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Simple Summary: Compost-bedded pack barns (CBP) reflect a novel dairy cattle housing sys-
tem with favourable effects on animal health and animal behavior but can promote the growth of
thermophilic aerobic sporeformers (TAS) in the composting lying surface. In our study, we deter-
mined a medium-high mean TAS concentration across all bedding samples of four different CBP
groups. Six different TAS species were identified based on their 16S rRNA-gene sequence, with
Bacillus licheniformis being the predominant species. Season, the moisture content of the bedding
material and the relative humidity above the bedding material had significant influences on the
amount of TAS in the bedding material of the CBP. In addition, the moisture content and the relative
humidity above the bedding material significantly influenced the concentration of TAS species each.
Other characteristics such as the bedding temperature, the bedded area/cow and the usage time of
the bedding material had slight effects on the TAS species occurrence. Due to the negative effect of
TAS on milk product quality, considering all identified farm characteristics to optimise TAS contents
will contribute to sustainable CBP farming.

Abstract: Compost-bedded pack barns (CBP) are of increasing interest in dairy farming due to their
positive effect on animal welfare. The temperature and the moisture content of the bedding material
characterising the composting process can promote the growth of thermophilic aerobic sporeformers
(TAS). Therefore, the aim of this study was to determine CBP bedding material characteristics,
such as moisture content and temperature, and to determine TAS species. The dilution, the heat
inactivation of all non-TAS species and the incubation of 13 bedding samples from four CBP groups
resulted in a mean TAS amount over all samples of 4.11 log10 cfu/g bedding material. Based
on the subsequent sequencing of parts of the 165 rRNA-gene of 99 TAS colonies, the TAS species
Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermodenitrificans, Laceyella sacchari,
Thermoactinomyces vulgaris and Ureibacillus thermosphaericus were identified. The moisture content of
the bedding material, the relative humidity above the bedding material and the sampling season
significantly affected the amount of TAS. The moisture content or relative humidity above the bedding
material significantly influenced the concentration of Ureibacillus thermophaericus or Laceyella sacchari.
Consequently, an optimal CBP management including a dry lying surface and an optimal composting
process will contribute to a moderate microbial, especially TAS amount, and TAS species distribution.

Keywords: compost-bedded pack barns; thermophilic aerobic sporeformers; 16S rRNA-gene
sequence; TAS amount; TAS species; moisture content
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1. Introduction

During the past decade, compost-bedded pack barns (CBP) received increasing atten-
tion as a housing system for dairy cows due to its potential to improve animal welfare [1,2].
A CBP consists of a large, open resting area, where cows have access to a minimum of
7.40 m?/cow and an ideal of 9.00-10.00 m? /cow open bedded pack area, usually bedded
with sawdust, dry fine wood shavings, spelt husks or miscanthus grass [1,3,4]. Open
resting areas without boxes and partitions as installed in classical cubicle and tie-stall
housings [5] are generally separated from a concrete feed alley by a retaining wall. The
term freewalk housing has been used to describe this system [4,6,7], because cows can walk
freely within a barn.

Especially improved comfort during resting, better foot and leg health, more natural
animal behavior, and improved manure quality have been described in comparison to in
tie-stall barns or cubicle housings [2,7]. According to Blanco-Prenedo et al. [7], incidences
for disease and welfare indicator traits from freewalk housings are smaller than in cubicle
systems. For example, freewalk cows showed fewer hairless patches in most body areas
and fewer lesions in the lower hind legs than cows from the control groups. Regarding ly-
ing behaviour, cows in freewalk barns adopted comfortable lying positions more frequently,
took less time to lie down, had less difficulties to rise up and had fewer collisions with
the barn facilities and herd mates than cows kept in cubicle systems [7]. As lameness is
largely recognized as one of the most important problems in modern dairy farms [7,8] and
comfort in resting areas improves lying time with further impact on milk production [9],
economic importance is clearly given. Specifically, housings in CBP positively influence
milk yield [10,11] as well as milk composition traits and milk product quality [12]. Fur-
thermore, it is expected that housings in bedded pack barns will contribute to increased
longevity [13].

The bedded pack is a mixture of organic bedding materials and cattle excreta, which
is cultivated several times per day. Bedding costs are generally high but may be compen-
sated through reduced lameness, increased milk production and favourable impact on
longevity [10]. In addition, the faeces and the urine of cows absorbed or mixed in the pack
can be used as solid manures. Typically, in CBP, the pack is renovated in intervals of 6 to
12 months [1,10,14], implying that the bedded pack can provide manure storage for a quite
long period.

Cultivation aerates the accumulated pack and mixes the manure and urine of the
surface into the pack to provide a fresh bedding for cows to lie down [3]. Aeration
enhances the activity of microorganisms in the pack. Accordingly, an aerobic heat initiating
the composting process is promoted [2,3,11].

The temperature and moisture content of the bedding [15] as well as microbial diver-
sity [16] are important parameters for composting efficiency. Ideally, in CBP, the internal
pack temperature at depths of 15 to 31 cm ranges from 43.30 to 65.00 °C [1,17]. Compost
temperatures above 55 °C promote sanitisation, but temperatures between 45 and 55 °C
maximise material degradation [18]. For low temperatures between 35 and 40 °C, the
diverse microbial population hampers the composting process [18]. However, the optimal
temperature range is only partly fulfilled [10,11]. Especially in winter months, frequent aer-
ation may result in a heat loss from the pack, thus disturbing the composting process [14].
However, the difference between the pack and air temperatures as measured on some
farms in winter indicates that the pack is biologically active [2].

Increasing temperature can also promote the evaporation of excreta water [2]. Ideally,
the combination of manure and substrate should not exceed a moisture content of 70% [11],
although a range of 40% to 60% is preferred [3,17,19]. Furthermore, the supplement with
dry bedding materials or mechanical ventilation can be used in CBP to promote pack
drying. Consequently, Leso et al. [20] recommended an optimal ventilation management,
which allows a high drying rate of bedding, even at lower bedding temperatures when the
biological activity of microbial population and heat production is reduced.
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Additionally, increasing internal compost temperatures are associated with decreasing
levels for Staphylococci, Streptococci and Bacilli species in the pack area [5], explaining a de-
creasing mastitis infection rate [10]. However, as one of the objectives of CBP management
is to maintain active composting by providing adequate conditions for bacteria growth in
the pack, total bedding bacterial counts in CBP are quite high (ranging from 7.00 to 8.90
log10 cfu/g; [2]). High pack temperatures in CBP are advantageous for the development
of thermophilic aerobic sporeformers (TAS; [13]), a group of microbes that are capable
of growing at high temperatures. The optimum growth temperatures of TAS are usually
between 50 and 65 °C but vary between species and strains [21]. Since bedding materials
in CBP provides microenvironments to control the spore viability of TAS, the influence on
the number of TAS in cow milk is hypothesised [22]. Therefore, detailed analyses of the
bacterial contamination of CBP, especially of TAS, are of great interest.

