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Introduction 
__________________________________________________________________________________________ 

1.    INTRODUCTION 
 

1.1.    Heme oxygenase (HO) 

 

Heme oxygenase (HO) (EC 1.14.99.3) catalyzes the first and rate-limiting step of 

heme degradation. HO breaks up the heme tetrapyrrole ring to yield equimolar amounts of 

biliverdin, carbon monoxide (CO) and iron (Fig. 1). Biliverdin, in turn, is converted into 

bilirubin by biliverdin reductase in a non-rate-limiting enzyme reaction (Maines, 1997). 

 

 

   

 
Fig. 1. The heme oxygenase enzyme reaction. Scheme of catalytic conversion of heme 
into bilirubin, CO and iron. 

 

1.1.1.    Isoforms of HO  

HO-1 was initially described in 1968 by Tenhunen and colleagues (Tenhunen et al., 

1968) and a second isoform of HO, designated HO-2, was identified in 1986 (Maines et al., 

1986). The HO-1 and HO-2 genes have about 43% nucleotide sequence similarity. The 

inducible HO isozyme, HO-1, also known as 32-kDa heat-shock protein, exhibits low basal 

gene expression levels in most cells and tissues.  High gene expression levels of HO-1, are 

detected in spleen and liver tissue macrophages (Kupffer cells) in which senescent 

erythrocytes are sequestered and destroyed. By contrast, the non-inducible HO isoform HO-

2, exhibits high constitutive gene expression preferentially in brain and testis (Maines, 1988; 

Otterbein and Choi, 2000).  The 36-kDa protein HO-2 is considered a sensor of intracellular 

heme levels (Wagener et al., 1999) (see also table 1). HO-1 and HO-2 are products of 

distinct genes. Both HO isoforms are highly conserved throughout evolution and are found in 
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a wide range of organisms such as bacteria, fungi, plants and mammalians. Sequence 

homology between the mammalian rat, mouse and human genes is higher than 80% or 90% 

for HO-1 and HO-2, respectively (Maines, 1997). The significance of a third isozyme of HO 

(HO-3) which has been described by the group of Maines is unclear (McCoubrey et al., 

1997).  

 
Table 1.  Characteristics of HO-1 and HO-2. 

                                                         

 
 
 

                 
HO-1 

                
HO-2 

 
Major function 

Inducibility 

 

Localization 

 

Molecular mass (kD) 

 
Catalytic heme degradation 

Highly inducible by many 

stimuli  

Ubiquitous, highest in  

spleen, liver and kidney 

≈ 32 

 
   Intracellular heme sensor (?) 

   Glucocorticoid 

 

   Mainly in brain and testis 

 

   ≈ 36 

 
 

1.1.2. The inducible isoform HO-1 

 HO-1 gene expression is induced not only by its substrate heme or heme-containing 

compounds, but also by non-heme containing compounds (Table 2) that increase the cellular 

production of reactive oxygen species (ROS), such as hydrogen peroxide, UV light, 

endotoxin, heavy metals and sodium arsenite (Maines, 1988; Otterbein and Choi, 2000). Due 

to this large array of stress stimuli that induce HO-1 gene expression, HO-1 has been 

considered for many years to serve cytoprotective functions against oxidative stress.  

   

1.1.3.    Functional significance of the HO enzyme reaction  

The HO enzyme reaction is of physiological significance because HO not only 

degrades the prooxidant heme, but also produces biliverdin, CO and iron. These HO 

products have been recognized to serve regulatory and protective functions (Otterbein et al., 

2003). 

 

1.1.3.1.    The tetrapyrrole heme 

Heme (Fe-protoporphyrin IX) is a tetrapyrrole with a central iron ion (Fe2+) that is non-

covalently linked to the four ligand groups of porphyrin (Wagener, 2003). Heme is  
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synthesized via a pathway of eight enzymes and has contradictory biological functions.  On 

the one hand, heme is an essential compound of various hemoproteins that are involved in 

transport and storage of oxygen (hemoglobin and myoglobin), mitochondrial respiration 

(cytochromes), drug metabolism (cytochrome P450s), cellular antioxidant defense 

mechanisms (peroxidases and catalase) and steroid hormone biosynthesis (Ryter and 

Tyrrell, 2000; Wijayanti et al., 2004). In addition, heme is a crucial component of several 

major enzymatic systems such as inducible nitric oxide (NO) synthase (NOS), 

cyclooxygenase-2 (COX-2) and soluble guanylate cyclase (Maines, 1997; Wijayanti et al., 

2004). On the other hand, excess heme can be severely toxic in its ‘free’, non-protein bound, 

form, specifically during pathophysiological conditions such as hemolysis or rhabdomyolysis. 

‘Free’ heme can generate ROS which, in turn, may cause DNA damage, lipid peroxidation 

and protein denaturation (Muller-Eberhard and Fraig, 1993; Ryter and Tyrrell, 2000). 

Therefore, the biological activity of heme needs to be controlled tightly by enzymatic heme 

synthesis and/ or degradation (Wijayanti et al., 2004).  

 

 
Table 2 . Conditions and nonheme compounds that induce HO-1 . 
 

 
Condition 
 

           
References 

 
Cytokines 

Endotoxin 

Heavy metals 

Heat shock 

Hydrogen peroxide 

Hyperoxia 

Hypoxia 

Nitric oxide 

Phorbol esters 

Prostaglandin 

Shear stress 

Sodium arsenite                               

Thiol scavengers (GSH depletion) 

Ultraviolet A 

 
Terry et al.,1999  

Camhi et al., 1995 

Elbirt et al., 1998 

Okinaga and Shibahara, 1993 

Keyse and Tyrrell, 1989 

Otterbein et al., 1999 

Motterlini et al., 2000 

Willis et al., 1995 

Alam and Den, 1992 

Koizumi et al., 1995 

Wagner et al., 1997 

Elbirt et al., 1998 

Ewing and Maines, 1993 

Keyse and Tyrrell, 1989 
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1.1.3.2.    The cytoprotective antioxidant bilirubin 

The HO product biliverdin is rapidly converted into bilirubin by biliverdin reductase in 

mammalian cells. It has been shown by Stocker and colleagues that the bile pigment bilirubin 

has antioxidant properties (Stocker et al., 1987). This initial finding has been confirmed by 

others who demonstrated that HO-derived bilirubin provides cellular protection to neuronal 

cells (Dore et al., 1999). A comprehensive overview on the protective effects of bilirubin has 

recently been given by Kapitulnik (2004).   

 

1.1.3.3.    The second messenger gas CO  

The toxic effects of CO have been known for many years. Since CO binds 

hemoglobin with higher affinity than O2, O2 delivery to tissues and organs is blocked by this 

gaseous molecule. More recently, HO-derived CO has been recognized to be an important 

cellular messenger with various physiological functions similar to those of the signaling gas 

NO. In contrast to NO, however, which forms the toxic peroxynitrite with superoxide, CO 

does not form radicals. CO is involved in the regulation of hepatobiliary functions such as 

cytochrome P450-dependent biotransformation, and HO-1-derived CO has been shown to 

protect the hepatic microcirculation under stress conditions (Suematsu and Ishimura, 2000). 

Furthermore, CO is involved in the regulation of the cardiovascular tone (Maines, 1997; 

Sammut et al., 1998; Otterbein and Choi, 2000; Otterbein et al., 2003). 

 

1.1.3.4.    Iron 

Enzymatic degradation of heme by HO produces iron which is an essential cofactor of 

numerous cellular enzymes and redox-dependent proteins. Similar to ‘free’ heme, excess 

iron is cytotoxic by producing ROS via the Fenton reaction and needs to be contained by an 

iron-binding protein (Ponka, 1997). In accordance with this concept synthesis of the iron-

binding protein ferritin has been demonstrated to be induced in coordination with HO-1 

activity during the cellular stress response of skin fibroblast (Vile and Tyrrell, 1993; Ryter and 

Tyrrell, 2000). This coordinate induction of HO-1 and ferritin is assumed to prevent iron-

mediated cytotoxicity. The regulatory role of HO-1 for iron homeostasis is also supported by 

the observation that genetic HO-1 deficiency causes an atypical iron deficiency anemia and a 

simultaneous iron overload of the liver (Poss and Tonegawa, 1997). Moreover, it has been 

demonstrated that cytoprotection of cell cultures by HO-1 can be attributed to augmented 

cellular iron efflux which is regulated by an iron ATPase (Ferris et al., 1999; Barañano et al., 

2000). 
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1.2.    Phenotypical alterations in genetic HO-1 deficiency 

The physiological significance of HO-1 has clearly been demonstrated in a HO-1 

knockout mouse model and a case of human genetic HO-1 deficiency. In HO-1 knockout 

mice Poss and Tonegawa (1997) have demonstrated that these animals exhibit growth 

retardation, signs of a normochromic, microcytic anemia and iron overload of the kidney and 

liver. Moreover, HO-1 deficient mice have a proinflammatory phenotype with an exaggerated 

activation of mononuclear phagocytes and are highly susceptible to oxidative stress as 

indicated by a higher mortality of these animals in response to treatment with endotoxin. 

These findings from HO-1 knockout mice were essentially confirmed in a case of human 

genetic HO-1 deficiency (Yachie et al., 1999) in which similar phenotypical alterations were 

observed (see Table 3). Sequence analysis of this patient’s HO-1 gene revealed complete 

loss of exon 2 of the maternal allele and a two-nucleotide deletion within exon 3 of the 

paternal allele (Yachie et al., 1999).   

 
 
Table 3. Phenotypical alterations in human and mouse genetic HO-1 deficiency 

(Yachie et al., 1999). 
 

 
Findings                                              Human                     Mouse 
 
Intrauterine death                      Stillbirth, abortion         20% birth rate 

Growth failure                                          +                               + 

Anemia                                                    +                               + 

Fragmentation                                         +                               ?        

Iron binding capacity                         Increased                  Increased 

Ferritin                                                Elevated                   Elevated 

Iron deposition                                        +                               + 

Hepatomegaly                                         +                               + 

Splenomegaly                                    Asplenia                        + 

Lymph node swelling                              +                               + 

Leukocytosis                                           +                               + 

Thrombocytosis                                      +                               ? 

Coagulation abnormality                         +                               ? 

Endothelial injury                                    +                               ? 

Hyperlipidemia                                        +                               ? 
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1.3.    Transcriptional regulation and signal transduction pathways of HO-1  

 

Stimulation of the HO-1 gene by most, if not all, stimuli is primarily controlled at the 

transcriptional level (Choi and Alam 1996) and a variety of regulatory elements (RE) and 

transcription factors (TF) have been demonstrated to be involved in this regulation. The 

broad spectrum and chemical diversity of reagents that induce HO-1 suggests that various 

signaling pathways are involved in the regulation of this gene such as mitogen-activated 

protein kinases (MAPK), protein kinase C (PKC), cAMP-dependent protein kinase A (PKA), 

or cGMP-dependent protein kinase G (PKG) (Immenschuh and Ramadori, 2000). 

 
1.3.1.  Regulatory elements and transcription factors that regulate HO-1 gene    

expression  
Various REs that govern the transcriptional regulation of the HO-1 gene have been 

identified in the promoter 5’-flanking region of the HO-1 gene (Choi and Alam, 1996). 

Identification of inducer-dependent REs not only provides important information on the 

molecular mechanisms that govern HO-1 gene expression, but also on the cellular signaling 

cascades that are involved in HO-1 gene regulation. The promoter 5’-flanking regions of the 

human, rat, mouse and chicken HO-1 genes have been analyzed by functional studies in 

transiently and stably transfected cell cultures and by studies on DNA-protein interactions 

(Choi and Alam, 1996; Elbirt and Bonkovsky, 1999; Alam and Cook, 2003; Sikorski et al., 

2004). Specifically, the rat HO-1 gene including the 5’-flanking gene promoter region has 

been cloned in 1987 (Müller et al., 1987). In the following, several potential REs have been 

identified in the proximal 1338 bp of the rat HO-1 gene promoter 5’-flanking region such as a 

heat shock response element 1 (HSE1) (Okinaga and Shibahara., 1993), HO transcription 

factor (HOTF) binding element (Sato et al., 1989), prostaglandin J2 response element (PGJ-

2) (Koizumi et al., 1995), cAMP response element/ activator protein-1 binding site (CRE/AP-

1) (Immenschuh et al., 1998), E-box element (Kietzmann et al., 2003) and Ets binding site 

(EBS) (Chung et al., 2005). Moreover, additional potential REs have been identified by 

sequence comparison such as three copies of the Sp1 binding site, two copies of GCN4, a 

metal-dependent TF (Müller  et al., 1987), an AP-1 site (Sato et al., 1989), a HSE2 (Okinaga 

and Shibahara., 1993) and a nuclear factor-κB recognition sequence (NF-κB) (Fig. 2).  
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While considerable information is available on the functionality of REs of the HO-1 

gene, much less is known about the TFs that are involved in this regulation. Several 

prototypical REs of the mouse HO-1 gene with AP-1 sites that are localized in two far 

upstream HO-1 promoter regions have initially been shown to mediate the HO-1 stress 

response (Alam and Den, 1992; Alam, 1994; Alam et al., 1995). Subsequently, these 

elements have been shown not to be regulated by the TF AP-1, but by NF-E2 related factor 

E2 (Nrf2) (Alam et al., 1999). Nrf2 belongs to the family of Cap’n’Collar basic leucine zipper 

proteins and is considered  to be a crucial regulator of the cellular stress response (Ishii et 

al., 2000; Nguyen et al., 2003). 

 

1.3.2.    Signaling pathways of HO-1 gene regulation 

1.3.2.1.    Redox signaling  

A large number of studies deals with the regulation of HO-1 gene expression by 

stimuli that increase the cellular production of ROS such as heme, heavy metals, UV light, 

hydrogen peroxide, lipopolysaccharide (LPS), or by stimuli that deplete cellular glutathione 

stores including buthionine sulfoximine, sodium arsenite and iodoacetamide (Applegate et 

al., 1991; Choi and Alam, 1996). Furthermore, it has been shown that scavengers of ROS 

such as N-acetyl L-cysteine inhibit or reduce the magnitude of HO-1 induction by oxidative 

stress (Lautier et al., 1992). These findings indicate that an increase of intracellular ROS 

and, therefore, the activation of redox-dependent signaling pathways plays a crucial role for 

the regulation of HO-1 gene expression. Although there are still significant gaps in the 

understanding of the exact mechanisms of redox signaling, in particular, the intracellular 

targets of ROS (Finkel, 1998), changes of the cellular redox state modify the activity of 

specific regulatory protein kinases and protein phosphatases which lead to alterations in the 

regulation of gene expression (Finkel, 1998).  

