /
3. ï4ð�ñ Ús � q 
 ) ï4ðØñhs � ï4ð�ñ �s � q 
	
 )fu w�x � Â ì�î ~ s�� ¢e£¥¤ �� ~ ¡��z� 
 : The constraint transformation ;=< � � �

ï4ðØñ �s � q 
	
 contains all positive clauses of � and in addition the clauses��N^��5�N^�D/D/D/A��5ÁO�Û¯N0
�� ¨ N^�
� � ��5�N^�D/D/D/A��5ÁO�Û � 
�� O�Û �¦º5(�N 5

ß ß
º ) 5kºr§ �¥¨

ß
N �

� º ��5 N �D/D/D/A��5 O×Û�º 
�� � Í�� Ü �
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where ¨
ß
N is an alphabetic variant of ¨ N . The body of � � , denoted by ¨�� , amounts to the formula� 5ÁO�Û¯N � 5kO�/��Á��5�NQ�D/D/D/A��5kO�
 . The least fixpoint of Â ì�î ~ s�� ¢e£y¤ �� ~ ¡��z� amounts to the c-interpretation

2�3 Ú ) d �|NQ��5�N^�D/D/D/Q��5kO&
R�98R� B��	���|ND�D/D/D/Q�0I Ú 
R�T�HN ) I�N � � � ) I �7� � Ú ) I Ú ���NQ��5�N^�D/D/D/Q��5kO�Û¯N0
R� ¨ ND�v� � ��5�N^�D/D/D/^��5kO×Û�ºÕ
!� ¨ ND�� � ��5�N^�D/D/D/Q��5kO�Û � 
R� ¨H� �v� Ú ��5�N^�D/D/D/^��5kO×Û Ú 
!� ¨H� ��%º	��5�N^�D/D/D/Q��5kO�Û�º¡
R�½� � »Ê��5�N^�D/D/D/^��5kO�Û�»A
!� � A .²Í7±¾£ �yA ±0/Ø±²£©�ÎÌ n /
As one can see from this, the part of ï�ðØñ ºs � q 
 on �HNX�D/D/D/A���%º , ��NX�D/D/D/A���Dº�Û¯N remains unchanged in ï4ð�ñ » s � q 

for /a�²Í , and the part on the remaining � û , and � û flip-flops between being true and false until ï4ðØñ ûs � q 
 .

Eventually, ï4ðØñ Os � q 
 ) ï�ðØñ O�Ý�Ns � q 
 is a fixpoint, and thus u wGx � ï4ð�ñ �s 
 ) ï4ð�ñ O�Ý�Ns � q 
 is reached in£¥
ØÌ steps by computing ï4ð�ñ ºs � q 
 . Moreover, the c-interpretation ï�ðØñ O�Ý�Ns contains (after simplifications)
the constrained atom �%O,� � 5�N � 5 �D� 5 Ú ¹D¹D¹ � 5ÁO�/ 8R/
Clearly, each of ï4ðØñ[s � q 
 , ï4ðØñ �s � q 
 , . . . , ï4ðØñ O�Ý�Ns has size polynomial in the size of � , and can be
computed in polynomial time; therefore, u wGx � ï4ðØñ �s 
 can be constructed from formula (8) in polynomial
time.

The greatest fixpoint � wGx � ï4ðØñ �s 
 is naturally obtained as the fixpoint of the sequence  Å )ª� and
 ºäÝ�N ) ï4ðØñ �s �  º 
 , for Í[ý¶Ì (as � is function-free, a fixpoint of the sequence is reached at some finite
step), where � is as above the c-interpretation equivalent to the Herbrand base. By looking at the sequenceï4ð�ñ\s � � 
0� ï4ð�ñ �s � � 
 ,. . . we can similarly see that � w�x � ï4ð�ñ �s 
 ³æï4ð�ñ O�Ý�N � � 
 ) ï4ð�ñ O � � 
 and that� wGx � ï4ð�ñ �s 
 can be constructed from formula (8) in polynomial time.

This proves part 1. of the result. For part 2, we observe that all constraint parts in u wGx � ï4ð�ñ �s 
 resp.� wGx � ï4ð�ñ �s 
 are existential, if we apply the above transformation for the case £ ) Ì , i.e., a quantified
Boolean formula � 5µND/��k��5#ND
 . Hence, NP-hardness resp. coNP-hardness of the problem follows. Since the
language of the transformation involves then only the fixed predicates �7N , � , B�� and the constants þ , Ì , the
result holds regardless of whether we fix the language > or not. This verifies part 2. of the result.