Taxonomic studies have provided evidence that TAS are very diverse [23]. Studies
of the 165 rRNA-gene sequences, for example, have revealed a high degree of hetero-
geneity and led to the reclassification of thermophilic members of the genus Bacillus
such as Geobacillus, Ureibacillus and Aneurinibacillus [24,25]. Several studies addressed the
contamination of bedding materials in barns with TAS. Driehuis et al. [26] showed that
Bacillus thermoamylovorans was the most abundant TAS species in the compost samples in
dairy cow barns after a heat treatment of 30 min at 100 °C, followed by Bacillus licheniformis,
Geobacillus thermodenitrificans and Ureibacillus thermosphaericus. Accordingly, Wang et al. [27]
identified Bacillus licheniformis, Geobacillus thermodenitrificans and Ureibacillus thermophaeri-
cus in poultry and cattle manure composts. Furthermore, the TAS species Laceyella sacchari
and Thermoactinomyces vulgaris, leading to respiratory diseases in farm animals, are fre-
quently isolated from outdoor environments such as soil and grassy pastures as well as
from mouldy hay, grain and horse manure [28]. Bacillus licheniformis is wildly distributed
in the cattle environment and is detected, e.g., in fodders and in faeces. Spores in silage
are unaffected during the gastrointestinal passage and are excreted in faeces [29,30], thus
contaminating the CBP bedding material. In causality, a contaminated bedded pack can
contaminate cow teats, because lactating cows spend 12 to 14 h/d lying down in direct
contact with bedding [31], and can be transferred into milk [32]. Hence, Bacillus licheniformis
is also detected in raw milk and in pasteurised samples [21,29,32-35]. As TAS can survive
after heat treatment during the pasteurisation process, they are one of the most common
spoilage-causing microflorae in milk and dairy products. Furthermore, they produce
enzymes and acids that may lead to off-flavours in the final milk product [36,37].

Sequence analyses of the highly conserved ribosomal RNA genes (rRNA), in partic-
ular of the 16S rRNA-gene, are used to identify bacterial species in clinical practice and
scientific studies [38,39]. Consequently, 165 rRNA-gene sequence analysis is established as
a key technique to identify microorganisms [23,40]. Bacterial 165 rRNA-genes contain nine
hypervariable regions (V1-V9), which differ in length, position and taxonomic discrimina-
tion [39,41]. In bacteria, hypervariable regions are flanked by conserved stretches, enabling
the polymerase chain reaction (PCR)-amplification of target sequences with universal
primers. Chakravorthy et al. [39] indicated that the hypervariable regions V2, V3 and V6
contain the maximum nucleotide heterogeneity, implying the maximum discriminatory
power for the bacterial species.

The aim of the present study was to measure the CBP bedding parameters moisture
content, the bedding temperature, the temperatures and the relative humidities at the
heights of 0.10 and 1.30 m above the bedding material, and the ambient temperature of one
German dairy farm in different sampling seasons for different animal groups with different
lactation status and a variable bedded area per cow.

Thus, the main objectives of the study were to estimate the effects of the CBP bedding
parameters on the TAS amount and the TAS species distribution under practical conditions.
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2. Materials and Methods
2.1. Sample Collection

The bedding material of one dairy CBP farm located in Hesse, Germany, was collected
on five different dates during December 2017 and February 2019. During this time, 726 to
790 dairy cows of the breed German Holstein were kept on the entire farm. Four cow groups
from this farm reflected CBP, whereas each CBP group was housed in its own pen. Dry
cows (CBP4-dry), fresh-lactating cows (CBP1-lactating (lact.)) and two high-performance
groups (CBP2-lact. and CBP3-lact.) were kept in the CBP. First-lactation and late-lactating
cows were kept in a cubicle barn on the same farm. Bedded areas per cow in CBPs were
on average from 7.80 to 21.96 m?/cow, depending on the group size at the corresponding
sampling date, whereas dry cows had a more space per cow in general. Depending on the
number of seasonal calvings, different numbers of cows were kept in the different groups
(CBP1-lact.: 105-119 animals; CBP2-lact.: 98-150 animals; CBP3-lact.: 110-145 animals;
CBP4-dry: 42-84 animals), explaining the differences in the bedded area/cow (m?) at the
different sampling dates (Table 1). Cows receiving antibiotics in case of mastitis or further
diseases were kept in a separate pen and were not included in the study.

The roughage components (silage) were the same over all groups, only differing across
seasons; concentrate feeding was milk-performance-related.

The average depth of the bedding material in the different groups of CBP was 50 cm
including a mixture of cereals husks, wood chips, miscanthus mulch and sawdust. De-
pending on the availability, also shredded brushwoods and broken roots were bedded.
The bedding material was cultivated three times per day during milking with a rotary
tiller (in the morning and evening) or a field cultivator (at midday) at a depth of 20 cm to
incorporate excreta and to ventilate the bedding material. In this process, oxygen entered
the bedding material and promoted the aerobic microbial conversion. In addition to fans, a
patented installed suction device under the bedding material extracted warm and humid
air at the bottom.

The corresponding sampling took place at midday, shortly before the next mechanical
handling. Aliquots of the bedding material were collected at a depth of 20 cm by scraping
compost with a little shovel at nine different sampling spots, evenly distributed throughout
the entire stable group (minimum 1 m from the outer walls) according to Leso et al. [42].
For dry cows, three different sampling sites were chosen following the same scheme. These
aliquots were thoroughly mixed to create a composite sample representative for the entire
CBP at this sampling date, considering a minimum of 500 g taken in a plastic jar. The
samples were transported at ambient temperature to the laboratory of the Institute of
Animal Breeding and Genetics, JLU Giefsen, Germany. Moisture content was determined,
and the samples were stored in the laboratory at —20 °C until further analysis.

In total, 13 different samples of the bedding material from the four different CBP
groups on this farm were collected at five different sampling dates in four seasons (for
details see Table 1). Seasons were defined as follows: 20 March, the first day of spring; 21
June, the first day of summer; 22 September, the first day of autumn; and 21 December, the
first day of winter.