 

1.3.2.2.    MAP kinases (MAPK) 

MAPKs are a family of serine-threonine protein kinases that are activated by a variety 

of extracellular stimuli and are assumed to play a crucial role for the signal transduction 

pathways of cellular stress and for the regulation of cell proliferation and differentiation 

(Chang and Karin, 2001; Kyriakis and Avruch, 2001). HO-1 is induced by numerous stimuli 

that are also known to enhance the activity of MAPKs. Therefore, it is not surprising that 

various MAPKs are involved in the activation of HO-1 gene expression. The three major 

MAPKs (extracellular-regulated kinase (ERK), c-jun N-terminal kinase (JNK) and p38) have 
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been demonstrated to be involved in HO-1 gene regulation (Elbirt et al., 1998; Immenschuh 

and Ramadori, 2000).  

 

 

   

         

 

 
 

 
Fig. 3.  Scheme of the three major MAPKs signaling pathway 
 
 

1.3.2.3.    Protein kinase C (PKC) 

PKC represents a family of related serine-threonine kinases that play an important 

role for the cellular signal transduction pathways of numerous stimuli (Newton, 1997; 

Gopalakrishna and Jahen., 2000). The prototypical PKC activator 12-O-tetradecanoylphorbol 

13-acetate (TPA) induces HO-1 gene expression in various cell culture systems (Alam and 

Den, 1992; Muraosa and Shibahara, 1993; Alam et al., 1995). TPA-dependent HO-1 gene 

activation is attenuated by specific inhibitors of PKC, but not by free radical scavengers in 

fibroblasts indicating that HO-1 induction by TPA is not mediated by the generation of ROS 

(Alam et al., 1995). It has also been shown that TPA-dependent HO-1 induction is mediated 

by distinct cis-acting REs suggesting that at least two different cell-specific signaling 
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pathways are involved in this regulatory mechanism (Muraosa and Shibahara, 1993; Alam 

and Den, 1992). The proinflammatory cytokines tumor necrosis factor (TNFα) and 

interleukin-1β were also shown to induce HO-1 gene expression via activation of PKC (Terry 

et al., 1999). 

 

1.3.2.4.    cAMP- and cGMP-dependent protein kinases (PKA and PKG) 

Intracellular levels of the second messenger cAMP are elevated by a large number of 

hormones and extracellular stimuli resulting in the activation of PKA. It has been 

demonstrated that treatment with glucagon and Bt2cAMP induces HO-1 enzyme activity  via 

activation of the PKA signaling pathway (Bakken et al., 1972; Durante et al., 1997; 

Immenschuh et al., 1998). By contrast, others have shown Bt2cAMP inhibit HO-1 enzyme 

activity in different cells (Sardana et al., 1985). Moreover, an increase of intracellular NO 

either by NO-releasing agents or via the induction of inducible NO synthase (iNOS) by LPS 

or cytokines up-regulate HO-1 gene expression in a number of cell lines (Motterlini et al., 

1996; Durante et al., 1997; Immenschuh and Ramadori, 1999; Polte et al., 2000). cGMP is 

known to be the second messenger of at least the short-term actions of NO, which activates 

the soluble guanylate cyclase. Similar to PKA, cGMP-dependent induction of HO-1 appears 

to be cell-type specific (Immenschuh et al., 1998). 

 

1.3.2.5.    Protein phosphatases (PPs) 

A fine-tuned balance between regulatory protein kinases (PKs) and PPs is critical for 

the control of cellular homeostasis and the important role of PPs for the regulation of gene 

expression has been demonstrated in various studies (for a review see Hunter, 1995). 

Okadaic acid, a specific inhibitor of the serine/ threonine PPs 1 and 2A, induced HO-1 

transcriptional gene expression via a CRE/AP-1 element that is also responsible for the 

cAMP- and cGMP-dependent HO-1 induction (Immenschuh et al., 1998; 2000). In addition, 

specific phosphatases are involved in the transcriptional regulation of HO-1 gene expression 

by ∆12-prostaglandin J2 (Koizumi et al., 1995; Negishi et al., 1995).  

 

1.3.2.6.    Signaling pathways that suppress HO-1 gene expression 

In contrast to the up-regulation of HO-1 gene expression, much less is known about 

the regulatory mechanisms that suppress HO-1 gene expression. HO-1 gene expression can 

be down-regulated by angiotensin II in rat vascular smooth muscle cells which is apparently 

mediated by an increase of intracellular calcium levels (Ishizaka and Griendling, 1997). 
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Moreover, it has been shown that interferon-γ suppresses HO-1 gene expression in 

glioblastoma cells (Takahashi et al., 1999). In addition, it has been shown in vascular smooth 

muscle cells and in rat liver tissue macrophages that LPS-dependent induction of HO-1 is 

inhibited by the cytokines transforming growth factor-β1 and interleukin-10 (Pellacani et al., 

1998; Immenschuh et al., 1999). 

  
 
1.4.    Regulation of HO-1 gene expression in mononuclear phagocytes 
          - Goal of the study 
 

Mononuclear phagocytes (monocytes, macrophages) are immune cells which play a 

crucial role for innate immunity. Accumulating evidence suggests that HO-1 expression in 

mononuclear phagocytes is involved in the regulation of the inflammatory immune response 

(for a review see Otterbein et al., 2003). The bacterial cell wall component LPS is a 

prototypical mediator of inflammation and has previously been shown to induce HO-1 in 

monocytic cells (Camhi et al., 1995; 1998; Immenschuh et al., 1999). LPS binds to the 

plasma protein LPS-binding protein (LBP) which is recognized by the cell surface receptor 

CD14, that interacts with the transmembrane Toll-like receptor 4 (TLR4) and its accessory 

protein MD2 (see Figs. 25, 26 in Discussion). This molecule complex, in turn, initiates the 

activation of various intracellular signaling cascades in mononuclear phagocytes that cause 

the generation of ROS and NO as well as the secretion of the proinflammatory cytokines 

TNFα and interleukin-1 (Watson et al., 1994; Guha and Mackman, 2001). 

In mononuclear phagocytes NAD(P)H oxidase is important for the microbicidal 

mechanisms of these cells and is activated by LPS (Park et al., 2004) and the phorbol ester 

TPA (Watson et al., 1994; Babior, 1999). Gene expression of NAD(P)H oxidase and HO-1 

has been shown to be coordinately increased in monocytes of diabetic patients (Avogaro et 

al., 2003). Therefore, it was postulated that LPS-dependent HO-1 gene induction would be 

decreased by the pharmacological NAD(P)H oxidase inhibitor 4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF) in RAW264.7 cells. To test this hypothesis, the molecular 

mechanisms and signaling pathways of HO-1 gene regulation by LPS and the NAD(P)H 

oxidase inhibitor AEBSF were investigated in RAW264.7 monocytes. 

 The present study shows that LPS induces the endogenous HO-1 gene expression in 

RAW264.7 cells on the transcriptional level. Up-regulation of HO-1 promoter activity by LPS 

is decreased via inhibition of the nuclear factor-κB (NF-κB) signaling pathway by 

pharmacological NF-κB inhibitors and by overexpression of dominant negative mutants of 

 11



Introduction 
__________________________________________________________________________________________ 

NF-κB inducing kinase (NIK), inhibitor of NF-κB (IκB) kinase β (IKKβ), and IκBα. Moreover, 

the p38 MAPK inihibitor SB203580 and overexpressed dominant negative p38β decreases, 

whereas p38δ increases, the LPS-dependent induction of HO-1 gene expression. The 

transcriptional induction of HO-1 gene expression by LPS is mediated by the CRE/AP-site (-

668/-654) and an E-box motif (-47/-42) of the proximal rat HO-1 gene promoter region, as 

indicated by deletion and mutation analysis of luciferase reporter gene constructs.  

It is also reported that, unexpectedly, the chemical NAD(P)H oxidase inhibitor AEBSF 

induces endogenous gene expression and promoter activity of HO-1 in cell cultures of 

human PBMC and mouse RAW264.7 monocytes. AEBSF-dependent induction of HO-1 gene 

expression is mediated via activation of the PI3K/PKB signaling pathway as determined by 

the application of pharmacological inhibitors and overexpression of dominant negative PKB. 

Similar to the LPS-dependent regulation, AEBSF-dependent induction of HO-1 gene 

expression is reduced by the p38 inhibitors SB203580 and SB202190 and cotransfection of 

dominant negative mutants of p38α and p38β, but not that of p38γ and p38δ. AEBSF and 

PKB-dependent induction of HO-1 promoter activity is markedly reduced by simultaneous 

mutations of an E-box and the CRE/AP-1 element of the proximal promoter. Finally, the 

coactivator p300 and the basic helix-loop-helix transcription factor USF2 are shown to be 

involved in AEBSF-dependent HO-1 gene induction. The data suggest that activation of NF-

κB, PKB and p38 MAPK signaling pathways mediate the transcriptional induction of HO-1 

gene expression by LPS and AEBSF in monocytes.  
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2.    MATERIALS and METHODS 
 
2.1.    Materials 
 
2.1.1.    Chemicals and reagents 
Acrylamide/bisacrylamide 30%, 37.5:1 (Rotiphorese gel) Roth, Karlsruhe, Germany 
Agarose ultra pure      Roth, Karlsruhe, Germany 
Ammonium persulfate (APS)     Serva, Heidelberg, Germany 
Ampicillin       Roche, Basel, Switzerland 
Bacto agar       Difco, Detroit, MI, USA 
Bacto-tryptone       Difco, Detroit, MI, USA 
Bromophenol blue      Merck, Darmstadt, Germany 
Bovine serum albumin (BSA), fraction V   Serva, Heidelberg, Germany 
Cell culture lysis reagent 5x (CCLR)    Promega, Madison, WI, USA  
Chloroform       Roth, Karlsruhe, Germany 
Dimethylsulfoxid (DMSO)     Sigma-Aldrich, Munich, Germany 
Dithiothreitol (DTT)      Sigma-Aldrich, Munich, Germany 
Dry milk       Sucofin, Zeven, Germany 
Ethanol (100%)      Roth, Karlsruhe, Germany 
Ethidium bromide      Dianova, Hamburg, Germany 
Ethylenediamine tetraacetic acid (EDTA)   Merck, Darmstadt, Germany 
Extract of yeast powder     Merck, Darmstadt, Germany 
FuGENE 6 transfection reagent    Roche, Indianapolis, IN, USA 
Glycerol       Sigma-Aldrich, Munich, Germany 
Glycin        Sigma-Aldrich, Munich, Germany 
Glycogen       Roche, Basel, Switzerland 
Luciferase assay system     Promega, Madison, WI, USA 
Methanol       Roth, Karlsruhe, Germany 
Penicillin/Streptomycin     Merck, Darmstadt, Germany 
Phenol        Sigma-Aldrich, Munich, Germany 
Ponceau S       Serva, Heidelberg,Germany 
Potassium acetate      Sigma-Aldrich, Munich, Germany 
Protease inhibitor      Roche, Basel, Switzerland 
Sodium acetate      Merck, Darmstadt, Germany 
Sodium dodecyl sulfate (SDS)    Sigma-Aldrich, Munich, Germany 
Tetra-methylethylendiamine (TEMED)   Serva, Heidelberg, Germany 
Tris base       Sigma-Aldrich, Munich, Germany 
Yeast extract       Difco, Detroit, MI, USA 
Tween 20       Sigma-Aldrich, Munich, Germany 
 
All other standard reagents were from Sigma-Aldrich, if not indicated otherwise. 

 

2.1.2.    Enzymes 
Klenow enzyme      Promega, Madison, WI, USA 
T4 DNA ligase      New England Biolabs, Beverly,  

MA, USA 
T4 polynucleotide kinase     Promega, Madison, WI, USA 
 
All restriction enzymes were from New England Biolabs, Beverly, MA, USA 
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2.1.3.    Pharmacological compounds  
4-(2-aminoethyl) benzenesulfonamide  

(AEBSA)  C8H12N2O2S   Sigma-Aldrich, Munich, Germany 
4-(2-aminoethyl) benzenesulfonyl fluoride  

(AEBSF)   C8H10FNO2S.HCl  Sigma-Aldrich, Munich, Germany 
Caffeic acid phenethyl ester  

(CAPE)  C17H16O4   Sigma-Aldrich, Munich, Germany 
LPS from E. coli  serotype 0111:B4            Sigma-Aldrich, Munich, Germany 
LY294002   C19H17NO3   Calbiochem, La Jolla, CA, USA 
Nap-tosyl-L-lysine chloro-methylketone  

(TLCK)   C14H21ClN2 O3S. HCl   Calbiochem, La Jolla, CA, USA 
PD98059   C16H13NO3   Calbiochem, La Jolla, CA, USA 
SB202190   C20H14FN3O   Calbiochem, La Jolla, CA, USA 
SB203580   C21H16N3OSF   Calbiochem, La Jolla, CA, USA 
SH-5    C29H59O10P   Alexis, San Diego, CA, USA 
SP600125   C14H8N2O   Biomol, Hamburg, Germany 
TNF-α        Roche, Basel, Switzerland 
TPA    C36H56O8   Sigma-Aldrich, Munich, Germany 
Wortmannin   C23H24O8   Calbiochem, La Jolla, CA, USA 
 

2.1.4.    Markers 
Rainbow TM protein molecular weight   Amersham Biosciences, Freiburg,  

Germany 
Biotin Marker       Cell Signaling, Beverly, MA, USA 
DNA molecular weight marker III    Roche, Basel, Switzerland 
1 kb ladder       Roche, Basel, Switzerland 
 

2.1.5.    Kits 
DC Protein Assay kit      Bio-Rad, Munich, German 
Compat-able protein assay preparation reagent kit  Pierce, Rockford, IL, USA 
ExSite Mutagenesis kit      Stratagene, La Jolla, CA, USA 
QIAGEN Plasmid Maxi kits     QIAGEN, Hilden, Germany 
QIAGEN Plasmid Midi kits     QIAGEN, Hilden, Germany 
QuickChangeTM XL Site-Directed Mutagenesis kit   Stratagene, La Jolla, CA, USA 
 
2.1.6.    Materials  for cell culture 
CD14+ immunomagnetic  microbeads   Miltenyi Biotec, Bergisch  

Gladbach, Germany 
Dulbecco’s Modified Eagle’s medium (DMEM)  Gibco, Grand Island, NY, USA 
Endothelial cell basal medium    PromoCell, Heidelberg, Germany 
Fetal bovine serum (FBS)     Biochrom KG, Berlin, Germany 
Ficoll-Paque       Amersham Biosciences, Freiburg,  

Germany 
Gentamycin       PromoCell, Heidelberg, Germany 
Ham’s F12-nutrient mixture     Gibco, Grand Island, NY, USA 
Hepes        Gibco, Gaithersburg, MD, USA 
Non-essential amino acids     Gibco, Gaithersburg, MD, USA 
Penicillin-Streptomycin     PAA, Linz, Austria 
RPMI 1640       Gibco, Gaithersburg, MD, USA 
Sodium-pyruvate      Gibco, Gaithersburg, MD, USA 

 14



Materials and Methods 
__________________________________________________________________________________________ 