For part 3, we observe that NP-hardness (resp., coNP-hardness) of deciding whether an atom e is true
in u wGx � ï4ðØñ �s 
 (resp., false in � wGx � ï4ðØñ �s 
 ) follows from part 2. coNP-hardness (resp., NP-hardness) for a
non-ground atom e is an easy consequence of the fact that the atom É×��5íNl
 is true (resp., false) according to
the CNG-WFS of the program � used in part 2, which amounts to truth of É���5mNl
 in u wGx � ï4ð�ñ �s 
 (resp., truth
of � É×��5 N 
 in � w�x � ï4ð�ñ �s 
 ), if and only if the formula � 5 N /��k��5 N 
 is valid (resp., not valid). This proves
the theorem. 1
References

[1] C. Baral and M. Gelfond. Logic Programming and Knowledge Representation. Journal of Logic Programming,
19/20:73–148, 1994.

[2] C. Baral and V. Subrahmanian. Dualities Between Alternative Semantics for Logic Programming and Nonmono-
tonic Reasoning. Journal of Automated Reasoning, 10:399–420, 1993.

[3] C. Bell, A. Nerode, R. Ng, and V. Subrahmanian. Mixed Integer Programming Methods for Computing Non-
Monotonic Deductive Databases. Journal of the ACM, 41(6):1178–1215, November 1994.

[4] W. Chen, T. Swift, and D. Warren. Efficient Top-Down Computation of Queries under the Well-Founded Se-
mantics. Journal of Logic Programming, 24:161–199, 1995.



34 IFIG RR 9805

[5] H. Comon and P. Lescanne. Equational Problems and Disunification. Journal of Symbolic Computation, 7:371–
425, 1989.

[6] S. Constantini. Contributions to the Stable Model Semantics of Logic Programs with Negation. Theoretical
Computer Science, 150:231–255, 1993.

[7] J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An Overview. In A. Fuhrmann
and H. Rott, editors, Logic, Action and Information. Proc. of the Konstanz Colloquium in Logic and Information
(LogIn’92), pages 241–329. DeGruyter, 1995.

[8] J. Dix and M. Müller. Implementing Semantics of Disjunctive Logic Programs Using Fringes and Abstract
Properties. In L.-M. Pereira and A. Nerode, editors, Proceedings of the Second International Workshop on
Logic Programming and Nonmonotonic Reasoning (LPNMR-93), pages 43–59, Lisbon, Portugal, July 1993.
MIT Press.

[9] J. Dix and F. Stolzenburg. Computation of Non-Ground Disjunctive Well-Founded Semantics with Constraint
Logic Programming. In J. Dix, L. M. Pereira, and T. C. Przymusinski, editors, Proc. Workshop Non-Monotonic
Extensions of Logic Programming, pages 143–160. DeGruyter, 1996.

[10] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A New Declarative Semantics for Logic Languages. In
Proceedings Fifth ICLP-88, pages 993–1005, 1988.

[11] M. Fitting. A Kripke-Kleene Semantics for Logic Programs. Journal of Logic Programming, 2(4):295–312,
1985.

[12] M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic Programs. In Proceedings ICLP-
91, pages 238–251. MIT Press, 1991.

[13] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic Programming:
Proceedings Fifth Intl Conference and Symposium, pages 1070–1080, Cambridge, Mass., 1988. MIT Press.

[14] G. Gottlob, S. Marcus, A. Nerode, G. Salzer, and V. Subrahmanian. A Non-Ground Realization of the Stable
and Well-Founded Semantics. Theoretical Computer Science, 166:221–262, 1996.

[15] D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume A, chapter 2. Elsevier Science Publishers B.V. (North-Holland), 1990.

[16] V. Kagan, A. Nerode, and V. Subrahmanian. Computing Minimal Models by Partial Instantiation. Theoretical
Computer Science, 155:157–177, 1996.

[17] K. Kunen. Answer Sets and Negation as Failure. In Proceedings ICLP ’87, pages 219–228. MIT-Press, 1987.

[18] N. Leone, M. Romeo, P. Rullo, and D. Sacca. Effective Implementation of Negation in Database Logic Query
Languages. In LOGIDATA « : Deductive Databases with Complex Objects, number 701 in LNCS, pages 159–
175. Springer, 1993.

[19] N. Leone and P. Rullo. Safe Computation of the Well-Founded Semantics of DATALOG Queries. Information
Systems, 17(1):17–31, 1992.

[20] V. Lifschitz. Computing Circumscription. In Proceedings International Joint Conference on Artificial Intelli-
gence IJCAI-85, pages 121–127, 1985.

[21] J. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1984, 1987.

[22] M. Maher. Complete Axiomatization of the Algebra of Finite, Rational and Infinite Trees. In Proceedings IEEE
LICS-88, pages 348–357. IEEE Computer Science Press, 1988.

[23] W. Marek, A. Nerode, and J. Remmel. The Stable Models of a Predicate Logic Program. Journal of Logic
Programming, 21(3):129–153, 1994.



IFIG RR 9805 35
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