During the first sampling in winter 2017, the groups CBP2-lact. and CBP3-lact. were
not housed. Therefore, only CBP1-lact. and CBP4-dry were considered in the sampling
scheme, which explained the differences in intervals between the complete renewal of
bedding and the sampling day in spring 2018 (Table 1). In further samplings, we aimed at a
standardised sampling scheme regarding environmental and farm management influences.
However, at some sampling dates, the farm management substantially differed, e.g., due to
cultivation processes. In such cases, we omitted the collection of samples for TAS analyses.
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Table 1. Moisture content, means for temperatures and relative humidities (standard deviation in brackets) and thermophilic aerobic sporeformers (TAS) concentrations in 13 different

compost-bedded pack barns (CBP) samples.

Picked
Sample  Sampling a Mc b Tbed ¢ Thighd  RHhigh? Tdown®  RHdown® Tamb f g (2 . TAS
Number  Season  CPF Group  Days (%) (o) (o) (%) e (%) €0 Bed # (m?) C°1(‘I’1‘)“es (log10)
31.13 7.92 93.78 8.16 98.70
; h
! winter DL act 8 2024 (+£13.80)  (+0.54)  (£1837)  (+0.86) (£2.94) " 890 3 5.74
2017 3477 8.00 99.90 8.20 99.90 :
2 CBP4-dry 8 50-33. (+16.09) (£0.17) (£0.00) (0.10) (0.00) 13.18 13 586
36.08 12.10 51.50 1222 58.87
3 CBP1-lact. 113 68.80 (28.46) (081 2276) (1066) 2472) 8.42 12 3.70
33.96 12.99 49.26 13.01 53.28
: spring 0L 2ack 108 6663 (£736)  (£0.78)  (+397)  (+092) (+4.60) 1430 780 7 391
2018 34.96 12.08 52.38 12.13 56.53 :
5 CBP3-lact. 80 65.28 (27.18) (L027) (2240 (£0.27 (24.26) 8.31 1 348
32.83 11.60 52.37 11.70 55.37
6 CBP4-dry 113 61.93 (16800  (£020) (2129) (£020) (£1.36) 12.99 22 407
4212 31.94 40.87 31.88 44.06
7 cummey | CBPLact 248 64.19 (26.50) (20.32) (2121) (20.42) (£0.42) - 8.82 2 3.60
2018 40.17 32.52 38.79 32.64 40.48 '
8 CBP2-lact. 248 62.46 (7 85) (20.95) (2150 (20.20) (13,56 8.01 16 3.64
55.97 6.66 70.16 6.72 74.67
? CBP1-lact. 4 48.23 (+£17.27) (£0.42) (+2.42) (+£0.43) (+3.38) 8.66 8 451
46.31 6.52 68.27 7.29 72,57
10 autumn 02k 4 5671 (£14.15)  (£225)  (+216)  (+0.63) (+£3.26) 620 944 4 3.62
2018 56.33 6.12 68.03 6.24 70.99 ~
11 CBP3-lact. 44 56.79 (2599) (0.3 (2129) (£0.57) (1) 9.14 6 3.80
56.57 5.83 72.10 6.07 73.53
12 CBP4-dry 4 56.94 (£0.64) (£0.51) (£3.11) (£0.76) (+£4.97) 1.1 ! 3.23
winter 17.93 5.63 60.73 5.67 60.93
13 5015 CBP4-dry 121 65.62 536 (2006 (2097) (£0.06) (£0.49) 7.90 21.96 4 432

2 Days between the complete renewal of bedding and the sample date. ® Moisture content. © Mean temperatures of the bedding material at the 9 (lactating cows) and 3 (dry cows) sampling points. ¢ Mean
temperatures and relative humidities at a height of 1.30 m above the bedding at the 9 (lactating cows) and 3 (dry cows) sampling points, respectively. ¢ Mean temperatures and relative humidities at a height of
0.10 m above the bedding at the 9 (lactating cows) and 3 (dry cows) sampling points, respectively. f Ambient temperature. 8 Bedded area/cow. ! lact. = lactating.
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In order to obtain an overview of the farm-specific contamination with TAS, a sample
of the bedding material from the lying boxes in the cubicles was additionally collected in
spring 2018. Furthermore, one sample was taken from the unused bedding material from
the bedding store in winter 2017.

Pack depth temperatures (—0.20 m) as well as the temperatures and relative humidities
at the heights of 0.10 and 1.30 m above the bedding were measured for each of the 9 evenly
distributed sampling locations using a temperature sensor thermometer testo 435 (testo SE
& Co. KGaA, Lenzkirch, Germany).

2.2. Sample Preparation

According to Driehuis et al. [43], 20 g of each compost sample were added to 180 mL
distilled water and were mixed thoroughly for 1 h. A volume of 5 mL of this sample extract
was heated at 100 °C for 30 min in a hot water bath chamber, leading to the death of all non-
TAS species. Afterwards, the sample extract was immediately put on ice. Then, 4.50 mL of
6.44 mM Chloride-Peptone Solution (PanReac AppliChem) were used to dissolve 500 pL of
the initial sample extract. Afterwards, the dissolved extract was used for a four-fold serial
dilution [43]. In the next step, 1 mL of each dilution was plated on a Dextrose Tryptone
Agar (DTA; Oxoid LTD, Basingstoke, UK) plate and incubated at 55 °C for 48 h. Negative
control tests were performed each time by co-incubating uninoculated agar plates. Colonies
detectable on a DTA medium after the heat treatment described above were defined as
colonies derived from reactivated TAS spores according to Driehuis et al. [26].

2.3. Counting the Inoculated Agar Plates

Following incubation at 55 °C for 48 h, grown TAS colonies were counted, and the
number of colony-forming units per gram of bedding material (cfu/g) was calculated with
the following equation:

cfu/g=[Y c/(1 xn' +0.1 x n})] x d, 1)

where ) ¢ is the sum of all counted colonies; n! is the number of plates of the first dilution
stage. In this dilution stage, the grown colonies were countable for the first time; n? is the
number of plates of the second dilution stage. This was the following dilution stage after
the specified first dilution stage; d is the dilution level of the first counted plate.

The data were finally logarithmised (log10) to create an approximate normal distribution.

However, it was not possible to determine individual bacterial species on the basis of
the grown colonies. Consequently, we sequenced parts of the 165 rRNA-gene of the grown
TAS colonies.