Trypsin-EDTA (1X)(w/o Ca & Mg)    Gibco, Grand Island, NY, USA 
Tissue culture dish 6 cm     Falcon, Heidelberg, Germany 
Tissue culture flash      Falcon, Heidelberg, Germany 
Tissue culture 6-well plate (surface area 9.6 cm2)  Greiner, Frickenhausen,  

Germany 
 

2.1.7.    E.coli strains and cell lines 
RapidTransTM competent E. coli    Activ Motive, Rixensart, Belgium 
RAW264.7  mouse monocytic cells   ATCC, Manassas, VA, USA  
ECV304 human endothelial cells   ECCC, Braunschweig, Germany 
LLC-PK1 porcine kidney epithelial cells  ATCC, Manassas, VA, USA 
HeLa  human cervix epithelial cells   ATCC, Manassas, VA, USA 
 
H35 (T7-18) hepatoma cells were from Dr. Heinz Baumann (Roswell Park Cancer Institut, 
Buffallo, NY, USA) 
 

2.1.8.    Plasmids 
pGL3 basic       Promega, Madison, WI, USA 
pNF-κB       Stratagene, La Jolla, CA, USA  
pcDNA3.1       Invitrogen, Karlsruhe, Germany 
Gal4 plasmid system (pFR-luc, pFA-CHOP, pFC2-dbd) 

PathDetect CHOP trans-Reporting system  
(#219015)      Stratagene, La Jolla, CA, USA  

 
The following plasmid was provided by Dr. Craig A. Hauser (The Burnham Institute, La Jolla, 
USA):  

pAP-1  
   

The following plasmid was provided by Dr. Jawed Alam (Ochsner Clinic Foundation, New 
Orleans, LA, USA): 

p3xStRE 
 

The following plasmids were provided by Dr. Richard Gaynor (MD Anderson Cancer Institute, 
Houston, TX, USA): 

NIKdn, IKKβdn, IκBαdn 
 

The following plasmids were provided by Dr. Jiahuai Han (Scripps Research Institute, La 
Jolla, CA, USA): 

(pcDNA3) p38α, p38α(AF), p38β, p38β(AF), p38γ, p38γ(AF), p38δ, p38δ(AF) 
 
 

The following plasmids were provided by Dr. Axel Kahn (Institute Cochin, Paris, France): 
(pCR3) USF2, USF2dn (∆bTDU1) 
 

The following plasmids were provided by Dr. Thomas Kietzmann (Fachbereich Chemie/ 
Biochemie, Universität Kaiserslautern, Germany): 

(pAlter) p300wt, p300mut 
(pCMV5-myc) PDK1dn, (EGB2T-AAA) PKB2dn, (pCMV3-myr) PKBca 
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2.1.9.    Antibodies 
First antibodies : 
HO-1     (# SPA-895)   Stressgen, Victoria, BC, Canada 
COX-2    (# 210-726-1)   Axxora Deutschland, Grünberg,  

Germany 
GAPDH   (# 5G4)   HyTest, Turku, Finland 
ERK    (# 9102)   Cell Signaling, Beverly, MA, USA 
Phospho ERK   (# 9101)   Cell Signaling, Beverly, MA, USA 
JNK    (# 9252)   Cell Signaling, Beverly, MA, USA 
Phospho JNK   (# 9251)   Cell Signaling, Beverly, MA, USA 
p38    (# 9212)   Cell Signaling, Beverly, MA, USA 
Phospho p38   (# 9211)   Cell Signaling, Beverly, MA, USA 
PKB       (# 9272)   Cell Signaling, Beverly, MA, USA 
Phospho PKB (Ser473) (# 9271)   Cell Signaling, Beverly, MA, USA 
Phospho PKB (Thr308) (# 9275)   Cell Signaling, Beverly, MA, USA 
 
Secondary antibodies - horseradish peroxidase conjugated: 
Goat anti-rabbit IgG-HRP (# R1364HRP)  DPC Biermann, Bad Nauheim,  

Germany 
Goat anti-mouse IgG-HRP (# SP1041HRP)  DPC Biermann, Bad Nauheim,  

Germany 
 

2.1.10.    Other materials 
3 mm Whatman paper     Schleicher & Schuell, Dassel,  

Germany 
Lumi-LightPLUS western blotting substrate   Roche, Mannheim, Germany 
Polyvinylidene fluoride membranes (PVDF)   Millipore, Bedford, MA, USA 
X-ray films  X-Omat AR     Kodak, Rochester, NY, USA 
 

2.1.11. Instruments 
Blotting-semidry Whatman      Biometra, Göttingen, Germany 
Centrifuge : RC5C       Sorvall®, Wiesloch, Germany 
         Hettich Rotixa/RP    Hettich, Tuttlingen, Germany 
         Hettich Mikro 22R     Hettich, Tuttlingen, Germany  
Electrophoresis apparatus      Bio-Rad, Munich, Germany 
Incubator CO2       Heraeus, Hanau, Germany 
Laminair HB2448       Heraeus, Hanau, Germany 
Luminometer, Lumat LB 9507     Berthold Technologies,  

Bad Wildbad, Germany 
Microscope Axiovert 10      Zeiss, Oberkochen, Germany 
Spectrophotometer       Beckmann, Munich, Germany 
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2.2.    Methods 
 
2.2.1.    Transformation and preparation of plasmid DNA 
2.2.1.1 .    Medium and solutions 
Luria Broth (LB)-Medium: 
 1 %  (w/v) Bacto-tryptone 
 1 % (w/v) NaCl 
 0.5 %  (w/v) Yeast extract 
 pH 7.5, autoclaved 

  

LB-Agar: 
1 % (w/v) Agar in LB medium, autoclaved 

 100 µg/ml Ampicillin 
   

Solution 1: 50 mM glucose 
  25 mM Tris-Cl, pH 8 
  10 mM EDTA 
  fresh 0.33 µg/µl RNAse A 
 

Solution 2 : 1% SDS in 0.2 N NaOH 
 

Solution 3: 3 M potassium acetate 
  11.5% glacial acetic acid  
 

2.2.1.2.    Transformation of competent E. coli 
The transformation reaction tube was removed from -80˚C storage and placed on ice 

to thaw. 1-5 µg of plasmid DNA was added to thawed cells, mixed by tapping the tube gently 

and was placed on ice immediately. The transformation reaction was incubated on ice for 30 

min, the tube was heat-shocked by immersing in a 42˚C water bath for exactly 30 s and then 

the tube was placed on ice for 2 min. 250 µl LB medium was added and the tube was 

incubated at 37˚C for 1 h with shaking at 225-250 rpm. Using a sterile spreader, 20-200 µl of 

transformation was plated out on a pre-warmed LB agar plate and the plate was allowed to 

completely absorb any excess media. Inverted plates were incubated overnight at 37˚C. 

 
2.2.1.3.    Mini preparation of plasmid DNA 

A single bacterial colony was inoculated into 3 ml of selective LB-medium and grown 

with vigorous shaking for 16 to 18 h. 700 µl culture bacteria was mixed with 300 µl 50% 

glycerol and stored in  -80°C as frozen stock plasmid DNA. 1 ml culture bacteria was 

centrifuged at 14,000 rpm for 30 s. The pellet was resuspended in 150 µl solution 1, 

incubated for 5 min at room temperature (RT), 150 µl solution 2 was added, incubated for 5 
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min at RT, 150 µl solution 3 was added, incubated for 5 min at RT, and then centrifuged for 5 

min. 1 ml cold ethanol (100%) was added to the supernatant, vortexed and incubated for 10 

min at RT and centrifuged for 10 min. The pellet was washed with 1 ml ethanol (70%) and 

centrifuged at maximum speed for 2 min, the supernatant was removed and air-dried pellet 

for 10 min. 20 to 30 µl of 10 mM Tris-Cl (pH 8.0) was added to the pellet and incubated for 2 

min at RT.  

Plasmids preparations were performed with QIAGEN Plasmid Midi or Maxi kits. The 

preparation procedure was according to the manufacturer’s protocol. The concentration of 

DNA was calculated by the measurement of the absorbance at 260 nm and 280 nm. 

 
2.2.1.4.    Agarose gel electrophoresis 
6x loading buffer: 
 0.025% (w/v)  bromophenol blue 
 30% (v/v) glycerol 
 

50x TAE: 
 242 g Tris base 
 57.1 ml glacial acetic acid 
 100 ml 0.5 M EDTA (pH 8.0) 
 

Agarose gels  (0.8-2%) were used for analyzing plasmid DNA. The agarose was 

melted in 1x TAE buffer using a microwave. Before the gel was poured into a casting 

platform, ethidium bromide was added at a dilution of 1:10,000. DNA samples were mixed 

with an appropriate amount of 6x loading buffer before loading into the wells. The voltage of 

electrophoresis was set to 10 V/cm. DNA was visualized by placing the gel on a UV light 

source and photographed. 

 

2.2.2.    Preparation of luciferase promoter constructs  
Construction of HO-1 promoter plasmids 

pHO-1338: 

The construct of the rat HO-1 promoter 5’-flanking region from -1338 to +71 was 

amplified by PCR from rat genomic DNA by using the oligonucleotide 5’-

CTCAGGATTAACAAAACAAAGACACAAAAAG-3’ (-1338/-1309) as forward and 5’-

GAGATGGCTCTGCTCCGGCAGGCTCCACTC-3’ (+42/+71) as reverse primer. The 

resulting PCR product was blunted by Klenow enzyme and was phosphorylated with 

T4 polynucleotide kinase. This DNA-fragment was ligated into the SmaI site of 

pUC18. The insert was excised with KpnI/BamHI and cloned into the KpnI/BglII site of 

pGL3basic (Immenschuh et al., 2000). 
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pHO-754: 

The rat HO-1 promoter 5’-flanking region from -754 to +71 was amplified by PCR 

from rat genomic DNA by using the oligonucleotide 5’-

GCCAGGAATTCGGAGGGTAATTGTCCAAG-3’ (-754/-726) as forward and 5’-

GAGATGGCTCTGCTCCGGCAGGCTCCACTC-3’ (+42/+71) as reverse primer. The 

resulting PCR product was blunted by Klenow enzyme and phosphorylated with T4 

polynucleotide kinase. This DNA-fragment was ligated into the SmaI site of pUC18. 

The insert was excised with KpnI/BamHI and cloned into the KpnI/BglII site of 

pGL3basic (Immenschuh et al., 1998). 

 
pHO-754Am: 

This plasmid was constructed by using PCR-based mutagenesis. The forward primer 

5’-tAGaCTCCGGTACTCAGGCA-3’ (-658/-639), containing a C to T and a T to A 

conversion at position 1 and 4 respectively, and the reverse primer 5’-

CACATGGCTCTGACACATCTATAAC-3’, containing the wild type HO-1 sequences   

-668/-692, were used with the ExSite Mutagenesis kit (Immenschuh et al., 1998). 

 
pHO-754Em:  

The luciferase construct pHO-754Em was generated with the QuickChangeTM XL 

Site-Directed Mutagenesis Kit using the oligonucleotide 5’-

GGCTCAGCTGGGCGGCCACctctagACTCGAGTAC-3’ (Kietzmann et al.,2003). 

 
pHO-754Am/Em: 

 The luciferase reporter gene construct pHO-754Am/Em was generated from pHO-

754Am with the QuickChangeTM XL Site-Directed Mutagenesis Kit using the 

oligonucleotide 5’-GGCTCAGCTGGGCGGCCACctctagACTCGAGTAC-3’. 

 
pHO-347: 

The luciferase reporter gene construct pHO-347 was generated by deletion of the -

754/-347 fragment of HO-754 by ApaI and KpnI followed by blunting of the remaining 

vector with Klenow enzyme and phosphorylation with T4 polynucleotide kinase. This 

DNA fragment was ligated into the SmaI site of pUC18. The insert was excised with 

KpnI/BamHI and cloned into the KpnI/BglII site of pGL3basic (Kietzmann et al., 2003). 
 
pHO-50: 

This plasmid was  generated by PCR using the representative primers. 
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Fig. 4. HO-1 promoter luciferase gene construct. The wild type HO-1 sequence is shown 
on the upper strand, deleted bases are indicated by – and mutated bases are shown in 
lowercase letters and indicated by *. 
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2.2.3.    Generation of human peripheral blood monocytes (PBMC) and cell culture of  
 cell lines 
Human PBMC were isolated from buffy coats of healthy blood donors by Ficoll-Paque 

density gradient centrifugation as described previously (Steinschulte et al., 2003). CD14+ 

monocytes were purified (>95%) using CD14+ immunomagnetic microbeads and 3 x 106 

cells were cultured in 6-well flat-bottom plates with 3 ml RPMI 1640 with L-glutamine, 100 

U/ml penicillin, 100 µg/ml streptomycin, sodium-pyruvate, non-essential amino acids and 

10% FBS. After 2 days, 50% supernatant was replaced with medium containing either 

AEBSF (250 µM), LPS (1 µg/ml) or TPA (0.5 µM).  

RAW264.7 cells were grown in DMEM supplemented with 10% FBS, 100 U/ml 

penicillin and 100 µg/ml streptomycin. Cell cultures were kept under air/CO2 (19:1) at 100% 

humidity. Treatment of cells with LPS or other reagents was performed with serum-free 

medium at the indicated concentrations.  

HeLa and H35 (T7-18) cells were grown in DMEM supplemented with 10% FBS, 100 

U/ml penicillin and 100 µg/ml streptomycin. LLC-PK1 cells were cultured in Ham’s F12 with 

20% DMEM, 15% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. ECV304 cells were 

cultured in endothelial cell basal medium with 5% FBS and 1% Gentamycin (5000 µg/ml). 
 

2.2.4. Western blotting  
2.2.4.1.    Protein preparations from cell cultures 

After washing cell cultures twice with 0.9% NaCl, 300 µl per-well of lysis buffer (0.05 

M Tris-Cl pH 6.8, 2% SDS, 10% glycerol, bromophenolblue, 0.2 M DTT, add fresh 4% 

protease inhibitors) was added and cells were scraped from culture dishes and then 

homogenized by passing through a 25-gauge needle. The homogenate was incubated for 3 

min at 95°C and the protein concentration was determined in the supernatant by the Bradford 

method. 