2.4. Amplification of Parts of the 16S rRNA-Gene Sequence of Grown TAS by PCR

After incubation at 55 °C for 48 h, in total 99 grown colonies (1 to 22 colonies per
bedding sample; Table 1) were picked for colony PCR without the step of DNA extrac-
tion [44]. Therefore, a single bacterial colony was picked with a pipet tip and rinsed in
40 pL of distilled water prepared in separate tubes. Afterwards, the picked and rinsed
colonies were incubated at 95 °C for 5 min, cooled down and centrifuged at 3000 rpm for
1 min. The supernatant was collected and used as a template for adjacent PCR. This was
also performed for the bedding sample of the cubicles. Here, 11 colonies were picked.

According to Chakravorty et al. [39], who proposed the hypervariable regions V2, V3
and V6 of the 165 rRNA-gene as most suitable for bacteria species identification, we decided
to amplify these variable regions by two separate PCR using the primers specified in Table 2.
PCR included 10 pmol of each primer (Microsynth AG, Balgach, Switzerland), PCR-buffer
(Promega, Mannheim, Germany), 2 mM MgCI2 (Promega), 0.25 mM dNTPs (Thermo
Fisher, Germany) and 1 U of Tag-polymerase (Promega, Germany). PCR amplification was
carried out for both PCR as follows: after the initial denaturation of 10 min at 95 °C, the
temperature cycling was in the following way: 30 cycles at 95 °C for 20 s, at 52 °C for 30 s,
at 72 °C for 30 s and a final extension step at 72 °C for 5 min.
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Table 2. Polymerase chain reaction (PCR) conditions of colony PCR for the adjacent sequencing of parts of the 16S

rRNA-gene.
. Sequences Amplified
PCR-No. Primers (Position in GenBank Acc. No. X60623 ?) Hypervariable Region Reference

27F 5-GAGTTTGATCCTGGCTCA-3' (3-20)

1 V3R 5/-CGTATTACCGCGGCTGCTG-3' (539-521) V1, V2and V3 [27,59]

5-TCGAtGCAACGCGAAGAA-3
V6F
(963-980) 39
2 VeR 5'-ACATITCACaACACGAGCTGACGA-3' Ve 31

(1084-1061)

2 In comparison to GenBank Acc. No. X60623, primers V6F and V6R showed some small sequence differences signed by small letters.

The resulting PCR products were quality-controlled by agarose gel electrophoresis and
using a Nanodrop 1000 Spectrophotometer (Peqlab, Erlangen, Germany) and afterwards,
purified using an MSBSpin PCRapace kit (Invitek Molecular GmbH, Berlin, Germany)
according to manufacturer’s instructions. The purified colony PCR products were used for
subsequent sequencing reactions using one of the PCR primers. The sequencing of the 16S
rRNA-gene regions V1-V3 and V6 were made using an Applied Biosystems 3130 Genetic
Analyzer (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA).

Afterwards, the resulting sequences were analysed using ChromasPro 1.32 (Technely-
sium Pty Ltd., Queensland, Australia). Searches for the sequence similarity of known
bacterial species were performed using BLASTn [45] accessed via the National Center
for Biotechnology Information (NCBI) website (https:/ /blast.ncbi.nlm.nih.gov/Blast.cgi
(accessed on 20 April 2021)). Only alignments with a minimum sequence similarity of
99.65% were included for further studies.

2.5. Statistical Analyses

Association analyses were performed by applying the linear model function (Im) in R
version 4.0.2 [46]. In this regard, we aimed to infer possible significant effects of the season
(four classes: spring, summer, autumn and winter), the lactation status (two classes: dry
and lactating), the bedding temperature, the temperatures and the relative humidities at
the heights of 0.10 and 1.30 m above the bedding material, the ambient temperature, the
moisture content, the days between the complete renewal of bedding and the sample date,
the bedding area and the CBP group (4 groups) on phenotypic observations for the total
amount of TAS (log10 cfu/g) and on concentrations of single TAS species. The statistical
model was shown as following:

yij = b+ effi + ey, 2

where yj; is the phenotypic observations for log10 (cfu/g) or TAS concentration; p is the
overall mean; eff; is one of the aforementioned fixed effects in separate runs; ejj is the
random residual effects. The fixed effects were tested separately, because only 13 samples
were available in the analyses. For the TAS concentration, we calculated a ratio of the
number of specific TAS species to the total number of TAS. For example, in one sample,
Bacillus licheniformis was detected twice, and Laceyella sacchari was identified once. Hence,
the concentration of Bacillus licheniformis for this sample was 0.67 (2/3). In this study, the
significance level was defined as p < 0.05.

3. Results and Discussion
3.1. CBP Bedding Material Parameters

In general, the observed bedding temperatures (17.93 to 56.57 °C) in combination with
moisture content agreed with those summarised by Leso et al. [2].
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The means for the observed bedding temperatures, temperatures and relative humidi-
ties at the heights of 0.10 and 1.30 m above the bedding, outside temperatures, moisture
contents and TAS concentrations are listed in Table 1.

The mean pack temperature Tbed over all CBP bedding material samples was 39.93 °C,
ranging from 17.93 °C in winter 2019 to 56.57 °C in autumn 2018. In winter 2019, we
analysed only the group of dry cows (because of the comprehensive and time-consuming
analyses in the molecular laboratory). In this regard, we focused on the group of dry
cows, because in this group at this sampling date, limited disturbing farm management
practices were observed. The quite small animal number in this group explained the low
bedding temperature. The desired high bedding temperatures of 55 to 65 °C, promoting
pathogen destruction [11,18] and composting efficiency [11,15,18], were rarely achieved.
Black et al. [11] referred to this phenomenon as a “semi-composting” process. However,
the low pack temperatures observed are in line with results from the studies reviewed
by Leso et al. [2]. They may also be due to the mechanical processing of the bedding
material in the process of bedding aeration as described before [14] and the fans in the
barn. For this reason, some Dutch producers modified the pack management during colder
months, reducing both cultivating frequency and depth [14]. Leso et al. [2] indicated that
the low and partly wide range of temperatures is not sufficient to support a full composting
process. Furthermore, the effect that non-TAS species are prevented from growing by high
temperatures [2,5] is probably lost. However, Leso et al. [20] recommended an optimal
ventilation management, which allows a high drying rate of the bedding even at lower
bedding temperatures when biological activities of the microbial populations and heat
production are reduced. Furthermore, Leso et al. [2] mentioned that greater differences
between the pack and ambient temperatures indicate that the pack is biologically active,
which was also observed for the samples in the present study.

In autumn 2018, an optimal composting process was achieved for the first time. Here,
bedding temperatures were high, while temperatures at the heights of 0.10 and 1.30 m
above the bedding material and ambient temperatures were low.

Because moisture content and bedding temperature are negatively correlated, hu-
mid conditions in the bedding lead to decreasing temperatures and thus a loss of aerobic
conditions. The anaerobic conditions are unfavourable for TAS. The measured moisture
contents over all CBP samples were on average 59.55% (48.23% to 68.8%), reflecting the
recommended range of 40%—60% [3,17,19]. Moisture contents between 30% and 35% also
inhibit microbial activity, ceasing the composting process [18,19]. Composting requires
sufficient moisture for active microbial activity, but extremely high values hinder aera-
tion [3]. The observed moisture contents in the present study are comparable with those
reported by Black et al. (56.10% =+ 12.40%) [11] and lower in comparison to those identified
by Eckelkamp et al. (59.90% to 76.60%) [5]. The longer the bedding material has been used
and the more the animal manure has been supplemented, the higher the moisture content,
visible in spring 2018 with the highest moisture contents. The decrease in moisture content
in the summer of 2018 might be due to the significant increase in outdoor temperature,
leading to an increased drying rate. Additionally, the water-holding capacity of the air
increased with higher ambient temperatures, reflected by the measured reduced relative
humidities at the heights of 0.10 and 1.30 m above bedding material (Table 1), causing more
moisture to evaporate from the CBP [11,47]. The bedding material was completely replaced
in autumn 2018 (i.e., 44 days before the autumn sampling), explaining the lower moisture
contents during this period and the ongoing increase until winter 2019. The compositions
of the bedding differed between the measurements in winter 2017 and autumn 2018, which
affected water absorption capacities and bedding temperatures while outdoor conditions
were quite constant. In winter 2017, the bedding consisted of wood chips and spelt husks.
In winter 2018, the bedding consisted of wood chips, spelt husks, shredded brushwoods
and broken roots. Furthermore, the heat developed by the composting process in autumn
2018 can increase the drying rate as already described by Leso et al. [2], ideally supported by
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optimised stable ventilation [20]. The increase in drying rate implies a decreased moisture
content. This in turn can extend the bedding usability [5].

3.2. Bacterial Growth/Identification

Figure 1 shows the grown TAS colonies on the DTA medium. No TAS colonies were
observed on the uninoculated agar plates.

Figure 1. Grown thermophilic aerobic sporeformers (TAS) colonies on a Dextrose Tryptone Agar
plate after incubation at 55 °C for 48 h.

Counting the colonies resulted in a mean TAS amount of 4.11 log10 cfu/g across all
13 samples.

The highest 1og10 cfu/g values were identified in the first winter period 2017 directly
after the first cows moved into the CBP with a 5.74 log10 cfu/g bedding material in
the lactating group and a 5.86 log10 cfu/g bedding material in the group of dry cows
(Table 1). The TAS amount in the unused bedding material from the store in winter 2017
was 1.96 log10 cfu/g, being lower than log10 cfu/g-values of the unused wood chips
(<4.00-6.70 log10 cfu/g) identified by Driehuis et al. [26]. Nevertheless, we also identified
TAS spores in the stored bedding, as already shown [26,28]. Driehuis et al. [26] postulated
that TAS in stored products are due to the self-heating of the bedding material in the
storage area. This may explain the highest number of TAS amounts in winter 2017. The
bedding material used later was usually bedded in immediately after delivery.

Lowest cfu numbers were identified in spring and autumn 2018 with 3.48 and
3.23 log10 cfu/g bedding materials (Table 1), respectively. In spring 2018, this is likely
due to the significantly increased moisture content of the bedding material larger than 60%,
which was above the optimal range of 40%-60% [3,17,19]. These values are generally lower
than the range from 6.50 to 8.90 log10 cfu/g as indicated by Leso et al. [2] but comparable
to reports by Driehuis et al. [26]. In autumn 2018 (sample 12), the TAS concentration may
be low for two reasons: firstly, the days between the complete renewal of bedding and the
sample date was only 44 days, and secondly, the CPB4 group consisted of a smaller number
of animals. This implies the decreasing inclusion of excreta into the bedding material,
which delayed the composting process and thus the growth of TAS.

For adjacent colony PCR, we picked well-differentiated individual, not overlapping
colonies. Due to the previous heat treatment, we could assume that only TAS colonies grew
on the DTA medium. Since we were not able to identify which TAS species grew on the
basis of the colonies, we tried to pick all colonies that looked different in order to be able to
identify as many TAS species as possible. This is partly the reason for the rather heteroge-
neous number of the picked colonies/sample (Table 1). Additional measurements of the
DNA concentrations using Nanodrop 1000 spectrophotometers supported the selection of
the colonies to be sequenced.
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3.3. PCR and Sequence Analyses

The colony PCR products of the two PCR (Table 2) for the adjacent sequencing of parts
of the 16S rRNA-gene are presented in Figure 2.

501/489 bp (368 ng/ug marker)
404 bp (150 ng/ug marker)

331 bp (123 ng/ug marker)
242 bp (90 ng/ug marker)

190 bp (71 ng/ug marker)

147 bp (55 ng/ug marker)
111/110 bp (82 ng/ug marker)

67 bp (25 ng/ug marker)

34 bp (26 ng/ug marker)

Figure 2. Agarose gel electrophoresis of colony PCR: slots 1 and 10: marker; slots 2-5: colony PCR
products of PCR-no. 1 (Table 2) of different picked colonies, amplifying V1, V2 and V3 of the 16S
rRNA-gene; slots 6-9: colony PCR products of PCR-no. 2 (Table 2) of different picked colonies,
amplifying V6 of the 165 rRNA-gene.

The sequencing of the two parts of the 165 rRNA-gene of the 99 colonies identified
the TAS species Aneurinibacillus thermoaerophilus, Bacillus licheniformis, Geobacillus thermod-
enitrificans, Laceyella sacchari, Thermoactinomyces vulgaris and Ureibacillus thermosphaericus.
The resulting sequences of the hypervariable regions V1 to V3 (PCR-no. 1, Table 2) were
submitted to GenBank under Acc. No. OK090768 to OK090773 for the respective TAS
species sequence of the hypervariable region V6 (PCR-no. 2; Table 2), as presented in
Figure 3, displaying markable sequence differences between the six identified TAS species.