 

2.2.4.2.    SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
2.2.4.2.1.    Solutions 
1.5 M Tris-Cl pH 8.8 and pH 6.8 (100 ml): 

18.15 g Tris base 
50 ml H2O 
adjusted pH to 8.8 or 6.8 with HCl, filled to 100 ml with H2O 
 

10 x SDS running buffer (1 l) 
 10 g SDS 
 30.3 g Tris base 
 144.1 g glycine 
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 dissolved in 5 l H2O 
 

Resolving gels (mini gel): 
    8%   12% 

H2O   2.3 ml   1.6 ml 
30% acrylamide 1.3 ml   2.0 ml 
1.5 M Tris-Cl pH 8.8 1.3 ml   1.3 ml 
10% SDS  0.05 ml  0.05 ml 
10% APS  0.05 ml  0.05 ml 
TEMED  0.003 ml  0.002 ml 

 
Stacking gels 5% (mini gel): 

H2O   1.4 ml 
30% Acrylamide 0.33 ml 
1.5 M Tris-Cl pH 6.8 0.25 ml 
10% SDS  0.02 ml 
10% APS  0.02 ml 
TEMED  0.002 ml 
 

2.2.4.2.2.    Resolving and stacking gel 
Immediately after addition of TEMED and APS, the running gel solution was poured 

between the glass plates and overlayed carefully with ethanol (70%). After polymerization 

ethanol was removed from the surface of the polymerized gel with a sheet of filter paper. The 

stacking gel was poured on top of the resolving gel and the comb was inserted between the 

glass plates. The electrophoresis apparatus was assembled according to manufacturer’s 

instructions. Total protein (30-60 µg) was loaded onto SDS-polyacrylamide gel (10-12%). 

The voltage of electrophoresis was set to 15 – 25 mA for the stacking gel and to 50 – 60 mA 

for the resolving (separation) gel.  

 

2.2.4.3.    Semi-dry transfer blotting 
Transfer buffer: 

5.8 g Tris base 
2.9 g glycine 
0.37 g SDS 
200 ml methanol 
dissolved in 1 l H2O 
 

The gel was immersed in transfer buffer and equilibrated for 15 min. The immobilon-P 

membrane, PVDF was immersed in 100% methanol for 15 s and transferred to a container of 

H2O for 2 min, then the membrane was equilibrated for at least 5 min in transfer buffer. Three 

sheets of Whatman paper were immersed in transfer buffer and placed in the center of the 

graphite anode electrode plate. The PVDF membrane was placed on top of the Whatman 

paper and the gel was placed on top of the membrane. Three pieces of Whatman paper 

were soaked in the transfer buffer and placed on top of the gel. The cathode plate cover was 
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placed on top of the assembled transfer stack. The current was set at 0.8 mA/cm2  for 1 to 2 

h.  

 

2.2.4.4.    Visualizing the protein 
The blot was stained with Ponceau S to assess the quality of the transfer. The blot 

was stained in a solution of 0.5% Ponceau S, 1% acetic acid for 1 min and destained in H2O 

to the desired contrast or washed with 0.1 N NaOH to remove the stain completely. 

 

2.2.4.5.    Immunodetection 
10x Tris buffer saline (TBS): 

24.2 g Tris base 
80 g NaCl 
adjusted to pH 7.6 with HCl, filled to 1 l with H2O.  
 

1x Tween-TBS (TTBS): 
 100 ml 10x TBS 
 900 ml H2O 
 0.5 - 1 ml Tween 20 
 
The primary antibodies were used in the following dilutions: 
HO-1     1:1,000   
COX-2    1:1,000   
GAPDH   1:1,000   
ERK    1:500    
Phospho ERK   1:500    
JNK    1:500    
Phospho JNK   1:500    
p38    1:500    
Phospho p38   1:500    
PKB        1:500   
Phospho PKB (Ser473)    1:500   
Phospho PKB (Thr308)   1:500   
 
Secondary antibodies - horseradish peroxidase conjugated were used in the following 
dilution: 
Goat anti-rabbit IgG  1:20,000-100,000  
Goat anti-mouse IgG  1:20,000  
 

The PVDF membrane was soaked by a short rinse in methanol, isopropanol or 

ethanol and then washed with H2O. Membranes were blocked with 1x TTBS containing 5% 

dry milk for 30 min at RT under constant shaking. The primary antibodies were applied in 5% 

dry milk or 5 % BSA for 1 h at RT or overnight in 4oC. Then, the membrane was washed in 

1x TTBS for 3 x 2 min and incubated with secondary antibodies for 1 h at RT after which 

membranes were washed in 1x TTBS for 3 x 2 min. 

The membrane was placed between 2 sheets of transparency film and Lumi-Lightplus 

substrate was added onto the membrane, the transparency film was sealed and incubated 
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for 5 to 30 min.  Excess liquid was squeezed out and the membrane was exposed on X-ray 

films for 5 s up to 1 h. 

 

2.2.4.6.    Stripping and reusing membranes 
The membrane was washed for 5 min in H2O, transferred to 0.2 M NaOH for 5 min 

and then washed again in H2O for 5 min. The membrane was then ready for another 

immunoprobing procedure. Non-fat dry milk was used as blocking reagent to effectively 

reprobe the membranes. 
 

2.2.5.    Transfection and luciferase assay 
2.2.5.1.    Transfection 

Cells were plated in 6-well plates 24 h before the transfection experiment. 

Transfection of plasmid DNA into RAW264.7 cells was performed by the liposome method 

using FuGENE 6 transfection reagent.  DMEM serum-free medium was added to a total 

volume of 110 µl (for one well) in an eppendorf tube and 0.5 to 1 µg of reporter plasmid DNA 

was added. The contents was mixed by pipetting several times. One to 2 µl of FuGENE 6 

was added directly into this mixture, mixed by pipetting and incubated for another 15 min at 

RT. Prior to use, FuGENE 6 reagent was mixed gently by inversion. The DNA-lipid complex 

was added in drops to the cells in the presence of medium with FBS (100 µl volume per-

well), distributed around the well and swirled to ensure even dispersal. After transfection cell 

culture was continued for 24 h before cell harvest or treated with various stimuli, as indicated.  

For cotransfection experiments 0.1 to 1.5 µg plasmid DNA of the indicated expression 

vectors was added. The amount of transfection reagent in proportion to the amount of total 

µg DNA was increased accordingly. 

 

2.2.5.2.    Luciferase activity assay 
2.2.5.2.1.    Preparation of cell lysates 

Luciferase cell culture lysis reagent (CCLR) was supplied as a concentrate (5x). The  

working concentration was prepared by adding 1 volume of CCLR 5x to 4 volumes of H2O,  

equilibrated lysis reagent to RT before use. The growth medium from transfected culture 

cells was removed carefully and cells were rinsed with 0.9 % NaCl. Sufficient CCLR was 

added (200-300 µl per-well of a 6-well plate) to cover the cells. The 6-well plate was rocked 

several times to ensure complete coverage of the cells with lysis buffer. Cells were scrapped 

from the culture dishes and transferred to a microcentrifuge tube. The tube was placed on ice 

and centrifuged at 12,000x g for 15 s at RT or for up to 2 min at 4˚C. The cell lysates were 

assayed directly. 
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2.2.5.2.2.    Luciferase assay 
Luciferase assay substrate was reconstituted with 10 ml luciferase assay buffer. This 

luciferase assay reagent was mixed well and equilibrated at RT before use. The luminometer 

injector was primed with luciferase assay reagent and 10 to 50 µl of cell lysate was 

dispensed into a luminometer tube. The tube was placed in the luminometer and reading was 

initiated by injecting 50 to 100 µl of luciferase assay reagent into the tube. The luminometer 

was programmed to perform a 2 s measurement delay followed by a 10 s measurement read 

for luciferase enzyme activity. The reading time was adjusted to work in a linear range in the 

respective experiment. Relative light units of luciferase activity were normalized with sample 

protein. 

 

2.2.6.    Determination of protein concentration  
Sample protein was pre-treated with Compat-AbleTM protein assay preparation 

reagent kit to remove interfere substance and the protein assay was performed with DC 

protein assay reagent kit, this assay is based on the Lowry method. The preparation was 

performed according to the manufacturer’s instructions and concentration of protein was 

calculated by measurement of the absorbance at the wavelength 750 nm.  

 

2.3.    Statistical analysis 
Autoradiographic signals from Western blots were evaluated by videodensitometry 

scanning and quantitation with Imagequant software. The relative densities of bands were 

expressed as fold-induction normalized to GAPDH from at least three independent 

experiments. Data were analysed by Student’s t test for paired values and presented as 

means ± S.E. A value of p ≤ 0.05 was considered as statistically significant. 

Data obtained from luciferase activity measurement were analyzed by Student’s t test 

for paired values and presented as means ± S.E. from at least three independent 

experiments with duplicates of each point.  A value of p < 0.05 was considered as statistically 

significant. 
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3.    RESULTS 
 

3.1.    LPS-dependent induction of HO-1 gene expression in RAW264.7 cells 
 

It has previously been demonstrated that HO-1 gene expression is induced by LPS in 

mononuclear phagocytes (Camhi et al., 1995; 1998). To investigate the regulatory 

mechanisms of LPS-dependent HO-1 gene induction in more detail, the monocytic cell line 

RAW264.7 was applied for the experiments of the present study. Treatment with LPS 

induced HO-1 protein expression in RAW264.7 cells as determined by Western blot analysis 

(Fig. 5A). Up-regulation of HO-1 protein levels was time-dependent with a maximum at 18 h 

(Fig. 5B). HO-1 gene expression was also induced by treatment with LPS on the mRNA level 

(data not shown).   
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Fig. 5. LPS-dependent induction of endogenous HO-1 gene expression in RAW264.7 
cells. (A) RAW264.7 cells were cultured as described in Materials and Methods. Cells were 
treated with LPS (1 µg/ml) or control medium for 18 h, as indicated or, (B) in the presence of 
LPS (1 µg/ml) for the times indicated, or (C) with LPS (1 µg/ml), TPA (0.5 µM), TNFα (5 
µg/ml and 25 µg/ml) or control medium, as indicated. Total protein (60 µg) was subjected to 
Western blot analysis and probed sequentially with antibodies against rat HO-1 and GAPDH. 
*, significant differences LPS versus control. Ctrl, control. 
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Since LPS-dependent induction of HO-1 gene expression may be mediated via an 

autocrine mechanism by the proinflammatory cytokine TNFα, the effect of LPS was 

compared with that of TNFα. As demonstrated in Fig. 5C, treatment with TNFα had no effect 

on HO-1 gene expression. As a control the phorbol ester TPA, which is a known inducer of 

HO-1 gene expression (Alam and Den, 1992), strongly up-regulated HO-1 protein expression 

(Fig. 5C). LPS-dependent induction of HO-1 gene expression appeared to be cell-specific, 

because no induction was observed in cell cultures of LLC-PK1 (porcine kidney epithelial 

cells), H35 (T7-18) (hepatoma cells), HeLa (human cervix epithelial cells) and human 

endothelial cells (ECV304) (data not shown). The data suggest that LPS induces the 

endogenous HO-1 gene expression in RAW264.7 cells. 

 

3.2.    Transcriptional induction of HO-1 gene expression by LPS 

 

Up-regulation of HO-1 gene expression by most stimuli occurs on the transcriptional 

level (Choi and Alam, 1996; Sikorski et al., 2004). Accordingly, pretreatment of RAW264.7 

cells with the transcription inhibitor actinomycin D prevented the LPS-dependent HO-1 

mRNA induction (data not shown). To further investigate the molecular mechanisms of LPS-

dependent HO-1 gene induction, the effect of LPS was determined in transiently transfected 

RAW264.7 cells with luciferase reporter gene constructs with the proximal 1338 bp of the rat 

HO-1 gene promoter (pHO-1338). For a comparison, RAW264.7 cells were transfected with 

reporter gene constructs containing four copies of the NF-κB consensus sequences (pNF-

κB), three copies of the HO-1 antioxidant RE (ARE) (p3xStRE) or three copies of the AP-1 

consensus sequence (pAP-1) (Fig. 6). A marked LPS-dependent induction of luciferase 

activity was determined for pHO-1338 and a lower level of induction was observed for pAP-1, 

pNF-κB and p3xStRE. The data suggest that activation of HO-1 gene expression by LPS in 

RAW264.7 cells is transcriptionally regulated via regulatory DNA sequences of the proximal 

HO-1 promoter region.  
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Fig. 6. LPS-dependent induction of rat HO-1 promoter activity. RAW264.7 cells were 
transiently transfected with reporter gene constructs containing the proximal 1338 bp of the 
rat HO-1 gene promoter region (pHO-1338), four copies of the consensus sequence of NF-
κB (pNF-κB), three copies of the HO-1 stress RE (p3xStRE), three copies of the AP-1 
consensus motif (pAP-1) or empty control vector pGL3basic. 24 h after transfection, cells 
were treated for 18 h with or without LPS (1 µg/ml), as indicated. Cell extracts were assayed 
for luciferase activity and the -fold induction in each experiment relative to the control was 
determined. *, significant differences treatment versus control. Ctrl, control. 

 

 
3.3.    Regulatory role of the NF-κB signaling pathway for LPS-dependent activation of    
          HO-1  promoter activity 
 

The NF-κB signaling pathway has previously been shown to play an important 

regulatory role for LPS-dependent gene regulation (Karin and Ben-Neriah, 2000). Therefore, 

the effect of the pharmacological NF-κB inhibitors caffeic acid phenethyl ester (CAPE) and 

Nap-tosyl-L-lysine chloro-methylketone (TLCK) on LPS-dependent induction of HO-1 

promoter activity was determined in RAW264.7 cells. Up-regulation of HO-1 promoter activity 

by LPS was inhibited by pretreatment with CAPE and TLCK in a dose-dependent manner 

(Fig. 7). For comparison, the regulatory pattern of the reporter gene construct pNF-κB by 

these inhibitors is shown (Fig. 7A and B, right panel). 

To further examine the regulatory role of the NF-κB signaling pathway for LPS-

dependent HO-1 induction, cotransfection experiments were performed with expression 

vectors for dominant negative forms of upstream kinases of the NF-κB pathway, NIK, IKKβ 

and IκBα. As demonstrated in Fig. 8, LPS-dependent induction of HO-1 promoter activity 

was markedly decreased by overexpressed dominant negative NIK, IKKβ and IκBα. Taken 

together, the data demonstrate that activation of the NF-κB signaling pathway plays an 

important role for LPS-dependent induction of HO-1 promoter activity. 
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Fig. 7. Effect of pharmacological NF-κB inhibitors on LPS-dependent induction of HO-1 
promoter activity in RAW264.7 cells. RAW264.7 cells were transiently transfected with the 
HO-1 reporter gene construct pHO-1338 or pNF-κB. 24 h after transfection cells were 
pretreated with the NF-κB inhibitors (A) CAPE and (B) TLCK at the indicated concentrations 
for 1 h. Then, cells were incubated for another 18 h in the absence or presence of LPS (1 
µg/ml). Cell extracts were assayed for luciferase activity and the -fold induction relative to the 
control was determined. *, significant differences treatment versus control; **, TLCK + LPS 
versus LPS. 
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Fig. 8. Inhibition of HO-1 promoter activity by overexpressed dominant negative 
mutants of NIK, IKKβ and IκBα. RAW264.7 cells were cotransfected with the reporter gene 
constructs pHO-1338 or pNF-κB and expression vectors with dominant negative mutants of 
NIK, IKKβ and IκBα, as indicated. 24 h after transfection cells were treated with or without 
LPS (1 µg/ml) for another 18 h. Cell extracts were assayed for luciferase activity and the -fold 
induction relative to the control was determined. *, significant differences treatment versus 
control; **, LPS + IKKβdn versus LPS control , LPS + IκBαdn versus LPS control. NIKdn, 
dominant negative NIK; IKKβdn, dominant negative IKKβ; IκBαdn, dominant negative IκBα. 