Aneurinibacillus thermoaerophilus
Bacillus licheniformis
Geobacillus thermodenitrificans
Laceyella sacchari
Thermoactinomyces vulgaris
Ureibacillus thermosphaericus

Aneurinibacillus thermoaerophilus
Bacillus licheniformis
Geobacillus thermodenitrificans
Laceyella sacchari
Thermoactinomyces vulgaris
Ureibacillus thermosphaericus

Aneurinibacillus thermoaerophilus
Bacillus licheniformis
Geobacillus thezmodenitrificans
Laceyella sacchari
Thezmoactinomyces vulgaris
Ureibacillus thermosphaericus

TCGAtGCAARCGCGAAGAACCTTACCAGGGCTTGACATCCCGCTGACCC-T

TCGAtGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTC-TGACA-CC

TCGAtGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCCCTGACARCC

TCGAtGCAACGCGAAGAACCTTACCAGGGCTTGACATCCCGCTGACCGCT

TCGAtGCAACGCGAAGAACCTTACCAGGGCTTGACATCCCGCTGACCCCT

TCGAtGCAACGCGAAGAACCTTACCAGGTCTTGACATCCCGCTGACCGCT
s * *k *rk ok k

CCAGAGATGGAGG- - -CTTCCTTC- -GGGACAGCGGTGACAGGTGGTGCA
CTAGAGATAGGGC - - TTCCCCTTCGGGGG- - CAGAGTGACAGGTGGTGCA
CAAGAGATTGGGCGTTCCCCCTTCGGGGGGACAGGGTGACAGGTGGTGCA
CCAGAGATGGAGC- - -TTCCCTTC - -GGGGCAGCGGTGACAGGTGGTGCA
CCAGAGATGGAGG - - -TTTCCTTC- -GGGACAGCGGTGACAGGTGGTGCA
ATGGAGACATAGC - - -CTTCCCTTCGGGGACAGCGGTGACAGGTGGTGCA

Tk kK * *k Kk K Ek Kk KRk kR k kK

TGGTTGTCGTCAGCTCGTGETGTGAaATGT
TGGTTGTCGTCAGCTCCTGETGTGAaATGT
TGGTTGTCGTCAGCTCETGL TGTGAAATGT
TGGTTGTCGTCAGCTCETGL TGTGAAATGT
TGGTTGTCGTCAGCTCETGL TGTGAAATGT
TGGTTGTCGTCAGCTCETGL TGTGAAATGT

ek *k *okkk

Figure 3. Alignment of the sequences of PCR-no. 2 (Table 2) of the hypervariable region V6. Stars
mark matching sequences across all 6 TAS species. Small letters in the primer regions at the beginning
and the end of the sequences mark sequence differences due to fixed universal primers (Table 2).
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Accordingly, Charbonneau et al. [25] represented the four genera Geobacillus, Bacillus,
Ureibacillus and Aneurinibacillus by 16S rRNA-gene sequencing. In 61.22% of all colonies,
Bacillus licheniformis was identified. Apart from sample 8, Bacillus licheniformis displayed the
highest proportion of TAS in all bedding samples at all sampling dates in all CBP groups
(Table 3). Thermoactinomyces vulgaris and Laceyella sacchari were the second and third most
common TAS species with 16.33% and 10.20%, respectively. The wide distribution of Bacil-
lus licheniformis has already been described, e.g., also in fodders, leading to its occurrence
in faeces [29,30]. The roughage component was the same in all CBP groups, which may
explain the wide distribution of Bacillus licheniformis. Hence, it is a facultative thermophile
bacterium growing in a wide temperature range [21]. The bedding temperature showed a
wide range from 17.93 to 56.57 °C, with a mean of 39.93 °C. Therefore, this adaptive TAS
species is favoured.

Table 3. Frequencies (%) of the identified TAS species after the cultivation of 13 different compost-bedded pack barn (CBP)
bedding samples and 16S rRNA-gene sequencing.

TAS Species

Sample Sampling A. thermoaeroph.®  B. lichenif. P G L h.d T. vulg. © u. th h. f
Number Season ’ pi- - lichenif. thermodenit. ¢ - sacch. P OnE: - HHeTmospi.

1 . - 0.67 - 0.33 - -

2 winter 2017 0.08 0.46 0.15 0.23 - 0.08

3 - 0.84 - 0.08 0.08 -

4 . 0.29 0.71 - - - -

5 spring 2018 ) 1.00 ) ) ) )

6 - 0.68 - 0.14 0.18 -

7 summer - 1.00 - - - -

8 2018 - 0.31 0.25 - 0.43 -

9 - 0.50 - - 0.37 0.13

10 autumn - 0.75 - - 0.25 -

11 2018 - 0.67 - 0.33 - -

12 - 1.00 - - - -

13 winter 2019 0.25 0.75 - - - -

2 Aneurinibacillus thermoaerophilus. ® Bacillus licheniformis. ¢ Geobacillus thermodenitrificans. 9 Laceyella sacchari. © Thermoactinomyces
vulgaris. f Ureibacillus thermosphaericus.

Bacillus licheniformis, Geobacillus thermodenitrificans and Ureibacillus thermosphaericus
have previously been found in CBP samples [25,26]. Laceyella sacchari and Thermoactino-
myces vulgaris are frequently isolated from outdoor environments such as soil and grassy
pastures and thus show a wide distribution in cattle environments [28]. Consequently,
the broad species spectrum is expected. Furthermore, Aneurinibacillus thermoaerophilus is
already described in animal manure compost [25] and is amongst Bacillus licheniformis,
Ureibacillus thermophaericus and Geobacillus spp. possibly thermodenitrificans present in cow
milk samples [30].

When comparing the TAS species occurrences of different CBP groups across adjacent
seasons between which no exchange of the bedding material took place, it is noticeable
that some TAS species could not be found again (Tables 1 and 3). One reason for this may
be that the living conditions developed to the disadvantage of one or the other TAS species
in the course of the progressive usage of the bedding material, so that the bacteria could
no longer spread in the following season or even disappeared. In a direct comparison of
the sampling seasons winter 2017 and spring 2018, the moisture content of the bedding
material and the relative humidities at the heights of 0.10 and 1.30 m above the bedding
material substantially changed, which may be decisive in this respect. In addition, due to
the continuous crushing of the bedding material by the cows, smaller materials slipped to
the bottom of the CBP [1]. Consequently, it is possible that TAS that adhered to these smaller
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bedding material components were no longer detected. The sequencing of parts of the
165 rRNA-gene identified the three most abundant TAS from the CBP Bacillus licheniformis
(45.46%), Laceyella sacchari (18.18%) and Thermoactinomyces vulgaris (36.36%) in cubicles.
Hence, these TAS species occur ubiquitously on the farm. Accordingly, Driehuis et al. [26]
stated that the type of housing (CBP or cubicle housing) is of minor importance for the
occurrence of TAS.