 

3.4. Activation of MAPKs by LPS in RAW264.7 cells 

 

To determine the potential role of MAPKs for LPS-dependent induction HO-1 gene 

expression, RAW264.7 cells were treated with LPS for various lengths of time and cell 

extracts were analyzed for phosphorylated and total MAPKs. An increase in the level of 

phosphorylated ERK1 and ERK2 was observed in LPS-treated cells reaching a maximum 

after 15 min (Fig. 9). Moreover, phosphorylation of JNK and p38 was observed in LPS-

treated cells (Fig. 9), suggesting that the three major MAPK pathways are activated by LPS 

in RAW264.7 cells.  

To investigate the regulatory role of MAPKs for LPS-dependent regulation of HO-1 

gene expression, various pharmacological MAPK inhibitors were applied. Pretreatment of 

cells for 1 h with the p38 MAPK inhibitor SB203580 strongly reduced LPS-dependent 

induction of HO-1 promoter activity. By contrast, pretreatment with the MEK inhibitor 

PD98059 and the JNK inhibitor SP600125 did not affect LPS-dependent induction of HO-1 
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promoter activity (Fig. 10A). The data suggest that the p38 signaling pathway plays a major 

regulatory role for the induction of HO-1 by LPS. 
 

 

 

     

 
 
Fig. 9.  Activation of MAPKs by LPS in RAW264.7 cells. RAW264.7 cells were cultured as 
described in Materials and Methods and were treated with LPS (1 µg/ml) for the times 
indicated.  Total protein (60 µg) was subjected to Western blot analysis and probed with 
antibodies for various MAPKs. Membranes were initially used to detect phosphorylated 
MAPKs, then stripped, and probed with antibodies against total MAPKs. Autoradiograms of a 
representative experiment are shown. p-ERK, phospho ERK; p-JNK, phospho JNK; p-p38, 
phospho p38. 

 

 
3.5.    Opposite regulatory roles of p38β and p38δ on LPS-dependent induction of    
          HO-1 gene expression 
 

To further elucidate the regulatory role of p38 for LPS-dependent HO-1 gene 

induction, the effect of overexpressed dominant negative mutants (AF) of the p38α, β, γ, and 

δ isoforms was examined. As demonstrated in Fig 9B, dominant negative p38β inhibited, 

whereas dominant negative p38δ increased, LPS-dependent induction of HO-1 promoter 

activity (Fig. 10B). These effects of dominant negative p38β and p38 were also confirmed for 

the endogenous HO-1 gene expression in RAW264.7 cells (Fig. 10C), indicating that p38β 

and p38δ have opposite regulatory roles for the LPS-dependent induction of HO-1 gene 

expression. 
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Fig. 10. Effect of MAPKs inhibitors on HO-1 promoter activity and role of p38β MAPK in 
the regulation of HO-1 promoter activity by LPS. (A) RAW264.7 cells were  transiently 
transfected with the HO-1 reporter gene construct pHO-1338. 24 h after transfection cells 
were pretreated with the MEK inhibitor PD98059 (20 µM), JNK inhibitor SP600125 (10 µM) 
and p38 MAPK inhibitor SB203580 (20 µM) for 1 h. Then, cells were incubated for another 
18 h in the absence or presence of LPS (1 µg/ml), as indicated. Cell extracts were assayed 
for luciferase activity and the -fold induction relative to the control was determined. *, 
significant differences LPS versus control; **, SB203580 + LPS versus control. (B) 
RAW264.7 cells were cotransfected with pHO-1338  and expression vectors for dominant 
negative p38β, p38δ or empty expression vector, as indicated. 24 h after transfection cells 
were treated with or without LPS (1 µg/ml) for another 18 h. Cell extracts were assayed for 
luciferase activity and the -fold induction relative to the control was determined. *, significant 
differences treatment versus control; **, LPS + p38βdn versus LPS control. (C) Endogenous 
HO-1 protein levels were detected in RAW264.7 that were transfected with expression 
vectors of wild-type and dominant negative of p38β or p38δ. 24 h after transfection cells were 
treated in the absence or presence of LPS (1 µg/ml), as indicated. Total protein (60 µg) was 
subjected to Western blot analysis with antibodies against rat HO-1 or GAPDH. 
Autoradiograms of a representative experiment are shown, respectively. Ctrl, control; dn, 
dominant negative; ev, empty vector; p38βdn, dominant negative p38β; p38δdn, dominant 
negative p38δ; wt, wild-type. 
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3.6.    Role of the NF-κB, CRE/AP-1 and E-box elements for LPS-dependent induction 

of HO-1 promoter activity 
 

To identify potential regulatory DNA sequences that may mediate the LPS-dependent 

induction of HO-1 gene expression, reporter gene constructs with serial deletions of the 

proximal HO-1 promoter 5’-flanking region were transiently transfected into RAW264.7 cells. 

Deletion of a putative NF-κB site (-1002/-994) did not alter the LPS-dependent induction of 

luciferase reporter gene activity. The responsiveness of HO-1 reporter gene constructs to 

LPS, however, was markedly reduced after deletion of DNA sequences from -754 to -347 

and from -347 to -50. Remarkably, even a construct with 50 bp of the proximal HO-1 

promoter gene region which contained an E-box motif (-47/-42) was slightly up-regulated by 

LPS (Fig. 11A). The TF upstream stimulatory factor (USF) has previously been shown to 

mediate LPS-dependent gene regulation (Potter et al., 1991; Goldring et al., 2000; Potter et 

al., 2003) and that of a previously identified HO-1 CRE/AP-1 site (-668/-654) (Immenschuh et 

al., 2000; Kietzmann et al., 2003).  

To further assess the functional roles of an HO-1 E-box motif (-47/-42) and the 

CRE/AP-1 site (-668/-654), the LPS-dependent regulation of HO-1 reporter gene constructs 

with targeted mutations of these sites was examined in more detail. As demonstrated in Fig. 

11B, LPS-dependent induction of luciferase activity of pHO-754Em was not reduced as 

compared to wild-type pHO-754. By contrast, induction of construct pHO-754Am/Em in 

response to LPS was markedly decreased. The data suggest that activation of HO-1 gene 

expression by LPS in RAW264.7 cells is mediated via regulatory DNA sequences of the 

proximal HO-1 promoter region.  
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Fig. 11. Regulation of rat HO-1 gene promoter sequences by LPS in transiently 
transfected RAW264.7 cells. (A) The indicated serially deleted rat HO-1 reporter gene 
constructs were transiently transfected into RAW264.7 cells. 24 h after transfection cells 
were treated for 18 h with or without LPS (1 µg/ml). Localizations of a putative NF-κB 
sequence, the CRE/AP-1 site and the E-box motif are indicated. Cell extracts were assayed 
for luciferase activity and the -fold induction was determined relative to the control. *, 
significant differences LPS versus control; **, pHO-50 + LPS versus pHO-1338 + LPS. (B) 
HO-1 reporter gene constructs with mutations in the CRE/AP-1 and E-box sites of pHO-754 
were generated as described under Materials and Methods. Cell extracts were assayed for 
luciferase activity and the -fold of induction was determined relative to the control. *, 
significant differences LPS versus control; **, pHO-754Am/Em + LPS versus pHO-754 + 
LPS. Ctrl, control. 
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3.7.    Induction of HO-1 gene expression by the NAD(P)H oxidase inhibitor AEBSF in 

cell cultures of mouse RAW264.7 cells and human PBMC 
 

Gene expression of HO-1 and NAD(P)H oxidase has previously been demonstrated 

to be increased simultaneously in monocytes of diabetic patients (Avogaro et al., 2003). 

Since LPS- and TPA-dependent effect have previously been shown to be mediated via 

activation of the plasma membrane-associated NAD(P)H oxidase in mononuclear 

phagocytes (Babior, 1999; Park et al., 2004), the regulatory role of the pharmacological 

NAD(P)H oxidase inhibitor AEBSF on HO-1 gene expression was investigated in more detail.   
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Fig. 12. Induction of HO-1 gene expression by AEBSF in cell cultures of mouse 
monocytic RAW264.7 cells and human PBMC. Mouse monocytic RAW264.7 cells  and 
human PBMC were cultured as described in Materials and Methods. RAW264.7 cells (A) and 
human PBMC (B) were treated with TPA (0.5 µM), LPS (1 µg/ml), AEBSF (250 µM) or 
control medium for 18 h, as indicated. Total protein (30-60 µg) was subjected to Western blot 
analysis and probed sequentially with antibodies against rat HO-1 and GAPDH. In addition, a 
COX-2 antibody was applied in (A). *, significant differences AEBSF versus control. Ctrl, 
control. 
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Unexpectedly, treatment of RAW264.7 cells with AEBSF alone led to a marked 

induction of endogenous HO-1 gene expression (Fig. 12A). AEBSF-dependent induction of 

HO-1 was also observed in human PBMC (Fig. 12B). The magnitude of the endogenous HO-

1 gene induction by AEBSF was in the same range as that observed for LPS and TPA in 

RAW264.7 cells and that for LPS in human PBMC (Fig. 12). For a comparison, the effects of 

these stimuli on COX-2 gene expression, which has previously been shown to be induced by 

LPS and TPA (Smith et al., 2000), was also determined in monocytes.  
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Fig. 13. Effects of AEBSA and combinations of AEBSF with LPS and TPA on 
endogenous HO-1 gene expression in RAW264.7 cells. RAW264.7 cells were cultured as 
described in Materials and Methods and were treated with AEBSF (250 µM), AEBSA (250 
µM), LPS (1 µg/ml), combinations of AEBSF plus LPS, AEBSA plus LPS, TPA (0.5 µM), 
AEBSF plus TPA or control medium for 18 h, as indicated. Total protein (60 µg) was 
subjected to Western blot analysis and probed sequentially with antibodies against rat HO-1 
and GAPDH. *, significant differences AEBSF versus control. Ctrl, control. 

 

 

In contrast to HO-1, COX-2 gene expression was markedly up-regulated by TPA and 

LPS, but not by AEBSF in RAW264.7 cells (Fig. 12A). When added in combination with LPS 

or TPA, AEBSF had an additive effect on the LPS-dependent induction of HO-1 protein 
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levels and caused no major alteration of HO-1 induction by TPA (Fig. 13). Treatment with 4-

(2-aminoethyl) benzenesulfonamide (AEBSA), a homologue of AEBSF in which the sulfonyl 

fluoride of AEBSF is replaced by an amide group with no inhibitory effect on NAD(P)H 

oxidase activity (Diatchuk et al., 1997), did not affect the basal or LPS-induced HO-1 gene 

expression (Fig. 13). The increase of HO-1 protein expression by AEBSF occurred in a time-

dependent manner with a maximum after 8 h (Fig. 14) which was earlier than the maximum 

observed during LPS treatment (see also Fig. 5B).  

Moreover, the induction of HO-1 gene expression by AEBSF showed a dose-

dependency with a peak dose at 250 µM (data not shown). An increase of HO-1 gene 

expression by AEBSF was also observed in human umbilical cord endothelial cells, but not in 

cell cultures of porcine kidney epithelial cells (LLC-PK1) or human cervix epithelial cells (HeLa 

cells) suggesting a cell-specific mode of HO-1 gene regulation by this compound (data not 

shown). The data indicate that the NAD(P)H oxidase inhibitor AEBSF is a potent inducer of 

endogenous HO-1 gene expression in monocytic cells. 
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Fig. 14. Time-dependency of HO-1 gene induction by AEBSF. Mouse monocytic 
RAW264.7 cells were cultured as described in Materials and Methods and were treated with 
AEBSF (250 µM) for the times indicated. Total protein (60 µg) was subjected to Western blot 
analysis and probed sequentially with antibodies against rat HO-1 and GAPDH. *, significant 
differences AEBSF versus control.  
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3.8.    Induction of HO-1 promoter activity by AEBSF 

 

To probe into the regulatory mechanism of AEBSF-dependent HO-1 gene induction, 

RAW264.7 cells were transiently transfected with pHO-1338 which was markedly up-

regulated by treatment with AEBSF. The level of AEBSF-dependent induction of HO-1 

promoter activity was in a similar range as that observed for LPS, but lower than that for TPA 

(Fig. 15A). Simultaneous treatment with AEBSF plus LPS had an additive effect on HO-1 

promoter activity. For a comparison, the effect of AEBSF was also examined in RAW264.7 

cells transfected with reporter gene constructs containing either multiple copies of the 

consensus recognition sequences for NF-κB (pNF-κB) or AP-1 (pAP-1). Both, NF-κB and 

AP-1, have previously been shown to be key TFs for LPS- and TPA-mediated gene 

regulation in mononuclear phagocytes (Guha and Mackman, 2001). No induction by AEBSF 

was observed for luciferase activity of pAP-1 and pNF-κB (Fig. 15A), but LPS and TPA 

markedly induced luciferase activity of these reporter gene constructs (Fig. 15A). 

Remarkably, LPS-dependent induction of constructs pNF-κB and pAP-1 was reduced by 

simultaneous treatment with AEBSF (Fig. 15A, lower panel). Similarly, the TPA-dependent 

induction of pNF-κB, but not that of pAP-1 was inhibited by the presence of AEBSF (Fig. 

15A, lower panel). No regulatory effect on the promoter activity of pHO-1338 was observed 

for the AEBSF homologue AEBSA (Fig. 15B) which agrees with the regulation of 

endogenous HO-1 gene expression (compare with Fig. 13). The data suggest that the 

AEBSF-dependent induction of HO-1 gene expression is mediated via a transcriptional 

mechanism which appears to be independent of NF-κB and AP-1. 
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Fig. 15. Induction of rat HO-1 promoter activity by AEBSF in transiently transfected 
RAW264.7 cells. (A) RAW264.7 cells were transiently transfected with reporter gene 
constructs containing the proximal 1338 bp of the rat HO-1 gene promoter region (pHO-
1338), four copies of the consensus sequence for NF-κB (pNFκB) or three copies of the AP-
1 consensus motif (pAP-1) or empty control vector pGL3basic. 24 h after transfection cells 
were treated for 18 h with or without AEBSF (250 µM), LPS (1 µg/ml), TPA (0.5 µM) or 
combinations of AEBSF plus LPS and AEBSF plus TPA, as indicated. (B) Cells were 
transfected with pHO-1338 and 24 h after transfection cells were treated for 18 h with or 
without AEBSF (250 µM) and AEBSA (250 µM), as indicated. Cell extracts were assayed for 
luciferase activity and the -fold induction in each experiment relative to the control was 
determined. *, significant differences treatment versus control;  **, AEBSF + TPA versus TPA 
and AEBSF + LPS versus LPS. Ctrl, control. 
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3.9.    Regulatory role of the PI3K/PKB pathway for AEBSF-dependent activation of 
HO-1 gene expression 

 

The PI3K/PKB signaling pathway has recently been demonstrated to be involved in 

the induction of HO-1 gene expression by carnosol (Martin et al., 2004) and the 3-hydroxy 3-

methylglutaryl coenzyme A reductase inhibitor simvastatin (Lee et al., 2004). To evaluate the 

regulatory role of this pathway for the AEBSF-dependent induction of HO-1 expression 

various pharmacological inhibitors were used for pretreatment of RAW264.7 cells. Up-

regulation of endogenous HO-1 expression and that of HO-1 promoter activity by AEBSF 

was markedly reduced by pretreatment with the PI3K inhibitor wortmannin (Fig. 16). 