Bacillus licheniformis and the Geobacillus species, for example, are classified as non-
pathogenic [48], and also Black et al. [49] described that Bacillus bacteria are rarely the cause
of mastitis. Moreover, the desired high bedding temperatures in CBP promote pathogen
destruction and a reduction of mastitis-specific bacteria [5,11,18]. Therefore, there is no
increased risk of mastitis for cows kept in CBP compared to those kept in cubicles. However,
TAS which form resistant biofilms are able to survive from milk pasteurisation and result
in the loss of milk product quality [36,37,49]. Therefore, they are of particular importance.

3.4. Effects on the TAS Amount and Concentration

Effects of external influences such as bedding temperature or moisture content and
ambient temperature on the amount of TAS or on the occurrence of specific TAS species in
CBP bedding samples have, to our knowledge, not yet been carried out. Black et al. [49] in-
vestigated the levels of Coliforms, Escherichia coli, Streptococci, Staphylococci and Bacillus spp.
For this purpose, the bedding material samples were incubated at 35 °C for different times.
TAS were not cultivated with them. However, they identified associations between bacte-
rial concentrations and space per cow, moisture content and temperature of the bedding
material [49]. Therefore, we expected that these parameters also have effects on the amount
and concentration of TAS.

3.4.1. Effects on the Amount of TAS (log10 cfu/g Bedding Material)

The moisture content of the bedding material (p < 0.05; Figure 4), relative humidities
at the heights of 0.10 m (p < 0.05; Figure 5) and 1.30 m (p < 0.05) above the bedding material
and the season of sampling (p < 0.01) significantly affected the amount of TAS in the
bedding material of the CBP.

Logarithmised (log10) amount of
thermophilic aerobic sporeformers
(cfu/g bedding material)

O 1 1 1 1 1 1 1 J
0 10 20 30 40 50 60 70 80

Moisture content (%)

Figure 4. Levels of logarithmised (log10) amount (cfu/g bedding material) of TAS in dependency
of moisture content. The individual dots reflect the individual samples, and the black line is the
regression line calculated with the equation y = —0.08x + 8.62 and a coefficient of determination
of 0.34.
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(cfu/g bedding material)
(O8]

Logarithmized (log10) amount of
thermophilic aerobic sporeformers

O 1 1 1 1 J
0 20 40 60 80 100

Relative humidity 0.10 m above bedding material (%)

Figure 5. Levels of logarithmised (log10) amount (cfu/g bedding material) of TAS in dependency
of relative humidity at the height of 0.10 m above the bedding material. The individual dots
reflect the individual samples, and the black line is the regression line calculated with the equation
y = —0.04x + 1.79 and a coefficient of determination of 0.57.

The amount of TAS in winter (5.31 £ 0.31 log10 cfu/g) was significantly higher than in
spring (3.79 £ 0.27 log10 cfu/g), summer (3.62 £ 0.38 log10 cfu/g) and autumn (3.79 £ 0.27
log10 cfu; Table S1). The significant effect of the sampling season (p < 0.01) is presumably
due to the seasonal interaction between the ambient temperature and the relative humidity,
which in turn also have indirect effects on bedding temperature and moisture content. In
agreement with those reported by Eckelkamp et al. [5] and Black et al. [11], we found the
increasing bedding temperature and the decreasing moisture content with increasing stable
and ambient temperature. As a result, rising ambient temperatures led to drier bedding
areas, implying clean cows with reduced risk for mastitis infections [11].

A significant association between the TAS amount and the moisture content (Figure 4)
is due to the fact that the oxygen required for the aerobic processes of these bacteria is
reduced under wet conditions [2,3], resulting in a reduced TAS amount when the moisture
content was above 60%. The negative relationship between the moisture content and the
TAS amount is indicated by the regression coefficient of —0.08 £ 0.03 (Table S2).

In addition, the relative humidities at the heights of 0.1 m (Figure 5) and 1.3 m above
the bedding material showed significant effects on the TAS amount. This is due to a direct
effect on the drying rate, which in turn influences the moisture content of the bedding
material [2].

However, we did not find significant effects of the bedding temperature, the tempera-
tures at the heights of 0.10 and 1.30 m above the bedding material, the ambient temperature,
animal group, lactation status, days between the complete renewal of bedding and the
sample date and the bedded area per cow on cfu/g values (partly shown in Table S1).

The bedded area per cow is one of the most important parameters in a CBP design [2].
At all times, cows in all groups had more than the minimum recommended 7.40 m? /cow of
an open bedded packing area available. If more space is provided per animal, the average
amount of urine and faecal water per m? is lower, implying a decrease in moisture to
be evaporated per m? [11]. Nevertheless, we could not detect any significant association
between the stocking density and the TAS amount. The positive health and well-being
effects of CBP for lactating cows are also evident in dry cows [50]. In principle, the
handling of the bedding area is easier for dry cows than for lactating cows, as the amount
of moisture per animal is much lower than for high-yielding cows [51]. However, there
was no significant impact of lactation status on the amount of TAS (Table S1).
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The fact that the period between the complete renewal of the litter and the sampling
day showed tendencies (p < 0.1; regression coefficient of —0.01 & 0.00; Table S2) on the
TAS concentration may be related to the fact that the fresh litter partly already contains
TAS spores [26,28]. In the present study, we identified 1.96 log10 cfu TAS per g bedding
material in one sample from the stock. In addition, the bedding moisture increased with
increasing usage time of the bedding material as described above, so that the moisture
content then had an indirect effect again.

3.4.2. Effects on the TAS Concentrations of the Different TAS Species

The characteristic TAS concentration provides information about which the bacterium
grew most strongly under which bedding material and temperature conditions, due to
the fact that the corresponding TAS could then be identified most frequently via 165
rRNA-gene sequencing. For example, in sample 8, Thermoactinomyces vulgaris formed the
majority of the 3.64 logl0 cfu/g bedding material, whereas Bacillus licheniformis, the
most prevalent bacterium overall, showed a lower concentration (Table 3). In addition,
Geobacillus thermodenitrificans was identified in 4 of the total 16 picked colonies in sample 8.
This corresponded to a concentration of 25.00%, which was higher than the total Geobacillus
thermodenitrificans concentration of 6.12% over all samples. Accordingly, we can conclude
that the conditions prevailing in sample 8 with a 62.46% moisture content, at a 40.17 °C
bedding temperature and a very high ambient temperature are favourable for the two TAS
species Thermoactinomyces vulgaris and Geobacillus thermodenitrificans. In sample 2, on the
other hand, the conditions prevailed the occurrence of almost all TAS species. Here, five
from the in total six TAS species could be identified.