Moreover, the PI3K inhibitor LY294002 and the PKB inhibitor SH-5 caused a significant 

reduction of HO-1 promoter induction by AEBSF (Fig. 16B). 
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Fig. 16. Inhibition of AEBSF-dependent induction of HO-1 gene expression by 
PI3K/PKB inhibitors. (A) RAW264.7 cells were pretreated for 1 h with wortmannin (500 nM) 
before incubation with AEBSF (250 µM). Total protein (40 µg) was subjected to Western blot 
analysis and probed sequentially with antibodies against rat HO-1 and GAPDH. *, significant 
differences treatment versus control; **, Wort + AEBSF versus AEBSF. (B) Cells were 
transiently transfected with reporter gene construct pHO-1338. 24 h after transfection cells 
were treated for 1 h with the PI3K inhibitor wortmannin (500 nm), LY294002 (10 µM) or the 
PKB inhibitor SH-5 (10 µM) before incubation with AEBSF (250 µM) or control medium. After 
18 h cell extracts were assayed for luciferase activity and the -fold induction relative to the 
control was determined. *, significant differences AEBSF versus control; **, Wort + AEBSF 
versus AEBSF, LY + AEBSF versus AEBSF, SH-5 + AEBSF versus AEBSF. Wort, 
wortmannin; LY, LY294002. 
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  To verify that AEBSF is an activator of PKB, cell extracts of AEBSF-treated 

RAW264.7 cells were analyzed for phosphorylated and total PKB. A marked increase of 

Thr308 phosphorylated PKB was observed upon AEBSF treatment (Fig. 17A).  
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Fig. 17. Role of PKB activation for AEBSF-dependent induction of HO-1 promoter 
activity. (A) RAW264.7 cells were treated for 1 h with AEBSF and total protein (60 µg) was 
subjected to Western blot analysis and probed with an antibody for phosphorylated PKB 
(Thr308). Subsequently, the membrane was stripped and reprobed with an antibody against 
total PKB. A representative autoradiogram is shown. (B) RAW264.7 cells were cotransfected 
with pHO-1338, an expression vector for dominant negative PKB, dominant negative PDK or 
empty expression vector, as indicated. 24 h after transfection cells were treated with or 
without AEBSF (250 µM) for another 18 h. Cell extracts were assayed for luciferase activity 
and the -fold induction relative to the control was determined. *, significant difference AEBSF 
+ ev versus control; **, AEBSF + PKBdn versus AEBSF + ev, AEBSF + PDKdn versus 
AEBSF + ev. (C) RAW264.7 cells were cotransfected with pHO-1338 and empty expression 
vector or an expression vector for constitutive active PKB, as indicated. 24 h after 
transfection cell extracts were assayed for luciferase activity and the -fold induction was 
determined relative to the control. *, significant differences PKBca versus control. ev, empty 
vector; p-PKB, phospho PKB; PKBdn, dominant negative PKB; PDKdn, dominant negative 
PDK; PKBca, constitutive active PKB. 
 
 

To confirm the functional relevance of PKB activation for AEBSF-dependent induction 

of HO-1 gene expression, the effects of overexpressed dominant negative and constitutive 

active mutants of PKB were determined. Overexpression of dominant negative PKB slightly 

increased basal HO-1 promoter activity, but abolished the AEBSF-dependent induction of 

HO-1 promoter activity (Fig. 17B). Overexpressed dominant negative phosphoinositide-
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dependent protein kinase-1 (PDK), an effector molecule of PI3K that targets PKB, also 

inhibited the AEBSF-dependent activation of HO-1 promoter activity (Fig. 17B). Finally, the 

specificity of HO-1 gene expression via the PKB pathway was examined by cotransfection of 

a constitutively active mutant of PKB (myrPKB) which led to a significant up-regulation of 

HO-1 gene promoter activity (Fig. 17C). The data indicate that the PI3K/PKB signaling 

cascade is crucially involved in AEBSF-dependent regulation of HO-1 gene expression. 

 

3.10.    Role of p38 MAPK for HO-1 gene regulation by AEBSF 

 

To determine the potential regulatory role of MAPKs for the induction of HO-1 gene 

expression by AEBSF, the phosphorylation of MAPKs was analyzed by Western blot analysis 

in RAW264.7 cells. Phosphorylation of JNK and p38 was increased in AEBSF-treated cells 

with a maximum after 30 min, respectively. By contrast, no effect was observed for the level 

of phosphorylated ERK1/2 in AEBSF-treated cells (Fig. 18). This regulatory pattern of MAPK 

phosphorylation was different from that observed for LPS in RAW 264.7 cells (for comparison 

see Fig. 9).  
 
 

      
 
 
Fig. 18. Activation of MAPKs by AEBSF in RAW264.7 cells. RAW264.7 cells were 
cultured as described in Materials and Methods and were treated with AEBSF (250 µM) for 
the times indicated. Total protein (60 µg) was subjected to Western blot analysis and probed 
with antibodies for various MAPKs. Membranes were initially used to detect phosphorylated 
MAPKs, then stripped and probed with antibodies against total MAPKs. Autoradiograms of a 
representative experiment are shown, respectively. p-ERK, phospho ERK;  p-JNK, phospho 
JNK;  p-p38, phospho p38. 
 

 43



Results 
__________________________________________________________________________________________ 

Next, the effects of specific MAPK inhibitors on the AEBSF-dependent regulation of 

the endogenous HO-1 gene expression was examined. The p38 inhibitor SB203580, but not 

the ERK inhibitor PD98059 nor the JNK inhibitor SP600125, reduced the AEBSF-dependent 

induction of HO-1 protein expression (Fig. 19). 
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Fig. 19. Effect of MAPK inhibitors on AEBSF-dependent induction of HO-1 gene 
expression. (A-C) RAW264.7 cells were pretreated for 1 h with various inhibitors of MAPKs 
at the indicated concentrations. Thereafter, cells were incubated for another 18 h in the 
absence or presence of AEBSF (250 µM), as indicated. Total protein (60 µg) was analyzed 
by Western blot analysis with antibodies against rat HO-1 and GAPDH. Autoradiograms of a 
representative experiment are shown, respectively. *, significant differences treatment versus 
control; **, SB203580 + AEBSF versus AEBSF.  
 

 

To investigate the role of MAPKs for the transcriptional regulation of the HO-1 gene 

by AEBSF, the effects of MAPK inhibitors on HO-1 promoter activity were determined. While 

inhibitors of the ERK and JNK pathways, PD98059 and SP600125, had no effects, 

respectively (Fig. 20A), the p38 inhibitors SB203580 and SB202190 abolished AEBSF-

dependent induction of HO-1 promoter activity (Fig. 20B). The regulatory role of p38 for 

AEBSF-dependent HO-1 gene induction was further delineated by cotransfection of 

expression vectors with dominant negative mutants (AF) of the p38α, β, γ and δ isoforms. 

Overexpression of dominant negative p38α and p38β significantly reduced the induction of 

HO-1 promoter activity by AEBSF, but dominant negative forms of p38γ and p38δ had only 

minor inhibitory effects (Table 4). Taken together, the data suggest that p38α and p38β play 

a major regulatory role for the induction of HO-1 gene expression by AEBSF. 
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Fig. 20. Effect of MAPK inhibitors on AEBSF-dependent induction of HO-1 promoter 
activity. RAW264.7 cells were transfected with the HO-1 reporter gene construct pHO-1338. 
24 h after transfection cells were pretreated with the MAPKs inhibitors (A) PD98059 (4 µM), 
or SP600125 (10 µM), or (B) SB203580, and SB202180 at the indicated concentrations for 1 
h. Then, cells were incubated for another 18 h in the absence or presence of AEBSF (250 
µM). Cell extracts were assayed for luciferase activity and the -fold induction relative to the 
control was determined. *, significant differences AEBSF versus control; **, SB203580 + 
AEBSF versus AEBSF, SB202190 + AEBSF versus AEBSF. 
 

 

Table 4. Comparative effects of overexpressed dominant negative p38 isoforms on 
AEBSF-dependent induction of HO-1 promoter activity. RAW264.7 cells were 
cotransfected with pHO-1338 and dominant negative mutants (AF) for p38α, β, γ and δ or empty 
expression vector. After 18 h cell culture was continued in the presence of AEBSF or control 
medium. Values show the fold induction of luciferase activity relative to control. *, significant 
differences p38αdn + AEBSF versus ev + AEBSF, p38βdn + AEBSF versus ev + AEBSF.; 
ev, empty vector; p38αdn, dominant negative p38α; p38βdn, dominant negative p38β; p38γdn, 
dominant negative p38γ; p38δdn, dominant negative p38δ. 
   

Cotransfected 
plasmid 

fold induction of luciferase 
activity by AEBSF 

empty vector 4.5 ± 0.5 

p38αdn 1.3 ± 0.2* 

p38βdn 1.2 ± 0.1* 

p38γdn 2.5 ± 0.2 

p38δdn 3.2 ± 0.4 
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3.11.    p38 is a downstream target of AEBSF-dependent PKB activation  

 

To find out whether PKB is required for AEBSF-dependent stimulation of p38 MAPK, 

the activation of p38 was determined with a fusion plasmid containing the transactivation 

domain of the TF CHOP and the DNA-binding domain of yeast Gal4 (pFA-CHOP). 

Transactivation via pFA-CHOP is specifically controlled by p38-dependent phosphorylation of 

two adjacent regulatory serine residues of the CHOP transactivation domain (Wang and Ron, 

1996) which can be monitored via a cotransfected Gal4 luciferase reporter gene construct 

(pGal4-luc). Treatment with AEBSF induced activity of pFA-CHOP to a similar level as that 

for the known p38 activator TPA (Fig. 21). AEBSF-dependent induction of pFA-CHOP was 

reduced by pre-treatment with the PKB inhibitor SH-5 and overexpression of dominant 

negative PKB. As expected, up-regulation of pFA-CHOP-mediated luciferase activity was 

inhibited by the p38 inhibitor SB202190. The data suggest that AEBSF-dependent activation 

of PKB is required for activation of p38 in RAW264.7 cells. 
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Fig. 21. Regulation of AEBSF-dependent induction of CHOP transactivity by inhibiton 
of p38 MAPK and PKB. RAW264.7 cells were cotransfected with luciferase reporter gene 
construct pGal4-luc, pFC2-dbd, pFA-CHOP and an expression vector for dominant negative 
PKB, as indicated. 24 h after transfection cells were treated with AEBSF (250 µM), TPA (0.5 
µM), SB202190 (2.5 µM) or PKB inhibitor SH-5 (20 µM), as indicated. Cell extracts were 
assayed for luciferase activity and the -fold induction relative to the control was determined. 
*, significant differences treatment versus control; **, SB202190 + AEBSF versus AEBSF, 
SH-5 + AEBSF versus AEBSF, SB202190 + TPA versus TPA, PKBdn + AEBSF versus 
AEBSF. PKBdn, dominant negative PKB. 
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3.12.    Role of the E-box and CRE/AP-1 elements for AEBSF- and PKB-dependent 
induction of HO-1 promoter activity 

 

To identify (the) cis-acting RE(s) that mediate(s) the AEBSF-dependent induction of 

HO-1 gene expression, various HO-1 promoter gene constructs were transiently transfected 

into RAW264.7 cells. Deletion of the rat HO-1 gene promoter sequence from -1338 to -754 

did not affect the responsiveness of reporter gene activity by AEBSF (pHO-754; Fig. 22A). 

Neither of two reporter gene constructs with a mutation of the E-box site (-47 to -42; pHO-

754Em) or the CRE/AP-1 site (-668 to -654; pHO-754Am) showed a lower responsiveness to 

AEBSF. By contrast, simultaneous mutation of the E-box site and the CRE/AP-1 element 

(pHO-754Am/Em) led to a marked reduction of AEBSF-mediated induction of reporter gene 

activity (Fig. 22A).  

The regulation of these HO-1 reporter gene constructs was also examined in cells 

that were cotransfected with an expression vector for constitutive active PKB. Similar to the 

regulatory pattern of reporter gene activity by AEBSF, the overexpression of a constitutive 

active PKB mutant induced luciferase activity of wild type pHO-754, but not that of pHO-

754Am/Em (Fig. 22B). No appreciable reduction of PKB-mediated responsiveness was 

observed for the HO-1 promoter gene constructs with either a mutation of the E-box or the 

CRE/AP-1 site (data not shown). These findings suggest that the AEBSF- and PKB-

dependent activation of HO-1 gene expression is mediated via a transcriptional mechanism 

that involves the E-box and the CRE/AP-1 element of the proximal HO-1 promoter region. 
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Fig. 22. Regulation of various rat HO-1 promoter gene constructs by AEBSF and 
overexpressed constitutive active PKB. (A) HO-1 reporter gene constructs with the 
indicated mutations of the E-box and the CRE/AP-1 element of the rat HO-1 promoter were 
transfected into RAW264.7 cells. 24 h after transfection cells were treated for 18 h with 
control medium or medium supplemented with AEBSF (250 µM). Cell extracts were assayed 
for luciferase activity, and the -fold induction was determined relative to the control. *, 
significant differences treatment versus control; **, pHO-754Am/Em + AEBSF versus pHO-
754 + AEBSF. (B) Cells were cotransfected with the indicated HO-1 reporter gene constructs 
and empty expression vector or an expression vector for constitutive active PKB, as 
indicated. 24 h after transfection cell extracts were assayed for luciferase activity and the -
fold induction was determined relative to the control. *, significant differences PKBca versus 
control; **, pHO-754Am/Em + PKBca versus pHO-754 + PKBca. Ctrl, control; ev, empty 
vector; PKBca, constitutive active PKB. 
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3.13. Role of USF2 and coactivator p300 for the AEBSF-dependent induction of HO-1  
            promoter activity 
 

The identification of a functional E-box motif in the HO-1 promoter along with the 

previous findings that basic helix-loop-helix TFs may serve as nuclear targets for p38 

(Galibert et al., 2001) suggest that USF2 could be involved in the AEBSF-dependent 

induction of HO-1 gene expression. Therefore, cotransfection experiments were performed 

with expression vectors for wild type USF2 and a dominant negative mutant of USF 

(∆bTDU1) which dimerizes with USF proteins, but lacks the DNA-binding and transactivation 

domain (Lefrancois-Martinez et al., 1995). The AEBSF-dependent responsiveness of HO-1 

reporter gene activity was enhanced by overexpressed wild type USF2 and was reduced by 

overexpression of the ∆bTDU1 mutant (Fig. 23).  
 

    

 
 

 

pHO-1338

 
 
 
Fig. 23. Effect of overexpressed USF2 on AEBSF-dependent induction of HO-1 
promoter activity. RAW264.7 cells were cotransfected with pHO-1338 and expression 
vectors for either wild-type USF2 or dominant negative USF2 (∆bTDU1) or an empty control 
expression vector, as indicated. 24 h after transfection cells were treated for another 18 h 
with or without AEBSF (250 µM). Cell extracts were assayed for luciferase activity and the -
fold induction relative to the control was determined. *, significant differences AEBSF versus 
control; **, ∆bTDU1 + AEBSF versus  control + AEBSF. Ctrl, control; ev, empty vector. 
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USF2 has recently been found to recruit the transcriptional coactivator p300/ CREB-

binding protein (CBP) (Goueli and Janknecht, 2003; Blobel, 2002). Therefore, the effect of a 

cotransfected expression vector for p300 on reporter gene activity of wild type pHO-754 and 

that of pHO-754Am/Em with targeted mutations of the E-box and the CRE/AP-1 sites in 

RAW264.7 cells was examined. Overexpression of p300 strongly increased the basal and 

AEBSF-dependent induction of pHO-754 promoter activity (Fig. 24). In contrast, 

overexpression of p300 only had a minor effect on the basal and AEBSF-augmented 

promoter activity of pHO-754Am/Em. No effect of cotransfected p300 was observed for 

luciferase activity of control vector pGL3basic (Fig. 24). Taken together, the data suggest 

that USF2 and p300 are involved in the transcriptional induction of HO-1 gene expression by 

AEBSF in RAW264.7 cells. 
 
 

    
 
 
Fig. 24. Effect of overexpressed p300 on AEBSF-dependent induction of HO-1 
promoter activity. RAW264.7 cells were cotransfected with reporter gene constructs pHO-
754, or pHO-754Am/Em and an expression vector for p300 or empty expression vector. 24 h 
after transfection cells were treated for 18 h with or without AEBSF (250 µM). Cell extracts 
were assayed for luciferase activity and the fold induction relative to the control was 
determined. *, significant differences AEBSF versus control; **, p300 versus ev.  Ctrl, control; 
ev, empty vector.  
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4.    DISCUSSION 
 

The HO-1 gene codes for the first and rate-limiting enzyme of heme degradation and 

is induced by multiple stress stimuli. Overexpression of the HO-1 gene not only plays a 

protective role against oxidant damage of cells and tissues, but also modulates the 

inflammatory immune response. The major findings of the present study are that the 

inflammatory mediator LPS and the NAD(P)H-oxidase inhibitor AEBSF induce HO-1 gene 

expression in cell cultures of mouse monocytes by a transcriptional mechanism that involves 

cis-acting REs of the proximal rat HO-1 gene promoter. Activation of the NF-κB-, PKB- and 

p38 MAPK-signaling pathways is involved in the LPS- and AEBSF-dependent induction of 

HO-1 gene expression. 
 
 
 
4.1.    Induction of HO-1 gene expression by LPS and the NAD(P)H oxidase inhibitor 

AEBSF in monocytes 
 
The prototypical inflammatory stimulus LPS induced HO-1 gene expression in our 

experimental model of RAW264.7 monocytes (Fig. 5) which agrees with previous reports 

(Camhi et al., 1995, 1998, Immenschuh et al., 1999). By contrast, the up-regulation of HO-1 

gene expression by the NAD(P)H oxidase inhibitor AEBSF was unexpected (Fig. 12) 

because LPS-dependent activation of NAD(P)H oxidase is mediated by direct interaction of 

the TLR4 with this enzyme (Park et al., 2004) and AEBSF has previously been shown to 

inhibit the enzymatic generation of ROS by NAD(P)H oxidase (Diatchuk et al., 1997). 

Therefore, it was postulated that pretreatment of monocytes with AEBSF would down-

regulate not only the induction of HO-1 by LPS, but also that by the phorbol ester TPA, which 

is a potent inducer of the membrane-associated NAD(P)H oxidase (Babior, 1999). As 

demonstrated in Fig. 13 the opposite was true and the up-regulation of HO-1 gene 

expression by LPS was increased by simultaneous treatment of monocytes with AEBSF plus 

LPS. Moreover, the induction of HO-1 gene expression by TPA was not markedly affected by 

treatment with AEBSF (Fig. 13). Remarkably, the induction of HO-1 gene expression by 

AEBSF was not restricted to mouse RAW264.7 cells, but was also observed in cultured 

human PBMC (Fig. 12B). This finding may suggest that AEBSF-dependent HO-1 induction 

may be of physiological significance in mononuclear phagocytes. The induction of HO-1 

gene expression by AEBSF appears to be specific, because no regulatory effect of this 

compound was observed for COX-2 gene expression, which is known to be induced by a 
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number of stimuli that also up-regulate the HO-1 gene, including LPS and TPA (Fig. 12A). 

The unexpected observation that AEBSF is an inducer of HO-1 may be similar to the up-

regulation of HO-1 gene expression by the antioxidant compounds pyrrolidine 

dithiocarbamate, caffeic acid phenethyl ester or carnosol (Hartsfield et al., 1997; 1998; 

Scapagnini et al., 2002; Martin et al., 2004). The antioxidant and metal-chelator pyrrolidine 

dithiocarbamate has previously been demonstrated to be a potent inducer of HO-1 gene 

expression in monocytes (Hartsfield et al., 1997; 1998). More recently, caffeic acid phenethyl 

ester and the herb-derived diterpene carnosol were shown to increase HO-1 gene 

expression in astrocytes and rat pheochromocytoma cells (Scapagnini et al., 2002; Martin et 

al., 2004), respectively. Remarkably, the time courses of endogenous HO-1 gene expression 

in RAW264.7 cells in response to LPS and AEBSF were different suggesting that distinct 

mechanisms mediate the induction of HO-1 gene expression by these compounds (compare 

Figs. 5B and 14). 
 
 
 
4.2.    Transcriptional mode of HO-1 induction by LPS and AEBSF and identification of 

cis-acting REs of the proximal rat HO-1 promoter region 
 

To further investigate the regulatory mechanisms that are involved in the induction of 

HO-1 gene expression by LPS and AEBSF, transfection experiments with reporter gene 

constructs of the rat HO-1 gene promoter were performed in RAW264.7 monocytes.  

 

REs for the LPS-dependent HO-1 gene induction 

It has been demonstrated in earlier reports that the LPS-dependent induction of HO-1 

gene expression is mediated by two far upstream regions localized at -4 kb and -12 kb 

relative to the transcription initiation site of the mouse HO-1 promoter, respectively (see also 

Fig. 3). Since both regions contain several potential AP-1 recognition sequences, it has 

initially been assumed that members of the AP-1 TF family would interact with these two HO-

1 promoter regions and would mediate stress-dependent HO-1 activation such as that 

elicited by LPS (Alam, 1994; Alam et al., 1995; Camhi et al., 1998). In a follow-up study, 

however, it turnt out that these two promoter regions were nuclear targets for the stress-

regulated TF Nrf2 (Alam et al., 1999). Nrf2 is a prototypical regulator for oxidative stress 

stimuli such as electrophilic substances and glutathione-depleting compounds (for a review 

see Nguyen et al., 2003). It is well known that NF-κB plays an important role for the induction 

of numerous genes by LPS in mononuclear phagocytes (Guha and Mackman, 2001). 
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Therefore, it was first hypothesized that a putative NF-κB site of the rat HO-1 promoter (-

1002/-994), which matches the prototypical NF-κB consensus sequence in 10 out of 11 bp, 

may be involved in the transcriptional induction of LPS-dependent HO-1 gene induction. This 

putative NF-κB site, however, did not play a functional role for HO-1 induction by LPS as 

demonstrated by transfection studies with various luciferase reporter gene constructs (Fig. 

11A). The data rather suggest that (a) RE(s) of the proximal promoter localized between -347 

and -50 may mediate the LPS-dependent induction of HO-1 gene expression, because a 

major reduction of LPS-dependent HO-1 promoter induction was observed after deletion of 

this sequence (Fig. 11A). Similar to the findings of the present study, it was recently 

demonstrated by Chung et al. (2005) that two recognition sequences for the TF Ets (-125 to -

121 and -93 to -88) of the proximal HO-1 promoter played a crucial role for HO-1 induction by 

LPS in monocytes. The authors have shown that deletion of these Ets binding sites led to a 

complete loss of LPS-dependent induction of HO-1 promoter activity in transfected 

RAW264.7 cells. Moreover, it was shown that overexpression of wild type Ets increased, but 

overexpression of dominant negative Ets blunted the LPS-dependent induction of HO-1 

promoter activity. Taken together, the data of the present study along with those of Chung et 

al. (2005) demonstrate that not only the distal promoter region of the HO-1 gene, but also the 

proximal promoter region of the rodent HO-1 gene plays an important role for the regulation 

of HO-1 gene expression by LPS and, possibly, also by other stress genes. 

 

REs for the AEBSF-dependent HO-1 gene induction 

In contrast to the transcriptional HO-1 induction by LPS, the responsiveness of 

luciferase reporter gene constructs with serial deletions of the rat HO-1 gene promoter to 

AEBSF showed no significant reduction (data not shown). It is also remarkable that reporter 

gene constructs with target sequences for NF-κB and AP-1, both of which are known to 

mediate the gene regulation by LPS and TPA, did not respond to treatment with AEBSF (Fig. 

15). Simultaneous deletion of the E-box (-47 to -42) and the CRE/AP-1 element (-664 to -

657) of the proximal HO-1 promoter region, however, significantly reduced the AEBSF-

dependent induction of HO-1 reporter gene activity (Fig. 22A). The identification of a 

functional E-box motif in the HO-1 promoter suggested that basic helix-loop-helix TF such as 

USF2 may be involved in the AEBSF-dependent induction of HO-1 gene expression. In fact, 

the data on the regulatory effects of overexpressed wild type or dominant negative USF2 

supported this notion (Fig. 23). The observations may agree with a previous report in which 

the proximal E-box motif of the human HO-1 gene promoter was demonstrated to play a 
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major regulatory role for the phorbol ester-dependent HO-1 gene regulation in the monocytic 

cell line THP-1 (Muraosa et al., 1993). In addition, it has recently been reported that USF2 

mediated basal and inducible HO-1 gene expression in renal proximal tubular cells via 

physical interaction with the proximal E-box of the human HO-1 gene as demonstrated by in 

vivo footprinting assays (Hock et al., 2004). It is also conceivable, however, that other TFs 

that target E-box sequences, may interact with the proximal HO-1 E-box such as the TFs 

Myc and Max. A regulatory role of Max via interaction with the proximal rat HO-1 E-box has 

previously been demonstrated for HO-1 gene induction by sodium arsenite in primary rat 

hepatocytes (Kietzmann et al., 2003).  

The data of the present study also indicate that p300, which is also known as CREB-

binding protein (CBP), is involved in AEBSF-dependent HO-1 gene induction. This 

mechanism appears to involve a cooperative interaction of the E-box and the CRE/AP-1 

element of the HO-1 promoter (Fig. 24). Since p300 mediates cooperative interaction of 

transcriptional regulators via protein-protein contacts and links TFs with components of the 

basal transcription machinery (Blobel, 2002), it is conceivable that interaction of p300, USF2 

and AP-1 may participate in this regulatory mechanism (see scheme Fig. 26). Such a 

conclusion is underscored by the observation that overexpression of p300 markedly 

enhanced reporter gene activity of a construct with the wild type HO-1 gene promoter 

sequence (pHO-754), but not that of a construct with mutations of the E-box and the 

CRE/AP-1 sites (pHO-754Am/Em; Fig. 24). A cooperative mode of gene regulation via a 

p300/CBP-dependent mechanism has previously been shown for the epidermal growth 

factor-dependent up-regulation of keratin 16 gene expression by interaction with the TFs SP-

1 and AP-1 (Wang and Chang, 2003) and for the insulin-dependent induction of glucokinase 

gene expression by interaction with hypoxia-inducible factor-1 and hepatocyte nuclear factor-

4α (Roth et al., 2004).  
 
 
 
4.3.    Signaling pathways that mediate the LPS- and AEBSF-dependent induction of 

HO-1 gene expression in monocytes 
 

Induction of HO-1 gene expression by LPS and AEBSF is mediated by distinct 

signaling cascades in RAW264.7 cells. Up-regulation of HO-1 by either stimulus, however, is 

at least in part, mediated via activation of the common downstream MAPK p38 (summarized 

in Figs. 25 and 26).  
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Fig. 25. Signaling pathways of LPS-dependent induction of HO-1 gene expression 

 

LPS-dependent activation of multiple intracellular signaling cascades is mediated via 

the TLR4. A central player of TLR4-mediated signaling is NF-κB (for a scheme see Fig. 25). 

The fact that two pharmacological inhibitors of NF-κB (Fig. 7) and dominant negative mutants 

of kinases of the NF-κB signaling pathway (Fig. 8) inhibit the LPS-dependent induction of 

HO-1 promoter activity, strongly suggests that NF-κB is involved in LPS-dependent induction 

of HO-1 gene expression. The nuclear target of this signaling cascade that activates the HO-

1 promoter, however, is not entirely clear from the present study. A putative NF-κB 

recognition sequence of the HO-1 promoter (-1002/-994), which could be a nuclear target of 
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this pathway, does not seem to play a role for the induction of the HO-1 gene expression 

(Fig. 9A). Interestingly, it has recently been demonstrated that NF-κB is a crucial upstream 

regulator of AP-1 proteins such as JunB, JunD and B-ATF (Krappmann et al., 2004). The 

master regulator within this network is the IKK complex which is responsible for activation 

and repression of various early immediate genes. Since AP-1 has previously been shown to 

be involved in the regulation of the HO-1 gene via interaction with the CRE/AP-1 site of the 

proximal promoter region (Immenschuh et al., 2000; Kietzmann et al., 2003), it is conceivable 

that an IKK/NF-κB-dependent pathway may be involved in the regulatory mechanism 

described in the present study. Moreover, additional pathways other than the NF-κB cascade 

could be involved in the LPS-dependent induction of HO-1 gene expression (for a review see 

Guha and Mackman, 2001). The possibility that an autocrine mechanism involving the 

cytokine TNFα may participate in LPS-dependent induction of HO-1 as previously suggested 

by others (Oguro et al., 2002), is not likely in our experimental system, because treatment 

with recombinant TNFα did not affect HO-1 gene expression in RAW264.7 cells (Fig. 5C). 