Although season had a significant effect on the total amount of TAS, we did not detect
a significant effect on the TAS concentration of a single species. Nevertheless, there are
tendencies that, for example, Ureibacillus thermosphaericus only occurs in the winter and
autumn seasons with cold ambient temperatures. However, the differences in TAS species
distribution between sampling seasons were not significant (p > 0.05). Similar results are
shown for Laceyella saccheri, where the days between the complete renewal of the bedding
material and the sample date showed a negative tendency on the presence of this TAS
(p < 0.1). With regard to the lactation status, Is means for the TAS concentrations were
very similar, and the lactation status effect was not significant (Table S1). Nevertheless,
Thermoactinomyces vulgaris was more frequent in the groups of lactating cows than in the
group of dry cows. Concentrate feeding adapted to the lactation status of the cows could
possibly play a role in this regard. The dry cows on the farm received no concentrates, thus
increasing contents of crude fibre in their ration. As already described [28], grain can be
a source of Thermoactinomyces vulgaris. Spores located in fodders are unaffected during
the passage through the gastrointestinal tract of the cow and are excreted in faeces [29,30],
probably causing the contamination of the CBP bedding material and explaining also the
presence of Thermoactinomyces vulgaris in the group of first-lactation and late-lactating cows
kept in cubicles.

In the group of dry cows, over all samples, all six TAS species could be identified.
The wide TAS species spectrum in sample 2 can be explained by the fact that at 2 of the
3 different sampling sites Tbed was clearly above 40 °C (the mean value of the Tbed
was lowered by a very low value at one transit point). This could favour the growth
of further obligate thermophilic bacteria such as Aneurinibacillus thermoaerophilus and
Geobacillus thermodenitrificans especially in comparison to sample 1, which is similar in
terms of Tbed (total) and moisture content (Table 1). The results in Table S2 showed
a significant effect of the moisture content of the bedding material on the presence of
Ureibacillus thermophaericus (p < 0.05), which is additionally presented in Figure 6. In two
bedding samples with moisture contents of 48.23% and 50.33%, Ureibacillus thermophaericus
was identified. The regression coefficient of the scaled moisture content on concentration
of Ureibacillus thermophaericus was —0.38 & 0.13 (Table S2).
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Figure 6. Concentration of Ureibacillus thermophaericus (%) in dependency of moisture content. The
individual dots reflect the individual samples, and the black line is the regression line calculated with
the equation written as: y = —0.38x + 24.01 and a coefficient of determination of 0.38.

Furthermore, the relative humidities at the heights of 0.10 m (Figure 7) and 1.30 m
above the bedding material had a significant (p < 0.05) effect on Laceyella sacchari concentra-
tion, explaining its absence in summer season, for example, when the relative humidity
seemed to be too low for the growth of this TAS species.

40
35 F
30 r
25
20 F
15

10 F

Concentration of Laceyella
sacchari (%)

0 20 40 60 80 100
Relative humidity 0.10 m above bedding material (%)

Figure 7. Concentration of Laceyella sacchari (%) in dependency of moisture content. The individual
dots reflect the individual samples, and the black line is the regression line calculated with the
equation written as: y = 0.46x — 21.61 and a coefficient of determination of 0.38.

The tendencies for bedding temperature and bedding area per cow were shown for
the occurrence of Aneurinibacillus thermoaerophilus (p < 0.1). Interestingly, the obligate
thermophilic bacterium Aneurinibacillus thermoaerophilus was found mainly in samples with
a rather low bedding temperature (17.93 to 34.77 °C). This is also shown by the negative
regression coefficient of —0.49 £ 0.22 (Table S2).
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Overall, we showed that the recorded bedding material characteristics such as mois-
ture content and temperature as well as the barn management characteristics such as
relative humidity significantly affected the amount of TAS and the TAS species concen-
trations. Further studies in this context are imperative to define management recommen-
dations for setting optimal TAS contents by considering the specific farm characteristics.
Beffa et al. [16] already mentioned the challenges for reducing Bacillus spp. while maintain-
ing active composting. Bacteria are always present in CBP, which is desirable for effective
composting. In order to reduce the risk of TAS transfer from the teats into milk, it is
therefore particularly important to keep the moisture content of the bedding material at an
optimum level.

In this context, it should be noted that the CBP bedding composition parameters are
also beneficial for fungal growth [52], whereas previous studies showed a decrease in
the amount of fungi during thermophilic composting processes [53]. However, microbial
and molecular genetic studies on fungal growth in CBP bedding materials should also be
conducted in subsequent studies including a possible influence of the fungal growth on
the TAS growth and vice versa.

4. Conclusions

We identified different TAS species in CBP groups with different concentrations. The
sequencing of parts of the 16S rRNA-gene led to the identification of six different TAS
species, with Bacillus licheniformis being the most common species. Especially, the moisture
content of the bedding material and the relative humidity above the bedding material have
significant influences on the TAS concentration and, to some extent, on the TAS species
concentration. Therefore, an optimal compost management is a prerequisite for a functional
dairy farming in CBP with a dry lying surface and an optimal composting process with
a moderate microbial, especially the TAS amount and the TAS concentration. Since three
of the six identified TAS species were also found in cubicles, it can be assumed that these
TAS species occur ubiquitously on the farm. Further research is needed to: a) examine
the effects of these ubiquitous TAS on udder health; b) study their effects on milk product
quality; and c) give clear CBP management recommendations.

In the present study, only samples from one German CBP farm were considered. The
selected large-scale CBP herd is a model herd for compost bedding in Germany, and we
considered repeated measurements from all seasons. Nevertheless, for detailed validations
and TAS-farm characteristic association analyses, it is imperative to consider a larger
number of CBP herds and to focus on a longitudinal data structure in further herds.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ani11102890/s1, Table S1: Least-square means of amount of TAS (logl0 cfu/g bedding
material) and TAS concentration by season, lactation status and CBP group (standard errors in
brackets), Table S2: Regression coefficients of days between the complete renewal of bedding and the
sample date (days), moisture content (Mc), bedding temperature (Tbed), temperatures at the heights
of 1.30 m (Thigh) and 0.10 m (Tdown) above the bedding material, relative humidities at the heights
of 1.30 m (RHhigh) and 0.10 m (RHdown) above the bedding material, ambient temperature (Tamb)
and bedded area/cow on the amount and the concentration of TAS (standard errors in brackets).
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