Alternatively, cross-talk of the NF-κB pathway with other upstream signaling cascades, could 

be involved in LPS-dependent activation of HO-1. As an example, Irie and colleagues have 

previously shown that LPS-dependent induction of NF-κB is mediated via the MAPK/ERK 

kinase kinase, transforming growth factor-β activated kinase-1 (Irie et al., 2000).  

The present data clearly demonstrate that activation of the p38 MAPK signaling 

pathway is involved in the induction of HO-1 gene expression by LPS in RAW264.7 cells 

(Fig. 9). Overexpression of dominant negative mutants of p38β and p38δ had opposing 

effects on the LPS-dependent induction of HO-1 gene expression in RAW264.7 cells (Fig. 

10B, C) suggesting that various isoforms of p38 play different regulatory roles for LPS-

mediated gene regulation. These findings are similar to a recent report, in which AP-1-

mediated gene regulation has been shown to be modulated in a highly specific manner by 

various p38 isoforms in human breast cancer cells (Pramanik et al., 2003). Clearly, the 

potential interaction of the NF-κB and p38 signaling pathways for the regulation of HO-1 

gene expression remains to be clarified. Saccani et al. (2002) have previously demonstrated 

that recruitment of NF-κB to a subset of inflammatory genes in response to microbial 

products is mediated via the p38 pathway. These authors have shown that not direct DNA-

binding of NF-κB mediated this regulatory mechanism, but modification of the accessibility to 

NF-κB binding sites in a set of NF-κB-inducible genes was modulated via changes to 

phosphorylation and acetylation of histone H3 (Saccani et al., 2002). Independently, a 

complex interplay of upstream signaling cascades has been demonstrated to be involved in 
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the NF-κB-dependent gene regulation of the monocyte chemoattractant protein-1 gene 

(Goebeler et al., 2001). Moreover, it has recently been demonstrated by Yang et al. (2003) in 

mouse embryo fibroblasts from IKKβ-deficient animals that this kinase plays a regulatory role 

which is independent of direct transcriptional activation. Finally, it has been demonstrated 

that p38-dependent phosphorylation of the TF TATA-binding protein by LPS is necessary for 

the activation of NF-κB-dependent gene regulation (Carter et al., 2001). Clearly, further 

studies are necessary to elucidate the potential cross-talk of these signaling cascades in the 

context of HO-1 gene regulation.  
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Fig. 26. Signaling pathways of AEBSF-dependent induction of HO-1 gene expression 

 

Since LPS-dependent activation of NAD(P)H oxidase is mediated by direct interaction 

of TLR4 with this enzyme (Park et al., 2004), it was postulated that treatment with AEBSF 

would inhibit the LPS-dependent HO-1 gene induction. Unexpectedly, however, an opposite 
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regulatory pattern of HO-1 gene expression was observed in cell cultures of RAW264.7 cells 

and human PBMC. Simultaneous treatment of AEBSF plus LPS lead to an additive induction 

of endogenous HO-1 gene expression and promoter activity (Figs. 13, 15A). The reduction of 

AEBSF-dependent HO-1 gene induction by pharmacological inhibitors of the PI3K/PKB 

pathway and overexpression of dominant negative mutants of PKB indicated that the serine/ 

threonine kinase PKB plays a major role for the AEBSF-dependent activation of the HO-1 

gene in monocytes (Figs. 16, 17). The significance of PKB activation for HO-1 gene 

regulation was confirmed by the finding that HO-1 promoter activity was highly induced by 

overexpressed constitutively activated PKB (Fig. 17). A regulatory role of the PKB pathway 

for the induction of HO-1 gene expression has recently been demonstrated in other cell 

culture systems. PKB has been shown to mediate the HO-1 gene up-regulation by the 3-

hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin in human and rat 

vascular smooth muscle cells (Lee et al., 2004). Independently, the phytochemical carnosol 

has been shown to activate HO-1 gene expression in a PKB-dependent manner in PC12 

pheochromocytoma cells (Martin et al., 2004).  

The downstream targets of PKB, however, remained elusive in these earlier reports. 

The present work shows that PKB is required for the activation of p38 MAPK by AEBSF (Fig. 

21). It is demonstrated in a Gal4 luciferase assay that the AEBSF-dependent induction of a 

specific p38 target construct (Gal4-CHOP; Wang and Ron, 1996) is inhibited by treatment 

with the PKB inhibitor SH-5 and by overexpressed dominant negative PKB (Fig. 21). 

Therefore, p38 MAPK appears to be a downstream target of PKB in RAW264.7 monocytes. 

The inhibitory effects of specific pharmacological MAPK inhibitors and various isoforms of 

dominant negative mutants of p38 indicated that p38α and p38β, but not ERK and JNK, are 

involved in AEBSF-dependent induction of HO-1 gene expression (Figs. 19, 20, Table 4). 

Contradictory findings on the potential cross-talk between the PKB and p38 signaling 

pathways have previously been reported by others. In agreement with the present findings, 

Lee et al. (2004) have demonstrated that stimulation of p38 MAPK by anisomycin was 

attenuated by inhibition of the PKB pathway in a follicular dendritic cell line suggesting that 

PKB is necessary for the activation of p38 MAPK. In contrast, others have shown that p38 

was necessary for the MAPK-activated protein kinase-2-dependent phosphorylation of PKB 

in human neutrophils concluding that p38 is a functional phosphoinositide-dependent kinase-

2 for PKB (Rane et al., 2001). In accordance with this report Taniyama and colleagues have 

demonstrated in vascular smooth muscle cells that the p38 MAPK pathway mediated 

angiotensin-dependent activation of PKB (Taniyama et al., 2004). More recently, it has been 
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demonstrated in a model of mouse myoblast differentiation that the p38 and PI3K/PKB 

pathways are functional in a reciprocal manner. In this elegant study it has been shown that 

inhibition of p38 reduced PKB activity and that the down-regulation of PI3K/ PKB decreased 

p38 MAPK activity (Gonzales et al., 2004). 

 

4.4.    Physiological functions of HO-1 
 

Major functions of HO enzyme activity comprise degradation of the prooxidant heme 

and production of CO and bilirubin, thereby providing protection of organs and tissue against 

oxidative stress (Abraham et al., 1988; Maines, 1997). More recently, accumulating evidence 

indicates that HO-1 is an important modulator of the inflammatory response possibly via the 

generation of the second messenger gas CO (Otterbein et al., 2000; 2003). An anti-

inflammatory function of HO-1 has been shown in experimental models of acute 

complement-dependent pleurisy and heme-induced inflammation of various organs (Willis et 

al., 1996; Wagener et al., 2001). In addition, HO-1 deficient animals have been reported to 

be highly susceptible to endotoxin-mediated toxicity and to exhibit an immune phenotype that 

is associated with an exaggerated activation of mononuclear phagocytes (Poss and 

Tonegawa, 1997; Kapturczak et al., 2004). These observations in HO-1 knockout mice were 

essentially confirmed in a case of human genetic HO-1 deficiency (Yachie et al., 1999) in 

which similar phenotypical alterations were observed (Table 3). A potential mechanism that 

may be involved in HO-1 mediated anti-inflammatory protection could be the regulation of 

adhesion molecules. Adhesion molecules are important for the recruitment of inflammatory 

cells in acute and chronic inflammation and it has been demonstrated in several inflammation 

models that inhibition of HO activity increases the expression of adhesion molecules in vitro 

and in vivo (Hayashi et al., 1999; Wagener et al., 1999; Vachharajani et al., 2000; Wagener 

et al., 2001).  

Since LPS-dependent activation of monocytic cells plays a crucial role in the 

pathogenesis of sepsis, the present data may have important physiological and therapeutic 

implications. The modification of HO-1 gene expression in monocytic cells via targeted 

regulation of specific signaling cascades may ultimately lead to the development of novel 

therapeutic strategies (Immenschuh and Ramadori, 2000). Moreover, the specific up-

regulation of the HO-1 gene in monocytes by compounds such as AEBSF may provide novel 

pharmacological approaches for the treatment of inflammatory conditions. 
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Modulation of HO-1, however, may not only serve as a therapeutic target in 

inflammatory disease, but also has therapeutic implications in organ transplantation. HO-1 

has been demonstrated to play a protective role in several experimental transplantation 

models, in which elevated HO activity prevents the development of vascular lesions, intra-

graft apoptosis, ischemia/reperfusion injury and significantly prolongs allograft survival 

(Soares et al., 1998; Hancock et al., 1998; Amersi et al., 1999; Immenschuh and Ramadori, 

2000). 
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5.   SUMMARY 
Heme oxygenase-1 (HO-1) is the inducible isoform of the first and rate-limiting 

enzyme of heme degradation and is up-regulated by a host of stress stimuli. Activation of the 

HO-1 gene not only protects cells and tissues against oxidative damage, but also modulates 

the inflammatory immune response. Lipopolysaccharide (LPS) is a prototypical mediator of 

inflammation and is known to activate the phagocyte NAD(P)H oxidase. To further 

understand the regulatory role of HO-1 in mononuclear phagocytes during inflammation, the 

HO-1 gene regulation by LPS and by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) 

benzenesulfonyl fluoride (AEBSF) was investigated in the monocytic cell line RAW264.7.  

HO-1 gene expression was markedly induced by LPS and, unexpectedly, also by 

AEBSF in these cells. To determine the molecular mechanisms and signaling pathways of 

HO-1 gene expression by these compounds, reporter gene constructs with proximal HO-1 

promoter gene sequences were examined in transiently transfected RAW264.7 cells. Up-

regulation of HO-1 promoter activity by LPS was decreased by pharmacological NF-κB 

inhibitors and by overexpression of dominant negative mutants of NF-κB inducing kinase, 

inhibitor of NF-κB (IκB) kinase β and IκBα. The p38 MAPK inhibitor SB203580 and 

overexpressed dominant negative p38β decreased, whereas p38δ increased, LPS-

dependent induction of HO-1 gene expression. Deletion and mutation analysis with 

transfected HO-1 promoter gene constructs indicated that a CRE/AP-1 site (-668/-654), but 

not an E-box motif (-47/-42), was involved in LPS-dependent HO-1 gene regulation. 

AEBSF-dependent induction of endogenous HO-1 gene expression and promoter 

activity was abolished by treatment with chemical inhibitors of the phosphatidyl inositol 3-

kinase/ protein kinase B (PKB) pathway and overexpression of dominant negative mutants of 

PKB. Accordingly, cotransfected constitutive active PKB markedly up-regulated HO-1 

promoter activity. Inhibition of p38α and p38β prevented the induction of HO-1 gene 

expression by AEBSF. p38 was stimulated by AEBSF in a PKB-dependent manner as 

demonstrated by a luciferase assay with a Gal4-CHOP fusion protein. Deletion and mutation 

analysis indicated that both, the E-box and the CRE/AP-1 element, were essential for 

mediating the full response of HO-1 promoter activity to AEBSF. Cotransfection of the 

coactivator p300 and the basic helix-loop-helix transcription factor USF2 enhanced the 

AEBSF-dependent response of the HO-1 promoter activity. 

Taken together, the data indicate that the NF-κB, PKB and p38 signaling pathways 

play an important regulatory role for the induction of HO-1 gene expression by LPS and the 

NAD(P)H oxidase inhibitor AEBSF in mononuclear phagocytes. 
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6.    ZUSAMMENFASSUNG  
Häm Oxygenase (HO)-1 ist die induzierbare Isoform des Schrittmacherenzyms des 

Hämabbaus und wird durch verschiedene Stressstimuli heraufreguliert. Die Induktion des 

HO-1 Gens schützt nicht nur Zellen und Gewebe vor oxidativem Stress, sondern ist auch an 

der Regulation der entzündlichen Immunantwort beteiligt. Lipopolysaccharid (LPS) ist ein 

prototypischer Auslöser von Entzündungen und aktiviert die monozytäre NAD(P)H Oxidase. 

Um die Rolle der HO-1 in mononukleären Phagozyten während Entzündungsreaktionen 

aufzuklären, wurde die Regulation des HO-1 Gens durch LPS und den NAD(P)H oxidase 

Inhibitor 4-(2-Aminoethyl) Benzensulfonyl Fluorid (AEBSF) in der Monozytenzelllinie 

RAW264.7 untersucht. In diesen Zellen wurde die Expression des HO-1 Gens nicht nur 

durch LPS, sondern überraschenderweise auch durch AEBSF induziert. Um die molekularen 

Mechanismen und die Signalwege der HO-1 Genexpression durch diese Substanzen zu 

bestimmen, wurden Reportergenkonstrukte mit der proximalen Promotorregion des Ratten 

HO-1 Gens in transient transfizierten RAW264.7 Zellen verwendet. Die LPS-abhängige 

Induktion der HO-1 Promotoraktivität wurde durch pharmakologische NF-κB Inhibitoren und 

durch Überexpression dominant negativer Mutanten der ’NF-κB inducing kinase’, des 

’Inhibitors von NF-κB kinase’ sowie von ’IκBα’ herunterreguliert. Der p38 MAPK Inhibitor 

SB203580 und die Überexpression einer dominant negativen Mutante von p38α führten zu 

einer Herabsetzung der LPS-abhängigen Induktion der HO-1 Genexpression. Durch 

Transfektionsstudien mit HO-1 gezielt mutierten Promotergenkonstrukten konnte gezeigt 

werden, dass ein CRE/AP-1 Element (-668/-654), jedoch nicht ein E-Box Motiv (-47/-42), an 

der durch LPS vermittelten HO-1 Genregulation beteiligt war. Die AEBSF-abhängige 

Induktion der endogenen HO-1 Genexpression und der HO-1 Promotoraktivität wurden durch 

Behandlung mit chemischen Inhibitoren des Phosphatidyl-inositol 3-Kinase/ Protein Kinase B 

(PKB) Signalwegs und durch Überexpression einer dominant negativen Mutante von PKB 

gehemmt. Kotransfektion einer konstitutiv aktiven Mutante der PKB führte zu einer deutlichen 

Heraufregulation der HO-1 Promotoraktivität. Durch spezifische Hemmung der p38α und 

p38β MAPK Isoformen wurde die Induktion der HO-1 Genexpression durch AEBSF 

verhindert. Mittels eines Reportergenansatzes mit einem Gal4-CHOP Fusionsprotein konnte 

gezeigt werden, dass die Aktivierung der p38 MAPK durch AEBSF downstream von PKB 

lokalisiert war. Anhand von Mutationanalyse wurde gezeigt, dass sowohl das CRE/AP-1 

Element als auch das E-box Motiv an der Induktion der HO-1 Genexpression durch AEBSF 

beteiligt waren. Kotransfektionsexperimente mit dem Helix-Loop-Helix Transkriptionfaktor 

USF2 und dem Koaktivator p300 führten zu einer gesteigerten AEBSF-abhängigen HO-1 
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Promotoraktivität. Zusammenfassend zeigen diese Daten, dass die NF-κB-, PKB- und p38- 

Signalwege eine wichtige Rolle für die Induktion der HO-1 Genexpression durch LPS und 

den NAD(P)H oxidase Inhibitor AEBSF in Monozyten spielen. 
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